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Abstract
Global climate change is rapidly transforming the polar regions. Remote sensing of-
fers great potential for monitoring the developments in these often inaccessible areas.
However, the amount of data is too large for manual analysis. Therefore, in an effort
to support monitoring the changes in these regions, this dissertation develops deep
learning methods for the remote sensing analysis of targets in these regions. More
specifically, the developed models can automatically map the calving fronts of marine-
terminating glaciers and detect permafrost disturbances in the form of retrogressive
thaw slumps (RTS). The fundamental research questions motivating this dissertation
are:

1. How can domain knowledge about polar regions be encoded into deep learning
models for remote sensing in these regions?

2. Are there more efficient ways of encoding such mapping tasks into deep learn-
ing tasks than the standard approaches used in computer vision like semantic
segmentation?

3. How can deep learning models generalise from limited labels to the entirety of
the polar regions in a data-efficient way?

4. Will automatically derived observations allow polar science to better understand
the developments in polar regions?

In an effort to answer these questions, this dissertation makes the following scientific
contributions:

1. A model for mapping calving fronts in Antarctica is developed based on obser-
vations in the behaviour of human annotators. The resulting HED-UNet model
combines semantic segmentation and edge detection and works on multiple reso-
lution levels [1].

2. Questioning the representation of calving fronts through pixel-wise predictions
altogether, a second model is developed. The COBRA model maps calving fronts
in Greenland by directly predicting the desired contour lines instead of taking
pixel-wise predictions as a proxy [2].

3. In a first downstream study, the COBRA model is applied for calving front detec-
tion in Svalbard. Thanks to the automated analysis, it was possible to derive a
dataset of more than 100,000 calving front traces. This dataset allows for a better
understanding of glacial processes such as the behaviour of surge-type glaciers [3].
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Abstract

4. The feasibility of applying deep learning methodology for the mapping of retro-
gressive thaw slumps in permafrost regions is established. By evaluating multiple
deep learning architectures with regional cross-validation across the Arctic, spa-
tial generalisation is identified as the main challenge [4].

5. In order to address the challenge of spatial generalisation in permafrost distur-
bance mapping, a data-efficient training routine is proposed. The PixelDINO
approach is a method for semi-supervised learning, combining labelled data with
unlabelled imagery. In this way, models are trained to generalise well across
multiple regions in the Arctic [5].
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Zusammenfassung

Der globale Klimawandel hat massive Auswirkungen auf die Polarregionen. Für die
Beobachtung der Entwicklungen in diesen oft unzugänglichen Regionen stellt die Fern-
erkundung ein wertvolles Werkzeug dar. Jedoch ist die Menge an Daten zu groß für
manuelle Analysen. Um die Analysen dieser Prozesse mit automatisierten Methoden zu
unterstützen, entwickelt diese Dissertation Deep Learning Methoden für die Fernerkun-
dung von bestimmten Objekten in den Polarregionen. Die entwickelten Modelle können
Gletscherkalbungsfronten kartieren, sowie Störungen des Permafrostbodens in der Form
von Retrogressiven Taurutschungen detektieren. Die motivierenden Forschungsfragen
sind hierbei die folgenden:

1. Wie kann Anwendungswissen über die Polarregionen in Deep Learning Modelle
für die Fernerkundung eingebacht werden?

2. Gibt es effizientere Wege, diese Kartierungsaufgaben in Deep Learning Modellen
zu kodieren als die geläufigen Computer Vision Methoden, wie semantische Seg-
mentierung?

3. Wie kann es Deep Learning Modellen ermöglicht werden, über große Areale
zu generalisieren, ohne den Aufwand für die Erstellung von Trainingsdaten be-
trächtlich zu steigern?

4. Inwieweit können die automatisch abgeleiteten Vorhersagen der Polarforschung
helfen, Prozesse in den Polarregionen besser zu verstehen?

In dem Bestreben, diese Fragen zu beantworten, liefert diese Dissertation die folgen-
den wissenschaftlichen Beiträge:

1. Basierend auf Beobachtungen zum Verhalten von menschlichen Annotatoren wird
ein Modell zur Kartierung von Kalbungsfronten in der Antarktis entwickelt. Das
resultierende HED-UNet Modell kombiniert dafür semantische Segmentierung
mit Kantendetektion und verarbeitet die Bilddaten auf mehreren Auflösungsebe-
nen [1].

2. Die Repräsentation von Kalbungsfronten durch pixelweise Vorhersagen wird in-
frage gestellt. Das zweite entwickelte Modell, COBRA, kartiert Kalbungsfronten
direkt in der Form von Polygonzügen. Somit wird der Umweg über pixelweise
Masken vermieden [2].
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3. In einer ersten Anwendungsstudie wird das COBRA Modell auf Kalbungsfronten
in Spitzbergen angewandt. Dank der automatisierten Analyse war es möglich,
einen Datensatz von über 100.000 Kalbungsfronten zu generieren. Dieser Daten-
satz gibt neue Einblicke in das Verständnis von Gletscherprozessen, wie zum
Beispiel das Verhalten von Surge-Gletschern [3].

4. Eine Machbarkeitsstudie demonstriert das Potential von Deep Learning für die
Kartierung von Retrogressiven Taurutschungen in Permafrostregionen. Durch die
Evaluation von verschiedenen Deep Learning Architekturen und regionaler Kreuz-
validierung wird die räumliche Generalisierung als zentrale Herausvorderung iden-
tifiziert [4].

5. Um die räumliche Generalisierung der Modelle zu verbessern wird eine datenef-
fiziente Trainingsprozedur vorgestellt. Der PixelDINO-Ansatz ist eine Methode
für Semi-Supervised Learning, wobei existierende annotierte Trainingsdaten mit
nicht annotierten Satellitenbildern kombiniert werden. Auf diese Weise ist es
möglich, Modelle zu trainieren, die Vorhersagen von hoher Qualität für diverse
Regionen der Arktis liefern [5].
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1 Introduction

The regions near the Earth’s poles, the Arctic and Antarctica, are characterised by
frigid climates, giving rise to unique ecosystems found nowhere else on Earth. Icy
landforms like ice sheets or permafrost comprise large parts of these regions. Moreover,
the polar regions are home to iconic species like penguins and polar bears. However,
these regions are changing at alarming rates in the face of global climate change. In
fact, out of all regions on Earth, both Antarctica and the Arctic are among the regions
warming most rapidly. They are estimated to currently be warming at 2–4 times the
global average warming rate, a phenomenon called polar amplification [6], [7]. Since
the polar regions are covered primarily by icy landforms, these warming temperatures
manifest themselves in the form of melting processes. This melting has massive im-
plications for local geophysics and ecosystems. Glaciers in Greenland and Antarctica
are mostly retreating, often at accelerating rates [8], [9]. Depending on the emission
scenarios, the Greenland and West Antarctic ice sheets might even disappear com-
pletely [10]. Arctic sea ice has consistently been declining, especially in the 1980s and
since 2010 [10], [11]. Similarly, ground temperatures are increasing in many permafrost
regions, causing previously frozen soil to thaw rapidly [12]. Most of these changes are
very likely anthropogenic in nature, meaning that they are caused by the effect humans
have on the global climate [10].

These developments in the polar regions may seem to be locally constrained at first
glance. One might easily dismiss them as irrelevant, especially since the polar regions
are sparsely populated. However, we cannot ignore these developments, as the global
climate system is tightly interconnected. Even small changes in one region can lead
to significant changes in other regions [13], [14]. Ultimately, warming processes in the
polar regions are not only of regional importance. On the contrary, they are likely to
impact multiple global climate systems [14]. For instance, melting glaciers in Green-
land and Antarctica are a significant contributor to the rise of global sea levels, with
measurements indicating a contribution of around 7.6 mm from the Antarctic Ice Sheet
for the period from 1992 to 2017 [15] and around 10.8 mm from the Greenland Ice Sheet
for the period from 1992 to 2018 [16]. The ice sheets are tightly coupled to the global
climate system not only through sea level rise, but also through transport mechanisms
like ocean currents and air fluxes [17], [18]. In the Arctic Ocean, sea temperatures
and salinity are rising, while sea ice is declining, a process called Atlantification [19].
In turn, important ocean currents in the Arctic Ocean are changing their behaviour,
which could have global repercussions [20].
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Figure 1.1: Top: Calving event of Sørsdal Glacier in Antarctica, Image by David Gwyther [21].
Bottom: Timeseries of retreating glaciers in Greenland. First Row: Jakobshavn
Isbræ in Western Greenland, retreating from west (left) to east (right). Second
Row: Helheim Glacier in Eastern Greenland, retreating from east (right) to west
(left). Satellite imagery from the NASA Landsat 5, 7, 8, and 9 missions, processed
using the Google Earth Engine [22].

Perhaps the most prominent features of the polar regions are the massive ice shields
in Greenland and Antarctica. In light of extensive warming in these regions, the glaciers
fed by these ice sheets are already losing mass at accelerating rates, as shown in fig-
ure 1.1, which causes global sea levels to rise [10], [15], [16]. Experts believe these ice
shields will lose substantial amounts of their ice mass by the end of the century [10].
Research suggests that these processes are part of intricate feedback loops where in-
creased glacier melt increases the interactions between warmer ocean water and the
glacial ice [13]. Further, glacial retreat lowers the albedo of the Earth’s surface so that
more incoming radiative energy from the sun will be absorbed [23]. Both of these ef-
fects, in turn, accelerate the melting process of the glaciers. This self-reinforcement of
glacial melt in the polar regions is one reason for significant concerns regarding so-called
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Figure 1.2: Top: Coastal retrogressive thaw slump on the Bykovsky Peninsula in northern
Siberia. Image by Ingmar Nitze [24]. Bottom: Timeseries of rapid permafrost
decay through growing RTS (bright, beige features) at Sukhoy Nos on the No-
vaya Zemlya archipelago in the Russian Arctic. Satellite imagery from the ESA
Sentinel-2 mission, downloaded and processed using Google Earth Engine [22].

tipping points, which are thresholds that, once crossed, will cause abrupt changes in
the global climate system, which will not be able to be reversed [23].

Another process driven by the warming of the Arctic is the thawing of permafrost.
The term permafrost denotes soil that remains at 0 °C or below for at least two consec-
utive years [25]. Similarly to the ice sheets, permafrost makes up a significant fraction
of the Earth’s surface. Accurately quantifying the area underlain by permafrost is chal-
lenging because it is a sub-surface phenomenon. Assessments agree, however, that at
least 10% of the Earth’s land surface is currently underlain by permafrost [26]. Warm-
ing in these regions causes this previously frozen soil to thaw gradually, causing massive
repercussions for both local ecosystems and the global climate. Thawed permafrost soil
has entirely different physical properties from intact permafrost [27]. Therefore, these
thawing processes can change entire landforms, as seen in figure 1.2. For example, parts
of the ground can subside, posing threats to local infrastructure like roads, houses, or
pipelines [28]. Further, thawing permafrost is known to release previously stored or-
ganic carbon in the atmosphere, mainly in the form of the greenhouse gas methane [29].
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Climate researchers believe this mechanism will further drive climate change through
a so-called feedback loop [29]. As permafrost is a subsurface phenomenon, these thaw-
ing processes are challenging to understand on a global scale. Global model estimates
of permafrost parameters like the ground temperature or the active permafrost layer
thickness deviate considerably from the ground truth in many places [30], [31].

While scientists agree that the effects of rapid warming in the polar regions are
potentially catastrophic [10], it is not easy to quantify them precisely, as the under-
lying processes are complex to observe and model. While some phenomena are well
understood qualitatively, they remain challenging to model quantitatively, especially
when it comes to forecasting future developments. The process of icebergs calving from
glaciers, for example, has been extensively studied through numerical models [32]–[34].
Still, each model has shortcomings, and none can currently predict iceberg calving
with reliable accuracy [35], [36]. More real-world data measurements are needed to
gain a better understanding of such dynamics and develop more accurate models of
these processes. These measurements must have both a high spatial resolution and
a high temporal frequency so that the underlying processes can be reconstructed and
understood in sufficient detail.

Highly accurate and frequent data about cryospheric processes are needed. The ac-
tual acquisition of such data, however, is not an easy task. Traditionally, studies on the
polar regions are carried out in the form of expeditions. A group of researchers travels
to a specific polar region and takes measurements in the field. The remote location
and difficult accessibility of large parts of the Arctic impose significant restrictions on
the coverage of such studies. Expeditions can only reach a small number of selected
study sites, while most of the Arctic remains uncovered by such expeditions. Such
accessibility issues are even more pressing for Antarctic expeditions. While local ex-
peditions provide deep insight into specific local geophysics and ecosystems, they are
costly and only able to visit a few locations at a time. Therefore, it is challenging to
directly measure or observe trends from field studies alone. Especially on a pan-Arctic
or pan-Antarctic, in-situ data is scarce [37].

Thanks to the remarkable recent technological progress of Earth observation satellites
and data processing, we can virtually explore and observe any place on Earth today
without physically travelling there. Vast amounts of satellite data are acquired daily,
allowing for insights with unprecedented resolution and accuracy even for secluded
regions that might otherwise go unobserved. These possibilities are of high practical
interest for the polar regions, as these regions are, in large parts, inaccessible even to
scientific expeditions. Remote sensing has, therefore, become an invaluable tool for
observing structures and processes in these regions [38], [39]. Especially in light of
global climate change causing unprecedented developments that are ever-increasing in
speed and magnitude, satellite imagery provides a consistent monitoring possibility for
the Arctic and Antarctica. In order to gain a deeper understanding of these changes and
the underlying processes, remote sensing can help by allowing for large-scale analysis
of these phenomena.

Scaling up such monitoring systems to the entirety of the Arctic or Antarctica re-
quires processing vast amounts of data. Therefore, manual analysis is not an option.
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1.1 Research Objectives

For such analyses, recent data science methods can automate many tedious tasks, like
mapping objects of interest, classifying features on the ground, or tracking changes.
Once such an automated algorithm has been designed and trained, it is relatively sim-
ple to scale up the analysis by increasing the amount of computational resources, which
is more economical than employing hundreds of manual annotators. This premise serves
as the starting point for this dissertation project. The central goal of this thesis is to
develop and provide methods based on deep learning algorithms for the automated anal-
ysis of phenomena in polar regions. The observations derived using these algorithms can
then aid polar scientists in finding patterns, detecting trends, and improving existing
numerical models.

1.1 Research Objectives
The main goal of this dissertation is to develop and present automated analysis meth-
ods for monitoring polar regions using remote sensing data. In order to achieve this,
this dissertation builds on and improves upon successful deep-learning methods from
computer vision. Several considerations arise in pursuit of this main goal, which will
be outlined in the following paragraphs.

Remote sensing works with imagery quite different from the imagery used in most
computer vision research. Differences in imaging resolution, number of spectral bands,
and acquisition geometries suggest that analysing remote sensing imagery might re-
quire different algorithmic strategies than natural imagery. Therefore, the assumptions
behind the design of existing computer vision models may not hold for remote sensing.
Even for existing remote sensing models, one might wonder whether a model designed
for urban or agricultural remote sensing should be applied to the polar regions without
any additional changes. These considerations form the first research question that this
thesis aims to answer:

Research Question

Can domain knowledge about polar research be encoded in deep learning mod-
els, and if so, how does it improve model predictions compared to existing deep
learning approaches for image analysis?

The desired monitoring tasks must be encoded into a task representation well-suited
for deep learning. As we will see in chapter 4, there can be multiple ways of doing
this, and some may be better suited for the underlying task than others. For instance,
mapping tasks in remote sensing are often approached by translating them into the deep
learning task of semantic segmentation. Here, the model assigns a class label to each
input pixel. For further processing in a geographic information system (GIS) context,
the model then needs to extract the desired polygons from the resulting segmentation
map in a post-processing step. In search for alternative approaches, the first two
manuscripts in this dissertation challenge this approach by exploring different ways of
encoding glacier calving front mapping into deep learning tasks.

5
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Research Question

Aside from semantic segmentation, are there other ways of encoding domain-
specific tasks, such as calving front detection, that improve prediction perfor-
mance?

Further, generalisation across different parts of the polar regions deserves careful
attention. The models should not only work well for a single study site within the
Arctic or Antarctica but must also generalise to the entirety of the polar regions. In
this way, large-scale studies of the trends and phenomena mentioned above can be con-
ducted without additional manual image analysis. This is a challenging requirement,
especially in the permafrost use case. In order to generalise well, deep learning models
need a large amount of representative training data. However, since permafrost land-
scapes cover large parts of the planet’s land surface, they are highly diverse. Therefore,
existing datasets only cover small regions within the Arctic limiting the number of
available training labels. Chapter 5 will explore ways to improve model generalisation
in the setting of limited labels. Semi-supervised learning approaches can use extensive
collections of unlabelled imagery to complement the labelled data. The model can then
infer structural similarities between the labelled and unlabelled training inputs during
training and exploit this to learn to generalise better.

Research Question

How can machine learning models learn efficiently from limited labels in the face
of the many diverse landscapes in the Arctic?

Finally, the developed models must be able to analyse remote sensing imagery au-
tomatically and extract insights on a large scale. The scientific value of these derived
datasets for downstream research glaciology and climate science mainly depends on the
data quality. Exemplary studies in Antarctica [9] and Svalbard [3] already employ two
of the models proposed in this dissertation in order to derive data about the glaciers
in these regions with unprecedented temporal and spatial resolution.

Research Question

To what extent are the data products derived from deep learning models beneficial
for polar science?

1.2 Thesis Outline
This section briefly introduces the thesis outline as a guide for the reader. As the
presented work constitues a cumulative dissertation, the main scientific contributions

Chapter 2 introduces the necessary concepts from deep learning and remote sensing
to understand the remaining chapters. Then, Chapter 3 summarises existing work

6



1.2 Thesis Outline

on polar remote sensing, highlighting approaches based on traditional remote sensing
methods and first studies employing deep learning for these tasks. Finally, it also
discusses research works parallel to this dissertation.

Going into the research done during this dissertation project, chapter 4 introduces
the first three papers of this dissertation project. Here, we study deep learning for
glacier calving front detection. The first paper introduces HED-UNet, a method for
combining semantic segmentation and edge detection approaches for more accurate
calving front detections. The second paper proposes the COBRA model, which ques-
tions the necessity of pixel-wise predictions and instead aims at predicting calving fronts
directly as contours. The third paper is a study applying the COBRA model to glaciers
in Svalbard on a large scale, demonstrating its usefulness and accuracy in a practical
context.

Chapter 5 then discusses the detection of retrogressive thaw slumps in permafrost
regions. The first paper introduced in this chapter demonstrates the overall feasibility
of deep learning for this task. At the same time, it highlights the need for more sophis-
ticated methods in order to generalise across the Arctic. The second paper proposes
the PixelDINO training methodology to address this need. By incorporating unlabelled
satellite imagery in a semi-supervised fashion, the models can learn more general and
robust features without needing additional labelled data. As we will see, this training
procedure can greatly improve the quality of the model predictions.

Finally, chapter 6 concludes the thesis and gives an outlook on future developments
in polar remote sensing. It also highlights some open research questions in this area.
The appendix contains the publications that make up this cumulative dissertation.

A companion website containing links to the source code repositories and additional
material like animations and interactive maps for the publications in this thesis can be
found at https://konrad.heidler.info/dissertation or by scanning the QR Code
below:

7
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2 Theoretical Background

Before going into detail on the current research on polar remote sensing, this chapter
aims to familiarise the reader with the background knowledge needed to understand
the following chapters. Starting from a short introduction to deep learning as the
primary algorithmic technique used in the research projects, we will then move on to
how to apply deep learning to remote sensing data, and, finally, explore some of the
particularities and challenges of remote sensing in the polar regions.

In order to stay within the scope of this dissertation, we will only visit some concepts
in brevity, with references pointing the interested reader to in-depth accounts of the
matter at hand.

2.1 Deep Learning: A Primer
Thanks to the large interest in deep learning, many introductory works on this topic
are available. Therefore, the following section summarises only the basics necessary to
follow the remainder of this dissertation. Readers looking for an in-depth introduction
to the foundations of deep learning are referred to Goodfellow et al. [40] or Bishop
[41]. For an introduction of the topic from a statistical point of view, the textbook by
Murphy [42] gives probabilistic intuitions on many of the concepts in deep learning.

Conceptually, deep learning describes a collection of techniques and methods based
around deep neural networks (DNNs). Inspired by the connectivity structures of neu-
rons in the human brain, they are a particular class of mathematical functions that
can be tuned through their parameters. DNNs map values from some input vector
space R𝐼 to some output space R𝑂. Intriguingly, these networks are built from only
elementary mathematical operations but are still able to approximate a large class of
possible functions up to arbitrary precision [41].

Multi-Layer Perceptrons
As the oldest class of DNNs, Multilayer Perceptrons (MLPs), or feed-forward networks
(FFNs) are made up of a sequence of layers, which each contain a pre-defined number
of artificial neurons. The mapping from one layer to the next is then defined as a
mapping

𝑥 ⟼ 𝜑(𝑊𝑥 + 𝑏), (2.1)
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where 𝑊 is called the weight-matrix and 𝑏 is called the bias vector. 𝜑 denotes a non-
linearity function, needed to approximate non-affine functions. In theory, any non-
linear function can be used here, but in practice, simple functions like the positive part
of a number, the so-called rectified linear unit (ReLU), are often used. The parameters
𝑊 and 𝑏 are called the layer’s parameters. They determine how the layer transforms its
inputs and can be adapted to change the behaviour of the resulting function. An MLP
is the functional concatenation of such layers. The collection of trainable parameters
of a DNN is often denoted by 𝜃 and the resulting mapping for a specific parameter set
by 𝑓𝜃( ⋅ ). The output layer is the last layer of an MLP. Earlier layers are called hidden
layers [40].

While this class of models is rather simplistic from a mathematical point of view,
it turns out that such models can approximate a large class of functions. So-called
universal approximation theorems state that by increasing either the width of the hidden
layers [43] or adding more hidden layers [44], one can approximate any continuous
function from a compact subset of R𝐼 to R with any desired accuracy. This adaptability
makes MLPs a potent tool for implementing functions that are hard to define explicitly.

So we have established that DNNs have some impressive capabilities, but how can
they be trained to be made helpful for real-world use cases? In machine learning tasks,
a typical setting is supervised learning, where one is looking to learn an underlying
mapping from a set of input-output pairs {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁)}. After fixing a neural
network architecture, supervised learning is equivalent to finding an optimal set of
parameters 𝜃∗, for which 𝑓𝜃∗(𝑥𝑘) ≈ 𝑦𝑘 for all 𝑘. For this, some notion of “closeness”
of the model output 𝑓𝜃(𝑥𝑘) and the desired output 𝑦𝑘 is needed. A loss function does
precisely that. Given a model output and the true target value, it computes a measure
of distance. This distance can then be minimised by means of numerical optimisation.
So more formally, given a loss function ℒ, the goal of neural network training is to find
𝜃∗ according to

𝜃∗ = argmin𝜃
1
𝑁

𝑁
∑
𝑘=0

ℒ(𝑓𝜃(𝑥𝑘), 𝑦𝑘), (2.2)

a procedure called empirical risk minimisation. The probabilistic intuition behind
this is founded in the idea that (𝑥𝑘, 𝑦𝑘) are independent, identically distributed (i.i.d.)
samples drawn from an underlying joint distribution 𝑃(𝑋, 𝑌 ). In this setting, the
objective given in equation (2.2) is equivalent to minimising the expected loss for a
random sample from this distribution [40].

In practice, some form of gradient descent is most often used to minimise the loss.
Following the usual definitions, all components of a neural network are differentiable
almost everywhere, meaning that a gradient ∇𝜃𝑓𝜃(𝑥) of the neural network’s outputs
with regard to its parameters can be found for a given input 𝑥. As the gradient points in
the direction of maximum local steepness, updating 𝜃 in the negative gradient direction
will decrease the loss when taking small enough steps. As datasets tend to be too large
to be processed at once, the gradient is usually approximated using a small subset of
all samples by randomly sampling indices 𝐵 ⊂ { 1, … , 𝑁 }, called a minibatch. Then,
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the weights are updated according to the gradient estimated from this minibatch:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃
1

|𝐵|
∑
𝑘∈𝐵

ℒ(𝑓𝜃(𝑥𝑘), 𝑦𝑘) (2.3)

Repeating this for many steps yields the training procedure of stochastic gradient de-
scent (SGD) [40].

While gradient descent procedures are not guaranteed to converge to the global
optimum 𝜃∗ in general, optimisation results are largely satisfactory in practice [40].
Modern deep learning optimisers like Adam are variations on this basic algorithm which
include estimates of higher-order statistics of the gradient [45].

Convolutional Neural Networks
While MLPs have the impressive learning capabilities mentioned earlier, they can be-
come unwieldy for real-world input data. For the example of a typical RGB image
of size 256 × 256, just one layer assigning a single value to each pixel would already
require instantiating a weight matrix of size R3⋅2562×2562 , corresponding to more than
51 GB of memory needed in 32-bit floating point format. To make deep learning for
more efficient for image processing, specialised neural network architectures have been
developed for specific deep learning applications like computer vision [40].

The most essential architecture used throughout this dissertation is the convolu-
tional neural network (CNN). Based on the concept of convolutional kernels from im-
age processing, they exploit the spatial structure of image data by combining only data
from input pixels in a local neighbourhood. Replacing the matrix multiplication in
equation (2.1) with a convolution operation yields a convolutional layer. For a two-
dimensional image 𝐼 ∈ R𝐻×𝑊, the convolution calculates an output feature map 𝐹 as
follows1:

𝐹𝑖,𝑗 = (𝐼 ∗ 𝐾)𝑖,𝑗 =
ℎ

∑
𝑖′=−ℎ

𝑤
∑

𝑗′=−𝑤
𝐼𝑖−𝑖′,𝑗−𝑗′𝐾𝑖′,𝑗′ (2.4)

𝐾 denotes a convolutional kernel, indexed by the set { −ℎ, … , ℎ } × { −𝑤, … , 𝑤 } [40].
For multi-channel input imagery, a separate kernel is applied to each input channel

and the results are added together. Similarly, multiple convolution operations can
performed for obtaining multiple feature maps. Convolutional layers can be defined
analogously for one-dimensional inputs like time series or three-dimensional inputs like
voxel data [40].

Convolutional layers are an essential deep learning tool in computer vision due to
several desirable properties. First, they require substantially fewer computational re-
sources to store and compute as they only evaluate local connections. Secondly, while
each CNN is equivalent to a highly sparse MLP, they tend to be more data-efficient in
training, as weights are shared for all locations in the image. So, if a layer was trained
1In practice, many deep learning libraries compute a slightly different operation, namely cross-
correlation. This operation switches the input indexing term to 𝐼𝑖+𝑖′,𝑗+𝑗′ . Still, the term “convolution”
is used prevalently for both operations in the deep learning context [40].
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Input Layer Hidden Layer Output Layer
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CNN

Figure 2.1: Conceptual Architecture of an MLP (left) and a CNN (right).

to recognise a specific feature in one image location, this knowledge would transfer to
other locations by design. This translation equivariance is a so-called inductive bias,
which means that the space of possible functions is deliberately limited in order to
favour models that adhere to properties believed to be beneficial for the task [46]. As
deep learning for remote sensing often deals with image data, CNNs are an indispens-
able tool for designing neural networks that can solve remote sensing tasks [47].

By passing imagery through a series of convolutional layers, feature maps of increas-
ing abstraction are obtained. While early layers may respond to local features like
edges or corners, later layers can detect more extensive features [40]. In order to guide
the flow of information through a CNN, two additional techniques are commonly used.
The first one, called pooling, reduces the spatial resolution of the feature maps. In doing
so, the network can connect features from farther apart in the original image without
employing huge convolutional kernels. The most common pooling technique is called
max-pooling. It works by dividing an input feature map into local cells, e.g. of size 2×2,
and then reducing each cell to its maximum value [40]. Skip connections are another
vital design technique for CNNs. They split a network into multiple branches, which
are then merged back together through element-wise addition or vector concatenation.
This procedure is used in nearly all modern deep learning architectures, leading to more
stable training and faster convergence [48].

2.2 Deep Learning in Remote Sensing

Deep learning in remote sensing is a rapidly advancing topic. Conceptually, remote
sensing tasks are similar to computer vision tasks. The primary data modality in
both fields is rasterised imagery, meaning that the data consists of pixels ordered in
a regular grid. Due to this close similarity, the recent breakthroughs in computer
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vision based on CNN architectures have given rise to significant leaps in remote sensing
methodology [47].

While the fundamental CNN building blocks can be applied to remote sensing im-
agery, some challenges arise from the large variety of remote sensing imaging modalities.
The natural images studied in computer vision generally have three colour channels:
red, green and blue. On the other hand, the number of channels varies widely in remote
sensing. Multi-spectral images usually have around a dozen spectral bands. Even more
extreme, hyper-spectral images can cover hundreds of spectral bands [47].

Many recent CNN architectures employ so-called pre-trained backbones, which means
that a large part of the neural network is initialised with parameters that were obtained
by pre-training on a large dataset, such as ImageNet [49]. Pre-training aids generalisa-
tion and reduces the time needed to train such a model [50]. However, remote sensing
imagery is so diverse, with varying channel numbers and resolutions, that pre-trained
backbones for remote sensing tasks are often not an option. Instead, researchers tend to
initialise the models randomly [47]. So, computer vision tends towards more complex
models, relying on the quality of pre-trained backbone features. However, less complex
models might be more data efficient, making them better suited for remote sensing
tasks.

Computer vision applications in remote sensing are too many to list exhaustively in
this chapter. Still, many of them share similar approaches in their methodology and can
be reduced to one of four fundamental computer vision techniques: image classification,
semantic segmentation, instance segmentation and object detection. Figure 2.2 gives
an impression of how each one of these techniques might analyse a given remote sensing
image.

Image Classification
The first task where CNNs revealed their potential is image classification, where the
model must assign one out of several predefined classes to each input image [51]. Com-
puter vision research has explored this task extensively. Datasets like ImageNet [49]
serve as standardised benchmarks. New models are often first evaluated on image clas-
sification before being evaluated for other tasks [48], [52]. In remote sensing, this task
is usually called scene classification. Models trained on this task can automatically dis-
tinguish between general land use classes [53] or detect specific objects, such as airports
or sports stadiums [54].

Semantic Segmentation
Frequently, the location of specific objects within an image is important. Adding a
spatial component to the idea of image classification yields the task of semantic seg-
mentation. Instead of assigning one label to the entire image, the model must label each
individual pixel [55]. One standard benchmark for semantic segmentation in computer
vision is the CityScapes dataset [56]. In this benchmark, models must segment objects
like cars and pedestrians in urban street scenes. The idea of pixel-wise analysis aligns
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Figure 2.2: Overview of the four main deep learning tasks in computer vision. Given an input
Sentinel-2 image from the Bykovsky Peninsula, Siberia, possible outputs for each
task setting are shown.

well with mapping tasks in remote sensing, where the location and extent of specific
features are needed. Therefore, it is widely applied for various tasks in remote sensing,
such as fine-grained land use classification [57] or cloud detection [58].

Object Detection
While semantic segmentation models can be helpful for localisation tasks, they can
fail in some scenarios. For example, when multiple objects from the same class touch
each other, a semantic segmentation model cannot separate them. In such settings,
object detection models can be helpful [59]. Here, the predictions are bounding boxes
for objects of interest. While such models do not trace the exact boundaries for each
object, they can separate individual objects. Therefore, they are helpful when only
the number of objects or their rough extent is needed. A standard computer vision
benchmark for object detection is the Microsoft Common Objects in Context (COCO)
dataset [60]. In remote sensing, object detection models can detect various classes of
objects like trees, landslides, ships, or aeroplanes [61].

Instance Segmentation
Some tasks require both pixel-wise mapping and the separation of individual objects.
Intuitively, models can conceptually combine semantic segmentation with object detec-
tion to achieve this. Instance Segmentation trains models to predict a separate mask for
each object instance. Following this idea, these models do not only assign class labels to
each pixel but also group them into objects (“instances”) and separate them from the
background [62]. The COCO dataset mentioned above additionally contains instance-
level annotations, making it a valuable benchmark dataset for this task as well [60]. In
remote sensing, instance segmentation models have successfully been trained to analyse
buildings [63] or detect vehicles [64].

These techniques are widely applied in remote sensing, yet they require modifications
depending on the exact task to be solved, the satellite platform used, and other factors.
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One of the central themes discussed in this thesis will be deciding whether a given task
fits into one of the categories above or whether there is a more natural way of formalising
the task.

Research Question

Are any of these standardised computer vision approaches well-suited for polar
remote sensing tasks, or are there better ways to encode the tasks?

2.3 Remote Sensing in Polar Regions
The polar regions are near the Earth’s poles and exhibit extreme climatic conditions.
Phenomena like polar night, cloud cover or snow cover have substantial implications
on the acquisitions made by Earth observation satellites [38]. Therefore, one must
carefully consider which data source to use for polar remote sensing. Multi-spectral
optical imaging and synthetic aperture radar (SAR) are the most widely used imag-
ing modes [38]. Similar to regular camera images, multi-spectral images are acquired
using optical methods. However, multi-spectral imagery includes more spectral bands,
usually in the ultra-violet or infrared ranges [65]. SAR works by transmitting coherent
radar pulses to the Earth surface and analysing the radar echo [65]. This section will
cover the advantages and disadvantages of these fundamentally different image acquisi-
tion techniques for polar remote sensing. In particular, it will also discuss some effects
specific to polar environments, as shown in figure 2.3.

Multi-Spectral Remote Sensing in Polar Regions
Optical imaging satellites work based on principles similar to digital cameras. While
invisible to the human eye, the spectral ranges beyond visible light contain important
information about environmental factors. Therefore, these satellites collect ultraviolet
and infrared spectral ranges in addition to the typical red, green, blue (RGB) bands.
For these wavelengths, conventional optics and imaging sensors like complementary
metal oxide semiconductor (CMOS) sensors are mostly used [65].

Multi-spectral remote sensing is a major branch of remote sensing, with open data
programmes by major space agencies providing multi-spectral imagery from their satel-
lites free of charge. The NASA Landsat mission is an example of a long-standing
satellite program providing global multi-spectral imagery products. The first Landsat
satellite was launched in 1972. Follow-up missions were launched regularly, resulting
in a continuous archive of Landsat imagery up until the present [65]. The most re-
cent Landsat satellite, Landsat 9, was launched in 2021 and acquires imagery across
11 spectral bands at varying resolutions between 15 m and 100 m [67]. More recently,
ESA’s Sentinel-2 mission was launched in 2015 to provide global imagery across 13
spectral bands at resolutions from 10 m to 60 m with a 5-day revisit time [68]. It allows
for more fine-grained analysis than Landsat imagery, but covers a shorter time span
in turn. Finally, with cheaper launch costs and smaller optics and electronics, private
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Sentinel 2 Sentinel 2 Sentinel 1 (Asc.) Sentinel 1 (Desc.)
2023-02-23 2023-08-02 2023-08-01 2023-07-28

(a) (b) (c) (d)

Figure 2.3: Challenges in image acquisition for polar remote sensing. Shown are glaciers
in North-East Greenland (Nuussuaq Peninsula). Optical remote sensing can be
obstructed by cloud cover (a) or by shadows due to low sun elevation angles (b).
Meanwhile, SAR imagery can have missing data in steep terrains due to radar
shadow (c-d).

companies have also started operating optical remote sensing satellites, such as Maxar
Technologies [69] or Planet Labs [70].

An advantage of multi-spectral imagery is its good interpretability to the human eye,
especially for the visual RGB bands. At the same time, the considerable number of
spectral channels allows for a differentiated analysis of the objects on the ground, as
different materials tend to have characteristic spectral responses [65].

The most prominent drawback of using optical satellite data is the presence of clouds
in the imagery. Depending on the region of interest, a significant fraction of all acquisi-
tions can be covered by clouds, effectively preventing any updates during periods with
cloud cover [38]. As shown in figure 2.4, this issue is particularly prevalent in some
polar regions. Clouds cover over half of the acquired images in regions such as Siberia,
East Antarctica, or northern Canada. Figure 2.3 (a) shows how clouds can obstruct
glaciers from view in a Sentinel-2 image.

Another drawback of optical imaging is its need for sufficient illumination from the
sun. Illumination is not a problem for most regions, as the satellites acquire imagery
when the sun’s elevation angle is high. For example, the Sentinel-2 satellites acquire
their imagery at a local solar time of 10:30 AM [68]. In high latitudes, however,
illumination from the sun is not always sufficient. For considerable parts of the year,
the sun will not rise in regions beyond the polar circles, a phenomenon called polar
night [71]. During polar night, optical remote sensing is impossible in these regions,
as the sun will not illuminate the ground at all. Figure 2.5 maps the number of days
affected by polar night for the Sentinel-2 satellite for the polar regions.
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Figure 2.4: Map of Sentinel-2 average cloud probabilities, calculated as the mean of all avail-
able tiles from 2015-06-23 to 2023-08-17 in the S2_CLOUD_PROBABILITY layer on
the Google Earth Engine [22]. Of note are the relatively high values over the
continental Arctic in Canada, Siberia, and large parts of the Antarctic coastline.

Even during the polar day, the sun can be at shallow elevation angles for the ac-
quisitions. In such conditions, large parts of the imagery can be covered by shadows,
especially in mountainous areas like the Greenlandic fjords. This insufficient lighting
and the resulting shadows can lead to poor contrast in essential areas and confuse ma-
chine learning models near the boundaries of the shadows. Figure 2.3 (b) shows an
example where long shadows from a glacier’s fjord boundaries cover most of the glacier
area.

SAR Remote Sensing in Polar Regions
Other than optical remote sensing, SAR sensors acquire measurements at much longer
wavelengths of the electromagnetic spectrum. For example, ESA’s Sentinel-1 satel-
lite works with C-band radar waves at 5.405 GHz, corresponding to a wavelength of
roughly 5.55 cm [73]. Radar waves cannot be focussed and sensed using conventional
optics. Instead, they are transmitted and received through a radar antenna. A narrow
beamwidth is needed when transmitting the signal for acquiring high-resolution data.
The beamwidth is inversely proportional to the antenna length. For a finer resolution,
the antenna thus needs to be made longer. For the Sentinel-1 satellite, the antenna
would have to be multiple kilometres long to achieve the desired 10 m resolution, which
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Figure 2.5: Number of days per year affected by Polar Night for Sentinel-2 acquisitions overlaid
on maps of the poles. Plot derived using formulae from Meeus [66].

is impractical for a satellite. Instead, the SAR technique combines multiple acquisitions
along the satellite’s flight path to virtually increase the antenna length [65].

The main advantage of SAR is its ability to penetrate clouds due to its relatively
long wavelengths. Further, SAR is an active sensing method, meaning it does not rely
on illumination from an external source like the sun. Therefore, SAR can also operate
under heavy cloud cover or polar night conditions [38].

SAR sensors acquire measurements in range-doppler space. Due to symmetry, a
nadir-looking SAR satellite would receive double echoes from points to the left and right
of the ground track, causing an overlay of two areas in the sensed imagery. To avoid this
issue, SAR satellites operate with a side-looking acquisition geometry [65]. For example,
the Sentinel-1 satellite senses at incidence angles between 20° and 46° [73]. While this
side-looking geometry is not an issue for many use cases, it can cause missing data
points in the form of radar shadows. These occur in steep terrains when the incidence
angle is so high that some areas become occluded by steep surfaces like mountains.
so the radar signals cannot reach them [65]. Examples of this are shown in figure 2.3
(c-d), where radar shadows can be observed on both sides of the fjord.

Further, the side-looking acquisition mode of SAR sensors means that a most satellite
instruments will only ever look to their left or their right. For most areas on Earth,
this does not matter, as the area will be imaged from both directions by acquisitions
in ascending and descending orbits. However, side-looking satellites in a near-polar
orbit will miss one of the Earth’s poles entirely as they always look away from that
pole. Left-looking sensors miss the North Pole, while right-looking sensors miss the
South Pole [74]. Figure 2.6 shows this issue for the Sentinel-1 satellite, which has a
considerable acquisition gap over the South Pole.

As SAR uses polarised radar signals, the type of polarisation can drastically alter
the imaging result. Usually, one differentiates this into vertical (perpendicular to the
surface) and horizontal (parallel to the surface) polarisation modes [65]. The Sentinel-
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Figure 2.6: Number and polarisation modes of all available Sentinel-1 acquisitions for the
polar regions on Microsoft Planetary Computer [72] as of 2023-11-15. Vertically
and horizontally polarised acquisition modes are both used for parts of the conti-
nental Arctic, The observation gap due to the satellite’s right-looking acquisition
geometry is visible near the south pole.

1 satellites can operate both in vertical and horizontal polarisations. They generally
measure land surfaces in vertical polarisation in the mid-latitudes. For oceans and ice
caps, the horizontal polarisation mode is preferred. However, the polarisation mode
used for the continental Arctic is ambiguous, with both modes being used at different
times [75]. As figure 2.6 shows, horizontal and vertical polarisations are mixed in
important permafrost areas like the Siberian coastline and Canada. This can be an
issue for machine learning models, as models trained on one polarisation mode do not
transfer well to a different polarisation.
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3 State of the Art
This section will discuss pre-existing work and parallel developments in the two main
tasks addressed in this dissertation, namely glacier calving front detection and per-
mafrost disturbance mapping.

3.1 Calving Front Detection
Glacier calving fronts are a major indicator for the state of the polar ice sheets. These
calving fronts are present in marine-terminating glaciers, which are glaciers draining
into the ocean. A glacier’s calving front is defined as the boundary between ice still
attached to the glacier and the ocean or freely floating sea ice [76]. The name calv-
ing front derives from the fact that this is the location where new icebergs calve off.
Shifts in the calving front hint at underlying melt processes or surge events [77], [78].
Numerous studies have explored remote sensing for mapping calving fronts using var-
ious methods, as the calving front is usually well visible in satellite imagery. Many
approaches have been evaluated in pursuit of accurate automatic calving front delin-
eations. The following section summarises pre- and post-deep learning methodology
for calving front detection.

Traditional Vision Methods for Calving Front Detection
Before the advent of deep learning networks capable of performing pixel-level anno-
tations, calving fronts were primarily detected in satellite imagery using traditional
computer vision and statistical methods. Early works started by exploiting the strong
contrast between ice and ocean in optical reflectivity and radar backscatter behaviour.
For example, Liu and Jezek [79] used this idea to map the calving fronts of the Antarc-
tic ice sheet using SAR imagery. They derived optimal thresholds for each image using
a bimodal Gaussian mixture model and then segmented imagery based on these thresh-
olds. Similarly, other unsupervised computer vision methods, such as the watershed
algorithm or unsupervised clustering, have been applied for the calving front detec-
tion and the closely related task of coastline detection [80], [81]. While these models
are generally fast to evaluate, they lack a contextual understanding of glaciers and the
ocean. Therefore, features like sea ice, icebergs, or surface melt can confuse the models.

Besides traditional segmentation methods, edge detectors have also been applied
for coastline detection and calving front detection. Lee and Jurkevich [82] built a
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coastline detection pipeline based on the Roberts cross operator. Similarly, Krieger and
Floricioiu [83] use the Canny operator for edge detection and combine it with shortest
path finding as a tracing technique in order to find calving fronts in Antarctica. Going
beyond convolutional operators into statistical texture analysis, Wang and Liu [84]
detect coastlines by analysing local image statistics, which often change abruptly at
the boundary between sea and land. Lines of such abrupt changes are then connected
using ridge tracing to reconstruct curves that often coincide with the actual coastline.

Other methods, such as active contours or the level set method, can be used to
combine assumptions about the ocean and land areas as well as their boundaries, both
for coastline detection [85]–[87] and calving front detection [88]. These methods also
focus on the boundary between ice and ocean areas, like the edge detectors mentioned
above, but also consider properties of the land and ocean areas. Their primary issues
lie with stability and robustness related to local minima in the solution space, which are
caused, for example, by glacial crevasses. As they are designed to trace a single contour
through the imagery, their performance can degrade dramatically if the algorithm takes
a wrong turn during the tracing process [1].

Deep Learning for Calving Front Detection

With the introduction of deep learning methods for semantic segmentation tasks, these
novel models soon became widely used in remote sensing [47]. CNN segmentation ar-
chitectures such as SegNet [89] or UNet [55] rely on multi-resolution stacks of feature
maps, sometimes called a feature pyramid. These feature maps combine detailed infor-
mation about individual pixels in the image with more general, high-level information
about the overall structure of the image. Due to their solid and robust performance
on many tasks, CNNs have become the standard baselines for many mapping tasks in
remote sensing [90].

Especially the UNet model has been widely adopted for distinguishing between land
and ocean areas [91]. Seeing the strong performance of the UNet model for this task,
numerous adaptations add specific layers or modules to the basic UNet structure to
improve the performance [92], [93]. The UNet was also readily employed for calving
front detection both in Greenland [94], [95] and Antarctica [76]. Tweaking network
parameters like the loss function or dropout rate from their default values can improve
performance even further [96].

Since deep learning algorithms adaptively learn from annotated examples, they can
often arrive at better results than the previously discussed traditional vision methods.
Deep learning is the method of choice, especially for increasing robustness against
the confounders mentioned earlier, like sea ice or icebergs. However, this comes at
the cost of an extensive annotated training dataset. While traditional methods only
require tuning a handful of parameters, deep learning models usually have millions of
parameters that must be carefully optimised. Therefore, this class of models needs
thousands of labelled input images to learn from, which requires a significant up-front
time investment from human annotators to generate a training dataset.
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Concurrent Research in Calving Front Detection

Parallel to this thesis project, automated calving front detection using deep learning
has been an active research area, bringing forth innovative approaches to improve
the performance of calving front detectors. Given the strong performance of the UNet
baseline models, quite a few works take this model as their starting point. For example,
seeing the importance of a broad spatial context, Loebel et al. [97] increase the number
of down- and up-sampling steps to the UNet. These added layers allow the model
to incorporate a larger spatial context into its predictions. Holzmann et al. [98] add
attention gates to a UNet to arrive at a more interpretable model. They inspect the
attention maps and tweak the model hyperparameters to improve performance. Davari
et al. [99] stack two UNets back-to-back to allow for an intermediate reasoning step.
The first UNet predicts the distance of each pixel to the calving front. The second one
then predicts the actual calving front from this intermediate output. Similarly, Wu
et al. [100] interleave two UNets, where one UNet works on the full-resolution image,
and a secondary UNet processes a zoomed-out version of the input imagery in order to
provide a larger spatial context. The two UNets are linked using attention layers.

As computer vision moved from UNet to more sophisticated segmentation models,
the most successful models were also applied in calving front detection. Backbones like
Xception [101] enabled broader spatial context windows and extraction of more general
features, which has proven helpful for detecting calving fronts [8]. For the segmentation
architecture itself, more recent models like DeepLabv3+ [102] can increase the learning
capacity of calving front detectors [8], [103], [104].

Of particular interest is the trend towards favouring edge detection over semantic
segmentation. While early deep learning models for calving front detection focused ex-
clusively on segmentation models, edge detection has recently become more dominant.
It has been used as an additional training objective next to segmentation [8] or as the
primary training objective altogether [104]. Incorporating edge detection for calving
front delineation is also a central theme of this dissertation and will be discussed in
detail in chapter 4. The parallel developments towards edge detection for calving fronts
indicate a promising future for this line of research.

3.2 Permafrost Disturbance Mapping

Other than calving front detection, mapping permafrost disturbances in remote sens-
ing imagery with deep learning is not as well explored. In comparison to the glacier
movements in Antarctica and Greenland, permafrost changes are less prominent and
heterogeneous, seemingly attracting less interest from the remote sensing community.
Furthermore, permafrost thaw manifests itself in various disturbances, so the studies
for permafrost disturbances tend to be more diverse in the targets they map [39].
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Conventional Mapping of Retrogressive Thaw Slumps

retrogressive thaw slumps (RTSs) are the primary permafrost degradation mapped in
this dissertation. These features develop on hill slopes and shores in regions of ice-
rich permafrost. When the permafrost thaws in these areas, the soil destabilises and
starts moving downward [105], [106]. The resulting geomorphological developments
fundamentally change permafrost landscapes, as shown in figure 1.2. It is believed that
rapid thaw processes like RTSs drive further permafrost thaw and release previously
stored organic carbon into the atmosphere [107].

As a prominent manifestation of permafrost thaw, individual RTSs have been studied
in field research for many years [105], [108]. Early remote sensing studies used satellite
data [109], aerial imagery [110]–[113] or unmanned aerial vehicle (UAV) imagery [114]
in order to find the outlines of RTSs for larger regions.

However, manual analysis is infeasible for building a pan-Arctic inventory of RTSs.
The first semi-automated studies relied on manually crafted features like the tasseled
cap indices [115] to map RTSs, mostly in northwestern Canada [116]–[118].

With machine learning becoming more widely used in remote sensing, these tech-
niques also influenced the research on RTS detection. Traditional classification methods
like random forests proved helpful for this task [24]. Bernhard et al. [119] combined clas-
sifiers like random forests or support vector machines with SAR data to detect RTSs.
Nevertheless, the prediction performance of these conventional machine learning mod-
els was limited. The large variety of permafrost landscapes and RTS appearances called
for more sophisticated analysis methods, such as deep learning.

Deep Learning for Mapping Retrogressive Thaw Slumps

Before this dissertation project, only a few studies tested the feasibility of deep learning
for RTS mapping. Huang et al. [120] showed strong performance of a DeepLab [50]
model for detecting RTSs in the Northeastern Tibetan Plateau. A follow-up study
employed the DeepLabv3+ architecture [102] to PlanetScope imagery to achieve similar
results for a different region in the Tibetan Plateau [121].

In parallel to this dissertation project, the research on deep learning for mapping thaw
slumps has considerably gained traction. Witharana et al. [122] applied a UNet model
to WorldView-2 satellite imagery in order to map RTS in Banks Island and Ellesmere
Island, studying the effects of hyperparameters like input image size. To exploit data
fusion, Yang et al. [123] merged Sentinel-2 imagery with elevation information and
commercial Maxar imagery at a higher resolution. Their study focuses on the Yamal
and Gydan peninsulas in Siberia but also includes the training dataset generated as part
of the first manuscript in this dissertation [4]. Runge et al. [124] use time-series spanning
multiple decades to detect RTSs through their temporal dynamics. During the different
stages of RTS development, commonly used indices like the Normalized Difference
Vegetation Index (NDVI) follow characteristic curves as vegetation first disappears
and then slowly regrows over multiple years.
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The Tibetan Plateau constitutes a relatively uniform permafrost region regarding
its geomorphology. Therefore, it has been the target of several deep learning studies
for RTS. Following the feasibility studies mentioned above, some improvements were
made to the automated mapping strategies for this region. Huang et al. [125] incorpo-
rated multi-temporal imagery to map the growth of RTSs over time. Xia et al. [126]
implemented an iterative training approach. They started with an initial dataset and
progressively added new RTS polygons predicted by the network after manual inspec-
tion. These new polygons were added to the training set to train a better model. In this
way, they mapped a considerably large study area around the Qinghai-Tibet Highway.

A common challenge noted in many works on deep learning for RTS mapping is spa-
tial generalisation. While the studies were able to train deep learning models with solid
performance in selected regions, the goal of accurate predictions throughout the Arctic
remained elusive. To improve spatial generalisation, Huang et al. [127] employed a gen-
erative method called CycleGAN to generate additional training data. They showed
that including this synthetic data in the training process improves spatial generation
compared to a model trained only on the original training data.

A first attempt at pan-Arctic RTS mapping was done by Huang et al. [128]. Their
main data source is the ArcticDEM elevation model [129], which they use to identify
changes in elevation and possible headwall lines. A YOLOv4 object detector [130] then
uses this data to predict possible RTS bounding boxes. Finally, they validated these
boxes through crowdsourcing validation in an online portal.

Mapping of Other Permafrost Disturbances
Besides the aforementioned RTSs, other permafrost disturbances related to thaw have
also been explored through remote sensing and deep learning. These studies face similar
challenges as RTS detection, most notably the large variety of permafrost landscapes.
Therefore, the following paragraphs briefly introduce these other applications.

One direct indicator of thawing permafrost in ice-rich regions are thermokarst lakes.
The lake basins are formed through melt-induced subsidence and fed by ground ice turn-
ing into liquid water [131]. Due to the distinct spectral signature of water compared to
other permafrost landforms, they can easily be mapped in remote sensing imagery [24],
[132]. These lakes can grow or completely drain over time, giving important hints about
sub-surface permafrost processes such as melting ground ice [131].

Ice-Wedges are a unique landform occurring in ice-rich permafrost areas. These
wedges form from ice accumulating in soil cracks, leaving the landscape in a polygonal
pattern [133]. In a healthy ice-wedge landscape, surface water will accumulate on the
boundaries of these polygons. When the ice wedges melt, however, the centres of the
polygons will subside, causing surface water to accumulate in the polygon centres in-
stead [134]. Therefore, ice-wedge polygons are a strong indicator for overall permafrost
health. Abolt et al. [135] proposed the use of CNNs to detect these polygons. In
order to analyse the spatial structure of ice wedges, Rettelbach et al. [134] extract ice-
wedge polygon structures using a graph-based approach. Similarly to RTSs, mapping
ice-wedges requires analysing various landscapes across the Arctic.
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While the previously mentioned disturbances are primarily symptoms of permafrost
degradation, Arctic Wildfires are one of the drivers. Even though active fires are only
briefly visible in remote sensing imagery, their burn scars and the resulting landscape
changes remain visible for multiple years [24]. Nitze et al. [24] detected areas affected
by such wildfires using satellite image time series from the Landsat mission. Going to
higher resolutions, Gibson et al. [136] used WorldView-2 data to differentiate between
unburned and burned peatlands in western Canada.
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4 Exploring Different Representations for
Calving Front Detection

This chapter summarises the first part of the dissertation project. In this part, the
status quo of approaching calving front detection as a semantic segmentation task is
questioned. In doing so, novel ways of encoding calving front detection as different
machine learning tasks are found, which lead to better prediction accuracies, higher
computational efficiency, and eliminate the need for post-processing steps.

As discussed in section 3.1, early works on deep learning for calving front detection
used semantic segmentation models like UNet [55] to segment scenes into land/glacier
and ocean pixels. In a second step, the calving front was then extracted by tracing
the boundary between these two classes and converting it into a GIS-ready format,
like polylines. In experiments with semantic segmentation approaches for calving front
detection during the dissertation project, it soon became apparent that this way of
phrasing the task is not optimal due to the following reasons:

1. During model training, the loss function emphasises each pixel with the same
importance. A neural network model can optimise a considerable fraction of
its loss function by correctly classifying regions far away from the calving front,
which is very easily done. At this point, the model can then fall into a local
minimum of the loss landscape where the simple regions away from the calving
front are classified correctly, but the pixels close to the true calving front are
highly fluctuating. Such a model will exhibit low loss scores and high pixel-wise
accuracies. However, it is rather impractical for extracting the calving front, as
the exact location of the front is of high importance in order to detect even slight
changes and trends.

2. Considering that the final desired output is a simple boundary line, predicting
labels for every pixel in the scene is quite wasteful in terms of computational re-
sources. Also, the post-processing step of extracting the boundary again requires
computational resources. Ideally, a model could directly predict the boundary in
the desired format instead of taking the intermediate step of predicting a pixel-
wise mask. This idea is addressed in section 4.2.
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4.1 Learning from Human Annotation Approaches
For the first project of the dissertation, the main goal was to tackle the issue of poor
prediction quality near the boundaries. The starting point for this was to closely observe
how human annotators go about labelling ground truth data for a given satellite scene.
For this, three important observations were made.

1. Human annotators tend to frequently zoom in and out of the image in order to
combine large-scale contextual information with accurate local information.

2. When given the option to work with different brush sizes, humans will pick a
smaller brush when working in boundary areas, and use a larger brush in uniform
regions.

3. Even when asked to draw pixel-wise annotations for land and ocean classes,
human annotators usually start by carefully tracing the boundary between the
two classes and then fill in the remaining regions.

Starting with the UNet model as a solid baseline, the approach taken in this first
project was to try and mimic the human annotation behaviour in a deep learning model
as closely as possible. The result was the HED-UNet model, which constitutes the main
contribution of the first included manuscript.

Relevant Publication for this Section

K. Heidler, L. Mou, C. Baumhoer, A. Dietz, and X. X. Zhu, “HED-UNet: Com-
bined segmentation and edge detection for monitoring the antarctic coastline,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
doi: 10.1109/TGRS.2021.3064606

Combining Semantic Segmentation and Edge Detection

The first observation is in line with the previous consideration that semantic segmen-
tation might not be the most natural task formulation for calving front detection. In
fact, the most important prediction targets are the pixels that lie on the boundary.
While not as prominent as semantic segmentation, edge detection is another computer
vision task that has been approached with deep learning. In edge detection, the goal
is to provide a binary output that takes the value zero for pixels on the inside of an
object, and the value one for pixels on the boundaries between objects. In a sense,
edge detection can be considered as a special case of semantic segmentation with two
classes. However, due to the great structural differences between segmenting objects
and detecting edges, deep learning models designed for semantic segmentation are not
well-suited for this task. Instead, specialized models were proposed for edge detection.
One prominent deep learning architecture for this task is the holistically-nested edge
detection (HED) model [138]. As a first step towards building a better calving front de-
tection network, the inclusion of edge detection approaches seemed natural. However,
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Figure 4.1: Conceptual amalgamation of UNet and HED (left) into HED-UNet (right). While
HED merges the outputs of “Down” blocks, HED-UNet uses the outputs of “Up”
blocks, allowing for larger receptive fields and deeper decision paths. Figure taken
from [137].

when performing only edge detection, important information is lost. For example, it
is unclear from an edge detection alone, which side of the predicted boundary is the
glacier and which is the ocean. Further, it is possible that the predicted edges become
disconnected, posing large challenges for post-processing. In order to combine the ad-
vantages of both segmentation and edge detection approaches, a combined framework
was built that performs both of these tasks simultaneously.

Initial experiments showed that the previously mentioned UNet and HED models
turned out to be promising baseline models for their respective tasks. The developed
HED-UNet model therefore is a generalisation of both these models. While the UNet
model consists of an encoder and a decoder submodule, HED contains an encoder and
a merging head, that combines information from different resolution levels. Combining
these two thus results in a model that consists of an encoder, a decoder, and a merging
head. To reflect the desired multitask nature, two merging heads were included, one
for segmentation and one for edge detection. In order to combine the advantages of
both the HED and UNet models, a new network architecture was designed that poses
a generalisation of both the UNet and HED models.

The merging head of HED combines data from multiple resolution levels. This
pointed towards a way of incorporating the first observation, namely the tendency
of human annotators to zoom in and out of a scene. Analogously, merging features
from different resolution levels allows the model to combine high-resolution and low-
resolution information. While the low-resolution information contains general informa-
tion like the approximate locations of ocean and land, the high-resolution information
is helpful for precise mapping the boundary areas.

When directly adaptating of the HED merging head, the features are merged in
a pre-determined fashion. So instead of being able to dynamically mix information
as described above, the model can only ever learn fixed coefficients and merge the
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features according to these coefficients. But in order to mimic the different brush sizes
a human would use, a dynamic merging procedure is be needed. This would then allow
the model to select high-resolution information near the boundaries and low-resolution
information elsewhere.

The answer to this challenge was found in a completely different research field. At the
time of the project, attention layers [139] were becoming a popular method in natural
language processing. This mechanism allows for a model to exchange information
between so-called tokens, which correspond to words or syllables in the context of text.
The innovative idea of attention is to dynamically adjust the flow of information in
a neural network in a data-driven way, instead of relying on pre-determined weights.
Figuratively speaking, the model gains the ability to pay attention to different parts
of its input, hence the name attention layer. Using the attention mechanism to merge
information in the final merging head provided a very natural way of addressing the
aforementioned concerns. Instead of paying attention to different words however, the
attention merging head in HED-UNet is used to allow the model to pay attention to
the different resolution levels of available information. For each location in the output,
the attention merging head is thus dynamically aggregating the information from the
different feature maps.

Improving Spatial Context

An additional peculiarity of calving front detection in Antarctica is the observation that
quite large spatial context windows are needed in some regions to correctly identify the
calving front. Confounding features like large icebergs, meltwater or specific types of
ice are very similar in local appearance and texture to the opposite class. A study
of the receptive field of the baseline model showed that in many instances the model
had no chance of correctly detecting the calving front, simply because it lacked enough
spatial context.

The largest possible spatial context that a model can take into account for its pre-
diction is called the theoretical receptive field of the model [140]. While the theoretical
receptive field can be quite large, models still tend to use mostly information close
to the output pixel to derive their predictions. An analysis of the resulting effective
receptive field (ERF) is possible by calculating the gradient magnitudes of the input
pixels with respect to a given output pixel, which is usually chosen at the centre of
the image. By averaging these gradient magnitudes across the entire test set, it is
possible to visualize how large of a spatial context the model is actually using for its
predictions [140]. An analysis of these ERFs showed that a baseline UNet model was
indeed limited by its small receptive field, as the ERF was sharply cut off by the theo-
retical maximum. By adding more up- and downsampling layers in HED-UNet as well
as incorporating the attention merging scheme, it was possible to greatly widen the
spatial context available to the model. Visualisations of HED-UNet’s ERF show that
the model is indeed making great use of this additional spatial context (A.1, Figure 9).
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Experimental Results and Discussion

A dataset of Sentinel-1 imagery of Antarctic calving fronts served as the training and
evaluation data for the evaluated models, two regions were reserved for testing, namely
Wilkes Land and the Antarctic Peninsula. The PoLiS metric [141] was chosen as the
primary metric to measure the average distance between true and predicted calving
front line. Interestingly, the baseline results were somewhat divided between these two
sites. While segmentation approaches performed better for Wilkes Land (UNet: 271 m,
HED: 341 m), an inverted situation was observed for the Antarctic Peninsula (UNet:
483 m, HED: 398 m). As conjectured, the HED-UNet model was able to combine the
advantages of both approaches, and showed the best performance for both test sites
(Wilkes Land: 222 m, Antarctic Peninsula: 345 m). A more detailed presentation of
the results including estimates for the standard deviation across multiple model runs
can be found in in the corresponding publication (A.1, Table I).

Through extensive ablation studies, it was further shown that each one of the con-
ducted alterations indeed improved the predictive power of the model. Further, a close
inspection of the attention weights revealed that the model indeed learned to perform
the conjectured switch between high-resolution features near the boundary and low-
resolution features far away from the boundary (A.1, Figure 6).

Deployment and Up-scaling of HED-UNet

As the model proved quite satisfactory for predicting calving fronts in Antarctica, it was
decided to implement the model as an integral part of an automated prediction pipeline
to derive historical and current calving front positions in Antarctica. The resulting data
product, called IceLines, was deployed together with the Remote Sensing Data Center
at the German Aerospace Center. It contains monthly, quarterly and yearly calving
front positions derived from Sentinel-1 imagery for the entire duration of the mission.
The dataset descriptor is available at [9], and the data can be inspected and downloaded
at https://geoservice.dlr.de/web/maps/eoc:icelines.

4.2 Direct Prediction of Contour Lines
While HED-UNet can alleviate some of the issues observed with conventional semantic
segmentation models for calving front detection, it still relies on pixel-wise predictions
that require intricate post-processing. The second initial question remains: Is it possible
to directly output a contour instead of choosing pixel-wise masks as an intermediate
representation? If implemented, this change in representation would impose a stronger
inductive bias on the model, namely that the calving front should be a consecutive
contour. Furter, computational efficiency could be improved, as only the contour would
have to be predicted and post-processing could be eliminated.

A literature review of contour prediction methods pointed towards Active Contours,
or Snakes [142] as a promising approach to direct contour prediction. The basic idea
behind this method is to start with an initial contour, and iteratively deform it in such

31

https://geoservice.dlr.de/web/maps/eoc:icelines


4 Exploring Different Representations for Calving Front Detection

Figure 4.2: Example images from the commonly used PASCAL Visual Object Classes (VOC)
dataset [144] (left) for image segmentation, and the CALFIN dataset [8] (right),
which was used to train the COBRA model.

a way that it minimizes a pre-defined energy functional, which depends on both the
given image and the current contour. This functional is chosen in a way that favours
boundary areas in the image, as well as a smooth shape of the predicted boundary.
As a conventional computer vision method, this methodology relies on hand-crafted
features and a fixed prediction procedure.

Seeing the potential of this approach for a computationally efficient instance segmen-
tation approach, Peng et al. [143] adapted this framework for the deep learning age by
making it learnable from end to end. Instead of working directly on the raw image
values, Deep Snakes first employ a two-dimensional CNN in order to extract feature
maps of high semantic value. Then, starting with a contour derived from a bounding
box, these feature maps are sampled at the locations corresponding to the vertices of
the contour, resulting in a sequence of feature vectors. Among these feature vectors, a
one-dimensional CNN is then used to pass information between the vertices. Finally,
this one-dimensional CNN then predicts offsets to apply to the vertices in order to
better match the desired contour.

Seeing the possibility of combining active contours with deep learning, the goal of
explicit calving front detection in the form of polylines comes within reach.

Relevant Publication for this Section

K. Heidler, L. Mou, E. Loebel, M. Scheinert, S. Lefèvre, and X. X. Zhu, “A deep
active contour model for delineating glacier calving fronts,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 61, pp. 1–12, 2023. doi: 10.1109/TGRS.
2023.3296539

Design of the COBRA Model

In order to build a calving front detector based on deep active contours, the main
ideas behind deep snakes need to be adapted to the setting of calving fronts. Deep
snakes were originally proposed as an instance segmentation approach, which means
that they are specialized for the detection of rather small, mostly compact objects
in an image. In contrast to this, calving fronts often extend beyond the boundaries
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Figure 4.3: Architecture overview of the COBRA model. First, the backbone module extracts
feature maps from the imagery. Then, an initial contour is iteratively deformed
in a trained manner.

of an image, and there is no clear concept of “inside” or “outside” like in instance
segmentation. Further, calving fronts tend to have more jagged, irregular outlines than
everyday objects. The conceptual shift between the two tasks is shown by the examples
in figure 4.2. This means that the original Deep Snake can not be used directly for the
task. Instead, a new model was built inspired by the Deep Snake methodology. The
resulting model, Charting Outlines by Recurrent Adaptation (COBRA), implements
the concept of iteratively deforming a contour through a neural network. But since the
task of calving front detection is quite different from instance segmentation, the model
can use a more streamlined architecture.

The deep snakes model was designed to detect multiple objects from various classes
in the image, therefore it is constructed as a two-stage model where the first stage
comprises an object detector, predicting bounding boxes and classes for the objects in
the image. These boxes are then used to initialize the outlines for the snake iteration.
This two-stage complexity is not needed in calving front detection. For this task, only a
single outline is needed, and there is no need to differentiate between classes of objects.
This allows for a greatly simplified pipeline. Since the task definition already states
that exactly one contour is needed, the first stage of object detection can be eliminated
completely. Instead, the COBRA model directly starts with a single contour that
is deformed iteratively. Further, the glacial contours are not closed like in instance
segmentation. Therefore, COBRA uses regular one-dimensional convolutional layers
in its snake head instead of circular convolutions. Figure 4.3 shows the conceptual
overview of the COBRA model. After deriving feature maps using a two-dimensional
CNN, the Snake Head iteratively deforms the contour to match the desired output.

Following the observations made during the development of HED-UNet, the COBRA
model uses a backbone that can extract features with a broad spatial context. This is
important as the model needs to be able to distinguish confounding features like sea ice
from actual glacial ice. Instead of the commonly used ResNet [48] backbones, COBRA
uses an Xception [101] network with an Atrous Spatial Pyramid Pooling (ASPP) [50]
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module as its backbone. Both Xception and ASPP put strong emphasis on deriving
features with a broad spatial context. Seeing these advantages, Cheng et al. [8] first
adapted Xception and ASPP as feature extractors for calving front detection.

Loss Functions for Direct Contour Prediction

Finally, it became apparent that the standard loss functions for regression tasks like
the mean squared error (MSE) loss or the 𝐿1 loss have a fundamental issue when used
for this task. When discretising a curve as a sequence of vertices, there are many ways
to place the vertices along the curve. A common choice is to place the vertices evenly
spaced along the curve. Doing so, however, requires a priori knowledge of the total
contour length. In contrast to this, the COBRA model is supposed to iteratively develop
the contour line, which means that the length of the contour can change throughout
the iteration. What is worse, local changes in the contour, like a floating glacier tongue,
will change the location of all points on the curve. A visualisation of the global effect
of local changes in this setting is shown in figure 4.4. While this problem does not seem
to become too apparent in the computer vision application of instance segmentation, it
poses a major challenge in calving front detection, partial fractures and crevasses lead
to a fractal shape for many calving fronts.

Standard loss functions such as the MSE assume a one-to-one correspondence be-
tween the ground truth vertices and the predicted vertices. Figure 4.5 shows why this
is impractical for calving fronts. Small reparametrisations like the one introduced in
figure 4.4 will shift the vertices, so that the one-to-one correspondence does not line
up anymore. This means that the loss function will assign large gradients to vertices
even for prediction parts that are matching the true contour, as long as the parametri-
sations of the curve are not perfectly aligned. The COBRA models initially trained
with the MSE loss were therefore punished for not guessing the parametrisation of the
curve correctly, even when placing the vertices on the correct contour. This causes the
models to predict highly smoothed versions of the true contours, as they are trying to
compromise between multiple possible parametrisations of the true contours.

Researching a solution to this challenge, techniques from time-series analysis provided
a promising direction. When working with time-series data, many applications require
information about the general shape of a time-series, rather than specific time-stamps
of peaks or flats in the signal. Therefore, time-series research faced similar issues with
re-parametrised signals, and proposed working solutions to compare signals according
to their overall shape rather than by exactly overlaying them. Specifically, the tech-
nique of dynamic time warping (DTW) [145] is a dissimilarity measure for comparing
two time-series. Although it is not a metric in the mathematical sense, it has useful
properties for our usecase. DTW considers all possible realignments between the points
of the two input time-series by following a set of conditions, namely the realignment be-
ing monotonic and surjective in both original time-axes. Among all these realignments,
it then chooses the one that minimises the sum of pairwise distances. This sum is
then defined as the DTW dissimilarity of the two inputs. When interpreting the vertex
sequence of a discretised contour as a time-series, DTW becomes applicable to the con-

34



4.2 Direct Prediction of Contour Lines

1
2

34

5 6

7

8

1 2

3
45

6
7

8

(a) (b)

Figure 4.4: Global effect of local changes on the location of discretized vertices for an example
from the CALFIN dataset [8]. In (a), the correct ground truth contour is displayed,
while in (b), the floating glacier tongue in the top part of the image has been
removed from the contour. For both contours, eight evenly spaced vertices are
overlaid. The removal of a local structure in the top part shifts all the vertices in
the discretized contour.
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Figure 4.5: Contour gradient magnitudes under different loss functions. Gradients are ob-
tained by comparing the points on the perturbed contour from figure 4.4 (b) to
the true points from figure 4.4 (a). While the MSE loss has large gradients nearly
everywhere for the locally perturbed contour, DTW and SoftDTW assign very
small gradients to the unperturbed contour parts. The regularisation effect of
SoftDTW can be observed in regions close to the perturbation.
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tour prediction task. The experiments in the corresponding manuscript (appendix A.2,
section IV-E) showcase that DTW’s advantages are not just theoretical, but translate
into more accurate predictions. By replacing the MSE loss with a DTW-based loss,
COBRA prediction errors were significantly reduced on all test sets.

However, DTW also has an undesireable property when using it in conjunction with
deep learning. Its non-smoothness can interfere with modern deep learning optimisers
like Adam [45], which estimate second moments of the loss function. Further, DTW
might be too lenient in allowing possible realignments that are very far from the desired
equidistant vertex spacing. Facing similar issues, Cuturi and Blondel [146] proposed
a smooth generalisation of DTW that replaces the minimum operator with a smooth
approximation, namely the softmin operator. This should work better with the afore-
mentioned optimisers and also provide a slight regularisation towards the ground truth
parametrisation, as the softmin takes all possible realignments into account instead of
just the optimal one. Figure 4.5 shows this regularisation effect for points close to the
contour perturbation.

Experimental Results

The COBRA model was trained on the CALFIN dataset [8], which consists of Landsat
imagery of the marine-terminating glaciers in Greenland. The model was then evaluated
on the CALFIN test set, the TUD dataset [97], and a public subset of the Baumhoer
dataset [76]. Once again, PoLiS [141] was used as the main evaluation metric. In
order to compare the performance to existing models, pixel-wise detectors like UNet,
DeepUNet [97], HED-UNet [1] and the CALFIN model developed specifically for this
dataset [8] were considered. Further, adapted versions of the original Deep Snake
model [143] and DANCE [147], an improved version of Deep Snake, were evaluated.

In the experiments, COBRA showed quite strong performance, outperforming all
other models on the CALFIN and TUD test sets. For the Baumhoer test set, perfor-
mance was slightly worse than that of the DeepUNet model. This was conjectured to
be caused by the higher complexity of the Antarctic calving fronts in the Baumhoer
dataset compared to the ones in Greenland. And indeed, an ablation study showed
that when doubling the number of contour vertices, COBRA can achieve competitive
accuracy also on this dataset.

Uncertainty Estimation

Deep learning models are highly complex with millions or even billions of parameters.
Therefore, statistical evaluations of the model uncertainty are not as easily done as they
are for simple models like a linear regression. What is worse, deep learning models tend
to be overconfident in their predictions, as the ground-truth presented during training is
generally definite, which means that the model is never presented with ambiguous cases
during training [148]. But especially in Earth science contexts, the reliability of the data
is highly important for the downstream use of the model predictions. Therefore, this

36



4.2 Direct Prediction of Contour Lines

study also explores how to quantify the model uncertainties for calving front detection,
and whether the COBRA approach can be helpful in this regard.

The output of a segmentation model, a segmentation mask, can be statistically mod-
elled as a collection of individual random variables. In order to estimate properties like
the uncertainty of this collection, information about the joint probability distribution
for all predicted pixels is needed. However, even for moderate image sizes, this means
working in a space with thousands of dimensions. When changing the representation
of the calving front from a segmentation mask to an explicitly parametrised contour,
the number of predicted variables is drastically reduced. Therefore, one additional hy-
pothesis was pursued in this project, namely the idea that explicit contours might be
a better target for uncertainty quantification methods than segmentation approaches.

It is quite challenging to quantify the accuracy of model uncertainty estimates due
to the randomness involved. In order to get some indication on the quality of model
uncertainty predictions, the following assumptions were made for the evaluation on
the test data: Whenever the predicted uncertainty is low, the model prediction should
be close to the ground truth. Conversely, if the model prediction deviates far from
the ground truth, the predicted uncertainty is also expected to be large. This can
be numerically evaluated by computing the Pearson correlation between the predicted
model uncertainty and the model error on the test dataset.

For quantifying the uncertainty of the model predictions, the commonly used Monte
Carlo Dropout [149] method was used. In the experiments, the correlation between
predicted uncertainty and model error was indeed highest for the COBRA model on
two of the three test datasets, suggesting that the explicit contour representation might
indeed be helpful for quantifying uncertainties in its predictions.

Applying COBRA on a Large Scale

Relevant Publication for this Section

T. Li, K. Heidler, L. Mou, Á. Ignéczi, X. X. Zhu, and J. L. Bamber, “A high-
resolution calving front data product for marine-terminating glaciers in Svalbard,”
Earth System Science Data, vol. 16, no. 2, pp. 919–939, 2024. doi: 10.5194/essd-
16-919-2024

In a follow-up study, the COBRA model was used to derive a dataset of calving
fronts in Svalbard of unprecedented temporary resolution. As COBRA was designed
and trained on glaciers in Greenland, it was not clear from the beginning whether the
model would generalise well by itself, or whether fine-tuning would be necessary. These
worries turned out to be unfounded, however, as the model was predicting calving
fronts with high accuracy without any additional changes.

Using COBRA as part of a fully automated pipeline, 149 marine-terminating glaciers
were analysed for the time-span from 1985 to 2023. For this, optical data from the
Landsat, Terra-ASTER and Sentinel-2 missions was used. Further, Sentinel-1 SAR data
was included to allow for observations even in cloudy conditions. During this study, the
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Figure 4.6: Examples for calving front lines from the Svalbard study. Traces for 11 glaciers in
Southern Svalbard are shown for the time span from 1985 to 2023. Mostly, retreat-
ing glacier developments can be seen. Background satellite image: ESA Sentinel-2.
Interactive version of the map: https://maps.heidler.info/svalbard

COBRA model proved flexible for using different input modalities like SAR and optical
imagery. COBRA’s direct output of contour lines allowed for more efficient processing,
as the contours were ready for further analysis without further post-processing. The
resulting dataset consists of a total of 124,919 calving front positions.

In order to assess the quality of the derived data product, the calving front posi-
tions were compared with an existing dataset. Moholdt et al. [150] provide manually
digitised calving fronts on an annual basis for the years 2008 to 2022 through the Coper-
nicus Glacier Service. By matching same-day calving fronts from this dataset with our
dataset, it was possible to calculate the average distance between calving front traces
from the two datasets. With an average mean distance error of 32 m, our data product
aligns rather well with the data provided by Moholdt et al. [150]. A comparison of
the calving front change rates between the two data products also showed a very good
agreement at an 𝑅2-score of 0.98.

One central measure of interest was the overall advance or retreat of individual
glaciers. To summarise the glacial movements into a single number, the derived contours
were combined with glacier metadata such as the central flow line. In this way, the
movement of the calving front along this central flow line could be measured as a single,
interpretable number. In this way, 123 of the analysed 149 glaciers were identified as
showing retreating behaviour, while 16 showed an advancing trend, excluding surging
glaciers. The remaining 10 glaciers showed surging behaviour. During surging events,
these glaciers are rapidly speeding up their flow for a short amount of time. These
surges are not caused by external climatic factors, but instead by internal conditions
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within the glacier [78]. The high temporal frequency of the observations generated
by this study allows for the automated detection of such surge events, which might
eventually lead to a better understanding of the underlying processes.

Relating the observations from this dataset of calving front positions with environ-
mental factors like ocean or air temperatures should allow for a better understanding
of the behaviour of the glaciers. The unprecedented sub-seasonal resolution allows for
assessing not only long-term trends, but also seasonal variations in glacier dynamics.
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5 Learning to Map Permafrost
Disturbances from Limited Labels

For the second part of the dissertation project, the goal was to accurately map so-called
Retrogressive Thaw Slumps (RTS) across the continental Arctic. These permafrost
disturbances are mass movements akin to landslides and are indicators for overall per-
mafrost health. Given an input satellite image, a well-performing model should be able
to detect all RTSs present within the image. Other than the task of calving front detec-
tion, the focus lies indeed on the areas themselves and not the boundary between them.
Therefore, the RTS detection task was approached with binary semantic segmentation.
The training objective for these models is therefore to predict the output value 0 for
non-RTS pixels and the value 1 for RTS pixels.

However, using deep learning for RTS detection comes with its own challenges. Prior
to this dissertation project, only limited studies had been conducted for RTS mapping
with deep learning, as discussed in section 3.2. These existing studies focused on one
geographic region, the Tibetan Plateau. Compared to this specific region, the entire
Arctic is far more diverse in terms of landscapes and their appearances. The scientific
contributions in this chapter aim to pave the way for models that can predict the
presence of RTS anywhere in the Arctic. In order to train a deep learning model with
strong performance in pan-Arctic RTS mapping, a couple of challenges need to be
overcome.

1. Classification Ambiguity: It can be hard to tell from just a satellite image whether
a feature is an RTS or not. Even permafrost experts often disagree on specific
features, with complete disparity in some regions [151]. In order to confirm their
classifications, experts often look at additional information such as time-series
data or elevation information. Further, the spatial context is important, as RTS
formation usually requires a drain such as a river, a lake, or the ocean.

2. Label Imbalance: RTSs only make up a small fraction of the Arctic regions. The
dataset built in the first manuscript for this chapter (A.4) includes only areas
known to contain a large number of RTS. Still, less than 1% of the overall study
area analysed for this dataset is covered by RTS. Most deep learning algorithms
were designed with roughly uniform class distributions in mind. Therefore, deep
learning can struggle considerably with such class imbalance.
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210 km

Figure 5.1: RTS mapping examples. Both images show PlanetScope imagery with RTS out-
lines overlaid in red. Top: Horton site. Bottom: Lena site.

3. Spatial Generalisation: The high variability of landscapes across the Arctic poses
a major challenge for the spatial generalisation of the models. RTS grow ac-
cording to similar mechanisms all throughout the continental Arctic. However,
RTS features and the surrounding landscapes can look drastically different in
various parts of the Arctic. This is due to variations in factors like soil type and
vegetation.

5.1 Feasibility of Deep Learning for RTS Mapping
Before developing domain-specific models, a first feasibility study was conducted on
deep learning for pan-Arctic RTS mapping. The goal of this study was to gauge the
usefulness of deep learning for this task, as well as understanding the effect of different
model architectures and training procedures.

Relevant Publication for this Section

I. Nitze, K. Heidler, S. Barth, and G. Grosse, “Developing and testing a deep learn-
ing approach for mapping retrogressive thaw slumps,” Remote Sensing, vol. 13,
no. 21, p. 4294, 2021. doi: 10.3390/rs13214294
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Planet Optical Planet Tasseled Cap Relative Slope
(False Colour) NDVI Trends Elevation

Figure 5.2: Overview of data modalities for RTS detection displaying a major thaw slump.
For this feature, clear signatures can be seen across all modalities. Visualisation
adapted from [152].

Study Sites and Dataset

For this, a dataset of RTS ground-truth polygons was built. Six study areas were
chosen for their abundance in RTS with care to represent different parts of the Arctic.
These study sites are Banks Island, Herschel, Horton and Tuktoyaktuk in northwestern
Canada, as well as the Kolguev site in northwestern Russia and the Lena site in central
Siberia. Figure 5.4 shows the locations of these regions within the Arctic.

For each of these sites, multiple PlanetScope satellite scenes were acquired, and the
outlines of the contained RTSs digitised manually. Each annotation was checked by
another expert in order to ensure high quality of the training labels. Overall, 142
PlanetScope scenes from 2018 and 2019 were analysed and 2172 RTS polygons were
mapped for this study.

RTS can be difficult to discern using just optical imagery. Therefore, the input data
was enriched by including auxiliary data. First, the NDVI was calculated from the
red and near-infrared bands as a measure of vegetation state. Further, as RTS are a
dynamic phenomenon, aggregated trend information derived from Landsat timeseries
was included as an additional input. These timeseries were aggregated by first com-
puting the tasseled cap indices [115] and then computing their regression slopes over
the last 20 years. Finally, as RTSs are hillslope processes, elevation data from the Arc-
ticDEM [129] was also included. In order to prevent overfitting on absolute elevation
values, only the slope and relative elevation were used. All input layers were stacked
together and the polygon masks were rasterised into a binary mask. These data stacks
were then cut into tiles of 256 × 256 pixels for efficient batching during model training.

For the deep learning experiments, three model architectures were evaluated. The
first, UNet [55] is a commonly used baseline model for segmentation tasks in remote
sensing data (cf. chapter 4). The second model, UNet++ [153] is a derivative of UNet
obtained by coupling the encoder and decoder more tightly through additional convolu-
tional modules. Finally, DeepLabv3 [50] is a more recent semantic segmentation model
that incorporates new ideas like atrous convolutions and features a tailored ASPP
module for combining information at different scales.
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All three architectures can be combined with an arbitrary CNN encoder architec-
ture for feature extraction. Here, three different configurations of the commonly used
ResNet [48] were evaluated, namely ResNet-34, ResNet-50 and ResNet-101. Altogether,
9 combinations of encoder and segmentation architectures were evaluated.

One focus point of this study was to evaluate spatial generalisation. Therefore, the
splitting of the data into training and test data was done on a regional level in a leave-
one-out cross-validation scheme. Sor for each training run, one region was excluded
from the training data. After the training process, the model was then evaluated on
this excluded region.

Sparsity of RTS

A major challenge in mapping RTS with deep learning is their sparsity. As mentioned
earlier, less than 1% of all pixels in the dataset belong to the RTS class. This means
that the negative background class dominates the dataset. When training any of the
deep learning models without additional changes, the models quickly converge towards
predicting all pixels as belonging to the background class. In terms of the model’s loss
landscapes, constantly predicting the background class appears to be a local minimum
that a model can fall into during training. While such a model has more than 99%
accuracy, it is not useful for the task at hand. In order to encourage the model to put
more focus on the underrepresented positive class, two strategies were employed: A
different loss function and a change to the training schedule.

With regards to the loss function, the commonly used cross-entropy loss is known to
struggle with class imbalances. The alternative focal loss [154] addresses this by putting
a larger weight on wrongly classified samples and less weight on samples that are already
classified correctly. This is achieved by modifying the standard cross-entropy slightly:

ℒFocal(𝑝true) = −(1 − 𝑝true)𝛾 log(𝑝true) (5.1)

Here, 𝑝true denotes the predicted probability for the true class of a sample and 𝛾 is a
focusing parameter. For 𝛾 = 0, the regular cross-entropy is recovered. When increasing
the value of 𝛾, the described re-weighting behaviour is obtained. In our study, 𝛾 was
set to 2 as recommended in the original paper [154].

As a second strategy for tackling class imbalance, the training schedule was changed.
For the first 100 epochs of training, image tiles without any positive target pixels were
excluded from the training. This increases the fraction of positive pixels considerably
and therefore encourages the model to start predicting positive pixel labels. However,
this procedure favours false positives, as the model does not learn that there can be
tiles without any targets. In order to rectify this overrepresentation, the model is then
trained for 20 more epochs on the full dataset, in order to decrease the amount of false
positives. Experiments show that this two-stage training procedure greatly improves
model performance over just training on the full dataset for the same time.
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Experiments and Results
Based on the previous considerations, we conducted deep learning experiments on the
dataset. Due to the heavy class imbalance, pixel-wise accuracy is a poor indicator for
actual model performance. Recalling that less than 1% of the pixels contain positive
targets, a model that constantly predicts the background label for all pixels will already
reach more than 99% accuracy. Therefore, different metrics are needed to measure
prediction quality in such cases. The intersection over union (IoU) for the positive
class was chosen as the primary evaluation metric for this study.

For each of the nine model configurations and each of the 6 cross-validation regions,
we trained 100 models starting from a random initialisation. Overall, the UNet++
models performed the best. For the backbones, there were no clear trends as to which
performed better, leading to the conclusion that the smallest one, ResNet-34, already
has sufficient capacity for this task.

For the Horton, Kolguev and Lena regions, the best models were able to reach solid
IoU scores of 0.55, 0.48 and 0.58, respectively. For the remainaing regions, results were
less encouraging. The best models for the Banks Island and Herschel study areas, the
best models reached an IoU of 0.39 for both sites. Finally, the Tuktoyaktuk region
proved as the most challenging for all models, so that even the best model only reached
an IoU of 0.15. These numerical results underline the diversity of the permafrost regions
and the need for better spatial generalisation. More detailed evaluation results can be
found in the corresponding manuscript (A.4).

Another observation from this study was the models’ lack of training stability. The
top-performing models exhibited rather good IoU scores and the visual appearance
of the model predictions was convincing. However, model performance was strongly
fluctuating in some regions. The random nature of model initialisation and batch
sampling during training heavily influenced the performance in these regions.

Both of these observations suggest that the training dataset used in this study is
not large enough to thorougly represent the various appearances of RTSs and their
surrounding landscapes. The goal for follow-up research was therefore to address this
issue in order to train models that train more robustly and generalise better.

5.2 Semi-Supervised RTS Mapping
The permafrost-underlain Arctic spans vast areas, estimated to make up more than
10% of the Earth’s land surface [26]. Therefore, annotating a substantial fraction of
these areas for training purposes is not a viable option. Instead, the study outlined
in this section proposes a new, efficient way to additionally extract information from
unlabelled data. In this way, model performance can be improved even with limited
labels. The study explores semi-supevised learning for semantic segmentation. This
means, that the model is trained on both labelled and unlabelled imagery at the same
time. By enforcing some desirable properties on the predictions for unlabelled imagery,
the model can learn to generalise better to new regions, as it will have seen more variety
in training examples than a model trained just on a small, labelled training dataset.
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Relevant Publication for this Section

K. Heidler, I. Nitze, G. Grosse, and X. X. Zhu, “PixelDINO: Semi-supervised
semantic segmentation for detecting permafrost disturbances,” IEEE Transactions
on Geoscience and Remote Sensing (in review), 2024. doi: 10.48550/arXiv.
2401.09271

Semi-Supervised Semantic Segmentation
The term semi-supervised learning describes machine learning methods that combine
supervised learning with additional unlabelled data [155]. As training data is often a
limiting factor for deep learning tasks, various approaches have been proposed for this.
These approaches can be broadly grouped into the following three categories:

1. Consistency regularisation encourages the model to behave consistently under
a certain class of perturbations in addition to training on the labelled data. These
perturbations can be done in the input space through data augmentations [156]
or by interpolating between samples [157]. Other approaches manipulate the
feature space with dropout [155], or by adding noise [158], [159]. Across these
perturbations, the model is then regularised to be consistent in its final network
outputs [155], [160], [161] or in the feature space [158].

2. Adversarial semi-supervised learning uses ideas from generative adversarial
networks (GANs) [162] to learn from unlabelled data. One approach for this
is training the network to convince a discriminator network that its predictions
were are actually ground truth data [163]. Another approach is to use GANs to
generate additional synthetic training data [164].

3. Self-supervised pre-training can also be regarded as a building block for semi-
supervised learning. Instead of randomly initialising the network weights from
scratch, the model is first trained on a pretext task on a large, unlabelled dataset.
Then, the task-specific dataset is used to fine-tune the network to solve the given
task [165]–[167].

The possibility of improving model performance by including unlabelled data aligns
well with the lack of labelled training data identified as the main challenge in section 5.1.
Applying semi-supervised learning for the semantic segmentation of RTSs is therefore
the goal of the study presented in this section. Compared to image classification,
semi-supervised learning for semantic segmentation is not as well explored [156], [163],
[168].

Initial experiments applying semi-supervised learning techniques to RTS detection
showed some promise, but did not lead to satisfactory improvements in performance.
A possible explanation for this is the sparsity of RTS targets. Most consistency regu-
larisation methods enforce consistency through the labels. In RTS detection, there are
only two classes, of which one dominates the vast majority of the area. Therefore, only
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very little information can be passed through enforcing label consistency. Similarly,
adversarial approaches do not seem to help much. The large fraction of background
pixels impedes the adversarial training setting. A generator can rely on synthesising
completely empty background tiles, as the discriminator cannot rule them out as fake.

Pixel-wise Self-Distillation

If it were possible to employ consistency regularisation over a different set of classes
than the ones prescribed by the RTS mapping task, the model would receive a much
stronger training feedback from the unlabelled images. As no class information is
available beyond RTS targets, these additional classes have to be somehow defined by
the model itself. We will call such synthetic classes that have no pre-defined semantic
meaning pseudo-classes.

There are two major challenges in having a model generate a consistent classification
scheme. First, a constant assignment will always be consistent. A simple solution for
the model is to assign the same class label to all input pixels. Naturally, this assignment
will be consistent across any given perturbation of the input data. However, such a
model will not learn useful features from the consistency regularisation. Therefore,
the first challenge is to ensure variability in the model predictions, encouraging the
model to make use of all pseudo-classes. But, even when ensuring diversity, there is
another undesired mode of consistency that the model can converge towards. This
happens when the model constantly outputs a uniform mixture of all available classes.
In this way, the model avoids having to decide for a certain class to assign to each pixel.
These predictions do in fact make good use of all possible classes, but they are still
not informative. The second challenge is therefore to ensure sharpness of the model’s
predictions [169].

Caron et al. [169] approached very similar challenges in their work on self-distillation
with no labels (DINO). They apply the concept of consistency with pseudo-classes to
the self-supervised representation learning for image data. In their training pipeline,
they first create two augmented versions of an input image. The first augmented version
is then run through a teacher network. Before applying the final softmax operation,
the resulting model outputs are centered around the mean and sharpened by re-scaling
them. The centering operation prevents individual classes from dominating the pre-
dictions, enforcing variability among the pseudo-classes. Meanwhile, the sharpening
amplifies any tendencies away from a uniform distribution for the predictions. Taking
this teacher output as a training label, the student model is then trained to predict
the same output on the second augmented version of the input image. Finally, the
teacher’s weights are kept as an exponential moving average (EMA) of the student’s
weights. In this way, models can learn image features of high semantic value without
having to rely on labelled data. Downstream experiments on benchmark datasets show
that models pre-trained with DINO are competitive with models pre-trained on large
annotated datasets [169].

The DINO framework learns to assign a single pseudo-class for the entire input
image. For semantic segmentation, however, the model needs to also understand precise
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Figure 5.3: Workflow for PixelDINO to learn from unlabelled imagery. An unlabelled input
image is weakly augmented. The teacher network then predicts pseudo-classes for
each pixel in this image. After centering and sharpening the teacher’s predictions,
these pseudo-classes are stronly augmented together with the weakly augmented
image. This pair is then used as a labelled sample for the student to learn from.
The teacher’s weights are continually updated as the EMA of the student’s weights.
Figure taken from [5].

information about individual locations within the image. The proposed PixelDINO
framework therefore takes the idea of self-distillation with no labels to the pixel-wise
level. Instead of predicting a pseudo-class for the entire image, teacher and student
are now replaced by semantic segmentation models, and predict a pseudo-class for each
individual pixel.

When adapting the DINO concept to semantic segmentation, one major challenge
arises. In the classification setting, data augmentations do not change the label. For
semantic segmentation, however, geometric transformations like rotations will change
the locations of objects in the image. Therefore, the segmentation masks need to
be augmented by the same geometric transformations as well. In the original DINO
setting, two independent augmentations are used. Therefore, it is not possible to
transfer the segmentation maps from the teacher to the student. Instead, we make use
of an idea proposed by Upretee and Khanal [156], namely to employ two consecutive
augmentations instead of having them independent from each other. The intermediate
version after the first augmentation is the version used by the teacher. The version
obtained after having applied both augmentations is then the one used by the student.

The inputs to teacher and student network serve different purposes. In order to
ensure high quality of the pseudo-class labels generated by the teacher, the teacher’s
input imagery should be easy to analyse without too many distortions. Meanwhile, the
student network should learn to segment even strongly distorted inputs. To account
for these different requirements, the concepts of weak and strong augmentations were
introduced [160]. Weak augmentations, denoted by 𝛼, are data augmentations that
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Figure 5.4: Distribution of training sites used for RTS mapping. Labelled sites (red) cover
only a small fraction of all permafrost regions (gray), leading to poor spatial
generalisation. By including unlabelled sites (green) into the training, as explained
in section 5.2, model performance is greatly improved. Figure taken from [5].

do not increase the difficulty of analysing a given image. This class of augmentations
includes geometric operations like mirroring the image or rotating it. Strong augmen-
tations, denoted by 𝒜, are then any augmentations that distort an image in such a
way that makes it more difficult to analyse. This includes operations like blurring an
image, changing the colour-space by adjusting brightness, hue or contrast, cropping
and resizing of the image, as well as distorting the image geometry through warping
operations. The PixelDINO training procedure using weak and strong augmentations
is shown in figure 5.3.

In order to train a model in a semi-supervised setting, PixelDINO training is com-
bined with regular supervised training. During each model training step, both a batch
of labelled imagery and a batch of unlabelled imagery are taken. For the labelled
imagery, a supervised training step is performed, while for the unlabelled imagery,
the PixelDINO procedure is performed as the training step. The resulting model is
therefore trained on both objectives in parallel, which is expected to provide stronger
results than supervised training by itself. An algorithmic description of the full semi-
supervised PixelDINO training procedure can be found in the corresponding manuscript
(A.5, Algorithm 1).

Experiments and Results
By the time of this second study, the dataset from section 5.1 had grown by a few
more regions. In Canada, the Peel Plateau was added as an additional study site.
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Figure 5.5: High resolution imagery (1st column), ground truth (2nd column), and predic-
tion results for parts of the Herschel Island (top) and Lena (bottom) study sites
for the Baseline+Aug (3rd column) and PixelDINO (4th column) training meth-
ods. Most prominent is the large reduction in false positives due to the semi-
supervised training method. The visualisations in columns 2-4 are displayed on
top of Sentinel-2 data from the test datasets, high resolution imagery in column
1 courtesy of Esri, Maxar, Earthstar Geographics, and the GIS User Community.
Figure taken from [5].

For the Russian Arctic, RTS data was added for the Novaya Zemlya archipelago, the
Gydan and Taimyr peninsulas, and the Lena river delta. These regions can be seen
in figure 5.4. For testing spatial generalisation, the Herschel and Lena sites were set
aside, as the Lena region is the only region far inland and Herschel is an island isolated
from the other study regions.

As access to commercial PlanetScope data hinders reproducibility and complicates
the acquisition of a large unlabelled dataset, this study was not conducted on the
original PlanetScope data, but used Sentinel-2 multi-spectral data. While the resolution
of Sentinel-2 is only 10 m as opposed to PlanetScope’s roughly 3 m resolution, Sentinel-2
data is freely available and features 13 spectral bands.

The existing RTS footprints were re-projected to match the pixel grid of the Sentinel-2
imagery. Further, the auxiliary input data modalities of time-series trends and elevation
information were removed to simplify the model pipeline. For the semi-supervised train-
ing methods, an unlabelled dataset was collected by arbitrarily selecting 83 Sentinel-2
grid tiles in regions of ice-rich permafrost, which were known or conjectured to contain
RTSs. These Sentinel-2 scenes were processed in the same way as the scenes for the
annotated regions, yielding compatible training datasets.

Having identified data efficiency as the most critical challenge in RTS detection, the
simplest model from the previous study in section 5.1 was used, namely the UNet
model [55]. As baselines, we first trained a UNet model on only the labelled data.
In order to also quantify the effect of data augmentations, this model was trained
both with and without data augmentations. Then, including the unlabelled dataset,
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Herschel Island
Method IoU mIoU F1 Precision Recall

Baseline 19.8 ± 1.7 59.6 ± 0.9 33.0 ± 2.3 28.8 ± 3.0 39.4 ± 5.0
Baseline+Aug 22.9 ± 3.0 61.3 ± 1.5 37.2 ± 3.9 44.2 ± 7.5 32.3 ± 2.0

FixMatchSeg [156] 23.4 ± 0.8 61.5 ± 0.4 37.9 ± 1.1 34.1 ± 2.3 43.2 ± 4.5
Adversarial [163] 26.6 ± 3.9 63.2 ± 1.9 41.9 ± 4.9 60.0 ± 9.2 32.3 ± 3.1
PixelDINO 30.2 ± 2.7 65.0 ± 1.4 46.4 ± 3.2 52.7 ± 9.2 42.0 ± 3.0

Lena River
Method IoU mIoU F1 Precision Recall

Baseline 28.8 ± 4.0 64.3 ± 2.0 44.6 ± 5.0 52.8 ± 5.9 39.0 ± 6.0
Baseline+Aug 25.8 ± 10.2 62.8 ± 5.1 40.2 ± 13.0 69.4 ± 3.2 29.4 ± 12.5

FixMatchSeg [156] 32.4 ± 3.2 66.1 ± 1.6 48.8 ± 3.7 59.4 ± 2.7 41.6 ± 5.0
Adversarial [163] 25.1 ± 15.1 62.4 ± 7.5 38.2 ± 20.5 87.3 ± 7.5 26.8 ± 16.7
PixelDINO 39.5 ± 6.5 69.7 ± 3.3 56.4 ± 6.6 77.7 ± 6.3 44.5 ± 6.8

Table 5.1: Results of the Generalisation Study: Mean and Standard Deviation of 4 runs each
for both the Herschel Island and Lena River test sites. (Values in %)

additional models were trained with semi-supervised training protocols. Besides the
PixelDINO approach, two other semi-supervised training procedures for semantic seg-
mentation were evaluated. FixMatchSeg [156] relies on semi-supervised learning from
pseudo-labels. It inspired some ideas used in PixelDINO, such as the composition of
weak and strong augmentations. The second approach, AdvSemiSeg [163], relies on ad-
versarial learning by training a discriminator network to discern true class maps from
predicted class maps. Once again, the models were evaluated using the IoU metric.
The evaluation results and their standard deviations reported in A.5 are reproduced in
table 5.1.

Surprisingly, the effect of data augmentation was not uniform across the two eval-
uated study regions. While data augmentation slightly improved performance for the
Herschel Study site, it actually worsened the performance for the Lena site. This un-
clear trend suggests that the data augmentations might not always be as helpful for
generalisation as they are generally assumed to be.

Comparing the supervised approaches to the semi-supervised approaches, it is clear
to see that semi-supervised learning is beneficial for RTS detection. IoU scores generally
improve when using semi-supervised learning with the exception of the adversarially
trained model on the Lena region. What is more, the PixelDINO approach significantly
outperforms the other semi-supervised learning approaches. This can be attributed to
the richer semi-supervised training feedback given through the pseudo-classes used in
the PixelDINO procedure. While the other methods have to rely on learning infor-
mation in the highly sparse existing label space, PixelDINO can use the much richer
pseudo-class space for its semi-supervised learning.
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Figure 5.5 shows the prediction results of a supervised model and one trained with
PixelDINO. Visually, the main improvement from PixelDINO appears to be the the
reduction of false positive predictions. While the supervised model is overly sensitive in
areas near bodies of water, this effect is greatly reduced when using PixelDINO. That
suggests that models trained with PixelDINO appear less likely to predict the presence
of RTS in regions without any RTS.

To sum up, PixelDINO is an effective method for semi-supervised semantic seg-
mentation for tasks with sparse targets, such as RTS detection. The introduction
of pseudo-classes allows for efficient consistency regularisation even in these settings,
where methods relying on the original label space do not bring much improvement.
Combining the concept of self-distillation with no labels [169] with ideas from exist-
ing semi-supervised semantic segmentation approaches [156] allows the model to learn
pixel-wise features of high semantic value.
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This dissertation developed new deep learning methodology for automating some of
the analytical tasks in polar remote sensing.

The impacts of global climate change on the polar regions were highlighted in chap-
ter 1, motivating the importance of monitoring these particular regions. Chapter 2
then gave an overview over deep learning as the primary algorithmic tool of this dis-
sertation and reviewed the ways deep learning is being used in remote sensing. The
specific challenges of remote sensing in the polar regions were also discussed. Existing
approaches to automatically map features in the polar regions were categorised and
discussed in chapter 3.

Chapter 4 outlined the scientific contributions made in this dissertation regarding
glacier calving front mapping. The HED-UNet model was designed to detect calving
fronts in Antarctica by closely observing how a human approaches calving front detec-
tion, and designing a deep learning model according to these observations. Key design
elements include the combination of segmentation with edge detection and the ability
of the model to attend to different resolution levels. The second model, COBRA, takes
this a step further and directly predicts the desired contour lines instead of pixel-wise
masks. In the third study of this chapter, the possibilities of applying COBRA to a
new region, namely Svalbard, were highlighted.

Chapter 5 discussed the scientific contributions regarding permafrost degradation
mapping. The first study explored the overall feasibility of applying deep learning for
this task, and identified spatial generalisation and limited labels as the main challenges.
The second study proposed PixelDINO, a method using both labelled and unlabelled
satellite images in a semi-supervised fashion. In this way, the performance of deep
learning models for mapping retrogressive thaw slumps (RTSs) could be greatly im-
proved.

The scientific insights gained over the course of this dissertation can be summarised
as follows:

Importances of Edges For detecting glacier calving fronts, focusing on the edges
instead of land and ocean areas is highly promising. Recent research appears to con-
verge around this idea, supporting the assumption that this is indeed the way forward
for calving front detection [1], [2], [8], [104].
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Spatial Context Matters Glaciers can measure dozens of kilometres in size. This
means that to fully understand such large-scale features, deep learning models need
to be able to take into account a broad spatial context. Therefore, deep learning
models designed for computer vision or other remote sensing tasks like mapping building
footprints are often suboptimal in this application context. Instead, specific models
need to be designed taking into account the need for spatial context information.

Task Representation Matters Many deep learning studies for remote sensing apply
an existing model that was originally designed for a different task. In this way, implicit
assumptions about the nature of the task are made. Taking a step back and finding
the optimal way of computationally encoding a task can help rectifying such issues and
improve model performance.

Efficient Representations for Uncertainty Quantification As the explicit contour
representation of the COBRA model has shown, using more efficient data representa-
tions can help with quantifying model uncertainties. This is explained by the obser-
vation that a smaller data representation allows for less interaction terms between its
components, facilitating uncertainty estimation.

Downstream Usefulness The presented deep learning models can automatically pro-
cess large satellite imagery archives in order to compute multi-decadal time series of
predictions for large study areas. The resulting data products are reliable enough for
downstream use and contain valuable insights.

Quantity of Training Data Large amounts of training data are required to train ro-
bust deep learning models. While techniques such as semi-supervised learning can help
alleviate this problem, a larger training dataset is often the easiest way to improve
model performance.

Resolution Does Not Matter Much Intuitively, higher resolution imagery allows for
more precise mapping of features such as calving fronts and RTS. In both applications,
however, it turned out that working with lower resolution data like Landsat or Sentinel-
2 imagery can yield comparable results to those obtained from higher resolution data
like PlanetScope [2]. The reason might be that medium resolution sensors often have
more spectral bands, and the fact that the spatial context that a model will take into
account increases proportionally to the pixel spacing.

Consistency Without Pre-Defined Labels For semi-supervised semantic segmenta-
tion, it is possible to enforce consistency of the model predictions without using pre-
defined labels. As explained in the PixelDINO study, the model can come up with its
own segmentation classes. Forcing the model to make use of all these classes prevents
output collapse and allows the model to learn meaningful features from the consistency
learning feedback.
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Feasibility Studies Specialised Studies Operationalisation Downstream Studies

Figure 6.1: Conceptual timeline of deep learning studies for remote sensing in the polar re-
gions. After establishing the feasibility of deep learning for a certain task, task-
specific models are developed next. After a while, promising approaches are sin-
gled out and operationalised for providing large-scale predictions. Finally, the
derived data can be used for downstream studies.

6.1 Conceptual Timeline of Polar Remote Sensing Research
Like all research, the contributions from this dissertation project do not stand for them-
selves, but constitute specific insights and building blocks towards a larger scientific
goal. In this case, the penultimate goal is to foster a better understanding of the
processes and dynamics happening in the glacial and periglacial environments in the
Arctic and Antarctica. We will take a step back to look at the bigger picture in order
to understand the current state of the field, as well as where it might be headed in the
near future.

When looking at the numerous studies done in remote sensing for the polar regions,
they can be divided roughly into the following four phases, where each phase builds
upon the previous one, as symbolised in figure 6.1.

1. Feasibility Studies The first group of studies started by seeing the great potential
of the deep learning models developed in computer vision. By applying the same
concepts to polar remote sensing tasks, these studies evaluate the feasibility of
deep learning for such use cases. For example, initial studies apply the UNet
model [55] as a first baseline for many use cases. Feasibility studies generally
confirmed the great potential of these models, as described in chapter 3. However,
in this early stage, studies were usually confined to selected study areas and the
models trained on small datasets. In order to scale up to more reliable model
predictions on a pan-Arctic scale, larger datasets and more specialised models are
needed as a next step.

2. Specialised Studies Encouraged by the positive results of the feasibility studies,
this second group of studies started to develop deep learning models that were
more tailored for the tasks of polar remote sensing. Seeing that different tasks
require different approaches, models were adapted and improved for each task, like
calving front detection, sea-ice charting, or permafrost mapping. One example
for this is the move from segmentation to edge detectors, which was discussed in
section 4.1. At the same time, a push towards larger datasets with greater spatial
coverage is observed. These extensive datasets then serve as benchmarks for new
methodological developments in the field. Four of the manuscripts contained
within this dissertation belong to this second phase [1], [2], [4], [5].
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3. Operationalisation At some point the model predictions become reliable enough
for application-specific analyses. However, detailed knowledge of data processing
toolchains and deep learning frameworks is needed to generate predictions from
the trained models. Operationalisation studies fill the gap as an intermediary step
between the methodological studies from phase 2 and the downstream studies in
phase 4. These studies explore how to scale the deep learning models to large
satellite image archives. By making the model predictions available in formats
compatible with standard geographic information system (GIS) applications, they
make it easy for polar scientists to use these data for downstream studies. The
Svalbard study from this dissertation is part of this phase [3].

4. Downstream Studies While downstream studies are still in their early stages, it can
be expected that exciting studies will soon leverage this wealth of automatically
derived data. This will lead to a better understanding of the monitored processes
on a pan-Arctic level. For this, the derived observational data products can
be combined with other types of data like weather and climate data to identify
and quantify the interdependencies between environmental factors and the actual
reactions of the polar systems. Another promising application is the combination
of the data products with physical modelling approaches to improve the accuracy
of these physical models.

For calving front monitoring, the HED-UNet model has been operationalised for
Antarctic glaciers. The resulting predictions are made easily available in an analysis-
ready shapefile format in the IceLines data product [9]. The COBRA model has been
deployed for the analysis of Svalbard’s marine-terminating glaciers, with the resulting
predictions being readily available for further analysis [3]. A comparable dataset is also
available for calving fronts in Greenland [170]. Finally, first steps towards operational-
isation are also taken for RTS detection [128].

6.2 Possibilities for Follow-Up Research
This section introduces some ideas how deep learning techniques could be used to
further help polar research.

Temporal Reasoning The tasks approached in this dissertation project are moti-
vated by the need to monitor dynamic processes in the polar regions. Therefore, they
can be more easily detected and understood in a temporal context. However, current
studies for deep learning in polar remote sensing only make predictions for single points
in time. Methods like convolutional long short-term memory (ConvLSTM) models al-
low for a combination of vision methods with sequence models [171]. Applying such
approaches for polar remote sensing could greatly benefit the tasks studied in this dis-
sertation. Phenomena like the surging of glaciers [3], or the polycyclicity of RTS [172],
could be better understood using models that have a concept of time.
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PredictiveModelling Following the idea of using temporal context, models could not
only use temporal information to better detect the monitored features, but even forecast
their developments into the future. Recent deep learning methods from fields like video
prediction [173] or weather forecasting [174] allow for the prediction of future imagery
given a recent history. Adapting such approaches to forecast trends in glacier dynamics
or the growth of RTS could greatly help polar research to estimate the developments
in the polar regions for the future.

Physics-AwareMachine Learning Another approach for improving the performance
of deep learning models for cold regions could be the inclusion of physical knowledge into
the deep learning models. Sophisticated physical models like the Open Global Glacier
Model (OGGM) [175] and CryoGrid [176] can numerically simulate the dynamics of
glaciers and permafrost regions, respectively. The field of physics-aware machine learn-
ing [177] explores ways of integrating such physical models with deep learning. In this
way, phyiscal process understanding can be combined with the flexible learning pro-
cess of neural networks. Bolibar et al. [178] presented a first model combining neural
networks and differential equations for modelling the dynamics of mountain glaciers.
Such approaches may greatly improve models for deep learning in polar regions.

Exploiting Task Synergies So far, deep learning is only being used to tackle specific
tasks in polar remote sensing. In these settings, complex deep learning models struggle
with the limited amount of training data. As the various polar remote sensing tasks
are analysing similar features and regions, a multi-task model for polar remote sensing
might be able to exploit synergies between these tasks.

Causal Modelling A recent line of research tries to use deep learning to model and
understand causal relationships between certain variables [179]. Data-driven analysis
of the causal relationships between climate variables and cryosphere processes might
uncover previously unknown connections and help quantify the effect of those already
known.

6.3 Outlook
The polar regions are large areas experiencing heavy effects from global climate change.
However, the full extent of the changes in these regions is hard to quantify. Remote
sensing data has incredible potential for monitoring these regions and better under-
standing the underlying processes. With larger collections of satellite images becoming
available to the public every year, these datasets are a treasure trove for polar research.

For the analysis of these data archives, innovative methods have been proposed in
recent years, including the studies presented in this dissertation. By automating map-
ping and detection tasks for the polar regions, valuable insights can be extracted from
these large datasets. By reducing terrabytes of information into key properties like the
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positions of calving fronts or the footprints of retrogressive thaw slumps, it becomes
much easier to study the fundamental processes.

In the near future, we can expect research to gain additional understanding of key
processes in this data-driven way. For complex phenomena like glacier surges or the
polycyclic growth of retrogressive thaw slumps, it will be tremendously helpful to not
only look at single occurrences, but instead observe a large number of instances with
the help of machine learning.

For deep learning to reach its full potential in polar research, it is of paramount
importance that machine learning researchers and polar researchers keep working hand
in hand. Only in this way can it be assured that the monitored targets are well captured
by the models, the predictions are reliable and, finally, the derived data is helpful for
polar research.
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Abstract— Deep learning-based coastline detection algorithms
have begun to outshine traditional statistical methods in recent
years. However, they are usually trained only as single-purpose
models to either segment land and water or delineate the
coastline. In contrast to this, a human annotator will usually
keep a mental map of both segmentation and delineation when
performing manual coastline detection. To take into account this
task duality, we, therefore, devise a new model to unite these
two approaches in a deep learning model. By taking inspiration
from the main building blocks of a semantic segmentation
framework (UNet) and an edge detection framework (HED),
both tasks are combined in a natural way. Training is made
efficient by employing deep supervision on side predictions at
multiple resolutions. Finally, a hierarchical attention mechanism
is introduced to adaptively merge these multiscale predictions
into the final model output. The advantages of this approach over
other traditional and deep learning-based methods for coastline
detection are demonstrated on a data set of Sentinel-1 imagery
covering parts of the Antarctic coast, where coastline detection
is notoriously difficult. An implementation of our method is
available at https://github.com/khdlr/HED-UNet.

Index Terms— Antarctica, edge detection, glacier front, seman-
tic segmentation.

I. INTRODUCTION

CONTRARY to many other landmasses, Antarctica’s
coastline is fringed by the dynamic glacier and ice shelf

fronts continuously changing the coastline location by iceberg
calving, which is influenced by both seasonal variations and
global climate change. Tracking the advance and retreat of
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glacier and ice shelf fronts is an important factor for a better
understanding of glaciological processes. Furthermore, it is
essential to monitor the calving front retreat as it enhances
the sea-level contribution of the Antarctic ice sheet due to
decreased buttressing effects.

Overall, the length of the Antarctic coastline amounts to
around 40 000 km [1], which renders manual delineation
infeasible. Especially when observing the developments over
multiple time steps for continuous tracking, an automated
coastline extraction technique is needed. The recent advances
in algorithms and sensing platforms open up new possibili-
ties for the analysis of satellite imagery over large regions,
which can be observed in fields as diverse as land
cover mapping [2]–[4], bathymetry [5]–[7], urban applica-
tions [8]–[12], change detection [13]–[17], and cryosphere
research [18]–[22].

This kind of fine-grained analysis is possible because of the
availability of satellite imagery with revisit times in the order
of days. Regarding data sources, both optical and synthetic
aperture radar (SAR) sensors produce imagery suitable for the
delineation of the Antarctic coastline [23]. The use of optical
imagery in the Antarctic comes with some major drawbacks.
Apart from the usual problems with cloud cover, vision is
further impeded by polar night and sensor saturation due
to the high albedo of ice. To create continuous and gapless
observations, data from the Sentinel-1 mission was chosen as
the main imagery source. SAR data have often been found to
be helpful with the analysis of the cryosphere [24]–[33]. In our
case, it allows for near-real-time analysis at a high temporal
resolution.

Using SAR data for the task of coastline extraction also
imposes some challenges. The speckle present in SAR images
makes it harder to pinpoint the exact boundary between
land and sea. Furthermore, the backscatter characteristics
of glacial ice vary throughout the year, making it hard to
distinguish between, e.g. open sea and the higher ice sheet.
Therefore, a good model needs to pay additional attention
to contextual clues and cannot rely on local information
only.

Existing studies for delineating coastlines in general, as well
as the Antarctic one, often focus their predictions on either the
area of land and sea (sea–land segmentation) or the coastline
itself (coastline detection). However, to the human eye, the two
concepts of “area” and “edge” are closely intertwined, making
it hard to imagine one without the other. When conducting

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. In coastline detection, the vision tasks of segmentation and edge
detection are inseparable.

manual coastline delineation, a human annotator will, there-
fore, mentally segment the scene into sea and land while
searching for the edge between the two at the same time, as
shown in Fig. 1.

We hypothesize that taking into account this duality is
essential in closing the performance gap between human
annotators and automated approaches. In an attempt to more
closely model this process, we, thus, introduce a new solution
for coastline detection that draws upon the advantages of
both segmentation and edge detection approaches. Instead of
focusing a predictor on just one of these tasks, our network is
trained to jointly perform both tasks at the same time. Inspired
by neural architectures for semantic segmentation and edge
detection, the model uses an encoder–decoder architecture
with skip connections in order to predict segmentation masks
and edges at multiple resolutions.

Another observation that we make about coastline detec-
tion conducted by humans is the fact that not all areas
of a given scene need the same amount of attention to
detail. While it is of paramount importance that the coastal
regions are precisely mapped, areas further away from the
coastline do not receive much attention from a human anno-
tator. By introducing a merging scheme based on hierarchi-
cal attention, our model can work in the same way. The
intermediate multiresolution predictions are merged using this
mechanism to obtain a final output that combines fine-grained
low-level outputs with coarser high-level outputs in an efficient
way.

Overall, this work’s contributions are threefold.

1) Coastline detection is recognized as a dual task. To solve
this, a unified theory of segmentation and edge detection
is presented. From this, an architecture that imple-
ments both semantic segmentation and edge detection
is devised.

2) Apart from the narrow coastal strip, there are large
regions that require less detailed analysis. This is taken
into account by allowing the model to output predictions
at different resolution levels. Adding deep supervision
for these side outputs improves the training efficiency
and generalization performance of the model.

3) In order to dynamically blend between coarse and
high-resolution predictions, a hierarchical attention
mechanism is used, which takes into account the infor-
mation available at all levels.

The remainder of this article is organized as follows.
Section II gives a brief overview of current methods for coast-
line detection with a focus on polar regions, as well as existing

approaches for combining segmentation and edge detection.
Section III presents our proposed HED-UNet architecture.
In Section IV, the used data set is introduced. Furthermore,
the conducted experiments are explained. Finally, Section V
presents numerical results comparing our model to other
approaches and ablation studies that analyze the proposed
model’s elements in detail. Finally, it also includes a discussion
of the observed model performance.

II. RELATED WORK

This section will explore the state of the art for coastline
detection with a focus on Antarctica. Compared to the general
case, the detection of coastlines in the Antarctic requires
additional care, as many methods are easily distracted by
dynamic sea ice, such as icebergs or ice mélange. Locally,
these confounding features can look almost identical to land
ice and can, therefore, only be excluded by the additional use
of spatial context information.

There are numerous existing approaches for detecting coast-
lines from satellite imagery. For the biggest part, they can be
divided into the aforementioned two classes, differing in the
output of interest.

A. Sea–Land Segmentation

In the field of computer vision, semantic segmentation is a
central topic. Each pixel is assigned a class, which is to be
predicted by the model. This technique is frequently used in
remote sensing for various tasks. When the area of either sea
or land is of importance, semantic segmentation models are
used to distinguish between sea pixels and land pixels.

1) Statistical Methods: In quite a few studies, this has been
done by means of statistical analysis. For the Antarctic, the use
of a bimodal Gaussian mixture model was proposed, for which
parameters are estimated in order to derive an adaptive thresh-
olding scheme. This approach can be applied to both SAR and
optical imagery [1]. Similar dynamic thresholding schemes
have been applied to different sensors [34]. While easy to
implement and fast to evaluate, these methods completely
discard the spatial relationships of the pixels, which renders
them unfit to deal with the aforementioned issues.

Another localized way of segmenting images that have been
applied to sea–land segmentation is given by the watershed
algorithm [35]. It treats the pixel intensities as height values
and then simulates the resulting surface being flooded with
water. Finally, unsupervised clustering methods are helpful in
the analysis of complex coastlines [36]. These methods have
the benefit of being unsupervised, i.e., requiring no training
prior to the evaluation, but the lack of supervision also means
that the models cannot be taught to, e.g., ignore icebergs.

2) Deep Learning Methods: With the rise of deep learning
in remote sensing [37], convolutional neural networks (CNNs)
have been shown to provide superior performance for
many tasks, including the one of sea–land segmentation
[38]–[40]. Deep convolutional architectures, such as Seg-
Net [41] or UNet [42], leverage contextual information through
their encoder–decoder architectures. Thus, as they have more
context to base their decisions on, they have the potential
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to produce more accurate results than pixelwise or shallow
texture-based classifiers. This is of great interest to Antarctic
coastline detection due to the aforementioned issues. Current
developments in computer vision show a trend toward more
complex models for semantic segmentation, which incorpo-
rates global information [43] or shape information [44].

Generally, these models require large amounts of labeled
data and take quite some time to train. However, they can
outperform the previously mentioned methods.

B. Coastline Detection

A closely related task is approached in coastline detection.
Instead of segmenting a scene into sea and land, the coastline
itself is of primary interest.

1) Edge Tracing: One class of edge detection methods
marks the boundaries in the image step by step. After some
filtering to highlight the edges, which can be done, e.g., using
the Roberts operator [45] or the Sobel operator [46], pixels that
are likely to lie on the edge are connected to form the entire
boundary. Regarding coastline detection, this approach has
been shown to work for SAR data when applying preprocess-
ing steps to account for the nature of the imagery [47]. They
can also be connected using a shortest-path algorithm [29]
or ridge tracing [48]. Yet, another approach comes from
exploiting detection duality. By the nature of the relationship
between sea, land, and the coastline, the coastline can be
derived from a sea–land segmentation by tracing the transitions
between the sea and land classes [49].

While relatively simple, these methods often have some
issues regarding robustness. When the tracing procedure takes
a wrong turn, it is hard for the algorithm to return to the true
boundary.

2) Contour Methods: Active contours, sometimes, also
called Snakes [50], are quite similar to the edge tracing
approach. Instead of the pixel-by-pixel approach, this class
of methods uses an initial curve that is iteratively deformed
to minimize an energy function. By choosing the right energy
function, this framework can be used to delineate coastlines.
For SAR imagery, active contours are able to find coastlines
when given a good initialization [51], [52]. These models are
sensitive to the provided initialization, meaning that they can
converge to local minima that do not represent the desired
edge.

3) Level Set Methods: Instead of working with an explicit
parameterization of the curve, these methods work with an
implicit representation given by a scalar field, in which the
zero set represents the boundary [53], [54]. Adaptations of
this method for SAR coastline detection use multiple level
set iterations to go from coarse to fine delineations [55] or
sophisticated preprocessing steps [56] to make the method
work for this particular type of imagery.

4) Deep Learning Methods: Only recently, approaches
based on deep learning have begun to outperform handcrafted
edge detection algorithms. Specialized architectures leverage
the framework of CNNs to derive features that predict the pres-
ence of edges [57]–[59]. Notably, the previously mentioned
Roberts and Sobel operators can be viewed as shallow CNNs
with just one layer and a convolutional filter size of 2 and 3,

respectively. Therefore, it is only natural that deeper CNNs
with more layers are able to outperform these hardcoded edge
detection operators.

C. Combining Semantic Segmentation and Edge Detection

A common problem with semantic segmentation models is
the blurriness near class boundaries. This likely stems from
the fact that the edges make up a minority of the pixels and
are, therefore, not well enough represented by the standard
pixelwise cross-entropy loss. Thus, the idea of augmenting
semantic segmentation approaches with edge information is
not a new one.

One way of making a segmentation model aware of edges in
the image is by adding an auxiliary loss term that encourages
the prediction of crisp edges. This has been shown to work
for sea–land segmentation [60].

Surprisingly, simply adding the edge detection task as
an auxiliary output for a segmentation model can improve
the segmentation results in quite a bit, even without further
changes to the model [61]. This approach can also improve
sea–land segmentation results in harbor areas [62].

To further improve blurry segmentations, edge masks can
be used as the basis for a spatial propagation of class labels.
In [63], a segmentation map is initialized using a segmentation
network, and at the same time, edges are predicted. These edge
masks are then used as the basis for recursive multidirectional
label propagation.

For aerial scene classification, the use of an edge detection
subnetwork before doing the segmentation has been shown
to be beneficial. The detected edge masks are then used as
additional input features for the segmentation model. This
approach improves the shape accuracy of the resulting seg-
mentation [64].

Contrary to these approaches, we develop a unified theory
of segmentation and edge detection. We then identify the
components that successful neural networks use to solve either
one of these tasks and, finally, devise a model that incorporates
the tools necessary to solve both tasks at the same time. The
underlying assumption is that both segmentation and edge
detection are of equivalent importance for detecting coastlines
in satellite imagery.

III. PROPOSED METHOD

Implementing the sea–land segmentation task via a UNet
segmentation model [42] has become a popular approach for
the automatic delineation of coastlines [38]–[40]. Also, in our
data set, this method yields good results on the majority of
the evaluated scenes [31]. However, oftentimes, the predictions
become inaccurate and blurry in areas close to the coastline.
As the precise location of the coastline is the central object of
our study.

On the other hand, edge detection models excel at delin-
eating the edges in the given images. However, an edge
delineation has no concept of “inside” and “outside” by itself,
so this output alone is insufficient for labeling sea and land.
Furthermore, edge detection models are easily fooled by inland
structures of similar appearance to the coastline, as well as
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icebergs near the coast. This implies the need for extensive
postprocessing and manual corrections.

To put our aforementioned hypotheses into practice, we now
introduce a hybrid model for simultaneous prediction of the
sea–land segmentation and edge detection of the coastline.
Following our observation that humans will usually take into
account both the edge information and the textural shape
information, we, therefore, propose a combined framework
that draws upon the advantages of both these approaches.
It takes inspiration from both UNet [42] and HED [57], as well
as related architectures by combining key ideas in a very
natural way. Therefore, we call our model HED-UNet.

A. Unifying Segmentation and Edge Detection

Regarding the deep learning formulation of the tasks, both
segmentation and edge detection are in their nature dense
prediction tasks, i.e., for each input pixel, an output label
needs to be predicted. In the case of segmentation, this is the
class label, such as “sea” or “land.” For edge detection, it is
a classification into the two classes “edge” and “no edge.”

This means that, in principle, a segmentation model can
be trained to perform edge detection, and vice versa. How-
ever, these models were designed for their respective tasks
only, meaning that the performance will be degraded when
applying them to a different task. In order to construct a
model that works well for both tasks, we will, therefore,
identify the components of successful architectures for both
tasks and find a way to incorporate them into a single multitask
model.

1) Segmentation Building Blocks: Some successful seman-
tic segmentation architectures employ the combination of an
encoder and a decoder [41], [42]. The encoder conducts a
series of downsampling steps to allow for the aggregation
of contextual information at a lower resolution. In turn,
the decoder then distributes this information to the individual
pixels through a series of upsampling steps.

In a more recent branch of semantic segmentation
approaches, the network architecture is divided into a back-
bone network, which calculates feature maps, and one or mul-
tiple prediction heads, which conduct the final classification
based on these feature maps [43], [44], [65].

The contextual aggregation capabilities of an
encoder–decoder framework are needed for this task,
as some regions can only be classified correctly by the use
of contextual clues. At the same time, the backbone-head
approach makes it easy to build models that tackle multiple
tasks. These considerations lead to the idea of implementing a
backbone network that follows the encoder–decoder structure.
This has been pioneered for the task of object detection
in the framework of feature pyramid networks [66]. For
our network, we will employ two task-specific prediction
heads after calculating a feature pyramid through an
encoder–decoder approach.

2) Edge Detection Building Blocks: On the other hand,
edge detection frameworks are optimized to provide sharp
edge delineations while, at the same time, keeping down
the number of false positives. This means that they need

Fig. 2. High-level structure of the proposed framework. First, the encoder
and the decoder calculate a pyramid of feature maps. Then, the task-specific
merging heads combine this information using the hierarchical attention
mechanism.

to combine the crisp edges predicted at a high resolution
with more robust, lower resolution features to reject false
positives from the former. Edge detection methods, therefore,
often try to strike a balance between predictions or feature
maps at different resolutions, which can be done with an
architecture that employs an encoder followed by a merging
block [57]–[59]. The encoder part is similar to the encoders
used in semantic segmentation models; it aggregates contex-
tual information by downsampling. The merging part, how-
ever, is a new block that combines the information from differ-
ent resolution levels after they have been upsampled to the full
resolution.

Looking back at the proposed feature pyramid backbone,
such a merging part fulfills the function of a prediction head.
This observation leads to the high-level network architecture,
as shown in Fig. 2. It is structured in such a way that it contains
the components for both segmentation and an edge detection
network. After this general structure of the network has been
fixed, the detailed layout for each one of these blocks will be
outlined in Section III-B.

3) Loss Function: In edge detection, the classes “edge” and
“no edge” are highly imbalanced. Therefore, we use an adap-
tively balancing modification of the binary cross-entropy loss,
as proposed in [57]. For a single image with a ground-truth
partition into positive pixels Y+ and negative pixels Y− and a
prediction p̂, it is given as

L( p̂)=−|Y−| ∑ j∈Y+ log p̂ j

|Y+ ∪ Y−| − |Y+| ∑ j∈Y− log(1 − p̂ j)

|Y+ ∪ Y−| . (1)

This loss function gives equal weight to the positive and
negative classes, no matter the ratio between the two class
sizes. Due to this property, it is fit not only for edge detection
but also for semantic segmentation as well. Therefore, it is
used as the loss function for both tasks.

B. Architecture Details

Regarding the model details, we start with the
encoder–decoder backbone. Conjecturing that the model
needs a large spatial context window to base its decisions
on, we use a feature pyramid with six resolution levels,
corresponding to five downsampling and upsampling steps.
In this pyramid, the finest feature map is at the full image



HEIDLER et al.: HED-UNet: COMBINED SEGMENTATION AND EDGE DETECTION FOR MONITORING THE ANTARCTIC COASTLINE 4300514

Fig. 3. Architectural details of the proposed network. The full model contains two task-specific merging heads; for clarity, only the segmentation head is
shown here. The edge detection head follows the same structure.

resolution, and the coarsest one is at 1/32 resolution. The
number 6 was chosen to cover large enough receptive fields
needed for the task. Deepening the network even further
would lead to receptive fields that exceed the image tiles’
extents and did not bring further improvements in our
experiments. In the decoder part, the data flows are merged
by elementwise addition.

Inspired by the hierarchical nature of the HED architec-
ture [57], we adopt the scheme of predicting coarse repre-
sentations of the output from within deeper layers. A side
output for both segmentation and edge detection is added for
each feature map, for a total of six outputs. These multiscale
outputs are used in two different ways.

1) Deep Supervision: When building a deep feature pyra-
mid like here, there might not be much motivation for the
model to encode meaningful and informative features to the
deep, lowest resolution feature maps. In order to explicitly
provide this motivation, we train the model to be able to
predict the ground truth from each single feature map in the
pyramid.

This so-called deep supervision [67] is known to improve
the learning effectiveness of a neural network, as well as
its generalization capabilities. This is achieved by training
intermediate network outputs on the ground-truth data to
provide additional and more direct training feedback to the
earlier layers. In our case, an accordingly downsampled ver-
sion of the ground-truth segmentation is created for each
one of the multiresolution predictions, and the corresponding
edges are calculated. Then, these multiscale ground truths
are compared with the predictions to provide additional loss
terms. The resulting deep supervision encourages the network
to better capture larger structures and make use of the available
receptive field by encoding meaningful features in the deep
layers.

2) Multiscale Fusion: In the next step, these side outputs
become part of the merging heads that combine the inter-
mediate outputs into one full-resolution prediction. This is a
central point in the original HED architecture [57], so we also
implement it in the combined HED-UNet model. In this way,
the model has a way of combining fine-grained delineations

near the edges with the more robust high-level predictions
further away from the edge. The way of merging used in
HED is to combine the intermediate predictions using learned
weights. However, to further improve the merging perfor-
mance, we propose the following attention-based merging
mechanism.

C. Hierarchical Attention Merging Heads

The final element of the network architecture is the merg-
ing heads. In the edge detection frameworks introduced ear-
lier [57]–[59], this is done by featurewise concatenation,
followed by a 1×1 convolution to merge the information from
different levels. However, in different areas, different fusion
behaviors might be needed. In coastal areas, the model might
want to use predictions of the highest possible resolution in
order to accurately delineate the coastline. However, farther
away from the coast, the lower resolution levels can provide a
more general assessment of the scene and, thus, lead to better
classifications in these areas.

To allow for this adaptive fusion of the multiscale pre-
dictions that take into account the confidence at the dif-
ferent granularities, we, therefore, introduce a new fusion
procedure based on attention. This technique was ini-
tially explored in natural language processing as sequen-
tial attention among words and tokens [68] and later also
applied in computer vision as spatial attention within an
image [69].

Inspired by these works, we apply attention to merging mul-
tiscale predictions. Here, this mechanism allows the network
to focus on the features that it deems most useful for each
pixel of the current scene, instead of having fixed weights for
feature fusion. Thus, instead of sequential or spatial attention,
our attention block allows the model to attend to different
resolution levels. It works as follows.

For each prediction level, a weight map is created. The
weight maps are then upsampled to match the output resolution
and turned into a categorical probability map by applying
the softmax function over the concatenated resolution levels.
To obtain the final prediction, the dot product between the
predictions and the attention mask is calculated. This process
is visualized in Fig. 3.
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For a pyramid of feature maps Fk , the final prediction p̂ is,
thus, calculated as

p̂ =
∑

k

u
(

fk(Fk)
) · softmaxk

(
u
(
gk(Fk)

))
(2)

where u(·) denotes bilinear upsampling to the full output
resolution. The functions fk and gk denote the multilevel
prediction layers and the attention layers, respectively; both
are implemented as simple 1 × 1 convolutional layers.

This approach can be interpreted probabilistically as fol-
lows. The intermediate predictions fk(Fk) can be considered
to be maps of Bernoulli probabilities for the output classifica-
tion at different resolutions. Through the prediction process,
these probabilities are conditioned on the input imagery. The
original merging procedure with fixed weights corresponds
to a mixture model of these Bernoulli maps where the
mixture coefficients wk are learned and fixed. For an input
scene X , the predicted probabilities Y are, thus, approximated
as

P(Yi j | X) ≈
∑

k

wk P(Yi j | X, resolution = k). (3)

Contrary to that, the attention merging corresponds to a
mixture model where the mixture coefficients wki j are learned
to dynamically depend on the input as well, resulting in the
slightly different approximation

P(Yi j | X) ≈
∑

k

wki j (X) P(Yi j | X, resolution = k). (4)

Notationwise, this might seem like a small change. How-
ever, it leads to more flexibility in the resulting probabilistic
model, which implies the potential for better classifications.

From the probabilistic perspective, the model training cor-
responds to a simultaneous maximization of both the side
outputs’ likelihood and the likelihood of the full mixture under
the observed data.

IV. DATA SET AND EXPERIMENTAL SETUP

In order to validate the effectiveness of the suggested
improvements, we trained and validated several competing
methods and the proposed model on a data set of the Antarctic
coast.

A. Data Set

Our data set consists of 16 cropped Sentinel-1 GRD scenes
of Antarctica’s coastline taken between June 2017 and Decem-
ber 2018 in the sensor’s Extra Wide Swath acquisition mode.
The spatial distribution of these tiles can be seen in Fig. 4.
The data have a resolution of 40 m and dual polarization
with HH and HV channels. The cropped scenes have an
average size of 7870 × 6572 pixels (315 km × 263 km)
and a combined area of around 730 000 km2. All imageries
are processed in the Antarctic Polar Stereographic projection
(EPSG:3031) and converted to a decibel. On these scenes,
the coastline was manually annotated by experts in order to
provide a ground-truth sea–land segmentation and coastline
delineation.

Fig. 4. Spatial distribution of the scenes in the data set. Scenes marked
in green were used for model training; scenes marked in red were used for
validation purposes. The red area in the top left is the “Antarctic Peninsula”
validation site, while the bottom right red area is the “Wilkes Land” validation
site. For most locations, data from 2 or 3 different sensing dates were used to
allow for an assessment of each model’s temporal stability. Marked in yellow
is the footprint of the visualization tile in Fig. 7.

The scenes within the data set are clustered in five areas, out
of which two were selected as validation areas and completely
left them out of the training procedure. This leads to a split
of 11 training scenes and five validation scenes. The scenes
were all tiled into sections of 768 × 768 pixels with 50%
overlap between adjacent tiles to form the training and valida-
tion data sets, respectively. In order to improve generalization
performance, we employed eightfold data augmentation on the
training set. This augmentation technique processes a single
tile into the eight different versions that can be obtained
by horizontal or vertical mirroring, as well as rotating by
multiples of 90◦.

B. Evaluated Models

As competitors to our model, we evaluate the following
models to provide a baseline.

1) Traditional Methods:
a) Gaussian mixture: The sea–land segmentation method

presented in [1] applies dynamic thresholding based on a
bimodal mixture of Gaussians.

b) K-medians clustering: An unsupervised sea–land seg-
mentation method presented in [36] employs k-medians clus-
tering of the pixels in a scene on multiple scales.

c) Sobel edges: The coastline detection method presented
in [47] applies the Sobel filter, a spatial dilution process, and
then a Roberts edge filter.

d) Active contours: Active contours approach for coast-
line detection based on the Chan-Vese model [54].

2) Deep Learning:
a) HED: The edge detection model from [57].
b) UNet: The segmentation model presented in [42] is

known to work well for coastline detection [31].
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TABLE I

NUMERICAL RESULTS FOR THE EVALUATED MODELS

c) DeepUNet: A modification of the previous method
was developed for sea–land segmentation, as proposed in [39].

d) RDUNet: Another modification of UNet developed for
sea–land segmentation, which was proposed in [38].

e) HRNet + OCR: One of the current state-of-the-art
models for semantic segmentation in general computer
vision [43].

f) Gated-SCNN: It is another recent model for semantic
segmentation in general computer vision [44]. This one is
particularly interesting, as it also combines segmentation with
edge detection.

C. Training Details

The deep learning models were trained on the training
data set of Antarctic coastline scenes for 15 epochs on an
Nvidia V100 card with 32 GB of video memory. The model
weights were optimized by an Adam optimizer using the
hyperparameters suggested in [70], namely, a learning rate of
0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. Due to the large
size of the used tiles, the batch size was set to the low number
of four samples per batch.

V. RESULTS AND DISCUSSION

The improved performance from our method is quantified
using the withheld validation data set. To get informative
insights on the actual coastline detection performance, the met-
rics are calculated only for pixels within 2 km of the true
coastline. This way, a distortion of the metrics from noncoastal
areas can be avoided.

The two validation areas (Antarctic Peninsula and Wilkes
Land; see Fig. 4) are evaluated separately. While the Wilkes
Land area can be considered of average difficulty, the Antarctic
Peninsula seems to be a very tough location for all of the
evaluated models.

For the segmentation approaches, we evaluate the pixelwise
accuracy and the mean intersection-over-union metric for the
classes of water and land. For edge detection, we calculate
the edge F1 scores at optimal image scale (OIS) and optimal
data set scale (ODS). Finally, we calculate an approximate
deviation by averaging the distance to the ground-truth coast-
line over all predicted coastline pixels (“Deviation”). Table I
shows the numerical results obtained. The average distance

metric can be considered the most important one for this
task, as it estimates the overall error between the actual
coastline and the predicted coastline. Regarding segmentation
performance, the mIoU metric can be considered the primary
metric. In order to get a visual impression of some of the
models’ performance, Fig. 5 shows predictions for a selection
of validation tiles. The shown examples are ordered from what
we consider easy to hard samples for the models and showcase
some of the difficulties with the data set, such as sea ice and
confounding backscatter on the higher ice sheet.

A. Model Comparison

First, it is easy to see that the traditional models are not
really competitive on this data set. We ascribe this to the
repeatedly stated phenomena of icebergs and ice sheet regions
with difficult backscatter characteristics. As these models are
unsupervised, they simply do not have a way of learning how
to deal with such impediments.

Overall, the heterogeneity of the Antarctic coastline is
astounding. While the coastline is found pretty well by most
models in Wilkes Land, all models have trouble with the
scenes from the Antarctic Peninsula.

Among the deep learning-based models, UNet [42] imposes
a respectable baseline and even outperforms the more recent
models, such as HRNet+OCR [43] and Gated-SCNN [44],
in some of the evaluated metrics. Even though the latter also
has a side output for edge detection, we find that its edge
detection results fall short in comparison to HED [57] and
HED-UNet. A reason for this might be the lack of a pretrained
backbone network for Sentinel-1 data, which forced us to
randomly initialize the backbone and train it alongside the
rest of the network. Furthermore, this model was optimized
for the segmentation of scenes with many different classes and
small objects, which is needed for tasks, such as autonomous
driving. In our use case, however, there are only two classes
that are nearly equal in area, imposing a very different data
distribution.

The ultimate goal of this study is to delineate the coast-
line as accurately as possible. In the corresponding average
deviation metric, the proposed HED-UNet model outshines
the alternative approaches, especially in the Antarctic Penin-
sula validation area. This confirms our assumptions that,
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Fig. 5. Qualitative results comparing the evaluated models on unseen validation tiles. In order to provide an informative visualization, the visualized tiles
were selected to represent the full spectrum of (Top) easy to (Bottom) hard scenes within the validation set.
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TABLE II

NUMERICAL RESULTS FOR THE ABLATIONS

for this specific task, our considerations lead to increased
performance.

B. Network Depth and Deep Supervision

As a means of quantifying the improvements made to the
architecture, we evaluate versions of our model with only some
of the improvements applied. The results of this ablation study
are displayed in Table II.

For a fair comparison with UNet-based models, we eval-
uate the performance when only five resolution levels are
used instead of six, corresponding to four downsampling and
upsampling steps instead of five. While this setup performs
slightly worse than the full HED-UNet, it still outperforms
the baseline methods.

Regarding deep supervision, we can see that it is of para-
mount importance for edge detection performance. Without
it, the model is barely able to predict the presence of edges.
What is more, the coastline is often missed completely due
to this poor edge detection performance. On the other hand,
deep supervision does not seem to alter the performance of
the semantic segmentation task much. This is in line with the
original models that we took inspiration from. While the seg-
mentation model UNet [42] does not employ deep supervision,
the edge detection model HED [57] makes heavy use of it.

C. Merging Strategies

After adding the deep supervision, we evaluate different
merging strategies.

a) None: First, we evaluate a configuration where just the
last layer of the decoder is used for the predictions (denoted
“None”). This corresponds to the workings of a UNet [42]
model with two final prediction layers: one for each task.

b) Learned: Second, we evaluate the performance of the
learned merging strategy, as originally proposed in [57]. Here,
a prediction is computed for each resolution level in the
feature pyramid. These predictions are then upsampled to full
resolution and concatenated. After this, a 1 × 1 convolutional
layer with learned weights computes the final prediction from
the concatenated prediction stack.

c) Attention: The last strategy is the hierarchical attention
merging introduced in Section III-C, which does not rely on
fixed weights, such as the previous strategy, but computes the
merging weights dynamically for each pixel within each scene.

From our results, learned merging does not improve much
over no merging for segmentation and even performs a bit

worse for edge detection. The average deviation improves
quite a bit in Wilkes Land but worsens a bit on the Antarctic
Peninsula in return. We ascribe this to the large differences in
the validation areas. As the merging coefficients are fixed for
the “Learned” approach, this might hint at the fact that the
model learns coefficients that work well for Wilkes Land, but
less so for the Antarctic Peninsula.

This issue is overcome by our newly proposed attention
merging strategy, which can adapt to the different scenes.
It can learn to find good sets of merging coefficients for
both Wilkes Land and the Antarctic Peninsula even though
the optimal values for each one might be different.

Fig. 6 shows that the model indeed directs its attention
in an adaptive fashion as we conjectured. Overall, a mix
of all resolution levels is used to compute the final output.
On tiles that are completely covered by one of the two classes,
the attention shifts a bit toward the lower resolution levels,
as they tend to provide more robust predictions. For pixels on
the edge, the model heavily focuses on the highest available
resolution level, in order to arrive at accurate delineations in
these regions.

D. DEM Experiments

Furthermore, we look into including digital elevation data
from the TanDEM-X elevation model [71]. We conjecture that
this secondary data source can help the model better deject
misclassifications from icebergs or dry-snow facies of the
higher ice sheet, which have confounding SAR backscatter.

To discourage the model from directly reproducing the
coastline implied by the elevation model, we decided to
downsample the DEM’s resolution to 640 m. This resolu-
tion is coarse enough to not make a segmentation based
on the DEM alone competitive to the non-DEM models,
which has an average deviation of less than 300 m. Fur-
thermore, it allows for easy feature fusion, as it corre-
sponds to the resolution of the feature map at 1/16 of
the full resolution. Therefore, it is simply concatenated to
the feature map after the fourth downsampling step in the
encoder.

The results when including the DEM are displayed as the
last ablation in Table II. On the very hard scenes of the
Arctic Peninsula, this additional information helps the model
by a large margin, boosting the average deviation from 345 to
210 m. However, the story is different for Wilkes Land. Here,
the deviation worsens slightly, and the edge detection metrics
go down considerably.
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Fig. 6. Amount of attention spent on the different resolution levels. Each plot analyzes a specific class of pixels in the validation data set—from left to right:
Average over all pixels, average over pixels from edge-less tiles, and average over all edge pixels.

Fig. 7. Section of George V Coast with Cape Hudson in the bottom left, imagery mosaiced from Sentinel-1 takes in early 2019. This scene is both temporally
and spatially separated from the training and validation sets used. Overlaid in red is the coastline predicted by the HED-UNet model.

This is a strong indicator that the model is, indeed, overfit-
ting on the DEM to some extent. For example, in some highly
dynamic coastal regions, the model will be confused when the
DEM and SAR imagery are contradictory.

Thus, all in all, the inclusion of DEM data can be beneficial
but needs to be done very carefully to prevent the model from
overfitting to the DEM alone.

E. Limitations

Even though the newly proposed model outperforms the
baselines on nearly all validation scenes, there are still cases
where the results are not perfect. Most misclassifications can
be attributed to one of two failure modes, which we will now

briefly discuss. Visual examples for these failure modes can
be seen in Fig. 8.

1) Sea Ice: The large receptive field and multitask training
help alleviate the issue of wrongly classified sea ice. However,
very large icebergs and areas of ice mélange can still throw off
the proposed model. The first failure example displays such
an area where large clusters of sea ice confuse the model.

2) Missing Context: For areas close to the border of a
tile, the model sometimes does not have enough contextual
information to correctly classify them. This can be observed
in the second failure visualization, where a patch of sea ice
directly next to the tile border is wrongly classified as land.



HEIDLER et al.: HED-UNet: COMBINED SEGMENTATION AND EDGE DETECTION FOR MONITORING THE ANTARCTIC COASTLINE 4300514

Fig. 8. Failure modes of the proposed model. (Top) Confusion from a very
large cluster of sea ice. (Bottom) Confusion due to missing context at the
border of the tile.

Overall, these failures do not occur often throughout the
data set and apply not only to the HED-UNet models but to
the other compared models as well. Especially, the first one
requires much human interpretation in a large spatial context,
which is difficult for a neural network to achieve without
general reasoning capabilities.

F. Effective Receptive Fields

Deep CNNs, such as the ones used in our experiments,
have very large theoretical receptive fields. It is conjectured
that, while long-range connections are theoretically possible
in these networks, networks will often ignore them in favor of
short-range connections.

To assess how much of the spatial context is actually used
by a CNN, its so-called effective receptive field (ERF) can be
estimated [72]. This is done by analyzing the expected gradient
magnitude of each input pixel with respect to a central output
pixel. For a CNN f and a sequence of input images Ik , one,
therefore, looks at the values of

E = 1

n

n∑
k=1

∣∣∇Ik f (Ik)i, j

∣∣ (5)

for a central output pixel (i, j). If, for an input pixel (x, y),
the value Ex,y is nonnegligible, then this pixel will influence
the output predictions at position (i, j). The spatial distribution
of these relevant pixels is then called the ERF.

As the gradient magnitude gives insight on how much
the prediction changes in response to a change in the input,
the ERF allows for a measurement of the spatial context used
by the model. A model with a larger ERF bases its decisions
on a larger spatial context than one with a small ERF.

We conjectured that, for the task of Antarctic coast-
line detection, a model needs to take a large context win-
dow into account. Indeed, there seems to be a correlation
between a larger ERF and better validation scores for this
task.

It can be observed that the UNet model is limited by its
theoretical receptive field. Its ERF is forced into an almost
quadratic shape because of this. The ERF of the Gated-SCNN

Fig. 9. ERFs of some tested models for the prediction of a central pixel,
visualized in image space. Theoretical receptive fields are outlined in green.
Note that the theoretical receptive fields of Gated-SCNN and HRNet+OCR
are larger than the used patch size of 768 × 768.

model is particularly interesting with its fractal-like shape.
We conjecture that this is due to the Atrous Spatial Pyramid
Pooling block used in the network architecture, which makes
heavy use of dilated convolutions.

Finally, the HRNet+OCR and HED-UNet models employ
a very large ERF, which, once more, supports our assumption
that a large receptive field is needed for coastline detection in
Antarctica.

VI. CONCLUSION

In this article, we introduced a model for simultaneous
segmentation and edge detection. The proposed HED-UNet
learns to exploit the synergies between the two tasks and,
thereby, manages to surpass both edge detection and seman-
tic segmentation baselines. By the use of deep supervision,
we encourage the model to encode meaningful features in
its deep layers, which allows for more general predictions.
Finally, the proposed attention merging heads allow for better
learning performance and more robust classifications.

Compared to approaching the task with a regular UNet,
the presented network architecture only requires a little addi-
tional computational cost. Most of the performance gains stem
from the adapted training procedure and a few additional
layers, which do not require many computational resources
compared to the layers already present.

While it is not a general-purpose model, we show that our
proposed improvements to the model are, indeed, beneficial
for the task of coastline detection. Visual and numerical
inspections of the results confirm our assumption that the
combination of the two tasks helps the model better grasp
the concept of a coastline.



4300514 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Our model can be applied to coastline detection tasks not
only in polar regions but to coastal regions worldwide. Further-
more, we are convinced that the approach taken by HED-UNet
will greatly benefit other tasks requiring an edge detection
approach in combination with semantic segmentation. Possible
applications include the mapping of building footprints, roads,
and bodies of water, such as lakes or rivers.

ACKNOWLEDGMENT

The authors thank the European Union Copernicus program
for providing Sentinel-1. TanDEM-X elevation data are cour-
tesy of the German Aerospace Center (DLR).

REFERENCES

[1] H. Liu and K. C. Jezek, “A complete high-resolution coastline of antarc-
tica extracted from orthorectified radarsat SAR imagery,” Photogramm.
Eng. Remote Sens., vol. 70, no. 5, pp. 605–616, May 2004.

[2] J. Geng, H. Wang, J. Fan, and X. Ma, “Deep supervised and contractive
neural network for SAR image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 4, pp. 2442–2459, Apr. 2017.

[3] C. Robinson et al., “Large scale high-resolution land cover mapping with
multi-resolution data,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 12726–12735.

[4] X.-Y. Tong et al., “Land-cover classification with high-resolution remote
sensing images using transferable deep models,” Remote Sens. Environ.,
vol. 237, Feb. 2020, Art. no. 111322.

[5] F. Eugenio, J. Marcello, and J. Martin, “High-resolution maps of
bathymetry and benthic habitats in shallow-water environments using
multispectral remote sensing imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 7, pp. 3539–3549, Jul. 2015.

[6] J. Liang, J. Zhang, Y. Ma, and C.-Y. Zhang, “Derivation of bathymetry
from high-resolution optical satellite imagery and USV sounding data,”
Mar. Geodesy, vol. 40, no. 6, pp. 466–479, Nov. 2017.

[7] M. Erena, J. A. Domínguez, J. F. Atenza, S. García-Galiano, J. Soria, and
Á. Pérez-Ruzafa, “Bathymetry time series using high spatial resolution
satellite images,” Water, vol. 12, no. 2, p. 531, Feb. 2020.

[8] Y. Long, Y. Gong, Z. Xiao, and Q. Liu, “Accurate object localization
in remote sensing images based on convolutional neural networks,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2486–2498,
May 2017.

[9] N. Audebert, B. Le Saux, and S. Lefèvre, “Beyond RGB: Very high
resolution urban remote sensing with multimodal deep networks,” ISPRS
J. Photogramm. Remote Sens., vol. 140, pp. 20–32, Jun. 2018.

[10] L. Mou and X. X. Zhu, “Vehicle instance segmentation from aerial
image and video using a multitask learning residual fully convolu-
tional network,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11,
pp. 6699–6711, Nov. 2018.

[11] L. Mou, Y. Hua, and X. X. Zhu, “Relation matters: Relational context-
aware fully convolutional network for semantic segmentation of high-
resolution aerial images,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 11, pp. 7557–7569, Nov. 2020.

[12] Q. Li, Y. Shi, X. Huang, and X. X. Zhu, “Building footprint gener-
ation by integrating convolution neural network with feature pairwise
conditional random field (FPCRF),” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 11, pp. 7502–7519, Nov. 2020.

[13] D. Wen, X. Huang, L. Zhang, and J. A. Benediktsson, “A novel
automatic change detection method for urban high-resolution remotely
sensed imagery based on multiindex scene representation,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 1, pp. 609–625, Jan. 2016.

[14] O. Ajadi, F. Meyer, and P. Webley, “Change detection in synthetic
aperture radar images using a multiscale-driven approach,” Remote Sens.,
vol. 8, no. 6, p. 482, Jun. 2016.

[15] Z. Y. Lv, T. F. Liu, P. Zhang, J. A. Benediktsson, T. Lei, and
X. Zhang, “Novel adaptive histogram trend similarity approach for land
cover change detection by using bitemporal very-high-resolution remote
sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12,
pp. 9554–9574, Dec. 2019.

[16] B. Du, L. Ru, C. Wu, and L. Zhang, “Unsupervised deep slow feature
analysis for change detection in multi-temporal remote sensing images,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12, pp. 9976–9992,
Dec. 2019.

[17] C. Zhang, S. Wei, S. Ji, and M. Lu, “Detecting large-scale urban land
cover changes from very high resolution remote sensing images using
CNN-based classification,” ISPRS Int. J. Geo-Inf., vol. 8, no. 4, p. 189,
Apr. 2019.

[18] M. Engram, C. D. Arp, B. M. Jones, O. A. Ajadi, and F. J. Meyer,
“Analyzing floating and bedfast lake ice regimes across arctic alaska
using 25 years of space-borne SAR imagery,” Remote Sens. Environ.,
vol. 209, pp. 660–676, May 2018.

[19] I. Sasgen, H. Konrad, V. Helm, and K. Grosfeld, “High-resolution
mass trends of the antarctic ice sheet through a spectral combination
of satellite gravimetry and radar altimetry observations,” Remote Sens.,
vol. 11, no. 2, p. 144, Jan. 2019.

[20] D. O. Dammann, L. E. B. Eriksson, A. R. Mahoney, H. Eicken,
and F. J. Meyer, “Mapping pan-arctic landfast sea ice stability using
Sentinel-1 interferometry,” Cryosphere, vol. 13, no. 2, pp. 557–577,
Feb. 2019.

[21] I. Nitze, G. Grosse, B. M. Jones, V. E. Romanovsky, and J. Boike,
“Remote sensing quantifies widespread abundance of permafrost region
disturbances across the arctic and subarctic,” Nature Commun., vol. 9,
no. 1, pp. 1–11, Dec. 2018.

[22] J. E. Anderson, T. A. Douglas, R. A. Barbato, S. Saari, J. D. Edwards,
and R. M. Jones, “Linking vegetation cover and seasonal thaw depths in
interior Alaska permafrost terrains using remote sensing,” Remote Sens.
Environ., vol. 233, Nov. 2019, Art. no. 111363.

[23] C. Baumhoer, A. Dietz, S. Dech, and C. Kuenzer, “Remote sensing of
antarctic glacier and ice-shelf front dynamics—A review,” Remote Sens.,
vol. 10, no. 9, p. 1445, Sep. 2018.

[24] T. Strozzi, A. Luckman, T. Murray, U. Wegmuller, and C. L. Werner,
“Glacier motion estimation using SAR offset-tracking procedures,” IEEE
Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2384–2391, Nov. 2002.

[25] G. Vasile et al., “High-resolution SAR interferometry: Estimation of
local frequencies in the context of alpine glaciers,” IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 4, pp. 1079–1090, Apr. 2008.

[26] E. Erten, “Glacier velocity estimation by means of a polarimetric
similarity measure,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6,
pp. 3319–3327, Jun. 2013.

[27] V. Akbari, A. P. Doulgeris, and T. Eltoft, “Monitoring glacier changes
using multitemporal multipolarization SAR images,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 6, pp. 3729–3741, Jun. 2014.

[28] S. Lang, X. Liu, B. Zhao, X. Chen, and G. Fang, “Focused syn-
thetic aperture radar processing of ice-sounding data collected over
the east antarctic ice sheet via the modified range migration algorithm
using curvelets,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8,
pp. 4496–4509, Aug. 2015.

[29] L. Krieger and D. Floricioiu, “Automatic glacier calving front delin-
eation on TerraSAR-X and Sentinel-1 SAR imagery,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017,
pp. 2817–2820.

[30] V. Akbari and C. Brekke, “Iceberg detection in open and ice-infested
waters using C-band polarimetric synthetic aperture radar,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 1, pp. 407–421, Jan. 2018.

[31] C. A. Baumhoer, A. J. Dietz, C. Kneisel, and C. Kuenzer, “Automated
extraction of antarctic glacier and ice shelf fronts from Sentinel-1
imagery using deep learning,” Remote Sens., vol. 11, no. 21, p. 2529,
Oct. 2019.

[32] E. Zhang, L. Liu, and L. Huang, “Automatically delineating the calving
front of Jakobshavn isbræ from multitemporal TerraSAR-X images: A
deep learning approach,” Cryosphere, vol. 13, no. 6, pp. 1729–1741,
Jun. 2019.

[33] Y. Mohajerani, M. Wood, I. Velicogna, and E. Rignot, “Detection of
glacier calving margins with convolutional neural networks: A case
study,” Remote Sens., vol. 11, no. 1, p. 74, Jan. 2019.

[34] B. W. J. Miles, C. R. Stokes, and S. S. R. Jamieson, “Simultaneous
disintegration of outlet glaciers in porpoise bay (Wilkes Land), east
antarctica, driven by sea ice break-up,” Cryosphere, vol. 11, no. 1,
pp. 427–442, Feb. 2017.

[35] Y. Liu et al., “Ocean-driven thinning enhances iceberg calving and
retreat of antarctic ice shelves,” Proc. Nat. Acad. Sci. USA, vol. 112,
no. 11, pp. 3263–3268, Mar. 2015.

[36] M. Schmitt, G. Baier, and X. X. Zhu, “Potential of nonlocally filtered
pursuit monostatic TanDEM-X data for coastline detection,” ISPRS J.
Photogramm. Remote Sens., vol. 148, pp. 130–141, Feb. 2019.

[37] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.



HEIDLER et al.: HED-UNet: COMBINED SEGMENTATION AND EDGE DETECTION FOR MONITORING THE ANTARCTIC COASTLINE 4300514

[38] P. Shamsolmoali, M. Zareapoor, R. Wang, H. Zhou, and J. Yang,
“A novel deep structure U-Net for sea-land segmentation in remote
sensing images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 12, no. 9, pp. 3219–3232, Sep. 2019.

[39] R. Li et al., “DeepUNet: A deep fully convolutional network for pixel-
level sea-land segmentation,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 11, pp. 3954–3962, Nov. 2018.

[40] Z. Chu, T. Tian, R. Feng, and L. Wang, “Sea-land segmentation with
res-UNet and fully connected CRF,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. IGARSS, Jul. 2019, pp. 3840–3843.

[41] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[42] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., Oct. 2015, pp. 234–241.

[43] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations
for semantic segmentation,” in Computer Vision—ECCV, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham, Switzerland: Springer,
2020, pp. 173–190.

[44] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler, “Gated-SCNN: Gated
shape CNNs for semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 5229–5238.

[45] L. G. Roberts, “Machine perception of three-dimensional solids,” Ph.D.
dissertation, Massachusetts Inst. Technology, Cambridge, MA, USA,
1963.

[46] W. K. Pratt, “Edge detection,” in Digital Image Processing. Hoboken,
NJ, USA: Wiley, 2006, pp. 465–533.

[47] J.-s. Lee and I. Jurkevich, “Coastline detection and tracing in SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 28, no. 4, pp. 662–668,
Jul. 1990.

[48] D. Wang and X. Liu, “Coastline extraction from SAR images using
robust ridge tracing,” Mar. Geodesy, vol. 42, no. 3, pp. 286–315,
May 2019.

[49] M. Modava, G. Akbarizadeh, and M. Soroosh, “Integration of spectral
histogram and level set for coastline detection in SAR images,” IEEE
Trans. Aerosp. Electron. Syst., vol. 55, no. 2, pp. 810–819, Apr. 2019.

[50] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, Jan. 1988.

[51] T. Klinger, M. Ziems, C. Heipke, H. W. Schenke, and N. Ott, “Antarctic
coastline detection using snakes,” Photogramm. Fernerkund. Geoinf.,
vol. 2011, no. 6, pp. 421–434, Dec. 2011.

[52] C. Liu, Y. Xiao, and J. Yang, “A coastline detection method in polari-
metric SAR images mixing the region-based and edge-based active
contour models,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7,
pp. 3735–3747, Jul. 2017.

[53] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton-jacobi formulations,”
J. Comput. Phys., vol. 79, no. 1, pp. 12–49, Nov. 1988.

[54] T. Chan and L. Vese, “An active contour model without edges,” in
Scale-Space Theories in Computer Vision. Berlin, Germany: Springer,
Sep. 1999, pp. 141–151.

[55] C. Liu, J. Yang, J. Yin, and W. An, “Coastline detection in SAR
images using a hierarchical level set segmentation,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 9, no. 11, pp. 4908–4920,
Nov. 2016.

[56] M. Modava and G. Akbarizadeh, “A level set based method for coastline
detection of SAR images,” in Proc. 3rd Int. Conf. Pattern Recognit.
Image Anal. (IPRIA), Apr. 2017, pp. 253–257.

[57] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1395–1403.

[58] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convolu-
tional features for edge detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 3000–3009.

[59] X. Soria, E. Riba, and A. Sappa, “Dense extreme inception net-
work: Towards a robust CNN model for edge detection,” in
Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2020,
pp. 1923–1932.

[60] D. Cheng, G. Meng, G. Cheng, and C. Pan, “SeNet: Structured edge
network for sea-land segmentation,” IEEE Geosci. Remote Sens. Lett.,
vol. 14, no. 2, pp. 247–251, Feb. 2017.

[61] Z. Jiang, Z. Chen, K. Ji, and J. Yang, “Semantic segmentation network
combined with edge detection for building extraction in remote sensing
images,” Proc. SPIE, vol. 11430, Feb. 2020, Art. no. 114300D.

[62] D. Cheng, G. Meng, S. Xiang, and C. Pan, “FusionNet: Edge aware deep
convolutional networks for semantic segmentation of remote sensing
harbor images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 12, pp. 5769–5783, Dec. 2017.

[63] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with task-specific edge detection using
CNNs and a discriminatively trained domain transform,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 4545–4554.

[64] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu,
and U. Stilla, “Classification with an edge: Improving semantic image
segmentation with boundary detection,” ISPRS J. Photogramm. Remote
Sens., vol. 135, pp. 158–172, Jan. 2018.

[65] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587

[66] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[67] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), vol. 38,
G. Lebanon and S. V. N. Vishwanathan, Eds. San Diego, CA, USA:
Proeedings of Machine Learning Research, May 2015, pp. 562–570.

[68] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, p. 11.

[69] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2018, pp. 7794–7803.

[70] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. ICLR, 2015, pp. 1–15.

[71] P. Rizzoli et al., “Generation and performance assessment of the global
TanDEM-X digital elevation model,” ISPRS J. Photogramm. Remote
Sens., vol. 132, pp. 119–139, Oct. 2017.

[72] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Proc. Int. Conf.
Neural Inf. Process. Syst. (NIPS), Dec. 2016, pp. 4905–4913.

Konrad Heidler (Student Member, IEEE) received
the bachelor’s degree in mathematics and the mas-
ter’s degree in mathematics in data science from
the Technical University of Munich (TUM), Munich,
Germany, in 2017, and 2020, respectively. He is pur-
suing the Ph.D. degree with the German Aerospace
Center (DLR), Weßling, Germany, and TUM.

His main research interests are remote sensing,
computer vision, and mathematical foundations of
machine learning. His research work focuses on the
application of deep learning in polar regions.

Lichao Mou received the bachelor’s degree in
automation from the Xi’an University of Posts
and Telecommunications, Xi’an, China, in 2012,
the master’s degree in signal and information
processing from the University of Chinese Academy
of Sciences (UCAS), Beijing, China, in 2015, and
the Dr.Ing. degree from the Technical University of
Munich (TUM), Munich, Germany, in 2020.

In 2015, he spent six months at the Computer
Vision Group, University of Freiburg, Freiburg im
Breisgau, Germany. Since 2019, he has been an

AI Consultant for the Helmholtz Artificial Intelligence Cooperation Unit
(HAICU), Munich. In 2019, he was a Visiting Researcher with the Cambridge
Image Analysis Group (CIA), University of Cambridge, Cambridge, U.K.
From 2019 to 2020, he was a Research Scientist with Remote Sensing
Technology Institute (IMF), German Aerospace Center (DLR), Weßling,
Germany. He is a Guest Professor with the Munich AI Future Lab AI4EO,
TUM, and the Head of Visual Learning and Reasoning Team, Department
“EO Data Science,” IMF, DLR.

Dr. Mou was a recipient of the First Place at the 2016 IEEE GRSS
Data Fusion Contest and a finalist for the Best Student Paper Award at the
2017 Joint Urban Remote Sensing Event and the 2019 Joint Urban Remote
Sensing Event.



4300514 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Celia Baumhoer received the bachelor’s degree
in physical geography from the University of
Erlangen-Nuremberg, Erlangen, Germany, in 2014,
and the master’s degree in geography (environ-
mental systems in transition) from the Rheinische
Friedrich-Wilhelms-University Bonn, Bonn, Ger-
many, in 2017. She is pursuing the Ph.D. degree
with the German Aerospace Center (DLR), Weßling,
Germany, and the Julius-Maximilians-University
Würzburg, Würzburg, Germany.

Since 2020, she has been a Scientific Assistant
with the Group “Polar and Cold Regions,” German Remote Sensing Data
Center (DFD), DLR, working on AI-applications for cold regions. Her
research interests include synthetic aperture radar (SAR) remote sensing and
machine learning with a special focus on the cryosphere and Antarctic glaciers
in particular.

Dr. Baumhoer was a recipient of the DAAD Rise Scholarship for a research
stay in Lafayette, LA, USA, and the ASTO-Förderpreis for excellent Ph.D.
students.

Andreas Dietz received the diploma and Dr.rer.nat.
degrees from Julius-Maximilians-University
Würzburg, Würzburg, Germany, in 2009 and 2013,
respectively.

He has been the Head of the Group “Polar
and Cold Regions,” Department “Land Surface
Dynamics,” German Remote Sensing Data Center
(DFD), German Aerospace Center (DLR), Weßling,
Germany, since 2018; this group focuses on the
development of methods to quantify the impact of
climate change on the cryosphere based on remote

sensing data. Through this research, the DLR Global SnowPack has been
developed, which is an operational, globally available daily snow cover
product. His research interests include remote sensing, Earth observation,
and climate change with a focus on the cryosphere.

Dr. Dietz was a recipient of the Eastern Snow Conference Wiesnet Medal
in 2013 and the Helmut Rott Award in 2015.

Xiao Xiang Zhu (Fellow, IEEE) received the
M.Sc., Dr.Ing., and Habilitation degrees in signal
processing from the Technical University of Munich
(TUM), Munich, Germany, in 2008, 2011, and 2013,
respectively.

She was a Guest Scientist or a Visiting Professor
with the Italian National Research Council (CNR-
IREA), Naples, Italy, Fudan University, Shanghai,
China, The University of Tokyo, Tokyo, Japan, and
the University of California at Los Angeles, Los
Angeles, CA, USA, in 2009, 2014, 2015, and 2016,

respectively. She is the Professor of data science in Earth observation
(former: signal processing in Earth observation) with TUM and the Head
of the Department “EO Data Science,” Remote Sensing Technology Institute,
German Aerospace Center (DLR), Weßling, Germany. Since 2019, she has
been a Co-Coordinator of the Munich Data Science Research School, Ober-
schleißheim, Germany. Since 2019, she also heads the Helmholtz Artificial
Intelligence, Weßling, with the research field “aeronautics, space, and trans-
port.” Since May 2020, she has been the Director of the International Future
AI lab “AI4EO—Artificial Intelligence for Earth Observation: Reasoning,
Uncertainties, Ethics and Beyond,” Munich. Since October 2020, she has been
serving as a Co-Director of the Munich Data Science Institute (MDSI), TUM.
She is a Visiting AI Professor with ESA’s Phi-Lab, Frascati, Italy. Her main
research interests are remote sensing and Earth observation, signal processing,
machine learning, and data science, with a special application focus on global
urban mapping.

Dr. Zhu is a member of the Young Academy (Junge Akademie/Junges
Kolleg) at the Berlin-Brandenburg Academy of Sciences and Humanities and
the German National Academy of Sciences Leopoldina and the Bavarian
Academy of Sciences and Humanities. She is an Associate Editor of IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. She also serves
as an Area Editor responsible for special issues of IEEE Signal Processing
Magazine.



A Publications

A.2 A Deep Active Contour Model for Delineating Glacier
Calving Fronts

Reference

K. Heidler, L. Mou, E. Loebel, M. Scheinert, S. Lefèvre, and X. X. Zhu, “A deep active
contour model for delineating glacier calving fronts,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 61, pp. 1–12, 2023. doi: 10.1109/TGRS.2023.3296539

Copyright

Article published in the IEEE Transactions on Geoscience and Remote Sensing under
a CC-BY-4.0 license. Reproduced with friendly permission from the authors.

92

https://doi.org/10.1109/TGRS.2023.3296539


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023 5615912

A Deep Active Contour Model for Delineating
Glacier Calving Fronts

Konrad Heidler , Student Member, IEEE, Lichao Mou , Erik Loebel , Mirko Scheinert ,
Sébastien Lefèvre , Senior Member, IEEE, and Xiao Xiang Zhu , Fellow, IEEE

Abstract— Choosing how to encode a real-world problem as a
machine learning task is an important design decision in machine
learning. The task of the glacier calving front modeling has often
been approached as a semantic segmentation task. Recent studies
have shown that combining segmentation with edge detection can
improve the accuracy of calving front detectors. Building on this
observation, we completely rephrase the task as a contour tracing
problem and propose a model for explicit contour detection
that does not incorporate any dense predictions as intermediate
steps. The proposed approach, called “Charting Outlines by
Recurrent Adaptation” (COBRA), combines convolutional neural
networks (CNNs) for feature extraction and active contour (AC)
models for delineation. By training and evaluating several large-
scale datasets of Greenland’s outlet glaciers, we show that this
approach indeed outperforms the aforementioned methods based
on segmentation and edge-detection. Finally, we demonstrate that
explicit contour detection has benefits over pixel-wise methods
when quantifying the models’ prediction uncertainties. The
project page containing the code and animated model predictions
can be found at https://khdlr.github.io/COBRA/.

Index Terms— Active contours (ACs), edge detection, glacier
front, Greenland, uncertainty.

I. INTRODUCTION

RECENT years have seen rapid warming in the polar
regions, which has led to an exceptionally large mass

loss of the Greenland ice sheet [1]. This loss of ice mass
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translates into global sea level rise and can cause feedback
effects that further increase the warming of the Arctic [2].
Closely monitoring the Greenland ice sheet is therefore of
paramount importance. About half of this ice mass loss is
generally attributed to glacier dynamics, like dynamic imbal-
ance and increased discharge. The remaining half is attributed
to negative surface mass balance, which mostly stems from an
increase in surface melt [3].

Following the rapid changes in air and sea temperature,
glacier dynamics in these regions are changing quickly. One
essential indicator for dynamic changes of marine-terminating
glaciers is the calving front, which is the boundary line
of the glacier from which ice bergs calve off. In order to
better understand the glaciological processes and provide more
accurate constraints for glacier modeling, detailed monitoring
of the glaciers’ calving fronts is necessary. With the ever-
growing availability of satellite remote sensing data, monitor-
ing glaciers at a large scale with high temporal frequency has
become possible, but requires automated methods. Therefore,
recent years have seen rapid advances in applying machine
learning for glacier monitoring, which will be explored in more
detail in Section II-A.

With the rise of deep learning methods in remote sensing,
the predominant method of approaching this task has been
via semantic segmentation. In this formulation, each pixel is
assigned a label that corresponds to either the glacier class or
the sea class. Given the large number of studies on semantic
segmentation in computer vision, the methods and models for
this task are well understood and provide decent results when
applied to calving front detection. However, these methods
require postprocessing steps to extract the actual calving front
from the segmentation masks.

Noting that segmentation is only a proxy for the actual task
of calving front detection, and neither the sea nor the inward
glacier area is of actual interest for calving front detection, the
field has seen a recent trend toward edge detection methods.
By combining computer vision methods for pixel-wise edge
detection with the aforementioned segmentation task, predic-
tions are thus greatly improved [4], [5].

The goal of this study is to provide a new angle on this
task. Picking up the trend toward edge detection, we pro-
pose to completely move away from pixel-wise prediction
architectures and rethink the task from the ground up. The
desired final prediction format for calving front detection is a
vectorized polyline, which is a data format that is well-suited
for downstream analysis and modeling applications. Therefore,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. High-level overview of our deep AC model for delineating calving
fronts. (a) First, the backbone network takes the input image and derives
feature maps. (b) Then, a sample is taken from these feature maps at the
position of each vertex. (c) These features are evaluated by the Snake Head
which predicts offsets for each vertex. (d) Finally, the offsets are applied to
update the contour. This process is repeated multiple times.

we are looking to build a model that directly outputs the
calving fronts in this desired format instead of recovering the
vectorized contour from intermediate predictions. By radically
redesigning the neural network architecture, we are able to
move away from pixel-wise classifiers and instead arrive at a
model that directly predicts the calving front as a polyline.

This approach has several theoretical benefits over repre-
senting the desired output by a dense, pixel-wise mask.

1) As the predictions are already in a vector format, there
is no need for complicated postprocessing pipelines like
with pixel-wise approaches.

2) By its very design, the model will learn to focus on the
actual object of interest, the calving front.

3) Looking closer into the application, explicit contour
prediction provides a natural way of encoding prior
knowledge into the network. In pixel-wise detection
frameworks, the network may predict undesired outputs
like disconnected line segments. By directly predicting
an explicit contour, such issues are eliminated.

4) Explicit contours make more efficient use of compu-
tational resources. A sequence of vertices takes fewer
parameters than a dense mask.

5) Finally, the vectorized representation allows for better
quantification of model uncertainty as the joint proba-
bility distribution of a sequence of vertices is easier to
model than that of pixel-wise masks.

Convinced by these theoretical considerations, we set out to
develop a calving front detection model that directly predicts
the desired contours, as shown in Fig. 1. Contour-based
approaches for the segmentation of regions in natural images
have been extensively studied in the form of active contours,
which are also called Snakes [6].

In order to provide robust and stable calving front pre-
dictions for downstream applications, such as glaciological
studies and models, it is important to quantify the reliability of
the model’s predictions. Therefore, we also explore the ques-
tion of uncertainty quantification in calving front detection.
Experimental results using the Monte Carlo (MC) dropout
method [7] across different models suggest that uncertainty
quantification with contour-based models can indeed bring
benefits over pixel-wise models.

Overall, we summarize the goals and contributions of this
study by the following points.

1) We rephrase the task of the automated glacier calving
front detection from a segmentation task to a contour
detection task and show that deep active contour (AC)
models are a feasible approach to solving this task.

2) We develop a specialized deep AC model for the delin-
eation of glacier calving fronts which outperforms both
pixel-based approaches as well as existing deep AC
models. The effect of the design decisions is validated
through extensive ablation studies.

3) We explore the benefits of contour-based methods
for uncertainty quantification compared to pixel-wise
methods.

II. RELATED WORK

In order to place our work into the context of existing
research, we provide a brief overview of existing calving front
detectors, as well as methods for explicit edge predictions.

A. Detecting Calving Fronts in the Deep Learning Era

Given the strong performance of deep learning-based meth-
ods for calving front detection, traditional vision methods
have largely become insignificant for this task [5], [8]. There-
fore, this section focuses on deep learning-based methods.
Here, most approaches formulate the task as a variant of
sea–land segmentation. In this formulation, a semantic seg-
mentation network is used to separate the image into land and
ocean classes [8]. There is a considerable number of well-
tested segmentation architectures, like UNet [9], which is a
strong baseline for most segmentation tasks. Even without
any changes to the network itself, this approach can yield
satisfactory results for calving front detection, which has been
shown in previous studies for both the Greenland ice sheet [10]
and the Antarctic ice sheet [11]. Seeing this strong baseline
performance of the UNet, Periyasamy et al. [12] show that
the performance of such a model can be greatly improved
by tweaking network components, like normalization layers,
the loss function, or dropout rate.

Further progress in this field was made by extending the
UNet model or exploiting the advances of more recent seg-
mentation model architectures. For example, Loebel et al. [13]
add more layers and thereby increase the number of down- and
upsampling steps. This enlarges the spatial context that the net-
work can consider for its decisions and therefore leads to better
predictions. Following recent advances in transformer-based
model architectures, Holzmann et al. [14] enhance the UNet
model with attention gates to improve the interpretability of
the model and better understand the learning process. Another
newer neural network architecture that has successfully been
adopted for calving front detection is DeepLabv3+ [15].
Zhang et al. [16], Cheng et al. [4], and Gourmelon et al. [17]
bring in ideas from this architecture to obtain more accurate
delineations of glacier calving fronts. Finally, it is also possible
to combine image classification and segmentation [18], which
can lead to more robust results.

Recently, there appears to be a trend toward models
that approach calving front detection by extending or even
replacing semantic segmentation with edge detection methods.
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By focusing on the boundary between the two classes rather
than the areas of sea and glacier, these models are encouraged
to learn features that are informative of the calving front rather
than features of the sea and glacier areas.

Wavelet transforms are one possible approach that makes
use of the abrupt changes in texture between glacier and
sea to determine the location of the calving front [19].
Davari et al. [20] use a different transformation, namely the
Euclidean distance transformation, and train a network that
predicts each pixel’s distance to the calving front instead of a
binary class. Great potential lies especially in the combination
of segmentation and edge detection. Both HED-UNet [5] and
the calving front machine (CALFIN) [4] choose this approach
to outperform models that focus on only one of these two
aspects.

Contrary to these models, our approach is not to predict
pixel-wise segmentation or edge masks, but instead to explic-
itly predict a contour parameterized by a fixed number of
vertices.

B. Explicit Edge Prediction

The idea of explicitly parameterizing contours in an image
was pioneered quite early in the history of computer vision
by Kass et al. [6]. They proposed active contours or Snakes,
which evolve from an initial contour by iteratively minimiz-
ing an energy functional. By design, this functional takes
its minimum when the contour coincides with the desired
boundary in the image. Using Radarsat data, this approach
has been shown to work for the delineation of the Antarctic
coastline on a coarse scale [21]. The main drawback of
conventional AC methods is the fact that they are limited
to single-channel imagery without any natural extension to
multichannel imagery. Furthermore, they are sensitive to local
image contrast and the results depend highly on the initializa-
tion of the contour.

As automatic feature extraction is a strong suit of deep
learning models, the idea of combining ACs with deep learning
is not a new one. Rupprecht et al. [22] introduced a deep AC
model that works by first predicting a 2-D offset field that
points from each pixel toward the closest boundary point.
An initial contour will then evolve along this offset field until
it converges. However, this method is not end-to-end trainable
as it relies on the intermediate offset field and no gradients
flow through the actual curve evolution. While this approach
can work on multichannel imagery, it still suffers from a strong
dependence on contour initialization.

In an effort to introduce an end-to-end trainable deep
AC model, Peng et al. [23] proposed to make not only the
feature extraction part learnable, but the contour evolution
step as well. Their model, termed Deep Snake first derives
feature maps using a convolutional backbone network and
then samples the features at the position of each vertex. From
these sampled features, a 1-D convolutional neural network
(CNN) then predicts the offsets for each vertex. Like with
conventional AC models, this process is then iterated to refine
the predictions.

As one of the most recent models in this line of research,
deep attentive contours (DANCE) [24] improves on the Deep

Snake idea by introducing an “edge attention map,” which
influences the speed of the snake evolution. While vertices
far from the target boundary are evolving quickly, the update
speed for points closer to the boundary is slowed down.

Inspired by these advances, our goal is to develop an AC
model for the task of calving front detection. The existing
models address the computer vision task of instance segmen-
tation, where objects in an image are locally segmented. For
calving front delineation, however, one global line between
glaciers and the ocean is needed. This disparity and further
differences, like the general shapes of the objects of interest,
call for a completely different network architecture as well as
changes to loss functions and the network training protocol.

III. DEEP ACTIVE CONTOUR MODELS FOR CALVING
FRONT DELINEATION

When approaching the task of calving front detection,
we first take a look at how a human would proceed in solving
the task. In discussions with experts and when annotating
calving fronts ourselves, one central observation is the order
in which different areas in the scene are addressed.

To a human annotator, it does not make much difference
whether they are told to trace the edge between two objects in
an image or fill in the areas that both objects occupy. In both
cases, they will usually start out by tracing the boundary area
between the two classes with minute attention to detail. When
asked to perform segmentation, the remaining areas are then
filled in with broad strokes in a second step. So while humans
will approach both tasks in a similar fashion, a focus on the
boundary appears to be the more natural way to formulate the
task of calving front detection.

For a neural network model, the way a task is formulated
changes everything. As these models are trained to minimize
some loss function, the final performance is determined by
how well a low loss value translates to good performance
on the actual task. For instance, it has been observed that
the cross-entropy loss used for training semantic segmentation
models can lead to blurry edges between the classes due to
the fact that each pixel contributes equally to the final loss,
no matter its position in relation to the objects in the image.
This implies that a model can minimize most of its loss by
correctly classifying the simpler pixels that lie in the interior
of the objects of interest. In turn, the model will spend less
attention on the pixels near the boundary, which are much
more important for solving the task [5], [25].

Phenomena like these are likely the reason that calving front
delineation has recently seen a shift toward improving these
segmentation models by including pixel-wise edge detection
tasks. By putting more focus on the edges, the model is forced
to learn how to better distinguish the classes in these critical
areas [4], [5]. Instead of combining segmentation with edge
detection in a pixel-wise framework, we take a more radical
approach in this study. By completely eliminating the semantic
segmentation aspect and focusing only on the edges, it is
possible to reformulate the task in such a way that it does
not require pixel-wise classifications. Instead, the model will
directly output a vectorized contour.
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Fig. 2. Architecture overview of our model. Note that while this diagram
shows only two iterations of the Snake Head, the number of iterations is
actually an arbitrary hyperparameter, which we set to four for our experiments.

A. General Model Architecture

Inspired by the ideas of Peng et al. [23], we develop a
deep contour model for the delineation of glacier calving
fronts. As is common in many recent computer vision models,
our model consists of two main components which perform
different subtasks in order to solve the overall task together.
The backbone is a general-purpose 2-D CNN which is used to
extract semantically valuable features from the input imagery.
The second component is a prediction head, which makes
use of the backbone’s features to derive the final network
predictions. In our model, the prediction head takes the role
of the AC iteration. Therefore, it will take a contour and the
backbone’s feature maps as its inputs, and update the contour
to better match the desired boundary. Due to this functional
similarity, we call this component the Snake Head. The overall
architecture of the network is visualized in Fig. 2. Notably, this
framework can be trained end-to-end, as all components are
fully differentiable.

For the backbone, multiple feature extractors were eval-
uated. Initial experiments with standard ResNet backbones
produced unsatisfactory results. This leads us to believe that
while ResNets are a strong backbone for many vision tasks,
they are likely not optimal for deep AC models. In search of
a better-suited backbone network, the Xception backbone [26]
used by Cheng et al. [4] in their study of Greenland’s glaciers
proved to be a very capable backbone for remote sensing of
glaciers that transfers well to deep AC models.

B. Snake Head

The central challenge in predicting contours from an image
is the fact that input and output are represented in different
dimensionalities. While the input image is represented by a
2-D grid of pixels, the contour that the model should output
is given as a sequence of vertices, which is 1-D. The idea
of AC models is to start with an initial contour and then
iteratively update this contour based on the image values at
each vertex. Conceptually, deep AC models do nearly the same
thing. However, they do not directly sample the image values
but instead, sample the values from the feature map derived
by the backbone network.

After sampling the backbone features at the vertex positions,
the Snake Head predicts an offset for each vertex, which
represents how the vertex needs to be shifted so that the entire
sequence of vertices can better represent the true contour. This
is achieved by using a 1-D CNN. While conventional, 2-D
CNNs pass information between adjacent pixels, the 1-D CNN
used in the Snake Head passes information between adjacent

Fig. 3. Detailed view of the Snake Head. After the feature maps are sampled
at the vertex positions, the vertex coordinates are concatenated to the vertex
features. The 1-D CNN then predicts offsets for each vertex. These offsets
are added to the input coordinates to obtain the Snake Head’s output.

vertices of the contour. In order to enable the passing of
information between vertices that are far away from each other,
we stack multiple such convolutional layers. The receptive
field of the Snake Head is further increased by using dilated
convolutions. In our model, the Snake Head is therefore given
as a stack of dilated convolutions. We set the sequence of
dilation rates to 1, 3, 9, 9, 3, and 1, as similar setups have
proven to be successful at capturing low- and high-frequency
features in signal processing tasks [27].

In order for the Snake Head to gain some spatial reasoning
capabilities, we also include the vertex coordinates as addi-
tional input features for the Snake Head CNN. This allows
the model to not only ensure a homogeneous spacing of the
output vertices but also to learn some prior assumptions on the
shape of the calving fronts. The overall working mechanism
of the Snake Head is shown in Fig. 3.

To translate the iterative nature of the AC method, we apply
the Snake Head multiple times with the shared weights
to obtain more refined predictions. Starting with the ini-
tial contour, the Snake Head samples features at the vertex
positions, calculates and applies the offsets, and repeats the
process. Compared to conventional AC models, which can take
dozens [21] or even hundreds [28] of iterations to converge,
the deep AC model converges to satisfactory results after a
small number of iterations. For our experiments, we set the
number of iterations to four.

In the context of deep neural networks, the Snake Head can
also be regarded as a recurrent neural network. The locations
of the vertices then represent the hidden state of the network,
which is updated throughout the iteration steps until the final
output is achieved.

C. Loss Function

The loss function is a crucial element of any deep learning
model, as it measures how well the model is performing
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and gives feedback for improving the network via backprop-
agation. When predicting contours, the loss function should
therefore measure the similarity between the predicted contour
p, represented by vertices pi with 1 ≤ i ≤ V , and the true
contour t , given by the vertices t j with 1 ≤ j ≤ V .

Common loss functions for polygon regression are based
on the L1 and L2 losses, which, following the above notation,
are defined as follows:

L1(p, t) =
1
V

∑
i

∥pi − ti∥ (1)

L2(p, t) =
1
V

∑
i

∥pi − ti∥2. (2)

These loss functions have a fundamental issue when pre-
dicting glacier front lines. By only computing the distance
between the vertices of p and t at the same index, they tacitly
assume that each predicted vertex corresponds to exactly one
vertex in the true contour. However, the model has no way
of knowing how the ground truth vertices were placed along
the true contour. In the setting of Deep Snake and DANCE,
the vertices were placed equidistantly along the contour of
objects that were largely convex, so this assumption did not
have much negative impact there.

When predicting glacier frontlines, however, this issue
becomes much more prominent due to the irregular and
jagged shape of these contours. As the model essentially tries
to minimize the L1 or L2 loss for a number of possible
parameterizations of the true contour at the same time, the
resulting predictions lack sharp edges and instead follow a
smoothed version of the true outline.

Naturally, contour prediction is not the first task to face
challenges like these. For example, in the context of time-
series analysis, slight variations in timing are often less
important than the general shape of the time-series. Dynamic
time warping (DTW) is a method that was proposed by Sakoe
and Chiba [29] in order to address this very issue. Given
two sequences, they not only compare the pairwise differences
but instead, first, find an optimal alignment between the two
sequences and then calculate the distances based on that
alignment.

In our setting, the parameterization of a contour takes the
role of time in the original DTW. Formally, we define the
DTW loss for two contours p and t to be

LDTW(p, t) = min
(ik , jk )k∈[K ]∈K

∑
k

∥pik − t jk ∥
2
2 (3)

where K denotes the set of all possible realignments
(ik, jk)k∈[K ] that satisfy the following three conditions.

1) For any i ∈ {1, . . . , V }, there is a k with ik = i .
2) For any j ∈ {1, . . . , V }, there is a k with jk = j .
3) The sequences ik and jk are nondecreasing in k.

Under these conditions, the DTW loss can be efficiently
calculated using dynamic programming [29].

A possible issue with the use of DTW as a loss function
in deep learning is the fact that it is not smooth due to the
minimum operator applied in (3). Seeing this, Cuturi and
Blondel [30] replace the minimum with a soft minimum which

they define as

softminγ (x1, . . . , xn) = −γ log
n∑

k=1

exp
−xk

γ
(4)

with a smoothness parameter γ > 0. In the limit γ → 0, the
conventional minimum operator is recovered.

D. Implementation Details

A central issue with naively backpropagating the loss
through the snake iteration is the fact that the early iterations
show poor convergence to the target contour. This is easily
fixed by stopping the gradient from flowing through the
coordinates at the beginning of each snake step. To still
encourage quick convergence of the contours during inference,
we leverage deep supervision by including an additional loss
term for each intermediate step. During training, the current
contour is compared to the ground truth after each snake step,
and the resulting loss is added toward the final loss for the
gradient calculation. Unless otherwise stated, all models use a
contour parametrization by 64 vertices.

All models in the study were trained for 500 epochs on the
training dataset. We used the Adam optimizer [31] with an
initial learning rate of 10−3 decaying to 4 · 10−5 on a cosine
decay schedule [32].

Our models are implemented in JAX [33] using the Haiku
framework [34]. The training was conducted on a single
NVIDIA RTX 3090 GPU with 24 GB of VRAM. Training an
instance of the model, took around 25 h, and had an estimated
energy consumption of 8.1 kWh.

IV. EXPERIMENTS AND RESULTS

A. Datasets

In order to thoroughly evaluate our model and compare
it with other approaches, we choose two large-scale datasets
of marine-terminating glaciers in Greenland for training and
evaluation purposes, namely the CALFIN dataset [4] and the
calving front dataset from TU Dresden (TUD) [13]. Both of
these datasets include respective testing data. Furthermore, the
Baumhoer dataset [11] consists of synthetic aperture radar
(SAR) data of Antarctic glaciers, thus serving as a bench-
mark for the models’ ability to generalize to a different data
modality and a different ice sheet.

1) CALFIN Dataset: The CALFIN dataset consists of near-
infrared data from the various Landsat missions and is most
notable for the long time span of acquisition times, ranging
from 1972 to 2019. Its spatial coverage is 66 Greenlandic
glaciers, which amount to 1541 Landsat scenes. In an effort
to improve generalizability to different sensors, the train-
ing dataset also includes 232 single-polarization Sentinel-1
scenes of glaciers in Antarctica. The corresponding test dataset
consists of 162 Landsat near-infrared scenes. For all of the
mentioned scenes, the calving fronts were manually delin-
eated.

2) TUD Dataset: In contrast to this, the TUD dataset
puts its focus on the eighth iteration of the Landsat mis-
sion, providing a dense time-series of recent acquisitions of
Greenland’s marine-terminating glaciers. The captured scenes
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range from 2013 to 2021 for a total of 1127 tiles. For studies
related to feature importance and data fusion, it includes the
full multispectral imagery, as well as topography data and
texture information derived using gray-level co-occurrence
matrix statistics. For interoperability with the other datasets,
only the panchromatic imagery is used in this study.

3) Baumhoer Dataset: Another test set for evaluating the
generalization of the trained models is given by the Baumhoer
dataset [11]. This dataset is vastly different from the other
datasets, as the imagery is not from Greenland, but from
Antarctica instead. Furthermore, it consists of Sentinel-1 SAR
imagery, which marks a second challenge in generalization.
While the original dataset is not openly available, an evaluation
subset is distributed along with the CALFIN dataset [4].
In order to keep this study fully reproducible, we only use
this publicly available subset of the Baumhoer dataset. The
used testing set consists of 62 Sentinel-1 scenes of glaciers in
Antarctica from the year 2018.

B. Evaluation Metric

As there is no uniquely defined distance metric between two
curves, many different metrics are being used for evaluating
the accuracy of predicted glacier frontline positions [8]. In our
work, we adapt the Polis metric [35], which was originally
proposed for measuring the dissimilarity between building
footprints. For two polylines v and w, with I and J vertices,
respectively, it is defined as the average distance of any vertex
to the respective other polyline

p(v, w) =
1
I

I∑
i=1

d(vi , w) +
1
J

J∑
j=1

d(w j , v)

where d(vi , w) denotes the distance between vertex vi and the
closest point on the polyline w. Note that this closest point
w does not need to be a vertex, but may be a point between
vertices as well.

Compared to other existing metrics, like the Fréchet dis-
tance [36], which is defined as the solution to a min-max
problem, the Polis metric is more easily interpretable as
the “average” distance between the two curves. Furthermore,
it was chosen due to its symmetry and the fact that it takes
all predicted points into consideration.

C. Comparison With Other Models

For our comparison study, we train a number of different
models in order to compare their performance on the test
datasets. To compare with the state of the art in calving front
detection and contour-based outline detection, we include both
pixel-wise and contour-based models.

1) Pixel-Wise Models: This first group of methods consists
of pixel-wise segmentation models that are known to work
well for calving front detection.

a) UNet [9]: This model is a popular semantic seg-
mentation model that serves as a strong baseline for many
segmentation tasks. It has been successfully applied to calving
front detection [11].

b) DeepUNet [13]: The model developed and used by
Loebel et al. [13]. Its main difference from the original UNet
model is the addition of two down- and upsampling steps,
which make the model deeper and more aware of spatial
context.

c) HED-UNet [5]: A combination of the UNet model
with an edge detection model, HED-UNet was originally
developed to detect glacier frontlines on the Baumhoer
dataset [11].

d) CALFIN [4]: This model was introduced by
Cheng et al. [4]. The model is based on the segmentation
architecture DeepLabv3+ [15]. It is the first to leverage the
potential of the Xception network for calving front detection.

2) Contour-Based Models: For a comparison to existing
contour-based models, we also include models from this group
in the comparison. It should be noted that unlike the pixel-
wise models above, they were not developed for calving front
detection.

a) Deep AC [22]: One of the first works to combine
AC models with deep learning, this model uses a 2-D CNN to
predict an offset field that points toward the nearest contour
point from each pixel and then evolves a contour along this
offset field.

b) Deep Snake [23]: Originally proposed as a contour-
based model for instance segmentation, we have made slight
changes to this model to perform calving front detection.
Specifically, the circular convolutions in the network were
replaced with regular 1-D convolutions, as the predicted con-
tours for calving fronts should be open polylines and not
closed polygons. Furthermore, the object detection head of
the model was removed as with calving fronts, there is always
exactly one contour to be predicted. For a fair comparison,
we train and evaluate this model not only with the ResNet-50
backbone but also with the Xception backbone.

c) DANCE [24]: An iteration of the Deep Snake [23]
model, DANCE introduces an edge attention map that speeds
up the evolution for vertices far from the true edge and slows
the evolution for vertices on the true edge. We applied the
same adaptations to this model as to the Deep Snake model.

As CALFIN provides the largest and longest record of
glacier observation, we train all models on the CALFIN
training set and then evaluate them on the CALFIN, TUD,
and Baumhoer test sets. The numerical evaluation results for
this comparison study are displayed in Table I, and some
visual results are displayed in Fig. 4. For the proposed
Charting Outlines by Recurrent Adaptation (COBRA) model,
we train three randomly initialized models and report mean
and standard deviation across these three runs.

Comparing the pixel-wise models, we can reproduce the
increased performance of the calving front-specific models
over the baseline UNet. All three of these models, namely
DeepUNet, HED-UNet, and the CALFIN cut down the average
prediction error from UNet’s 224 m to the range of 130–138 m
on the CALFIN test set. There is, however, a difference in
generalization to the other datasets, where the DeepUNet
seems to generalize best to SAR imagery, and the CALFIN
generalizes better than others on the TUD dataset, which is
also based on Landsat imagery.
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Fig. 4. Visualization of prediction results (blue) for the different models and corresponding ground truth (red) on the test datasets. For the iterative,
contour-based models intermediate results are displayed as blue dashed lines. Best viewed in color.

Looking at the contour-based models, the Deep AC model
falls behind the competition and performs the worst out of all
the models in our experiments. The bad performance of the
Deep AC model is easily explained when looking at the visual
results in Fig. 4. It stems from the fact that its predictions tend
to only represent a part of the desired curve, as there is no
regularization term that forces the prediction to cover the entire
calving front.

With the exception of the Deep AC model [22], the contour-
based approaches perform considerably better on the CALFIN
evaluation than their pixel-based counterparts, especially when
using the Xception backbone network.

On the other hand, generalizing to the Antarctic Baumhoer
dataset is particularly hard for contour-based methods.
We attribute this to the presence of jagged floating ice-tongues
(see Fig. 4, last row), which are not observed in the same
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TABLE I
MEAN DEVIATION (POLIS METRIC) OF THE TRAINED MODELS ON THE

EVALUATED TEST SETS

way during training. Such features lead to more complex
outlines, which need more vertices for their representation,
as can be seen from the results of the study on vertex numbers
in Section IV-E2.

Overall, our proposed network outperforms both the pixel-
based and other contour-based models by a considerable
margin on the CALFIN and TUD evaluations. Even when
generalizing to the radically different Baumhoer dataset, our
model still maintains a respectable performance.

Inference results from the COBRA model for the three
testing datasets are available for online viewing and as a
shapefile download at https://github.com/khdlr/COBRA/tree/
master/inference_results.

D. Quantifying Uncertainty With Contour Models

With deep learning models growing ever more complex,
quantifying the uncertainty of their predictions at inference
time has become an important consideration when working
with such models. Deep learning models being over-confident
in their predictions is a common issue [37]. As the models are
usually trained on definite ground truth, the models are never
taught to concede their uncertainty in ambiguous cases.

One elegant method for the quantification of network uncer-
tainties is known as MC dropout (MCD). In their seminal
study, Gal and Ghahramani [7] demonstrated that a deep
learning model trained with dropout layers can be interpreted
as approximated Bayesian inference in a deep Gaussian pro-
cess. Samples from the posterior distribution approximated
by such a model can be recovered quite easily by enabling
the dropout layers not only at training time but also at
inference time. It has been shown that MCD can quantify
model uncertainties well for remote sensing tasks like aerial
image segmentation [38]. Recently, Hartmann et al. [39] also
successfully applied a Bayesian UNet for the segmentation of
glaciers in SAR imagery.

As the MCD method is simple to implement and eval-
uate compared to other uncertainty quantification methods,
we choose this approach for quantifying uncertainties in
the model predictions. In order to estimate the hardness of
samples at inference time and get an estimate for the model
uncertainty, we calculate the original, deterministic model
prediction, as well as multiple additional predictions using

TABLE II
UNCERTAINTY QUANTIFICATION: PEARSON CORRELATION BETWEEN

MODEL UNCERTAINTY AND ACTUAL PREDICTION
ERROR (POLIS METRIC)

the MCD technique. If these predictions all line up well with
the original model prediction, the model can be assumed to
be quite certain of its prediction. On the other hand, a large
deviation between the original model prediction and the MCD
predictions corresponds to ambiguity in the model output,
implying a potentially higher prediction error.

Taking the ten MC samples and the model’s deterministic
prediction, we estimate the model uncertainty as the average
Polis-distance of each MC sample from the deterministic
prediction.

Our hypothesis is that the explicit edge parameterization by
vertices lends itself much better to uncertainty quantification
from these posterior samples than dense pixel-wise predic-
tions, due to the fact that the explicit representation requires
much fewer parameters. With fewer parameters, the covariance
between the parameters becomes more tractable, and therefore
easier to approximate for any model.

For our uncertainty quantification study, we apply MCD
with a dropout rate of 20% to the aforementioned models.
After training the models, we draw ten predictions with
enabled dropout (posterior samples) per model for each test
scene in order to assess the quality of the uncertainty quan-
tification.

Fig. 5 shows the posterior samples obtained using the MCD
models. It can be observed that the pixel-wise calving front
detectors can collapse completely on hard scenes. All the
evaluated pixel-wise methods suffer from this phenomenon,
suggesting that it is indeed related to the mode of repre-
sentation. Inspection of the underlying segmentation masks
suggests that this is due to the fact that when working with
segmentation masks, small changes in the segmentation can
completely change the topology of the prediction as previously
connected regions can become disconnected and vice-versa.
Due to this effect, estimating the model uncertainty using
MCD can overestimate the hardness of the samples for these
models on easy scenes.

By their design, contour-based methods do not have this
limitation, as they predict the frontline directly. Among these
models, the DANCE architecture seems affected by similar
issues as the pixel-wise models, which we attribute to the fact
that DANCE incorporates an intermediate dense prediction.
Overall, both Deep Snake [23] and our proposed model appear
to be best suited for uncertainty quantification using MCD,
with very similar samples on easy scenes, and deviating
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Fig. 5. Visualization of posterior samples obtained using MCD (blue) from the different models overlaid on top of the ground truth (red) for scenes from
the CALFIN test set.

samples in areas that are harder to delineate. Among the
pixel-based methods, HED-UNet [5] appears to be the best
at quantifying its uncertainty.

In an effort to numerically evaluate the uncertainty quan-
tification, we then calculate the Pearson correlation coefficient
between the model uncertainty and the actual prediction error.
A high correlation between these two variables corresponds
to better uncertainty quantification, as the model should only
be certain when its prediction is actually correct, while a
high model uncertainty should be indicative of the prediction
possibly being far from the ground truth.

The results of this evaluation are displayed in Table II.
Our model is leading the evaluation for the CALFIN and
Baumhoer datasets, reaching respectable Pearson coefficients
of 0.4811 and 0.6031, respectively. On the TUD dataset, HED-
UNet and the classic Deep Snake outperform our model on
the uncertainty benchmark, achieving Pearson coefficients of
0.5518 and 0.4959. Still, our model scores decently with a
Pearson coefficient of 0.4414.

These observations support our hypothesis that the contour
representation is better suited for uncertainty quantification.

E. Ablation Studies

In order to better understand how the design decisions help
our proposed model to improve upon the existing contour-
based methods, we conduct a number of ablation studies to
quantify the value of the network’s components.

1) Loss Function: The rationale for implementing Soft-
DTW loss for our model was the assumption that the model
cannot always correctly guess the placement of the vertices

TABLE III
RESULTS OF THE LOSS FUNCTIONS ABLATION STUDY. DEVIATIONS

CALCULATED USING THE POLIS METRIC

TABLE IV
RESULTS OF THE STUDY ON THE NUMBER OF VERTICES. DEVIATIONS

CALCULATED USING THE POLIS METRIC

along the ground truth contour. Indeed, we observe better
performance when using a time-warping loss, as can be seen
in Table III. Surprisingly, the difference between DTW and its
smooth SoftDTW variant is rather small, which suggests that
the theoretical advantage of SoftDTW’s smoothness does not
matter much in practice for this application.

2) Number of Vertices: When choosing the number of
vertices to represent the contours, a balance needs to be taken
between too few vertices and too many vertices. Too low a
number of vertices will not allow the model to sufficiently
approximate the true contour, while too many vertices should
lead to overfitting and issues in communicating information



5615912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

TABLE V
RESULTS OF THE STUDY ON THE NUMBER OF ITERATIONS. DEVIATIONS

CALCULATED USING THE POLIS METRIC

between vertices far apart in the sequence. In order to exper-
imentally find a good setting for the number of vertices,
we train COBRA configurations with different numbers of
vertices. For computational efficiency, we always set the
number of vertices as a power of two, choosing 16, 32, 64,
128, and 256 as possible vertex counts. The results of these
experiments are displayed in Table IV.

For all three datasets, we observe that with increasing
vertex count, performance decreases toward both ends of the
tested range, which suggests that there is indeed a sweet spot
around the middle of the evaluated range. For the CALFIN
dataset, there appears to be an optimal performance plateau
from 32 to 128 vertices while for the TUD dataset, 64 vertices
are optimal. Interestingly the Baumhoer dataset seems to
require a higher number of vertices for the best performance,
reaching the best performance at 128 vertices. We attribute this
to the aforementioned higher complexity of calving fronts in
Antarctica. In practice, we recommend choosing the number
of vertices accordingly to the complexity of the calving fronts
of the region of interest. In general, setting it to 64 offers
overall good performance across all study areas concerned in
this study, the selection of which could be quite representative
for large-scale applications.

3) Number of Iterations: A fundamental hyperparameter of
our network is the number of iterations of the Snake Head.
When given too few iterations, the model will likely not have
enough capacity to converge to the right contour. On the
other hand, given a large number of iterations, we expect
the model to overfit the training set and generalize worse to
unseen scenes. In order to find evidence for these hypotheses,
we conduct a study on the number of iterations where we
retrain COBRA models with iteration numbers from two to
seven. The results in Table V suggest that there is indeed
a sweet spot at four iterations. Starting from two iterations,
performance improves considerably on all evaluation datasets
up until four iterations. After that, increasing the number of
iterations decreases the performance again. Therefore, we set
the number of iterations for our model to four.

4) Coordinate Features: Including the vertex coordinates as
additional features allows the Snake Head to take the distance
and relative position of the vertices into account, but could
also introduce a source of overfitting. In the ablation study (see
Table VI), we observe that these coordinate features improve
performance slightly on the CALFIN test set and drastically
improve performance on the TUD dataset, where the average
deviation is more than halved. For the Baumhoer dataset,
performance degrades slightly when including coordinate fea-
tures. This suggests that the coordinate features help the model
to learn implicit shape priors for Greenlandic glacier calving

TABLE VI
RESULTS OF THE BINARY ABLATION STUDY. DEVIATIONS CALCULATED

USING THE POLIS METRIC

fronts, which are not helpful when transferring the model to
the Antarctic calving fronts in the Baumhoer dataset.

5) Gradient Stopping: Originally, the idea of stopping the
gradients from flowing through the vertex coordinates between
iterations was introduced to improve the convergence of the
model. However, the “No Gradient Stopping” ablation in
Table VI shows that this choice is essential for the perfor-
mance of the model. Without gradient stopping, the model
predictions deteriorate to a degree where they are worse than
the predictions of the baseline UNet model. We attribute this
to numerical instabilities in the texture sampling procedure
that is used to translate between the feature maps and vertex
features, which can arise from letting gradients flow through
the vertex positions.

6) Deep Supervision: During training, we calculate a loss
term after each snake iteration and sum up these individual
loss terms for the final loss. To quantify the contribution of
this deep supervision, we also evaluate a model trained without
intermediate loss terms, displayed as “No Deep Supervision”
in Table VI. While the in-distribution samples from the
CALFIN test set do not improve much with deep supervision,
generalization on TUD and Baumhoer is improved by this
change.

7) Weight Sharing: The underlying hypothesis for shared
weights in the Snake Head iterations was the assumption that
a single set of weights would lead to better generalization
results than applying a series of multiple distinct Snake Heads.
The ablation results for “No Shared Weights” in Table VI
support this hypothesis. On the CALFIN test set, the pre-
diction accuracy is nearly constant between the model with
shared weights and the one with distinct weights. However,
on the other test sets, the performance improves consid-
erably when sharing the weights between the Snake Head
iterations.

V. CONCLUSION

We proposed an approach to detecting calving fronts that
directly predict the desired contours instead of predicting
dense masks as an intermediate output. By training our method
and existing methods on the CALFIN dataset, we showed
that this new approach outperforms previous methods both
on the CALFIN and TUD test sets, and exhibits competitive
performance on the Baumhoer test set. In our ablation study,
we showed the importance of network elements like the loss
function, stopping gradient flow in the Snake Head, and
sharing the weights between iterations.
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Furthermore, we showed that deep AC models not only
provide accurate delineations of calving fronts but also are
naturally suited for the quantification of the prediction uncer-
tainties.

We hope that this study can inspire new ways of approach-
ing similar tasks in remote sensing where boundaries are
studied, like grounding line detection or firn line detection.

Finally, we believe that the shift in representation from
pixel-wise masks to GIS-native data structures like polylines
will not only reduce the computational burden but also allow
for exciting new approaches like enforcing physical constraints
and temporal consistency or analysis across different coordi-
nate reference systems.
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Abstract. The mass loss of glaciers outside the polar ice sheets has been accelerating during the past several
decades and has been contributing to global sea-level rise. However, many of the mechanisms of this mass
loss process are not well understood, especially the calving dynamics of marine-terminating glaciers, in part
due to a lack of high-resolution calving front observations. Svalbard is an ideal site to study the climate sen-
sitivity of glaciers as it is a region that has been undergoing amplified climate variability in both space and
time compared to the global mean. Here we present a new high-resolution calving front dataset of 149 marine-
terminating glaciers in Svalbard, comprising 124 919 glacier calving front positions during the period 1985–2023
(https://doi.org/10.5281/zenodo.10407266, Li et al., 2023). This dataset was generated using a novel automated
deep-learning framework and multiple optical and SAR satellite images from Landsat, Terra-ASTER, Sentinel-
2, and Sentinel-1 satellite missions. The overall calving front mapping uncertainty across Svalbard is 31 m. The
newly derived calving front dataset agrees well with recent decadal calving front observations between 2000 and
2020 (Kochtitzky and Copland, 2022) and an annual calving front dataset between 2008 and 2022 (Moholdt et
al., 2022). The calving fronts between our product and the latter deviate by 32± 65 m on average. The R2 of the
glacier calving front change rates between these two products is 0.98, indicating an excellent match. Using this
new calving front dataset, we identified widespread calving front retreats during the past four decades, across
most regions in Svalbard except for a handful of glaciers draining the ice caps Vestfonna and Austfonna on Nor-
daustlandet. In addition, we identified complex patterns of glacier surging events overlaid with seasonal calving
cycles. These data and findings provide insights into understanding glacier calving mechanisms and drivers. This
new dataset can help improve estimates of glacier frontal ablation as a component of the integrated mass balance
of marine-terminating glaciers.

1 Introduction

Glaciers and ice caps (GIC) distinct from the Greenland and
Antarctic ice sheets are a significant contributor to global
sea-level rise in addition to thermal expansion (Intergov-
ernmental Panel on Climate Change, 2023; Meredith et al.,
2019). Their mass loss has been accelerating during the early
twenty-first century and their thinning rates have doubled

(Hugonnet et al., 2021). Specifically, the mass loss from Arc-
tic glaciers during 2006–2015 contributed to sea-level rise at
a similar rate (0.6±0.1 mm yr−1) to the Greenland Ice Sheet
in response to the accelerated warming trend in the Arctic
(Intergovernmental Panel on Climate Change, 2023). Recent
observations show that the maximum warming rate on Earth
(> 1.25 ◦C per 10 years) during 1979–2021 lies in the Rus-
sian Arctic close to Svalbard (Rantanen et al., 2022), which
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is one of the most climatically sensitive regions in the world
(van Pelt et al., 2018; Serreze and Barry, 2011).

Svalbard is an Arctic Archipelago located near the north-
east coast of Greenland and lies close to the northern limit
of warm North Atlantic water (Nuth et al., 2010). Its cli-
mate displays extreme variability in both space and time.
The southwest region has milder and more humid condi-
tions while the northeast is colder and drier (Schuler et al.,
2020), making it an ideal region for studying the response
of glaciers to climatic forcing. In Svalbard, the warming rate
has been 1.7 ◦C per 10 years since 1991, about 7 times the
global average (Nordli et al., 2020). Glaciers on Svalbard
have been losing mass since the 1960s with a trend towards a
more negative mass balance since 2000 (Schuler et al., 2020;
Nuth et al., 2010). High-resolution regional climate models
reveal that modest atmospheric warming in the mid-1980s
forced the limit of the firn zone (the boundary between ice
and compacted snow) to the hypsometric peak, leading to
firn cover reduction, albedo reduction, and increased surface
runoff, amplifying the mass loss from all elevations (Noël et
al., 2020). By linking historical and modern glacier obser-
vations, it was predicted that the twenty-first-century glacier
thinning rates in Svalbard would be more than double the
rates of 1936–2010, with a strong dependence on air temper-
ature (Geyman et al., 2022).

Despite recent progress in estimating the mass balance
of glaciers in Svalbard, uncertainties remain, especially the
quantification of frontal ablation – a combination of calving
and basal melting. Frontal ablation is a key component of
the total mass balance of marine-terminating glaciers, with
the other being the climatic mass balance (Schuler et al.,
2020). Despite its importance, most global glacier models
do not include the frontal ablation component at all (Rounce
et al., 2023). In Svalbard, 15 % of the glaciers are marine-
terminating and in other Arctic sectors it is significantly
higher (Oppenheimer et al., 2019). They account for about
60 % of the total glacierized area (Błaszczyk et al., 2009) and
experienced one of the highest frontal ablation rates in the
Northern Hemisphere. However, there have only been two
systematic studies estimating the frontal ablation of glaciers
in Svalbard (Błaszczyk et al., 2009; Kochtitzky et al., 2022).
Błaszczyk et al. (2009) estimated the frontal ablation rates of
163 Svalbard tidewater glaciers during a short period from
2000 to 2006. Kochtitzky et al. (2022) updated this record by
estimating the frontal ablation with a decadal time resolution
for 2000–2010 and 2010–2020.

One major limitation of frontal ablation estimates is the
scarcity in calving front observations of marine-terminating
glaciers (Kochtitzky et al., 2023), which is essential for de-
termining the relative contributions of calving and subma-
rine melting (Schuler et al., 2020) and their governing pro-
cesses. A detailed understanding of the calving mechanism
and its drivers is crucial for the accurate prediction of glacier
response to future climate forcing and consequent sea-level
change (Benn et al., 2007; Kochtitzky et al., 2023). The cur-

rently available calving front datasets for marine-terminating
glaciers in Svalbard are limited to either a small sample of
glaciers (Murray et al., 2015; Strozzi et al., 2017; Holmes et
al., 2019; Nuth et al., 2019) or to low temporal resolutions
in calving front observations (Błaszczyk et al., 2009; Carr et
al., 2017; Kochtitzky and Copland, 2022; Nuth et al., 2013;
Moholdt et al., 2022).

Calving front mapping of glaciers beyond the Greenland
Ice Sheet has primarily relied on manual delineation from
optical satellite imagery such as Landsat and ASTER (Mc-
Nabb and Hock, 2014; Kochtitzky and Copland, 2022; Cook
et al., 2019). This often results in low spatial coverage and
temporal resolution, as optical images are often influenced
by the presence of clouds and the polar night. With the avail-
ability of new optical satellite missions such as Sentinel-2
and Landsat-9, as well as the SAR satellite Sentinel-1, it is
possible to achieve a short image acquisition interval of 1–3 d
all year round. In the meantime, the growing availability of
extensive satellite catalogues imposes a challenge for man-
ual delineation. There is, therefore, a need for efficient au-
tomated methods. In recent years, deep learning has demon-
strated promising capabilities in accurately mapping glacier
calving fronts (Mohajerani et al., 2019a; Cheng et al., 2021;
Heidler et al., 2022; Loebel et al., 2023; Gourmelon et al.,
2022; Zhang et al., 2019; Baumhoer et al., 2019, 2023). Mo-
hajerani et al. (2019) pioneered the application of deep learn-
ing in glacier calving front mapping by developing a U-Net
architecture to isolate the calving front from satellite images.
The method was tested on Helheim Glacier in Greenland
with a mean deviation of 96.3 m from ground truth, which
is a manually mapped calving front from Landsat images.
Building on this, Heidler et al. (2022) proposed a novel deep-
learning framework, HED-UNet, by combing semantic seg-
mentation and edge detection, which outperforms the tradi-
tional U-Net framework. So far, these deep-learning frame-
works have only been applied to a small sample of glaciers
mainly located on the Greenland and Antarctic ice sheets.
Nonetheless, these case studies serve as a foundation for au-
tomated, high-temporal-resolution mapping of glacier termi-
nus locations on a large spatial scale for glaciers outside the
ice sheets.

Here, we introduce a novel automated processing pipeline
designed to map glacier calving fronts using a new deep-
learning framework Charting Outlines by Recurrent Adap-
tation (COBRA), which outperforms image segmentation
models by combining convolutional neural networks and ac-
tive contour models for calving front mapping (Heidler et
al., 2023). This study yields a new high-resolution glacier
calving front data product containing 124 919 calving front
traces for 149 marine-terminating glaciers in Svalbard dur-
ing the period 1985–2023 (Li et al., 2023), utilizing data from
multiple optical and SAR satellite sensors, including Land-
sat, ASTER, Sentinel-2, and Sentinel-1. This newly com-
piled dataset offers unprecedented temporal density, which
is valuable for analysing both the seasonal and interannual

Earth Syst. Sci. Data, 16, 919–939, 2024 https://doi.org/10.5194/essd-16-919-2024



T. Li et al.: A high-resolution calving front data product for Svalbard 921

variations in glacier calving fronts, as well as capturing surge
events.

2 Data and methodology

2.1 Automated satellite image downloading from
Google Earth Engine

To generate the calving front data product, optical images
from three different satellite platforms – Landsat, Terra-
ASTER, and Sentinel-2 – along with SAR images in the Ex-
tra Wide (EW) swath mode from Sentinel-1, spanning the
period from 1972 to January 2023, were used. The reason
for using the EW mode of Sentinel-1 images instead of the
higher-resolution Interferometric Wide (IW) mode is that the
EW mode has greater coverage over Svalbard. The satellite
images were acquired from the Google Earth Engine (GEE)
platform with a diverse range of image resolutions, repeat
cycles, and operation durations shown in Table 1. The de-
tailed workflow for downloading satellite images automat-
ically for marine-terminating glaciers from different GEE
satellite image collections (Table A1 in the Appendix) is
shown in Fig. 1.

Our selection of glaciers in Svalbard is based on the tide-
water glacier terminus data product generated by Kochtitzky
and Copland (2022) which includes areal change polygons
for all marine-terminating glaciers across the Arctic in two
different periods: 2000–2010 and 2010–2020. To begin, the
Kochtitzky and Copland (2022) frontal areal change poly-
gons of each glacier were used to produce the glacier do-
main shapefiles (Box 1 in Fig. 1). For each glacier, all the
available different areal change polygons generated in two
different time periods were first merged into one single poly-
gon. Then the minimum bounding rectangle (MBR) of this
merged polygon was generated. The final glacier domain
polygon (black boxes in Fig. 2a) was produced by adding
a 1500 m buffer length to the MBR. If the final glacier do-
main polygon contained multiple polygons likely to be asso-
ciated with tributary glaciers, these polygons were then di-
vided into separate individual glacier area change polygons
and assigned unique identifiers by adding sequential letters
to its original Randolph Glacier Inventory (RGI) version 6
glacier id (RGI Consortium, 2017) as a new glacier id; this
updated glacier id was used throughout the study. In total,
we generated 220 glacier domain shapefiles (hereinafter re-
ferred to as 220 marine-terminating glaciers – we took tribu-
tary glacier as an independent glacier) (black boxes in Fig. 2).
The domain shapefile was used in defining the glacier spatial
extent to be used in querying satellite images from the GEE
API.

For each glacier domain, satellite images were retrieved
from four distinct satellite platforms, namely Landsat 1-9,
Terra-ASTER, Sentinel-2A/B, and Sentinel-1A/B (Table 1).
The images were downloaded throughout the entire time
span of each satellite mission and were used in mapping the

Figure 1. The workflow of generating glacier domain shapefiles
(box 1) and automated downloading satellite images from Google
Earth Engine (GEE) (box 2) for Svalbard marine-terminating
glaciers. The coloured geometries indicate key inputs and outputs.

glacier calving front locations. For optical satellite images
downloaded from Landsat, Terra-ASTER, and Sentinel-2, we
set a cloud filter threshold of 40 %. Furthermore, a universal
threshold for a non-data pixel ratio per image is set as 50 %
for both optical and SAR images. If the proportion of non-
data pixels in a given satellite image exceeds 50 %, it is pre-
sumed that this image may lack a sufficient number of pixels
for accurate predictions. In addition, we did not merge satel-
lite images acquired on the same day considering the large
number of data available. For the 220 marine-terminating
glacier domains in Svalbard, 1 135 074 satellite images were
downloaded for the glacier calving front prediction over the
period 1972–2023 in our study.

2.2 Deep-learning model and pre-processing

We used the deep-learning model Charting Outlines by Re-
current Adaptation (COBRA) to predict the glacier calving
front locations. The COBRA model combines a convolu-
tional neural network (CNN) for feature extraction and an ac-
tive contour model for the delineation (Heidler et al., 2023).
Unlike the traditional image segmentation models such as
CALFIN (Cheng et al., 2021) and HED-UNet (Heidler et
al., 2022) which separate an image into land-ice and ocean
classes, the COBRA model can directly output the calving
front line segment as a shapefile instead of recovering the
vectorized contour from intermediate predictions in a seman-
tic segmentation approach. Figure 3a shows the model archi-
tecture, and it comprises two different components: a back-
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Table 1. Image resolutions of different satellite sensors used in the calving front mapping.

Satellite platform Resolution Availability Repeat cycle Band

Landsat 30 m 1972 16 d Near-infrared band
ASTER 30 m 2000 16 d Near-infrared band
Sentinel-2 10 m 2015 10 d Near-infrared band
Sentinel-1 40 m 2014 12 d HH band (EW mode)

Figure 2. (a) Examples of glacier areal change polygons (coloured outlines) generated in Kochtitzky and Copland (2022) and the glacier
domain polygons derived in this study (black boxes). The glacier areal loss during 2000–2010 is denoted as a red polygon, the glacier
areal loss during 2010–2020 is denoted as a blue polygon, and the glacier areal gain during 2010–2020 is denoted as a green polygon.
(b) The spatial distributions of 220 glacier domains generated in this study (black boxes); the orange box denotes the zoomed-in region
shown in panel (a). The background hillshade map is generated from the 50 m resolution Svalbard digital elevation model (DEM) (https:
//data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April 2023).

bone and a prediction head. The backbone of the COBRA
architecture utilizes a versatile two-dimensional CNN to ex-
tract meaningful semantic features from the input imagery;
here the Xception backbone was employed (Chollet, 2016;
Cheng et al., 2021). The second component consists of a pre-
diction head known as the “snake head”, which leverages the
feature map of the backbone to generate the ultimate net-
work predictions. The snake head starts with an initial calv-
ing front contour with vertices generated in the centre of the
image, then progressively refines the contour by incorporat-
ing sampled values from the feature map extracted from the
backbone network and iterating this process four times (Hei-
dler et al., 2023). The loss function of the COBRA model
is based on the dynamic time warping (DTW) loss, which
measures the similarity between the predicted contour and
the true contour (Heidler et al., 2023). The loss function is

shown as Eq. (1):

LDTW(p,t)= min
(ik,jk)k∈[K]∈k

∑
k

||pik − tik||
2
2, (1)

where the predicted contour p is represented by vertices pi
with 1≤ i ≤ V , and the true contour t is represented by ver-
tices tj with 1≤ j ≤ V . κ denotes the set of all possible re-
alignments (ik,jk)k∈[K] that satisfy the following three con-
ditions: (1) for any i ∈ {1, . . .V } there is a k with ik = i; (2)
for any j ∈ {1, . . .V } there is a k with jk = j ; and (3) the se-
quences ik and jk are non-decreasing in k.

The model was trained for 500 epochs on the CALFIN
training dataset (Cheng et al., 2021) which includes 1541
Landsat optical images and 232 Sentinel-1 SAR images for
66 Greenlandic glaciers during 1972–2019. In addition, it
was tested on three different test sets including the CALFIN
test set, the TU Dresden (TUD) (Loebel et al., 2022), which
includes 1127 Landsat optical images in 2013–2021 for 23
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glaciers, as well as the Baumhoer dataset (Baumhoer et al.,
2019), which includes 62 Sentinel-1 SAR images for glaciers
located in Antarctica. The Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 10−3 was used in the
training process. The model was implemented in JAX using
the Haiku framework (Heidler et al., 2023).

At the time of the COBRA model development, CALFIN
was the most complete glacier calving front mapping training
dataset available for the Northern Hemisphere (Cheng et al.,
2021). Although the sizes of tidewater glaciers in Greenland
are typically much larger than those in Svalbard, their geo-
morphological characteristics are similar (Benn et al., 2007).
Therefore, we used this pre-trained COBRA model to map
glacier calving fronts in Svalbard. In order to maintain the
consistency with the training dataset (Cheng et al., 2021),
the near-infrared band of the optical images and the HH band
of the SAR images were used (Table 1). Each satellite image
was initially cropped into a square shape, with the side length
equal to the shortest dimension of the original image, cen-
tred around its midpoint. Then a min–max image scaling was
applied to the cropped satellite image prior to calving front
prediction. The COBRA model predicts the entire coastline
including both the fjord boundary (green line in Fig. 3b) and
the glacier calving front (red line in Fig. 3b) (Heidler et al.,
2023); an example is shown in Fig. 3b. Therefore, the model
outputs need to be post-processed to isolate the actual calv-
ing front.

2.3 Post-processing

While deep-learning techniques have demonstrated effective-
ness in delineating glacier calving front locations (Cheng et
al., 2021; Zhang et al., 2019; Heidler et al., 2022), many
have only been trained on limited datasets, potentially miss-
ing some glacier terminus conditions in different satellite
images. Consequently, due to the well-known distributional
shift, the network may produce inaccurate predictions when
processing satellite images that are not well-represented in
the training datasets, e.g. where the calving front is less dis-
tinct, shadowing occurs, fast-ice is present or other factors.
These inaccurate predictions need to be removed from the
final glacier calving front data product. In addition, the CO-
BRA model prediction includes not only the glacier calving
front, but also the neighbouring fjord boundary which is not
needed. Here we developed an automated post-processing
pipeline to eliminate these inaccurate terminus traces and
mask out the fjord boundary (Fig. 4).

The pipeline consists of four major steps: (1) preliminary
filtering of the initial COBRA model outputs based on the
length and curvature of calving front line segments (Box 1 in
Fig. 4); (2) use of a fjord mask to exclude the fjord boundary
or the other non-calving-front features of each glacier (Box 2
in Fig. 4); (3) identification and removal of erroneous traces
based on glacier calving front line segment density and simi-
larity (Box 3 in Fig. 4); (4) utilizing a predefined glacier cen-

treline to generate a time series of calving front changes and
identifying outliers by applying a median filter to the times
series of the calving front change (Box 4 in Fig. 4).

2.3.1 Filter original model output based on length and
curvature

In cases where the glacier calving front is heavily obscured
by cloud cover or high sea-ice concentration, the calving
front may be less distinguishable in satellite images and the
COBRA model can generate inaccurate predictions. These
can manifest as either excessively short or long line segments
and can exhibit overly complicated curvature shape. The first
step of the post-processing pipeline is to remove these inac-
curate predictions according to the line segment length and
curvature complexity (Box 1 in Fig. 4). The terminus length
and curvature filtering thresholds are based on the automatic
screening module developed by Zhang et al. (2023). Two
thresholds TL and TU based on the inter-quartile range were
used for all the initial terminus trace outputs from COBRA
in each glacier domain:

TL =Q1− 1.5× (Q3−Q1) (2)
TU =Q3+ 1.5× (Q3−Q1) , (3)

whereQ3 is the 75th percentile andQ1 is the 25th percentile
of the data range. For the terminus length, we defined the ter-
minus traces from both the lower and upper thresholds TL
and TU as outliers because the terminus traces that are either
too short or too long are likely to be anomalies. Following
the length filtering of the terminus traces, we calculated the
curvature of each terminus trace as the average for the curva-
tures between two adjacent points along each terminus trace,
then eliminated the terminus traces with curvature values ex-
ceeding the upper threshold TU. The reason for only applying
an upper threshold for curvature complexity is because the
high-quality terminus trace should be smooth with minimal
curvature (Zhang et al., 2023).

2.3.2 Crop and filter glacier calving front using fjord
mask

Following the initial filtering of terminus trace outputs based
on the line segment length and curvature complexity in
Sect. 2.3.1, a fjord mask was implemented for each glacier
(yellow polygon in Fig. 3b). As the model output includes
both the fjord boundary (i.e. land–water contact) and the
glacier calving fronts, the fjord mask serves to exclude the
fjord boundary, retaining only the calving front line segment
that we are interested in (Box 2 in Fig. 4). The fjord mask
was generated by combining the ice-free zone from a binary
ice mask and the land zone from a binary land mask.

The binary land mask was created using the high-
resolution (3”; ∼ 90 m) Water Body Mask (WBM) product
– showing inland water bodies and oceans – that is sup-
plied with the Copernicus GLO-90 digital elevation model
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Figure 3. (a) The Charting Outlines by Recurrent Adaptation (COBRA) deep-learning model architecture used in this study (Heidler et al.,
2023); here only two iterations of the snake head are shown. (b) The calving front predicted by the COBRA model from Sentinel-1A SAR
image on 21 December 2022 for Tunabreen glacier (RGI60-07.01458); the glacier fjord mask is shown as a yellow polygon, the glacier
centreline is shown as a dashed black line, the model output is shown as a combination of a green and red line, the post-processed final
calving front is shown as a red line, and the glacier domain box is shown as a black outline.

Figure 4. The flowchart of post-processing workflow applied to the glacier calving front traces mapped from the pre-trained COBRA
deep-learning model. The coloured geometries indicate key inputs and outputs.

(DEM) dataset (ESA, 2021). The WBM, together with the
DEM product, is referenced on the WGS-84 ellipsoid and is
provided in 1◦× 1◦ tiles globally. We used the RGI version 6
(RGI Consortium, 2017) first-order region shapefile for Sval-
bard to compile the appropriate list of WBM tiles. After mo-
saicking all the WBM tiles for Svalbard, we converted the
original WBM product to a binary land mask by recategoriz-
ing all non-ocean pixels as land. The land mask mosaic was
then re-projected to a 250 m grid (EPSG:3574) and clipped
with the RGI region outlines. The binary ice mask was cre-
ated using RGI version 6 glacier outlines for Svalbard. These

are provided in shapefiles and then rasterized to the 250 m
resolution land mask mosaic grid, which was applied to cor-
rect for any potential mismatches (i.e. masking out the ocean)
between the RGI and Copernicus datasets.

After compiling the binary land and ice masks, we com-
bined the two to find ice free land and vectorized the re-
sulting product. As a final step we added a buffer zone of
200 m length to the merged ice-free land polygon then re-
moved this buffered polygon from the glacier domain box to
get the fjord mask that was used in subsequent steps (yellow
polygon in Fig. 3b). All the fjord masks for our glacier do-
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mains were visually checked and manually adjusted if neces-
sary to make sure the mask can cover the entire calving front
changes. The glacier calving fronts that have been clipped
using fjord masks were subsequently categorized into indi-
vidual time windows which were defined based on the obser-
vation density. During the period 1970–2015 when the data
collection was limited, we set five distinct time windows:
1 January 1970 to 1 January 1990; 1 January 1990 to 1 Jan-
uary 2000; 1 January 2000 to 1 January 2005; 1 January 2005
to 1 January 2010; and 1 January 2010 to 1 January 2015.
From January 2015 to January 2023, we set 17 time inter-
vals, each spanning 6 months.

We implemented length and curvature filters as described
in Sect. 2.3.1 prior to clipping calving fronts with fjord masks
to avoid inaccuracies. If calving fronts are clipped first, it
could result in traces with unrealistic lengths or high curva-
ture complexity still retained within the fjord masks. Con-
sequently, this could lead to the erroneous exclusion of high-
quality calving front traces by the length and curvature filters,
particularly if most of the clipped front traces are of poor
quality. This is especially problematic for smaller glaciers
with complex surface features that are not well represented
in the CALFIN training dataset.

2.3.3 Terminus filtering based on the line segment
density and similarity

Within a given time window defined in Sect. 2.3.2, we as-
sume that the contour shapes of the majority of terminus
traces are similar, and any erroneous terminus trace will sig-
nificantly deviate from this expected similarity. Guided by
this principle, we subsequently implemented two additional
filtering steps for the clipped glacier calving front line seg-
ments: kernel density estimation (KDE) and dynamic time
warping (DTW) (Box 3 in Fig. 4). KDE is a well-established
nonparametric approach to estimate the continuous density
function based on a sample dataset and can cope with an
inhomogeneous distribution of observations (Davies et al.,
2018). Here it was used to estimate the density distribution
of the glacier calving fronts. We first converted all the termi-
nus trace line segments in one glacier domain into scattered
points, then calculated their kernel-density estimates using
a Gaussian kernel. For the density map, we set the upper
threshold as 75 % percentile Q3 and extracted the contour
boundary of the area where the KDE density is higher than
Q3 – the area inside this contour was taken as the bound-
ary where glacier calving fronts are mostly likely to locate.
For every terminus trace line segment, we calculated its inter-
section with this Q3 contour. Terminus traces situated com-
pletely outside the threshold contour were identified as out-
liers and subsequently excluded from the data product. Ter-
minus traces completely enclosed within the threshold con-
tour, or those >95 % of the total trace length within the con-
tour polygon, were taken as potential valid results and re-
tained for subsequent post-processing steps.

DTW is a technique that has been used in time series anal-
ysis to measure similarity between two sequences that vary
in time and speed, and to find the optimal alignment by ac-
commodating time shifts and local shape distortions (Müller,
2007). Here we use DTW to measure the similarity between
two different terminus trace line segments. For each termi-
nus line segment, the DTW distances between this line seg-
ment and all the remaining terminus line segments were cal-
culated. The resulting mean value was taken as the ultimate
DTW distance for this terminus trace. After iterating this step
for all the terminus traces within a given time window, an
outlier detection threshold of 75 % percentile Q3 of all the
DTW distances was applied to identify the anomalous termi-
nus traces. If the DTW distance of a given terminus trace ex-
ceeds this threshold, it was eliminated from subsequent pro-
cessing.

2.3.4 Calving front change time series and median
filtering

The primary objective of measuring glacier calving front lo-
cations is to determine changes over time. Therefore, as a
final step, we generated a time series of the calving front
change for each glacier using a centreline approach and used
this to remove outliers. The centreline approach measures
the advance or retreat of the glacier calving front along a
glacier centreline in relation to their earliest position (Cheng
et al., 2021). The glacier centrelines for all the marine-
terminating glaciers analysed in this study were first derived
using the Open Global Glacier Model (OGGM) (Maussion
et al., 2019). The OGGM glacier centreline was based on
a predefined glacier domain boundary from the RGI glacier
database (Pfeffer et al., 2014), and therefore its length may
not cover all the calving front traces mapped in this study
as some glaciers undergo dramatic changes at their calving
fronts during the study period. To address this issue, we au-
tomatically extended the endpoint of each OGGM centreline
by an additional 10 km in the seaward direction, following
the direction defined by the line segment connecting the two
outermost seaward data points of the OGGM centreline. In
addition, only the main glacier centreline was extracted from
the OGGM model; for glacier domains located at the trib-
utary glaciers we manually mapped the glacier centrelines.
All the glacier centrelines were visually checked and modi-
fied when necessary to make sure it covers the entire glacier
calving front locations of a given glacier and is near perpen-
dicular to the calving front.

To make use of the dense glacier calving front observa-
tions after 2014, a rolling window of 10 observations was
applied. Note we did not apply a rolling window for obser-
vations prior to 2014 due to the lack of sufficient terminus
traces because the available trace number within 1 year could
be less than 10 (Fig. A1). We first calculated an upper thresh-
old as the greater value between 200 m and the maximum
standard deviation of calving front changes in all rolling win-
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dows. The range between the median calving front change
distance in each rolling window above and below this thresh-
old serves as the criterion for identifying and removing out-
liers. This assumes that within a short period of time with
10 observations, the glacier calving front change distance is
likely to be less than 200 m (Luckman et al., 2015). Further-
more, utilizing the highest standard deviation of calving front
change observed across all rolling windows could accommo-
date the occurrence of large calving events. Although this
threshold may not sufficiently capture all the large calving
events which are mostly stochastic events that are difficult to
detect automatically, the calving of large tabular icebergs is
less likely to happen in Svalbard. Nonetheless, this criterion
will need to be further improved for large tidewater glaciers
in the Greenland Ice Sheet.

As a final step, all the glacier terminus traces after
the above post-processing steps were visually checked to
make sure they are correct. The examples of different post-
processed glacier calving front traces for four different
satellite sensors under different environmental conditions
are shown as solid red lines in Fig. 5. In total, 206 371
glacier calving fronts were identified by the automated post-
processing steps and 81 452 terminus traces were discarded
in the visual checking. The ratio of successful calving front
delineations (124 919) compared to all the input satellite im-
ages (1 135 074) is 12 %. The high abandonment rate could
be attributed to three factors: (1) some satellite images may
not fully capture the glacier calving front, as we did not
merge the same-day images, preventing successful delin-
eation; (2) our post-processing workflow uses multiple inter-
quartile range filters across different steps, which can sig-
nificantly reduce the output quantity; and (3) the extensive
satellite images downloaded from GEE permit a strict post-
processing regime, and this can improve our confidence in
calving front delineation and minimizing manual checks,
given that COBRA was trained on a limited training dataset
from Greenland tidewater glaciers.

3 Results

3.1 Dataset overview

Using the methodology developed in this study, we produced
a new high-resolution calving front dataset which contains
124 919 glacier calving fronts for 149 marine-terminating
glaciers (based on updated glacier ids in Sect. 2.1) in Sval-
bard over the period 1985–2023 (Li et al., 2023). The final
product includes only 149 glaciers, fewer than the 220 glacier
domains used, because glaciers that became land-terminating
during the study period were excluded, and glaciers that had
too few calving fronts due to lack of satellite images were
discarded in the rigorous post-processing steps. The dataset
is presented as a single GeoPackage file containing five dif-
ferent layers: glacier domains generated in Sect. 2.1, fjord
masks generated in Sect. 2.3.2, glacier centrelines generated

in Sect. 2.3.4, glacier calving front terminus traces mapped
in this study, and the along-centreline glacier calving front
change time series in relation to the earliest time stamp. Each
layer contains 149 different geometry features representing
149 marine-terminating glaciers. The detailed metadata pro-
vided in this GeoPackage file are shown in Table 2, includ-
ing information on glacier id, satellite platform, satellite im-
age id, satellite image acquisition date, and the glacier calv-
ing front change distance along the centreline. In addition,
we also provided spatial distribution map plots of the glacier
calving front traces and line plots depicting the time series of
calving front changes for each individual glacier. These plots
are provided in PNG file format and can be accessed in the
figures folder.

The greatest number of traces was obtained after 2014
due to the availability of Sentinel-1 and Sentinel-2 satellites
(Figs. 6, 7, and A1); the low trace number in 2023 is be-
cause we only downloaded images in January. The annual
average number of traces per glacier between 2014 and 2022
is 100, representing an average temporal resolution of 4 d.
This allows us to discern the seasonal patterns of glacier
calving front changes. We demonstrate this in the case of
five glaciers across Svalbard, including a surging glacier Os-
bornebreen, that exhibit strong seasonal signals after 2014
(Fig. 7). A glacier’s calving fronts normally retreat (upward
trend in time series) during the Arctic summer and autumn,
and readvance (downward trend in time series) during the
Arctic winter and spring. The manually mapped areal change
polygons of Kochtitzky and Copland (2022) only contain
three different calving front traces for the years 2000, 2010,
and 2020; thus, this dataset cannot resolve any seasonal cy-
cles or sudden changes in glacier calving front locations such
as the surging event shown in Fig. 7l. However, these poly-
gons align well with our calving front traces (Fig. 7b, e, h, k,
n).

3.2 Uncertainty and validation

3.2.1 Uncertainty measurement

The accuracy of the predicted calving front locations from
the COBRA deep-learning model depends on the spatial res-
olution of satellite images, the presence of cloud and shadow
in optical images, speckle noises in SAR images, and the lo-
cal sea-ice conditions in front of the glacier terminus. The
uncertainties related to the COBRA model have been eval-
uated by cross-validation on three different test datasets and
by comparing with different deep-learning models that were
trained on the same training datasets; details can be found
in Heidler et al. (2023). The average prediction error of
COBRA on the CALFIN test set is 99± 10 m, while it is
99± 12 m for the Baumhoer dataset (Heidler et al., 2023).
The rigorous post-processing steps developed in Sect. 2 were
able to eliminate the erroneous terminus trace predictions ef-
fectively. However, the measurement error still remains even
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Figure 5. Examples of the post-processed glacier calving front traces for different satellite images from four satellite platforms including
Landsat (a–d), Terra-ASTER (e–h), Sentinel-2 (i–l), and Sentinel-1 (m–p). The solid red lines are the final glacier terminus traces after
post-processing.

Table 2. Glacier calving front trace metadata recorded in the data product.

Data field Description

Glacier The Randolph Glacier Inventory (RGI) version 6 glacier id

Sensor The satellite platform used in mapping glacier calving front, including “Land-
sat”, “Terra-ASTER”, “Sentinel2” and “Sentinel1”

ImageId The image id of the satellite image used in mapping the glacier calving front

DateString The datetime string of the satellite image in the format of “YYYYMMDD”

CFL_Change The calving front location (CFL) change in metres along the glacier centreline
in relation to the earliest calving front location in the time series

after post-processing and varies with different satellite im-
ages obtained at different times as the environmental condi-
tions at the glacier calving front are different. To estimate the
calving front mapping uncertainty in our final data product,
we compare different terminus traces mapped on the same
day for a given glacier by measuring the mean distance er-
ror in their calving front locations, which is calculated as the
area between two curves normalized by the average length

of the curves (Cheng et al., 2021; Loebel et al., 2023). The
average mean distance error in days with multiple traces is
then taken as the calving front mapping uncertainty of this
glacier (Fig. 8a). This is based on the hypothesis that calv-
ing front remains unchanged over a 24 h period, and traces
generated from different images during the same day should
be the same. Mean distance error utilizes the entire calving
front trace, and therefore the estimated uncertainty is insen-
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Figure 6. Average calving front traces for all marine-terminating
glaciers analysed in this study from 1985 to January 2023 (also see
Fig. A1 for detailed trace number of each glacier).

sitive to the centreline location and is representative for the
glaciers analysed in our study. The total number of terminus
traces obtained on the same day in our data product is 17 106.
They span the entire time series but temporally cluster in the
period 2013–2022 (Fig. 8b). Nonetheless, 88 % of the evalu-
ated glaciers have uncertainty less than 50 m (Fig. 8c). On av-
erage, the mean distance error across Svalbard is 31± 30 m.

3.2.2 Validation with another data product

To further assess the glacier calving front dataset produced
in this study, we calculated the mean distance error by com-
paring it with the Moholdt et al. (2022) annual glacier calv-
ing front data product as part of the Copernicus Glacier
Service project. This product is the most complete glacier
calving front data product for Svalbard prior to our study.
It contains 12 years of calving front traces between 2008
and 2022 for 202 marine-terminating glaciers, and the to-
tal number of glacier terminus traces is 2419 (Table 3). Mo-
holdt et al. (2022) generated annual shapefiles of the marine-
terminating glacier calving fronts by manual delineation
from optical satellite imagery mainly available from Landsat-
8 and Sentinel-2 during the period 15 August–15 September
of each year. Using the same approach as in Sect. 3.2.1, we
calculated the mean distance error of terminus traces mapped
on the same day across these two different datasets for a
given glacier; the average mean distance error in days with
multiple traces is then taken as the calving front mapping
uncertainty of this glacier (Fig. 9a). Since the spatial cov-
erages of the terminus traces mapped on the same day be-
tween these two data products may be significantly different,
a direct comparison can result in an excessively large areal
change as well as the mean distance error. To make sure the
compared traces cover similar spatial extents, we first clipped
the longer line segment in a pair using the 500 m buffered
MBR of the shorter line segment. In total, 85 glaciers have
159 same-day terminus traces across the period 2013–2022
(Fig. 9b). The average mean distance error for these glaciers

is 32± 65 m, and 65 % of the analysed glaciers have a mean
distance error between 10 and 30 m (Fig. 9c).

Since the mean distance error calculation only covers a
limited number of glaciers over a short time period, we im-
plemented an additional assessment by comparing the long-
term calving front change rates of each glacier between these
two data products. We used the same centreline approach,
with the same centrelines, to generate the time series of the
glacier calving front changes for the Moholdt et al. (2022)
data product. Due to a mismatch in the marine-terminating
glaciers included in these two different datasets, we anal-
ysed the common subset of 129 glaciers and compared their
calving front change rates. Variations in observation densities
over time among the glaciers in our dataset could introduce a
potential bias in the linear regression analysis for estimating
the long-term calving front change rates, which is not an is-
sue for the Moholdt et al. (2022) data product with an annual
temporal resolution. In order to facilitate the comparison of
calving front change rates, we first converted the irregular
calving front positions in our dataset to daily front change
distances through linear interpolation, and then we calculated
the monthly mean glacier calving front change distances. The
calving front change rate was estimated by fitting a linear re-
gression to the interpolated monthly front change time series.
For each glacier, the calving front change rates were calcu-
lated within a common time window, which was defined by
the overlapping time period between these two data products.

There is an excellent match between the spatial distribu-
tion of glacier calving front change rates obtained from the
two products (Fig. 10a–b). The glacier calving front change
rates derived from this study show a significant near-linear
correlation with the glacier calving front change rates from
Moholdt et al. (2022) (R2

= 0.98, P -value<0.05) (Fig. 11a).
The Morsnevbreen Glacier exhibits the highest advancing
rate of around −700 m yr−1 in both products (Fig. 11a). This
glacier, known for its surging behaviour, experienced its most
recent surging event between late 2016 and late 2018, dur-
ing which it advanced approximately 5 km (Fig. A2a–c). At
the Polakkbreen Glacier, the most significant calving front
retreat rate is observed (Fig. 11a). During the period from
2016 to 2022, this glacier experienced a retreat of approxi-
mately 4 km (Fig. A2d–f). In addition, 92 % of the investi-
gated glaciers show an absolute difference in calving front
change rates of less than 25 m yr−1 between the two data
products (Figs. 10c and 11b). The Storisstraumen Glacier in
Austfonna Basin-3 exhibits the largest absolute difference in
front change rate of 77 m yr−1 (Fig. A2g–i). Our data show a
pronounced seasonal cycle in the calving front change of this
glacier during the period 2014–2023 (black line in Fig. A2i).
By contrast, the Moholdt et al. (2022) calving front measure-
ments only record the most advanced location in September
each year, resulting in an underestimation of the calving front
advancing rate.
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Figure 7. Examples of glacier calving front change time series of five different glaciers located across Svalbard. Red dots in panels (a),
(d), (g), (j), and (m) show the locations of each glacier; the basemap is the S100 topographic raster data for Svalbard (https://data.npolar.no/
dataset/44ca8c2a-22c2-49e8-a50b-972734f287e3, last access: 17 April 2023). In panels (b), (e), (h), (k), and (n), coloured line segments
are the glacier calving front traces mapped in this study for each glacier; they are overlaid with the 2000–2020 glacier areal change polygons
(Kochtitzky and Copland, 2022) denoted by dashed coloured polygons (legend at the bottom of the figure), and the binary land-ice (white)
and water mask (grey) generated in Sect. 2.3.2. Panels (c), (f), (i), (l), and (o) show the glacier calving front change time series in relation
to the earliest calving front trace at each glacier (upward trend denotes retreating while downward trend denotes advancing as illustrated in
c), blue crosses denote the calving front change observations before 2014. In panel (l), the orange box denotes the glacier surging event that
occurred around 2020.
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Figure 8. Calving front mapping mean distance error for 146 glaciers (3 glaciers do not have duplicated traces on the same day). (a) Spatial
distribution of calving front mapping mean distance error of different marine-terminating glaciers. The background hillshade map is generated
from the 50 m resolution Svalbard digital elevation model (DEM) (https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea,
last access: 18 April 2023). (b) Temporal distribution of the same-day calving front trace duplicates. (c) Histogram of different mean distance
error categories.

Table 3. Overview of two different calving front data products. “Type” indicates the type of calving front data provided in the data product.
“Method” indicates how the dataset is produced. “No. glaciers” gives the number of presented glaciers. “No. mapped fronts” gives the total
number of glacier calving front traces included in each data product.

Dataset Data source Type Method No. No. mapped Time span Temporal resolution
glaciers fronts

This study Optical and SAR Line Neural network 149 124 919 1985–2023 Sub-weekly after 2014
Moholdt et al. (2022) Optical Line Manually 202 2419 2008–2022 Annually

3.3 Spatial and temporal calving front variability in
Svalbard

The spatial distribution of the different calving front change
trends of the 149 marine-terminating glaciers included in
the data product is shown in Fig. 12. The predominant
trend among Svalbard’s marine-terminating glaciers is re-
treat, where 123 glaciers (82.6 %) have been consistently re-
treating during the study period. Overall, 16 glaciers showed
an advancing trend (not surging); most of these glaciers
are located on the Vestfonna and Austfonna ice caps on
the island of Nordaustlanet at the northeastern limit of the
archipelago, where warm North Atlantic waters are less ac-
cessible (Fig. 12) (Skogseth et al., 2005). There are an ad-
ditional 10 glaciers that displayed surge behaviour and they
have a widespread distribution across different regions.

Svalbard is one of the most prominent regions of surge-
type glaciers, with approximately 13 % showing this be-
haviour (Jiskoot et al., 2000). Using our extensive satellite
data catalogue, we were able to capture the exact timing of
surge-type events (Figs. 7j–l and 13) and identify surging
events that are unknown from previous calving front data
products (Kochtitzky and Copland, 2022; Moholdt et al.,
2022). For example, Tunabreen is a quiescent-phase surge-
type glacier which terminates in Temperfjorden, a shallow
fjord with limited connection to the warm ocean currents
(Luckman et al., 2015). During our study period, we ob-
served two individual surging events at Tunabreen, one dur-
ing 2002–2004, and the other during 2017–2019 (orange
boxes in Fig. 13d). During both events, the Tunabreen calv-
ing front advanced more than 1.5 km in less than 2 years. By
comparison, Moholdt et al. (2022) only identified the sec-
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Figure 9. Calving front mapping mean distance error for 85 glaciers between data products generated in this study and by Moholdt
et al. (2022). (a) Spatial distribution of calving front mapping mean distance error of different marine-terminating glaciers. The back-
ground hillshade map is generated from the 50 m resolution Svalbard digital elevation model (DEM) (https://data.npolar.no/dataset/
dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April 2023). (b) Temporal distribution of the calving front traces mapped on the
same day. (c) Histogram of different mean distance error categories.

Figure 10. The calving front change rates between 2008 and 2022 for the calving front data product generated in this study (a), the calving
front data product by Moholdt et al. (2022) (b), and the calving front change rate difference between these two calving front data products
(c). The background hillshade map is generated from the 50 m resolution Svalbard digital elevation model (DEM) (https://data.npolar.no/
dataset/dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April 2023).
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Figure 11. Comparison of glacier calving front change rates be-
tween product generated in this study and the Moholdt et al. (2022)
calving front data product. Panel (a) shows the correlation between
the glacier calving front change rates between these two different
data products. Panel (b) shows the histogram of absolute difference
in glacier front change rates between these two different calving
front data products.

ond surging event (Fig. 13e), and they were also unable to
capture the seasonal cycles of the calving events. This exam-
ple demonstrates the power of our highly automated multi-
sensor calving front mapping scheme, which can uncover
previously unknown events in unprecedented detail and can
aid future investigations on calving front dynamics and the
mass balance of tidewater glaciers.

4 Discussion

Our calving front dataset of Svalbard marine-terminating
glaciers during 1985–2023 is the first to provide calving front
observations of large and comprehensive spatial coverage,

Figure 12. Spatial distribution of different calving front change
trends of marine-terminating glaciers in Svalbard derived from
the calving front data product generated in this study, and the
main current circulation around the Svalbard archipelago (Skogseth
et al., 2005; Misund et al., 2016). The orange, green, and
pink polygons represent surging glaciers, non-surging-type ad-
vancing glaciers, and retreating glaciers, respectively. The back-
ground hillshade map is generated from the 50 m resolution Sval-
bard digital elevation model (DEM) (https://data.npolar.no/dataset/
dce53a47-c726-4845-85c3-a65b46fe2fea, last access: 18 April
2023).

high temporal resolution, and a long time span of 38 years.
It not only captures the spatial pattern of evolving marine-
terminating glacier calving fronts, but also provides insights
at different time scales. This dataset can be used to study
glacier mass balance, understand calving mechanisms, and
predict glacier dynamics.

The calving front data product is mapped using the novel
COBRA deep-learning model (Heidler et al., 2023). This
model has been proven to outperform the previous calving
front mapping models such as HED-UNet (Heidler et al.,
2022), which was used for the IceLine Antarctic ice shelf
front dataset (Baumhoer et al., 2023), CALFIN (Cheng et al.,
2021), as well as the UNet model (Mohajerani et al., 2019).
While the geomorphological features of tidewater glaciers in
Svalbard and Greenland exhibit general similarities, it is im-
portant to note that the calving styles and neighbouring fjords
can vary significantly among certain glaciers. Therefore, the
CALFIN training dataset used in our model development
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Figure 13. Calving front change time series of Tunabreen
surging glacier (RGI60-07.01458). (a) Red dot shows the
location of Tunabreen overlaid on the basemap from the
S100 topographic raster data for Svalbard (https://data.npolar.
no/dataset/44ca8c2a-22c2-49e8-a50b-972734f287e3, last access:
17 April 2023); (b) The coloured lines are the calving front traces
derived in this study overlaid on the binary land-ice (white) and wa-
ter mask (grey) generated in Sect. 2.3.2; the solid green lines are
the calving front traces mapped in the Moholdt et al. (2022) data
product; the glacier centreline is denoted by dashed black line. (c)
The zoomed-in map of calving front traces inside the grey box in
(b). (d) The glacier calving front change time series included in
this study, with the orange transparent boxes denoting two individ-
ual surging events. (e) The glacier calving front change time series
from the Moholdt et al. (2022) data product; black crosses denote
the calving front measurements.

may not be universally applicable to all Svalbard glaciers.
To enhance the predictive capabilities of deep-learning mod-
els and simplify post-processing procedures, future research
should focus on generating extensive training datasets for
glacier calving fronts encompassing a wider range of geo-
graphical regions and glacier types.

Several external datasets were needed as inputs for the
pre-processing and post-processing pipelines, including the
Kochtitzky and Copland (2022) glacier front areal change
polygon and the glacier centreline. The Kochtitzky and Cop-
land (2022) areal change polygon serves the primary pur-

pose of defining the glacier’s bounding box for satellite im-
age queries from GEE platform. Given that this areal change
polygon only covers a limited period between 2000 and
2020, the fixed buffer length of 1.5 km used in Sect. 2.1
may not fully cover the entire calving front changes dur-
ing 1985–2023. While this is less likely to be an issue in
Svalbard given the relatively smaller scale and size of the
marine-terminating glaciers, the buffer length will need to
be adjusted when applying the processing pipeline to larger
glaciers in different regions, such as the Greenland Ice Sheet.
The glacier centreline is used in filtering out the abnormal
front traces and producing the front change time series. Al-
though only one centreline is used for each glacier, the cen-
trelines are placed in areas with substantial calving front
changes, making it effective and representative for filtering
and quantifying the front changes over time.

The calving front changes of marine-terminating glaciers
in our study are consistent with earlier observations by
Kochtitzky and Copland (2022) and by Moholdt et al. (2022),
although the temporal resolutions are different among these
three products. The mean difference between our data prod-
uct and the Moholdt et al. (2022) dataset is 32± 65 m, com-
parable to the calving front mapping uncertainty of 31 m in
our dataset. In addition, the comparison of our glacier calving
rates with the Moholdt et al. (2022) annual calving front data
product shows an excellent match with R2

= 0.98 during the
period 2008–2022. The most significant mismatch in calv-
ing front change rate is located in Storisstraumen Glacier,
and this is because the Moholdt et al. (2022) annual calv-
ing front dataset fails to capture the seasonal calving cy-
cles. This example demonstrates the importance of consid-
ering seasonal calving front changes when estimating the
long-term front change rates. Both datasets exhibit a clear
and predominant trend of glacier retreat across Svalbard, in
agreement with the Kochtitzky and Copland (2022) study
of decadal glacier calving front change during 2000–2020,
which shows that the net area change of glaciers in Sval-
bard is−26.76±0.54 km2 yr−1. This spatial pattern was also
reported by Geyman et al. (2022) by reconstructing DEMs
using an archive of historical aerial imagery from 1936 and
1938. They showed that the mass balance in Svalbard during
1936–2010 was dominantly negative with an average thin-
ning rate of 0.35± 0.03 m yr−1. Glaciers in most of the re-
gions experienced thinning rates exceeding 0.5 m yr−1, ex-
cept the northeast Svalbard which remained stable during
these 70 years.

Being able to assess calving front variability at multiple
time scales is important in identifying drivers governing calv-
ing front changes and resolving mass balance estimations
accurately (Benn and Åström, 2018; Rounce et al., 2023;
Kochtitzky et al., 2022, 2023; Schuler et al., 2020; Luckman
et al., 2015; Nuth et al., 2019; Strozzi et al., 2017; Cowton et
al., 2018). Observations and theory show that increased calv-
ing can be driven by both atmospheric and oceanic warming.
Increased surface melting and runoff can accelerate calving
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through hydrofracturing of near-terminus crevasses. It can
also increase subglacial discharge which, along with ocean
warming, can drive submarine melting and accelerate termi-
nus calving (Carr et al., 2013; Catania et al., 2020). Glacier
calving processes in Svalbard, however, are not well under-
stood due in part to a lack of comprehensive glacier calv-
ing front observations. Although Holmes et al. (2019) and
Luckman et al. (2015) claimed that calving rates of marine-
terminating glaciers in Svalbard vary strongly with ocean
temperature, their results must be interpreted with caution –
especially over large areas or long time scales – as they only
used a small sample of glaciers (n≤ 3) within a short period
of 2 years. The large number of investigated glaciers, along
with the high temporal resolution and long time span (1985–
2023) of our data product, provides a good basis for gaining
new insights into the governing mechanisms in calving pro-
cesses in Svalbard.

5 Code and data availability

The source code of COBRA model v1.0.0 and infer-
ence examples are accessible at https://github.com/khdlr/
COBRA/releases/tag/v1.0.0 (last access: 10 January 2023),
its DOI is https://doi.org/10.5281/zenodo.8407566 (Hei-
dler, 2023). The Svalbard calving front dataset produced
in this study is available at the Zenodo data repository:
https://doi.org/10.5281/zenodo.10407266 (Li et al., 2023).

6 Conclusion

In this study, we produced a new high-resolution glacier calv-
ing front dataset, including 124 919 individual calving fronts,
for 149 marine-terminating glaciers in Svalbard covering the
period 1985–2023. This represents a significant increase in
glacier calving front observation density compared to simi-
lar products. This data product was derived using automated
processing methods developed in this study, which incorpo-
rate a novel deep-learning framework, multiple optical and
SAR satellite images (Landsat, Terra-ASTER, Sentinel-1 and
Sentinel-2) curated and downloaded via the Google Earth
Engine platform, and a bespoke post-processing algorithm.
The data product is validated with the latest Svalbard annual
calving front dataset produced by Moholdt et al. (2022) by
calculating the mean difference in calving front locations and
comparing the calving front change rates over the same pe-
riod of time. The results show a strong correlation in calving
front change rates between the two products with anR2 value
of 0.98, while their mean difference is only 32± 65 m. In ad-
dition, our results show that calving front retreat has been
dominant across most of Svalbard in the past four decades,
except the northeast region comprising Vestfonna and Aust-
fonna, consistent with the overall negative glacier mass bal-
ance identified in Svalbard. This new dataset will contribute
to a better understanding of glacier calving front mechanisms

and more accurate frontal ablation estimates in Svalbard.
This is essential in calculating glacier mass balance and pre-
dicting the contribution to future sea-level rise, especially in
the context of the ongoing Arctic warming.

Appendix A

Table A1. The Google Earth Engine (GEE) image collections for
different satellites used in this study.

Satellite GEE image collection

ASTER ASTER/AST_L1T_003
Landsat-1 LANDSAT/LM01/C02/T1
Landsat-2 LANDSAT/LM02/C02/T1
Landsat-3 LANDSAT/LM03/C02/T1
Landsat-4 LANDSAT/LT04/C02/T1
Landsat-5 LANDSAT/LT05/C02/T1
Landsat-7 LANDSAT/LE07/C02/T1
Landsat-8 LANDSAT/LC08/C02/T1
Landsat-9 LANDSAT/LC09/C02/T1
Sentinel-2 COPERNICUS/S2_HARMONIZED
Sentinel-1 COPERNICUS/S1_GRD
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Figure A1. Heatmap of glacier traces of each marine-terminating glacier analysed in this study from 1985 to 2023 January. Each column
represents one glacier, and each row represents 1 year ranging from 1985 to 2023. The colour corresponds to the number of traces for one
glacier per year.
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Figure A2. Examples of glacier calving front change comparison during a common time period between calving front data products gener-
ated in this study and by Moholdt et al. (2022) for Morsnevbreen Glacier (panels a–c), Polakkbreen Glacier (panels d–f), and Storisstraumen
Glacier in Austfonna Basin-3 (panels g–i). Red dots in panels (a), (d), and (g) show the locations of each glacier, the basemap is the S100
topographic raster data for Svalbard (https://data.npolar.no/dataset/44ca8c2a-22c2-49e8-a50b-972734f287e3, last access: 17 April 2023). In
panels (b), (e), and (h), coloured line segments are the glacier calving front traces mapped in this study; they are overlaid with the calving
front traces mapped in Moholdt et al. (2022) denoted by solid green lines, and the binary land-ice (white) and water mask (grey) generated
in Sect. 2.3.2. Panels (c), (f), and (i) show the glacier calving front change time series in relation to the earliest calving front trace during the
data comparison time window; solid black lines show the front change time series generated in this study and the solid red lines show the
Moholdt et al. (2022) front change time series.
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Abstract: In a warming Arctic, permafrost-related disturbances, such as retrogressive thaw slumps
(RTS), are becoming more abundant and dynamic, with serious implications for permafrost stability
and bio-geochemical cycles on local to regional scales. Despite recent advances in the field of
earth observation, many of these have remained undetected as RTS are highly dynamic, small,
and scattered across the remote permafrost region. Here, we assessed the potential strengths and
limitations of using deep learning for the automatic segmentation of RTS using PlanetScope satellite
imagery, ArcticDEM and auxiliary datasets. We analyzed the transferability and potential for pan-
Arctic upscaling and regional cross-validation, with independent training and validation regions,
in six different thaw slump-affected regions in Canada and Russia. We further tested state-of-
the-art model architectures (UNet, UNet++, DeepLabv3) and encoder networks to find optimal
model configurations for potential upscaling to continental scales. The best deep learning models
achieved mixed results from good to very good agreement in four of the six regions (maxIoU: 0.39 to
0.58; Lena River, Horton Delta, Herschel Island, Kolguev Island), while they failed in two regions
(Banks Island, Tuktoyaktuk). Of the tested architectures, UNet++ performed the best. The large
variance in regional performance highlights the requirement for a sufficient quantity, quality and
spatial variability in the training data used for segmenting RTS across diverse permafrost landscapes,
in varying environmental conditions. With our highly automated and configurable workflow,
we see great potential for the transfer to active RTS clusters (e.g., Peel Plateau) and upscaling to
much larger regions.

Keywords: deep learning; image segmentation; permafrost thaw; semantic segmentation; disturbances;
computer vision; automation; PlanetScope; thermo-erosion; ArcticDEM; landslides

1. Introduction

The changing climate of the Arctic, with both measured and projected air temperatures
and precipitation rapidly increasing [1,2], has a significant impact on permafrost [3–5].
As permafrost soils store about twice the amount of carbon as that found in the atmo-
sphere [6,7], permafrost thaw and resulting carbon feedbacks are expected to have a
significant impact on the global climate [8]. Rising permafrost ground temperatures have
been observed across almost the entire Arctic permafrost region [3]. As a result of warming,
permafrost becomes more vulnerable to disturbances of [9] and degradation in ground
ice-rich landscapes due to thermokarst and thermo-erosion.

Retrogressive thaw slumps (RTS) are typical landforms related to processes of rapidly
thawing and degrading hillslope permafrost [10]. Although these mass-wasting processes
have been observed in different Arctic regions in the past decades [11–13], many recent
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field and remote sensing studies found increasing occurrence and faster progression in
various permafrost regions [12,14–18].

As RTS typically have a small size (<10 ha, with a few exceptions reaching up to
~1 km2), as well as a wide range of appearances and dynamics, their detection and mon-
itoring on the regional to continental scale would require globally available imagery at
sufficiently high spatial and temporal resolutions. Their formation is bound to specific
environmental and permafrost conditions, such as ice-rich permafrost and sloped ter-
rains [10,12,19], thus limiting their presence to regional clusters. Particularly, regions with
massive amounts of buried ice, as preserved in the moraines of former glaciations [17,20,21],
or regions with thick syngenetic ice-wedges in yedoma permafrost [22,23], or with very fine
grained marine deposits that were raised above sea level following deglaciation and thus
formed very icy epigenetic permafrost, can be prone to RTS development [18]. Furthermore,
increasing temperatures and precipitation have likely caused the increased formation and
growth of RTS [21,24].

Fairly well-studied regions for the occurrence of thaw slumps are typically clustered
and located in former ice-marginal regions of the Laurentide Ice Sheet in NW Canada,
most notably the Peel Plateau [17,21] and Banks Island [16], or moraines of formerly
glaciated mountain ranges, e.g., the Brooks Range in northern Alaska [20,25]. Intensively
studied regions in Siberia include the Yamal Peninsula [13,26], Kolguev Island [27], Bolshoy
Lyakhovsky Island [22] and the Yana Basin with its famous Batagaika mega slump [14,28].
However, the latter is, atypically, not part of a larger cluster of RTS. The total quantity and
distribution of RTS in the Arctic remains unknown.

Several remote sensing studies have used very high-resolution (VHR) satellite data,
but RTS are typically delineated manually, which is a labor-intensive task and therefore
prohibitive for larger regions. The use of airborne [29,30] or UAV data [31] to survey
small areas with RTS is becoming more popular. These datasets allow for the creation
of elevation data and multiple observations, thus providing a basis for more automated
approaches [29–31]. Highly automated approaches, which will be required to map RTS
across larger regions and multiple time steps, are fairly scarce so far. Nitze et al. [32] used a
random forest machine learning approach to map RTS and other permafrost disturbances,
such as lake dynamics and wildfire, on Landsat data across four large north–south transects
in the Arctic covering ~2.2 million km2. For the indirect detection of RTS and thaw-related
erosion features, Lara et al. [33] measured changes in lake color as a proxy for rapid thermo-
erosion dynamics in a watershed-scale study in NW Alaska using Landsat. However,
the coarse resolution of Landsat (30 m) proved to be a highly limiting factor in detecting
RTS features accurately [32]. A combination of Landsat and Sentinel-2 imagery was used
to assess RTS dynamics with the LandTrendr disturbance detection algorithm over a
~8 million km2 region of East Siberia for a 20-year period from 2000 to 2019 [34].

Automated approaches applied to higher-resolution data (better than 5 m ground
resolution), such as high-resolution RapidEye and PlanetScope imagery or very high-
resolution DigitalGlobe/Maxar imagery, pose specific challenges for image classification
and specifically object detection. On such data, pixel-based approaches are no more
feasible, and object-based image approaches (OBIA) need to be applied [35]. Traditionally,
this has been accomplished with the segmentation followed by classification of image
objects. Over the past few years, deep learning (DL) techniques have grown in popularity
for object detection or segmentation in imagery of any kind, e.g., bio-medical images
or everyday photography.

In remote sensing, DL approaches are also growing in popularity [36] for typical
applications such as image segmentation and classification, due to their ability to take
spatial context into account. This includes, e.g., the mapping of landslides [37–39]. Further-
more, DL-based image segmentation has been particularly applied on VHR data, such as
Worldview, GeoEye, etc., to automatically detect comparably small objects, such as build-
ings [40–42] or individual trees [43]. Due to many DL algorithms, such as Mask R-CNN,
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requiring a fixed amount of input bands, e.g., one or three, and to avoid overfitting, several
studies have focused on input band selection and optimization [44–46].

In permafrost remote sensing, deep learning applications are very scarce so far. They
have been applied for mapping and segmenting ice-wedge polygons [47–49] and for detect-
ing infrastructure across the Arctic permafrost region [50]. DL for detecting and tracking
RTS was used by Huang et al. [51,52], who tested the applicability of the DeepLabv3+ DL
architecture for detecting and monitoring RTS on the Tibetan Plateau using Planet data.
They received a high detection quality similar to manual digitization [52], which enabled
them to track RTS in space and time within a confined region.

Based on these promising achievements, we here aim to:
(1) test the feasibility of applying DL methods on PlanetScope and auxiliary data to

detect and map RTS across different Arctic permafrost regions;
(2) identify the particular advantages and challenges;
(3) discuss the further requirements for using AI-based techniques to eventually map

RTS across the circum-Arctic permafrost zone.

2. Materials and Methods
2.1. Study Regions

We selected six different sites across the Arctic in Canada and Russia that are affected
by RTS (Figure 1; Table 1). These locations were chosen to contain a sufficient number
of RTS, and to represent a broad variety of environmental conditions (sparse tundra to
taiga) and geographic settings (RTS at coast, river, or lake shores, hillslopes, and moraines).
Study sites with a spatially extensive occurrence of RTS (e.g., Horton Delta, Banks Island,
Kolguev Island) were each split into two subsets. All sites/subsets have an area of 100 km2

(10 × 10 km) to ensure the best possible comparison and normalization to each other.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 

by RTS [21]. The site is characterized by rolling terrain with steep coastal cliffs and par-
tially deeply incised valleys. Vegetation here is classified as dwarf shrub tundra of CAVM 
subzone D/E [55]. Lakes are very sparse, but larger valleys with rivers are present within 
this site. Thaw slumps are predominantly located on top of the coastal cliffs. Smaller RTS 
are also found along steep valley slopes in close proximity to the coast. Modeled ground 
temperatures are −7 to −8 °C [56]. 

2.1.4. Kolguev Island 
Kolguev is an island off the coast of Arctic European Russia. It is characterized by 

ice-rich permafrost with tabular ice [27]. Vegetation here is dominated by Tundra of 
CAVM Zone D [55]. The study site has a rolling terrain with steep coastal bluffs. RTS are 
most abundant on these coastal bluffs in the NW of the island. Lakes are very sparse in 
this region (see Figures A6 and A7). Modeled ground temperatures are 0 to 1 °C [56], 
though the presence of RTS and therefore ground-ice suggests lower temperatures. 

2.1.5. Lena River 
This study site is located in the lower reaches of the Lena River on the east side of the 

river close to the foothills west of the Verkhoyansk Mountain Range in northeastern Sibe-
ria. This site is likely a terminal moraine of an ancient outlet glacier from the mountain 
range, which underwent several glaciations during the Quaternary period [59]. The glacial 
history of this region is not documented in detail. Vegetation here is boreal forest, and the 
region is lake-rich. RTS typically formed along the lake’s shores. Former stabilized RTS 
are also abundant and mostly covered by dense shrubs (see Figure A8). The presence of 
RTS in this region is only sparsely documented in the literature [32]. Modeled ground 
temperatures are −7 to −8 °C [56]. 

2.1.6. Tuktoyaktuk Peninsula 
This region is located on the Tuktoyaktuk Peninsula in NW Canada. It is a rolling, 

glacially (Laurentide Ice Sheet) shaped lowland with massive ground ice [19,60]. The veg-
etation here is shrubby tundra of CAVM Zone E [55] close to the tundra–taiga ecotone. 
This region has a large abundance of lakes [61,62]. Thaw slumps typically form along lake 
shores (see Figure A9). Modeled ground temperatures are −6 to −7 °C [56]. 

 
Figure 1. Overview map of study sites and permafrost extent based on (Obu et al., 2018). 

Figure 1. Overview map of study sites and permafrost extent based on (Obu et al., 2018).



Remote Sens. 2021, 13, 4294 4 of 23

Table 1. Study sites with center coordinates, region, and number of used Planet images.

Study Site Center Coordinates Region # of
Images

# of Image
Dates

Banks Island 01 119.50◦ W; 72.84◦ N; NW Canada 12 5
Banks Island 02 118.20◦ W; 73.04◦ N NW Canada 15 4
Herschel Island 139.00◦ W; 69.60◦ N NW Canada 10 5
Horton Delta 01 126.75◦ W; 69.75◦ N; NW Canada 10 4
Horton Delta 02 126.60◦ W; 69.64◦ N NW Canada 13 6

Kolguev Island 01 48.35◦ E; 69.22◦ N NW Siberia 29 14
Kolguev Island 02 48.51◦ E; 69.35◦ N NW Siberia 20 8

Lena River 124.40◦ E; 69.12◦ N E Siberia 47 22
Tuktoyaktuk Pen. 133.80◦ W; 69.12◦ N NW Canada 19 9

2.1.1. Banks Island

The Banks Island study site consists of two subsets and is located in the eastern
RTS-rich part of Banks Island in NW Canada (see Figures A1 and A2). This region is
characterized by glacial moraine deposits (Jesse Moraine) of the former Laurentide Ice
Sheet, which contains buried massive ground ice [16,53]. The region is subject to massive
permafrost degradation as indicated by strong ice-wedge degradation [54] and abundant
RTS [16], which mostly form along lake shores and valley slopes. The vegetation is sparse
tundra according to the Circum-Arctic Vegetation Map (CAVM) subzone C [55]. The
selected site has some of the largest and most active RTS known globally (see Figure A1d).
The region has rolling terrain with an abundance of lakes and river valleys. Modeled
ground temperatures are −14 to −15 ◦C [56].

2.1.2. Herschel Island

This study site covers large parts of Herschel Island in NW Canada (see Figure A3).
The Herschel Island site contains large highly active RTS, which have been frequently
studied over the past decade [12,57]. Similar to many other RTS-rich sites in NW Canada,
Herschel Island is located along the margins of the Laurentide Ice Sheet. The substrate is
dominated by permafrost with massive buried glacial ice remnants [58]. The vegetation
is dominated by shrubby tundra (erect dwarf shrub tundra) of CAVM Zone E [55]. Due
to the rolling hilly nature of the island, there are many small stream catchments, but only
a few smaller lakes and ponds. Thaw slumps are predominantly located on the SE shore.
Modeled ground temperatures are −5 to −6 ◦C [56].

2.1.3. Horton Delta

This study site consists of two subsets and is located just south of the Horton River
delta in NW Canada at a steep cliff on the Beaufort Sea coast (see Figures A4 and A5).
This region was located at the front of a Laurentide Ice Sheet lobe and is known to be
affected by RTS [21]. The site is characterized by rolling terrain with steep coastal cliffs
and partially deeply incised valleys. Vegetation here is classified as dwarf shrub tundra of
CAVM subzone D/E [55]. Lakes are very sparse, but larger valleys with rivers are present
within this site. Thaw slumps are predominantly located on top of the coastal cliffs. Smaller
RTS are also found along steep valley slopes in close proximity to the coast. Modeled
ground temperatures are −7 to −8 ◦C [56].

2.1.4. Kolguev Island

Kolguev is an island off the coast of Arctic European Russia. It is characterized by
ice-rich permafrost with tabular ice [27]. Vegetation here is dominated by Tundra of CAVM
Zone D [55]. The study site has a rolling terrain with steep coastal bluffs. RTS are most
abundant on these coastal bluffs in the NW of the island. Lakes are very sparse in this
region (see Figures A6 and A7). Modeled ground temperatures are 0 to 1 ◦C [56], though
the presence of RTS and therefore ground-ice suggests lower temperatures.
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2.1.5. Lena River

This study site is located in the lower reaches of the Lena River on the east side of
the river close to the foothills west of the Verkhoyansk Mountain Range in northeastern
Siberia. This site is likely a terminal moraine of an ancient outlet glacier from the mountain
range, which underwent several glaciations during the Quaternary period [59]. The glacial
history of this region is not documented in detail. Vegetation here is boreal forest, and
the region is lake-rich. RTS typically formed along the lake’s shores. Former stabilized
RTS are also abundant and mostly covered by dense shrubs (see Figure A8). The presence
of RTS in this region is only sparsely documented in the literature [32]. Modeled ground
temperatures are −7 to −8 ◦C [56].

2.1.6. Tuktoyaktuk Peninsula

This region is located on the Tuktoyaktuk Peninsula in NW Canada. It is a rolling,
glacially (Laurentide Ice Sheet) shaped lowland with massive ground ice [19,60]. The
vegetation here is shrubby tundra of CAVM Zone E [55] close to the tundra–taiga ecotone.
This region has a large abundance of lakes [61,62]. Thaw slumps typically form along lake
shores (see Figure A9). Modeled ground temperatures are −6 to −7 ◦C [56].

2.2. Data

For training data collection, as well as model training, validation and inference, we
used a variety of data. Our primary data source was the PlanetScope [63] multispectral
optical data for the years 2018 and 2019. We further used additional datasets, such as the
ArcticDEM [64] and Tasseled Cap Landsat Trends [32]. Furthermore, for collecting ground
truth, we additionally used the ESRI and Google Satellite layers.

2.2.1. PlanetScope

We used PlanetScope satellite images [63] as our primary data source. PlanetScope
data are acquired by a constellation of more than 120 satellites in orbit. They have a spatial
resolution of 3.15 m and four spectral bands in the visual (red, green, blue; RGB) and
near-infrared (NIR) wavelengths. The high number of satellites in orbit allows for sub-daily
temporal resolution, particularly at high-latitudes, where data overlap becomes increas-
ingly dense for satellites following a polar orbit [65]. However, non-obstructed views of the
ground are severely limited, particularly in high-latitude coastal regions, due to persistent
cloud cover and cloud shadows, haze, and long snow periods. Furthermore, the generally
low sun elevations in high-latitude environments can lead to low signal-to-noise ratios.

For data selection, we applied the following selection criteria: maximum 10% cloud
cover, 90% area coverage, and an observation period from 1 June until 30 September during
the years 2018 and 2019. Furthermore, we selected image dates by visual inspection to
ensure consistent temporal sampling, where possible. As cloud-free periods (the main
limiting factor) tended to be temporally clustered, we omitted several clear sky image dates
within short periods (e.g., five consecutive days with clear skies), as these will not provide
additional value for training the model. The image dates and IDs are indicated in Figure 2
and Supplementary Table S1. Due to further satellite launches, the number of PlanetScope
images increased significantly over our observation period. Thus, available imagery was
rather sparse before 2019, but became increasingly abundant after that.
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Finally, we downloaded data through the porder download program [66] and Planet
Explorer interface. We chose the “analytic_sr,udm2” bundle, which includes surface
reflectance data, udm (unusable data mask), udm2 and metadata files. We chose to clip
output data automatically to the respective AOI extents, which allowed us to optimize
the allocated data quota and to ensure the completeness of all ground truth datasets.
Finally, we calculated the Normalized Difference Vegetation Index (NDVI) for each scene
as an additional input layer. We used the udm2 data mask to mask out remaining clouds,
shadows and snow/ice in the PlanetScope and all auxiliary datasets.

2.2.2. Arctic DEM

We used the ArcticDEM [64] (version 3, Google Earth Engine Dataset: “UMN/PGC/
ArcticDEM/V3/2m_mosaic”) to calculate slope and detrended elevation data. The Arctic-
DEM is available for all land areas north of 60◦ latitude, but contains minor data gaps. We
calculated the relative (detrended) elevation by subtracting the mean elevation within a
circular window (structuring element) with a diameter of 50 pixels (100 m). The relative
elevation was used to determine the local pixel position within the surroundings and to
remove the influence of the regional elevation. Finally, we rescaled the relative elevation
values with an offset of 50 and factor of 300 to minimize the size of data of the unsigned
Integer16 type. Furthermore, we calculated the slope in degrees. For both calculations we
used the ee.Terrain.slope function in the Google Earth Engine (GEE).

We downloaded the data (relative elevation and slope) for the training sites (buffered
by 5 km) from GEE with the native projection (NSIDC Sea Ice Polar Stereographic North,
EPSG: 3413) and a spatial resolution of 2 m. We chose GEE over the original data portal
due to the simpler accessibility of data, as well as its capacity for slope calculation and
process automation. After downloading, all individual tiles were merged into virtual
mosaics using gdalbuildvrt to simplify data handling and permit efficient data storage. We
later reprojected both datasets, elevation and slope, to the projection, spatial resolution
and image extent of individual PlanetScope scenes using gdalwarp within our automated
processing pipeline (see Figure 3).

2.2.3. TCVIS

To introduce a decadal-scale multi-temporal dataset into the analysis, we used the
temporal trend datasets of Tasseled Cap indices of Landsat data (Collection 1, Tier 1, Surface
Reflectance), based on previous work [67,68]. For the period from 2000 to 2019, we filtered
Landsat data to scenes with a cloud cover of less than 70% and masked clouds, shadows
and snow/ice based on available masking data.

We calculated the Tasseled Cap indices [69], brightness (TCB), greenness (TCG), and
wetness (TCW) for each individual scene. Then we calculated the linear trend for each
index over time, scaled to 10 years. Finally, we truncated the slope values of all three indices
to a range of −0.12 to 0.12 and transformed the data to an unsigned integer data range
(0 to 255) to minimize storage use. The resulting data were stored as a publicly readable
GEE ImageCollection asset (“users/ingmarnitze/TCTrend_SR_2000-2019_TCVIS”).
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2.3. Methods
2.3.1. Slump Digitization

We created ground truth datasets for training and validation by manual digitization
in QGIS 3.10 [70]. We used the individual PlanetScope scenes (see Section 2.2.1) as the
primary data source. We digitized each available image individually. Accordingly, we have
multi-temporal information of RTS in all study regions. The same physical RTS may have
different polygon shapes on different dates due to the physical change of the RTS (e.g.,
growth), presence of snow, its location on the edge of the imagery, geolocation inaccuracies,
or slightly inconsistent digitization (see below).

Furthermore, we used auxiliary data to better understand landscape morphology
and landscape dynamics, when interpreting potential RTS features. These auxiliary
data are the ArcticDEM and multitemporal TCVIS (Landsat Tasseled Cap Trend) data,
streamed through the Google Earth Engine Plugin (https://github.com/gee-community/
qgis-earthengine-plugin, v0.0.2) in QGIS. Furthermore, additional VHR imagery publicly
available in ESRI and Google satellite base layers was accessed and used for mapping
through the QuickMapServices Plugin in QGIS [71]. The VHR imagery was used solely for
guidance in order to better identify the ground objects at a higher resolution than the 3 m
PlanetScope imagery.

Labeling went through two iterations to ensure the highest data quality. In the first
step, a trained person manually digitized potential thaw slumps that matched selected
criteria. During this iteration, unclear cases were discussed with a second trained person.
The criteria for manually outlining RTS in the data were:

1. little or no vegetation, surrounded by vegetation;
2. presence of a headwall;
3. “blue” signature of TCVIS layer, a transition from vegetation to wet soil;
4. visible depression in ArcticDEM and derived slope dataset;
5. visible thaw slump disturbance in VHR imagery;
6. snow was considered as not being part of the RTS.
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In the next step the second person checked each individual thaw slump object and
confirmed, edited, removed or added new polygons. In this procedure, we closely follow
the RTS digitizing guidelines set out by Segal et al. [72].

Although the datasets went through several iterations, oftentimes it was challenging
to determine whether the slumps were still active or already stabilized, and therefore
whether they needed to be included in or excluded from the process. Furthermore, while
actively eroding upper parts of thaw slumps were easy to delineate due to the presence
of a headwall, the lower scar zone and debris tongues were typically more challenging
to delineate due to unclear boundaries. Overall we digitized 2172 thaw slump polygons.
Please find more details in Table 2. The digitized polygons are made freely accessible (see
Data Availability Statement).

Table 2. Study sites with total number of detected RTS and number of individual RTS per date.

Study Site # of Total Individual
RTS Objects

# of Individual RTS
per Date 1, 2

Median Object
Size (m2)

Banks Island 01 397 65–103 22,032
Banks Island 02 151 24–53 22,203
Herschel Island 148 15–40 5175
Horton Delta 01 180 36–52 5562
Horton Delta 02 354 35–67 7981

Kolguev Island 01 44 3–5 78,786
Kolguev Island 02 275 25–41 13,840

Lena River 238 5–13 14,470
Tuktoyaktuk Pen. 385 30–55 2229

1 Total image size may be different between dates, e.g., incomplete coverage. 2 PlanetScope data have some image
overlap, which may lead to (partially) duplicated vectors.

2.3.2. Deep Learning Model
General Setup

For the data preprocessing, model training, validation, and inference we developed a
highly automated processing pipeline to ensure the highest possible level of automation,
reproducibility and transferability (see Figure 3). It is easily configurable with configuration
files, which allow us to define the key processing parameters, such as dataset (train, val,
test), data sources (see Table 3), DL model architecture and encoder, model depth, and
many more. Our processing chain is based on the pytorch deep learning framework [73]
within the python programming language. Furthermore, we relied on several additional
packages for specific tasks (see below).

Table 3. List of model input data layers, with preprocessing status, native resolution and number
of bands.

Input Data Raw/Derived Native
Resolution (m) # Bands

PlanetScope Scene (SR) Raw 3 3
PlanetScope NDVI Derived 3 1

ArcticDEM relative elevation Derived 2 1
ArcticDEM slope Derived 2 1

TCVIS Derived 30 3

The processing was split into three main steps: first, data preprocessing; second,
model training and validation; third, model inference.

The code is tracked and documented in a git repository (see code). We used version
0.4.1 for the training and validation. We performed the inference on version 0.5.2, which
included bug fixes related to inference, compared to version 0.4.1.
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Hardware

We ran our model training and inference on virtual machines equipped with a shared
and virtualized NVIDIA GV100GL GPU (Tesla V100 PCIe 32 GB). The VM was allocated
with 16 GB GPU RAM, 8x Intel(R) Xeon(R) Gold 6230 CPU, 128 GB RAM and fast storage.

Augmentation

In order to increase its size and to introduce more variety into the training dataset,
the input imagery was augmented in several ways. Since satellite imagery is largely
independent of orientation, the images were randomly mirrored along their horizontal and
vertical axes, as well as being rotated by multiples of 90◦. Randomly blurring some input
images during training further improved model robustness. Augmentation increased the
training set size eight-fold. Image augmentation was conducted and implemented using
the Albumentations python library [74]. Each augmentation type was randomly applied
with a probability of 50% per image.

Model Architecture

For the pixel-wise classification of images, semantic segmentation models offer an
efficient approach to combining local information and contextual clues. For our model
architecture we evaluated some network architectures commonly used for semantic seg-
mentation. These segmentation architectures consist of an encoder network and a decoder.
Successful image classification architectures are commonly used as encoders, as these
can efficiently extract general image features. Therefore, we evaluated three ResNet [75]
architectures (Resnet34, Resnet50 and Resnet101) as possible encoders for our network.
Decoders are currently undergoing the most innovation in semantic segmentation, and
thus vary a lot from architecture to architecture. Here, we evaluated three approaches,
namely, UNet [76], UNet++ [77] and DeepLabv3 [78]. The model architectures are based
on the implementation of the segmentation_models_pytorch package (https://github.com/
qubvel/segmentation_models.pytorch, v0.2.0).

Training Details and Hyperparameters

All trained models were initialized randomly. For optimizing the training loss, the
Adam optimizer was used, setting the hyperparameters as suggested by Kingma and
Ba [79], namely β1 = 0.9, β2 = 0.999 and ε = 10−8. We used a learning rate of 0.001 and
batch size of 256 × 256 pixels with a 25 pixel overlap. The stack height was set to 6. We
used Focal Loss as the loss function after testing different options.

Cross-Validation: Data Setup

We performed a thorough regional cross-validation (CV), where we used 5 regions
for training and the 1 remaining region for validation. We rotated through all regions so
that each region was used as the validation set once, which totals six folds. Regions with
multiple subsets (Banks Island, Horton, Kolguev) were treated as one for validation. For
each regional fold we performed a parameter grid search over each of the three model
architectures and three encoders. Each model has nine input layers in total (see Table 3).
The complete dataset consists of 11863 image tiles, of which 1317 contain RTS.

For computing the classification and segmentation performance, we used the follow-
ing pixel-wise metrics: overall accuracy and Cohen’s kappa for the overall classification
performance. Furthermore, we used the class-specific metrics Intersection over Union
(IoU), precision, recall, and F1 for only the positive class (RTS) to determine the class-
specific performance and balance. We calculated all metrics for each individual epoch for
the training and validation set, which provided information about the model’s gradual
performance improvement. Validation was automatically carried out during the model
training phase. Training and validation metrics for each epoch are automatically stored
in the output logs. Model performance evaluation was carried out in this configuration.
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Furthermore, for the final model evaluation and inter-comparison, we also sorted each run
by performance from best to worst.

We carried out the CV training and validation scheme in two steps. First, for each of
the 54 configurations we ran the training for 100 epochs on sparse training sets. To train the
model we only used tiles with targets (RTS), thus undersampling the background/non-RTS
class in order to (1) reduce class imbalance and (2) speed up the training process. Finally,
we added a second training stage of 20 epochs for the best calculated model (highest IoU
score) for the three best regions with the full training set, including a high proportion of
negative/non-slump tiles. Non-slump tiles are all image tiles that do not include any RTS,
and which comprise the vast majority of tiles, due to the sparse occurrence of RTS. This
second step was carried out to place further emphasis on training negative samples, as the
initial tests showed a strong overestimation of slumps in stable regions.

Inference for Spatial Evaluation

We carried out inference runs to determine the spatial patterns and segmentation
capabilities of the trained models. For this purpose, we applied three different strategies.

(1a) We used the best model (highest IoU score) of each cross-validation training
scheme and ran the inference for the validation sites. This strategy provided us with
completely unseen/independent information on the spatial transferability with strengths
and weaknesses of the models.

(1b) We used the fully trained model (sparse and full training) of the best configuration
per region and carried out the inference for each region.

(2) We used the fully trained model (all regions) on the best overall configuration, and
ran inference on all the input images and PlanetScope imagery of the study regions from
2020 and 2021. This recent imagery was not clipped to the 10 × 10 km study site size. Thaw
slumps outside the study site boundaries were therefore unknown to the trained models,
and could serve as independent objects from a different period, yet within the proximity of
the trained region.

For all inference runs, we chose a standard configuration of 1024 × 1024 pixels tile-size
with an overlap of 128 pixels. For merging the tile overlap we selected a soft-margin
approach, wherein the overlapping areas of adjacent tiles are blended linearly.

The model creates three different output layers (Figure 3, Table 4). First, a proba-
bility (p-value) raster layer (GTiff), which contains the probability of each pixel belong-
ing to the RTS class. Second, a binary raster mask (GTiff) with a value of 1 for RTS
locations (p-value > 0.5). Third, a polygon vector file (ESRI Shapefile) with predicted RTS,
converted from the binary raster mask.

Table 4. List of model inference output data layers.

Output Data Format Resolution (m)

Polygon vector ESRI Shapefile -
Binary raster GTiff 3

Probability raster GTiff 3

3. Results
3.1. AI Model Performance
3.1.1. Train/Test/Cross-Validation Performance

The applied AI segmentation models performed similarly, but with certain differ-
ences and slightly diverging performances. In all configurations, the training performance
increased with increasing epochs (Figures 9a and A10). Furthermore, the validation perfor-
mance exceeded training metrics from the beginning, and typically plateaued from around
50 epochs. The good early validation performance compared to the training shows the
effect of augmentation and indicates low overfitting.
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3.1.2. Regional Comparison

The regionally stratified cross-validation on the sparse training sets highlighted the re-
gional differences in thaw slumps across the Arctic with regard to environmental conditions,
data quality and data availability. Overall, regional differences were more pronounced
than model specifics or configurations, such as architecture and encoder. In the following,
named regions indicate the validation (unseen) dataset, while the remaining regions were
used for training (regionally stratified cross-validation).

The Lena validation set achieved the best results (best model, see Table 5) with maxi-
mum IoU scores of 0.58 (UNet++ Resnet34), followed by Horton (0.55, UNet++ Resnet101),
Kolguev (0.48, UNet++ Resnet101) and Herschel (0.38, DeepLabv3 Resnet34). Banks Is-
land (UNet++ Resnet50) achieved a maximum IoU of 0.39, but this deteriorated quickly,
seemingly due to strong overfitting. Tuktoyaktuk (UNet++ Resnet101) only achieved a
maximum IoU of 0.15, with very little improvement even after several epochs (Figure 4a).

Table 5. Regional performance of best sparse models. U++: UNet++; DLv3: DeepLabv3; Rn34:
Resnet34; Rn50: Resnet50; Rn101: Resnet101. IoU1/Prec1/Recall1/F11: Metrics of best sparse
regional CV model. IoU5: 5th best model of 100. IoU10: 10th best model of 100.

Study Site Model Config. IoU1 IoU5 IoU10 Prec1 Recall1 F11

Banks Island U++Rn50 0.39 0.13 0.08 0.80 0.38 0.52
Herschel DLv3Rn34 0.39 0.33 0.32 0.50 0.63 0.56
Horton U++Rn101 0.55 0.54 0.51 0.78 0.77 0.71

Kolguev U++Rn101 0.48 0.45 0.43 0.67 0.63 0.64
Lena U++Rn34 0.58 0.51 0.50 0.83 0.65 0.73

Tuktoyaktuk U++Rn50 0.15 0.09 0.08 0.42 0.18 0.25
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Although the best models per region performed similarly, the mean/ensemble perfor-
mance of all models per region typically differed much more significantly (Figure 4). For many
regions, individual models behaved differently in terms of volatility and learning success.

The maximum accuracies/scores of validation sets typically plateaued after around
40 epochs with almost all configurations (Figure 4a), except for Banks Island. Banks Island
achieved individual IoU scores > 0.2 during early epochs, and these converged quickly
towards zero during later epochs, which suggests insufficient spatial transferability likely
due to overfitting. Tuktoyaktuk suffered from low scores throughout the entire training
period, with only little variation in its IoU of around <0.1. The difference in segmentation
performance between the best and next models was typically small, except for Banks Island,
as shown in the sorted model performance illustrations (Figure 4b).

3.1.3. Model Configurations

Among the tested configurations, including architectures and encoders, we only
observed little differences in segmentation performance. However, overall, UNet++ outper-
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formed UNet and DeepLabv3 consistently in this particular area (Figure 5). The choice of en-
coder only produced minor differences, but overall, simpler models (Resnet 34 > Resnet50
> Resnet101) resulted in slightly better IoU scores than more complex encoders (Resnet34:
meanIoU = 0.33; Resnet50: meanIoU = 0.32; Resnet101: meanIoU = 0.31). In some individ-
ual cases, complex encoders (Resnet101) outperformed simpler encoders (e.g., Horton or
Kolguev) (see Figure A10).
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3.1.4. Computation Performance

In all configurations, UNet was the fastest model with the least hardware requirements.
UNet++ was ~60% slower (factor 1.6) than UNet, while DeepLabv3 improved training
times by a factor of ~2.3 compared to UNet. The hardware requirements for GPU memory
were in line with those for processing times, with UNet requiring the least resources,
followed by UNet++ and DeepLabv3.

3.2. Inference/Spatial Model Output

Regional Cross-Validation
(1a) Sparse models: The sparse trained models, using only image tiles with positive

samples (RTS), produced results ranging from unsatisfactory to acceptable (see Figure 4),
depending on region and model used. Figures 6–8 (left column) show that the detection of
thaw slumps produces mixed results, with strong variation depending on the input image.
Decision boundaries are often fuzzy, with probability values (p-values) between 20 and
80% of being an RTS, as predicted by the model. Many non-slump areas, e.g., flat uplands
or water bodies, were classified as thaw slumps in numerous instances, thus creating an
abundance of false-positives in these settings.

(1b) Fully trained models: After adding further training epochs with the entire dataset,
using predominantly negative samples, the results were visually improved, with more
distinct decision boundaries. This manifests in the improved precision but reduced recall
(see Figure 9). However, the full accuracy metrics IoU and F1 increased (sparse/full;
Horton Delta: IoU:0.62/ 0.55, F1: 0.76/0.71), stayed the same (Lena River: IoU:0.65/0.66,
F1: 0.73/0.74) or even decreased (Kolguev Island: IoU:0.48/0.38, F1: 0.64/0.55) depending
on the specific site.
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image dates ((a–c): 14 July 2019; (d–f): 03 August 2019) and the mean of all dates (g–i) as well as three different models
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the approximate location of the subset within the study region.
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As these false-positives are inconsistent between different images dates, taking into 
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Figure 8. Detection results in the subset of the Lena River study site with the modeled RTS probability on two different
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the approximate location of the subset within the study region.
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Non-slump/disturbed areas were closer to 0% probability, while thaw slumps typically
showed p-values close to 100%. The stability of classifications was significantly improved
after the full training, as seen in Figures 6–8, with comparable results between different
dates (e.g., July and August).

However, misclassifications still occurred. False-positives occurred in rugged non-
vegetated terrain (see Figures 6b,e,h and 7b,e,h) or silty water bodies (see Figure 8b,e,h). As
these false-positives are inconsistent between different images dates, taking into account
multiple images dates can help to detect and minimize false-positive objects (see Figure 8
bottom row).

False-negatives are prevalent in many classified datasets. In most cases, parts of thaw
slumps were not detected. As seen in Figures 6–8, the slump area in proximity to the head-
wall was detected, whereas the distal parts remained undetected. This behavior suggests
that the model is rather sensitive to the presence of headwall and thus steep slopes.

(2) The models trained on the full dataset, including the analyzed area, e.g., Horton
(Figures 6c,f,i and 7c,f,i) or Lena (Figure 8c,f,i), performed well. When the model was
trained on these datasets, the performance was high, as expected. The model also classified
well when used for periods (2020, 2021) outside of the training data period (2018, 2019).
Furthermore, RTS just outside the specific 10 × 10 km training sites, which were unknown
to the model, were successfully identified.

The models also detected features that we did not define as RTS, but which have a
similar appearance in remote sensing imagery. These are, e.g., borderline cases, where the
distinction of slumps vs. non-slumps was difficult during the digitization processes, or
other vegetation-less land surface types appeared. This further highlights the difficulties of
manual thaw slump annotation/classification.

4. Discussion

The presented methodology provides a highly automated and reproducible proof of
concept for the application of the novel deep learning-based segmentation of retrogressive
thaw slumps across Arctic permafrost regions.

The results are promising, showing good agreement for some regions, with IoU scores
of 0.55 and 0.58 for the best configurations. However, the performances for some of
the regions, e.g., Tuktoyaktuk or Banks Island, were unsatisfactory and likely prone to
overfitting. The comparison of model performance here to other studies and methods is
hardly possible due to the different input data and regions and the lack of standardized
training datasets. Still, many studies depend on manual or at least semi-automated meth-
ods [18,21] for detecting and segmenting RTS. Only Huang et al. [51] used a very similar
deep learning methodology in the Beiluhe Region on the Tibetan Plateau. They achieved
cross-validated F-scores of ~0.85, higher than our analysis with F-scores of 0.25 to 0.73.
However, Huang et al. applied cross-validation within a single comparably homogeneous
region, in contrast to the regional cross-validation approach across strongly varying land-
scapes in our study. High training accuracies and visual inference tests suggest a good
model performance at least in proximity to the trained regions.

We tested different architectures, including UNet++, UNet, and DeepLabv3. The
different model architectures performed similarly, but UNet++ produced on average the
best results compared to UNet and DepLabV3, as shown in the original UNet++ paper [80].

The choice of encoders influenced the results only slightly, but on average, simpler en-
coders (Resnet34 > Resnet50 > Resnet101) achieved slightly better performances, although
the original paper achieved higher accuracies with the more complex version [75]. We
hypothesize that a simpler network might be slightly more resilient to overfitting. With a
higher quantity and variability of training data across an even broader spatial extent, more
complex and deeper architectures may become more favorable for segmenting RTS. As
the technology is constantly evolving, with new DL architectures, packages and hardware,
there is the potential for much further improvement in the near future.
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The large range in the model performance between study sites compared to the per-
formance between different model parameters suggests that regional landscape differences
are by far the most influential factor in the successful delineation of RTS across permafrost
landscapes. This magnifies the pressing need for representative and large training/ground
truth datasets for specific geospatial targets, such as RTS in this case. Such a database does
not exist yet for permafrost-specific features, in contrast to general remote sensing-based
targets such as PatternNet [81] or EuroSat [82], or the standard photography databases,
such as ImageNet [83]. Sufficiently large and spatially extensive ground truth data are
particularly hard to find. The ArcticNet database [84] is the first remote sensing image
database with a spatial focus on the Arctic, but this is limited to wetlands. For RTS, most
openly accessible high-resolution polygon datasets are available for NW Canada [17,57],
Alaska [25] and China [51,85]. For other studies, only RTS centroid coordinates are often
made available in public archives [16], or detailed data are not accessible. Therefore, we
want to propose the creation of an openly accessible pan-Arctic database for RTS and other
important permafrost landscape features for the training of future DL-based applications
aimed at detecting permafrost features and landscape change due to thaw and erosion.

However, such a database requires consistent data quality and standard procedures.
During our manual ground truth creation, we encountered severe difficulty in delineat-
ing RTS. While the headwall was often clearly visible, the lower part of RTS was often
highly ambiguous and hardly discernible. This difficulty makes the creation of consistent
datasets, across different spatial regions and teams, even more challenging, thus requiring
standardized protocols and a common effort among researchers.

The workflow is openly available (see code) and highly automated, and the data
processing approach is transferable and reusable. However, access to VHR input data
is required, which are largely only commercially available and/or accessible under very
restricted licensing rules at this stage. This is a major limitation in transferability and
scalability at the moment. Recently, Planet data are becoming more and more accessible to
large groups of researchers free of charge through government-funded research programs,
which allows their broader application in Big Data AI test cases such as our study.

The requirement for sufficiently powered hardware is very important. However, with
the increasing level of GPU processing capacities, either in institutional systems or even
freely accessible cloud services (e.g., Google colab), barriers against using AI-based systems
will become increasingly lower for geoscientific object detection purposes.

The presented methodology has the potential to be used on a much larger spatial scale.
However, such scaling to large regions requires more training data across different regions
and better access to Planet data. Alternatively, free data sources, such as Sentinel-2, might
be used as alternatives, but are limited by their lower spatial resolution used for small- to
medium-sized landscape features.

5. Conclusions

With our study, we have laid the foundation for using deep learning-based methods to
detect and segment RTS across the Arctic. Using a highly automated workflow in conjunc-
tion with state-of-the art DL model architectures, we were able to create sufficiently good
and transferable models for several regions, as proven by regional cross-validation. Re-
gional models worked sufficiently well, but spatial transferability is still an issue for some
regions. Additionally, the creation of training datasets proved to be highly challenging
due to the difficulties in delineating RTS. For scaling DL-based segmentation models to the
entire pan-Arctic region, we propose a common effort to create large and high-quality train-
ing datasets to train and benchmark RTS detection models. With rapidly growing hardware
capabilities and expanding data availability, the automated mapping and segmentation
of RTS and other permafrost-related landscape features may be realized soon in order to
better understand and predict the impact of climate change in the permafrost region.
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Figure A1. Study site Banks Island 01. (a) ESRI satellite layer, (b) ArcticDEM superimposed with hillshade, (c) Tasseled Cap
trend visualization, (d) PlanetScope satellite image (NIR-R-G) acquired on 26 July 2019. Blue box, 10 × 10 km study site.
Red box detailed view of (d).
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study site. Red box detailed view of (d).
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PixelDINO: Semi-Supervised Semantic
Segmentation for Detecting Permafrost Disturbances

in the Arctic
Konrad Heidler, Student Member, IEEE, Ingmar Nitze, Guido Grosse, and Xiao Xiang Zhu, Fellow, IEEE

Abstract—Arctic Permafrost is facing significant changes due
to global climate change. As these regions are largely inaccessible,
remote sensing plays a crucial rule in better understanding the
underlying processes across the Arctic. In this study, we focus
on the remote detection of Retrogressive Thaw Slumps (RTSs), a
permafrost disturbance comparable to slow landslides. For such
remote sensing tasks, deep learning has become an indispensable
tool, but limited labeled training data remains a challenge
for training accurate models. We present PixelDINO, a semi-
supervised learning approach, to improve model generalization
across the Arctic with a limited number of labels. PixelDINO
leverages unlabeled data by training the model to define its own
segmentation categories (pseudo-classes), promoting consistent
structural learning across strong data augmentations. This allows
the model to extract structural information from unlabeled
data, supplementing the learning from labeled data. PixelDINO
surpasses both supervised baselines and existing semi-supervised
methods, achieving average Intersection-over-Union (IoU) of 30.2
and 39.5 on the two evaluation sets, representing significant
improvements of 13% and 21%, respectively over the strongest
existing models. This highlights the potential for training robust
models that generalize well to regions that were not included in
the training data.

Index Terms—Semi-Supervised Learning, Semantic Segmen-
tation, Permafrost, Retrogressive Thaw Slumps, Self-Distillation
without Labels

I. INTRODUCTION

IN step with global climate change, permafrost is changing
rapidly. Rising temperatures in the Arctic have large impli-

cations for perennially frozen soil which can destabilize upon
the thawing of ice-rich ground. Owing to their remoteness and
sparse population, permafrost areas are often difficult to access
physically. Therefore, in-situ measurements are only available
for specific study sites at specific dates when expeditions
visited that site or when data is collected through local sen-
sors [1]. Therefore, Remote sensing techniques are a valuable
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method that can monitor permafrost on a pan-Arctic scale, and
a useful approach for upscaling and understanding of broad
spatio-temporal dynamics of permafrost thaw processes [2],
[3]. To further improve the efficiency of remote sensing
monitoring for these applications, machine learning techniques
offer great potential in automating laborious annotation tasks.

Permafrost is generally a subsurface phenomenon, making
it difficult to observe from satellite observations. Other than
permafrost itself, permafrost degradation landforms like retro-
gressive thaw slumps (RTSs) are visible in optical satellite
imagery due to their distinct shape and spectral signature
compared to the surrounding regions. This makes them a
viable target of study via remote sensing methods. RTSs
are mass movements akin to slow-flowing landslides caused
by melting of massive ground-ice in permafrost regions. [4].
RTSs are rather small features generally measuring less than
10 ha in area [5], [6], with some notable exceptions, so-called
megaslumps, exceeding 40 ha [7]. RTSs form due to specific
local environmental conditions like slope, landscape history,
ground temperature, and disturbances [4]. They typically oc-
cur in glacial moraines with preserved remnant glacial ice,
syngenetic ice-rich yedoma permafrost, or marine deposits,
which were raised due to isostatic uplift [8]. Understanding
and quantifying RTS dynamics is important as they pose
potential hazards to infrastructure [9], directly affect water
quality in downstream aquatic environments [10], and locally
mobilize large amounts of formerly frozen sediment and
organic matter [8].

Machine learning, specifically deep learning, can automate
the identification of RTSs from satellite imagery. Existing
studies often achieve mixed results, which in many cases can
be attributed to the algorithms’ requirements for an extensive
collection of labeled training data that is hard to acquire
in large volumes [11]–[15]. While decent prediction results
are obtained for selected study sites, accurate pan-Arctic
generalization remains an elusive goal [12], [15].

This study explores how to make models better generalize
to previously unseen regions. While increasing the available
training data through additional labelling efforts is one option,
it comes at a large labor cost for the involved domain experts.
In an attempt to tackle this issue from a methodological angle
instead, we explore semi-supervised learning for improving
model performance without the need for additional annotated
training data. In classical supervised learning, a model is
trained on labeled data only. In contrast to this, self-supervised
learning aims to train models without any labels. Combining
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Fig. 1. Spatial distribution of the annotated training sites (red). It can be seen that the labeled data has quite limited spatial coverage. By using semi-supervised
learning, it is possible to include large areas of unlabeled Sentinel-2 imagery (green) into the training process. Basemap source: [16]

TABLE I
STATISTICS FOR THE STUDY REGIONS (ORDERED BY LONGITUDE)

RTS Satellite Images

Region Count Area [km2] Count Area [km2]

Herschel 148 1.6 10 442.9
Peel Plateau 37 0.68 1 87.9
Tuktoyaktuk 391 1.3 19 899.4
Horton 534 13.2 18 866.0
Banks Island 552 28.2 20 814.6
Kolguev 319 12.6 34 1814.1
Novaya Zemlya 982 12.3 3 454.0
Gydan 50 0.2 2 966.9
West Taimyr 110 0.5 2 1057.1
East Taimyr 839 9.2 3 148.9
Lena 238 4.2 41 2020.6
Lena Delta 136 0.8 1 625.5

these two paradigms, semi-supervised learning trains models
on both labeled and unlabeled data at the same time [17],
[18]. This strategy allows for the inclusion of unlabeled
satellite imagery into the training process. While labelling is
a laborious task, the underlying satellite imagery is openly
available. Therefore, semi-supervised learning methods are
exceptionally well-suited for remote sensing tasks.

In this study, we propose a new framework for semi-
supervised semantic segmentation called PixelDINO. Our
framework builds on the successful self-supervised learning

framework DINO [19], which was originally developed to
learn features for image classification. The main idea behind
DINO is self-distillation with no labels, which is a special
case of knowledge distillation. In knowledge distillation, a
model is trained to closely match another model’s outputs in
order to transfer learned knowledge from one model to another.
Self-distillation with no labels describes distillating a model’s
knowledge into itself while applying certain transformations
to the data [19]. We adopt this idea to pixel-wise prediction
tasks like semantic segmentation and then combine it with a
regular supervised learning procedure into a semi-supervised
learning framework.

As shown in Fig. 1, spatial coverage of the Arctic can be
greatly improved for RTS detection by including unlabeled
data in a semi-supervised fashion. Using this dataset, we
present experimental results for the task of RTS detection,
where we demonstrate that PixelDINO outperforms both su-
pervised baseline methods and other semi-supervised semantic
segmentation approaches.

II. RELATED WORK

In order to place our contributions into a larger scientific
context, this section summarizes existing research on mon-
itoring RTSs with remote sensing, and gives an overview
of representation learning and semi-supervised segmentation
methods in remote sensing.
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A. Monitoring Retrogressive Thaw Slumps

As permafrost cannot be directly seen from space, many
permafrost remote sensing studies focus instead on monitoring
specific targets that are known or assumed to be correlated
with the state of permafrost or its vulnerability [3]. Spatially
consistent monitoring of specific permafrost degradation land-
forms with high temporal resolution is a desirable goal, since
it would allow assessments regarding vulnerability of local
infrastructure and the biogeochemical implications of rapid
permafrost thaw for both the local environment and the global
climate system [12].

The detection of such features in satellite imagery is not
without challenges. Retrogressive Thaw Slumps in permafrost
regions are often hard to detect due to their widespread distri-
bution, small size, and their varying stages of activity [12],
[15]. Further, optical remote sensing is inhibited by snow
cover, cloud cover, and polar night for large parts of the
year, so that features can only be reliably detected during the
summer months [3].

Regarding data sources, permafrost disturbances can be
mapped using different remote sensing approaches, such as
optical image analysis [12], optical time series analysis [20],
surface elevation data [21] or interferometric synthetic aperture
radar (InSAR) measurements [22].

Many studies rely on manual digitization of permafrost dis-
turbance landforms in satellite imagery [23], [24]. While this
approach ensures good accuracy, it quickly becomes infeasible
when the study areas grow beyond small to medium sized
regions. In order to automate the laborious manual digitzation
process, some studies explored computer vision methods like
trend analyses combined with random forests [8], or graph-
based analysis [25].

With deep learning becoming an indispensable tool in
remote sensing, it was also used for the detection of RTS
features. Huang et al. [11] adapted the DeepLab architec-
ture for semantic segmentation [26] to the task of mapping
permafrost features like RTSs using imagery from unmanned
aerial vehicles (UAVs) over the northeastern Tibetan Plateau.
Similarly, Nitze et al. [12] trained several CNN architectures
on PlanetScope satellite imagery for six study sites in north-
west Canada and the Russian Arctic. Yang et al [15] combine
Maxar imagery with other information like NDVI derived from
Sentinel-2 and elevation information to train a CNN model to
detect RTS. Huang et al. [21] opted to detect RTS directly
in elevation maps instead, training an object detector on the
ArcticDEM data product.

Existing studies usually focus on a single region of interest,
like the Canadian Arctic [13], the Tibetan Plateau [11], [27],
or a few selected regions [8], [12], [15]. More recently,
efforts towards a pan-Arctic RTS data product have gained
traction [21].

Other permafrost features can also be mapped using remote
sensing techniques, including thermokarst lakes [8], [28],
wildfires [8], [29], and ice wedges [25], [30], [31]. These
research areas face similar challenges as RTS mapping, so that
approaches for these tasks can also inspire new approaches for
RTS mapping.

B. Self-Supervised Representation Learning

Learning features from unlabeled images has been a highly
active area of research in recent years. As acquiring images is
relatively simple compared to labelling them, self-supervised
methods seek to train models without any labels. Still, the
features derived by such models often compare competitively
to fully-supervised models in evaluations [32]–[35]

Most approaches train an image encoder to embed images
to feature vectors in such a way that the embedding is invariant
under certain data augmentations, meaning that perturbed
versions of the same image should be represented by the same
point in the embedding space [32]–[35]. A trivial solution
to this goal is reached when the encoder predicts the same
constant feature vector for all inputs. Therefore, the main
ideas that differentiate these models lie in the way that they
adress this representation collapse. SimCLR [33] employs the
contrastive loss function to not only match embeddings of the
same image closely in the representation space, but also push
apart embeddings from different images. Building on this idea,
Momentum Contrast [35] introduces a momentum encoder that
updates its weights as an exponential moving average of the
trained models weights. Further, a queue of embeddings is
used in order to leverage a larger number of negative samples.
Boostrap Your Own Latent [34] uses the momentum encoder
to eliminate the need for negative samples. By carefully tuning
the momentum and using a projection head, this method avoids
representation collapse without using a contrastive loss.

Finally, self-distillation without labels (DINO) [32] uses a
different approach to eliminate negative samples. Here, the
model is tasked with defining its own classification scheme
for images. Two versions of the model, called student and
teacher, are trained following the self-distillation process.

For a given input image, two augmentations are generated.
Out of these two augmentations, the first one is run through the
teacher model. The features derived by the teacher model are
then centered and re-scaled. Finally, the teacher’s classification
is derived by applying a softmax activation to the re-scaled
outputs. Meanwhile, the second version of the image is run
through the student model. Finally, the student is then trained
to match the teacher’s classifications with its own outputs [19].
Fig. 2 outlines the DINO training process. In the following,
we will be referring to the classes automatically derived by
the models as “pseudo-classes”.

Naturally, one a crucial step in this setup is the assignment
of parameters to the teacher model. As there are no ground-
truth labels in this setup, the teacher weights are taken to be
an exponential moving average (EMA) of the student weights,
hence the term “self-distillation”.

Other than these methods, our usecase does not require
image-level features, but rather pixel-wise features. With Pix-
elDINO, we adopt the concept of self-distillation with no
labels on the pixel level.

C. Semi-supervised Semantic Segmentation in Remote Sensing

In remote sensing, many relevant tasks are semantic seg-
mentation tasks. For each pixel, a class label needs to be
predicted in order to partition the entire scene into separate
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Fig. 2. Overview of the DINO framework [32] for feature learning. Two augmented versions of the input image are generated. The teacher model is then used
to predict a class distribution for the first augmentation. This distribution is centered, sharpened and the softmax function is applied. The student model is then
given the second augmented image and trained to predict the label given by the teacher. Finally, the teacher model’s weights are updated as an exponential
moving average of the student’s weights.

regions of interest. Such tasks are encountered across a large
number of research areas like crop type mapping [36], urban
mapping [37], or monitoring animal populations [38]. Gener-
ally, it is quite hard even for experts to perfectly annotate a
given scene pixel by pixel, and the process of generating these
annotations is often tedious and time-consuming. There are
approaches to reducing the labelling burden through working
with sparse labels like point labels or scribbled labels, but these
come at a price in terms of classification accuracy [39]. On the
other hand, unlabeled remote sensing data is generally easily
available through programmes like NASA’s Landsat series or
ESA’s Copernicus missions. Therefore, the idea of combining
small labeled datasets with large unlabeled data for semantic
segmentation has been previously explored in remote sensing.

A large class of semi-supervised learning studies in remote
sensing focuses on the idea of consistency regularization. The
underlying assumption here is that even for unlabeled images,
a model’s representations or outputs should be consistent under
a certain set of perturbations. For example, these perturbations
can be data augmentation operations [40], feature dropout [41],
additive noise in the feature space [42], [43], or interpolation
between samples [44]. Under these perturbations, the model
is then trained to stay consistent. This consistency can be
enforced at different stages of the model calculation. Most
common is the so-called pseudo-labelling technique [41],
where consistency is enforced in the final output classification
of the network. Various extensions of this basic idea exist [45],
[46].

In FixMatch, Sohn et al. [45] enforce consistency across
two sets of data augmentatations called weak augmentations,
denoted by α(·), and strong augmentations, denoted by A(·).
Upretee and Khanal [40] formulated FixMatchSeg, an ele-

gant way of generalizing this framework to the semantic
segmentation case. As the labels themselves are also subject
to geometric transformations such as rotations, converting
them between augmentations is not trivial. FixMatchSeg solves
this by chaining the weak and strong data augmentations as
A(α(·)), so that the pseudo-label can be augmented alongside
with the image.

Another possibility is to enforce consistency in the in-
termediate feature space within a given layer of the neural
network [42]. Such approaches have been successfully applied
for mapping building footprints [42], mapping landslides [47]
or aerial image segmentation [48]. Our presented approach is
similar to these methods. The main difference in our approach
is the change from pseudo-labels to pseudo-classes. While
pseudo-labels are adhering to the original classification scheme
of the task, we allow the network to come up with additional
classes in order to oversegment the images. This should be
particularly helpful for tasks with a large class imbalance, for
example when a background class with high intraclass variance
dominates the scenery, which is the case in RTS detection.

The Generator-Discriminator approach from Generative Ad-
versarial Networks (GANs) has also been explored for semi-
supervised semantic segmentation. Here, the basic idea is to
conceptually understand the segmentation network as either
the generator or the discriminator network. In the first setup,
the discriminator learns to discern true segmentation maps
from model outputs on a pixel-wise level. At the same time,
the segmentation network takes the role of the generator and
is trained to convince the discriminator as a secondary loss
objective [49]. In the other setting, a generator is used to
generate synthetic data, and the discriminator is trained to
differentiate these synthetic data points from the unlabeled



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

data, while also generating class labels [50]. Adversarial semi-
supervised learning approaches have been demonstrated on
tasks like hyperspectral image classification [51] or change
detection [52]. Other than these works, our method only
requires training a single neural network. Also, it does not
exhibit the well-known training instabilities or require any of
the careful hyperparameter tuning that adversarial methods are
known for.

Finally, some studies separate the training process into a
self-supervised pre-training phase on a large unlabeled dataset,
and a supervised fine-tuning phase on the labeled dataset. As
self-supervised learning has been an area of great interest in
computer vision recently, this approach is getting increasingly
popular. For example, such approaches have been shown to
improve model performance for tasks such as hyperspectral
image classification [53], land cover mapping [54], [55] or
change detection [55]. Contrasting this, we present a semi-
supervised training procedure where the model is trained end-
to-end in a single training phase.

III. PIXELDINO FOR SEMI-SUPERVISED SEMANTIC
SEGMENTATION

Inspired by the ideas behind DINO [32] and FixMatch-
Seg [40], we build PixelDINO, a semi-supervised semantic
segmentation framework for remote sensing imagery.

A. Learning Pixel Features without Labels

While natural imagery often has a clear object of focus, a
remotely sensed satellite image can have dozens or hundreds
of objects of interest in it. Therefore, working on the pixel
level should lead to more discriminative features, which will
be crucial for a successful segmentation of these objects in
the end. The main idea for our PixelDINO framework is to
adopt the explained above on a pixel-wise level. Instead of
classifying entire images, the student and teacher models will
instead give a label to each pixel in the input image.

But In the original DINO framework, the teacher labels
can be directly applied to train the student. In the pixel-wise
case, data augmentations like flips or rotations will change the
location of objects in the image. Therefore, pixel-wise segmen-
tation labels also need to be augmented in the same fashion.
When following the original DINO setup, doing this correctly
is challenging, as it requires inverting the data augmentations
applied to the first image. Further, this procedure will introduce
invalid pixel labels when inverting lossy augmentations like
rotations by non-multiples of 90° or cropping operators. To
avoid these issues, we resort to an approach introduced by
FixMatchSeg [40]. Instead of using two augmentations of the
same base image, we will use a chain of augmented images.

Given an unlabeled input image U ∈ RH×W×C , we first
apply a weak augmentation α(U) and calculate the teacher
output T (α(U)). Then, the teacher’s label is derived through
centering, re-scaling, and applying the softmax function:

YU = softmax

(
T (α(U))− µ

τ

)
(1)

Here, µ is the center of past teacher outputs, which is updated
using an exponential moving average, and τ is the temperature

parameter. A lower temperature leads to a stronger “sharpen-
ing” of the class distribution, which is desired in order to
discourage the model from predicting a uniform distribution.

The student model S is applied to the strongly augmented
input image to obtain the student’s prediction S(A(α(U))).
Finally, the PixelDINO loss is calculated as the cross entropy
between the softmax of the student output and the strongly
augmented teacher label:

LPixelDINO = CE(softmax(S(A(α(U))),A(YU )), (2)

where CE refers to the cross-entropy operator.
In this way, the student model S is trained to align its

predictions in such a way that they are consistent with the
teacher’s outputs T under the set of strong augmentations A.
A graphical overview of this approach is given in Fig. 3.

B. Semi-Supervised Learning with PixelDINO

The goal for semi-supervised learning is to exploit the
information present in a large, unlabeled dataset and combine
that with the class information from a smaller, labeled dataset.
For PixelDINO, embedding the information from a labeled
dataset is rather straight-forward. The DINO methodology
already works with pseudo-classes, and PixelDINO extends
that to pseudo-classes per pixel. If information about some
specific classes is already known a priori in the form of a
labeled dataset, this can be embedded into the training process
in order to make the pseudo-classes align with the a priori
classes. In our case, we would like to do exactly that for the
RTS class from the labeled dataset.

To achieve that, we combine the PixelDINO training loop
with a regular supervised training loop. In the combined
training loop, the student model will be trained on both a
mini-batch of labeled examples, as well as one of unlabeled
examples for each training step. For a labeled example given
as a pair of an image X ∈ RH×W×C and a mask Y ∈
{ 0, 1 }H×W , the supervised loss term is the regular cross-
entropy which is commonly used in semantic segmentation.
In practice, we also apply weak and strong data augmentation
to the labeled samples:

Lsupervised(X,Y ) = CE(S(A(α(X))),A(α(Y ))) (3)

The final, semi-supervised training objective is simply the
weighted sum of the two loss terms, balanced by a hyper-
parameter β:

L(X,Y, U) = Lsupervised(X,Y ) + βLPixelDINO(U) (4)

In our experiments, we find β = 0.1 to be a good choice
for this hyperparameter. We analyze the influence of this
hyperparameter in section V-C.

The pseudo-code for this training procedure is outlined in
Alg. 1. By forcing the student model to adhere to the teacher
outputs and the labeled ground truth masks at the same time, it
is very likely that the classification schemes will indeed align
to include one class for our desired target.
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Teacher Output Teacher LabelInput Image

Center
+

Sharpen

Loss
Function

Teacher

Student

EMA
Weights

Fig. 3. Overview of the self-supervised part of the PixelDINO framework for pixel-wise feature learning. First, the image is weakly augmented and a dense
feature map is derived using the teacher model. These labels are turned into class labels by centering, sharpening, and applying the softmax function. Both
the weakly augmented image and the teacher label are augmented using the set of strong augmentations. The student model is then trained on this pair of
image and label. Finally, the teacher model’s weights are updated as an exponential moving average of the student’s weights.

Algorithm 1 Semi-supervised PixelDINO (Pytorch-style)

Hyper-Parameters:
beta: Weight of DINO loss
temp: Temperature used for softmax-scaling

def train_step(img, mask, unlabelled):
# Supervised Training Step
pred = student(img)
loss_supervised = cross_entropy(pred, mask)

# Get pseudo-classes from teacher
view_1 = augment_weak(unlabelled)
mask_1 = teacher(mask_1)
mask_1 = (mask_1 - center) / temp
batch_center = center.mean(dim=[0,2,3])
mask_1 = softmax(mask_1)

# Strongly augment image and label together
view_2, mask_2 = augment(view_1, mask_1)

pred_2 = student(view_2)
loss_dino = cross_entropy(pred_2, mask_2)

loss = loss_supervised + beta*loss_dino
loss.backward() # Back-propagate losses
update(student) # Adam weight update
ema_update(teacher, student) # Teacher EMA
ema_update(center, batch_center) # Center EMA

C. Data Augmentations

Data augmentation is a commonly used technique to make
models more robust to perturbations in the input, as well as
encourage equivariance under certain geometric transforma-
tions like rotations or reflections [56]. Further, it is a crucial
component for semi-supervised learning, which is why we will
briefly explain the employed data augmentation techniques.

The semi-supervised learning methods introduced in this

study require two different sets of data augmentation opera-
tions, in order to generate different views of the same data.
Following the terminology of Sohn et al. [45], we separate
the augmentations used in our study into weak augmentations,
denoted by α(·), and strong augmentations, denoted by A(·).
The conceptual difference is that weak augmentations should
only add variation to the data without making the classification
more difficult. Strong augmentations, on the other hand, distort
the image in such a way that makes it harder for the model
to perform the classification. During training, every sample is
augmented randomly.

1) Weak Augmentations: In the class of weak augmenta-
tions, we only include the simple geometric transformations
introduced before, namely horizontal and vertical reflections
of the input imagery, as well as rotations by multiples of 90°.
These augmentations are very frequently used in remote sens-
ing as models are expected to be equivariant under reflections
and rotations for most tasks.

2) Strong Augmentations: Designing a class of strong aug-
mentations for remote sensing imagery is considerably harder
than weak augmentations. The commonly used colorspace
transformations which are often used for RGB imagery do
not generalize well to multi-spectral imagery. Therefore, we
settle for two classes of adjustments. First, we make random
adjustments to the image brightness, gamma curve and con-
trast. In a second step, we apply rotations by arbitrary angles
in the range [−30◦, 30◦], Gaussian blurring with σ = 2px, as
well as the elastic transform that locally warps parts of the
image.
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IV. DATASETS

As the main data source for this study, we use the fourth
iteration of the openly available RTS inventory from Nitze
et al. [12]1. This inventory consists of polygons that were
manually labeled using PlanetScope imagery, elevation data,
and Landsat timeseries as the source data. Its extent amounts to
4335 polygon annotations of RTS footprints from the years of
2018 to 2021, with a combined area of ∼84 km2. The focus of
the inventory lies on multiple regions in the terrestrial Arctic,
mostly in coastal areas.

While Nitze et al. [12] base their analyses on PlanetScope
imagery, we opt for Sentinel-2 imagery for this study due to
its open availability, which is an important factor for building
a large unlabeled dataset for semi-supervised learning. Prac-
tically speaking, these two satellite platforms mainly differ
in their imaging resolution and their spectral channels. While
PlanetScope imagery is provided at ground sampling distances
of 3–4m and contains the visible RGB channels as well as a
near-infrared channel, Sentinel-2 imagery comes at a lower
spatial resolution of 10m per pixel, but in turn features 13
spectral channels.

Using the image footprints from the RTS inventory, we next
download 83 matching Sentinel-2 Level 1C images sourced
from Google Earth Engine. As the last step, the RTS annota-
tion polygons are rasterized to match the satellite image pixel
grids. The annotation masks then contain the binary values 0
and 1 for background and RTS pixels, respectively. Similarly
to Yang et al. [15], we observe good registration between the
footprints and the Sentinel-2 imagery, so that no additional
co-registration was performed.

Out of the annotated study regions in the original dataset,
we set aside the Herschel Island and Lena sites for testing
purposes. We chose the Herschel Island site for being spatially
separated from the Canadian mainland. While all other study
sites are in the Tundra zone, the Lena site is situated in the
Boreal zone. Therefore it includes land cover features not
seen in the other study sites, such as forests. This makes the
Lena site a good choice for evaluating spatial generalization,
leading us to choose Lena as our second test region. All of the
remaining annotated regions are used as the labeled training
set.

For the semi-supervised learning methods, we build a sec-
ondary unlabeled training dataset by selecting 42 Sentinel-
2 tiles over permafrost areas with a focus on regions of
continuous permafrost with high estimated ice content. For
each one of these tiles, we then randomly select a year from
the Sentinel-2 acquisition range and download the least cloudy
tile taken between May and August of that year. The time-
span from May to August was chosen to match the temporal
distribution of the annotated data.

The obtained Sentinel-2 scenes are much larger than even
modern GPU cards can handle for neural network training.
Further, mini-batch training requires a uniform image size. To
fulfill these requirements, all imagery is cut into patches of
size 192× 192 pixels as part of the training pipeline.

1available at https://github.com/initze/ML training labels

After all pre-processing steps, we arrive at a labeled training
dataset with 6464 patches, an unlabeled training dataset with
266 168 patches, and two test datasets, Herschel and Lena,
with 1052 and 4420 patches, respectively. Fig. 1 shows the
spatial distribution of the labeled and unlabeled training sites.

V. EXPERIMENTS & RESULTS

A. Generalization Study

In order to quantify the improvements from the modified
training procedure, we conduct experiments with different
configurations. Starting with a baseline study without any
training improvements, we keep the model architecture fixed
and only modify the training process. For good comparability,
we also use both the weak and strong data augmentations we
defined in section III-C for this experiment.

Specifically, we train and evaluate models in the following
configurations:

1) Baseline: Models trained only using supervised learning,
without any data augmentation.

2) Baseline+Aug: Same as baseline, but trained using the
weak and strong data augmentation as described in sec-
tion III-C.

3) FixMatchSeg: Models trained in the semi-supervised
setting using the methodology described by Upretee and
Khanal [40].

4) Adversarial: Semi-supervised models trained using the
adversarial approach proposed by Hung et al. [49].

5) PixelDINO: Models trained in the semi-supervised set-
ting using our proposed methodology as outlined in Alg. 1.

As the introduced methodology focuses on adapting the
training process itself rather than making changes to the model
architecture, it is invariant to the specific model architecture
used. Therefore, any semantic segmentation model can be
used in practice. For our experiments, we use the UNet
model [57] as it is a widely used network architecture for
image segmentation tasks in remote sensing.

For each configuration, we train 4 models with different
random seeds to also quantify the effects of the randomness
in model initialization, mini-batch sampling, and data augmen-
tation. Models were trained on a GPU server equipped with
NVIDIA A6000 GPUs. The implementation was carried out
in JAX [58] and Haiku [59]. The code is available online at
https://github.com/khdlr/PixelDINO.

In the semi-supervised setting, the model is being trained
on two datasets, the labeled data and the unlabeled data. These
two datsets are vastly different in size, with the labeled dataset
being much smaller than the unlabeled dataset. Therefore,
the concept of “training epochs” is no longer appropriate
for specifying the training duration of the model. In order
to still keep comparable training schedules for the different
model configurations, we instead count the number of training
steps applied to each model. This should keep the comparison
between the models as fair as possible, as each model has
gone through the same training schedule. In all reported
experiments, the models were trained for 200 000 steps.
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TABLE II
RESULTS OF THE GENERALIZATION STUDY: MEAN AND STANDARD DEVIATION OF 4 RUNS EACH (VALUES IN %)

Herschel Lena

IoU mIoU F1 Precision Recall IoU mIoU F1 Precision Recall

Baseline 19.8 ± 1.7 59.6 ± 0.9 33.0 ± 2.3 28.8 ± 3.0 39.4 ± 5.0 28.8 ± 4.0 64.3 ± 2.0 44.6 ± 5.0 52.8 ± 5.9 39.0 ± 6.0
Baseline+Aug 22.9 ± 3.0 61.3 ± 1.5 37.2 ± 3.9 44.2 ± 7.5 32.3 ± 2.0 25.8 ± 10.2 62.8 ± 5.1 40.2 ± 13.0 69.4 ± 3.2 29.4 ± 12.5

FixMatchSeg [40] 23.4 ± 0.8 61.5 ± 0.4 37.9 ± 1.1 34.1 ± 2.3 43.2 ± 4.5 32.4 ± 3.2 66.1 ± 1.6 48.8 ± 3.7 59.4 ± 2.7 41.6 ± 5.0
Adversarial [49] 26.6 ± 3.9 63.2 ± 1.9 41.9 ± 4.9 60.0 ± 9.2 32.3 ± 3.1 25.1 ± 15.1 62.4 ± 7.5 38.2 ± 20.5 87.3 ± 7.5 26.8 ± 16.7
PixelDINO 30.2 ± 2.7 65.0 ± 1.4 46.4 ± 3.2 52.7 ± 9.2 42.0 ± 3.0 39.5 ± 6.5 69.7 ± 3.3 56.4 ± 6.6 77.7 ± 6.3 44.5 ± 6.8

High Resolution Image Ground Truth Supervised PixelDINO

1 2 30 km4 5 1 2 30 km4 5 1 2 30 km4 5 1 2 30 km4 5

1 2 30 km4 5 1 2 30 km4 5 1 2 30 km4 5 1 2 30 km4 5

Fig. 4. High resolution imagery (1st column), ground truth (2nd column), and prediction results for parts of the Herschel Island (top) and Lena (bottom)
study sites for the Baseline+Aug (3rd column) and PixelDINO (4th column) training methods. Most prominent is the large reduction in false positives due to
the semi-supervised training method. The visualizations in columns 2-4 are displayed on top of Sentinel-2 data from the test datasets, high resolution imagery
in column 1 courtesy of Esri, Maxar, Earthstar Geographics, and the GIS User Community.

B. Evaluation Metrics
The foreground and background classes in this dataset are

highly imbalanced. Even though the study areas were chosen
to feature regions of high RTS density, only around 0.7% of
all pixels contain a target, while all other pixels belong to
the background class. Therefore, pixel-wise accuracy is an
unfit metric for this task. Instead, we evaluate the models
using other metrics which are widely used for such imbalanced
segmentation tasks:

1) Intersection over Union (IoU): Fraction of true positives
pixels among all pixels that are true targets and/or
classified positive.

2) mIoU: Mean of IoU for the RTS class and the IoU for
the background class.

3) Precision: Fraction of true positive pixels among positive
classifications.

4) Recall: Fraction of true positive pixels among true target
pixels.

5) F1 score: The harmonic mean of Precision and Recall.
The evaluation results of the generalization study are dis-

played in Tab. II. Overall, the trend shows better perfor-
mance of semi-supervised learning methods compared to the
supervised baselines. Among the semi-supervised methods,
our proposed PixelDINO approach demonstrates the strongest

performance, achieving IoU scores of 30.2% for Herschel and
39.5% for Lena. The second best models score 26.6% for
Herschel (Adversarial) and 32.4% for Lena (FixMatchSeg).

Although the main focus of this evaluation lies with the
relative improvements from semi-supervised learning over
supervised learning, we try to give an overview of how our
results compare to those obtained by existing studies. Due to
differences in data modalities, study regions, spatial sampling
and evaluation metrics, directly comparing this study’s results
with existing studies is challenging. For the Herschel site,
Nitze et al. [12] observe average IoU scores in the range
of 20%-25% for the trained models, which is similar to
the Baseline+Aug model in this study achieving an IoU of
22.9±3.0. This comparison suggests that the Sentinel-2 and
Planet imagery products are comparable for RTS detection.
The most comparable training setup by Yang et al. [15] is the
model trained on “Extensive Sites” and evaluated on Yamal
and Gydan. For this model, the study reports an mIoU of 57%,
which is comparable to our baselines, which achieve mIoUs
in the range of 60%-65%.

C. Influence of hyperparameter β

The PixelDINO framework introduces a tunable hyperpa-
rameter in eq. 4, namely the parameter β that determines
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TABLE III
MODEL PERFORMANCE FOR DIFFERENT CHOICES OF β

Herschel Lena

β IoU F1 IoU F1

0.01 28.0 ± 7.3 43.4 ± 9.0 41.7 ± 2.1 58.8 ± 2.1
0.05 24.9 ± 3.6 39.7 ± 4.7 33.3 ± 2.7 49.9 ± 3.0
0.1 30.2 ± 2.7 46.4 ± 3.2 39.5 ± 6.5 56.4 ± 6.6
0.2 30.4 ± 7.7 46.2 ± 9.4 35.1 ± 15.3 50.3 ± 19.2
0.5 36.1 ± 3.8 53.0 ± 4.1 28.7 ± 15.5 42.6 ± 21.2
1.0 31.9 ± 5.3 48.2 ± 6.0 12.9 ± 3.7 22.8 ± 6.0

TABLE IV
RUNTIME OF THE EVALUATED TRAINING METHODS

Method Training Duration Change

Baseline 88.9 min –
Baseline+Aug 91.3 min + 2.7%

FixMatchSeg 178.1 min + 100.3%
Adversarial 182.4 min + 105.2%
PixelDINO 174.9 min + 96.8%

the weighting of the PixelDINO loss term compared to the
supervised loss term. This raises the question of how to
choose the hyperparameter β. When β approaches 0, the setup
becomes plain supervised learning. For very large values of β,
on the other hand, the self-supervised loss term will dominate
the supervised learning signal, preventing the model from
learning the target classes. Intuitively, there should therefore
be an optimal choice of β that balances supervised and self-
supervised learning in such a way that the model performance
is maximized.

We repeat our experiments for different choices of β in the
range [0.01, 1], the results of which are shown in Table III.
Indeed, we observe that the performance generally decreases
towards both edges of this interval. A choice of β = 0.1 yields
good performance on both evaluation datasets. Therefore, we
recommend β = 0.1 as a starting point for tuning this
hyperparameter.

D. Effects on Training Duration

One common concern with increasingly complex training
schemes is the increase in training time that they incur. In order
to assess this, we report the average runtime of our experi-
ments in Tab. IV. While the impact of data augmentations on
the training duration is negligible, all semi-supervised training
methods roughly double the duration of training. This is easily
explained by the fact that the semi-supervised methods process
both a batch of labeled imagery and a batch of unlabeled
imagery during each iteration. However, we stress that these
duration increases only occur during training and not during
inference. During inference, all the presented models will run
at the same speed since they share the same model architecture.

VI. DISCUSSION

The results show that for the task of RTS detection, semi-
supervised learning can indeed yield a strong performance

boost. In this section we will discuss our observations dur-
ing the experiments, what sets apart PixelDINO from the
other semi-supervised learning methods, and implications for
follow-up research.

A. Isolating the Effect of Data Augmentations

As consistency across data augmentations makes up a large
part of the semi-supervised training methods, the improve-
ments in segmentation accuracy might in fact be explained by
the use of data augmentations instead of the semi-supervised
training itself. In order to isolate the direct effects of data
augmentation on the training process, we trained the baseline
supervised model with and without data augmentations.

While the data augmentations improve the model perfor-
mance on the Herschel evaluation site from an IoU of 19.8%
to 22.9%, they actually decrease performance for the Lena
evaluation site from an IoU of 28.8% to 25.5%. This is
suprising, as it is generally believed that data augmentation
improves generalizability of machine learning models [56].
We attribute this to the higher land cover complexity of the
Lena site, which features lakes, forest and bright bare ground
and RTSs. Meanwhile, the Herschel site only featues tundra,
RTSs and coastal water, matching the training data distribution
more closely. Therefore, data augmentation allows the model
to better detect coastal thaw slumps, while the generalization
performance to inland regions suffers slightly.

At the same time, semi-supervised learning improves the
performance of the baseline model much more than just
applying data augmentations. From this, we conclude that the
improved training performance is not explained by the data
augmentations alone, but can instead be attributed to the semi-
supervised learning methods.

B. Benefits of Semi-Supervised Learning

The evaluated semi-supervised methods were generally able
to improve over the baselines in terms of the IoU and F1
metrics, as shown in Tab. II. Overall, semi-supervised learning
has a large positive influence on the performance of the
models, with the potential to increase IoU scores by around 8
basis points and F1 scores by around 12 basis points across
both datasets.

The only exception here is the performance of the adver-
sarially trained models on the Lena evaluation site. Here,
this class of models actually underperforms the baselines on
average. At the same time, the standard deviation is quite
high, implying a large spread in model performances for this
particular group. This behavior is likely tied to the most
common point of criticism for adversarial training, namely
that the training objective dictates a saddle-point optimization
problem. These are known to be hard to solve and lead
to unstable training [60]. In our experiments, this leads to
unstable generalization. As the Lena test site differs much
more from the training data than the Herschel site, the unstable
generalization manifests itself in the Lena dataset but not in
Herschel. Meanwhile, FixMatchSeg and PixelDINO do not
exhibit this issue.
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Generally, our proposed PixelDINO methodology achieves
the strongest improvement in the segmentation metrics. This
confirms that it is not only competitive with other approaches
for semi-supervised semantic segmentation, but, at least for
this task, is in fact the preferrable option.

C. Effects of PixelDINO Training

Our hypothesis for the strong performance of PixelDINO
models lies in the fact that RTS detection is a task that has only
two classes and a strong class imbalance. Therefore, the con-
sistency regularization in approaches based on pseudo-labels
like FixMatchSeg does not regularize the model sufficiently
when it comes to correctly segmenting background features.
This hypothesis is supported by visual inspection (see Fig. 4)
and the Recall and Precision metrics in the Tab. II. While
FixMatchSeg and PixelDINO have comparable Recall values,
PixelDINO is far ahead in Precision, which suggests that our
method is able to greatly reduce the number of false positives
while maintaining a constant number of false negatives. Our
findings align with Yang et al. [15], who observe that false
positives are a large issue in RTS detection and address this
by including negative data.

Visual inspection of the results in Fig. 4 supports our
hypothesis that PixelDINO training reduces false positives.
Further, while the supervised baseline sometimes fragments
a single RTS target into multiple polygons, the PixelDINO
predictions appear less fragmented, suggesting that our method
leads to more robust predictions.

Interestingly, an inverted phenomenon can be observed for
the adversarial training method. Here, the Precision values
are greatly increased, beating even the models trained with
PixelDINO. But this comes at the cost of poor Recall values,
which means that the adversarially trained model will miss
many more RTS targets than the other methods. We believe
this to be related to the adversarial training method. As
the discriminator is tasked with discerning true masks from
predicted masks, it teaches the segmentation network mainly
about the shapes of the features. While it is hard for the model
to generate realistic RTS shapes, it is really easy to generate
a realistic background tile by not predicting any targets. For
ambiguous scenes, the adversarial model might therefore tend
to predict only background, as this will always be accepted
by the discriminator.

While PixelDINO appears to improve the models’ robust-
ness against false positives, we do observe slightly more
false negatives in some regions, such as the Lena test set in
Fig. 4. Further, as outlined in section V-D, the semi-supervised
models, including PixelDINO, need roughly twice as long
to train fully, as they need to ingest both unlabelled and
labelled data. While the potential benefits are large, researchers
therefore need to carefully consider whether the trade-offs are
justified for a specific task at hand.

Overall, our PixelDINO approach greatly benefits from its
ability to further subdivide the background class into regions of
different semantic content, which makes the semi-supervised
training feedback much more valuable, which in turn leads to
more accurate predictions on the test set.

D. Avenues for Follow-Up Research

PixelDINO is easy to implement and can train more accu-
rate RTS detectors without additional labels. We expect that
these properties generalize well to other use-cases in remote
sensing where data is scarce, large regional variations exist,
or classes are highly imbalanced. Examples for such tasks are
detecting landslides [61], flood mapping [62], or deforestation
mapping [63].

It is hypothesized that satellite imagery of higher resolution
will be beneficial for detecting RTSs, as oftentimes the targets
can be quite small [12]. While we do not make use of such
imagery due to reasons of data availability, the introduced
methodology is applicable to any imagery source. It is up to
future research to explore the possibilities of such methods for
high-resolution satellite or even aerial imagery sources.

While not the focus of this study, a fully self-supervised
version of PixelDINO might be able to learn feature maps
of high spatial detail. Recent developments in foundation
models [64] suggest that this is the way forward for many
remote sensing tasks.

VII. CONCLUSION

Large volumes of remote sensing data are readily available
to the public through platforms like the NASA Landsat or
ESA Copernicus archives. These open up many possibile use
cases for monitoring applications. Many usecases for deep
learning in remote sensing are, however, hindered by a lack
of sufficient labeled training data. This is particularly true for
semantic segmentation tasks, because these require all pixels
to be labeled. Semi-supervised learning can help relieve the
labelling workload on domain experts by a large amount,
simply by using readily available unlabeled data.

Our proposed PixelDINO framework achieves this by en-
couraging the trained model to come up with its own scheme
of segmentation classes, for which it is then trained to be
consistent across data augmentations as well as to align its
classes to the label classes from the annotated training set.

In our experiments we demonstrated that PixelDINO can
train models that generalize well to previously unseen regions
in the Arctic, and do so better than both supervised baselines
and other semi-supervised approaches.

As described in section VI-C, handling highly imbalanced
classes is a strong property of PixelDINO. While our intro-
duced framework is flexible in terms of the number of output
channels, further research is needed to understand how well
PixelDINO will generalize to semantic segmentation problems
with many classes.

We expect the methods developed in this study to be
transferrable to many different usecases in remote sensing even
outside of permafrost monitoring. Therefore we hope to inspire
follow-up research in improving the automated mapping of
ground features using semi-supervised semantic segmentation
methods.

DATA AND CODE AVAILABILITY

The ground truth data used in this study was published
in [12] and is available at https://github.com/initze/ML
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training labels/. The project page containing code and other
materials for this study can be found at https://khdlr.github.io/
PixelDINO/.
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