

Technische Universität München
TUM School of Computation, Information and Technology

API Management Practices and Patterns for Public, Partner,
and Group Web APIs with a Focus on Knowledge Transfer and

Collaboration

Gloria Mercedes Bondel

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung einer

 Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: apl. Prof. Dr. Georg Groh

Prüfer der Dissertation:

1. Prof. Dr. Florian Matthes

2. Prof. Dr. Martin Bichler

Die Dissertation wurde am 10.01.2024 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 17.06.2024

angenommen.

Abstract

Web Application Programming Interfaces (APIs) are the de facto standard for making
data and functionality accessible across organizational boundaries. As a result, Web APIs
allow provider organizations to realize new business models, become platform providers,
support efficient partner integration, or enable compliance (e.g., in banking). However,
Web APIs require careful design and management to realize these benefits. Nevertheless,
to the best of the author’s knowledge, explicitly formulated API management guidance is
scarce in academia.

Analyses of the API Economy ecosystem show that relatively young, digital organizations
in the US dominate the provision of APIs across organizational boundaries. Also, managing
web APIs at the interface between several stakeholders inside and outside an organization
makes API management an inherently collaborative organizational function. Therefore,
this dissertation aims to identify API management best practices focusing on knowledge
transfer and collaboration for different API provider organizations, including established
organizations in traditional sectors seated in Europe.

First, we focus on knowledge transfer between the API provider and potentially unknown,
heterogeneous, and distributed API consumers. We identify 48 best practice candidates
for code examples in API documentation from 17 research papers and 13 expert interviews
and categorize them according to their knowledge types. In addition, we evaluate eight
best practice candidates using a case study. The case study results show six best practice
candidates that can be confirmed to be actual best practices. Furthermore, we derive
several implications for code examples in API documentation. One such implication states
that the identified best practices are context-dependent.

Hence, the main contribution of this dissertation is the API management pattern cata-
log (AMPC). The AMPC presents 22 patterns and 37 pattern candidates for managing
Web APIs used across company boundaries and focuses on an API management team’s
interactions with external and internal stakeholders. In addition, the AMPC presents an
overview of stakeholders involved in API management and relates the patterns of AMPC
to related pattern languages and catalogs. We created the AMPC using a design science
approach encompassing the initial analysis of 14 case descriptions and refinement based
on the scientific pattern community’s feedback. The subsequent evaluation employing a
survey with 18 IT professionals shows the AMPC’s applicability, comprehensibility, usabil-
ity, and correctness. However, the evaluation also indicates that the AMPC is incomplete
but provides a starting point for designing a holistic approach to API management that
requires extension, refinement, and regular updates in the future.

I

II

Zusammenfassung

Web Application Programming Interfaces (Web APIs) sind der De-facto-Standard für den
Daten- und Funktionsaustausch über Unternehmensgrenzen hinweg. Web APIs ermögli-
chen es Anbietern neue Geschäftsmodelle zu verwirklichen, zu Plattformanbietern zu wer-
den, Partner effizient zu integrieren oder Regularien einzuhalten (z. B. im Bankwesen). Um
diese Vorteile zu realisieren, müssen Web APIs jedoch sorgfältig konzipiert und gesteuert
werden. Nach bestem Wissen der Autorin gibt es in der Wissenschaft aktuell jedoch kaum
explizit formulierte API Management Handlungsempfehlungen.

Analysen des API Economy Ökosystems zeigen, dass relativ junge, digitale Organisationen
in den USA die Bereitstellung von APIs über Organisationsgrenzen hinweg dominieren. Zu-
dem macht das Management von Web APIs an der Schnittstelle zwischen verschiedenen
Stakeholdern innerhalb und außerhalb einer Organisation das API Management zu einer
inhärent kollaborativen Organisationsfunktion. Daher ist es das Ziel dieser Dissertation,
Best Practices für API Management mit einem Fokus auf Wissenstransfer und Koopera-
tion zu identifizieren, welche anwendbar für verschiedene Typen von API Anbietern sind,
einschließlich etablierter Organisationen in traditionellen Sektoren mit Sitz in Europa.

Zunächst konzentrieren wir uns auf den Wissenstransfer zwischen dem API Anbieter und
potenziell unbekannten, heterogenen und verteilten API Nutzern. Wir identifizieren 48 Best
Practice Kandidaten für Codebeispiele in der API Dokumentation in 17 Wissenschaftsbei-
trägen und 13 Experteninterviews und kategorisieren sie nach ihren Wissenstypen. Darüber
hinaus evaluieren wir acht Best Practice Kandidaten in einer Fallstudie. Das Ergebnis der
Fallstudie bestätigt sechs der Best Practice Kandidaten als Best Practices. Darüber hinaus
leiten wir mehrere Implikationen für Codebeispiele in API Dokumentation ab. Eine dieser
Implikationen besagt, dass die identifizierten Best Practices kontextabhängig sind.

Der Hauptbeitrag dieser Dissertation ist daher der API Management Patternkatalog
(AMPC). Der AMPC enthält 22 Pattern und 37 Pattern Kandidaten für das Manage-
ment von unternehmensübergreifend genutzten Web APIs mit einem Fokus auf die Inter-
aktionen eines API Management Teams mit externen und internen Stakeholdern. Darüber
hinaus bietet der AMPC einen Überblick über die am API Management beteiligten Ak-
teure und setzt die Pattern des AMPC mit verwandten Pattern Sprachen und Katalogen
in Beziehung. Wir haben einen Design Science Ansatz genutzt um den AMPC zu erstellen,
der die anfängliche Analyse von 14 Fallbeispielen und eine Verbesserung auf der Grund-
lage des Feedbacks der wissenschaftlichen Pattern Community umfasst. Die anschließende
Evaluation anhand einer Umfrage mit 18 IT-Experten zeigt die Anwendbarkeit, die Ver-
ständlichkeit, die Benutzerfreundlichkeit und die Korrektheit des AMPC. Die Evaluation
zeigt jedoch auch, dass der AMPC noch unvollständig ist, jedoch einen Ausgangspunkt für
die Entwicklung eines ganzheitlichen Ansatzes für API Management bietet, der in Zukunft
erweitert, verbessert und regelmäßig aktualisiert werden muss.

III

IV

Acknowledgment

First and foremost, I want to express my special appreciation and thanks to my supervisor Prof.
Dr. Florian Matthes. He allowed me to conduct this research under his supervision and trusted
me with many exciting projects. I am immensely grateful for everything that I learned during
my time at the chair. I further want to thank Prof. Dr. Martin Bichler for being my second
supervisor.

In addition, I would like to thank my mentor PD Dr.-Ing. Sven-Volker Rehm for his support
during my research endeavor. Our discussions were very motivating and helped me cast new
perspectives onto my research.

This work benefited greatly from the cooperation of many industry experts. Hence, I want to
thank all industry partners who supported this research by participating in interviews, discus-
sions, case studies, and surveys.

Many great colleagues accompanied me during my time at the chair. My special thanks go to
Anne Faber, Dominik Huth, Ulrich Gallersdörfer, Adrian Hernandez-Mendez, and Daniel Braun
for their constructive cooperation and the good times. I am also grateful for all the students who
entrusted me with advising their theses and collaborated with me on various projects. Special
thanks go to Andre Landgraf, Arif Cerit, Duc Huy Bui, Sharada Sowmya, Fridolin Koch, and
Kevin Baumer.

Finally, I want to thank my parents Brigitte and Richard, my husband Sebastian, my family, and
my friends for their unwavering support, patience, and encouragement. I am beyond grateful
and full of love to have you all in my life, knowing you will always have my back.

München, 05.01.2024

Gloria Bondel

V

VI

Table of Contents

1. Introduction and Motivation 1
1.1. Problem Statement . 3
1.2. Research Questions . 4
1.3. Contributions . 6
1.4. Outline . 7
1.5. Citation Style and Conventions . 8

2. Foundations 11
2.1. Web Application Programming Interfaces (Web APIs) 11

2.1.1. Web API Software Artifacts . 12
2.1.2. Web API Stakeholder Roles . 16
2.1.3. Web API Types and Architectural Styles 18
2.1.4. Web API Accessibility Categories . 23

2.2. API Economy . 26
2.3. APIs as Boundary Resources . 27
2.4. API Management . 29

2.4.1. API Management Definition . 29
2.4.2. API Management Lifecycle . 30

2.5. Best Practices and Patterns . 32
2.5.1. Best Practices . 33
2.5.2. Patterns . 34

2.6. Summary . 38

3. Related Work 41
3.1. API Design Patterns . 41
3.2. Service Design Patterns . 44
3.3. Middleware Design Patterns . 47
3.4. Object-oriented Software Design Patterns . 48

VII

Table of Contents

3.5. Software Architecture Patterns . 49
3.6. Summary . 51

4. Identification of Best Practice Candidates for Code Examples in Web API Docu-
mentation 53
4.1. Definition of Code Examples . 54
4.2. Research Approach . 56

4.2.1. Literature Review . 57
4.2.2. Expert Interviews . 57

4.3. Best Practice Candidates for Code Examples in Web API Documentation 60
4.3.1. Best Practice Candidates Aiming at Knowledge Transfer 62
4.3.2. Best Practice Candidates Concerning the Form of Code Examples 73

4.4. Discussion . 81
4.5. Summary . 83

5. Evaluation of Best Practices for Code Examples in Web API Documentation 85
5.1. Research Approach . 86
5.2. Evaluation of Best Practices for Examples in Web API Documentation 91

5.2.1. Quantitative Analysis . 91
5.2.2. Qualitative Analysis . 94
5.2.3. Evaluation of the Best Practice Candidates 95

5.3. Discussion . 99
5.4. Summary . 101

6. Design of the API Management Pattern Catalog (AMPC) 103
6.1. Research Approach . 103
6.2. Previous Work . 107

6.2.1. Case Base . 108
6.2.2. Data Analysis . 108

6.3. AMPC Design . 110
6.3.1. Improvements to the Data Analysis . 110
6.3.2. Enrichment of Pattern Descriptions . 111
6.3.3. Evolution of the Pattern Form . 112

6.4. The API Management Pattern Catalog (AMPC) 115
6.4.1. Structure of the AMPC . 115
6.4.2. Stakeholders . 116
6.4.3. Patterns . 116
6.4.4. Relations to Other Pattern Collections . 120
6.4.5. Pattern Candidates . 121

6.5. Discussion . 122
6.6. Summary . 123

7. Evaluation of the API Management Pattern Catalog (AMPC) 127
7.1. Survey Approach . 127

7.1.1. Survey Goal . 127
7.1.2. Survey Structure . 128

VIII

Table of Contents

7.1.3. Survey Participant Acquisition . 129
7.2. Survey Participants . 130
7.3. Evaluation Results . 132

7.3.1. Quantitative Results . 132
7.3.2. Qualitative Results . 134

7.4. Discussion . 140
7.5. Summary . 143

8. Conclusion and Future Work 145
8.1. Answers to Research Questions . 147
8.2. Limitations . 149

8.2.1. Limitations to the Identification of API Management Best Practices . . . 149
8.2.2. Limitations of the Considered Material . 149
8.2.3. Limitations to the Best Practices for Code Examples in Web API Docu-

mentation . 150
8.2.4. Limitations to the AMPC . 151

8.3. Future Work . 154

Bibliography 157

Abbreviations 173

A. Prior Publications and Student Thesis in the Context of this Dissertation 177

B. Evolution of Patterns in the AMPC 179

C. Questions for the EuroPLoP Writer’s Workshop 181

D. Changes to the AMPC before its Publication 183

E. AMPC Pattern Summaries 184

F. AMPC Pattern Examples 188

G. Survey Questions 199

IX

X

List of Figures

1.1. Structure of this dissertation including contributions and publications. 10

2.1. Software artifacts and stakeholders involved in a data exchange via a Web
Application Programming Interface (API) adapted from Bondel et al. (2021b). . 13

2.2. The Richardson Maturity Model for categorizing the compliance of interfaces with
REpresentational State Transfer (REST) constraints adopted from Fowler (2010). 23

2.3. Overview of different Web API accessibility categories (De, 2017; Jacobson et al.,
2012; Doerrfeld et al., 2015), highlighting the scope of this dissertation. 25

2.4. Overview of an API management lifecycle derived from Masse (2019); Axway Inc.;
Doerrfeld et al. (2015) and adopted from Bondel et al. (2021b). 31

2.5. Relations between structural elements of a pattern description adapted from
Meszaros and Doble (1997). 37

4.1. Steps and results of the research approach applied to identify best practice can-
didates for Web API documentation. 56

4.2. Approach to categorizing the best practice candidates according to the knowledge
they aim to transfer or the form they should have. 61

5.1. Steps and results of the research approach applied to evaluate best practice for
Web API documentation. This chapter builds on the results presented in Chapter 4. 85

5.2. Structure of the Web API documentation adapted from Cerit (2019). 86
5.3. Overview of the differences between the basic and the advanced textual documen-

tation versions adapted from Cerit (2019). 89
5.4. Steps of the case study adapted from Cerit (2019). 91
5.5. Time that participants took for learning and solving the three tasks adapted from

Bondel et al. (2022). 92
5.6. Relative amount of times the participants consulted specific documentation sec-

tions adapted from Bondel et al. (2022). 93

XI

List of Figures

6.1. Design science research framework (Hevner et al., 2004) adapted to the creation
of the API Management Pattern Catalog (AMPC) (Bondel and Matthes, 2023)
adapted from Bondel et al. (2021b). 104

6.2. Iterative improvement and publication of the AMPC (Bondel and Matthes, 2023). 106
6.3. Meta-model of the AMPC. 116
6.4. Overview and relation of software artifacts and stakeholders involved in API man-

agement adapted from Bondel et al. (2021b); Bondel and Matthes (2023). 117
6.5. Overview of the patterns in the AMPC and their relations to each other adopted

from Bondel and Matthes (2023). 118
6.6. Overview of the patterns in the AMPC, their relations to each other, and their

relations to other patterns or pattern languages adopted from Bondel and Matthes
(2023). 125

7.1. Survey participants’ roles. 130
7.2. Survey participants’ industry sector affiliation. 131
7.3. Survey participants’ professional Information Technology (IT) experience in years. 132
7.4. Survey participants’ experience consuming and providing Web APIs. 133
7.5. Quantitative results of the AMPC evaluation. 134
7.6. Results to the question if a survey participant would recommend the AMPC to

colleagues forming the basis to calculate the Net Promoter Score (NPS) (Reich-
held, 2003). 135

F.1. A Frontend Venture makes data and functionality available to consumers lacking
the capabilities to use a Web API or Client Library. 189

F.2. The pattern Collaborative Pilot Project involves one or a selected number of
API consumers in all steps of the API design. This includes the API consumer
reviewing and providing feedback on the API’s specification and the prototypical
implementation before publication to all consumers. 194

XII

List of Tables

2.1. Overview of Web API styles and their characteristics (Daigneau, 2011). 19

4.1. Identified and analyzed research papers that present implications, principles, or
observations for code examples in API documentation. 58

4.2. Overview of interview experts adopted from Bondel et al. (2022). 59
4.3. Best practice candidates for code examples in Web API documentation aiming to

transfer API knowledge. 63
4.4. Best practice candidates for code examples in Web API documentation aiming to

transfer API knowledge (continued). 64
4.5. Best practice candidates for code examples in Web API documentation aiming to

transfer API knowledge (continued). 65
4.6. Best practice candidates for code examples concerning the form of the examples. 74
4.7. Best practice candidates for code examples concerning the form of the examples.

(continued). 75

5.1. Best practice candidates evaluated in the case study. 88
5.2. Overview of case study participants adopted from Bondel et al. (2022). 90
5.3. System Usability Scale (SUS) score (Brooke, 1996) of the different documentation

versions. 94

6.1. Overview of the interviews informing the case base adopted from Bondel et al.
(2021b). 109

6.2. Overview of the case base derived from expert interviews adapted from Bondel
et al. (2021b). 110

6.3. Adopted case base used as a basis for the creation of the AMPC adapted from
Bondel et al. (2021b). 111

B.1. Overview of the major changes of patterns between Landgraf (2021) and the
AMPC (Bondel and Matthes, 2023). 180

XIII

List of Tables

E.1. Summaries of the Interface Type Patterns adopted from Bondel and Matthes (2023).185
E.2. Summaries of the API Provider Internal Patterns adopted from Bondel and

Matthes (2023). 186
E.3. Summaries of the API Consumer-facing Patterns adopted from Bondel and

Matthes (2023). 187

XIV

CHAPTER 1

Introduction and Motivation

The use of Information Technology (IT) to exchange data across organizational boundaries and
thus enabling inter-firm processes has been investigated since the 1960s (Lyytinen and Dams-
gaard, 2011). However, the success of early inter-firm communication and data exchange ap-
proaches based on proprietary networks like Electronic Data Exchange (EDI) was limited due
to the need for high upfront, asset-specific investments leading to point-to-point integrations
(Christiaanse et al., 2004). However, with the rise of the internet as an open, non-proprietary
infrastructure, inter-firm data exchange became cost-efficient, enabling new forms of relation-
ships between organizations (Christiaanse et al., 2004; Lyytinen and Damsgaard, 2011). More
precisely, due to their simplicity and understandability (Kopecký et al., 2014; Tan et al., 2016;
Maleshkova et al., 2010), Web APIs emerged as the de facto standard for data exchange between
organizations.

Web APIs1 are machine- and human-readable interfaces that allow client applications to access
functionality and data provided by backends (Bermbach and Wittern, 2016; Santoro et al., 2019).
Web APIs rely on Web technologies, particularly using the Hypertext Transfer Protocol (HTTP)
as application protocol to transfer messages (Wittern et al., 2017; Bermbach and Wittern, 2016).
By encapsulating data in messages, Web APIs allow the instantiation of the information hiding
principle (Parnas, 1972). Therefore, a backend and client applications can exchange messages
independent of their underlying platform. Moreover, the communicating components can evolve
without affecting each other as long as the Web API contract remains stable (Daigneau, 2011).

Web APIs can be categorized according to the audience that can access them. First, public
Web APIs are generally accessible to all third-party developers that accept the Web API’s
terms and conditions and other contractual agreements (Jacobson et al., 2012). In comparison,

1In this dissertation, we use the terms API and Web API interchangeably to refer to Web APIs if not explicitly
stated otherwise.

1

1. Introduction and Motivation

partner Web APIs are accessible only to a restricted group of developers belonging to one or
several organizations outside the API provider organization (De, 2017). Such partner APIs often
provide the basis for integrations guided by individual contractual agreements (Jacobson et al.,
2012). Next, group Web APIs are accessible to subsidiaries belonging to the same group as the
API provider (Bondel et al., 2021b). Lastly, internal Web APIs are accessible exclusively to
developers inside the API provider organization (Jacobson et al., 2012). Since this dissertation
focuses on Web APIs with the API provider and consumers belonging to different organizations,
public, partner, and group Web APIs are in scope.

Current Information Systems (IS) research conceptualizes public, partner, and group Web APIs
as resources at the interface between an organization and third-party developers (Evans and
Basole, 2016; Basole, 2016, 2019) enabling several advantages for API providers.

First, Web APIs enable API providers to realize new business models (Evans and Basole, 2016;
Basole, 2016, 2019). Organizations can make previously internal data, functionality, or products
accessible to external consumers (Weiss and Gangadharan, 2010; Basole, 2019). As a result, these
provider organizations can benefit from new revenue streams by monetizing access to their assets
using different business models like subscriptions, freemium, or pay-as-you-go (Evans and Basole,
2016; Basole, 2016, 2019). A well-known example for an organization that successfully built its
business model on Web APIs is Salesforce2, which initially offered its Customer Relationship
Management (CRM) tool only via Web APIs. Similarly, Twilio3 successfully offers Short Message
Service (SMS), Email, and other communication services exclusively via Web API (Iyer and
Subramaniam, 2015).

Secondly, Web APIs enable organizations to become product platform providers (Yoo et al.,
2010). Product platform providers allow consumers to access their platform’s core modules to de-
velop complementing applications (Ghazawneh and Henfridsson, 2013). Examples of successful
product platforms are the iPhone iOS4 and Android5 operating systems with their proliferating
app ecosystems (de Reuver et al., 2018).

Thirdly, Web APIs enable efficient partner integration. Organizations can become consumers
of Web APIs and rent functionality, benefiting from the "Everything-as-a-Service (XaaS)"
paradigm (Basole, 2019). As a result, they allow for more efficient IT management (Hagel III
and Brown, 2001). A recent study questioning 1,050 IT leaders across the globe revealed that
at the beginning of 2023, 81% of organizations used public APIs (MuleSoft, 2023).

Finally, in some business sectors, regulators or consortia require organizations to make data
accessible to specific consumers. For example, in banking, the Revised Payment Services Di-
rective (PSD2) (EU Directive 2015/2366, 2015) forces retail banks to make customer accounts
accessible to particular types of organizations. Banks can implement such access through Web
APIs. Similarly, in the automotive sector, Original Equipment Manufacturers (OEMs) commit-
ted themselves to providing secure access to vehicle-generated data to consumers through Web
APIs (ISO 20077-1; ISO 20078-1; ISO 20080).

2https://www.salesforce.com/de/
3https://www.twilio.com/en-us
4https://www.apple.com/de/ios/ios-17/
5https://www.android.com/intl/de_de/

2

https://www.salesforce.com/de/
https://www.twilio.com/en-us
https://www.apple.com/de/ios/ios-17/
https://www.android.com/intl/de_de/

1. Introduction and Motivation

On the other hand, consumers also benefit from public, partner, and group Web APIs. First,
consumers can combine Web APIs (Weiss and Gangadharan, 2010) to create mashups (Evans and
Basole, 2016; Basole, 2019; Basole et al., 2018). Also, they can efficiently source IT functionality
through XaaS offers.

As a result, a new service ecosystem consisting of Web API providers, consumers, and other
stakeholders like aggregator platforms and regulators has emerged, i.e., the so-called API Econ-
omy (Basole, 2019; Weiss and Gangadharan, 2010). Within the API Economy, providers and
consumers can generate new value using Web APIs (Huhtamäki et al., 2017; Basole, 2016; Evans
and Basole, 2016; Basole, 2019). Moreover, Web APIs enable in parts unanticipated innovation
through service recombinations (Yoo et al., 2010; Eaton et al., 2015; Basole, 2019). There-
fore, Web APIs are strategically valuable resources, and firms must design and maintain them
carefully (Yoo et al., 2010).

1.1. Problem Statement

However, past ecosystem analyses show that the provision of successful Web APIs is not dis-
tributed evenly across organizations. Instead, relatively young, digital organizations are more
likely to provide public Web APIs, and those APIs are integrated more often by third-party
developers than APIs of established organizations, i.e., organizations that were traditionally not
digital (Evans and Basole, 2016; Basole, 2019). For example, Amazon6 provides several Web
APIs and these APIs are integrated in many mashups, while the established retailers Walmart7
and Macy’s8 provide only a small number of Web APIs which are rarely integrated (Evans and
Basole, 2016).

Moreover, organizations located in major entrepreneurial regions, especially in Silicon Valley in
the United States of America (US), provide the majority of successful open APIs (Huhtamäki
et al., 2017). Specifically, California alone provides more public Web APIs than the whole
of Europe, suggesting an untapped opportunity for European firms (Huhtamäki et al., 2017).
Also, companies providing services related to social, mapping, search, online payment, image
sharing, video, and messaging provide more successful Web APIs compared to firms operating
in traditional sectors like banking, insurance, pharmaceuticals, food, transportation, or energy
(Evans and Basole, 2016).

Nevertheless, our experiences and interactions with European organizations in different tradi-
tional sectors indicate that many plan or already started providing public, partner, or group
Web APIs in the last few years.

However, Web APIs must attract heterogeneous consumers to be successful (Yoo et al., 2010).
Since consumers rely on the performance and availability of the Web APIs that they integrate
(Bermbach and Wittern, 2016), they do not integrate poorly designed, unattractive, or too
expensive Web APIs. Also, they abandon Web APIs if they stop meeting their needs (Huh-
tamäki et al., 2017). Therefore, it is not sufficient for an organization to simply publish a Web

6https://www.amazon.com/
7https://www.walmart.com/
8https://www.macys.com/

3

https://www.amazon.com/
https://www.walmart.com/
https://www.macys.com/

1. Introduction and Motivation

API (Basole, 2019; Ghazawneh and Henfridsson, 2010), even if the functionality and data it
makes accessible are valuable. Instead, a Web API management strategy, including technical,
social, organizational, and process-oriented aspects, is essential for organizations to tap into
the potential of the API Economy (Yoo et al., 2010; Basole, 2019). A Web API management
strategy must, among other things, consider Web API design, discoverability, support services,
community management, monitoring, and monetization (Basole, 2019).

Research on Web APIs as boundary resources is relatively abstract making it difficult for orga-
nizations to derive recommendations for action easily. As de Reuver et al. (2018) states: "[...]
research on digital platforms has so far not revealed much direct design knowledge" (de Reuver
et al., 2018, p. 129). On the other hand, practice-driven literature provides more specific API
management guidelines but these guidelines are often concerned with rather technical aspects of
Web API management, e.g., how to design endpoints to achieve RESTful compliance or how to
implement authentication and authorization mechanisms to increase security (see Chapter 3).

Furthermore, API management is an organizational function at the interface between provider or-
ganization and an external consumers. Therefore, knowledge transfer between the API provider
team and different stakeholders inside and outside of the organization is necessary (Islind et al.,
2016). Supporting this assumption, Yoo et al. (2010) calls for the identification of "[...] appro-
priate principles that govern the social context of developments of boundary resources and digital
components [...] (Yoo et al., 2010, p. 733) in platform settings. Nevertheless, to the best of the
authors’ knowledge, only few best practices focusing on knowledge transfer and collaboration in
API management have been explicitly formalized.

1.2. Research Questions

The research objective of this dissertation is:

The identification of API management best practices and patterns focusing on knowledge
transfer and collaboration in public, partner, and group API initiatives, for different types
of API provider organizations, including established organizations in traditional sectors
seated in Europe.

We aim to achieve this objective by answering the following Research Questions (RQs).

RQ1: What is the current state of research on API management?

First, we analyzed the current state of research in the field of API management.

RQ 1.1 How is API management defined in academia?
To build a solid foundation and introduce a clear terminology for the dissertation at
hand, we reviewed scientific and practice-driven literature on API management, API
management best practices, and API management patterns. We present definitions
of relevant terms in Chapter 2, including a working definition for API management.

4

1. Introduction and Motivation

RQ 1.2 What patterns for API management exist in research and practice?
We identified and reviewed 15 pattern collections concerned with API design, service
design including SOA and microservices patterns, middleware design, object-oriented
software design, and software architecture design. We extracted API management pat-
terns and categorized them along the API management lifecycle presented in Fig. 2.4.

RQ2: What are best practices for transferring knowledge to API consumers using code
examples in official public, partner, and group Web API documentation?

Consumers using public, partner, and group Web APIs usually do not have easy access to the
developers of the respective API. Hence, API providers need to transfer knowledge to API
consumers to enable the use of the Web APIs. Therefore, we identified best practices for code
examples in API documentation.

RQ 2.1 What are best practice candidates for code examples in official public, partner, and
group Web API documentation?
As presented in Chapter 4, we reviewed scientific literature and analyzed expert inter-
views to identify best practice candidates for code examples in API documentation.
As a result, we identified 48 best practice candidates for code examples in Web API
documentation. Moreover, we categorized the identified best practice candidates ac-
cording to the different knowledge types (Thayer et al., 2021) that they aim to convey.

RQ 2.2 What are validated best practices for code examples in official public, partner, and
group Web API documentation?
Drawing on the results of Chapter 4, we evaluated a subset of best practice candi-
dates in a case study with 12 professional developers. The case study comprised the
developers solving tasks using a Web API with the help of a basic or an enhanced
documentation version. We describe the case study approach and the results in Chap-
ter 5.

RQ3: What are API management patterns for public, partner, and group Web APIs
focusing on collaboration?

API management of Web APIs used across organizational boundaries requires the API provider
to collaborate with stakeholders internal and external to the API provider organization. More-
over, the suitability of API management best practices depends on their context. Therefore, we
created the API Management Pattern Catalog for Public, Partner, and Group Web APIs with
a Focus on Collaboration (Bondel and Matthes, 2023), which we abbreviate as AMPC. The
AMPC focuses on collaboration between an API management team and internal and external
stakeholders of public, partner, and group Web API initiatives. The AMPC constitutes the core
contribution of the dissertation at hand.

5

1. Introduction and Motivation

RQ 3.1 Who are the stakeholders involved in public, partner, and group Web API manage-
ment?
We used a design science research approach (Hevner et al., 2004; Hevner, 2007) as
described in Section 6.1 to create the API management pattern catalog (AMPC).
As a data basis, we assembled a case base holding 12 cases derived from 16 expert
interviews from which we derived stakeholders using Grounded Theory Methodology
(GTM) (Wiesche et al., 2017). As described in Section 6.4.2, the AMPC presents
nine stakeholders.

RQ 3.2 What are API management patterns for public, partner, and group Web APIs with a
Focus on collaboration?
The same design science research approach used to answer RQ3.1 yielded the pat-
terns of the AMPC. In addition, we iteratively added more relevant information and
refined the pattern form based on feedback from the scientific pattern community. As
described in Chapter 6, the AMPC comprises 22 patterns and 37 pattern candidates.

RQ 3.3 How do the identified API management patterns relate to existing pattern languages
and catalogs?
We reviewed pattern languages and catalogs concerned with the design of APIs or
interfaces and interactions between distributed software components in Chapter 3. In
Section 6.4.4, we relate these API management patterns to the patterns of the AMPC.
Moreover, we present a visual presentation of these relations in Fig. 6.6.

RQ 3.4 How do practitioners perceive the usefulness of API management patterns for public,
partner, and group Web APIs with a focus on collaboration?
We collected practitioner feedback using a survey. The survey evaluated the applica-
bility, comprehensibility, usability, completeness, and correctness of the AMPC from
a practitioner’s viewpoint. Overall, 18 experienced practitioners participated in the
survey. We describe the survey approach and results in Chapter 7.

1.3. Contributions

This dissertation contributes to research and practice in the field of Web API management with
a focus on Web APIs used across organizational boundaries, i.e., public, partner, and group Web
APIs.

First, we contribute to the field by introducing a concise terminology of terms related to Web
API management, best practices, and patterns. Also, we present an analysis of the state of
research for API management patterns. As a result, we identify the lack of guidance on social
aspects of Web API management as a research gap.

Afterward, we investigate knowledge transfer between API providers and consumers through
documentation to address this research gap. We present 48 best practice candidates for code
examples in Web API documentation. The best practice candidates contribute to practice by
providing an overview of potential best practices that can inspire the design of code examples

6

1. Introduction and Motivation

in Web API documentation. Moreover, the best practice candidates are a starting point for
evaluating the impact of each best practice candidate on the productivity and satisfaction of
API consumers.

Next, we evaluated a subset of the best practice candidates for code examples in public, partner,
and group Web API documentation, i.e., in settings in which the API consumers usually do
not have easy access to the Web API developer team. The analysis yields six validated best
practices. These best practices can guide practitioners when creating code examples as part of
official Web API documentation. Furthermore, practitioners and researchers can use the best
practices to inform the design of tools for the automated generation of code examples in Web
API documentation.

Moreover, we derive eight implications. Thus, the best practices and implications form a
starting point for creating a deeper understanding and holistic approaches for presenting code
examples in Web API documentation. Furthermore, the best practice candidates, best practices,
and implications can contribute to future theory building.

Next, we present the AMPC comprising 22 patterns and 37 pattern candidates for manag-
ing Web APIs used across organizational boundaries, which forms the core contribution of this
dissertation. In addition, we relate the identified API management patterns to existing pattern
languages and catalogs. Furthermore, we detail API management stakeholders and discuss
observations made during the API management pattern design.

The AMPC contributes to practice in several ways. First, the AMPC documents proven best
practices for managing Web APIs used across organizational boundaries focusing on stakeholder
collaboration. This operational knowledge supports practitioners in designing new API initia-
tives (see Section 7.4). In addition, practitioners can use the AMPC to benchmark current API
initiatives with state-of-the-art practices. Also, the AMPC presents a consistent taxonomy that
stakeholders can use to communicate. Next, the AMPC documents knowledge that can help
educate developers on Web API management. Hence, it supports different types of organiza-
tions in reaping the potential of public, partner, and group API initiatives by addressing the
challenge of API provider teams. Finally, the documentation of future changes to the pattern
catalog will allow researchers to create knowledge on the evolution of the discipline of Web API
management.

We conclude this dissertation by reflecting on the contributions and presenting future work.

1.4. Outline

Fig 1.1 presents an overview of this dissertation’s structure. In the following, we describe the
content of each subsequent chapter.

Chapter 2, ‘Foundations’, first defines the software artifacts and stakeholders involved in pro-
viding and using a Web API, followed by an introduction to typical architectural Web API
styles. Focusing on public, partner, and group Web APIs, the chapter further presents an
analysis of the API Economy and IS platform research. The analysis shows that Web APIs
are strategically essential resources (Yoo et al., 2010) which are unevenly distributed between

7

1. Introduction and Motivation

organizations, whereby traditional companies are at a disadvantage (Evans and Basole, 2016;
Basole, 2019; Weiss and Gangadharan, 2010; Huhtamäki et al., 2017). Furthermore, the pro-
vision of successful Web APIs requires active management including knowledge transfer and
collaboration with API consumers. Hence, the chapter presents a definition and lifecycle for
Web API management. Finally, it provides definitions of the terms best practices, practices, and
patterns.

Chapter 3, ‘Related Work’, reviews pattern collections concerned with API design, service
design, middleware design, object-oriented software design, and software architecture pattern
languages and catalogs to identify API management patterns. Moreover, we categorize identified
API management patterns along the API management lifecycle phases presented in Fig. 2.4.

Chapter 4, ‘Identification of Best Practice Candidates for Code Examples in Web
API Documentation,’ identifies 46 best practice candidates for code examples in public Web
API documentation from literature and interviews. Furthermore, it categorizes the best practice
candidates into knowledge types according to Thayer et al. (2021) and identifies a new category
capturing the form of the code examples. Finally, the chapter presents implications derived from
this categorization.

Chapter 5, ‘Evaluation of Best Practices for Code Examples in Web API Documenta-
tion’, builds on the previous chapter by evaluating a subset of eight best practice candidates to
see if they are actually best practices using a case study. In addition to confirming that six best
practice candidates are best practices, the chapter updates and extends the previously presented
implications.

Chapter 6, ‘Design of the API Management Pattern Catalog (AMPC)’, describes the
approach used to design the AMPC. Moreover, it presents an overview of major AMPC con-
tents, i.e., the stakeholders, patterns, their relations to other pattern collections, and pattern
candidates.

Chapter 7, ‘Evaluation of the API Management Pattern Catalog (AMPC)’, describes
the approach to evaluating the AMPC from a practitioner’s point of view using a survey. More-
over, it presents the evaluation results. Also, it documents final changes to AMPC before its
publication.

The dissertation ends with chapter 8, ‘Conclusion and Future Work’, summarizing the
findings of the dissertation, answering the research questions, and presenting limitations and
future work.

1.5. Citation Style and Conventions

This dissertation builds on prior publications and student theses advised by the dissertation’s
author. Appendix A presents an overview of these publications and student theses. We highlight
direct quotes of previously published contents with an indentation and quotation marks. Also,
we present the source of the content at the end of the quote (e.g., – (Bondel et al., 2022)). A
quote can span several paragraphs. We use squared brackets and three dots to indicate removed
text ([...]). Additions to the quoted text are enclosed in squared brackets ([This is an addition]).

8

1. Introduction and Motivation

However, we do not highlight cosmetic changes enhancing the readability without changing the
meaning of the quoted text. Such changes comprise the update of references to the bibliography,
tables, and figures to meet this dissertation’s style. Also, we mapped IDs to the IDs used in this
dissertation.

In addition, we apply the following conventions:

• We choose an inclusive and gender-neutral writing style. Hence, we use the singular,
gender-neutral personal pronoun "they" and its derivative forms when referring to inter-
view partners, evaluation participants, and other persons involved in the research endeavors
presented in this dissertation.

• This dissertation contains some previously published figures. We indicate that a figure
has been previously published by stating that it is ‘adopted from’ or ‘adapted from’ the
respective source. We use ‘adopted from’ to indicate that we include the figure without
changing its meaning from an external source. However, we might changed the color coding
to match this dissertation’s style. In comparison, we mark figures as ‘adapted from’ if we
extended or evolved the figure, leading to changes in its meaning.

• All URLs presented in footnotes have last been accessed on 01.01.2024.

• We use a blue box without headings to present the overall research objective of this dis-
sertation.

• We use blue boxes with headings to present definitions.

• We use italic font to highlight newly introduced terms.

• We use monospaced font to highlight pattern names.

9

1. Introduction and Motivation

Figure 1.1.: Structure of this dissertation including contributions and publications.

10

CHAPTER 2

Foundations

This chapter aims to present foundational knowledge and a concise terminology for the disserta-
tion at hand. In addition, we motivate the need for API management, especially for established
organizations in Europe. In the following, we discuss relevant foundations related to Web APIs,
followed by an introduction to best practices and the concept of patterns in software engineer-
ing.

2.1. Web Application Programming Interfaces (Web APIs)

The concept of APIs dates back to the 1950’s (Goldstine and Von Neumann, 1948; Wheeler,
1952) and is well known in Computer Science. According to Shnier (1996), APIs are:

"The calls, subroutines, or software interrupts that comprise a documented interface
so that a (usually) higher-level program such as an application program can make use
of the (usually) lower-level services and functions of another application, operating
system, network operating system, driver, or other lower-level software program."
(Shnier, 1996, p.31)

Hence, APIs allow instantiating one of the most influential principles in software engineering,
i.e., the principle of information hiding introduced by Parnas (1972). Information hiding aims
to decrease dependencies between software modules so that changes in one module do not af-
fect the functioning of other modules (Parnas, 1972). By enabling modularization, APIs have
been proven to allow for reuse (Goldstine and Von Neumann, 1948; Robillard, 2009; Myers
and Stylos, 2016; Watson et al., 2013), thereby reducing cognitive load for software developers
(Wheeler, 1952) and thus enabling easier development, testing, and maintainability of software
systems (Wheeler, 1952; Cotton and Greatorex, 1968). Also, the reuse of functionality allows

11

2. Foundations

developers to use existing mature implementations, improving software quality and speeding up
development (Inzunza et al., 2018; Duala-Ekoko and Robillard, 2012). Furthermore, modular-
ization enables collaboration and distribution of work on large software systems (Cotton and
Greatorex, 1968; de Souza et al., 2004).

In addition, APIs enable data exchange and, thus, processes across organizational boundaries.
In the 1980s and 1990s, proprietary networks like EDI were used for inter-firm communication
and exchanging documents electronically (Christiaanse et al., 2004). These proprietary networks
required high upfront, asset-specific investments leading to point-to-point integrations, inhibit-
ing successful collaborations and the emergence of electronic markets (Christiaanse et al., 2004).
However, in the 2000s, the internet emerged as an open, non-proprietary infrastructure (Chris-
tiaanse et al., 2004). As a result, Web APIs1 established themselves as the de facto standard
for data exchange between organizations.

The following presents the software artifacts and stakeholders involved in a data exchange via a
Web API. Afterward, we dive into different Web API types and the most common architectural
styles used for their implementation. Next, we present the categorization of Web APIs according
to their accessibility to different audiences. Also, we present the API Economy as a new service
ecosystem based on Web APIs and the benefits for participating organizations. However, we also
show that the API provision of successful Web APIs is not distributed evenly across different
types of organizations. Finally, we review the definition of Web API Management in research
and practice.

2.1.1. Web API Software Artifacts

This section introduces the software artifacts involved in data exchange via a Web API as
illustrated in the lower part of Fig. 2.1.

The basic assumption is that an API provider wants to make business assets accessible to API
consumers (Jacobson et al., 2012). Business assets can be functionality or data (Fielding and
Reschke, 2014a; Zimmermann et al., 2022), e.g., a payment process or user profiles (Bermbach
and Wittern, 2016). A backend is the software component implementing the respective business
asset. Therefore, we define a backend as follows:

Definition - Backend

A backend is a software component providing data and/or functionality that the API
provider wants to make accessible to API consumers via a Web API.

Next, we characterize Web APIs. First, Web APIs rely on Web technologies and standards (Wit-
tern et al., 2017). More specifically, Web APIs use HTTP as application protocol. Therefore,
Web APIs make data and functionality accessible at a network addressable location, using a

1In this dissertation, we use the terms API and Web API interchangeably to refer to Web APIs if not explicitly
stated otherwise.

12

2. Foundations

Figure 2.1.: Software artifacts and stakeholders involved in a data exchange via a Web API
adapted from Bondel et al. (2021b).

Unified Resource Identifier (URI) (Fielding and Reschke, 2014a; Bermbach and Wittern, 2016).
Moreover, Web APIs use messaging, i.e., request and response messages, to request and transfer
data (Fielding and Reschke, 2014a). The request message expresses the action that it wants to
perform on a resource using a HTTP method, e.g., GET, POST, PUT, PATCH, or DELETE
(Fielding and Reschke, 2014b; Dusseault and Snell, 2010). The response message indicates the
result of the backend processing a request using a predefined status code2 (Fielding and Reschke,
2014b). The message formats for data exchange between the Web API and the client application
are usually JavaScript Object Notation (JSON) or Extensible Markup Language (XML) (Wit-
tern et al., 2017). HTTP relies on the Transmission Control Protocol (TCP) on the transport
and the Internet Protocol (IP) on the network layer (Bermbach and Wittern, 2016). Moreover,
API providers can increase security by establishing an end-to-end secured connection using
HyperText Transfer Protocol Secure (HTTPS) (Fielding and Reschke, 2014a). HTTPS uses
the Transport Layer Security (TLS) protocol on top of the TCP transport protocol to secure
communication between communication partners using authentication and encryption (Rescorla,
2018).

As a result, a Web API is a machine- and human-readable interface (Santoro et al., 2019) that
hides the implementation details of the backend (Bermbach and Wittern, 2016; Tan et al., 2016).
Instead, it exposes a set of endpoints with which client applications can interact (Zimmermann
et al., 2022). Therefore, a Web API is a facade, i.e., a (simplified) interface that allows clients
to interact with a system (Gamma et al., 1995). A facade decouples the server implementation
from the interface with which the client interacts (Gamma et al., 1995).

Moreover, on a conceptual level, a Web API presents a contract between a functionality providing
and a functionality consuming component (Maalej and Robillard, 2013; De, 2017; Jacobson et al.,

2The Internet Assigned Numbers Authority (IANA) maintains a complete list of all specified status codes at
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml.

13

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

2. Foundations

2012). The contract specifies possible interactions between the server and the client (Daigneau,
2011; Spichale, 2017), thus establishing a shared understanding (Zimmermann et al., 2022).
More specifically, the contract specifies all endpoints and the respective operations the client
can use to access the backend functionality or data (Zimmermann et al., 2022). The API
provider defines the contract (Zimmermann et al., 2022). However, since the contract needs to
meet the consumers’ needs, the API provider should involve the API consumers in the design of
the contract (Zimmermann et al., 2022).

Web APIs can be realized in different ways, including Remote Procedure Call (RPC) APIs,
message APIs and resource APIs. We present these Web API types and typical architectural
styles for their implementation in section 2.1.3.

Overall, Web APIs are a flexible and lightweight approach to make functionality and data
accessible to internal and third-party applications (Santoro et al., 2019). Using messaging, Web
APIs allow data exchange between applications running on different platforms, i.e., combinations
of hardware, operating systems, software frameworks, and programming languages (Daigneau,
2011; Spichale, 2017). Consequently, different clients, comprising desktop, mobile, and web
application clients, can access a backend’s logic (Daigneau, 2011). In addition, Web APIs enable
the independent evolution of backend and client applications (Kopecký et al., 2014; Daigneau,
2011; Spichale, 2017). Nevertheless, communication over the internet also introduces latency
and the risk of network failures (Daigneau, 2011). Moreover, if a consumer integrates an API
provided by a different organization, the consumer has no control over the Web APIs quality
(Wittern et al., 2017).

As a result, in this dissertation, we define Web APIs as follows:

Definition - Web Application Programming Interface (Web API)

Web APIs are interfaces relying on Web technologies, specifically HTTP, allowing clients
to access encapsulated functionality and data provided by a backend. Moreover, they
act as a contract defining the rules of interaction between the backend and the client
application.

Besides, two types of software platforms support API management, i.e., the API gateway and
the API developer portal (De, 2017).

The API gateway is a runtime infrastructure component (Zimmermann et al., 2022) providing
a scalable, reliable, and secure environment for API deployment and management (De, 2017;
Medjaoui et al., 2018; Spichale, 2017). Hence, the API gateway is usually a reverse proxy
sitting in front of the backend, listening for client requests and routing them to the backends
(Medjaoui et al., 2018; Spichale, 2017) while hosting the API (De, 2017). Furthermore, it
implements common API management capabilities like security (e.g., authorization, encryption,
or identification of attacks), traffic management (e.g., consumption quota enforcement or spike
arrest), interface translation, caching, service routing, service orchestration, and analytics (De,
2017; Spichale, 2017).

14

2. Foundations

As a result, an API gateway reduces the cost of deploying APIs (Medjaoui et al., 2018, p.71).
Nevertheless, an API gateway is another software component the API provider must manage.
Hence, an API gateway requires additional design, testing, operations, and maintenance effort
(Zimmermann et al., 2022; Richardson).

We define an API gateway as follows:

Definition - API Gateway

An API gateway is an infrastructure platform supporting Web API deployment and man-
agement.

The API Developer Portal is a consumer-facing web application providing all the information
consumers need to discover and use a Web API. Therefore, Jacobson et al. (2012) refers to the
API developer portal as "[...] resource center for the API" (Jacobson et al., 2012, p.123). On
one hand, the API developer portal allows API providers to communicate and share knowledge
about the Web API with consumers, e.g., through documentation, blogs, forums, monetization
plans, and terms of use (Jacobson et al., 2012; De, 2017). On the other hand, the API developer
portal offers self-service capabilities that allow consumers to use the Web APIs, e.g., user sign-
up, app registration, API playground, Software Development Kits (SDKs), and contact to the
support team (Jacobson et al., 2012; De, 2017).

However, the API provider has to ensure that the API developer portal looks alive and provides
up-to-date information to attract API consumers (Jacobson et al., 2012).

We define an API developer portal as follows:

Definition - API Developer Portal

An API developer portal is a web application providing capabilities required to find and
use a Web API to API consumers.

In summary, an API gateway provides an API runtime environment, and the API developer
portal is a web application that both support API management (De, 2017). The API developer
portal is usually a client of the API gateway (De, 2017). Hence, they exchange data, e.g., to
ensure that a client making a request is registered. Usually, software vendors provide the API
gateway and developer portal as commercial software tools that can be hosted on-premise or in
public or private cloud environments (De, 2017). However, both the API gateway and the API
developer portal are optional.

Finally, a client application integrates one or more Web APIs. The goal of a client application is
to attract end users. Such client applications can be, for example, desktop or mobile browsers,
mobile clients, or a web application (Richardson). A client application can also provide Web
APIs, thus taking the role of a backend server in a different relation. We define client applications
as follows:

15

2. Foundations

Definition - Client Application

A client application is an application that integrates one or several Web APIs.

2.1.2. Web API Stakeholder Roles

Next, we define the stakeholders involved in interactions using Web APIs as presented in the
upper part of Fig. 2.1.

First, the backend provider is a developer or team designing and maintaining the backend server.
The backend provider owns the functionality or data exposed via a Web API (De, 2017). We
define the backend provider as follows:

Definition - Backend Provider

A backend provider is a developer or team of developers responsible for the design, im-
plementation, and maintenance of a backend.

"The API provider is responsible for carrying out API management tasks. The API
management comprises all tasks related to designing and maintaining the Web API,
the API gateway, and the API developer portal. An API provider team includes
business and technical roles, with business roles defining and pursuing business goals
and technical roles aiming to ensure technical Key Performance Indicators (KPIs)
(Medjaoui et al., 2018). The tasks of an API provider comprises all activities aimed
towards realizing the goals defined by the API management lifecycle. In many cases,
backend developers also design and maintain the respective Web API and thus occupy
two roles."

– (Bondel et al., 2021b)

An API provider comprises several more fine grained roles (Medjaoui et al., 2018). On the one
hand, technical roles within an API provider team can be API developer, API architect, test and
quality assurance engineer, and DevOps engineer (Medjaoui et al., 2018; Jacobson et al., 2012).
On the other hand, business roles can comprise an API product manager, an API designer,
technical writers, API evangelists, a community manager, and legal and marketing professionals
(Medjaoui et al., 2018; Jacobson et al., 2012).

We define the API provider as follows:

16

2. Foundations

Definition - API Provider

An API provider is a developer or team of developers responsible for the management of
a Web API, including its design and operation. Also, the API provider is responsible for
the design and operation of a potential API gateway and API developer portal.

Next, the API consumer is any person or group creating a client application integrating one or
several Web APIs. Hence, in most cases, an API consumer is a professional software developer or
team of developers. Therefore, the API consumers are also referred to as third-party developers3,
especially in the context of IS platform research, e.g., in Eaton et al. (2015); Islind et al. (2016);
de Reuver et al. (2018). In a company setting, sometimes business roles are involved in the
choice of a Web API, e.g., business owners or marketing employees (Medjaoui et al., 2018).
However, an API consumer can also be any person using a mashup platform providing low-code
or no-code capabilities to integrate Web APIs (Weiss and Gangadharan, 2010), e.g., Zapier4 and
IFTTT5. We define the API consumer as follows:

Definition - API Consumer

An API consumer is a person or team responsible for the design and operation of a client
application that integrates a Web API.

Finally, the end user is the person using the client application (Medjaoui et al., 2018). The
end user is interested in the client applications functionality from a non-technical perspective
(Treiber et al., 2009). Hence, the expectations of the end user guide the functionality and
Quality of Service (QoS) attributes of a Web API (Treiber et al., 2009; Medjaoui et al., 2018).
We define an end user as follows:

Definition - End user

An end user is a user of a client application.

We find similar definitions of stakeholders in the literature.

First, Schmiedmayer (2022) defines three stakeholder groups. The web service developers design
and maintain web services throughout their lifecycle. The web service hosting providers provide
cloud infrastructure for hosting web services. Finally, the web service clients interact with a web
service through its interface instantiated through a Web API.

In the context of Web services evolution, Treiber et al. (2009) introduces the provider perspec-
tive. The provider is responsible for the Web API. However, a developer implements the web
service. A service integrator integrates several services into an application while the user uses
the application. Finally, a broker manages a web service repository.

3In this dissertation, we use the terms API consumer and third-party developer interchangeably.
4https://zapier.com/
5https://ifttt.com/

17

https://zapier.com/
https://ifttt.com/

2. Foundations

Jacobson et al. (2012) distinguishes between an API provider, developers, and end users. The
API provider is an organization that provides or wants to provide Web APIs. The developers use
a Web API to create an application. Finally, the end users are the users of the new application.

Similarly, De (2017) distinguishes between an API provider, app developers, and end users.
However, De (2017) differentiates between the asset owner and the API provider. While the
asset owner and API provider are usually the same organization, it is also possible that the
asset owner employs another organization as API provider to expose their assets and share the
resulting revenue.

Gunturu (2022) distinguishes the API provider, API consumer, and API end-user. In addition,
they mention the API customer, i.e., the stakeholder commercially paying for the API services
provided by the API provider and consumer.

Finally, Zimmermann et al. (2022) identifies two communication partners, i.e., the API provider
and the API client. Similarly, Mathijssen et al. (2020) identifies the (API) developer and orga-
nization and (API) consumer as main actors performing API management activities.

2.1.3. Web API Types and Architectural Styles

Based on HTTP, developers can realize three different types of Web APIs depending on the
extent to which they use HTTP properties (Daigneau, 2011), as illustrated in Tab. 2.1. These
three types are RPC APIs, message APIs, and resource APIs (Daigneau, 2011). In the following,
we present each type of Web APIs and the most common architectural styles used for their
realization.

2.1.3.1. Remote Procedure Call (RPC) APIs

A Remote Procedure Call (RPC) API allows clients to invoke a procedure on a remote server as
if it were a local procedure (Daigneau, 2011). The RPC API defines operations that the client
invokes through cross-network messages (Maleshkova et al., 2010). These cross-network messages
have the same structure as in-memory object messages, i.e., consist of the remote procedure’s
name and required parameters that map to the remote procedure signature (Daigneau, 2011).
Hence, RPC APIs use HTTP purely to transport messages (Daigneau, 2011; Kopecký et al.,
2014) using one HTTP method (Maleshkova et al., 2010), usually GET.

Several RPC frameworks and technologies exist, e.g., gRPC6, Apache Thrift7, Distributed Com-
ponent Object Mode (DCOM)8, and Common Object Request Broker Architecture (CORBA)9.
These RPC frameworks support the implementation of RPC APIs, e.g., by abstracting away
network communications (Erl, 2008).

The advantages of RPC APIs are that they are easy to understand and implement (Daigneau,
6https://grpc.io/
7https://thrift.apache.org/
8Developers were able to download DCOM for Windows 95 as beta version in 1996, see https://news.microsoft.
com/1996/09/18/microsoft-releases-beta-version-of-dcom-for-windows-95/#Microsoft.

9https://www.corba.org/

18

https://grpc.io/
https://thrift.apache.org/
https://news.microsoft.com/1996/09/18/microsoft-releases-beta-version-of-dcom-for-windows-95/#Microsoft
https://news.microsoft.com/1996/09/18/microsoft-releases-beta-version-of-dcom-for-windows-95/#Microsoft
https://www.corba.org/

2. Foundations

Table 2.1.: Overview of Web API styles and their characteristics (Daigneau, 2011).
Characteristics RPC API Message API Resource API
Use of HTTP
properties

Use of one HTTP
method to transport
messages

Use of one HTTP
method to transport
messages

Use of HTTP to de-
fine the semantics for
Web API behavior

Message Messages are coupled
to the procedures sig-
nature

Messages are decou-
pled from the imple-
mentation

Messages are decou-
pled from the imple-
mentation

Common ar-
chitectural
styles

RPC API Web services
(SOAP/WSDL);
GraphQL

REST

2011) and developers can use familiar procedure invocation approaches to call them (Vinoski,
2008). Also, existing frameworks enable developers to expose class methods simply by annotating
methods with keywords (Daigneau, 2011). Moreover, providers can automatically generate RPC
API documentation using XML Schema Definitions (XSDs) (Daigneau, 2011).

A downside of RPC APIs is that the client developers must understand data encoding and
the interpretation of the remote procedure (Daigneau, 2011). In addition, interoperability be-
tween different remoting technologies, e.g., CORBA and DCOM, is restricted (Daigneau, 2011).
While third-party products exist to bridge these technologies, they are complex and expensive
(Daigneau, 2011).

Also, the procedure and the client are tightly coupled (Daigneau, 2011; Santoro et al., 2019).
RPC APIs expect parameter lists with arguments that require an exact order, and changes to
the order of arguments result in breaking changes (Daigneau, 2011). Hence, changes to the
procedure require modifications of the client and, if existing, a proxy (Daigneau, 2011; Kopecký
et al., 2014). As a result, RPC APIs are more suitable for data exchange within an organization
and less for exchanging data with external business partners (Daigneau, 2011).

2.1.3.2. Message APIs

Message APIs are also called document APIs (Daigneau, 2011). Like RPC APIs, message APIs
use the HTTP protocol to transport messages (Daigneau, 2011). However, compared to an RPC
API, a message API does not derive the messages exchanged between consumer and provider
from the procedure’s signature (Daigneau, 2011). Instead, message APIs decouple the client from
the procedure by defining self-descriptive messages, that the client sends to an URI (Daigneau,
2011).

However, the provider has to specify a separate message for each action applied to each endpoint
of a message API (Daigneau, 2011). Such actions usually comprise Create, Read, Update, and
Delete (CRUD) commands (Daigneau, 2011), e.g., "GetPublication" or "CreatePublication." In
addition, the provider has to define two messages for each action, i.e., a request and a response

19

2. Foundations

message (Daigneau, 2011).This leads to a fast proliferation of pre-defined messages (Daigneau,
2011).

A common implementation of message APIs are Web Services based on SOAP10 and Web Service
Description Language (WSDL). Furthermore, GraphQL is a query language using platform self-
descriptive messages sent over HTTP for data retrieval. Therefore, in the following, we describe
Web Services based on SOAP and WSDL, and GraphQL as common architectural styles for
implementing message APIs.

Web Services based on SOAP and WSDL

The term Web services has been defined in many different ways. Some publications understand
Web services as any service a client can invoke over HTTP, including REST APIs, e.g., Daigneau
(2011). However, we adopt the definition presented in Booth et al. (2004), stating that Web
services use SOAP messages to interact and WSDL to specify their interface.

The World Wide Web Consortium (W3C) defines SOAP as:

"The formal set of conventions governing the format and processing rules of a SOAP
message. These conventions include the interactions among SOAP nodes generating
and accepting SOAP messages for the purpose of exchanging information along a
SOAP message path." (Gudgin et al., 2007).

Hence, SOAP is a protocol for exchanging information in decentralized, distributed environments
aiming at simplicity and extensibility (Gudgin et al., 2007). It is independent of a particular
programming model or implementation-specific semantics (Gudgin et al., 2007). The SOAP
messaging framework is defined as a recommendation by the W3C11. It consists of the SOAP
processing model, the SOAP extensibility model, the SOAP binding framework, and the SOAP
messaging construct (Gudgin et al., 2007). The latest version of SOAP is SOAP 1.2 (Gudgin
et al., 2007).

The Web Service Description Language (WSDL) is a description language for Web Services
(Chinnici et al., 2007). WSDL defines a model and XML format documenting how clients can
interact with a service (Chinnici et al., 2007). A WSDL file consists of nested components that
specify valid input and output messages and data constraints (Chinnici et al., 2007).

Major software vendors led SOAP and WSDL standardization, e.g., IBM12, Microsoft13, Sun14,
and Oracle15 (Kopecký et al., 2014). However, the standardization process suffered from po-
litical arguments between these vendors, leading to alternative standards and thus decreased
interoperability (Kopecký et al., 2014). Also, developers dislike the complexity of SOAP and
WSDL (Kopecký et al., 2014). A further downside of SOAP is that mobile platforms support it
poorly (Kopecký et al., 2014). Nevertheless, nowadays, SOAP/WSDL-based APIs are still often

10Since the publication of SOAP version 1.2, SOAP is not an acronym of Simple Object Access Protocol anymore
(Gudgin et al., 2007).

11https://www.w3.org/
12https://www.ibm.com/de-de
13https://www.microsoft.com/de-de
14Sun Microsystems was acquired by Oracle Corporation in 2010 as communicated in https://www.oracle.com/

corporate/pressrelease/oracle-buys-sun-042009.html.
15https://www.oracle.com/de/

20

https://www.w3.org/
https://www.ibm.com/de-de
https://www.microsoft.com/de-de
https://www.oracle.com/corporate/pressrelease/oracle-buys-sun-042009.html
https://www.oracle.com/corporate/pressrelease/oracle-buys-sun-042009.html
https://www.oracle.com/de/

2. Foundations

used for data exchange between enterprise applications within organizations (Kopecký et al.,
2014; Tan et al., 2016).

GraphQL

GraphQL is a query language and server-side runtime aiming to meet the requirements of fron-
tend engineers (The GraphQL Foundation, c). It was created by Facebook16 (The GraphQL
Foundation, b). A GraphQL API specifies the data accessible to clients (The GraphQL Foun-
dation, d). The client sends a message to the GraphQL API detailing which data it wants to
receive at field-level (The GraphQL Foundation, b). As a result, clients can specify the requested
data and its structure, thus preventing over- or under-fetching (The GraphQL Foundation, b).
However, GraphQL APIs are computationally expensive for servers (Santoro et al., 2019).

Clients usually interact with GraphQL over HTTP (The GraphQL Foundation, a), using the
HTTP GET and POST methods (The GraphQL Foundation, e). Since GraphQL uses a hier-
archical entity graph as a conceptual model (The GraphQL Foundation, e), a GraphQL API
usually has one endpoint accessible via a Unified Resource Locator (URL) instead of a set of
URLs for each resource (The GraphQL Foundation, a).

2.1.3.3. Resource APIs

Finally, resource APIs leverage HTTP as an application protocol that defines service behaviors
(Daigneau, 2011). First, resource APIs provide access to data and functionality conceptual-
ized as resources and accessible via a URI (Daigneau, 2011). Clients can manipulate these
resources through representations sent as self-descriptive messages (Daigneau, 2011). Moreover,
resource APIs leverage HTTP standard methods to send messages, e.g., PUT, GET, POST,
and DELETE (Daigneau, 2011). Also, resource APIs use the standard status codes defined by
HTTP (Daigneau, 2011).

A significant advantage of resource APIs is the reduced coupling between client and server. As
HTTP separates the message from the service implementation, resource APIs can provide service
access to many different types of clients, e.g., web browsers, mashups, and mobile applications
(Daigneau, 2011). In addition, resource APIs are easier for developers to understand than
message APIs (Tan et al., 2016).

However, publicly available resource APIs also carry security risks. For example, attackers can
exploit resource APIs by analyzing the URI scheme and replacing URI segments to access data
that should not be exposed (Daigneau, 2011).

While most resource APIs claim to conform to the REST paradigm, this is only true in some
cases (Daigneau, 2011). Therefore, we introduce the REST paradigm in the following.

Representational State Transfer (REST)

In his dissertation (Fielding, 2000), Roy Fielding defines the REpresentational State Transfer
(REST) architectural style that guides the architecture of an internet-scale, distributed hyper-
media system, i.e., the World Wide Web (WWW). REST aims "[...] to minimize latency and

16https://www.facebook.com/

21

https://www.facebook.com/

2. Foundations

network communication while at the same time maximizing the independence and scalability of
component implementations" (Fielding, 2000, p. 148).

To achieve this goal, Fielding (2000) defines six constraints. First, REST uses a client-server ar-
chitecture to enable the separation of concerns between the interface and data storage. Secondly,
servers do not store any context or state of a specific client, i.e., they are stateless. Also, server
responses are cachable. Next, REST prescribes a layered system architecture style, i.e., two
components communicating via an interface can only see the behavior of the immediate com-
munication partner. Optionally, code-on-demand allows clients to download and execute code
from servers, i.e., applets or scripts. Finally, a uniform interface defines a general, standardized
form of transferring information between components. The uniform interface lets clients access
data and functionality as resources addressable via a resource identifier. A client manipulates
resources through representations. A server should also implement Hypermedia as the Engine
of Application State (HATEOAS). The realization of HATEOAS means including hyperlinks to
representations of other potentially interesting resources in response messages. Thus, a client
can explore and navigate the resources of a REST API without the need for prior knowledge of
the URI structure.

All six constraints must be satisfied to realize the benefits of the REST architectural style
(Fielding, 2000). These benefits are performance, scalability, simplicity, modifiability, visibility,
portability, and reliability of a distributed hypermedia system (Fielding, 2000).

On the downside, the REST architecture style is not an official standard (Rodríguez et al.,
2016) and lacks clear guidelines on how to realize the architecture (Kotstein and Bogner, 2021;
Salvadori and Siqueira, 2015). Moreover, even though REST guided the design of the HTTP
protocol (Fielding, 2000), HTTP does not enforce compliance with REST. Thus, many Web
APIs do not comply with all REST constraints (Palma et al., 2014, 2015; Rodríguez et al., 2016;
Neumann et al., 2021; Renzel et al., 2012; Brabra et al., 2019; Petrillo et al., 2016; Belkhir et al.,
2019; Haupt et al., 2017). As a result, many Web APIs falsely claim to conform to the REST
architectural style, which led Roy Fielding to emphasize that not all HTTP-based interfaces
automatically conform to REST (Fielding, 2008).

Several models categorize the compliance of interfaces with REST constraints (Algermissen,
2010; Salvadori and Siqueira, 2015; Santoro et al., 2019). The most renowned model is the
Richardson Maturity Model (Richardson, 2009; Fowler, 2010), which distinguishes between four
levels of maturity, each building on the previous level as illustrated in Fig. 2.2. The base level
describes any API using HTTP but not conforming to any REST constraints. Instead, HTTP
enables remote interaction mechanisms, usually using the POST method to pass arguments to a
remote function, e.g., for XML-RPC or SOAP services. An HTTP API reaches the first maturity
level as soon as it identifies resources using URIs. Thus, clients can interact with resources
instead of calling one service endpoint. On the second level, an HTTP API additionally uses
the HTTP methods, e.g., GET, POST, PUT, and DELETE, according to their standardized
semantics. Moreover, the HTTP API uses error codes in its responses. Finally, an API qualifies
as a RESTful API if it also implements HATEOAS. HATEOAS enables clients to move through
representations easily, reduces coupling between client and server, and makes it easy for the
server to change the URI scheme or to add new capabilities.

22

2. Foundations

Figure 2.2.: The Richardson Maturity Model for categorizing the compliance of interfaces with
REST constraints adopted from Fowler (2010).

Studies show that many Web APIs reach the second maturity level of the Richardson Maturity
Model (Rodríguez et al., 2016; Neumann et al., 2021). Hence, these Web APIs comply with
resource naming and make resource representations accessible using defined HTTP methods. In
contrast, only a few APIs implement HATEOAS, consequently reaching the third level of the
Richardson Maturity Model (Rodríguez et al., 2016). However, industry experts consider matu-
rity level three unnecessary (Kotstein and Bogner, 2021). In addition, no agreed standards for
designing and including hypermedia in response messages exist, making it difficult for providers
and clients to reap its benefits (Rodríguez et al., 2016).

Nevertheless, REST APIs have become the most common approach for implementing Web APIs
(Salvadori and Siqueira, 2015), especially in the areas of Web, mobile, cloud, and Internet of
Things (IoT) applications (Tan et al., 2016). In comparison to SOAP APIs, REST APIs are
more lightweight and easier to understand for developers (Tan et al., 2016). Also, REST APIs
increase the probability of serendipitous reuse due to their uniform interface (Vinoski, 2008). As
a result, REST APIs are the de facto standard for data exchange between organizations.

In summary, Web APIs comprise RPC APIs, message APIs, and resource APIs which are thus
in scope of the dissertation at hand. However, due to the prevalence of resource APIs, we focus
mostly on this type of Web API.

2.1.4. Web API Accessibility Categories

Web APIs can be categorized according to the audience that can access them. It is common to
distinguish Web APIs into private and public APIs (De, 2017; Jacobson et al., 2012; Santoro
et al., 2019; Doerrfeld et al., 2015). In the following, we first present the different categories of
private APIs, followed by the description of public APIs. Finally, we define group, partner, and
public APIs as in scope of this dissertation.

23

2. Foundations

Private APIs are accessible to a restricted, authorized group of developers (De, 2017; Jacobson
et al., 2012). Private APIs are prevalent compared to public APIs (Jacobson et al., 2012; De,
2017). We define private APIs as follows:

Definition - Private API

Private APIs are accessible to a predefined, restricted group of API consumers inside or
outside the API provider organization.

Private APIs can be further categorized into internal, group, and partner APIs.

Internal API are available exclusively to API consumers that belong to the API provider’s
organization, i.e., staff of the API provider organization (Jacobson et al., 2012). Internal APIs
enable internal teams to easily access data and functionality. Hence, these internal teams can
create new products, realize mobile strategies or create internally used dashboards (Jacobson
et al., 2012). Also, they enable the realization of Service-oriented Architectures (SOAs), i.e.
the design of services encapsulating reusable units of logic (Erl, 2008). Hence, internal APIs
reduce IT expenses and increase an organization’s agility (Erl, 2008). We define internal APIs
as follows:

Definition - Internal API

Internal APIs are private APIs accessible exclusively to API consumers inside the API
provider organization.

Alternatively, in a group setting, a subsidiary can publish and manage group APIs accessible
exclusively to other subsidiaries of the same group (Bondel et al., 2021b). The API-providing
subsidiary is usually a central IT service provider. Compared to internal APIs, group APIs
are accessible to other economically independent organizations with individual business goals.
Nevertheless, the subsidiaries are all guided by the group’s overall objective. We define group
APIs as follows:

Definition - Group API

Group APIs are private APIs accessible to API consumers belonging to the same group
as the API provider organization.

Moreover, an organization can make an API accessible to selected external partner organiza-
tions, i.e., create a partner API (Doerrfeld et al., 2015). Zimmermann et al. (2022) refers to
this category of API as community API, emphasizing the aspired collaborative design of the
API. Usually, individual contractual agreements between API provider and consumer govern
the access to partner APIs (Jacobson et al., 2012; De, 2017). Organizations often use partner
APIs to enable integration (De, 2017; Jacobson et al., 2012). We define define partner APIs as
follows:

24

2. Foundations

Definition - Partner API

Partner APIs are private APIs accessible to a restricted group of API consumers outside
the API provider organization.

Finally, an API can be public, i.e., accessible to all developers (De, 2017). Therefore, public
APIs are sometimes referred to as open APIs (Jacobson et al., 2012). API consumers can use a
public API without negotiating a customized contract with the provider (Jacobson et al., 2012).
Instead, the API provider creates general terms and conditions, monetization schemes, and other
agreements to which the consumers must agree to access the API (Jacobson et al., 2012). Thus,
the difference between a partner and public API is defined by the formality of the business
arrangement (Jacobson et al., 2012) and its visibility. Public APIs aim to attract unlimited,
unknown, and distributed API consumers outside the API provider organization (Zimmermann
et al., 2022). If successful, they enable innovation, generate new business ideas, and maximize the
utilization of the provider’s existing assets (De, 2017). Also, public APIs can attract developers,
thus supporting recruitment and public relations (Jacobson et al., 2012). On the other hand,
API consumers use public APIs to experiment with new technologies, provide public services,
engage in activism, or generate revenue (Jacobson et al., 2012). However, public APIs also
introduce risks, e.g., strategic, legal, and security risks for providers (De, 2017; Jacobson et al.,
2012; Doerrfeld et al., 2015). We define public APIs as follows:

Definition - Public API

Public APIs are accessible to API consumers outside the API provider organization that
accept the predefined terms of use and other contractual agreements.

However, the categorization of APIs into internal, group, partner, and public APIs is not ex-
clusive. For example, API provider organization internal teams can usually access partner or
public APIs provided by their organization. Hence, an API can be accessible to several con-
sumer groups (De, 2017). Also, the accessibility of Web APIs can change along their lifecycle,
i.e., private APIs can become public, or public APIs can turn into partner APIs accessible only
to specific partner organizations (Jacobson et al., 2012).

Figure 2.3.: Overview of different Web API accessibility categories (De, 2017; Jacobson et al.,
2012; Doerrfeld et al., 2015), highlighting the scope of this dissertation.

The focus of the dissertation at hand is the management of APIs used across organizational

25

2. Foundations

boundaries. Hence, we focus on APIs with consumers external to the API provider organization,
i.e., group, partner, and public APIs. We present an overview of the different accessibility
categories and highlight the scope of this dissertation in Fig. 2.3.

2.2. API Economy

The proliferation of public APIs results in the emergence of the API economy. In the following,
we introduce the concept of the API economy as a service ecosystem, discuss the benefits for
API providers and consumers, and present the results of past ecosystem analyses.

As mentioned above, the API economy is a new service ecosystem resulting from firms creating
new relations through Web APIs (Basole, 2019). Service ecosystems are "[...] complex, evolving
systems of highly interdependent human and non-human stakeholders who co-create value and
are shaped by institutions and social norms" (Basole, 2019, p. 479). Ecosystems are dynamic as
entities appear and disappear, form and break relations, and the entities and their links change
over time (Basole et al., 2018). Iyer and Subramaniam (2015) even argue that relations via Web
APIs will become the most common type of relationship between organizations.

The participation of organizations in the API economy yields benefits for all actors. First, API
providers can make data, functionality, or products accessible to third parties via public Web
APIs (Weiss and Gangadharan, 2010; Basole, 2019). Moreover, they monetize this access using
different business models like subscriptions, freemium, or pay-as-you-go (Evans and Basole, 2016;
Basole, 2016, 2019). As a result, API providers benefit from new revenue streams (Evans and
Basole, 2016; Basole, 2016, 2019). Also, public APIs enable scaling of operations and access to
new markets (Basole et al., 2018).

On the other hand, instead of buying, Web API consumers rent functionality, thus enabling the
XaaS paradigm (Basole, 2019). Renting instead of owning IT assets allows for more efficient IT
management (Hagel III and Brown, 2001).

Alternatively, consumers can combine public Web APIs and potentially own data (Weiss and
Gangadharan, 2010) to create new services for end users, i.e., mashups (Evans and Basole, 2016;
Basole, 2019; Basole et al., 2018; Tan et al., 2016). Mashups range from simply integrating
one Web API, e.g., integrating Google Maps17 into a website, to combining different Web APIs
and internal data into new products (Weiss and Gangadharan, 2010). Hence, Web APIs allow
organizations to create innovation through service recombinations (Basole, 2019), e.g., consumers
can use them to develop extended functionalities or apply the Web APIs in new contexts (Weiss
and Gangadharan, 2010). At the same time, the API consumers often get exposure to the user
base of the provider organization, e.g., if an API consumer creates a mashup based on a Google
API, they get exposure to Google’s user base (Weiss and Gangadharan, 2010).

As a result, in the API economy, both the API providers and consumers generate new value
(Huhtamäki et al., 2017; Basole, 2016; Evans and Basole, 2016; Basole, 2019).

Moreover, ecosystem analysis reveals several trends in the API economy:

17https://www.google.de/maps/preview

26

https://www.google.de/maps/preview

2. Foundations

• There has been a rapid growth of the public API ecosystem between 2005 and 2016 (Basole,
2019). Moreover, the number of mashups has grown even faster than the number of APIs,
indicating that core services already exist (Basole, 2019; Weiss and Gangadharan, 2010).

• The API economy has a "core-periphery structure" (Basole, 2016, p.24). Thus, some
APIs are at the center of the ecosystem, i.e., participate in many mashups, while others
are located at the periphery, i.e., are integrated only in niche applications (Basole, 2016;
Weiss and Gangadharan, 2010).

• Recently established digital organizations like Google18 and Facebook19 dominate the API
economy (Evans and Basole, 2016; Basole, 2019; Weiss and Gangadharan, 2010). In com-
parison, few traditional firms successfully participate in the API economy as API providers
(Evans and Basole, 2016).

• Also, the bigger the user base of an API, the more attractive it is for other users and, thus,
the more consumers will use it in new mashups (Weiss and Gangadharan, 2010).

• Moreover, organizations located in major entrepreneurial regions, especially in Silicon Val-
ley in the US, provide the majority of successful public APIs (Huhtamäki et al., 2017).
Huhtamäki et al. (2017) assumes that co-location supports context setting and fine-tuning
during Web API development.

• There are different categories of APIs, some being central and some peripheral to the API
ecosystem (Basole, 2016). The most central categories are mapping, e-commerce, and
social APIs (Basole, 2019). In these categories, competition is high (Basole, 2016). Hence,
a provider needs to have a differentiating value proposition to compete in these categories
(Basole, 2016).

Overall, participation in the API economy yields value for API providers and consumers. Nev-
ertheless, analyses of the API economy ecosystem show that recently established digital or-
ganizations located in major US entrepreneurial regions dominate the provision of successful
Web APIs. Moreover, if an organization decides to participate in the API economy as an API
provider, careful design and management of APIs are required to succeed (Basole, 2019; Yoo
et al., 2010).

2.3. APIs as Boundary Resources

In IS platform research, Web APIs are conceptualized as a kind of (platform) boundary resource
and used to analyze platform dynamics. Therefore, we describe the concept of platformization,
summarize research on boundary resource design, and derive implications for the design of Web
APIs as boundary resources.

The basic assumption of platformization in IS is that embedding digital technology into physical
products creates a layered modular architecture (Yoo et al., 2010). A layered modular archi-
tecture combines the modular architecture of physical products and the layered architecture of
18https://about.google/
19https://www.facebook.com/

27

https://about.google/
https://www.facebook.com/

2. Foundations

digital products. Hence, the layered modular architecture allows designers to combine differ-
ent modules on various loosely coupled, horizontal product layers, enabling innovation through
generativity (Yoo et al., 2010). Generativity is "[...] a technology’s overall capacity to pro-
duce unprompted change driven by large, varied, and uncoordinated audiences" (Zittrain, 2006,
p. 1980). Due to the layered modular architecture, a product can simultaneously become a
digital product platform (Yoo et al., 2010). A digital product platform enables third parties to
innovate upon it by giving them access to core platform modules (Yoo et al., 2010; Ghazawneh
and Henfridsson, 2013). However, platforms rely on consumers to create new applications (Ghaz-
awneh and Henfridsson, 2010). Therefore, firms must attract large numbers of heterogeneous
and unexpected actors to build components to be successful (Yoo et al., 2010; Ghazawneh and
Henfridsson, 2010, 2013).

Platform providers can stimulate third-party engagement through the design of technical and
social boundary resources (Yoo et al., 2010). According to Ghazawneh and Henfridsson (2013),
boundary resources are "[...] the software tools and regulations that serve as the interface for
the arm’s-length relationship between the platform owner and the application developer" (Ghaz-
awneh and Henfridsson, 2013, p. 174). Thus, boundary resources reduce direct coordination and
communication efforts between the platform provider and third parties (Dal Bianco et al., 2014).
Technical boundary resources are tools that support third parties in developing applications on
top of the platform (Ghazawneh and Henfridsson, 2010). The most commonly recognized tech-
nical boundary resources are APIs and SDKs (Ghazawneh and Henfridsson, 2010; Dal Bianco
et al., 2014). Social boundary resources restrict the interaction between third-party developers
and the platform, e.g., developers’ agreements (Ghazawneh and Henfridsson, 2010).

Therefore, boundary resources enable platform owners to transfer design capabilities to third-
party developers to create innovation while at the same time maintaining control over the plat-
form (Ghazawneh and Henfridsson, 2010), thus balancing resourcing and securing according to
the boundary resource model (Ghazawneh and Henfridsson, 2013). Also, boundary resources can
prevent a platform’s exploitation through forking (Karhu et al., 2018). In contrast, Eaton et al.
(2015) posit that boundary resource design is not predominantly driven by platform owners
alone but by different actors within the innovation ecosystem. Such actors include regulators,
the user base, partner organizations, and the public opinion in the blogosphere. These actors
have different goals and levels of power to assert the design of boundary resources in their favor.
As a result, "[...] boundary resources of service systems enabled by digital technology are shaped
and reshaped through distributed tuning, which involves cascading actions of accommodations
and rejections of a network of heterogeneous actors and artifacts" (Eaton et al., 2015, p. 217).
Therefore, the design of boundary resources is strategically important (Yoo et al., 2010).

As explained above, boundary resources guide the "arm’s-length relationship" (Ghazawneh and
Henfridsson, 2013, p. 174) between platform providers and third-party developers. However,
research on boundary resources mainly presents ex-post studies of large-scale successful cases like
the iPhone iOS20 or Android21 (de Reuver et al., 2018). In contrast, Islind et al. (2016) analyze
the role of boundary resources during the initial creation phase of a small-scale platform. The
research shows that simply embedding knowledge into APIs and SDKs and expecting third-party

20https://www.apple.com/de/ios/ios-17/
21https://www.android.com/intl/de_de/

28

https://www.apple.com/de/ios/ios-17/
https://www.android.com/intl/de_de/

2. Foundations

developers to create complementarities is insufficient. Instead, platform owners must co-create
boundary resources to meet the skill set of the third-party developers. Also, intimate knowledge
communication between the platform owner and the third-party developers is a requirement.
This intimate and co-creative knowledge communication process is referred to as fine-tuning.

The presented research on boundary resources in the context of platformization yields several
implications for Web API design. First, Web APIs are boundary resources that need active
management to drive a platform’s attractiveness for third-party developers while preventing its
exploitation (Ghazawneh and Henfridsson, 2010). Hence, Web APIs must support many differ-
ent types of applications, be easily understandable, and foster third-party creativity (Dal Bianco
et al., 2014). Furthermore, as the concept of distributed tuning shows (Eaton et al., 2015),
the platform owner cannot design Web APIs in isolation, but different actors influence its de-
sign. Moreover, in small-scale platform settings, platform owners should focus even more on
co-designing Web APIs and knowledge communication (Islind et al., 2016). The relevance of
Web API co-design and knowledge communication is reinforced by Huhtamäki et al. (2017), who
assume that co-location supports context setting and fine-tuning during Web API development.
Similarly, Zimmermann et al. (2022) and Spichale (2017) emphasize the importance of knowl-
edge transfer and communication between the API provider and consumer to enable consumers
to write API clients.

2.4. API Management

As argued above, API providers have to design and manage Web APIs intentionally to attract
consumers. However, in research, no framework or overview providing a holistic view on API
management and no comprehensive and widely accepted definition of API management exist
(Mathijssen et al., 2020). Also, research on API management does currently not provide any
theory and focuses on technological dimensions like API design and usage instead of social
dimensions (Ofoeda et al., 2019). At the same time, IS research on platformization does not
present clear knowledge on designing successful platforms (de Reuver et al., 2018). Hence,
we present a working definition of API management and an API management lifecycle in this
section.

2.4.1. API Management Definition

As a result of the analysis of 24 unique definitions of API management, Mathijssen et al. (2020)
defines API management as follows:

"API Management is an activity that enables organizations to design, publish and
deploy their APIs for (external) developers to consume. API Management capabilities
such as controlling API lifecycles, access and authentication to APIs, monitoring,
throttling and analyzing API usage, as well as providing security and documentation
are often implemented through an integrated platform, which is supported by an API
gateway." (Mathijssen et al., 2020, p. 11)

29

2. Foundations

This definition incorporates the claim that API providers realize API management largely
through API platforms, i.e., API gateways and developer portals (De, 2017). Similarly, Spichale
(2017) emphasizes the role of API management tooling.

In comparison, Medjaoui et al. (2018) describes API management as follows:

"[...] API management involves more than just governing the design, implementa-
tion, and release of APIs. It also includes the management of an API ecosystem, the
distribution of decisions within your organization, and even the process of migrating
existing APIs into your growing API landscape." (Medjaoui et al., 2018, p. 2)

In addition, Spichale (2017) states that the goal of API management is to ensure that the API
provider meets the API consumers needs along the API lifecycle. Hence, we combine these
definitions and statements and the findings presented above, i.e., that API management is a
function at the interface between an API provider organization and external consumers that
requires collaboration and knowledge transfer. As a result, in this dissertation, we define API
management as follows:

Definition - API Management

API management is an organizational function comprising all activities of an API provider
(team) along the API lifecycle aiming to provide a successful Web API. In addition to
the technical realization of (Web) APIs, API management requires collaboration and
knowledge transfer with API consumers, backend providers, and other stakeholders.

In summary, API management is a discipline largely driven by practitioners. However, in the
last ten years, research on Web API management increased (Mathijssen et al., 2020; Ofoeda
et al., 2019).

Finally, we define an organization’s endeavor of providing a Web API as an API initiative:

Definition - API Initiative

An API initiative denotes any planned or ongoing endeavor of an organization to provide
a Web API to potential (external) API consumers.

2.4.2. API Management Lifecycle

Diving deeper into typical activities that API management comprises, we provide an overview of
API management tasks along an API management lifecycle in the following. To the best of the
author’s knowledge, there is no API management lifecycle that research or practice agrees upon.
Therefore, we derived an API management lifecycle from API management lifecycles put forward
in practice that explicitly differentiate activities aimed towards external consumers and internal
stakeholders (Bondel et al., 2021b). Hence, we reviewed the API management lifecycles presented
by the major API management tool providers and API practitioner communities (Masse, 2019;

30

2. Foundations

Axway Inc.; Doerrfeld et al., 2015) yielding the API management lifecycle illustrated in Fig. 2.4.
An API keeps iterating through all stages shown in the lifecycle until the API provider deprecates
it (Bondel et al., 2021b). Adapted from Bondel et al. (2021b), in the following, we describe each
phase of the API management lifecycle and name typical activities of the API provider.

Figure 2.4.: Overview of an API management lifecycle derived from Masse (2019); Axway Inc.;
Doerrfeld et al. (2015) and adopted from Bondel et al. (2021b).

• Planning and Design: Planning comprises the API provider defining the overall business
objective of the API and the strategy to realize it (Doerrfeld et al., 2015; Masse, 2019).
Activities in the planning phase are, e.g., the creation of the API’s mission statement, a
business plan, a usage forecast, and a marketing strategy (Doerrfeld et al., 2015). The
API provider can design the Web API using a contract-first approach22 (Masse, 2019).
A contract-first approach means that the provider specifies the API design, comprising
the definition of the schema, the base URLs, methods, request and response messages
structures, authentication mechanisms, and payload formats, without implementing it yet
(Axway Inc.). The API provider can share the designed contract with future consumers to
gather early feedback (Masse, 2019). The API provider can also create a mock to simulate
the behavior of the designed API (Masse, 2019; Axway Inc.).

• Implementation and Deployment: In this phase, the API provider develops the API, po-
tentially using agile methods (Masse, 2019). The API provider can realize the implemen-
tation by aggregating and abstracting existing backend functionality or implementing new
backend functionality. The use of Continuous Integration (CI) and Continuous Deploy-
ment (CD) pipelines supports the deployment of the API to the production environment
(Masse, 2019; Axway Inc.). Also, commercial API gateways support the deployment of
APIs (De, 2017).

22Also referred to as API-first approach (Axway Inc.).

31

2. Foundations

• Testing and Securing: The testing and securing phase is intertwined with the implemen-
tation and deployment phase. Testing aims to validate that an API meets specified func-
tional and non-functional requirements. Since we focus on Web APIs, i.e., APIs accessible
via the public internet, security is paramount. Hence, security testing, including static
analysis and vulnerability testing, is crucial (Masse, 2019). Also, the API provider has
to implement security mechanisms, e.g., authentication, access control, spike arrests, and
prevention of Distributed Denial of Service (DDoS) attacks (De, 2017).

• Management and Configuration: The manage and configure phase comprises minor
changes to the API and bug-fixing (Doerrfeld et al., 2015). Moreover, the API provider
configures API access, e.g., by defining policies, consumer quotas, or access rights (Axway
Inc.).

• Discovery and On-boarding: The goal of the discovery and on-boarding phase is to pro-
mote the API (Masse, 2019) and engage with API consumers (Doerrfeld et al., 2015).
Approaches to promoting an API can comprise hackathons, the definition of an API evan-
gelist role, engagement in the blogosphere, or organizing physical events (Doerrfeld et al.,
2015). Also, the API provider has to design and maintain the API developer portal, which
provides documentation, access to support, and on-boarding facilities like API sandboxes,
SDKs, and app registrations (Doerrfeld et al., 2015).

• Integration and Consumption: In this phase, the API consumers implement applications
integrating the API (Masse, 2019). The API provider supports the API consumer. Also,
the API provider can require the API consumer to submit the application to an application
validation process (Masse, 2019).

• Monitoring and Monetization: The API provider monitors the API concerning its health,
performance, and usage (Masse, 2019; Axway Inc.; Doerrfeld et al., 2015). Monitoring can
identify improvement potentials feeding into the next design cycle (Masse, 2019; Doerrfeld
et al., 2015). Also, monitoring allows billing API consumers according to their usage
(Masse, 2019).

• Deprecation: After passing through one or several design cycles, the API provider can
decide to retire an API, e.g., due to limited use, the use of outdated technologies, or
opposing strategic or financial goals (Axway Inc.). Also, the API provider can decide to
deprecate the old version of an API when publishing a new, breaking version (De, 2017).
Before deprecating the API, the API provider should schedule a retirement plan, announce
the plan, and create resources to ease the transition for existing API consumers (Doerrfeld
et al., 2015).

2.5. Best Practices and Patterns

Managing Web APIs is critical and requires considering technical, social, organizational, and
process-oriented aspects. A means to support organizations in becoming API providers is to
present best practices for API management. Therefore, in this section, we present the concepts
of best practices, good practices, and patterns in software engineering.

32

2. Foundations

2.5.1. Best Practices

To the best of the author’s knowledge, there is no generally agreed-upon definition of best
practices in IS. However, Bretschneider et al. (2005) present a definition in the field of public
administration research, stating that a best practice "[...] implies that it is best when compared
to any alternative course of action and that it is a practice designed to achieve some deliberative
end" (Bretschneider et al., 2005, p. 309).

Moreover, identifying best practices relies on several conditions according to Bretschneider et al.
(2005). First, best practices are derived from existing cases, but the case base must be complete,
i.e., identifying a best practice requires the analysis of all relevant cases. Secondly, the cases
in scope must be comparable, e.g., regarding the context. Thirdly, a clear cause-and-effect
relationship between a practice and an outcome must exist. An approach aiming to identify best
practices that does not meet these requirements can identify "good" but not "best" practices
(Bretschneider et al., 2005). However, researchers can rarely obtain completeness (Bretschneider
et al., 2005). Also, in most design domains, the effects of a practice are multidimensional
(Bretschneider et al., 2005).

In industry, the National Institute of Standards and Technology (NIST)23 defines best practice
as:

"A procedure that has been shown by research and experience to produce optimal re-
sults and that is established or proposed as a standard suitable for widespread adop-
tion." (NIST)

Also, Gartner24 defines best practices as:

"[...] a group of tasks that optimizes the efficiency (cost and risk) or effectiveness
(service level) of the business discipline or process to which it contributes. It must be
implementable, replicable, transferable and adaptable across industries." (Gartner)

Summarizing, all definitions emphasize that a best practice optimizes the specific outcome that
an applicant wants to achieve. However, Bretschneider et al. (2005) requests that best practices
are derived from complete and comparable case bases with clear cause-and-effect relationships
between a practice and an outcome. Yet, this is not possible in the field of API management.
First, creating a complete case base of all public, partner, and group cases is impossible. In
addition, isolating a clear cause-and-effect relationship between practices and outcomes is im-
possible. Therefore, in this dissertation, we identify good practices according to Bretschneider
et al. (2005). However, in industry, it is common to refer to practices that have been observed
to support the achievement of a specific goal in several cases as best practices. We adopt this
convention and refer to such practices as API management best practices in the remainder of
this dissertation.

Hence, we define best practices as follows:

23https://www.nist.gov/
24https://www.gartner.de/de

33

https://www.nist.gov/
https://www.gartner.de/de

2. Foundations

Definition - Best Practice

A best practice is an activity or set of activities that optimizes a specific outcome in a
defined context. Best practices are derived from existing cases.

In the following, we dive into a specific approach to documenting best practices, so-called pat-
terns.

2.5.2. Patterns

Patterns are a means to capture best practices. The idea of patterns was first introduced
by Christopher Alexander (Alexander, 1973; Alexander et al., 1977) in the domain of building
architecture and town structures (Coplien, 1996). With object-oriented design’s advent, patterns
were adapted to software engineering in the mid-1980s (Coplien, 1996). Quickly, a fast-growing
community evolved around the topic of software patterns (Coplien, 1996). Today, patterns have
established themselves as a renowned tool for communicating best practices among software
engineers. Moreover, patterns have spread from capturing best practices in structured domains
like building architecture and software engineering to unstructured problem-solving domains,
e.g., processes, organization, or training (Coplien, 1996).

In the following we first introduce the concepts of patterns, pattern languages, and pattern
catalogs. Afterward, we present advantages and disadvantages of the pattern form. Finally, we
introduce the major structural elements of patterns.

2.5.2.1. Patterns, Pattern Languages, and Pattern Catalogs

First and foremost, a pattern is a solution to a recurring problem in a specific context (Coplien,
1996; Meszaros and Doble, 1997; Buschmann et al., 1996). More precisely, patterns are a form of
documentation (Coplien, 1996) that captures proven solutions that evolved and took shape over
time, thus are born from experience (Gamma et al., 1995; Buschmann et al., 1996). According
to Coplien (1996), good patterns should "[...] capture important structures, practices, and tech-
niques that are key competencies in a given field, but which are not yet widely known" (Coplien,
1996, p. 4). However, patterns are not simply step-by-step instructions (Coplien, 1996). In-
stead, a pattern captures an abstraction, i.e., a "[...] solution [that] has enough detail that the
designer knows what to do, but it is general enough to address a broad context" (Coplien, 1996,
p. 5). Thus, a user has to adopt the concrete implementation of a pattern solution to their exact
context (Coplien, 1996). Therefore, Alexander et al. (1977) states that a pattern describes a
solution "[...] in such a way that you can use this solution a million times over, without ever
doing it the same way twice" (Alexander et al., 1977, p. x).

Patterns are mined from experience (Gamma et al., 1995), i.e., document long-proven solutions
and do not codify new ideas (Coplien, 1996). Hence, Coplien (1996) introduces the rule of three,
i.e., a solution is only a pattern if a pattern designer observes it in at least three successful
implementations.

34

2. Foundations

We adopt the following definition of a pattern:

Definition - Pattern

A pattern documents a solution to a recurring problem in a specific context (Coplien,
1996; Meszaros and Doble, 1997). A pattern solution has to meet the rule of three, i.e.,
a solution is only a pattern if it was observed to successfully solve the respective problem
in three different cases (Coplien, 1996).

Building on the concept of patterns, a pattern language is a set of related patterns that jointly
resolve a higher-level problem (Coplien, 1996; Meszaros and Doble, 1997). At the same time,
within a pattern languages context, each pattern addresses its own (sub-)problem, ideally al-
lowing each pattern to be used independently (Meszaros and Doble, 1997). Patterns within a
pattern language can relate in different ways. First, they can build on each other sequentially,
i.e., a pattern solves a problem in a specific context, resulting in a new context that enables the
application of further patterns (Coplien, 1996). Alternatively, a pattern language can comprise
patterns that solve the same problem but in different contexts, thus requiring different solutions
(Coplien, 1996; Meszaros and Doble, 1997). Also, patterns can generalize or specialize each
other (Coplien, 1996; Meszaros and Doble, 1997). Transparent relationships between patterns
allow readers to assess alternative solutions and identify complementary patterns (Meszaros and
Doble, 1997). Hence, we define a pattern language as follows:

Definition - Pattern Language

A pattern language is a set of related patterns that fully resolve a higher-level problem
in a specific domain (Coplien, 1996; Meszaros and Doble, 1997).

In comparison, a pattern catalog is a set of related patterns that do not fully resolve a higher-
level problem in a specific domain (Coplien, 1996). Nevertheless, pattern catalogs have proven
valuable, e.g., the pattern catalog put forward by Gamma et al. (1995) still is a standard reference
book for object-oriented design nowadays. Hence, we define a pattern catalog as follows:

Definition - Pattern Catalog

A pattern catalog presents a set of related patterns that partially resolve a higher-level
problem in a specific domain (Coplien, 1996).

In contrast to patterns, anti-patterns document common but destructive practices (Coplien,
1996). Since we do not present any anti-patterns as part of this dissertation, we do not present
a definition.

35

2. Foundations

2.5.2.2. Advantages and Challenges of Patterns

Patterns can realize several advantages. First an foremost, patterns provide practitioners with
operational knowledge on current practices in a domain (Buckl et al., 2013, 2008; Khosroshahi
et al., 2015). Practitioners already engaged in the respective domain can review patterns to
benchmark their current practices with best practices used in other organizations (Buckl et al.,
2008; Khosroshahi et al., 2015). Also, patterns and pattern languages enable knowledge dissem-
ination in the respective domain (Buckl et al., 2013).

Next, designers can solve a problem step-by-step using complementary patterns of a pattern
language (Alexander, 1973; Buckl et al., 2008). Consequently, the designers solve a problem
incrementally instead of designing an overall solution to a complex problem upfront (Alexander,
1973, p.117ff.). However, patterns within a pattern language or catalog must rigorously adhere
to a uniform terminology to enable easy integration of patterns (Buckl et al., 2013).

In the context of software patterns, patterns increased productivity by relieving developers from
the repeated discovery of sound solutions (Coplien, 1996; Gamma et al., 1995). Thus, they
prevent designers from making unnecessary errors and inspire solution designs (Coplien, 1996).
In addition, software systems implementing patterns can be easier to understand for maintainers
(Coplien, 1996).

Furthermore, patterns can provide a common taxonomy between stakeholders (Coplien, 1996;
Buschmann et al., 1996). Developers can use patterns to better communicate with clients and
each other (Coplien, 1996; Gamma et al., 1995).

Finally, patterns contribute to research by providing a basis for theory building in a specific
domain (Buckl et al., 2013, 2008). Also, the documentation of pattern and pattern language
changes over time allows researchers to derive knowledge on the evolution of a discipline (Buckl
et al., 2013, 2008; Khosroshahi et al., 2015).

Still, patterns are only a tool supporting designers and do not automatically turn designers into
experts (Coplien, 1996). Therefore, realizing these advantages is contingent on the pattern’s
quality and the designers’ ability to adapt the pattern to the actual context (Coplien, 1996).

Moreover, pattern design requires experience. Hence, patterns can only be mined in domains
with prior experience and not new domains (Coplien, 1996). In addition, pattern maintenance is
laborious. Pattern designers should continuously refine and elicit new patterns from real-world
cases (Buckl et al., 2013; Coplien, 1996). Finally, designers require training to reap the full
potential of applying patterns within an organization (Coplien, 1996).

2.5.2.3. Pattern Elements

Patterns can have many different structures (Coplien, 1996; Meszaros and Doble, 1997). How-
ever, a pattern should comprise at least a name, a context, a problem, forces, and a solution
(Meszaros and Doble, 1997). The relations between these structural elements are illustrated in
Fig. 2.5.

The pattern name enables readers to find and refer to a pattern (Meszaros and Doble, 1997;

36

2. Foundations

Figure 2.5.: Relations between structural elements of a pattern description adapted from
Meszaros and Doble (1997).

Coplien, 1996). Also, the name allows referencing between patterns of the same or different
pattern languages (Meszaros and Doble, 1997). Thus, the pattern author should choose a pattern
name that is meaningful, understandable even out of context, and memorable (Meszaros and
Doble, 1997). A pattern name often describes the solution of the pattern or uses a metaphor or
analogy (Meszaros and Doble, 1997; Coplien, 1996). Optimally, the name of a pattern captures
the content of a pattern in such a way that it creates a common taxonomy between users
(Meszaros and Doble, 1997; Coplien, 1996). Additionally, an author can define alternative names
for a pattern using aliases to address different readers’ information needs Coplien (1996).

According to Meszaros and Doble (1997), the context describes "The circumstance in which the
problem [that] is being solved imposes constraints on the solution" (Meszaros and Doble, 1997,
p. 7). In simpler terms, a problem can arise in different (real-world) settings. Depending on these
settings, a pattern solution can be more or less suitable. The context defines the characteristics
of a setting that lead to differences in a pattern’s applicability (Coplien, 1996; Meszaros and
Doble, 1997). More precisely, the pattern context determines which forces a solution should
prioritize (Coplien, 1996; Meszaros and Doble, 1997). Also, applying a pattern changes the
context and thus creates a new context, i.e., the resulting context (Coplien, 1996), also denoted
as consequences (Gamma et al., 1995). Further patterns can address the resulting context, hence
linking patterns (Coplien, 1996).

The problem statement presents the concrete problem that a pattern solves (Coplien, 1996;
Meszaros and Doble, 1997). The reader uses problem statements to identify relevant patterns
(Coplien, 1996). A problem description can be a single question or a detailed narrative (Coplien,
1996). A problem should be "context-free", meaning that a problem is independent of its context
and can therefore arise in different settings (Meszaros and Doble, 1997).

A design problem is difficult to solve since there is usually no solution that satisfies all the appli-
cant’s goals ideally at once. Instead, a solution leads to trade-offs between different conflicting
forces (Meszaros and Doble, 1997). For example, a developer implements an interface between
software components. Optimally, the developer wants to implement an interface that allows for
interoperability between different kinds of clients and simultaneously real-time communication.
One approach to realize communication between software components is the implementation

37

2. Foundations

of a Web API. However, while a Web API enables interoperability for several types of clients
due to its uniform interface, it also relies on communication over a network introducing latency
(Daigneau, 2011). As a result, the developer has to decide how to resolve the trade-off between
interoperability and performance, depending on the context. Hence, according to Meszaros and
Doble (1997), forces are the "[...] often contradictory considerations that must be taken into
account when choosing a solution to a problem" (Meszaros and Doble, 1997, p. 7). The forces
of a pattern make the trade-offs of a problem explicit, thus demonstrating why a problem is
hard to solve and helping the reader to grasp it fully Coplien (1996). More precisely, forces
capture requirements, possible constraints, and desired properties of the solution (Buschmann
et al., 1996).

Moreover, the pattern context prioritizes the forces a pattern should solve (Meszaros and Doble,
1997). Picking up on the example introduced above, the developer should prioritize interoper-
ability if they implement an interface for different mobile clients. As a result, they can use the
Web API pattern. However, if only one type of client uses the service and real-time performance
is required, the Web API pattern is unsuitable. Thus, the solution focuses on resolving prioritized
forces at the expense of others and potentially gives rise to new forces (Meszaros and Doble,
1997). A clear understanding of the forces allows the reader to judge the suitability of a pattern
and supports adapting the pattern to the readers’ needs (Coplien, 1996). This is the reason
Coplien (1996) states that "[...] forces are the focus of a pattern" (Coplien, 1996, p. 9).

The pattern solution solves a problem and resolves the conflict between forces as prioritized
by the context (Coplien, 1996; Meszaros and Doble, 1997). A solution can resolve some forces
completely, others partially, and others not at all (Meszaros and Doble, 1997). The pattern
author has to balance the solution description to provide enough detail for the user to apply it
and, simultaneously, be generic enough to be applicable to a broader context (Coplien, 1996;
Gamma et al., 1995). Furthermore, the pattern author should explicitly refer to the resolved
forces (Meszaros and Doble, 1997).

Further structural elements of patterns can be indications or symptoms (Meszaros and Doble,
1997), intent (Coplien, 1996), a rationale (Meszaros and Doble, 1997), a sketch (Coplien, 1996),
examples or known uses (Meszaros and Doble, 1997), code samples (Meszaros and Doble, 1997),
related patterns (Meszaros and Doble, 1997), a resulting context or consequences (Coplien, 1996;
Meszaros and Doble, 1997; Gamma et al., 1995), or acknowledgments (Meszaros and Doble,
1997).

2.6. Summary

This chapter aimed to provide foundational knowledge and to establish the taxonomy used in
the dissertation at hand.

First, we defined the software artifacts and stakeholders involved in providing and using a Web
API. The software artifacts comprise the backend, the Web API, and the client application.
In addition, API management platforms, i.e., an API gateway and API developer portal, can
realize API management capabilities (De, 2017; Spichale, 2017). The involved stakeholders are
the backend provider, API provider, API consumer, and end user.

38

2. Foundations

An API provider can realize Web APIs in different ways. Web API types are RPC APIs, message
APIs, and resource APIs. Message APIs can be implemented as Web Services based on SOAP
and WSDL or use the query language GraphQL, while resource APIs usually aim to achieve
REST compliance. Web services based on SOAP/WSDL are still often used for the integration
of internal enterprise applications (Kopecký et al., 2014; Tan et al., 2016), while REST APIs
dominate the data exchange between organizations (Salvadori and Siqueira, 2015; Tan et al.,
2016). In addition, GraphQL APIs are gaining traction for inter-organizational data exchange.

Next, we categorized Web APIs according to the audience that can access them. It is common
to distinguish Web APIs into private and public APIs (De, 2017; Jacobson et al., 2012; Santoro
et al., 2019; Doerrfeld et al., 2015). Private APIs are accessible to a restricted audience, i.e.,
internal APIs are accessible only to staff internal to the API provider organization, group APIs
are accessible to subsidiaries belonging to the same group (Bondel et al., 2021b), and partner
APIs are accessible to selected partner organizations (De, 2017). In comparison, public APIs
are accessible to all developers and organizations agreeing to an API’s terms of use and other
standard contractual agreements (Jacobson et al., 2012). In this dissertation, we focus on Web
APIs with the API provider and API consumer belonging to different organizations, i.e., public,
partner, and group Web APIs.

The provision and use of public, partner, and group Web APIs yields value for organizations,
thus giving rise to a new service ecosystem, the so-called API economy (Huhtamäki et al., 2017;
Basole, 2016; Evans and Basole, 2016; Basole, 2019). On the one hand, organizations taking on
the API provider role can generate additional revenue streams (Evans and Basole, 2016; Basole,
2016, 2019). On the other hand, API consumers profit from more efficient IT management by
sourcing IT capabilities as XaaS (Basole, 2019). Also, API consumers can recombine Web APIs
to create new services, i.e., mashups, for end users (Weiss and Gangadharan, 2010; Evans and
Basole, 2016; Basole, 2019; Basole et al., 2018; Tan et al., 2016). Nevertheless, analyses of the
API economy ecosystem show that recently established digital organizations located in major US
entrepreneurial regions dominate the provision of successful Web APIs compared to established
organizations from traditional industry sectors (Evans and Basole, 2016; Basole, 2019; Weiss
and Gangadharan, 2010; Huhtamäki et al., 2017).

Taking the lens of IS platform research, Web APIs are conceptualized as a kind of (platform)
boundary resource (Yoo et al., 2010). Boundary resources are software tools and contractual
agreements at the interface between API provider and consumer that govern their interactions
(Ghazawneh and Henfridsson, 2013). Hence, Web APIs are strategically important resources
(Yoo et al., 2010). Research on boundary resources yields several implications for Web APIs.
First, Web APIs need active management to attract API consumers and prevent exploitation
of provided backend functionality and data (Ghazawneh and Henfridsson, 2010). Secondly,
API providers control Web API design, but different actors influence it (Eaton et al., 2015).
Also, Web API co-design increases the API’s attractiveness for API consumers, especially in
small-scale settings (Islind et al., 2016; Huhtamäki et al., 2017). Furthermore, the API provider
needs to transfer knowledge to consumers to enable the use of Web APIs (Islind et al., 2016;
Zimmermann et al., 2022; Spichale, 2017). Finally, previous research on platformization does
not present clear knowledge on designing successful platforms (de Reuver et al., 2018).

Since Web APIs require active management to attract consumers, we present a definition of

39

2. Foundations

Web API management. Reviewing and aggregating different definitions of API management,
we define API management as an organizational function comprising all API provider activities
along an API lifecycle aiming to provide a successful Web API. Moreover, we make explicit that
API management comprises technical as well as social aspects, i.e., the collaboration and knowl-
edge transfer with different stakeholders. These stakeholders include the API consumer but also
stakeholders internal to the API provider organization. Also, we present an API management
lifecycle providing an overview of API management activities.

Finally, best practices describe activities that optimize a specific outcome in a defined context.
These best practices are derived from existing cases. A common approach to document best
practices in IS are design patterns. A pattern captures a solution to a recurring problem in a
specific context (Coplien, 1996; Meszaros and Doble, 1997; Buschmann et al., 1996). Moreover,
a pattern language is a system of related patterns that together solve a problem (Coplien, 1996;
Meszaros and Doble, 1997). In comparison, a pattern catalog denotes a set of patterns that
partially solves a higher-level problem (Coplien, 1996). Patterns make operational knowledge
accessible (Buckl et al., 2013, 2008; Khosroshahi et al., 2015), allow for incremental problem
solutions (Alexander, 1973; Buckl et al., 2008), provide a common taxonomy (Coplien, 1996;
Buschmann et al., 1996), and create a basis for theory building in research (Buckl et al., 2013,
2008; Khosroshahi et al., 2015).

40

CHAPTER 3

Related Work

This chapter aims to review existing patterns for API management. However, to the best of the
author’s knowledge, no pattern language or catalog explicitly concerned with API management
exists. Instead, we review pattern languages and catalogs focusing on the design of APIs or
interfaces and interactions between distributed software components. Hence, we analyze API
design, service design, middleware design, object-oriented software design, and software archi-
tecture pattern languages and catalogs to identify API management patterns. We categorize the
identified API management patterns along the API management lifecycle presented in Fig. 2.4.
However, we only reviewed pattern collections containing the minimum structural requirements
for documenting patterns, i.e., pattern collections with pattern descriptions that have at least a
name, and detail the context, problem, forces, and solution (Meszaros and Doble, 1997).

3.1. API Design Patterns

First, we present pattern languages and collections focusing on the design of APIs. We review
these pattern languages and catalogs to identify API management patterns.

Patterns for API Design by Zimmermann et al. (2022)

The Patterns for API Design (Zimmermann et al., 2022; Zimmermann et al.) has previously
been known as Microservice API Patterns (MAP) and evolved from several scientific articles
(Zimmermann et al., 2020a,b,c; Lübke et al., 2019; Stocker et al., 2018; Zdun et al., 2018;
Zimmermann et al., 2017). The Patterns for API Design form an extensive pattern language
focusing on the structure, evolution, management, and description of request and response

41

3. Related Work

messages exchanged between provider and client endpoints (Zimmermann et al., 2022). The
authors derive the patterns from public Web APIs and their own experiences with software
development and integration projects (Zimmermann et al., 2017; Zdun et al., 2018; Stocker
et al., 2018; Zimmermann et al., 2020b). The pattern language comprises 44 patterns1 organized
into five categories (Zimmermann et al., 2022). These categories are ‘foundation patterns’,
‘responsibility patterns’, ‘structure patterns’, ‘quality patterns’, and ‘evolution patterns’.

Discussion

Patterns for API Design (Zimmermann et al., 2022; Zimmermann et al.) emphasizes the struc-
ture, evolution, management, and description of request and response messages exchanged be-
tween provider and client endpoints. Hence, most of the ‘foundation patterns’, ‘responsibility
patterns’, ‘structure patterns’, ‘quality patterns’, and ‘evolution patterns’ guide the design of an
API in the planning & design phase of API management. In the following, we detail patterns
that additionally support other API management lifecycle phases as described in Fig. 2.4.

Within the ‘foundation patterns’, the pattern API Description supports the design of new Web
APIs, e.g., by presenting specifications to future consumers to get feedback. Moreover, the API
developer portal should publish the API Description to enable discovery & onboarding and
integration & consumption. In addition, within the ‘structure patterns’, the API Key enables
testing & securing while the Error Report supports monitoring & monetization. Also, the
Pricing Plan within the ‘quality patterns’ category is part of designing an API strategy. In
contrast, the Rate Limit enables testing & security and enforces monitoring & monetization.
Also, the Service Level Agreement should guide implementation & deployment and plays an
essential role during integration & onboarding. Finally, the ‘evolution patterns’ initiate a new
planning & design phase or guide the management & configuration. Also, Aggressive Obsolesce
leads to deprecation of APIs.

API Design Patterns according to Geewax (2021)

Geewax (2021) presents patterns for Web APIs, i.e., APIs used remotely over a network. The
patterns capture the design and structure of such APIs and are described consistently. Geewax
(2021) presents 25 patterns structured into the categories ‘fundamentals’, ‘resource relation-
ships’, ‘collective operations’, and ‘safety and security’.

Discussion

The API design patterns put forward by Geewax (2021) document the technical implementation
of Web APIs. Thus, they support the planning & design and the implementation & deployment
phase of the API management lifecycle presented in Fig. 2.4. In addition, the pattern Versioning
and Compatibility provides strategies for implementing changes that trigger a new API man-

1In comparison to the book (Zimmermann et al., 2022), the website (Zimmermann et al.) publishes the addi-
tional pattern Eternal Lifetime Guarantee.

42

3. Related Work

agement lifecycle or support the management & configuration of a Web API. Furthermore,
Request Authentication plays a vital role in the phase testing & security.

Patterns for RESTful Conversations by Pautasso et al. (2016)

Pautasso et al. (2016) presents a pattern language for RESTful conversations drawing on pre-
vious publications (Pautasso and Wilde, 2010; Haupt et al., 2015). A RESTful conversation
assumes a client interacts with an API that adheres to the REST architectural style according
to Fielding (2000). The patterns capture recurring HTTP request-response interactions between
the client and the REST API. Moreover, the patterns support API designers and client develop-
ers in addressing non-functional requirements like security, reliability, and scalability during API
design and consumption. Overall, Pautasso et al. (2016) describes ten RESTful conversation
patterns structured along the CRUD operations. All patterns have a consistent form comprising
a visualization.

Discussion

The RESTful conversation patterns (Pautasso et al., 2016) describe sequences of interactions
between a REST API and a client. These interactions aim to realize different goals, including
reliable creation, updating, discovery, and resource protection. These patterns play an essential
role during the design of an API, hence supporting the planning & design phase and guiding
the implementation & deployment phase.

Control-Flow Patterns for Decentralized RESTful Service Composition by
Bellido et al. (2013)

Bellido et al. (2013) present a set of control-flow patterns for service composition compli-
ant with REST and using HTTP as application protocol. Using WSDL/SOAP-based ser-
vice control-flow patterns as a starting point, Bellido et al. (2013) derived stateless compo-
sitions of RESTful services through callbacks and redirections. The patterns are sequence,
unordered sequence, alternative, exclusive choice, iteration, structured loop, parallel
split - synchronization, structured discriminator, structured partial join, local
synchronization merge. Bellido et al. (2013) describe each pattern, but discuss the context,
problem, and consequences on a high level for all patterns together. An implementation and
evaluation of QoS attributes shows that these control-flow patterns improve the availability and
throughput of service compositions while the response time remains stable.

Discussion

The control-flow patterns for decentralized RESTful service composition by Bellido et al. (2013)
document four types of control-flows with different variations. These patterns can support the
design of Web APIs during the API management lifecycle phase planning & design as visualized
in Fig. 2.4.

43

3. Related Work

3.2. Service Design Patterns

A service is an independently deployable software component with concise functionality and
a database (Richardson). Services expose reusable business functions via defined interfaces
(Daigneau, 2011). Hence, the management of APIs is integral to service management. In the
following, we identify API management patterns in pattern languages and catalogs concerned
with services in the context of service design, SOA, and microservices architectures.

Service Design Patterns by Daigneau (2011)

In Daigneau (2011), the author presents web service design patterns for professional enterprise
architects, solution architects, and developers. According to the author "Web services provide
the means to integrate disparate systems and expose reusable business functions over HTTP.
They either leverage HTTP as a simple transport over which data is carried (e.g., SOAP/WSDL
services) or use it as a complete application protocol that defines the semantics for service behav-
ior (e.g., RESTful services)" (Daigneau, 2011, p. 2). Moreover, web services use XML, JSON,
or common media-type data-exchange standards. Hence, web services rely on ubiquitous, inter-
operable standards independent of the underlying technologies. The service design patterns are
derived from real-life experiences and have a consistent form influenced by the pattern structures
of Alexander (1973) and Hohpe and Woolf (2003).

Overall, Daigneau (2011) describes 25 patterns across six categories. The six categories are ‘Web
Service API styles’, ‘Client-Service Interactions’, ‘Request and Response Management’, ‘Web
Service Implementation Styles’, ‘Web Service Infrastructures’, and ‘Web Service Evolution’.

Discussion

Daigneau (2011) presents 25 patterns for web service design, which mainly support the planning
& design phase and guide the implementation & deployment phase of the API management
lifecycle presented in Fig. 2.4. The pattern Consumer-driven contracts is further relevant
during the testing & securing phase.

Furthermore, Daigneau (2011) introduces a definition of web services that we adopt for the term
Web API in this dissertation and the AMPC (Bondel and Matthes, 2023).

SOA Design Patterns by Erl (2008)

Erl (2008) presents a service-oriented architecture (SOA) design pattern language that captures
real-world solutions to SOA realization challenges. The target audience of the SOA design pat-
terns are IT practitioners involved in SOA implementations. The patterns have been influenced
by Christopher Alexander (Alexander, 1973; Alexander et al., 1977), Hohpe and Woolf (2003),
Fowler (2003), Gamma et al. (1995) and the POSA books (Buschmann et al., 1996; Schmidt
et al., 2000; Kircher and Jain, 2004; Buschmann et al., 2007b,a). The patterns relate to each
other and have a consistent form. Overall, 85 SOA patterns are published in Erl (2008). On the

44

3. Related Work

highest level, the book structures the patterns into ‘service inventory design patterns’, ‘service
design patterns’, and ‘service composition design patterns’.

Discussion

Erl (2008) presents patterns for SOA with a focus on service delivery within an organization’s
boundaries. Nevertheless, some SOA patterns can support the design of Web APIs used across
organizational borders. First, the ‘service design patterns’ and the ‘service composition design
patterns’ support the planning & design and the implementation & deployment phase of API
management. Moreover, the ‘service security patterns’ and the ‘service interaction security
patterns’ can aid during the testing & securing phase. The pattern Compatible Change, Version
Identification, Termination Notification, and Service Refactoring can guide the evolution
of Web API and are thus relevant during the initiation of a new API management lifecycle or
support the management & configuration.

SOA Patterns by Rotem-Gal-Oz (2012)

Rotem-Gal-Oz (2012) present technology-neutral architecture patterns for applications adhering
to the SOA architectural style. The patterns are presented in a consistent form inspired by
Alexander et al. (1977). Overall, Rotem-Gal-Oz (2012) documents 26 patterns covering the
‘structural’, ‘performance, scalability and availability’, ‘security and manageability’, ‘message
exchange’, ‘service consumer’, and ‘service integration’ patterns.

Discussion

Rotem-Gal-Oz (2012) presents architectural patterns for implementing a SOA. The ‘founda-
tional structural patterns’, ‘patterns for performance, scalability, and availability’, ‘message
exchange patterns’, ‘service consumer patterns’, and ‘service integration patterns’ can guide
the planning & design and implementation & deployment phase of the API management life-
cycle presented in Fig. 2.4. In addition, the ‘security and manageability patterns’ support the
texting & securing phase. Also, the Service Monitor pattern can aid during monitoring &
monetization.

Finally, the pattern service host pattern describes the concept of a API gateway.

Microservices Patterns by Richardson (2019)

In Richardson (2019), the author presents a microservices architecture language, i.e., patterns
that enable the reader to design applications implementing a microservices architecture. The
patterns are published online (Richardson) and the pattern book Richardson (2019) focuses
on providing additional details and linking the microservices patterns. The patterns have a
consistent form. Overall, the author publishes 52 patterns across ten groups. The first group
comprises ‘patterns for decision-making’ supporting the choice of implementing a monolithic

45

3. Related Work

or microservices architecture. The other groups are patterns supporting the realization of a
‘microservices architecture comprising decomposition’, ‘communication’, ‘data consistency’, ‘mi-
croservices querying’, ‘deployment’, ‘observability’, ‘automated testing’, ‘cross-cutting concerns’,
and ‘security’ patterns. In addition to the microservices patterns, Richardson also describes
seven microservice adoption anti-patterns.

Discussion

The goal of Richardson (2019) and Richardson is to enable readers to implement applications
successfully using microservices, i.e., decomposing and implementing systems into microservices
on the infrastructure and application levels. The ‘communication patterns’ support first and
foremost the planning & design phase of the API management lifecycle as presented in Fig. 2.4.
Generally, the ‘testing patterns’, the ‘security patterns’, and the Circuit Breaker guide the
testing & securing phase. The ‘observability patterns’ can aid during testing & securing but
also enable monitoring & monetization.

Moreover, Richardson (2019) and Richardson present the very influential API gateway pattern.
An API gateway is the single entry point for client requests accessing a microservice. The API
gateway forwards client requests to the respective APIs. Furthermore, API gateways realize
API composition and authentication. For example, Montesi and Weber (2016), Müssig et al.
(2017), and Akbulut and Perros (2019) all extend the API gateway pattern to implement API
management functionalities. These findings align with the statements of Mathijssen et al. (2020)
and De (2017) claiming that API management platforms play an essential role in realizing API
management functionalities.

Microservices Patterns by Newman (2019)

Sam Newman captures 22 microservices-related patterns in a book (Newman, 2019) and on
a website (Newman). These microservices-related patterns comprise ‘backend management’,
‘tenancy’, ‘responsibility’, ‘migration from monolithic to microservices’, and ‘database decom-
position’ patterns.

Discussion

The Microservices Patterns (Newman, 2019; Newman) focus on the transition from monolithic
systems to microservices. Hence, the microservices patterns focus primarily on service architec-
tures and the responsibility for service changes. The Backends for Frontends can be employed
during the planning & design phase of the API management lifecycle presented in 2.4. The
patterns Single Tenancy, Multi-Tenancy, and Hybrid Tenancy can be relevant during the im-
plementation & deployment of a Web API. Also, Open Service Ownership, Temporary Service
Ownership, and Roving Custodians can guide the management & configuration phase.

46

3. Related Work

3.3. Middleware Design Patterns

Middleware introduces an additional layer between distributed applications communicating over
a network, thus hiding platform heterogeneity and removing the need to handle low-level network
communication details (Zdun et al., 2004). Hence, middleware provides a unified interface to
clients, thus requiring management of the APIs between the backend services and the middleware
and the API between the middleware and the client applications.

Enterprise Integration Patterns by Hohpe and Woolf (2003)

Enterprise integration focuses on often complex, message-oriented system integrations aiming to
automate business processes (Hohpe and Woolf, 2003; Fowler, 2003). The integration of these
enterprise applications relies on middleware solutions using queuing technologies (Daigneau,
2011). Hohpe and Woolf (2003) presents technology and product agnostic patterns for enterprise
integration focusing on asynchronous messaging. The authors publish the patterns in a book
(Hohpe and Woolf, 2003) and online (Hohpe). The patterns are derived from practical experience
and follow the Alexandrian (Alexander et al., 1977) pattern form.

Overall, Hohpe and Woolf (2003) publishes 65 patterns organized into seven categories. These
categories are ‘integration styles’, ‘messaging channels’, ‘message construction’, ‘message rout-
ing’, ‘message transformation’, ‘messaging endpoints’, and ‘system management’. In addition to
patterns referring to each other and hierarchies of patterns, the pattern language also comprises
’root patterns’, i.e., patterns that provide a foundation for all other patterns.

Discussion

The Enterprise Integration Patterns (Hohpe and Woolf, 2003) aim to enable application de-
velopers and system integrators to integrate independent applications using messaging in the
context of complex enterprise applications. The ‘message construction’ and ‘messaging end-
point’ patterns can support the planning & design phase of a Web API as visualized in Fig. 2.4.
Furthermore, the Test Message can be employed to enable testing & securing and monitoring
& monetization of a Web API.

Remoting Patterns by Völter et al. (2004)

Völter et al. (2004) use patterns to describe the architecture of distributed object middleware
for distributed systems. More precisely, they document remoting patterns that implement the
broker pattern as the highest-level, compound pattern. Regarding technologies, they focus on
CORBA, Web Services, DCOM, Java RMI, .NET Remoting. The pattern language comprises
‘structural’ and ‘behavioral’ patterns. The pattern descriptions have a consistent form derived
from Alexander.

47

3. Related Work

Discussion

The Remoting Patterns presented by Völter et al. (2004) document the inner workings of dis-
tributed object middleware. The pattern Interface Description could support the planning
& design as well as the integration & consumption phases of the API management lifecycle for
Web APIs used across organizational boundaries presented in Fig. 2.4.

3.4. Object-oriented Software Design Patterns

Object-oriented programming is a paradigm that encapsulates behavior and data in objects
(Gamma et al., 1995; Daigneau, 2011). An object consists of properties and operations (Gamma
et al., 1995). Objects interact via requests that trigger the execution of an operation (Gamma
et al., 1995). These objects can be distributed. Objects are usually "fine-gained" modules
(Daigneau, 2011).

Patterns of Enterprise Application Architecture by Fowler (2003)

Fowler (2003) is concerned with patterns supporting programmers, designers, and architects in
designing the architecture of enterprise applications. Enterprise applications automate business
processes while often handling large amounts of data, making them inherently complex. The
collection of 51 patterns comprises ‘domain logic patterns’, ‘data source architectural patterns’,
‘object-relational behavior patterns’, ‘object-relational structural patterns’, ‘object-relational
metadata mapping patterns’, ‘web presentation patterns’, distribution patterns’, ‘offline concur-
rency patterns’, ‘session state patterns’, and ‘base patterns’. The author derived the patterns
from experience, and they have a consistent form.

Discussion

Overall, the Enterprise Application Patterns (Fowler, 2003) focus on the design of complex
applications. While some patterns touch the design of Web APIs, most patterns capture general
object-oriented programming concepts. The pattern Remote Facade is a basic pattern used
to realize Web APIs, thus it is relevant during the implementation & deployment phase of the
Web API lifecycle presented in Fig. 2.4. Also, a Service Stub can support integration &
consumption.

Object-Oriented Software Design Patterns by Gamma et al. (1995)

Gamma et al. (1995) published one of the first and most influential pattern catalogs that apply
the pattern idea to software engineering, also known as the "Gang of Four" or "GoF" book
(Buschmann et al., 1996). The pattern catalog covers design patterns for object-oriented software
resulting from experience to increase the flexibility and reusability of object-oriented software.
More specifically, the patterns are "[...] descriptions of communicating objects and classes that

48

3. Related Work

are customized to solve a general design problem in a particular context" (Gamma et al., 1995,
p. 3). All patterns have been successfully applied in multiple systems and use a consistent pattern
format. Overall, Gamma et al. (1995) describe 23 design patterns. These design patterns are
categorized into ‘creational’, ‘structural’, and ‘behavioral’ patterns. In addition to the patterns
themselves, Gamma et al. (1995) also describes what patterns are and the benefits of the pattern
form.

Discussion

Gamma et al. (1995) presents design patterns concerned with the creation, composition, and
interaction between classes and objects in object-oriented systems. Nevertheless, some structural
patterns can be relevant for Web API management. First, the Facade enables the realization of
a Web API, thus it is relevant during the implementation & deployment phase of the Web API
lifecycle. Also, the Adapter pattern can support the integration of Web APIs, thus supporting
the integration & consumption phase during a Web API management lifecycle as presented in
Fig. 2.4. Moreover, the Proxy pattern provides the basis for an API gateway.

3.5. Software Architecture Patterns

"A system’s architecture specifies the structure of the system, in terms of both the software that
implements the system functions and the hardware that provides the operating environment for
the software" (Dyson and Longshaw, 2004, p. 2). Hence, we identify API management patterns
in software architecture pattern collections in the following. More precisely, we identify and
analyze distributed software architecture patterns that support API management.

Pattern-Oriented Software Architecture (POSA) Book Series

The Pattern-Oriented Software Architecture patterns are published across five books, also known
as the Pattern-oriented Software Architecture (POSA) series books.

Buschmann et al. (1996) is the first POSA book and an early and very influential publication
on patterns in software architecture. The book aims to support novices and experts in design-
ing, maintaining, and changing complex, large-scale systems and effective software production.
The patterns rely on the experience of skilled designers and software engineers. Each pattern
description has the same structure. Overall, Buschmann et al. (1996) describes three categories
of patterns with different levels of abstraction. First, the authors present eight ‘architectural
patterns’, which are the highest-level patterns. Architectural patterns cover the structural orga-
nization of software systems. Afterward, Buschmann et al. (1996) cover eight ‘design patterns’,
which prescribe structures of subsystems. Finally, on the lowest level, Buschmann et al. (1996)
presents one ‘idiom’ and refers to sources of more idioms. An idiom is a language-dependent
pattern that supports the implementation of behavior in components.

The second POSA book Schmidt et al. (2000) is concerned with patterns for concurrent and

49

3. Related Work

networked objects. More precisely, the book covers patterns for ‘service access and configuration’,
‘event handling’, ‘synchronization’, and ‘concurrency’.

Kircher and Jain (2004) present the third POSA book and describe patterns for resource man-
agement. More precisely, the book covers ‘resource acquisition’, ‘resource lifecycle’, and ‘resource
release patterns’.

The fourth POSA book Buschmann et al. (2007b) relates distributed computing patterns discov-
ered and published by many different software experts to form a pattern language. Overall, the
authors present 114 patterns for object-oriented software grouped into 13 problem categories.
These patterns also repeat patterns previously published in Buschmann et al. (1996), e.g., the
Proxy or Facade pattern.

Finally, Buschmann et al. (2007a) is the fifth and last POSA book. The book takes a meta-view
and discusses the definition and form of patterns, the potential relations between patterns, and
the pattern language definition and form.

Discussion

The POSA books are amongst the most renowned software pattern books. The books focus on
patterns for object-oriented software systems and the concept of patterns and pattern languages.
Hence, as the name states, they focus on the design and architecture of a system.

However, Buschmann et al. (1996) presents the Facade pattern, previously published by Gamma
et al. (1995). A Facade enables the realization of a Web API, and is thus relevant during during
the implementation & deployment phase of the Web API lifecycle presented in Fig. 2.4.

Moreover, Buschmann et al. (1996) and Buschmann et al. (2007b) present the pattern Proxy, i.e.,
a component that provides security, traffic management, and other housekeeping functionality
through which clients communicate with the backend (Buschmann et al., 2007b). Hence, a Proxy
can realize many API management capabilities.

Patterns for High-Capability Internet-Based Systems by Dyson and Longshaw
(2004)

Dyson and Longshaw (2004) presents architecture patterns for high-capability internet technol-
ogy systems, i.e., systems using internet technology to deliver information and services. The
scope is limited to non-trivial, large-scale, mission-critical, enterprise systems. However, these
systems can be accessible to internal and external users. The pattern language comprises 26
intern-related patterns categorized into ‘fundamental’, ‘system performance’, ‘system control’,
and ‘system evolution’ patterns.

3.5.0.1. Discussion

The Patterns for High-Capability Internet-Based Systems (Dyson and Longshaw, 2004) focus on
the overall architecture of internet-based systems, comprising several API management patterns.

50

3. Related Work

First, the ‘system performance patterns’ and ‘system evolution patterns’ can be considered
during the planning & design phase of the API management lifecycle presented in Fig. 2.4.
Moreover, the ‘system control patterns’ are relevant during the testing & securing and the
monitoring & monetization phase.

3.6. Summary

This dissertation aims to support API providers seeking to provide a successful Web API by
presenting API management patterns. Hence, the goal of this chapter was to review existing
patterns for API management in related literature. However, to the best of the author’s knowl-
edge, no pattern collection explicitly focusing on API management patterns exists. Instead,
we reviewed patterns collections concerned with API design, service design including SOA and
microservice patterns, middleware design, object-oriented software design, and software archi-
tecture to identify API management patterns. Overall, we identified, described, and related 15
pattern collections to the API management lifecycle phases presented in Fig. 2.4.

Overarching observations are that the analyzed pattern collections provide many patterns fo-
cusing on the technical implementation of Web APIs, e.g., Web API conversation patterns. In
addition, we identified several patterns concerned with API testing, security, performance, mon-
itoring, and evolution. In comparison, we identified only a few patterns for the API lifecycle
phases discovery & onboarding and integration & consumption. Also, the API management pat-
terns that we identified focus primarily on technical solutions and rarely present collaborative,
organizational, or process-oriented solution approaches.

51

52

CHAPTER 4

Identification of Best Practice Candidates for Code Examples in Web API

Documentation

In his seminal paper on sub-routines, Wheeler (1952) already wrote:

"However, even after it [a sub-routine] has been coded and tested there still remains
the considerable task of writing a description so that people not acquainted with the
interior coding can nevertheless use it easily. This last task may be the most difficult."
(Wheeler, 1952, p. 235)

Writing documentation for APIs becomes even more difficult for public, partner, and group Web
APIs with unknown, distributed, and heterogeneous API consumers with varying and unknown
goals. Since the consumers usually do not have direct access to the backend and Web API
developer team, knowledge transfer has to take place in a different way. Therefore, this chapter
aims to identify best practice candidates for documenting public, partner, and group Web APIs.
We do so by extending the results presented in Bondel et al. (2022) and in the student thesis
Cerit (2019).

"Nowadays, learning new APIs provided by other teams or organizations is a com-
mon task for developers (Meng et al., 2018, 2019; Glassman et al., 2018). Hence,
developers often face the challenge of evaluating the suitability of an API for solving
a specific problem (Meng et al., 2018). Also, developers often have to figure out how
to use an API efficiently to solve a specific problem (Meng et al., 2018). Information
necessary to accomplish these tasks can comprise knowledge about how domain con-
cepts map to API elements, what use cases the API supports, how different requests
affect resource consumption, and how the API reports errors (Robillard and DeLine,
2011; Meng et al., 2018).

API providers use documentation to transfer this kind of information to developers

53

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

in other teams or organizations. Therefore, documentation is a crucial learning
resource for API consumers (Robillard, 2009; Lethbridge et al., 2003; McLellan et al.,
1998). Moreover, API consumers perceive documentation-related issues, e.g., errors
or missing information, as a significant impediment when learning APIs (Meng et al.,
2018; Robillard and DeLine, 2011; Robillard, 2009). Thus, the success of a public
API can depend on the documentation’s ability to meet the consumers’ information
needs (Meng et al., 2018).

Previous research reveals the vital role of code examples in API documentation
(Nykaza et al., 2002; Meng et al., 2018, 2019; Robillard, 2009; Ko et al., 2007; Nasehi
and Maurer, 2010; McLellan et al., 1998; Meng et al., 2020; Jeong et al., 2009;
McLellan et al., 1998). For instance, examples represent entry points to learning
a new API (Meng et al., 2018, 2019) as well as to solve specific problems (Meng
et al., 2018, 2019; Nykaza et al., 2002). Also, developers perceive examples as more
informative and easier to understand compared to textual descriptions and they
convey a feeling of how to best use an API (Meng et al., 2018)."

– Bondel et al. (2022)

For instance, Meng et al. (2019) uncovered that developers consult example and usage scenario
sections together about as much as reference documentation. Also, examples and usage scenarios
are overall and by far the most viewed resources (Meng et al., 2019). Similarly, in a survey with
professional software developers, over half of the participants reported using examples to learn
a new API (Robillard, 2009). Nevertheless, code examples in API documentation must meet
specific quality criteria to unlock their potential (Meng et al., 2018; Robillard and DeLine, 2011;
Robillard, 2009; Nykaza et al., 2002).

While many examples are available online, e.g., on Stack Overflow, developers still attribute
more trust to official API documentation (Nasehi et al., 2012). Therefore, we focus on code
examples as part of the official documentation published by Web API providers.

In the following, we first define our understanding of code examples in Web API documentation.
Afterward, we present the research approach and the resulting best practice candidates. The
presentation of these results is followed by their discussion yielding several implications. At last,
we summarize the chapter.

4.1. Definition of Code Examples

"We adopt Robillard and DeLine (2011) definition of code examples in API documen-
tation as: "[...] listings, of various length, that show an API being used". Thus, an
example helps developers to understand how to use API elements in a programming
context (Watson, 2012; Jiang et al., 2007). There are four different types of code
examples, which are code snippets, tutorials, samples, and production code (Robillard
and DeLine, 2011).

• The smallest type of examples are code snippets, which show just one aspect

54

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

of an APIs basic functionality (Robillard and DeLine, 2011; Watson, 2012).
Similarly, Watson (2012) describes code snippets as short samples of code that
show how to use one API element (Watson, 2012).

• A tutorial is a sequence of snippets that implement a specific, non-trivial func-
tionality in a step-by-step manner (Robillard and DeLine, 2011; Watson, 2012).
A getting started guide is a type of tutorial that enables developers to imple-
ment a basic usage of the API (Inzunza et al., 2018). Also, a concept which
we equate with tutorials are recipes. Meng et al. (2019) describes recipes as
code examples in a cookbook-like fashion. Each recipe describes how to reach
a specific solution given a specific problem (Meng et al., 2018).

• Next, a sample is a small and self-contained application (Robillard and DeLine,
2011). In comparison to tutorials that show just one functionality, sample
apps demonstrate complete and usable programs comprising several features
and potentially additional functionality, e.g., a user interface or error handling
(Watson, 2012; Nykaza et al., 2002).

• Finally, API consumers can inspect production code for code examples (Robil-
lard and DeLine, 2011). For instance, consumers can extract such code examples
from open source systems.

An example does not only consist of code but also entails accompanying explanations
(Robillard and DeLine, 2011). These explanations provide information that allows
consumers to understand the example code and thus modify it (Nasehi and Maurer,
2010; Nasehi et al., 2012; Ko and Riche, 2011; Meng et al., 2018; Uddin and Robillard,
2015; Thayer et al., 2021; Glassman et al., 2018). Such an explanations can, e.g.,
comprise a rationale that explains how the code relates to concepts and execution
facts (Thayer et al., 2021). The explanations can be incorporated into code in the
form of comments (Nasehi et al., 2012) or accompany the example code as textual
descriptions (Meng et al., 2018).

Moreover, we distinguish the concept of examples from similar concepts in literature.
First, we want to distinguish examples from API usages. An API usage captures what
an API can be used for (Jiang et al., 2007; Stylos et al., 2009). Hence, examples can
demonstrate how to realize usages, i.e., recommended or required sequences of API
calls that implement a specific functionality (Jiang et al., 2007). However, an API
provider can also use UML2 sequence diagrams to convey usage scenarios as part of
API documentation (Jiang et al., 2007).

Next, Thayer et al. (2021) introduces usage patterns as a type of knowledge that
consumers require to be able to use an API successfully. A usage pattern is a code
pattern describing how calls to several APIs should be coordinated and are accom-
panied by a rationale that explains how the code relates to concepts and execution
facts (Thayer et al., 2021). A usage pattern can be a code snippet. Thus, usage
patterns convey what a developer can do with an API (Thayer et al., 2021).

Finally, Hoffman and Strooper (2000) and Hoffman and Strooper (2003) introduce

55

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

the idea of using test cases as examples in documentation. A test case comprises
preconditions, inputs, and expected results to determine if a system meets specific
test objectives (ISO/IEC/IEEE 29119-1:2013)[1]. Test cases are executable exam-
ples with expected outputs that guarantee precision, completeness, and machine
processability [(Hoffman and Strooper, 2000, 2003)].

As a result, we understand examples as code comprising API requests and expected
responses with accompanying explanations that demonstrate how to use an API to
realize one or more functionalities. [...]"

– (Bondel et al., 2022)

4.2. Research Approach

This section describes the research approach for identifying best practice candidates as visualized
in Fig. 4.1. First, we present a literature review that aims at extracting best practice candidates
for Web API documentation from existing research. We identified 17 research papers presenting
implications, principles, or observations for API documentation, from which we derived 32 best
practice candidates. Afterward, we conducted 13 expert interviews to enrich the previously
identified best practice candidates and discovered further candidates yielding a collection of 46
best practice candidates. In addition, we report observations made during the identification of
the best practice candidates. As visible in Fig. 4.1, chapter 5 builds on these results.

Figure 4.1.: Steps and results of the research approach applied to identify best practice candi-
dates for Web API documentation.

We present details about the literature review and the expert interviews in the following.

1ISO/IEC/IEEE 29119-1:2013 was replaced by ISO/IEC/IEEE 29119-1:2022. However, the essence of the
definition of test cases remains the same in the new version.

56

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

4.2.1. Literature Review

"We reviewed existing literature on API documentation following an approach in-
spired by Webster and Watson (2002) to extract best practice candidates for the
design and integration of code examples into Web API documentation that improve
consumers’ API learning. As a starting point, we conducted an extensive search of
the databases ScienceDirect2, ACM3, IEEE Xplore4, and Scopus5. Afterward, we
uncovered additional relevant publications using forward and backward search. As a
result, we collected 17 research papers that present implications, principles, or obser-
vations for code examples in the documentation of local APIs, non-public Web APIs,
and public Web APIs. We include best practice candidates derived from literature
concerned with non-public Web APIs and local APIs since we assume they could
also apply to public Web APIs. Still, their applicability first needs to be validated."

– Bondel et al. (2022)

Since the goal of the literature review was to identify best practices specifically related to ex-
amples in API provider documentation, we excluded general documentation best practice can-
didates. For example, a general documentation best practice candidate would be to provide
consistent navigation and powerful search facilities for the documentation (Meng et al., 2020;
Jeong et al., 2009). While these facilities are of importance, they are not specific to examples
and thus disregarded. Further best practice candidates concerning general API documentation
can be derived from, e.g., Meng et al. (2020), Robillard (2009), Robillard and DeLine (2011),
and Jeong et al. (2009).

Also, since we focus on official API documentation published by the API provider, we excluded
best practice candidates only relevant to examples presented in Q&A forums like Stack Over-
flow6. An exemplary best practice candidate of this category is that code examples should
indicate who authored them to enable consumers to derive their trustworthiness (Robillard and
DeLine, 2011). However, by definition, official API documentation is written or at least reviewed
and published by the API provider, thus already providing information on the author.

We present an overview of the analyzed 17 research papers and the API context from which these
papers derive their implications, principles, or observations in Tab. 4.1. From these research pa-
pers, we derived 32 best practice candidates for code examples in official API documentation.

4.2.2. Expert Interviews

Next, we aimed to enrich and potentially identify further best practice candidates for code
examples in Web API documentation using semi-structured expert interviews.

"Overall, we interviewed 13 professionals, including product owners, architects, and
2https://www.sciencedirect.com/
3https://www.acm.org/
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://www.scopus.com/home.uri
6https://stackoverflow.com/

57

https://www.sciencedirect.com/
https://www.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/home.uri
https://stackoverflow.com/

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.1.: Identified and analyzed research papers that present implications, principles, or ob-
servations for code examples in API documentation.

Source API Context
Nasehi and Maurer (2010) Apache POI API, v3.5 (open source library in Java)
Nasehi et al. (2012) Java programming language
Ko et al. (2004) Visual Basic .NET 2003
Meng et al. (2018) Not specific to an API type (includes class-based APIs,

library-based APIs, Web APIs, and others)
Meng et al. (2019) shipcloud API (public Web API, REST-based)
Meng et al. (2020) shipcloud API (public Web API, REST-based)
Robillard (2009) Different types of APIs (e.g., an API for access to per-

sonal information manager data on Windows mobile-
based devices, classic windowing APIs, and Microsoft’s
Web application development platform .NET)

Robillard and DeLine (2011) Different types of publicly released APIs (e.g., API for
access to personal information manager data on Win-
dows mobile-based devices, classic windowing APIs,
and Microsoft’s Web application development platform
.NET) but most participants had access to the teams
that developed the APIs

Sohan et al. (2017) WordPress REST API V2 (open Web API, REST-
based)

Thayer et al. (2021) d3.js, Natural, OpenLayers, ThreeJS (JavaScript
APIs)

Hoffman and Strooper (2000) Java Vector class
Hoffman and Strooper (2003) Java StringBufferTest class and Java class interac-

tions via command line module
McLellan et al. (1998) RODE API (library-based API)
Inzunza et al. (2018) Facebook API (Open Web API), Google TensorFlow

(open source library), Microsoft Face API (Open Web
API, REST-based), UM4RS (C# library)

Nykaza et al. (2002) 3CS SDK (SDK to interact with a realtime database
for call center sooftware)

Glassman et al. (2018) Java APIs Map.get, Activity.findViewByID,
SQLiteDatabase.query (class-based)

Jeong et al. (2009) SAP Enterprise Service-oriented Architecture (eSOA)
API (based on XML and WSDL)

58

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.2.: Overview of interview experts adopted from Bondel et al. (2022).
ID Role Experience [years] Duration [hh:mm]
I1 Software Architect 12 01:15
I2 Product Owner 15 00:32
I3 Enterprise Architect 12 -
I4 Enterprise Architect 10 00:30
I5 Software Architect 29 00:36
I6 Enterprise Architect 7 00:44
I7 Product Owner 12 00:45
I8 Lead Developer 20 01:05
I9 Senior Developer 15 01:31
I10 Senior Developer 6 00:40
I11 Developer 2 00:36
I12 Senior Developer 8 00:41
I13 Senior Developer 20 00:38

Mean 12.3 00:39

software developers employed by a large multinational software vendor. The prereq-
uisites for participation in the interviews were that each interviewee has professional
experience with API provision or consumption and was actively working on a project
concerned with API design and documentation at the time of the research endeavor.
The interviews took place between April and July 2019 and lasted 39 minutes on
average. We audio-recorded 13 interviews and transcribed the relevant parts7. We
provide an overview of the interviewees, including an Identifier (ID), a role descrip-
tion, their years of professional experience in software design, and the duration of
the interviews, in Tab. 4.2.

We analyzed the data using open coding, selective coding, and constant comparison
as described by Wiesche et al. (2017). The analysis of the interviewees yields 33
best practice candidates, of which 19 support best practice candidates previously
identified in the literature. Therefore, we identify 46 unique best practice candidates
from literature and expert interviewees."

– Bondel et al. (2022)

We assigned each interviewee an ID consisting of the letter ‘I’ and a number (see Tab. 4.2) . In
the remainder of this chapter, we use the ID to link identified best practice candidates to the
interviewees who expressed them to enable the reproducibility of results.

7Due to a malfunction of the recording device, we did not record the interview with I3. Instead, we analyzed
the field notes we made during the interview.

59

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

4.3. Best Practice Candidates for Code Examples in Web API

Documentation

Overall, we identified 46 best practice candidates as a result of the literature review and the
expert interviews. Of these 46 best practice candidates, we derived 13 best practice candidates
exclusively from literature, 14 exclusively from expert interviews, and 19 from both literature
and expert interviews.

We categorized the 46 best practice candidates into five categories following the approach visu-
alized in Fig. 4.2.

First, we evaluated if a best practice candidate describes a type of information that API code
examples should convey to an API consumer. If so, we identified the information and mapped
it to one of the three components of robust API knowledge according to Thayer et al. (2021).
The three components of robust API knowledge according to Thayer et al. (2021) are:

• Domain Concepts are concepts of a domain that exist outside of an API and which an
API models. Knowledge of the domain concepts enables API consumers to understand
what problems an API can solve. Furthermore, conceptual knowledge helps consumers
understand the purpose of code and how to manipulate API abstractions to solve specific
tasks, i.e., to figure out what functions to call in which sequence. In addition, this knowl-
edge component captures the terminology that the API and its documentation use to refer
to these domain concepts. The knowledge of the terminology helps the API consumer
identify relevant information within the documentation.

• Execution Facts describe an APIs’ runtime behavior, e.g., an API call’s output and side
effects given a specific input. Therefore, execution facts are simple rules that show de-
velopers what inputs are valid. Furthermore, they enable consumers to predict return
values, the APIs’ internal state, data and control flows, and errors given specific inputs.
Execution facts also comprise the effects of execution environments and existing bugs on
API behavior. Knowledge of execution realities enables developers to write, test, debug
and repair code, handle error messages, and reason about unexpected behavior.

• Finally, API Usage Patterns capture how to combine and modify API interactions to
realize specific outcomes, e.g., a capability or functionality. In addition, API usage patterns
convey best practices for realizing these outcomes. An integral aspect of an API usage
pattern is its rationale which explains why a pattern works and why it is designed the way
it is by linking it to domain concepts and execution facts. Compared to single examples
that show one usage, an API usage pattern, including its rationale, presents a range of
possibilities. Hence, API usage patterns also show API consumers how to adapt code to
realize different desired behaviors.

Thayer et al. (2021) states that API documentation needs to transfer all three components of
knowledge to enable API consumers to understand and use an API effectively.

In addition, we identified two best practice candidates aiming to convey information, but the
information does not map to either of the three categories of robust API knowledge. We rec-
ognized that these two best practice candidates are concerned with information on the quality

60

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Figure 4.2.: Approach to categorizing the best practice candidates according to the knowledge
they aim to transfer or the form they should have.

of the examples. Hence, we introduced the fourth knowledge category Example Quality. Infor-
mation about the quality of examples enables API consumers to judge the examples’ reliability
and manage their expectations.

We need to differentiate between code examples in the API documentation and the best practice
candidates we present. A code example consisting of some valid code, by definition, provides
knowledge of execution facts and, in many cases, also of API usage patterns. However, we
analyzed what knowledge component the application of a best practice candidate aims to inject
into an example. We did so by identifying the information mentioned explicitly in a best practice
candidate and mapping that information to the various components of API knowledge.

Afterward, we examined the best practice candidates that do not describe a type of knowledge
that they aim to convey to an API consumer. As a result, we realized that all these best practice
candidates describe some characteristic of example presentation or the form in which an example
should be composed to be valuable. Hence, we subsumed these best practice candidates in the
category Example Form.

Overall, we identified 27 best practice candidates that aim to transfer knowledge to API con-
sumers; one is concerned with domain concepts, six with execution facts, 18 with API usage
patterns, and two with example quality. In addition, we identified 19 best practice candidates
that describe characteristics or the form code examples should adhere to to make them useful.

In the following, we first present the best practice candidates that aim to transfer knowledge
to API consumers, followed by the best practice candidates concerned with the form of code
examples.

61

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

4.3.1. Best Practice Candidates Aiming at Knowledge Transfer

First, we present the best practice candidates that aim at transferring knowledge to API con-
sumers.

We provide an overview of the best practice candidates concerning knowledge in examples in
official public, partner, or group Web API documentation in Tab. 4.3. We assigned a unique ID
to each of these knowledge-related best practice candidates consisting of the letter K followed
by an increasing number, e.g., K03 for the third best practice candidate. Furthermore, the
table presents the literature sources and/or interviews from which we derived the best practice
candidates. Finally, we indicated which component of robust API knowledge each best practices
candidate aims to convey. The sequence of best practice candidates in the table is of no particular
meaning. However, we clustered best practice candidates concerning similar topics together.

In the following, we describe each of these best practice candidates in more detail. The best
practice candidate K01 aims to convey knowledge on the domain concepts. It is followed by the
best practice candidates K02-K07 which aim to transmit knowledge on execution facts. Finally,
the best practice candidates K08-K25 are concerned with knowledge of API usage patterns in
code examples and K26-K27 with knowledge of example quality.

K01: Explanations of relevant conceptual knowledge should accompany each example.

According to Thayer et al. (2021), "Domain concepts are abstract ideas that exist outside of an
API, which an API attempts to model [...]" (Thayer et al., 2021, p.5). API consumers require
conceptual knowledge to understand for what purposes they can use an API (Thayer et al.,
2021).

Developers have different approaches to learning, i.e., some developers seek to understand con-
cepts of an API before starting to use it, and others do not want to look up conceptual informa-
tion before starting to use the API (Meng et al., 2019, 2018). Therefore, providing conceptual
knowledge relevant to an example together with the example supports both types of learners
(Meng et al., 2019). Hence, the examples should include textual explanations that highlight
how domain concepts map to API elements (Meng et al., 2019). In addition or alternatively, the
API provider can include conceptual information into the example code using comments (Meng
et al., 2019).

Similar to literature, the interviewees emphasized the importance of conceptual knowledge (I12,
I13). For instance, understanding domain concepts is a prerequisite to understanding the prob-
lem that the API solves and how to use the API (I1). Moreover, conceptual knowledge enables
consumers to optimize the implementation (I9, I12), as I1 described:

"And I think it is important to understand the domain because then you know the
context of the problem. You activate your brain, so to speak. Only then do you can
think critically about it [the API]. If we didn’t know that [the concept], we would only
think from input to output. If one knows the whole picture, one might choose the
much shorter solution." (I1)

62

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.3.: Best practice candidates for code examples in Web API documentation aiming to
transfer API knowledge.

ID Best Practice Candidate Literature
Sources

Interview
Partner

Knowledge
Component

K01 Explanations of relevant conceptual
knowledge should accompany each
example.

(Meng et al.,
2018; Meng et
al., 2019; Thayer
et al., 2021)

I1, I9, I12,
I13

Domain Con-
cepts

K02 Examples need to present correct
request syntax and semantics, in-
cluding all necessary HTTP headers,
valid parameters, valid data types,
and data formats.

(Sohan et al.,
2017)

I4, I7, I8,
I9, I11, I13

Execution
Facts

K03 Example explanations should pro-
vide information on pre- and post-
conditions of API interactions.

(Hoffman and
Strooper, 2000;
Hoffman and
Strooper, 2003)

I11, I13 Execution
Facts

K04 Example explanations should
provide information on non-
deterministic API behavior.

(Hoffman and
Strooper, 2000;
Hoffman and
Strooper, 2003)

Execution
Facts

K05 An example should describe valid
test data.

I13 Execution
Facts

K06 The explanation should describe
shortcomings of the API itself and
potential workarounds.

(Nasehi et al.,
2012)

Execution
Facts

K07 Explanations should describe the
reasons for error messages and mea-
sures to solve these errors.

I1, I6, I7,
I8, I11

Execution
Facts

K08 Examples should cover all common
usage scenarios of an API.

(Nasehi and
Maurer, 2010;
Ko et al., 2004)

I5, I7, I8,
I9

API Usage
Patterns

K09 An example should describe the in-
tended usages of the API.

I9 API Usage
Patterns

K10 Documentation should entail a sam-
ple app that demonstrates the pri-
mary usage(s) of the API.

I1, I6 API Usage
Patterns

K11 The API provider should describe an
API’s capabilities at the beginning of
the example.

(McLellan et al.,
1998)

I12 API Usage
Patterns

K12 Examples should demonstrate how
to coordinate sequential requests to a
single API to implement (more com-
plex) functionality.

(Nasehi and
Maurer, 2010;
Robillard, 2009;
Sohan et al.,
2017)

I1, I2, I4,
I7, I8, I12

API Usage
Patterns

63

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.4.: Best practice candidates for code examples in Web API documentation aiming to
transfer API knowledge (continued).

ID Best Practice Candidate Literature
Sources

Inverview
Partner

Knowledge
Component

K13 Examples should demonstrate how
to coordinate requests to multiple
APIs to implement (more complex)
functionality.

(Robillard and
DeLine, 2011;
Thayer et al.,
2021)

I2, I13 API Usage
Patterns

K14 Examples should entail or be accom-
panied by all information necessary
for successful authentication.

I2, I7, I11,
I13

API Usage
Patterns

K15 Explanations accompanying exam-
ples should describe the limitations
of the solution that the example
presents.

(Nasehi et al.,
2012)

API Usage
Patterns

K16 Examples should implement "best
practices" specific to an API.

(Robillard and
DeLine, 2011;
Robillard, 2009;
Nasehi et al.,
2012)

I8, I9 API Usage
Patterns

K17 Examples should adhere to gen-
eral and community-specific pro-
gramming conventions.

(Meng et al.,
2018; McLellan
et al., 1998)

API Usage
Patterns

K18 Explanations of code examples
should reference related or alterna-
tive solutions.

(Nasehi et al.,
2012)

API Usage
Patterns

K19 Examples should demonstrate alter-
native solution approaches, including
corner cases.

I2, I8, I11,
I12

API Usage
Patterns

K20 Examples should also demonstrate
"unhappy paths".

I3, I8, I11 API Usage
Patterns

K21 Tutorials should demonstrate the
APIs basic functionality and com-
mon use cases.

(Meng et al.,
2018; Nykaza et
al., 2002)

I1, I2, I6 API Usage
Patterns

K22 Documentation should include ad-
vanced tutorials and applications
that transfer information on complex
API interactions.

(Robillard, 2009) API Usage
Patterns

K23 Examples should convey information
on the API design rationale.

(Nykaza et al.,
2002; Robillard,
2009)

API Usage
Patterns

K24 Explanations should describe the ra-
tionale for each part of an example
request.

I11, I12,
I13

API Usage
Patterns

64

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.5.: Best practice candidates for code examples in Web API documentation aiming to
transfer API knowledge (continued).

ID Best Practice Candidate Literature
Sources

Inverview
Partner

Knowledge
Component

K25 Example explanations need to ex-
plain how the example code relates
to low-level API elements.

(Thayer et al.,
2021)

I9 API Usage
Patterns

K26 The documentation should not indi-
cate that an example is old if it still
works.

(Robillard, 2009;
Robillard and
DeLine, 2011)

Example
Quality

K27 Examples should present indicators
that provide information on code ex-
ample quality.

(Glassman et al.,
2018)

Example
Quality

In addition, I1 acknowledged that describing concepts in an easy-to-consume way might not
always be easy but worthwhile since developers abandon APIs if they do not understand them.

However, Ko and Riche (2011) and Jeong et al. (2009) show that documentation should also
introduce conceptual knowledge at the entry point into the documentation since knowledge
about concepts enables API consumers to search the documentation more effectively and judge
the relevance of examples and usage scenarios for specific problems. Similarly, some of the
interviewees proposed presenting conceptual knowledge independent of examples, e.g., at the
beginning of the documentation (I1) or in separate documentation resources like books (I13).

Summarizing, literature and interview experts agreed on the importance of conceptual knowledge
as part of API documentation. However, while Meng et al. (2018) and Meng et al. (2019) argue
that conceptual knowledge should accompany examples, Ko and Riche (2011), Jeong et al.
(2009), and the interviewees I1 and I13 advocate for presenting conceptual knowledge separately
of examples, e.g., at the beginning of the documentation.

K02: Examples need to present correct request syntax and semantics, including all
necessary HTTP headers, valid parameters, valid data types, and data formats.

First of all, examples have to demonstrate required and optional HTTP headers and their valid
values, otherwise, consumers struggle to include the correct HTTP headers into API requests
(Sohan et al., 2017). Moreover, examples should demonstrate valid data formats for each data
element in the request body (Sohan et al., 2017). For some data types it might not be clear
what data format the API expects, e.g., the expected format of a Date data type. The Date data
type could expect the format yyyy-mm-dd, yyyy:dd:mm, or yy-dd-mm,hh-mm-ss to name just a
few options. Finally, examples need to demonstrate the use of expected data types, e.g., Integer
or Array, for API elements in request bodies (Sohan et al., 2017). Information on the expected
data types in response messages prevents consumers from using a trial and error approach to
identify the data types (Sohan et al., 2017).

65

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

The interviews confirmed the importance of information on the syntax and semantics as part of
examples:

"So that’s certainly the most important thing - syntax: "what do I do", and semantics:
"how to use it"." (I9)

Also, examples should clarify what parameters (I7, I8, I11) and data types (I4, I13) are valid in
an API request.

K03: Example explanations should provide information on pre- and postconditions of API
interactions.

Preconditions are conditions that must be true before executing an API request. On the other
hand, postconditions are conditions that must be true after the execution of the API request.
Explanations as part of examples in API documentation should provide information on such
pre- and postconditions (Hoffman and Strooper, 2000, 2003).

The interviewees agreed that it is important to provide information on requirements to be fulfilled
before interacting with an API (I11, I13). Moreover, answering the question of what information
the interviewee expects when using examples and usage, I11 stated:

"Also, what are important conditions so that the endpoint can be called in the first
place? Maybe also something like postconditions, i.e., what does the endpoint do and
what you can do afterward." (I11)

K04: Example explanations should provide information on non-deterministic API
behavior.

Nondeterminism describes the behavior of an API that returns different responses for identical
requests. API consumers should know which API requests are nondeterministic (Hoffman and
Strooper, 2000, 2003).

K05: An example should present valid test data.

The API provider must explain what test data is available for each example (I13). When asked
what information consumers require to learn an API using examples, I13 stated:

"The necessary test data you need to use the API. It doesn’t help to create a tutorial
with predefined data if every little deviation leads to errors. Therefore, the test data
should be provided and explained." (I13)

66

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

K06: The example explanation should describe shortcomings of the API itself and
potential workarounds.

Potential shortcomings of an API are, for example, the lack of certain functionality or a bug.
The documentation should disclose such flaws (Nasehi et al., 2012).

K07: Explanations should describe error messages, the reasons for error messages, and
measures to solve these errors.

The API provider should provide explanations of the meaning and potential reasons for specific
errors (I1, I6, I7, I8, I11), as I8 described:

"For me, it would be important to know the root of the problem. Most error codes are
not very expressive. At least [provide] further information on where the error comes
from because the [error] code itself is of no use to me as a consumer. I only know
that something went wrong. Then I can start to guess and play through different
scenarios until I understand the error." (I8)

The provider should aim to cover the most common errors since it is not realistic to explain all
potential errors (I8). Therefore, the provider should also present information on how consumers
can proceed to discover further details on unknown errors (I8). This explanation could be part
of the error message (I13). At the same time, however, the explanation of an error message
should not reveal any internal or security-relevant information (I1, I6, I13).

K08: Examples should cover all common usage scenarios of an API.

The example section of API documentation should provide examples for all basic usage scenarios
of an API (Nasehi and Maurer, 2010; Ko et al., 2004). Examples of common usage scenarios
enable consumers to identify what an API is intended to be used for (Ko et al., 2004).

Several experts agreed that documentation cannot cover all usage scenarios but should cover the
most important ones that the provider intends the API to serve (I5, I7, I8, I9). For instance, I9
stated:

"It would definitely be helpful to do this [provide test cases] for projects simply for
the most important and critical use cases. This way, you can at least find out how
the developers perceive the approach based on the important examples. Either way,
you won’t get one hundred percent coverage." (I9)

K09: An example should describe the intended usages of the API.

Consumers want short explanations of the use cases for which the API provider intends them
to use the API (I9):

67

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

"What I personally need in a tutorial are 10-15 sentences explaining what the tutorial
is about and what [problem] it solves. What many tutorials do, is start right away
with code snippets. I actually prefer something like a product description. So why
and for what did we design this, and, especially, what can it do. [...] Because then I
still have in mind what the use case for it [the API] is actually." (I9)

K10: Documentation should entail a sample app that demonstrates the primary usage(s)
of the API.

The API provider should present a sample app that implements the main usage or usages of
an API (I1, I6). A sample app enables consumers to understand relevant flows more easily (I1,
I6). The provider can use GitHub8 or a similar repository to publish the sample app (I6). I1
described the need as follows:

"There should be a central code example for the entire API that represents not only
the main problem but also the main flow through the program once." (I1)

However, a sample is written in only one programming language, limiting its usability (I6).
Also, sample apps often only present one simple happy path and are sometimes not ready for
production (I6). Thus, a sample is useful, but consumers require additional information to learn
an API easily.

K11: The API provider should describe an API’s capabilities at the beginning of the
example.

The description of API capabilities enables consumers to form hypotheses about the APIs func-
tionality and recall knowledge related to similar APIs and the domain (McLellan et al., 1998).
As a result, the developers can form a better understanding of the API (McLellan et al., 1998).

Even though pointing more to documentation in general, I12 also emphasized the importance
of explicitly mentioning API capabilities:

"But usually there is a certain set of capabilities for an API; so this is what my
product can do, this is what it cannot do. [...] Because often it is also not really clear
when you start learning the API if it can solve what you actually want to solve."
(I12)

K12: Examples should demonstrate how to combine sequential requests to a single API to
implement (more complex) functionality.

The implementation of more complex functionality often requires the combination of several
requests to an API (Ko et al., 2004). Examples are especially useful for complex API interactions
since they allow developers to comprehend how to combine requests to achieve a specific goal

8https://github.com/

68

https://github.com/

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

(Robillard, 2009; Nasehi and Maurer, 2010). Hence, examples need to demonstrate how to
implement features that require a sequence of API requests, i.e., how to realize the prerequisites
for making a specific API call (Sohan et al., 2017).

The interviewees confirmed that it is essential for documentation to explain how to string to-
gether requests to an API (I7, I8) since it is difficult for the consumers to figure out complex
sequences without help (I12). Also, suppose the documentation does not provide any informa-
tion about sequences, the consumers might need to employ a trial and error approach (I4) or
contact the provider to learn about them (I1). Therefore, I12 stated:

"Oh, it [a usage scenario] helps a lot because when you have complex flows, it really
helps you to see what entities need to be created and what steps are needed before you
can actually do what you want to do. [...] In cases where you expect multiple API
calls and where it is not that simple, there, it helps a lot. Otherwise, it would not be
obvious what to do." (I12)

A tool that providers can use to present information about API call sequences is Postman script9
(I2).

K13: Examples should demonstrate how to coordinate requests to multiple APIs to
implement (more complex) functionality.

The implementation of functionality often requires combining calls to different APIs (Thayer
et al., 2021). Therefore, developers expect examples that show how to realize functionality that
requires the combination of requests to several APIs (Robillard and DeLine, 2011).

The interviewees stated that it is challenging to document API interactions involving more than
one API (I2, I7). One reason for this difficulty is that if there are changes to one of the APIs, the
example might not work anymore (I8). However, examples can be an approach to documenting
such dependencies (I13). In summary, the documentation of usages comprising interactions
with several APIs using examples can be helpful but might go beyond what is necessary, as I2
described:

"I think this is very good, and I can also imagine that this could even go beyond what
is necessary. For example, other previously undocumented APIs could be included in
these scenarios and documented as well, so to speak." (I2)

K14: Examples should entail or be accompanied by all information necessary for successful
authentication.

Several interviewees claimed that it is important for API providers to present information on
authentication (I2, I7, I13). Authentication can be difficult since the consumers need to make
sequential requests that require a handover of previously received data into new requests (I2),
as I11 emphasized:

9https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

69

https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

"What I often find difficult and doesn’t always work is handling authentication tokens
and so on. These are the parts you have to do completely by yourself, and you can’t
just take an example." (I11)

K15: Explanations accompanying examples should describe the limitations of the solution
that the example presents.

Consumers want to understand the potential downsides of a solution concerning performance
and security risks, and potential usability limitations. Hence, the documentation should make
the limitations of an example transparent (Nasehi et al., 2012).

K16: Examples should implement "best practices" specific to an API.

Best practices demonstrate how an API consumer should use an API, e.g., how to best combine
different elements to unleash the API’s full potential (Robillard, 2009; Robillard and DeLine,
2011). Furthermore, accompanying descriptions should explain these best practices and their
rationale (Nasehi et al., 2012).

Similarly, the interviewees stated that they would like to learn about best practices of using an
API (I8, I9):

"Examples also show very well what best practices or standards the providers follow.
If the provider gives you a guideline on how to do it, it’s a big help. But, of course,
you don’t find that very often." (I8)

K17: Examples should adhere to general and community-specific programming
conventions.

Since developers expect examples to follow common and community-specific programming con-
ventions (Meng et al., 2018), violations of these rules can lead to developers making erroneous
assumptions about the APIs’ behavior (McLellan et al., 1998). Also, developers perceive exam-
ples as sloppy if they do not follow conventions (McLellan et al., 1998).

K18: Explanations of code examples should reference related or alternative solutions.

Related or alternative solutions for a problem might use different classes of an API, different
APIs, or different API versions. Therefore, the code examples should provide links to these
related or alternative solutions (Nasehi et al., 2012).

70

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

K19: Examples should demonstrate alternative solution approaches, including corner
cases.

Alternatives show different paths to solve a specific problem, with a corner case being a particular
type of alternative that demonstrates an unusual approach to reach the solution. If alternative
solutions exist, the API provider should describe them (I1, I8, I11, I12), e.g., using examples.
Similarly, the provider should make corner cases explicit (I2, I12). However, alternative solutions
are only relevant for more complex API interactions, as I8 explained:

"Yes, I am interested in alternative ways to do this [solve a problem]. But it depends
on what I want to implement. If it’s something straightforward, then it’s probably not
that important. For complex tasks, when you also need to optimize the implementa-
tion for efficiency, this is probably more important. [...] So first of all, the provider
should, of course, represent the normal flow, but at the appropriate place, it can also
refer to: "if you want to do that, then you have to read on here." Branches basically.
Without further complicating the simple flow, you refer to an alternative." (I8)

Yet, one expert also doubted the helpfulness of showing alternative approaches to solve a problem
(I1). Instead, API providers should only demonstrate the best solution approach, thus relieving
the API consumers from choosing a path.

K20: Examples should also demonstrate "unhappy paths".

Developers make mistakes when learning APIs. Hence, documentation should also present ex-
amples of common errors or "unhappy paths" (I3, I8), how these errors come about (I11), and
how to handle them [I8, I11]. As I8 described:

"This is actually rather common that you set up everything and try to run it, but
nothing works at first. [Then,] It is very helpful to perhaps also have an overview
showing: "okay, these are the usual errors". If this [your error] is not listed, you
still need to know how I get more information. This can be something like a forum
to which you refer or a FAQ. Something like a knowledge base." (I8)

K21: Tutorials should demonstrate the API’s basic functionality and common use cases.

An introduction of supported use cases enables consumers unfamiliar with an API to understand
what the API does (Meng et al., 2018; Nykaza et al., 2002). The tutorials should be short and
demonstrate the basic functionality of the API (Nykaza et al., 2002). However, it is likely that
only developers following a concept-oriented learning strategy use such learning tutorials (Meng
et al., 2018). Developers with a code-oriented learning strategy will use such tutorials only if
they exactly match the problem they want to solve (Meng et al., 2018).

The interviewees also expected a set of tutorials that lead consumers through implementing the
APIs’ basic functionality (I1, I2). These tutorials should entail all steps to get started with an
API but still need to be concise since the consumers simply want to understand the basics of

71

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

the API and dive into details later (I1). Furthermore, a good tutorial can positively influence
the likelihood of choosing an API (I6). Hence, when asked when to use examples and tutorials,
I1 answered:

"At the very beginning, so essentially at the very beginning of learning. I use it,
especially when I’ve never used the library before, and I’m wondering how to get
started with it. Once I understand it and have the concept sorted in my head, I move
on to the detailed technical specifications." (I1)

K22: Documentation should include advanced tutorials and applications that transfer
information on complex API interactions.

A mismatch between the consumers’ complex goals and presented simple examples can be-
come a hindrance. Robillard (2009) observed these hindrances, especially in situations in which
consumers wanted to realize more complex solutions. Hence, documentation should include
advanced tutorials with more complex examples (Robillard, 2009).

K23: Examples should convey information on the API design rationale.

According to Robillard (2009) and Nykaza et al. (2002), examples should transfer information
on the APIs design rationale. The documentation can convey this information, for example,
using annotations in the example code (Nykaza et al., 2002).

K24: Explanations should describe the rationale for each part of an example request.

Explanations should describe what an element of a call does and what it triggers in the system
(I11, I12, I13). If the provider does not add rationales to examples, the examples are less relevant
for consumers (I3, I7):

"The background information is important, of course; Why is something the way
it is? Ultimately also the results. So, not only, "do this and that and then you’re
done"." (I13)

K25: Example explanations need to explain how the example code relates to low-level API
elements.

Consumers need to be able to connect knowledge about API elements and examples. Hence,
example explanations need to relate the example code to low-level API elements (Thayer et al.,
2021).

The interviewee I9 agreed with this best practice, stating:

"But I want to have the possibility to dig deeper in the tutorials. So each simple case
should link to more detailed case variants or documentation." (I9)

72

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

K26: The documentation should not indicate that an example is old if it still works.

API consumers are less likely to use examples if the documentation suggests that they are old
(Robillard, 2009; Robillard and DeLine, 2011).

K27: Examples should present indicators that provide information on code example
quality.

Glassman et al. (2018) identified the need for indicators of example quality in the context of
examples retrieved from GitHub repositories. However, we assume that official documentation
can also profit from quality indicators. Such quality indicators could be, for instance, the
aggregated rating of consumers using the example.

4.3.2. Best Practice Candidates Concerning the Form of Code Examples

In addition to best practice candidates that define knowledge that examples should convey to
API consumers, we identified 19 best practice candidates that describe some characteristic of the
presentation or form that a code example should have to be useful. We present an overview of
these best practice candidates in Tab. 4.6 and Tab. 4.7. Again, we assign a unique ID to each best
practices candidate. The unique ID consists of the letter F followed by an increasing number,
e.g., F02 for the second best practice candidate. Also, we indicate from which literature sources
and/or interview partner(s) we derived these best practice candidates. Again, the sequence
of best practice candidates in the table is of no particular meaning but we list best practice
candidates concerning similar topics next to each other.

In the following, we describe each of the best practice candidates concerning the form of code
examples in more detail.

F01: The documentation should enable the execution of examples within the
documentation or common tools.

Consumers want to use the API as quickly as possible to learn about its behavior (Meng et al.,
2019). Hence, the API provider should include try-out functions into the documentation that
enable consumers to execute examples with different parameters and inspect the responses (Meng
et al., 2019; Jeong et al., 2009). Such try-out functions allow API consumers to understand the
API’s functionality and verify their assumptions about it (Jeong et al., 2009).

The interviewees confirmed the findings in the literature by stating that they like to use try-out
functions when learning an API. While some interviewees said that embedded try-out functions
are nice-to-haves (I8), others considered them integral to good documentation (I12). Further-
more, the try-out features enable the consumers to gain an initial feeling for the APIs function-
ality (I2, I9, I12) and thus lower the barrier to using an API (I12, I13), as I13 explained:

"Often, you have this try-out where you can simply upload something and try it. That
is always helpful because you see the request and the response. Of course, errors often

73

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.6.: Best practice candidates for code examples concerning the form of the examples.
ID Best Practice Candidate Literature Sources Interview

Partner
F01 The documentation should enable the execu-

tion of examples within the documentation
or common tools.

(Meng et al., 2019;
Jeong et al., 2009)

I2, I3, I6, I8,
I9, I10, I11,
I12

F02 Examples should provide client code in dif-
ferent programming languages.

I4

F03 Examples should be freely accessible. I8
F04 Examples need to be correct and up-to-date

not to frustrate consumers.
(Meng et al., 2018;
Robillard and DeLine,
2011)

I1, I2, I8, I9,
I11, I12, I13

F05 Examples should be copyable and thus com-
plete.

(Meng et al.,
2018; Meng et al.,
2019; Hoffman and
Strooper, 2000; Hoff-
man and Strooper,
2003)

I1, I8, I9, I11

F06 Code snippets, tutorials, and their expla-
nations should be as concise and problem-
oriented as possible.

(Nasehi et al., 2012) I1, I7, I10,
I12, I13

F07 Tutorials should present usages following a
storyline.

I2, I9, I11

F08 The documentation should highlight how ex-
planations relate to the code.

(Meng et al., 2019;
Meng et al., 2020)

F09 The documentation should make it easy to
separate example code from textual descrip-
tions.

(Meng et al., 2019)

F10 The documentation should highlight crucial
elements in the code examples and explana-
tions.

(Nasehi et al., 2012) I13

F11 Tutorials should be accompanied by suitable
visualizations.

I8

F12 Tutorials should have a consistent level of
detail across all steps.

I13

F13 Tutorials should be structured to show some
intermediate result after each step.

(Inzunza et al., 2018) I13

F14 Documentation should reuse compact and
readable test cases as code examples.

(Hoffman and
Strooper, 2000; Hoff-
man and Strooper,
2003; Nasehi and
Maurer, 2010)

I3, I4, I8, I9

74

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

Table 4.7.: Best practice candidates for code examples concerning the form of the examples.
(continued).

ID Best Practice Candidate Literature Sources Interview
Partner

F15 Each example should comprise a concise unit
of functionality that can be combined into
more complex functionality.

(Meng et al., 2018;
Robillard and DeLine,
2011; Nasehi et al.,
2012)

I8

F16 Documentation should present examples
with different, e.g., increasing, levels of com-
plexity to meet the needs of consumers with
varying expertise.

(Nasehi et al., 2012;
Nykaza et al., 2002)

I9, I11, I12

F17 API providers should design examples set in
familiar domain contexts.

(Nasehi et al., 2012)

F18 Examples need to relate to the overall do-
main of the API.

I4

F19 Examples should evolve according to the
consumers’ needs.

(Nasehi et al., 2012)

occur when you make minor changes to the request. You work with a real system."
(I13)

However, the try-out functions do not necessarily need to access the productive API but can
also use a sandbox environment (I3, I8, I9, I11, I12). For instance, I9 reported:

"I can think of a programming language that offered something like a sandbox. I think
it was Go10. I, personally, find that very helpful for the process of learning." (I9)

Also, the interviewees agreed that the applicability of try-out functions depends on the com-
plexity of the API (I8). Generally, consumers expect executable examples for small tasks and
simple services but not for complex interactions (I3, I8).

Moreover, the interviewees repeatedly mentioned specific tools that implement executable ex-
amples. One frequently mentioned tool is Swagger UI11, which generates an interactive user
interface for APIs from a standardized OpenAPI Specification (OAS)12 (I2, I10). The inter-
viewees stated that Swagger UI is useful for implementing executable examples for simple API
requests (I2). However, the tool has limitations regarding implementing examples that require
several steps and passing along data between these steps (I2). Therefore, another toolset that
consumers like is Postman collections13 together with Postman scripts14 (I6, I10). Postman col-
lections are executable API descriptions, and Postman scripts enable a consumer to concatenate

10https://go.dev/
11https://swagger.io/tools/swagger-ui/
12https://swagger.io/specification/
13https://www.postman.com/collection/
14https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

75

https://go.dev/
https://swagger.io/tools/swagger-ui/
https://swagger.io/specification/
https://www.postman.com/collection/
https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

requests, taking into account dynamic behavior. Finally, one interviewee mentioned the RAML
console15 as a useful tool (I10).

However, I9 and I10 stated that it is confusing for consumers if examples in a try-out function
are erroneous. Hence, examples in try-out functions need to be correct.

F02: Examples should provide client code in different programming languages.

Developers expect client code in different programming languages (A4). Tools exist that auto-
matically generate such client code, as A4 reported:

"In a previous project, it was possible to create client code in a console with a click.
We offered different languages, which I would definitely recommend." (A4)

F03: Examples should be freely accessible.

In some cases, examples and other learning materials are only accessible after registration, which
frustrates developers:

"Something that always annoys me is when you have to register to access important
learning materials. The product doesn’t necessarily have to be free, but at least the
descriptions should be publicly accessible." (I8)

F04: Examples need to be correct and up-to-date not to frustrate consumers.

A barrier that consumers regularly face is out-of-date or erroneous example documentation
(Meng et al., 2018; Robillard and DeLine, 2011; Hosono et al., 2019; Uddin and Robillard,
2015). Hence, examples should be correct and up-to-date (Meng et al., 2018; Robillard and
DeLine, 2011).

The expert interviews confirmed that consumers are often confronted with outdated API docu-
mentation (I1, I8, I9, I13). The reason for outdated API documentation is that an API changes
over time, but the provider does not update the documentation in time (I1, I2, I8). Providers
neglect to update documentation because of the effort of constantly keeping APIs and their
documentation in sync (I8, I12). However, faulty examples are frustrating for consumers (I1, I9,
I11, I13), especially since it is challenging to fix out-of-date examples if the consumer does not
have the necessary domain knowledge (I12). However, in line with the findings of Lethbridge
et al. (2003), I9 stated that even outdated examples can be helpful:

"What strikes me most negatively is when the examples do not work. This happens
quite often. I suspect they were written for one version and then not updated in
subsequent versions. Something has changed, and then, [the provider] did not follow
it up. But it really upsets me. But that’s not quite as bad as having nothing at all
because at least you get a hint of how it might work." (I9)

15https://raml.org/blogs/raml-console-20

76

https://raml.org/blogs/raml-console-20

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

However, outdatedness is not the only reason for erroneous documentation. For instance, the
API provider sometimes does not invest enough effort into documentation, leading to API docu-
mentation that neglects to describe necessary steps (I2). Such incomplete documentation makes
it difficult for consumers to understand an API, especially when learning a new API (I2). Hence,
I2 explained:

"Another point is the number of errors in the examples. And if you go through a
tutorial and you don’t get what you expect or what was promised, that is also very
bad. Let’s say we have a description saying we will do that and get this; in the end,
then I expect that the outcome will exactly be this. So if you follow all the steps and
you still do not get there, that’s definitely a problem. It could be because [...] some
steps are missing. Or let’s say the order of the request has changed." (I2)

F05: Examples should be copyable and thus complete.

API consumers tend to copy examples to use them as they are or adapt them to their needs
(Nykaza et al., 2002; Meng et al., 2019, 2018; Hoffman and Strooper, 2000, 2003; Nasehi and
Maurer, 2010). Thus, examples need to be complete in the sense that they are ready to execute
after being copied (Meng et al., 2019, 2018; Hoffman and Strooper, 2000, 2003). For instance,
examples should not use placeholders pointing to other snippets that have to be included for a
copied example to work (Meng et al., 2019).

The interviewees agreed that consumers like to copy example code as a starting point and to
later adapt it to their needs (I1, I8, I11). Also, examples let consumers explore the APIs’
functionality and limitations (I9, I11). For instance, I1 explained:

"Well, at least you have a starting point. Even if you just copy and paste it [the
example], you already understand a bit more through the interactivity. Then, if you
have a complete example and it works, you can start from that and make changes and
extend it. [...] I think we just learn better when we have something to copy instead
of making it all up ourselves." (I1)

F06: Code snippets, tutorials, and their explanations should be as concise and
problem-oriented as possible.

Nasehi et al. (2012) discovered that consumers prefer code snippets that are short and that have
a reduced code complexity (Nasehi et al., 2012).

Similarly, the interviewees mentioned that they do not like too detailed documentation that
consists of lots of text (I1, I7, I10). Thorough documentation can make it difficult for consumers
to keep the overall picture in mind (I1). In addition, the consumers want to solve a specific
problem, and lengthy explanations lead them to scan the documentation in search of the aspects
relevant to their concern (I1, I7, I10). Hence, providers should explain examples with the
problem solution in mind, neglect too specific details (I12), and use short sentences that reduce
the mental load for consumers (I1). Moreover, the explanation can reference more detailed
information on specific topics (I10). In summary, I1 explained:

77

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

"Often, they [the documentations] also have too many details. The provider then tries
to show which additional problem can be solved in full detail. That doesn’t interest
me, and I only scan the documentation." (I1)

Finally, I13 stated that tutorials should be short.

F07: Tutorials should present usages following a storyline.

The interviewees agreed that tutorials should describe end-to-end use usages (I2, I9, I11) and
that a story should guide the consumer through the tutorial (I11). A missing story can annoy
consumers, as I9 explained:

"The second thing that bothers me is when it’s totally mixed-up. Often, the tutorials
simply lack a central theme. Sure, you still have the reference documentation, but it
lacks the story of how to call something and when." (I9)

F08: The documentation should highlight how explanations relate to the code.

Documentation should support developers to relate the explanation to the example code to en-
able easy switching between text and code (Meng et al., 2019). For example, the documentation
can highlight method or parameter names by using the same color in the text and the code
(Meng et al., 2019).

F09: The documentation should make it easy to separate example code from textual
descriptions.

Documentation should clearly delineate example code and related explanations (Meng et al.,
2019, 2020). For example, the API provider can split the documentation into a column with
text and a second column with related examples (Meng et al., 2019, 2020).

F10: The documentation should highlight crucial aspects in code examples and
explanations.

According to (Nasehi et al., 2012), API providers should highlight essential segments, e.g., the
names of relevant API elements or design patterns, in the API documentation. In addition, the
explanations should provide links to external resources with more information on these elements
or patterns (Nasehi et al., 2012).

Similarly, I13 emphasized the importance of highlighting solution steps:

"What can also be an issue is if certain important things are not properly highlighted.
[For example,] If you need to set a checkmark somewhere and that is not highlighted
with a bold font." (I13)

78

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

F11: Tutorials should be accompanied by suitable visualizations.

API providers should add visualizations to tutorials since text alone can be confusing, as I8
explained:

"It can’t hurt to have a diagram for a simple scenario. Because a desert of text alone
is often deterrent and incomprehensible." (I8)

F12: Tutorials should have a consistent level of detail across all steps.

Inconsistencies in the level of detail of the description between tutorial steps show the consumers
that the provider ran out of motivation to write the tutorial, as I13 described:

"I mean yes clearly [...] the quality of tutorials can also be a problem. If it is detailed,
it should be consistently detailed. If it is initially very detailed and then abbreviated
at some point, you notice that. Or if the complexity is not consistent because the
writer did not feel like it. Such tutorials have no professional claim." (I13)

F13: Tutorials should be structured to show the intermediate result after each step.

Intermediate results make it easier for consumers to follow a tutorial. Hence the documentation
should provide intermediate results after each step in a tutorial (Inzunza et al., 2018).

Similarly, I13 stated:

"What we often use is that in the middle of the tutorial, you have a piece of text with
which allows you to check whether you have done everything right so far." (I13)

F14: Documentation should reuse compact and readable test cases as code examples.

Some research proposes to reuse existing test cases as code examples in API documentation
(Hoffman and Strooper, 2000, 2003; Nasehi and Maurer, 2010). Test cases transfer informa-
tion by describing valid and invalid requests to an API and corresponding expected responses
(Hoffman and Strooper, 2000). An advantage of using test cases as code examples is that they
guarantee consistency between code and documentation (Hoffman and Strooper, 2000). Also, the
API provider saves effort by reusing existing test cases instead of manually developing examples
exclusively for documentation purposes (Nasehi and Maurer, 2010).

Some interviewees agreed that using existing test cases as part of the documentation creates little
effort for the API provider (I3, I4, I9). The reuse of test cases is especially suitable for Web
APIs since the existing test cases present end-to-end scenarios from a consumers perspective (I4,
I8). For instance, I8 argued:

"For me, this would not be a problem. I like to test a lot, so the only difference for
me would be that you have to make these scenarios available to others. I don’t even

79

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

expect much extra work for this approach since most of the material and knowledge
is already available." (I8)

However, some experts are critical of publishing test cases as examples in the documentation.
The interviewees feared that the provider inadvertently exposes security-relevant internal infor-
mation (I7, I8). Hence, providers should carefully choose and only publish a subset of test cases
to consumers.

Finally, I4 stated that using test cases for documentation purposes is a promising idea, but
organizations will not adopt the approach unless an industry standard emerges. Similarly, I6
stated that a provider organization needs to define a governance process for publishing test cases
as part of the documentation.

F15: Each example should comprise a concise unit of functionality that can be combined
into more complex functionality.

Meng et al. (2018) and Nasehi et al. (2012) state that each example should be a small but
detailed chunk that describes a piece of functionality. Similarly, Robillard and DeLine (2011)
argue that each example should cover an independent functional intent. Hence, examples should
not be too simple, i.e., presenting a simple API request involving just one method (Robillard
and DeLine, 2011), since too simple examples might not be helpful for consumers (Nasehi and
Maurer, 2010). At the same time, examples should not be too complex, making it difficult for
a developer to understand them (Robillard and DeLine, 2011; Nykaza et al., 2002). Consumers
can string together individual examples to realize more complex functionality (Nasehi et al.,
2012).

One interviewee agreed that documentation should break complex functionality into smaller
samples:

"Yes, it can’t hurt to have a diagram for a simple scenario. Because a text desert
alone is often daunting and incomprehensible. But of course, that depends on how
complex the scenario is. With complex processes, for example, I think that you should
divide it into smaller flows." (I8)

F16: Documentation should present examples with different, e.g., increasing, levels of
complexity to meet the needs of consumers with varying expertise.

Consumers learning a new API are likely to look for simple examples, whereas more experienced
consumers might expect to find examples of higher complexity (Nasehi et al., 2012; Nykaza et al.,
2002). I11 argued that the expected example complexity depends on the consumer’s task:

"On the other hand, you can also download all the code right at the beginning and
play around with it. [...] It depends on the context in which I use it. If I have to
learn everything from scratch, then I use it [a sample application] quite often. But
probably, in everyday life, if one wants to solve something specific, then I want only a

80

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

certain part, and it would be perhaps even hindering if everything is firmly integrated
and one cannot simply look up only a small thing." (I11)

An option is to organize examples and tutorials so that they increase in complexity. For example,
documentation can start with low complexity examples, e.g., examples only providing limited
input options (I9, I12). Later on, the documentation should introduce more complex examples,
going more into detail (I9). Hence, I12 explained:

"And speaking of tutorials, they should go from a low level of complexity to a higher
level. Also, they should be full of examples." (I12)

F17: API providers should design examples set in familiar domain contexts.

If examples use domains that most users are familiar with, it helps novices understand the
functionality (Nasehi et al., 2012). A familiar domain context relieves API consumers from
having to first learn a domain before being able to learn the API (Nasehi et al., 2012). Therefore,
API providers should design examples set in domain contexts familiar to most consumers (Nasehi
et al., 2012).

F18: Examples need to relate to the overall domain of the API.

Consumers need to understand the relationship between examples and the overall domain of the
API, as I4 described:

"But the critical question about the scenarios is how they play together. By that, I
mean, in particular, how they relate to the domain in the overall context. It may
be that this [the example] is designed very well, but still, no one understands the
context because the connections to the domain are simply missing. It also gives the
impression that the API is incomplete." (I4)

F19: Examples should evolve according to the consumers’ needs.

API providers should not only update the documentation to reflect changes to the API, but they
should also elicit what problems consumers face when using the API and its documentation and
address potential issues in new versions of the documentation (Nasehi et al., 2012). Hence, the
API documentation should also evolve to meet consumers’ needs (Nasehi et al., 2012).

4.4. Discussion

First, we discuss findings derived from separating the best practice candidates into the categories
knowledge and form. Generally, API documentation seeks to transfer knowledge about an API
to consumers. Hence, the best practice candidates concerning form could potentially also seek
to share some knowledge, even though they do not explicitly mention the type of knowledge.

81

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

For example, F08 states that "The documentation should highlight how explanations relate to
the code.", which could aim at conveying knowledge on execution facts and API usage patterns.
However, it is more challenging to map other best practice candidates concerning example form
to components of API knowledge, e.g., the best practice candidate F19 stating that "Exam-
ples should evolve according to the consumers’ needs." As a result, we present the following
implication:

Implication 1: The effect of code examples on API consumer productivity and satisfaction
depends not only on the knowledge that a code example transfers but also on its form.

Next, we look at the best practice candidates that describe knowledge that code examples should
convey to consumers. We categorize the knowledge into knowledge related to Domain Concepts,
Execution Facts, and API Usage Patterns according to the theory of robust API knowledge
presented by Thayer et al. (2021).

Domain concepts describe concepts of a domain that exist outside of an API and which an API
models. Domain knowledge is vital for API consumers since it enables them to understand
what an API can do and how to manipulate API abstractions to achieve specific results (Thayer
et al., 2021). Furthermore, domain knowledge improves API consumers’ ability to search and
recognize relevant code examples (Thayer et al., 2021; Ko and Riche, 2011). In the context
of code examples, we identified only one best practice candidate concerned with transferring
domain knowledge. The best practice candidate K01 states that required conceptual knowledge
should accompany each code example. Hence, we derive the following implication:

Implication 2: Domain knowledge is not expected to be transferred to API consumers via
code examples and therefore needs to be transferred in other documentation sections.

Execution facts are the simple rules that describe an API’s runtime behavior, e.g., an API call’s
output and side effects given a specific input. These rules enable API consumers to write, test,
debug and repair code, handle error messages, and reason about unexpected behavior (Thayer
et al., 2021). We identified six best practice candidates that describe knowledge on execution
facts that code examples should transfer. In some cases, the knowledge is embedded into the code
example itself, e.g., HTTP headers, valid parameters, valid data types, and data formats (K02).
In addition, knowledge of some execution facts should be part of the examples’ descriptions,
e.g., information on non-deterministic API behavior (K04) or reasons for error messages (K07).
As a result, we present the following implication supporting the theory of robust API knowledge
(Thayer et al., 2021):

Implication 3: Code examples should transfer knowledge on execution facts to API
consumers.

API usage patterns describe how to combine and modify API interactions to realize specific
outcomes and a rationale that allows consumers to modify the pattern to achieve different
goals (Thayer et al., 2021). Since we focus on code examples, it is of little surprise that most

82

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

knowledge-related best practice candidates that we identified capture knowledge about usage
patterns (18 out of 48). Therefore, we present the following implication:

Implication 4: Code examples should transfer knowledge on usage patterns to API
consumers.

In addition to best practice candidates aiming to transfer knowledge on the three categories
of robust API knowledge, we identified two best practice candidates seeking to transfer meta-
information about the example to the consumer. More precisely, the information enables the
consumer to judge an example’s reliability and manage their expectations. As a result, we derive
the following implication:

Implication 5: API consumers look not only for API-related knowledge but also for
information about the documentation quality to judge an example’s reliability and manage
their expectations.

4.5. Summary

For public, partner, and group Web APIs, the API provider has to transfer knowledge about
an API to potentially unknown, heterogeneous, and distributed API consumers with different
goals. Therefore, the success of a Web API can depend on the API documentation’s ability to
meet the consumers’ information needs (Meng et al., 2018). Code examples are a vital element
of API documentation (Nykaza et al., 2002; Meng et al., 2018, 2019; Robillard, 2009; Ko et al.,
2007; Nasehi and Maurer, 2010; McLellan et al., 1998; Meng et al., 2020; Jeong et al., 2009;
McLellan et al., 1998). Still, they have to meet specific quality criteria to unlock their potential
(Meng et al., 2018; Robillard and DeLine, 2011; Robillard, 2009; Nykaza et al., 2002). Therefore,
the goal of this chapter was to identify best practice candidates for code examples in public,
partner, and group Web API documentation, i.e., in settings where the consumers do not have
direct access to the Web API developers.

We reached this goal by identifying best practice candidates for code examples from literature
and expert interviews. As part of the literature review, we identified 17 papers that present im-
plications, principles, or observations concerning examples in general API documentation, from
which we derived 32 best practice candidates. In addition, we conducted 13 expert interviews
to enrich the existing and identify further potential best practice candidates. As a result, we
presented a total of 48 best practice candidates. Furthermore, we categorized these best prac-
tice candidates into 27 best practice candidates that describe knowledge that the API provider
should convey to API consumers following and extending the theory of robust API knowledge
of Thayer et al. (2021). The remaining 19 best practice candidates describe characteristics of
the presentation or the form the code examples should have to convey knowledge efficiently.

Finally, we analyzed the categorization of the best practice candidates and derive several impli-
cations. In general, we realized that the effect of code examples on API consumer productivity
and satisfaction depends not only on the knowledge that a code example transfers but also on

83

4. Identification of Best Practice Candidates for Code Examples in Web API Documentation

its form. In addition, code examples in Web API documentation are expected to transfer knowl-
edge about execution facts and usage patterns, but not so much about domain concepts. Also,
API consumers look for information about the quality of documentation to judge an example’s
reliability and manage their own expectations.

84

CHAPTER 5

Evaluation of Best Practices for Code Examples in Web API Documentation

This chapter aims to evaluate if a subset of the best practice candidates positively affects API
consumers’ productivity and perceived usability and are thus actual best practices. We do so
by building on the results presented in Chapter 4 and extending the results presented in Bondel
et al. (2022) and in the student thesis Cerit (2019).

In the remainder, we first present the research approach, followed by the quantitative and
qualitative analysis of the results. Afterward, we discuss the analysis results and summarize
the chapter.

Figure 5.1.: Steps and results of the research approach applied to evaluate best practice for Web
API documentation. This chapter builds on the results presented in Chapter 4.

85

5. Evaluation of Best Practices for Code Examples in Web API Documentation

5.1. Research Approach

We present an overview of our research approach and results in Fig. 5.1. In this chapter, we
aim to evaluate if a subset of best practice candidates for code examples previously identified
in Chapter 4 are actually best practices in the context of public, partner, and group Web API
documentation. A best practice candidate is validated as an actual best practice if it positively
affects the API consumers’ productivity or perceived usability. To reach this goal, we conducted
an embedded single case study (Yin, 2013) with a large software vendor. The following describes
the case study preparation, participants, and data collection.

Case Study Preparation

"As a basis we create two different versions of documentation for the existing open-
source system Compass1. The system enables the integration and monitoring of
application landscapes consisting of internal applications running on specific com-
puting clusters and external applications (SAP America, 2023). A user interacts
with the system through a GraphQL2 API."

– (Bondel et al., 2022)

We visualize the overall structure of the documentation in Fig. 5.2.

Figure 5.2.: Structure of the Web API documentation adapted from Cerit (2019).

"Overall, the documentation consists of three components, which are a textual de-

1https://github.com/kyma-incubator/compass
2https://graphql.org/

86

https://github.com/kyma-incubator/compass
https://graphql.org/

5. Evaluation of Best Practices for Code Examples in Web API Documentation

scription of the API including examples, a GraphQL playground3, and an interac-
tive specification generated with graphdoc4. The textual description references the
GraphQL playground and the specification.

We focus on the textual description of the API since it entails the examples, and de-
sign two significantly different versions of it; a basic version and an advanced version.
However, there is no consensus on the best structure of textual API documentation
in literature or practice. Therefore, we derive the structure of the basic textual
documentation from leading API management tool providers, e.g., MuleSoft5 and
Apigee6 (Pillai et al., 2021), and practice-driven guides for technical writers (John-
son, 2023). As a result, we structure the textual documentation into an overview,
getting started, tutorial, samples7, and glossary part.

Since this research aims to analyze best practice candidates for code examples, the
tutorial and sample section of the textual descriptions differ between the two versions.
More specifically, we realize a set of eight best practice candidates in the tutorial
and sample sections of the advanced version of the documentation, which we do
not implement in the basic version. We chose the specific set of eight best practice
candidates for one of three reasons. Either, previous literature does not mention
or only weakly support a best practice candidate described by the interviewees.
In addition, we chose best practices candidates for which we identified contradicting
statements about their impact on the API consumers’ productivity and perception of
APIs. Finally, we selected best practices candidate, which we derived from literature
that is not specific to public Web APIs."

– (Bondel et al., 2022)

We provide an overview of the eight best practice candidates that we evaluate in the case study
in Tab. 5.1. The table also presents the reasoning for choosing each of these best practice
candidates.

"The basic documentation enables API consumers to use the API by providing only
necessary and common documentation sections. The tutorial of the basic documen-
tation describes an exemplary usage scenario consisting of three code snippets of
low complexity within a specific context. The samples are four independent code
snippets covering essential ways to query Compass elements without context.

The advanced textual documentation builds on the basic documentation by imple-
menting the best practices candidates described in the following.

First of all, the tutorial in the advanced documentation presents a "main scenario"
that covers the typical use of the system (K21). Moreover, the tutorial integrates

3https://github.com/graphql/graphql-playground
4https://github.com/2fd/graphdoc
5https://www.mulesoft.com/
6https://cloud.google.com/apigee?hl=en
7We named the section "samples" since it is common to name a section containing code snippets "samples" or

"examples" and we did not want to confuse the case study participants. However, following the definition of
Robillard and DeLine (2011), the section contains code snippets.

87

https://github.com/graphql/graphql-playground
https://github.com/2fd/graphdoc
https://www.mulesoft.com/
https://cloud.google.com/apigee?hl=en

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Table 5.1.: Best practice candidates evaluated in the case study.
ID Best Practice Candidate Reason for Inclusion into the Case Study
K08 Examples should cover all com-

mon usage scenarios of an API.
This best practice candidate is supported by lit-
erature not specific to Web APIs (Nasehi and
Maurer, 2010; Ko et al., 2004).

K19 Examples should demonstrate al-
ternative solution approaches, in-
cluding corner cases.

No literature supports this best practice candi-
date and interview partner I1 was critical of it.

K21 Tutorials should demonstrate the
APIs basic functionality and com-
mon use cases.

This best practice candidate is supported by two
research papers (Meng et al., 2018; Nykaza et al.,
2002) of which only one is specific to Web API
documentation (Meng et al., 2018). In compar-
ison, several interview partners mentioned the
importance of the best practice candidate (I5,
I7, I8, I9).

K25 Example explanations need to ex-
plain how the example code re-
lates to low-level API elements.

Only one Web API documentation specific re-
search paper (Thayer et al., 2021) supports the
best practice candidate.

F01 The documentation should enable
the execution of examples within
the documentation or common
tools.

This best practice candidate is supported by two
research papers (Meng et al., 2019; Jeong et al.,
2009) of which only one is specific to Web API
documentation (Meng et al., 2019). In compar-
ison, several interview partners mentioned the
importance of the best practice candidate (I2,
I3, I6, I8, I9, I10, I11, I12).

F06 Code snippets, tutorials, and
their explanations should be as
concise and problem-oriented as
possible.

Only literature not specific to Web APIs (Nasehi
et al., 2012) supports this best practice candi-
date.

F07 Tutorials should present usages
following a storyline.

Literature does not support this best practice
candidate.

F16 Documentation should present
examples with different, e.g., in-
creasing, levels of complexity to
meet the needs of consumers with
varying expertise.

Only literature not specific to Web APIs (Nasehi
et al., 2012; Nykaza et al., 2002) supports this
best practice candidate.

88

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Figure 5.3.: Overview of the differences between the basic and the advanced textual documen-
tation versions adapted from Cerit (2019).

a button that imports the complete tutorial into the Postman8 application, thus
enabling to easily try-out the examples (F01). The tutorial description is very concise
and problem-oriented (F06). Furthermore, the tutorial entails seven code snippets
with increasing complexity (F16). The tutorial also follows a storyline with a clear
outcome (F07). Lastly, the tutorial presents alternatives to solve a problem, i.e.,
includes junctions in the solution path (K19).

Focusing on the samples, the code snippets in the advanced textual documentation
frequently reference the specification (K25). Again, the samples provide integrated
Postman tool support (F01). Another significant difference is that the samples cover
a higher amount of usages by providing eight code snippets, including snippets with
higher complexity (K08, F16).

In addition, the advanced textual description entails a "best practices" section. These
best practices make it easier for users to use the playground, present beneficial ap-
proaches to navigate the documentation components, and provide hints on how to
interact with GraphQL APIs."

– (Bondel et al., 2022)

8https://www.postman.com/

89

https://www.postman.com/

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Table 5.2.: Overview of case study participants adopted from Bondel et al. (2022).
Group ID API Experience Total Experience

Group A

A1 10 14
A2 3 4
A3 10 15
A4 4 4
A5 3 9
A6 9 10
Mean 6.50 9.33

Group B

B1 7 9
B2 7 7
B3 10 15
B4 2 4
B5 6 10
B6 3 4
Mean 5.83 8.17

We present an overview of the differences between the basic and the advanced textual documen-
tation versions in Fig. 5.3.

Case Study Participants

"Overall, 12 professional software developers from the industry partners organization
participated in the evaluation. We admitted only participants with at least four years
of professional experience into the study. We split the participants into two groups
with the aim to balance the mean regarding years of experience across the groups
and assigned each group one version of the documentation. An overview of the case
study participants is provided in Tab. 5.2."

– (Bondel et al., 2022)

Data Collection

Next, we present the steps of the case study which each participant passed through as presented
in Fig. 5.4.

"[...] We used multiple approaches to collect case study data, comprising observa-
tions, a SUS questionnaire, and open questions to collect quantitative and qualitative
data.

After starting the documentation application, setting up the GraphQL playground,
and answering organizational questions, the case study setting allowed participants
to first read and get acquainted with the assigned version of the API documentation.
Next, we confronted the participant with three tasks. The tasks resemble real API

90

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Figure 5.4.: Steps of the case study adapted from Cerit (2019).

usages, have increasing difficulty levels, and are solvable in a limited time. We en-
couraged the participants to express think-aloud comments. One researcher observed
each participant and used a field protocol to capture the time, the number of issued
API requests, and the usage of documentation sections during the task solution.

After solving or trying to solve the tasks, we asked the participant to fill in a SUS
questionnaire according to Brooke (1996). Finally, we used open questions to inquire
about the perceived usefulness of the documentation, including the most useful, least
useful, and missing parts of the documentation. The whole evaluation process was
audio recorded."

– (Bondel et al., 2022)

5.2. Evaluation of Best Practices for Examples in Web API

Documentation

Next, we analyzed the case study data to evaluate the effect of applying the eight best practice
candidates K08, K19, K21, K25, F01, F06, F07, and F16 to the code examples in public, partner,
and group Web API documentation, i.e., in settings in which the consumers usually do not have
access to the Web API developer team. Specifically, we focused on the best practice candidates’
impact on the developers’ productivity and perceived usability. First, we describe the findings
of the quantitative analysis followed by the results of the qualitative analysis. In addition, we
summarize the quantitative and qualitative results specific to each best practice candidate to
evaluate which of the candidates are actually best practices.

5.2.1. Quantitative Analysis

"The quantitative analysis comprises metrics on the needed time, success, and docu-
mentation feature usage observed during the evaluation. In addition, we present the
results of the SUS survey. The sample size for all presented statistics is n = 12.

First, we analyze the time that participants took to initially read the documentation
and to solve all tasks as presented in Fig. 5.5. The analysis shows that, overall,
participants of group A needed on average 43:10 minutes whereas group B required

91

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Figure 5.5.: Time that participants took for learning and solving the three tasks adapted from
Bondel et al. (2022).

46:00 minutes. Moreover, we observe that while group A spend more time learning
about the API, they solved all tasks faster than group B. However, the improvement
in time is only statistically significant for the more complex tasks 2 (t=2.29, df=10,
p=0.05, one-tailed) and 3 (t=1.91, df=10, p=0.05, one-tailed).

Next, we analyzed the success of the participants solving the tasks. We assigned
points to the level of achievement of solutions to do so. A participant receives one
point for a solved task, a half-point for an unfinished task with the right approach,
and no points for wrong solutions. Group A reached on average 2.92 points and
group B reaches 2.83 points. Hence, the assessment yields, that both groups are very
successful in solving all three tasks. As a result, we cannot derive any significant
differences with regards to the success of solving the tasks between the groups.

We also observed the number of API requests that the participants issue to Compass
and their success. Overall, the participants made between 12 and 16 requests to the
application during the study. On average, the rate of successful requests is 61% for
group A and 39% for group B. Hence, the request success rate for members of group
A is significantly higher compared to group B (t=5.66, df=10, p=0.05, one-tailed).
Also, the standard deviation differs between the groups with group A yielding a
standard deviation of 0.019 and group B with 0.084. Hence, the success rate of
members of the group B varied more.

92

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Furthermore, we noted down the approximate fractions of time that each participant
spent on the documentation’s different sections. In Fig. 5.6, we visualize the relative
usage of each documentation section for each group. We observe that group B
used the getting started guide more often than group A. However, the members of
group A spend more time in the tutorial and best practices sections. Group A also
shows higher variations across most sections, indicating that participants value the
documentation sections differently.

Figure 5.6.: Relative amount of times the participants consulted specific documentation sections
adapted from Bondel et al. (2022).

Moreover, the participants rated the advanced documentation with an average SUS
score of 85.8 points compared to 75 points for the basic documentation. Hence, the
software developers perceive the usability of the advanced documentation as better.

– (Bondel et al., 2022)

We present an overview of the results of the SUS analysis in Tab. 5.3.

"Finally, we analyzed the data for correlation between variables. First, we identified
a moderately strong correlation (r = 0.79) between the request success rates and
the duration of the learning phase, indicating that investment into learning the API
results in a higher probability of making successful API requests. In addition, we
see a moderate correlation (r = 0.66) between the success rate and the perceived
usability measured with the SUS questionnaire. Interestingly, the participants’ API
and software engineering experience does not seem to correlate with the API request
success rate (r = 0.25, r = 0.32)."

93

5. Evaluation of Best Practices for Code Examples in Web API Documentation

– (Bondel et al., 2022)

Overall, the productivity of developers with the advanced documentation version was better
compared to developers with access to the basic documentation. Developers of group A solved
more complex tasks faster and had a higher API request success rate. Also, they perceived the
usability of the documentation as better compared to group B. Nonetheless, both groups were
equally successful in solving all tasks.

Table 5.3.: SUS score (Brooke, 1996) of the different documentation versions.
Particiant SUS Score Participant SUS Score
A1 75 B1 85
A2 90 B2 75
A3 87,5 B3 80
A4 92,5 B4 77,5
A5 77,5 B5 80
A6 92,5 B6 52,5
Mean 85,83 Mean 75

5.2.2. Qualitative Analysis

"We derive the qualitative results from the think-aloud protocol and semi-structured
interviews with the case study participants. We describe our observations along the
questions we asked the participants. Since the participants discussed the documen-
tation in general, we also report observations not related exclusively to examples.

First, we asked the participants if they perceived the API documentation as help-
ful in solving the tasks. Five participants answered that they do not think of the
overview section as beneficial for the case study tasks but it might be helpful for
very complex cases or tasks aiming at integration with 3rd party applications (A2,
A4; B3, B4, B5). In addition, the API specification is useful for looking up more de-
tailed information and targeted problem solving (A2; B5, B6). Also, the execution
environment was considered "vital" (B5) and helped participants gain confidence
and experience using the API (A2, A3). Both groups used the samples as a lookup
point, but group B saw the samples as the main entry point (B1, B2, B5, B6). The
tutorial section was perceived as helpful by participants of group A because they
could solve tasks by merely adjusting the code examples (A1, A2). Moreover, the
advanced documentation puts the code snippets in the tutorial into a context, and
therefore the participants expect it to help with real implementation tasks (A4, A5).
However, group B did rarely comment on the tutorials. Finally, participants of group
A commented that the tool support for Postman might only be helpful if the API
consumers are Postman "power users" (A3, A5).

Next, we asked what parts of the documentation the participants liked the most
and why. All respondents stated that the specification and playground were among
their favorite parts of the documentation (A1, A2, A3, A4, A5, A6; B1, B2, B3,

94

5. Evaluation of Best Practices for Code Examples in Web API Documentation

B4, B5, B6). The specification supported the participants with clickable elements
(A1, A2), a search function (B3, B4), and a structured presentation (B5). The
reason for the positive perception of the playground was that it allowed consumers
to try out code snippets and tutorials (A1, A2, A4; B4, B6). Group A also liked the
tutorials, primarily because of the many references to other resources included in the
advanced version (A1, A2, A5). Moreover, participants of group A stated that they
liked the coverage of usages with examples (A3, A4). In comparison, participants
of group B appreciated the samples the most (B1, B2, B4) since they provided an
entry point into solving the tasks (B1, B2). At last, two participants of group A
positively mentioned the best practices section, explaining that such information is
often missing in documentation (A4, A5). The best practices were only available to
group A.

The third question we asked the case study participants was which parts of the
documentation they did not like at all and why. All participants agreed that the
overview and glossary were the most useless sections because they presented too
much information that was unnecessary for solving the tasks (A2, A3, B2). However,
the provided conceptual information might be necessary for more complex scenarios
or non-technical stakeholders (A4; B4). Also, the participants criticized that we did
not highlight important aspects of the text in the documentation enough (A5; B2,
B5). A complaint specific to group B was that the descriptions of the samples and
the tutorial were too long (B1, B6). In general, the participants of group B perceived
the documentation as not "developer-centric" enough (B3, B4).

Lastly, we asked the participants which features they missed the most in the docu-
mentation. Several participants mentioned the lack of "helper buttons", e.g., buttons
that automatically copy a code snippet or directly transfer snippets into the play-
ground for execution (A5; B2, B5). Also, one participant complained about missing
information on prerequisites (A4). Most statements about missing features came
from group B. Most importantly, they requested more samples with higher com-
plexity (B1, B2, B6). Also, group B participants criticized that they lacked links
between resources, which required them to conduct more searches (B2, B6). Finally,
one participant requested more concise and practical descriptions of the tutorial and
the samples (B4)."

– (Bondel et al., 2022)

5.2.3. Evaluation of the Best Practice Candidates

This section reviews the quantitative and qualitative case study results to evaluate which of
the investigated eight best practices candidates can be confirmed to be actual best practices for
code examples in official public Web API documentation. A best practice candidate is validated
as an actual best practice if it positively affects the API consumers’ productivity or perceived
usability. However, we cannot determine any direct correlation, let alone causality, between the
implementation of specific best practice candidates and the improvement of the API consumers’
productivity or perceived usability since we apply all best practice candidates simultaneously.

95

5. Evaluation of Best Practices for Code Examples in Web API Documentation

Therefore, the following results are based on indications derived from observations, not hard
evidence.

K08: Examples should cover all common usage scenarios of an API.

The best practice candidate K08 is only mentioned in literature not specific to Web APIs (Nasehi
and Maurer, 2010; Ko et al., 2004). In the advanced textual documentation version, the sample
section provides eight code snippets covering all usages required to solve the use case tasks. In
comparison, the basic documentation version only provides four code snippets covering essen-
tial ways to query the API elements. The qualitative case study evaluation revealed that the
participants of group A explicitly stated that they liked the coverage of usages with examples
(A3, A4). Nevertheless, at the same time, several participants of group B declared the reduced
number of samples as the most useful part of the documentation (B1, B2, B4) as they provide
an entry point into solving the tasks (B1, B2).

In summary, both participant groups perceived the code snippets in the sample section as useful.
A reason for group B to value the sample section highly could be the lack of other resources
providing entry points for task solutions. An alternative explanation could be that code snippets
that do not cover a consumer’s exact use case still transfer enough knowledge to be helpful to a
consumer. Hence, it is not clear if the implementation of the best practice candidate improved
the productivity or perceived usability of group A compared to group B. Therefore, we cannot
confirm the best practice candidate K08 to be a best practice for code examples in official public,
partner, and group Web API documentation.

K19: Examples should demonstrate alternative solution approaches, including corner
cases.

No literature source mentions the best practice candidate K19, but the interviewees I2, I8, I11,
and I12 emphasized its importance. However, the interviewee I1 was critical of its added value.
I1 argued that API documentation should only present the best solution to realize a specific use
case to relieve the consumer from choosing between approaches. The tutorial in the advanced
documentation version showed junctions in the solution path. However, no group A participant
mentioned the junctions’ usefulness, and no participant in group B complained about missing
alternative paths.

A potential reason why the case study participants did not mention the best practice candidate
could be the simplicity of the tasks. Since the tasks did not provide any context that would make
it necessary to choose between different solution approaches, the participants were not required
to select between solutions. Hence, we have no indication that the best practice candidate K19
improved the productivity or perceived usability of members of group A. Therefore, we cannot
confirm the best practice candidate to be a best practice.

96

5. Evaluation of Best Practices for Code Examples in Web API Documentation

K21: Tutorials should demonstrate the API’s basic functionality and common use cases.

The best practice candidate is mentioned in one Web API specific (Meng et al., 2018) and
one general API documentation related (Nykaza et al., 2002) literature source. In addition,
several interviewees (I5, I7, I8, I9) agreed on the importance of the best practice candidate
K21. While the basic documentation presented one exemplary usage scenario consisting of three
code snippets within a specific context, the advanced tutorial guided the consumers through the
typical use of the system. Two participants of group A (A1, A2) explained that the tutorial was
handy since they could solve the case study tasks by merely adjusting the code examples. On
the other hand, participants of group B did not comment on the tutorials but used the sample
section as the main entry point to solve tasks (B1, B2, B5, B6).

As a result, we see that members of group A valued the tutorial more compared to group
B members. Therefore, our case study confirms the best practice candidate K21 to be a best
practice for examples in Web API documentation as previously described in Meng et al. (2018).

K25: Example explanations need to explain how the example code relates to low-level API
elements.

The best practice candidate K25 is previously described in one Web API specific literature
resource (Thayer et al., 2021). We realized this best practice candidate in the advanced docu-
mentation version by adding frequent links to the sample and tutorial descriptions pointing at
the specification. Several group A participants reported that they valued these references (A1,
A2, A5). On the other hand, group B participants criticized the lack of links between resources,
which required them to conduct more searches (B2, B6).

Hence, we confirm the best practice candidate K25 to be a best practice for examples in Web
API documentation in accordance with Thayer et al. (2021).

F01: The documentation should enable the execution of examples within the
documentation or common tools.

One Web API specific (Meng et al., 2018) and one general API documentation (Jeong et al., 2009)
literature source mention the best practice candidate F01, while many interviewees (I2, I3, I6,
I8, I9, I10, I11, I12) emphasized its importance. Both the basic and advanced documentation
versions enabled access to the GraphQL playground. Members of both groups perceived the
execution environment as one of the favorite features of the documentation since it allowed
them to quickly try out code snippets to gain experience with the API (A1, A2, A3, A4; B4, B5,
B6). Nevertheless, some participants also mentioned that they missed "helper buttons," which
automatically copy code snippets into the playground (A5; B2, B5).

In addition, the advanced documentation version enabled automated imports of code snippets
from the sample and tutorial section into the Postman9 application. However, not all members
of group A noticed the option of using Postman and no one used it to solve a task. In addition,

9https://www.postman.com/

97

https://www.postman.com/

5. Evaluation of Best Practices for Code Examples in Web API Documentation

some participants of group A commented that Postman tool support might only be helpful if
the API consumers are Postman "power users" (A3, A5).

Even though we intended to evaluate F01 with the automated import of code snippets into
Postman, we realized we already provided the capability to test code examples in both doc-
umentation versions with the GraphQL playground. Due to this circumstance, we could not
observe a difference between the groups with access to different documentation versions. How-
ever, the overwhelmingly positive feedback of case study participants regarding the GraphQL
playground confirms the best practice candidate C01 to be a best practice for examples in Web
API documentation as previously described in Meng et al. (2018). However, we must note that
even the need to copy code from the documentation to the playground was perceived negatively.
Thus, consumers prefer try-out functions that allow them to execute the code with as few hur-
dles as possible. Additionally, an API provider should only provide specific tool support, e.g.,
for Postman, if the particular API consumer community commonly uses the tool.

F06: Code snippets, tutorials, and their explanations should be as concise and
problem-oriented as possible.

The best practice candidate F06 is supported only by literature not specific to Web APIs (Nasehi
et al., 2012). While the tutorial description in the basic documentation version was rather long,
the tutorial description in the advanced documentation was concise and problem-oriented. As
a result, several group B members complained about long and not developer-centric tutorial
descriptions (B1, B3, B4, B6).

Therefore, we confirm the best practice candidate C06 to be a best practice for examples in
public, partner, and group Web API documentation.

F07: Tutorials should present usages following a storyline.

No literature supports the best practice candidate F07. We adopted the tutorial in the advanced
documentation version to follow a storyline with a clear outcome. On the other hand, the basic
documentation version did not explicitly mention the outcome of the tutorial, and the link be-
tween the code snippets was somewhat blurred. Consequently, two members of group A stated
that the storyline of the tutorial adds value since they expect it to help with actual implementa-
tion tasks (A4, A5). Also, participants of group B reported that the tutorial descriptions were
not developer-centric enough (B3, B4).

As a result, we confirm the best practice candidate F07 to be a best practice for examples in
Web in public, partner, and group Web API documentation.

F16: Documentation should present examples with different, e.g., increasing, levels of
complexity to meet the needs of consumers with varying expertise.

The best practice candidate F16 is supported only by literature not specific to Web API docu-
mentation (Nasehi et al., 2012; Nykaza et al., 2002). The tutorial in the basic documentation

98

5. Evaluation of Best Practices for Code Examples in Web API Documentation

version entailed three code snippets with a relatively low level of complexity. Similarly, the
sample section consisted of four independent code snippets of similar, low complexity. In com-
parison, in the advanced documentation version, the tutorial comprised seven and the sample
section eight code snippets with increasing complexity. While group A members did not pos-
itively mention the different levels of complexity of the code snippets, several participants of
group B complained about the lack of snippets with higher complexity (B1, B2, B6).

Therefore, we confirm the best practice candidate F16 to be a best practice for examples in Web
API documentation.

In summary, we confirm the best practice candidates K21, K25, F01, F06, F07, and F16 to
be actual best practices for examples in public, partner, and group Web API documentation.
In addition, the best practice candidates K08 and K19 need further evaluation and cannot be
confirmed as best practices for examples in public, partner, and group Web API documentation
based on our case study results.

5.3. Discussion

First, we pick up on implication 2 presented in Sec. 4.4. Implication 2 states, "Domain knowledge
is not expected to be transferred to API consumers via code examples and therefore needs to be
transferred via other documentation sections." These other documentation sections could be the
documentation introduction, system overviews, or glossaries. However, the case study results
show that the participants did not think of the overview section and glossary as helpful either
(A2, A4; B3, B4, B5) because they presented too much information that was unnecessary for
solving the case study tasks (A2, A3; B2). A potential reason could be that all participants
were already acquainted with the API’s domain. If a developer already knows a domain, they
could perceive additional domain information in code example descriptions as clutter. In this
case, the best practice candidate K01, stating that conceptual knowledge should accompany
code examples, would conflict with the best practice C06, which says that examples and their
explanations should be concise and problem-oriented (F06). Moreover, due to time constraints,
the case study tasks were of low and medium complexity. Hence, we assume that domain
knowledge as part of examples or in other documentation sections is only relevant for API
consumers if they do not know the domain or the domain or task is of high complexity. This
assumption is supported by case study participants who stated that the overview in the case
study documentation might be helpful for very complex cases or tasks aiming at integration with
3rd party applications (A2, A4; B3, B4, B5). Hence, we revise the existing implication 2:

Implication 2 (revised): The perceived value of conceptual knowledge as part of code
examples or documentation depends on the API consumers’ pre-existing knowledge of the
domain and the task complexity.

In addition to the best practice candidate K01 and the best practice F06, we realized that
the applicability of other best practices and best practice candidates might also depend on
contextual factors. For example, the best practice candidate K19 stating that "Examples should

99

5. Evaluation of Best Practices for Code Examples in Web API Documentation

demonstrate alternative solution approaches, including corner cases" might only be relevant for
more complex tasks. Also, an API provider should only present a Postman integration if the
particular API consumer community commonly uses the tool. Thus, we present a more general
implication:

Implication 6: The usefulness of specific best practices or best practice candidates for
code examples in public, partner, and group Web API documentation depends on the
context in which they are applied.

Next, we look at the effect of different documentation version on different developer personas
and learning styles. Stylos and Clarke (2007)10 present three archetypical software engineering
personas. A persona captures and categorizes work styles, characteristics and motivations of
developers approaching a task. The first persona is the systematic developer, who works in a
top-down manner, i.e., wants to understand a system as a whole before focusing on a specific
task. On the other side of the spectrum are opportunistic developers, who approach a task
bottom-up and are primarily concerned with solving a task as fast as possible. Finally, there is
the pragmatic developer, who leverages a mix of the systematic and the opportunistic approach.
Pragmatic developers first approach a task bottom-up but switch to a top-down approach in
case they get stuck.

Meng et al. (2019) and Meng et al. (2018) take up the concept of different user personas, and
tailor it to API consumers. Meng et al. (2018) identifies two learning strategies that resemble the
systematic and the opportunistic developer personas. First, the systematic developer persona
uses a concepts-oriented learning strategy. The concepts-oriented learning strategy is character-
ized by systematic searches and regular consultation of official documentation. These developers
invest time to create a deeper understanding of an API before starting to solve a task. Sys-
tematic developers like to use technical architecture overviews, working through getting started
sections, tutorials, and implementing small projects before solving a specific task.

On the other hand, the opportunistic developer persona employs a code-oriented learning strat-
egy. Such opportunistic developers like to solve tasks quickly in a bottom-up manner. They are
task-driven and like to start coding as fast as possible, often using a trial-and-error approach.
These developers do not spent time emerging themselves in conceptual knowledge and stop
learning about an API as soon as they solve their task (Meng et al., 2019, 2018).

Our case study identified hints of developers using both learning strategies. For example, A1
stated that conceptual information provides you with a "third eye" onto the whole API, and it
should be part of the documentation even if it does not directly support the solution of your task.
In comparison, A4 explained that the overview section was irrelevant and too long. Nevertheless,
this kind of information might be relevant for more complex systems or debugging (A4). Hence,
conceptual information is only relevant if the information is required to solve a specific task.
However, we did not collect data to categorize preferred learning strategies systematically.

Since these two learning strategies for APIs exist, documentation should address the information

10Stylos and Clarke (2007) expands the concept of personas citing Clarke (2004). However, Clarke (2004) is not
accessible to us.

100

5. Evaluation of Best Practices for Code Examples in Web API Documentation

needs of both (Meng et al., 2020, 2019, 2018). The quantitative results of our case study show
higher variations in the usage of documentation sections for group A. In comparison, most of
group B valued the sample section most and used it as the entry point to solving the case
study tasks (B1, B2, B5, B6). Furthermore, group A members showed a consistently higher
rate of successful requests to the API compared to members of group B. Hence, we assume that
the advanced documentation accommodates more learning styles compared to the basic version.
Moreover, we assume that insufficient documentation forces all developers to use a code-oriented
learning approach. An observation supporting this hypothesis is the higher standard deviation
of the rate of successful requests of group B, which could indicate that these developers had to
rely more on experimentation to solve a task. Hence, we present the following implication:

Implication 7: Low quality code examples in public, partner, and group Web API
documentation force developers to use a trial-and-error approach, thus hampering
productivity and perceived satisfaction of developers with a systemic learning type.

While this study focuses on code examples specifically, other parts of the documentation also have
major influence on the learnability of APIs. First of all, developers need to have knowledge of an
API beyond examples, otherwise they might have issues with identifying relevant examples or
modifying them (Thayer et al., 2021). Furthermore, all participants of the case study emphasized
the value of the specification and playground as part of the documentation. However, similar
to code examples, these documentation parts also have to meet certain quality criteria to be
of value for API consumers, e.g., specifications should have a structured presentation and be
searchable. Hence, we present the following implication:

Implication 8: The specification and playground are essential elements of public, partner,
and group Web API documentation, but they need to meet certain quality criteria to be
of value for API consumers.

5.4. Summary

In the previous Chapter 4, we presented 46 best practice candidates for code examples in public,
partner, and group Web API documentation. However, these best practice candidates have not
yet been evaluated in the context of public, partner, and group Web APIs, i.e., settings where
consumers usually do not have direct access to the Web API developers. Therefore, this chapter
aimed to evaluate a subset of best practice candidates to see if they are actually best practices.

To reach this goal, we performed a case study. We chose eight best practice candidates, K08,
K19, K21, K25, F01, F06, F07, and F16, for evaluation since they have little or no support
in Web API-specific literature or there are contradicting statements about their impact on the
API consumers’ productivity and perceived usability. As a basis for the case study, we chose an
existing public GraphQL API and created two versions of documentation for the API: a basic
version and an advanced version implementing the chosen best practice candidates. Afterward,
we split a group of 12 professional developers into two equally sized groups with access to either

101

5. Evaluation of Best Practices for Code Examples in Web API Documentation

documentation versions and observed them while solving three tasks using the Web API. In
addition, we collected data using a SUS questionnaire and semi-structured interviews.

Overall, we observed that participants with access to the advanced documentation spent more
time initially reading the documentation but solved all tasks faster. In addition, members of
this group had a higher rate of successful requests and perceived the documentation as more
usable than participants with access to the basic version. Also, the usage of different documen-
tation sections varied more for participants using the advanced documentation. However, the
participants of both groups had similar overall success in solving the tasks.

We additionally analyzed indications of a positive effect of each best practice candidate on the
developers’ productivity and perceived usability in the quantitative and qualitative analysis.
The results showed that we can confirm the six best practice candidates, K21, K25, C01, C06,
C07, and C16, to be actual best practices. In comparison, the observations for K08 and K19
were not clear or contradicting.

Finally, we analyzed the case study observations, leading to the presentation of three new im-
plications and the revision of a previously presented implication. First, one new implication
states that low-quality code examples in open Web API documentation force developers to use a
trial-and-error approach, which is typical for opportunistic developer personas. Thus, such low-
quality code examples can hamper systematic developer personas’ productivity and perceived
satisfaction. Secondly, not only the code examples are essential aspects of Web API documen-
tation, but also the API specification and the API playground. Nevertheless, the specification
and playground must also meet specific quality criteria to be of value for API consumers.

In addition, we revised implication 2 (see Sec.4.4), which states that developers do not expect
code examples to transfer domain knowledge. Instead, we realized that the perceived value of
conceptual knowledge, as part of code examples or other documentation sections, depends on
contextual factors. Such contextual factors are, e.g., the API consumers’ pre-existing domain
knowledge and a task’s complexity. In addition, the effect of other best practices or best practice
candidates for code examples in public, partner, or group Web API documentation also depends
on the context in which they are applied. Consequently, future work should evaluate the impact
of best practices and best practice candidates under different contextual circumstances.

These findings show that best practices should explicitly describe the circumstances under which
they are applicable. Therefore, in the next chapter, we will present patterns.

102

CHAPTER 6

Design of the API Management Pattern Catalog (AMPC)

As indicated in the previous Chapter 5, Web API management best practices need to consider
the context in which they are applied. Therefore, in this chapter, we describe the design of
Web API management patterns focusing on collaboration for public, partner, and group Web
API initiatives. More precisely, we describe the design of the API Management Pattern Catalog
for Public, Partner, and Group Web APIs with a Focus on Collaboration (Bondel and Matthes,
2023), which we abbreviate as API Management Pattern Catalog (AMPC). We do so by extend-
ing the results previously presented in Bondel et al. (2021b) and the student thesis Landgraf
(2021). In the following, we describe the research approach. Afterward, we detail the iterative
improvement of the AMPC. Also, we outline the major contents of the AMPC. Finally, we
conclude the chapter with a summary.

6.1. Research Approach

Hevner et al. (2004) and Hevner (2007) present a conceptual framework for design science
research in IS. The basic principle of design science is to create new knowledge about an unsolved
problem and its solution by iteratively building and evaluating a solution artifact (Hevner et al.,
2004). Artifacts can be constructs, models, instantiations, or methods (Hevner et al., 2004).
Methods comprise best practice approaches (Hevner et al., 2004), e.g., patterns. Hence, we
apply a design science research approach according to Hevner et al. (2004) and Hevner (2007)
to guide the creation of the AMPC as a solution artifact as visualized in Fig. 6.1. Hevner et al.
(2004) defines seven guidelines that ensure that a research endeavor meets the requirements of
design science. We discuss the realization of these guidelines in the following.

Problem Relevance. The artifact needs to present or support the solution to a relevant and
unsolved business problem in an application domain (Hevner et al., 2004). As discussed in

103

6. Design of the API Management Pattern Catalog (AMPC)

Figure 6.1.: Design science research framework (Hevner et al., 2004) adapted to the creation of
the AMPC (Bondel and Matthes, 2023) adapted from Bondel et al. (2021b).

Chapter 1 and summarized in Fig. 6.1 (#1), providing public, partner, and group Web APIs
creates profits through the realization of new business models (Evans and Basole, 2016; Basole,
2016, 2019), platform creation (Ghazawneh and Henfridsson, 2010, 2013; Eaton et al., 2015;
Karhu et al., 2018; de Reuver et al., 2018), efficient partner integration (Hagel III and Brown,
2001), or compliance (Bondel et al., 2021a; ISO 20077-1; ISO 20078-1; ISO 20080). However,
relatively young digital organizations in the US currently dominate the provision of successful
Web APIs (Evans and Basole, 2016; Basole, 2019; Huhtamäki et al., 2017). Moreover, Web API
provision requires careful design (Yoo et al., 2010) and management, taking into account the col-
laboration with stakeholders inside and outside (Islind et al., 2016) of the provider organization.
Nevertheless, knowledge about API management is distributed across mostly practitioner- and
vendor-driven literature. Hence, the AMPC aims to provide a holistic approach to API manage-
ment from an API provider perspective. To successfully contribute to practice and research, the
AMPC should provide patterns applicable to real-world settings, be comprehensible and usable
for practitioners, present correct information, and capture relevant practices completely.

Research Rigor. Design science research needs to be rigorous, i.e., the researchers need to
apply existing foundational knowledge and methodologies during the design and evaluation of
the artifact (Hevner et al., 2004; Hevner, 2007). As visualized in Fig. 6.1 (#2), we reviewed IS
literature to identify relevant foundational knowledge on the management of Web APIs across
organizational boundaries. First, we identified and examined trends in the API Economy (see
Section 2.2) and IS literature on platforms focusing on boundary resources (see Section 2.3).
Moreover, we inspected existing pattern languages, catalogs, and collections concerned with
APIs and interfaces (see Chapter 3) as well as practice-driven literature on API management

104

6. Design of the API Management Pattern Catalog (AMPC)

best practices, i.e., De (2017), Medjaoui et al. (2018), Jacobson et al. (2012) and Spichale
(2017).

Regarding methodologies, we thoroughly applied design science (Hevner et al., 2004; Hevner,
2007) as an overall approach to the AMPC design. Additionally, we used GTM (Wiesche et al.,
2017) to identify the pattern candidates and stakeholders in the case base. Also, we reviewed
literature concerning pattern discovery and design (Alexander, 1973; Alexander et al., 1977;
Gamma et al., 1995; Coplien, 1996; Buschmann et al., 1996; Buckl et al., 2013). As part of
the iterative improvement of the design artifact, we participated in shepherding and a pattern
writers workshop, a standard and long-standing approach for pattern improvement in the pattern
community (Coplien, 1996). Finally, we used an online survey to evaluate the AMPC from a
practitioner’s point of view.

Design as a Search Process. Design science prescribes the iterative discovery and improve-
ment of an artifact until it presents a satisfactory solution to a problem (Hevner et al., 2004). As
indicated in Fig. 6.1 (#3) and detailed in Fig. 6.2, we iteratively evolved the AMPC. We build
on the data collection, analysis, and initial pattern collection presented in the student thesis
Landgraf (2021) (see Section 6.2). We conducted a second analysis after restricting the data
basis (see Section 6.3.1). In addition, we enriched the pattern descriptions with information
derived from successful public API initiatives and practice-driven API management literature
(see Section 6.3.2). Simultaneously, we evaluated a subset of pattern descriptions from the
perspective of the scientific pattern community by participating in shepherding and a writers
workshop (Coplien, 1996) and continuously incorporated the feedback into the creation of the
AMPC (see Section 6.3.3). These activities were executed iteratively, resulting in the publication
of intermediate results in Bondel et al. (2021b)

Finally, we evaluated the applicability, comprehensibility and usability, correctness, and com-
pleteness of the AMPC from a practitioner’s viewpoint using an online survey (see Chapter 7).
After the evaluation but before its publication we incorporated further minor changes as detailed
in Appendix D.

Furthermore, we list measures to further evolve the AMPC derived from the feedback of the
pattern community, the survey responses, and pattern literature (see Section 8.3).

Design as an Artifact. The goal of design science is to create a purposeful artifact (Hevner
et al., 2004). The artifact can be an instantiated information system, a construct, a model, or a
method supporting the implementation of information systems (Hevner et al., 2004). Methods
comprise best practices (Hevner et al., 2004). As indicated in Fig. 6.1 (#4), the artifact resulting
from this research endeavor is the API Management Pattern Catalog for Public, Partner, and
Group Web APIs with a Focus on Collaboration (AMPC) (Bondel and Matthes, 2023). The
AMPC is a pattern catalog comprising of 22 related patterns, 37 pattern candidates, nine stake-
holders, and five observations related to collaboration between stakeholders in public, partner,
and group Web API initiatives.

Design Evaluation. The design evaluation aims to demonstrate an artifact’s utility in solving
a specific problem (Hevner et al., 2004). Researchers must rigorously execute the evaluation
method (Hevner et al., 2004). The primary goal of the AMPC is to support practitioners in
managing the provision of API initiatives used across organizational boundaries. To achieve this

105

6. Design of the API Management Pattern Catalog (AMPC)

Figure 6.2.: Iterative improvement and publication of the AMPC (Bondel and Matthes, 2023).

goal, the AMPC must capture relevant but obscure knowledge (Coplien, 1996) in an accessible
way. In addition, it aims to create knowledge for research to enable theorizing.

Thus, we evaluated the AMPC twice, as illustrated in Fig. 6.1 (#5). We first participated in
shepherding and a writers workshop to ensure that the pattern structure captures all relevant
information a reader requires to truly understand and apply a pattern. Moreover, we ensured
that the AMPC implements pattern writing best practices to maximize comprehensibility and

106

6. Design of the API Management Pattern Catalog (AMPC)

usability. Afterward, we evaluated the applicability, comprehensibility and usability, correctness,
and completeness of the AMPC from a practitioner’s point of view using an online survey.

Research Contributions. Design science research must contribute to the knowledge base and
solve a previously unsolved business problem (Hevner et al., 2004; Hevner, 2007). Contributions
can be the design artifact itself, knowledge about the artifact construction, or design evaluation
methodologies (Hevner et al., 2004).

The contribution of this research endeavor is the artifact itself, i.e., the AMPC (Bondel and
Matthes, 2023). The AMPC contributes to practice in several ways. First, the AMPC documents
proven best practices for managing Web APIs used across organizational boundaries focusing on
stakeholder collaboration. This operational knowledge supports practitioners in designing new
API initiatives (see Section 7.4). In addition, practitioners can use the AMPC to benchmark
current API initiatives with state-of-the-art practices. Also, the AMPC presents a consistent
taxonomy that stakeholders can use to communicate. Finally, the AMPC documents knowledge
that can help educate developers on Web API management. Hence, it supports organizations in
reaping the potential of public, partner, and group API initiatives by addressing the challenge of
API provider teams. Therefore, the generated knowledge feeds into the relevance cycle (Hevner,
2007) as visualized in Fig. 6.1 (#6a).

In addition, as Hevner et al. (2004) states, "[...] utility informs theory." (Hevner et al., 2004,
p. 80). Hence, the AMPC contributes to research by providing a basis for theory building in
the domain of Web API management for pubic, partner, and group API initiatives. Also, future
changes to the pattern catalog will allow researchers to create knowledge on the evolution of the
discipline of Web API management. As a result, new knowledge is added to the knowledge base
(Hevner, 2007) as indicated in Fig. 6.1 (#6b).

Research Communication. Finally, an essential aspect of design science is its suitable com-
munication to research and management audiences (Hevner et al., 2004). Hence, we published
the final AMPC online, free of charge in Bondel and Matthes (2023). The AMPC motivates
and describes its goal, creation approach, and relevant foundational knowledge. Moreover, the
AMPC describes its structure to support practitioners in its use. The core contribution is a set
of patterns and their relations, which the AMPC documents in a comprehensible and structured
manner.

6.2. Previous Work

The AMPC builds on previous work presented in the student thesis Landgraf (2021) advised by
the author of this dissertation. The student thesis reports on the data collection, initial analysis,
and resulting API management pattern collection. In creating the AMPC, we reused the case
base assembled in the course of Landgraf (2021) as the data basis but excluded some cases (see
below). Moreover, we analyzed the remaining cases applying a similar data analysis approach
and utilized some previous results as input to the analysis. Nevertheless, these activities resulted
in a change in the pattern catalog’s structure, each pattern’s structure, and the instantiation of
the patterns. Appendix B makes differences in the essence of the patterns presented in Landgraf
(2021) and the AMPC transparent.

107

6. Design of the API Management Pattern Catalog (AMPC)

Hence, we summarize the case base creation, analysis, and relevant results of Landgraf (2021)
in the following.

6.2.1. Case Base

The author of Landgraf (2021) and the author of this dissertation collaborated closely during
the data collection. The first step of creating the case base was to collect data on API initiatives
during 16 semi-structured interviews with 15 API management team members between August
2020 and January 2021. Of these interviews, 13 were initial, and three were follow-up, allowing
more information on specific pattern candidates to be elicited. Since the goal was to capture best
practices, the interviews focused on the interviewees’ daily API management tasks, including
past and current tasks, issues, and solutions to these issues. An overview of the interviews is
provided in Tab. 6.1. All interviews were transcribed.

Next, the API initiatives described in the interviews were categorized into distinct cases to allow
the identification of patterns using the rule of three (Coplien, 1996). Since some interviewees
reported information about several API management initiatives in one interview, the API ini-
tiatives were categorized into different cases if they used different API portals, as described in
Bondel et al. (2021b):

"[...] The rationale for choosing this granularity level is that we observed that the
APIs managed in one API portal all share the same general context regarding collab-
oration with the API consumers. For example, the provider of a public API portal
with several endpoints and more than 10,000 external consumers could provide a
contact form for API consumer inquiries. However, if the same organization also
provides an API portal for few endpoints and less than five contractual partners, di-
rect communication via email or phone could be more suitable. Thus, characteristics
influencing the suitability of patterns like the type of users, the number of users, or
the API initiative’s maturity level can differ for different API portals."

– (Bondel et al., 2021b)

Overall, the case base comprises 15 cases. We present an overview of the case base in Tab. 6.2.
However, the first interview did not entail enough information to allow for the identification of
API management patterns (Landgraf, 2021). Consequently, the 14 cases C2-C15 were analyzed
as the basis for the pattern collection presented in Landgraf (2021).

6.2.2. Data Analysis

In parallel, the data was analyzed using GTM, an approach for qualitative content analysis in
Information Systems (IS) research (Wiesche et al., 2017). The seed categories for open coding
were stakeholders and patterns. In addition to creating subcategories for the seed categories,
new categories were added if deemed suitable. Also, new codes were continuously compared to
existing codes.

Next, the rule of three (Coplien, 1996) was applied to identify patterns (also applied by Uludağ

108

6. Design of the API Management Pattern Catalog (AMPC)

Table 6.1.: Overview of the interviews informing the case base adopted from Bondel et al.
(2021b).

Industry Role # Employees Duration
(hh:mm:ss) Participants

1 Financial ser-
vices

Backend Devel-
oper

11 - 50 00:22:52 IV1

2 Industrial manu-
facturing

Internal Consult-
ing

>100.000 00:44:09 IV2

3 Automotive Product Owner,
Product Owner

>100.000 00:48:49 IV3, IV4

4 Financial ser-
vices

Software Archi-
tect

1001 - 5000 00:42:25 IV5

5 Mobility Portfolio Man-
ager

1001 - 5000 00:51:12 IV6

6 Insurance Software Archi-
tect

51 - 250 00:59:28 IV7

7 Industrial manu-
facturing

Product Owner >100.000 00:46:34 IV8

8 Industrial manu-
facturing

Software Archi-
tect

>100.000 00:47:03 IV9

9 Financial ser-
vices

Software Devel-
oper

10.001 - 50.000 00:35:25 IV10

10 Financial Ser-
vices

Internal Consult-
ing

5001 - 10.000 00:50:49 IV11

11 Insurance Integration
Architect

51 - 250 00:56:29 IV12

12 Automotive Product Owner,
Product Owner

>100.000 00:51:48 IV3, IV4

13 Financial Ser-
vices

Technical Lead,
Product Owner

5001 - 10.000 00:55:25 IV13, IV14

14 Financial Ser-
vices

Software Archi-
tect

1001 - 5000 00:50:49 IV5

15 Mobility Portfolio Man-
ager

1001 - 5000 00:31:58 IV6

16 Mobility Internal Consult-
ing

1001 - 5000 00:45:44 IV15

et al. (2019); Buckl et al. (2008); Khosroshahi et al. (2015)). The rule of three states that "[...]
a good pattern should have three examples that show three insightfully different implementations"
(Coplien, 1996, p. 35).

Overall, this initial API management pattern collection presented in (Landgraf, 2021) comprises
23 patterns, 35 pattern candidates, 32 concerns, 20 influence factors, and ten stakeholders.

109

6. Design of the API Management Pattern Catalog (AMPC)

Table 6.2.: Overview of the case base derived from expert interviews adapted from Bondel et al.
(2021b).

Case ID # Interview Architectural
Openness Maturity Number of API

Consumers
C1 (excluded) 1 Private Development <20
C2 2 Partner Pilot <20
C3 3, 12 Public & Partner Production >20
C4 4, 14 Public Production >10000
C5 4, 14 Partner Production >20
C6 5, 15, 16 Group Production na
C7 6 Group Development <20
C8 7 Private Development >20
C9 8 Public & Partner Production na
C10 9 Partner Production na
C11 9 Public & Partner Production >10000
C12 10 Partner Pilot <20
C13 11 Public & Partner Production <20
C14 13 Public & Partner Production >10000
C15 13 Private Development <20

6.3. AMPC Design

This section describes the design of the AMPC building on Landgraf (2021). First, we improved
the data analysis, yielding the stakeholders and patterns in the AMPC. Moreover, we enriched
the pattern descriptions using information from chosen, successful public Web API initiatives
and practice-driven API management literature. In parallel, we collected and realized require-
ments on the pattern form from the scientific pattern community in the course of publishing
intermediary results in Bondel et al. (2021b).

6.3.1. Improvements to the Data Analysis

Using the case base created as part of Landgraf (2021) as a basis, we analyzed the data to
identify pattern candidates. Since the AMPC aims to describe patterns for public, partner, and
group API initiatives, we excluded the cases describing private API initiatives from the data
analysis. More precisely, in addition to the already excluded case C1, we excluded C8 and C15.
Hence, we analyzed 12 cases describing public, partner, and group API initiatives as presented
in Tab. 6.3.

Given the new data basis, the author of this dissertation reviewed all collected data, i.e., the
interview transcripts, a second time. First, we used GTM (Wiesche et al., 2017) to identify
pattern candidates and stakeholders in the data basis. We used the pattern candidates, patterns,
and stakeholder names previously presented in Landgraf (2021) as seed categories and applied
open coding to assign codes to these seed categories. Also, we added new categories if we

110

6. Design of the API Management Pattern Catalog (AMPC)

Table 6.3.: Adopted case base used as a basis for the creation of the AMPC adapted from Bondel
et al. (2021b).

Case ID # Interview Architectural
Openness Maturity Number of API

Consumers
C1 (excluded) 1 Private Development <20
C2 2 Partner Pilot <20
C3 3, 12 Public & Partner Production >20
C4 4, 14 Public Production >10000
C5 4, 14 Partner Production >20
C6 5, 15, 16 Group Production na
C7 6 Group Development <20
C8 (excluded) 7 Private Development >20
C9 8 Public & Partner Production na
C10 9 Partner Production na
C11 9 Public & Partner Production >10000
C12 10 Partner Pilot <20
C13 11 Public & Partner Production <20
C14 13 Public & Partner Production >10000
C15 (excluded) 13 Private Development <20
C16 (Stripe) Public Production <>10,000
C17 (Twilio) Public Production <>10,000

identified practices or stakeholders not belonging to any of the seed categories. During the
whole process, we continuously compared new codes to existing codes. As a result, we identified
56 pattern candidates to which we applied the rule of three (Coplien, 1996). Of these 56 pattern
candidates, 22 were validated as actual patterns for API management with three or more known
usages.

Furthermore, in addition to the data collected through interviews, we included publicly available
information on these API initiatives if possible, i.e., on public API initiatives. Such public
information included information published online via the API provider’s developer portal or on
other provider owned websites or, in one case, via a podcast.

6.3.2. Enrichment of Pattern Descriptions

We enriched the pattern descriptions with additional information derived from successful public
API initiatives and practice-driven API management literature.

The case base mostly held cases that describe the API initiatives of established, traditional
organizations with primary business activities independent of their API initiative. Hence, we
added Stripe1 and Twilio2 to the case base as visible in Tab. 6.3 and systematically reviewed and

1https://stripe.com/
2https://www.twilio.com/

111

https://stripe.com/
https://www.twilio.com/

6. Design of the API Management Pattern Catalog (AMPC)

added public information on these API initiatives. However, we did not identify new patterns
but endeavored to validate and add further information to the patterns previously identified in
cases C2-C7 and C9-C14. Hence, the inclusion of the API initiatives of Stripe and Twilio added
an additional perspective to the patterns documented in the AMPC.

In addition, we systematically included information from API management literature into the
pattern descriptions. First, we reviewed the pattern languages and catalogs presented in Chap-
ter 3 and related them to the patterns in the AMPC. In addition, we systematically analyzed
practice-driven literature on best practices for API management to enrich the pattern descrip-
tions, e.g., the ‘Forces’ or ‘Implementation Hints’ sections. The reviewed literature comprises
Jacobson et al. (2012), Spichale (2017), De (2017) and Medjaoui et al. (2018). The inclusion of
these literature sources created richer pattern descriptions.

6.3.3. Evolution of the Pattern Form

Finally, we aimed to refine the AMPC to meet the requirements and best practices of the scientific
software engineering pattern community. We collected and implemented feedback from the
scientific pattern community by participating in the submission and publication process of the
European Conference on Pattern Languages of Programs 2021 (EuroPLoP’21)3. The EuroPLoP
belongs to a series of conferences organized by the Hillside Group, i.e., a non-profit educational
group founded in 1993 by the pioneers of software engineering patterns to improve and promote
pattern and pattern language design and usage (Hillside Group).

In comparison to other scientific conferences, the EuroPLoP "[...] focuses on improving papers
instead of only presenting them" (Hillside Europe e. V., a). Since the goal of participating in the
conference was to validate and improve the research approach, the resulting structure of patterns,
and the overall pattern catalog design of the AMPC, we summarized these aspects in a research
paper. The paper also presented two example patterns, i.e., the patterns Frontend venture
and Role-based marketing. We submitted the paper to the EuroPLoP 2021 in February 2021.
The research paper was accepted, allowing us to participate in the submission and publication
process.

The EuroPLoP submission and publication process comprises a shepherding phase and a pat-
tern writers workshop (Coplien, 1996), which take about seven months and require continuous
improvement of the submitted contents (Hillside Europe e. V., b). During the shepherding
phase, an experienced pattern author (shepherd) partners with the pattern author of a sub-
mitted paper and provides continuous feedback (Hillside Europe e. V., b). In our case, the
shepherding phase lasted from mid-March to mid-June 2021 and comprised several rounds of
iterative improvements to the pattern and overall pattern catalog structure.

Afterward, the already improved paper version was reviewed at a writers workshop at the Euro-
PLoP conference in July 2021. The writers workshop follows an approach derived from poetry
review workshops (Coplien, 1996). The approach dictates that a peer group of five pattern au-
thors with varying experience review each other’s papers and discuss their findings and feedback
during a one-hour session. During that session, the author can voice their goals for the workshop

3https://www.europlop.net/content/conference

112

https://www.europlop.net/content/conference

6. Design of the API Management Pattern Catalog (AMPC)

in the first couple of minutes. Hence, previous to the workshop, we sent a questionnaire detailing
the goal of the workshop participation to the participants (see Appendix C). However, the au-
thor cannot participate or steer the discussion afterward. Instead, the author collects feedback
from the peer group without interfering. We recorded and transcribed the writers workshop
to ensure we captured all feedback. In addition, some writers workshop participants provided
further feedback via email after the workshop.

After incorporating all feedback from shepherding and the writers workshop, we published the
results in Bondel et al. (2021b). Hence, Bondel et al. (2021b) presents intermediary results.

In the following, we summarize the feedback collected during the EuroPLoP submission and
publication process, including the shepherding phase, the writers workshop, and further feed-
back received after the workshop. First, we present positive feedback. Afterward, we present
requirements for the AMPC design derived from the feedback. Also, we describe the realization
of these requirements in the AMPC. If applicable, we used the proven pattern writing patterns
presented by Meszaros and Doble (1997) to realize the requirements.

We received the following positive feedback from the shepherd and writers workshop partici-
pants:

• Contribution. Creating an API management pattern language presents a valuable con-
tribution to practice. Moreover, addressing the collaboration in API management seems
to fulfill a relevant research gap.

• Methodology/Approach. The authors developed the patterns based on input from
industry experts, thus capturing real-world experiences. Hence, the pattern catalog links
the patterns derived from real-world cases to scientific literature very well.

• Pattern structure. The pattern descriptions comprise all relevant sections, making it
easy to identify the most relevant information. Also, the ‘Problem’ and ‘Solution’ sections
of each pattern nicely explain the essence of a pattern when read in isolation. Finally, the
‘Example’ and ‘Implementation Hints’ are very readable and tangible.

The scientific pattern community named several requirements to the pattern and pattern catalog
structure in their feedback. In the following, we list these requirements and describe their
realization in the AMPC:

• Requirements for the Pattern Descriptions:

– Pattern section structure. The sections of a pattern need to follow a logical order,
e.g., the order presented in B.1 Mandatory Elements Present (Meszaros and Doble,
1997). Hence, the pattern section sequence in the AMPC follows a logical structure
by sequentially describing the ‘Context’, ‘Concern’, ‘Forces’, ‘Solution’, ‘Stakehold-
ers’, ‘Implementation Hints’, ‘Consequences’, ‘Related Patterns within this Pattern
Catalog’, ‘Other Related Patterns’, and ‘Known Uses’.

– Pattern naming. Pattern names should be consistent, short, and easy to use in
everyday language. In the AMPC, all pattern names are C.3.1 Noun Phrase Names
(Meszaros and Doble, 1997), i.e., short noun strings that describe the solution.

113

6. Design of the API Management Pattern Catalog (AMPC)

– Sketch. A pattern description should provide a sketch of the solution. Thus, we
included an abstract illustration of the solution in each pattern description in the
AMPC.

– Stakeholders. Stakeholder lists need to be self-explanatory. Hence, the AMPC
describes each stakeholder’s role in realizing a respective pattern.

– Concern. Each pattern needs a clear problem description free of forces that influence
it. Therefore, the AMPC formulates the problem statement as one question in the
section ‘Concern’. In addition, we captured potential forces and made them explicit
in the ‘Forces’ section.

– Forces. Forces should explain why it is hard and non-trivial to find and apply a
solution (Coplien, 1996). The AMPC clearly describes these forces.

– Consequences. Consequences describe the the result of applying a pattern (Gamma
et al., 1995). The AMPC describes how the instantiation of a pattern resolves each
force.

– Related Patterns. Patterns should refer to other patterns within and outside the
respective pattern language or catalog (Meszaros and Doble, 1997). There should
be a clear distinction between related patterns within the same pattern catalog and
external sources, e.g., existing pattern languages. As a result, in the AMPC, we
separated the section ‘Related Patterns’ into a section ‘Related Patterns within this
Pattern Catalog’ and a section ‘Other Related Patterns’.

– Relationships between Patterns. Patterns can have several types of relation-
ships besides "lead-to" relationships (Meszaros and Doble, 1997). We described the
relationships between patterns in the ‘Related Patterns within this Pattern Catalog’
section of the AMPC. Patterns can be complementary, conflicting, or one pattern
specializes another pattern.

– Description of Known Uses. Known uses should help a reader to understand how
to apply a pattern in different settings. Therefore, the AMPC describes each case
and how it applies the respective pattern in the ‘Known Uses’ section. In addition,
we summarized commonalities and differences between the cases and presented as-
sumptions as to why these characteristics foster the applicability of the respective
pattern.

– Cross-references. Each pattern should be readable as a document under closure,
and cross-references make it difficult for readers to understand a pattern (Meszaros
and Doble, 1997). Therefore, in the AMPC, we aimed to realize the pattern B.4
Single-Pass Readable (Meszaros and Doble, 1997). By referencing related patterns
with their name according to C.2 Readable References to Patterns (Meszaros and
Doble, 1997). Furthermore, we described each case in the ‘Known Uses’. Also, we
incorporated short explanations of terms potentially unknown to the target audience
within the pattern descriptions.

– "How-to" questions. One workshop participant proposed avoiding the use of "how-

114

6. Design of the API Management Pattern Catalog (AMPC)

to" questions in the ‘Concerns’ section. However, in some cases, "how-to" questions
best capture the essence of a problem. Therefore, we kept "how-to" questions to
express the concerns where applicable.

– Real-wold examples. Each known use should provide as much information as
possible. In the best case, each known use presents a real-world example. While
we aimed to realize the goal of providing as much information on each known use as
possible, we were limited by the confidentiality agreements in place with the interview
partners. We could describe real-world examples only in detail for publicly observable
applications of patterns.

– Example resolved. It is possible to include the sections ‘Example’ and ‘Example
Resolved’ as presented in Buschmann et al. (1996). However, we decided to report
examples in the ‘Known Uses’ section of the AMPC.

• Requirements for the Pattern Catalog Structure:

– Pattern relation visualization. A pattern catalog should visualize the relation
between patterns. Hence, the AMPC visualizes the relationships between patterns as
described in their respective ‘Related Patterns within this Pattern Catalog’ sections.
In addition, the visualization also shows entry points into the pattern language for
API providers and consumers.

– Patlets: A pattern catalog should provide an overview of all patterns using a E.1.1
Problem/Solution Summary (Meszaros and Doble, 1997) or a patlets table. The
AMPC presents a patlets table comprising short descriptions of each pattern.

Hence, the AMPC realizes all requirements except for "How-to" questions, Real-wold examples,
and Example resolved.

6.4. The API Management Pattern Catalog (AMPC)

In the previous sections, we described the AMPC design. This section summarizes the resulting
AMPC’s contents as published in Bondel and Matthes (2023).

First, we present the structure of the AMPC based on its meta-model. Afterward, we provide
an overview of the identified stakeholders. Moreover, we show an overview of the patterns,
their relations to each other, and their relations to patterns from other pattern languages and
catalogs. Finally, we discuss the pattern candidates. The AMPC comprises nine stakeholders,
22 patterns, and 37 pattern candidates.

6.4.1. Structure of the AMPC

The AMPC documents the entities and their relations as visualized in the meta-model in Fig. 6.3.
These entities comprise the API management software artifacts, stakeholders, patterns, and
pattern candidates.

115

6. Design of the API Management Pattern Catalog (AMPC)

The API management software artifacts potentially exchange data. The stakeholders are re-
sponsible for or use API management software artifacts. The stakeholders apply or support the
application of API management patterns. In all cases, different stakeholders must collaborate
to implement a pattern, thus creating relations between the stakeholders. API management
patterns were pattern candidates before they were validated to be patterns according to the rule
of three (Coplien, 1996).

We do not discuss the API management software artifacts in this section, as they have been
previously presented in Section 2.1.1.

Figure 6.3.: Meta-model of the AMPC.

6.4.2. Stakeholders

We identified nine stakeholders involved in interactions using Web APIs as illustrated in the
upper part of Fig. 6.4 from the interview data and literature (Bondel et al., 2021b; Bondel
and Matthes, 2023). We identified the stakeholders involved in a basic Web API interaction as
presented in Section 2.1.2, i.e., the backend provider, API provider, API consumer, and end user.
In addition, we identified the upper management, legal, sales & marketing, customer support, and
integration partners to be further stakeholders involved in API management. A more detailed
description of the stakeholders is presented in the AMPC (Bondel and Matthes, 2023).

6.4.3. Patterns

The patterns are the core contribution of the AMPC (Bondel and Matthes, 2023). Overall, the
AMPC presents 22 patterns. Fig. 6.5 provides an overview all patterns and their relations. Also,
we present short summaries of all patterns in Appendix E. Moreover, as examples, we present the

116

6. Design of the API Management Pattern Catalog (AMPC)

Figure 6.4.: Overview and relation of software artifacts and stakeholders involved in API man-
agement adapted from Bondel et al. (2021b); Bondel and Matthes (2023).

complete descriptions of the two patterns Collaborative Pilot Project and Frontend Venture
in Appendix F.

In addition to relating the patterns, Fig. 6.5 presents entry points for API providers and con-
sumers who want to explore the AMPC. Also, some patterns are categorized into product
management domains.

Each pattern description comprises the same set of mandatory or optional elements. In the
following, we describe these elements (adopted from Bondel and Matthes (2023)).

• "Each pattern has a ‘Name’ and potentially one or more ‘Aliases’. A name
allows readers to find relevant patterns quickly and can become part of an API
management team’s vocabulary (Coplien, 1996).

• Furthermore, each pattern belongs to one of the pattern categories Interface
Type Pattern, API Provider Internal Patterns, and API Consumer-facing Pat-
terns. Interface Type Patterns capture different approaches to making func-
tionality and data provided via API available to API consumers. API Provider
Patterns describe patterns that require the API provider team to collaborate
mainly with API provider organization internal stakeholders. In contrast, API
Consumer-facing Patterns are concerned with the interaction between the API
provider and consumer.

• A short ‘Summary’ of each pattern allows the reader to grasp the essence of a
pattern quickly.

117

6. Design of the API Management Pattern Catalog (AMPC)

Figure 6.5.: Overview of the patterns in the AMPC and their relations to each other adopted
from Bondel and Matthes (2023).

118

6. Design of the API Management Pattern Catalog (AMPC)

• A ‘Sketch’ visualizes the patterns basic concept (Coplien, 1996).

• The ‘Context’ describes the situation in which the reader can apply a pattern
(Meszaros and Doble, 1997). The situation imposes constraints that the solution
needs to address (Meszaros and Doble, 1997).

• A ‘Concern’ captures the (design) problem that the pattern addresses (Meszaros
and Doble, 1997; Coplien, 1996). Concerns usually represent the interests and
goals of the stakeholders applying a pattern (Uludağ et al., 2019; Buckl et al.,
2008; Khosroshahi et al., 2015), i.e., the API provider team.

• Patterns address concerns that are difficult to solve due to contradictory goals
and considerations of stakeholders (Meszaros and Doble, 1997; Coplien, 1996).
The ‘Forces’ describe these trade-offs (Meszaros and Doble, 1997; Coplien,
1996). The context usually indicates which forces the pattern should opti-
mize (Meszaros and Doble, 1997). Moreover, understanding the forces allows
the reader to better understand the concern and the solution (Coplien, 1996).

• The ‘Solution’ captures the core approach to solving the concern in a given
context (Meszaros and Doble, 1997). The solution provides enough detail to
enable the API provider team to apply the pattern. Nevertheless, simultane-
ously, the solution is generic enough to apply to many contexts (Coplien, 1996).
Furthermore, the solution dictates how the forces are resolved (Meszaros and
Doble, 1997). In some cases, we observed ‘Variants’ of a solution.

• The ‘Stakeholders’ list all roles involved, affected, or influenced by API man-
agement. Stakeholders can be internal or external to the API provider team’s
organization. This pattern catalog focuses on the API provider team, including
the Web API provider, the API gateway provider, the API developer portal
provider, and the API governance role.

• The ‘Implementation Hints’ provide additional information supporting the suc-
cessful implementation of the pattern.

• The ‘Consequences’ pick up on the forces and explain which considerations the
solution optimizes at the expense of others.

• The ‘Related Patterns within this Pattern Catalog’ section relates a pattern
to other patterns presented in this pattern catalog. [Patterns can complement
each other, a pattern can specialize another pattern, or patterns can be alter-
natives. For example, the patterns API-as-a-Product and API Product Owner
complement each other. Similarly, a Consumer Success Story can be part of
realizing Role-based Marketing. In comparison, the patterns Collaborative
Pilot Project and Play-it-fast Approach are alternatives to solving the same
problem, that prioritize either time-to-market or fit between API and stability.
The relations between the patterns are presented in Fig. 6.5.]

• Similarly, ‘Other Related Patterns’ point to patterns already published by other

119

6. Design of the API Management Pattern Catalog (AMPC)

authors. [...] This section is only instantiated if the pattern at hand relates to
any of these other patterns.

• ‘Known uses’ describe the cases in which we observed the pattern and, if pos-
sible, provide some details on its implementation. Since we apply the rule of
three (Coplien, 1996), each pattern has at least three known uses. [Moreover,
the subsection ‘Cross-case observations’ summarizes similarities and differences
between these cases.]"

– (Bondel and Matthes, 2023)

6.4.4. Relations to Other Pattern Collections

As mentioned above, the AMPC’s patterns relate to patterns of other pattern collections as
described in the section ‘Other Related Patterns’ of each pattern description. Fig. 6.6 presents
an overview of these relations. The pattern relations can be complementary, conflicting, or one
pattern specializes another pattern. In the following, we briefly describe these relations.

First, the patterns Pricing Plan and Rate Limit presented by (Zimmermann et al., 2022), Zim-
mermann et al., and Stocker et al. (2018) can be part of the AMPC’s pattern API-as-a-Product.
In addition, both pattern collections present a pattern Service Level Agreement. The essence
of the two pattern descriptions is very similar, but the scope and level of detail differ. Therefore,
we view the two pattern descriptions as confirmation and extension of each other. Next, an API
Key (Zimmermann et al., 2022) can enable an Onboarding Self-service. Also, the patterns API
Description (Zimmermann et al., 2022; Zimmermann et al.; Lübke et al., 2019) can be part of
the AMPC’s patterns Consumer-centric API Description and Integration Guide.

Geewax (2021) puts forward a collection of API design patterns concerned with, e.g., resource
naming, the use of standard or custom methods, or cross-references. Therefore, API design
patterns can be used to guide the technical implementation of the Web API pattern presented in
the AMPC.

The Patterns for RESTful Conversations by Pautasso et al. (2016) can be used to implement a
Web API as described in the AMPC.

Similarly, Bellido et al. (2013) presents Control-Flow Patterns for Decentralized RESTful Ser-
vice Composition documenting four types of control-flows. These patterns can be used in the
implementation of Web APIs according to the AMPC.

Next, Daigneau (2011) presents a set of Service Design Patterns that can support the imple-
mentation of the Web API pattern as presented in the AMPC. Daigneau (2011) also details the
patterns RPC API and Message API which are also described in other pattern collections.

Erl (2008) presents Service Messaging which enables the realization of the AMPC’s pattern Web
API. Also, Erl (2008) presents the pattern Service Façade, which aims to reduce the coupling of
clients to services. Decoupling the service contract from the underlying implementation is one
aspect of the API Façade pattern in the AMPC, which focuses on orchestrating functionality
provided by several backends.

120

6. Design of the API Management Pattern Catalog (AMPC)

The pattern Service Watchdog presented by Rotem-Gal-Oz (2012) can support the pattern API
Quality Monitoring in the AMPC.

Richardson presentes the microservices patterns Service Component Test and Consumer-driven
Contract Test that can be part of the AMPC’s pattern Test Strategy. Similarly, the microser-
vices patterns Health Check API (Richardson) and Application Metrics Richardson support the
AMPC’s pattern Quality Monitoring. Moreover, Richardson describes the pattern Messaging
and Remote Procedure Invocation (RPI), which document different approaches to implement-
ing a Web API as described in the AMPC. Finally, the microservices pattern Access Token
(Richardson) can enable the AMPC’s pattern Onboarding self-service.

The enterprise integration pattern language and AMPC have a different focus, but some patterns
are complementary. First, the Test Massage pattern (Hohpe and Woolf, 2003) can support the
AMPC’s Quality Monitoring pattern. In addition, we can relate the AMPC’s pattern Web API
with the root pattern Messaging (Hohpe and Woolf, 2003).

Völter et al. (2004) presents the Interface Description pattern which should be part of the
AMPC’s patterns Consumer-centric API Descriptions and Integration Guide.

Some of Fowler (2003)’s Enterprise Application Patterns complement some patterns in the
AMPC. For once, the AMPC’s API Facade is a specialization of the Remote Facade pattern
presented by Fowler (2003). Furthermore, a Service Stub (Fowler, 2003) can be part of the
AMPC’s Testing Strategy.

Gamma et al. (1995) presents design patterns concerned with the creation, composition, and
interaction between classes and objects in object-oriented systems. As a result, some design
patterns for object-oriented systems enable the implementation of the patterns in the AMPC.
More specifically, the AMPC’s Client Library is an implementation of an Adapter (Gamma
et al., 1995). Furthermore, the AMPC’s API Facade is a domain-specific implementation of the
Facade pattern presented in Gamma et al. (1995).

Buschmann et al. (1996) and Buschmann et al. (2007b) present the Facade pattern, previously
published by Gamma et al. (1995). The Facade pattern relates to the AMPC’s pattern API
Facade in that the latter is a specialization of the former.

Finally, Dyson and Longshaw (2004) present the patterns Continual Status Reporting
and Operational Monitoring and Alerting that can support the AMPC’s pattern Quality
Monitoring.

6.4.5. Pattern Candidates

Finally, we could not validate 37 pattern candidates as patterns according to the rule of three
(Coplien, 1996). Instead, the AMPC presents each pattern candidate with a name, a solution
summary, and known uses. Pattern candidates can complement, specialize, or provide alterna-
tives to patterns.

121

6. Design of the API Management Pattern Catalog (AMPC)

6.5. Discussion

During the design and refinement of the AMPC, we made five general observations related to
API management as previously reported in Bondel et al. (2021b). We list these observations in
the following:

"[...] Most initial collaboration between the API provider and the API
consumer happens through software artifacts controlled by the API man-
agement team.

API consumers use the developer portal’s features to discover, initially inform them-
selves, and contact the API provider team. Additionally, self-service options foster
easy first interactions and testing of APIs. Thus, the successful collaboration be-
tween API provider and API consumers heavily depends on resources controlled by
the API management team.

[...] API consumers want personal contact with the API provider before
and during integrating an API.

Even though API consumers often discover an API via its developer portal, in most
cases, the API consumer negotiates contracts with the API provider before actu-
ally integrating the API. These contracts contain agreed-upon quality levels in the
form of service-level agreements (SLAs). Thus, the API consumer can hold the
API provider accountable to provide functionality that meets specific non-functional
requirements, e.g., availability or performance levels. Also, the API provider can
include terms of use, e.g., number of allowed calls within a time period. The use of
APIs initiated solely via self-service and without a separate contract between API
consumers and API provider is rare. Furthermore, after signing the contract, the
API provider often supports the API consumer with integration activities. [This
observation is in line with Islind et al. (2016), who argue that co-creating boundary
resources and intimate knowledge communication are essential success factors for
creating small-scale platforms.]

[...]

[...] The collaboration between the API provider team and all other [in-
ternal] stakeholders is challenging.

Collaboration between the API provider and the backend provider and [other] inter-
nal stakeholders mostly focuses on quality, defect, and incident management across
team, business unit, or company boundaries. The interviewees stressed the chal-
lenges of collaboration between these stakeholders, especially if APIs are not the
main distribution channel of a product. In these cases, the API management team
often feels the pressure of fixing issues and defects since they are the first point of
consumer contact. The backend also has other tasks and only feels indirect pres-

122

6. Design of the API Management Pattern Catalog (AMPC)

sure through the API provider team. Thus, the backend provider might prioritize
API-related issues differently. Also, only a few approaches to standardize the col-
laboration between these stakeholders exist, and most collaboration relies on ad-hoc
communication channels such as email. Hence, the API provider organization should
adapt processes and organizational structures when starting an API initiative.

[...] The API provider has to treat the API as a product with a lifecycle.

An API makes resources like functionality, data, or software products with lifecycles
accessible to API consumers. However, the API itself changes due to consumer
wishes, technology developments, etc., and the API changes can impact the consumer
business. Therefore, the API provider needs to actively manage the API lifecycle in
coordination with the backend provider and the API consumer.

[...] Strategic relevance and the structure of the consumers’ organization
are potential influence factors for the suitability of patterns.

The API initiative cases used as a basis for eliciting the API management patterns
have different characteristics that can influence the applicability of an API pattern.
For example, a candidate for those factors is the question if an API provider offers
a commodity functionality or data for a broad audience or if the usage of the API
has a strategic impact on the consumers business and is thus probably relevant to a
smaller group of consumers, i.e., within one branch. Furthermore, the organizational
structure and the technical capabilities of the target consumers organization are
relevant. Future research should aim at making such potential influence factors of
API initiatives explicit."

– (Bondel et al., 2021b)

6.6. Summary

We applied a design science research approach to create the AMPC (Bondel and Matthes, 2023),
which we described along the seven guidelines for conducting and presenting design science
according to Hevner et al. (2004). We built on the data collection and analysis of Landgraf
(2021).

Based on these previous works, we restricted the data basis to match the scope of the AMPC
and reran the data analysis. Each pattern description contains information derived from the
expert interviews, enriched with potentially publicly available information on the API initia-
tive. In addition, we added information extracted from two successful public API initiatives
Stripe4 and Twilio5. Also, we systematically added information from related pattern languages

4https://stripe.com/
5https://www.twilio.com/

123

https://stripe.com/
https://www.twilio.com/

6. Design of the API Management Pattern Catalog (AMPC)

and practitioner-driven API management literature. In parallel, we collected and implemented
requirements for the pattern descriptions from the scientific pattern community through shep-
herding and a writers workshop, a standard and long-standing approach for pattern improvement
in the pattern community (Coplien, 1996). The participation in shepherding and the writers
workshop resulted in the publication of intermediary results in (Bondel et al., 2021b).

As a result, we published the AMPC (Bondel and Matthes, 2023) comprising 22 patterns, 37 pat-
tern candidates, and nine stakeholders. The patterns are categorized into interface type patterns,
API provider internal activity patterns, and API consumer-facing support activity patterns. Also,
the AMPC relates the patterns to the API management pattern collections presented in Chap-
ter 3. Finally, we reported the minor improvements we made to the AMPC after its evaluation
but before its publication.

In addition, we reported on five general observations about API management. Accordingly,
the initial discovery and collaboration between the API consumer and provider happen through
software artifacts controlled by the API provider team. Nevertheless, API consumers want
personal contact with API providers before and during API integration. Also, collaboration
between the API provider team and internal stakeholders can be challenging. Furthermore, the
API provider has to treat the API as a product with a lifecycle. Finally, the strategic relevance
of provided functionality and the structure of a consumer organization seem to influence the
applicability of patterns significantly.

124

6. Design of the API Management Pattern Catalog (AMPC)

Figure 6.6.: Overview of the patterns in the AMPC, their relations to each other, and their
relations to other patterns or pattern languages adopted from Bondel and Matthes
(2023).

125

126

CHAPTER 7

Evaluation of the API Management Pattern Catalog (AMPC)

This chapter presents the evaluation of the AMPC (Bondel and Matthes, 2023) using a survey.
We first detail the survey approach. Afterward, we present an overview of the survey partici-
pants’ characteristics and the qualitative and quantitative feedback received. In the discussion,
we summarize the survey results to evaluate the applicability, comprehensibility/usability, com-
pleteness, and correctness of the AMPC. To conclude, we summarize this chapter’s contents.

In the following, we refer to IT professionals using the AMPC to gain additional knowledge on
API management or guide API initiatives as readers of the AMPC.

7.1. Survey Approach

In the following, we detail the survey goal, structure, and participant acquisition as part of the
survey approach.

7.1.1. Survey Goal

The survey aimed to evaluate the AMPC concerning its applicability, comprehensibility, usabil-
ity, completeness, and correctness. We used a survey to collect feedback from various IT roles
employed at organizations active in different industry sectors.

127

7. Evaluation of the API Management Pattern Catalog (AMPC)

7.1.2. Survey Structure

The complete survey is appended in Appendix G. The following summarizes the survey design,
including the rationale for some design decisions.

The survey started with a data privacy statement to which the participants had to consent
actively. Afterward, the survey presented six categories of questions aiming to evaluate the
AMPC. Each category of questions was presented on a separate site.

The first site consisted of eight closed questions that evaluated the applicability, comprehensibil-
ity/usability, completeness, and correctness of the AMPC. Each question presented a statement.
The survey instructed the participants to use a 5-point Likert scale ranging from "strongly dis-
agree" to "strongly agree" to indicate their level of agreement with the statement. The statement
aiming to evaluate the applicability of the AMPC was:

• "The pattern catalog provides useful patterns that I can apply in my organization."

The following statements were aimed at evaluating the comprehensibility and usability of the
AMPC:

• "The structure of the pattern is easy to understand."

• "I would need the support of an author to be able to use this pattern catalog."

• "The visual design of the pattern catalog meets my expectations."

The second question, asking about the need for author support, was inspired by the system
usability scale pioneered by Brooke (1996).

The survey also asked about the perceived completeness of the patterns covered in the AMPC
and the completeness of pattern descriptions:

• "The level of detail of pattern and pattern candidate descriptions is adequate for the problem
at hand."

• "There is no unnecessary information in the pattern catalog."

• "The pattern catalog covers all major topics of API management."

The last statement, aiming to evaluate the completeness of the patterns covered in the AMPC,
additionally allowed for text so that participants could list missing topics.

Also, we included a statement to evaluate the correctness of the AMPC:

• "The patterns correctly capture the essence of API management problems and solutions."

The second site asked the participants how likely they would recommend the AMPC to colleagues
to calculate the NPS. Reichheld (2003) presents the NPS as a measure to analyze customer
loyalty, which has been shown to correlate with a company’s growth. A customer has to rate the
question "How likely is it that you would recommend (company X) to a friend or colleague?" on
a scale from 0 (very unlikely) to 10 (very likely). The respondents are then grouped into three
categories. First, respondents rating the question 9-10 are promoters. Promoters are customers

128

7. Evaluation of the API Management Pattern Catalog (AMPC)

who are satisfied to a degree that they vouch for the company with their reputation by referring
it to others. Next, respondents rating the question 7-8 are passively satisfied. Finally, the
detractors are the respondents that answer the question with 0-6. The NPS is calculated by
subtracting the percentage of detractors from the percentage of promoters. Companies can use
the NPS to track changes in consumer loyalty over time, between regions, or between themselves
and competitors. We used the NPS as an indicator of reader-perceived comprehensibility of the
AMPC.

Next, the survey used two open questions to identify positive aspects and improvement potentials
for the AMPC. We formulated the questions as open as possible to allow for broad feedback.

The fourth site dived deeper into the applicability of the AMPC. On the one hand, the survey
asked the participants how they would use the AMPC in practice. Additionally, it asked the
participants if they use or know any other structured approaches for API management. The
later question aimed to identify additional approaches we could use to enrich the AMPC. Also,
in chapter 1.1, we claimed that currently, there are no holistic API management approaches in
research or practice. Consequently, the question also aimed at validating this statement.

The next page aimed to collect participant information to determine the competency and hetero-
geneity of participants. The questions asked about the participant’s role and industry affiliation
of their organization1. In addition, we inquired about the participants’ professional experiences
in IT in general as well as with integrating and providing public Web APIs.

Finally, on the last page of the survey, the participants could provide any final remarks they
wished to communicate before submitting the survey.

None of the questions in the survey were mandatory to answer to advance to the next question.
Hence, participants could leave a question unanswered if they were unsure or did not want to
provide any information on a specific topic. The rationale behind this decision was that we
did not want participants to abandon the survey if they did not wish to answer a question.
Moreover, the participants were able to terminate the survey at any time. However, we only
analyzed the responses of participants who finished the survey.

The survey used the Unipark2 survey software.

7.1.3. Survey Participant Acquisition

We contacted 52 IT professionals comprising mainly industry contacts of the Software Engineer-
ing for Business Information Systems (sebis) chair that previously participated in research on
API management. In addition, we contacted professionals that the researcher and author of this
dissertation met during her professional life, especially Enterprise Architects.

We used emails to contact the professionals. The emails contained the AMPC as an attachment
and the link to the survey. Since the AMPC is very long, we told the professionals that it is
sufficient to check the overview of pattern relations and skim one pattern before answering the

1We had to exclude a question about the organizations’ size due to a mistake in the drop-down that did not
allow the participants to select a specific range of employees.

2https://www.unipark.com/umfragesoftware-bestellen/

129

https://www.unipark.com/umfragesoftware-bestellen/

7. Evaluation of the API Management Pattern Catalog (AMPC)

survey. The goal of this measure was to increase the likelihood of participation. Also, we asked
the participants to forward the request to colleagues interested in the AMPC and participation
in the survey.

We contacted the first professionals starting on 08.07.2023. We sent a reminder after three weeks
to most participants, excluding those who confirmed that they already answered. The survey
closed after eight weeks on 03.09.2023.

7.2. Survey Participants

Overall, 18 participants finalized the survey. In the following, we present an overview of the
participants’ characteristics to evaluate the suitability and relevance of the sample.

First, Fig. 7.1 presents an overview of the survey participants’ roles. Six of the participants were
Enterprise Architects, thus forming the largest group. In addition, four Software Developers,
two Heads of IT, two Technical Architects, and one Solution Architect participated in the
evaluation. Moreover, three participants stated that they had roles not listed in the drop-down
of the survey. One of these participants is a Product Owner, and one is a Research Associate.
Most interestingly, one participant’s role is Business Model Type Officer for Services3, a role
created specifically to push service development in the respective organization. As a result,
overall, there is a bias towards architecture roles. However, architects are likely involved in API
design and management, thus forming a critical stakeholder group.

Figure 7.1.: Survey participants’ roles.

Another goal of the AMPC is to present patterns for organizations that aren’t relatively young
tech giants. Therefore, we present an overview of the industry affiliation of the participants

3The participant provided the role name in German as "Geschäftsmodelltypverantwortlicher Services".

130

7. Evaluation of the API Management Pattern Catalog (AMPC)

at the time of the survey in Fig. 7.2. As illustrated, the participants were primarily employed
in the financial/insurance and the software services industry, with six and five participants,
respectively. Furthermore, two participants worked each in the electronics and automotive, and
one participant each in the transport and education/research sectors. Finally, one participant
chose the category "other" but did not specify the sector afterward. As a result, there is a
tendency towards more digital industry sectors.

Figure 7.2.: Survey participants’ industry sector affiliation.

Next, we analyzed the experience of participants to evaluate their competency. First, we asked
the participants how long they professionally worked in IT. As visible in Fig. 7.3, the participant
with the least experience worked in IT for five, and the participant with the most experience
worked in IT for 27 years. The average professional IT experience across the sample is 14 years,
and the median is 13.5 years.

Finally, we asked the participants about their experience consuming or providing Web APIs
across organizational boundaries. As visible in Fig. 7.4, 11 participants had experience in both
providing and consuming public, partner, and group Web APIs. In addition, four participants
stated that they integrated Web APIs but do not have experience proving them. In compar-
ison, one participant had experience providing public, partner, and group Web APIs but not
consuming them. Only two participants lacked experience with either using or providing Web
APIs across organizational boundaries. While these participants could not give any substanti-
ated feedback on the content of the patterns, they reviewed the AMPC from the perspective
of a novice trying to understand the topic of Web API management. Therefore, these partic-
ipants could provide valuable feedback on the comprehensibility and usability of the AMPC.
Consequently, we included all survey responses in the evaluation.

Overall, the sample represents experienced IT practitioners. The sample is biased toward En-
terprise Architects and Software Developers, which are roles heavily involved in consuming and

131

7. Evaluation of the API Management Pattern Catalog (AMPC)

Figure 7.3.: Survey participants’ professional IT experience in years.

providing Web APIs. In addition, many participants were employed in the insurance and finan-
cial services or software services industry, i.e., digital sectors. Finally, most participants have
experience with both or either consuming or providing Web APIs. Hence, the sample is relevant
and suitable to evaluate the AMPC.

7.3. Evaluation Results

In this section, we first present quantitative evaluation results, followed by qualitative results.

7.3.1. Quantitative Results

Fig. 7.5 gives an overview of the quantitative evaluation results.

First, we asked the participants to indicate if the structure of the AMPC is easily understandable.
As visible in Fig. 7.5, nine participants strongly agreed, and six agreed. However, one participant
was neutral, and two participants even disagreed.

The next two questions aimed to evaluate if the level of detail of the AMPC meets the readers’
needs. The evaluation results show that eight participants strongly agreed, and another eight
agreed that the AMPC has an adequate level of detail. In addition, two participants rated the
statement as neutral. Moreover, three participants strongly agreed, and nine agreed that the
AMPC does not hold any unnecessary information. Four participants were neutral towards the
statement. However, two participants disagreed.

Next, the participants rated their need for the support of an author to use the AMPC. As Fig. 7.5

132

7. Evaluation of the API Management Pattern Catalog (AMPC)

Figure 7.4.: Survey participants’ experience consuming and providing Web APIs.

shows, three participants strongly disagreed, while nine disagreed. Three more participants were
neutral towards the statement. However, three participants agreed, thus indicating that they
desire support from an author.

Furthermore, we asked the participants if the visual design of the AMPC meets their expec-
tations. According to Fig. 7.5, seven participants strongly agreed, and six agreed with the
statement. Three more participants were neutral towards the visual design of the AMPC, and
two stated that the AMPC’s visual design did not meet their expectations.

Aiming to evaluate the applicability of the AMPC, the participants had to rate if the AMPC
provides useful patterns that they can apply in their organization. As a result, six participants
strongly agreed, and ten agreed to the statement. In addition, two participants were neutral
toward the statement.

Also, we quantitatively evaluated the correctness of the AMPC by asking the participants if
the patterns correctly capture the essence of API management problems and solutions. A large
majority of twelve participants agreed with the statement, and four more strongly agreed. Two
participants were neutral.

Another goal of the survey was to evaluate the completeness of the AMPC. As visible in
Fig. 7.5, four participants strongly agreed, and nine agreed that the AMPC covers all major
topics. However, two participants were neutral, and two more disagreed, i.e., were missing
topics in the AMPC. In addition, one participant did not rate the statement at all.

Next, we used the NPS (Reichheld, 2003) as an indicator of the comprehensibility and usability
of the AMPC. As visible in Fig. 7.6, ten respondents rated the likelihood of recommending the
AMPC to colleagues with a nine or ten. Thus, they are promoters. Promoters are customers
who are satisfied to a degree that they vouch for a company with their reputation by referring

133

7. Evaluation of the API Management Pattern Catalog (AMPC)

Figure 7.5.: Quantitative results of the AMPC evaluation.

it to others (Reichheld, 2003). In addition, seven participants were passively satisfied since they
chose values seven or eight. Finally, one participant rated the question below seven and is,
therefore, a detractor. Since the NPS is calculated by subtracting the percentage of detractors
from the percentage of promoters, the NPS is 50%.

However, we do not know the NPS for a competing API management approach. Hence, we have
no value to which we can compare the AMPC’s NPS. Also, we applied a slightly wrong scale4,
further diminishing the meaningfulness of the result. Nevertheless, the author argues that the
high NPS hints at the increased interest and perceived value of the AMPC for practitioners.

7.3.2. Qualitative Results

Next, we evaluate the qualitative feedback provided by the survey participants. To enable
reproducibility and transparency of the results, we assigned an ID to each survey participant, i.e.,
P1-P18. We used five open questions to elicit feedback. These open questions were formulated
very openly, thus accommodating different perspectives5. The following presents the positive

4We used a scale from 1-10 in the survey instead of 0-10 as specified in Reichheld (2003).
5Due to the openness of the questions, in some cases, participants responded to one question across various

response fields. For example, instead of listing missing API management topics when asked for missing
topics, several participants mentioned missing API management topics when asked for improvement potentials.
Therefore, we analyzed the responses across all response fields for each question.

134

7. Evaluation of the API Management Pattern Catalog (AMPC)

Figure 7.6.: Results to the question if a survey participant would recommend the AMPC to
colleagues forming the basis to calculate the NPS (Reichheld, 2003).

aspects and improvement potentials of the AMPC. Also, we present additional topics that
the AMPC should cover according to the survey responses. Afterward, we identify activities
the AMPC could support in an organizational setting. Finally, we present API management
approaches in use in the participants’ organizations. If suitable, we include exemplary survey
responses6.

Positive Feedback on the AMPC

We asked the participants to describe what they liked about the AMPC. Fourteen participants
provided answers to the question. In addition, four participants left positive feedback as a final
remark on the last site of the survey. We grouped the responses into seven categories. We detail
each category in the following.

Makes Pattern Relations Explicit. Several participants praised the relation of patterns and
the visual presentation of these relations (P1, P4, P8, P9, P13, P10). For example, P8 states:

"Clearly laid out sections for each pattern type, excellent visual showing of interrela-
tions between patterns and types." (P8)

Overall, three participants liked the clear relation of patterns (P4, P8, P9, P13), two partic-
ipants liked the color coding (P9, P10), one participant highlighted the different entry points

6We quote the participants’ responses but made minor adjustments that do not change the responses’ mean-
ing to improve readability, including fixing spelling errors, adjusting the case sensitivity, and fixing wrong
punctuation.

135

7. Evaluation of the API Management Pattern Catalog (AMPC)

for stakeholders (P9), and one participant positively mentioned the categorization by domains
(P16). Also, the overview of related patterns can inspire API providers (P1, P4).

Addresses Real-World API Management Problems. Several participants pointed out
that the pattern catalog addresses real-world API management problems (P2, P4, P5, P6). For
example, P4 states:

"Various patterns we use in our software ecosystem are listed and are described quite
applicable with context, concern, and many more, as well as providing relations to
similar patterns." (P4)

The patterns identified in ongoing projects or initiatives were expected to provide a starting point
for readers to discover further information on their implementation (P4, P5) and potentially
useful related patterns (P4).

Supports Communication and Collaboration. Two participants mentioned the usefulness
of patterns in communicating and collaborating with internal (P2, P6) and external stakeholders
(P6). P2 argues:

"Having patterns already applied in our API gives me more context and helps me to
better communicate to internal stakeholders about their relevance" (P2)

Also, patterns are deemed to help identify responsible or knowledgeable persons to solve API
management problems (P16).

Broad Coverage of API Management Topics. P6 and P8 positively mentioned the AMPC
covering various API management topics. As P8 states:

"Very comprehensive and thorough examination of the field. Truly amazing work in
gathering and organizing this pattern catalog. Will certainly be invaluable as reference
material." (P8)

However, P12 argues that it is incomplete and doesn’t have to be complete at this point in
time. Instead, the AMPC is a starting point for discussing API management topics that needs
to evolve over time.

Highlights Organizational and Process Related Aspects. Participants liked that the
AMPC focuses on organizational and process-related aspects in addition to technical patterns
(P10, P11). For example, P11 states:

"It shows, besides the technical pattern, the often overlooked non-technical, especially
organization requirements for API management like testing, monitoring but also hav-
ing a product owner and support team for it." (P11)

Furthermore, P15 highlighted the importance of monitoring and testing in API management.

Makes Conflicts and Consequences Explicit. Moreover, two participants mentioned the
value of the explicitly laid out forces and their resolution in the consequences section (P13, P14).
As P14 states:

136

7. Evaluation of the API Management Pattern Catalog (AMPC)

"I found it quite helpful that conflicts are clearly shown. It helps to elaborate the
impact when choosing between the pattern options." (P14)

Provides Implementation Guidance. P5 mentioned the usefulness of the section ‘Imple-
mentation Hints’ providing implementation suggestions. Similarly, P1 highlighted the usefulness
of the ‘Known Uses’ section to guide pattern implementation:

"When we search for an implementation for a pattern, we can look at the Known
Uses to see how other companies approached this. [...]" (P1)

Finally, two participants (P1, P4) left encouraging and thanking remarks on the last site of the
survey. One such a remark was:

"Good luck and thank you, it was an interesting study!" (P1)

Improvement Potentials

We asked the participants if there are any improvement potentials for the AMPC. Eleven out
of eighteen participants submitted responses to this question. The improvement potentials span
seven aspects detailed in the following.

Access, Navigation, and Searchability. The usability of the AMPC is limited by its current
form as a Portable Document Format (PDF) document (P4). Instead, the pattern catalog would
profit from a format that allows for easy access (P10), searchability (P10, P16), hiding and
filtering (P9), and links between the pattern overview and the respective pattern descriptions
(P4, P8, P9). Such features would reduce the cognitive load for readers of the AMPC (P9).
The authors could realize these features by presenting the AMPC as an Hypertext Markup
Language (HTML) document (P4).

Completeness. Several participants mentioned topics missing in the AMPC (P11, P12). We
will detail these topics in Section 7.3.2.

Also, practice-driven best practices should find their way into the AMPC, as P11 stated:

"The realization of APIs with API management software and best practices derived
from API management tool providers (like Mulesoft or Axway) is missing" (P11)

API Maturity. The AMPC does not consider different levels of an API’s maturity. Therefore,
P15 requested:

"For the implementation part, I would like to see more explicit the evaluation of the
maturity of the API as a process (i.e., going from chaotic to production)." (P15)

Tangible Real World Examples. While P1 perceived the ‘Known Uses’ section as useful, P5
asked for more tangible real-world examples, i.e., states:

"Some more tangible real-world examples of the API pattern would make it easier to
relate." (P5)

137

7. Evaluation of the API Management Pattern Catalog (AMPC)

Regular Updates. The patterns require regular updates (P10). Hence, the authors of the
AMPC must design and communicate the approach to regularly updating the AMPC. At the
same time, the AMPC’s authors need to make changes to patterns over time transparently
(P16).

Scoping. P12 argued that the AMPC should delineate different software communication pat-
terns and clarify which ones are in the scope of the AMPC. Such clear scoping would increase
the readers’ understanding.

Domain assignment. Finally, P16 questioned the definition of domains in the overview of
related patterns. Moreover, P16 requested a clear differentiation of domain and standard pat-
terns.

Missing Topics

The survey participants reported the following API management topics as missing in the
AMPC:

• Security (P3, P11)

• Payment (P11)

• Realization of APIs with API management software (P11)

• Communication patterns other than request/response, e.g., publish/subscribe (P12)

• Contract-first and consumer-driven contracts (P12)

• API maturity evaluation (P15)

Furthermore, two participants proposed enriching pattern descriptions with additional informa-
tion. First, P11 proposed to add information derived from best practices put forward by API
management tool providers. Secondly, P13 asked to add industry-standard best practices to the
pattern descriptions.

Nevertheless, two participants indicated that the AMPC covers the public API management
domain well (P6, P8). For example, P8 stated:

"Very comprehensive and thorough examination of the field." (P8)

Finally, P12 commented that the AMPC needs to evolve over time to become complete:

"As stated in the introductory chapters: It fills a gap. In this regard, it is not
necessary to be complete in the sense of a pattern language. The catalog may serve
as a starting point for discussions, and it may be amended over time." (P12)

Application Situations

We wanted to identify situations in which the readers can apply the AMPC in their organizations.
Hence, the survey asked the participants to "[...] describe concrete situations, issues, or occasions

138

7. Evaluation of the API Management Pattern Catalog (AMPC)

in which the pattern catalog would be useful". Thirteen of the eighteen participants provided
feedback as text. Overall, we derived six organizational activities that the AMPC could support
from the responses. We present each of these activities in the following.

Design of a New API. The participants confirmed the usefulness of the AMPC during the
design and implementation of new APIs (P2, P6, P10, P13). Several participants focused on
the AMPC’s value when offering a previously internal API product externally (P11, P14). Also,
the AMPC supports the design of APIs as products (P5, P6).

Moreover, the overview of patterns (Fig. 6.5) can inspire the design of APIs (P1). In addition,
the AMPC supports prioritizing backlog items during API implementation (P2). Finally, P1
states that the ‘Known Uses’ section helps review how other companies implement a pattern.

Improvement of an Existing API. The AMPC can improve the management of an already
exposed APIs. As P11 stated, the AMPC is useful:

"to identify gaps of a given API-based product/approach in order to achieve mone-
tarization (or simply usage/traffic) goals" (P11)

Design of an Internal API Marketplace. One participant pointed out the applicability of
the AMPC for creating an internal API marketplace (P8).

Definition of Roles and Responsibilities. The AMPC can help define clear roles and
responsibilities within (P6) and between organizations (P9, P12). As P9 stated:

"Once there is an opportunity for collaboration across different organizations, clearly
defined roles and patterns to follow can be of support" (P9)

API Management Training. The AMPC can be used to educate employees about APIs (P2).
Beginners will profit from the overview of patterns (P4). Moreover, the link to external patterns
is useful to gain further insights into API management (P4).

Vendor and Technology Analysis. The AMPC can support evaluating vendors of new capa-
bilities (P8). Further, the AMPC can help ensure that organizations use only proven technologies
(P10, P16).

However, P10 claimed that the usefulness of the AMPC is contingent on training:

"I think that it is crucial to train the organization what it means to use API pattern
catalog - as well as about the benefit." (P10)

API Management Approaches in Use

In addition, we asked the participants if they know or use any structured approaches to facilitate
API management in their organizations. Ten out of eighteen participants responded to the
question. Four participants (P2, P10, P13, P8) stated that they currently do not use a structured
approach to API management. Furthermore, two participants indicated they use a proprietary
structured approach that is still maturing (P5, P6). Finally, P9 answered that they use technical

139

7. Evaluation of the API Management Pattern Catalog (AMPC)

standards like Swagger7 and GraphQL8 (P9). Similarly, P11 used well-known API management
software like MuleSoft9 or Axway10 to guide their API management. P12 stated that their
organization uses API-first design and consumer-driven contract testing. Finally, P15 reported
using a Value Stream Management product that discovers existing services’ APIs and manually
tags them as internal or external.

As a result, while some participants used no structured API management approach, others used
technical standards, API management software, or even designed proprietary approaches. How-
ever, no participant claimed to apply a mature, holistic approach explicitly covering technical
and social aspects of API management along the whole lifecycle of an API. Also, P8 emphasized
the usefulness of a structured approach.

7.4. Discussion

The goal of a design science evaluation is to demonstrate the "utility, quality, and efficacy of a
design artifact" (Hevner et al., 2004, p. 85). Design science researchers can do so by evaluating
relevant quality attributes derived from the business environment in which it should be applied
(Hevner et al., 2004). Since the AMPC aims to support IT professionals in organizational
settings in API management activities, we evaluate the applicability, comprehensibility/usability,
completeness, and correctness of the AMPC. Furthermore, we reviewed the validity of the
research gap this thesis aims to address.

In the following, we summarize the evaluation results for each of these dimension.

Applicability

First, we summarize the evaluation results that indicate if readers can apply the contents of
the AMPC in real-world settings, i.e., if the patterns are useful in supporting their professional
day-to-day work.

First, all participants agreed or were at least neutral towards the statement that the AMPC
provides useful patterns that they can apply in their organization. Moreover, the participants
repeatedly mentioned that a strength of the AMPC is that it addresses real-world API man-
agement problems (P2, P4, P5, P6). Nevertheless, providing more real-world examples would
increase the AMPC’s relevance (P5). Also, the participants deemed the provided implementa-
tion guidance (P1, P5) and the explicit conflicts and consequences (P13, P14) as useful. The
focus on organizational and process-related aspects besides technical aspects was also positively
highlighted (P10, P11). Finally, the patterns were expected to help support communication and
collaboration with internal and external stakeholders (P2, P6).

In addition, the evaluation participants named six API management activities that the AMPC

7https://swagger.io/
8https://graphql.org/
9https://www.mulesoft.com/de/

10https://www.axway.com/de

140

https://swagger.io/
https://graphql.org/
https://www.mulesoft.com/de/
https://www.axway.com/de

7. Evaluation of the API Management Pattern Catalog (AMPC)

could support. These activities span the design of new (P1, P2, P5, P6, P10, P11, P13, P14)
and improvement of existing (P11) public, partner, and group Web APIs. Also, even though
outside scope, the AMPC can support the creation of internal marketplaces (P8). In addition,
the AMPC could support the definition of roles and responsibilities in API initiatives (P6, P9,
P12), API management training (P2, P4), and vendor and technology analysis (P8, P10, P16).

Thus, generally, the participants classified the AMPC as useful and applicable in real-world set-
tings. However, we derived these findings from a survey with professionals judging the AMPC
instead of actually applying it in real-world settings. Therefore, future work should comprise
action research using the AMPC to guide each of the activities mentioned above in real organi-
zational settings.

Comprehensibility/Usability

Next, we summarize the evaluation results on the AMPC’s comprehensibility, including its
usability. Hence, this section also takes into account the style (Hevner et al., 2004) and form of
the AMPC.

First, 15 participants agreed that the structure of the AMPC is easy to understand, while two
disagreed. Similarly, 12 participants stated that they do not need the support of an author to
use it, while two said they would need an author’s help. However, these participants did not
indicate why they would require such support. Also, the NPS of 50% suggests an increased
usability and perceived value of the AMPC.

Furthermore, 13 participants agreed that the AMPC’s visual design did meet their expectations.
Especially the visual presentation of the relations between patterns was perceived positively (P1,
P4, P8, P9, P10, P13, P16). Nevertheless, two participants were not satisfied with the visual
design of the AMPC. This might be due to the AMPC’s medium. Several participants (P4, P8,
P9, P10, P16) complained about access, navigation, searchability, and filtering of the AMPC
due to its current form as a PDF file. More interactive formats, e.g., presenting the AMPC as
an HTML document, would improve its usability.

Overall, the participants evaluated the AMPC’s usability as primarily positive. However, there
are also some critical voices, mainly pertaining to AMPC’s current form as PDF.

Completeness

We wanted to evaluate if the AMPC covers all relevant API management topics that a practi-
tioner faces. In addition, completeness pertains to the coverage of information in each pattern
description.

As described in Chapter 6, we derived the patterns of the AMPC from 12 cases describing API
initiatives. We applied the rule of three (Coplien, 1996) to decide if a pattern candidate is a
pattern, i.e., we need to observe a pattern candidate in at least three settings for it to become
a pattern. Hence, the data basis to derive patterns was limited.

Therefore, several evaluation participants named topics missing in the AMPC. These topics cover

141

7. Evaluation of the API Management Pattern Catalog (AMPC)

security (P3, P11), payment (P11), use of API management software (P11), other communication
patterns besides messaging (P12), contract-first and consumer-driven contracts (P12), and API
maturity evaluation processes (P15). These topics span technical as well as collaborative aspects
of API management. Moreover, respondents requested to include tool providers and industry-
standard best practices in the AMPC (P11, P13). This finding supports the finding of Mathijssen
et al. (2020), stating that API management is an organizational function often realized through
an API management platform. Finally, one participant requests an additional differentiation
between standard and domain patterns (P16).

Nevertheless, the quantitative results also show that 13 participants agreed that the AMPC is
complete, while only two participants disagreed. In addition, one participant (P8) highlighted
the broad coverage of API management topics in the AMPC. Finally, one participant also argues
that the AMPC would profit from more precise scoping (P12). Hence, while the AMPC seems
to cover many important topics of API management, it is not a complete collection of API
management best practices.

Next, we dive into the completeness of pattern descriptions. Overall, 16 participants agreed
that the AMPC presents an adequate level of detail. Similarly, 12 participants agreed that the
AMPC does not hold any unnecessary information. Nevertheless, two participants disagreed
with this statement. Hence, we assume the level of detail of the pattern descriptions mostly
meets the readers’ needs, potentially even holding too much information.

In summary, the AMPC does not present a complete pattern language of API management
activities but provides a starting point that requires extension, refinement, and regular updates
(P10, P12, P16). While the pattern catalog is not complete with regards to the patterns, the
individual pattern descriptions meet the readers’ information needs and are potentially even a
little too detailed.

Correctness

Another goal of the evaluation is to judge if the AMPC’s contents are correct. Since the AMPC
describes best practices, it is not possible to evaluate the correctness using formal metrics.
However, the AMPC derives the patterns from the descriptions of real-world API initiatives.
In addition, all survey participants agreed or were neutral toward the correctness of AMPC.
Therefore, we assume that most contents of the AMPC capture API management practices and
their relations correctly.

Research Gap

In Section 1.1, we stated that to the best of the author’s knowledge, currently, there is no
holistic approach to API management in research or practice. To ensure that we did not miss
an approach, we asked the survey participants if they know or use any such approach in their
organization. Most participants did not respond (P1, P3, P4, P7, P14, P16, P17, P18) or
responded with "no" (P2, P8, P10, P13). In addition, two participants mentioned applying
partial approaches to API management, e.g., API-first design (P12) or automated API discovery

142

7. Evaluation of the API Management Pattern Catalog (AMPC)

(P15). Two more participants use technical standards (P9) and let API management software
guide their API management (P11). Finally, two participants use a proprietary approach, that
is still maturing (P5, P6). Sadly, they did not provide any additional information on what the
approach entails.

Hence, no participant knew or applied a mature, holistic, and structured approach to API man-
agement. Thus, the evaluation results confirm the lack of a recognized holistic API management
approach explicitly covering technical and social aspects of API management along the whole
lifecycle of an API.

7.5. Summary

In the prior chapter, we detailed the iterative design of the AMPC. This chapter aimed to
evaluate the AMPC concerning its applicability, comprehensibility/usability, completeness, and
correctness from a practitioner’s viewpoint. We contacted 52 IT professionals and asked them
to participate in an anonymous online survey to achieve this goal. Overall, 18 practitioners
responded to the survey. The sample was dominated by Enterprise Architects and Software
Developers as well as participants employed in the insurance and financial services and software
services industry. Also, the sample represented experienced IT practitioners.

The analysis of the survey responses showed that, generally, the participants classified the AMPC
as applicable in real-world settings. Moreover, the participants named six activities that the
AMPC could support. These activities span the design of new (P1, P2, P5, P6, P10, P11,
P13, P14) and improvement of existing (P11) public, partner, and group Web APIs. Also, even
though outside scope, the AMPC could enable the creation of internal marketplaces (P8). In
addition, the AMPC could support the definition of roles and responsibilities in API initiatives
(P6, P9, P12), API management training (P2, P4), and vendor and technology analysis (P8,
P10, P16).

The survey participants evaluated the AMPC’s comprehensibility and usability as primarily
positive. However, a downside is the current form as PDF, which limits its searchability and
navigability.

Concerning completeness, the survey respondents mentioned several topics missing in the AMPC,
for example, best practices concerning security and payment. However, the AMPC is also not
meant to be a complete pattern language at this point in time. Instead, it is a starting point
for designing a holistic approach to API management that requires extension, refinement, and
regular updates in the future. On the other hand, the individual pattern descriptions met the
readers’ information needs and are potentially even too detailed.

Also, the survey participants perceived the contents of the AMPC as primarily correct.

Finally, we asked the participants if they know or currently use a structured approach to API
management in their organization. Two participants stated that they are using a proprietary ap-
proach that is still maturing. The other participants did not know or apply a holistic, structured
approach to API management. Thus, the evaluation results confirm the lack of a recognized

143

7. Evaluation of the API Management Pattern Catalog (AMPC)

holistic API management approach explicitly covering technical and social aspects of API man-
agement along the whole lifecycle of an API.

Overall, a limitation of the survey evaluation is that it relies on expert opinions. Thus, fu-
ture work should comprise further evaluation of the AMPC based on its actual application in
organizational settings.

144

CHAPTER 8

Conclusion and Future Work

Web Application Programming Interfaces (APIs) are the de facto standard for making data and
functionality accessible across organizational boundaries. Using public, partner, and group Web
APIs enables API providers to realize new business models (Evans and Basole, 2016; Basole,
2016, 2019), create platforms (Ghazawneh and Henfridsson, 2010, 2013; Eaton et al., 2015;
Karhu et al., 2018; de Reuver et al., 2018), integrate partners efficiently (Hagel III and Brown,
2001), and achieve compliance (Bondel et al., 2021a; ISO 20077-1; ISO 20078-1; ISO 20080).
However, API provision is currently dominated by relatively young digital organizations in the
US (Huhtamäki et al., 2017). Thus, more established organizations in traditional industry sectors
located in Europe want to tap into the potential of becoming API providers.

Successful Web API provision requires careful design (Yoo et al., 2010) and management. Since
Web APIs used across organizational boundaries are resources at the interface between the API
provider team and stakeholders inside and outside the provider organization, API management
is an inherently collaborative organizational function. Therefore, this dissertation aimed to
identify API management best practices and patterns focusing on knowledge transfer and col-
laboration for different types of API provider organizations, including established organizations
in traditional sectors located in Europe.

To the best of the author’s knowledge, no pattern collection explicitly focusing on API manage-
ment patterns exists. Therefore, we identified API management patterns in API design, service
design, middleware design, object-oriented software design, and software architecture pattern
collections. The analysis yielded that existing API management patterns focus mainly on the
technical solutions to API management challenges. These patterns often concern API testing,
security, performance, monitoring, and evolution.

In settings with API providers and consumers belonging to different organizations, the API
provider has to transfer knowledge about an API to potentially unknown, heterogeneous, and

145

8. Conclusion and Future Work

distributed API consumers with different goals. Hence, this dissertation’s first significant contri-
bution is identifying and evaluating best practices for code examples in API provider-generated
documentation.

First, we identified 48 best practice candidates for code examples in API documentation. During
the process, we realized that the effect of code examples on API consumer productivity and
satisfaction depends not only on the knowledge that a code example transfers but also on its
form. Moreover, code examples are expected to transfer knowledge about API execution facts
and usage patterns. Also, API consumers look for information about documentation quality to
judge an example’s reliability and manage their expectations.

Next, in a case study, we evaluated a subset of eight best practice candidates for code examples
in public, partner, and group Web API documentation. As a result, we validated six best prac-
tice candidates as actual best practices as they positively affected the developers’ productivity
and perceived usability. Moreover, we observed that low-quality code examples in Web API doc-
umentation force developers to use a trial-and-error approach. Such a trial-and-error approach
is typical for opportunistic developer personas but can hamper systematic developer personas’
productivity and perceived satisfaction. Furthermore, the effect of specific best practices or best
practice candidates for code examples in public, partner, or group Web API documentation
depends on the context in which they are applied.

This dissertation’s second and significant contribution is the design and evaluation of the AMPC.
The AMPC presents 22 related patterns, 37 pattern candidates, and nine stakeholders derived
from 14 case descriptions. We enriched the pattern descriptions with information from scientific
and practice-driven literature and improved the pattern form with feedback from the scientific
pattern community. Finally, we evaluated it from a practitioner’s perspective using a survey.
The practitioners generally perceived the AMPC as applicable to real-world settings, compre-
hensible, usable, and correct. However, it is not complete at this point in time. Instead, it
provides a starting point for designing a holistic approach to API management that requires
extension, refinement, and regular updates in the future. Hence, future work should identify
further patterns and evaluate the application of existing patterns in real-world settings. Also,
the documentation of future changes to the pattern catalog will allow researchers to create
knowledge on the evolution of the Web API management discipline.

Furthermore, we made several observations during the design of the AMPC. First, API con-
sumers often discover and try out Web APIs through software artifacts controlled by the API
provider team, i.e., the developer portal. Nevertheless, API consumers often want personal con-
tact with API providers before and during API integration. Also, collaboration between the API
provider team and other internal stakeholders can be challenging, e.g., in some cases, the API
provider team and the backend teams prioritize issue resolution affecting Web APIs differently.
In addition, the API provider has to treat the API as a product with a lifecycle. Finally, the
strategic relevance of provided functionality and the structure of a consumer organization seem
to influence the applicability of patterns significantly.

146

8. Conclusion and Future Work

8.1. Answers to Research Questions

In the following, we summarize the answers to the research questions introduced in Chapter 1.

RQ1: What is the current state of research on API management?

RQ 1.1 How is API management defined in academia?
As previously stated by Mathijssen et al. (2020), and to the best of the author’s
knowledge, in research, no framework or overview provides a holistic view on API
management. Also, no comprehensive and widely accepted definition of API manage-
ment exists. Hence, we presented a working definition of API management and an
API management lifecycle in Section 2.4. The definition specifies API management
as an organizational function that comprises all activities of an API provider (team)
aiming to provide a successful Web API, including technical and social aspects.

RQ 1.2 What patterns for API management exist in research and practice?
An extensive review of pattern collections yielded the result that to the best of the
author’s knowledge, currently, no API management pattern collections explicitly fo-
cusing on API management exist. Instead, we analyzed API design including SOA and
microservices pattern collections, service design, middleware design, object-oriented
software design, and software architecture pattern collections to identify API manage-
ment patterns. Consequently, we identified API management patterns within these
pattern collections, but they focus primarily on technical solutions for API testing,
security, performance, monitoring, and evolution.

RQ2: What are best practices for transferring knowledge to API consumers using code
examples in official public, partner, and group Web API documentation?

RQ 2.1 What are best practice candidates for code examples in official public, partner, and
group Web API documentation?
In settings where the consumers do not have direct access to the Web API developer
team, an approach to knowledge transfer is the provision of documentation. An anal-
ysis of 17 research papers and 13 expert interviews yielded 48 best practice candidates
for code examples in Web APIs documentation described in Chapter 4. Moreover, we
categorized these best practice candidates according to the type of knowledge they
aim to transfer or the form they prescribe. Also, we derived several implications from
observations made while collecting the best practice candidates.

147

8. Conclusion and Future Work

RQ 2.2 What are validated best practices for code examples in official public, partner, and
group Web API documentation?
Drawing on the list of identified best practice candidates in Chapter 4, we chose eight
candidates with little or no support in Web API-specific literature or contradicting
statements about their impact on the API consumers’ productivity and perception.
As detailed in Chapter 5, we used a case study with 12 professional developers using
two different documentation versions to solve tasks using a GraphQL API. As a result,
we confirmed six best practice candidates to be actual best practices. Moreover, we
observed that the applicability of best practices seems to depend on the API’s context,
e.g., the learning strategies and domain knowledge of the developers, the complexity
of the task, or the complexity of the API itself.

RQ3: What are API management patterns for public, partner, and group Web APIs
focusing on collaboration?

RQ 3.1 Who are the stakeholders involved in public, partner, and group Web API manage-
ment?
We identified the stakeholders by collecting and analyzing 14 cases in the context of
a design science research approach (Hevner et al., 2004; Hevner, 2007). We identi-
fied nine stakeholders, comprising stakeholders directly responsible for or interacting
with Web API software artifacts, i.e., the backend provider, API provider, API con-
sumer, and end user. Further stakeholders involved in API management are the upper
management, legal, sales & marketing, customer support, and integration partners.

RQ 3.2 What are API management patterns for public, partner, and group Web APIs with a
Focus on collaboration?
We created the AMPC using a design science research approach (Hevner et al., 2004;
Hevner, 2007) comprising the creation and analysis of a case base holding 14 cases
derived from interviews and publicly available data on API initiatives. We presented
a catalog of interrelated Web API management patterns, i.e., the API Management
Pattern Catalog (AMPC) published in Bondel and Matthes (2023) and summarized
in Sections 6.4.3. The pattern catalog presents 22 related API management patterns
and 37 pattern candidates. Each pattern explicitly describes involved stakeholders and
their interactions. Also, we collected feedback from the scientific pattern community
to improve the pattern form.

RQ 3.3 How do the identified API management patterns relate to existing pattern languages
and catalogs?
We related the patterns in the AMPC (Bondel and Matthes, 2023) to previously
identified API management patterns in other pattern collections as summarized in
Section 6.4.4. Many of these patterns document practices for the technical realization
of Web APIs. However, we also identified and related some patterns documenting
social, organizational, or business aspects of API management. Hence, the AMPC
links API management patterns from different sources.

148

8. Conclusion and Future Work

RQ 3.4 How do practitioners perceive the usefulness of API management patterns for public,
partner, and group Web APIs with a focus on collaboration?
As reported in Chapter 7, we used an online survey with 18 participants to collect
practitioner feedback on the applicability, comprehensibility, usability, completeness,
and correctness of the AMPC. The practitioners perceived the AMPC as applicable
to real-world situations, comprehensive, and correct. However, the usability of the
AMPC would benefit from a more searchable and navigable form. Also, the pattern
catalog is incomplete but provides a good starting point for developing a holistic and
flexible approach to API management.

8.2. Limitations

Even though we conducted all research presented in this dissertation with the highest possible
accuracy and conscientiousness, we recognize some limitations in retrospect. More precisely,
we identified limitations regarding the definition of best practices, the considered material, the
identification and evaluation of best practices for code examples in Web API documentation,
and the research methodology, design, and assessment of the AMPC. In this section, we describe
these limitations.

8.2.1. Limitations to the Identification of API Management Best Practices

According to Bretschneider et al. (2005), the identification of best practices relies on three condi-
tions. These conditions are that the case base must be complete, the cases must be comparable,
and a clear cause-and-effect relationship between practice and outcome must exist.

However, in the context of code examples in Web API documentation, it is impossible to identify,
collect, and analyze all official Web API documentation. Moreover, isolating a clear cause-and-
effect relationship between practices and outcomes is impossible.

Similarly, it is impossible to analyze all current public, partner, and group API initiatives to
identify API management best practices. Also, many influence factors impact the success of Web
APIs, making it impossible to isolate a clear cause-and-effect relationship between practices and
outcomes.

Hence, according to Bretschneider et al. (2005), the practices for code examples in Web API
documentation and the patterns in the AMPC do not meet the conditions of "best" practices
but are "good" practices instead. However, as described in Section 2.5.1, it is common to refer
to practices that have been observed to support the achievement of a specific goal in several
cases as best practices in industry. Hence, we adopted this convention.

8.2.2. Limitations of the Considered Material

Web API management across organizational boundaries is an inherently interdisciplinary topic
situated at the overlap among Information Systems Research (ISR), computer science, and

149

8. Conclusion and Future Work

management science. Moreover, Web API management touches on technical aspects like Web
API implementation, testing, and monitoring, as well as organizational and social aspects guiding
the collaboration with stakeholders inside and outside an API provider organization. Also,
knowledge about Web API management is spread across academic, practitioner-driven, and
vendor-driven information sources.

We executed extensive but partial searches focusing on API management concepts and stakehold-
ers, best practices, and patterns in computer science literature while writing this dissertation. In
addition, we applied forward and backward searches to identify further relevant literature. Fur-
thermore, we incorporated practitioner-written books, prominent practitioner-written articles,
and, where appropriate, information presented by API management platform vendors. Hence,
we do not claim completeness of the sources included in this dissertation.

8.2.3. Limitations to the Best Practices for Code Examples in Web API
Documentation

In the following, we detail limitations related to the identification and evaluation of best practices
for code examples in Web API documentation

Limitations to the Identification of Best Practice Candidates for Code Examples in Web
API Documentation

As described in Chapter 4, we conducted a thorough literature review and interviewed 13 pro-
fessional developers with several years of experience to identify best practice candidates for Web
API documentation.

Several limitations pertain to the number and characteristics of interviewed experts. First, we
conducted a limited number of 13 expert interviews. More interviews could have led to the
detection of further good practice candidates. Also, since all interviewees have several years
of experience, we were not able to capture the potential requirements of developers with little
or no expertise using code examples in Web API documentation. In addition, the interview
experts belonged to the same industry partner organization, which could introduce a bias. The
industry partner is a digital leader and provides several publicly accessible APIs. As a result,
API consumers from other organizations might have different expectations for Web API code
examples.

In addition, only one researcher executed the research approach, i.e., the analysis of the litera-
ture, the analysis of the interviews, and the categorization of the best practice candidates into
knowledge types and form.

Limitations to the Evaluation of Best Practices for Code Examples in Web API
Documentation

We used a case study to evaluate eight best practices candidates for code examples in Web API
documentation as described in Chapter 5.

150

8. Conclusion and Future Work

"Overall, we [...] recruited 12 participants for the case study. Due to the low number
of participants, the statistical validity of the findings is limited. Also, a larger sample
of case study participants might have led to additional findings. However, all [...]
case study participants are professional developers with several years of experience.
Therefore we believe the results of this study to present valid insights. Neverthe-
less, future studies should also investigate the validity of the best practices for API
consumers with less experience to take into account the varying levels of experience
that API consumers might have.

Moreover, all participants are employees of a single industry partner organization
that provides several publicly accessible Web APIs. Hence, these developers might
be more interested in API documentation than the average professional developer."

Another limitation arises from the Web API we chose for the case study. The Com-
pass API is embedded in a complex domain and is a GraphQL API. APIs of different
complexity and using other technology might have different documentation require-
ments."

– (Bondel et al., 2022)

Also, we selected participants for the case study that have not previously used the Compass
API. Therefore, results might not generalize to settings in which developers are already familiar
with a certain API.

Finally, looking at validation of each best practice candidate in Section 5.2.3, we need to em-
phasize that the evaluation results are based on indications. Since we apply all good practice
candidates simultaneously, we cannot determine any direct correlation, let alone causality, be-
tween the implementation of specific good practice candidates and the improvement of the API
consumers’ productivity or perceived usability (Bondel et al., 2022).

8.2.4. Limitations to the AMPC

In the following, we describe limitations related to the research methodology, design, and eval-
uation of the AMPC.

Limitations to the Research Methodology of the AMPC

We applied a design science approach according to Hevner et al. (2004) and Hevner (2007) to
design the AMPC as detailed in Section 6.1. According to Frank (2006), design science suffers
from four flaws and misconceptions.

The first flaw is a lack of accounting for possible future worlds. Instead of inspiring decision
makers and fostering innovation, design science focuses on reproduction and topics deemed
relevant by others.

Secondly, design science suffers from insufficient conception of a scientific foundation due to not

151

8. Conclusion and Future Work

reflecting on "basic ontological and epistemological assumptions" (Frank, 2006, p. 30). Hence, a
solid foundation for integrating and configuring the developed artifact is missing.

Thirdly, design science relies on a mechanistic world view with precisely defined requirements and
the ability of heuristic searches to produce satisfactory results. However, in reality, requirements
are contingent and heuristic searches do not necessarily yield satisfactory results.

Finally, Hevner et al. (2004)’s research paper indicates a lack of appropriate concepts for de-
scribing the IT-artifact, i.e., is lacking concepts for describing design decisions and features of
the artifact.

Especially the first flaw, i.e., the lack of accounting for innovation, is visible in the AMPC.
However, patterns aim to capture proven solutions to recurring problems by design (Gamma
et al., 1995; Buschmann et al., 1996).

Limitations to the Design of the AMPC

We designed the AMPC using a design science approach (Hevner et al., 2004; Hevner, 2007)
employing grounded theory methodology (Wiesche et al., 2017) to identify pattern candidates
and patterns from 12 cases as presented in Section 6.3.

There are several limitations pertaining to the case base. First, the case base holds a limited
number of 12 case descriptions derived from expert interviews. A broader case base could lead
to the detection of further pattern candidates and patterns. Also, analyzing additional cases
could validate and enrich already documented patterns (Bondel et al., 2021b).

Next, the case base primarily documents relatively new API initiatives of German, traditionally
non-digital organizations (Bondel et al., 2021b). While the AMPC aims to identify patterns
for different types of organizations, including German, traditionally non-digital organizations,
the identified patterns might be biased towards this type of organization. Consequently, we
used public information on the API initiatives of Twilio1 and Stripe2 to enrich the descriptions
of previously identified patterns. However, we did not analyze these public API initiatives to
identify additional patterns.

Furthermore, we derived the case base from interviews conducted over half a year between
August 2020 and January 2021. Hence, the patterns provide a screenshot of API management
practices at the time (Bondel et al., 2021b).

The data analysis was conducted by two researchers sequentially. The results of the first data
analysis influenced the data analysis of the second researcher.

Moreover, we enriched the pattern descriptions with knowledge from research and practitioner-
driven literature. Even though we conducted an extensive search to identify relevant pattern
languages and catalogs, we did not employ a structured approach. Similarly, we extensively
searched practice-driven API management literature. However, we included only publications
expressively concerned with API management.

1https://www.twilio.com/de-de
2https://stripe.com/de

152

https://www.twilio.com/de-de
https://stripe.com/de

8. Conclusion and Future Work

Finally, we refined the pattern form and pattern catalog structure by participating in shepherding
and a pattern writers workshop, a standard and long-standing approach for pattern improvement
in the pattern community (Coplien, 1996). While the shepherd and the peers who participated
in the writers workshop are IS researchers, they are not experts in the API management domain.
Hence, their feedback mostly pertained to the pattern and pattern catalog structure.

Limitations to of the Evaluation of the AMPC

As described in Chapter 7, we used an online survey to evaluate the applicability, comprehensi-
bility, usability, completeness, and correctness of the AMPC from a practitioner perspective.

Overall, 18 participants finalized the survey. Due to the limited number of participants, the
results are not statistically significant and their generalizability is limited.

Next, the survey mostly targeted contacts employed at enterprises seated in Germany with prior
contact to the sebis chair or the author of this dissertation in the context of API management
research. While participation was anonymous, the group of evaluation participants is skewed
towards the Enterprise Architect and Software Developer roles. Similarly, a majority of par-
ticipants are employed in the financial services/insurance and the software services industry,
i.e., rather digitized industry sectors. Finally, the sample represents experienced practitioners
with at least five years of professional experience in IT. Thus, the evaluation is missing the
perspective of novices.

Moreover, we chose an anonymous online survey to collect the evaluation data. We used a mix of
open and closed questions. A downside of anonymous online surveys using open questions is that
responses need interpretation and cannot be clarified in retrospect. Also, we applied a slightly
wrong scale for the NPS3. Hence, we use the calculated NPS only as a hint towards the increased
interest and perceived value of the AMPC for practitioners. Moreover, the responses have been
analyzed by one researcher who is also the an author of the AMPC, potentially introducing a
bias.

Also, we made minor changes to the AMPC after its evaluation but before its publication as
detailed in Section D. One such change was the removal of screenshots in the ‘Known Uses’
sections of each pattern description due to copyright concerns. Since the survey participants
praised the real-world examples and requested more examples, this might reduce the applicability
of the published AMPC (Bondel and Matthes, 2023) to real-world settings. However, we included
thorough descriptions and links to the respective websites.

Another threat to validity is that the evaluation relies on practitioner opinions and not on actual
observations. The survey participants formed these opinions after reviewing the AMPC. Also,
we communicated that it is sufficient to review the overview of related patterns (see Fig. 6.5) and
one pattern description to participate in the survey. The reasoning behind this statement was
to increase the number of responses, since the AMPC is a long document and IT professionals
have little time. Participants were informed that they could contact the author of the AMPC
to clarify possible questions if necessary.

3We used a scale from 1-10 instead of 0-10 as specified in Reichheld (2003).

153

8. Conclusion and Future Work

8.3. Future Work

According to Alexander et al. (1977), "[...] patterns are very much alive and evolving" (Alexan-
der et al., 1977, p. xv). Hence, we view the AMPC as a starting point for designing a holistic
approach to API management that requires extension, refinement, and regular updates in the
future. Therefore, we identify the following areas of future work:

• Inclusion of Further Materials:

– Extension of the case base: Future work should comprise collecting and incorporating
further knowledge into the AMPC by analyzing public information on public API ini-
tiatives and interviewing additional experts. The structured inclusion of more cases
enables the identification of new pattern candidates and patterns (Bondel et al.,
2021b). Also, new cases would allow for the validation of existing patterns (Bon-
del et al., 2021b) and, as mentioned during the writers workshop, the addition of
more known uses to existing patterns. Such known uses should describe concrete
applications of the patterns with as much detail as allowed to be published. The
additional cases should capture API initiatives of different kinds of organizations,
including Small and Medium Sized Enterprises (SMEs), organizations seated outside
of Germany, and digital leaders (Bondel et al., 2021b).

– Inclusion of additional literature sources: Future work should enrich the pattern de-
scriptions with further knowledge from scientific and practice-driven literature. Also,
a survey participant requested the enrichment of pattern descriptions with best prac-
tices provided by API management software providers (P11). Additional information
needs to be incorporated as concise as possible to prevent pattern descriptions from
becoming bloated.

• Improvements of the AMPC’s Form:

– New form of the AMPC: The evaluation of the AMPC in Chapter 7 yielded the
result, that the AMPC’s navigatability and searchability is limited due to its form as
a PDF. Hence, future work should identify and evaluate a more suitable form.

• Evaluation of the AMPC:

– Further evaluations from a practitioners viewpoint: Future work should further vali-
date patterns and the pattern catalog structure from a practitioner’s perspective. As
proposed by the pattern writers workshop participants, evaluations should analyze
the completeness and usefulness of the AMPC based on expert feedback.

– Implementation of patterns in an organization: The evaluation of the AMPC pre-
sented in Chapter 7 relies on expert opinions. Hence, as previously discussed in
Bondel et al. (2021b) and proposed by the peers of the pattern writers workshop,
future research endeavors should observe and document the actual implementation
of one or several patterns in an organization.

– Application of the AMPC to different API management activities: We identified sev-
eral activities that the AMPC can support, e.g., the design of new APIs, the improve-

154

8. Conclusion and Future Work

ment of existing APIs, the definition of roles and responsibilities in API initiatives,
the training of novices, or vendor and technology analysis (see Section 7.3.2). Future
evaluations should comprise action research using the AMPC to guide each activity
in real-world settings.

• Temporal Insights into API Management Practices:

– Evolution approach: The authors should design and communicate an approach for
regular future updates of the AMPC.

– Accompanying API initiatives over time: Repeated interviews with experts on the
API initiatives already in the case base would enable observing the evolution of API
management practices (Bondel et al., 2021b; Buckl et al., 2013).

– Analysis of changes to the pattern catalog over time: Future work should comprise
the continuous evolution of the AMPC as a whole, i.e., identifying new patterns,
evolving existing patterns, and removing obsolete patterns. The authors should doc-
ument these changes to allow for theorizing on the evolution of the API management
discipline (Buckl et al., 2013).

155

156

Bibliography

Akhan Akbulut and Harry G. Perros. Software Versioning with Microservices through the
API Gateway Design Pattern. In 2019 9th International Conference on Advanced Computer
Information Technologies (ACIT), pages 289–292, 2019. ISBN 978-1-7281-0450-8. doi: 10.
1109/ACITT.2019.8779952.

Christopher Alexander. Notes on the Synthesis of Form. Harvard University Press, Cambridge,
MA, USA, 1 edition, 1973. ISBN 9780674627512.

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New York, NY, USA, 1 edition, 1977. ISBN
0195019199.

Jan Algermissen. Classification of HTTP-based APIs. Website, February 2010. URL http:
//algermissen.io/classification_of_http_apis.html. Last accessed on 28th of December
2023.

Axway Inc. Amplify API Management - API lifecycle. Website. URL https://docs.axway.com/
bundle/axway-open-docs/page/docs/api_mgmt_overview/api_mgmt_lifecycle/index.html.
Last accessed on 28th of December 2023.

Rahul C. Basole. Accelerating Digital Transformation: Visual Insights from the API Ecosystem.
IT Professional, 18(6):20–25, 2016. ISSN 1941-045X. doi: 10.1109/MITP.2016.105.

Rahul C. Basole. On the evolution of service ecosystems: A study of the emerging api economy.
In Handbook of Service Science, Volume II, pages 479–495, Cham, 2019. Springer International
Publishing. ISBN 978-3-319-98512-1. doi: 10.1007/978-3-319-98512-1_21.

Rahul C. Basole, Arjun Srinivasan, Hyunwoo Park, and Shiv Patel. Ecoxight: Discovery,
Exploration, and Analysis of Business Ecosystems Using Interactive Visualization. ACM
Transactions on Management Information Systems, 9(2):1–26, 2018. ISSN 2158-656X. doi:
10.1145/3185047.

157

http://algermissen.io/classification_of_http_apis.html
http://algermissen.io/classification_of_http_apis.html
https://docs.axway.com/bundle/axway-open-docs/page/docs/api_mgmt_overview/api_mgmt_lifecycle/index.html
https://docs.axway.com/bundle/axway-open-docs/page/docs/api_mgmt_overview/api_mgmt_lifecycle/index.html

Bibliography

Abdelkarim Belkhir, Manel Abdellatif, Rafik Tighilt, Naouel Moha, Yann-Gaël Guéhéneuc,
and Éric Beaudry. An Observational Study on the State of REST API Uses in An-
droid Mobile Applications. In Proceedings of the 6th International Conference on Mo-
bile Software Engineering and Systems, pages 66–75, 2019. ISBN 978-1-7281-3395-9. doi:
10.1109/MOBILESoft.2019.00020.

Jesus Bellido, Rosa Alarcón, and Cesare Pautasso. Control-Flow Patterns for Decentralized
RESTful Service Composition. ACM Trans. Web, 8(1), December 2013. ISSN 1559-1131. doi:
10.1145/2535911.

David Bermbach and Erik Wittern. Benchmarking Web API Quality. In Web Engineering,
pages 188–206, 2016. ISBN 978-3-319-38791-8. doi: 10.1007/978-3-319-38791-8_11.

Gloria Bondel and Florian Matthes. API Management Pattern Catalog for Public, Partner, and
Group Web APIs with a Focus on Collaboration. Technical Report TUM-I23101, Software
Engineering for Business Information Systems (sebis), Chair for Informatics 19, Technische
Universität München, Garching b. München, Germany, December 2023.

Gloria Bondel, Josef Kamysek, Markus Kraft, and Florian Matthes. Design and Implementation
of a Test Tool for PSD2 Compliant Interfaces. In Proceedings of the 23rd International Con-
ference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 249–256, 2021a.
ISBN 978-989-758-509-8. doi: 10.5220/0010439502490256.

Gloria Bondel, Andre Landgraf, and Florian Matthes. API Management Patterns for Public,
Partner, and Group Web API Initiatives with a Focus on Collaboration. In 26th European
Conference on Pattern Languages of Programs, EuroPLoP’21, 2021b. ISBN 9781450389976.
doi: 10.1145/3489449.3490012.

Gloria Bondel, Arif Cerit, and Florian Matthes. Challenges of API Documentation from a
Provider Perspective and Best Practices for Examples in Public Web API Documentation. In
Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS
2022) - Volume 2, 2022. ISBN 978-989-758-569-2. doi: 10.5220/0011089700003179.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Ferris,
and David Orchard. Web Services Architecture: W3C Working Group Note 11 February
2004. W3C Recommendation, World Wide Web Consortium (W3C), February 2004. URL
https://www.w3.org/TR/ws-arch/.

Hayet Brabra, Achraf Mtibaa, Fabio Petrillo, Philippe Merle, Layth Sliman, Naouel Moha, Walid
Gaaloul, Yann-Gaël Guéhéneuc, Boualem Benatallah, and Faïez Gargouri. On Semantic
Detection of Cloud API (Anti)Patterns. Information and Software Technology, 107:65–82,
2019. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2018.10.012.

Stuart Bretschneider, Frederick J. Marc-Aurele, and Jiannan Wu. "Best Practices" Research:
A Methodological Guide for the Perplexed. Journal of Public Administration Research and
Theory: J-PART, 15(2):307–323, 2005. ISSN 10531858, 14779803. doi: 10.1093/jopart/
mui017. URL http://www.jstor.org/stable/3525702.

John Brooke. SUS: A ‘Quick and Dirty’ Usability Scale. In Usability Evaluation In Industry,
pages 189–194, 1996. ISBN 9780429157011. doi: 10.1201/9781498710411-35.

158

https://www.w3.org/TR/ws-arch/
http://www.jstor.org/stable/3525702

Bibliography

Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise Architecture
Management Pattern Catalog Version 1.0. Technical Report TB 0801, Software Engineering
for Business Information Systems (sebis), Chair for Informatics 19, Technische Universität
München, Garching b. München, Germany, February 2008.

Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda. Pattern-
Based Design Research – An Iterative Research Method Balancing Rigor and Relevance. In
Design Science at the Intersection of Physical and Virtual Design, pages 73–87, 2013. ISBN
978-3-642-38827-9. doi: 10.1007/978-3-642-38827-9_6.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-
oriented software architecture - A system of patterns, volume 1. John Wiley & Sons, Chich-
ester, West Sussex, England, 1 edition, 1996. ISBN 0-471-95869-7.

Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern Oriented Software Archi-
tecture: On Patterns and Pattern Languages, volume 5. John Wiley & Sons, Chichester, West
Sussex, England, 1 edition, April 2007a. ISBN 0471486485.

Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Software Ar-
chitecture: A Pattern Language for Distributed Computing, volume 4. John Wiley & Sons,
Chichester, West Sussex, England, 1 edition, March 2007b. ISBN 0470059028.

Arif Cerit. Improving the developer experience of API consumers using usage scenarios and ex-
amples. Master’s thesis, Technical University of Munich - Department of Informatics, Garching
bei München, Germany, September 2019.

Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weerawarana. Web Ser-
vices Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C Recommenda-
tion, World Wide Web Consortium (W3C), June 2007. URL http://www.w3.org/TR/2007/
REC-wsdl20-20070626.

Ellen Christiaanse, Tonja Van Diepen, and Jan Damsgaard. Proprietary versus internet tech-
nologies and the adoption and impact of electronic marketplaces. The Journal of Strategic
Information Systems, 13(2):151–165, 2004. ISSN 0963-8687. doi: 10.1016/j.jsis.2004.02.004.
Strategic Information Systems in the Post-Net Era.

Steven Clarke. Measuring API usability. Dr. Dobbs Journal, (29):6–9, 2004.

James O. Coplien. Software patterns. SIGS Books & Multimedia, New York, NY, 1996. ISBN
1-884842-50-X.

Ira W. Cotton and Frank S. Greatorex. Data Structures and Techniques for Remote Computer
Graphics. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part
I, AFIPS ’68 (Fall, part I), page 533–544, New York, NY, USA, 1968. ISBN 9781450378994.
doi: 10.1145/1476589.1476661.

Robert Daigneau. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL
and RESTful Web Services: Fundamental Design Solutions for SOAP/WSDL and RESTful
Web Services. Addison Wesley, Boston, MA, USA, November 2011. ISBN 032154420X.

159

http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/TR/2007/REC-wsdl20-20070626

Bibliography

Vittorio Dal Bianco, Varvana Myllärniemi, Marko Komssi, and Mikko Raatikainen. The Role
of Platform Boundary Resources in Software Ecosystems: A Case Study. In 2014 IEEE/IFIP
Conference on Software Architecture, pages 11–20, 2014. ISBN 978-1-4799-3412-6. doi: 10.
1109/WICSA.2014.41.

Brajesh De. API Management: An Architect’s Guide to Developing and Managing APIs for
Your Organization. Apress, Berkeley, CA, 1 edition, 2017. ISBN 9781484213063.

Mark de Reuver, Carsten Sørensen, and Rahul C Basole. The Digital Platform: A Re-
search Agenda. Journal of Information Technology, 33(2):124–135, 2018. doi: 10.1057/
s41265-016-0033-3.

Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen, and John Patterson. How
a Good Software Practice Thwarts Collaboration: The Multiple Roles of APIs in Software
Development. In Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium
on Foundations of Software Engineering, SIGSOFT ’04/FSE-12, pages 221–230, New York,
NY, USA, 2004. ISBN 1581138555. doi: 10.1145/1029894.1029925.

Bill Doerrfeld, Bruno Pedro, Kristopher Sandoval, and Andreas Krohn. The API Lifecycle - An
Agile Process for Managing the Life of an API. Technical report, Nordic APIs AB, 2015. URL
https://nordicapis.com/wp-content/uploads/theapilifecycle.pdf. Last accessed on 28th
of December 2023.

Ekwa Duala-Ekoko and Martin P Robillard. Asking and answering questions about unfamiliar
APIs: An exploratory study. In 2012 34th International Conference on Software Engineering
(ICSE), pages 266–276, 2012. ISBN 978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227187.

Lisa Dusseault and James Snell. PATCH Method for HTTP. RFC 5789, Internet Engineering
Task Force (IETF), March 2010. URL https://datatracker.ietf.org/doc/html/rfc5789.

Paul Dyson and Andy Longshaw. Architecting Enterprise Solutions - Patterns for High-
Capability Internet-Based Systems. John Wiley & Sons, Chichester, West Sussex, England, 1
edition, 2004. ISBN 9780470856123.

Ben Eaton, Silvia Elaluf-Calderwood, Carsten Sørensen, and Youngjin Yoo. Distributed tuning
of boundary resources: The case of apple’s ios service system. MIS Quarterly, 39(1):217–244,
March 2015. ISSN 0276-7783. doi: 10.25300/MISQ/2015/39.1.10.

Thomas Erl. SOA Design Patterns. Prentice Hall, Boston, MA, USA, 1 edition, December 2008.
ISBN 0136135161.

EU Directive 2015/2366. Directive (EU) 2015/2366 of the European Parliament and of the
Council of 25 November 2015 on payment services in the internal market, amending Direc-
tives 2002/65/EC, 2009/110/EC and 2013/36/EU and Regulation (EU) No 1093/2010, and
repealing Directive 2007/64/EC (Text with EEA relevance). EU Directive 2015/2366, OJ L
337, Official Journal of the European Union, December 2015. URL https://eur-lex.europa.
eu/eli/dir/2015/2366/oj.

160

https://nordicapis.com/wp-content/uploads/theapilifecycle.pdf
https://datatracker.ietf.org/doc/html/rfc5789
https://eur-lex.europa.eu/eli/dir/2015/2366/oj
https://eur-lex.europa.eu/eli/dir/2015/2366/oj

Bibliography

Peter C. Evans and Rahul C. Basole. Revealing the API Ecosystem and Enterprise Strategy via
Visual Analytics. Communications of the ACM, 59(2):26–28, January 2016. ISSN 0001-0782.
doi: 10.1145/2856447.

Roy Fielding. REST: Architectural Styles and the Design of Network-based Software Architec-
tures. Doctoral dissertation, University of California, Irvine, 2000. URL http://www.ics.
uci.edu/~fielding/pubs/dissertation/top.htm.

Roy Fielding. REST APIs must be hypertext-driven. Website, October 2008. URL https:
//roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven. Last accessed on
28th of December 2023.

Roy Fielding and Julian Reschke. RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230, Internet Engineering Task Force (IETF), June 2014a. URL
https://datatracker.ietf.org/doc/html/rfc7230.

Roy Fielding and Julian Reschke. RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. RFC 7231, Internet Engineering Task Force (IETF), June 2014b. URL
https://datatracker.ietf.org/doc/html/rfc7231.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, Boston, MA,
USA, 1 edition, 2003. ISBN 978-0321127426.

Martin Fowler. Richardson Maturity Model - steps toward the glory of REST. Website, March
2010. URL https://martinfowler.com/articles/richardsonMaturityModel.html. Last ac-
cessed on 28th of December 2023.

Ulrich Frank. Towards a Pluralistic Conception of Research Methods in Information Systems.
ICB-Research Report No.7, Institut für Informatik und Wirschaftsinformatik (ICB), Univer-
sität Duisburg-Essen, Essen, Germany, December 2006. URL https://doi.org/10.17185/
duepublico/47166.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edition, 1995. ISBN
0201633612.

Gartner. Gartner Glossary: Best Practice. Website. URL https://www.gartner.com/en/
information-technology/glossary/best-practice. Last accessed on 28th of December 2023.

JJ Geewax. API Design Patterns. Manning Publications, Shelter Island, NY, USA, 1 edition,
July 2021. ISBN 161729585X.

Ahmad Ghazawneh and Ola Henfridsson. Governing third-party development through platform
boundary resources. In Proceedings of the International Conference on Information Systems
(ICIS) 2010, pages 1–18. AIS Electronic Library (AISeL), 2010. URL https://aisel.aisnet.
org/icis2010_submissions/48.

Ahmad Ghazawneh and Ola Henfridsson. Balancing platform control and external contribution
in third-party development: the boundary resources model. Information Systems Journal, 23
(2):173–192, 2013. doi: 10.1111/j.1365-2575.2012.00406.x.

161

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.17185/duepublico/47166
https://doi.org/10.17185/duepublico/47166
https://www.gartner.com/en/information-technology/glossary/best-practice
https://www.gartner.com/en/information-technology/glossary/best-practice
https://aisel.aisnet.org/icis2010_submissions/48
https://aisel.aisnet.org/icis2010_submissions/48

Bibliography

Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. Visualizing API Usage
Examples at Scale. In Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’18, pages 1–12, 2018. ISBN 9781450356206. doi: 10.1145/3173574.3174154.

Herman Heine Goldstine and John Von Neumann. Planning and coding of problems for an
electronic computing instrument - Reports on the mathematical and logical aspects of an elec-
tronic computing instrument, Part 2, Volume 1-3. Institute for Advanced Study, Princeton,
NJ, USA, 1948.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen,
Anish Karmarkar, and Yves Lafon. SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition). W3C Recommendation, World Wide Web Consortium (W3C), April 2007. URL
https://www.w3.org/TR/soap12-part1/.

Naga Mallika Gunturu. Enterprise API transformation: Driving towards API economy. Interna-
tional Journal of Computer Trends and Technology, 70(6):44–50, July 2022. ISSN 2231-2803.
doi: 10.14445/22312803/ijctt-v70i6p105.

John Hagel III and John Seely Brown. Your next it strategy. Harvard Business Review, October
2001. URL https://hbr.org/2001/10/your-next-it-strategy. Last accessed on 28th of
December 2023.

Florian Haupt, Frank Leymann, and Cesare Pautasso. A Conversation Based Approach for
Modeling REST APIs. In 2015 12th Working IEEE/IFIP Conference on Software Architecture,
pages 165–174, 2015. ISBN 978-1-4799-1922-2. doi: 10.1109/WICSA.2015.20.

Florian Haupt, Frank Leymann, Anton Scherer, and Karolina Vukojevic-Haupt. A Framework
for the Structural Analysis of REST APIs. In 2017 IEEE International Conference on Software
Architecture (ICSA), pages 55–58, 2017. ISBN 978-1-5090-5729-0. doi: 10.1109/ICSA.2017.40.

Alan R. Hevner. A Three Cycle View of Design Science Research. Scandinavian Journal of
Information Systems, 19(2), 2007. URL https://aisel.aisnet.org/sjis/vol19/iss2/4.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in Information
Systems Research. MIS Quarterly, pages 75–105, 2004. doi: 10.2307/25148625. URL https:
//www.jstor.org/stable/25148625.

Hillside Europe e. V. EuroPLoP Program. Website, a. URL https://www.europlop.net/
conference/. Last accessed on 28th of December 2023.

Hillside Europe e. V. EuroPLoP Submission. Website, b. URL https://www.europlop.net/
submission/. Last accessed on 28th of December 2023.

Hillside Group. The Hillside Group. Website. URL https://hillside.net/. Last accessed on
28th of December 2023.

Daniel Hoffman and Paul Strooper. Prose + Test Cases= Specifications. In Proceedings. 34th
International Conference on Technology of Object-Oriented Languages and Systems-TOOLS
34, pages 239–250. IEEE, 2000. doi: 10.1109/TOOLS.2000.868975.

162

https://www.w3.org/TR/soap12-part1/
https://hbr.org/2001/10/your-next-it-strategy
https://aisel.aisnet.org/sjis/vol19/iss2/4
https://www.jstor.org/stable/25148625
https://www.jstor.org/stable/25148625
https://www.europlop.net/conference/
https://www.europlop.net/conference/
https://www.europlop.net/submission/
https://www.europlop.net/submission/
https://hillside.net/

Bibliography

Daniel Hoffman and Paul Strooper. API documentation with executable examples. Journal of
Systems and Software, 66(2):143–156, 2003. ISSN 0164-1212. doi: 10.1016/S0164-1212(02)
00055-9.

Gregor Hohpe. Enterprise integration patterns. Website. URL https://www.
enterpriseintegrationpatterns.com/index.html. Last accessed on 28th of December 2023.

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison Wesley, Boston, MA, USA, 1 edition, October 2003.
ISBN 978-0321200686.

Masaki Hosono, Hironori Washizaki, Kiyoshi Honda, Hiromasa Nagumo, Hisanobu Sonoda,
Yoshiaki Fukazawa, Kazuki Munakata, Takao Nakagawa, Yusuke Nemoto, Susumu Tokumoto,
et al. Inappropriate usage examples in web api documentations. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 343–347, 2019. doi:
10.1109/ICSME.2019.00052.

Jukka Huhtamäki, Rahul C. Basole, Kaisa Still, Martha G. Russell, and Marko Seppänen.
Visualizing the Geography of Platform Boundary Resources: The Case of the Global API
Ecosystem. In Proceedings of the 50th Hawaii International Conference on System Sciences
(HICSS), January 2017. ISBN 978-0-9981331-0-2. doi: 10.24251/HICSS.2017.642.

Sergio Inzunza, Reyes Juárez-Ramírez, and Samantha Jiménez. Api documentation - a con-
ceptual evaluation model. In Trends and Advances in Information Systems and Technologies,
pages 229–239, 2018. ISBN 978-3-319-77712-2. doi: 10.1007/978-3-319-77712-2_22.

Anna Sigridur Islind, Tomas Lindroth, Ulrika Lundh Snis, and Carsten Sørensen. Co-creation
and Fine-Tuning of Boundary Resources in Small-Scale Platformization. In Scandinavian
conference on information systems (SCIS 2016): Nordic Contributions in IS Research, pages
149–162, 2016. ISBN 978-3-319-43597-8. doi: 10.1007/978-3-319-43597-8_11.

ISO 20077-1. ISO 20077-1:2017 - Road Vehicles - Extended vehicle (ExVe) methodology - Part
1: General information. ISO 20077-1:2017, International Organization for Standardization,
Geneva, CH, December 2017.

ISO 20078-1. ISO 20078-1:2021 - Road vehicles - Extended vehicle (ExVe) web services - Part 1:
Content and definitions. ISO 20078-1:2021, International Organization for Standardization,
Geneva, CH, November 2021.

ISO 20080. ISO 20080:2019 - Road vehicles - Information for remote diagnostic support -
General requirements, definitions and use cases. ISO 20080:2019, International Organization
for Standardization, Geneva, CH, March 2019.

ISO/IEC/IEEE 29119-1:2013. ISO/IEC/IEEE 29119-1:2013 –Software and systems engineer-
ing – Software testing – Part 1: Concepts and definitions – First edition 2013-09-01.
ISO/IEC/IEEE 29119-1:2013(E), International Organization for Standardization, Geneva,
CH, September 2013.

163

https://www.enterpriseintegrationpatterns.com/index.html
https://www.enterpriseintegrationpatterns.com/index.html

Bibliography

ISO/IEC/IEEE 29119-1:2022. ISO/IEC/IEEE 29119-1:2022 –Software and systems engineering
– Software testing – Part 1: General concepts. ISO/IEC/IEEE 29119-1:2022(E), International
Organization for Standardization, Geneva, CH, January 2013.

Bala Iyer and Mohan Subramaniam. Corporate alliances matter less thanks to
apis. Harvard Business Review, June 2015. URL https://hbr.org/2015/06/
corporate-alliances-matter-less-thanks-to-apis. Last accessed on 28th of December
2023.

Daniel Jacobson, Greg Brail, and Dan Woods. APIs: A Strategy Guide. O’Reilly, Sebastopol,
CA, USA, 2012. ISBN 978-1-449-30892-6.

Sae Young Jeong, Yingyu Xie, Jack Beaton, Brad A. Myers, Jeff Stylos, Ralf Ehret, Jan Karstens,
Arkin Efeoglu, and Daniela K. Busse. Improving Documentation for eSOA APIs through User
Studies. In End-User Development, volume 5435, pages 86–105, 2009. ISBN 978-3-642-00427-
8. doi: 10.1007/978-3-642-00427-8_6.

Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systa. Constructing usage sce-
narios for API redocumentation. In 15th IEEE International Conference on Program Com-
prehension (ICPC’07), pages 259–264, 2007. doi: 10.1109/ICPC.2007.16.

Tom Johnson. Documenting APIs: A guide for technical writers and engineers. Website, April
2023. URL https://idratherbewriting.com/learnapidoc/. Last accessed on 28th of De-
cember 2023.

Kimmo Karhu, Robin Gustafsson, and Kalle Lyytinen. Exploiting and defending open digi-
tal platforms with boundary resources: Android’s five platform forks. Information Systems
Research, 29(2):479–497, 2018. doi: 10.1287/isre.2018.0786.

Tom Kendrick. Identifying and Managing Project Risk: Essential Tools for Failure-Proofing Your
Project. AMACOM, New York, NY, USA, 3 edition, March 2015. ISBN 978-0-8144-3608-0.

Pouya Aleatrati Khosroshahi, Matheus Hauder, Alexander W. Schneider, and Florian Matthes.
Enterprise architecture management pattern catalog version 2.0. Technical report, Software
Engineering for Business Information Systems (sebis), Chair for Informatics 19, Technische
Universität München, Garching b. München, Germany, November 2015.

Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture: Patterns for Re-
source Management, volume 3. John Wiley & Sons, Chichester, West Sussex, England, 1
edition, April 2004. ISBN 0470845252.

Andrew J. Ko and Yann Riche. The role of conceptual knowledge in API usability. In 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 173–176,
2011. doi: 10.1109/VLHCC.2011.6070395.

Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. Six learning barriers in end-user program-
ming systems. In 2004 IEEE Symposium on Visual Languages-Human Centric Computing,
pages 199–206, 2004. doi: 10.1109/VLHCC.2004.47.

164

https://hbr.org/2015/06/corporate-alliances-matter-less-thanks-to-apis
https://hbr.org/2015/06/corporate-alliances-matter-less-thanks-to-apis
https://idratherbewriting.com/learnapidoc/

Bibliography

Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated software devel-
opment teams. In Proceedings of the 29th International Conference on Software Engineering,
ICSE ’07, pages 344–353, 2007. ISBN 0769528287. doi: 10.1109/ICSE.2007.45.

Jacek Kopecký, Paul Fremantle, and Rich Boakes. A history and future of Web APIs. it -
Information Technology, 56(3):90–97, 2014. doi: 10.1515/itit-2013-1035.

Sebastian Kotstein and Justus Bogner. Which RESTful API design rules are important and how
do they improve software quality? A delphi study with industry experts. In Service-Oriented
Computing, pages 154–173, 2021. ISBN 978-3-030-87568-8. doi: 10.1007/978-3-030-87568-8_
10.

Andre Landgraf. Identification of API management patterns from an api provider perspective.
Master’s thesis, Technical University of Munich - Department of Informatics, Garching b.
München, Germany, February 2021.

Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How software engineers use doc-
umentation: The state of the practice. IEEE software, 20(6):35–39, 2003. ISSN 1937-4194.
doi: 10.1109/MS.2003.1241364.

Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker. Interface
evolution patterns: Balancing compatibility and extensibility across service life cycles. In
Proceedings of the 24th European Conference on Pattern Languages of Programs, EuroPLop
’19, 2019. ISBN 9781450362061. doi: 10.1145/3361149.3361164.

Kalle Lyytinen and Jan Damsgaard. Inter-organizational information systems adoption – A
configuration analysis approach. European Journal of Information Systems, 20(5):496–509,
2011. doi: 10.1057/ejis.2010.71.

Walid Maalej and Martin P. Robillard. Patterns of knowledge in API reference documentation.
IEEE Transactions on Software Engineering, 39(9):1264–1282, 2013. ISSN 1939-3520. doi:
10.1109/TSE.2013.12.

Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web APIs on the world
wide web. In 2010 Eighth IEEE European Conference on Web Services, pages 107–114, 2010.
ISBN 978-1-4244-9397-5. doi: 10.1109/ECOWS.2010.9.

Nicolas Masse. Full API lifecycle management: A primer. Website, February 2019. URL https:
//developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/.
Last accessed on 28th of December 2023.

Max Mathijssen, Michiel Overeem, and Slinger Jansen. Identification of practices and capabilities
in API management: A systematic literature review. 2020. doi: 10.48550/arXiv.2006.10481.
URL https://arxiv.org/abs/2006.10481.

Samuel G. McLellan, Alvin W. Roesler, Joseph T. Tempest, and Clay I. Spinuzzi. Building more
usable APIs. IEEE software, 15(3):78–86, 1998. ISSN 1937-4194. doi: 10.1109/52.676963.

Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amundsen. Continuous API Management
- Making the right decisions in an evolving landscape. O‘Reilly, 1 edition, 2018. ISBN 978-1-
492-04355-3.

165

https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/
https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/
https://arxiv.org/abs/2006.10481

Bibliography

Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Application programming inter-
face documentation: What do software developers want? Journal of Technical Writing and
Communication, 48(3):295–330, 2018. doi: 10.1177/0047281617721853.

Michael Meng, Stephanie Steinhardt, and Andreas Schubert. How developers use API doc-
umentation: An observation study. Communication Design Quarterly Review, 7(2):40–49,
2019. doi: 10.1145/3358931.3358937.

Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. Optimizing api documentation:
Some guidelines and effects. In Proceedings of the 38th ACM International Conference on De-
sign of Communication, SIGDOC ’20, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450375252. doi: 10.1145/3380851.3416759.

Gerard Meszaros and Jim Doble. A pattern language for pattern writing. In Pattern Languages
of Program Design 3, volume 3, pages 529–574, 1997. ISBN 0201310112.

Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API Gateways in Microser-
vices. 2016. doi: 10.48550/arXiv.1609.05830. URL https://arxiv.org/abs/1609.05830.

MuleSoft. 2023 Connectivity Benchmark Report. Technical report, MuleSoft Research, CA,
USA, 2023. URL https://www.mulesoft.com/lp/reports/connectivity-benchmark. Last
accessed on 28th of December 2023.

Daniel Müssig, Robert Stricker, Jörg Lässig, and Jens Heider. Highly scalable microservice-based
enterprise architecture for smart ecosystems in hybrid cloud environments. In Proceedings of
the 19th International Conference on Enterprise Information Systems (ICEIS 2017), volume 3,
pages 454–459, 2017. ISBN 978-989-758-249-3. doi: 10.5220/0006373304540459.

Brad A. Myers and Jeffrey Stylos. Improving API usability. Communications of the ACM, 59
(6):62–69, 2016. ISSN 0001-0782. doi: 10.1145/2896587.

Seyed Mehdi Nasehi and Frank Maurer. Unit tests as API usage examples. In 2010 IEEE
International Conference on Software Maintenance, pages 1–10, 2010. doi: 10.1109/ICSM.
2010.5609553.

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What makes a good code
example?: A study of programming Q&A in StackOverflow. In 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pages 25–34, 2012. doi: 10.1109/ICSM.2012.
6405249.

Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An analysis of public REST Web
service APIs. IEEE Transactions on Services Computing, 14(4):957–970, 2021. ISSN 1939-
1374. doi: 10.1109/TSC.2018.2847344.

Sam Newman. Sam newman & associates - patterns. Website. URL https://samnewman.io/
patterns/. Last accessed on 28th of December 2023.

Sam Newman. Monolith To Microservices - Evolutionary Patterns to Transform your Monolith.
O’Reilly Media, Sebastopol, CA, USA, 1 edition, December 2019. ISBN 1492047848.

166

https://arxiv.org/abs/1609.05830
https://www.mulesoft.com/lp/reports/connectivity-benchmark
https://samnewman.io/patterns/
https://samnewman.io/patterns/

Bibliography

NIST. Glossary: Best practice. Website. URL https://csrc.nist.gov/glossary/term/best_
practice. Last accessed on 28th of December 2023.

Janet Nykaza, Rhonda Messinger, Fran Boehme, Cherie L. Norman, Matthew Mace, and Manuel
Gordon. What Programmers Really Want: Results of a Needs Assessment for SDK Documen-
tation. In Proceedings of the 20th Annual International Conference on Computer Documen-
tation, SIGDOC ’02, page 133–141, 2002. ISBN 1581135432. doi: 10.1145/584955.584976.

Joshua Ofoeda, Richard Boateng, and John Effah. Application programming interface (API)
research: A review of the past to inform the future. International Journal of Enterprise Infor-
mation Systems (IJEIS), 15(3):76–95, 2019. ISSN 1548-1115. doi: 10.4018/IJEIS.2019070105.

Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc. Detection of REST
patterns and antipatterns: A heuristics-based approach. In Service-Oriented Computing, pages
230–244, 2014. ISBN 978-3-662-45391-9. doi: 10.1007/978-3-662-45391-9_16.

Francis Palma, Javier Gonzalez-Huerta, Naouel Moha, Yann-Gaël Guéhéneuc, and Guy Trem-
blay. Are RESTful APIs Well-Designed? Detection of their Linguistic (Anti)Patterns. In
Service-Oriented Computing, pages 171–187, 2015. ISBN 978-3-662-48616-0. doi: 10.1007/
978-3-662-48616-0_11.

David L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules. Commu-
nications of the ACM, 15(12):1053–1058, 1972. ISSN 0001-0782. doi: 10.1145/361598.361623.

Cesare Pautasso and Erik Wilde. RESTful web services: Principles, patterns, emerging tech-
nologies. In Proceedings of the 19th International Conference on World Wide Web, WWW
’10, pages 1359–1360, 2010. ISBN 978-1-4614-7518-7. doi: 10.1145/1772690.1772929.

Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. A Pattern Language for RESTful Conver-
sations. In Proceedings of the 21st European Conference on Pattern Languages of Programs,
EuroPlop ’16, 2016. ISBN 9781450340748. doi: 10.1145/3011784.3011788.

Fabio Petrillo, Philippe Merle, Naouel Moha, and Yann-Gaël Guéhéneuc. Are REST APIs for
cloud computing well-designed? An exploratory study. In Service-Oriented Computing, pages
157–170, 2016. ISBN 978-3-319-46295-0. doi: 10.1007/978-3-319-46295-0_10.

Shameen Pillai, Kimihiko Iijima, Mark O’Neill, John Santoro, Akash Jain, and Fintan Ryan.
Magic quadrant for full life cycle API management. Technical Report ID G00735998, Gartner,
CT, USA, September 2021.

Frederick F. Reichheld. The one number you need to grow. Harvard Business Review, December
2003. URL https://hbr.org/2003/12/the-one-number-you-need-to-grow. Last accessed on
28th of December 2023.

Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s top “RESTful” services and
why they are not RESTful. In Web Information Systems Engineering - WISE 2012, pages
354–367, 2012. ISBN 978-3-642-35063-4. doi: 10.1007/978-3-642-35063-4_26.

Eric Rescorla. RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, Network Working Group, August 2018. URL https://datatracker.ietf.org/doc/
html/rfc8446.

167

https://csrc.nist.gov/glossary/term/best_practice
https://csrc.nist.gov/glossary/term/best_practice
https://hbr.org/2003/12/the-one-number-you-need-to-grow
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446

Bibliography

Chris Richardson. Microservices architecture - A pattern language for microservices. Website.
URL https://microservices.io/patterns/index.html. Last accessed on 28th of December
2023.

Chris Richardson. Microservices patterns. Mannig Publications Co., Shelter Island, NY, USA,
1 edition, 2019. ISBN 9781617294549.

Leonard Richardson. Justice will take us millions of intricate moves, act three: The matu-
rity heuristic. Website, January 2009. URL https://www.crummy.com/writing/speaking/
2008-QCon/act3.html. Last accessed on 28th of December 2023.

Martin P. Robillard. What makes APIs hard to learn? Answers from developers. IEEE Software,
26(6):27–34, 2009. ISSN 1937-4194. doi: 10.1109/MS.2009.193.

Martin P. Robillard and Robert DeLine. A field study of API learning obstacles. Empirical
Software Engineering, 16(6):703–732, 2011. doi: 10.1007/s10664-010-9150-8.

Carlos Rodríguez, Marcos Baez, Florian Daniel, Fabio Casati, Juan Carlos Trabucco, Luigi
Canali, and Gianraffaele Percannella. REST APIs: A large-scale analysis of compliance with
principles and best practices. In Web Engineering, pages 21–39, 2016. ISBN 978-3-319-38791-8.
doi: 10.1007/978-3-319-38791-8_2.

Arnon Rotem-Gal-Oz. SOA Patterns. Manning Publications, Shelter Island, NY, USA, 1 edition,
April 2012. ISBN 978-1933988269.

Ivan Salvadori and Frank Siqueira. A maturity model for semantic RESTful Web APIs. In 2015
IEEE International Conference on Web Services, pages 703–710, 2015. ISBN 978-1-4673-7272-
5. doi: 10.1109/ICWS.2015.98.

Mattia Santoro, Lorenzino Vaccari, Dimitrios Mavridis, Robin Smith, Monica Posada, and Di-
etmar Gattwinkel. Web Application Programming Interfaces (APIs): General purpose stan-
dards, terms and European Commission initiatives. EUR 29984, Publications Office of the
European Union, Luxembourg, 2019. JRC118082.

SAP America. Compass Readme. Website, 2023. URL https://github.com/kyma-incubator/
compass. Last accessed on 28th of December 2023.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects, volume 2. John Wiley
& Sons, Chichester, West Sussex, England, 1 edition, August 2000. ISBN 0471606952.

Paul Schmiedmayer. Designing Evolvable Web Services. PhD thesis, Department of Computer
Science, Technical University Munich, Munich, Germany, February 2022.

Mitchell Shnier. Dictionary of PC Hardware and Data Communications Terms. O’Reilly and
Associates, Sebastopol, CA, USA, 1 edition, April 1996. ISBN 1-56592-158-5.

S. M. Sohan, Frank Maurer, Craig Anslow, and Martin P. Robillard. A study of the effective-
ness of usage examples in REST API documentation. In 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 53–61. IEEE, IEEE, 2017. doi:
10.1109/VLHCC.2017.8103450.

168

https://microservices.io/patterns/index.html
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://github.com/kyma-incubator/compass
https://github.com/kyma-incubator/compass

Bibliography

Kai Spichale. API-Design - Praxishandbuch für Java- und Webservice-Entwickler. dpunkt.verlag,
Heidelberg, Germany, 1 edition, 2017. ISBN 978-3-86490-387-8.

Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso. Interface
Quality Patterns: Communicating and Improving the Quality of Microservices APIs. In
Proceedings of the 23rd European Conference on Pattern Languages of Programs, EuroPLoP
’18, 2018. ISBN 9781450363877. doi: 10.1145/3282308.3282319.

Jeffrey Stylos and Steven Clarke. Usability Implications of Requiring Parameters in Objects’
Constructors. In Proceedings of the 29th International Conference on Software Engineering,
ICSE ’07, pages 529–539, 2007. ISBN 0769528287. doi: 10.1109/ICSE.2007.92.

Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. Improving API documenta-
tion using API usage information. In 2009 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 119–126, 2009. doi: 10.1109/VLHCC.2009.5295283.

Wei Tan, Yushun Fan, Ahmed Ghoneim, M. Anwar Hossain, and Schahram Dustdar. From
the service-oriented architecture to the Web API economy. IEEE Internet Computing, 20(4):
64–68, 2016. ISSN 1941-0131. doi: 10.1109/MIC.2016.74.

Kyle Thayer, Sarah E. Chasins, and Amy J. Ko. A theory of robust API knowledge. ACM
Transactions on Computing Education (TOCE), 21(1):1–32, 2021. doi: 10.1145/3444945.

The GraphQL Foundation. GraphQL best practices. Website, a. URL https://graphql.org/
learn/best-practices/. Last accessed on 28th of December 2023.

The GraphQL Foundation. GraphQL - october 2021 edition. Website, b. URL https://spec.
graphql.org/October2021/. Last accessed on 28th of December 2023.

The GraphQL Foundation. Introduction to GraphQL. Website, c. URL https://graphql.org/
learn/. Last accessed on 28th of December 2023.

The GraphQL Foundation. GraphQL - schemas and types. Website, d. URL https://graphql.
org/learn/schema/. Last accessed on 28th of December 2023.

The GraphQL Foundation. GraphQL - serving over HTTP. Website, e. URL https://graphql.
org/learn/serving-over-http/. Last accessed on 28th of December 2023.

Martin Treiber, Hong-Linh Truong, and Schahram Dustdar. On analyzing evolutionary changes
of Web services. In Service-Oriented Computing – ICSOC 2008 Workshops, pages 284–297,
2009. ISBN 978-3-642-01247-1. doi: 10.1007/978-3-642-01247-1_29.

Gias Uddin and Martin P. Robillard. How API documentation fails. IEEE software, 32(4):
68–75, 2015. ISSN 1937-4194. doi: 10.1109/MS.2014.80.

Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. Documenting recurring concerns
and patterns in large-scale agile development. In Proceedings of the 24th European Conference
on Pattern Languages of Programs, EuroPLop ’19, 2019. ISBN 9781450362061. doi: 10.1145/
3361149.3361176.

Steve Vinoski. Serendipitous reuse. IEEE Internet Computing, 12(1):84–87, 2008. ISSN 1941-
0131. doi: 10.1109/MIC.2008.20.

169

https://graphql.org/learn/best-practices/
https://graphql.org/learn/best-practices/
https://spec.graphql.org/October2021/
https://spec.graphql.org/October2021/
https://graphql.org/learn/
https://graphql.org/learn/
https://graphql.org/learn/schema/
https://graphql.org/learn/schema/
https://graphql.org/learn/serving-over-http/
https://graphql.org/learn/serving-over-http/

Bibliography

Markus Völter, Michael Kircher, and Uwe Zdun. Remoting Patterns: Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware. John Wiley & Sons, Hoboken, NJ, USA,
1 edition, December 2004. ISBN 978-0470856628.

Robert B. Watson. Development and Application of a Heuristic to Assess Trends in API Docu-
mentation. In Proceedings of the 30th ACM International Conference on Design of Commu-
nication, SIGDOC ’12, pages 295–302, 2012. ISBN 9781450314978. doi: 10.1145/2379057.
2379112.

Robert B. Watson, Mark Stamnes, Jacob Jeannot-Schroeder, and Jan H. Spyridakis. API Doc-
umentation and Software Community Values: A Survey of Open-Source API Documentation.
In Proceedings of the 31st ACM International Conference on Design of Communication, SIG-
DOC ’13, pages 165–174, 2013. ISBN 9781450321310. doi: 10.1145/2507065.2507076.

Jane Webster and Richard T. Watson. Analyzing the past to prepare for the future: Writing a
literature review. MIS Quarterly, 26(2):xiii–xxiii, 2002. ISSN 02767783. URL http://www.
jstor.org/stable/4132319.

Michael Weiss and G. R. Gangadharan. Modeling the mashup ecosystem: Structure and growth.
R&D Management, 40(1):40–49, 2010. doi: 10.1111/j.1467-9310.2009.00582.x.

D. J. Wheeler. The use of sub-routines in programmes. In Proceedings of the 1952 ACM National
Meeting (Pittsburgh), ACM ’52, pages 235–236, 1952. doi: 10.1145/609784.609816.

Manuel Wiesche, Marlen C. Jurisch, Philip W. Yetton, and Helmut Krcmar. Grounded Theory
Methodology in Information Systems Research. MIS Quarterly, 41(3):685–701, 2017. ISSN
0276-7783. doi: 10.25300/MISQ/2017/41.3.02.

Erik Wittern, Annie T.T. Ying, Yunhui Zheng, Jim A. Laredo, Julian Dolby, Christopher C.
Young, and Aleksander A. Slominski. Opportunities in software engineering research for
Web API consumption. In 2017 IEEE/ACM 1st International Workshop on API Usage and
Evolution (WAPI), pages 7–10, 2017. ISBN 978-1-5386-2805-8. doi: 10.1109/WAPI.2017.1.

Robert K. Yin. Case study research: Design and methods, volume 5. Sage Publications, Los
Angeles, CA, 2013. ISBN 1452242569.

Youngjin Yoo, Ola Henfridsson, and Kalle Lyytinen. Research commentary: The new organizing
logic of digital innovation: An agenda for information systems research. Information Systems
Research, 21(4):724–735, 2010. ISSN 10477047, 15265536. URL http://www.jstor.org/
stable/23015640.

U. Zdun, M. Kircher, and M. Volter. Remoting patterns: Design reuse of distributed object
middleware solutions. IEEE Internet Computing, 8(6):60–68, 2004. doi: 10.1109/MIC.2004.70.

Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke. Guiding
Architectural Decision Making on Quality Aspects in Microservice APIs. In Service-Oriented
Computing, pages 73–89, 2018. ISBN 978-3-030-03596-9. doi: 10.1007/978-3-030-03596-9_5.

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun, and Cesare Pautasso. Patterns
for API design. Website. URL https://microservice-api-patterns.org/. Last accessed on
28th of December 2023.

170

http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/4132319
http://www.jstor.org/stable/23015640
http://www.jstor.org/stable/23015640
https://microservice-api-patterns.org/

Bibliography

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. Interface Representation
Patterns: Crafting and Consuming Message-Based Remote APIs. In Proceedings of the
22nd European Conference on Pattern Languages of Programs, EuroPLoP ’17, 2017. ISBN
9781450348485. doi: 10.1145/3147704.3147734.

Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker. Interface
Responsibility Patterns: Processing Resources and Operation Responsibilities. In Proceedings
of the European Conference on Pattern Languages of Programs 2020, EuroPLoP ’20, 2020a.
ISBN 9781450377690. doi: 10.1145/3424771.3424822.

Olaf Zimmermann, Cesare Pautasso, Daniel Lübke, Uwe Zdun, and Mirko Stocker. Data-
Oriented Interface Responsibility Patterns: Types of Information Holder Resources. In Pro-
ceedings of the European Conference on Pattern Languages of Programs 2020, EuroPLoP ’20,
2020b. ISBN 9781450377690. doi: 10.1145/3424771.3424821.

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun. Introduc-
tion to microservice API patterns (MAP). In Joint Post-proceedings of the First and Sec-
ond International Conference on Microservices (Microservices 2017/2019), volume 78 of Ope-
nAccess Series in Informatics (OASIcs), pages 4:1–4:17, Dagstuhl, Germany, 2020c. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-137-5. doi: 10.4230/OASIcs.
Microservices.2017-2019.4. URL https://drops.dagstuhl.de/opus/volltexte/2020/11826.

Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun, and Cesare Pautasso. Patterns
for API Design: Simplifying Integration with Loosely Coupled Message Exchanges. Addison-
Wesley Professional, 1 edition, December 2022. ISBN 0137670109.

Jonathan L. Zittrain. The generative internet. Harvard Law Review, 119(7):1974–2040, 2006.
ISSN 0017811X. URL http://www.jstor.org/stable/4093608.

171

https://drops.dagstuhl.de/opus/volltexte/2020/11826
http://www.jstor.org/stable/4093608

172

Abbreviations

AMPC API Management Pattern Catalog

API Application Programming Interface

CD Continuous Deployment

CI Continuous Integration

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

CRUD Create, Read, Update, and Delete

DCOM Distributed Component Object Mode

DDoS Distributed Denial of Service

EDI Electronic Data Exchange

GTM Grounded Theory Methodology

173

Bibliography

HATEOAS Hypermedia as the Engine of Application State

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

ID Identifier

IoT Internet of Things

IP Internet Protocol

IS Information Systems

ISR Information Systems Research

IT Information Technology

JSON JavaScript Object Notation

KPI Key Performance Indicator

NIST National Institute of Standards and Technology

NPS Net Promoter Score

MAP Microservice API Patterns

OAS OpenAPI Specification

OEM Original Equipment Manufacturer

174

Bibliography

PDF Portable Document Format

POSA Pattern-oriented Software Architecture

QoS Quality of Service

REST REpresentational State Transfer

RPC Remote Procedure Call

RPI Remote Procedure Invocation

RQ Research Question

PSD2 Revised Payment Services Directive

SDK Software Development Kit

sebis Software Engineering for Business Information Systems

SME Small and Medium Sized Enterprise

SMS Short Message Service

SOA Service-oriented Architecture

SUS System Usability Scale

TCP Transmission Control Protocol

TLS Transport Layer Security

URI Unified Resource Identifier

URL Unified Resource Locator

175

Bibliography

US United States of America

W3C World Wide Web Consortium

WSDL Web Service Description Language

WWW World Wide Web

XaaS Everything-as-a-Service

XML Extensible Markup Language

XSD XML Schema Definition

176

APPENDIX A

Prior Publications and Student Thesis in the Context of this Dissertation

The dissertation at hand builds on prior publications of the author. In addition to referencing
them in the bibliography and relevant sections, we list them in the following.

• Bondel et al. (2021a): Gloria Bondel, Josef Kamysek, Markus Kraft, and Florian
Matthes. Design and Implementation of a Test Tool for PSD2 Compliant Interfaces.
In Proceedings of the 23rd International Conference on Enterprise Information Sys-
tems (ICEIS 2021) - Volume 2, pages 249–256, 2021a. ISBN 978-989-758-509-8. doi:
10.5220/0010439502490256.

• Bondel et al. (2021b): Gloria Bondel, Andre Landgraf, and Florian Matthes. API
Management Patterns for Public, Partner, and Group Web API Initiatives with a Fo-
cus on Collaboration. In 26th European Conference on Pattern Languages of Programs,
EuroPLoP’21, 2021b. ISBN 9781450389976. doi: 10.1145/3489449.3490012.

• Bondel et al. (2022): Gloria Bondel, Arif Cerit, and Florian Matthes. Challenges
of API Documentation from a Provider Perspective and Best Practices for Examples in
Public Web API Documentation. In Proceedings of the 24th International Conference on
Enterprise Information Systems (ICEIS 2022) - Volume 2, 2022. ISBN 978-989-758-569-2.
doi: 10.5220/0011089700003179.

• Bondel and Matthes (2023): Gloria Bondel and Florian Matthes. API Management
Pattern Catalog for Public, Partner, and Group Web APIs with a Focus on Collaboration.
Technical Report TUM-I23101, Software Engineering for Business Information Systems
(sebis), Chair for Informatics 19, Technische Universität München, Garching b. München,
Germany, December 2023.

177

A. Prior Publications and Student Thesis in the Context of this Dissertation

Moreover, the author advised several student theses in the context of this dissertation. In
addition to referencing them in the bibliography and relevant sections, we list relevant student
theses below.

• Cerit (2019): Arif Cerit. Improving the developer experience of API consumers using us-
age scenarios and examples. Master’s thesis, Technical University of Munich - Department
of Informatics, Garching bei München, Germany, September 2019.

• Landgraf (2021): Andre Landgraf. Identification of API management patterns from an
api provider perspective. Master’s thesis, Technical University of Munich - Department of
Informatics, Garching b. München, Germany, February 2021.

178

APPENDIX B

Evolution of Patterns in the AMPC

We present an overview of changes between the patterns shown in Landgraf (2021) and the
AMPC (Bondel and Matthes, 2023) in Tab. B.1. If not stated otherwise in the description of
the significant changes, the pattern essence is the same in both catalogs. However, the pattern
structure of the patterns in Landgraf (2021) and the AMPC differ, and we enriched the AMPC’s
pattern descriptions with additional information. Thus, the pattern descriptions document
different information.

179

B. Evolution of Patterns in the AMPC

Pattern name in
Landgraf (2021)

Pattern Name in
the AMPC (Bondel
and Matthes, 2023)

Result of the
Change

Description of Major Changes

P1: Internal API reg-
istry

Removed As the name "Internal API Registry" already states, this is a
pattern exclusively observed in private API initiatives. There-
fore, we removed it from the pattern catalog.

P2: Company-wide
ticketing system

API provider-wide
ticketing management

Adopted

P3: API testing strat-
egy

Test Strategy Adopted

P4: Pilot Project Collaborative Pilot
Project

Adopted In the AMPC, the pattern emphasizes the collaboration be-
tween API providers and consumers more prominently. Also,
we exclude C13 from the ‘Known Uses’.

P5: Frontend Venture Frontend Venture Adopted
P6: SLAs with back-
end providers

SLA Adopted In Landgraf (2021), it is difficult to understand the difference
between P6 and P7. Therefore, in the AMPC, we merged the
two patterns into one pattern.

P7: SLAs with API
consumers

Removed See explanation above (P6: SLAs with backend providers).

P8: Data Clearance Data Clearing Process Adopted In Landgraf (2021), this pattern focuses a lot on reusing inter-
nal backends externally. In the AMPC, we broadened the focus
to comprise data clearing for all new APIs and major changes
to existing APIs.

P9: API orchestration
layer

API Facade Adopted

P10: Tailoring APIs to
products

API-as-a-Product Adopted We add C6 to the ‘Known Uses’.

P11: API product val-
idation

Removed Landgraf (2021) describes the solution as collecting any kind of
consumer feedback along the API lifecycle. Since this descrip-
tion is very generic, we removed the pattern in the AMPC.

P12: Idea Backlog Idea Backlog Adopted We added Twilio (C17) to the ‘Known Uses’.
P13: API product doc-
umentation

Consumer-centric API
Description

Adopted We remove the C13 and C14 from the ‘Known Uses’.

P14: Cookbooks Integration Guide Adopted
P15: Software libraries Client Libraries Adopted
P16: Integration part-
ner management

Integration Partner
Program

Adopted We added Stripe (C16) to the ‘Known Uses’.

P17: Role-based mar-
keting

Role-based marketing Adopted Landgraf (2021) distinguished between business and technical
stakeholders. In comparison, in the AMPC, we presented two
variants, i.e., (1) business and technical stakeholders and (2)
platform users and third-party developers. Also, we added C11
to the ‘Known Uses’.

P18: Newsletter Newsletter Adopted We added C13, Stripe (C16), and Twilio (C17) to the ‘Known
Uses’.

P19: Customer success
stories

Customer Success Sto-
ries

Adopted We add C11, Stripe (C16), and Twilio (C17) to the ‘Known
Uses’.

P20: First-level sup-
port

Dedicated Support
Team

Adopted

P21: Service desk soft-
ware

Removed The pattern was very similar to the pattern P2: Company-wide
ticketing system making them difficult to distinguish. Also,
the pattern describes a type of software. Hence, we removed
the pattern from the AMPC.

P22: Self-service Onboarding Self-
service

Adopted We add C2, Stripe (C16), and Twilio (C17) to the ‘Known
Uses’.

P23: Multi-tenant
management

Removed While the interviewees of cases C6, C9, and C13 use terms
like multi-tenancy [C6] and tenant isolation [C9], the interview
partners address different concepts. Hence, we cannot con-
firm the pattern P23: Multi-tenant management but instead,
describe the pattern candidates Several Developer Portal
Instances, White-label Marketplace, and Tenant Isolation.

API Product Owner New We identified this pattern during the repeated data analysis.
API Quality Monitor-
ing

New We identified this pattern during the repeated data analysis.

Play-it-fast approach New We identified this pattern during the repeated data analysis.
Web API New We identified this pattern during the repeated data analysis.

Table B.1.: Overview of the major changes of patterns between Landgraf (2021) and the AMPC
(Bondel and Matthes, 2023).

180

APPENDIX C

Questions for the EuroPLoP Writer’s Workshop

This appendix presents the questions transmitted to the participants of the Writer’s Workshop
of the EuroPLoP1 conference prior to the workshop.

Questionnaire

Dear Reviewer of the EuroPLoP paper,

thank you very much for reviewing the article „API Management Patterns for Public, Partner,
and Group API Initiatives with a Focus on Collaboration “. The paper summarizes the research
approach and presents two exemplary patterns of a more extensive pattern language. We are
currently still finalizing the pattern language, which will be a significant artifact of my doctoral
Thesis.

The goal of participating in the EuroPLoP is to validate the research approach and the pattern
structure scientifically. We will also transfer your feedback on the pattern structure to the other
patterns of the pattern language. Therefore, we have compiled a set of questions that came up
during the design of the pattern language and the discussions with our shepherd, hoping that
these questions can guide you during the review process and the workshop discussions:

Research approach:

• We have chosen a design science approach in combination with the "rule of three" intro-
duced by Coplien (1996). Do you have any suggestions for improving the research approach
or the research approach description?

• The next step for creating the overall pattern language will be to finalize the current version

1https://www.europlop.net/conference/

181

https://www.europlop.net/conference/

C. Questions for the EuroPLoP Writer’s Workshop

based on you feedback and afterward evaluate it. The evaluation will consist of showing the
pattern language to industry experts and conducting semi-structured interviews. What do
you think of this approach? Do you have any suggestions on how to maximize the outcome
of this approach?

Pattern language:

• We summarized all patterns of the pattern language in the problem/solution summary and
visually related the patterns in Fig. 3 and Fig. 5. Are the visual representations easy to
read and do they add value for the reader?

• Do you have any suggestions for improving the problem/solution summary or the visual
representations?

Pattern

• Does the current structure of the pattern descriptions contain all necessary information?

• Does the current structure of the pattern descriptions allow for an intuitive reading flow?

• What do you think about the abstraction level in the section Implementation Details?
Does the section contain too much or too little information?

• Does the section Related Patterns contain too much or too little information?

• We added some "meta" findings related to the cases in which we observed the patterns
in the section Known Uses. Do you think this is the right section to include this kind of
information, or should it be included in a different section (e.g., in the section Forces)?

General findings:

• Do you think the general findings are valuable?

Thank you very much, and I am looking forward to your feedback during the EuroPLoP work-
shop.

182

APPENDIX D

Changes to the AMPC before its Publication

We published the AMPC online, free of charge in Bondel and Matthes (2023). After its evaluation
but before its publication, we made minor changes to the AMPC:

• We identified further related patterns in other pattern collections. Hence, we added rela-
tions between the AMPC’s patterns and patterns presented in these pattern collections in
the respective ‘Other Related Patterns’ sections and the visualization of these relations.
More precisely, we added relations to patterns presented in Geewax (2021), Bellido et al.
(2013), Erl (2008), Rotem-Gal-Oz (2012), Völter et al. (2004), and Dyson and Longshaw
(2004).

• Initially, the goal of the AMPC comprised providing API management patterns also aimed
at SMEs. However, the case base did not hold any API initiative descriptions of SMEs.
Also, the practitioners who participated in the evaluation did not belong to SMEs. Hence,
we cannot make any statement about the suitability of the patterns for SMEs. Therefore,
we removed the claim of supporting SMEs from the AMPC.

• We removed screenshots of examples in the pattern descriptions due to copyright concerns.
However, we included thorough descriptions and links to the respective websites.

• We aligned the ‘Summary’ section with the initial publication of the observations in Bondel
et al. (2021b).

• We corrected spelling, punctuation, and grammatical errors.

• We improved the quality and design of visual illustrations.

183

APPENDIX E

AMPC Pattern Summaries

In the following, we summarize each pattern presented in the AMPC. Tab. E.1 summarizes the
Interface Type Patterns, Tab. E.2 summarizes API Provider Internal Patterns, and Tab. E.3
summarizes the API Consumer faceing Patterns. The tables have been previously presented in
Bondel et al. (2021b).

184

E. AMPC Pattern Summaries

Table E.1.: Summaries of the Interface Type Patterns adopted from Bondel and Matthes (2023).
Pattern
Name

Pattern Solution Description

Web API A provider uses a Web Application Programming Interface (Web API) that
exposes functionality or data via the public internet, i.e., uses HTTP(S) as
communication protocol (Bermbach and Wittern, 2016; De, 2017; Santoro
et al., 2019). The Web API decouples the functionalities implementation
from the interface that makes it accessible (Spichale, 2017; De, 2017; Med-
jaoui et al., 2018). Also, the Web API defines the contract for interactions
between the backend and the client application (De, 2017; Jacobson et al.,
2012).

Client
Library

A client library wraps a Web API and enables consumers to access it using
code in a specific programming language and compliant with a certain
framework (De (2017); C3). Hence, the application consumer does not
have to interact with the Web API directly but indirectly through the
library functions in the programming language of choice.

Frontend
Venture

The API provider enables consumers who cannot, for any reason, integrate
an API or client library, to still use the functionality or data via a simple
frontend, i.e., a website with fields and buttons that trigger API function-
ality. If enough consumers are interested in the frontend, a product team
can take over the development and maintenance of the frontend.

185

E. AMPC Pattern Summaries

Table E.2.: Summaries of the API Provider Internal Patterns adopted from Bondel and Matthes
(2023).

Pattern
Name

Pattern Solution Description

API-as-a-
Product

The API provider treats APIs like any other consumer-facing (software)
product, including technical, business, legal, marketing, and other aspects.

API Product
Owner

An API product owner is responsible for an API’s economic success, designs
and evolves the API according to consumers’ needs, and represents the API
internally.

Collaborative
Pilot Project

The API provider designs a new API iteratively in close collaboration with
one or a limited set of API consumers to increase the likelihood of the API
meeting API consumers’ needs.

Play-it-fast
Approach

The API provider designs and publishes an API based on initially provided
consumer requirements but without consumer collaboration during API
design and implementation (C4) to achieve fast time-to-market.

Idea Backlog An idea backlog is a dynamic list that stores and aggregates consumer
wishes for API endpoints derived from consumer support requests, discus-
sions, or surveys.

Testing
Strategy

A centrally defined testing strategy enforces the testing of new APIs or
changes to existing APIs to reduce the likelihood of unexpected behavior
of new or changed APIs or backends (C3).

Data Clearing
Process

A data clearing process ensures that all API endpoints comply with legal
and strategic requirements before they are published externally by involving
different stakeholders who provide feedback and need to sign off on a new
API or the change to an existing API.

API Facade An API facade abstracts the invocation of several backend services into a
single API (Gamma et al., 1995). The API facade thereby supports the
tailoring of APIs that fit the user stories of the API consumers.

API Quality
Monitoring

API quality monitoring describes continuously testing an API’s non-
functional properties to detect anomalies and take countermeasures quickly.

186

E. AMPC Pattern Summaries

Table E.3.: Summaries of the API Consumer-facing Patterns adopted from Bondel and Matthes
(2023).

Pattern
Name

Pattern Solution Description

Role-based
Marketing

Role-based marketing denotes the clear separation of marketing material
and other consumer-facing resources targeted at different user roles in the
developer portal.

Customer
Success
Stories

A customer success story exemplifies an API consumer’s successfully final-
ized use case or product implementation utilizing the provider’s APIs (C3)
with the aim to demonstrate an API’s potential to future consumers.

Newsletter The API provider publishes summaries of changes to existing APIs (De,
2017) and other announcements related to APIs in a newsletter to keep
current and potential future API consumers up-to-date.

Consumer-
centric API
Description

The API provider describes the API products functionality from a consumer
perspective as use cases or user stories addressing a consumer’s business
need.

Integration
Guide

An integration guide documents the implementation of common function-
ality using step-by-step instructions (Spichale, 2017) to reduce consumers’
effort implementing the specific functionality (Medjaoui et al., 2018).

Onboarding
Self-service

An onboarding self-service automates (parts of) the API onboarding pro-
cess by allowing API consumers to choose a monetization plan, register a
user account, generate authentication credentials, and register a finalized
client application without interacting with API provider team members.

Integration
Partner
Program

API providers support API consumers with finding suitable integration
partners by creating and maintaining a curated list of potential integration
partners that meet specific quality criteria.

API provider-
wide
Ticketing
Management

The API provider uses a uniform ticketing system that manages all API-
related tickets and is available to all teams involved in API provision.
Hence, the ticketing system enables transparency, e.g., on ticket resolution
times or recurring issues.

Dedicated
Support Team

The dedicated support team accepts all API consumers’ questions, service
requests, and incident reports and immediately answers or resolves low- or
medium-complexity tickets. Only high-complexity tickets are forwarded to
the respective experts, relieving the API and backend provider teams of a
portion of the support activities.

Service Level
Agreement
(SLA)

An SLA is an agreement between two parties that specifies the quality of
services, i.e., the APIs’ non-functional properties and support service levels,
as well as contractual punishments in case of SLA breaches. Hence, an SLA
increases API consumers’ trust in an API’s quality.

187

APPENDIX F

AMPC Pattern Examples

In the following, we present the two patterns Frontend Venture and Collaborative Pilot
Project as previously published in Bondel and Matthes (2023).

188

F. AMPC Pattern Examples

Frontend Venture

A previous version of this pattern has been published in Bondel et al. (2021b). In this pattern
catalog, we evolved the pattern.

Pattern Overview
Name Frontend venture
Pattern Type Interface Type Pattern
Summary The API provider enables consumers who cannot, for any reason, integrate an

API or client library, to still use the functionality or data via a simple frontend,
i.e., a website with fields and buttons that trigger API functionality. If enough
consumers are interested in the frontend, a product team can take over the devel-
opment and maintenance of the frontend.

Figure F.1.: A Frontend Venture makes data and functionality available to consumers lacking
the capabilities to use a Web API or Client Library.

Context:

Integrating an API into an existing IT landscape creates effort for the API consumers. However,
some API consumers lack technical capabilities or the budget for API integrations and can thus
not realize beneficial use cases. Such consumers are often municipalities or small, non-digital
businesses (C3).

Concern:

How can an API provider enable API consumers that cannot, for any possible reason, integrate
an API to use the API’s functionality or data nonetheless?

Forces:

• Consumer capabilities. Some potential consumers, especially municipalities or small, non-
digital organizations, are not able to use or integrate APIs since they have no or small
IT departments that are already working at capacity. For example, in one observed case,
the API consumers are small, non-digital organizations that usually only have a website

189

F. AMPC Pattern Examples

based on a content management system maintained by freelancers (C3). Furthermore,
these potential consumers often have no budget to hire external IT service providers to
execute the integration project (C3).

• Profits. API consumers are willing to pay for solutions that meet their needs.

• Public perception. The API provider can make data and functionality available to mu-
nicipalities or small, non-digital businesses in a way that supports some societal interest.
Such initiatives are viewed positively by the public (C3).

• Legal obligation. An API provider can be legally obliged to make specific data available to
certain consumer groups through APIs, even if some consumers cannot use the API (C3).
Such legal obligations exist, for example, in the banking or automotive industry.

• Effort. API providers often work at capacity and consumers use a software solution only
if the API provider can provide it with a certain level of quality.

• Reusability. Solutions always need to balance the specific needs of the first API consumer
or end user with the reusability of the solution for other consumers.

• Flexibility. An API and an interface provide different flexibility with regards to integration
(C9), automatizing (C9), customization (C7), and branding (C7).

Solution:

The API provider identifies and evaluates a use case with an API consumer or a consumer group
and implements a frontend, i.e., a website with fields and buttons that trigger API functionality.
As soon as the frontend reaches a certain level of maturity, the API provider markets it to
other potential consumers. If enough consumers are interested, a product team takes over the
development and maintenance of the product. Thus, implementing a frontend can be a venture
opportunity.

Stakeholders:

The API provider has to design and implement the frontend. During the design and imple-
mentation, the API provider has to collaborate with the API consumers to ensure that the
frontend meets the consumers’ needs concerning functional and non-functional requirements.
Furthermore, the API provider should aim to hand over the responsibility for the frontend to a
dedicated product team after its publication.

Implementation Hints:

Basic approach. A frontend implements a specific use case for a consumer or consumer group.
Therefore, the first step is to analyze the need of the future consumer or consumer group. Once
the use case is defined, the API provider assesses the benefits and drawbacks. The benefits can
include additional direct profits from billing the consumers, the chance of further profits from

190

F. AMPC Pattern Examples

reselling the frontend to other external consumers, internal reuse of the frontend, or positive
marketing impact (C3). The API provider has to weigh these advantages against the additional
effort required to develop and maintain the frontend.

Furthermore, as part of the initial analysis, the API provider should check if similar frontends
exist within the organization. If an internal team has already built a similar frontend, the API
provider can reuse (parts of) it (C3). Based on this benefit-cost evaluation, the API provider
decides if or how to implement the frontend.

Assuming the API provider decides to move forward with the frontend implementation, in the
next step, the API provider designs and implements the frontend. The API provider can choose
to employ either a Collaborative Pilot Project or a Play-it-fast to design and implement
the frontend. An alternative approach would be to implement a simple first version of the
frontend in the course of a hackathon1.

After the frontend reaches a certain level of maturity, the API provider can present it to other
interested parties. If enough consumers are interested in using the frontend, the API provider
can hand it over to a dedicated product team to evolve and maintain it as a product following
the API-as-a-Product pattern (C3). Thus, designing and implementing a frontend is a venture
opportunity for the providing organization. The product team then acts as an IT provider to
the consumer while the API platform provides the underlying API services (C3).

Types of frontends. A frontend realizes a specific use case and typically concentrates on a subset
of the APIs functionality. In general, the goal is to provide a user interface using state-of-the-art
design elements that consumers without technical capabilities can easily and intuitively use. The
most basic type of a frontend is a user interface that simply makes the as-is API functionality
usable for non-technical consumers. For example, the API provider can implement a website
that allows users to upload data, set transformation parameters and response filtering options,
and subsequently download a file containing the APIs response (C3; C7). A more advanced
frontend can also implement some logic that augments the response data with additional data
or visualizations. As an example, a frontend can show a map and locate certain events on it
(C3).

Consequences:

Benefits:

• Consumer capabilities. The frontend allows API providers to make API data and func-
tionality available to organizations with insufficient IT capabilities or budgets. Still, other
interested API consumers with enough IT capabilities can consume the API to create
custom integrations or proprietary frontends.

• Profits. The API provider can monetize the implemented frontend, and it can thus become
a source of profit. If the API provider does not provide the frontend, a third party could
skim these profits.

1A hackathon is an event with a pre-defined timeframe during which small development teams compete to
implement the best solution to a pre-defined problem.

191

F. AMPC Pattern Examples

• Public perception. Making data and functionality available to municipalities or small, non-
digital businesses in a way that supports some societal interest results in positive publicity
for the API provider (C3).

• Legal obligation. In case of a legal obligation, the API provider has to implement the API
anyway. Therefore, the API provider might view the legal obligation as an opportunity to
create new business relationships or profits through the frontend (C3).

Drawbacks:

• Effort. The design, implementation, and especially the maintenance of the frontend create
additional effort for the API provider. If the frontend is of insufficient quality, the API
consumers will not use it, and it would thus be a loss of investment (C3). The API provider
has to ensure that enough resources are available to realize a frontend venture.

• Reusability. The API provider has to put effort into balancing the needs of different
frontend consumers (C3). If the API provider tailors the frontend too much to the need
of one API consumer, other API consumers will not use the frontend. However, if the
frontend is too generic, it might be of less value for all consumers.

• Flexibility. A frontend limits the consumers flexibility compared to an API with regards
to integration (C9), automation (C9), configuration (C7), and branding (C7). Thus, it is
important that the API provider also keeps providing the API.

Related Patterns within this Pattern Catalog:

An API provider can design and publish a Frontend Venture in addition to a Web API if, for any
possible reason, the consumer cannot integrate a Web API (C3). However, the provider should
also publish the Web API to preserve the flexibility of consumers that want to integrate it directly
(C7; C9).

Also, the API provider can realize a Frontend Venture through a Collaborative Pilot Project
or a Play-it-fast. Furthermore, API Quality Monitoring can monitor the breach of non-
functional properties of a Frontend Venture. The Dedicated Support Team enables consumers
to report issues related to Frontend Venture and a Newsletter can communicate changes
of a Frontend Venture. Finally, an Onboarding Self-service enables access to a Frontend
Venture.

Finally, the pattern Frontend Venture is suitable if the consumer has neither the technical
nor the financial capabilities to integrate a Web API. However, suppose the consumer lacks
only technical capabilities but has a sufficient budget for API integration. In that case, the API
provider can alternatively use a Integration Partner Program to introduce integration partners
to the consumer.

Known Uses:

We observed the pattern in three cases:

192

F. AMPC Pattern Examples

The API portal provider of an automotive organization (C3) wanted to provide data to two
municipalities via APIs. However, the municipalities did not have the capabilities to integrate
the APIs and requested a user interface that a non-technical stakeholder can use. The API
provider implemented such an interface during a pilot project since the organization expected
positive marketing effects. After the pilot phase, the API provider team handed the prototype
over to a product team that now maintains the frontend. As a result, the API provider reports
that only 50% of consumers directly access the API behind the frontend, while 50% use the
frontend.

The organization C7 is an insurance subsidiary that provides insurance services within a group
setting. The API management team offers a mix of APIs and frontends. If the API provider
exposes an API directly or uses a frontend depends on the nature of the product. The products
that need much integration into backend systems, customization, or branding are exposed as
APIs. Additionally, the API provider provides frontends for products that do not need much
integration. Those are primarily products offering only data access or simple functionality.

Finally, in C9, the organization offers a marketplace for IoT applications. The API provider
again offers APIs and frontends, however, frontends are dominant. According to the interview
partner, most consumers prefer frontends. Nevertheless, the API provider also provides APIs to
enable integration and automation.

Cross-case observations:

All the cases are in early phases (pilot phase or early production phase). This makes sense,
since it can be beneficial for API initiatives in early stages to implement frontends to attract
first consumers. However, it is also essential to maintain the Web APIs since Web APIs provide
more flexibility regarding backend integration or frontend customization to organizations with
more IT capabilities or budget.

Also, not surprisingly, the consumers are rather small business or municipalities.

193

F. AMPC Pattern Examples

Collaborative Pilot Project

Pattern Overview
Name Collaborative Pilot Project
Pattern Type API Provider Internal Pattern
Summary The API provider designs a new API iteratively in close collaboration with one

or a limited set of API consumers to increase the likelihood of the API meeting
API consumers’ needs.

Figure F.2.: The pattern Collaborative Pilot Project involves one or a selected number of
API consumers in all steps of the API design. This includes the API consumer

reviewing and providing feedback on the API’s specification and the prototypical
implementation before publication to all consumers.

Context:

An API provider wants to create a new API. For an API to succeed, the APIs must meet the
API consumers’ needs. Especially for complex use cases, it can be challenging to understand
the API consumers’ needs correctly (C2).

Concern:

How can the API provider ensure that a new API meets the consumer’s needs?

194

F. AMPC Pattern Examples

Forces:

• Consumer demand. The API provider needs to ensure that APIs meet the consumers’
needs so that consumers adopt the APIs. The creation of an API that does not meet
consumer needs leads to a loss of investment (C3).

• Time-to-market. In specific markets, i.e., high-speed markets, API providers must publish
APIs as fast as possible to gain or maintain a competitive advantage (C3). Moreover, even
outside of high-speed markets, API consumers that rely on the API to run their business
can be negatively affected by long waiting times for new APIs (Medjaoui et al., 2018).

• Monetization. The API provider might want to create a new API only if its future mone-
tization is secured. The API provider can ensure future API monetization by negotiating
contracts with future API consumers before the API implementation.

• API stability. API consumers rely on the stability of the APIs that they integrate. Frequent
changes, especially breaking changes, creates effort for API consumers (C2) and can lead
to them abandoning an API (Medjaoui et al., 2018).

• Generic API design. In public API and marketplace settings, the API provider wants to
design APIs to meet the needs of several API consumers.

Solution:

The API provider designs the API iteratively in close collaboration with one or a limited amount
of API consumers in a pilot project. The partnering API consumer communicates needs and
requirements and provides feedback to the API provider before and during the API implemen-
tation project (C3). Hence, the API provider can easily realize changes to the API design before
its publication, i.e., before the API is accessible to and integrated by consumers (Medjaoui et al.,
2018).

Stakeholders:

The API provider has to collaborate with the partnering API consumer(s) to discuss and test
API implementations during the pilot phase. Usually, these collaborations are based on a con-
tractual agreement. Thus, the provider has to involve the legal team. Also, the API provider
has to collaborate with the backend provider(s) who provide the functionality accessible via the
API.

Implementation Hints:

Partner identification. A collaborative pilot project starts with identifying a use case and
a consumer who wants to partner. The API provider can identify use cases and partnering
consumers during informal direct discussion or via account management or other consumer-
facing teams. Alternatively, the API provider can use a more structured process, e.g., the use

195

F. AMPC Pattern Examples

of an Idea Backlog. However, it is also possible that an API consumer actively approaches an
API provider and proposes a pilot project. In all cases, the API provider has to evaluate the
business case before agreeing to the partnership (C3).

For public APIs, the API provider can also approach top developers with respected positions
in specific developer communities. These developers’ involvement in the design of new APIs
enables improvements of the API and free marketing through evangelization (Jacobson et al.,
2012).

Collaboration mode agreement. The partners must negotiate the legal basis for the project. Also,
the pilot project partners have to formalize the collaboration and agree upon general conditions,
including the mode and intervals of collaboration. These topics can be discussed during a Pilot
Workshop, which launches the pilot project.

Collaboration modes. The API provider can collect feedback using lab-based usability tests,
focus groups, surveys, and interviews (Medjaoui et al., 2018).

Generally, the API consumer can provide feedback at some or all of the following stages of the
collaborative pilot project. First, the API provider and consumer can create, discuss, and agree
upon API specifications before the API implementation (C3). For example, mocks form a basis
to discuss and review APIs (Spichale, 2017). Also, API consumers can review and test the API
implementation at specific points during the API implementation, e.g., after each iteration in
an agile context (C2; C3). Finally, the consumer can perform the final acceptance test before
an API is released into production and potentially made accessible to other external consumers
(C2). Furthermore, the API provider can also request feedback from the API consumer on
additional artifacts, like the developer portal or API documentation (C2).

Consequences:

Benefits:

• Consumer demand. Collecting consumer feedback before an API’s publication reduces
the need to make assumptions about the API design (Medjaoui et al., 2018) by creating
a better understanding of API consumers and their needs. Thus, the chances of API
adoption increase. Also, close collaboration creates API consumer buy-in.

• Monetization. An API consumer is more likely to sign a contract to use and pay for an
API before its implementation if they are closely involved during the APIs design and
implementation phases. Hence, a Collaborative Pilot Project increases the likelihood
of an API consumer agreeing to an upfront contractual monetization agreement.

• API stability. It is harder to change APIs after their publication when API consumers
have already built integrations (Medjaoui et al., 2018). Iterative improvement of an API
based on consumer feedback before publication should reduce the need to make changes
after publication. A stable API with few changes affecting consumer integrations prevents
a negative impact on API consumer satisfaction.

196

F. AMPC Pattern Examples

Drawbacks:

• Consumer demand. API providers sometimes have to implement APIs for legal reasons.
In such settings, the consumers’ demand for such APIs is a secondary concern for the API
provider (C3).

• Time-to-market. The API provider depends on the partner providing feedback while test-
ing a new API design. API consumers can have other priorities in their daily business and
may not provide feedback to the API provider in a timely manner. Thus, close collabo-
ration with an API consumer can lead to waiting times for the API provider team (C4).
Such waiting times disrupt the development processes of the API provider, and postpone
planned API go-live dates (C4).

• Generic API design. Close collaboration with just one API consumer during the design
of an API can lead to a specialized API. Potentially, only one or a small group of API
consumers can use an overfitted API (C4). A specialized API is suitable if the API provider
aims for a point-to-point integration but not if the API provider wants to provide a public
API or a platform in a developer ecosystem that many API consumers can integrate
(C12). Finally, close collaboration with third parties comes with the risk of scope creeping
(Kendrick, 2015).

Related Patterns within the Pattern Catalog:

A Collaborative Pilot Project is an approach to realize a new Web API, Frontend Venture,
or Client Library that passed the API Clearing Process. The provider can apply a Testing
Strategy for testing as part of the Collaborative Pilot Project.

A Collaborative Pilot Project presents an alternative approach to designing and implement-
ing a new API compared to the Play-it-fast. While Collaborative Pilot Project increases
the likelihood of a new API meeting consumer needs due to close and ongoing collaboration, it
also increases time-to-market. In comparison, a Play-it-fast enables fast time-to-market for
new APIs but also increases the risk of not meeting API consumer needs.

Known Uses:

We observed the pattern in three cases:

In case C2, the API provider offers simulation and modeling algorithms for the analysis of
energy data. The API provider initiates a new project only if a concrete demand exists, i.e., if
an API consumer agrees to partner with them during a pilot project. The API provider gives
the collaborating partner access to the developer portal and asks them for feedback. Based on
the feedback, the API provider evolves the API endpoint.

The API portal provider of an automotive organization (C3) shares anonymized road condition
data with public authorities. The API provider partners with API consumers in pilot projects

197

F. AMPC Pattern Examples

to better understand the market demand for a new API. Different stakeholders can trigger new
projects, but primarily external organizations with prior relations to the provider organization
contact the API provider team with new use cases. Furthermore, the API provider aims to design
a first prototype of the API endpoint to show to the consumer as fast as possible. Based on the
prototype, which can be nothing more than a handwritten specification in the first iteration, the
API provider discusses the API endpoint design with the consumer. However, the API provider
admits that this kind of close collaboration is not always possible for each API endpoint. Instead,
in some cases, the API provider also applies the Play-it-fast, i.e., develops and releases an
endpoint based on only one prior discussion with a potential API consumer to realize a faster
time-to-market.

Case C12 captures a financial services provider that provides SaaS software to end-users. APIs
enable other software providers to integrate their software with the SaaS system of C12, thus
offering an integrated solution to the end users. The API provider closely collaborates with
consumers when creating new APIs for the software product since API consumers often have
very concrete expectations regarding the API. However, this approach leads to the creation of
several APIs for the same software product, i.e., one API for each consumer.

Cross-case observations:

These cases represent API initiatives still in a pilot phase or in production. The API initiatives
are partner and public API initiatives but have a relatively small number of API consumers.
This makes sense since collaborative pilot projects usually focus on the specific requirements of
single API consumers.

Further, the API providers apply Collaborative Pilot Project for API initiatives with other
business organizations as well as with government institutions.

198

APPENDIX G

Survey Questions

This section presents the survey questions and structure used to evaluate the AMPC (Bondel
and Matthes, 2023) from a practitioners point of view as detailed in Section 7.1.2. We used the
Unipark1 survey software to create and conduct the survey.

1https://www.unipark.com/umfragesoftware-bestellen/.

199

https://www.unipark.com/umfragesoftware-bestellen/

G. Survey Questions

18/12/2023, 16:47 Druckversion

https://ww3.unipark.de/www/print_survey.php?syid=986451&__menu_node=print 1/3

FragebogenFragebogen

11 Comprehensiveness_Applicability_Completeness_Correctness_LikertScale Comprehensiveness_Applicability_Completeness_Correctness_LikertScale

22 Usability_Scale Usability_Scale

33 PositiveAspects_ImprovementPotentials PositiveAspects_ImprovementPotentials

200

G. Survey Questions

18/12/2023, 16:47 Druckversion

https://ww3.unipark.de/www/print_survey.php?syid=986451&__menu_node=print 2/3

44 Applicability Applicability

55 ParticipantInformation ParticipantInformation

201

G. Survey Questions

18/12/2023, 16:47 Druckversion

https://ww3.unipark.de/www/print_survey.php?syid=986451&__menu_node=print 3/3

66 FurtherRemarks FurtherRemarks

77 Endseite Endseite

202

	Table of Content
	List of Figures
	List of Tables
	1 Introduction and Motivation
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Contributions
	1.4 Outline
	1.5 Citation Style and Conventions

	2 Foundations
	2.1 Web Application Programming Interfaces (Web APIs)
	2.1.1 Web API Software Artifacts
	2.1.2 Web API Stakeholder Roles
	2.1.3 Web API Types and Architectural Styles
	2.1.4 Web API Accessibility Categories

	2.2 API Economy
	2.3 APIs as Boundary Resources
	2.4 API Management
	2.4.1 API Management Definition
	2.4.2 API Management Lifecycle

	2.5 Best Practices and Patterns
	2.5.1 Best Practices
	2.5.2 Patterns

	2.6 Summary

	3 Related Work
	3.1 API Design Patterns
	3.2 Service Design Patterns
	3.3 Middleware Design Patterns
	3.4 Object-oriented Software Design Patterns
	3.5 Software Architecture Patterns
	3.6 Summary

	4 Identification of Best Practice Candidates for Code Examples in Web API Documentation
	4.1 Definition of Code Examples
	4.2 Research Approach
	4.2.1 Literature Review
	4.2.2 Expert Interviews

	4.3 Best Practice Candidates for Code Examples in Web API Documentation
	4.3.1 Best Practice Candidates Aiming at Knowledge Transfer
	4.3.2 Best Practice Candidates Concerning the Form of Code Examples

	4.4 Discussion
	4.5 Summary

	5 Evaluation of Best Practices for Code Examples in Web API Documentation
	5.1 Research Approach
	5.2 Evaluation of Best Practices for Examples in Web API Documentation
	5.2.1 Quantitative Analysis
	5.2.2 Qualitative Analysis
	5.2.3 Evaluation of the Best Practice Candidates

	5.3 Discussion
	5.4 Summary

	6 Design of the API Management Pattern Catalog (AMPC)
	6.1 Research Approach
	6.2 Previous Work
	6.2.1 Case Base
	6.2.2 Data Analysis

	6.3 AMPC Design
	6.3.1 Improvements to the Data Analysis
	6.3.2 Enrichment of Pattern Descriptions
	6.3.3 Evolution of the Pattern Form

	6.4 The API Management Pattern Catalog (AMPC)
	6.4.1 Structure of the AMPC
	6.4.2 Stakeholders
	6.4.3 Patterns
	6.4.4 Relations to Other Pattern Collections
	6.4.5 Pattern Candidates

	6.5 Discussion
	6.6 Summary

	7 Evaluation of the API Management Pattern Catalog (AMPC)
	7.1 Survey Approach
	7.1.1 Survey Goal
	7.1.2 Survey Structure
	7.1.3 Survey Participant Acquisition

	7.2 Survey Participants
	7.3 Evaluation Results
	7.3.1 Quantitative Results
	7.3.2 Qualitative Results

	7.4 Discussion
	7.5 Summary

	8 Conclusion and Future Work
	8.1 Answers to Research Questions
	8.2 Limitations
	8.2.1 Limitations to the Identification of API Management Best Practices
	8.2.2 Limitations of the Considered Material
	8.2.3 Limitations to the Best Practices for Code Examples in Web API Documentation
	8.2.4 Limitations to the AMPC

	8.3 Future Work

	Bibliography
	Abbreviations
	A Prior Publications and Student Thesis in the Context of this Dissertation
	B Evolution of Patterns in the AMPC
	C Questions for the EuroPLoP Writer's Workshop
	D Changes to the AMPC before its Publication
	E AMPC Pattern Summaries
	F AMPC Pattern Examples
	G Survey Questions

