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Abstract

Due to recent advances in the field of formal verification, the safety of complex au-
tonomous systems, such as a spaceship attempting to dock or a robot collaborating with
humans, may be formally verified. The verification of such reach-avoid problems, where
a set of initial states is to be steered to a given target under input and state constraints,
is often non-constructive since it only provides a yes-or-no answer. As a result, first
synthesizing the controller and then adapting it to guarantee safety turns out to be dif-
ficult. In this thesis, we thus combine numerical optimization and set-based reachability
analysis to synthesize controllers that ensure formal guarantees by construction.

The efficient optimization of these controllers requires differentiability of the consid-
ered synthesis problems. Hence, we first introduce an abstraction of these synthesis
problems, for which differentiability can be shown and which then implies differentiabil-
ity of all considered synthesis problems.

Since an exact formulation of these problems is often hard to solve, we need to derive
tractable approximations thereof. As we compute with sets, this often requires the
use of different set representations, as they are closed under different set operations.
To that end, we present the efficient conversions between different set representations.
Additionally, we describe set containment checks from the literature, which are required
to check input and constraint satisfaction for sets of states.

To synthesize piecewise constant controllers, we start by extending existing approaches
from previous work. To improve controller performance, for instance, we extend the class
of control laws that can be synthesized. Further, we propose a novel synthesis algorithm
based on trust regions, which iteratively synthesizes a piecewise constant controller under
input and state constraints. In contrast to previous work, this synthesis algorithm does
not require additional user input to achieve non-conservative results for state-constrained
systems. All presented algorithms have polynomial complexity in the state dimension
and we demonstrate their advantages compared to other state-of-the-art approaches
using numerical experiments.

To incorporate continuous state feedback, we present a novel algorithm for the com-
bined synthesis of a piecewise constant feedforward controller with continuous state
feedback. In contrast to other state-of-the-art approaches, we do not synthesize the
feedforward controller and the state feedback separately but combine the synthesis into
a single optimization problem and thus avoid the introduction of additional user-provided
algorithm parameters. The complexity of the proposed algorithm is polynomial in the
state dimension. As numerical experiments demonstrate, it outperforms existing syn-
thesis approaches while requiring reduced user input compared to the current state of
the art.

v





Zusammenfassung

Die Sicherheit komplexer autonomer Systeme – wie beispielsweise das Andocken von
Raumschiffen oder die Kollaboration zwischen Mensch und Roboter – kann dank jüngster
Fortschritte im Bereich der formalen Verifikation sichergestellt werden. Der Sicherheits-
beweis solcher “reach-avoid”-Probleme, bei welchen die initiale Zustandsmenge eines Sys-
tems zu einem gegebenen Zielzustand unter Einhaltung gegebener Spezifikationen ges-
teuert werden soll, liefert dabei häufig lediglich eine nicht-konstruktive Ja-Nein-Aussage.
Somit ist die Trennung von Design und anschließender Verifikation des geregelten Sys-
tems oft schwierig. In dieser Arbeit kombinieren wir daher numerische Optimierung mit
mengenbasierter Erreichbarkeitsanalyse, wodurch die so berechneten Regler die gewün-
schten formalen Garantien “by design” erfüllen.

Eine effiziente Optimierung dieser Regler setzt allerdings die Differenzierbarkeit des
zugrundeliegenden Synthese-Problems voraus. Daher führen wir zu Beginn ein ab-
strahiertes Synthese-Problem ein, welches alle relevanten Optimierungsprobleme gen-
eralisiert und zeigen die Differenzierbarkeit dieser Abstrahierung, was damit direkt die
Differenzierbarkeit aller abstrahierten Synthese-Probleme impliziert.

Da eine exakte Formulierung dieser Probleme oft schwierig zu lösen ist, müssen effizien-
tere Approximationen konstruiert werden. Da wir in dieser Arbeit mit Mengen rechnen,
ist dazu oft die Zuhilfenahme verschiedener Mengenrepräsentationen nötig, da unter-
schiedliche Repräsentationen unter verschiedenen Mengenoperationen geschlossen sind.
Daher zeigen wir die effiziente Konvertierung verschiedener Mengenrepräsentationen.
Zur Überprüfung von Zustands- und Eingangsbeschränkungen für Mengen beschreiben
wir außerdem Methoden zur Überprüfung der Teilmengen-Eigenschaft zweier Mengen
aus der Literatur.

Zur Synthese von stückweise konstanten Regelgesetzen beginnen wir zunächst mit der
Erweiterung existierender Ansätze zur Regler-Synthese aus vorangegangenen Arbeiten.
Um die Leistung der berechneten Regler zu verbessern, erweitern wir beispielsweise
die Klasse an berechenbaren Regelgesetzen. Wir präsentieren zudem einen neuartigen
Synthese-Algorithmus, welcher – basierend auf sogenannten “Trust Regions” – itera-
tiv ein stückweise konstantes Regelgesetz berechnet, welches sowohl Zustands- als auch
Eingangsspezifikationen berücksichtigt. Dabei benötigt der präsentierte Algorithmus –
im Gegensatz zu vorhandenen Ansätzen – neben den gegebenen Spezifikationen keine
zusätzlichen Angaben des Nutzers, um performante Regelgesetze zu berechnen. Die
beschriebenen Methoden haben hierbei alle eine polynomielle Laufzeit im Bezug auf die
Zustandsdimension. Wir demonstrieren die Vorteile der entwickelten Algorithmen im
Vergleich zu existierenden Methoden mit Hilfe numerischer Experimente.

Zur Kombination des stückweise konstanten Regelgesetzes mit einem kontinuierlichem
Feedback-Regler beschreiben wir dann einen Synthese-Algorithmus für das kombinierte
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Zusammenfassung

Regelgesetz. Im Gegensatz zu bekannten Ansätzen synthetisieren wir dabei den stück-
weise konstanten und den kontinuierlichen Feedback-Regler in einem Optimierungsprob-
lem, wodurch wir zusätzliche Parameter vermeiden, die vom Nutzer spezifiziert werden
müssten. Der beschriebene Algorithmus hat polynomielle Laufzeit im Bezug auf die Zu-
standsdimension, benötigt im Vergleich zu existierenden Ansätzen reduzierten Nutzere-
ingriff, und zeigt in numerischen Experimenten eine verbesserte Regelperformance.
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Acronyms

ODE ordinary differential equation

PCA principle component analysis
PGSC polynomial generator-space control

ROC reachset optimal control

SC Slater’s condition
SDP semi-definite program
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Notations

In this thesis, we denote scalars and vectors with lowercase letters, matrices with upper-
case letters, and sets with uppercase calligraphic letters.

Definitions

Number Sets

The set of real numbers, non-negative real numbers, and positive real numbers is denoted
by R, R≥0, and R+. Further, the set of complex numbers is denoted by C. Additionally,
N and N+ denote the sets of natural and positive natural numbers. Lastly, the sets of
symmetric, symmetric semi-positive definite, and symmetric positive definite matrices
are given by S, S+, and S++.

Vectors, Matrices, and Sets

The element of a matrix M ∈ Rn×m in the i-th row and j-th column for 1 ≤ i ≤ n and
1 ≤ j ≤ m is denoted by Mij ; further, we denote with M(i,:) and M(:,j) the i-th row and
j-th column of M , and define the shorthand MT

(i,:) =
(
M(i,:)

)T
and MT

(:,j) =
(
M(:,j)

)T
.

For a vector v ∈ Rn, we similarly denote with vi ∈ R the i-th component of v ∈ Rn for
1 ≤ i ≤ n. For a ∈ N and b ∈ N with a ≤ b, the vector of all integers between a and b

(both included) is denoted by a : b =
[
a, a+ 1, . . . , b

]
; for a matrix M ∈ Rn×m, we

extend this notation and denote with M(:,a:) = M(:,a:m) the matrix consisting of the a-th
to the last column with a ≤ m. Similarly, we denote with M(a:b) the projection of the
setM⊆ Rn onto its a-th to b-th dimension, where a ≤ b ≤ n. For two matrices of equal
size, inequality relations between them are to be interpreted element-wise. Moreover,
1n and In =

[
e

(1)
(n), . . . , e

(n)
(n)

]
denote the n-dimensional all-ones vector and the n-

dimensional identity matrix, where e(i)
(n) ∈ Rn denotes the i-th unit vector of dimension

n for 1 ≤ i ≤ n.

Mathematical Operators

For a given vector v ∈ Rn, diag (v) ∈ Rn×n denotes the diagonal matrix with entries of v
on its diagonal. Further, mod (v, k) =

[
mod (v1, k) , mod (v2, k) , . . . , mod (vn, k)

]

denotes the modulo operation on all components of v ∈ Rn where k ∈ R. The trace
of a square matrix M ∈ Rn×n is defined as trace (M) = ∑n

i=1Mii. For two sets
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Notations

A ∈ Nn and B ∈ Nn, their set difference is given by A \ B = {a ∈ A | a ̸∈ B}. More-
over, |S| ∈ N denotes the cardinality of a set S ∈ Nn. Further, the empty set is
denoted by ∅. The transpose of a real matrix R ∈ Rm×n and the conjugate trans-
pose of a complex matrix C ∈ Cm×n are denoted by RT and CH , respectively. The
minimum and maximum entry of a given matrix A ∈ Rn×m are denoted by min (A)
and max (A), respectively; for B ∈ Rn×m, we further denote with min (A,B) ∈ Rn×m

(“max” analogous) the matrix that results from taking the minimum over each matrix
element separately. For a finite number of vectors v(i) ∈ Rn with 1 ≤ i ≤ m, we denote
by min1≤i≤m v(i) =

[
min1≤i≤m v

(i)
1 , . . . , min1≤i≤m v

(i)
n

]T
the finite minimization over

each vector component, where the result is again collected in an n-dimensional vector
(analogous for max). Further, A ⊠ B ∈ Rmp×nq denotes the Kronecker product of ma-
trices A ∈ Rm×n and B ∈ Rp×q, and C ⊞D = C ⊠ Im + In ⊠D denotes the Kronecker
sum for C ∈ Rn×n and D ∈ Rm×m. For a set of m points

{
v(1), v(2), . . . , v(m)

}
with

v(i) ∈ Rn and 1 ≤ i ≤ m, we denote its convex hull, i.e., the smallest convex set contain-
ing all v(i), with convh

({
v(1), v(2), . . . , v(m)

})
⊂ Rn. For a complex matrix C ∈ Cn×m,

real (C) ∈ Rn×m and imag (C) denote the real and imaginary part of C, respectively.
For a matrix M ∈ Sn×n

+ , we alternatively write M ⪰ 0.

Functions
For a function f : R 7→ Rn and time t ∈ R≥0, its time derivative is denoted by ḟ (t) =[

df1(t)
dt , . . . , dfn(t)

dt

]T
. For once and twice continuously differentiable functions f : Rn 7→

Rm and g : Rn 7→ R with vector x ∈ Rn, the Jacobian matrix Jf (x) ∈ Rm×n of g is
defined by [Jf (x)]ij = ∂fi(x)

∂xj
for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and the Hessian matrix

Hg (x) ∈ Rn×n of g is defined by [Hg (x)]ij = ∂2gi(x)
∂xi∂xj

for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

List of Symbols
Scalars

Symbol Dimension Description
t ∈ R≥0 current point in time
tf ∈ R+ time horizon length
ms ∈ N+ number of discrete-time feedback steps
mc ∈ N+ number of piecewise constant control inputs per feedback

step
ts ∈ R time between discrete-time feedback
tc ∈ R+ duration of piecewise constant control inputs per feedback

step
a ∈ N+ number of monomials for the controller template
κ ∈ N+ controller order

xx



Symbol Dimension Description
π ∈ N+ abstraction order for reachable set computations
o ∈ N+ reduction order for zonotopes and polynomial zonotopes
γ ∈ (0, 1] trust-region radius for piecewise constant controller param-

eters P
η ∈ (0, 1] trust-region radius for feedback controller parameters Q and

R
md ∈ N+ number of steps for the time discretization of time-varying

matrices
nx ∈ N+ state dimension
nu ∈ N+ input dimension
nw ∈ N+ disturbance dimension
oXf ∈ N+ number of halfspaces making up the final state constraints
oX ∈ N+ number of halfspaces making up the state constraints
oU ∈ N+ number of halfspaces making up the input constraints
h ∈ N+ extended optimization horizon
mr ∈ N+ number of steps for reachability analysis
µ ∈ R+ optimality tolerance
σ ∈ R+ constraint penality multiplier
ζ ∈ R+ input penalty factor
lmax ∈ N+ maximum number of iterations for a given algorithm
nz ∈ N+ number of controller parameters for the combined controller
ω ∈ R+ exponent for the computational complexity of matrix mul-

tiplication

Vectors

Symbol Dimension Description
x (t) ∈ Rnx state vector
u (t) ∈ Rnu controllable input vector
w (t) ∈ Rnw uncontrollable input vector (disturbance)
xf ∈ Rnx target state
xref ∈ Rnx reference state trajectory
uref ∈ Rnu reference input trajectory
ϑ ∈ Rh

≥0 weight vector for the objective function using the extended
horizon h

Matrices

Symbol Dimension Description
P ∈ [−1, 1]mcmsnu×a controller parameter matrix for all mcms steps
Qref ∈ Snx×nx

+ state weighting matrix for reference trajectory
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Notations

Symbol Dimension Description
Rref ∈ Snu×nu

+ input weighting matrix for reference trajectory
K ∈ Rnu×nx state feedback matrix
Q ∈ Snx×nx

++ state weighting matrix for LQR control
R ∈ Snu×nu

++ input weighting matrix for LQR control
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Sets

Symbol Dimension Description
R(e) ⊂ Rnx exact reachable set
R ⊂ Rnx outer approximation of the reachable set
R̃ ⊂ Rnx approximation (without formal guarantees) of the reachable

set
X (0) ⊂ Rnx set of initial states
X̄ (0) ⊂ Rnx parallelotope outer approximation of X (0)

U ⊂ Rnu input constraint set
W ⊂ Rnw disturbance set
X ⊆ Rnx state constraint set
Xf ⊆ Rnx final state constraint set
X̃ ⊆ Rnx adapted state constraint set
Ũ ⊂ Rnu adapted input constraint set with Ũ ⊆ U
X̃f ⊆ Rnx adapted final state constraint set
M(Q) ⊂ Snx×nx

++ bounded set of state weighting matrices for LQR control
M(R) ⊂ Snu×nu

++ bounded set of input weighting matrices for LQR control
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Computing Platform and Implementation

All numerical experiments and computations are carried out in the matrix Laboratory
(MATLAB) 2022b on an Intel(R) Core(TM) i7-9700K with 16 GB of RAM. Further, we
implemented all presented set operations and conversions in the continuous reachability
analyzer1 [2] (CORA) toolbox, and all proposed synthesis algorithms in the automated
reachset optimal control2 [63] (AROC) toolbox, which are both publicly available.

1https://cora.in.tum.de/
2https://aroc.in.tum.de/
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1 Introduction

1.1 Motivation

In 1965, Gordon Moore, co-founder of one of today’s biggest semiconductor chip man-
ufacturers in the world, posited that the number of components on a chip of fixed size
would double every year. His revised version, which stated that this number would dou-
ble every two years and which has held true every since, became known as Moore’s law
and is de facto synonymous with the exponential rise of computational power we have
seen over the last decades. Incidentally, the birth of Moore’s law in 1965 coincided with
the publication of the first machine learning paper. While back then, machine learning
was restricted to very basic applications, today’s availability of computational resources
predicted by Moore has truly enabled the application of artifical intelligence (AI) to
nearly every aspect of our lives, with applications ranging from smart kitchen appliances
and vacuuming robots to highly sophisticated chat bots.

Among many, autonomous driving is one prominent area of research that benefited
from the increasing capabilities of AI. However, while smart vacuuming robots may
have some form of human interaction, guaranteeing the safety of their machine-learning-
guided journey through one’s home is not safety critical. In contrast, AI systems which
enable fully autonomous driving are highly safety critical. However, the high complexity
of such AI systems, often using millions or even billions of neurons, makes it hard or
even impossible to verify them. As a result, these autonomous vehicles are required to
validate their safety to within some statistical margin by extensive testing. For self-
driving cars, this involves driving thousands or even millions of kilometers in varying
environments. Furthermore, changes to any safety-critical system in the car can require
additional testing, or even demand a complete restart of the testing campaign.

Instead of only validating a given system through extensive testing, one may formally
verify it to obtain guarantees about its behavior. With the increase of digital computers
in all aspects of our society, cyber-physical systems, which combine both physical and
software components, are becoming increasingly popular to model these systems. Reach-
ability analysis is one popular formal verification tool to verify cyber-physical systems:
The reachable set contains all possible future states of a system that can be reached,
starting from a given set of initial states under any possible disturbance realization. A
state hereby collects the necessary information of a system to describe it fully. For au-
tonomous vehicles, this means that its subsystems can be formally verified by checking
intersections of unsafe states with the reachable set; changes to a subsystem then only
require the re-verification of that subsystem but leaves the formal guarantees of all other
subsystems untouched. Additionally, reachability analysis can account for uncertainty in
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1 Introduction

x

Figure 1.1: Concept of a reach-avoid problem: From a given initial set of states (white), the
system is steered to the target state (“x”) within a given time horizon while avoiding
all obstacles (red). The grey area hereby is the reachable set, where the grey lines
visualize possible trajectories for a specific initial state (grey square).

the system, such as measurement errors of radar or light detection and ranging (LIDAR)
sensors.

However, reachable sets of more complex systems cannot be computed exactly. There-
fore, an outer approximation of the reachable set, which is an approximation containing
the exact reachable set, is computed. That said, autonomous systems, such as au-
tonomous cars, are often first designed, i.e., a controller that executes a certain task is
synthesized, and only then verified. As a result, tuning the controller manually in order
to verify safety may be impractical for highly complex systems. Therefore, instead of
verifying existing controllers, we focus in this thesis on combining numerical optimiza-
tion and reachability analysis to obtain correct-by-construction controllers that already
provide formal guarantees about the behavior of the closed-loop system.

A wide range of these tasks can be classified as reach-avoid problems, which are visual-
ized in Fig. 1.1: For a given system with a set of initial states, we try to find a controller
that, within a given time horizon, avoids all obstacles and steers the system state close to
a given target state while minimizing the required control effort. In previous work, the
combination of reachability analysis and optimization theory for the synthesis proved to
be a powerful combination as it allows to optimize over a set of initial states instead of
a single initial state. That said, the computation of reachable sets is computationally
expensive when executed repeatedly. Thus, in this thesis, we propose novel synthesis
approaches that avoid the computation of reachable sets as much as possible while still
using their formal verification properties.

1.2 State of the Art
The task of synthesizing a controller for a given system has already been extensively
explored in literature. We subsequently summarize the most important work.

1.2.1 Optimal Control

When only a single initial state needs to be controlled, many approaches in the field
of optimal control have been proposed [92]. For a given system of possibly nonlinear
ordinary differential equations (ODEs), optimal control approaches try to find a function
for the input vector subject to these ODEs that minimizes a functional while respecting
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constraints on the input and state of the system. When there are no constraints on a
linear time-invariant (LTI) system and one optimizes over a quadratic cost function in
both state and input, Kalman derived in his seminal paper [56] the optimal control law
– now known as linear-quadratic regulator (LQR) control – using Pointryagin’s maxi-
mum principle, which provides necessary (but not sufficient) conditions for an optimal
control law. For general nonlinear optimal control problems, however, it becomes neces-
sary to use numerical methods [105]. We differentiate between two approaches: Starting
from the first-order necessary conditions of the original optimal control problem given
by the Hamiltonian boundary-value problem, indirect methods numerically solve this
boundary-value problem for given boundary values and thus reduce the original problem
to the solution of a system of nonlinear equations [92]. Due to the recent progress in
optimization theory, however, indirect methods [105, 96] have become less popular. In
contrast, direct methods parameterize the input and state functions using a finite num-
ber of parameters and then solve the resulting finite-dimensional optimization problem.
Here, methods include direct multiple shooting [13], which subdivides the time horizon
of the optimal control problem into multiple steps and subsequently parameterizes the
control function, and has, e.g., been applied to optimal robot control [26]. Further, direct
collocation methods [104] parameterize both the input and state vector and have, e.g.,
been used for the estimation of muscle forces during motion [43]. There exist many soft-
ware packages, such as the automatic control and dynamic optimization1 [55] (ACADO)
toolbox and CasADi [10], that implement these optimal control methods while providing
user-friendly interfaces in multiple programming languages.

As an extension to Pointryagin’s maximum principle, the Hamilton-Jacobi-Bellman
(HJB) equations provide necessary and sufficient conditions for an optimal control law
over the entire state space instead of a single trajectory [57]. Further, they allow the
direct inclusion of state and input constraints into the problem. However, while there
have been attempts to reduce the curse of dimensionality when trying to solve the HJB
equations, solving them requires the solution of partial differential equations and thus
still has worst-case exponential complexity in the number of state variables [85].

1.2.2 Model Predictive Control

When using a direct method for the solution of an optimal control problem for a given
initial state, choosing the input to be piecewise constant as a parameterization means
that the algorithm returns a sequence of piecewise constant control inputs that minimizes
the given objective function for the given initial state. In model predictive control
(MPC), this procedure is applied iteratively: For a given initial state, the sequence
of control inputs is computed and the first input is applied to the system. After one
step, the system state is again measured and the input sequence is recomputed. Since
this procedure easily allows for the incorporation of state and input constraints into the
optimal control problem, MPC has been used extensively in industry for the past decades
[82, 93]. When the given system has inherent uncertainty, tube-based MPC guarantees

1https://acado.github.io/
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that the system stays within a tube around a reference trajectory [80, 72, 79, 91, 78].
However, since MPC repeatedly solves an optimal control problem for a given state, its
application requires optimization online. To alleviate some of that computation cost
online, explicit MPC approaches parameterize the optimal control problem in the initial
state and solve the resulting parametric optimization problem offline [1, 30], albeit at
the cost of high computation times when trying to solve high-dimensional, parametric,
non-convex optimization problems. With major advances in optimization theory, more
recent work thus focuses again on solving the optimal control problem online, which
allows the online controller synthesis for LTI systems in real-time [44, 119, 102].

1.2.3 Abstraction-Based Synthesis

Similarly to the HJB equations, controller synthesis using model abstraction – and par-
ticularly symbolic model abstraction – allows for the synthesis of controllers for sets of
initial states instead of a single initial state. In model abstraction, the continuous or
hybrid system is abstracted to a finite-state system which has a finite number of discrete
states [107, 88, 89, 94, 58, 39]. For such automata, standard algorithms for finite sys-
tems can be employed to synthesize a controller for the abstracted system; the resulting
controller then needs to be suitably refined such that we obtain a controller for the orig-
inal system [95]. When abstracting the state space with a uniform grid, the number of
abstracted finite states grows exponentially in the number of state variables. Addition-
ally, early work made assumptions about the system class [58, 46, 12] or the stability
of the system [42, 90]; recent work [118, 95] has managed to avoid such assumptions.
Recently, attempts have been made to also circumvent the curse of dimensionality due
to state space discretization; however, the proposed techniques either use mixed-integer
linear program (MILP) with exponential worst-case complexity in the number of integer
variables [116] or focus on linear systems [87].

1.2.4 Reachability-Based Synthesis

Reachability analysis has recently attracted increased attention in the formal verification
community [9, 4, 23, 5, 21, 6]. Previous work has already combined reachability anal-
ysis with optimization to solve reach-avoid problems: The authors in [100] synthesize
a continuous state feedback controller by formulating a non-convex optimization prob-
lem, where in each optimization iteration an outer approximation to the reachable set is
computed, which in turn is used to compute the current value of the objective function
and the constraints. In [99], the authors consider the controller synthesis for nonlinear
system dynamics by first computing a piecewise constant control sequence for each ver-
tex of the initial set. These sequences are then used in the final controller to form a
piecewise constant input sequence for any initial state. However, the number of vertices
of the initial set grows exponentially with the system dimension. Thus, the authors in
[99] instead parameterize the controller using zonotopes and compute a parameterized
reachable set based on the linearized dynamics to obtain a synthesis problem which can
be formulated as a linear program (LP). This parameterization grows linearly in the
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state dimension and thus can efficiently synthesize piecewise constant controllers for dis-
turbed nonlinear systems under input and state constraints. While the parameterization
of the control input by a zonotope means that input constraints can be easily verified,
the parameterized reachable set is only an approximation and thus the inclusion of state
constraints requires user input to achieve non-conservative results. Furthermore, while
this approach can be applied iteratively to realize discrete-time state feedback, it fails to
efficiently reject larger disturbances. Therefore, the authors combine the feedback syn-
thesis from [100] and the feedforward synthesis from [99] for the synthesis of a combined
piecewise constant feedforward controller with continuous state feedback [101], albeit at
the cost of again computing an outer approximation to the reachable set of the current
controller in each optimization iteration.

1.3 Outline
We propose several new algorithms for formally verified controller synthesis of con-
strained, disturbed nonlinear systems. Since we make extensive use of set-based compu-
tations, we further introduce required conversions between set representations in order
to pose the synthesis problems efficiently.

Chapter 2: Background We introduce all necessary background in Chap. 2. Specif-
ically, we start by introducing mathematical standard operations in Sec. 2.1 and the
theory of differentials in Sec. 2.2. We then describe the basics of optimization theory in
Sec. 2.3 and continue with a review of the well-known linear-quadratic regulator (LQR)
control scheme in Sec. 2.4. Since we compute with sets, we describe in Sec. 2.5 and
Sec. 2.6 all necessary set operations and set representations. In Sec. 2.7, we introduce
the concept of reachable sets and give a short overview over the relevant algorithms for
this thesis. In Sec. 2.8, we then briefly discuss how the representation complexity of
zonotopes and polynomial zonotopes can be controlled, which is, e.g., necessary to keep
reachability computations efficient.

Chapter 3: Abstracted Synthesis Problem In Chap. 3, we discuss the abstracted syn-
thesis problem, i.e., an optimization problem which generalizes all major optimization
problems of subsequent chapters and which we use to derive important properties. First,
we introduce reach-avoid problems and define the general synthesis problem in Sec. 3.1.
Because many optimization solvers find possible extrema by solving for the first-order
critical points that are characterized by the Karush-Kuhn-Tucker (KKT) conditions, we
then define the abstracted synthesis problem in Sec. 3.2 and derive a smooth optimiza-
tion problem, for which we prove that it shares its global minimum with the original
optimization problem. Lastly, we discuss the effect of different norms in optimization in
Sec. 3.3.

Chapter 4: Set Conversions and Set Containment In order to efficiently pose and
solve optimization problems of subsequent chapters, we further introduce existing and
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novel conversions between different set representations in Chap. 4. First, we introduce all
necessary set conversions in Sec. 4.1. In order to check, e.g., the constraint satisfaction
of input or state constraints, we then shortly describe existing approaches from the
literature to check set containment in Sec. 4.2.

Chapter 5: Piecewise Constant Controller Synthesis We describe existing and novel
algorithms for the synthesis of piecewise constant controllers, i.e., controllers which are
constant in time for a given time interval, in Chap. 5. After the introduction of the prob-
lem statement in Sec. 5.1, we first review the generator-space control (GSC) approach
from [99] in Sec. 5.2 and then propose the polynomial generator-space control (PGSC)
approach as a novel extension of GSC in Sec. 5.3. Because both GSC and PGSC require
additional user inputs when state contraints are to be enforced, we introduce iterative
polynomial generator-space control (iPGSC), a novel iterative synthesis approach using
trust regions, in Sec. 5.4. We demonstrate the applicability of our algorithms using
numerical examples.

Chapter 6: Piecewise Constant Controller Synthesis with Continuous State Feed-
back Since piecewise constant controllers cannot quickly counteract disturbances due
to their inherent discrete-time feedback, we discuss the synthesis of piecewise constant
feedforward controllers with continuous state feedback in Chap. 6. We start by intro-
ducing the problem statement in Sec. 6.1 and then describe the reachset optimal control
(ROC) approach from [101] in Sec. 6.2, where feedforward synthesis using GSC is com-
bined with the synthesis of a continuous linear feedback term. Because ROC executes
the feedforward and feedback synthesis sequentially, i.e., the feedforward controller is
synthesized first and then kept fixed during the feedback controller optimization, we
introduce iterative polynomial reachset optimal control (iPROC) in Sec. 6.3, which – for
the first time – optimizes over the feedforward and feedback controller simultaneously
reduces the required user input compared to ROC. The applicability of our algorithms
is demonstrated with numerical benchmarks.
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2 Background

In this chapter, we introduce all concepts that are relevant for this thesis. We start by
introducing necessary definitions and well-known theorems in Sec. 2.1 and then briefly
describe differentials in Sec. 2.2. In Sec. 2.3, we then give an overview of optimization
theory and introduce the well-known LQR controller in Sec. 2.4. In Sec. 2.5, we define
all necessary set operations and introduce all required set representations in Sec. 2.6. We
continue with a short review of the relevant reachability algorithms from the literature
in Sec. 2.7 and conclude with the concept of order reduction in Sec. 2.8, which is required
for the efficient application of reachability analysis.

2.1 Standard Operations

All controllers in this thesis are synthesized using different numerical optimization tech-
niques. Since numerical solvers will generally not reach an optimum exactly but only
approximately, we measure numerical tolerances as defined next.
Definition 2.1 (Numerical Tolerance). Given two matrices A ∈ Rn×m and B ∈ Rn×m,
we define the tolerance between A and B as the minimum between the absolute tolerance
and the relative tolerance, i.e.

tol (A,B) = max
1≤i≤n
1≤j≤m

min
(
|Aij −Bij | , lim

ϵ→0+

|Aij −Bij |
min (|Aij | , |Bij |) + ϵ

)
,

where “limϵ→0+” denotes the limit from ϵ > 0 to 0. ■

For later convenience, we subsequently introduce the vectorization and convex com-
bination operation.
Definition 2.2 (Vectorization). The column-wise vectorization of a given matrix X ∈
Rn×m into a vector x ∈ Rnm is given by

x = X(:) =




X(:,1)
X(:,2)

...
X(:,m)



.

■
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For the vectorization of matrix products, it further holds that [74, Chap. 2, Sec. 4]

[ABC](:) =
(
CT ⊠A

)
B(:) (2.1a)

=
(
CTBT ⊠ Im

)
A(:) (2.1b)

= (Iq ⊠AB)C(:), (2.1c)

AT
(:)D(:) = trace

(
ATD

)
, (2.1d)

for A ∈ Rm×n, B ∈ Rn×o, C ∈ Ro×q, and D ∈ Rn×m.
Definition 2.3 (Convex Combination). The convex combination of two sets A ⊆ Rn

and B ⊆ Rn is defined by

convc (A,B) = {la+ (1− l) b | a ∈ A, b ∈ B, l ∈ [0, 1]} .

■

Next, we quickly review well-known theorems that will be required later.

Theorem 2.1 (Singular Value Decomposition [54, Th. 2.6.3]). The singular value de-
composition of a matrix A ∈ Rn×m is

A = UΣV H ,

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices, and Σ ∈ Rn×m is a rectangular
matrix of zeros except for Σ(i,i) = σ1, 1 ≤ i ≤ min (n,m), with σ1 ≥ σ2 ≥ · · · ≥
σmin(n,m) ≥ 0 being the singular values of A.

We sometimes use the shorthand σ (A) to refer to the vector of singular values of A.
More widely known is the eigen decomposition, which we introduce next.

Theorem 2.2 (Eigen decomposition [54, Th. 1.3.7, adapted]). Let A ∈ Rn×n be a
diagonalizable matrix, i.e., there exists an invertible matrix P ∈ Rn×n and a diagonal
matrix D ∈ Rn×n such that P−1AP = D. Then we can decompose A as

A = QΛQ−1,

where Λ = diag
([
λ1, λ2, . . . , λn

])
∈ Rn×n, and Q ∈ Cn×n is an invertible matrix.

For 1 ≤ i ≤ n, Q(:,i) ∈ Rn and λi ∈ R denote the eigenvector and corresponding
eigenvalue of A, where AQ(:,i) = λiQ(:,i) holds.

We denote with λ (A) the vector of eigenvalues. Next, we introduce the square root
of a positive semi-definite matrix.

Theorem 2.3 (Matrix Square Root [54, Th. 7.2.6, adapted]). A square root of a positive
semi-definite matrix Q ∈ Sn×n

+ is
√
Q = Q

1
2 = U diag

(√
σ (Q)

)
,

such that Q =
√
Q
√
Q, where Q = U diag (σ (Q))UT with singular values σ (Q) ∈ Rn

≥0.
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2.2 Differentials
Whenever matrices are involved, taking their derivative with respect to a vector, i.e., the
derivative of each matrix element, is often cumbersome. Differentials offer a convenient
formulation for taking derivatives that also works well for matrices. Hence, we introduce
differentials and relevant properties thereof in this section – which is inspired by [74,
Chap. 18] – starting with a simple example.

Example 2.1. Let f (x) =
[
x2

1, x2
2
]T

with x ∈ R2. Its Jacobian matrix is given by

Jf (x) =
[
2x1, 0
0, 2x2

]
,

with Jf (x) ∈ R2×2 since each component of f is differentiated with respect to each
component of x, i.e., we have 2 · 2 = 4 derivatives. In contrast, the differential of f is

df = d
[
x2

1
x2

2

]
=



[
2x1, 0

]
dx[

0, 2x2
]

dx


 .

Immediately, it is obvious that df ∈ R2 and thus the differential has the same dimen-
sionality as f , whereas df(x)

dx ∈ R2×2. Further, one can directly identify the Jacobian
matrix from the above expression. ■

This identification of the Jacobian matrix from the differential is possible in general.

Theorem 2.4 (First Identification Theorem [74, Th. 5.6, adapted]). Let x ∈ Rn and
f : Rn 7→ Rm. Then

df = A (x) dx ⇐⇒ Jf (x) = A (x) .

In a nutshell, the differential df does not represent the derivative directly but rather
is a linear approximation around f (x) with an infinitesimally small variation around
f (x), i.e., df = A (x) dx, where dx is that very small deviation. The fact that the
dimension of differentials stays constant makes them particularly useful when handling
matrix derivatives and simplifies the following rules, which will be helpful in subsequent
chapters.

Proposition 2.1 (Collection of Differential Rules [74, Chap. 18]). Let A ∈ Rn×m be
a constant matrix, F ∈ Rn×m, G ∈ Rn×m, H ∈ Rm×p, X ∈ Rn×n some non-constant
functions, and c ∈ R some scalar. We have

dA = 0,
d (cF ) = c dF,

d
(
F T
)

= (dF )T ,

d (F +G) = dF + dG,
d (FH) = (dF )H + F dH,

dX−1 = −X−1 (dX)X−1(for nonsingular X).

9



2 Background

For a scalar field f : Rn 7→ R, the Hessian matrix is well-defined and can also be
computed using differentials as the following example demonstrates.
Example 2.2. Let f (x) = x2

1x2. We have

d2f = d2
(
x2

1x2
)

= d
([

2x1x2, x2
1
]

dx
)

= d
[
2x1x2, x2

1
]

dx+
[
2x1x2, x2

1
]

d2x

=
[
d (2x1x2) , d

(
x2

1
)]

dx

=
[
dxT

[
2x2
2x1

]
, dxT

[
2x1
0

]]
dx

= dxT

[
2x2
2x1

]
dx1 + dxT

[
2x1
0

]
dx2

= dxT

([
2x2
2x1

] [
1, 0

]
+
[
2x1
0

] [
0, 1

])
dx

= dxT

[
2x2, 2x1
2x1, 0

]
dx.

Computing the Hessian matrix of f (x), we see that Hf (x) =
[
2x2, 2x1
2x1, 0

]
. ■

Ex. 2.2 can be generalized as follows:

Theorem 2.5 (Second Identification Theorem [74, Th. 6.6, adapted]). Let f : Rn 7→ R
with x ∈ Rn. We have

d2f = (dx)T B (x) dx ⇐⇒ Hf (x) = B (x) +B (x)T

2 .

To compute with differentials, we can interpret them as tensors. Let dAij = dAij(x)
dx ∈

R1×n for 1 ≤ i ≤ m and 1 ≤ j ≤ o, where A (x) ∈ Rm×o denotes a matrix function in
x ∈ Rn with differentiable matrix elements Aij (x). Then

[dA]ij = dAij dx,

and we can alternatively collect the Jacobian matrix of each matrix element with respect
to x in the first two dimensions of a 4D tensor, where the last two dimensions reflect
the dimensions of A. Thus, the differential dA can be represented by the tensor dA ∈
R1×n×m×o. Similarly, let d2Aij = d2Aij(x)

dx2 ∈ Rn×n. Then

d2Aij = dxTdAij dx,

and thus d2A can – analogously to the first differential – be interpreted as the 4D tensor
d2A ∈ Rn×n×m×o.

10



2.2 Differentials

It remains to define arithmetic operations on these differential tensors. To that end,
let B (x) ∈ Rm×o be a twice differentiable matrix function. We have

d [A+B]ij = [dA+ dB]ij dx,

d2 [A+B]ij = dxT
[
d2A+ d2B

]
ij

dx,

and thus the tensor representation of the sum of two differentials is equivalent to the
sum of the two tensor representations. Further, let C (x) ∈ Ro×l and D ∈ Rq×m. Since

[D dA]ij =
m∑

k=1
Dik dAkj

=
(

m∑

k=1
DikdAkj

)
dx, 1 ≤ i ≤ q, 1 ≤ j ≤ o,

[dAC]ij =
o∑

k=1
dAikCkj

=
(

m∑

k=1
dAikCkj

)
dx, 1 ≤ i ≤ m, 1 ≤ j ≤ l,

[dA dC]ij =
o∑

k=1
dAik dCkj

=
o∑

k=1
dAik dx dCkj dx

= dxT

(
o∑

k=1
dAT

ikdCkj

)
dx, 1 ≤ i ≤ o, 1 ≤ j ≤ l,

we define the following arithmetic operations for these tensors:
Definition 2.4 (Arithmetic Operations for Differential Tensors). Let A (x) ∈ Rm×o,
B (x) ∈ Rm×o, C (x) ∈ Ro×l, D (x) ∈ Rq×m, and x ∈ Rn with the corresponding differ-
entials represented as the tensors dA ∈ R1×n×m×o, dB ∈ R1×n×m×o, dC ∈ R1×n×o×l,
and dD ∈ R1×n×q×m (dependency on x omitted for readability). We define

[dA+ dB]ij = dAij + dBij , 1 ≤ i ≤ m, 1 ≤ j ≤ o, (2.2)

[DdA]ij =
m∑

k=1
DikdAkj , 1 ≤ i ≤ q, 1 ≤ j ≤ o, (2.3)

[dAC]ij =
m∑

k=1
dAikCkj , 1 ≤ i ≤ m, 1 ≤ j ≤ l, (2.4)

[dAdC]ij =
o∑

k=1
dAT

ikdCkj , 1 ≤ i ≤ m, 1 ≤ j ≤ l. (2.5)

■

11



2 Background

Thus, any differential expressions with sums, products or transpose operations can
be directly computed by simply replacing the differentials with their differential tensor
counterparts and executing the corresponding operations as defined in Def. 2.4.

2.3 Optimization Theory
We extensively use optimization in this thesis to find optimal controllers. Thus, we briefly
introduce necessary concepts from optimization theory. We only deal with differentiable
optimization problems and therefore assume that all involved functions are sufficiently
smooth, which generally means that they are at least twice continuously differentiable.
We start with the definition of a smooth optimization problem.
Definition 2.5. Let f : Rn 7→ R, g : Rn 7→ Rm, and h : Rn 7→ Ro be sufficiently smooth
functions. A smooth optimization problem can be written as

p∗ = arg min
x
f (x) , (2.6a)

s.t. g (x) ≤ 0, (2.6b)
h (x) = 0, (2.6c)

where x ∈ Rn denotes the multivariate optimization variable, f (x) is the objective
function, g (x) are the inequality constraints, h (x) denote the equality constraints, and
p∗ is the optimal objective value at the optimizer x∗. Further, we call the set

S = {x ∈ Rn | g (x) ≤ 0, h (x) = 0} ,

the feasible set of (2.6). ■

In this thesis, we only consider optimization problems for which an optimum exists,
i.e., p∗ > −∞. When it is not clear that the optimal objective value is finite, limit
expressions (“inf” and “sup”) need to be used instead of “ min” and “max” operations.
Further, we only consider minimization problems in this section, as any maximization
problem can be transformed into a minimization problem via

max
x∈S

f (x) = −min
x∈S
− f (x) .

To solve such smooth optimization problems, practically all known efficient algorithms
use the Jacobian matrix and sometimes Hessian matrix information of the objective func-
tion and the constraints, respectively. Methods that solely rely on first-order derivatives
are called first-order methods while second-order methods additionally use the Hessian
matrices of the objective function and constraints.

The remainder of this section is structured as follows: In Sec. 2.3.1, we introduce the
Karush-Kuhn-Tucker (KKT) optimal conditions for the original optimization problem
in (2.6): Any optimizer of (2.6) necessarily fulfills these optimality conditions, assuming
that any applicable constraint qualification – discussed next in Sec. 2.3.2 – holds. We
then describe convex optimization as an important subclass in Sec. 2.3.3, followed by
a discussion of non-convex optimization problems in Sec. 2.3.4. In Sec. 2.3.5, we then

12
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introduce the dual problem, whose maximum always bounds the minimum of the original
problem from below, and which is always a convex optimization problem. We conclude
the section with a short review of popular reformulation techniques for optimization
problems in Sec. 2.3.6.

2.3.1 Karush-Kuhn-Tucker Conditions

While (2.6) can be intuitively interpreted, it remains unclear how it can be solved in
general. Instead of trying to solve (2.6) directly, one may solve for the optimizer using
the first-order KKT optimality conditions, which we introduce in this section.

For the introduction of these optimality conditions, we first require the Lagrangian
function of (2.6).
Definition 2.6 (Lagrangian Function [14, Chap. 5, adapted]). Let f , g, and h be defined
as in Def. 2.5. The Lagrangian of (2.6) is

ϕ (x, µ, λ) = f (x) + µT g (x) + λTh (x) , (2.7)

where λ ∈ Rm and µ ∈ Ro are the Lagrange multipliers for the inequality and equality
constraints, respectively. ■

Given that (2.6) is regular at a critical point x∗, i.e., it satisfies an appropriate con-
straint qualification (see Sec. 2.3.2), one can use the Lagrangian function to derive the
first-order necessary KKT conditions for optimality of x∗, which are given by [14, Sec.
5.5]

∇xf (x∗) +
m∑

i=1
µ∗

i∇xgi (x∗) +
o∑

j=1
λ∗

j∇xhj (x∗) = 0 (stationarity), (2.8a)

µ∗T g (x∗) = 0 (complementary slackness), (2.8b)
µ∗ ≥ 0 (dual feasibilty), (2.8c)

g (x∗) ≤ 0 (primal feasibilty), (2.8d)
h (x∗) = 0 (primal feasibilty (cont.)), (2.8e)

where µ∗ ∈ Rm
≥0 and λ∗ ∈ Ro are the optimal Lagrange multipliers for (2.6b) and

(2.6c), respectively. Intuitively, complementary slackness means that whenever the i-th
constraint is inactive, i.e., gi (x∗) < 0, µi = 0 is enforced by (2.8b) so that gi (x∗) is
treated as if it was not included in the optimization problem.

2.3.2 Constraint Qualifications

As described in Sec. 2.3.1, the KKT conditions are only necessary optimality conditions
when regularity conditions, also called constraint qualifications, hold. In this section,
we introduce an important constraint qualification for convex optimization problems
and then introduce a constraint qualification which is also applicable to non-convex
optimization problems that is used in a later section.

13



2 Background

2.3.2.1 Slater’s Condition

Arguably the most well-known constraint qualification is Slater’s condition (SC).

Proposition 2.2 (Slater’s Condition [14, Sec. 5.2.3, adapted]). Consider a convex
minimization problem as defined in Def. 2.9. If there exists an interior point x ∈ Rn,
i.e., h (x) = 0 and g (x) < 0, then Slater’s condition (SC) holds.

This constraint qualification is widely used, e.g., to prove strong duality for instances
of semi-definite programs (SDPs) (strong duality does not generally hold for SDPs even
though they are convex) since finding an interior point within the feasible set is often
easier than checking other constraint qualifications.

2.3.2.2 Mangasarian-Fromovitz Constraint Qualification

In this section, we provide the Mangasarian-Fromovitz constraint qualification (MFCQ)
which will prove useful in a later section (see Sec. 3.2.2).

Proposition 2.3 (Mangasarian-Fromovitz Constraint Qualification [76, Sec. 3, adapted]).
Let a smooth optimization problem be given as in (2.6) with critical point x∗ ∈ Rn, in-
equality constraints g (x∗) ≤ 0, and equality constraints h (x∗) = 0, where g : Rn 7→ Rm

and h : Rn 7→ Ro. Further, let A = {a ∈ {1, ...,m} | ga (x∗) = 0} denote the set of active
inequality constraints. If the gradients ∇xhj (x∗) for 1 ≤ j ≤ o of the equality constraints
are linearly independent and there exists a vector d ∈ Rn such that

∇xga (x∗)T d < 0, a ∈ A,
∇xhj (x∗)T d = 0, 1 ≤ j ≤ o,

then x∗ satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ).

2.3.3 Convex Optimization

Being essential in a variety of everyday applications, convex optimization is widely
adopted since, once a problem has been formulated as a convex optimization problem,
one can generally (with a few edge cases as an exception) efficiently solve the problem
[14, Sec. 1.3.2]. In more technical terms, convex optimization is such an important field
in optimization since all stationary points of the Lagrangian are global optima under
a suitable constraint qualification (see Sec. 2.3.2). Furthermore, there exist many ma-
ture numerical solvers for convex optimization problems, such as MOSEK1, Gurobi2, or
SDPT33, to only name a few. For the definition of a convex optimization problem, we
first introduce convex sets and convex functions. For a thorough discussion on convex
optimization, we refer the interested reader to [14].

1https://www.mosek.com/
2https://www.gurobi.com/
3https://blog.nus.edu.sg/mattohkc/softwares/sdpt3/
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∂S tx + (1 − t)y

Figure 2.1: Example of a convex set given by
{
r

[
cosϕ
sinϕ

] ∣∣∣∣ 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ 2π
}

and non-

convex set
{
r (0.8 + 0.2 cos (10ϕ))

[
cosϕ
sinϕ

] ∣∣∣∣ 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ 2π
}

. Additionally,

we show the line connecting x =
[
cos
(

π
10
)

sin
(

π
10
)
]

and y =
[
cos
(
3 π

10
)

sin
(
3 π

10
)
]
.

Definition 2.7 (Convex Set [14, Sec. 2.1.4]). A set S ⊆ Rn is said to be convex if and
only if

∀x, y ∈ S ∀t ∈ [0, 1] : tx+ (1− t)y ∈ S. (2.9)
■

Fig. 2.1 shows an example for a convex and a non-convex set, respectively, where the
second set is not convex as it violates (2.9).
Definition 2.8 (Convex Function [14, Sec. 3.1.1]). A function g : G ⊆ Rn → Rm is
convex if and only if

∀x, y ∈ G ∀t ∈ [0, 1] : g (tx+ (1− t)y) ≤ tg (x) + (1− t)g (y) , (2.10)

where G is a convex set as introduced in Def. 2.7. ■

A function g is concave if −g is convex. Fig. 2.2 shows an example for one convex and
non-convex function. Clearly, the second function is not convex as (2.10) is violated for
x(1) = 0.1 and x(2) = 0.9. Geometrically speaking, the second function is not convex
since not all points on the line connecting x(1) and x(2) are above their respective function
values (see (2.10)). We are now ready to define a convex optimization problem.
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(
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)

Figure 2.2: Example of a convex function (g (x) = x2) and non-convex function (g (x) =
cos (2πx)) evaluated over x ∈ [0, 1]. Additionally we show the line connecting(
x(1), g

(
x(1))) to

(
x(2), g

(
x(2))).
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Definition 2.9 (Convex Minimization Problem). We say that (2.6) is a convex mini-
mization problem if and only if f and g are convex and h is affine. ■

Put differently, both the objective function f and the feasible set S have to be convex.
Next, we briefly introduce important subclasses of convex optimization problems which
are relevant for this thesis. For a more detailed introduction, see, e.g., [14].

2.3.3.1 Linear Program

The objective and constraint functions in linear programs (LPs) are linear in the opti-
mization variable, i.e.

min
x
cTx, (2.11a)

s.t. Cx ≤ d, (2.11b)
Ax = b, (2.11c)

with optimization variable x ∈ Rn, where c ∈ Rn, C ∈ Rm×n, d ∈ Rm, A ∈ Rq×n, and
b ∈ Rq. Linear programs can be solved reliably and efficiently, even for a large number
of optimization variables and constraints [14, Sec. 1.2.2], [22]. Since we assume that
all optimization problems have a finite minimum, strong duality (see Prop. 2.4) always
holds [25, Sec. 7.4].

2.3.3.2 Semi-Definite Program

With SDPs, one can formulate optimization problems of the form

min
x,X(i)

cTx+
m∑

i=1
trace

(
C(i), X(i)

)
, (2.12a)

s.t.
¯
bj ≤ l(j)T

x+
N∑

i=1
trace

(
A(ij), X(i)

)
≤ b̄j , 1 ≤ j ≤ q, (2.12b)

¯
d ≤ x ≤ d̄, (2.12c)
x ∈ K, (2.12d)
X(i) ⪰ 0, i ∈ {1, ..., N} , (2.12e)

where x ∈ Rn contains n scalar optimization variables, and X(i) ∈ Sn×n
+ are m positive

semi-definite optimization matrices. Further, we have c ∈ Rn, C(i) ∈ Sn×n,
¯
b ∈ Rq,

b̄ ∈ Rq, l(j) ∈ Rn, A(ij) ∈ Sn×n,
¯
d ∈ Rn, d̄ ∈ Rn, and K ⊆ Rn with the Carte-

sian product of convex cones4 (e.g., quadratic cone, rotated quadratic cone etc), where
trace

(
C(i), X(i)

)
= ∑

k,l C
(i)
kl X

(i)
kl denotes the Frobenius inner product (□kl denotes the

element in the k-th row and l-th column).
In contrast to LPs, strong duality for SDPs additionally requires Slater’s condition

(see Prop. 2.2) to hold [51, Sec. 2.2]. Under that assumption, however, SDPs can be
efficiently solved [110].

4for details, see, e.g.: https://docs.mosek.com/MOSEKModelingCookbook-a4paper.pdf
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2.3.4 Non-Convex Optimization

While convex optimization offers great advantages, optimization problems in practice
often cannot be formulated as a convex optimization problem. Thus, we introduce non-
convex optimization problems in this section.
Definition 2.10 (Non-Convex Optimization Problem). Let the optimization problem
as defined in Def. 2.5 be given. We say that (2.6) is a non-convex optimization problem
if it is not a convex optimization problem according to Def. 2.9. ■

In general, non-convex optimization problems cannot be solved efficiently to global
optimality in general. As it turns out, even checking whether a feasible solution is a
local minimum is in the NP-complete complexity class [84]. That said, when second-
order methods are used, the number of function evaluations of the objective function and
the constraint function required to converge to an ϵ-critical point of the optimization
problem is polynomially bounded in the inverse of the accuracy parameter ϵ > 0 [18]. A
critical point hereby is a feasible point of (2.6) that is either a (global or local) minimum
or a saddle point of (2.6).

2.3.5 Lagrangian Duality

When the optimization problem at hand cannot be reformulated as a convex optimization
problem, finding a solution is substantially more difficult. However, instead of trying to
find the optimum p∗, one may be satisfied with a lower bound on the original optimization
problem in (2.6). In this section, we thus introduce the Lagrangian dual problem which
is always a convex optimization problem and provides a lower bound on the optimum
p∗.
Definition 2.11 (Lagrangian Dual Problem [14, Chap. 5, adapted]). Let f , g, and h
be defined as in Def. 2.5, and let ϕ be defined as in (2.7). Further, let S̃ collect any
additional constraints on x that we do not wish to dualize. The dual problem of (2.6) is

d∗ = sup
λ≥0,µ

inf
x∈S̃

ϕ (x, µ, λ) , (2.13)

where λ ∈ Rm
≥0 and µ ∈ Ro are the Lagrange multipliers for the inequality and equality

constraints, respectively. ■

We collect relevant properties of the primal-dual relationship of (2.6) and (2.13) in
the following proposition.

Proposition 2.4 (Primal-Dual Relationship [14, Chap. 5, adapted]). Let the primal
and dual problem be given as in (2.6) and (2.13). The following properties are true:

• The dual problem is always a convex optimization problem, even if the primal
problem is non-convex.

• The dual optimal value bounds the primal optimal value from below, i.e., d∗ ≤ p∗

(weak duality).
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• If the primal problem is convex and constraint qualifications (see Sec. 2.3.2) hold,
then d∗ = p∗, i.e., there is zero duality gap between the primal and the dual problem
(strong duality).

2.3.6 Modeling
When formulating optimization problems, it often happens that this formulation cannot
be directly fed to numerical optimization solvers. Examples include the objective func-
tion or constraints containing absolute value expressions or maximizations over multiple
functions; then the optimization problem is no longer differentiable. Subsequently, we
derive equivalent but smooth reformulations of such optimization problems.

2.3.6.1 Absolute Values

Let

min
x

{
f (x) +

q∑

i=1
|ri (x)|

}
, (2.14a)

s.t. g (x) +
p∑

j=1
|cj (x)| ≤ 0, (2.14b)

be given, where x ∈ Rn, f : Rn 7→ R, r : Rn 7→ Rq, g : Rn 7→ R, c : Rn 7→ Rp, and we
assume that all functions are sufficiently smooth. We only consider a single inequality
constraint here as the following derivation can be easily extended to multiple inequality
constraints. The non-differentiability of (2.14) due to the absolute values can be avoided
by transforming (2.14) into the equivalent but differentiable optimization problem

min
x,s,v

{
f (x) +

q∑

i=1
si

}
, (2.15a)

s.t. g (x) +
p∑

j=1
vj ≤ 0, (2.15b)

[
+r (x)
−r (x)

]
≤
[
s
s

]
, (2.15c)

[
+c (x)
−c (x)

]
≤
[
v
v

]
, (2.15d)

with s ∈ Rq and v ∈ Rp. This transformation can be justified as follows:
Let x̂ denote the minimizer of (2.14) and let (x∗, s∗, v∗) denote the minimizer of (2.15).

Further, we define

S =
{
x ∈ Rn

∣∣∣ g (x) + 1T
p |c (x)| ≤ 0

}
,

S̃ =
{
x ∈ Rn

∣∣∣ ∃v ≥ |c (x)| : g (x) + 1T
p v ≤ 0

}
,
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where S̃ = S follows since choosing v = |c (x)| is always possible. We have

f (x̂) + 1T
q |r (x̂)| = min

x∈S
f (x) + 1T

q |r (x)| = min
x∈S̃

f (x) + 1T
q |r (x)|

≤ min
x∈S̃

|r(x)|≤s

f (x) + 1T
q s = f (x∗) + 1T

q s
∗. (2.16)

On the other hand, (x̂, |r (x̂)| , |c (x̂)|) is a feasible point of (2.15), and by definition

f (x∗) + 1T
q s

∗ ≤ f (x̂) + 1T
q |r (x̂)| . (2.17)

Combining (2.16) and (2.17) yields the equivalence of (2.14) and (2.15).

2.3.6.2 Finite Maximization

Let

min
x
f (x) + max

1≤i≤q
ri (x) , (2.18a)

s.t. g (x) + max
1≤j≤p

cj (x) ≤ 0, (2.18b)

with x ∈ Rn, f : Rn 7→ R, r : Rn 7→ Rq, g : Rn 7→ R, c : Rn 7→ Rp, and where all
functions are assumed to be sufficiently smooth. We limit ourselves to one inequality
constraint, as an extension to multiple inequality constraints is straightforward. Further,
we define x̂ as a minimizer of (2.14) and (x∗, s∗, v∗) as a minimizer of (2.15). To avoid
the maximizations in (2.18), we reformulate the problem as

min
x,s,v

f (x) + s, (2.19a)

s.t. g (x) + v ≤ 0, (2.19b)
r (x) ≤ s1q, (2.19c)
c (x) ≤ v1p, (2.19d)

with s ∈ R and v ∈ R. To show equivalence of (2.18) and (2.19), we first define

S =
{
x ∈ Rn

∣∣∣∣ g (x) + max
1≤j≤p

cj (x) ≤ 0
}
,

S̃ =
{
x ∈ Rn

∣∣∣∣ ∃v ≥ max
1≤j≤p

cj (x) : g (x) + v ≤ 0
}
,

from S̃ = S follows since choosing v = max1≤j≤p cj (x) is always possible. Further, we
have

f (x̂) + max
1≤i≤q

ri (x̂) = min
x∈S

f (x) + max
1≤i≤q

ri (x) = min
x∈S̃

f (x) + max
1≤i≤q

ri (x)

≤ min
x∈S̃,s

max1≤i≤q ri(x)≤s

f (x) + s = f (x∗) + s∗. (2.20)
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On the other hand, (x̂,max1≤i≤q ri (x̂) ,max1≤j≤p ci (x̂)) is a feasible point of (2.19), and
thus by definition

f (x∗) + max
1≤i≤q

ri (x∗) ≤ f (x̂) + max
1≤i≤q

ri (x̂) , (2.21)

which yields the equivalence of (2.18) and (2.19) by combining (2.20) and (2.21).

2.4 Linear-Quadratic Regulator
In this section, we introduce LQR control [56], which will be used in later sections of
this thesis. Let

ẋ (t) = Ax (t) +Bu (t) ,

be a given LTI system (A,B), where x (t) ∈ Rnx denotes the state at time t ∈ R≥0,
u (t) ∈ Rnu denotes the controllable input, A ∈ Rnx×nx is the system matrix, and
B ∈ Rnx×nu denotes the input matrix. For the introduction of LQR control, we first
require the concept of controllability.

Corollary 2.1 (Controllability [56, adapted]). An LTI system (A,B) as defined above,
for which

rank
([
B, AB, A2B, . . . , Anx−1B

])
= nx,

holds, is controllable.

Put differently, an LTI system is controllable if and only if there exists an input
trajectory such that any finite state x (t) can be reached from any initial state x (0) in
finite time. Thus, assume that the LTI system (A,B) is controllable as per Corr. 2.1.
The unique, optimal controller which minimizes

min
u(t)

∫ ∞

0

(
x (t)T Qx (t) + u (t)T Ru (t)

)
dt, (2.22)

with Q ∈ Snx×nx
++ and R ∈ Snu×nu

++ (weaker conditions for Q and R are possible) is

u (t) = Kx (t) , (2.23)

where
K = −R−1BTX, (2.24)

and X ∈ Snx×nx
++ is the unique, positive-definite solution to the algebraic Riccati equation

ATX +XA−XBR−1BTX +Q = 0. (2.25)

For later convenience, we further state that solving the algebraic Riccati equation has
the same computational complexity as computing the eigendecomposition of an nx-by-nx

dimensional matrix [69]; thus, computing the gain matrix K for a given system has the
same computational complexity since it otherwise only involves matrix multiplications.
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2.5 Set Operations
In this thesis, we synthesize controllers for sets of initial states instead of a single initial
state. As a result, we need to perform arithmetic operations on sets, which we define
next.
Definition 2.12 (Minkowski Sum). The Minkowski sum of two sets A ⊆ Rn and B ⊆ Rn

is defined by
A⊕ B = {a+ b | a ∈ A, b ∈ B} .

■

Definition 2.13 (Linear Map). The linear map of a set S ⊆ Rn with matrix M ∈ Rm×n

is given by
MS = {Ms | s ∈ S} .

■

Definition 2.14 (Quadratic Map [5]). The quadratic map of a set S ⊆ Rn with a set
Q =

{
Q(1), . . . , Q(m)

}
of matrices Q(i) ∈ Rn×n for 1 ≤ i ≤ m is defined as

sq (S,Q) =
{
x ∈ Rm

∣∣∣ xi = sTQ(i)s, 1 ≤ i ≤ m, s ∈ S
}
.

■

In addition to operations that again produce a set, we further define the following
operations on sets which return a scalar value.
Definition 2.15 (Support Function [41, Def. 1, adapted]). The support function of a
convex set S ⊆ Rn in direction l ∈ Rn is defined by

ρS (l) = sup
s∈S

lT s.

■

For a set S (z) parameterized in some vector z ∈ Rn, we denote its support function
with ρS (l, z). For later convenience, we further define the short-hand

ρS (L) =
[
ρS
(
LT

(1,:)

)
, ρS

(
LT

(2,:)

)
, . . . , ρS

(
LT

(m,:)

)]T
,

where L ∈ Rm×n.
Lastly, we later also require a measure of similarity for two sets, for which the Hausdorff

distance is defined next.
Definition 2.16 (Hausdorff Distance [113, Def. 2]). The Hausdorff distance of two
non-empty sets X ⊆ Rn and Y ⊆ Rn is defined by

dH (X ,Y) = max
(

sup
x∈X

inf
y∈Y
∥x− y∥2 , sup

y∈Y
inf
x∈X
∥x− y∥2

)
.

■

Intuitively, we can say that the smaller the Hausdorff distance between two sets, the
more similar (e.g. visually) these two sets are.
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2.6 Set Representations

Table 2.1: Closedness of intervals (I), zonotopes (Z), polynomial zonotopes (PZ), H-polytopes
(H), and ellipsoids (E) under common operations [6, Tab. 1]. We differentiate
between: Result can be efficiently and exactly computed (✓); result cannot be exactly
represented (✗).

I Z PZ H E
Linear Map ✗ ✓ ✓ ✗ ✓

Minkowski Sum ✓ ✓ ✓ ✗ ✗

Quadratic Map ✗ ✗ ✓ ✗ ✗

2.6 Set Representations
In order to compute with sets, we need to represent them appropriately. Ideally, we find
a set representation that is closed under all relevant operations: A set representation is
said to be closed under an operation if the result of applying said operation can again
be represented in the same set representation. That said, while being closed under
relevant operations is important, we also need to be able to perform these set operations
efficiently. As a result, there exist many different set representations in the literature
which are closed under different set operations and have varying computational effort (see
Tab. 2.1). Choosing the right set representation thus heavily depends on the algorithm
we wish to implement. In this section, we therefore introduce all set representations
which are relevant in this thesis.

Intuitively, the subsequently introduced set representations differ in how they param-
eterize an element of a set. The set itself is then generated by including all states that
can be parameterized in that particular way.
Definition 2.17 (Set Generation [35, Def. 3]). We define

{s (M)}M =
{
s (M)

∣∣∣M ∈ [−1, 1]m×n
}

= S,

where s : [−1, 1]m×n → Rn is the generating function of S ⊆ Rn with dependent factors
M ∈ [−1, 1]m×n. We say that S is generated by s (M) over M . ■

Thus, the generating function allows us to express any element of a set in a unified
way, i.e., by only varying M within the unit hypercube.

2.6.1 Intervals
As the most fundamental of set representations, intervals are widely used due to their
compact representation size.
Definition 2.18 (Interval [4, Def. 2.4, adapted]). The interval with lower bound

¯
x ∈ Rn

and upper bound x̄ ∈ Rn is defined as

I = [
¯
x, x̄] =

{1
2 (x̄+

¯
x) + 1

2 (x̄−
¯
x)β

}

β
= {x ∈ Rn |

¯
x ≤ x ≤ x̄} ,

where inequalities are to be interpreted element-wise and
¯
x ≤ x̄. ■
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−1

0

1

L(1)
+L(1)

−

L(2)
+

L(2)
−

I

x1
x

2

Figure 2.3: Visualization of the interval I =
[[
−2, −1

]T
,
[
2, 1

]T ], where L(i)
± =

{
x ∈ R2

∣∣∣∣ ±e
(i)
(2)

T
x = ρI

(
±e(i)

(2)

)}
for 1 ≤ i ≤ 2 defines the hyperplanes which

bound this interval.

Fig. 2.3 visualizes a simple interval I =
[[
−2
−1

]
,

[
2
1

]]
.

Minkowski sum [4, Sec. 2.6, adapted]: Given two intervals I = [
¯
x, x̄] ⊆ Rn and

L =
[

¯
l, l̄
]
⊆ Rn, their Minkowski sum is

I ⊕ L =
[

¯
x+

¯
l, x̄+ l̄

]
.

Linear map: Since intervals are axis-aligned boxes and because linear transformations
generally include rotations, intervals are not closed under linear maps. That said, the
tight outer approximation of a linear map M ∈ Rm×n of an interval I ⊆ Rn is given by

MI ⊆
{
x ∈ Rm

∣∣∣∣∣

[
Im

−Im

]
x ≤ ρMI

([
Im

−Im

])}
= [−ρMI (−Im) , ρMI (Im)] ,

since ∀x ∈MI : ±e(i)
m

T
x ≤ ρMI

(
±e(i)

m

)
for 1 ≤ i ≤ m holds by definition (see Def. 2.15).

Here, ρMI (·) can be computed by first representing MI as a zonotope and then com-
puting the resulting support function (see Sec. 2.6.5).

Quadratic map: Naturally, intervals cannot be closed under quadratic maps as they
are convex sets. That said, one may simply write the interval as a zonotope and apply
the outer approximation of the quadratic map for zonotopes from [7, Lem. 1].
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2.6 Set Representations

Support function: Since each dimension of an interval I ⊆ Rn is independent, it follows
from Def. 2.15 that its support function in direction l ∈ Rn is given by

ρI (l) = max
¯
x≤x≤x̄

n∑

k=1
lkxk =

n∑

k=1
max

¯
xk≤xk≤x̄k

lkxk =
n∑

k=1

{
lkx̄k, sign (xk) ≥ 0,
lk¯
xk, sign (xk) < 0

.

2.6.2 Arbitrary Convex Set
While support functions as defined in Def. 2.15 are often used as set operations, they
can also be used to represent arbitrary convex sets:

S =
{
x ∈ Rn

∣∣∣ ∀l ∈ Rn : lTx ≤ ρS (l)
}
.

Fig. 2.3 visualizes the construction of a 2D interval using support functions.

Minkowski sum [41, Prop. 2, adapted]: The Minkowski sum between two convex sets
A ∈ Rn and B ∈ Rn is given by

A⊕ B =
{
x ∈ Rn

∣∣∣ ∀l ∈ Rn : lTx ≤ ρA (l) + ρB (l)
}
, (2.26)

i.e., ρA⊕B (l) = ρA (l) + ρB (l) for l ∈ Rn.

Linear map [41, Prop. 2, adapted]: The linear map M ∈ Rm×n of a convex set
A ⊆ Rn represented using support functions is given by

MA =
{
x ∈ Rm

∣∣∣ ∀l ∈ Rm : lTx ≤ ρA
(
MT l

)}
, (2.27)

i.e., ρMA (l) = ρA
(
MT l

)
for l ∈ Rm.

2.6.3 Ellipsoids
Next, we define ellipsoids which – while being similarly compact in representation size
as intervals – further allow for arbitrary rotations.
Definition 2.19 (Non-Degenerate Ellipsoid [67, Def. A.1]). The non-degenerate ellip-
soid ⟨c,Q⟩E with center c ∈ Rn and shape matrix Q ∈ Sn×n

++ is given by

⟨c,Q⟩E =
{
x ∈ Rn

∣∣∣ (x− c)T Q−1 (x− c) ≤ 1
}
.

■

The construction of an ellipsoid in demonstrated subsequently.

Example 2.3. Let E = ⟨0, Q⟩E =
〈

0,
[
10, 5
5, 7

]〉

E

. Since Q ≻ 0, one can construct the

ellipsoid easily using the singular value decomposition, which is visualized in Fig. 2.4:
With the singular value decomposition given by Q = UT diag (σ)U , we first construct
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(a) Construction of minor and major axes us-
ing singular values of shape matrix
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(b) Rotated final ellipsoid

Figure 2.4: Construction of the ellipsoid from Ex. 2.3.

an axis-aligned ellipsoid ⟨0,diag (σ)⟩E which extends
√
σ1 in the first and

√
σ2 in the

second unit direction. The original ellipsoid is then constructed by a simple rotation
since U ⟨0,diag (σ)⟩E =

〈
0, U diag (σ)UT

〉
E

= E (see below for details on the linear
map of an ellipsoid). ■

Minkowski sum: Ellipsoids are not closed under the Minkowski sum. However, for
m ellipsoids

〈
q(i), Q(i)

〉
E
⊂ Rn with 1 ≤ i ≤ m, an efficient outer approximation

〈
−Ŵ−1b̂, Ŵ−1

〉
E

can be found as the solution of the SDP [15, Sec. 3.7.4] with

Ŵ, b̂ = arg min
W,b,τ

log detW−1,

s.t.




E(0)T
WE(0), E(0)T

b, 0(
E(0)T

b
)T

, −1, bT

0, b, −W


−

m∑

i=1
τi



Ã(i), b̃(i), 0
b̃(i)T

, c(i), 0
0, 0, 0


 ⪯ 0,

τi ≥ 0, ∀i ∈ {1, ...,m} ,
W ≻ 0,
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where

E(i) =
[
0n×((i−1)n), In, 0n×((m−i)n)

]
,

E(0) =
m∑

i=1
E(i),

Ã(i) = E(i)T
A(i)E(i),

b̃(i) = E(i)T
b(i),

A(i) = Q(i)−1
,

b(i) = −Q(i)−1
q(i),

c(i) = q(i)T
Q(i)−1

q(i).

Here, 0q×p denotes the q-by-p-dimensional zero matrix. For alternative approaches to
the computation of the Minkowski sum, we refer the reader to [47].

Linear map [66, Sec. II]: For A ∈ Rm×n, the linear map of an ellipsoid ⟨c,Q⟩E ⊂ Rn

is
A ⟨c,Q⟩E =

〈
Ac,AQAT

〉
E
. (2.28)

Quadratic map: Since ellipsoids are convex sets, they cannot be closed under the
quadratic map.

Support function [66, Sec. II]: The support function of an ellipsoid E = ⟨c,Q⟩E ⊂ Rn

for a direction l ∈ Rn is
ρE (l) = lT c+

√
lTQl. (2.29)

Using the support function of an ellipsoid allows for a definition which includes degen-
erate ellipsoids.
Definition 2.20 (Ellipsoid [67, Def. A.3]). The ellipsoid E = ⟨c,Q⟩E with center c ∈ Rn

and shape matrix Q ∈ Sn×n
+ is given by

E =
{
x ∈ Rn

∣∣∣ ∀l ∈ Rn : lTx ≤ ρE (l)
}
.

■

2.6.4 H-Polytopes

Typically, one distinguishes between V-polytopes, which are represented using their ver-
tices, and H-polytopes, which enclose a given polytope with a finite number of halfspaces
(see Fig. 2.5). In this thesis, we only require convex H-polytopes as defined next.
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V-polytope H-polytope

Figure 2.5: Visualization of a two-dimensional polytope, defined by its vertices (left) and its
half-spaces (right).

Definition 2.21 (H-Polytope [4, Def. 2.21, adapted]). A polytope H = ⟨A, b⟩H ⊆ Rn

with its halfspaces contained in A ∈ Rm×n and its offsets given in b ∈ Rm is defined as

H = {x ∈ Rn | Ax ≤ b} .

■

Other representations for polytopes exist, such as the Z-representation which uses
polynomial zonotopes to represent polytopes [60].

Minkowski sum: H-polytopes are closed under the Minkowski sum since V-polytopes
are closed under linear maps and both representations are equivalent [120, Th. 1.1].
However, the Minkowski sum between two H-polytopes is NP-hard since the conversion
to an V-polytope requires vertex enumeration [109, Sec. 3].

That said, an efficiently computable outer approximation of the Minkowski sum A⊕B
for two H-polytopes A ⊆ Rn and B ⊆ Rn is given by

A⊕ B ⊆ 〈L, ρA⊕B (L)
〉

H
= ⟨L, ρA (L) + ρA (L)⟩H ,

where L ∈ Rm×n: With a given choice of directions in L, ρA⊕B (L) = ρA (L) + ρA (L)
follows from (2.26) and thus the result follows since ∀c ∈ A⊕ B : L(i,:)c ≤ ρA⊕B

(
LT

(i,:)

)

holds due to Def. 2.15 for 1 ≤ i ≤ m in. Thus, the outer approximation of A⊕B is also
tight in directions LT

(i,:).

Linear map: H-polytopes are closed under linear maps since V-polytopes are closed
under linear maps and both representations are equivalent [120, Th. 1.1]. However, a
linear transformation generally rotates and projects the polytope, and computing the
projection of an H-polytope is NP-hard [108].

Similarly to its Minkowski sum, however, an efficiently computable outer approxima-
tion of the linear map MA of an H-polytope A ⊆ Rn with matrix M ∈ Rq×n, which is
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tight in m directions collected in L ∈ Rm×q, is given by

MA ⊆ ⟨L, ρMA (L)⟩H = ⟨L, ρA (LM)⟩H .

This follows, analogously to the Minkowski sum above, from Def. 2.15 and (2.27).

Quadratic Map: Since H-polytopes are convex sets, they cannot be closed under the
quadratic map.

Support function: The support function of an H-polytope H = ⟨A, b⟩H follows directly
from Def. 2.15 as

ρH (l) = max
Ax≤b

lTx.

2.6.5 Zonotopes
Even though intervals and ellipsoids can be compactly represented, they lack represen-
tational power. Zonotopes are a popular choice for set-based computations, as they are
closed under linear maps and the Minkowski sum.
Definition 2.22 (Zonotope [40, Def. 1, adapted]). A zonotope Z = ⟨c,G⟩Z with center
c ∈ Rn and generator matrix G ∈ Rn×m consisting of generators G(:,i) for 1 ≤ i ≤ m is
given by

Z = ⟨c,G⟩Z = {c+Gν}ν ,
where c+Gν is its generating function with dependent factors ν ∈ [−1, 1]m. ■

We call an n-dimensional zonotope with n generators a parallelotope. We illustrate
the construction of a zonotope in the following example.

Example 2.4. Let Z =
〈

0,
[
1, 3, 1
2, 0, 1

]〉

Z

be given. Fig. 2.6 shows the construction of

the zonotope for all three generators: Since

Z =
〈

0,
[
1
2

]〉

Z

⊕
〈

0,
[
3
0

]〉

Z

⊕
〈

0,
[
1
1

]〉

Z

,

the zonotope can be constructed by performing sequential Minkowski additions of each
generator. ■

Minkowski sum [40, Sec. 2]: Given two zonotopes ⟨c,G⟩Z ⊂ Rn and ⟨d,M⟩Z ⊂ Rn,
their Minkowski sum is

⟨c,G⟩Z ⊕ ⟨d,M⟩Z =
〈
c+ d,

[
G, M

]〉
Z
.

Linear map [40, Sec. 2]: The linear map A ∈ Rm×n of a zonotope ⟨c,G⟩Z ⊂ Rn is

A ⟨c,G⟩Z = ⟨Ac,AG⟩Z .
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Figure 2.6: Construction of the zonotope Z =
[
g(1), g(2), g(3)] from Ex. 2.4.
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Quadratic map: Since sets described with support functions are convex by definition,
they cannot be closed under quadratic maps. That said, one can apply the efficient outer
approximation from [7, Lem. 1].

Support function [45, Prop 2.2, adapted]: The support function of a zonotope Z =
⟨c,G⟩Z ⊂ Rn in direction l ∈ Rn is given by

ρZ (l) = cT l +
∥∥∥GT l

∥∥∥
1
. (2.30)

2.6.6 Polynomial Zonotopes

As an extension to zonotopes, polynomial zonotopes were first introduced in [5] to rep-
resent non-convex reachable sets (see Sec. 2.7.3).
Definition 2.23 (Polynomial Zonotope [61, Def. 1, adapted]). Let c ∈ Rn be the
starting point, G ∈ Rn×m the dependent generator matrix with generators G(:,i) ∈ Rn

for 1 ≤ i ≤ m, Gindep ∈ Rn×o the independent generator matrix, and E ∈ Nd×m the
exponent matrix. We define the generating function of a polynomial zonotope as

g (ν, ξ) = c+
m∑

i=1
G(:,i)ν

E(:,i) +Gindepξ,

with dependent factors ν ∈ [−1, 1]d and independent factors ξ ∈ [−1, 1]o. The poly-
nomial zonotope is then constructed as PZ = {g (ν, ξ)}ν,ξ with the shorthand PZ =
⟨c,G,Gindep, E⟩P Z . ■

The following example demonstrates the construction of a simple, non-convex poly-
nomial zonotope.
Example 2.5. Let

PZ =
〈

0,
[
1, 2, 1
2, 1, 0

]
, 0,
[
1, 0, 2
0, 1, 0

]〉

P Z

=
{[

1
2

]
β1 +

[
2
1

]
β2 +

[
1
0

]
β2

1

}

β

,

where β ∈ [−1, 1]2. Since

PZ = PZ(1) ⊕ ⟨0, g⟩Z =
{[

1
2

]
β1 +

[
1
0

]
β2

1

}

β1

⊕
〈

0,
[
2
1

]〉

Z

,

the construction of PZ is similar to that of a zonotope, with the difference being that
the first generator is not linear. Fig. 2.7 shows its construction.

■

We introduce the following relevant operations on polynomial zonotopes (see [61] for
details).
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Figure 2.7: Construction of the non-convex polynomial zonotope PZ = PZ(1) ⊕ ⟨0, g⟩Z from
Ex. 2.5.

Minkowski sum [61, Prop. 9, adapted]: Given two polynomial zonotopes A =
⟨c,G,Gindep, E⟩P Z ⊂ Rn and B = ⟨d,M,Mindep, O⟩P Z ⊂ Rn, their Minkowski sum is
given by

A⊕ B =
〈
c+ d,

[
G ,M

]
,
[
Gindep ,Mindep

]
, blkdiag (E,O)

〉
P Z

.

Exact sum: Given A = {a (ξ, α)}ξ,α ⊂ Rn and B = {b (ξ, β)}ξ,β ⊂ Rn as polynomial
zonotopes, the exact sum of A and B is

A⊕e B = {a (ξ, α) + b (ξ, β)}ξ,α,β .

Note that A ⊕e B ⊆ A ⊕ B since {a (ξ, α) + b (ξ, β)}ξ,α,β ⊆ {a (ξ, α)}ξ,α ⊕ {b (ξ, β)}ξ,β

where A⊕e B = A⊕ B if and only if the generating functions a and b do not share any
dependent factors. We refer the reader to [61, Prop. 10] for details.

Linear map [61, Prop. 8, adapted]: The linear map A ∈ Rm×n of an n-dimensional
polynomial zonotope ⟨c,G,Grest, E⟩P Z is

A ⟨c,G,Grest, E⟩P Z = ⟨Ac,AG,AGrest, E⟩P Z .

Quadratic map: The quadratic map of a polynomial zonotope A = {a (α)}α ⊂ Rn,
following the definition in Def. 2.14, is given by

sq (A,Q) =








a (α)T Q(1)a (α)
...

a (α)T Q(m)a (α)








α

,

where Q collects m matrices Q(i) ∈ Rn for 1 ≤ i ≤ m. For an efficient implementation
of this quadratic map, we refer the reader to [61, Prop. 12, Prop. 13].
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Support function: Since a polynomial zonotope in general represents a non-convex set,
its support function cannot be evaluated exactly as the evaluation of the support function
essentially requires range bounding of a polynomial, which is NP-hard in general [33].
We refer the reader to [61, Prop. 7] for an efficient outer approximation.

That said, using an efficient outer approximation of a polynomial zonotope to a zono-
tope – introduced in Sec. 4.1.4 – one can use the support function value of a zonotope
(see Sec. 2.6.5) as an upper bound.

Subset property: Let X (0) =
{
x(0) (β)

}
β
⊂ Rn be a polynomial zonotope and let

R = {r (β)}β be the resulting polynomial zonotope of an algorithm (A) that takes X (0)

as an input and returns R by applying a finite number of elementary set operations,
such as Minkowski sums or linear maps. The subset property of polynomial zonotopes
as described in [62] allows us the extract the solution of (A) for a subset of X (0) without
executing (A) again, as the following example demonstrates.
Example 2.6 (Subset property of polynomial zontopes). Let X (0) =

{
x(0) (β)

}
β

= {β}β
for β ∈ [−1, 1]2 and assume that the algorithm (A) computes

R = {r (β)}β =
{[

1
2

]}
⊕ sq

(
X (0),Q

)
=
{[

1
2

]}
⊕
{[

2β1β2
β2

2

]}

β

=
{[

1 + 2β1β2
2 + β2

2

]}

β

,

for

Q =
{[

0, 1
1, 0

]
,

[
0, 0
0, 1

]}
.

Now, we want to compute the output R̆ of algorithm (A) for a subset

X̆ (0) =
{
x(0) (b (β))

}
β

=
{[
b1 (β)
b2 (β)

]}

β

=
{1

2β
}

β
,

where b (β) = 1
2β. Since we have an analytic expression for the generating function r (β)

of R, this output is simply given by substituting β with b (β), i.e., we have

R̆ = {r (b (β))}β =
{[

1 + 1
2β1β2

2 + 1
4β

2
2

]}

β

.

Fig. 2.8 visualizes X (0) and its output R as well as the subset X̆ (0) ⊆ X (0) and the
corresponding output R̆.

■

In this example, R can be computed exactly since it only involves a single quadratic
map. However, an algorithm often contains many more elementary operations, which
causes the representation of the resulting polynomial zonotope to grow. To reduce this
complexity, reduction techniques (see Sec. 2.8) are necessary.
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Figure 2.8: Illustration of the subset property of polynomial zonotopes using a 2D example.

2.7 Reachability Analysis

In order to synthesize a controller for a given task, the underlying model needs to be
mathematically described so that predictions about its future evolution can be made,
based on which a controller can be synthesized. Since we compute with sets of initial
states instead of a single initial state, this chapter introduces reachability analysis: For
a given set of initial states and a set of inputs, reachability analysis computes a set of
future states that is guaranteed to contain all possible future states of a given system.
Here, we only provide a short introduction to the most relevant aspects of reachability
analysis; we refer the reader to [4, 59] for more details.
Definition 2.24 (System). An nx-dimensional system with state x (t) ∈ Rnx , control-
lable input u (x (t) , t) ∈ Rnu , and uncontrollable disturbance w (t) ∈ Rnw is governed by
the system of ordinary differential equations (ODEs)

ẋ (t) = f (x (t) , u (x (t) , t) , w (t)) , (2.31)

with t ∈ R≥0 being the time and where ξ (t, x (0) , u (·, ·) , w (·)) denotes the solution
of (2.31) at time t starting at the initial state x (0). We assume that f is sufficiently
smooth. ■

Without loss of generality, we assume that any input u dependent on the state has
already been substituted into f and define

ẋ = fcl (x,w) , (2.32)
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which absorbs the fixed controller. With slight abuse of notation, the solution x (t) of
the closed-loop dynamics in (2.32) is then denoted by ξ (t, x (0) , w (·)). The reachable
set is then defined as follows:
Definition 2.25 (Reachable Set). The reachable set at time t ∈ R≥0 for an initial set
X (0) ⊂ Rnx and a set of possible disturbances W ⊂ Rnw is defined by

R(e) (t) =
{
x (t) ∈ Rnx

∣∣∣ ∀τ ∈ [0, t] : ẋ (τ) = fcl (x (τ) , w (τ)) , x (0) ∈ X (0), w (τ) ∈ W
}
.

■

Fig. 1.1 visualizes the main idea of reachability analysis: For a given initial state and
disturbance w (t), the reachable states are given by the trajectory of the system for these
values. The reachable set is then the union of all trajectories starting in X (0) with any
realization of the disturbance w (t). Since in general, computing the exact reachable
set R(e) is not tractable [68], we use an outer approximation R of the reachable set for
formal verification, or an approximation R̃ (without formal guarantees) for optimization.

We now briefly introduce the reachability algorithms relevant for this thesis from [9,
5, 4]. All algorithms presented subsequently are available in the continuous reachability
analyzer5 [2] (CORA), a MATLAB toolbox for reachability analysis and set computa-
tions. We compute the reachable sets for t ∈ [0, tf ], where tf ∈ R+ is the final time
and r = tf

mr
is the duration of one reachability step with mr ∈ N+ being the number of

reachability steps.

2.7.1 Linear Time-Invariant Systems
In this section, we introduce reachability analysis for an LTI system (see [4, Sec. 3.2]
for details)

ẋ (t) = Ax (t) + w (t) . (2.33)

The well-known solution of (2.33) given x (0) ∈ X (0) is

x (t) = eAtx (0) +
∫ t

0
eA(t−τ)w (τ) dτ. (2.34)

Interpreting (2.34) in a set-based manner yields the reachable set

R(e) (t) = H(e) (t)⊕ P(e) (t) , (2.35)

where

H(e) (t) =
{
eAtx (0)

∣∣∣ x (0) ∈ X (0)
}
, (2.36)

P(e) (t) =
{∫ t

0
eA(t−τ)w (τ) dτ

∣∣∣∣ ∀τ ∈ [0, t] : w (τ) ∈ W
}
. (2.37)

Subsequently, we first focus an a sub interval t ∈ [0, r] ⊂ [0, tf ]. The extension to
t ∈ [0, tf ] is then made at the end of this section.

5https://cora.in.tum.de/
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Time-point solution: While the homogeneous solution directly follows as H(e) (r) =
H (r) = eArX (0) from (2.36), only an outer approximation P (r) ⊇ P(e) (r) of the exact
particular solution P(e) (r) in (2.37) can be computed using [4, Th 3.1], i.e.

P (r) =
µ⊕

k=0

(
Akrk+1

(k + 1)!W
)
⊕ Irem (r) rW, (2.38)

with
Irem (r) = [−1, 1]nx×nx

(∥A∥∞ r)µ+1

(µ+ 1)!
1

1− ϵ , ϵ = ∥A∥∞ r

µ+ 2 ,

and where it is required that ϵ < 1. As a result, µ and the number of time steps mr are
typically chosen large enough to ensure ϵ < 1. Plugging H (r) and P (r) from (2.38) into
(2.35) yields an outer approximation of the time-point reachable set at t = r by

R (r) = H (r)⊕ P (r) ⊇ R(e) (r) .

Time-interval solution: In [4, Sec. 3.2.2], it is proven that P ([0, r]) = P (r) if 0 ∈ W.
Hence, we introduce w̃ ∈ W so that 0 ∈ W̃ = {−w̃} ⊕ W and define P̃ (r) = P̃ ([0, r])
analogously to (2.38) using W̃. Thus, it only remains to find an outer approximation
of the time-interval homogeneous solution H(e) ([0, r]) and the time-interval solution
P(e)

w̃ ([0, r]) due to the constant disturbance w̃. If we approximate the homogeneous
solution x(h) (t) and the constant disturbance solution xw̃ (t) ∈ P(e)

w̃ (t) for t ∈ [0, r] as

x(h) (t) ≈ x (0) + t

r

(
eArx (0)− x (0)

)
=
(

1− t

r

)
x (0) + t

r
eArx (0) , (2.39)

xw̃ (t) ≈ t

r

∫ r

0
eAτ w̃ dτ =

(
1− t

r

)
0 + t

r
xw̃ (r) , (2.40)

summation of (2.37) and (2.39) and its set-based evaluation for t ∈ [0, r] yields (see
Def. 2.3)

H(e) ([0, r])⊕ P(e)
w̃ ([0, r]) ≈ convc

(
X (0), eArX (0) ⊕ P(e)

w̃ (r)
)
.

Since (2.39) and (2.40) only approximate the time interval solutions, we additionally
need to compute interval matrices F and F̃ (see [4, Sec. 3.2] for details) to account for
the curvature of solutions, so that an outer approximation is given by

H(e) ([0, r])⊕ P(e)
w̃ ([0, r]) ⊆ convc

(
X (0), eArX (0) ⊕ Pw̃ (r)

)
⊕FX (0) ⊕ F̃w̃,

where Pw̃ (r) ⊇ P(e)
w̃ (r) =

∫ r
0 e

Aτ w̃ dτ is computed using, e.g., (2.38) with W = {w̃},
since P(e)

w̃ (r) generally cannot be computed exactly. Thus, the time-interval solution is
given by

R ([0, r]) = convc
(
X (0), eArX (0) ⊕ Pw̃ (r)

)
⊕FX (0) ⊕ F̃w̃ ⊕ P̃ (r) ⊇ R(e) ([0, r]) .

Fig. 2.9 visualizes the computation of the reachable set, where we assume that 0 ∈ W,
i.e., w̃ = 0, for illustrative purposes:
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X (0) eArX (0) convc
(
X (0), eArX (0)

)

H ([0, r]) R ([0, r])

Figure 2.9: One step of reachability analysis for linear systems.

(i) First, we approximate the set of homogeneous solutions H ([0, r]) for t ∈ [0, r] as
convc

(
X (0), eArX (0)

)
.

(ii) To arrive at an outer approximation of the homogeneous solution for t ∈ [0, r],
we additionally need to account for the curvature of trajectories, which yields
H ([0, r]) = convc

(
X (0), eArX (0)

)
⊕FX (0).

(iii) As a last step, we add the effect of the disturbance, i.e., the particular time-
interval solution, which finally yields the time-interval reachable set R ([0, r]) =
convc

(
X (0), eArX (0)

)
⊕FX (0) ⊕ P (r).

Following [4, Sec. 3.2.2], one can then iteratively compute the outer approximations
R ([k, k + 1] r) of the subsequent time-interval reachable sets for 0 ≤ k ≤ mr−1, and we
obtain R ([0, tf ]) = ⋃mr−1

k=0 R ([k, k + 1] r). If we use zonotopes for these iterative compu-
tations, increasing the number of reachability steps mr increases the number of required
Minkowski additions, so that the number of generators grows. To keep computations
efficient, this requires reduction techniques (see Sec. 2.8).

Linear systems have gained much attention recently. Most notably, significant im-
provements to set algorithm parameters, such as the number of reachability steps, au-
tomatically [112]. Furthermore, polynomial-time algorithms in the state-dimension for
fully automated verification of LTI systems have been proposed in [114] and can even
be extended to include safe and unsafe set specifications [115].
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2.7.2 Nonlinear Systems using Conservative Linearization
Next, we look at a reachability algorithm for nonlinear systems from [9], i.e., we again
have ẋ = fcl (x,w) = fcl (z) with z =

[
xT , wT

]T
. While the reachability computations

are similar to Sec. 2.7.1, we linearize the nonlinear system in each reachability step for
t ∈ [k, k + 1] r with 0 ≤ k ≤ mr − 1, which yields

ẋ (t) = c (z∗) +A (z∗)x (t) +B (z∗)w (t) + l (k) , (2.41)

with

A (z∗) = ∂fcl (z)
∂x

∣∣∣∣
z=z∗

,

B (z∗) = ∂fcl (z)
∂w

∣∣∣∣
z=z∗

,

c (z∗) = fcl (z∗)−A (z∗)x∗ −B (z∗)w∗,

where l (k) ∈ L (k) with L (k) being the Lagrange remainder to account for linearization
errors, z∗ =

[
x∗T , w∗T

]T
is the linearization point, and

L (k) =
{
l ∈ Rnx

∣∣∣∣∣li = 1
2 (z − z∗)T ∂2fcli (χ (z, z∗, α))

∂z2 (z − z∗) ,

z ∈ R ([k, k + 1] r)×W, α ∈ [0, 1]
}
,

(2.42)

with χ (z, z∗, α) = z∗ + α (z − z∗) and R ([k, k + 1] r) denoting the outer approximation
of the reachable set for t ∈ [k, k + 1] r that we wish to compute. The Lagrange remain-
der can be evaluated using interval arithmetic [9, Sec. V]. Further, since the Lagrange
remainder is constant in (2.41), the superposition principle can be applied to compute
the reachable set Rlin ([k, k + 1] r) of the corresponding LTI system for l (k) = 0 accord-
ing to Sec. 2.7.1, and the reachable set Rerr ([k, k + 1] r) due to the linearization error
separately. However, the Lagrange remainder set computation in (2.42) requires the
reachable set R ([k, k + 1] r), whose computation in turn requires L (k).

To break this circular dependency, we assume an initial candidate L̄ (k) (e.g. L̄ (k) =
{0}) for the Lagrange remainder and use the superposition principle to arrive at a
reachable set candidate

R̄ ([k, k + 1] r) = Rlin ([k, k + 1] r)⊕ R̄err ([k, k + 1] r) ,

where R̄err ([k, k + 1] r) is the reachable set due to the linearization errors captured in
L̄ (k) (can be computed using (2.38)). Then, we evaluate (2.42) with R̄ ([k, k + 1] r) to
obtain L (k) and check if L (k) ⊆ L̄ (k). If this check fails, we enlarge L̄ (k) and try again;
otherwise, R ([k, k + 1] r) = R̄ ([k, k + 1] r) is an outer approximation of the reachable
set.
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2.7.3 Nonlinear Systems using Conservative Polynomialization
In general, reachable sets of nonlinear systems may be non-convex. Therefore, we provide
a brief overview on abstracting a nonlinear system ẋ = f(x,w) for reachability analysis
using conservative polynomialization and polynomial zonotopes as proposed in [5]. To
improve readability, we focus on the first reachability step, i.e., we assume t ∈ [0, r]
without loss of generality; the remaining steps for t ∈ [r, tf ] follow analogously.

We start by computing a Taylor expansion of fcl (z) of order π ∈ N+ around the
linearization point z∗ =

[
x∗T , w∗T

]T
with x∗ ∈ Rnx and w∗ ∈ Rnw being linearization

points, which yields
ẋ = A (z∗)x+ v (z (t) , z∗, w (t)) + l, (2.43)

for l ∈ L, and where the Jacobian of f is given by A (z∗), the expression v (z (t) , z∗, w (t))
contains all remaining terms of the Taylor expansion up to (and including) order π,
and L is the Lagrange remainder evaluated over the rest term of the Taylor expansion
(as in (2.42)). Using, e.g., a quadratic abstraction, the advantage of using polyno-
mial zonotopes becomes clear since – in contrast to zonotopes – they are closed under
quadratic maps (see Tab. 2.1). With w∆ (t) = w (t) − w̃ for w̃ ∈ W chosen such that
0 ∈ W∆ = {−w̃} ⊕W and z∆ (t) = z (t)− z (0), we split

v (z (t) , z∗, w (t)) = v(0) (z (0) , z∗, w̃) + v∆
(
z∆ (t) , z (0) , w∆ (t)

)
,

into v(0) (z (0) , z∗, w̃) only dependent on known values z (0), z∗, w̃ at t = 0, and
v∆
(
z∆ (t) , z (0) , w∆ (t)

)
for t ∈ [0, r], which depends on z (t) and thus the reachable set

R ([0, r]) which we aim to compute. Therefore, (2.43) can be rewritten as

ẋ (t) = A (z∗)x (t) + v(0) (z (0) , z∗, w̃) + l̃, (2.44)

for l̃ ∈ L̃, where

L̃ = V∆ ([0, r])⊕ L,
V∆ ([0, r]) =

{
v∆
(
z∆, z (0) , w∆

) ∣∣∣ z∆ ∈ R∆ ([0, r])×W∆, z (0) ∈ X (0) × {0} ,

w∆ ∈ W∆
}
,

R∆ ([0, r]) =
{
ξ (t, x (0) , w (·))− x (0)

∣∣∣ t ∈ [0, r] , x (0) ∈ X (0), w (t) ∈ W
}
,

where ξ (t, x (0) , w (·)) again denotes the state solution. Since (2.44) can be interpreted
as an LTI system with uncertainty l̃ ∈ L̃ and additional constant v(0) (z (0) , z∗, w̃), its
reachable set can be computed using the methods from Sec. 2.7.1 . In contrast to (2.41),
however, (2.44) captures some nonlinearities in v(0) (z (0) , z∗, w̃).

Remark: By choosing the reachability step r smaller, the set L̃ shrinks and thus the
accuracy of the approximation is increased [5], albeit at the cost of additional computa-
tional effort.
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2.8 Reduction Techniques
When calculating reachable sets (see Sec. 2.7), reduction techniques are essential to keep
computations efficient. In this thesis, we mainly use zonotopes and polynomial zonotopes
for set-based computations. In this section, we thus introduce the concept of reduction
using a simple zonotope example. We refer the reader to [64], [59, Sec. 2.6] for details on
zonotope order reduction techniques and to [61, Sec. 2.E], [59, Sec. 3.1.7] for polynomial
zonotope order reduction techniques.

For a given set S ⊂ Rn (zonotope or polynomial zonotope) with m generators, we
denote by S ↓o ⊇ S the reduced set with a smaller number of generators m̃ ≤ m, where
o = m̃

n denotes the generator order of the new set. We demonstrate the concept of order
reduction in the following example:
Example 2.7 (Zonotope Order Reduction). Let

Z =
〈[
−1
1

] [
−6, −2, 2, 0, 3, −1
3, 4, 0, −2, 0, −2

]〉

Z

,

and we want to compute Z ↓2 , i.e., the reduced zonotope should have 2·2 = 4 generators.
Here, we choose the order reduction method from [40]: For a given zonotope Z = ⟨c,G⟩Z
of order o = m

n ∈ N with c ∈ Rn and G ∈ Rn×m, we sort all generators G(:,i) for 1 ≤ i ≤ m
according to the metric l (g) = ∥g∥1 − ∥g∥∞. To compute Z ↓q with q ≤ o, one then
chooses the n (q − 1) smallest generators according to the metric l, and adds the resulting
interval outer approximation back to the remaining generators.

In this example, we select the 4 smallest generators of Z, which correspond to the last

4 generators, i.e.,
[
2, 0, 3, −1
0, −2, 0, −2

]
. The resulting box enclosure is then given by

〈[
0
0

]
, diag

(∣∣∣∣∣

[
2
0

]∣∣∣∣∣+
∣∣∣∣∣

[
0
−2

]∣∣∣∣∣+
∣∣∣∣∣

[
3
0

]∣∣∣∣∣

∣∣∣∣∣

[
−1
−2

]∣∣∣∣∣

)〉

Z

=
〈[

0
0

]
,

[
6, 0
0, 4

]〉

Z

.

As a result, we have

Z ↓2 =
〈[
−1
1

]
,

[
−6, −2, 6, 0
3, 4, 0, 4

]〉

Z

.

Fig. 2.10 shows both the original and the reduced zonotope.
■
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Figure 2.10: Simple reduction approach for a 2D zonotope.
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3 The Abstracted Synthesis Problem

In this thesis, we synthesize controllers that steer a system from any initial state, chosen
from a bounded set, close to a given target state while formally guaranteeing that no
constraints are violated. We solve these so-called reach-avoid problems by combining
optimization theory with reachability analysis. Here, optimization theory is generally
used to formulate an optimization problem in order to synthesize the controller, and
reachability analysis is used for formal verification. While subsequent chapters intro-
duce various algorithms to synthesize a controller for these reach-avoid problems, they
all share a common structure; this allows the introduction of the abstracted synthesis
problem, which captures this common structure. Since practically all available efficient
optimization solvers require differentiability, we derive the smooth but equivalent formu-
lation of the abstracted problem. Furthermore, we show that the first-order necessary
conditions for this smooth problem are always necessary.

This chapter is structured as follows: First, we describe the general synthesis problem
we solve in this thesis in Sec. 3.1. In Sec. 3.2, we then discuss the abstracted problem,
from which we derive an equivalent but smooth formulation and show that the first-order
optimality conditions of this smooth problem are always necessary. Lastly, we briefly
motivate the use of the 1-norm when synthesizing controllers using reachable sets in
Sec. 3.3.

3.1 Problem Statement

All synthesis problems in this work are so-called reach-avoid problems.

Definition 3.1 (Reach-Avoid Problem). Let the system ẋ (t) = f (x (t) , u (x (t) , t) , w (t))
be given as in Def. 2.24, and let x (0) ∈ X (0), u (x (t) , t) ∈ U , x (t) ∈ X , x (tf) ∈ Xf , and
w (t) ∈ W, where X (0) ⊂ Rnx is the set of bounded initial states, U ⊂ Rnu is the bounded
set of admissible inputs, X ⊆ Rnx denotes the set of admissible states, Xf ⊆ Rnx are the
admissible states at final time tf ∈ R+, and W ⊂ Rnw is the set of bounded, uncontrol-
lable disturbances. We define the problem of steering the system f from a given set of
initial states X (0) to a target state xf ∈ Xf within time tf – while respecting the input
and state constraints – as a reach-avoid problem. ■
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Fig. 1.1 visualizes this concept. In this thesis, we solve a specific instance of such a
reach-avoid problem, given by

ûctrl (x (t) , t) = arg min
uctrl(x(t),t)

max
x(t)

{
∥x (tf)− xf∥1 + ζ

∫ tf

0
∥uctrl (x (τ) , τ)∥1 dτ

}
,

(3.1a)
s.t. x (t) ∈ R (t) , (3.1b)
∀t ∈ [0, tf ] : uctrl (x (t) , t) ∈ U , (3.1c)
R ([0, tf ]) ⊆ X , (3.1d)
R (tf) ⊆ Xf , (3.1e)

where R (t) denotes the (not necessarily exact) reachable set of states x (t) at time t for
the controller term uctrl (x (t) , t) under disturbances w (t) ∈ W, and ζ ∈ R+ is a weight-
ing factor to penalize large inputs. No assumptions about the statistical nature of W
are made, only thatW = ⟨cW , GW⟩Z is given as a zonotope. That said, we only consider
zero-centered disturbance zonotopes W = ⟨0, GW⟩Z since any non-zero center cW can
be absorbed by the dynamics f . We focus on state, final state, and input constraints
over the time interval t ∈ [0, tf ]; while an extension to consider different constraints
over a finite number of time points or time intervals is conceptually straightforward,
we omit further constraints for notational simplicity. Naturally, we not only want to
satisfy constraints, but also steer the final state x (tf) as close as possible to a target
state xf ∈ Rnx while ideally minimizing the expended control effort. This is reflected
in (3.1a) by finding the controller that minimizes the maximum deviation of x (tf) from
xf while penalizing large inputs. For computational reasons, we choose the 1-norm (see
Sec. 3.3).

Remark: The solution to (3.1) may be used for the computation of motion primitives to
plan formally verified trajectories using a maneuver automaton [52]. As an illustrative
example, imagine a take-over maneuver of an autonomous vehicle (see Fig. 3.1): To
perform the take-over (see Fig. 3.1a), a suitable controller has to be found. Instead of
trying find a suitable controller for an uncertain initial state (Fig. 3.1b), the trajectory
is split in time into left and right turn primitives for t ∈

[
0, t(1)

]
and t ∈

[
t(1), tf

]

(see Fig. 3.1c); here, x(1)
f at t = t(1) is used as an intermediate target state. When

only considering static constraints, a controller for a given motion primitive and its
corresponding reachable set R (·) can be computed offline for various different initial
sets and target states. These motion primitives are then collected into a maneuver
automaton which links appropriate motion primitives so that they can be concatenated
online to form a wide range of trajectories while respecting dynamic constraints (see [98,
Sec. 1.2] for a detailed example on a maneuver automaton). Linking motion primitives
requires – among other factors – that the final reachable set is contained in the initial
set of the next motion primitive (see Fig. 3.1c). While this thesis does not consider
maneuver automata for trajectory planning, it motivates both the fact that we minimize
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3.2 Abstraction

the worst-case deviation from the target state in (3.1a) and allow final state constraints
in the form of Xf .

3.2 Abstraction

We now introduce the abstraction of the synthesis problem from (3.1). To enable efficient
numerical optimization, we then derive its smooth reformulation in Sec. 3.2.1 and show
in Sec. 3.2.2 that the KKT conditions are always necessary. Since these properties hold
for the abstracted synthesis problem, they follow for all subsequent synthesis problems
as they can be generalized to this abstraction.

Thus, we define the abstracted synthesis problem as

ẑ, ŝ = arg min
z,s

J (z, s) , (3.2a)

s.t. g (z) ≤ s, (3.2b)

¯
z ≤ z ≤ z̄, (3.2c)
s ≥ 0, (3.2d)

with

J (z, s) = lT |h (z)|+ 1T
ny

max
(

¯
Rρ (z) , R̄ρ (z)

)
+ σ1T

ns
s, (3.3)

gm (z) = max
1≤k≤nk

{
max

(
F

(k)
(m) (Ah (z) +M |h (z)|)

)
+ max

(
G

(k)
(m)ρ (z)

)}
− bm, (3.4)

for 1 ≤ m ≤ ns, where A ∈ Rnr×nw , M ∈ Rnr×nw
≥0 ,

¯
R ∈ Rny×g, R̄ ∈ Rny×g, F (k)

(m) ∈ Rq×nr ,
and G(k)

(m) ∈ Rq×g are matrices, l ∈ Rnw
≥0 is a vector, and σ ∈ R+ is a given scalar; further,

h (z) ∈ Rnw and ρ (z) ∈ Rg are sufficiently smooth functions, z ∈ Rnz and ẑ ∈ Rnz as well
as s ∈ Rns and ŝ ∈ Rns are the optimization variables and their respective optimizers
with

¯
z ∈ Rnz and z̄ ∈ Rnz for

¯
z < z̄ denoting lower and upper bounds on z, and σ ∈ R+.

If
¯
zi = z̄i for 1 ≤ i ≤ nz, zi can simply be removed from the optimization problem since

then ẑi =
¯
zi = z̄i.

We briefly motivate the structure of (3.2) here; the intuition behind the exact choice
for (3.2) will become clear in subsequent chapters (see, e.g., Sec. 6.3.5): Instead of
maximizing over the unknown controller function directly as in (3.1), we fix the structure
of the controller by parameterizing it in the controller parameters z. We use h (z) to, e.g.,
collect generators and centers of reachable sets which are required for the optimization.
Any additional differentiable functions not originating from reachable sets are collected
in ρ (z).

The abstracted objective function in (3.3) is obtained by outer approximating the
maximization over the state in (3.1a). The constraints (3.1c) to (3.1e) of the original
synthesis problem are collected in (3.2b). The maximizations in (3.2b) may be necessary
if, e.g., generators from reachable sets for different time intervals are to be considered in
a single constraint.
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x(0)

xf

(a) Desired trajectory for single initial state

X (0) x(0)

R (tf)

xf

(b) Desired reachable set for a set of initial states

x(0)

xf

x
(1)
f

R
(
t(1)
)

R (tf)

X (0)

(c) Concatenation of appropriate motion primitives to solve take-over maneuver

Figure 3.1: Illustration of the concatenation of motion primitives online (adapted from [77]).
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3.2 Abstraction

Since the original synthesis problem contained constraints on both input and states,
the optimization problem in (3.1) and therefore also its abstraction in (3.2) may not
have a feasible solution. Thus, we also use the slack variable s ≥ 0 in (3.2d) to relax
the constraints in (3.2b) so that we always find a feasible solution; by choosing σ large
enough, any constraint violation is therefore penalized in (3.3) to prioritize no constraint
violation over the minimization of the objective function for s = 0. Lastly, synthesis
problems of subsequent chapters restrict the set of controller parameters z to a bounded
set, which is reflected in (3.2c).

3.2.1 Smooth Reformulation
Many efficient numerical solvers require the optimization problem at hand to be suffi-
ciently smooth, i.e., the objective function as well as all constraints need to be sufficiently
often differentiable. Using insights from Sec. 2.3.6.1 and Sec. 2.3.6.2, the abstracted syn-
thesis problem in (3.2) can be replaced by the smooth optimization problem

min
z,s,w,y,V,T,p

Jsmooth (z, s, w, y) , (3.5a)

s.t.
[
+h (z)
−h (z)

]
≤
[
w
w

]
, (3.5b)

[
¯
Rρ (z)
R̄ρ (z)

]
≤
[
y
y

]
, (3.5c)

F
(k)
(m) (Ah (z) +Mw) ≤ 1qVkm, (3.5d)

G
(k)
(m)ρ (z) ≤ 1qTkm, (3.5e)

V(:,m) + T(:,m) ≤ 1nk
pm, (3.5f)

p− b ≤ s, (3.5g)

¯
z ≤ z ≤ z̄, (3.5h)
s ≥ 0, (3.5i)

for 1 ≤ m ≤ ns and 1 ≤ k ≤ nk with

Jsmooth (z, s, w, y) = lTw + 1T
ny
y + σ1T

ns
s, (3.6)

where w ∈ Rnw , y ∈ Rny , V ∈ Rnk×ns , T ∈ Rnk×ns and p ∈ Rns are auxiliary variables
to resolve absolute values and maximization expressions. The equivalence of (3.2) and
(3.5) is stated in the following proposition.
Proposition 3.1 (Equivalence of the Smooth Reformulation). The abstracted synthe-
sis problem in (3.2) and its reformulation in (3.5) attain the same global minimum.
Additionally, the objective function (3.6) at any critical point

(
ẑ, ŝ, ŵ, ŷ, V̂, T̂, p̂

)
of the

reformulated problem can written as

J̃ (ẑ) = Jsmooth (ẑ, ŝ, ŵ, ŷ) = J (ẑ,max (0, g (ẑ))) .

Proof. See App. A.1.1.
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3.2.2 Regularity of Smooth Reformulation
Because the abstracted synthesis problem can be rewritten as a smooth optimization
problem, efficient gradient-based solvers can be used for its solution. That said, many
solvers implicitly solve optimization problems by finding an approximate solution to the
corresponding first-order Karush-Kuhn-Tucker (KKT) conditions. However, the KKT
conditions are only necessary conditions if the optimization problem at hand is regular at
a critical point (see Sec. 2.3.1). As it turns out, this holds for the smooth reformulation.

Proposition 3.2 (Regularity of Abstracted Synthesis Problem). The KKT conditions
are necessary for the smooth optimization problem in (3.5) at any critical point.

Proof. See App. A.1.2.

3.3 Different Norms for Optimization
As subsequent chapters will show, we frequently make use of norm functions inside the
objective function of a controller synthesis problem. Thus, briefly motivate the choice
of the 1-norm for optimization over reachable sets in this thesis.

In the following, we will make use of the well-known norm inequalities

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤
√
n ∥x∥2 ≤ n ∥x∥∞ , (3.7)

for x ∈ Rn. As is clear from (3.7), the 2-norm is a better approximation of the infinity
norm than the 1-norm, especially if ∃i ∈ {1, ..., n} ∀j ∈ {1, ..., n} \ {i} : |xi| ≫ |xj |, since
then ∥x∥2 ≈ |xi| = ∥x∥∞. However, both the Euclidean and the infinity norm have a
downside when optimizing sizes of sets, as the following example demonstrates.
Example 3.1. Let the zonotope R (p) =

〈
0,
[
0.001p+ 1000, −p+ 1

]〉
Z

for p ∈ [−1, 1]
be given. We are interested in finding the optimal p̂ which minimizes the size of R (p).
Since R (p) is zero-centered, one way to minimize the size of R (p) is to minimize the
norm of its generators by solving

p̂∗ = arg min
p∈[−1,1]

∥∥∥∥∥

[
0.001p+ 1000
−p+ 1

]∥∥∥∥∥ ,

i.e., we shrink the size of R (p) by minimizing the magnitude of each generator. Using
different norms, we have

∥∥∥∥∥

[
0.001p+ 1000
−p+ 1

]∥∥∥∥∥
∞

= max (|0.001p+ 1000| , |−p+ 1|) = |0.001p+ 1000| , (3.8)
∥∥∥∥∥

[
0.001p+ 1000
−p+ 1

]∥∥∥∥∥
2

=
√

(0.001p+ 1000)2 + (−p+ 1)2 ≈ |0.001p+ 1000| , (3.9)
∥∥∥∥∥

[
0.001p+ 1000
−p+ 1

]∥∥∥∥∥
1

= |0.001p+ 1000|+ |−p+ 1| . (3.10)
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Since the first generator is much bigger than the second generator, a subsequent mini-
mization over p will effectively keep the objective value for (3.8) and (3.9) constant since
minp∈[−1,1] |0.001p+ 1000| = 999.999 ≈ 1000. As a result, p̂ = −1, which does not really
affect the size of the set in the first dimension, and even increases the size in the second
dimension.

The ∥·∥1 norm in (3.10), however, values reduction in all dimensions equally, and thus
reduces the size in the second dimension significantly (p̂ = 1) while only marginally
increasing the set size in the first dimension. ■

Since we frequently optimize over (reachable) sets in this thesis, we choose 1-norms
for their optimization as motivated by Ex. 3.1.

3.4 Summary
In this chapter, we introduced the abstracted synthesis problem as a generalization of
many synthesis problems of subsequent chapters. By deriving an equivalent but smooth
formulation of this abstracted problem and proving that its Karush-Kuhn-Tucker (KKT)
first-order optimality conditions are always necessary, we showed that any problem that
can be written in the form of the abstracted problem can be solved by off-the-shelf
optimization solvers.

We reviewed reach-avoid problems as the category of synthesis problems we solve in
this thesis. In reach-avoid problems, we try to steer a given system for a set of initial
states to a target state within a specified time horizon while ensuring both input and
state constraints. This is reflected in the general problem formulation, where – for the
controller to be synthesized – we penalize the distance of the resulting center of the
reachable set to the target and furthermore minimize the size of the final reachable
set while also minimizing the accumulated control effort and satisfying input and state
constraints.

Since the abstracted problem is not continuously differentiable, we described a smooth
formulation to allow for efficient optimization. Because many optimization solvers solve
the KKT optimality conditions instead of the optimization problem, we further showed
that these optimality conditions are necessary for any critical point of the smooth ab-
stracted problem. As optimization problems for the controller synthesis in subsequent
chapters can be written in the form of the abstracted problem, this ensures that these
problems can be solved by a variety of off-the-shelf optimization solvers.

All synthesis problems described in this thesis use 1-norms to bound the size of the
respective (reachable) sets. As a result, we motivated the choice of the 1-norm by
comparing the impact of different norms on the optimization of reachable set sizes.
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4 Set Conversions and Set Containment

Depending on the application, the choice of set representation can make a significant
difference as different set representations are closed under different set operations (see
Tab. 2.1) or have varying computational complexities. Thus, set conversions are essential
when converting the original intractable synthesis problem into a tractable optimization
problem: Examples include the conversion of a non-convex reachable set given by a
polynomial zonotope to a simple zonotope to efficiently bound the size of the reachable
set, or the conversion from a zonotope to an ellipsoid to avoid an increasing number of
generators when many Minkowski sums are required (see Sec. 6.3). Similarly, efficiently
checking the containment of these sets within each other is essential, e.g., when using a
given reachable set to check state constraints.

Thus, we first introduce all necessary set conversion methods in Sec. 4.1. We then
conclude the chapter with a short discussion of relevant set containment methods in
Sec. 4.2.

4.1 Set Conversions

Since not all sets are closed under all operations, conversions between set representations
can become necessary. In Sec. 4.1.1 and Sec. 4.1.2, we first introduce inner and outer
approximations of zonotopes by ellipsoids and vice versa, where we refer the interested
reader to [34] for their implementation in CORA. While we do not need all zonotope-
ellipsoid set conversions introduced here in subsequent chapters, we include them for
the sake of completeness. Then, we describe an outer approximation of an H-polytope
by a parallelotope in Sec. 4.1.3, and introduce the outer approximation of a polynomial
zonotope by a zonotope from [61] in Sec. 4.1.4.

To keep the presentation simple, we assume for the remainder of this section that all
sets are non-degenerate, i.e., they have non-zero volumes and refer the reader to [34,
Sec. 4.1.3] for a possible approach to handle non-degenerate sets.

4.1.1 Zonotope To Ellipsoid

In this section, we describe approximations of a zonotope by an ellipsoid from our work
in [36]: In Sec. 4.1.1.1, we derive an outer approximation of a given zonotope by an
ellipsoid, and then discuss an inner approximation of a zonotope by an ellipsoid in
Sec. 4.1.1.2. First, we compute a template ellipsoid to describe its shape and then scale
this template appropriately using the maximum and minimum zonotope norms, which
are defined next.
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4 Set Conversions and Set Containment

Definition 4.1 (Squared Maximum Zonotope Norm). The squared maximum norm
from any point on the boundary of a zonotope ⟨c,G⟩Z to its center c is defined by

⌈⟨c,G⟩Z⌉2 = max
∥β∥∞≤1

βTGTGβ. (4.1)

■

Definition 4.2 (Squared Minimum Zonotope Norm). The squared minimum norm from
any point on the boundary of a zonotope ⟨c,G⟩Z to its center c is defined by the radius
of the largest hyper-sphere

〈
c, ⌊⟨c,G⟩Z⌋2In

〉
E still contained in ⟨c,G⟩Z , where

⌊⟨c,G⟩Z⌋2 = max
r≥0

r, s.t. ρ⟨0,rIn⟩E
(A) ≤ b, (4.2)

and where ⟨A, b⟩H with A ∈ Ro×n and b ∈ Ro is the half-space representation of ⟨0, G⟩Z .
■

When the halfspace representation for the zonotope is given, the optimization problem
in Def. 4.2 can be avoided.
Proposition 4.1 (Squared Minimum Zonotope Norm). Let the zonotope Z ⊂ Rn and its
half-space representation ⟨A, b⟩H with A ∈ Ro×n and b ∈ Ro be given, where we assume
without loss of generality that

∥∥∥A(i,:)
∥∥∥

2
> 0 for all 1 ≤ i ≤ o. Then

⌊Z⌋2 = min
1≤i≤o

b2
i∥∥∥AT

(i,:)

∥∥∥
2

2

.

Proof. Since ρ⟨0,rIn⟩E

(
AT

(i,:)

)
=
√
A(i,:)rInAT

(i,:) =
√
r
∥∥∥A(i,:)

∥∥∥
2

for 1 ≤ i ≤ o, it follows

from (4.2) that
√
r
∥∥∥A(i,:)

∥∥∥
2
≤ bi ⇐⇒ r ≤ b2

i

∥A(i,:)∥2
2

, which concludes the proof.

4.1.1.1 Outer Approximation

If we want to find an ellipsoid ⟨emin, Emin⟩E enclosing a zonotope ⟨c,G⟩Z ⊂ Rn with
minimum volume (also called the Löwner-John ellipsoid), it is clear that emin = c must
hold since both zonotopes and ellipsoids are centrally symmetric. The optimal shape
matrix Emin is then found by solving the SDP [14, Sec. 8.4.1]

Emin = arg min
E≻0

− log detE, (4.3a)

s.t.
(
v(i) − c

)T
E−1

(
v(i) − c

)
≤ 1, 1 ≤ i ≤ m, (4.3b)

with v(i) ∈ Rn for 1 ≤ i ≤ m being the vertices of ⟨c,G⟩Z . While even more scalable ap-
proaches exist to compute this minimum-volume enclosing ellipsoid (MVEE) [106], they
still require us to have the vertex representation of ⟨c,G⟩Z available, which is intractable
to compute for higher dimensions [32, Theorem 2.5]. Therefore, we subsequently derive a
sub-optimal solution that does not require the vertex representation of a given zonotope.

To that end, we first describe an initial guess for the relative proportions of the sub-
optimal shape matrix Ē ∈ Sn×n

++ , and then use the idea of the maximum zonotope norm
(see Def. 4.1) to find a scaling factor r̂ ∈ R+ to ensure ⟨c,G⟩Z ⊆

〈
c, r̂Ē

〉
E

.
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Shape matrix: In [19], a variant of Goffin’s algorithm for zonotopes is used to compute
an approximation to the MVEE. While their resulting approximation is somewhat con-
servative, they propose the following initial guess [19, Sec. 4.1]: The zonotope ⟨0, G⟩Z
with G ∈ Rn×m can be interpreted as the projection of the m-dimensional hypercube
under G, where the smallest hyper-ball enclosing this hypercube is given by ⟨0,mIm⟩E .
Applying the linear map G to both hypercube and hyper-ball yields the original zono-
tope and the enclosing ellipsoid G ⟨0,mIn⟩E =

〈
0,mGGT

〉
E

, where the shape matrix
we are looking for is then given by Ē = GGT .

This choice of Ē can also be motivated by showing that the covariance matrix over all
vertex candidates of ⟨0, G⟩Z is identical to Ē: Let B ∈ {−1, 1}m×2m−1

, where Bi1 = 1
and we alternate the sign of the i-th row B(i,:) every 2i−1 entries for 1 ≤ i ≤ m. For
example, this results in

B =




1, −1, 1, −1
1, 1, −1, −1
1, 1, 1, 1


 ,

for m = 3. As a result, L = G
[
B, −B

]
∈ Rn×2m contains all 2m possible vertex

candidates of ⟨0, G⟩Z . Since the column-wise mean ∑2m

k=1 L(:,k) = 0n by construction, we
can use principle component analysis (PCA) to construct the covariance matrix of all
2m samples collected in L, which is given by1

QL = 1
2m

LLT

= 2
2m

GBBTGT

= GGT ,

since

B(i,:)
[
BT
]

(:,j)
=
{

2m−1, i = j,

0, otherwise
, (4.4)

for 1 ≤ i ≤ m and 1 ≤ j ≤ m due to the construction of B. The ellipsoid ⟨0, QL⟩E =〈
0, GGT

〉
E

induced by the covariance matrix QL ∈ Sn×n
+ then describes the principal

components of all samples in L. Fig. 4.1 shows the distribution of these 2m samples for
a random two-dimensional zonotope ⟨c,G⟩Z with ten generators, where the covariance
matrix is scaled so that ⟨c,G⟩Z is tightly enclosed (see Th. 4.1).

Radius: With Ē given, it only remains to find an appropriate scaling factor r̂ > 0 to
ensure that ⟨c,G⟩Z ⊆

〈
c, r̂Ē

〉
E

. As it turns out, the maximum zonotope norm will
be useful in finding such a scaling factor. The maximum squared zonotope norm from
Def. 4.1 can then be rewritten as a mixed-integer quadratic program (MIQP).

1for details, see Sec. IV.C in https://arxiv.org/abs/1404.1100
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Figure 4.1: All candidate vertex points (black x) of a random two-dimensional zonotope with
ten generators (solid black) and the corresponding covariance matrix (dashed
black), scaled using Th. 4.1.

Proposition 4.2. Given the zonotope ⟨·, G⟩Z with generator matrix G ∈ Rn×m, we have

⌈⟨·, G⟩Z⌉2 = − min
β∈{−1,1}m

βTMβ + λmaxm, (4.5)

where M = −
(
GTG− λmaxI

)
⪰ 0 and λmax = max

(
λ
(
GTG

))
.

Proof. From βTβ = m, it follows that βTGTGβ = βT
(
GTG− λmaxI

)
β + λmaxm. Be-

cause GTG ⪰ 0, using M ⪰ 0 together with Def. 4.1 provides the desired result.

While (4.5) in Prop. 4.2 is a MIQP and thus has a worst-case complexity which is
polynomial in the number of generators [86], it is often quickly solvable for smaller
values of m: Finding ⌈⟨c,G⟩Z⌉2 to scale the covariance matrix in Fig. 4.1 took around
0.05 s. That said, computing (4.5) exactly quickly becomes intractable for larger m.
Interestingly, [31] showed that solving (4.5) was polynomial in the number of generators
ofG ∈ Rn×m if rankG = d was fixed. They argue that (4.5) can be solved by enumerating
all extreme points of ⟨c,G⟩Z , and that the number of these extreme points mv can be
bounded from above by mv ≤

∑d−1
k=0 2

(m−1
k

)
[31, Th. 3.1]. By using the known upper

bound for the binomial coefficient
(m−1

k

) ≤
(

e(m−1)
k

)k
[24, Eq. (C.3)], it follows for

m ≥ 1 that

mv ≤
d−1∑

k=0
2
(
m− 1
k

)
≤

d−1∑

k=0
2
(
e (m− 1)

k

)k

,

and therefore mv is of complexity O
(
md−1

)
in m if d is fixed. However, generally d = n,

and therefore this approach still scales exponentially with the number of dimensions.
Hence, we now propose an upper bound on the maximum zonotope norm, which can

similarly be found in [75]. Since the proof was omitted in [75], we provide it here for
completeness.
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Lemma 4.1 (Bound on Maximum Zonotope Norm [75, Eq. (3)], adapted). Let the
zonotope ⟨·, G⟩Z with G ∈ Rn×m and rank (G) = n be given. Then the SDP

r̂ = min
λ≥0

1T
mλ, (4.6a)

s.t. diag (λ)−GTG ⪰ 0, (4.6b)

with λ ∈ Rm provides an upper bound r̂ ≥ ⌈⟨·, G⟩Z⌉2.

Proof. The exact squared maximum zonotope norm from Def. 4.1 can be equivalently
computed by solving

max
β2

i ≤1, 1≤i≤m
βTGTGβ,

since GTG ⪰ 0 and thus the maximum is attained for β2
i = 1. Its Lagrangian dual

function is given by

g (λ) = inf
β∈Rm

(
βTGTGβ +

m∑

i=1
λi

(
β2

i − 1
))

= inf
β∈Rm

βT
(
diag (λ)−GTG

)
β − 1T

mλ,

where λ ∈ Rm; the subsequent maximization supλ≥0 g (λ) to form the Lagrangian dual
problem then results in (4.6) since

g (λ) =
{
−1T

mλ, diag (λ)−GTG ⪰ 0,
−∞, otherwise

,

which concludes the proof.

Naturally, there generally is a duality gap between (4.1) and (4.6) since the former is
not a convex optimization problem. Rewriting (4.1) with B = ββT , we obtain

max
B

trace
(
GTGB

)
, (4.7a)

s.t. B ⪰ 0, (4.7b)

trace
(
diag

(
e(m)(i)

)
B
)

= 1, 1 ≤ i ≤ m, (4.7c)

rank (B) = 1. (4.7d)

If we drop the rank constraint (4.7d) and formulate its Lagrangian dual problem (see
Def. 2.11), we arrive at (4.6). Since there is a strictly feasible B (e.g., B = Im), strong
duality holds according to SC (see Prop. 2.2). As a result, the gap between (4.1) and
(4.6) can be attributed to the “loss” of (4.7d) in (4.6). A result for tightening this duality
gap is provided in [75, 48]. We are now ready to state the main result of this section.

Theorem 4.1 (Enclosing Ellipsoid). An n-dimensional enclosing ellipsoid of the non-
degenerate zonotope Z = ⟨c,G⟩Z is given by

Ê (Z) =





〈
c, r̂Ē

〉
E
, m > n,〈

c, nĒ
〉

E
, m = n

,
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where r̂ is an upper bound on the maximum squared zonotope norm ⌈Ē− 1
2 ⟨c,G⟩Z⌉2 using,

e.g., Lem. 4.1, and Ē = GGT .

Proof. Let m > n. Define T = Ē− 1
2 and compute T

〈
c, Ē

〉
E

= ⟨Tc, In⟩E and T ⟨c,G⟩Z ,
where T exists since Z is non-degenerate. Let r̂ ≥ ⌈T ⟨c,G⟩Z⌉2 denote an upper bound
on the squared maximum zonotope norm of T ⟨c,G⟩Z . Then maxx̃∈T ⟨c,G⟩Z

∥x̃− Tc∥22 ≤ r̂
by definition, T ⟨c,G⟩Z ⊆ ⟨Tc, r̂In⟩E , and applying T−1 to both T ⟨c,G⟩Z and ⟨Tc, r̂In⟩E
yields the desired result.

Now let m = n. The MVEE enclosing an n-dimensional hypercube is the hyper-
sphere with radius

√
n. Applying G, the minimum-volume enclosing ellipsoid of ⟨c,G⟩Z

is
〈
c, nGGT

〉
E

.

4.1.1.2 Inner Approximation

Finding the maximum-volume inscribed ellipsoid (MVIE) ⟨emax, Emax⟩E for a zonotope
⟨c,G⟩Z ⊂ R with center c ∈ Rn and generator matrix G ∈ Rn×m, where ⟨A, b⟩H for
A ∈ Rq×n and b ∈ Rq denotes its half-space representation, can be formulated as the
SDP [14, Sec. 8.4.2]

B̂ = arg min
B≻0

− log detB, (4.8a)

s.t.
∥∥∥BAT

(i,:)

∥∥∥
2

+A(i,:)c ≤ bi, 1 ≤ i ≤ q, (4.8b)

where Emax = B̂B̂ and again emax = c due to the central symmetry of ellipsoids and
zonotopes. That said, the half-space representation of a zonotope is generally not avail-
able and existing algorithms produce a number of half-spaces exponential in the number
of dimensions for a given zonotope [3, Th. 2].

In this section, we thus compute an approximation to ⟨emax, Emax⟩E , analogously to
Sec. 4.1.1.1, but now use a lower bound on the minimum zonotope norm from Def. 4.2
to scale the shape matrix appropriately since its exact value requires the half-space
representation of the zonotope (see Prop. 4.1). We again use Ē = GGT , and propose
the following lemma to find a lower bound on the minimum zonotope norm for scaling.

Lemma 4.2 (Lower Bound on Mininum Zonotope Norm). Given is a zonotope Z =
⟨c,G⟩Z ⊂ Rn with center c ∈ Rn and generator matrix G ∈ Rn×m. Using the test from
[19, Sec. 4.4], we can find a lower bound ř ∈ R+ on ⌊Z⌋2 as

ř = ν̂2

n
≤ ⌊Z⌋2, (4.9)

where ν̂ is optimizer of the LP

ν̂ = arg max
ν,B

ν, (4.10a)

s.t. νIn = GB, (4.10b)
B ∈ [−1, 1]m×n . (4.10c)
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4.1 Set Conversions

Figure 4.2: Lower bound computation of the minimum zonotope norm as described in Lem. 4.2:
For a given n-dimensional zonotope (black), we compute its boundary points along
all 2n unit directions, which define a convex polytope (dashed black). Using the
MVEE of this polytope, we apply the Löwner-John property of symmetric sets (see
(4.11)) to obtain an ellipsoidal inner approximation (red).

Proof. By solving (4.10) for ν and due to the symmetry of Z, we have

V = convh
(
±ν̂e(1)

(n), . . . ,±ν̂e
(n)
(n)

)
⊆ Z.

To inscribe a hyper-ball into V and thus find a lower bound on the squared minimum
zonotope norm by its radius, we can use the Löwner-John ellipsoidal approximation for
symmetric sets [14, Sec. 8.4.1]

1√
n

〈
0, ν̂2In

〉
E
⊆ V ⊆

〈
0, ν̂2In

〉
E
, (4.11)

since V = {−v | v ∈ V} is symmetric by construction, where
〈
0, ν̂2In

〉
E is the MVEE (or

Löwner-John ellipsoid) of V. Applying the definition of the linear map for ellipsoids (see
Sec. 2.6.3) to (4.11), it follows that

〈
0, ν̂2

n In

〉
E
⊆ V ⊆ Z, which concludes the proof.

The application of Lem. 4.2 to a 2D zonotope is visualized in Fig. 4.2. Since Lem. 4.2
essentially only requires the solution of an LP, for which algorithms with complexity
polynomial in the number of optimization variables exist [22], a lower bound on the
minimum zonotope norm can be efficiently computed. That said, since we cannot ef-
ficiently test whether a given hyper-ball is contained in a zonotope, we need to resort
to checking whether its enclosing hyper-cube is contained, which naturally adds conser-
vatism. We can now inscribe an ellipsoid into a zonotope.
Theorem 4.2 (Inscribed Ellipsoid). An n-dimensional ellipsoid inscribed into the non-
degenerate zonotope Z = ⟨c,G⟩Z with center c ∈ Rn and generator matrix G ∈ Rn×m is
given by

Ě (Z) =





〈
c, řĒ

〉
E
, m > n,〈

c, Ē
〉

E
, m = n

,
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4 Set Conversions and Set Containment

Figure 4.3: Different enclosing and inscribed ellipsoids for a given two-dimensional zonotope.
Shown are the MVEE and MVIE (solid blue and red), the approximated enclosing
and inscribed ellipsoid with exact zonotope norm (dashed blue and red), and the
approximated enclosing and inscribed ellipsoids with bounded zonotope norm (dot-
ted blue and red). For this example, the enclosing ellipsoid with exact and bounded
zonotope norm coincide.

where ř ≤ ⌊Ē− 1
2 ⟨c,G⟩Z⌋2 can, e.g., be computed using Lem. 4.2, and Ē = GGT .

Proof. Let T = Ē− 1
2 and further let ř ≤ ⌊T ⟨c,G⟩Z⌋2 be a lower bound on the respective

squared minimum zonotope norm. The hyper-sphere ⟨Tc, řIn⟩E is still contained in
T ⟨c,G⟩Z by definition of the minimum zonotope norm and thus applying the inverse
transform T−1 yields the desired result.

Now let m = n. The MVIE inscribed into an n-dimensional hypercube is the hyper-
sphere with radius 1. Applying G, the minimum-volume enclosing ellipsoid of ⟨c,G⟩Z is〈
c, Ē

〉
E

.

Fig. 4.3 visualizes different enclosing as well as inscribed ellipsoids for a given two-
dimensional zonotope.
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4.1 Set Conversions

4.1.2 Ellipsoid to Zonotope

In this section, we now describe approximations of a given ellipsoid by a zonotope for
a given number of generators from our work in [36]: In Sec. 4.1.2.1, we derive an outer
approximation of an ellipsoid with a zonotope, and then describe an inner approximation
of an ellipsoid with a zonotope in Sec. 4.1.2.2. Similarly to Sec. 4.1.1, we compute these
approximations by finding a template zonotope approximating the general shape of the
ellipsoid, and then using the maximum and minimum zonotope norms (Defs. 4.1 and 4.2)
to scale them appropriately.

To that end, we first describe how a unit hyper-ball can be approximated with a zono-
tope and then apply this approximation to derive inner and outer approximations for
general ellipsoids. Thus, we momentarily assume that the given ellipsoid is a hyper-ball,
as we can always apply the appropriate linear maps to achieve that. Intuitively, a zono-
tope withm ∈ N+ generators, sampled equally distant from the surface of a hyper-sphere,
might approximate a hyper-sphere increasingly closely (in the Hausdorff distance). Since
computing equally distant points on a hyper-sphere is impossible for arbitrary m [117],
we first approximate this distribution by sampling m uniformly distributed points on
the surface of a hyper-ball [83]: Let the random variable Y be normally distributed, and
denote with y(i) ∈ Rn for 1 ≤ i ≤ m any m independent realizations of Y . Defining
x(i) = y(i)

∥y(i)∥2
, the vectors x(i) will be uniformly distributed on the surface of the unit

hyper-ball for large enough m. This approach does not necessarily result in a uniform
distribution for small m in practice. In [71], it is claimed that a polynomial-time deter-
ministic sampling approach is found that solves this distribution problem approximately.
Fig. 4.4 visualizes the two variants of approximating a hyper-ball with a zonotope. How-
ever, its derivation seems to have a flaw2; thus, we use the probabilistic sampling method
to obtain an approximately uniform distribution on the surface of the hyper-sphere, since
it was proven that a zonotope constructed from these sampled surface points approx-
imates a hyper-sphere increasingly closer for an increasing number of samples [73, 3.,
Theorem].

4.1.2.1 Outer Approximation

With the shape of the ellipsoid given by samples of the hyper-sphere as described previ-
ously, an outer approximation of an ellipsoid by a zonotope is described next.

2I thank Adrian Kulmberg for bringing the following issue to my attention: From [71, Eq. (3.5.8)]
and [71, Eq. (3.5.11)], it follows that ρH

(
N0
( 1

2

))
= 1 + 1

2 1
2 −1 , which is undefined and thus causes

a problem in [71, Lem. 3.5.23], which in turn causes a problem in [71, Th. 5.4.1]. Thus, this
invalidates [36, Lem. 4] from our original paper since we used [71, Th. 5.4.1]. However, this issue
has no consequence on the remainder of our paper since we can simply use the probabilistic sampling
method to obtain an approximation of the hyper-sphere by a zonotope as described in [36, Sec. V].
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4 Set Conversions and Set Containment

uniformly distributed points zonotope (uni. points)

approx. equidistant points zonotope (approx. equidistant points)

Figure 4.4: Uniform sampling of sphere directions and approximately equi-distant sampling of
sphere directions and their resulting zonotopes.
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4.1 Set Conversions

Theorem 4.3 (Enclosing Zonotope). An n-dimensional zonotope with m ≥ n generators
enclosing the ellipsoid ⟨c,Q⟩E is given by

Ẑ (⟨c,Q⟩E)m =





〈
c, 1√

ř

√
QS

〉
Z
, m > n,

〈
c,
√
Q
〉

Z , m = n
,

where S ∈ Rn×m collects the points S(:,i) on the surface of the hyper-ball for 1 ≤ i ≤ m
and ř is a lower bound of ⌊⟨·, S⟩Z⌋2 using Lem. 4.2.

Proof. Let m > n. With T = Q− 1
2 , we have T ⟨c,Q⟩E = ⟨Tc, In⟩E . Further, we know

that ⟨Tc, In⟩E ⊆
〈
Tc, 1√

ř
S
〉

Z
due to the definition of ř. Applying the inverse transform

T−1 then gives the desired result.
Now let m = n. A zonotope enclosing a hyper-ball ⟨0, In⟩E is given by ⟨0, In⟩Z , and

therefore Ẑ (⟨c,Q⟩E)n =
√
Q ⟨0, In⟩Z ⊕ {c} since ⟨c,Q⟩E =

√
Q ⟨0, In⟩E ⊕ {c}.

4.1.2.2 Inner Approximation

The inner approximation similarly follows by using the maximum zonotope norm.

Theorem 4.4 (Inscribed Zonotope). An n-dimensional zonotope with m ≥ n generators
inscribed into the ellipsoid ⟨c,Q⟩E is given by

Ž (⟨c,Q⟩E)m =





〈
c, 1√

r̂

√
QS

〉
Z
, m > n,〈

c, 1√
n

√
Q
〉

Z
, m = n

,

where S ∈ Rn×m collects the points S(:,i) on the surface of the hyper-ball for 1 ≤ i ≤ m
and r̂ is an upper bound on ⌈⟨·, S⟩Z⌉2 using Lem. 4.1.

Proof. Let m > n. Setting T = Q− 1
2 , we have T ⟨c,Q⟩E = ⟨Tc, In⟩E . Further, we know

that
〈
Tc, 1√

r̂
S
〉

Z
⊆ ⟨Tc, In⟩E due to the definition of r̂. Applying the inverse transform

T−1 then gives the desired result.
Now let m = n. A zonotope inscribed into a hyper-sphere ⟨0, In⟩E is given by〈

0, 1√
n
In

〉
Z

, and therefore Ž (⟨c,Q⟩E)n =
√
Q
〈
0, 1√

n
In

〉
Z
⊕ {c} since it holds that

⟨c,Q⟩E =
√
Q ⟨0, In⟩E ⊕ {c}.

Fig. 4.5 visualizes enclosing and inscribed zonotopes for a given two-dimensional el-
lipsoid.

For computation times and tightness results on the zonotope-to-ellipsoid and ellipsoid-
to-zonotope conversions from Sec. 4.1.1 and Sec. 4.1.2, we refer the reader to [36, Sec.
VI] as exact numbers are not relevant for the content of this thesis.
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4 Set Conversions and Set Containment

Figure 4.5: Different enclosing and inscribed zonotopes for a given two-dimensional ellipsoid.
Shown are the approximated enclosing (see Th. 4.3) and inscribed (see Th. 4.4)
zonotopes with exact zonotope norm (solid blue and red), and the approximated
enclosing and inscribed zonotopes with bounded zonotope norm (dashed blue and
red). All zonotopes have m = 10 generators.
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4.1.3 H-Polytope to Parallelotope

In this thesis, we specify constraints for the reach-avoid problem using H-polytopes. An
outer approximation of a bounded H-polytope with a parallelotope, as introduced in our
work in [35], is described next.

Proposition 4.3 (H-Polytope to Parallelotope). Let M = ⟨A, b⟩H with A ∈ Ro×n and
b ∈ Ro be given as a bounded polytope. Then a parallelotope outer approximation of M
is given by Z = Q

1
2 ⟨c̃,diag r̃⟩Z ⊕ {c}, where

c̃ = 1
2
(
ρM̃ (I) + ρM̃ (−I)

)
,

r̃ = 1
2
(
ρM̃ (I)− ρM̃ (−I)

)
,

M̃ =
〈
AQ

1
2 , b−Ac

〉
H
,

and ⟨c,Q⟩E is the MVIE of M [14, Sec. 8.4.2].

Proof. We shiftM by c so that 0 ∈M⊕{−c}, and use the shape matrix Q to transform
M into roughly a hypercube. Then Q− 1

2 (⟨c,Q⟩E ⊕ {−c}) = ⟨0, In⟩E and it holds that
M̃ = Q− 1

2 (M⊕{−c}) =
〈
AQ

1
2 , b−Ac

〉
H

. A tight parallelotope enclosing M̃ is given
by Z̃ = ⟨c̃,diag r̃⟩Z with c̃ and r̃ given as above. Applying the inverse transform and
shift yields Z = Q

1
2 Z̃ ⊕ {c} which concludes the proof.

Since we use the MVIE as a shape template for the enclosing parallelotope, the ap-
proximation quality of Prop. 4.3 depends on a shape similarity of the inscribed and the
enclosed ellipsoid, which is not necessarily given. Depending on the required approxima-
tion quality, Prop. 4.3 may thus not be approxiate; since Prop. 4.3 is used in this thesis
for normalization purposes only, this is of no concern here.

4.1.4 Polynomial Zonotope to Zonotope

Reachable sets of nonlinear systems are often computed using polynomial zonotopes to
represent non-convex sets (see Sec. 2.7.3). However, for operations such as the support
function, only outer approximations can be computed, which often requires the solu-
tion of a (possibly non-convex) optimization problem. Alternatively, one can enclose a
polynomial zonotope with a zonotope and then use its support function.

Proposition 4.4 (Polynomial Zonotope to Zonotope [61, Prop. 5, adapted]). A zono-
tope outer approximation of the polynomial zonotope PZ = ⟨c,G,Grest, E⟩P Z with start-
ing point c ∈ Rn, generator matrix G ∈ Rn×m, rest matrix Grest ∈ Rn×r, and exponent
matrix E ∈ Nq×m is given by

Ẑ (PZ) =
〈
c+ 1

2
∑

k∈Ieven

G(:,k),
[
G(:,Iodd),

1
2G(:,Ieven)

]
, Grest, Im

〉

P Z

,
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4 Set Conversions and Set Containment

where

Ieven =
{
i ∈ {1, ...,m}

∣∣∣ mod
(
E(:,i), 2

)
= 0

}
,

Iodd = {1, ...,m} \ Ieven,

and G(:,Iodd) ∈ Rn×|Iodd| and G(:,Ieven) ∈ Rn×|Ieven| collect all corresponding odd and even
generators.

By inspection, Prop. 4.4 is of at most polynomial complexity in the state dimension
(see also [61, Prop. 5]). For a demonstration of the tightness of the resulting zonotope,
see, e.g., [61, Fig. 3].

4.2 Set Containment
In this thesis, we want to solve controller synthesis problems under input and state
constraints. As a result, efficient methods to check the containment of a set within, e.g.,
a given constraint set, are necessary.

Thus, we first introduce a containment check from previous work for two zonotpes
in Sec. 4.2.2. Since constraints in this thesis will be given as H-polytopes, we then
describe the containment check of a zonotope in an H-polytope and briefly motivate the
superiority of this check over the zonotope-zonotope-containment for our purposes.

4.2.1 Zonotope in Zonotope

Since zonotopes are a popular choice for reachable sets in general, it is only natural to
first try zonotopes as constraint sets.

Proposition 4.5 (Zonotope in Zonotope [97, Cor. 4, adapted]). Given are two zonotopes
X = ⟨x̄, X⟩Z with x̄ ∈ Rn, X ∈ Rn×m, and Y = ⟨ȳ, Y ⟩Z with ȳ ∈ Rn, Y ∈ Rn×q. Then
X ⊆ Y if there exists Γ ∈ Rq×m and β ∈ Rq such that

X = Y Γ,
ȳ − x̄ = Y β,

∥∥∥
[
ΓT

(:), βT
]∥∥∥

∞
≤ 1.

Thus, Prop. 4.5 gives numerical conditions which can be easily checked using any
linear programming solver. Note, however, that Prop. 4.5 is not sufficient and necessary,
i.e., failure to find Γ and β that fulfill Prop. 4.5 does not necessarily mean that X is not
contained in Y.

4.2.2 Zonotope in H-Polytope

As mentioned in Sec. 4.2.1, the zonotope-zontope-containment check is only sufficient.
When using such a containment check for controller synthesis to check constraints, this
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might result in an overly conservative controller. Since we later assume that all constraint
sets are represented as H-polytopes anyway, we next present an efficient way to check the
containment of a zonotope within an H-polytope which is both necessary and sufficient.

Proposition 4.6 (Zonotope in Polytope [98, Lem. 1, adapted]). A zonotope Z = ⟨c,G⟩Z
with c ∈ Rn and G ∈ Rn×p is contained within a given H-polytope H = ⟨A, b⟩H with
A ∈ Rm×n and b ∈ Rm if and only if

ρZ (A) ≤ b.

Proof. We provide an alternative to the proof in [98] here.
We have

Z ⊆ H
⇐⇒ ∀l ∈ Rn : ρZ (l) ≤ ρH (l)
⇐⇒ ρZ (A) ≤ ρH (A) ,

where the last equivalence follows from the fact that all halfspaces defining H are con-
tained in A, which concludes the proof since ρH (A) = b (see Def. 2.15).

4.3 Summary
In this chapter, we both reviewed and introduced novel set conversion methods in Sec. 4.1
which are necessary for later chapters. Additionally, we also described a zonotope-in-
zonotope and zonotope-in-polytope containment check from the literature in Sec. 4.2
and motivated why the zonotope-in-polytope check is superior for our purposes.

In Sec. 4.1, we described – for the first time – ellipsoid-zonotope and zonotope-ellipsoid
inner and outer approximations from our work in [36]: By combining upper and lower
bounds on the maximum and minimum zonotope norms with appropriate initial shapes
for both ellipsoids and zonotopes, we were able to find efficient inner and outer approx-
imations for given zonotopes and ellipsoids. Furthermore, we described a novel method
for efficiently outer approximating an H-polytope by a parallelotope and review the
existing zonotope outer approximation of a given polynomial zonotope from [61].

In order to check constraints for the controller synthesis in subsequent chapters, we
then introduced two existing set containment checks in Sec. 4.2: First, we reviewed
the zonotope-zonotope containment checks from [97]. Because the zonotope-in-zonotope
check is only sufficient, we avoid possible conservatism by specifying all constraints as H-
polytopes in this thesis and thus introduced a zonotope-in-H-polytope check from [101]
which is both necessary and sufficient.
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5 Piecewise Constant Controller Synthesis

In order to arrive at an efficient method to synthesize controllers for nonlinear systems,
it is often necessary to restrict the form of the controller one wishes to compute. In this
chapter, formally correct controller synthesis using a combination of reachability analysis
and optimization is discussed, where the controllers to be synthesized are piecewise
constant in time.

In Sec. 5.1, we first introduce the general problem we aim to solve, and introduce an
approach to the solution of this problem using a linearization of the system dynamics
from previous work [99] in Sec. 5.2. In Sec. 5.3, we then extend this approach to polyno-
mial controllers with higher-order reachability abstractions. Finally, we propose a novel
iterative solution approach in Sec. 5.4 which can handle larger input sets efficiently and
does not require manual tuning of the state constraint sets.

5.1 Problem Statement

Generally, the synthesis problem in (3.1) is not efficiently solvable for an arbitrary con-
troller uctrl (x (t) , t). Therefore, one has to specify a parameterization for the controller
to be synthesized. To that end, we start by subdividing the time horizon [0, tf ] into
ms ∈ N+ intervals of length ts = tf

ms
(see Fig. 5.1). The duration ts denotes the

time between state feedback, i.e., uctrl (x (t) , t) = u(i) (x (its) , t) for t ∈ [i, i+ 1] ts and
0 ≤ i ≤ ms − 1. We further split the time interval [i, i+ 1] ts using tc = ts

mc
, where tc is

the duration between piecewise constant controllers, i.e., uctrl (x (t) , t) = u
(i,j)
pc (x (its))

for t ∈ its + [j, j + 1] tc and 0 ≤ j ≤ mc − 1.
To enable optimization over these controllers u(i,j)

pc (x (its)), we parameterize them in
the controller parameters P (i,j) ∈ Rnu×a and write u

(
x (its) , P (i,j)

)
, where a ∈ N+ is

the number of controller parameters per input dimension (will be discussed in detail in
subsequent sections). Let

P (i) =
[
P (i,0)T

, P (i,1)T
, . . . , P (i,mc−1)T

]T
,

P =
[
P (0)T

, P (1)T
, . . . , P (ms−1)T

]T
.

and denote with R (t, P ) the closed-loop reachable set at time t using the controller
u
(
x (its) , P (i,j)

)
for t ∈ its + [j, j + 1] tc with 0 ≤ i ≤ ms − 1 and 0 ≤ i ≤ mc − 1,

which is now dependent on P . Lastly, we assume that the bounded input constraint set
U = ⟨CU , dU ⟩H with CU ∈ RoU ×nu and dU ∈ RoU , state constraint set X = ⟨CX , dX ⟩H

67



5 Piecewise Constant Controller Synthesis

...
0 ts 2ts tf

x (0) x (ts) x (2ts)
u(0) (x (0) , t) u(1) (x (ts) , t)

(a) Visualization of the duration ts = tf
ms

between state measurements.

...... ...
0 tc 2tc ts ts + tc ts + 2tc 2tc tf

x (0) x (ts) x (2ts)
u

(0,0)
pc (x (0)) u

(0,1)
pc (x (0)) u

(1,0)
pc (x (ts)) u

(1,1)
pc (x (ts))

(b) Visualization of the duration tc = ts
mc

between piecewise constant controller switching.

Figure 5.1: Visualization of the time discretization for discrete-time feedback and piecewise
constant control inputs for each sampling interval.

with CX ∈ RoX ×nx and dX ∈ RoX , and final state constraint set Xf = ⟨CXf , dXf ⟩H with
CXf ∈ RoXf ×nx and dXf ∈ RoXf are given as H-polytopes. We can then rewrite (3.1) as

P̂ = arg min
P

max
x(·,P )∈R(·,P )



∥x (tf , P )− xf∥1 + ζ

ms−1∑

i=0

mc−1∑

j=0

∥∥∥u
(
x (its, P ) , P (i,j)

)∥∥∥
1



 ,

(5.1a)

s.t. ∀i ∈ {0, ...,ms − 1} ∀j ∈ {0, ...,mc − 1} : u
(
x (its, P ) , P (i,j)

)
⊆ U , (5.1b)

R ([0, tf ] , P ) ⊆ X , (5.1c)
R (tf , P ) ⊆ Xf . (5.1d)

We remark that the inclusion of state constraints means that a feasible solution might
not exist.
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5.2 Generator-Space Control

5.2 Generator-Space Control
In this section, we introduce the generator-space control (GSC) approach from [98,
99] to synthesize msmc piecewise constant controllers while ensuring state and input
constraints. Fig. 5.2 visualizes the concept of GSC, while Alg. 1 describes the general
procedure which is briefly summarized subsequently:

(i) First, a reference trajectory – steering the system from the center of the initial
set close to the target state xf while respecting constraints – is computed, which
yields the intermediate target states x(1:ms)

f (l. 2).

(ii) We then iteratively synthesize mc controllers for all ms steps. We use a moving
horizon h ∈ N+ with 1 ≤ h ≤ ms − i starting from t = its: This allows us to
account for later changes in the nonlinear dynamics f which might not be visible
for t ∈ [0, ts]. The algorithm than iterates as follows:
(a) Using the outer approximation of the closed-loop reachable set which is avail-

able from the last iteration, we compute the parameterized reachable set,
which is an approximation to the closed-loop reachable set for t ∈ its +[0, hts],
parameterized in the controller parameters we wish to determine (l. 5–7).

(b) This parameterized reachable set, along with the intermediate target states
collected in x(i+(1:h))

f , is then used to compute the controller parameters sub-
ject to input and state constraints by solving a linear program (LP) (l. 8).

(c) While we compute the parameters for all controllers until t = (i+ h) ts, we
only use the first mc piecewise controllers and compute the closed-loop reach-
able set using the optimized controllers until t = (i+ 1) ts (l. 9).

As explained in Sec. 5.2.4 in detail, the efficient inclusion of state constraints in GSC
requires the user to provide an adapted state constraint set X̃ ⊆ Rnx and X̃f ⊆ Rnx .

Algorithm 1 Generator-space control
1: function generatorSpaceControl(X (0),U ,X , X̃ ,Xf , X̃f ,W,ms,mc, xf , h, tf)
2: [xf , uref ] = referenceTrajectory(X (0),U ,X ,Xf ,ms,mc, xf , tf) ▷ Sec. 5.2.1
3: R̄ = X (0)

4: for i = 0; i < ms; i+ + do
5: R̄ = R̄ ↓o ▷ o ∈ N+ (reduction order)
6: h = min (h,ms − i)
7: R̃(i) = paramReach(R̄, h) ▷ Sec. 5.2.3
8: P̂ (i) = computeCtrl(R̃(i),U , X̃ , X̃f , x

(i+(1:h))
f , u

(imc+(0:hmc−1))
ref ) ▷ Sec. 5.2.4

9: R ([i, i+ 1] ts) = reach(R̄, P̂ (i), ts) ▷ Sec. 5.2.5
10: R̄ = R ((i+ 1)ts)
11: end for
12: return P̂ , R ([0, tf ])
13: end function
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cX (0)

X (0)

xf
(1)

xf
(2)

xf = x
(mc)
c

(a)
X̄ (0)

(b)

R (ts)

(c)
R (tf)· · ·R (2ts)

(d)

Figure 5.2: Overview of the GSC approach [101, adapted]: First, a reference trajectory is
computed (Fig. 5.2a), which is then used to subdivide the overall synthesis problem
into ms parts and define the intermediate target states and their corresponding
control inputs. Using this first intermediate target state x(1)

f , the synthesis problem
(5.1) is solved for x(1)

f (Fig. 5.2b). The closed-loop reachable setR (ts) for the newly
computed controller is then computed (Fig. 5.2c). Applying the same solution
process iteratively – where R (ts) is considered the new initial set – we can compute
all closed-loop reachable sets, i.e., we obtain R ([0, tf ]).

70



5.2 Generator-Space Control

We start by introducing the reference trajectory computation in Sec. 5.2.1 and describe
the proposed controller template in Sec. 5.2.2. For this template, we then compute its
parameterized reachable set in Sec. 5.2.3 and introduce the synthesis of the controller in
Sec. 5.2.4, where its closed-loop reachable set computation is then discussed in Sec. 5.2.5.
Finally, we briefly discuss both the offline and online complexity of the GSC algorithm
in Sec. 5.2.6 and shortly discuss its properties in Sec. 5.2.7.

Remark: We will not evaluate the performance of the GSC approach in this section
but defer its numerical experiments to the next section, where it will be compared to a
novel extension of GSC. We refer the reader to [99, Sec. 4] for a numerical comparison
of GSC against other synthesis algorithms.

5.2.1 Reference Trajectory

In this section, we want to compute msmc piecewise constant control inputs such that
the center cX (0) of the initial set X (0) = ⟨cX (0) , GX (0)⟩Z is steered closed to the target
state xf in time tf . These msmc constant control inputs can be computed by solving

u
(0:msmc−1)
ref = arg min

u(0:msmc−1)

(
(x (tf)− xf)T Qref (x (tf)− xf) +

msmc−1∑

l=0
u(l)T

Rrefu
(l)
)
,

(5.2a)

s.t. ∀t ∈ [k, k + 1] tc : ẋ (t) = f
(
x (t) , u(k), 0

)
(5.2b)

x (0) = cX (0) , (5.2c)
∀t ∈ [0, tf ] : x (t) ∈ X , (5.2d)
u(k) ∈ U , (5.2e)
0 ≤ k ≤ msmc − 1, (5.2f)

where Qref ∈ Snx×nx
+ and Rref ∈ Snu×nu

+ are user-specified weighting matrices. There ex-
ists software, such as the automatic control and dynamic optimization1 [55] (ACADO)
toolbox, which can efficiently solve (5.2). The corresponding state solutions are then
given by x

(k+1)
ref = ξ

(
(k + 1) tc, cX (0) , u

(0:k)
ref , 0

)
for 0 ≤ k ≤ msmc − 1, where the in-

termediate target states are given by x
(1+i)
f = ξ

(
(1 + i) ts, cX (0) , u

(0:(1+i)mc−1)
ref , 0

)
for

0 ≤ i ≤ ms − 1.

5.2.2 Controller Template

Before we can compute a parameterization of the reachable set in the controller param-
eters, we first need to define the parameterization of the controller. Since we assume
the same parameterization for all msmc piecewise constant controllers, we restrict our-
selves to the first piecewise constant controller for t ∈ [0, tc], i.e., we find the template

1https://acado.github.io/
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for u
(
x (0) , P (0,0)

)
. With slight abuse of notation, we assume for this section that

P = P (0,0) for easier readability.
In Sec. 5.2.1, we already computed (sub-)optimal control inputs for X (0) = {cX (0)},

i.e., when the initial set contains only its center. That said, the initial set X (0) generally
contains infinitely many initial states, and thus computing a control input trajectory
u

(0:mcms−1)
ref for every state in X (0) using Sec. 5.2.1 is not feasible. However, using a

single input trajectory for every x (0) ∈ X (0) is clearly not ideal, as the optimal input
trajectory to reach xf generally depends on the chosen initial state.

For the efficient computation of a controller for every initial state, the authors in [99,
Sec. 3.2] introduce the controller parameterization

ū (β, P ) = P(:,1) + P(:,2:)β = P

[
1
β

]
, (5.3)

where P ∈ Rnu×(1+l) and β ∈ [−1, 1]l are the dependent factors of the generating
function x(0) (β) = cX (0) +GX (0)β of the initial set X (0) =

{
x(0) (β)

}
β
: By making (5.3)

dependent on the initial state x(0) (β) through β, we obtain different control inputs for
different initial states. We remark here that the optimal control law is assumed to be
linear in β due to (5.3); this assumption will be removed in Sec. 5.3. The choice to
parameterized the controller template in β instead of the initial state x (0) directly has
numerical advantages since β ∈ [−1, 1]l. Additionally, we parameterize the controller in
P , which allows us to later synthesize an optimal controller by finding the optimal value
for P .

For the online application of the controller, however, only the initial state x (0) is
given and thus we require the input parameterized in x (0) and not β. If X (0) is given
as a non-degenerate parallelotope, the controller template parameterized in x (0) then
follows by substitution of β = G−1

X (0) (x (0)− cX (0)) into (5.3), yielding (compare to [99,
Eq. (15)])

u (x (0) , P ) = ū
(
G−1

X (0) (x (0)− cX (0)) , P
)
. (5.4)

If X (0) is a general zonotope, one can also replace X (0) with its parallelotope outer
approximation X̄ (0) = X (0) ↓1 so that the controller template can still be directly pa-
rameterized in x̄ (0) ∈ X̄ (0) (β then describes the dependent factor of the parallelotope
outer approximation); however, this comes at the cost of possibly losing some input ca-
pacity: We need to ensure that ∀x (0) ∈ X (0) : u (x (0) , P ) ⊆ U . If we now parameterize
the template in x̄ (0), this is still enforced, even though we introduce artificial initial
states, i.e., there exist x̄ (0) ̸∈ X (0). As an alternative to this parallelotope enclosure,
the factors β for a corresponding x (0) can also be efficiently computed online by solving
x (0) = cX (0) +GX (0)β with ∥β∥∞ ≤ 1 using linear programming, which does not result
in a potential loss of input capacity.

Reference Input for the Center State: In Sec. 5.2.1, we compute a reference input
trajectory for the center cX (0) of the initial set. If we wish to use this reference input
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directly in the controller template, we have u(0)
ref = P

[
1
0

]
=⇒ P(:,1) = u

(0)
ref for β = 0 since

cX (0) = cX (0) +GX (0)0. Thus, the controller template simply returns the input trajectory
for the initial state and thus steers the reachable set along the reference trajectory.

5.2.3 Parameterized Reachable Set

The solution of (5.1) requires (an approximation of) the closed-loop reachable using the
controller template from (5.3), parameterized in the controller parameters. Since the ms
optimization problems can be solved sequentially (see Alg. 1), we assume without loss of
generality that we start from the initial set X (0), generated by x(0) (β) = cX (0) +GX (0)β

for center cX (0) ∈ Rnx and generator matrix GX (0) ∈ Rnx×l with β ∈ [−1, 1]l. As
discussed in [98], we do not only need this parameterized set for t ∈ [0, ts], but rather
t ∈ [0, hts] since we optimize over an extended optimization horizon to account for later
changes in the nonlinear dynamics f which might not be visible for t ∈ [0, ts]. That said,
we first find the parameterized reachable set for t ∈ [0, ts], and then extend this to the
moving horizon of length h.

To that end, we linearize and time-discretize the undisturbed nonlinear dynamics
ẋ = f (x, u, 0) (see Def. 2.24), yielding (also compare to [99, Sec. 3.1])

x(j+1) = c
(j)
d +A

(j)
d x(j) +B

(j)
d u(j), (5.5)

with

A
(j)
d = eA(j)tc ,

B
(j)
d =

∫ tc

0
eA(j)τ dτB(j),

c
(j)
d =

∫ tc

0
eA(j)τ dτc(j),

A(j) = ∂f (x, u, 0)
∂x

∣∣∣∣x=x̄(j)

u=ū(j)

,

B(j) = ∂f (x, u, 0)
∂u

∣∣∣∣x=x̄(j)

u=ū(j)

,

c(j) = f
(
x̄(j), ū(j), 0

)
−A(j)x̄(j) −B(j)ū(j),

where x(0) ∈ X (0), and x̄(j) = 1
2

(
x

(j)
ref + x

(j+1)
ref

)
and ū(j) = u

(j)
ref are the linearization

points for 0 ≤ j ≤ mc − 1 (see Sec. 5.2.1). Evaluation of (5.5) using the corresponding
generating functions yields the recursive relation

r̃ ((j + 1) tc, P, β) = c
(j)
d +A

(j)
d r̃ (jtc, P, β) +B

(j)
d ū

(
β, P (0,j)

)
, (5.6)
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where R̃ (t, P ) = {r̃ (t, P, β)}β and r̃ (0, P, β) = x(0) (β) = cX (0) + GX (0)β. For later
convenience, we define

R̃ (jtc, P ) =
〈
c̃ (jtc, P ) , G̃ (jtc, P )

〉
Z
,

{
ū
(
β, P (i,j)

)}
β

=
〈
cu

(
P (i,j)

)
, Gu

(
P (i,j)

)〉
Z
.

Extended Horizon: We notice from (5.6) that β alone generates R̃ (jtc, P ) since both
X (0) and

{
ū
(
β, P (0,j)

)}
β

are generated by β. As a result, the parameterized reachable
set at t = (k + 1) ts for 0 ≤ k ≤ h − 1 can be found by simply replacing X (0) with
R̃ (kts, P ) and executing the aforementioned steps again.

5.2.4 Controller Computation

With the parameterized reachable set computed in Sec. 5.2.3, we are now ready to
approximate (5.1) as proposed in [99]. We first transform the objective function in (5.1)
into a tractable approximation and then briefly discuss how the constraints of (5.1) can
be adapted such that the resulting optimization problem can be posed as an LP. Due to
the iterative nature of the GSC algorithm, we again assume without loss of generality
that t = 0, i.e., we start at the initial set X (0).

Objective Function: We bound (5.1a) over the extended optimization horizon from
above as (also compare to [99, Eq. (9), (10)], [98, Lem. 2])

max
x(·,P )∈R̃(·,P )

h∑

k=1
ϑk



∥∥∥x (kts, P )− x(k)

f

∥∥∥
1

+ ζ
mc−1∑

j=0

∥∥∥u
(
x ((k − 1) ts, P ) , P (k−1,j)

)∥∥∥
1




(5.7)

≤
h∑

k=1
ϑk



∥∥∥∥∥

[
c̃ (ktc, P )− x(k)

f
G̃ (ktc, P )(:)

]∥∥∥∥∥
1

+ ζ
mc−1∑

j=0

∥∥∥∥∥∥



cu

(
P (k−1,j)

)

Gu

(
P (k−1,j)

)
(:)



∥∥∥∥∥∥

1


 , (5.8)

as the cost function, where ζ ∈ R+ penalizes the overall input size, and ϑ ∈ Rh
≥0 weighs

the size of the reachable set at different points in time over the extended horizon h. The
upper bound from the triangle inequality to arrive at (5.8) corresponds to a maximizing
x (kts, P ) which in general does not exist, as the following example demonstrates.
Example 5.1. Let h = 1, xf = 0, ϑ = ϑ1 = 1, ζ = 0, and R̃ (tf , P ) = {r̃ (tf , β)}β with

r̃ (tf , β) =
[

2
−2

]
β1 +

[
1
1

]
β2. Then (5.7) can be equivalently written as

max
∥β∥∞≤1

∥r̃ (tf , β)− xf∥1 = max
∥β∥∞≤1

(|2β1 + β2|+ |−2β1 + β2|)

= 4.
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In contrast, (5.8) yields

max
∥β∥∞≤1

∥r̃ (tf , β)− xf∥1 ≤
∥∥∥∥∥

[
2
−2

]∥∥∥∥∥
1

+
∥∥∥∥∥

[
1
1

]∥∥∥∥∥
1

= 6.

■

Since the objective function is based on the linearized parameterized reachable set,
its approximation quality tends to diminish with an increasing prediction horizon. As a
result, one typically chooses ϑ1 ≥ ϑ2 ≥ · · · ≥ ϑh, and we have a direct approximation of
(5.1a) for ϑ1 = ϑ2 = · · · = ϑh−1 = 0, ϑh = 1, and h = ms.

Constraints: Using the approximated, parameterized reachable set instead of an outer
approximation, the constraints in (5.1b) to (5.1d) for the extended horizon t ∈ [0, hts]
are

∀i ∈ {0, ..., h− 1} ∀j ∈ {0, ...,mc − 1} :
{
ū
(
β, P (i,j)

)}
β
⊆ U , (5.9)

R̃ ([0, hts] , P ) ⊆ X , (5.10)
R̃ (hts, P ) ⊆ Xf . (5.11)

Using Prop. 4.6, the input constraint {ū (P, β)}β ⊆ U = ⟨CU , dU ⟩H can be written as
{
ū
(
β, P (i,j)

)}
β
⊆ U ⇐⇒ ρu

(
CU , P (i,j)

)
≤ dU ,

which can be encoded as a convex constraint by reformulating the absolute values using
auxiliary variables (see Sec. 2.3.6.1) since

{
ū
(
β, P (i,j)

)}
β

= Ẑ
({
ū
(
β, P (i,j)

)}
β

)
; here,

ρu

(
·, P (i,j)

)
denotes the support function of

{
ū
(
β, P (i,j)

)}
β

and Ẑ (·) denotes the outer
approximation of a polynomial zontope by a zonotope as described in Sec. 4.1.4.

To check state constraints, we only have the approximate time-point solutions

x̃ (its + jtc, P ) ∈ R̃ (its + jtc, P ) , 0 ≤ i ≤ ms − 1, 0 ≤ j ≤ mc,

available. While the set of applied inputs {ū (P, β)}β is known exactly and thus the input
constraints can be checked using a zonotope outer approximation as described above,
the set of states is only approximate. Therefore, we cannot directly enforce the state
constraints contained in X : It might happen that the approximation of the parameterized
reachable set is much smaller than an outer approximation of the reachable set, in which
case the resulting controller will most likely violate the state constraints. Therefore, let
X̃ =

〈
CX̃ , dX̃

〉
H ⊆ Rnx with CX̃ ∈ RoX ×nx and dX̃ ∈ RoX denote the user-provided state

constraint set which is adapted to the approximated parameterized reachable set (see
Sec. 5.2.7 for details).
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We now approximate the interval constraint (5.10) with mch time-point constraints
and apply Prop. 4.6, yielding

max
0≤k≤hmc

ρ̃x

(
CX̃ , ktc, P

) ≤ dX̃ ,

where ρ̃x (·, t, P ) denotes the support function of R̃ (t, P ). Finally, the final state con-
straints can be rewritten using again Prop. 4.6 as

ρ̃x

(
CX̃f

, hts, P
)
≤ dX̃f

,

where X̃f =
〈
CX̃f

, dX̃f

〉
H
⊆ Rnx with CX̃f

∈ RoXf ×nx and dX̃f
∈ RoXf are user-provided,

adapted final state constraints.

Optimization Problem: The optimization problem for the extended horizon h is then
given by (also compare to [99, Eq. (12), (13)], [98, Th. 3])

P̂ (0:h−1) = arg min
P

h∑

k=1
ϑk



∥∥∥∥∥∥


c̃ (ktc, P )− x(k)

f[
G̃ (ktc, P )

]
(:)



∥∥∥∥∥∥

1

+ ζ
mc−1∑

j=0

∥∥∥∥∥∥




cu

(
P (k−1,j)

)
[
Gu

(
P (k−1,j)

)]
(:)



∥∥∥∥∥∥

1


 ,

(5.12a)

s.t. max
0≤i≤h−1

0≤j≤mc−1

ρu

(
CU , P (i,j)

)
≤ dU , (5.12b)

max
0≤k≤hmc

ρ̃x

(
CX̃ , ktc, P

) ≤ dX̃ , (5.12c)

ρ̃x

(
CX̃f

, tf , P
)
≤ dX̃f

. (5.12d)

The absolute values and maximizations can be reformulated using the techniques from
Sec. 2.3.6 which then yields an LP. While we obtain optimal controller parameters for
all h steps, we only apply the first mc piecewise constant controllers corresponding to
P̂ (0) until t = ts (see Alg. 1).

5.2.5 Closed-Loop Reachable Set
Subsequently, we show how an outer approximation of the closed-loop reachable set can
be computed. Without loss of generality, we first focus on the reachable set computation
for t ∈ [0, ts]. Given an optimal P̂ (0) as the solution to (5.12) for t ∈ [0, ts], the controller
is (see (5.3)) ū

(
β, P̂ (0,j)

)
for 0 ≤ j ≤ mc − 1. The initial set is given by X (0) =

⟨cX (0) , GX (0)⟩Z =
{
x(0) (β)

}
β
.

We mainly use two different algorithms to compute reachable sets in this thesis: In
Sec. 5.2.5.1, we describe the reachable set computation using the conservative lineariza-
tion approach from [9] described in Sec. 2.7.2, and in Sec. 5.2.5.2 we introduce the reach-
able set computation for polynomial zonotopes using the conservative polynomialization
approach from [5], which we introduced in Sec. 2.7.3.
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5.2.5.1 Conservative Linearization

In Sec. 2.7, we discussed how the reachable set for given closed-loop system dynamics
can be computed (also compare to [98, Sec. 3.3.6]). Thus, we introduce the extended
dynamics

fext (xext, w) =



f (x, u, w)

0
0


 ,

with the extended state xext =
[
xT , uT , βT

]T
and the generating function of the

extended initial set

x
(0)
ext (β) =




x(0) (β)
ū
(
β, P̂ (0,0)

)

β


 .

Since the computed controller is dependent on β, we include the input as an additional
state variable, which allows us to define x(0)

ext (β) such that we always apply the corre-
sponding pair of initial state and applied input. For t ∈ [0, tc] with tc = tf

msmc
, we can

then compute the extended reachable set Rext (t) =
{
rext

(
t, β̃
)}

β̃
using the approach

in Sec. 2.7.2. At t = tc, we need to halt the reachability computations since the con-
troller and thus the extended dynamics change. Due to reduction operations during
reachability analysis and because reachability analysis with zonotopes does not preserve
dependencies, the generating function of the extended reachable set is in general now
dependent on a new dependent factor β̃ instead of β. Hence, in order to apply the cor-
rect control input, we need a mapping from the new dependent factors β̃ to the desired
dependent factors β. Fortunately, this is available in the extended generating function
of the reachable set at t = tc, since by definition of the extended state we have

β
(
β̃
)

=
[
rext

(
tc, β̃

)]
nx+nu+(1:nx)

. (5.13)

Substitution of (5.13) into the controller template then yields ū
(
β
(
β̃
)
, P̂ (0,1)

)
, which is

now parameterized in the current dependent factor β̃. Thus, we can define the generating
function for the new extended initial set as

x
(1)
ext
(
β̃
)

=




[
rext

(
tc, β̃

)]
(1:nx)

ū
(
β
(
β̃
)
, P̂ (0,1)

)

β
(
β̃
)


 ,

from which Rext (2tc) can be computed. The remaining steps until t = ts follow analo-
gously.

5.2.5.2 Conservative Polynomialization

Using the approach from Sec. 2.7.3, we can make use of the dependency-preserving
operations of polynomial zonotopes (see Sec. 2.6.6). We again define an extended state

77



5 Piecewise Constant Controller Synthesis

xext =
[
xT , uT

]
with extended dynamics

fext (xext, w) =
[
f (x, u, w)

0

]
,

and extended initial generating function

x
(0)
ext (β) =

[
x(0) (β)

ū
(
β, P̂ (0,0)

)
]
.

In contrast to Sec. 5.2.5.1, the extended state does not require the inclusion of β due to
the dependency-retaining properties of polynomial zonotopes as implemented in CORA
at the time of writing. That said, it is in principle possible to also implement dependency-
retaining zonotopes.

The reachable set Rext (tc) = {r̃ext (tc, β)}β ⊕ ⟨cerr, Gerr⟩Z is computed by executing
the algorithm described in Sec. 2.7.3 until t = tc using polynomial zonotopes. Here,
r̃ext (tc, β) is the generating function of the reachable set with the β dependency pre-
served, and {cerr +Gerrδ}δ represents abstraction errors (see Sec. 2.7.3) and reduction
errors (see Sec. 2.8). The new extended initial set is then given by the generating function

x
(1)
ext (β, δ) =

[[r̃ext (tc, β) + cerr +Gerrδ](1:nx)
ū
(
β, P̂ (0,1)

)
]
,

from which Rext (t) for t ∈ [1, 2] tc can be computed. The remaining steps follow analo-
gously.

5.2.6 Computational Complexity
We first discuss the offline complexity of the controller synthesis and then briefly describe
the complexity of applying the computed controller online. We make the following
assumptions.
Assumption 5.1. The number of elementary operations e ∈ N+ to evaluate the closed-
loop dynamics [fcl]i : Rnx × Rnu 7→ Rnx for each dimension 1 ≤ i ≤ nx as well as any
of its derivatives, the number of input constraints oU ∈ N+, state constraints oX ∈ N+,
and final state constraints oXf ∈ N+, the number of generators l ∈ N+ for any reachable
set, and the number of dependent factors of the initial set all grow with at most O (n),
i.e.,

O (e) = O (n) ,
O (oU ) = O (oX ) = O (oXf ) = O (n) ,

O (l) = O (n) ,

where n = max (nx, nu). ■
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5.2.6.1 Offline Complexity

We derive an upper bound on the computational complexity of GSC in n. Since ms is
fixed, it suffices to inspect the algorithm for ms = 1.

Reference Trajectory: Generally, the optimization problem (5.2) to compute the ref-
erence trajectory is a smooth non-convex optimization problem, which can be solved
(using second-order methods) to a first-order critical point with accuracy ϵ using a num-
ber of function evaluations polynomially bounded in 1

ϵ [18], where ϵ > 0 is the selected
accuracy. On the other hand, while tools like ACADO do not provide bounds on the
complexity to compute the reference trajectory in Sec. 5.2.1, they solve these optimiza-
tion problems in practice very efficiently. For this complexity analysis, we simply define
the computational complexity as O (cref (n)), where cref (n) is some function of n.

Reachable Sets: Since the parameterized reachable set in Sec. 5.2.3 is given as a simple
analytic function, its computational complexity is clearly lower than the complexity of
computing the closed-loop reachable set, which is at most O

(
n5) [59, Sec. 4.1.4] when

using the conservative polynomialization approach (see Sec. 5.2.5.2).

Controller Computation: The complexity of the controller computation is dominated
by the solution of the optimization problem – which can be posed as a linear program –
whose solution complexity is O (cLP (n)) = O

(
nω log

(
n
δ

)
logk (n)

)
, where δ is the relative

accuracy and k ∈ N+ is independent of n [16].

Overall Complexity: The computational offline complexity of GSC is thus at most

O
(
c

(off)
GSC (n)

)
= O

(
cref (n) + cLP (n) + n5

)
. (5.14)

5.2.6.2 Online Complexity

The output of GSC are the optimal controller parameters P̂ and the closed-loop reachable
set R ([0, tf ]). Due to the sequential nature of GSC and because h, ms, and mc are fixed,
it again suffices to restrict the analysis to t ∈ [0, tc].

If X (0) is given as a parallelotope (or enclosed by one), obtaining β for a given
x (0) ∈ X (0) amounts to a simple matrix vector multiplication with complexity O

(
n2

x

)

(see (5.4)) and another matrix vector multiplication with complexityO (nunx) (see (5.3)),
so that the overall online complexity is O

(
n2). If we do not compute a parallelotope

outer approximation of R (its) and its l generators, obtaining β requires the solution of
an LP with complexity O (cLP (l)) = O (cLP (n)) since O (l) = O (n) by Ass. 5.1. Com-
puting ū

(
β, P̂ (i,j)

)
is then one matrix-vector multiplication (see (5.3)) with complexity

O (nul) = O
(
n2). Thus, the online application of GSC has complexity

O
(
c

(on)
GSC (n)

)
=
{
O (cLP (n)) , no parallelotope outer approximation,
O
(
n2) , otherwise

. (5.15)
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5.2.7 Discussion
Because the GSC approach uses a linearized, parameterized reachable set approximation
and because the controller template is piecewise linear in the state, the controller synthe-
sis only requires the solution of (5.12) which can be reformulated as an LP and therefore
can be solved efficiently. However, this simplicity also means that the parameterized
rechable set approximation might not be very accurate for nonlinear systems with large
initial sets. Furthermore, a linear controller might not be enough to achieve the desired
control performance.

Additionally, we so far simply accepted that the adapted state and final state con-
straints X̃ and X̃f are given by the user. However, it is still unclear how these sets can be
obtained from the original state and final state constraints X and Xf , respectively. Since
we have no information about the accuracy of the parameterized reachable set approxi-
mation and because its accuracy is also dependent on the initial set and the input set,
finding X̃ and X̃f requires trial and error by the user for each system and each system
setup for which a controller needs to be synthesized. As a result, the GSC approach is
not trivial to apply for non-experts when state and final state constraints need to be
enforced.
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5.3 Polynomial Generator-Space Control

Due to the linear approximation of the parameterized reachable set and the limitation
to linear control laws in GSC, it may be impossible to achieve satisfactory controller
performance, especially when the system dynamics are very nonlinear. In this section,
we introduce the polynomial generator-space control (PGSC) approach from our work
in [37] which is an extension of the GSC approach. Since PGSC subsumes GSC, we
again solve (5.1) by synthesizing msmc piecewise constant controllers (see Fig. 5.1).
In contrast to GSC, however, compute the parameterized reachable set using arbitrary
system abstractions and allow for an extension to polynomial controller templates.

Alg. 2 shows the general procedure for PGSC. The algorithm iteratively computes the
following steps to synthesize msmc piecewise constant controllers with respect to input,
state, and final state constraints:

(i) Given the center of the current initial set, we compute a reference trajectory from
that center to the target state (l. 7).

(ii) Let i ∈ {0, ...,ms − 1} denote the current iteration. We now compute an ap-
proximation to the parameterized reachable set using higher-order abstractions for
t ∈ [i, i+ h] ts (l. 8).

(iii) Since we compute the parameterized reachable set using higher-order abstractions,
the resulting set is generally no longer a zonotope, making the optimization prob-
lem in the next step possibly non-convex. Therefore, we compute an initial guess
for the controller parameters using, e.g., the GSC approach (l. 9).

(iv) Using the updated reference trajectory, the parameterized reachable set, and the
computed initial guess for the controller parameters, we solve the synthesis problem
to obtain the optimal controller parameters (l. 10).

(v) Lastly, the outer approximation of the closed-loop reachable set for t ∈ [i, (i+ 1)] ts
is computed for the newly synthesized optimal controller (l. 11).

Subsequently, we present the described steps of the algorithm in detail: In Sec. 5.3.1,
we show how a drift of the closed-loop reachable set away from the reference trajec-
tory for ms > 1 can be avoided and then introduce the proposed polynomial controller
template in Sec. 5.3.2. In Sec. 5.3.3, this template is then used to compute an approx-
imation to the closed-loop reachable set, parameterized in the controller parameters,
over which we then optimize in Sec. 5.3.4 to find the optimal controller parameters. The
closed-loop reachable set for the resulting controller is then computed in Sec. 5.3.5. We
derive the computational offline and online complexity of the approach in Sec. 5.3.6 and
prove in Sec. 5.3.7 that PGSC generalizes GSC under mild technical assumptions. We
conclude the section with with a comparison of the novel PGSC approach to the GSC
approach using numerical experiments in Sec. 5.3.8 and a brief discussion the algorithm
in Sec. 5.3.9.
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Algorithm 2 Polynomial generator-space control
1: function polyGenSpaceControl(X (0),U ,X , X̃ ,Xf , X̃f ,W,ms,mc, xf , tf , h, κ)
2: R̄ = X (0)

3: for i = 0; i < ms; i+ + do
4: h = min (h,ms − i)
5: R̄ = R̄ ↓o ▷ o ∈ N+ (reduction order)
6: X̄ = Ẑ

(
R̄
)
↓1

7: [xf , uref ] = referenceTrajectory(X̄ ,U ,X ,Xf ,ms − i,mc, xf , tf) ▷
Sec. 5.3.1

8: R̃(i) = paramReach(R̄, h, κ) ▷ Sec. 5.3.3
9: P̄ (i+(1:h)) = initGuess(X̄ ,U ,X , X̃ ,Xf , X̃f ,W,ms − i,mc, x

(·)
f , h, tf) ▷ e.g.

GSC (Sec. 5.2)
10: P̂ (i) = computeCtrl(P̄ (i+(1:h)), R̃(i),U , X̃ , X̃f , xf , uref , h, κ) ▷ Sec. 5.3.4
11: R ([i, i+ 1] ts) = reach(R̄, P̂ (i)) ▷ Sec. 5.3.5
12: R̄ = R ((i+ 1)ts)
13: end for
14: return P̂ =

[
P̂ (0)T

, . . . , P̂ (ms−1)T
]
, R ([0, tf ])

15: end function

5.3.1 Reference Trajectory

For the general computation procedure of the reference trajectory, we refer to Sec. 5.2.1.
In this section, we discuss the necessary adaptations for X (0) being a polynomial zono-
tope, and then argue why an iterative update of the reference trajectory can be beneficial.

Starting Point: Let again be t = 0 without loss of generality. In GSC, X (0) is given
as a zonotope and thus the reference trajectory starts at the center of the initial set.
While it need not be the case for nonlinear systems in general, in practice this often
means that the reference trajectory runs centrally through the reachable set and ends
centrally in the final, closed-loop reachable set at t = hts. As a result, it makes sense to
use the reference trajectory at t = ktc for 0 ≤ k ≤ hmc as linearization points for the
computation of the abstraction (also see Sec. 5.3.3), based on which the parameterized
reachable set is formed, to reduce abstraction errors.

In PGSC, X (0) is generally given as a polynomial zonotope. If now at least one
exponent vector in the exponent matrix of X (0) has all-even exponents, its starting
point no longer represents the center of the initial set due its even exponent vector, as
the following example demonstrates.
Example 5.2 (Center Shift of a Polynomial Zonotope). Given is the polynomial zono-
tope

PZ = ⟨cPZ , ·, ·, ·⟩P Z =
〈[

1
−1

]
,

[
0, 2
2, 1

]
,

[
0
0

]
,

[
1, 2
1, 4

]〉

P Z

,
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Figure 5.3: Comparison of the starting point of a polynomial zonotope to the center of its
corresponding zonotope outer approximation using Prop. 4.4 as an approximation
to the geometric center.

with its zonotope outer approximation according to Prop. 4.4 given by

Ẑ (PZ) = ⟨cZ , ·⟩Z =
〈[

2
−1

2

]
,

[
0, 1
2, 1

2

]〉

Z

.

As is clearly visible in Fig. 5.3, the geometric center is better approximated by the center
cZ of the zonotope outer approximation than by the starting point cPZ of the polynomial
zonotope.

■

Thus, to obtain a reference trajectory that is roughly centered in the convex hull of
the reachable set – which is beneficial to reduce the abstraction error during reachability
analysis (see Sec. 2.7) – we compute the parallelotope outer approximation

X̄ (0) = ⟨cX̄ (0) , GX̄ (0)⟩Z = Ẑ
(
X (0)

)
↓1 ,

and use its center cX̄ (0) as an approximation to the geometric center of X (0) for the
computation of the reference trajectory.

Update: Finding a reference trajectory from a given initial state to the target state
using optimal control as described in Sec. 5.2.1 works very well in practice: Not only is
the solution process efficient, but we also obtain an input trajectory that steers us very
close to the target state if such a trajectory exists under input and state constraints.
Thus, it often makes sense to use the reference input directly in the controller template
as described in Sec. 5.2.2: This not only ensures that the controller steers all initial
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states close to the target state, but also reduces the number of optimization variables in
the synthesis problem.

To that end, we assume that t = 0 and let the reference trajectory from the geometric
center c(0) of the initial set to the target state xf be given by u(0:msmc−1)

ref with intermediate
target states x(1+i)

f for 0 ≤ i ≤ ms − 1. Now denote with u
(
c(0), P (0,j)

)
the controller

template parameterized in P (0,j) (see Sec. 5.3.2 for details) and let the first mc controllers
be chosen such that u

(
c(0), P (0,j)

)
= u

(j)
ref for 0 ≤ j ≤ mc − 1. Thus, the exact state

trajectory brings c(0) to the first intermediate target state x(1)
f . However, reachability

analysis does not integrate the dynamics exactly, such that the geometric center c(1)

of the closed-loop reachable set at t = ts is generally not equal to x
(1)
f . If we now

synthesize the controllers for the next step again such that u
(
c(1), P (1,j)

)
= u

(mc+j)
ref ,

even the exact state trajectory from c(1) under u(mc+(0:mc−1))
ref does not reach x(2)

f exactly
since u(mc+(0:mc−1))

ref steers x(1)
f to x

(2)
f and c(1) ̸= x

(1)
f . To avoid this shift, we update

the reference trajectory in each iteration, starting from the geometric center (see Alg. 2,
l. 7).

5.3.2 Controller Template

Without loss of generality, we again start at t = 0, and define with slight abuse of
notation P = P (0,0) to avoid unnecessary indices.

Since X (0) =
{
x(0) (β)

}
β

is in general represented as a polynomial zonotope, finding
β for a given x (0) ∈ X (0) for the online application of the controller by solving

x (0) = x(0) (β) , ∥β∥∞ ≤ 1, (5.16)

is in general hard since β now is the solution of a polynomial equation under the con-
straint ∥β∥∞ ≤ 1. Thus, we compute a parallelotope outer approximation X̄ (0) =
⟨cX̄ (0) , GX̄ (0)⟩Z = Ẑ

(
X (0)

)
↓1 ⊇ X (0) with corresponding dependent factor β̃ ∈ [−1, 1]nx

to obtain the analytic dependence β̃ = G−1
X̄ (0) (x̄ (0)− cX̄ (0)) for x̄ (0) ∈ X̄ (0). Because

x̄ (0) ∈ X̄ (0) =⇒ x (0) ∈ X (0), we use

cX̄ (0) +GX̄ (0) β̃ = x(0) (β)

⇐⇒ β̃ = G−1
X̄ (0)

(
x(0) (β)− cX̄ (0)

)
, (5.17)

to obtain an analytic dependence between β̃ and β. Next, we derive the controller
template in β̃; by substituting β̃ from (5.17) into said template, we also obtain a template
in β.

While the linear controller template of the GSC approach in (5.3) is simple, it is
numerically ill-conditioned: If, e.g., U is near-degenerate, different row dimensions of P
may have values over multiple orders of magnitude. For example, the thrust force and
the ruder angle as inputs to an aircraft model may have wildly different magnitudes. As
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a result, a numerically well-conditioned linear controller template of the GSC approach
can be written as

ũlin
(
β̃, P

)
= cŪ +GŪP

[
1
β̃

]
, (5.18)

where we used a parallelotope outer approximation Ū = ⟨cŪ , GŪ ⟩Z ⊇ U . Instead of a
direct parameterization of the input in P , we use Ū = {ū (α)}α with ū (α) = cŪ +GŪα to
parameterize the dependent factor α in P , which achieves a parameterization with evenly

scaled P : We have U ⊆ Ū ⊆
{
ũlin

(
β̃, P

)}
β̃,P

since [−1, 1]nu ⊆
{
P

[
1
β̃

]}

β̃,P

. Thus, it

suffices to choose P ∈ [−1, 1]nu×(1+nx) to generate all admissible inputs. Note that Ū is
used for scaling purposes only; we still ensure the original input constraints using U . We
compute a parallelotope outer approximation of U since a zonotope outer approximation
of U would increase the dimension of α in ū (α) beyond nu. Thus, the row dimension of
P would also grow, which in turn increases the number of optimization variables. If U is
also available as a zonotope, Ū can be obtained using reduction techniques (see Sec. 2.8).
Otherwise, Ū can be obtained using, e.g., Prop. 4.3. A natural extension of (5.18) to
realize polynomial controllers then is

ũ
(
β̃, P

)
= cŪ +GŪ

(
a∑

k=1
P(:,k)β̃

E(:,k)

)
, (5.19)

where E ∈ Nnx×a is a matrix of exponents with the assumption of E(:,1) = 0 to model
constant offsets, a ∈ N+ is the number of monomials in E, and P ∈ [−1, 1]nu×a. Similarly
to the linear template in (5.18), the polynomial template in (5.19) also has uniform
scaling in P , i.e., P ∈ [−1, 1]nu×a since [−1, 1]nu ⊆

{∑a
k=1 P(:,k)β̃

E(:,k)
}

β̃,P
. As a more

convenient alternative to defining the exponent matrix directly, we further define the
controller order κ ∈ N+: For a given controller order, we use the exponent matrix
E (κ) ∈ Nnx×o(κ), which collects all o (κ) =

(κ+nx−1
nx−1

)
unique exponent vectors up to the

total order κ, i.e., ∀k ∈ {1, ..., o (κ)} : 1T
nx
E (κ)(:,k) ≤ κ, where E (κ)(:,1) = 0.

Substitution of (5.17) into (5.19) then yields the controller template in x (0) as

u (x (0) , P ) = ũ
(
G−1

X̄ (0) (x (0)− cX̄ (0)) , P
)
, (5.20)

and the controller template in β is

ū (β, P ) = u
(
x(0) (β) , P

)
. (5.21)

Reference Input for Center State: If we wish to use the reference input in the controller
directly, i.e., set the respective parameters such that u (cX̄ (0) , P ) = u

(0)
ref (see Sec. 5.3.1

for why cX̄ (0)), it follows that ũ (0, P ) = u
(0)
ref and thus

cŪ +GŪP(:,1) = u
(0)
ref

⇐⇒ P(:,1) = G−1
Ū

(
u

(0)
ref − cŪ

)
,

since E(:,1) = 0 by assumption.

85



5 Piecewise Constant Controller Synthesis

Remark: As stated initially, the derivations in this section assumed that we start from
the initial set X (0). If the controller is to be synthesized from t = its for 1 ≤ i ≤ ms− 1,
one can simply replace the initial set with the final, closed-loop reachable set at t =
its that is obtained from the closed-loop reachable set computation using the previous
controller (see Sec. 5.3.5).

5.3.3 Parameterized Reachable Set
In this section, we use a higher-order polynomial abstraction of our system to compute
a parameterized reachable set (see also Sec. 2.7.3). This is in contrast to the GSC
approach, where only a linear, time-discretized approximation is used to compute the
parameterized reachable set. Similarly to GSC, we compute the parameterized reachable
set based on the non-disturbed, nominal system dynamics.

In order to retain the dependency of X (0) and the controller template on their depen-
dent factor β, we extend the state by the input, which yields the generating function

x
(0)
ext (P, β) =

[
x(0) (β)

ū
(
β, P (0,0)

)
]
, (5.22)

of the extended initial set for xext =
[
xT , uT

]T
with the extended flow given by

fext (xext) =
[
f (x, u, 0)

0

]
.

Applying reachability analysis as described in Sec. 2.7.3 while interpreting both β and
P in (5.22) as dependent factors for t ∈ [0, tc] yields

R (t, P ) = D (t, P )⊕Zerr =
{

[rext (t, P, δ)](1:nx)

}
δ
, (5.23)

i.e., we generate R (t, P ) over δ, which collects all dependent and independent factors
except for P : While we treat P as a dependent factor during the computation of the pa-
rameterized reachable set to retain the dependency of the generating function rext (t, P, δ)
on P , we then generate rext (t, P, δ) only over δ to obtainR (t, P ) as an expression with P
as an argument. We choose the linearization point x̄(k)

ext =
[
x̄(k)T

, ū(k)T
]T

for the com-
putation of R̂ (t, P ) with 0 ≤ k ≤ mr − 1, mr ∈ N+ denoting the number of reachability
steps in t ∈ [0, tc], and reachability step length r = tc

mr
, where

x̄(k) = 1
2
(
ξ
(
kr, cX̄ (0) , u

(0)
ref , 0

)
+ ξ

(
(k + 1) r, cX̄ (0) , u

(0)
ref , 0

))
, (5.24)

ū(k) = u
(0)
ref . (5.25)

Hence we ensure that the linearization during reachability analysis also occurs along the
reference trajectory as in Sec. 5.2.3; specifically, we have ξ

(
tc, cX̄ (0) , u

(0)
ref , 0

)
= x

(1)
ref , where

X̄ (0) = Ẑ
(
X (0)

)
↓1 = ⟨cX̄ (0) , GX̄ (0)⟩Z . The reachable set approximation R̂ ([0, tc] , P ) is
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then directly available since reachability analysis returns time-point and time-interval
solutions.

However, by treating P as a dependent factor in the computation of rext (t, P, δ), we
essentially compute the reachable set for all closed-loop controllers parameterized by
P ∈ [−1, 1]nu×a. Since the result of reachability analysis generally worsens for large
initial sets (since the abstraction used in reachability analysis is only locally accurate
around the linearization points), increasing the size of the bounded input U causes an
increasingly large outer approximation in reachability analysis which is detrimental to
the approximation quality of R̂ (t, P ), as demonstrated in the following example with
ms = 1 for ease of presentation.
Example 5.3. Let us consider a controlled Van-der-Pol oscillator with the dynamics

f (x, u) =
[
x2,

(
1− x2

1
)
x2 − x1 + u

]T
, X (0) =

{[
0.5β1
0.3β2

]}

β

, tf = 0.5, ū
(
β, P (0,j)

)
=

GŪ
(
p

(j)
1 β1 + p

(j)
2 β2

)
for P (0,j) =

[
p

(j)
1 , p

(j)
2

]
with 0 ≤ j ≤ mc − 1 = 4, E = I2, and the

parallelotope outer approximation Ū = ⟨0, GŪ ⟩Z .
Let a tight outer approximation R∗ (tf) of the closed-loop reachable set for the con-

troller ū∗(j) (β) = 1
2 (β1 + β2) be given. We now compare this outer approximation to

the parameterized reachable sets

R(1)
(
t, P̆

)
= D(1)

(
t, P̆

)
⊕Z(1)

err ,

R(2)
(
t, �P

)
= D(2)

(
t, �P

)
⊕Z(2)

err ,

evaluated at two fixed controller parameters P̆ ∈ [−1, 1]mcnu×a and �P ∈ [−1, 1]mcnu×a,
with increasing input capacities Ū (1) =

〈
0, 1

5

〉
Z

and Ū (2) = ⟨0, 2⟩Z : The controller

templates are hereby given by ū(1)
(
β, P (0,j)

)
= 1

5

(
p

(j)
1 β1 + p

(j)
2 β2

)
and ū(2)

(
β, P (0,j)

)
=

2
(
p

(j)
1 β1 + p

(j)
2 β2

)
, from which P̆ = 1mcnu×a and �P = 0.1 · 1mcnu×a to replicate ū∗(j) (β)

follow. Fig. 5.4 visualizes these sets. Evidently, increasing the input capacity clearly
increases the bloating of R(2)

(
t, P̆

)
compared to R(1)

(
t, �P

)
. In contrast, D(1)

(
t, P̆

)

and D(2)
(
t, �P

)
are practically identical.

■

Thus, while using R (t, P ) directly as an approximation for the parameterized reach-
able set can become quite inaccurate for increasing control capacity, the set D (t, P )
remains even for larger input capacities a good approximation as the example demon-
strated. Therefore, we propose to use R̃ (t, P ) = D (t, P ) as an approximation to the
parameterized reachable set in order to avoid bloating effects for large input sets. The
approximated reachable set for t ∈ [1, 2] tc follows by choosing R̃ (tc, P ) as the initial
set for the next step with corresponding input

{
ū
(
β, P (0,1)

)}
β

and executing the above
steps again, where the remaining steps until t = hts follow analogously.
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Figure 5.4: Approximation of the tight outer approximation R∗ (tf) of the reachable set by
R(1)

(
t, P̆

)
= D(1)

(
t, P̆

)
⊕Z(1)

err for P̆ = 1mcnu×a and R(2)
(
t, �P

)
= D(2)

(
t, �P

)
⊕

Z(2)
err for �P = 0.1 · 1mcnu×a. Note that D(1)

(
t, P̆

)
is not visible as it is visually

identical to D(2)
(
t, �P

)
.

5.3.4 Controller Computation
We are now ready to pose the synthesis problem using the parameterized reachable set
computed previously. Similarly to Sec. 5.2, we also consider an extended optimization
horizon h. Without loss of generality, we further assume that we start from t = 0.

Let the parameterized reachable set R̃ (t, P ) = {r̃ (t, P, β)}β for t ∈ [0, hts] from
Sec. 5.3.3 be given. Since R̃ (t, P ) is represented as a polynomial zonotope, there
are dependencies between different generators. Since range bounding of polynomials
is NP-hard in general [33], we compute a zonotope outer approximation Z̃ (t, P ) =
Ẑ
(
R̃ (t, P )

)
=
〈
c̃ (t, P ) , G̃ (t, P )

〉
Z

of the approximated parameterized reachable set to
be able to efficiently bound the maximization in (5.1a). We note that this zonotope
outer approximation only operates on β, i.e., Z̃ (t, P ) still captures the nonlinearity of
its center and generators on P .

Objective Function: It is clear that the parameterized zonotope Z̃ (t, P ) is in structure
identical to the parameterized reachable set of the GSC approach – with the exception
that it is now nonlinearly parameterized in P – which yields an upper bound on the
objective function analogously to the derivation in (5.8).

Constraints: Using the approximated, parameterized reachable set instead of an outer
approximation, the constraints in (5.1b) to (5.1d) for the extended horizon t ∈ [0, hts]
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can be written as

∀i ∈ {0, ...,ms − 1} ∀j ∈ {0, ...,mc − 1} :
{
ū
(
β, P (i,j)

)}
⊆ U , (5.26)

R̃ ([0, hts] , P ) ⊆ X , (5.27)
R̃ (ts, P ) ⊆ Xf . (5.28)

To efficiently bound the range of the controller template in β, we use the support
function ρ

(Z)
u

(
·, P (i,j)

)
of the zonotope outer approximation Ẑ

({
u
(
P (i,j), β

)}
β

)
=

〈
cu

(
P (i,j)

)
, Gu

(
P (i,j)

)〉
Z

and replace the input constraint in (5.26) using Prop. 4.6 by

max
0≤i≤h−1

0≤j≤mc−1

ρ(Z)
u

(
CU , P (i,j)

)
≤ dU .

For the formulation of state constraints, time-point and time-interval solutions Z̃ (t, P )
for t ∈ [0, hts] are available since we use reachability analysis for the computation of
R̃ (t, P ). Let mr ∈ N+ be the number of steps for reachability analysis for the computa-
tion of R̃ (t, P ) with t ∈ its +[j, j + 1] tc for 0 ≤ i ≤ ms−1 and 0 ≤ j ≤ mc−1. Further,
denote with ρ̃

(Z)
x (·, t, P ) the corresponding support function of the zonotope outer ap-

proximation Ẑ
(
R̃ (t, P )

)
: By using a zonotope outer approximation of the reachable

set, we can conservatively approximate the polynomial zonotope-in-polytope constraints
in (5.27) and (5.28) using Prop. 4.6, which yields

max
0≤k≤mrhmc−1

ρ̃(Z)
x

(
CX̃ , [k, k + 1] r, P

) ≤ dX̃ ,

ρ̃(Z)
x

(
CX̃f

, hts, P
)
≤ dX̃f

,

where X̃ =
〈
CX̃ , dX̃

〉
H ⊆ Rnx with CX̃ ∈ RoX ×nx and dX̃ ∈ RoX , X̃f =

〈
CX̃f

, dX̃f

〉
H
⊆

Rnx with CX̃f
∈ RoXf ×nx and dX̃f

∈ RoXf denote the adapted state and final state con-
straints required due to the approximate nature of R̃ (t, P ), and r = tf

mrmsmc
. Similarly

to Sec. 5.2.4, these adapted constraints are necessary since we do not know how accurate
the approximated parameterized reachable set is.

Optimization Problem: Collecting the objective function and the constraints finally
yields the synthesis problem

P̂ (0:h−1) = arg min
P

J̃ (P ) , (5.29a)

s.t. g̃ (P ) ≤ 0, (5.29b)
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with

J̃ (P ) =
h∑

k=1
ϑk

(∥∥∥∥∥∥


c̃ (kts, P )− x(k)

f[
G̃ (kts, P )

]
(:)



∥∥∥∥∥∥

1

+ ζ
mc−1∑

j=0

∥∥∥∥∥∥




cu

(
P (k−1,j)

)
[
Gu

(
P (k−1,j)

)]
(:)



∥∥∥∥∥∥

1

)
, (5.30)

g̃ (P ) =




max0≤j≤mc−1
0≤i≤h−1

ρ
(Z)
u

(
CU , P (i,j)

)
− dU

max0≤k≤mrhmc−1 ρ̃
(Z)
x
(
CX̃ , [k, k + 1] r, P

)− dX̃
ρ̃

(Z)
x

(
CX̃f

, hts, P
)
− dX̃f


 , (5.31)

where ϑ ∈ Rh
≥0 weighs each term of the objective function and where absolute values and

maximization expressions can be reformulated (see Sec. 2.3.6) to yield a differentiable
optimization problem. Depending on the chosen abstraction order and controller order,
(5.29) is no longer expressible as an LP or even a convex optimization problem (see
Sec. 5.3.7 for details).

Strictly speaking, (5.29) cannot be written as the abstracted problem in (3.2) directly.
However, let s ∈ RoU +oX +oXf be a slack variable s ≥ 0 to relax (5.29) to

P̂ (0:h−1) = arg min
P

J̃ (P ) + σ ∥s∥1 , (5.32a)

s.t. g̃ (P ) ≤ s, (5.32b)

where σ ∈ R+ is a large enough factor such that minimizing the constraint violation,
i.e., avoiding s > 0, is always prioritized over minimizing J̃ (P ) (also see [50]). Assuming
(5.29) has a feasible global optimizer P̂ , i.e., g̃

(
P̂
)
≤ 0, the feasible point (P̂, 0) of (5.32)

is the global optimum of (5.32) since J̃
(
P̂
)
< J̃

(
P̂
)

+ σ ∥s∥ for any s > 0 due to σ

being chosen large enough, and since (5.29) and (5.32) are identical for s = 0.

5.3.5 Closed-Loop Reachable Set

Since we use nonlinear abstractions, which involve quadratic (or even higher-order) maps,
for reachability analysis, it makes sense to use polynomial zonotopes for reachability
analysis since they are closed under these maps. To compute the closed-loop reachable
set, the procedure in Sec. 5.2.5.2 can be used.

5.3.6 Computational Complexity

We again differentiate between the complexity of the offline controller synthesis and
the application of said controller online. We only discuss the complexity of the first
iteration starting at t = 0 since the total number of iterations ms is fixed. For simplicity,
let κ ≥ 1 for the order of the controller template introduced in Sec. 5.3.2 and assume
that the number of monomials a of the controller template grows at least with O (n),
i.e., O (n+ a) = O (a). Additionally, we again make use of Ass. 5.1.
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5.3.6.1 Offline Complexity

Subsequently, we derive an upper bound on the computational complexity of the pro-
posed PGSC approach in n. Due to the similarities between GSC and PGSC (also see
Sec. 5.3.7), we only present the complexity analysis for parts of the algorithm that are
different from GSC.

Controller Template: Without loss of generality, we inspect the complexity for the
controller template parameterized in P (0,0) and set –with slight abuse of notation –
P = P (0,0) to avoid unnecessary indices. The computation of

ū (β, P ) = ũ
(
β̃ (β) , P

)
= cŪ +GŪ

(
a∑

k=1
P(:,k)β̃ (β)E(:,k)

)
,

from Sec. 5.3.2 requires the polynomial substitution of β̃ (β) = G−1
X̄ (0)

(
x(0) (β)− cX̄ (0)

)
.

With the controller template
{
ũ
(
β̃, P

)}
β̃

given by the user with controller order κ, we

compute its composition with
{
β̃ (β)

}
β

using Prop. A.2.

The computation of
{
β̃ (β)

}
β

has complexity O
(
nω

x + n2
ul
)

= O
(
n3) due the computa-

tion of the inverse G−1
X̄ (0) and the matrix multiplication [61, Prop. 8], where ω ∈ R+ is the

current complexity exponent for matrix multiplication. The complexity of the compo-
sition {ū (β, P )}β from

{
ũ
(
β̃, P

)}
β̃

and
{
β̃ (β)

}
β

is then O ((κ (nx + an) + anu) lκ) =
O
(
an1+κ

)
according to Prop. A.2.

Reachable Sets: We compute reachable sets using the conservative polynomialization
approach from [5] as described in Sec. 2.7.3. Thus, the computation of the parameterized
reachable set is O

(
n5 + n2a2 + n3a logn

)
according to Prop. A.1 and the complexity of

the closed-loop reachable set computation can be bounded from above by O
(
n5) [59,

Sec. 4.1.4].

Controller Computation: The number of objective and constraint evaluations can be
polynomially bounded in 1

ϵ for second-order optimization methods [18], where ϵ > 0
is the specified accuracy of a first-order critical point of (5.29); thus, the number of
iterations required is independent of n for a given ϵ. As a result, it is sufficient to
derive the complexity of one objective and constraint function evaluation. Since we
check a fixed number of different constraint types, i.e., state, input, and final state
constraints, and the number of constraints for each grows at most with O (n) by as-
sumption, we limit the analysis here to final state constraints. Thus, let CX̃f

R̃ (tf , P ) ={
c+∑l

k=1M(:,k)
∏anu

o=1 p
E(o,k)
o

∏m
o=1 β

B(o,k)
o

}
β

be the final constraint set obtained from the

parameterized reachability analysis, where c ∈ RoXf is the starting point, M ∈ RoXf ×l is

the generator matrix,
[
E
B

]
∈ N(anu+m)×l

≥0 is the exponent matrix, p = P(:), β ∈ [−1, 1]m,
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and we have O (oXf ) = O (l) = O (m) = O (n) due to Ass. 5.1. First, we compute the
collected polynomial zonotope ⟨·, N (P ) , 0, B⟩P Z with

N(:,j) (P ) =
∑

k∈K(j)

M(:,k)

anu∏

o=1
p

E(o,k)
o ,

K(j) =
{
k ∈ {1, . . . , l}

∣∣∣ ∀o ∈ {1, ..., anu} : B(o,j) = B(o,k)
}
,

for 1 ≤ j ≤ l̃, where l̃ is the number of unique columns in B with l̃ < l and K(j) contains
all generator/exponent vector column indices that have the same exponents in β, and
where it further holds that∑l̃

j=1

∣∣∣K(j)
∣∣∣ = l by construction. The complexity of computing

this collected polynomial zonotope is identical to the complexity of computing all K(j),
which is at most O

(
anu l̃ log l̃

)
= O

(
an2 logn

)
[59, Prop 2.5.2]. We then compute

its zonotope outer approximation Ẑ (⟨·, N (P ) , 0, B⟩P Z) = ⟨·, G (P )⟩Z with complexity
O
(
n2) [59, Prop. 3.1.4], where G (P ) ∈ RoXf ×l̃ denotes its generator matrix and where

we ignore the center as it can be included as a generator with an all-zero exponent
vector. From Sec. 2.3.6.1, it is clear that the complexity of computing and evaluating
the objective and constraint functions of the smooth reformulation of (5.29) for final state
constraints only will be dominated by evaluating and computing the O

(
oXf l̃

)
= O

(
n2

x

)

auxiliary constraints since G (P ) ∈ RoXf ×l̃. Further, the complexity of computing and
then evaluating these auxiliary constraints will be dominated by the computation and
evaluation of all Hessian matrices of Gij (P ).

To evaluate ∇2
P(:)

Gij (P ), we form G(:,j) =
{
G(:,j) (P )

}
P

=
〈
·, Ḡ(j), 0, Ē

〉
P Z

for 1 ≤
j ≤ l̃, i.e., a polynomial zonotope that represents G(:,j) (P ) with Ḡ(j) ∈ RoXf ×|K(j)| and
Ē(j) ∈ Nanu×|K(j)|: Any polynomial zonotope G(:,j) (P ) has at most

∣∣∣K(j)
∣∣∣ generators

and any of its
∣∣∣K(j)

∣∣∣ exponent vectors is one of the at most l unique exponent vectors in
E ∈ Nanu×l

≥0 . Thus, we first compute the Hessian matrices of all l possible monomials;
the Hessian matrix of any particular ∇2

P(:)
Gij (P ) then follows as a product of the

∣∣∣K(j)
∣∣∣

corresponding monomial Hessian matrices with the generator values in Ḡ
(j)
(i,:).

To evaluate the Hessian matrix of a monomial m(j) (P ) = ∏anu
k=1 p

E(k,j)
k for a fixed

p = P(:), we first evaluate all l monomials m(j) (P ), which has complexity O (lnua) =
O
(
an2) since its evaluation requires nua exponentiations and nua − 1 multiplications.

Given m(j) (P ), any second-order derivative can be found as

∂2m(j) (P )
∂pk∂po

=





E(k,j)E(o,j)
pkpo

m(j) (P ) , E(k,j) ≥ 1 ∧ E(o,j) ≥ 1 ∧ pkpo ̸= 0,
0, otherwise

.

Since computing any second-order derivative from a given m(j) (P ) has complexity O (1)
by inspection of the above equation, computing all Hessian matrices of m(j) (P ) for a

92



5.3 Polynomial Generator-Space Control

given P has complexity O
(
l (nua)2

)
Ass. 5.1= O

(
a2n3) since each matrix has O

(
(nua)2

)

elements.
Computing ∇2

P(:)
Gij (P ) for a given i and j now requires

∣∣∣K(j)
∣∣∣ scalar multiplica-

tions of the generator values in Ḡ
(j)
(i,:) with the pre-computed Hessian matrices of the

monomials and a subsequent summation of these
∣∣Kj

∣∣ matrices, which both have com-
plexity O

(∣∣∣K(j)
∣∣∣ (nua)2

)
. Repeating this for all oXf rows and all l̃ columns of G (P ),

the overall complexity is bounded from above by O
(
oXf l (nua)2

)
Ass. 5.1= O

(
a2n4) since

∑l̃
j=1

∣∣∣K(j)
∣∣∣ = l.

Overall Complexity: The overall offline complexity of PGSC is thus at most

O
(
c

(off)
PGSC (n)

)
= O

(
cref (n) + an1+κ + n5 + a2n2 + an3 logn+ a2n4

)

= O
(
cref (n) + an1+κ + a2n4

)
. (5.33)

5.3.6.2 Online Complexity

For the evaluation of the controller in (5.20), we first compute β̃ using one matrix
vector multiplication with complexity O

(
n2

x

)
and then evaluate the control law in (5.19)

over β̃, which has complexity O (anx) [62, Sec. 3.3], followed by one last matrix-vector
multiplication with complexity O

(
n2

u

)
.

The online complexity of deploying PGSC is thus

O
(
c

(on)
PGSC (n)

)
= O (an) . (5.34)

5.3.7 Generalization of Generator-Space Control

In this section, we show that the PGSC approach generalizes the GSC approach under
mild technical assumptions.

Proposition 5.1 (PGSC as Generalization of GSC). Let κ = 1 (linear controller),
π = 1 (linear abstraction), r = 1 (number of reachability steps), omit any reduction
operations, let X (0) be given as a non-degenerate parallelotope, and consider only input
and final state constraints. Then the PGSC and GSC approach are identical.

Proof. Comparing (5.3) and (5.21), it is obvious that both controllers are identical for
κ = 1 since X (0) = X̄ (0) by assumption, and therefore β̃ = β and ũlin

(
β̃, P (i,j)

)
=

ũ
(
β̃, P (i,j)

)
= ū

(
β, P (i,j)

)
(see (5.18), (5.19), (5.21)) for all 0 ≤ i ≤ ms − 1 and

0 ≤ j ≤ mc − 1 if their parameterized reachable sets are identical. Because (5.12) and
(5.29) are structurally identical, it suffices to show that both parameterized reachable
sets are equal.
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Let R̃ (t, P ) = {r̃ (t, P, β)}β denote the parameterized reachable set where R̃ (0, P ) =
X (0). The extended generating function at step t = its following Sec. 5.3.3 is

x
(i)
ext (P, β) =

[
r̃ (its, P, β)
ū
(
β, P (i,0)

)
]
,

and the linear abstraction of the extended flow ẋext = fext (xext) with xext =
[
xT , uT

]T

while ignoring abstraction errors – projected onto the first nx dimensions – yields

r̃ (its + tc, P, β) =
(
eA

(0)
exttcx

(i)
ext (P, β) +

∫ tc

0
eA

(0)
extτ dτ

[
c(0)

0

])

(1:nx)
, (5.35)

where
A

(0)
ext = dfext (xext)

dxext

∣∣∣∣
xext=x̄

(0)
ext

=
[
A(0), B(0)

0, 0

]
,

with x̄
(0)
ext =

[
x̄(0)T

, ū(0)T
]T

, where x̄(0) and ū(0) are given as in (5.24) and (5.25), and
A(0), B(0), and c(0) are defined as in Sec. 5.2.3. Further

eA
(0)
extt =

∞∑

k=0

(
A

(0)
extt

)k

k! = Inx+nu +
∞∑

k=1



(
A(0)t

)k
, A(0)k−1

tkB(0)

0, 0




k!

=



∑∞

k=0
(A(0)t)k

k! ,
∑∞

k=1
A(0)k

rkB(0)

k!
0, Inu


 =

[
eA(0)t,

∫ t
0 e

A(0)τ dτ
0, Inu

]
,

which, substituted into (5.35), yields

r̃ (its + tc, P, β) = c
(0)
d +A

(0)
d r̃ (its, P, β) +B

(0)
d ū

(
β, P (i,0)

)
, (5.36)

where A(0)
d , B(0)

d , and c
(0)
d are defined as in Sec. 5.2.3. Thus, (5.36) is identical to the

parameterized reachable set computation in (5.6), and applying the remaining steps
iteratively concludes the proof.

Prop. 5.1 excludes state constraints since GSC only approximately enforces state con-
straint satisfaction at discrete points in time while PGSC approximately enforces state
constraint satisfaction over time intervals.

5.3.8 Experiments
In this section, we compare the PGSC approach to the GSC approach introduced in
Sec. 5.2 from [99]. Since manually guessing the adapted state and final state constraints
is in general non-trivial, we choose to omit both state and final state constraints here, but
show the final state constraints Xf = {−cX (0) + xf} ⊕ X (0) with X (0) = ⟨cX (0) , GX (0)⟩Z
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for reference (helpful when result is used in a maneuver automaton; see Sec. 3.1); we
will enforce state constraints on the benchmarks shown here in the next section. Lastly,
we do not penalize input energy used here, i.e., we set ζ = 0, for all benchmarks in this
section.

To measure the control performance of each approach, we introduce

csize (R (tf)) =
∥∥∥∥∥

[
c− xf
G(:)

]∥∥∥∥∥
1
, (5.37)

for a given outer approximation R (tf) of the closed-loop reachable set with the zonotope
outer approximation Z = Ẑ (R (tf)) = ⟨c,G⟩Z : We measure how much Z differs from
the target state xf ∈ Rnx by measuring both the deviation of its center from xf and the
size of Z by measuring the absolute sum of its generators.

5.3.8.1 Bicycle (Single Track)

While kinematic models are simpler, they do not consider tire slip and thus cannot model
effects such as oversteering and understeering. We introduce a variant of the single-track
model2 – illustrated in Fig. 5.5 – given by

ẋ1 = µ

x4l

((
cr (u2) lr − cf (u2) lf

x4
− 1

)
x3 + (cr (u2) + cf (u2))x1 + cf (u2)u1

)
,

(5.38a)
ẋ2 = x3, (5.38b)

ẋ3 = − µm

Iz (lr + lf )

(
l2fcf (u2) + l2rcr (u2)

x4
x3 + (lrcr (u2)− lfcf (u2))x1 + lfcf (u2)u1

)
,

(5.38c)
ẋ4 = u2, (5.38d)
ẋ5 = x4 cos (x1 + x2) , (5.38e)
ẋ6 = x4 sin (x1 + x2) , (5.38f)

with

cf (u2) = CS,f (glr − u2hcg) ,
cr (u2) = CS,r (glf + u2hcg) ,

l = lr + lf ,

and where x =
[
β, Ψ, Ψ̇, v, sx, sy

]T
is the state, β is the slip angle at the vehicle

center, Ψ and Ψ̇ are the yaw angle and yaw rate, v is the longitudinal velocity of the
vehicle,

[
sx, sy

]T
are the two spatial coordinates, u1 is the steering angle of the front

2Sec. 7 ( https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/-/blob/master/
vehicleModels_commonRoad.pdf)
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u1
l

sy

sx

v β

Ψ

[sx sy]T

Figure 5.5: States and inputs of the single-track model4. Shown are the slip angle β, the yaw
angle Ψ, longitudinal velocity v, spatial coordinates

[
sx sy

]T , the steering angle
u1, and the wheelbase l.

wheels, and u2 is the longitudinal acceleration of the vehicle. The benchmark parameters
are listed in Tab. 5.1 and have been chosen appropriately3.

We compute a feedforward controller for the undisturbed system, i.e., we set ms = 1
and W = {0}. Fig. 5.6 shows a comparison between the performance of the GSC
approach and the PGSC approach, where computations times were 27.5 s and 36.9 s,
respectively, and csize (RGSC (tf)) = 0.92 and csize (RPGSC (tf)) = 0.65. Clearly, the
PGSC approach outperforms the GSC approach significantly as it reduces the overall
cost significantly compared to GSC: While both approaches keep the yaw rate and
velocity small (see Fig. 5.6,

[
x3, x4

]
) and fail to keep the slip angle small (see Fig. 5.6,

x1), the PGSC approach steers the set of initial positions more closely to the target state
in the two spatial dimensions (

[
x5, x6

]
).

5.3.8.2 Controlled Van-der-Pol Oscillator

We present a controlled version of the Van-der-Pol oscillator benchmark [9, Sec. VII]

ẋ1 = x2, (5.39a)

ẋ2 =
(
1− x2

1
)
x2 − x1 + u+ w. (5.39b)

We compute a piecewise constant, discrete-time feedback controller with ms = 2 and
mc = 4, where all parameters for the benchmark are listed in Tab. 5.2.

Fig. 5.7 shows the reachable set using the GSC approach and the PGSC approach,
where the computation took 15.50 s and 20.44 s, respectively. Clearly, PGSC achieves
a better control result as the final reachable set is contained within the final reachable

3Tab. 4, vehicle identifier 1 ( https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/-/
blob/master/vehicleModels_commonRoad.pdf)

4Fig. 4, vehicle identifier 1 ( https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/-/blob/
master/vehicleModels_commonRoad.pdf)
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Table 5.1: Benchmark parameters for the bicycle model.
Parameter Value
ms 1
mc 6
X (0)

〈
cX (0) , diag

([
0.2, 0.02, 0.2, 0.2, 0.2, 0.2

])〉
Z

cX (0)

[
0, 0, 0, 20, 0, 0

]T

U
〈
0,diag

([
0.4, 9.81

])〉
Z

W {0}
tf 1 s
xf

[
0, 0, 0, 20, 20, 0

]T

κ 1

−0.2 −0.1 0 0.1 0.2−0.2

−0.1

0

0.1

0.2
x1-x2 plane

−1 −0.5 0 0.5 1

19

20

21

x3-x4 plane

0 5 10 15 20

−0.5

0

0.5

x5-x6 plane

X (0) sim. (GSC) RGSC (tf)
RGSC ([0, tf ]) sim. (PGSC) RPGSC (tf)
RPGSC ([0, tf ]) Xf xf

Figure 5.6: Comparison of the GSC approach and the PGSC approach for the single-track
(bicycle) model. For a fair comparison, both approaches use a linear controller
template.
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Table 5.2: Benchmark parameters for the Van-der-Pol model.
Parameter Value
ms 2
mc 4
X (0)

〈[
1.4, 2.4

]T
,diag

([
0.6, 0.6

])〉

Z
U ⟨0, 2⟩Z
tf 1 s
xf

[
1.93, −0.47

]T

κ 1

set computed by GSC. The combined deviations from the target state and size of fi-
nal reachable set are csize

(
Ẑ (RGSC (tf))

)
= 1.22 and csize (RPGSC,1 (tf)) = 1.09 (see

(5.37)).
Further, Fig. 5.8 shows the improved performance when using a quadratic controller

(κ = 2) over the same linear controller (κ = 1) for this benchmark using PGSC, where the
computation of the quadratic controller took 18.52 s. Here, we have csize (RPGSC,2 (tf)) =
0.79.

5.3.9 Discussion
The numerical experiments in Sec. 5.3.8 demonstrate improved performance of PGSC
over GSC, both by using a more accurate parameterized reachable set and thus achieving
a better control performance for the same linear controller template as well as by using,
e.g., a quadratic controller over a linear one.

While both approaches work reasonably well for input constraints, the fact that they
both only approximate the parameterized reachable set during the optimization of the
controller – without any regard for the accuracy of this approximation – means that state
and final state constraints can seldom be enforced as is; rather, they require the user to
specify adapted state and final state constraints. Since this can become quite involved
for non-experts, it is a major downside of both approaches. In the next section, we thus
propose a novel synthesis algorithm that does not require the manual specification of
these adapted state constraints.

98



5.3 Polynomial Generator-Space Control

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−1

0

1

2

3

x1-x2 plane

X (0) sim. (GSC) RGSC (tf)
RGSC ([0, tf ]) sim. (PGSC,1) RPGSC,1 (tf)
RPGSC,1 ([0, tf ]) Xf xf

Figure 5.7: Comparison of the GSC approach and the PGSC approach for the Van-der-Pol
benchmark. For a fair comparison, both approaches use a linear controller template.
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RPGSC,2 ([0, tf ]) Xf xf

Figure 5.8: Comparison of a linear and quadratic controller template using the PGSC approach
for the Van-der-Pol benchmark.
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5.4 Iterative Polynomial Generator-Space Control
While the GSC approach used only linear abstractions for the computation of the pa-
rameterized reachable set and was limited to linear control laws, the PGSC approach
extended this concept to polynomial abstraction orders for reachability analysis and
polynomial control laws. While the reachable set can in principle be arbitrarily closely
approximated using the conservative polynomialization approach by choosing the ab-
straction order large enough, in practice, we are often limited to at most quadratic ab-
stractions due to extended computation times or the fact that higher-order abstractions
generate even more generators during reachability analysis, which in turn increases the
number of generators needing to be reduced; this effect can mostly or even completely
negate the benefit of a higher abstraction order to begin with.

However, we still find it necessary to better approximate the parameterized reachable
set for strongly nonlinear system dynamics. Therefore, we introduce the iterative poly-
nomial generator-space control (iPGSC) approach, an iterative trust-region approach for
the synthesis of formally verified controllers under input and state constraints according
to (5.1), which is part of our work in [35]. Since (5.1) is generally not efficiently solvable,
we approximate it using a non-differentiable cost function in the controller parameters.
By locally approximating this non-differentiable cost function with a differentiable op-
timization problem, we can iteratively update our controller parameters based on this
local approximation, where we control its accuracy by restricting the admissible con-
troller parameters for the optimization problem to a bounded trust-region. In contrast
to GSC and PGSC, iPGSC does not require manual tuning of the state constraints.
Alg. 3 describes the general solution procedure, where the most important steps are
briefly summarized subsequently:

(i) We compute the reference trajectory at the start of each iteration, which yields
the intermediate target states necessary for the optimization of the controller pa-
rameters (Alg. 3, l. 7).

(ii) We compute an initial guess for the controller parameters using GSC (Alg. 3, l. 8).

(iii) We compute the closed-loop reachable set of the controller, parameterized by the
initial guess P̄ (Alg. 4, l. 3) and evaluate its initial cost J

(
P̄
)

(Alg. 4, l. 4). The
algorithm then iteratively executes the following steps:
(a) Since the proposed cost is non-differentiable and its evaluation requires the

computation of the closed-loop reachable set, we first compute the param-
eterized reachable set locally for a region of controller parameters Pγ

(
P̄
)

around the current controller parameters P̄ , whose radius is bounded by the
trust-region radius γ ∈ (0, 1] (Alg. 4, l. 6). To form this approximation, we
use the available outer approximation of the closed-loop reachable set of the
current controller parameterized by P̄ .

(b) Using this local parameterized reachable set, we approximate the cost func-
tion with a differentiable optimization problem, where the accuracy of this
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trust-region subproblem is controlled by the trust-region radius γ (Alg. 4,
l. 7). Solving the trust-region subproblem, we obtain the optimal controller
parameters P̂ . Because we use the local parameterized reachable set for the
trust-region subproblem, we avoid the recomputation of the closed-loop reach-
able set in each optimization iteration.

(c) We then evaluate the cost of the new controller parameterized in P̂ using an
outer approximation of its closed-loop reachable set (Alg. 4, l. 8–9).

(d) By comparing the actual decrease in cost against the decrease in cost pre-
dicted by the trust-region subproblem, we adapt the trust-region radius to
ensure an accurate approximation of the parameterized reachable set in the
next iteration (Alg. 4, l. 10): If the ratio is close enough to one, the approxi-
mated trust-region subproblem is accurate and we enlarge γ to allow for faster
progress. Otherwise, we shrink the trust-region radius to ensure an accurate
approximation in the next iteration.

(e) We then compare the cost of the current controller to the cost of the newly
computed controller: If the cost decreased, we accept the step and save these
new controller parameters (Alg. 4, l. 11–19). If the algorithm converged
(Alg. 4, l. 11), we return the current controller parameters.

(iv) Once the trust-region algorithm converges, we have the optimal controller param-
eters as well as the corresponding closed-loop reachable set available. If we have
not yet reached the final iteration, we again start at (i). Otherwise, the algorithm
terminates.

Algorithm 3 Iterative polynomial generator-space control
1: function iterPolyGenSpaceControl(X (0),U ,X ,Xf ,W,ms,mc, xf , h, κ)
2: R̄ = X (0)

3: for i = 0; i < ms; i+ + do
4: h = min (h,ms − i)
5: R̄ = R̄ ↓o ▷ o ∈ N+ some sensible order
6: X̄ = Ẑ

(
R̄
)
↓1

7: x
(·)
f = referenceTrajectory(X̄ ,U ,X ,Xf ,ms − i,mc, xf , tf) ▷ Sec. 5.3.1

8: P̄ (·) = initGuess(R̄,U ,X ,Xf ,W,ms − i,mc, x
(·)
f , h, tf , κ) ▷ e.g. Sec. 5.2

9:
[
P̂ (i),R ([i, i+ 1] ts)

]
= computeCtrl(P̄ (·), R̄,U ,X ,Xf , xf , uref , κ) ▷ Alg. 4

10: R̄ = R ((i+ 1) ts)
11: end for
12: return P̂ =

[
P̂ (0)T

, . . . , P̂ (ms−1)T
]
, R ([0, tf ])

13: end function

The following example illustrates the solution procedure, which is visualized in Fig. 5.9,
where we set h = ms = mc = 1 and only consider input constraints for illustrative
purposes.
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Algorithm 4 Trust-region controller computation

1: function computeCtrl(P̄ (·), X̄ , h, x(·)
f )

2: Given: µ, σ, γ = 1
3: R̄ = reach(X̄ , P̄ (·), hts) ▷ Sec. 5.2.5.2
4: J̄ = cost(R̄) ▷ Sec. 5.4.1
5: for k = 1; k ≤ lmax; k + + do
6:

[
R̃, γ

]
= paramReach(P̄ (·), γ, R̄) ▷ Sec. 5.4.2

7: P̂ (·) = solveTRSubProblem(R̃, P̄ (·), γ, R̄, x(·)
f ) ▷ Sec. 5.4.3

8: R̂ = reach(X̄ , P̂ (·), hts) ▷ Sec. 5.3.5
9: Ĵ = cost(R̂) ▷ Sec. 5.4.1

10: γ = adaptRadius(Ĵ, R̃, P̂ ) ▷ Sec. 5.4.4
11: if Ĵ < J̄ then
12: ν = tol

(
Ĵ, J̄

)
▷ Def. 2.1

13: J̄ = Ĵ
14: R̄ = R̂
15: P̄ (·) = P̂ (·)

16: if ν ≤ µ then
17: break
18: end if
19: end if
20: end for
21: return

[
P̄ (0), R̄

]

22: end function
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Example 5.4 (Solve progress for a 1D system [35, Ex. 1, adapted]). Let the final, exact
parameterized reachable set at t = tf for a 1-dimensional system be given by

R (tf , P ) =
{
−1 + 2p2

1 + 4p3
0 +

(
3 + 10p0p

3
1
)
β + (2− 2p1)β2

}
β
,

where β ∈ [−1, 1] is the dependent factor of the corresponding initial set, ū (β, P ) =
p0 + p1β with P = P (0) = P (0,0) =

[
p0, p1

]
is the controller template as given in

Sec. 5.3.2, xf = 0, and U = [−1, 1] =
〈[

1, −1
]T
,
[
1, 1

]T〉

H
= ⟨CU , dU ⟩H . Using

Prop. 4.4, the zonotope outer approximation of the reachable set required to form (5.42)
is given by

Ẑ (R (tf , P )) =
{
−1 + 2p2

1 + 4p3
0 +

(
3 + 10p0p

3
1
)
ν1 + (2− 2p1)

(1
2 + 1

2ν2

)}

ν

=
{
−p1 + 2p2

1 + 4p3
0 +

(
3 + 10p0p

3
1
)
ν1 + (1− p1) ν2

}
ν

=
〈
−p1 + 2p2

1 + 4p3
0,
[
3 + 10p0p3

1, 1− p1
]〉

Z

= ⟨c (tf , P ) , G (tf , P )⟩Z .

Since we only consider input constraints and because the controller template ū (P, β) is
linear in β, we have Ẑ

(
{ū (β, P )}β

)
= ⟨p0, p1⟩Z and thus

ρ(Z)
u (CU , [0, tf ] , P )− dU = ρ(Z)

u

([
1
−1

]
, [0, tf ] , P

)
−
[
1
1

]
=
[
p0 + |p|1 − 1
−p0 + |p|1 − 1

]
,

so that g (P ) in (5.41) reduces to

g (P ) = |p|0 + |p|1 − 1.

Thus, the cost function is given by

J (P ) =
∣∣∣−p1 + 2p2

1 + 4p3
0

∣∣∣+
∣∣∣3 + 10p0p

3
1

∣∣∣+ |1− p1|+ 100 max (0, |p0|+ |p1| − 1) ,

for σ = 100. Fig. 5.9 visualizes the contour lines of J (P ) and its approximation J̃ (P )
over the iterations.

Here, we assume that an approximation of the exact reachable set is available as its
quadratic Taylor expansion with the initial trust-region radius γ = 1

4 ; in practice, the
exact reachable set is not available and we thus instead compute an approximation to it
(see Sec. 5.4.2). For the initial controller parameter guess P̄ = 0, the generating function
of the parameterized, time-point reachable set for P ∈ P 1

4
(0) =

[
−1

2 ,
1
2

]1×2
(see (5.45))
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then is

R̃ (tf , P ) =
{ (
−1 + 2p̄2

1 + 4p̄3
0 +

(
3 + 10p̄0p̄

3
1
)
β + (2− 2p̄1)β2

)∣∣∣
P̄ =0

+
([

12p̄2
0 + 10p̄3

1β, 4p̄1 + 30p̄0p̄2
1β − 2β2

] (
P − P̄

))∣∣∣
P̄ =0

+ 1
2

((
P − P̄

)T
[

24p̄0, 30p̄2
1β

30p̄2
1β, 4 + 60p̄0p̄1β

] (
P − P̄

))∣∣∣∣∣
P̄ =0

}

β

=
{
−1 + 3β + 2β2 − 2p1β

2 + 2p2
1
}

β
,

and thus
Ẑ
(
R̃ (tf , P )

)
=
〈
−p1 + 2p2

1,
[
3, 1− p1

]〉
Z
.

The approximated cost function for P ∈
[
−1

2 ,
1
2

]1×2
for the first step thus is

J̃ (P ) =
∣∣∣−p1 + 2p2

1

∣∣∣+ |1− p1|+ 3 + 100 max (0, |p0|+ |p1| − 1) .

For the first iteration, J̃ (P ) clearly does not approximate the exact cost function J (P )
particularly well, even though J

(
P̂
)
< J

(
P̄
)
, where P̄ and P̂ are the initial and

optimized controller parameters, respectively (see Fig. 5.9a). Thus, we accept the step
but shrink the trust-region radius γ to ensure more accurate approximations in the
next steps (see Figs. 5.9b and 5.9c) in order to eventually arrive at the minimum (see
Fig. 5.9d). ■

The remainder of this section is structured as follows: We first describe how we ap-
proximate (5.1) using a cost function in Sec. 5.4.1 and then derive the computation of
the parameterized reachable set in Sec. 5.4.2. To avoid repeated reachable set computa-
tions for the cost of the controller and its non-differentiability, we derive the trust-region
subproblem – a differentiable optimization problem – as an approximation to this cost
in Sec. 5.4.3, whose solution then yields a new controller candidate. To ensure that
the trust-region subproblem accurately approximates the cost of the newly computed
controller candidate, we describe the tuning of the trust-region radius in Sec. 5.4.4 such
that the trust-region subproblem approximates the controller cost arbitrarily closely. We
discuss the offline and online complexity of the iPGSC approach in Sec. 5.4.5, demon-
strate its applicability using numerical experiments in Sec. 5.4.6, and finally discuss the
algorithm in Sec. 5.4.7.

5.4.1 Cost of the Controller

Since we generally cannot solve (5.1) efficiently, we instead propose a cost function as a
tractable approximation of (5.1). Inspection of (5.1) yields the following observations:
We want to minimize the size of the reachable set, centered at the target state, but
also minimize the control effort. Further, input, state, and final state constraints must
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low high

p0

p1

(a) (b)

(c) (d)

Figure 5.9: Visualization of the iterative controller computation for Ex. 5.4 from [35]. Shown
is the set of feasible parameters P (outer black diamond), the contour lines of the
exact cost J (P ) (solid) and the current approximation of the cost J̃ (P ) (dashed)
based on the approximated, parameterized reachable set for P ∈ Pγ

(
P̄
)

(dashed
black box), the current initial guess of the controller parameters P̄ (red circle), and
the optimizer P̂ ∈ Pγ

(
P̄
)

for the current approximated optimization problem (red
x).
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not be violated. In this section, we thus first transform the objective function and the
constraints of (5.1) separately to tractable expressions and then use both to define the
cost as an approximation to (5.1). To that end, we first require the following definitions.

Let

Ẑ (R (t, P )) = ⟨c (t, P ) , G (t, P )⟩Z ,

Ẑ
({
ū
(
β, P (i,j)

)}
β

)
=
〈
cu

(
P (i,j)

)
, Gu

(
P (i,j)

)〉
Z
,

where R (t, P ) is an outer approximation of the closed-loop reachable set for the con-
troller ū

(
β, P (i,j)

)
with 0 ≤ i ≤ ms − 1 and 0 ≤ j ≤ mc − 1. We define the number

of reachability steps mr ∈ N+ for the computation of R (t, P ) in each time interval
[k, k + 1] δ for 0 ≤ k ≤ msmcmr − 1. Lastly, we define the support functions over any
arbitrary time interval

[
¯
t, t̄
]

as

ρ(Z)
x

(·, [
¯
t, t̄
]
, P
)

= max
k∈I(msmcmr)

[̄t,t̄]

ρ(Z)
x

(
·, [k, k + 1] tc

mr
, P

)
,

ρ(Z)
u

(·, [
¯
t, t̄
]
, P
)

= max
k∈I(msmc)

[̄t,t̄]

ρ(Z)
u (·, [k, k + 1] tc, P ) ,

with

I(n)
[
¯
t,t̄] =

{
k ∈ {0, ..., n− 1}

∣∣∣∣ [k, k + 1] tf
n
∩ [

¯
t, t̄
] ̸= ∅

}
,

where ρ
(Z)
x

(
·, [k, k + 1] tc

mr
, P
)

denotes the support function of Ẑ (R ([k, k + 1] tc, P )),

ρ
(Z)
u (·, [k, k + 1] ∆, P ) denotes the support function of Ẑ

({
ū
(
β, P (i,j)

)}
β

)
for k =

imc + j with 0 ≤ i ≤ ms− 1 and 0 ≤ j ≤ mc− 1, and we have 0 ≤
¯
t ≤ t̄ ≤ tf for

¯
t ∈ R≥0

and t̄ ∈ R≥0.

Objective: We bound the objective in (5.1a) from above – while considering the ex-
tended optimization horizon – by

max
x(t,P )∈R(t,P )





h∑

k=1



∥∥∥x (kts, P )− x(k)

f

∥∥∥
1

+ ζ
mc−1∑

j=0

∥∥∥u
(
x (kts, P ) , P (k−1,j)

)∥∥∥
1







≤
h∑

k=1
ϑk



∥∥∥∥∥

[
c (kts, P )− x(k)

f
[G (kts, P )](:)

]∥∥∥∥∥
1

+ ζ
mc−1∑

j=0

∥∥∥∥∥∥




cu

(
P (k−1,j)

)
[
Gu

(
P (k−1,j)

)]
(:)



∥∥∥∥∥∥

1


 , (5.40)

where ϑ ∈ Rh
≥0 weighs the contribution of the extended horizon. The inequality follows

from a zonotope outer approximation of the reachable set and the input set as well as
multiple applications of the triangle inequality.
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Constraints: We can conservatively transform the constraints (5.1b) to (5.1d) – again
considering the extended optimization horizon – to

g (P ) =



ρ

(Z)
u (CU , [0, hts] , P )− dU
ρ

(Z)
x (CX , [0, hts] , P )− dX
ρ

(Z)
x (CXf , hts, P )− dXf


 ≤ 0, (5.41)

since U = ⟨CU , dU ⟩H , X = ⟨CX , dX ⟩H , and Xf = ⟨CXf , dXf ⟩H are H-polytopes and we
can hence apply Prop. 4.6.

Cost: Using (5.40) and (5.41), we propose the cost function

J (P ) =
h∑

k=1
ϑk



∥∥∥∥∥

[
c (kts, P )− x(k)

f
[G (kts, P )](:)

]∥∥∥∥∥
1

+ ζ
mc−1∑

j=0

∥∥∥∥∥∥




cu

(
P (k−1,j)

)
[
Gu

(
P (k−15,j)

)]
(:)



∥∥∥∥∥∥

1




+ σ ∥max (0, g (P ))∥1 ,

(5.42)

where σ ∈ R+: The first term in (5.42) penalizes the deviation of the center from the
corresponding target state and the size of the reachable set by penalizing each generator
of the reachable set, whereas the second term penalizes the size of the applied input.
The third term then penalizes all constraint violations, where σ is an exact penalty
multiplier and is chosen such that feasibility is always prioritized over minimizing the
first and second term (see [50]).

5.4.2 Parameterized Reachable Set

In Sec. 2.7.3, we remarked that it is in principle possible to represent the exact reachable
set arbitrarily closely if the abstraction order and the number of steps during reachability
analysis are both large enough. For PGSC, we used this fact as a motivation to compute
the parameterized reachable set via the abstraction described in Sec. 2.7.3, where we
ignored the abstraction error term since it vanishes for a large enough abstraction order
and number of steps for reachability analysis. In practice, however, we are often limited
to a quadratic abstraction for the computation of the parameterized reachable set due
to the increasing computational effort for a large abstraction order and a large number
of time steps during reachability analysis. That said, we would still like to compute
the parameterized reachable set accurately. Since computing the reachable set exactly
is hard in general [68], it is unreasonable to expect that the parameterized reachable
set can become accurate with respect to the exact reachable set. In this section, we
thus derive an approximation to the parameterized reachable set which is accurate with
respect to a tight enough outer approximation of the exact reachable set. For simplicity,
we assume without loss of generality that we start from t = 0, and denote P = P (0:h−1)

with slight abuse of notation.
We want to find an approximation R̃ (t, P ) that does not need to be recomputed for

each P and is ϵ-accurate with respect to a tight outer approximation R (t, P ) of the
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reachable set for ϵ > 0, i.e.

∀P ∈ [−1, 1]hmcnu×a ∀t ∈ [0, hts] : dH

(
R (t, P ) , R̃ (t, P )

)
≤ ϵ, (5.43)

where dH (·, ·) denotes the Hausdorff distance between two sets (see Def. 2.16). Because
both R (t, P ) and R̃ (t, P ) are reachable sets represented by polynomial zonotopes, they
are always closed and thus dH

(
R (t, P ) , R̃ (t, P )

)
= 0 ⇐⇒ R (t, P ) = D (t, P ) [103,

Chap. 2]. Thus, for a given accuracy ϵ, we want to find an approximation R̃ (t, P ) whose
Hausdorff distance to the tight outer approximation R (t, P ) is at most ϵ.

In Ex. 5.3, we saw that the dependency-preserving part D (t, P ) (see (5.23)) used
for PGSC often is a reasonable approximation of the parameterized reachable set up
to a scaling factor. When only minimizing the size of the final reachable set, a rough
approximation of the parameterized reachable set is often sufficient. However, once
we also consider state constraints in the synthesis problem, the absolute size of the
approximated parameterized reachable set becomes highly relevant. In PGSC and GSC,
this was solved by introducing the adapted state constraints X̃ , which have to be provided
by the user.

We avoid these adapted constraints by noticing that for the current controller param-
eters P̄ (see Alg. 4), a tight outer approximation R

(
t, P̄

)
of the reachable set at P̄ for

all t ∈ [0, hts] is available. Thus, we construct an approximation to the parameterized
reachable set as

R̃ (t, P ) = R
(
t, P̄

)
⊕e D (t, P )⊕e

(
−D

(
t, P̄

))
, (5.44)

where ⊕e denotes the exact addition of polynomial zonotopes (see Sec. 2.6.6): Since
D
(
t, P̄

)
⊕e

(
−D

(
t, P̄

))
= 0 by definition, we recover R

(
t, P̄

)
by evaluating (5.44) for

the current controller parameters P̄ . For any P ̸= P̄ , we then use D (t, P )⊕e

(
−D

(
t, P̄

))

to approximate the unknown difference R (t, P )⊕e

(
−R

(
t, P̄

))
. In order to control the

approximation quality of (5.44), we limit the controller parameters to the trust region
P ∈ Pγ

(
P̄
)
, where

Pγ

(
P̄
)

=
{
P̄ + 2γM

∣∣∣M ∈ [−1, 1]hmcnu×a
}
. (5.45)

Here, γ ∈ (0, 1] is the trust-region radius that restricts the range of possible P around
the controller parameters P̄ . To keep γ within (0, 1] for consistency with later chapters,
we include the factor 2 in (5.45) so that ∀P̄ ∈ [−1, 1]hmcnu×a : [−1, 1]hmcnu×a ⊆ P1

(
P̄
)
,

i.e., γ = 1 means that

∀i ∈ {0, ..., h− 1} ∀j ∈ {0, ...,mc − 1} ∀u ∈ U ∃P ∈ P1
(
P̄
)
∃β ∈ [−1, 1]l :

ū
(
β, P (i,j)

)
= u,
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where β is the dependent factor of the generating function x(0) (β) of the initial set X (0).
For P ∈ Pγ

(
P̄
)
, it thus holds that

lim
γ→0
R̃ (t, P ) = R

(
t, P̄

)
,

and therefore we can ensure (5.43) for P ∈ Pγ

(
P̄
)
, i.e.

∃γ ∈ (0, 1]∀P ∈ Pγ

(
P̄
)
∀t ∈ [0, hts] : dH

(
R (t, P ) , R̃ (t, P )

)
≤ ϵ, (5.46)

for any ϵ > 0 and independent of the choice of P̄ . We defer the tuning of γ to achieve
(5.46) to Sec. 5.4.4.

5.4.3 Trust-Region Subproblem

We now propose the trust-region subproblem as an approximation to (5.42). With
a slight abuse of notation, we again set P = P (0:h−1) and propose the trust-region
subproblem

P̂, ŝ = arg min
P,s

J̃TR (P, s) , (5.47a)

s.t. g̃ (P ) ≤ s, (5.47b)

P ∈ Pγ

(
P̄
)
∩ [−1, 1]hmcnu×a , (5.47c)

s ≥ 0, (5.47d)

with

J̃TR (P, s) =
h∑

k=1
ϑk



∥∥∥∥∥∥


c̃ (kts, P )− x(k)

f[
G̃ (kts, P )

]
(:)



∥∥∥∥∥∥

1

+ ζ
mc−1∑

j=0

∥∥∥∥∥∥




cu

(
P (k−1,j)

)
[
Gu

(
P (k−1,j)

)]
(:)



∥∥∥∥∥∥

1


+σ ∥s∥1 ,

(5.48)
as an approximation to the cost in (5.42), where g̃ (P ) is defined as in (5.41) but with
ρ

(Z)
x (·, t, P ) replaced by the support function ρ̃(Z)

x (·, t, P ) of the zonotope outer approx-
imation Z̃ (t, P ) = Ẑ

(
R̃ (t, P )

)
:

• (5.47a) and (5.48): We avoid the need for an outer approximation of the reachable
set in (5.42) by replacing it with the approximated parameterized reachable set
Z̃ (t, P ) (see Sec. 5.4.2). Further, we replace the constraint violation in (5.42) with
the slack variable s (see next bullet point for more details).

• (5.47b): We replace the support function ρ(Z)
x of the zonotope outer approximation

with the support function ρ̃
(Z)
x of Ẑ

(
R̃ (t, P )

)
, i.e., the zonotope outer approxi-

mation of the parameterized reachable set. Further, we include input, state, and
final state constraints in (5.47b) but relax them with s ∈ RoU +oX +oXf

≥0 so that (5.47)
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always has a feasible solution even if ∄P ∈ Pγ

(
P̄
)
∀k ∈ {1, ..., oU + oX + oXf} :

g̃k (P ) ≤ 0 holds true, i.e., no feasible solution of (5.47) for s = 0 exists. We force
a reduction in constraint violation for infeasible P by penalizing s in the objective
function, where the exact penalty multiplier σ ≫ 1 is chosen large enough (see,
e.g., [50] for a discussion on penalty multipliers) so that the minimization of con-
straint violation is always prioritized over minimizing the objective function for
s = 0.

• (5.47c): To control the accuracy of the approximated, parameterized reachable set,
we restrict P to its trust region, i.e, P ∈ Pγ

(
P̄
)
∩ [−1, 1]hmcnu×a (see Sec. 5.4.2

for details).

The trust-region subproblem in (5.47) can be reformulated as a smooth optimization
problem (see Sec. 3.2.2) and thus allows us to use off-the-shelf optimization codes, such
as the interior point optimizer5 [111] (IPOPT). Further, regularity of (5.47) follows from
Prop. 3.2. As it turns out, we can express the objective value (5.48) at a critical point
in P̂ only, which allows the definition of the approximated cost J̃ (P ).

Proposition 5.2 (Stationary Objective Value). At a critical point of the smooth refor-
mulation of (5.47) with optimizer P̂ , the optimal objective value – only dependent on P̂
– is given by

J̃
(
P̂
)

= J̃TR
(
P̂,max

(
0, g̃

(
P̂
)))

. (5.49)

Proof. Follows from Prop. 3.1.

Remark: Because R̃
(
t, P̄

)
= R

(
t, P̄

)
(see (5.44)), the cost J (P ) from (5.42) and the

approximated cost J̃ (P ) as defined in (5.49) are equal at P = P̄ , i.e., J̃
(
P̄
)

= J
(
P̄
)
.

Thus, choosing s̄ = max
(
0, g̃

(
P̄
))

as in Prop. 5.2, the initial guess
(
P̄, s̄

)
for solving

the smooth reformulation of (5.47) ensures that we start optimizing from the actual
controller cost.

5.4.4 Tuning of the Trust-Region Radius

Previously, we derived an approximation to the controller cost J
(
P̂
)

in (5.42), where
P̂ is a critical point of (5.47). In this section, we show how the value of the trust-region
radius can be adapted after each iteration of Alg. 4 so that the objective value J̃

(
P̂
)

of
(5.47) at a critical point P̂ approximates J

(
P̂
)

arbitrarily closely.
After the trust-region subproblem in (5.47) is solved to a critical point P̂ , we have

both the approximated cost J̃
(
P̂
)

(see Prop. 5.2) and the cost J
(
P̂
)
, calculated from

the outer approximation of the closed-loop reachable set, available (see Alg. 4). This
inspires the following tuning rule.

5https://github.com/coin-or/Ipopt
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Theorem 5.1 (Tuning of Trust-Region Radius). Let J
(
P̂
)

and J̃
(
P̂
)

be defined as in
(5.42) and (5.49), respectively, where P̂ is a critical point of the smooth reformulation
of the trust-region subproblem (5.47). If we adapt the trust-region radius γ according to

γ ← min
(
1, v

(∣∣∣J̃
(
P̂
)
− J

(
P̂
)∣∣∣
)
γ
)
, (5.50)

where v : [0;∞) 7→ R+ is an arbitrary, monotonically decreasing function with v (0) = c̄,
v (ψ) = 1, and ∀r ≥ ψ̄ : v (r) =

¯
c, where 1

¯
c > c̄ > 1 and 0 ≤ ψ < ϵ, then

∣∣∣J̃
(
P̂
)
− J

(
P̂
)∣∣∣ ≤ ϵ,

is achieved after a finite number of iterations for ϵ > 0.

Proof. Comparing (5.42) with (5.49), it is clear that lim
γ→0

∣∣∣J̃
(
P̂
)
− J

(
P̂
)∣∣∣ = 0 since

lim
γ→0

dH

(
Ẑ
(
R
(
t, P̂

))
, Ẑ
(
R̃
(
t, P̂

)))
= 0 due to lim

γ→0
P̂ = P̄ and R̃

(
t, P̄

)
= R

(
t, P̄

)
.

Therefore, following (5.50) for a finite number of steps yields a trust-region radius γ > 0
such that

∣∣∣J̃
(
P̂
)
− J

(
P̂
)∣∣∣ ≤ ϵ, which concludes the proof.

5.4.5 Computational Complexity
We again differentiate between the complexity of the offline controller synthesis and
the complexity of applying said controller online. We again make use of Ass. 5.1. For
simplicity, let κ ≥ 1 for the order of the controller template introduced in Sec. 5.3.2 and
assume that the number of monomials a of the controller template grows at least with
O (n), i.e., O (n+ a) = O (a).

5.4.5.1 Offline Complexity

We first inspect the complexity of the different components of the iPGSC approach.
Since ms is fixed, it suffices to inspect the algorithm for ms = 1.

Controller Template: The complexity of the polynomial composition dominates with
O
(
an1+κ

)
(see Sec. 5.3.6.1).

Reachable Set Computations: The combined complexity for the closed-loop reachable
set computation and the parameterized reachable set computation is bounded from above
by O

(
n5 + n2a2 + n3a logn

)
(see Sec. 5.3.6.1).

Controller Computation: Since the maximum number of steps lmax ∈ N+ in Alg. 4 is
fixed, it suffices to check the complexity of one trust-region iteration. As we already
considered the complexity for the reachable set computations above and because the
trust-region tuning has lower (or equal) computational complexity by visual inspection,
it suffices to derive the solution complexity of the trust-region subproblem in (5.47).
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Computing the optimal controller parameters P̂ requires the solution of the smooth
reformulation of the non-convex optimization problem in (5.47). Following the same
argument as for the complexity of the controller computation in Sec. 5.3.6.1, the com-
putational complexity of solving the trust-region subproblem is at most O

(
a2n4).

Overall Complexity: The offline complexity of the iPGSC approach is identical to the
PGSC approach, i.e.

O
(
c

(off)
iPGSC (n)

)
= O

(
c

(off)
PGSC (n)

) (5.33)= O
(
cref (n) + an1+κ + a2n4

)
. (5.51)

5.4.5.2 Online Complexity

The online complexity of iPGSC is identical to that of PGSC, i.e.

O
(
c

(on)
iPGSC (n)

)
= O

(
c

(on)
PGSC (n)

) (5.34)= O (an) . (5.52)

5.4.6 Experiments

In this section, we demonstrate the applicability of the proposed iPGSC approach by
comparing it against the PGSC approach introduced in Sec. 5.3. For that comparison, we
revisit both the controlled Van-der-Pol oscillator and the bicycle benchmark described
in Sec. 5.3.8. We set ζ = 0 for all benchmarks in this section.

5.4.6.1 Bicycle (Single Track)

We consider the bicycle model with the dynamics given in (5.38) and parameters given
as in Tab. 5.1. Additionally, we explicitly enforce the final state constraint Xf =
{−cX (0) + xf} ⊕ X (0) for the iPGSC approach now (also see Sec. 5.3.9 for why we only
enforce it here).

Fig. 5.10 compares the performance of PGSC against iPGSC, where runtimes were
34.7 s and 196 s, respectively. The deviation and size of the final reachable sets is
csize (RPGSC (tf)) = 0.65 and csize (RiPGSC (tf)) = 0.17. Clearly, the PGSC approach
is outperformed by iPGSC even with Xf enforced, albeit at the cost of significantly in-
creased computation times, which are mainly due to the more frequent computation of
reachable set outer approximations.

In Fig. 5.11, the progress of the iPGSC trust-region algorithm is visualized over the
iterations. First, as remarked at the end of Sec. 5.4.3, the approximated cost equals the
formally correct controller cost at the current controller guess P̄ (i−1). Second, we see
how the trust-region radius γ is decreased as the iterations at i ∈ {1, 3} are rejected to
recover a “good enough” approximation of the parameterized reachable set for the next
iteration.
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Figure 5.10: Comparison of the PGSC approach and the iPGSC approach for the single-track
(bicycle) model. A linear controller template is used.

5.4.6.2 Controlled Van-der-Pol Oscillator

We consider the Van-der-Pol oscillator model described in (5.39) with benchmark pa-
rameters given as in Tab. 5.2 but with a quadratic controller, i.e., κ = 2.

Fig. 5.12 compares the control performance of PGSC against the proposed iPGSC
approach, where PGSC and iPGSC took 19.68 s and 146.66 s, respectively, and further
csize (RPGSC (tf)) = 0.79 and csize (RiPGSC (tf)) = 0.67. Clearly, iPGSC achieves a
better control result, even though we additionally enforce final state constraints Xf =
{−cX (0) + xf} ⊕ X (0) for the iPGSC approach: By approximating the parameterized
reachable set only locally around the current controller parameters, the iPGSC uses a
more accurate approximation of the closed-loop reachable set during the optimization of
the controller parameters. In contrast, the PGSC approach computes its parameterized
reachable set only as a global approximation of the closed-loop reachable set.

5.4.7 Discussion

As the numerical experiments indicate, iPGSC synthesizes controllers with better per-
formance compared to the PGSC approach (and thus the GSC approach by extension).
Further, iPGSC uses state constraints directly as provided by the user without the need
for manual constraint tightening or bloating since we control the accuracy of the pa-
rameterized reachable set automatically using the trust-region radius. Furthermore, its
design naturally allows to improve existing controllers by providing them as an initial
guess to the algorithm. Because we only accept iterations that improve the control per-
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Figure 5.11: Visualization of the solver progress for the PGSC approach (bicycle benchmark).
Values between J̃

(
P̄ (i−1)) and J̃

(
P̂ (i)

)
for 1 ≤ i ≤ 5 – where P̄ (i−1) and P̂ (i)

are the initial and critical points of the trust-region subproblem – are linearly
interpolated (P̂ (0) = P̄ (0)). The opaque red vertical bars at i ∈ {1, 3} visualize
a rejected iteration. As one might expect, the trust-region radius γ is shrunk at
each rejected iteration to ensure a more accurate approximation for the next step.
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Figure 5.12: Comparison of the PGSC approach and the iPGSC approach for the Van-der-Pol
model. Both approaches use a quadratic controller template.

formance, the iPGSC algorithm can guarantee that the control performance of the newly
computed controller is at least as good as the one provided as an initial guess.

That said, all these advantages come at the cost of increased computational effort,
which is mainly caused by the need to compute outer approximations of the reachable
sets. With that in mind, the increased computational effort for iPGSC only occurs
offline and still has polynomial complexity (see Sec. 5.4.5.1) so that it should always be
the first piecewise constant synthesis algorithm to try on any system if very fast offline
computation times are not required.

5.5 Summary

Starting from the problem statement in Sec. 5.1, we reviewed existing approaches for
the piecewise constant controller synthesis for disturbed nonlinear systems in Sec. 5.2
and extended existing work to include polynomial controllers and allow parameterized
reachable sets of arbitrary abstraction order in Sec. 5.3 to improve the performance of
the synthesized controllers. Furthermore, we introduced a novel trust-region algorithm
for piecewise constant controller synthesis in Sec. 5.4 that can directly consider state
constraints without the need for manual tuning.

Generator-space control (GSC) introduced in [99] synthesizes piecewise constant feed-
forward controllers that are linear in the initial state under input and state constraints.
With the initial set given as a zonotope, a zonotope is used to represent the controller,
where the center and generator matrix are parameters that need to be computed. An
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approximation to the closed-loop reachable set using that controller is computed by lin-
earizing the undisturbed nonlinear dynamics along a previously computed reference tra-
jectory. Because of this linearization, we obtained an analytic expression for the param-
eterized reachable set in the controller parameters. Using this parameterized reachable
set, a linear program (LP) is formulated which minimizes the distance of this approx-
imated reachable set from the target state and further minimizes the size of the final,
approximated reachable set as well as the control energy. Due to the parameterization of
the controller, input constraints can be exactly represented as linear constraints. Since
the parameterized reachable set is only approximately computed, state constraints can
only be considered approximately and require additional user input. Sub-optimal choices
of this input may require additional runs of the algorithm.

To better approximate the reachable set, we described the polynomial generator-space
control (PGSC) approach from our work in [37]: Here, we computed the parameterized
reachable set using a slightly modified version of reachability analysis from [5] with
a polynomial abstraction order to achieve better results. In contrast to the GSC ap-
proach [99] where only linear control laws are synthesized, we proposed a controller
which is polynomial in the initial state and showed that PGSC generalizes the GSC ap-
proach. Numerical experiments demonstrated the improved control performance due to
the increased abstraction order for the parameterized reachable set and the polynomial
controller compared to the GSC approach from previous work [99].

To avoid the need for the manual tuning of state constraints by the user as required
for GSC and PGSC, we introduced the iterative polynomial generator-space control
(iPGSC) approach as part of our work in [35] to solve the synthesis problem. To that
end, we first defined a cost function in the controller parameters as an approximation
to the general synthesis problem, penalizing the deviation from the target state, the
size of the reachable set, the input energy, and the constraint violations. Since this
cost function is non-differentiable and because its evaluation requires the computation
of the closed-loop reachable set, we optimized over this cost iteratively: We approximate
the non-differentiable cost in the neighborhood of the current controller parameters by
the differentiable trust-region subproblem, whose accuracy is ensured by restricting its
domain to a bounded trust region around the current controller parameters. The size
of the trust region is then updated by comparing the change in cost between the newly
synthesized controller and the current controller to the change predicted by the trust-
region subproblem. If the new controller improves the controller cost, we accept the step
and update the current controller parameters accordingly. The advantages of this novel
synthesis algorithm were demonstrated in numerical experiments.
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with Continuous State Feedback

Previously, we considered the synthesis of controllers which are piecewise constant in
time. Due to their simple structure, they are easy to implement and can be applied
efficiently online. Additionally, they also allow the incorporation of state feedback at
discrete points in time. In practice, however, it is often necessary to shrink the time be-
tween input updates, i.e., increase the number of piecewise constant controllers that need
to be computed, e.g., when a system is dominated by disturbances. Thus, larger distur-
bance sets may require a larger number of piecewise constant controllers, increasing the
computational effort required, both offline and online. In this chapter, we combine piece-
wise constant control with continuous state feedback in order to continuously counteract
disturbances without the need for a larger number of piecewise constant controllers.

To that end, we first introduce the synthesis problem for this combined controller
in Sec. 6.1 and present a solution approach from previous work [101],[98, Sec. 3.6] in
Sec. 6.2. We then propose a novel synthesis approach for the combined controller in
Sec. 6.3 which – for the first time – synthesizes the feedforward and feedback controller
simultaneously.

6.1 Problem Statement
In this chapter, we synthesize controllers for t ∈ τ (j) = [j, j + 1] tf

mc
with 0 ≤ j ≤ mc − 1

of the form (as proposed in [98, Eq. (3.43)])

u (t, x (t) , P,K) = uff
(
x (0) , P (0,j)

)
+K(j) (x (t, P,K)− xff (t, P )) , (6.1)

where x (0) ∈ X (0), K (t) = K(j) ∈ Rnu×nx for t ∈ τ (j), the controller parameters of the
piecewise constant feedforward controller uff

(
x (0) , P (0,j)

)
(see Chap. 5) are given by

P =
[
P (0,0)T

, P (0,1)T
, . . . , P (0,mc−1)T

]
∈ [−1, 1]mcnu×a, and

xff (t, P ) = ξ
(
t, x (0) , uff

(
x (0) , P (0,·)

)
, 0
)
, (6.2)

is the feedforward trajectory that one obtains by starting from the initial state x (0)
and applying the mc piecewise constant feedforward controllers: Piecewise constant
controllers are able to solve a given reach-avoid problem efficiently when little or no
disturbance is involved (see Chap. 5). Thus, to steer the undisturbed system close to the
target state, the feedforward controller is applied. Since the actual system is affected by
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disturbances, the continuous feedback controller is applied on the difference between the
nominal feedforward state and the actual state – caused by disturbances – to minimize
this difference. We sometimes omit time indices and dependencies for readability, e.g.,
we write K instead of K (t). The feedforward part is a piecewise constant controller
as described in Chap. 5 with ms = 1 and therefore P = P (0). To simplify notation,
we further set P (j) = P (0,j) for the remainder of this chapter. We again assume that
the bounded input constraints U = ⟨CU , dU ⟩H with CU ∈ RoU ×nu and dU ∈ RoU , the
state constraints X = ⟨CX , dX ⟩H with CX ∈ RoX ×nx and dX ∈ RoX , and the final
state constraints Xf = ⟨CXf , dXf ⟩H with CXf ∈ RoXf ×nx and dXf ∈ RoXf are given as
H-polytopes.

Let R (t, P,K) denote an outer approximation of the closed-loop reachable set of the
combined controller u (t, x (t) , P,K) from (6.1). Substitution of (6.1) into the general
synthesis problem in (3.1) then yields an optimization problem for the combined synthesis
of a piecewise constant feedforward controller with continuous state feedback, i.e. (also
compare to )

P̂, K̂ = arg min
P,K

max
x(t,P,K)∈R(t,P,K)

{
∥x (tf , P,K)− xf∥1 + ζ

∫ tf

0
∥u (τ, x (τ) , P,K)∥1 dτ

}

(6.3a)
s.t. ∀t ∈ [0, tf ] : Su (t, P,K) ⊆ U , (6.3b)
R ([0, tf ] , P,K) ⊆ X , (6.3c)
R (tf , P,K) ⊆ Xf , (6.3d)

where
Su (t, P,K) = Suff (t, P )⊕e S∆u (t, P,K) , (6.4)

follows from (6.1) with

Suff (t, P ) =
{
uff
(
x (0) , P (0,j)

) ∣∣∣ x (0) ∈ X (0)
}
, (6.5)

S∆u (t, P,K) = K(j) (R (t, P,K)⊕e (−Rxff (t, P ))) , (6.6)

for t ∈ τ (j) with 0 ≤ j ≤ mc − 1. Here, Rxff (t, P ) denotes the reachable set of the
feedforward state from (6.2).
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6.2 Reachset Optimal Control

We already established that continuous state feedback is beneficial to quickly counteract
disturbances for systems where the disturbances are large or the dynamics of the system
are changing quickly. That said, the control goal is not only rejecting disturbances as
efficiently as possible but also steering the system close to the target state. Therefore,
the authors in [101] combine the GSC feedforward synthesis approach with a subsequent
optimization over the feedback matrices in order to minimize the effect of disturbances,
which we review in this section. The general structure of the reachset optimal control
(ROC) approach is detailed in Alg. 5 and visualized in Fig. 6.1. The most important
steps can be summarized as follows:

(i) We start by computing a reference trajectory steering the center of the initial set
close to the target state (l. 2).

(ii) Since the feedforward and the feedback synthesis problems are solved separately,
we compute the feedforward controller using GSC with adapted state and input
constraints (l. 3).

(iii) Next, we compute an initial guess of the feedback matrices for the feedback syn-
thesis (l. 4).

(iv) Given the feedforward controller from (ii), we then optimize the feedback matrices
to obtain a feedback control law that minimizes the deviation of the disturbed,
closed-loop state from the undisturbed feedforward state. However, we do not
directly optimize over the feedback matrices; rather, we parameterize all feedback
matrices using LQR control, i.e., the feedback matrices become functions of the
LQR weighting matrices Q ∈ Snx×nx

++ and R ∈ Snu×nu
++ (also see Sec. 6.2.1); here, Q

and R are kept constant over all time steps. This reduces the feedback synthesis
to an optimization over the weighting matrices Q and R. In each optimization
iteration, we compute a formally verified outer approximation to the closed-loop
reachable set for the combined controller (see Sec. 6.2.2) and then use this reachable
set to evaluate the objective function and check constraint satisfaction (l. 5).

Algorithm 5 Reachset Optimal Control
1: function reachsetOptimalControl(X (0),U , Ũ ,X , X̃ ,Xf , X̃f ,W,mc, xf)
2: [xref , uref ] = referenceTrajectory(X (0),U ,X ,Xf , 1,mc, xf , tf) ▷ Sec. 5.2.1
3: P̂ = generatorSpaceControl(X (0), Ũ , X̃ , X̃f , {0} , 1,mc, xf , 1) ▷ Sec. 6.2.3
4:

[
Q̄, R̄

]
= initGuess(. . . ) ▷ Sec. 6.2.5

5:
[
K̂,R ([0, tf ])

]
= optProb(P̂, Q̄, R̄,X (0),U ,X ,Xf ,W,mc, tf , xref , uref) ▷ (6.16)

6: return
[
P̂, K̂,R ([0, tf ])

]

7: end function

119



6 Piecewise Constant Controller Synthesis with Continuous State Feedback

X (0)
reference
trajectory xf

(a)

feedforward control for
all x(0) ∈ X (0)
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reachable set using
feedforward control

final reachable set

(c)

minimized reachable set
using combined controller
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Figure 6.1: Overview of the ROC approach [101, adapted]. First, a reference trajectory is
computed (Fig. 6.1a). For the adapted input and state constraints, the feedforward
synthesis problem for the target state xf is solved using the GSC approach as
described in Sec. 5.2 (Fig. 6.1b). Since the feedforward synthesis problem does not
consider disturbances, the resulting closed-loop reachable set under disturbances
might be too large (Fig. 6.1c). Thus, we optimize over the feedback controller to
minimize the effect of the disturbance (Fig. 6.1d).
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We structure this section as follows: In Sec. 6.2.1, we briefly introduce the parame-
terization of the feedback matrices using LQR control, and then discuss the closed-loop
reachable set computation for a given combined controller in Sec. 6.2.2. In Sec. 6.2.3,
we discuss how the GSC approach can be used as a feedforward controller and then
describe the feedback controller synthesis in Sec. 6.2.4. Next, we briefly comment on the
role of initial guesses in Sec. 6.2.5. In Sec. 6.2.6, we then analyze the computational com-
plexity of ROC and finally discuss important properties of the algorithm in Sec. 6.2.7.
Note that we defer numerical experiments of ROC to Sec. 6.3, where we compare ROC
against our novel combined synthesis approach. We refer the reader to [101, Sec. VI]
for a comparison of ROC to other state-of-the-art approaches.

6.2.1 Feedback Matrix Parameterization
Directly optimizing over K(j) for 0 ≤ j ≤ mc− 1 requires mcnxnu variables since K(j) ∈
Rnu×nx . In this section, we therefore introduce a parameterization for the feedback
matrices using LQR control (see Sec. 2.4) as proposed in [101, Sec. IV.B.], [98, Sec.
3.6.3] to reduce the number of optimization variables.

Since LQR computes a control law for an LTI system, we first linearize the nonlinear
dynamics f along the reference trajectory to obtain mc LTI systems. For t ∈ τ (j) =
[j, j + 1] tf

mc
, we obtain the LTI system

(
A(j), B(j)

)
as

A(j) = ∂f (x, u, w)
∂x

∣∣∣∣x=x
(j)
lin

u=u
(j)
lin

w=0

,

B(j) = ∂f (x, u, w)
∂u

∣∣∣∣x=x
(j)
lin

u=u
(j)
lin

w=0

,

where

x
(j)
lin = 1

2
(
x

(j)
ref + x

(j+1)
ref

)
,

u
(j)
lin = u

(j)
ref ,

and the reference inputs and reference trajectory are computed as described in Sec. 5.2.1
with ms = 1. To the best of our knowledge, the reason why the LTI systems

(
A(j), B(j)

)

are an appropriate choice for the computation of the LQR feedback matrix is not given
by the original authors; we provide more details in Sec. 6.3.1 as we use this parameter-
ization in a later algorithm. Assume that

(
A(j), B(j)

)
is controllable per Corr. 2.1; the

corresponding LQR matrix K(j) of the LTI system
(
A(j), B(j)

)
with given Q and R can

then be computed as described in Sec. 2.4. Intuitively, the assumption of controllability
of the linearized dynamics may seem quite restrictive; however, trying to control the
nonlinear dynamics when even the linearized dynamics (which are only valid approx-
imations in a small neighbor around x

(j)
lin and u

(j)
lin ) are not controllable seems rather
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ambitious. While keeping Q and R constant over the entire horizon reduces the number
of optimization variables, it may also reduce the overall performance of the controller as
we limit the range of possible feedback matrices. If this extra performance is required,
one may introduce separate weighting matrices Q and R for each of the mc LTI systems.
Alternatively, one can also directly optimize over K(j), in which case controllability is
not required; however, this means that one may also generate non-stabilizing feedback
matrices.

6.2.2 Closed-Loop Reachable Set

Since ROC optimizes directly over outer approximations of the closed-loop reachable set,
we discuss the closed-loop reachable set computation for a combined controller of the
form (6.1) for the conservative linearization approach (see Sec. 2.7.2) for a given K(j)

(also compare to [98, Sec. 3.6.4]). The reachable set computation using conservative
polynomialization approach follows analogously and – since CORA implements depen-
dency preservation for polynomial zonotopes – does not require the dependent factors β
in the extended state definition.

To retain the dependency between each initial state and its corresponding control
input, we define the extended state xext =

[
xT , xT

ref , ∆x̃T
ff , βT

]T
so that the extended

dynamics for t ∈ τ (j) with 0 ≤ j ≤ mc − 1 are given by

fext (x, u, w) =




f
(
x, ū

(
β, P̂ (j)

)
+K(j) (Q,R) (x− (xref + ∆x̃ff)) , w

)

f (xref , uref , 0)
A∆x̃ff +B

(
ū
(
β, P̂ (j)

)
− ulin

)

0



, (6.7)

where the feedforward controller ū
(
β, P̂ (j)

)
, parameterized in β, is defined as in (5.3).

Here, P̂ denotes the optimal controller parameters that define the feedforward controller
as synthesized by GSC. The generating function of the extended initial set then is

x
(0)
ext (β) =




x(0) (β)
cX (0)

GX (0)β
β


 ,

where X (0) =
{
x(0) (β)

}
β

= ⟨cX (0) , GX (0)⟩Z . Note that we do not use the feedforward
state

xff (t) = ξ
(
t, x (0) , uff

(
x (0) , P̂ (·)

)
, 0
)
,

directly, but rather the same linearized approximation x̃ff = xref + ∆x̃ff that is used to
compute the parameterized reachable set for the GSC approach. By doing so, we try to
bring the closed-loop reachable set of the combined controller as close as possible to the
parameterized reachable set, evaluated at the optimal controller parameter P̂ . Since we
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will replace xff by x̃ff during the feedback controller synthesis (see Sec. 6.2.4) and during
the online deployment of GSC (see Sec. 6.2.6.2), all formal guarantees still hold.

Applying the reachability algorithm from Sec. 2.7.2 to the extended system dynamics
in (6.7) for t ∈ [0, tc] yields an outer approximation of the closed-loop reachable set,
given by

Rext (t, Q,R) =








rx

(
t, Q,R, β̃

)

rxref

(
t, β̃
)

r∆x̃ff

(
t, β̃
)

β
(
β̃
)








β̃

,

where its generating function is no longer dependent on β (e.g. due to reduction op-
erations during reachability analysis) but β̃. Since this dependency is required for the
evaluation of the dynamics in (6.7), we extended the state with β, making β

(
β̃
)

avail-
able. The next extended initial set at t = tc is then given by

x
(1)
ext
(
β̃, Q,R

)
=




rx

(
tf

mc
, Q,R, β̃

)

rxref

(
tf

mc
, Q,R, β̃

)

r∆x̃ff

(
tf

mc
, β̃
)

β
(
β̃
)



,

and hence R (t, Q,R) =
{
rx

(
t, Q,R, β̃

)}
β̃

for t ∈ [0, tf ] follows by the iterative applica-
tion of the above steps.

6.2.3 Feedforward Controller Computation

Because the feedforward and feedback synthesis are executed sequentially, one can sim-
ply use the GSC approach described in Sec. 5.2 to compute the feedforward controller
parameters. However, we cannot directly use the input constraint set U as is: If we
compute the feedforward controller for the input constraint set U , the feedforward con-
troller may use up all of the input capacity, leaving no available input capacity for the
continuous feedback controller. As a result, the user needs to specify a tightened input
constraint set Ũ ⊆ U in addition to the adapted state and final state constraint sets X̃
and X̃f , which are necessary for non-conservative constraint checking.

6.2.4 Feedback Controller Computation

With the feedfoward controller fixed, we only describe the synthesis of the feedback
matrices here. To pose an approximation of (6.3), we subsequently introduce an approx-
imation of its objective function and an approximation of its constraints as proposed in
[98]. To that end, we first introduce all required generating functions.
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From Sec. 6.2.2, the generating function of the extended reachable set is

Rext (t, Q,R) =








rx

(
t, Q,R, β̃

)

rxref

(
t, β̃
)

r∆x̃ff

(
t, β̃
)

β
(
β̃
)








β̃

. (6.8)

Let mr ∈ N+ denote the number of steps during reachability analysis per interval τ (j)

for 0 ≤ j ≤ mc − 1, and let τ (k,j) = j tf
mc

+ [k, k + 1] ∆t for 0 ≤ k ≤ mr − 1 with
∆t = tf

mcmr
. Using (6.4) and (6.8), the generating function for the set of applied inputs

Ŝu (t, Q,R) =
{
ŝu

(
t, Q,R, β̃

)}
β̃

= Su

(
t, P̂, Q,R

)
for a fixed P̂ and t ∈ τ (k,j) (or t =

τ (k,j) since reachability analysis returns both time-point and time-interval solutions) can
be computed via

ŝu

(
t, Q,R, β̃

)
= ū

(
β
(
β̃
)
, P̂ (j)

)
+K(j) (Q,R)

(
rx

(
t, Q,R, β̃

)
− rx̃ff

(
t, Q,R, β̃

))
,

where
rx̃ff

(
t, Q,R, β̃

)
= rxref

(
t, β̃
)

+ r∆x̃ff

(
t, Q,R, β̃

)
.

We define

Ẑ
(
Ŝu (t, Q,R)

)
= ⟨cu (t, Q,R) , Gu (t, Q,R)⟩Z ,

Ẑ
({
rx

(
t, Q,R, β̃

)}
β̃

)
= ⟨c (t, Q,R) , G (t, Q,R)⟩Z .

Objective Function: Let û (t, x,Q,R) = u
(
t, x, P̂, Q,R

)
. The objective function in

(6.3a) can be approximated as (also see [98, Sec. 3.5.3])

max
x(t,Q,R)∈R(t,Q,R)

{
∥x (tf , Q,R)− xf∥1 + ζ

∫ tf

0
∥û (ξ, x,Q,R)∥1 dξ

}

≤∥c (tf , Q,R)− xf∥1 +
∥∥∥[G (tf , Q,R)](:)

∥∥∥
1

+ max
x(t,Q,R)∈R(t,Q,R)

ζ

∫ tf

0
∥û (ξ, x,Q,R)∥1 dξ

≤∥c (tf , Q,R)− xf∥1 +
∥∥∥[G (tf , Q,R)](:)

∥∥∥
1

+ max
∥β̃∥∞≤1

mr−1∑

k=0

mc−1∑

j=0
∆tζ

∥∥∥ŝu

(
τ (k,j), Q,R, β̃

)∥∥∥
1

≤
∥∥∥∥∥

[
c (tf , Q,R)− xf
[G (tf , Q,R)](:)

]∥∥∥∥∥
1

+ ∆tζ
mr−1∑

k=0

mc−1∑

j=0

∥∥∥∥∥∥




cu

(
τ (k,j), Q,R

)
[
Gu

(
τ (k,j), Q,R

)]
(:)



∥∥∥∥∥∥

1

, (6.9)

where the first inequality follows from the triangle inequality, the second inequality
follows from applying the worst-case value during the entire interval of length ∆t, and
the last inequality again follows from the triangle inequality.
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Constraints: Denote with ρ(Z)
u

(
·, τ (k,j), Q,R

)
the support function of Ẑ

(
Ŝu (t, Q,R)

)
.

For the input constraint from (6.3b) with U = ⟨CU , dU ⟩H , it holds that

∀t ∈ [0, tf ] : Ŝu (t, Q,R) ⊆ U (6.10)
P rop. 4.4⇐= ∀t ∈ [0, tf ] : Ẑ

(
Ŝu (t, Q,R)

)
⊆ U (6.11)

⇐⇒
⋃

0≤k≤mr
0≤j≤mc−1

Ẑ
(
Ŝu

(
τ (k,j), Q,R

))
⊆ U (6.12)

P rop. 4.6⇐⇒ ρ(Z)
u (CU , [0, tf ] , Q,R) ≤ dU , (6.13)

where

ρ(Z)
u (CU , [0, tf ] , Q,R) = max

0≤k≤mr
0≤j≤mc−1

ρ(Z)
u

(
CU , τ (k,j), Q,R

)
.

Further, denote with ρ
(Z)
x (·, t, Q,R) the support function of Ẑ

({
rx

(
t, Q,R, β̃

)}
β̃

)
.

Then

R
(
[0, tf ] , P̂, Q,R

)
⊆ X

P rop. 4.4⇐=
⋃

0≤k≤mr
0≤j≤mc−1

Ẑ
({
rx

(
τ (k,j), Q,R, β̃

)}
β̃

)
⊆ X

P rop. 4.6⇐⇒ ρ(Z)
x (CX , [0, tf ] , Q,R) ≤ dX , (6.14)

where

ρ(Z)
x (CX , [0, tf ] , Q,R) = max

0≤k≤mr−1
0≤j≤mc−1

ρ(Z)
x

(
CX , τ (k,j), Q,R

)
,

and

R (tf , Q,R) ⊆ Xf

P rop. 4.4⇐= Ẑ
({
rx

(
tf , Q,R, β̃

)}
β̃

)
⊆ Xf

P rop. 4.6⇐⇒ ρ(Z)
x (CXf , tf , Q,R) ≤ dXf . (6.15)
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Optimization Problem: Collecting (6.9) and (6.13) to (6.15) yields the optimization
problem

min
Q,R

∥∥∥∥∥

[
c (tf , Q,R)− xf
[G (tf , Q,R)](:)

]∥∥∥∥∥
1

+ ∆tζ
mr−1∑

k=0

mc−1∑

j=0

∥∥∥∥∥∥




cu

(
τ (k,j), Q,R

)
[
Gu

(
τ (k,j), Q,R

)]
(:)



∥∥∥∥∥∥

1

, (6.16a)

s.t. ρ(Z)
u (CU , [0, tf ] , Q,R) ≤ dU , (6.16b)
ρ(Z)

x (CX , [0, tf ] , Q,R) ≤ dX , (6.16c)
ρ(Z)

x (CXf , tf , Q,R) ≤ dXf , (6.16d)

Q ∈
{

diag (q)
∣∣∣ q ∈

[

¯
q, q̄
]}
, (6.16e)

R ∈ {diag (r) | r ∈ [
¯
r, r̄]} , (6.16f)

where we start from Q = diag (q̄) and R = diag (r̄) with
[

¯
q, q̄
]
⊆ Rnx

+ and [
¯
r, r̄] ⊆ Rnu

+ : To
avoid semi-definite constraints for Q and R, the authors in [101] restrict the weighting
matrices to positive diagonal matrices. Since the computation of K(j) (Q,R) for 0 ≤
mc − 1 in dependence of Q and R is invariant when multiplying Q and R with some
positive scalar, i.e., K(j) (Q,R) = K(j) (sQ, sR) for s > 0, the authors in [101] further
propose to set

¯
q1 = q̄1 = 1.

6.2.5 Initial Guess For Feedback Synthesis

Since the feedforward controller is fixed and K(j) (Q,R) for 0 ≤ j ≤ mc− 1 is a function
of Q and R, it suffices to find an initial guess for Q and R. Because solving (6.16)
requires the evaluation of the closed-loop reachable set for each optimization iteration
(see Sec. 6.2.4 for details), providing good initial guesses Q̄ ∈ Snx×nx

++ and R̄ ∈ Snu×nu
++ can

save a lot of computation time. Such an initial guess computation is outside of the scope
of this thesis; that said, a possible initial guess – an idea from the code of the authors
of [101] – can be obtained by solving (6.16), but replacing the outer approximations
of the closed-loop reachable set for the nonlinear dynamics with approximations using
reachability analysis of a linearized sequence of LTI systems. This has the advantage
that linear reachability analysis is much more efficient than reachability analysis for
nonlinear systems.

6.2.6 Computational Complexity

We again use Ass. 5.1. We distinguish between the complexity of the offline controller
synthesis and the complexity of applying the controller online, both in n.

6.2.6.1 Offline Complexity

Since we already discussed the offline complexity of GSC (see Sec. 5.2.6.1), we focus on
the complexity of computing the continuous feedback controller.
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Closed-loop Reachability Analysis: Computing the reachable set for a given combined
controller has a complexity of at most O

(
n5) [59, Sec. 4.1.4].

Feedback Optimization Problem: The computation of the closed-loop reachable set in
each optimization iteration when solving (6.16) naturally dominates the computational
complexity with O

(
n5) (if the conservative polynomialization algorithm is used; see

Sec. 2.7.3). Since (6.16) cannot be reformulated as a smooth optimization problem
(see Sec. 6.2.7 for details), there is no straightforward way to bound the number of
optimization iterations.

Overall Complexity: Since the optimization problem to solve is not differentiable, we
cannot make a statement about the overall complexity of ROC.

6.2.6.2 Online Complexity

Evaluation of the combined controller requires the evaluation of the GSC feedforward
controller, one matrix vector multiplication between the feedback matrix and x−x̃ff , and
the forward simulation of x̃ff . If a fixed-step ODE solver is used, the online computational
complexity for the forward simulation of x̃ff is at most O

(
b
(
nxe+ c

(on)
GSC (n)

))
Ass. 5.1=

O
(
n2 + c

(on)
GSC (n)

)
, where b ∈ N+ collects both the number of fixed steps as well as the

number of fixed function evaluations per step: We have nx dimensions, the evaluation
of f in each dimension requires e elementary operations, and we need to evaluate the
feedforward controller b times for the computation of the feedforward input.

With the complexity of the matrix-vector multiplication of at most O (nunx) = O
(
n2),

the online complexity of the ROC approach is

O
(
c

(on)
ROC (n)

)
= O

(
c

(on)
GSC (n) + n2

)

(5.15)=
{
O
(
n2) , X (0) = X (0) ↓1 ,

O
(
cLP (n) + n2) , otherwise

.
(6.17)

6.2.7 Discussion
Using the GSC approach for the feedforward synthesis, ROC is conceptually an intu-
itive extension for the inclusion of a continuous feedback term: By directly optimizing
over outer approximations of the reachable set, constraints can be easily checked using
Prop. 4.6. With an appropriate choice of both the tightened feedforward input con-
straint set as well as the adapted state and final state constraint sets, ROC significantly
improves the control result compared to GSC when the disturbance sets get larger [101,
Sec. VI].

However, this direct optimization over the reachable set in (6.16) requires the recom-
putation of an outer approximation of the extended reachable set in each optimization
iteration. Further, the absolute values in (6.16) cannot be resolved as done previously:
Such a reformulation requires that the same generator for different values of Q and R is
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used for each resulting inequality. Since we have no way of identifying the same genera-
tor for different values of Q and R, this approach cannot be used. Since a reformulation
of absolute values is not possible, differentiability of (6.16) is strictly speaking not given.
Thus, applying most gradient-based solvers to (6.16) will yield no theoretical convergence
guarantee. Furthermore, gradients for (6.16) cannot be computed analytically and thus
gradient information has to be approximated using finite differences (see [53, Chap. 5]
for details on finite differences) if a gradient-based solver is used. Additionally, ROC re-
quires the user to choose the adapted constraint sets – such as adapted state constraints
and tightened feedfoward input constraints – appropriately, which makes the approach
non-trivial to apply for non-experts. Lastly, ROC first computes the feedforward con-
troller and only then synthesizes the continuous feedback controller. Since the choice
of the feedforward controller directly influences the feedback controller, this separation
into two synthesis steps might result in a sub-optimal controller (also see Sec. 6.3.10).
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6.3 Iterative Polynomial Reachset Optimal Control
The ROC approach first synthesizes a feedforward controller and then computes the
continuous feedback control law while keeping the feedforward controller fixed. Not only
does this generally result in a sub-optimal solution, but it also introduces additional algo-
rithm parameters, such as the adapted input and state constraints, which have to be set
appropriately to arrive at a performant controller; this can limit the applicability of ROC
by non-experts. To avoid these additional parameters, we present the iterative polyno-
mial reachset optimal control (iPROC) approach from our work in [35], which solves the
synthesis problem for the combined controller simultaneously, i.e., without separation
of the feedforward and feedback controller synthesis: Since (6.3) is generally not effi-
ciently solvable, we approximate (6.3) – similarly to iPGSC – using a non-differentiable
cost function in the combined controller parameters. By locally approximating this non-
differentiable cost function with a differentiable optimization problem, we can iteratively
update our controller parameters based on this local approximation, where we control
its accuracy by restricting the admissible controller parameters for the optimization
problem to a bounded trust region.

As it turns out, parameterizing K(j) = K(j) (z) for 0 ≤ j ≤ mc − 1 in the controller
parameters z =

[
P T

(:), QT
(:), RT

(:)

]T
using LQR control – as used in Sec. 6.2 and orig-

inally proposed in [101, Sec. IV.B] – is also beneficial here, where P ∈ [−1, 1]mcnu×a

are the feedforward controller parameters of the controller template from (5.20), and
Q ∈ Snx×nx

++ and R ∈ Snu×nu
++ are the feedback controller parameters. For now, we sim-

ply take this parameterization as a given and defer its motivation and introduction to
Sec. 6.3.1. Fig. 6.2 visualizes the general idea of iPROC, where each step of Alg. 6 is
briefly described subsequently.

(i) Starting from an initial guess for both the feedforward controller parameters P̄ and
feedback controller parameters Q̄ and R̄ (l. 3), we first compute an outer approx-
imation to the undisturbed feedforward reachable set for the current feedforward
controller (l. 5).

(ii) Using this feedforward outer approximation, we then construct a locally accurate
approximation of the undisturbed feedforward reachable set around the current
controller parameters (l. 6).

(iii) We evaluate the cost of the initial controller, parameterized by the initial con-
troller parameters, using an outer approximation of the closed-loop reachable set
of this initial controller (l. 7–8). We then iteratively update the current controller
parameters by executing the following steps:
(a) Starting from the current controller parameters, we solve the trust-region

subproblem – which is a locally accurate, differentiable approximation of the
controller cost – to obtain a new controller candidate (l. 10): To ensure ac-
curacy, we restrict the domain of controller parameters z to a bounded trust
region, whose size is determined by the feedforward and feedback trust-region
radii γ and η ∈ (0, 1].
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(b) We try to compute an outer approximation to the closed-loop reachable set
of the new controller candidate (l. 13–18): For very large trust-region radii,
the inaccurate approximation of the reachable set may lead to a controller for
which the closed-loop reachable set computation encounters numerical errors.
In that case, we shrink the trust-region radii and restart the iteration.

(c) We then compute the cost of the newly synthesized controller (l. 19). (l. 20).
(d) To ensure the accuracy of the trust-region subproblem, we compare the dif-

ference in the controller cost to the difference predicted by the trust-region
subproblem and tune the trust-region radii accordingly (l. 20).

(e) If the newly synthesized controller has a lower cost than the current controller
candidate, the step is accepted and we update all necessary values (l. 23–24).
We terminate the algorithm if the change from the previous best parameters to
the current best parameters is small enough (l. 26). Otherwise, we recompute
an updated parameterized feedforward reachable set (l. 29) and continue with
(iii-a).

The remainder of this section explains iPROC in more detail: We start by introducing
the feedback matrix parameterization using LQR control in Sec. 6.3.1 and describe the
closed-loop reachable set computation of the combined controller in Sec. 6.3.2. We
then derive the controller cost as an approximation to (6.3) in Sec. 6.3.3. Because
the evaluation of the cost is computationally expensive, we compute a locally accurate
approximation to the parameterized feedforward reachable set in Sec. 6.3.4, which is then
used in Sec. 6.3.5 to construct the trust-region subproblem in each iteration to locally
approximate the controller cost. In Sec. 6.3.6, we then derive tuning rules for the trust-
region radii, which limit the domain of the controller parameters to a local neighborhood
around the current controller parameters, to guarantee an accurate approximation of
the controller cost. Since the trust-region subproblem is a differentiable optimization
problem, we demonstrate the computation of necessary derivatives using differentials in
Sec. 6.3.7. Since the proposed algorithm strongly benefits from good initial guesses for
the controller parameters, we briefly discuss possible initial guesses in Sec. 6.3.8 and then
derive the computational complexity, both online and offline, for the iPROC approach
in Sec. 6.3.9. Finally, we demonstrate the applicability of iPROC with a comparison to
the ROC approach in numerical experiments in Sec. 6.3.10, and discuss advantages of
the algorithm in Sec. 6.3.11.

6.3.1 Feedback Matrix Parameterization
Directly optimizing over K(j) for 0 ≤ j ≤ mc − 1 requires mcnxnu variables since
K(j) ∈ Rnu×nx . In Sec. 6.2.1, this same parameterization has already been introduced;
in this section, we focus on the necessary, additional requirements to use this parame-
terization for iPROC. First, we briefly motivate the choice of LTI systems for the LQR
control approach. Then, we further show that the LQR feedback matrix is continuously
differentiable in the controller parameters z, which is a necessary requirement to later
optimize over them (see Sec. 6.3.5).
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Initial reachable set

Reachable set during optimization

Final reachable set

R ([0, tf ]) Rxff ([0, tf ]) xf

R (tf) Rxff (tf) X (0)

Figure 6.2: Visualization of the iPROC approach. Starting from an initial guess for both the
feedforward controller parameters as well as state and input weighting matrices of
the LQR formulation, the feedforward controller steers the reachable set closer to
the target state while the feedback controller simultaneously minimizes the effect
of the disturbance.
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Algorithm 6 Iterative Polynomial Reachset Optimal Control
1: function iterPolyReachsetOptimalControl(X (0),U ,X ,Xf ,W,mc, xf , κ)
2: γ = η = 1
3:

[
P̄, Q̄, R̄

]
= initGuess(...) ▷ Sec. 6.3.8

4: z̄ =
[
P̄ T

(:), Q̄T
(:), R̄T

(:)

]T

5: R̄xff = reachFF(X (0), P̄, tf , κ) ▷ see Sec. 5.2.5.2 with ms = h = 1
6:

[
R̃xff , γ

]
= reachParamFF(X (0), P̄, γ, R̄xff , tf , κ) ▷ Sec. 5.4.2

7:
[
R̄ext, K̄

]
= reach(X (0), z̄, R̃xff , tf , κ) ▷ Sec. 6.3.2

8: J̄ = cost(R̄ext) ▷ Sec. 6.3.3
9: for k = 1; k ≤ lmax; k + + do

10: ẑ = TRSubProblem(z̄, γ, η, R̃xff , R̄ext,U ,X ,Xf) ▷ Sec. 6.3.5
11: try
12:

[
R̂ext, K̂

]
= reach(X (0), ẑ, R̃xff , tf , κ) ▷ Sec. 6.3.2

13: catch
14: γ = 1

2γ
15: η = 1

2η

16:
[
R̃xff (t, P ) , γ

]
= reachParamFF(X (0), P̄, γ, R̄xff , tf , κ) ▷ Sec. 5.4.2

17: continue
18: end try
19: Ĵ = cost(R̂ext) ▷ Sec. 6.3.3
20: [γ, η] = tuneRadii(γ, η, R̃xff , R̄ext, R̂ext, J̄, Ĵ) ▷ Sec. 6.3.6
21: if Ĵ < J̄ then
22: ν = tol

(
Ĵ, J̄

)

23: z̄ = ẑ, J̄ = Ĵ , R̄ext = R̂ext, K̄ = K̂

24: R̄xff =
[
R̄ext

]
(nx+(1:nx))

25: if ν < µ then
26: break
27: end if
28: end if
29:

[
R̃xff (t, P ) , γ

]
= reachParamFF(X (0), P̄, γ, R̄xff , tf , κ) ▷ Sec. 5.4.2

30: end for
31: return P̄ , K̄,

[
R̄ext

]
(1:nx)

32: end function

132
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LTI systems: We now derive the LTI systems required for the computation of the
feedback matrices using LQR control. We split the state

x (t, z) = xff (t, P ) + ∆x (t, z) , (6.18)

where P are the feedforward parameters, and z =
[
P T

(:), QT
(:), RT

(:)

]T
are the combined

controller parameters with LQR weighting matrices Q ∈ Snx×nx
++ and R ∈ Snu×nu

++ . Since
the feedback controller tries to follow the undisturbed feedforward state xff and x =
xff +∆x, we ideally try to steer ∆x to the origin. For the mc feedback matrices K (t, z) =
K(j) (z) with t ∈ τ (j) and 0 ≤ j ≤ mc − 1 that need to be computed, we can thus
compute the mc LTI systems required for LQR control by performing a first-order Taylor
expansion of ∆ẋ = f (x, u, w) − f (xff , uff , 0) around x = xff , u = uff and w = 0, which
yields (arguments omitted where clear from the context for readability)

∆ẋ = ẋ− ẋff = f (x, u, w)− f (xff , uff , 0)

≈ f (xff , uff , 0) + ∂f (x, u, w)
∂x

∣∣∣∣x=xff
u=uff
w=0

(x− xff)

+ ∂f (x, u, w)
∂u

∣∣∣∣x=xff
u=uff
w=0

(u− uff) + ∂f (x, u, w)
∂w

∣∣∣∣x=xff
u=uff
w=0

w

− f (xff , uff , 0)

≈A(j)
cl (z) ∆x+ E(j) (P )w, (6.19)

since u (t, x (0) , z) = uff
(
x (0) , P (j)

)
+K(j) (z) ∆x (t, z) for t ∈ τ (j) with 0 ≤ j ≤ mc−1

(see (6.1)) and where

A(j) (P ) = ∂f (x, u, w)
∂x

∣∣∣∣x=x
(j)
lin (P )

u=u
(j)
lin (P )

w=0

, (6.20)

B(j) (P ) = ∂f (x, u, w)
∂u

∣∣∣∣x=x
(j)
lin (P )

u=u
(j)
lin (P )

w=0

, (6.21)

E(j) (P ) = ∂f (x, u, w)
∂w

∣∣∣∣x=x
(j)
lin (P )

u=u
(j)
lin (P )

w=0

, (6.22)

A
(j)
cl (z) = A(j) (P ) +B(j) (P )K(j) (z) , (6.23)

with

x
(j)
lin (P ) = 1

2 (c̃xff (jtc, P ) + c̃xff ((j + 1) tc, P )) ,

u
(j)
lin (P ) = cuff

(
P (j)

)
.
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Here,

Ẑ
({
ū
(
β, P (j)

)}
β

)
=
〈
cuff

(
P (j)

)
, Guff

(
P (j)

)〉
Z
, 0 ≤ j ≤ mc − 1,

Ẑ
(
R̃xff (t, P )

)
=
〈
c̃xff (t, P ) , G̃xff (t, P )

〉
Z
,

are the zonotope outer approximations of
{
ū
(
β, P (j)

)}
β

and R̃xff (t, P ) from (5.21)

and (5.44) for ms = 1, whose centers c̃xff (t, P ) and cuff

(
P (j)

)
are used to define the

linearization points for the linearized matrices in (6.20) to (6.22). As a result, we use
the feedforward input and the parameterized feedforward reachable set to extract their
centers as approximations for a reference trajectory parameterized in P ; the zonotope
outer approximation is a preferred approximation of the geometric center (see Ex. 5.2).
Note that in (6.19), we replaced the implicit dependence of the linearized dynamics
on the initial state xff (0) = x (0) with c̃xff (0, P ): This approximation is motivated by
the fact that the feedforward controller generally minimizes the size of the undisturbed
reachable set and the feedback controller minimizes the effect of the disturbance.

If controllability for all P can be assumed, the LQR parameterization K (t, z) =
K(j) (z) using the weighting matrices Q ∈ Snx×nx

++ and R ∈ Snu×nu
++ – which are constant

for the entire time horizon – and the system matrices A(j) (P ) and input matricesB(j) (P )
is then well-defined and motivated as follows: By design, LQR then yields the stable
closed-loop system matrices A(j)

cl (z) (see (6.23)) and thus tries to bring ∆x, which is
approximately described by the mc systems

(
A

(j)
cl (z) , E(j) (P )

)
, to the origin. While

keeping Q and R constant over the entire horizon reduces the number of optimization
variables, it may also reduce the overall performance of the controller as we limit the
range of possible feedback matrices. If this extra performance is required, one may
introduce separate weighting matrices for each of the mc LTI systems. Alternatively,
one can also directly optimize over K(j), in which case controllability is not required;
however, this means that one may also generate non-stabilizing feedback matrices.

Differentiability: In Prop. 3.1, we showed that the abstracted synthesis problem can be
replaced by a smooth optimization problem which shares its minimum. Since Prop. 3.1
requires all involved functions to be sufficiently smooth, we must show that the LQR
feedback matrix K(j) (z) is continuously differentiable with respect to z.
Lemma 6.1 (Continuous Differentiability of LQR Matrix). Let (A (P ) , B (P )) for P ∈
[−1, 1]mcnu×a denote an nx-dimensional controllable LTI system, where A (P ) and B (P )
are k-times continuously differentiable in each matrix element. Then the LQR gain
matrix K (z) for the system (A (P ) , B (P )) and weight matrices Q ∈ Snx×nx

++ and R ∈
Snu×nu

++ is k-times continuously differentiable with respect to the collected variables z =[
P T

(:), QT
(:), RT

(:)

]T
.

Proof. We first prove the differentiability of X with respect to z. The algebraic Riccati
equation (see (2.25)) is

F (z) = A (P )T X (z) +X (z)A (P )−X (z)B (z)R−1B (P )T X (z) +Q = 0.
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6.3 Iterative Polynomial Reachset Optimal Control

From the implicit function theorem [27, Th. 1B.1, Prop. 1B.5], we know that X(:) (z)
exists, is unique and k-times differentiable in a neighborhood around z if det

( dF(:)
dX(:)

)
̸= 0.

Since K = −R−1BTX (see (2.24)), we have

dF = AT dX + dXA− dXBR−1BTX −XBR−1BT dX
= (A+BK)T dX + dX (A+BK)

(2.1)⇐⇒ dF(:) =
(
Inx ⊠ (A+BK)T + (A+BK)T ⊠ Inx

)
dX(:),

and thus
dF(:)
dX(:)

= AT
cl ⊞AT

cl,

where we used the definition of the Kronecker sum and Acl = A + BK. Since Acl is
stable by design, i.e., real (λ (Acl)) < 0, it follows that real

(
λ
(
AT

cl ⊞AT
cl

))
< 0 [70, Th.

13.16] and thus det
( dF(:)

dX(:)

)
= det

(
AT

cl ⊞AT
cl

)
̸= 0. As a result, X (z) exists, is unique,

and k-times continuously differentiable in a neighborhood around z, and since we made
no assumptions about z, the result follows for all P ∈ [−1, 1]mcmsnu×a, Q ∈ Snx×nx

++ , and
R ∈ Snu×nu

++ .
The differentiability of K then directly follows from (2.24) and the fact that R ∈

Snu×nu
++ .

Remark: As it turns out, one can use Lem. 6.1 to derive an analytic approximation of
the LQR matrix with arbitrary precision, which we now briefly sketch. The second-order
Taylor expansion of Kij (z) for 1 ≤ i ≤ nu and 1 ≤ j ≤ nx around some expansion point
z̄ ∈ Rnz is given by

Kij (z) = Kij (z̄) + JKij (z̄) (z − z̄) + 1
2 (z − z̄)T HKij (z̄) (z − z̄) +R

(3)
ij (z − z̄) , (6.24)

where R(3)
ij (z − z̄) is the remainder of the second-order Taylor expansion in (6.24) and

[29, Corr. 7.2]

lim
z−z̄→0

R
(3)
ij (z − z̄)
∥z − z̄∥32

= 0. (6.25)

Thus, if we want to compute K (ẑ) for some ẑ ∈ Rnz starting from z̄, we apply (6.24)
recursively n ∈ N+ times, yielding

Kij

(
z(k+1)

)
= Kij

(
z(k)

)
+ JKij

(
z(k)

) (
z(k+1) − z(k)

)

+ 1
2
(
z(k+1) − z(k)

)T
HKij

(
z(k)

) (
z(k+1) − z(k)

)
+R

(3)
ij

(
z(k+1) − z(k)

)

= Kij

(
z(k)

)
+ JKij

(
z(k)

)
∆z + 1

2∆zTHKij

(
z(k)

)
∆z +R

(3)
ij (∆z) ,
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Figure 6.3: Visualization of the decrease in error for the recursive approximation of the LQR
feedback matrix as defined in (6.26) and (6.27).

where ∀k ∈ {1, . . . , n− 1} : ∆z = z(k+1) − z(k) = ẑ−z̄
n , ẑ = z(n) and JKij

(
z(k)

)
and

HKij

(
z(k)

)
can be computed using Lem. 6.1. Since R(3)

ij (∆z) tends to 0 at least as fast
as ∥∆z∥32 for ∆z → 0 (see (6.25)) and increasing n dercreases ∥∆z∥2, the total error
nR

(3)
ij (∆z) shrinks for increasing n. We define

K
(1)
ij

(
z(k+1)

)
= Kij

(
z(k)

)
+ JKij

(
z(k)

)
∆z, (6.26)

K
(2)
ij

(
z(k+1)

)
= Kij

(
z(k)

)
+ JKij

(
z(k)

)
∆z + 1

2∆zTHKij

(
z(k)

)
∆z. (6.27)

The following example demonstrates the expected decrease in error with increasing n.

Example 6.1. Let an LTI system (A,B) with A = 1 and B = 1, where nx = 1 and
nu = 1, be given. Further, we set Q̄ = R̄ = 1 so that z̄ =

[
1, 1

]T
since we assume that

A and B are constant and thus omit the feedforward parameters in z. Fig. 6.3 visualizes
the error of the first-order and second-order approximations in (6.26) and (6.27) with
ẑ =

[
10, 5

]T
for increasing n. As expected, the error decreases for increasing n and the

second-order approximation achieves a smaller error for the same n and large enough n.
■
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6.3.2 Closed-Loop Reachable Set
During each iteration of Alg. 6, an outer approximation to the extended closed-loop
reachable set needs to be computed. The combined controller for t ∈ τ (j) with 0 ≤ j ≤
mc − 1 is given by (see (6.1))

u (t, x, z) = uff
(
x (0) , P (j)

)
+K(j) (z) (x (t)− xff (t)) ,

where uff
(
x (0) , P (j)

)
is defined as in (5.20).

To retain dependencies of the combined state, feedforward state, and feedforward
input on the initial state during the closed-loop reachable set computation, we define
the extended state xext =

[
xT , xT

ff , uT
ff

]T
with the extended flow given by

fext (xext, w) =



f (x, uff +K (t, z) (x− xff) , w)

f (xff , uff , 0)
0


 ,

and the extended initial set

X (0)
ext (P ) =








x(0) (β)
x(0) (β)

ū
(
β, P (0)

)








β

.

Reachability analysis then yields

Rext (t, z) =







rx (t, β, ξ, z)
rxff (t, β, ξ, P )
ū
(
β, P (0)

)








β,ξ

,

for t ∈ [0, 1] tc, where rx and rxff denote the respective generating functions and the
dependent factor ξ is caused by the abstraction and reduction errors as well as the
convex combination required for the computation of the time-interval reachable sets.
The extended initial set for t ∈ [1, 2] tc then is

X (1)
ext (z) =







rx (tc, β, ξ, z)
rxff (tc, β, ξ, P )
ū
(
β, P (1)

)








β,ξ

,

from which the remaining mc − 1 steps until t = tf follow analogously.

6.3.3 Cost of the Controller
In this section, we approximate (6.3) with a cost function. To that end, let the ex-
tended closed-loop reachable set Rext (t, z) at z (see Sec. 6.3.2), containing an outer
approximation of the closed-loop reachable set R (t, z) and an outer approximation of
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the closed-loop feedforward reachable set Rxff (t, P ), be available for mr ∈ N+ reacha-
bility steps, i.e., interval sets for t ∈ [k, k + 1] tc

mr
and time point sets for t = k tc

mr
with

0 ≤ k ≤ mcmr − 1 are given.
The remainder of this section is structured as follows: First, we review the split of the

state and the input, which simplifies all subsequent computations. Then, we approximate
the objective function and constraints of (6.3) and form the cost as an approximation
to (6.3).

State and input separation: Let the split of the state be defined as in (6.18), where P
are the feedforward parameters, and z =

[
P T

(:), QT
(:), RT

(:)

]T
are the combined controller

parameters (for details see Sec. 6.3.1)). Further, let

∆x (t, z) ∈ S∆x (t, z) = R (t, z)⊕e (−Rxff (t, P )) , (6.28)

collect all ∆x as defined in (6.18) (we use S∆x instead of R∆x since a reachable set
requires a flow equation according to Def. 2.25). By definition of the exact sum, we have

x (t, z) ∈ R (t, z) = Rxff (t, P )⊕e S∆x (t, z) ⊆ Rxff (t, P )⊕ S∆x (t, z) , (6.29)

where the last inclusion follows from the fact that ignoring dependencies always results in
an outer approximation. By removing these dependencies, Rxff (t, P ) can be computed
independently of S∆x (t, z). Naturally, the removal of these dependencies introduces
conservatism but we argue that this does not cause a large outer approximation: Without
any disturbances, S∆x (t, z) = ∅ and thus R (t, z) = Rxff (t, P ). As the disturbance set
grows, the size of S∆x (t, z) is mainly affected by the size of the disturbance set (see
Sec. 6.3.4 for the derivation of the approximated flow of ∆x).

Similarly, one can define an input separation following (6.4) as

Su (t, z) = Suff (t, P )⊕e S∆u (t, z) ⊆ Suff (t, P )⊕ S∆u (t, z) , (6.30)

where the set of feedforward inputs is given by Suff (t, z) =
{
ū
(
β, P (j)

)}
for t ∈ τ (j) with

0 ≤ j ≤ mc − 1 and S∆u (t, z) contains all input deviations ∆u (t, z) = K (t, z) ∆x (t, z)
as defined in (6.5) and (6.6).

Objective: Based on the separation of the reachable set into the feedforward reachable
set Rxff (t, P ) and the set of deviation states S∆x (t, z) from (6.29) as well as the cor-
responding separation of the combined input into the feedforward input set Suff (t, P )
and the set of deviation inputs S∆u (t, z) from (6.30), we bound the objective function
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in (6.3a) from above by

max
x(t,z)∈R(t,z)

{
∥x (tf , z)− xf∥1 + ζ

∫ tf

0
∥u (τ, x, z)∥1 dτ

}

= max
xff(t,P )∈Rxff (t,P )
∆x(t,z)∈S∆x(t,z)
∆u(t,z)∈S∆u(t,z)

∥β∥∞≤1

{
∥xff (tf , P ) + ∆x (t, z)− xf∥1

+ ζ
mc−1∑

j=0

mr−1∑

k=0

∫ jtc+(k+1)δ

jtc+kr

∥∥∥ū
(
β, P (j)

)
+ ∆u (τ, z)

∥∥∥
1

dτ
}

≤ max
∥ξ∥∞≤1

∥cxff (tf , P )− xf +Gxff (tf , P ) ξ∥1 + max
∆x(tf ,z)∈Z∆x(tf ,z)

∥∆x (tf , z)∥1

+ ζ
mc−1∑

j=0

mr−1∑

k=0

∫ jtc+(k+1)δ

jtc+kr

(
max

∥ξ∥∞≤1

∥∥∥cuff

(
P (j)

)
+Guff

(
P (j)

)
ξ
∥∥∥

1

+ max
∆u(τ,z)∈Z∆u(τ,z)

∥∆u (τ, z)∥1
)

dτ

≤
∥∥∥∥∥

[
cxff (tf , P )− xf
[Gxff (tf , P )](:)

]∥∥∥∥∥
1

+ 1T
nx

max
(
ρ

(Z)
∆x (−Inx , tf , z) , ρ

(Z)
∆x (Inx , tf , z)

)

+ ζδ
mc−1∑

j=0

mr−1∑

k=0

(∥∥∥∥∥∥



cuff

(
P (j)

)

Guff

(
P (j)

)
(:)



∥∥∥∥∥∥

1

+ 1T
nu

max
(
ρ

(Z)
∆u

(
−Inu , τ

(j,k), z
)
, ρ

(Z)
∆u

(
Inu , τ

(j,k), z
)))

,

where

Zxff (t, P ) = Ẑ (Rxff (t, P )) = ⟨cxff (t, P ) , Gxff (t, P )⟩Z , (6.31a)
Z∆x (t, z) = Ẑ (R (t, z)⊕e (−Rxff (t, P ))) , (6.31b)

Zuff (t, P ) = Ẑ
({
ū
(
β, P (j)

)}
β

)
=
〈
cuff

(
P (j)

)
, Guff

(
P (j)

)〉
Z
, (6.31c)

Z∆u (t, z) = K (t, z)Z∆x (t, z) , (6.31d)

are the zonotope outer approximations of Rxff (t, P ), Suff (t, P ), S∆x (t, z), and S∆u (t, z)
with ρ

(Z)
xff (·, t, z), ρ(Z)

∆x (·, t, z), ρ(Z)
uff (·, t, z), and ρ

(Z)
∆u (·, t, z) denoting the corresponding

support functions: The first inequality follows from the separation of xff and ∆x as
well as uff and ∆u using the triangle inequality, where we replaced all sets with their
respective zonotope outer approximations as defined in (6.31). The second inequality
then follows from applying the triangle inequality again to separate the center and the
generators for states and inputs (also see Sec. 5.2.4). Furthermore, it holds that

max
∆x(t,z)∈Z∆x(t,z)

∥∆x (tf , z)∥1 = 1T
nx

max
(
ρ

(Z)
∆x (−Inx , tf , z) , ρ

(Z)
∆x (Inx , tf , z)

)
,
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which follows from 0 ∈ Z∆x (t, z) and the central symmetry of Z∆x (t, z) since it is a
zonotope. Similarly, it holds that

max
∆u(τ,z)∈Z∆u(τ,z)

∥∆u (τ, z)∥1 = 1T
nu

max
(
ρ

(Z)
∆u (−Inu , τ, z) , ρ

(Z)
∆u (Inu , τ, z)

)
.

Constraints: We conservatively encode the constraints of (6.3) as

∀t ∈ [0, tf ] : Zuff (t, P )⊕Z∆u (t, z) ⊆ U , (6.32)
Zxff ([0, tf ] , z)⊕Z∆x ([0, tf ] , z) ⊆ X , (6.33)

Zxff (tf , z)⊕Z∆x (tf , z) ⊆ Xf , (6.34)

where we used (6.29) and (6.30) and replaced all sets with their respective zonotope
outer approximations from (6.31). Let

ρ(Z)
x (·, τ, z) = max

τ̄∈Tτ (mcmr)

(
ρ(Z)

xff (·, τ̄, z) + ρ
(Z)
∆x (·, τ̄, z)

)
,

ρ(Z)
u (·, τ, z) = max

τ̄∈Tτ (mcmr)

(
ρ(Z)

uff (·, τ̄, z) + ρ
(Z)
∆u (·, τ̄, z)

)
,

with
Tτ (n) =

{
τ̄ = [o, o+ 1] tf

n

∣∣∣∣ 0 ≤ o ≤ n− 1, τ ∩ τ̄ ̸= ∅
}
, (6.35)

for some interval τ ∈ [0, tf ]. Following Prop. 4.6, the set containment constraints in
(6.32) to (6.34) can thus be encoded by

g (z) =



ρ

(Z)
u (CU , [0, tf ] , z)− dU
ρ

(Z)
x (CX , [0, tf ] , z)− dX
ρ

(Z)
x (CXf , tf , z)− dXf


 ≤ 0, (6.36)

since the bounded input constraints U = ⟨CU , dU ⟩H , state constraints X = ⟨CX , dX ⟩H ,
and final state constraints Xf = ⟨CXf , dXf ⟩H are all given as H-polytopes.

Cost: Thus, we propose the cost function (also see (5.42))

J (z) = ∥cxff (tf , P )− xf∥1 +
∥∥∥[Gxff (tf , P )](:)

∥∥∥
1

+ 1T
nx

max
(
ρ

(Z)
∆x (−Inx , tf , z) , ρ

(Z)
∆x (Inx , tf , z)

)

+ ζδ
mc−1∑

j=0

mr−1∑

k=0

(∥∥∥∥∥∥



cuff

(
P (j)

)

Guff

(
P (j)

)
(:)



∥∥∥∥∥∥

1

+ 1T
nu

max
(
ρ

(Z)
∆u

(
−Inu , τ

(j,k), z
)
, ρ

(Z)
∆u

(
Inu , τ

(j,k), z
)))

+ σ ∥max (0, g (z))∥1 ,

(6.37)

where we penalize the constraint violation by choosing the exact penalty multiplier
σ ∈ R+ large enough such that constraint violations always dominate all other terms in
(6.37) (see Sec. 5.4.1).
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6.3.4 Parameterized Reachable Set

In Sec. 5.4.2, we described how the feedforward trust-region radius γ can be used to
construct an approximation of the feedforward reachable set for the iPGSC approach
that can be brought arbitrarily close to the tight outer approximation of the closed-loop
feedforward reachable set. In this section, we derive how this approximation can be
used to approximate the closed-loop reachable set for the combined controller – which is
required to solve (6.3) – without recomputing outer approximations of the closed loop
reachable set during each optimization iteration.

Using the state separation from (6.29) allows us to compute the parameterized feed-
forward reachable set of xff independently of ∆x. Since the parameterized feedforward
reachable set can be computed as described in Sec. 5.4.2, we first derive an approximated
flow for ∆x, and then discuss how this flow can be used to find an efficient approximation
for the set of deviation vectors S∆x (t, z). That said, we only need the support function
of this approximation in all directions which are normal to the half-spaces of the poly-
topic input, state, and final state constraints (see (6.37)); since Rext (t, z̄) is available for
the current controller parameters z̄ (see Alg. 6) and thus ρ(Z)

∆x (·, t, z̄) can be efficiently
computed, we next construct an approximation for the support function of ∆x that only
approximates the unknown difference from ρ

(Z)
∆x (·, t, z̄) to ρ(Z)

∆x (·, t, z).

Approximated reachable set: Let the sequence of LTI systems for ∆x as derived in
Sec. 6.3.1 with Acl (t, z) = A

(k)
cl (z) and E (t, P ) = E(k) (P ) for 0 ≤ k ≤ mcmd be given,

where instead of mc LTI systems, we linearize mcmd times: One may introduce md ∈ N+
to obtain a better approximation of the original nonlinear dynamics. Since these LTI
systems only approximate the flow for ∆x, we can only compute an approximation of
S∆x (t, z). To that end, we compute the reachable set of the linearized flow in (6.19)
using reachability analysis for linear systems (see Sec. 2.7.1)

R̃(Z)
∆x (t+ δ, z) = eAcl(t,z)δR̃(Z)

∆x (t, z)⊕
∫ δ

0
eAcl(t,z)(δ−τ)E (t, P )W dτ, (6.38)

for t + δ ≤ tf with R̃(Z)
∆x (0, z) = {0}. In contrast to S∆x (t, z), its approximation

R̃(Z)
∆x (t, z) has a flow and thus is a reachable set. Since W is given as a zonotope

and the dynamics consist of mcmd LTI systems, one can compute an arbitrarily tight
outer approximation of the reachable set in (6.38) [114, Sec. IV.A]. However, since
R̃(Z)

∆x (t, z) will be formed in each optimization iteration of the trust-region subproblem
problem later, its growing representation size due to the repeated Minkowski sums (see
Sec. 2.6.5) when increasing mc or md means additional computational effort, especially
since we want to compute both Jacobian and Hessian matrices for the optimization
of the trust-region subproblem. To maintain a constant representation size, we thus
propose to evaluate (6.38) using ellipsoids. With W̄ = Ê (W) being an ellipsoid outer
approximation of W according to Th. 4.1, we compute the ellipsoidal reachable set of
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the linearized flow of the mcmd LTI systems with [65, Lem. 2.2]

R̃(E)
∆x (t+ δ, z) = eAcl(t,z)δR̃(E)

∆x (t, z)⊕
∫ δ

0
eAcl(t,z)ϕE (t, P ) E (0, QW) dϕ. (6.39)

Since the representation size of ellipsoids remains constant, there is no need to manually
approximate the integral in (6.39) and we can directly use numerical integration methods
(see Sec. 6.3.7 for more details on computing (6.39)). However, while ellipsoids are
closed under linear maps, the Minkowski sum of two ellipsoids is not an ellipsoid in
general (see Sec. 2.6.3). While efficient methods for the outer approximation of the
Minkowski sum exist [47], finding the minimum-volume ellipsoid is not required for
our purposes since we only need a good enough approximation. To save computation
time, we instead propose to approximate this Minkowski sum by simply adding their
respective shape matrices. While this does not result in an outer approximation, we
argue that it is a good approximation of the Minkowski sum up to a scaling factor:
First, for two ellipsoids ⟨0, U⟩E with U ∈ Sn×n

++ and ⟨0, V ⟩E with V ∈ Sn×n
++ , it holds that

⟨0, U⟩E ⊕ ⟨0, V ⟩E ⊆
〈
0, 1

α1
U + 1

α2
V
〉

E
for α1 + α2 = 1 and α1, α2 > 0 [28, Th. 4.2].

Choosing α1 = α2 = 1
2 thus means that an outer approximation of the Minkowski sum is

given by the sum of their shape matrices, scaled by a scalar factor (here 2). Second, we
can interpret the two ellipsoids ⟨0, U⟩E and ⟨0, V ⟩E as confidence ellipsoids of two zero-
mean, independently distributed Gaussian random variables with covariance matrices Q
and U , respectively [81]. Then ⟨0, U⟩E and ⟨0, V ⟩E describe an area of the support of
the two underlying random variables such that any realization of these random variables
lies within ⟨0, U⟩E and ⟨0, V ⟩E with some probability. It follows that the covariance
matrix of the sum of these two random variables is given by the sum of the covariance
matrices of each random variable.

Approximated support function: So denote with R̃(E)
∆x (t, z) = E (0, D∆x (t, z)) the

propagation of W̄ through (6.39), where we replace the Minkowski sum of two ellip-
soids with the sum of their respective shape matrices. We now derive the approximated
support function ρ̃∆x (·, t, z) of ρ(Z)

∆x (·, t, z).
We start with the support function of R̃(E)

∆x (t, z), which is given by

ρ̃
(E)
∆x (l, t, z) =

√
lTD∆x (t, z) l + ϵ, (6.40)

where l ∈ Rnx and ϵ≪ 1 to achieve differentiability for all z since

∀l ∈ Rnx : lTD∆x (t, z) l ≥ 0,

due to D∆x (t, z) ⪰ 0. Using the support function ρ̃
(E)
∆x (l, t, z) of R̃(E)

∆x (t, z) and the
known support function value ρ(Z)

∆x (l, t, z̄) at the current controller parameters z̄, we are
now ready to define the approximation of the support function ρ

(Z)
∆x (l, t, z) using the

support function ρ̃
(E)
∆x (l, t, z) of the ellipsoidal reachable set R̃(E)

∆x (t, z) as

ρ̃∆x (l, t, z) = ρ
(Z)
∆x (l, t, z̄) + χ∆x (l, t)

(
ρ̃

(E)
∆x (l, t, z)− ρ̃(E)

∆x (l, t, z̄)
)
, (6.41)
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Figure 6.4: Visualization (1D) of the approximation of the support function ρ(Z)
∆x (l, t, z): Gen-

erally, we assume that d
dz ρ̃

(E)
∆x (l, t, z) approximates the d

dzρ
(Z)
∆x (l, t, z̄) reasonably

well for z ∈
[
z(−), z(+)] = [z̄ − r, z̄ + r] with a given radius r ∈ R+; for illus-

trative purposes, we here thus assume sign
(
ρ̃

(E)
∆x (l, t, z)

)
= sign

(
ρ

(Z)
∆x (l, t, z)

)
for

z ∈
[
z(−), z(+)] (see right plot). With appropriate scaling, we obtain the reasonable

approximation ρ
(Z)
∆x (l, t, z̄) with ρ̃∆x (l, t, z̄) = ρ

(Z)
∆x (l, t, z̄) (see left plot).

where χ∆x (l, t) = ρ
(Z)
∆x

(l,t,z̄)
ρ̃

(E)
∆x

(l,t,z̄)
: Since ρ̃(E)

∆x (l, t, z) is calculated based on various approxima-
tions we made previously, we do not assume that its magnitude is accurate. Instead, we
define the scaling function χ∆x (l, t) which is chosen such that the scaled approximation
is identical to the support function of the outer approximation, i.e.

ρ
(Z)
∆x (l, t, z̄) = χ∆x (l, t) ρ̃(E)

∆x (l, t, z̄) ,

holds for z = z̄. Using the scaled approximation χ∆x (l, t) ρ̃(E)
∆x (l, t, z), we then only

approximate the unknown difference

ρ
(Z)
∆x (l, t, z)− ρ(Z)

∆x (l, t, z̄) ≈ χ∆x (l, t)
(
ρ̃

(E)
∆x (l, t, z)− ρ̃(E)

∆x (l, t, z̄)
)
,

so that we recover ρ̃∆x (l, t, z̄) = ρ
(Z)
∆x (l, t, z̄) by substitution of z = z̄ into (6.41). Fig. 6.4

visualizes this approximation using a 1D example.
An approximation of the support function for the set of input deviations S∆u (t, z)

can be derived analogously. Since Suff (t, z) is known, it only remains to compute an
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approximation of the support function of S∆u (t, z) to approximate the input constraint
in (6.3b). It follows from (6.6) that S∆u (t, z) = K (t, z)S∆x (t, z), and thus

S̃(E)
∆u (t, z) = K (t, z) R̃(E)

∆x (t, z) =
〈
0,K (t, z)D∆x (t, z)K (t, z)T

〉
E
.

With

ρ̃
(E)
∆u (l, t, z) =

√
K (t, z)D∆x (t, z)K (t, z)T + ϵ, (6.42)

given analogously to (6.40), we can – equivalently to (6.41) – define

ρ̃∆u (l, t, z) = ρ
(Z)
∆u (l, t, z̄) + χ∆u (l, t)

(
ρ̃

(E)
∆u (l, t, z)− ρ̃(E)

∆u (l, t, z̄)
)
, (6.43)

as an approximation to the support function ρ(Z)
∆u (·, t, z) of Z∆u (t, z) as defined in (6.31d)

with χ∆u (l, t) = ρ
(Z)
∆u

(l,t,z̄)
ρ̃

(E)
∆u

(l,t,z̄)
.

Combining (6.29) with (6.41) and (6.30) with (6.43) finally yields

ρ̃x (l, t, z) = ρ̃(Z)
xff (l, t, P ) + ρ̃∆x (l, t, z) , (6.44)

ρ̃u (l, t, z) = ρ(Z)
uff (l, t, P ) + ρ̃∆u (l, t, z) , (6.45)

where we used (2.26), ρ̃(Z)
xff (l, t, P ) denotes the support function of the feedforward reach-

able set approximation Ẑ
(
R̃xff (t, P )

)
according to Sec. 5.4.2, and ρ

(Z)
uff (l, t, P ) denotes

the support function of Zuff (t, z) as defined in (6.31c). Choosing md large enough fur-
ther motivates the use of (6.44) and (6.45) to obtain the approximated support functions
for time intervals (instead of time points in (6.44) and (6.45))

ρ̃∆x (l, [k, k + 1] δ, z) ≈ ρ̃∆x (l, (k + 1) δ, z) ,
ρ̃∆u (l, [k, k + 1] δ, z) ≈ ρ̃∆u (l, (k + 1) δ, z) .

For later convenience, we introduce the definition of the support function approximations
over any time interval τ ⊆ [0, tf ] as

ρ̃x (l, τ, z) = max
τ̄∈Tτ (mcmd)

(
max

τ̃∈Tτ̄ (mcmr)
ρ̃(Z)

xff (l, τ̃, P ) + ρ̃∆x (l, τ̄, z)
)
, (6.46)

ρ̃u (l, τ, z) = max
τ̄∈Tτ (mc)

(
ρ(Z)

uff (l, τ̃, P ) + max
τ̃∈Tτ̄ (mcmd)

ρ̃∆u (l, τ̄, z)
)
, (6.47)

where Tτ (·) is defined in (6.35), we assumed that mr ≥ md with mr being the number of
reachability steps per duration tc and md being the number of additional linearization
points for (6.20) to (6.22) per duration tc.
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6.3.5 Controller Computation

Ideally, we want to optimize over the controller cost in (6.37). However, its evaluation
requires the computation of an outer approximation of the closed-loop extended reach-
able set for each controller parameter value z, so that direct optimization over (6.37)
is computationally expensive. For the efficient, simultaneous synthesis of the combined
controller, we thus need to find a smooth approximation to (6.37). In Sec. 6.3.4, we al-
ready derived expressions for the approximated support function for both the combined
state and input set. In this section, we use these expressions to approximate (6.37).

Trust Region: As demonstrated in Sec. 5.4, the trust-region radius γ is required to
restrict P to a local, compact neighborhood around the current controller guess P̄ .
Similarly, we now introduce the trust-region radius η ∈ (0, 1] to restrict Q and R to local
neighborhoods of Q̄ ∈M(Q) and R̄ ∈M(R), respectively, i.e.

Q ∈M(Q)
η

(
Q̄
)
∩M(Q),

R ∈M(R)
η

(
R̄
)
∩M(R),

where M(Q) ⊂ Snx×nx
++ and M(R) ⊂ Snu×nu

++ are bounded, given sets from which Q and
R are chosen, and where

M(Q)
η

(
Q̄
)

=
{
Q̄+ hQ (ηM)

∣∣∣ ∥M∥∞ ≤ 1
}
, (6.48)

M(R)
η

(
R̄
)

=
{
R̄+ hR (ηN)

∣∣∣ ∥N∥∞ ≤ 1
}
, (6.49)

are bounded sets defined by the trust region η. Here, hQ : [−1, 1]p×q 7→ Snx×nx and
hR : [−1, 1]r×s 7→ Snu×nu can be any sufficiently smooth functions which generate sym-
metric matrices. That said, this creates semi-definite constraints in the final optimization
problem which can significantly impact solver times. Therefore, we restrict Q and R to
diagonal matrices, i.e., we set

hQ (ω) = diag
(
q̄ −

¯
q
)
ω,

hR (ξ) = diag (r̄ −
¯
r) ξ,

M(Q) =
{

diag (q̃)
∣∣∣ q̃ ∈

[

¯
q, q̄
]}
,

M(R) = {diag (r̃) | r̃ ∈ [
¯
r, r̄]} ,

with q̄ ≥
¯
q ∈ Rnx

+ , r̄ ≥
¯
r ∈ Rnu

+ , and dependent factors ω ∈ [−1, 1]nx and ξ ∈ [−1, 1]nu .
Additionally, we set

¯
q1 = q̄1 = 1 to eliminate the invariance of the LQR computation

under equal scaling of Q and R. We remark that more general choices are possible while
still avoiding positive definite constraints, e.g., one can generate symmetric, strictly
diagonally dominant matrices with real positive entries, which is sufficient to ensure
positive definiteness (follows from the Gershgorin Circle Theorem [11, Th. 0]).
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Optimization Problem: Starting from the current controller parameters collected in
z̄ =

[
P̄ T

(:), Q̄T
(:), R̄T

(:)

]T
, an approximation to the controller cost in (6.37) is given by

min
z,s

J̃TR (z, s) , (6.50a)

s.t. g̃ (z) ≤ s, (6.50b)

P ∈ Pγ

(
P̄
)
∩ [−1, 1]mcnu×a , (6.50c)

Q ∈M(Q)
η

(
Q̄
)
∩M(Q), (6.50d)

R ∈M(R)
η

(
R̄
)
∩M(R), (6.50e)

s =
[
sT

U , sT
X , sT

Xf

]T
≥ 0, (6.50f)

with

J̃TR (z, s) = ∥c̃xff (tf , P )− xf∥1 +
∥∥∥∥
[
G̃xff (tf , P )

]
(:)

∥∥∥∥
1

+ 1T
nx

max (ρ̃∆x (−Inx , tf , z) , ρ̃∆x (Inx , tf , z))

+ ζδ̃
mc−1∑

j=0

md−1∑

k=0

(∥∥∥∥∥∥



cuff

(
P (j)

)

Guff

(
P (j)

)
(:)



∥∥∥∥∥∥

1

+ 1T
nu

max
(
ρ̃∆u

(
−Inu , τ

(j,k), z
)
, ρ̃∆u

(
Inu , τ

(j,k), z
)))

+ σ ∥s∥1 ,

(6.51)

and

g̃ (z) =



ρ̃u (CU , [0, tf ] , z)− dU
ρ̃x (CX , [0, tf ] , z)− dX
ρ̃x (CXf , tf , z)− dXf


 , (6.52)

where σ ∈ R+ and δ̃ = tf
mcmd

:

• (6.50a) and (6.51): We replace the outer approximations used in (6.37) with their
respective approximations derived previously. Additionally, we have mcmd time
intervals instead of mcmr as in Sec. 5.4.1 and thus adapt the sum accordingly.
Lastly, we replace the constraint violation with a slack variable (see next bullet
point for more details).

• (6.50b): Instead of incorporating the constraints in the objective function, we
enforce input, state, and final state constraints with g̃ (z) ≤ s directly; however,
we relax these constraints with s ≥ 0 so that (6.50) always has a feasible solution,
even if there is no feasible solution for s = 0. To still ensure feasibility, we penalize
s in the objective function with σ ∈ R+.
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• (6.50c) to (6.50e): Because we replaced tight outer approximations of the closed-
loop reachable sets and input sets with their respective approximations, (6.50) is
only accurate in a neighborhood of z̄. We therefore restrict z to a bounded set
around z̄.

Since (6.50) can be written as the abstracted synthesis problem, it can be reformulated
as a smooth non-convex optimization problem according to Prop. 3.1 and the KKT
conditions are always necessary for this smooth reformulation due to Prop. 3.2. We
show in Sec. 6.3.6 that (6.50) can approximate (6.37) arbitrarily closely. For this proof,
we require a cost value of the trust-region solution only dependent on ẑ, which we
introduce subsequently.

Proposition 6.1 (Stationary Objective Value). At a first-order critical point of the
smooth reformulation of (6.50) with optimizer ẑ, the optimal objective value is given by

J̃ (ẑ) = J̃TR (ẑ,max (0, g̃ (ẑ))) , (6.53)

where g̃ (ẑ) is given by (6.52).

Proof. Follows from Prop. 3.1.

6.3.6 Tuning of Trust-Region Radii

Since the trust-region subproblem approximates the cost to find a new controller can-
didate, it is paramount to analyze how close this approximation is to the real cost;
otherwise, optimizing the trust-region problem might not decrease the actual cost of the
controller. However, if the trust-region subproblem and thus its approximated objective
value (see Prop. 6.1) is close enough to the real cost, optimizing (6.50) – and thus re-
ducing the approximated cost in (6.53) – also reduces the real cost in (6.37). In this
section, we therefore show that the trust-region radii γ and η can be tuned so that the
approximated cost described in Prop. 5.2 stays arbitrarily close to the actual controller
cost from (6.37).

To that end, we first define J̃∆x (z) equivalently to J̃ (z) but replace all approximated
feedforward sets and corresponding feedforward support functions with their respective
formally correct versions using the closed-loop feedforward reachable set available at z̄.
Intuitively, J̃∆x (z) then contains no inaccuracies (compared to J (z)) from approximat-
ing the feedforward reachable set and hence is only inaccurate due to inaccurate support
function approximations for ∆x and ∆u. We are now ready to state the main result of
this section.

Theorem 6.1 (Accurate Trust-Region Subproblem). Let ẑ denote a first-order critical
point of the reformulation of the trust-region subproblem in (6.50). Then

∣∣∣J (ẑ)− J̃ (ẑ)
∣∣∣ ≤ ϵ, (6.54)

147



6 Piecewise Constant Controller Synthesis with Continuous State Feedback

is achieved after a finite number of trust-region iterations with given tolerance ϵ > 0 if
we adapt the trust-region radii according to

γ ← min
(
1, v

(
max

(
eff,γ , e∆,γ

))
γ
)
, (6.55)

η ← min
(
1, v

(
e∆,η

)
η
)
, (6.56)

with

eff,γ =
∣∣∣J̃ (ẑ)− J̃∆x (ẑ)

∣∣∣ , (6.57)

e∆,γ =
∣∣∣J̃∆x

(
P̂, Q̄, R̄

)
− J

(
P̂, Q̄, R̄

)∣∣∣ , (6.58)

e∆,η =
∣∣∣J̃∆x (ẑ)− J̃∆x

(
P̂, Q̄, R̄

)
−
(
J (ẑ)− J

(
P̂, Q̄, R̄

))∣∣∣ , (6.59)

where v : (0;∞) 7→ R+, is an arbitrary, monotonically decreasing function with v (0) = c̄,
v (ψ) = 1, lim

r→∞ v (r) =
¯
c, 1

¯
c > c̄ > 1, and 0 ≤ ψ < ϵ.

Proof. The proof is structured as follows: We bound (6.54) from above by using (6.57)
to (6.59), and then show that all latter expressions can be made arbitrarily small by
following the tuning rules in (6.55) and (6.56).

It follows from the triangle inequality that
∣∣∣J̃ (ẑ)− J (ẑ)

∣∣∣

=
∣∣∣J̃ (ẑ)− J̃∆x (ẑ) + J̃∆x

(
P̂, Q̄, R̄

)
− J

(
P̂, Q̄, R̄

)

+ J̃∆x (ẑ)− J̃∆x

(
P̂, Q̄, R̄

)
−
(
J (ẑ)− J

(
P̂, Q̄, R̄

)) ∣∣∣

≤ eff,γ + e∆,γ + e∆,η. (6.60)

Since J̃∆x (ẑ) uses the outer approximation of the feedforward reachable set, it follows
that lim

γ→0
eff,γ = 0 since lim

γ→0
R̃xff

(
t, P̂

)
= R̃xff

(
t, P̄

)
= Rxff

(
t, P̄

)
(see (5.44)). Since

lim
γ→0

J̃∆x

(
P̂, Q̄, R̄

)
= J̃∆x (z̄), J̃∆x (z̄) = J (z̄) by construction, and lim

γ→0
J
(
P̂, Q̄, R̄

)
=

J (z̄), we further have lim
γ→0

e∆,γ = 0. Lastly, it holds that lim
η→0

J̃∆x (ẑ) = J̃∆x

(
P̂, Q̄, R̄

)

and lim
η→0

J (ẑ) = J
(
P̂, Q̄, R̄

)
because lim

η→0
ẑ =

[
P̂ T

(:), Q̄T
(:), R̄T

(:)

]T
, and therefore it holds

that lim
η→0

e∆,η = 0.
Hence we can always achieve eff,γ ≤ δ, e∆,γ ≤ δ, and e∆,η ≤ δ for δ > 0 by follow-

ing (6.55) and (6.56) for a finite number of steps, yielding
∣∣∣J̃ (ẑ)− J (ẑ)

∣∣∣ ≤ 3δ, which
concludes the proof since δ is arbitrary.

Evaluating (6.57) to (6.59) requires – in addition to the extended closed-loop reach-
able set already available at z = z̄ and z = ẑ – the extended closed-loop reachable
set at z =

[
P̂ T

(:), Q̄T
(:), R̄T

(:)

]T
: While the feedforward trust-region radius γ ensures

that the feedforward approximation remains accurate, it also indirectly contributes to
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inaccuracies in the approximated support functions of ∆x and ∆u. Thus, even if γ is
small enough so that the approximation of the feedforward reachable set is accurate, the
approximated support function for ∆x and ∆u might still be too inaccurate in P . As a
result, we consider both the accuracy of the feedforward reachable set as well as the ac-
curacy of the feedforward parameters in the disturbance support function approximation
(see (6.55)) for the tuning of γ. Put differently, we bound

e∆ =
∣∣∣J̃∆x (ẑ)− J (ẑ)

∣∣∣ ≤ e∆,γ + e∆,η,

from above, which allows us to assess whether the error e∆,γ due to γ is too large or
the error e∆,η due to η is too large. Alternatively, one can skip this separation by
setting eff,γ = e∆,η = e∆ and then apply (6.55) and (6.56), albeit at the cost of possibly
unnecessarily shrinking either γ or η. In this thesis, we choose v from Th. 6.1 as a linear
function interpolating between

¯
c and c̄; that said, a better choice for v may be possible.

6.3.7 Feedback Derivative Information
For the efficient implementation of the trust-region subproblem in Sec. 6.3.5, it is ben-
eficial to provide derivative information for the objective function and the constraints.
Since the parameterized feedforward input sets are generated by the polynomial con-
troller template and the approximations to the parameterized feedforward reachable
sets are computed according to Sec. 5.4.2, both can be expressed as polynomial zono-
topes and thus their derivatives are straightforward to compute. Thus, we focus on
the computation of the first-order and second-order derivatives for the approximated
support function ρ̃∆u (l, t, z) and ρ̃∆x (l, t, z) with respect to z ∈ Rnz .

Deviation state: For convenience, we restate (6.40) and (6.41) here:

ρ̃∆x (l, t, z) = ρ
(Z)
∆x (l, t, z̄) + χ∆x (l, t)

(
ρ̃

(E)
∆x (l, t, z)− ρ̃(E)

∆x (l, t, z̄)
)
,

ρ̃
(E)
∆x (l, t, z) =

√
lTD∆x (t, z) l + ϵ.

Thus, only the derivative of ρ̃(E)
∆x (l, t, z) is required since ρ(Z)

∆x (l, t, z̄) and χ∆x (l, t) are not
dependent on z. For the derivative of ρ̃(E)

∆x (l, t, z), we require the derivative of each matrix
element of the positive-definite shape matrix D∆x (t, z). The corresponding ellipsoid is
given by R̃(E)

∆ (t, z) = ⟨0, D∆x (t, z)⟩E and we repeat the propagation equation for W̄
from (6.38) here for convenience:

R̃(E)
∆x (t+ δ, z) = eAcl(t,z)δR(E)

∆x (t, z)⊕
∫ δ

0
eAcl(t,z)(δ−τ)E (t, P ) W̄ dτ, (6.61)

where Acl (t, z) = A (t, P ) +B (t, P )K (t, z).
In order to compute the Hessian matrix H

ρ̃
(E)
∆x

(l, t, z) of ρ̃(E)
∆x (l, t, z), we use differentials

as introduced in Sec. 2.2. For the sake of simplicity and because R̃(E)
∆x (t+ δ, z) is de-

fined recursively, we assume that R̃(E)
∆x (t, z) with first-order differential tensor dD∆x (t, z)
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and second-order differential tensor d2D∆x (t, z) are given and we want to the compute
derivative information for D∆x

(
t̂, z
)

with t̂ = t+δ. From (6.20) to (6.22), it is clear that
A (t, P ) = A(k) (P ), B (t, P ) = B(k) (P ), and E (t, P ) = E(k) (P ) for 0 ≤ k ≤ mcmd − 1
can be precomputed, and therefore we assume that (arguments omitted for readabil-
ity) the first-order differential tensors dA ∈ R1×nz×nx×nx , dB ∈ R1×nz×nx×nu , and
dE ∈ R1×nz×nx×nw as well as second-order differential tensors d2A ∈ Rnz×nz×nx×nx ,
d2B ∈ Rnz×nz×nx×nu , and d2E ∈ Rnz×nz×nx×nw are available (see Sec. 2.2). These can
be computed by computing the Hessian matrix of each element of A, B, and E. For this
example, we directly express all results with differential tensors instead of differentials
(see Sec. 2.2 for details).

We start by applying the differential operator to ρ̃(E)
∆x

(
l, t̂, z

)
, yielding

ρ̃
(E)
∆x

(
l, t̂, z

)
=
√
lTD∆x

(
t̂, z
)
l + ϵ,

dρ̃
(E)
∆x

(
l, t̂, z

)
=

lTdD∆x

(
t̂, z
)
l

2
√
lTD∆x

(
t̂, z
)
l + ϵ

=
lTdD∆x

(
t̂, z
)
l

2ρ̃(E)
∆x

(
l, t̂, z

) (6.62)

d2ρ̃
(E)
∆x

(
l, t̂, z

)
=
lTd2D∆x

(
t̂, z
)
l

2ρ̃(E)
∆x

(
l, t̂, z

) −
lTdD∆x

(
t̂, z
)
l

2ρ̃(E)
∆x

(
l, t̂, z

)2 dρ̃
(E)
∆x

(
l, t̂, z

)
,

=
lTd2D∆x

(
t̂, z
)
l

2ρ̃(E)
∆x

(
l, t̂, z

) − 1
ρ̃

(E)
∆x

(
l, t̂, z

)dρ̃(E)
∆x

(
l, t̂, z

)
dρ̃

(E)
∆x

(
l, t̂, z

)

=
lTd2D∆x

(
t̂, z
)
l − 2dρ̃(E)

∆x

(
l, t̂, z

)
dρ̃

(E)
∆x

(
l, t̂, z

)

2ρ̃(E)
∆x

(
l, t̂, z

) , (6.63)

where dρ̃
(E)
∆x

(
l, t̂, z

)
∈ R1×nz×1×1 and d2ρ̃

(E)
∆x

(
l, t̂, z

)
∈ Rnz×nz×1×1. Ignoring trailing

singleton dimensions, we thus have

J
ρ̃

(E)
∆x

(
l, t̂, z

)
= dρ̃

(E)
∆x

(
l, t̂, z

)
, (6.64)

H
ρ̃

(E)
∆x

(
l, t̂, z

)
= 1

2

(
d2ρ̃

(E)
∆x

(
l, t̂, z

)
+
(
d2ρ̃

(E)
∆x

(
l, t̂, z

))T
)
, (6.65)

due to Th. 2.4 and Th. 2.5. However, the differential tensors dD∆x

(
t̂, z
)

and d2D∆x

(
t̂, z
)

still need to be computed.
With the shape matrix D∆x (t, z) as defined in (6.61), its differential tensors – when

using the sum of the shape matrices as an approximation of the Minkowski sum as
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discussed in Sec. 6.3.4 and the definition of the linear map of ellipsoids from Sec. 2.6.3
– are then given by

D∆x

(
t̂, z
)

= eAcl(t,z)δD∆x (t, z)
(
eAcl(t,z)

)T
+ V (t, z) ,

dD∆x

(
t̂, z
)

= deAcl(t,z)δD∆x (t, z)
(
eAcl(t,z)

)T
+ eAcl(t,z)δdD∆x (t, z)

(
eAcl(t,z)

)T

+ eAcl(t,z)δD∆x (t, z)
(
deAcl(t,z)

)T
+ dV (t, z) ,

d2D∆x

(
t̂, z
)

= d2eAcl(t,z)δD∆x (t, z)
(
eAcl(t,z)

)T
+ 2deAcl(t,z)δD∆x (t, z)

(
deAcl(t,z)

)T

+ eAcl(t,z)δd2D∆x (t, z)
(
deAcl(t,z)

)T

+ eAcl(t,z)δD∆x (t, z)
(
d2eAcl(t,z)

)T
+ d2V (t, z) ,

where

V (t, z) =
∫ δ

0
U (τ, t, z) dτ, (6.66)

U (τ, t, z) = M (τ, t, z) W̄M (τ, t, z)T ,

M (τ, t, z) = eAcl(t,z)(t−τ)E (t, P ) ,

such that
∫ δ

0 e
Acl(t,z)(δ−τ)E (t, P ) W̄ dτ = ⟨0, V (t, z)⟩E with W̄ =

〈
0, W̄

〉
E

and W̄ ∈
Snw×nw

++ . That said, we still require the differential tensors of V (t, z).
Using Prop. 2.1, the differential tensors of V (t, z) are simply

dV (t, z) = d

∫ δ

0
U (τ, t, z) dτ =

∫ δ

0
dU (τ, t, z) dτ, (6.67)

d2V (t, z) =
∫ δ

0
d2U (τ, t, z) dτ, (6.68)

dU (τ, t, z) = dM (τ, t, z) W̄M (τ, t, z)T +M (τ, t, z) W̄dM (τ, t, z)T ,

d2U (τ, t, z) = d2M (τ, t, z) W̄M (τ, t, z)T + 2dM (τ, t, z) W̄dM (τ, t, z)T

+M (τ, t, z) W̄d2M (τ, t, z)T ,

dM (τ, t, z) = deAcl(t,z)(t−τ)E (t, P ) + eAcl(t,z)(t−τ)dE (t, P ) ,
d2M (τ, t, z) = d2eAcl(t,z)(t−τ)E (t, P ) + 2deAcl(t,z)(t−τ)dE (t, P )

+ eAcl(t,z)(t−τ)d2E (t, P ) ,

with dW̄ = 0 and d2W̄ = 0. We can now evaluate V (t, z), dV (t, z), and d2V (t, z) in
(6.66) to (6.68) by numerical integration for a given t and z. It now only remains to
compute the differential tensors of eAcl(t,z)t.

Since the differential tensors of eAcl(t,z)t also require the the differential tensors of
Acl (t, z), we first compute dAcl = dA + dBK + BdK and d2Acl = d2A + d2BK +
dBdK+Bd2K by applying the chain rule from Prop. 2.1, where dK ∈ R1×nz×nu×nx and
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d2K ∈ Rnz×nz×nu×nx are computed according to Prop. A.3 and Prop. A.4, respectively.
The differential tensor of the matrix exponential with dt = 0 can then be computed by
using its definition, i.e.

eAclt =
∞∑

k=0

(Acl)k tk

k! ,

so that

deAclt =
∞∑

k=1

tk
(
dAclA

k−1
cl +Acld

(
Ak−1

cl

))

k! ,

d2eAclt =
∞∑

k=1

tk
(
d2AclA

k−1
cl + 2dAcld

(
Ak−1

cl

)
+Acld

2
(
Ak−1

cl

))

k! ,

where we used

d
(
Ai+1

cl

)
= dAclA

i
cl +Acld

(
Ai

cl
)
,

d2
(
Ai+1

cl

)
= d2AclA

i
cl + 2dAcld

(
Ai

cl
)

+Acld
2
(
Ai

cl
)
,

for i ≥ 1 and where the infinite series of the matrix exponential can be truncated after
a finite number of steps since its convergent for any Aclt [49, Prop. 2.1].

Deviation input: Analogously to the deviation state, we only require the derivatives of
ρ̃

(E)
∆u (l, t, z) as defined in (6.42), here restated for convenience:

ρ̃
(E)
∆u (l, t, z) =

√
lTD∆u (t, z)T l + ϵ,

where

D∆u (t, z) = K (t, z)D∆x (t, z)K (t, z) ,
dD∆u (t, z) = K (t, z) dD∆x (t, z)K (t, z) + 2dK (t, z)D∆x (t, z)K (t, z) ,
d2D∆u (t, z) = K (t, z) d2D∆x (t, z)K (t, z)T + 2d2K (t, z)D∆x (t, z)K (t, z)T

+ 4dK (t, z) dD∆x (t, z)K (t, z)T + 2dK (t, z)D∆x (t, z) dK (t, z)T .

Its derivatives are then – analogously to (6.62) and (6.63) – given by

dρ̃
(E)
∆u

(
l, t̂, z

)
=
lTdD∆u

(
t̂, z
)
l

2ρ̃(E)
∆u

(
l, t̂, z

) ,

d2ρ̃
(E)
∆u

(
l, t̂, z

)
=
lTd2D∆u

(
t̂, z
)
l − 2dρ̃(E)

∆u

(
l, t̂, z

)
dρ̃

(E)
∆u

(
l, t̂, z

)

2ρ̃(E)
∆u

(
l, t̂, z

) ,

so that its Jacobian and Hessian matrix follow identically to (6.64) and (6.65) using
Th. 2.4 and Th. 2.5.
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6.3.8 Initial Guess
Due to the structure of the iPROC approach (also see Alg. 6), good initial guesses may
drastically reduce the number of overall iterations. As a result, we shortly describe
possible initial guess computations for both the feedforward controller parameters and
the feedback controller parameters.

We initialize the feedforward controller parameters by executing the GSC approach
described in Sec. 5.2. If polynomial feedforward controllers are to be used, PGSC can
also be employed to compute an initial guess. While iPGSC may also be used, it is not
as suitable for the initial guess computation since there is no point in fine tuning P for
the given input capacity without considering the input capacity needed for the feedback
controller.

For the feedback controller parameters Q and R, one may simply set Q = Inx and
R = Inu . Since the feedback matrices are parameterized as LQR gain matrices, any
choice for Q and R results in (locally) asymptotically stable systems for ∆x = x − xff ,
which describes the deviation of the closed-loop, disturbed state from the undisturbed
feedforward state.

6.3.9 Computational Complexity
We again use Ass. 5.1 and distinguish between the offline and the online computational
complexity in n. For simplicity, let κ ≥ 1 hold for the order of the controller template
introduced in Sec. 5.3.2 and let

nz = anu + nx + nu, (6.69)
O (a) ≥ O (n) , (6.70)

so that O (nz) = O (an).
We provide an upper bound on the polynomial complexity of the offline computa-

tion in Sec. 6.3.9.1 and then briefly describe the online application of the controller in
Sec. 6.3.9.2.

6.3.9.1 Offline Complexity

The maximum number of iterations in Alg. 6 is fixed. As a result, it suffices to derive the
complexity for a single trust-region iteration. As the numerical experiments in Sec. 6.3.10
will demonstrate, this does not really affect the performance of iPROC as the number
of iterations in practice is often small and independent of the state dimension.

Controller Template: The dominating complexity is given by O
(
an1+κ

)
according to

Sec. 5.3.6.1.

Reachable Sets: The combined complexity of computing the closed-loop reachable
set and the parameterized feedforward reachable set can be bounded from above by
O
(
n5 + n2a2 + n3a logn

)
(see Sec. 5.3.6.1).
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Trust-Region Subproblem: Solving (6.50) involves the precomputation of the Jaco-
bian and Hessian matrices with complexity O

(
a2n4) (see Sec. 5.3.6.1) of the feedfor-

ward reachable set approximation and the computation of the objective and constraint
functions during optimization. Since the number of function evaluations v (ϵ) can be
polynomially bounded in 1

ϵ for the accuracy ϵ > 0 of a first-order critical point if second-
order methods are used [18], we focus on the complexity of one evaluation of the objective
and constraint function subsequently.

We now analyze the complexity of evaluating the approximations to the state deviation
and input deviation support functions (and their corresponding derivatives) from (6.41)
and (6.43). For a worst-case complexity analysis, we only consider the computation
of the Hessian matrix of these approximations. For their computation, we require the
feedback matrix using LQR control with complexity O

(
n3

x

)
(see Sec. 2.4), its second-

order tensor with complexity O
(
n2ω

x + n4n2
z

)
= O

(
a2n6) (see Prop. A.4) using (6.69),

(6.70), and 2ω ≤ 6, and the second-order tensor of the approximated shape matrix D∆x

which is computed via (6.39). For the computation of D∆x, we evaluate (6.39) mcmd
times, where one evaluation is dominated by the complexity of computing the second-
order tensor of the matrix integral in (6.39). Here, computing the second-order tensor of
eAcl(t,z)δ dominates with complexity O

(
ϑnω

xn
2
z

) (6.69)= O
(
a2nω+2), where ϑ ∈ N+ denotes

the finite number of terms from the infinite series of eAcl(t,z)δ to compute the matrix
exponential accurately enough; the complexity for each of the ϑ terms is O

(
nω

xn
2
z

)
,

which follows from the complexity of multiplying two matrices but where each element
multiplication is the outer product of two nz-dimensional vectors (also see Sec. 6.3.7). To
derive the computational complexity of solving the integral in (6.39), we solve the ODE
corresponding to this integral with complexity O

(
bϑnω

xn
2
z

) (6.69)= O
(
a2nω+2), where b ∈

N+ collects the fixed number of function evaluations per ODE step and the total number
of ODE steps: For instance, the classical Runge-Kutta integration scheme requires four
function evaluations per step and the number of ODE steps can be assumed fixed if
a solver with a fixed step size is used. Evaluation of (6.39) mcmd times over v (ϵ)
optimization iterations and computing the second-order differential tensor for the LQR
gain matrix mc times thus yields the overall complexity

O
(
v (ϵ)mc

(
n2ω

x + n4
xn

2
z +mdbϑn

ω
xn

2
z

))
= O

(
a2n6

)
,

for one objective and constraint function evaluation of (6.50).

Overall Complexity: The offline complexity of iPROC can thus be bounded from above
by

O
(
c

(off)
iPROC (n)

)
= O

(
c

(off)
GSC (n) + an1+κ + n5 + n2a2 + n3a logn+ a2n6

)

(5.14)= O
(
cref (n) + an1+κ + a2n6

)
, (6.71)

if the GSC approach is used to compute an initial guess for the feedforward parameters
(see Sec. 6.3.8) and where O (cref (n)) denotes the complexity of the reference trajectory
computation as detailed in Sec. 5.2.1.
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6.3.9.2 Online Complexity

The feedforward controller evaluation has the same complexity as the PGSC approach,
i.e. O

(
c

(on)
PGSC (n)

) (5.34)= O (an) since we use the same controller template. The feed-
back controller evaluation is dominated by the simulation of the feedforward state with
complexity O

(
b
(
nxe+ c

(on)
PGSC (n)

))
= O (an) using (5.34) and Ass. 5.1, where b ∈ N+

collects the total number of function evaluations for a fixed step-size ODE solver: Eval-
uating the dynamics f requires O (e) = O (n) elementary operations e ∈ N+ by Ass. 5.1
for each dimension and we need to evaluate the feedforward controller for all b function
evaluations. Thus, the overall online complexity can be bounded from above by

O
(
c

(on)
iPROC (n)

)
= O

(
c

(on)
PGSC (n) + an

) (5.34)= O (an) .

6.3.10 Experiments

In this section, we compare the performance of ROC to our novel iPROC synthesis al-
gorithm. Since derivatives for the optimization of the synthesis problem of ROC cannot
be computed analytically (see Sec. 6.3.7), ROC uses parallel computing to numerically
approximate the derivative information using finite differences (see [53, Chap. 5] for
details on finite differences): For the processor used in this thesis, this means that ROC
uses eight processing cores compared to a single core used by iPROC. Put differently,
ROC uses around eight times more computational power than iPROC. That said, the
experiments will demonstrate that iPROC is still competitive, even with much less com-
putational power. We set ζ = 0 for all benchmarks in this section and use an optimality
tolerance µ = 10−2 and controller order κ = 1 for the iPROC algorithm.

6.3.10.1 Space Rendezvous

We present the space rendezvous benchmark proposed in [38, p. 3.6], [20] for the ap-
proaching mode. The dynamics of the controlled spacecraft, given in a coordinate system
relative to the target as shown in Fig. 6.5, are given by

ẋ1 = x3, (6.72a)
ẋ2 = x4, (6.72b)

ẋ3 = n2x1 + 2nx4 + c

r2 −
c

r2
c

(r + x1) + u1
mc

, (6.72c)

ẋ4 = n2x2 − 2nx3 −
c

r3
c

x2 + u2
mc

, (6.72d)

where c = 1.4350× 1018 m3 min−2, r = 42 164× 103 m, mc = 500 kg, n =
√

c
r3 , and rc =

√
(r + sx)2 + s2

y. Let x =
[
sy, sy, vx, vy

]
denote the state with spatial coordinates

[
sx, sy

]
and velocity

[
vx, vy

]
, and denote with u =

[
Fx, Fy

]T
the input to the

system, where Fx and Fy are thrust forces. The parameters of the benchmark are shown
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earth

spacecraft

target

sxb(1) + syb(2)

b(1)

b(2)

Figure 6.5: Depiction of the relative coordinate system for the spacecraft model. Here, b(1) ∈ R2

and b(2) ∈ R2 denote the basis vectors of the relative coordinate system in some
global coordinate system.

in Tab. 6.1. For ROC, we additionally set Ũ = 0.75U and X̃ = X . We note that the
original authors of the benchmark in [20] proposed Vorig =

{
v ∈ R2

∣∣∣
√
v2

x + v2
y ≤ 3.3

}

as state velocity constraints. Generally, an arbitrarily tight inner approximation of
Vorig can be computed by first inner approximating Vorig using Th. 4.4 and then using
[8, Th. 7] for the exact conversion from a zonotope to an H-polytope; however, the
resulting H-polytope has potentially many halfspaces. For this benchmark, a crude inner
approximation of Vorig suffices: Looking at Fig. 6.6, the velocity constraints in

[
x3, x4

]

are easily satisfied. Therefore, we compute a parallelotope inner approximation of the
velocity sphere constraint as V = Ž (〈0, 3.32I2

〉
E

)
1 using Th. 4.4.

Both ROC and iPROC find a feasible solution in 553 s and 732 s, respectively, where
csize (RROC (tf)) = 0.19 and csize (RiPROC (tf)) = 0.15. Fig. 6.6 shows the solution for
both approaches, with a more detailed comparison of their final reachable sets in Fig. 6.7.
Additionally, Fig. 6.8 shows the progress of iPROC over the iterations, which validates
the result of Th. 6.1 that the approximated trust-region problem can approximate the
formally verified controller cost arbitrarily closely.
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Table 6.1: Parameters for the space rendezvous benchmark.
Parameter Value
mc 5
X (0)

〈[
−95, −30, 0, 0

]T
,diag

([
2, 2, 0.1, 0.1

])〉

Z
U ⟨0, 2⟩Z
W ⟨0, 0.1I2⟩Z
X S × V

S
〈

−1, 0

tan 20◦, −1
tan 20◦, 1


 ,
[
100
0

]〉

H

V Ž (〈0, 3.32I2
〉

E

)
1 = ⟨0, G⟩Z =

〈[
G−1

−G−1

]
, 14

〉

H
tf 200 s
xf

[
−1, 0, 0, 0

]T

κ 1
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RiPROC ([0, tf ]) RiPROC (tf) Xf
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Figure 6.6: Comparison of the ROC approach and the iPROC approach for the space ren-
dezvous benchmark. Fig. 6.7 shows the final, closed-loop reachable sets of both
approaches in more detail.
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Figure 6.7: Comparison of the final closed-loop reachable set of ROC and iPROC for the space
rendezvous benchmark.

6.3.10.2 Kinematic Single-Track Model (Car)

We consider a variant of the kinematic single-track model1

ẋ1 = u1 + w1, (6.73a)
ẋ2 = u2 + w2, (6.73b)
ẋ3 = x1 cos (x2) , (6.73c)
ẋ4 = x1 sin (x2) , (6.73d)

where x =
[
v, Ψ, sx, sy

]T
is the state of the system, v is the longitudinal veloc-

ity of the vehicle, Ψ ∈ [−π, π] is the vehicle heading,
[
sx, sy

]T
denote the spatial

coordinates, and u =
[
u1, u2

]T
=
[
a, ϕ

]T
is the input to the system, where a is

the longitudinal acceleration and ϕ is the steering rate. All benchmark parameters
are shown in Tab. 6.2. To arrive at a feasible solution for ROC, we additionally set
Ũ = diag

([
0.3, 0.7

])
U , weigh the final reachable set in the objective function of the

combined controller in (6.9) with Qobj = diag
([

0.5, 10, 1, 1
])

, and weigh the undis-
turbed, final reachable set in the objective function of the feedforward computation with
Q

(ff)
obj = diag

([
1, 1000, 1, 1

])
2.

1Sec. 5, https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/-/blob/master/
vehicleModels_commonRoad.pdf

2These values are mostly obtained by trial and error.
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Figure 6.8: Visualization of the solver progress for the iPGSC approach (space rendezvous
benchmark). Values between J̃

(
z̄(i−1)) and J̃

(
ẑ(i)) for 1 ≤ i ≤ 8 – where z̄(i−1)

and ẑ(i) are the initial and critical points of the trust-region subproblem – are
linearly interpolated (ẑ(0) = z̄(0)). Opaque values at i ∈ {1, 2, 4, 7} visualize rejected
iterations.
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Table 6.2: Benchmark parameters for the car model.
Parameter Value
mc 5
cX (0)

[
20, 0, 0, 0

]T

X (0)
〈
cX (0) , diag

([
0.2, 0.02, 0.2, 0.2

])〉
Z

U
〈
0,diag

([
9.81, 0.4

])〉
Z

W
〈
0,diag

([
2, 0.08

])〉
Z

Xf {−cX (0) + xf} ⊕ X (0)

tf 1 s
xf

[
20, 0.2, 19.87, 1.99

]T

κ 1

Fig. 6.9 depicts the reachable sets of the ROC and the iPROC approach for the car
benchmark, where Fig. 6.10 shows the final reachable sets of both approaches in more
detail. The sizes of the final reachable sets using (5.37) are csize (RROC (tf)) = 0.39
and csize (RiPROC (tf)) = 0.13, where computation times for ROC and iPROC where
487 s and 497 s, respectively. While both ROC and iPROC find feasible solutions, ROC
requires manual tuning (see, e.g., Ũ above) while performing worse, i.e., finding a larger
final reachable set.

6.3.10.3 Water Tanks

We now compare the scalability of ROC and iPROC for a model of n ∈ N+ water tanks
[9] as shown in Fig. 6.11. The dynamics are given by

ẋ1 = u+ w − k
√

2gx1,

ẋi = k
(√

2gxi−1 −
√

2gxi

)
,

for 2 ≤ i ≤ n, where xk is the water level of the k-th tank for 1 ≤ k ≤ n, u is the
inflow into the first tank, w is the uncontrollable inflow into the first tank, and we set
k = 0.015 and g = 9.81. The parameters for this benchmark are listed in Tab. 6.3 and
Fig. 6.12 shows the reachable sets for n = 4 tanks.

Tab. 6.4 shows the control performance using the metric given in (5.37) and the
computation times for both ROC and iPROC for up to eight tanks, where ROC uses
parallel computing and thus more computational resources. That said, the iPROC
approach seems to scale better with the system dimension in this benchmark than ROC
while also performing better overall.
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Figure 6.9: Comparison of the ROC approach and the iPROC approach for the kinematic
single-track model (car).
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Figure 6.10: Comparison of the final closed-loop reachable set of the ROC approach and the
iPROC approach for the car benchmark.
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x1

x2

x3

u+ w

Figure 6.11: Model of the water tank, where xi denotes the water level of tank i for 1 ≤ i ≤ 3
and u+w denotes the inflow rate caused by the input and the disturbance [9, Fig.
5, adapted].

Table 6.3: Benchmark parameters for the n-dimensional water tank model.
Parameter Value
mc 2
cX (0) 10 · 1n

X (0) ⟨cX (0) , In⟩Z
U ⟨1, 1⟩Z
W ⟨0, 0.02⟩Z
Xf {−cX (0) + xf} ⊕ X (0)

tf 120 s
xf 10 · 1n

κ 1
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Figure 6.12: Comparison of the ROC approach and the iPROC approach for the n = 4 tank
benchmark. The final state constraint Xf is only shown for reference but not
included in the controller synthesis.

Table 6.4: Scalability comparison of iPROC and ROC for the tank benchmark using 2 to 8
tanks with mc = 2 and no final state constraints.

nr. of tanks 2 4 6 8
time [s] (iPROC) 116 218 473 1056
time [s] (ROC) 30 102 383 1209
csize (R (tf)) (iPROC) 0.17 1.62 3.66 5.77
csize (R (tf)) (ROC) 0.48 2.00 4.00 6.06
nr. of iter. (iPROC) 10 8 8 8
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6.3.11 Discussion

Compared to ROC, iPROC synthesizes the combined controller jointly and thus does not
require the user to provide tightened feedforward input and adapted state constraints or
weighting matrices for the feedforward or feedback synthesis. Additionally, the numerical
experiments in Sec. 6.3.10 demonstrate that iPROC can synthesize more performant
controllers than ROC, albeit at the cost of higher computation times, especially for
lower-dimensional systems. Nevertheless, Tab. 6.4 indicates that iPROC scales better
than ROC for an increasing number of system states in practice. Overall, iPROC is
an almost one-click synthesis approach for the synthesis of a combined controller which
requires minimal user input.

That said, the tuning of the trust-region radii can still be improved: While Th. 6.1
provides a general framework for how the radii can be adjusted, choosing the monotoni-
cally decreasing function and its parameters adequately so that iPROC works well over
a range of systems is not trivial. Additionally, while not discussed here, it might further
be possible to choose the mc controller pairs of feedforward and feedback controller and
the feedforward controller order κ automatically. Furthermore, it may be possible to ob-
tain an initial guess for P , Q, and R by solving the synthesis problem for the combined
controller for a finite set of initial states using optimal control.

6.4 Summary
In this chapter, we described the reachset optimal control (ROC) approach from [101] and
introduced our novel iterative polynomial reachset optimal control (iPROC) algorithm
from [35], which – for the first time – synthesizes the feedforward and feedback controller
simultaneously and thus avoids the introduction of additional algorithm parameters.

ROC synthesizes a combined controller, consisting of a piecewise constant feedforward
controller, which is linear in the initial state, and a continuous state feedback term.
Using the GSC approach, the feedforward controller is first synthesized separately. The
feedforward controller then is kept fixed and the feedback controller is optimized: To
evaluate the objective function and the constraints, an outer approximation of the closed-
loop reachable set has to be computed in each iteration. To reduce the number of
optimization variables for the feedback controller, LQR control with diagonal weighting
matrices for LQR are used. In summary, ROC allows for a straightforward extension
of the feedforward synthesis to the combined synthesis of a feedforward controller with
continuous state feedback by combining reachability analysis with optimization.

However, even though the feedforward controller has direct influence on the feedback
controller, ROC keeps the feedforward controller constant during the feedback synthe-
sis, yielding suboptimal results. Furthermore, this sequential optimization introduces
additional algorithm parameters that need to be tuned by the user. Additionally, the
feedback synthesis recomputes an outer approximation to the closed-loop reachable set
in each optimization iteration, and thus is computationally expensive. As a result, we
proposed the novel iPROC approach, which – for the first time – jointly synthesizes
the feedforward and feedback controller iteratively: Since the original synthesis prob-
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lem is in general hard to solve, we approximate it with a cost function. Because the
evaluation of this controller cost is computationally expensive as it requires reachability
analysis, we avoid optimizing over it directly and rather propose a smooth optimization
problem in the controller parameters, which approximates this cost and can be solved
with any off-the-shelf optimization solver. That said, this optimization problem approx-
imates the cost accurately only in a local neighborhood of these parameters. Thus we
restrict the domain of the approximated optimization problem to a trust region around
the current controller parameters and iteratively update them whenever the cost de-
creases. We adapt the size of the trust region in each iteration to ensure the accuracy of
the approximated parameterized reachable set. Hence, iPROC enables the simultaneous
optimization over the combined controller parameters and avoids the introduction of
additional algorithm parameters that need to be tuned by the user. The effectiveness of
iPROC was demonstrated using numerical benchmarks.

165





7 Conclusion and Future Directions

7.1 Conclusion
In this thesis, we developed different control synthesis algorithms which combine reacha-
bility analysis and optimization theory to obtain non-conservative and formally verified
results. To formulate efficient algorithms, we further developed new set conversions
between zonotopes and ellipsoids. The presented algorithms all operate on disturbed
nonlinear systems, respect input and state constraints, and have polynomial complex-
ity in the state dimension, making them applicable to a wide range of tasks, such as
autonomous driving and human-robot interaction tasks.

We first introduced the general synthesis problem and defined the abstracted syn-
thesis problem, which is constructed such that all relevant optimization problems from
subsequent chapters can be generalized to this problem. We showed that the abstracted
synthesis problem can be reformulated as a smooth non-convex optimization problem.
Because many solvers find solutions to an optimization problem by solving the associated
Karush-Kuhn-Tucker (KKT) conditions, we furthermore proved that any critical point
of said optimization problem is regular. As a result, the first-order KKT conditions are
always necessary conditions for all novel optimization problems in subsequent chapters,
and thus many off-the-shelf optimization solvers can be used.

For an efficient and numerically stable way to pose and solve these synthesis problems,
we further derived novel conversions between sets, such as ellipsoid-zonotope conversions
from our work in [36]. These conversions are necessary since not all set operations
are closed under all set operations. As a result, the same operation for two different
set representations may have different tightness and computational efficiency. Since
we synthesize controllers under input and state constraints, we furthermore reviewed
existing methods to check the containment of two sets, which are used in subsequent
chapters to, e.g., check the state constraint satisfaction of a given reachable set.

Next, we first focused on the synthesis of piecewise constant controllers. Here, we
introduced the generator-space control (GSC) approach from previous work in [99] for
the synthesis of piecewise constant controllers for disturbed nonlinear systems under
constraints. While GSC is computationally efficient since it only requires the solution of
a single linear program (LP) for the synthesis of its controller, it only optimizes over the
reachable set of the linearized dynamics. Thus, we proposed polynomial generator-space
control (PGSC) from our work in [37] as an extension of GSC, which synthesizes piece-
wise constant controllers that are polynomially dependent on the initial state based on a
polynomial abstraction of the nonlinear dynamics. However, since both GSC and PGSC
only approximate the reachable set without any formal guarantees, the inclusion of state
constraints always requires additional input from the user. To solve this problem, we
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introduced the iterative polynomial generator-space control (iPGSC) approach, allow-
ing us to synthesize polynomial, piecewise constant controllers under input and state
constraints without the need for additional user input.

However, piecewise constant controllers often cannot counteract disturbances effi-
ciently when disturbances are large or act quickly, resulting in larger reachable sets.
Thus, we first described the reachset optimal control (ROC) algorithm from [101], which
synthesizes a piecewise constant feedforward controller with continuous state feedback
for nonlinear disturbed systems under input and state constraints. However, because
this synthesis is executed sequentially, i.e., the feedforward controller is computed first
and then fixed in the subsequent optimization of the feedback control term, the resulting
controller may be suboptimal. Furthermore, this sequential computation approach pro-
duces additional algorithm parameters that require manual tuning by the user. Thus,
we proposed the iterative polynomial reachset optimal control (iPROC) approach from
our work in [35] which – for the first time – synthesizes a feedforward and a feedback
controller simultaneously by solving a single optimization problem. To avoid extensive
reachability computations, we approximated the synthesis problem and used trust-region
radii to restrict the domain of the controller parameters for this approximated optimiza-
tion problem to ensure accuracy.

7.2 Future Directions

We presented approaches for the formally verified controller synthesis of disturbed non-
linear systems under input and state constraints. Subsequently, we propose possible
directions for future research to extend this work.

In PGSC and iPGSC, we use a piecewise constant controller which is polynomially
dependent on the initial state. While this can achieve better control performance than
linear controllers as demonstrated in Sec. 5.3.8, it requires the user to choose the ap-
propriate controller order. Formulating the synthesis problem for a single initial state,
optimal control may be able to quickly solve the synthesis problem for a set of possible
controller orders to find a suitable choice. Additionally, one might be able to directly
identify exponent vectors of the controller template which contribute most to good con-
trol performance. Such a sparse controller template could avoid an unnecessarily large
number of controller parameters.

While our proposed approaches, specifically iPGSC and iPROC, already reduce the
number of algorithm parameters that need to be set by the user, the number of piecewise
controllers for iPGSC and the number of feedforward and feedback controller pairs in
iPROC still needs to be chosen by the user. Here, optimal control for a single initial
state could be used to determine the effect of a varying number of controllers on the
control performance: By formulating the synthesis problem for a single initial state,
optimal control methods can be used to quickly solve the synthesis problem for a given
number of controllers. Since these methods are very efficient, evaluating the optimal
control problem for a larger number of controllers might be feasible.
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Furthermore, we assumed that the time horizon is split uniformly, i.e., each controller
is always active for the same amount of time. However, there might be instances where
a large number of controllers is only required for a short time interval – e.g., due to
quickly changing system dynamics – so that subdividing the time horizon uniformly to
achieve the required number of controllers for this short time interval is quite inefficient.
Here, ideas similar to numerically integrating differential equations might be able to
identify points in time where a higher number of controllers is required: Adaptive step-
size solvers for ODEs are able to automatically decrease the time step size when the
dynamics require a finer time resolution. A similar approach might be able to identify a
non-uniform time discretization for the number of controllers.

Lastly, we approximated the synthesis problem in iPROC to avoid the computation
of the reachable set in each optimization iteration. While this approximation is less
expensive to compute than the reachable set in practice, it still evaluates the Riccati
equation and its derivatives in each optimization iteration to compute the LQR feedback
matrix for the feedback controller. To further reduce the computational effort and speed
up the optimization, one may approximate the trust-region subproblem using yet an-
other, inner trust-region approximation: We initially compute the Jacobian and Hessian
matrices of the outer trust-region subproblem and then form an inner approximation by
assuming that these computed Jacobian and Hessian matrices are constant. By again
restricting the domain for the controller parameters of this inner approximation to a
trust region, we can control the accuracy of this inner approximation. As a result, we
avoid the recomputation of the derivative information in each optimization iteration of
the trust-region subproblem.
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A Appendix

A.1 Abstracted Synthesis Problem
A.1.1 Reformulation Equivalence
Proof of Prop. 3.1. We first prove the second claim by deriving the optimizers ŝ, ŵ, ŷ,
V̂ , T̂ , and p̂ as functions of ẑ, i.e., in dependence of ẑ only. We note that the KKT
conditions used in this proof are always necessary for (3.5) due to Prop. 3.2.

Value of ŵ: We start by analyzing the complementary slackness conditions of (3.5b),
given by

λ̂
(+)
i (+hi (ẑ)− ŵi) = 0, (A.1a)

λ̂
(−)
i (−hi (ẑ)− ŵi) = 0, (A.1b)

where λ̂(+) ∈ Rnw
≥0 and λ̂(−) ∈ Rnw

≥0 are the corresponding optimal Lagrange multipliers
with 1 ≤ i ≤ nw. Further, the stationary condition with respect to w is given by

l − λ̂(+) − λ̂(+) +MT
nk∑

k=1

ns∑

m=1
F

(k)
(m)

T
χ̂

(k)
(m) = 0, (A.2)

where χ̂(k)
(m) ∈ Rq

≥0 is the optimal Lagrange multiplier of the (km)-th constraint in (3.5d).
Now assume that ŵi > |hi (ẑ)|. It then holds that λ̂(+)

i = λ̂
(−)
i = 0 due to (A.1). Since

(A.2) must hold for general l ≥ 0 and M ∈ Rnr×nw
≥0 , it must also hold for l = 1ns and

M = 0, from which λ̂(+)
i + λ̂

(−)
i = 1 follows, and thus by contradiction, it must hold that

ŵ = |h (ẑ)| , (A.3)

since ŵ ≥ |h (ẑ)| (see (3.5b)).

Value of ŷ: The complementary slackness conditions of (3.5c) and the stationarity
condition in y are given by

ˆ
¯
ζ

i

(

¯
R(i,:)ρ (ẑ)− yi

)
= 0, (A.4)

ˆ̄ζi

(
R̄(i,:)ρ (ẑ)− yi

)
= 0, (A.5)

1− ˆ
¯
ζ

i
− ˆ̄ζi = 0, (A.6)
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for 1 ≤ i ≤ ny, where ˆ
¯
ζ ∈ Rny

≥0 and ˆ̄ζ ∈ Rny

≥0 are the optimal Lagrange multipliers of
the respective constraints in (3.5c). It follows from (A.6) that ˆ

¯
ζ

i
+ ˆ̄ζi = 1. Assuming

ŷi > max
(

¯
R(i,:)ρ (ẑ) , R̄(i,:)ρ (ẑ)

)
implies ˆ

¯
ζ

i
= ˆ̄ζi = 0 due to (A.4) and (A.5), and thus

ŷi = max
(

¯
R(i,:)ρ (ẑ) , R̄(i,:)ρ (ẑ)

)
(A.7)

follows by contradiction and due to (3.5c).

Value of ŝ: The relevant KKT conditions in s are

σ − δ̂m − ϑ̂m = 0, (A.8)
δ̂m (ĝm − ŝm) = 0, (A.9)

−ϑ̂mŝm = 0, (A.10)

for 1 ≤ m ≤ ns, where δ̂ ∈ Rns
≥0 and ϑ̂ ∈ Rns

≥0 are the optimal Lagrange multipliers of
the constraints in (3.5g) and (3.5i) and we define ĝ = p̂− b. Summing (A.9) and (A.10)
yields δ̂mĝm−

(
δ̂m + ϑ̂m

)
ŝm = 0, where a subsequent substitution of δ̂m + ϑ̂m = σ from

(A.8) and solving for ŝm results in

ŝm = δ̂mĝm

σ
. (A.11)

Now let I = {i ∈ {1, ..., ns} | ĝi ≤ 0}. Then ∀i ∈ I : δ̂iĝi = 0 since necessarily δ̂i = 0
for ĝi < 0 due to si ≥ 0 and (3.5g) (statement trivially holds for ĝi = 0). For J =
{1, ..., ns} \ I, we further have ∀j ∈ J : ĝj > 0 (3.5g)=⇒ ŝj > 0 (A.10)=⇒ ϑ̂j = 0 (A.8)=⇒ δ̂j = σ.
Thus, (A.11) can be written as

ŝm =
{
ĝm, ĝm > 0,
0, otherwise

(A.12)

for 1 ≤ m ≤ ns. To express ŝ in ẑ only, it remains to derive ĝ = p̂− b in ẑ only. Thus,
we assume ĝm > 0 for the remainder of this proof.

Value of p̂: The stationarity condition in p and the complementary slackness condition
of (3.5f) are given by

−1T
nk
γ̂(m) + δ̂m = 0, (A.13)

[
γ̂(m)

]
k

(
V̂km + T̂km − p̂m

)
= 0, (A.14)

for 1 ≤ m ≤ ns and 1 ≤ k ≤ nk, where γ̂(m) ∈ Rnk
≥0 is the optimal Lagrange multiplier of

the m-th constraint in (3.5f). Now assume that p̂m > max
(
V̂(:,m) + T̂(:,m)

)
for ĝm > 0.
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It then holds that γ̂(m) = 0 due to (A.14), and thus δ̂m = 1T
nk
γ̂(m) = 0 due to (A.13);

however, we previously proved that δ̂m = σ for ĝm > 0, and therefore

p̂m = max
(
V̂(:,m) + T̂(:,m)

)
for ĝm > 0, (A.15)

follows by contradiction.

Value of V̂ : Since p̂m = max
(
V̂(:,m) + T̂(:,m)

)
for ĝm > 0, there must be a set of indices

K̄(m) ⊆ {1, . . . , nk} for which holds that

∀k̄ ∈ K̄(m) :V̂k̄m + T̂k̄m = p̂m for ĝm > 0, (A.16a)
∀
¯
k ∈ {1, . . . , nk} \ K̄(m) :V̂

¯
km + T̂

¯
km < p̂m for ĝm > 0. (A.16b)

From (A.13), (A.14), (A.16a) and (A.16b), it then follows that

1T
nk
γ̂(m) =

∑

k̄∈K̄(m)

[
γ̂(m)

]
k̄

= δ̂m. (A.17)

The stationarity conditions in Vkm for 1 ≤ k ≤ nk and the complementary slackness
condition of (3.5d) are given by

−1T
q χ̂

(k)
(m) +

[
γ̂(m)

]
k

= 0, (A.18)
[
χ̂

(k)
(m)

]
i

([
F

(k)
(m)

]
(i,:)

(Ah (ẑ) +Mŵ)− V̂km

)
= 0, (A.19)

for 1 ≤ i ≤ q, where χ̂(k)
(m) ∈ Rq

≥0 is the optimal Lagrange multiplier of the (km)-th

constraint in (3.5d). Now assume that V̂k̄m > max
(
F

(k̄)
(m) (Ah (ẑ) +Mŵ)

)
. It then

follows from (A.19) that χ̂(k̄)
(m) = 0 and thus

[
γ̂(m)

]
k̄

= 0 due to (A.18). Since then
∑

k̄∈K̄(m)

[
γ̂(m)

]
k̄

= 1T
nk
γ̂(m) = δ̂ = 0 (see (A.17)) but we previously showed that δ̂ = σ

for ĝm > 0 (see derivations for ŝ), it follows by contradiction that

V̂k̄m = max
(
F

(k̄)
(m) (Ah (ẑ) +Mŵ)

)
for ĝm > 0. (A.20)

Value of T̂ : The stationarity conditions in Tkm for 1 ≤ k ≤ nk, 1 ≤ m ≤ ns, 1 ≤ i ≤ q
and the complementary slackness condition of (3.5e) are given by

−1T
q ϕ̂

(k)
(m) +

[
γ̂(m)

]
k

= 0, (A.21)
[
ϕ̂

(k)
(m)

]
i

([
G

(k)
(m)

]
(i,:)

ρ (ẑ)− T̂km

)
= 0, (A.22)
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where ϕ̂(k)
(m) ∈ Rq

≥0 is the optimal Lagrange multiplier of the (km)-th constraint in (3.5e).

Similarly to V̂ , assume now that T̂k̄m > max
(
G

(k̄)
(m)ρ (ẑ)

)
with k̄ ∈ K̄(m) as defined in

(A.16) for ĝm > 0. It then follows from (A.22) that ϕ̂(k̄)
(m) = 0 and thus

[
γ̂(m)

]
k̄

= 0 due

to (A.21). Since then ∑k̄∈K̄(m)

[
γ̂(m)

]
k̄

= 1T
nk
γ̂(m) = δ̂ = 0 (see (A.17)) but we previously

showed that δ̂ = σ for ĝm > 0 (see derivations for ŝ), it follows by contradiction that

T̂k̄m = max
(
G

(k̄)
(m)ρ (ẑ)

)
for ĝm > 0. (A.23)

Collecting all optimizers: We can now write ŝm for 1 ≤ m ≤ ns as

ĝm > 0 :

ŝm
(A.12)= ĝm = p̂m − bm

(A.16a)= V̂k̄m + T̂k̄m − bm

(A.3),(A.20),(A.23)= max
(
F

(k̄)
(m) (Ah (ẑ) +M |h (ẑ)|)

)
+ max

(
G

(k̄)
(m)ρ (ẑ)

)
− bm

(A.16a)= max
0≤k≤nk

{
max

(
F

(k)
(m) (Ah (ẑ) +M |h (ẑ)|)

)
+ max

(
G

(k)
(m)ρ (ẑ)

)}
− bm,

and thus

ŝm =
{
gm (ẑ) , gm (ẑ) > 0,
0, otherwise

, (A.24)

or equivalently ŝ = max (0, g (ẑ)), where g is defined in (3.4). Therefore, substitution of
ŝ, ŵ, and ŷ in (3.6) by (A.24), (A.3), and (A.7) yields Jsmooth (ẑ, ŝ, ŵ, ŷ) = J̃ (ẑ).

Same minimum: It remains to prove the first claim. Let (z∗, s∗) denote a global
optimizer of (3.2). By design, it must hold that s∗ = max (0, g (z∗)) since, if s∗ >
max (0, g (z∗)), choosing (z∗,max (0, g (z∗))) achieves a smaller minimum but (z∗, s∗) is
assumed to be a global optimizer. Thus, the minimum J̃ (z∗) = J (z∗,max (0, g (z∗)))
is attained. Previously, we showed that the minimum objective value at a critical point(
ẑ, ŝ, ŵ, ŷ, V̂, T̂, p̂

)
of (3.5) is J̃ (ẑ). We now prove the equivalence of (3.2) and (3.5) by
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contradiction: Assume that J̃ (z∗) < J̃ (ẑ). Then
(
z̄, s̄, w̄, ȳ, V̄, T̄, p̄

)
with

z̄ = z∗,

s̄ = max (0, g (z∗)) ,
w̄ = |h (z∗)| ,
ȳ = max

(

¯
Rρ (z∗) , R̄ρ (z∗)

)
,

V̄km = max
(
F

(k)
(m) (Ah (z∗) +Mw̄)

)
,

T̄km = max
(
F

(k)
(m)ρ (z∗)

)
,

p̄m = max
(
V̄(:,m) + T̄(:,m)

)
,

for 1 ≤ k ≤ nk and 1 ≤ m ≤ ns is a feasible point of (3.5) with

Jsmooth
(
z̄, s̄, w̄, ȳ, V̄, T̄, p̄

)
= J̃ (z∗) < J̃ (ẑ) ,

but
(
ẑ, ŝ, ŵ, r̂, t̂

)
is a global optimizer by assumption; thus, J̃ (z∗) ≥ J̃ (ẑ) follows by

contradiction. Similarly, now assume that J̃ (z∗) > J̃ (ẑ). Then (ẑ,max (0, g (ẑ))) is a
feasible point of (3.2) with J̃ (z∗) > J̃ (ẑ), but (z∗, s∗) is a global optimizer by assump-
tion; thus, J̃ (z∗) = J̃ (ẑ) when combined with J̃ (z∗) ≥ J̃ (ẑ) as proven above, which
concludes the proof.

A.1.2 Necessity of First-Order Optimality Conditions

Proof of Prop. 3.2. Let x̂ =
[
ẑT , ŝT , ŵT , ŷT , V̂ T

(:) T̂ T
(:), p̂T

]T
∈ Rn denote a col-

lected critical point of (3.5) with g̃ (x̂) ≤ 0, where

g̃ (x̂) =




[
+h (ẑ)
−h (ẑ)

]
−
[
ŵ
ŵ

]

[
¯
Rρ (ẑ)
R̄ρ (ẑ)

]
−
[
ŷ
ŷ

]

...
F

(k)
(m) (Ah (ẑ) +Mŵ)− 1qV̂km

...
G

(k)
(m)ρ (ẑ)− 1qT̂km

...
V̂(:,m) + T̂(:,m) − 1nk

pm
...

p̂− b− ŝ
−ẑ +

¯
z

ẑ − z̄
−ŝ




,
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i.e., g̃ (x̂) ∈ Rm collects all constraints of (3.5). Since there are no equality constraints,
the Mangasarian-Fromovitz constraint qualification (MFCQ) from Prop. 2.3 requires
that there exists a direction

d =
[
d(z)T

, d(s)T
, d(w)T

, d(y)T
, D

(V )
(:)

T
, D

(T )
(:)

T
, d(p)T

]T
,

with d(z) ∈ Rnz , d(s) ∈ Rns , d(w) ∈ Rnw , D(V ) ∈ Rnk×ns , D(T ) ∈ Rnk×ns , and d(p) ∈ Rns ,
such that JgA (x̂) d < 0 for a given x̂, where A = {a ∈ {1, ...,m} | g̃a (x̂) = 0} denotes the
active constraint index set and Jg̃A (x̂) is the Jacobian matrix of all constraints active
at x = x̂.

In the worst case, all constraints are active. That said, use the fact that – between
zi ≤ z̄i and zi ≥ ¯

zi for 1 ≤ i ≤ nz – only one of the two constraints can be active at
any given time since

¯
zi < z̄i by assumption. To make the presentation more compact,

we write these two constraints as
∣∣∣z − 1

2 (
¯
z + z̄)

∣∣∣ ≤ 1
2 (z̄ −

¯
z). The non-differentiability

at z̃ = 1
2 (

¯
z + z̄) is of no consequence as both constraints are inactive at z = z̃, and its

derivative is hence given by
d

dz

(
|z − z̃| − 1

2 (z̄ −
¯
z)
)

= diag (sign (z − z̃)) .

Then we have

max (Jg̃A (x̂) d) = max







[
+Jh (ẑ)
−Jh (ẑ)

]
d(z) −

[
d(w)

d(w)

]

[
¯
RJρ (ẑ)

¯
RJρ (ẑ)

]
d(z) −

[
d(y)

d(y)

]

max
1≤k≤nk
1≤m≤ns

{
max

(
F

(k)
(m)

(
AJh (ẑ) d(z) +Md(w)

))
−D(V )

km

}

max
1≤k≤nk
1≤m≤ns

{
max

(
G

(k)
(m)Jρ (ẑ) d(z)

)
−D(T )

km

}

max
1≤m≤ns

{
max

(
D

(V )
(:,m) −D

(T )
(:,m)

)
− d(p)

m

}

d(p) − d(s)

diag (sign (ẑ − z̃)) d(z)

−d(s)







= max







h̄
(
d(z)

)
− d(w)

r̄
(
d(z)

)
− d(y)

F̄(:)
(
d(r)

)
−D(V )

(:)

Ḡ(:)
(
d(z)

)
−D(T )

(:)

d̄
(
D(V ), D(T )

)
− d(p)

d(p) − d(s)

diag (sign (ẑ − z̃)) d(z)

−d(s)







, (A.25)
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where

h̄
(
d(z)

)
= max

(
+Jh (ẑ) d(z),−Jh (ẑ) d(z)

)
, (A.26a)

r̄
(
d(z)

)
= max

(

¯
RJρ (ẑ) d(z), R̄Jρ (ẑ) d(z)

)
, (A.26b)

F̄km

(
d(z), d(w)

)
= max

(
F

(k)
(m)

(
AJh (ẑ) d(z) +Md(w)

))
, (A.26c)

Ḡkm

(
d(z)

)
= max

(
G

(k)
(m)Jρ (ẑ) d(z)

)
, (A.26d)

d̄m

(
D(V ), D(T )

)
= max

(
D

(V )
(:,m) −D

(T )
(:,m)

)
. (A.26e)

Since we assume that all functions are sufficiently smooth, their gradients are at least
continuous, and since ẑ is bounded (see (3.5h)), the expressions in (A.26) are bounded
for bounded d since they are also continuous. Choosing

d̂(z) = −ϵ sign (ẑ − z̃) ,
d̂(w) = h̄

(
d̂(z)

)
+ ϵ,

d̂(y) = r̄
(
d̂(z)

)
,

D̂
(V )
(:) = F̄(:)

(
d̂(z), d̂(w)

)
+ ϵ,

D̂
(T )
(:) = Ḡ(:)

(
d̂(z)

)
+ ϵ,

d̂(p) = d̄
(
D̂(V ), D̂(T )

)
+ ϵ,

d̂(s) = max
(
0, d̂(p)

)
+ ϵ,

with ϵ ∈ R+ yields

max







h̄
(
d̂(z)

)
− d̂(w)

r̄
(
d̂(z)

)
− d̂(y)

F̄(:)
(
d̂(z), d̂(w)

)
− D̂(V )

(:)

Ḡ(:)
(
d̂(z)

)
− D̂(T )

(:)

d̄
(
D̂(V ), D̂(T )

)
− d̂(p)

d̂(p) − d̂(s)

diag (sign (ẑ − z̃)) d̂(z)

−d(s)







< 0,

and thus there exists a d̂ for any x̂ such that Jg̃A (x̂) d̂ < 0, concluding the proof.

A.2 Complexity Analysis
Proposition A.1 (Parameterized Reachable Set). Let f : Rnx × Rnu 7→ Rnx denote
the system dynamics and let n = min (nx, nu). Further, we assume that the number of
dependent factors and dependent generators of the given initial set grows at most with

177



A Appendix

O (na) and O (n), and the number of elementary operations to evaluate fi for 1 ≤ i ≤ nx

and all its necessary derivatives grows at most with O (n). The complexity of computing
the parameterized reachable set using the conservative polynomialization approach (see
Sec. 2.7.3) can then be bounded from above by O

(
n5 + n2a2 + n3a logn

)
.

Proof. We simply follow the proof in [59, Sec. 4.1.4], where we make the necessary
changes according to the made assumptions.

We discuss the complexity of all listed operations in [59, Eq. (4.18)] due to the different
assumptions separately:

• Linear map: O
(
n3) [59, Prop. 3.1.18]

• Minkowski sum: O (na) [59, Prop. 3.1.19]

• Exact sum: The merge operation has complexity O
(
(na)2

)
[59, Prop. 3.1.5] and

the compact operation has complexity O
(
n2a logn

)
[59, Prop. 3.1.7], so that the

overall complexity can be bounded from above by O
(
n2a2).

• Cartesian product: O (1) [59, Prop. 3.1.22]

• Linear combination: O
(
n2)+O

(
n2) = O

(
n2) [59, Prop. 3.1.26]

• Quadratic map [59, Prop. 3.1.26]

O
(
(na)2

)
+O

(
n2nn

)
+O (nnnn) +O (nn (n+ na log (nn)))

=O
(
n2a2 + n4 + n3a logn

)

• Reduce: O
(
n2) [59, Tab. 3.5]

• Restructure: Not used to preserve dependencies

• Zonotope enclosure: O ((na)n+ nn) = O
(
an2) [59, Prop. 3.1.14]

• Interval enclosure: O
(
n3) [59, Tab. 3.3]

Thus, adding all the listed complexities above as in [59, Eq. (4.18)] yields

O
(
a2n2 + n4 + an3 logn

)
.

Since we assume a dimension of n and that the number of generators and number of
elementary operations to evaluate f and its derivatives grows at most with O (n), the
upper bound on the complexity of computing the Lagrange remainder follows directly
from [59, Sec. 4.1.4] as O

(
n5). The overall complexity thus follows, concluding the

proof.
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Proposition A.2 (Polynomial Zonotope Composition). Given are the polynomial zono-
topes A = ⟨·, G,Grest, E⟩P Z = {a (α)}α, where G ∈ Rn×m, Grest ∈ Rn×l, and E ∈
Nna×m

≥0 , and B =
〈
·, G(1), 0, E(1)

〉
P Z

= {b (β)}β, where G(1) ∈ Rna×q and E(1) ∈ Nnb×q.

Further, let d = max1≤k≤m max
(
E(:,k)

)
be the maximum monomial exponent. An

upper bound on the complexity of computing the polynomial zonotope {a (b (β))}β =〈
·, Ĝ, Grest, Ê

〉
P Z

is given by

O
(
(d (na + nb) +mn) qd

)
.

Proof. We first derive the complexity of computing
{
bi (β)d

}
β

for i ∈ {1, ..., na} and
maximum exponent d of a (α). Then, we extend this complexity result to the computa-
tion of {a (b (β))}β. Note that the centers of A and B are ignored as they can be included
in the generator and exponent matrices.

Let
{
bi (β)k

}
β

=
〈
·, G(k)

(i,:), 0, E
(k)
〉

P Z
for k ∈ {0, ..., d} and any i ∈ {1, ..., na} with

G
(k)
(i,:) ∈ R1×qk and E(k) ∈ Nnb×qk . The computation of E(k) has complexity O

(
nbq

k
)

since E(k) ∈ Nnb×qk (see [61, Prop. 12, Proof]). Similarly, the computation of G(k)
(i,:) ∈

R1×qk for i ∈ {1, ..., na} has complexity O
(
qk
)
. Because E(k) is the same for all i,

the complexity of computing
{
bi (β)k

}
β

for all i ∈ {1, ..., na} and k ∈ {0, ..., d} is

O
(
d (na + nb) qd

)
.

Next, we form the m monomials of {a (b (β))}β. Each monomial consists of at most
na − 1 multiplications of the already computed polynomial zonotopes

{
bi (β)ki

}
β

for
i ∈ {1, ..., na} and corresponding exponent ki ∈ N with ∑na

k=1 ki ≤ d. The exponent
matrix of the product of na polynomial zonotopes has at most dimension nb × qd due
to ∑na

k=1 ki ≤ d and thus the complexity of computing any monomial of {a (b (β))}β
is bounded from above by O

(
nbq

d
)
. Finally, we multiply the k-th monomial, now

represented as a polynomial zonotope with a generator matrix of dimension at most
1 × qd, with the corresponding column G(:,k) ∈ Rn for all k ∈ {1, ...,m} with com-
plexity O

(
m
(
nqd

))
and bring these m monomials into a single polynomial zonotope

{a (b (β))}β =
〈
·, Ĝ, Grest, Ê

〉
P Z

by concatenation with complexity O (m (1)). Collecting
all complexities then yields the desired result.

A.3 Derivatives of the LQR Feedback Matrix

In order to optimize over the gain matrix K (z), we derive its Jacobian and Hessian
matrices in App. A.3.1 and App. A.3.2, respectively.

To that end, let (A (P ) , B (P )) denote a controllable LTI system with A (P ) ∈ Rnx×nx ,
B (P ) ∈ Rnx×nu , P ∈ [−1, 1]mcnu×a, Q ∈ Snx×nx

++ , and R ∈ Snu×nu
++ . Further, let z =
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[
P T

(:), QT
(:), RT

(:)

]T
∈ Rnz , and we define n = max (nx, nu). For convenience, we restate

that the optimal LQR feedback gain matrix is given as (we omit arguments from now
on)

K = −R−1BTX, (A.27)

with
F = ATX +XA−XBR−1BTX +Q = 0. (A.28)

For later convenience, we define here the closed-loop system matrix as Acl = A + BK.
Further, we introduce the commutation matrix MD ∈ {0, 1}nm×nm for a matrix D ∈
Rn×m, which is implicitly defined by

MDD(:) =
(
DT

)
(:)
.

According to Sec. 2.2, we can replace differentials with their corresponding differential
tensors, and thus we derive the below expressions directly for these tensors. Due to
the definition of the sums and products of these differential tensors, one can replace d□
at any point with d□ to recover the “differential” version. Let the differential tensors
dA ∈ R1×nz×nx×nx , dB ∈ R1×nz×nx×nu , d2A ∈ Rnz×nz×nx×nx , d2B ∈ Rnz×nz×nx×nu ,
dQ ∈ R1×nz×nx×nx , and dR ∈ R1×nz×nu×nu , all with respect to z, be given. Lastly, let
e = cen denote the number of elementary operations required to evaluate any element of
A, B, or any of its differential tensors, where ce ∈ R+. Thus, for a given differential tensor
M ∈ Rnz×nz×n×n, its evaluation complexity is bounded from above by O

(
en2

zn
2) =

O
(
n2

zn
3).

A.3.1 Jacobian of Feedback Matrix

Proposition A.3 (Jacobian Matrix of LQR Feedback Matrix). Let (A (P ) , B (P )) be a
controllable LTI system with A (P ) ∈ Rnx×nx and B (P ) ∈ Rnx×nu for P ∈ [−1, 1]mcnu×a,
where each element of A and B is at least once differentiable with respect to P . Further,
denote with Q ∈ Snx×nx

++ and R given LQR weighting matrices. The vectorized Jacobian
matrix dK(:)

dz is given by

dK(:)
dz

= −
(
KT ⊠R−1

)
dR(:) −

(
X ⊠R−1

)
MBdB(:) −

(
In ⊠R−1BT

)
dX(:), (A.29)

where

dX(:) = −
(
AT

cl ⊞AT
cl
)−1 (

((X ⊠ In)MA + (In ⊠X)) dA(:) +
(
KT ⊠KT

)
dR(:)

+
((
X ⊠KT

)
MB +

(
KT ⊠X

))
dB(:) + dQ(:)

)
,

(A.30)
with an upper bound on its computational complexity of O

(
n2ω

x + n4nz
)
, where ω ∈ R+

is the exponent for the current complexity of matrix multiplication.
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Proof. Applying the differential operator to (A.28) yields

0 = dATX +ATdX + dXA+XdA+ dXBK +XdBK +KTdRK +KTdBTX

+KTBTdX + dQ

0 = dX (A+BK) + (A+BK)T dX + dATX +XdA+KTdRK +XdBK

+KTdBTX + dQ

0 =
((
AT

cl ⊠ In

)
+
(
In ⊠AT

cl
))
dX(:) + ((X ⊠ In)MA + (In ⊠X)) dA(:)

+
(
KT ⊠KT

)
dR(:) +

((
X ⊠KT

)
MB +

(
KT ⊠X

))
dB(:) + dQ(:),

where we used (A.27), and the vectorization follows from (2.1). Solving for dX(:) then
yields (A.30). With

dK = d
(
−R−1BTX

)

= R−1dRR−1BTX −R−1dBTX −R−1BTdX,

we finally arrive at (A.29) after vectorization, which concludes the first part of the proof.
Looking at (A.30), the complexity of computing

(
AT

cl ⊞AT
cl

)−1
is at most O

((
n2

x

)ω)

which follows from
(
AT

cl ⊞AT
cl

)
∈ Rn2

x×n2
x and the computational complexity of the

matrix inverse being equal to that of the matrix multiplication [17, Prop. 16.6]. All
remaining operations in (A.29) and (A.30) can then be computed by a fixed number
of “matrix-vector” products of a

(
n2 × n2)-dimensional matrix and a

(
1× nz × n2 × 1

)
-

dimensional differential tensor, which has complexity O
(
n4nz

)
since the matrix-vector

product of a n2-by-n2 matrix and n2-by-1 vector has complexity O
((
n2)2), but we

need to multiple a 1-by-nz vector with a scalar for each “inner” multiplication. Since
forming the Kronecker product of two n×n-dimensional matrices has complexity O

(
n4),

the overall complexity of computing the Jacobian of the vectorized gain matrix with
respect to z is at most O

(
n3nz + n4 + n2ω

x + n4nz
)

= O
(
n2ω

x + n4nz
)

when including the
evaluation complexity O

(
n3nz

)
of the precomputed differential tensors, which concludes

the proof.

A.3.2 Hessian of Feedback Matrix

Proposition A.4 (Hessian Matrix of LQR Feedback Matrix). Let (A (P ) , B (P )) be a
controllable LTI system with A (P ) ∈ Rnx×nx and B (P ) ∈ Rnx×nu for P ∈ [−1, 1]mcnu×a,
where each element of A and B is at least twice differentiable with respect to P . Further,
denote with Q ∈ Snx×nx

++ and R given LQR weighting matrices. The Hessian matrix
HKij (z) of the i-th row and j-th column of K ∈ Rnu×nx with 1 ≤ i ≤ nu and 1 ≤ j ≤ nx

is given by

HKij (z) = 1
2

(
d2Kij +

(
d2Kij

)T
)
, (A.31)
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with a computational complexity for all nxnu entries of at most O
(
n2ω

x + n4n2
z

)
, where

d2KT = − d2XBR−1 + 2dX
(
−dB +BR−1dR

)
R−1

+X
(
−d2B + 2

(
dB −BR−1dR

)
R−1dR

)
R−1, (A.32)

d2X(:) =
(
AT

cl ⊞AT
cl
)−1

d2C(:), (A.33)

d2C = −
(
d2M + d2MT

)
, (A.34)

d2M = +X
(
d2A+ dBR−1

(
−2BTdX − 2dRK − dBTX

)
+ d2BK

)

+ dX
(
2dA+ 2dBK − 2BR−1dRK −BR−1BTdX

)

−KTdRR−1dRK, (A.35)

dK and dX are given as in Prop. A.3, and ω ∈ R+ is the exponent for the current
complexity of matrix multiplication.

Proof. Applying the differential operator to (A.28) yields (see proof of Prop. A.3)

dF = dATX +ATdX

+ dXA+XdA

− (dXBR−1BTX +XdBR−1BTX −XBR−1dRR−1BTX +XBR−1dBTX

+XBR−1BTdX
)

+ dQ
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and applying the differential operator again results in

d2F = + d2ATX + dATdX + dATdX +ATd2X

+ d2XA+ dXdA+ dXdA+Xd2A

− (− d2XBK − dXdBK + dXBR−1dRK + dXBR−1dBTX + dXBR−1BTdX

− dXdBK −Xd2BK +XdBR−1dRK +XdBR−1dBTX +XdBR−1BTdX

+ dXBR−1dRK +XdBR−1dRK + 2KTdRR−1dRK +KTdRR−1dBTX

+KTdRR−1BTdX

+ dXBR−1dBTX +XdBR−1dBTX +KTdRR−1dBTX −KTd2BTX

−KTdBTdX

+ dXBR−1BTdX +XdBR−1BTdX +KTdRR−1BTdX −KTdBTdX

−KTBTd2X
)

d2F = + d2ATX + 2dATdX +ATd2X

+ d2XA+ 2dXdA+Xd2A

+ d2XBK + 2dXdBK − 2dXBR−1dRK − 2dXBR−1dBTX − 2dXBR−1BTdX

+Xd2BK − 2XdBR−1dRK − 2XdBR−1dBTX − 2XdBR−1BTdX

− 2KTdRR−1dRK − 2KTdRR−1dBTX − 2KTdRR−1BTdX

+KTd2BTX + 2KTdBTdX

+KTBTd2X.

Next, we define

d2F = ATd2X + d2XA+ d2XBK +KTBTd2X − d2C, (A.36)

where

−d2C = + d2ATX + 2dATdX

+ 2dXdA+Xd2A

+ 2dXdBK − 2dXBR−1dRK − 2dXBR−1dBTX − 2dXBR−1BTdX

+Xd2BK − 2XdBR−1dRK − 2XdBR−1dBTX − 2XdBR−1BTdX

− 2KTdRR−1dRK − 2KTdRR−1dBTX − 2KTdRR−1BTdX

+KTd2BTX + 2KTdBTdX

= d2M + d2MT ,
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collects all terms not containing d2X, and where

d2M = +Xd2A+ 2dXdA+ 2dXdBK − 2dXBR−1dRK − 2XdBR−1BTdX

− dXBR−1BTdX

+Xd2BK − 2XdBR−1dRK −XdBR−1dBTX −KTdRR−1dRK

= X
(
d2A− 2dBR−1BTdX + d2BK − 2dBR−1dRK − dBR−1dBTX

)

+ dX
(
2dA+ 2dBK − 2BR−1dRK −BR−1BTdX

)

−KTdRR−1dRK

= +X
(
d2A+ dBR−1

(
−2BTdX − 2dRK − dBTX

)
+ d2BK

)

+ dX
(
2dA+ 2dBK − 2BR−1dRK −BR−1BTdX

)

−KTdRR−1dRK.

Further, it holds that

ATd2X + d2XA+ d2XBK +KTBTd2X = AT
cld

2X + d2XAcl.

After vectorization of d2F = 0 from (A.36), it thus follows that
(
AT

cl ⊞AT
cl
)
d2X(:) = d2C(:),

and therefore
d2X(:) =

(
AT

cl ⊞AT
cl
)−1

d2C(:).

Using the definition of K from (A.27) and applying the differential operator twice yields

d2KT = d
(
−dXBR−1 −XdBR−1 +XBR−1dRR−1

)

= − d2XBR−1 − dXdBR−1 + dXBR−1dRR−1

− dXdBR−1 −Xd2BR−1 +XdBR−1dRR−1

+ dXBR−1dRR−1 +XdBR−1dRR−1 − 2XBR−1dRR−1dRR−1

= − d2XBR−1 − 2dXdBR−1 + 2dXBR−1dRR−1

−Xd2BR−1 + 2XdBR−1dRR−1

− 2XBR−1dRR−1dRR−1

= − d2XBR−1 + 2dX
(
−dB +BR−1dR

)
R−1

+X
(
−d2B + 2

(
dB −BR−1dR

)
R−1dR

)
R−1.

Evaluating these products and sums of tensors, we obtain d2KT ∈ Rnz×nz×nx×nu , which
yields d2K by transposition. Since

d2Kij = dzTd2Kij dz, 1 ≤ i ≤ nu, 1 ≤ j ≤ nx,
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the Hessian tensor HK (z) ∈ Rnz×nz×nu×nx that contains the Hessian matrices of all
nunx entries of K ∈ Rnu×nx is given by

[HK (z)](:,:,i,j) = HKij (z) = 1
2
(
d2Kij + d2KT

ij

)
, (A.37)

for 1 ≤ i ≤ nu and 1 ≤ j ≤ nx due to Th. 2.5.
The computation of

(
AT

cl ⊞AT
cl

)−1
in (A.33) has complexity O

(
n2ω

x

)
(see proof of

Prop. A.3). Further, all remaining operations in (A.32) to (A.35) can be computed as a
product of an (nz × nz × n× n)-dimensional differential tensor and a (n×n)-dimensional
matrix, the tensor product between two (1× nz × n× n)-dimensional differential ten-
sors, and a “matrix-vector” tensor product of an

(
n2

x × n2
x

)
-dimensional matrix with

a
(
nz × nz × n2

x × 1
)
-dimensional differential tensor: The complexity of the first oper-

ation is O
(
nωn2

z

)
since normal matrix multiplication has complexity O (nω) but here

each scalar multiplication is replaced by the multiplication of an (nz × nz)-dimensional
matrix with a scalar. The complexity of the second operation is at most O

(
nωn2

z

)

since normal matrix multiplication has complexity O (nω) but here each scalar multi-
plication is replaced by the outer product of two nz-dimensional vectors. Finally, the
complexity of the third operation is bounded from above by O

((
n2)2 n2

z

)
since the

matrix-vector product of a
(
n2 × n2)-dimensional matrix and a n2-dimensional matrix

is O
((
n2)2), but here each element is a (nz × nz)-dimensional matrix and so each el-

ement multiplication of the “outer” matrix-vector product is the multiplication of a
scalar with a (nz × nz)-dimensional matrix. Thus, the combined complexity is then
O
(
n3n2

z + n2ω
x + nωn2

z + nωn2
z + n4n2

z

)
= O

(
n2ω

x + n4n2
z

)
(computational complexity of

dK and dX from Prop. A.3 can be thus be ignored) when including the evaluation
complexity of all differential tensors of at most O

(
n3n2

z

)
, which concludes the proof.
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