
TUM School of Computation, Information and Technology
Technical University of Munich

Technical Report

A Two-Step Algorithm for Microfluidic Large-Scale
Integration Test Module Design

Jiahui Peng

Examiner:
Prof. Dr.-Ing. Ulf Schlichtmann

Supervisor:
Mengchu Li

Submitted:
Munich, 30.10.2023

https://www.cit.tum.de/en/cit/home/
https://www.tum.de/en/

Contents

Abstract ..1
1 Introduction ... 2
2 Model Design ..4

2.1 Leakage Testing Model Design ... 4
2.2 Blockage Testing Model Design ... 7

3 Experiment Design and Results ...11
3.1 Experiments Design ...11
3.2 Experiment Results .. 11

4 Conclusion ...16
5 Reference ...17
6 Personal Summarization and Future Work ... 18

1

Abstract
For high-throughput bio-applications, microfluidic large-scale integration (mLSI) shows a
promising future. Leakage and blockage defects tend to occur on the control channels and may
result in unexpected valve behavior and erroneous experimental results. Fortunately, these defects
can be checked after production and before experimentation. Conventional testing can be
performed by testing each valve. The first self-testing method for mLSLs designed with an
integrated test module is presented in [1]. This method improves efficiency by testing the control
channels instead of the previous approach of testing individual valves. However, in real
applications, the actual test circuit does not need to test all possibilities for leakage, because some
control channels are physically so far away from each other that leakage is essentially absent. This
report therefore builds on this foundation, proposing a simplified two-step algorithm to achieve a
more personalized test design strategy combining MILP modelling and greedy algorithm. As a
result, in the first step it may have the chance to reduce the test number of leakage testing by
generating new channel codes from the user input of combinations of channel numbers that may be
compromised. Then the test groups of testing blockages are automatically generated for the user by
the second step. This two-step algorithm can, in general, reduce the construct costs for independent
test modules by decreasing the number of valves, and at the same time having large chances to
reduce testing efforts for both leakage and blockage testing.

Key Words: Microfluidic Chips, Defect Testing, MILP Implementation

2

1 Introduction
Microfluidic large-scale integration (mLSI) is a promising platform for biological experiment
conducting used in many application aspects. By integrating a large number of valves on the chip,
it enables a combination of fluidic reactions. It focuses on ensuring the accuracy of the results of
biological experiments, i.e., that different fluids can come into contact with the reaction in a
precise and timely manner.

In order to further explain the factors affecting the reaction accuracy, mLSI’s structure and
working principle have to be introduced first. It is worth mentioning that this report only gives a
brief overview of the principles, and the specific explanations should be referred to [1]. For this
application scenario, there are generally two layers, one is the flow layer, which is the liquid layer
responsible for providing the liquid to be reacted. The other layer is the control layer, which
controls the flow and reaction of the liquid. The control layer provides control through the
transmission of pressure to the membrane in the middle of the valve, which closes after pressure is
applied, thus making the valve closed.

Control channel, however, is more prone to defects because of the small size. There are two
general types of defects, blockages and leakages. Blockage means that pressure cannot be
transmitted and therefore the channel cannot be pressurized and the valves cannot be closed.
Leakage means that the channels are accidentally linked to each other, so that even if one channel
is not pressurized, pressure may leak out of the other channel to achieve a pressurized result.

[1] presents a basic binary testing methodology for testing for blockages and leakages, which this
report builds upon. The basic idea is that the channels are each uniquely given a binary code from
one to the needed number and with a ‘one’ in the binary coding expression, there is a valve later
for construction. Then, depending on the location and characteristics of the valves, test
experiments can be designed:

For the leakage testing, the number of bits in the binary code is the number of times the test needs
to be conducted. For example, each time, for testing one bit, all the channels with coding ‘1’ on
this bit which means having valves on this row will be not pressured and the channels without
valves will be pressured. In this case, if the channels are perfect with no defects, theoretically the
channel is perfectly smooth, as a result, the fluid will pass the channel and the end will detect the
fluid. If there is a leak between any pair of valved and unvalved passages, pressure will be passed
from the unvalved passage to the valved passage. Thus, this will make a valve that should not have
closed to close. As a result, the fluid will not flow smoothly through the channel to reach the end.
On this bit line, it is possible to detect if there is a leak between a channel with a valve and a
channel without a valve on this line. As each channel has unique coding, any two channels will
have at least one bit of difference between their codes, so any two valves will be tested for leakage
in at least one of the sets of tests.

As for the blockage testing, if a blockage happens on one channel, it loses the ability to detect the
pressure behavior, meaning that the valves for this channel can will never be closed regardless of
pressure. The testing point is to test whether some valve on the channel still let the fluid pass even
with pressure. In [1], the paper takes two neighboring channels as a pair with one smaller odd
number code channel and one even code channel and then pressure are added to both the channels.
For the odd channel, it will have a valve at the least bit and as the odd channel is bigger than it, it
will have at least one bit with valve that the odd one has no valve. In this situation, the blockage
situation for both channels can be detected through different bit ends. A blockage results in fluid
passing through the channel of that bit.

3

In this report, a new two-step algorithm is developed from above. The problem with the testing
method in [1] is that in most cases, not all the channel pairs have the possibility for leakage,
therefore assigning unique numbers to all channels is redundant. And for test groups for blockage,
actually more channels can be combined in one group instead of only two channels. Therefore, in
the new algorithm, two channels can be given exactly the same binary code if there is absolutely
no possibility of leakage between them. And after binary coding accordingly, the test groups for
blockage will be generated automatically, combining more channels than two, up to the bit number
as a pair in one group.

Specific algorithmic details will be presented in the next part and the experimental design and
results will be presented in the third part. Conclusions are drawn in the fourth part, and the fifth
part will summarize this internship work and look into the future. There is also a sixth part for
reference.

4

2 Model Design

2.1 Leakage Testing Model Design
In this section, the experimentally used model 2.1.1 and an introductory-only supplementary
model 2.1.2 are presented.

2.1.1 Leakage Testing Model
Input:
1. Supposing the number of to-be-tested control channels is denoted as an integer number n;
2. For each control channel k with 1 ≤ k ≤ n, a set of control channels that may have leakage

defect with channel k: Lk.

Preparation:
1. For the worst case, n channels can be represented by ⌈log2(n+1)⌉ binary digits, which is

denoted as �;
2. M is considered as a large number later for constraint construction.

Variable Declaration:
1. ∀k ∊ [1, n], � binary variables bk,iwith i ∊ [1, �] are declared to represent the value of the

ith binary digit of channel k;
2. ∀k ∊ [1, n], n binary variables xk,j with j ∊ [1, n] are used to show whether the kth channel

after binary decimal conversion is coded as integer j;
3. ∀i ∊ [1, �], there are total � binary variables ti meaning if this bit position are useful, in

other words, if at least one of the n channels has been coded with a “one” on this bit;
4. ∀i ∊ [1, �], there are also total � integer variable sumiwith lower bound 0 and upper bound

n, counting the number of 1's on the ith bit, also, the number of valves later on the bit;
5. There is an integer variable that equals the maximum value among the � sumi variables,

which has the same range as sumi variables and is denoted as max_value.

Constraints Declaration:
To begin with, avoiding duplication, for two channels, k and l, only the combinations where l is
greater than k are considered once. The same coding cannot be given to l and k if they have the
possibility of leakage:

��,� + ��,� ≤ 1 , ∀� ∊ 1, � , ∀� ∊ 1, � , ∀� ∊ � + 1, � and � ∈ ��

And a channel can only have one coding result:

1 ≤�≤�

��,�� = 1, ∀� ∈ [1, �]

Then the binary form needs to be expressed:

��,� = 1 ���
1 ≤� ≤�

��,� ∙ 2�� = � , ∀� ∊ 1, n , ∀� ∊ 1, n

Which can be illustrated as equation combination:

5

1 ≤� ≤�

��,� ∙ 2�� ≤ � + (1 − ��,�) ∙ �, ∀� ∊ 1, n , ∀� ∊ 1, n

1 ≤� ≤�

��,� ∙ 2�� ≥ � − (1 − ��,�) ∙ �, ∀� ∊ 1, n , ∀� ∊ 1, n

Further, constraints are made to get ti:

1 ≤�≤�

��,� = 0� ��� �� = 0, ∀� ∈ [1, �]

Which equals:

1 ≤�≤�

��,�� ≤≤≤ �� ∙ �, ∀� ∈ [1, �]

The valves on one bit are calculated for optimization:

���� =
1 ≤� ≤�

��,� ,� ∀� ∊ 1, δ

And then get the maximum number of valves among variables sumi, calling it asmax_value.

Objective:
This model has several optimization objects with priority: the coding bit number is considered as
the most important, and then the total valve number. These two can minimize the cost of building
the test module. Minimizing the maximum number of valves among all bits is also the goal we
want to optimize. This allows the valves to be distributed as evenly as possible, which facilitates
the subsequent grouping of the blockage model. The object can be expressed as :

��������: �
1 ≤� ≤�

�� +� �
1 ≤� ≤�

���� + � ∙ ���_������

The above weights can be assigned as needed.
Output: coding result code, binary bit number q.

Then leakage can be tested as the method mentioned in [1], with q testing times. This is not in fact
the most optimal result for testing times, because when the channels are finally coded as q bits, in
some cases q-1 times to test leakage is enough. For example, under the situation for 7 channels
with the leakage impossibility pairs (1,5), (2,6) and (3,7), the channels can be coded as “001”,
“010”, “100”, “011”, “001”, “010”, “100”. This uses 3 bits coding but only need to test two times .
The reason is that for testing, an all zero situation such as 00 is enough but not proper for channel
design. All 0 equals no valve, meaning that the channel cannot close with pressure. For the all 0's,
the actual design has to add another 1 as valve to ensure functionality. This very small difference
in the number of tests, however, can be ignored in the application and the above model result can
be then considered as the most optimal. As a supplementary introduction, the model for obtaining
the optimal group is also presented in 2.2, but this extra step is not used in the experiments
reported later because of the really tiny improvement in results.

6

2.1.2 Leakage Testing Complementary Model
Input:
1. Coding result code from 2.1.1
2. Final binary bit number q from 2.1.1
3. The same integer number n of to-be-tested control channels as 2.1.1
4. For each control channel k with 1 ≤ k ≤ n, a set of control channels that may have leakage
defect with channel k: Lk.

Preparation:
1. ∀k ∊ [1, n], ∀l ∊ [1, n], ∀z ∊ [1, q], xork,l.z means the xor relationship between the kth

channel and the lth channel at the zth bit.

Variable Declaration:
1. ∀z ∊ [1, q], total q binary variables testz are declared to represent if the zth bit need to be

tested.

Constraints Declaration:
Same as before, to avoid duplication, for two channels, k and l, only the combinations where l is
greater than k are considered once. For two channels that may have leakage defects, they need to
be tested at at least one bit:

1≤�≤�

����,�,�� ∙ ����� ≥ 1 , ∀� ∊ 1, � , ∀� ∊ � + 1, � and � ∈ ��

Objective:
This simple model aims to make the test time number the smallest, so the objective can be
expressed as:

��������:
1≤�≤�

������

However, after 2.2.1, the objective result can be known as either q or q-1.

7

2.2 Blockage Testing Model Design
It is found that the modeling approach is slower when the size of the computation becomes larger,
so faster algorithms can be used without pursuing the optimization of the solution in large-scale
computations. In this part, two algorithms are proposed, one for MILP modelling and the other as
an alternative greedy algorithm.

2.2.1 MILPModelling Solution
Input:
1. u is the given group number upper limit;
2. The total channel number is still denoted as n;
3. The new needed bit number from 2.1 is q;
4. The channel coding result code from leakage testing algorithm in 2.1 is also introduced.

Preparation:
1. ∀k ∊ [1, n] and ∀p ∊ [1, q], ck,p represents the binary coding result for the kth channel on the

pth bit;
2. ∀p ∊ [1, q], mp is the total valve number on the pth bit (1’s number) minus 1;
3. M is considered as a large number later for constraint construction.

Variable Declaration:
1. ∀k ∊ [1, n], u binary variables gk,wwith w ∊ [1, u] are declared to represent if the kth channel

is assigned to the wth group;
2. ∀w ∊ [1, u], total u binary variables fw are introduced to represent whether the wth group is

used for assignment;
3. ∀k ∊ [1, n], ∀w ∊ [1, u], ∀p ∊ [1, q], vk,w,p and vk,w,0 are some binary variables later for

constraints construction.

Constraints Declaration:
For each group, at most q channels can be held in it:

1≤�≤�

��,�� ≤ �, ∀� ∈ 1, �

For each channel, it can only be assigned into one group:

1≤�≤�

��,� =� 1, ∀� ∈ 1, �

About the assigning rules, for a certain channel k, it has some certain bits coded with 1, this bit
position set is denoted as Pk. If it is assigned to group w, for the other channels k’ that are also
assigned to w, this set without k is called Wk. They need to satisfy that for at least one bit coded
with 1 for channel k, the other channels in Wk must be all coded with 0 on this bit. This can be
expressed as:

��,� = 1 ���
� ∊ �� �'∈ ��

��',��� = 0 , ∀ � ∈ 1, � , ∀� ∈ [1, �], ∀� ∊ [1, �]

Then it can be further written as:

8

��,� ∙
� ∊ �� �'∈��

��',��� = 0 , ∀ � ∈ 1, � , ∀� ∈ [1, �], ∀� ∈ [1, �]

Further using former variables, k’ ∊ [1, n] represents the channels except k, ∀k ∊ [1, n] and ∀w ∊

[1, u], above equation can be separated into binary equation combinations:

��,� ≤ ��,�,0

��',�� ∙ ��',� ≤ ��,�,� ∙ �� , ∀� ∈ [1, �] ��� � ∈ ��

��,�,0 +
1≤�≤�

��,�,�� =
1≤�≤�

��,��

Also, to record the total group number, if the wth group is occupied, fwwill have the value of 1:

1≤�≤�

��,�� ≠ 0 � �� = 1 , ∀� ∈ 1, �

This can be further written as:

1≤�≤�

��,�� ≤ 0 + �� ∙ � , ∀� ∈ 1, �

Objective:
The object of this model is to minimize the testing groups’ number, thus the objective function is:

��������:
1≤�≤�

���

Output: grouping result

2.2.2 Alternative Solution
The basic idea of grouping is to make each channel in the group has a unique encoding of 1 in at
least one bit, meaning that in that one bit, all channels except it are encoded with 0. This
alternative solution uses a greedy algorithm that firstly sorts all channels from largest to smallest
based on the number of valves, then adds the ones that match the criteria to a group in order, and
then keeps grouping until the end. The pseudocode is introduced below:

Input: channel number n, bit number q, and the channel coding result code from leakage testing
algorithm in 2.1

Preparation: Each channel is initialized with several properties:

Variable Name: Explanation:
assigned_notice 1 representing the channel has been allocated to

groups
coding The coding result for this channel
group The group number it has been allocated
satisfied_bits Which bit can be used for testing

9

Among them, coding is from code and the others will be initialized as 0 or none. The channels are
also firstly sorted from largest to smallest according to the valves that they have and the sorted list
is called sorted_array.

Pseudo code:
while sorted_array do
element_allocating ← sorted_array[0]
get ← 0
if element_allocating.assigned_notice == 0 then
for each object in sorted_array do
if sum (element_allocating.coding[h]∙ object.coding[h]) < sum

(element_allocating.coding[h]) for (h ← 0 to h < q by h++) and sum ((1 -
element_allocating.coding[h])∙ object.codingt[h])≥ 1for (h ← 0 to h < q by h++) then

add [element_allocating, object] to group
group_id ← len(group)
remove element_allocating and object from sorted_array
element_allocating.assigned_notice ← 1
get ← 1
for (h ← 0 to h < q by h++) do
if element_allocating.coding[h] == 1 and object.coding[h] == 0 then
add h to element_allocating.satisfied_bits

if element_allocating.coding[h] == 0 and object.coding[h] == 1 then
add h to object.satisfied_bits

check[h] = element_allocating.coding[h] + object.coding[h]
if check[h] > 1 then
check[h] ← 1

if sum(check) == q then
break

else then
add a new channel object with coding as check and assigned_notice as 1

on the top of sorted_array
break

else then
for each object in sorted_array do
if sum ((1 - element_allocating.coding[h])∙ object.coding[h])≥ 1for (h ← 0 to h < q by h++)

then
previous_ok ← 1
for item in group[element_allocating.group-1] do
num← len(item.satisfied_bits)
for (h ← 0 to h < q by h++) do
if object.coding[h] == 1 and h is in item.satisfied_bits then
num ← num -1

if num == 0 then
previous_ok ← 0

if previous_ok == 1 then
element_allocating.assigned_notice ← 1
get ← 1
for item in group[element_allocatin.group-1] do

10

if object.coding[h] == 1 and h is in item.satisfied_bits then
remove h from item.satisfied_bits

if element_allocating.coding[h] == 0 and object.coding[h] == 1 then
add h to object.satisfied_bits

add object in group[element_allocatin.group-1]
remove element_allocating and object from sorted_array
for (h ← 0 to h < q by h++) do
check[h] = element_allocating.coding[h] + object.coding[h]
if check[h] > 1 then
check[h] ← 1

if sum(check) == q then
break

else then
add a new channel object with coding as check on the top of sorted_array
break

if get == 0 then
if element_allocating.assigned_notice == 0 then
add [element_allocating] to group
remove element_allocating from sorted_array

else then
remove element_allocating from sorted_array

Output: group

11

3 Experiment Design and Results

3.1 Experiments Design
Two experiments including both easy cases and complicated cases have been made to test the
two-step algorithm and specific experimental data and results can be found in the Appendix. The
parameters used in the experiment are listed in Table 1:

Device, software or parameters: Value:
CPU i5-8250u
Gurobi version 10.0.1
Python version 3.9.7
M 100000
� 1000
� 5
� 1

Table 1: Experiment parameters

3.1.1 Test Case 1: Random Leakage Generating
In this experiment design, for n channels, there are total �(�−1)

2
pairs, 10%, 30%, 50% and 100%

possible leakage pairs are generated randomly for 15, 30, 45 and 60 channels.

3.1.2 Test Case 2: Neighboring Leakage Generating
This simulates the situation most likely happens in real applications because if the distance
between the channels is far enough, leakage basically cannot happen. For the cases of 15, 30, 45,
and 60 channels, 2.3.4.5 neighboring channels at risk of leakage are simulated respectively.

3.2 Experiment Results
3.2.1 Results of Leakage Test Modelling
First, the experimentation of the algorithm is completed according to the original parameter design.
For the leakage testing part, the numbers of coding bits for test case 1 and test case 2 compared to
baseline from [1] are shown in Figure 1 and Figure 2. When comparing the coding bits, it can be
seen that except for the extreme case where 100% of pairs need to be considered for leakage as in
the case of baseline, the number of bits is reduced in all other cases. In the worst-case scenario, at
least the outcome will remain the same.

12

Figure 1: Coding Bits under Different Conditions (Test Case 1)

Figure 2: Coding Bits under Different Conditions (Test Case 2)

It is worth mentioning that for test case 2, which is closer to the actual simulation scenario, the
enhancement is more pronounced. The number of coding bits is fixed once the number of
neighboring channels that may be at risk of leakage has been determined, which is a great
enhancement for high-volume applications. When it comes to n channels, the baseline can be
represented by ⌈log2(n+1)⌉ binary digits. However for n channels with neighbouring leakage

defect number of a fixed �, the coding bits can be calculated as ⌈log2(�+2)⌉ bits as a constant. For
example, for a constant amount of neighboring channels as in test case 2 and infinite channels, the
comparison is shown in Figure 3.

13

Figure 3: Bit Number for Neighboring Cases

The reduction of coding bits means that the area of testing module decreases and then the costs are
also reduced. According to [1], the optimized test module area’s decreasing percentage as Pdecreased
for test case 1 and test case 2 are calculated in Table 2 and Table 3, supposing this Areat (mm2) can
be calculated as 0.2ρq, in which ρ is a constant number related to different applications and q
represents the bit number. For ease of expression, test cases are numbered, for example, for test
case 1, 10%, 30%, 50%, 100% for 15 channels are coded as 15-0.1, 15-0.3, 15-0.5, 15-1
respectively. For test 2, 2, 3, 4 and 5 neighbouring for also 15 channels are coded as 15-2, 15-3,
15-4. 15-5.

Case Pdecreased Case Pdecreased Case Pdecreased Case Pdecreased

15-0.1 50% 30-0.1 60% 45-0.1 50% 60-0.1 50%
15-0.3 25% 30-0.3 40% 45-0.3 50% 60-0.3 50%
15-0.5 25% 30-0.5 40% 45-0.5 33.3% 60-0.5 33.3%
15-1 0% 30-1 0% 45-1 0% 60-1 0%

Table 2: Percentage of Area Decreasing for Test Case 1

Table 3: Percentage of Area Decreasing for Test Case 2

The running time for test case 1 is shown in Table 4 and test case 2 is shown in Table 5. For test
case 1, as some cases are complicated and will last a really long time, the upper bound of running
time is set to be 10 minutes, and this not so optimal results will have nothing to do with the
smallest bits, also the smallest area, however it may have result in more blockage grouping later.
For test case 2, none of the cases runs more than 6 minutes, which is a quite good result.

Case Pdecreased Case Pdecreased Case Pdecreased Case Pdecreased

15-2 50% 30-2 60% 45-2 66.7% 60-2 66.7%
15-3 25% 30-3 40% 45-3 50% 60-3 50%
15-4 25% 30-4 40% 45-4 50% 60-4 50%
15-5 25% 30-5 40% 45-5 50% 60-5 50%

14

Case t Case t Case t Case t

15-0.1 <0.1s 30-0.1 0.4s 45-0.1 5.4s 60-0.1 444s
15-0.3 0.3s 30-0.3 4.7s 45-0.3 10min 60-0.3 10min
15-0.5 0.3s 30-0.5 170s 45-0.5 10min 60-0.5 10min
15-1 <0.1s 30-1 0.5s 45-1 1.8s 60-1 2.7s

Table 4: Running Time for Test Case 1

Table 5: Running Time for Test Case 2

3.2.2 Results of Blockage Test Grouping
It should be noted that for blockage test groupings, the experiment adopted the strategy of using
alternative algorithms for computation when the modeling algorithm is slow. Figure 4 and Figure 5
shows the results for test case 1 and test case 2 compared to baseline from [1]. As for the groups
number, the results show that in most cases the number of groups decreases or remains the same,
but there are still some times when the number of groups becomes more instead, for example,
15-0.1, 30-0.1, 15-2, 30-2. 45-2 and 60-2. The results have a common reason that the coding
before reduces the bits to 2. For the grouping method in [1], every 2 channels can be assigned into
one group. For 2 bits, the channel may have coding of “01”, “10” and “11”. Only “01” and “10”
can form a pair and “11” can only act as a group itself. That is the reason for group increasing.
However, 2 bits coding reduces the area a lot, especially in large cases. This sacrifice is acceptable
in relation to the construction effort.

Figure 5: Groups for Testing Blockage under Different Conditions (Test Case 1)

Case t Case t Case t Case t

15-2 <0.1s 30-2 0.3s 45-2 1.3s 60-2 3.5s
15-3 <0.1s 30-3 0.4s 45-3 7s 60-3 352s
15-4 0.1s 30-4 0.5s 45-4 5.4s 60-4 18s
15-5 0.1s 30-5 0.7s 45-5 6.5s 60-5 16s

15

Figure 5: Groups for Testing Blockage under Different Conditions (Test Case 2)

3.2.3 Comparison of Blockage Test Modelling and Greedy Algorithm
To compare the performance of the two algorithms, two metrics were taken, time tmodelling, tgreedy
and number of groups nmodeling and ngreedy . Actually the comparison is incomplete and less
computationally intensive due to the fact that the results of the modeling could not be derived
when the problem size was large. The results are shown in Table 6. According to the table, it can
be seen that the greedy algorithm is much faster, especially when the number of channels increases.
For the number of groups, it is almost the same as the modeling results when they can be
compared. However, there are isolated cases where the number of groups increases slightly by one,
and since not all cases can be measured, it is not possible to determine how large the difference
actually is.

Case tmodelling tgreedy nmodeling ngreedy
15-0.1 <0.1s

<0.1s

8 8
15-0.3 <0.1s 6 6
15-0.5 <0.1s 6 6
15-1 42.3s 7 7
30-0.1 31.5s 17 17
30-0.3 3224s 12 13
45-0.1 0.6s 16 16
60-0.1 1.7s 21 21
15-2 <0.1s 10 10
15-3 <0.1s 6 6
15-4 0.1s 6 7
15-5 0.1s 6 7

Table 6: Time and Group Comparison between Modelling and Greedy algorithm

16

4 Conclusion

In this report, a two-step algorithm for testing mLSI circuits’ leakages and blockages based on [1]
is proposed. It combines mathematical modelling and greedy algorithm. Compared to [1], this
algorithm reduces the area and cost of building the test module by decreasing the number of
coding bits and the number of valves required, and reduces the test effort with high probability.

17

5 Reference

1. M. Li et al., "Integrated Test Module Design for Microfluidic Large-Scale Integration," in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no.
6, pp. 1939-1950, June 2023.

18

6 Personal Summarization and Future Work

Looking back on this internship experience, I achieved the actual practice of transforming
knowledge from EDA class to application. Thanks to my supervisor for patiently guiding and
advising me throughout the process. It meant a lot to me when I was helpless and she told me not
to research on my own, but to communicate in order to make new advances.

In addition to modeling and programming skills, this internship made me realize the importance of
algorithmic complexity. Earlierly I wrote an algorithm for leakage, but this algorithm took too long
to compute on my computer, so I abandoned the old algorithm. However, that discarded algorithm
achieves the optimal solution for the optimal solution for the number of tests with a fixed number
of bits if you don't seek to minimize the number of bits. Blockage's alternative algorithm was also
written because of the speed problem of the modeling method, and although it doesn't reach a strict
optimal solution, it still performs well, and most importantly, it's fast. It also taught me that
sometimes modeling is not the only solution, learning the algorithm is thus really important.

The downside of this internship is that blockage's modeling algorithm is slow on my computer
under large-scale computation, so I wasn't able to fully compare it to alternative algorithms in
terms of optimality for large-scale computation.

For future work, I hope to improve blockage's modeling algorithm to make it faster, or use better
device to compare the two algorithms in full depth. I also wish there was a better way to deal with
very large scale leakage problems, as modeling methods have speed limitations when the problem
size gets bigger.

	Technical Report
	Jiahui Peng
	Abstract
	1 Introduction
	2 Model Design
	2.1 Leakage Testing Model Design
	In this section, the experimentally used model 2.1
	2.1.1 Leakage Testing Model
	2.1.2 Leakage Testing Complementary Model
	2.2 Blockage Testing Model Design

	Pseudo code:
	while sorted_array do
	3 Experiment Design and Results
	3.1 Experiments Design
	3.2 Experiment Results
	Figure 1: Coding Bits under Different Conditions (
	Figure 2: Coding Bits under Different Conditions (
	It is worth mentioning that for test case 2, which
	The reduction of coding bits means that the area o
	Case
	Pdecreased
	Case
	Pdecreased
	Case
	Pdecreased
	Case
	Pdecreased
	15-0.1
	50%
	30-0.1
	60%
	45-0.1
	50%
	60-0.1
	50%
	15-0.3
	25%
	30-0.3
	40%
	45-0.3
	50%
	60-0.3
	50%
	15-0.5
	25%
	30-0.5
	40%
	45-0.5
	33.3%
	60-0.5
	33.3%
	15-1
	0%
	30-1
	0%
	45-1
	0%
	60-1
	0%
	Case
	Pdecreased
	Case
	Pdecreased
	Case
	Pdecreased
	Case
	Pdecreased
	15-2
	50%
	30-2
	60%
	45-2
	66.7%
	60-2
	66.7%
	15-3
	25%
	30-3
	40%
	45-3
	50%
	60-3
	50%
	15-4
	25%
	30-4
	40%
	45-4
	50%
	60-4
	50%
	15-5
	25%
	30-5
	40%
	45-5
	50%
	60-5
	50%
	The running time for test case 1 is shown in Table
	Case
	t
	Case
	t
	Case
	t
	Case
	t
	15-0.1
	<0.1s
	30-0.1
	0.4s
	45-0.1
	5.4s
	60-0.1
	444s
	15-0.3
	0.3s
	30-0.3
	4.7s
	45-0.3
	10min
	60-0.3
	10min
	15-0.5
	0.3s
	30-0.5
	170s
	45-0.5
	10min
	60-0.5
	10min
	15-1
	<0.1s
	30-1
	0.5s
	45-1
	1.8s
	60-1
	2.7s
	Case
	t
	Case
	t
	Case
	t
	Case
	t
	15-2
	<0.1s
	30-2
	0.3s
	45-2
	1.3s
	60-2
	3.5s
	15-3
	<0.1s
	30-3
	0.4s
	45-3
	7s
	60-3
	352s
	15-4
	0.1s
	30-4
	0.5s
	45-4
	5.4s
	60-4
	18s
	15-5
	0.1s
	30-5
	0.7s
	45-5
	6.5s
	60-5
	16s
	Table 5: Running Time for Test Case 2
	Figure 5: Groups for Testing Blockage under Differ
	Figure 5: Groups for Testing Blockage under Differ

	4 Conclusion
	5 Reference
	6 Personal Summarization and Future Work

