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Abstract

Wavelength-routed optical networks-on-chip (WRONoC) is a promising platform for com-
munication in multiprocessor systems-on-chips. A proposed method called CustomTopo (Li
et al. 2018) is used to lower resource usage by reducing add-drop filters (ADFs) in a WRONoC
topology. However, the ADF-reduction may lead to more crossing loss in the topology. In this
work, I propose an algorithm to mitigate the drawbacks of CustomTopo. This algorithm can
reassign the router ports of the topology to reduce the number of on-chip crossings resulting
from the concept of CustomTopo. Moreover, this algorithm can also represent the change
of off-chip connection caused by port reassignment. Experimental results show that this al-
gorithm is applicable in various cases and can reduce the number of on-chip crossings up to
57.14%.
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1. Introduction

Optical networks-on-chips (ONoCs) have arisen as an promising next-generation platform, with
the rapid development of on-chip communication in multiprocessor systems-on-chips (MP-
SoCs) (Li et al. 2018). ONoCs rely on waveguides to transmit signals. With waveguides, the
conveyed electrical signals can be transmitted as optical signals and the optical signals can be
guided from the laser source up to the receivers.

ONoCs can be classified into two categories based on their routing mechanisms: (1) active
networks and (2) passive networks, the later is termed wavelength-routed optical networks-
on-chips (WRONoCs) (Truppel et al. 2020). Active networks route the signals by using a
real-time switching mechanism. In a passive network, the routing path of every master-slave
pair is determined at its design time. Signals with different wavelengths can be transmitted
through the same waveguide until they are demultiplexed by add-drop-filters (ADFs).

For WRONoCs, reducing resource usage is the first main goal to achieve during design time.
Two important metrics for resource usage in a WRONoC topology are introduced: the num-
ber of wavelengths and the number of ADFs (Peano et al. 2016). Nowadays, most of the
WRONoC topology generation requires full-connectivity (i.e. all masters need to connect to
all slaves (Briere et al. 2007)). However, the masters are not always necessarily communicat-
ing with all slaves. Thus, the assumption of full-connectivity can lead to a high wastage of
resource usage. To avoid this wastage, (Li et al. 2018) has proposed a new method named
CustomTopo, which can generate customized WRONoC topologies without the assumption of
full-connectivity, and the ADF usage can be reduced by using this method.

Moreover, lowering power consumption is the second main goal to achieve for the WRONoC
topology during design time. Insertion loss is the main factor of power consumption (Tseng
2013). When light is inserted into an optical link, some power is taken away by photonic devices
and optical paths, and this amount of power is called insertion loss. There are five components
of insertion loss: (1) propagation loss, (2) crossing loss, (4) drop loss, (5) through loss and (5)
bending loss (Nikdast et al. 2015). Propagation loss is the energy decrease along waveguides.
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Crossing loss is caused by crossings between waveguides. Drop loss occurs at the drop points
of microring resonators (MRRs). Through loss occurs when a signal directly goes through an
MRR. Bending loss is the power loss that occurs for changing signal direction at waveguide
bending points. Considering crossing loss causes more power consumption than the propagation
loss with existing WRONoC technology parameters (Tseng et al. 2019)„ keeping the number of
crossings as small as possible is the main goal to achieve to lower power consumption. Figure 1.1
has illustrated the concept of ADF reduction for a one-column matrix of CustomTopo. As
we can see, after an ADFm,sj with resonance frequency Λm,sj is removed in the column, a
corresponding external crossing is generated in the layout. The external crossing is marked in
red in Figure 1.1. This external crossing can result in more crossing loss to the topology and
lead to more power consumption. Thus, there is a pressing need for an optimization method
that can reduce the crossing loss which CustomTopo produces.

The major contributions of this work include an algorithm focusing on the reassignment of
router ports based on symmetric communication matrices representing the communication
between ports to reduce the number of on-chip crossings. Nevertheless, port reassignment can
lead to off-chip crossings. Therefore, this work also proposes a method that can calculate the
number of off-chip crossings that port reassignment results in.

This thesis is structured as follows: this chapter is succeeded by the preliminaries, chapter 2,
where the necessary knowledge and notations are introduced. The proposed algorithm of port
reassignment and the method for calculating the number of off-chip crossings are in chapter 3.
The results by solving nine test cases are presented in chapter 4. At last, the conclusion is
given in chapter 5.
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Figure 1.1.: ADF reduction for a one-column matrix. (Li et al. 2018)

11



2. Preliminaries

This chapter introduces preliminary knowledge and concepts which are necessary to understand
in the later chapters. At first, the 3D architecture for WRONoC applications is presented, in
which the overview of the WRONoC structure is given. In section 2.2, the basic units on the
photonic layer of the 3D architecture are discussed, which are memory controller, hub, and
router. The function of the router is completed by using add-drop filters (ADFs). The ADFs
are discussed in 2.3. Reducing the number of ADFs can be beneficial, this is discussed in 2.4. To
model the communication between different components in WRONoC systems, communication
matrix and logical topology are used. They are presented in 2.5. The on-chip crossings can
occur in the logical layout of the communicative components, the concept of the generation of
on-chip crossings is described in 2.6. Moreover, the components also have off-chip connections
outside the logical topology. The off-chip crossings can occur in the off-chip layout, the concept
of the generation of the off-chip crossings is described in 2.7. Finally, the routing problem of
this thesis, which is solved in the following chapters, is formulated in 2.8.

2.1. 3D architecture for multicore processors

The 3D architecture for multicore processors is a typical setting for WRONoC applications.
As shown in Figure 2.1, this structure consists of a vertically stacked photonic layer and an
electronic layer (Ramini et al. 2013). Through-silicon vias (TSVs) connect the clusters of the
processors on the electronic layer and their corresponding hubs on the photonic layer. The
electrical signals travelling along the TSVs can be converted into or from optical signals by the
laser sources providing on the photonic layer.
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Figure 2.1.: A typical WRONoC setting on a 3D-stacked chip. (Tseng et al. 2019)

2.2. Basic units on photonic layer

As shown in Figure 2.1, the photonic layer consists of three parts: (1) memory controllers
(MCs), (2) hubs, and (3) router. The MCs control the flow of data going to and from the mem-
ory. The hubs are the interfaces where the conversion between optical signals and electrical
signals takes place. The router can drive data transmission between different communication-
pairs. There are three types of communications: (1) communication among clusters, (2) com-
munication from a cluster to an MC, (3) communication from an MC to a cluster (Ramini
et al. 2013). Thus, a cluster or an MC can either send or receive signals. If we denote master
as the message sender and slave as the message receiver, then a component on the photonic
layer can either be a master or a slave.

2.3. Add-drop filter (ADF)

If we simultaneously send signals with different wavelengths through a waveguide and want to
direct them to different targets, we can use ADFs to demultiplex the signals and allow them
to go to their targets. Figure 2.2 (a) illustrates a basic 2-input × 2-output ADF structure
containing two crossing waveguides and two microring resonators (MRRs). An MRR has a
circular silicon structure, and its radius defines its resonance frequency (Xiao et al. 2007). As
shown in Figure 2.2 (a), different colors represent different wavelengths of the signals. The
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Figure 2.2.: Left: (a) basic structure of an ADF. Right: (b) functionality of ADFs.

resonance frequency of the ADF is marked in blue. The wavelengths of signal 1 and signal 2
are correspondent to the resonance frequency of the ADF. Therefore, signal 1, which enters
input i1, changes its direction along the MRR and is routed to output o2. Similar to signal 1,
signal 2, which enters input i2, is routed to output o1. In contrast to the blue signals, the red
signals, signal 3 and signal 4 do not resonate with the ADF and maintain their directions.

Figure 2.2 (b) shows a simple WRONoC topology. The master and slaves denote output and
input ports of the external modules, respectively. Suppose a signal group of three signals with
different wavelengths is transmitted along the waveguide simultaneously. The red and blue
signals are resonated with the resonance frequency of ADF1 and ADF2. Therefore, these two
signals can be demultiplexed at ADF1 and ADF2 correspondingly and arrive at Slave1 and
Slave2. The green signal, which does not resonate with any ADF, travels along the waveguide
and arrives at Slave3.

2.4. ADF reduction

A topology with fewer ADFs than its master-slave pairs is called a topology with an ADF
reduction structure (Li et al. 2018). As shown in Figure 2.2 (b), the master communicates
with three slaves by two ADFs. Even though the number of ADFs is smaller than the number
of slaves, the signals with different wavelengths are routed successfully.

The default path and default slave of an ADF reduction structure are introduced in 2.4.1. The
constraints which need to be put onto the default paths are introduced in 2.4.2.
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2.4.1. Default path and default slave

In Figure 1.1, all slaves communicate with one master by dedicated ADFs in the initial layout.
This 1-master×n-slaves topology consists of n ADFs. However, as shown in the reduced layout
of Figure 1.1, n− 1 ADFs are already sufficient to complete the data transmission among the
master and the slaves. A randomly chosen ADFm,sj is replaced by a regular waveguide, and a
new waveguide is used to connect the ADFm,sn and slave sj . The signals which are resonated
with Λm,sj travel along the waveguide and across all the ADFs. Finally, these signals arrive
at sj without resonating with any of the ADFs since λm,sj 6= Λm,si for all 1 ≤ i ≤ n, i 6= j.
Therefore, sj is defined as the default slave of m, and the signal path from m to sj is defined
as the default path of master m. In this case, λm,sj is denoted as 0, indicating m and sj does
not need ADFs to communicate with each other.

2.4.2. Constraints on default path

As described in section 2.4.1, the default slave of a master mi only exists while the other slaves
connect with this master through ADFs. This statement can also be formulated as follows:
every master can only possess one default slave.

As shown in Figure 2.2 (b), the green signal reaches its target Slave3 by using the default path
of Master1. In this case, the green signal is the remaining signal. The remaining signal is
defined as the signal which has passed all ADFs on the default path but did not resonate with
any of the ADFs. If a signal is a remaining signal to communicate with a slave by using the
default path of a master, it needs first to pass all the ADFs to reach its target. Therefore, the
default path between mi and sj needs to consist of all ADFs in the i-th column and the j-th
row of the logical topology (Li et al. 2018). The concept of the logical topology is described in
the next section.

In conclusion, there are two constraints that need to be put onto default paths:

1. Every master can only possess one default slave.

2. The default path between master mi and slave sj needs to consist of all ADFs in the i-th
column and the j-th row of the logical topology.
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2.5. From communication matrix to logical topology

A communication matrix can model the entire communication behavior between all master-
slave pairs (Truppel et al. 2019). The number of masters is denoted as nm; the number of slaves
is denoted as ns. Each entry λmi,sj indicates the wavelength of the signal, which is travelling
between master mi and slave sj for all 1 ≤ i ≤ nm, 1 ≤ j ≤ ns. Then the communication
matrix takes the form:



m1 m2 · · · mnm

s1 λm1,s1 λm2,s1 · · · λmnm ,s1

s2 λm1,s2 λm2,s2 · · · λmnm ,s2
...

...
... . . . ...

sns λm1,sns
λm2,sns

· · · λmnm ,sns


If there is no communication between mi and sj , the corresponding entry λmi,sj will then be
set as NA; otherwise if the communication exists, the entry λmi,sj will be set as the wavelength
of the signal which connects mi and sj , and this entry is denoted as * (Li et al. 2018). For the
master-slave pairs which use default paths to communicate with each other, their entries are
set as 0s.

A communication matrix can be illustrated by a logical topology. In the logical topology of
an existing communication matrix, an ADF indicates a signal path between a master and a
slave which is not directly connected by a waveguide. As shown in Figure 2.3, every * denoted
connection is translated into ADF. Considering there is no communication between m2 and
s2, there is no connection between this master-slave pair in the logical topology. There is a 0
in the communication matrix representing the default path between m3 and s3. The signal,
which does not resonate with any other ADF on the path from m3 and s3, will travel along
the waveguide without being affected by the ADFs.

Here I want to emphasize that as described in section 2.4.2, every master can only possess
one default slave. Therefore, there could only be one 0 in each row and each column of the
communication matrix.
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s1
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Figure 2.3.: Transformation from communication matrix into logical topology.

2.6. Generation of on-chip crossings

As illustrated in Figure 2.4, the type of the on-chip crossings can be classified into two cat-
egories: (1) internal crossings, which mean the crossings inside the ADFs; this crossing is
marked in blue in the figure. (2) external crossings, which identify the crossings outside the
ADFs; they are marked in red in the figure. The internal crossings result from the internal
structure of ADFs, and they are mostly unavoidable. The commonly discussed crossing loss
results from the external crossings. As we can see, after an ADF is replaced by a default path,
an external crossing is generated. If a master-slave pair is a no-communicative pair, it can also
generate a crossing in the topology. Therefore, the external crossing can be generated by 0
(representing default path) or NA (representing no-communicative pair) in the communication
matrix. In the later chapters, on-chip crossings refer to external crossings in a topology.

Moreover, the location of the 0s and NAs also plays a role in generating on-chip crossings.
As shown in Figure 2.5 and Figure 2.6, if the 0 or the NA is surrounded by *s (representing
communication-pairs) in a communication matrix, there is a crossing in its corresponding
logical topology. However, if the NAs locate in the nm-th column or the ns-th row, and the 0
locates at position (ns, nm) of the communication matrix, these NAs and this 0 cannot cause
crossing to the logical topology.

Besides, if there are multiple 0s in a communication matrix, their location may also result in
more crossings. As shown in Figure 2.7, if the 0s are located in a "downstairs" order (i.e. there
exists a 0 which has a smaller row index and a smaller column index compared to one of the
other 0s), there are only two crossings in the topology. On the contrary, if the 0s are located
in an "upstairs" order (i.e. there exists a 0 which has a smaller row index and a larger column
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NA ∗ ∗
∗ 0 ∗


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m1 m2 m3

s1

s2

s3

Figure 2.4.: Internal crossing and external crossing in a logical topology.

index compared to one of the other 0s), there are six crossings in total. The default path
of (s3,m1) is used as an example to explain the mechanism of more crossings in an upstairs
zero structure. It is clear to see in the figure that if the default path wants to travel through
all ADFs in the first column and the third row, it has to cross the waveguides of (s2,m2) and
(s1,m3), which can bring two more crossings to the topology. In a communication matrix, there
can exist upstairs zero structure and downstairs zero structure at the same time, as shown in
Figure 2.8. The number of on-chip crossings, which the upstairs zero structure causes, can be
calculated with this equation:

#upstairs crossings = #zeros(so,mp) for zero(si,mj), for o < i & p > j,

for 1 ≤ o, i ≤ ns, 1 ≤ j, p ≤ nm
(2.1)

If a communication matrix has both the upstairs zero structure and the downstairs zero struc-
ture, this equation will only be applicable to calculate the number of on-chip crossings that
the upstairs zero structure causes.
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Figure 2.5.: Location of 0 can impact the number of on-chip crossing in a logical topology.
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Figure 2.6.: Location of NA can impact the number of on-chip crossing in a logical topology.
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Figure 2.7.: Different structures of 0s in topology. Left: (a) downstairs zero structure. Right:
(b) upstairs zero structure.
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Figure 2.8.: A communication matrix with both the upstairs zero structure and the downstairs
zero structure.
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2.7. Generation of off-chip crossings

As discussed in section 2.2, a hub and an MC can be both the master and the slave. The
master- and slave-ports in a logical topology are the pins of their corresponding hub or MC.
This thesis assumes that the master-ports are located in the north of the communication matrix
and the logical topology. The slave-ports are located in the west of the communication matrix
and the logical topology. The same index of a master and a slave indicates one hub or one
MC (e.g. Master1 and Slave1 are two pins of Hub1, and Master2 and Slave2 are two pins of
MC1). The master-slave pair of the same hub or MC is connected off-chip.

This thesis defines ports switch as two ports switching their locations with each other. It
is assumed that the ports switch can only happen among masters or slaves, and this switch
cannot happen between a master and a slave. However, Figure 2.9 shows three kinds of ports
switch. The three scenarios are: (b) switch master-ports, (c) switch slave-ports, and (d) switch
both kinds of ports at the same time. Figure 2.10 models the off-chip connection of the ports
switch in Figure 2.9. Ports 1 are marked in blue, ports 2 are in red, ports 3 are in orange,
and ports 4 are in teal. It is noticeable, that there are five off-chip crossings in Figure 2.10
(b), and there are three off-chip crossings in Figure 2.10 (c). In the contrast, there is no off-
chip crossing in Figure 2.10 (d). Therefore, if there are only ports switches among masters
or slaves, there occur off-chip crossings in the off-chip layout. If two slaves and their off-chip
connected masters are switched at the same time, as shown in Figure 2.10 (d), s2 switches with
s4, and m2 switches with m4, there is no off-chip crossing. Therefore, if two master-ports are
switched, and their off-chip connected slave-ports are also switched, the off-chip crossings that
the master-ports switch has caused can compensate the off-chip crossings that the slave-ports
switch has caused.

2.8. Routing problem formulation

In a WRONoC system, the location of the components, including communication-pair (de-
noted by *), default path (denoted by 0), and no-communicative pair (denoted by NA) in the
communication matrix is the main factor in producing on-chip crossings in the logical topology.
To reduce the number of on-chip crossings, I can change the location of the components by
reassigning their master- and slave-ports. The port reassignment is done by performing a se-
quence of ports switches. The reassignment needs to be based on the existing communicative
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
m1 m2 m3 m4

s1 ∗ 0 ∗ ∗
s2 ∗ ∗ NA ∗
s3 ∗ ∗ ∗ ∗
s4 NA ∗ 0 ∗



m4 m2 m3 m1

s1 ∗ 0 ∗ ∗
s2 ∗ ∗ NA ∗
s3 ∗ ∗ ∗ ∗
s4 ∗ ∗ 0 NA




m1 m2 m3 m4

s3 ∗ ∗ ∗ ∗
s2 ∗ ∗ NA ∗
s1 ∗ 0 ∗ ∗
s4 NA ∗ 0 ∗



m1 m4 m3 m2

s1 ∗ ∗ ∗ 0
s4 NA ∗ 0 ∗
s3 ∗ ∗ ∗ ∗
s2 ∗ ∗ NA ∗


Figure 2.9.: Different types of ports switch. Upper left: (a) the original communication matrix.

Upper right: (b) the communication matrix after the master-ports switch between
m1 and m4. Bottom left: (c) the communication matrix after the slave-ports
switch between s1 and s3. Bottom right: (d) the communication matrix after both
the master- and the slave-ports switch between m2 and m4, s2 and s4.

relations between masters and slaves. Moreover, the reassignment of ports can impact the
off-chip connection between masters and slaves. Therefore, the change of off-chip connection
caused by port reassignment is also important to be taken into consideration.

In this thesis, I take communication matrices as the input matrix. As described in section 2.7,
I constrain the master-ports on the north of the communication matrix, and the slave-ports on
the west of the communication matrix. The logical topology of the communication matrix is
used to illustrate the on-chip connection between the master-slave pairs. The off-chip layout
of the communication matrix is used to illustrate the off-chip connection of the master-slave
pairs.

The first goal is an optimization algorithm to reduce the number of on-chip crossings of the
input matrix by reassigning the ports of the input matrix. Moreover, another goal is a method
to analyze the off-chip connection after the port reassignment.

Many factors can result in on-chip crossings. Three questions are essential to the optimization
algorithm: It is worth discussing which structure can cause more on-chip crossings than other
structures. If this structure is optimizable, is also a meaningful question that needs to be
discussed. From this question, how to optimize this structure becomes another considerable
question. Therefore, analyzing and solving these questions are also important to achieve my
goals.

22



1
2

3
4

1
2

3
4

3
2

1
4

1
4

3
2

Figure 2.10.: Off-chip layouts of communication matrices in Figure 2.9. Upper left: (a) the
original off-chip layout. Upper right: (b) the off-chip layout after the master-
ports switch between m1 and m4. Bottom left: (c) the off-chip layout after the
slave-ports switch between s1 and s3. Bottom right:(d) the off-chip layout after
the master- and slave-ports switch between m2 and m4, s2 and s4.
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If I conclude the inputs, constraints, and goals, the routing problem of this thesis can be
formulated as follows:

reduce:

Number of on-chip crossings

subject to:

Port reassignment

& Analyzing the off-chip connection

given:

Communication matrix, its logical topology, and its off-chip layout

(2.2)
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3. Methodology

In the proposed method of optimizing WRONoC systems by reassigning their ports, the number
of on-chip crossings is among the most important factors. However, before optimizing a system,
the initial status of this system needs to be analyzed. After analyzing the initial status of the
system, the most suitable optimization process can be applied on the system. To identify the
improvement after the optimization, a comparison between initial status and optimized status
needs to be done.

Based on above steps, this chapter is structured as follows: I propose an equation in 3.1 to
calculate the on-chip crossings of a logical topology from its communication matrix. I then
analyze the structure of the input matrix in 3.2. To reduce the number of the on-chip crossings
of the input matrix, I propose a method to optimize this input matrix in 3.3. Finally, a finding
about how the off-chip connection changes caused by the optimization is presented in 3.4.

3.1. Count on-chip crossings of the input communication matrix

As described in chapter 1, the crossing loss is the major component of the insertion loss of a
WRONoC system. Before starting to optimize the input matrix, there is a need to count the
number of on-chip crossings. As it was explained in section 2.6, in a communication matrix,
0s and NAs are the cause of on-chip crossings in the corresponding logical topology. Moreover,
as shown in Figure 2.5 and 2.6, the position of 0s and NAs has a significant impact on the
total number of on-chip crossings in a logical topology. After analyzing the position of 0s and
NAs individually and carefully, I then propose the following equation to calculate the number
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of on-chip crossings:

#zeros+ #NAs (0)

− #zero at position (ns, nm)−#NA at position (ns, nm) (1)

− #NA in the ns − th row −#NA in the nm − th column except for position (ns, nm) (2)

+ #zeros(so,mp) for zero(si,mj), for o < i & p > j, for 1 ≤ o, i ≤ ns, 1 ≤ j, p ≤ nm (3)

− #NAs in sequence with NA(si,mnm), for 1 ≤ i ≤ ns on column i (4)

− #NAs in sequence with NA(sns
,mj), for 1 ≤ j ≤ nm on row j (5)

+ #NAs(sa,mnm
− e+ 1), for 1 ≤ e ≤ x, if zero(sa,mb) & NA(sa,mnm

) (6)

for 1 ≤ a ≤ ns, 1 ≤ b ≤ nm

(x is number of NAs in sequence with NA(sa,mnm
))

+ #NAs(snm − f + 1,mb), for 1 ≤ f ≤ y, if zero(sa,mb) & NA(sns ,mb) (7)

for 1 ≤ a ≤ ns, 1 ≤ b ≤ nm

(y is number of NAs in sequence with NA(sns ,mb))

− #zero(so,mnm
) if NA(si,mnm

), for o ≤ i ≤ ns (8)

− #zero(sns
,mp) if NA(sns

,mj), for p ≤ j ≤ nm (9)

= #on− chip crossings

(3.1)

This equation can be explained as follows:

(0) As default, I assume that every 0 and NA in the input matrix can result in one crossing.

(1) If there is a 0 or an NA at position (ns, nm) of the communication matrix, as shown in
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Figure 2.5 and 2.6, this 0 or NA cannot cause on-chip crossing in the logical topology. Therefore
the number of this 0 or NA should be subtracted from the total number of on-chip crossings.

(2) As proposed in section 2.6, if the NAs place in the ns-th row or the nm-th column of the
communication matrix, they can not cause any crossing in the logical topology. Therefore,
they need to be subtracted from the total number of on-chip crossings. Considering the 0 or
NA at position (ns, nm) is already calculated with equation (1). Therefore, this 0 or NA needs
to be excluded.

(3) If there is an upstairs zero structure in the communication matrix, the number of on-chip
crossings, which this structure can cause, can be calculated with equation (3). This number
needs to be added to the total number of on-chip crossings.

(4)(5) From Figure 3.1, it is clear to see, that if there is an NAα at position (si,mnm), or an
NA at position (sns ,mj) of the communication matrix, for 1 ≤ i < ns, 1 ≤ j < nm, and
there exist NAs, which are in sequence with this NA, these sequencing NAs cannot result in
crossings. Therefore, the number of these sequencing NAs of NAα needs to be subtracted from
the total number of on-chip crossings.

(6)(7) Figure 3.2 reveals a fact that if there is a 0 which is located in the si-th row or the mj-th
column in cases (4) and (5), the default path of this 0 needs to travel through the path, where
the NAs in cases (2), (4) and (5) locate. Therefore, these NAs can cause new crossings, and
the number of these NAs needs to be added to the total number of on-chip crossings.

(8)(9) Figure 3.3 illustrates a critical situation of cases (6) and (7): there is a 0 in the ns-th
row or the nm-th column of the communication matrix, and the elements on its right or below
it are all NAs. In this case, the default path which this 0 causes does not cross with any other
path. Therefore, this 0 cannot cause any crossing in the logical topology, and this 0 needs to
be subtracted from the total number of on-chip crossings.

3.2. Analyze the input communication matrix

After counting the total number of on-chip crossings of the input matrix, I now focus on the
structure of the input matrix and comprehensively analyze the matrix structure.
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∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ NA NA
∗ ∗ ∗ ∗


 m1 m2 m3 m4

s1

s2

s3

s4

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ NA ∗ ∗
∗ NA ∗ ∗


 m1 m2 m3 m4

s1

s2

s3

s4

Figure 3.1.: NAs in sequence in the column and the row.

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 NA NA
∗ ∗ ∗ ∗


 m1 m2 m3 m4

s1

s2

s3

s4

∗ ∗ ∗ ∗
∗ 0 ∗ ∗
∗ NA ∗ ∗
∗ NA ∗ ∗


 m1 m2 m3 m4

s1

s2

s3

s4

Figure 3.2.: NAs in sequence in the column and the row with 0.

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 NA NA


 m1 m2 m3 m4

s1

s2

s3

s4

∗ ∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ NA

∗ ∗ ∗ NA


 m1 m2 m3 m4

s1

s2

s3

s4

Figure 3.3.: NAs in sequence in nm-th column and ns-th row with 0.
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a1,1 a1,2 · · · a1,2n−3 a1,2n−2 a1,2n−1 a1,2n
a2,1 a2,2 · · · a2,2n−3 a2,2n−2 a2,2n−1 a2,2n
a3,1 a3,2 · · · a3,2n−3 a3,2n−2 a3,2n
a4,1 a4,2 · · · a4,2n−3 a4,2n−2 43,2n
...

... . . . a3,2n ...
...

a2n−1,1 a2n−1,2 · · · a2n−1,2n−3 a2n−1,2n−2 a2n−1,2n−1 a2n−1,2n
a2n,1 a2n,2 · · · a2n,2n−3 a2n,2n−2 a2n,2n−1 a2n,2n





C2,1

C1,1 C1,n

Cn,n−1Cn,1

Cn,n

Figure 3.4.: A divided 2 · n× 2 · n matrix.

In this section, I first divide the input matrix into smaller units in section 3.2.1, and then check
the optimizability and efficiency of these units in section 3.2.2 and 3.2.3.

3.2.1. Divide the input matrix

The author of (Ramini et al. 2013) has proposed a restriction of network partition: at most
four masters and four slaves are used to interconnect with each other in each network partition.
Therefore, I constrain the size of the input matrix to 2·n×2·n and observe 2-masters×2-slaves
grid as the fundamental structure of a 2 · n× 2 · n topology. Each 2 · n× 2 · n input matrix is
then divided into multiple 2 × 2 grids, and they are defined as cells of the input matrix. As
shown in Figure 3.4, the matrix is divided into n2 cells, and each of them is denoted as Ci,j ,
for all 1 ≤ i, j ≤ n, individually.

3.2.2. Check the optimizability of the cells

As shown in equation (3.1), the location of the 0s and NAs in a communication matrix is an
important factor to determine the total number of on-chip crossings. Therefore, if I want to
reduce the number of on-chip crossing in a logical topology, I can change the location of the
0s and NAs in its communication matrix by reassigning the ports. As illustrated in Figure 3.5
(a), there are four crossings resulting from the location of the NA and 0s in this communication
matrix. However, if I switch master-ports m3 and m4, slave-ports s3 and s4, the number of
on-chip crossing in the optimized topology in Figure 3.5 (b) is reduced to zero. In this example,
the cell C2,2 can be optimized by switching its master- and slave-ports at the same time to
reduce the number of on-chip crossings that this cell causes.
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After analyzing every possible cell structure, I have formulated these categories about opti-
mizabilty of a cell: (1)Cell cannot be optimized. (2)Cell can be optimized by switching its
master-ports. (3)Cell can be optimized by switching its slave-ports. (4)Cell can be optimized by
switching its master- and slave-ports at the same time. (5)Cell does not need to be optimized.

If I classify the cells into the above categories according to their structures, the different
structure with different attributes of optimizability results in seven different cases:

Case 1 Cell cannot be optimized: If there are two non-ADF elements in the cell, and they
place either in the diagonal or in the anti-diagonal of the cell, and at least one of these
two elements is zero, then this kind of cells cannot be optimized by switching the ports:

0 ∗
∗ NA

 ,

0 ∗
∗ 0

 ,

 ∗ 0
NA ∗

 ,

∗ NA

0 ∗

 ,

NA ∗
∗ 0

 ,

∗ 0
0 ∗

 .

Case 2 Cell can be optimized by switching its master- or slave-ports: If there are only
two NAs in the cell, and they place in the diagonal of the cell, then this kind of cell can
be optimized by switching either its master- or slave-ports. To simplify the algorithm, I
consider that this kind of cells can be optimized by switching its master-ports:

NA ∗
0 NA

 ,

NA 0
∗ NA

 ,

NA ∗
∗ NA

 ,

NA 0
0 NA

 .

Case 3 Cell can be optimized by switching its master- or slave-ports: If there is only
one 0 or one NA in the cell, the rest of the elements are all ADFs, and this 0 or this NA
is located in the anti-diagonal of the cell; or if there is only one ADF in the cell, and this
ADF positions at the bottom left corner of the cell, and the rest of the elements are all
NAs, then this kind of cell can be optimized by switching its master- or slave-ports. To
simplify the algorithm, I consider that this kind of cell can be optimized by switching its
master-ports:

∗ ∗
0 ∗

 ,

∗ 0
∗ ∗

 ,

 ∗ ∗
NA ∗

 ,

∗ NA

∗ ∗

 ,

NA NA

∗ NA

 .

Case 4 Cell can only be optimized by switching its slave-ports: If the 0 in the cell has a
neighboring NA and there is an ADF under this 0, this kind of cell can only be optimized
by switching its slave-ports:
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∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ NA 0
∗ ∗ 0 ∗


 m1 m2 m3 m4

s1

s2

s3

s4

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 NA


 m1 m2 m4 m3

s1

s2

s4

s3

Figure 3.5.: Optimize the communication matrix by switching its ports. Left: (a) original com-
munication matrix and its logical topology. Right: (b) optimized communication
matrix and its logical topology.

0 NA

∗ NA

 ,

0 NA

∗ 0

 ,

NA 0
NA ∗

 ,

0 NA

∗ ∗

 ,

NA 0
∗ ∗

 .

Case 5 Cell can only be optimized by switching its master-ports: If the 0 in the cell has
a neighboring NA and there is an ADF on the right of the 0; or if there are two ADFs
and two NAs in the cell, and the NAs are all on the ADFs’ left side, this kind of cell can
only be optimized by switching its master-ports:

 0 ∗
NA NA

 ,

 0 ∗
NA 0

 ,

NA NA

0 ∗

 ,

NA ∗
0 ∗

 ,

 0 ∗
NA ∗

 ,

NA ∗
NA ∗

 .

Case 6 Cell can be optimized by switching its master- and slave-ports at the same
time: In this case, the presenting cells are the cells whose master- and slave-ports both
need to be switched:

NA 0
0 ∗

 ,

0 ∗
∗ ∗

 ,

NA ∗
∗ ∗

 .

Case 7 Cell does not need to be optimized: The not presented cells are the cells, which do
not cause any crossing to the topology. Therefore, this kind of cell can be categorized as
does not need to be optimized.
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3.2.3. Check the efficiency of the cells

To explore more properties of cells, I focus on the efficiency of the cells. The efficiency of a cell
is related to the number of non-ADF elements in the cell and shows the relation between the
number of on-chip crossings, which the cell can produce, and the number of non-ADF elements
in the cell. The categories of cell efficiency are: inefficient, middle efficient, and efficient.
Different structure of cell with different cell efficiency is as below:

Case 1 Inefficient cells: Inefficient cells are the cells with multiple non-ADF elements inside
the cell, and every non-ADF element can cause an on-chip crossing in the topology.
Therefore, the number of on-chip crossings in the topology of an inefficient cell is equal
to the number of non-ADF elements in the cell, despite the cells with upstairs zero
structure. The cells with an upstairs zero structure can cause one more crossing than its
number of non-ADF elements.

• The cells with upstairs zero structure are inefficient:

∗ 0
0 ∗

 ,

NA 0
0 ∗

 .

• If there is only one 0 in the cell, and ADFs occupy the other positions, the cell is

inefficient:

∗ ∗
0 ∗

 ,

0 ∗
∗ ∗

 ,

∗ 0
∗ ∗

 .

• If the element at position (1,1) of the cell is a non-ADF element, and it neighbors
with a non-ADF elements (this neighbor is different from the element at position
(1,1)), and the rest of the elements are ADFs, then the cell is inefficient:NA ∗

0 ∗

 ,

 0 ∗
NA ∗

 ,

NA 0
∗ ∗

 ,

0 NA

∗ ∗

 .

• If there is one NA at position (1,1) of the cells, and the rest of the elements are all

ADFs, this cell is inefficient:

NA ∗
∗ ∗

 .

Case 2 Middle efficient cells: Middle efficient cells are the cells with multiple non-ADF el-
ements inside the cell, but not all of the non-ADF elements can cause on-chip crossing
in the topology. Therefore, the number of on-chip crossings in the topology of a middle
efficient cell is smaller than the number of non-ADF elements in the cell.

32



• If there are two NAs in the cell and they are located in the diagonal of the cell, this

kind of cell is middle efficient:

NA ∗
0 NA

 ,

NA 0
∗ NA

 ,

NA ∗
∗ NA

 ,

NA 0
0 NA

 .

• If there is a 0 at position (1,1) of the cell, and a non-ADF element is located at
position (2,2), and there is at least one ADF in the cell, this kind of cell is middle
efficient:

 0 ∗
NA NA

 ,

0 NA

∗ NA

 ,

0 ∗
∗ NA

 ,

 0 ∗
NA 0

 ,

0 NA

∗ 0

 ,

0 ∗
∗ 0

 .

• If there is at least one NA in the cell, and there is one ADF at position (2,2), and
there is one 0 at position (1,2) or (2,1), this kind of cell is middle efficient:

NA 0
NA ∗

 ,

 ∗ 0
NA ∗

 ,

NA NA

0 ∗

 ,

∗ NA

0 ∗

 .

• If there is one NA at position (1,1) of the cell, one 0 at position (2,2), and the rest
of the elements are ADFs, this kind of cell is middle efficient:NA ∗

∗ 0

 .

Case 3 Efficient cells: Efficient cells can possess multiple non-ADF elements inside the cell
or do not possess any of the non-ADF elements inside the cell. If there are non-ADF
elements in this kind of cell, none of these elements can cause on-chip crossings to the
topology. Then, these cells are efficient. The cells which I did not enumerate here are all
efficient.

3.3. Optimize the input matrix

To recap, the last two sections have discussed the cause of on-chip crossings and the opti-
mizability and efficiency of each cell. Now I discuss the optimization algorithm to reduce the
number of on-chip crossings in the logical topology of the input matrix.

The optimization process has two steps: the relocation of the input communication matrix in
section 3.3.1 and the elimination of the upstairs zero structure in section 3.3.2.
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3.3.1. Relocate the input matrix

In section 2.6, it was shown that the number of on-chip crossings in the logical topology could
be efficiently reduced, if the 0s and NAs are located in the nm-th column or the ns-th row of
the communication matrix. Moreover, if a cell is efficient, it cannot result in on-chip crossings
in the logical topology; or if a cell is optimizable, it cannot result in on-chip crossings in the
logical topology after the ports switch. Therefore, the concept of relocating the input matrix
is to switch the efficient or the optimizable cell with the cell Cn,n to reduce the number of
on-chip crossings in the logical topology.

As discussed in section 2.7, if two master-ports are switched, and their off-chip connected
slave-ports are also switched, the off-chip crossings that the master-ports switch has caused
can compensate the off-chip crossings that the slave-ports switch has caused. Therefore, if
I want to switch the efficient or optimizable cell with the cell Cn,n and prevent extra off-
chip crossings, I need to first consider the cells in the diagonal of the input matrix. If there
is no efficient or optimizable cell in the diagonal of the input matrix, I need to focus on the
neighbors of cell Cn,n. The off-chip crossings which the relocation of the input matrix produces,
are discussed in section 3.4.

Algorithm 1 shows the complete concept of the relocation. The relocation can be put into the
following steps:

• From line 13 to line 19, it is first checked, if the edge matrix cell Cn,n belongs to the
nonoptimizable cell group. If the edge matrix is optimizable and belongs to the efficient
cells group, the algorithm takes the input matrix as the output matrix. If the edge
matrix is not efficient but optimizable, the algorithm optimizes this edge matrix by
using the function switch_ports to switch the ports of this edge matrix depending on
its optimizability. If the edge matrix does not fulfill any of these two conditions, to
prevent extra off-chip crossings, the algorithm moves on to the diagonal matrices Ci,i, for
1≤ i < n.

• The algorithm executes the same procedure as for the edge matrix for the diagonal
matrices from line 21 to line 30, until one of the efficient or optimizable diagonal matrix
is switched with edge matrix Cn,n and is relocated to the edge of the input matrix. The
ports switches between diagonal matrices and edge matrix are switching two master-ports
and their off-chip connected slave-ports. Therefore, this kind of ports switches cannot
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result in any off-chip crossings.

• If the edge matrix and the diagonal matrices cannot fulfill all conditions (these matrices
are neither efficient nor optimizable), the algorithm is then implemented for the left
matrix Cn,n−1 of the edge matrix, see line 32 to line 40. Even though ports switches
between left matrix and edge matrix can reduce the total number of on-chip crossings in
the logical topology, switching the left matrix with the edge matrix only requires master-
ports switches. Therefore, no slave-ports switch can compensate the off-chip crossings
that the master-ports switches causes. In this case, off-chip crossings are generated.

• If the conditions for the edge matrix, the diagonal matrices, and the left matrix fail, this
algorithm will then be implemented for the upper matrix Cn,n−1 of the edge matrix, as
shown from line 41 to line 49. Similar to switching the left matrix and the edge ma-
trix, switching the upper matrix and the edge matrix only requires slave-ports switches.
Therefore, off-chip crossings are generated by the slave-ports switches.

If the number of off-chip crossings that this algorithm causes is bigger than the number of
on-chip crossings that this algorithm reduces, this step is skipped.

3.3.2. Eliminate the upstairs zero structure of input matrix

In section 2.6, I proposed a new idea, namely upstairs zero structure. This structure is a
communication matrix with multiple 0s, and there exists at least one 0, which has a smaller
row index and a larger column index compared to one of the other 0s. Moreover, as shown
in equation (3.1), this upstairs zero structure is one of the main factors of producing many
crossings in a topology. Therefore, this section aims to relocate the master-ports of the entire
communication matrix to reduce the crossings, which the upstairs zero structure causes.

This is the concept of eliminating the upstairs zero structure: I browse every row elements
from the first row to the ns-th row of the communication matrix. If there exists a 0 at position
(o, p), and it fulfills the condition of the upstairs zero structure with a 0 at position (i, j), for
1 ≤ o, i ≤ ns, and 1 ≤ p, j ≤ nm, then I simply switch the o-th column and the p-th column
of the communication matrix, to relocate the 0 at position (o, p) to the position (o, o). Hence
this 0 locates in the diagonal of the communication matrix.

The implementation of eliminating the upstairs zero structure is shown in listing 3.1. The
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Algorithm 1: Algorithm of relocating the input communication matrix
Input : divided Matrix, optimizability of cells, efficiency of cells, input matrix A
Output : relocated Matrix R

1 Parameters:
2 E : edge matrix, (i.e. cell Cn,n of A);
3 U : upper matrix, (i.e. cell Cn−1,n of A);
4 L: left matrix, (i.e. cell Cn,n−1 of A);
5 D: diagonal matrix except for edge matrix, (i.e. all cell in the diagonal of A except for edge

matrix);
6 N : number of division in one dimension;
7 On: group of cannot be optimized cells;
8 G: group of efficient cells;
9 Vp=read_given_information(A);

10 P=switch_ports(A);
11 C=switch_cells(A);
12 if E /∈ On then
13 if E ∈ G then
14 R=A;
15 return R;
16 else
17 R=P(A);
18 return R;
19 end
20 else
21 if D ∈ G then
22 A=C(D, E);
23 R=A;
24 return R;
25 else
26 if D /∈ On then
27 A=C(D,E);
28 A=P(A);
29 R=A;
30 return R
31 else
32 if L ∈ G then
33 A=C(A);
34 R=A;
35 return R;
36 else if L /∈ On AND L /∈ G then
37 A=C(L);
38 A=P(A);
39 R=A;
40 return R;
41 else if U ∈ G then
42 A=C(A);
43 R=A;
44 return R;
45 else if U /∈ On AND U /∈ G then
46 A=C(L);
47 A=P(A);
48 R=A;
49 return R;
50 end
51 end
52 end
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algorithm go through every 0 in the input matrix A and compare them pairwise. If 0 at position
(o, indexZero) fulfills the condition of upstairs zero structure, the algorithm switches master-
portsmindexZero andmo. Then this 0 is relocated into the diagonal of the input matrix A. After
this algorithm runs for every element of the upstairs zero structure, those 0s are all relocated
into the diagonal of the input matrix A. Therefore, the upstairs zero structure is eliminated,
and it is substituted with the downstairs zero structure. In this way, the total number of
on-chip crossings in the logical topology of the input matrix A is efficiently reduced.

Listing 3.1: Elimination of the upstairs zero structure

1 %A: input matrix A
2 % rows: number of slave-ports of communication matrix;
3 % columns: number of master-ports of communication matrix;
4 % zeroOnRow: The row of communication matrix, which includes 0
5

6 for o=1: rows
7 for i =1: rows
8 for p=1: columns
9 for j =1: columns

10 i f i s e q u a l (A(o , p) ,0 ) && i s e qua l (A( i , j ) , 0 )
11 i f ( o<i && p>j ) | | ( o>i && p<j )
12 i f ismember (0 ,A( [ o ] , : ) )
13 zeroOnRow=A( [ o ] , : ) ;
14 indexZero=find ( zeroOnRow==0) ;
15 A( : , [ indexZero o ] )=A( : , [ o indexZero ] ) ;
16 end
17 end
18 end
19 end
20 end
21 end
22 end
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3.4. Count off-chip crossings number of the optimized matrix

After optimizing the input matrix by reassigning its ports, off-chip crossings can be generated.
This section uses two perspectives to analyze and calculate the number of generated off-chip
crossings. Section 3.4.1 proposes a method to calculate the number of off-chip crossings based
on a layout of a determined off-chip connection. Section 3.4.2 represents the change in the
number of off-chip crossings during the process of port reassignment.

3.4.1. Stable calculation of off-chip crossings number

Section 3.3 has demonstrated that the optimization of an input matrix is in principle switching
the ports of the input matrix. As illustrated in Figure 2.10, the number of off-chip crossings
has increased, resulting from the ports switch. However, the number of off-chip crossings can
be calculated with this equation:

• #off − chip crossings Number of off-chip crossings

• #e1 Number of elements in group 1

• #e2 Number of elements in group 2

• #o Offset of group 1

#off − chip crossings = (#e1 + #e2)×#o+ (#e2 − 1)×#e1 −#e2 (3.2)

I use two examples to illustrate this equation. In Figure 3.6, ports pa are marked in blue, ports
pb are in red, ports pc are in orange, ports pd are in teal, ports pe are in purple, ports pf are
in gray, and ports pg are in pink.

I first look at Figure 3.6 (a). There are 16 off-chip crossings in this layout. To verify equa-
tion (3.2) I proposed, I take the following steps:

(1) I use slave-ports as reference ports and initial status, and index the location of the slave-
ports sa to sg from 1 to 7.
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(2) As shown in the figure, the locations of master-ports are different from the initial status.
The locations of the master-ports ma to mg are 6, 7, 4, 5, 1, 2, and 3.

After analyzing the current master-ports location, I assume that the sequence of changes in
location of the master-ports from the initial status is in this way:

(3) I consider port pa groups with port pb, I call this group Gα, with {pa, pb}. Ports pe, pf ,
and pg are in another group, called group Gβ, with {pe, pf , pg}.

(4) Now I observe Gα and Gβ as two new elements, and I re-index the ports. For the slave-
ports, the location of group Gα is 1, slave-port sc is in location 2, slave-port sd is in location
3, and group Gβ is in location 4.

(5) Considering the master-ports use the slave-ports as reference ports, the location of the
elements of master-ports is: group Gβ is in location 1, master-port Gα is in location 2, master-
port md is in location 3, and group Gα is in location 4.

(6) If I now compare the location indices of master- and slave-ports, it can be seen that only the
location of master-ports groups Gα and Gβ is switched, and the rest of the location remains.

Now I combine the analysis and the equation (3.2):

(7) In group Gα there are two elements: pa and pb. Therefore, #e1 in the equation is equal
to 2. In group Gβ there are three elements: pe, pf , and pg. Therefore, #e2 in the equation is
equal to 3.

(8) If I compare the location of Gα in master- and slave-ports, it can be seen that in the
master-ports, Gα has changed its location from 1 to 4. Therefore, #o in the equation is equal
to 3.

Now equation (3.2) can be calculated as:

(2 + 3)× 3 + (3− 1)× 2− 3 = 16 (3.3)

The result coincides with the number of off-chip crossings in the layout.

Now I look at Figure 3.6 (b). There are five off-chip crossings in total. I use the slave-ports
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as reference ports. In this case, the location of master-ports is the same as in (a). However,
the location of slave-ports has changed: from top to bottom, the location of slave-ports sa to
sg has now change into 7, 5, 6, 4, 2, 3, and 1. However, in this case, the ports switch is not as
straightforward as in the last case, and I need to decompose the master-ports switch based on
their slave-ports as follows:

(1) I now compare master- and slave-ports in (b): At beginning, Group of master-ports me

and mf switches its location with master-port mg compared to slave-ports.

(2) Meanwhile, master-port mc switches its location with group of master-ports md and mb.

(3) After step (2), the master-port ma switches its location with master-port mb.

The total number of off-chip crossings is the sum of the number of off-chip crossings, which is
caused by these three steps of the ports switch, individually:

(2+1)×1+(1−1)×2−1+(2+1)×1+(1−1)×2−1+(1+1)×1+(1−1)×1−1 = 5 (3.4)

Using this equation to calculate the number of off-chip crossings has its difficulties and draw-
backs:

• This calculation is based on assumption. I assume the process of the port reassignment
based on the final off-chip layout. However, the assumption is sometimes different from
the real port reassignment. If I use the real port reassignment to calculate the number
of off-chip crossings, it can easily lead to controversy with this equation.

• Because this equation is based on assumption, it is challenging to implement this as-
sumptive calculation in code.

For these reasons, I propose an improved method to calculate the number of off-chip crossings
in next section.

3.4.2. Dynamic calculation of off-chip crossings number

Because of the difficulties and drawbacks of using the stable calculation for calculating the
number of off-chip crossings, there is an urge to solve these problems. The improved dynamic
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Figure 3.6.: Two examples that illustrate the calculation of the number of off-chip crossings.

calculation has achieved the following three goals:

• The calculation acts dynamically and reflects every step of the ports switch.

• The calculation is generalized and can be used in every critical and typical case.

• The calculation is implementable in code.

To propose this dynamic calculation, I re-analyze how off-chip crossings are generated. Then
I implement the dynamic calculation of the number of off-chip crossings in code. Finally, I
propose an algorithm to calculate the total number of off-chip crossings of an optimized input
communication matrix based on the optimization algorithm.

Logic of off-chip crossings generation

To understand the logic of generating off-chip crossings, I compare the location of ports in
Figure 3.6 (a) and focus on each off-chip connect master-slave pair individually. I continue
using slave-ports as reference ports. If I look at ports pa, it is clear that the connector of ports
pa crosses with the connectors of ports pe, pf , pg, pc, and pd. Before the master-ports switch,
the location of master-port ma is the same as the location of slave-port sa, which is location 1.
However, after the port reassignment, the master-ports me, mf , mg, mc, and md, which were
initially located on the right side of the master-port ma, are now located on the left side of the
master-port ma. In order to connect the master-port ma and the slave-port sa, the connector
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of ports pa needs to travel through all the connectors of the ports, which now has moved from
the right side of master-port ma to its left side.

Therefore, by focusing on the ports pa in the current layout, I can group the ports in the
following way: Group Gγ : the master-ports locating on the right side of master-port ma.
Group Gδ: the slave-ports locating below the slave-port sa. Gγ only contains master-port mb.
Gδ contains slave-ports sb, sc, sd, se, sf , and sg. The intersection of these two groups is pb,
and it means that only master-port mb remains on the right side of the master-port ma after
the master-ports switch. Therefore, there is no off-chip crossing between connectors of ports
pa and pb. The off-chip crossings, which the reassignment of master-port ma causes, are equal
to the number of elements in Group Gδ minus the number of elements in the intersection.

Implementation of calculating off-chip crossings number

Now the cause of the off-chip crossings is discussed. The implementation of the dynamic
calculation of the number of off-chip crossings is shown in listing 3.2. In this implementation,
the algorithm uses master-ports as reference ports. As shown in the code, the algorithm goes
through nm-1 master-ports and ns slave-ports and compare their locations pairwise until the
algorithm finds the master- and slave-ports with the same index. Then the algorithm puts
all the elements on the right side of this master-port into group rightOfMasterElement, and
all the elements below this slave-port into another group belowOfSlaveElement, and find the
intersection of these two groups. The number of off-chip crossings of each port is equal to
the number of elements in group rightOfMasterElement minus the number of elements in the
intersection group.

Listing 3.2: Implementation of dynamic calculation to count the number of off-chip crossings

1

2 % offChipCrossing: number of off-chip crossing;
3 %masterPortsIndex: Indices of master ports;
4 % slavePortsIndex: number of master-ports of communication matrix;
5 % rightOfMasterElement: group of elements, which are on the right of a master port;
6 % belowOfSlaveElement: group of elements, which are below of a slave port;
7 % intersection: group of elements, which are intersection of rightOfMasterElement and

belowOfSlaveElement;
8

9
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10 o f fCh ipCros s ing=0
11 for i =1: length ( masterPortsIndex )−1
12 for j =1: length ( s l avePor t s Index )
13 i f i s e q u a l ( masterPortsIndex ( i ) , s l avePor t s Index ( j ) )
14 r ightOfMasterElement=masterPortsIndex ( [ i +1: length (

masterPortsIndex ) ] ) ;
15 belowOfSlaveElement=s lavePor t s Index ( [ j +1: length (

masterPortsIndex ) ] ) ;
16 i n t e r s e c t i o n=i n t e r s e c t ( rightOfMasterElement ,

belowOfSlaveElement ) ;
17 i f isempty ( i n t e r s e c t i o n ) | | ~ i s e qu a l ( i n t e r s e c t i o n ,

r ightOfMasterElement )
18 o f fCh ipCros s ing=of fCh ipCros s ing+length (

r ightOfMasterElement )−length ( i n t e r s e c t i o n ) ;
19 end
20 end
21 end
22 end

Suppose I use this implementation to calculate the number of off-chip crossings of Figure 3.6
(b). Table 3.1 illustrates the calculation process, and the terms are explained as follows:

Pm: location of master-ports.

M : notation of master-ports.

G1: group of master-ports, which are located on the right side of this master-port.

Ps: location of slave-ports.

S: notation of slave-ports.

G2: group of slave-ports, which are located below this slave-port.

I: intersected ports of G1 and G2.
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Table 3.1.: Results of using dynamic calculation to count the number of off-chip crossings.
Lm M G1 Ls S G2 I D

1 me mf , mg, mc, md, ma, mb 2 se sf , sd, sb, sc, sa pf , pc, pd, pa, mb 1
2 mf mg, mc, md, ma, mb 3 sf sd, sb, sc, sa pc, pd, pa, pb 1
3 mg mc, md, ma, mb 1 sg se, sf , sd, sb, sc, sa pc, pd, pa, pb 0
4 mc md, ma, mb 6 sc sa pa 2
5 md ma, mb 4 sd sb, sc, sa pa, pb 0
6 ma mb 7 sa 1
7 mb 5 sb sc, sa 0

Coff 5

D: difference between G1 and I.

However, the dynamic calculation comes to the same result as illustrated in Figure 3.6 (b).

Algorithm of calculating total number of off-chip crossings of an optimized input matrix

In section 3.3, it was shown that there are two steps for optimizing an input matrix: the
relocation of the input matrix and the elimination of the upstairs zero structure. The relocation
step can switch not only the slave-ports but also the master-ports. In comparison to the
relocation step, the elimination step only switches the master-ports. Therefore, if there only
occurs the elimination step, the off-chip crossings which the master-ports switch in elimination
step produce cannot be compensated. However, if there occurs a slave-ports switch in the
relocation step, and this switch can compensate the master-ports switch in the elimination
slave, some off-chip crossings can be compensated. Therefore, it is worth discussing, if the
slave-ports switch occurs during the relocation step.

Algorithm 2 provides a method to calculate the total number of off-chip crossings after the
optimization step, in order to clarify how the ports switch in the relocation step and elimination
step changes the total number of off-chip crossings:

• as shown from line 8 to line 10, if the original slave-ports indices are equal to the relocated
slave-ports indices, no slave-ports switch of the input matrix is performed (master-ports
switch could be performed). In this case, the total number of off-chip crossings is equal to
the number of off-chip crossings resulting from the master-ports switch in the elimination
step.
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• Line 11 to line 13 demonstrates the end result of the off-chip connected master- and
slave-ports switch in the relocation step. In this case, the number of off-chip crossings
resulting from the slave-ports switch is compensated by the number of off-chip crossings
resulting from the master-ports switch. Hence the total number of off-chip crossings is
equal to the number of off-chip crossings produced in the elimination step.

• If the relocated slave-ports indices are not equal to the relocated master-ports indices, and
the relocated master-ports indices are not equal to the eliminated master-ports indices,
it shows that the relocation of the master- and slave-ports does not happen to the off-
chip connected master- and slave-ports. Moreover, there also occurs an elimination step.
Therefore, the algorithm needs to count the number of off-chip crossing, which is caused
by the master- and slave-ports relocation, then add this value with the number of off-chip
crossings after the elimination step, and this sum is equal to the total number of off-chip
crossings, as shown from line 14 to line 17.

• For the rest of the cases, the total number of off-chip crossings is equal to the sum of
number of off-chip crossings which is generated in the relocation step, and the number
of off-chip crossings which is generated in the elimination step, as shown from line 18 to
line 21.
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Algorithm 2: Counting the total number of off-chip crossings
Input : master-ports indices, slave-ports indices, off chip crossing number after relocation Cr, off

chip crossing number after elimination Ce

Output : total off-chip crossing number Ct

1 Parameters:
2 Im,o: original master-ports indices;
3 Im,r: master-ports indices after relocation;
4 Im,e: master-ports indices after elimination;
5 Is,o: original slave-ports indices;
6 Is,r: slave-ports indices after relocation;
7 Is,e: slave-ports indices after elimination;
8 if Is,o=Is,r then
9 Ct=Ce;

10 return Ct;
11 else if Is,r=Im,r then
12 Ct=Ce;
13 return Ct;
14 else if Is,r 6=Im,r AND Im,r 6=Im,e then
15 Cr = count_off_chip(Im,r,Is,r);
16 Ct=Cr+Ce;
17 return Ct;
18 else
19 Ct=Cr+Ce;
20 return Ct;
21 end
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4. Experimental Results

This chapter shows experimental results that are generated by applying the proposed port
reassignment algorithm on some WRONoC designs. The proposed methodology was imple-
mented in MATLAB. Experiments were performed using a computer with a 2.9 GHz CPU
and 8 GB of RAM. The test cases are generated under the constraints on the default path in
section 2.4.2 with different communication matrices, logical topologies and off-chip layouts. I
tested the algorithm on nine test cases:

• Cases 1, 2, 3: small-sized cases with 4×4 communication matrices.

• Cases 4, 5, 6: medium-sized cases with 6×6 communication matrices.

• Cases 7, 8, 9: large-sized cases with 8×8 communication matrices.

4.1. Execution of the algorithm on test case 1

I use test case 1 to illustrate the results of each step. The original logical topology and off-chip
layout of test case 1 are illustrated in Figure 4.1.

After the algorithm takes the communication matrix of test case 1 as input, this matrix is
divided into four cells. The test of the optimizability of the cells is executed at first, and their
optimizability is as follows:

C1,1 =

∗ ∗
∗ NA

 does not need to be optimized.

C1,2 =

0 ∗
∗ 0

 cannot be optimized.

C2,1 =

NA ∗
∗ 0

 does not need to be optimized.
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C2,2 =

0 ∗
∗ NA

 can be optimized by exchanging its master- and slave-ports.

After analyzing the optimizability of the cells, the algorithm checks the efficiency of each cell,
which is:

C1,1 =

∗ ∗
∗ NA

 is an efficient cell.

C1,2 =

0 ∗
∗ 0

 is a middle efficient cell.

C2,1 =

∗ 0
0 NA

 is an efficient cell.

C2,2 =

NA ∗
∗ ∗

 is an inefficient cell.

According to the optimizability and efficiency of the cells of test case 1, the algorithm then
starts to relocate the cells inside the communication matrix. The relocated communication
matrix, its corresponding logical topology, and its off-chip layout are shown in Figure 4.2.
Considering there is still an upstairs zero structure in the relocated communication matrix of
test case 1, the algorithm continues operating on this matrix to eliminate the upstairs zero
structure. The result of this step is shown in Figure 4.3.

In Figure 4.1, there are 12 crossings in total, including 12 on-chip crossings and 0 off-chip
crossings. However, in Figure 4.3, the number of on-chip crossings is reduced to 6, and the
increase in the number of off-chip crossings is 5, and there are 11 crossings in total.

The algorithm takes 0.169 seconds to complete the calculation of the number of on-chip cross-
ings, the optimization of the input matrix, and the calculation of the number of off-chip cross-
ings.

4.2. Comparison and analysis

In Table 4.1, results are shown for the communication matrices in appendix A respectively.
The meaning of the columns in Table 4.1 is described as follows:
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∗ ∗ 0 ∗
∗ NA ∗ 0
∗ 0 NA ∗
0 NA ∗ ∗



 m1 m2 m3 m4

s1

s2

s3

s4

Figure 4.1.: The original communication matrix of test case 1, its logical topology and its
off-chip layout.

∗ ∗ ∗ 0
∗ NA 0 ∗
0 NA ∗ ∗
∗ 0 ∗ NA



 m1 m2 m4 m3

s1

s2

s4

s3

Figure 4.2.: The communication matrix of test case 1, its logical topology and its off-chip layout
after relocating the cells.
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0 ∗ ∗ ∗
∗ 0 ∗ NA

∗ ∗ 0 NA

NA ∗ ∗ 0



 m3 m4 m1 m2

s1

s2

s4

s3

Figure 4.3.: The communication matrix of test case 1, its logical topology and its off-chip layout
after eliminating the upstairs zero structure.

Table 4.1.: The results of the optimization algorithm.
Coriginal,on Coptimized,on Coff Ct Ron Rtotal T

Test case 1 12 6 5 11 50.00% 8.33% 0.169
Test case 2 7 3 0 3 57.14% 57.14% 0.031
Test case 3 12 8 2 10 33.33% 16.67% 0.078
Test case 4 16 10 7 17 37.50% -6.25% 0.044
Test case 5 15 11 3 14 26.67% 6.67% 0.127
Test case 6 15 10 5 10 33.33% 0% 0.014
Test case 7 34 25 11 36 26.4% -5.88% 0.044
Test case 8 60 27 26 53 55.00% 11.67% 0.049
Test case 9 17 16 5 21 5.88% -23.52% 0.047

Coriginal,on: on-chip crossings in the original logical topology.

Coptimized,on: on-chip crossings in the logical topology after port reassignment.

Coff : increased off-chip crossings after the port reassignment.

Ct: total crossing number after the port reassignment.

Ron: rate of the reduction of the number of on-chip crossings.

Rtotal: rate of the reduction of the total crossing number.

T : program runtime.
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As shown in the experimental results, the algorithm achieves these goals:

1. This algorithm can successfully reduce the number of on-chip crossings in a logical topol-
ogy through the port reassignment. In the test cases, the rate of on-chip crossings
reduction is between 5.88% and 57.14%. The average on-chip crossings reduction rate is
36.14%. However, this algorithm performs a useful functionality in reducing the number
of on-chip crossings in a logical topology.

2. The algorithm of calculating the number of on- and off-chip crossings is applicable in
various cases. The algorithm of calculating the number of on-chip crossings can calculate
not only the number of original on-chip crossings but also the number of on-chip crossings
after port reassignment. The algorithm for calculating the number of off-chip crossings
can represent the ports switch dynamically.

3. Table 4.1 shows the rate of the total crossing reduction is between -23.52% and 57.14% in
the test cases. Furthermore, the algorithm for reducing total crossing number performs
positive function in 5 test cases, neutral function in 1 test case, and negative function in
3 test cases. The average total crossing reduction rate is 7.20%. However, this algorithm
performs an overall positive function in reducing the total number of crossings of an input
communication matrix.

4. The runtime of this algorithm is between 0.031 seconds and 0.169 seconds, and the average
runtime is 0.067. Therefore, this algorithm is relatively feasible and efficient.

I suggest future works in these three fields:

1. This algorithm perceives the default path as 0, no-communicative pair as -1, ADF us-
age as 1. However, this algorithm does not consider the different wavelengths usage of
ADFs. The different wavelength usage of ADFs can sometimes redefine the location of
the components in a logical topology. The future works can take the wavelengths of the
ADFs into consideration.

2. Before performing this algorithm, I assumed that the master-ports are located on the
north of the communication matrix and the slave-ports on the west. If the location of
ports is too specific, the performance of this algorithm is also limited. In future works, the
location of the ports can be more generalized than in my assumption. (e.g. Master-ports
on the north, slave ports on the south.)
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3. This algorithm only takes 2 · n× 2 · n communication matrix as the input matrix. How-
ever, even though the matrices with full-connectivity are symmetric, there are still cases
that the number of master-ports of these communication matrices does not equal to the
multiples of 2. I suggest that the future works do not constrain the size of the input
matrix, to perform in a wider range of communication matrices.
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5. Conclusion

In this algorithm, a method to calculate the number of on-chip crossings is first presented.
Based on this calculation and the communication matrix, an optimization algorithm is in-
troduced to reassign the router ports of the communication matrix to reduce the number of
on-chip crossings in the logical topology. Finally, a dynamic method is formulated to calculate
the number of off-chip crossings generated by the optimization algorithm.

For future work, the algorithm can take different wavelengths of different master-slave pairs
into consideration to analyze every individual communication. The location of ports can be
refined to be more general so that this algorithm can handle a wider range of port reassignment.
The algorithm can be improved by taking communication matrices with different sizes as input
so that every possible communication matrix can be optimized by using this algorithm.
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A. Test cases

The matrices, which I used to test the proposed algorithm, are the following:

Test case 1=


m1 m2 m3 m4

s1 ∗ ∗ 0 ∗
s2 ∗ NA ∗ 0
s3 ∗ 0 NA ∗
s4 0 NA ∗ ∗



Test case 2=


m1 m2 m3 m4

s1 ∗ ∗ ∗ NA
s2 ∗ 0 ∗ NA
s3 NA ∗ 0 ∗
s4 0 ∗ ∗ NA



Test case 3=


m1 m2 m3 m4

s1 ∗ NA NA 0
s2 0 ∗ NA ∗
s3 NA ∗ 0 ∗
s4 ∗ 0 ∗ NA



Test case 4=



m1 m2 m3 m4 m5 m6

s1 ∗ ∗ ∗ ∗ NA ∗
s2 ∗ ∗ 0 ∗ NA ∗
s3 ∗ ∗ NA NA ∗ 0
s4 NA ∗ ∗ NA ∗ ∗
s5 ∗ ∗ ∗ NA 0 ∗
s6 0 ∗ ∗ ∗ NA ∗



Test case 5=



m1 m2 m3 m4 m5 m6

s1 ∗ NA 0 ∗ NA ∗
s2 ∗ ∗ NA ∗ ∗ ∗
s3 ∗ ∗ ∗ NA ∗ 0
s4 NA 0 ∗ ∗ NA NA
s5 ∗ ∗ ∗ ∗ 0 ∗
s6 ∗ ∗ NA NA ∗ NA


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Test case 6=



m1 m2 m3 m4 m5 m6

s1 ∗ NA 0 ∗ ∗ ∗
s2 0 ∗ NA ∗ ∗ NA
s3 ∗ ∗ ∗ NA 0 ∗
s4 ∗ ∗ NA ∗ ∗ NA
s5 ∗ ∗ ∗ 0 ∗ ∗
s6 ∗ 0 ∗ ∗ ∗ NA



Test case 7=



m1 m2 m3 m4 m5 m6 m7 m8

s1 ∗ 0 ∗ ∗ NA ∗ ∗ ∗
s2 0 ∗ ∗ ∗ NA NA NA NA
s3 ∗ NA ∗ ∗ NA ∗ ∗ 0
s4 ∗ ∗ NA 0 ∗ ∗ ∗ ∗
s5 NA ∗ ∗ NA ∗ ∗ 0 ∗
s6 NA ∗ ∗ ∗ 0 ∗ NA ∗
s7 NA ∗ NA NA ∗ ∗ ∗ ∗
s8 ∗ ∗ 0 NA NA ∗ NA ∗



Test case 8=



m1 m2 m3 m4 m5 m6 m7 m8

s1 ∗ ∗ ∗ ∗ NA ∗ NA 0
s2 ∗ ∗ ∗ ∗ NA NA 0 ∗
s3 NA ∗ NA ∗ ∗ 0 NA NA
s4 ∗ ∗ ∗ ∗ 0 ∗ ∗ NA
s5 ∗ NA ∗ 0 ∗ ∗ NA ∗
s6 ∗ NA 0 ∗ NA ∗ ∗ ∗
s7 NA 0 ∗ NA ∗ NA ∗ NA
s8 0 ∗ NA NA NA ∗ ∗ ∗



Test case 9=



m1 m2 m3 m4 m5 m6 m7 m8

s1 NA ∗ ∗ ∗ ∗ NA ∗ ∗
s2 ∗ ∗ 0 NA NA ∗ ∗ ∗
s3 NA ∗ ∗ ∗ ∗ ∗ ∗ NA
s4 ∗ NA ∗ ∗ ∗ NA 0 ∗
s5 ∗ ∗ NA ∗ ∗ ∗ ∗ NA
s6 ∗ ∗ ∗ NA 0 ∗ NA ∗
s7 ∗ ∗ NA ∗ ∗ ∗ ∗ ∗
s8 ∗ NA ∗ ∗ NA ∗ NA 0


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