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Abstract

The present master thesis is divided into two main portions.

The part on the subject “Mathematical Modeling for Printing-Based Microfabrication” portrays
the algorithm to minimize the group number of the decomposed design and the corresponding
drying-time simultaneously. Modeling the actions of the local solvent concentration with
numerical methods plays an important role in solving the optimization problem.

The second on the subject “Newton’s Method” interprets the algorithm to find solutions of
non-linear equations and systems. The conditions for the convergence and the estimations of
its efficiency are presented.

For references, [1–7] are used for Part I Mathematical Modeling for Printing-Based Microfabrication
and [8, 9] for Part II Newton’s Method. The Appendix is followed by [10].





Contents

Part I Mathematical Modeling for Printing-Based Microfabrication

1 Basic Concept 5

2 Modeling of Laplace Pressure Conflict 7

3 Modeling of Proximity Conflict 9

4 Modeling of Drying-Time 11
4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Drying-Time of Two Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.2 Drying-Time of One Line and One Point . . . . . . . . . . . . . . . . . . . 13
4.1.3 Drying-Time of One Point and One Rectangle . . . . . . . . . . . . . . . . 14
4.1.4 Drying-Time of Two Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.5 Drying-Time of n Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Finding the Maximum-Point with Mathematical Method . . . . . . . . . . . . . . 20
4.2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Introduction to Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 The Selection of the Initial-Guess . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Implementation 33
5.1 Discrete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Drying-time of the Points in a Printing-Group . . . . . . . . . . . . . . . . 34
5.1.2 Drying-Time of the Patterns in a Printing-Group . . . . . . . . . . . . . . 35
5.1.3 Drying-Time of a Printing-Group . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Continuous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 Computing the Drying-Time with Newton’s Method . . . . . . . . . . . . 35
5.2.2 Examples for the Special Printing-Group . . . . . . . . . . . . . . . . . . . 36
5.2.3 Implementation of the Continuous Model . . . . . . . . . . . . . . . . . . . 43

5.3 Relation Between Two Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Part II Newton’s Method

6 Newton’s Method in One-Variable Case 47
6.1 Approximate Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Point Estimates for Approximate Zeros . . . . . . . . . . . . . . . . . . . . . . . . . 53

i



Contents

7 n-Dimensional Generalization 69
7.1 Approximate Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Proofs of Preparations for the Main Theorems . . . . . . . . . . . . . . . . . . . . 72
7.3 The Proofs of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Analytic Function i
A.1 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

A.1.1 Paths in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.1.2 Definition of Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

A.2 Complex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.2.2 Cauchy’s Theorem and Some Applications . . . . . . . . . . . . . . . . . . iv
A.2.3 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Bibliography I

Index III

Declaration of Authenticity V

ii



Part I.

Mathematical Modeling for Printing-Based
Microfabrication



Given that, the entire design is decomposed into small pieces, which will be mentioned in this
context as polygons or patterns. The target is to assign these small pieces into different but finite
groups for printing. Avoiding potential printing problems such as “Laplace pressure conflict”
and “Proximity conflict” is required. We call these groups printing-groups. Only if the polygons
in the previous printing-group dry down entirely, the patterns in the next printing-group can
be printed.

Assuming the Gaussian function, denoted by f , models the drying-time-increase between two
points and takes the distances as the argument. The local solvent concentration at a point will
be modeled as the summation of the solvent concentration increase caused by all under-drying
points. Therefore, the drying-time of a point in a printing-group is described as the sum of the
definite integrals of the Gaussian function, defining on a closed area. Indeed, every closed area
is the area of one polygon. The area of the i-th pattern Pi is denoted by the Cartesian product
of two intervals, [x0

i , x
1
i ] × [y0

i , y
1
i ] for x0

i , x
1
i , y

0
i , y

1
i ∈ R. Then, in general, the drying-time of a

given printing-group consisting of n polygons, will be described as

max
i=1,...,n

tPi

where

tPi = max
(xi,yi)∈Pi

n

∑
k=1
∫

Pk

f (dist ((x, y) , (xi, yi))) d2
(x, y)

is Pi’s drying-time and for i = 1, . . . , n,

dist ((x, y) , (xi, yi)) =
√

(x − xi)
2
+ (y − yi)

2,

is the distance between (x, y) and (xi, yi). Therefore, the drying-time of the printing-group, as
shown in the figure below, needs to be calculated concerning the rules above.

P1

x0
1 x1

1

y0
1

y1
1

Pn

x0
n x1

n

y0
n

y1
n

x0
2 x1

2

y1
2

y0
2

P2

. . . . . .

Figure 0.1.: An example of the printing-group consisting of n polygons.
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Two models have been constructed for the computation of the drying-time — “Discrete Model”
and “Continuous Model”. In the first model, polygons will be considered as collections of
sampling points. The figure below shows how the points are distributed in the i-th pattern
Pi = [x0

i , x
1
i ] × [y0

i , y
1
i ].

x0
i

y0
i

x1
i

y1
i

Figure 0.2.: The distribution of the points in the i-th pattern.

Pi’s drying-time will be estimated the same as the certain point in the collection, which has the
greatest drying-time-increase. The simple computational method guarantees the rapidity and
high efficiency of the implementation with C++ program. However, error will be generated with
fewer sampling points. In reality there exists infinite points, i.e., the maximum of the sampling
points’ drying-time is not guaranteed to be the global maximum in the entire printing-group.
In order to find out the real drying-time for the multiple under-drying polygons, the second
model is constructed in the following way.

According to Fermat’s theorem, the local extrema of differentiable functions on open sets will
be found by showing that every local extremum of the function is a stationary point.Newton’s
method is used as the root-finding algorithm to obtain all critical points. Finally, the maximum
of their corresponding values is the drying-time without error of an arbitrary printing-group.

Newton’s method is a powerful technique — in general the convergence is quadratic: as the
method converges on the root, the distance between the root and the approximation is squared
at each step. The implementation of Newton’s method is realized by the GNU Scientific Library
[7].

Consequently, with such approximations of drying-time of every printing-group, we use Gurobi
[6] to find out the optimal solution of the following optimization problem,

Minimize #printing-groups +∑drying-time of each printing-group,

Subject to: Avoiding of potential printing problems.
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1. Basic Concept

Assuming electronics have been decomposed in some way, i.e., the number and the shape as
well as the locations of the polygons are fixed and given.

Let NP denote the number of polygons, NG the number of printing-groups and Pi the i-th
polygon for i = 1, . . . ,NP . Let gPi refer to Pi’s printing-group, then the boundary for gPi is
described as,

1 ≤ gPi ≤ NG (1)

The patterns with four lines, i.e., rectangles, are concerned. The figure below shows the shape
of the i-th polygon Pi = [x0

i , x
1
i ] × [y0

i , y
1
i ] .

y0
i

x1
i

y1
i

x0
i

Figure 1.1.: The shape of the i-th polygon.

The goal is to find the optimal assignment of polygons such that both the total required
drying-time and the number of printing-groups are minimized while avoiding conflicts.
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2. Modeling of Laplace Pressure Conflict

As for each pair of polygons Pi and Pj that have the Laplace pressure conflict, the small object
(Pi) needs to be printed earlier than the large object (Pj) to prevent possible ink absorption.

In order to present the relation between the patterns which possess of such characteristics, by
[5, Section 3.3.1], we introduce the following constraint,

gPi + 1 ≤ gPj . (2)

7





3. Modeling of Proximity Conflict

This chapter is based on [5, Section 3.3.2].

Each pair of patterns Pi and Pj that have the proximity conflict, needs to be assigned into
different groups. Therefore, the following constraint is obtained.

gPi ≠ gPj .

Since this constraint is not a linear representation, we transform it into

(gPi + 1 ≤ gPj) ∨ (gPj + 1 ≤ gPi) ,

i.e., either Pi is printed earlier than Pj or Pj is printed earlier than Pi. With the “Big M
method”, we can linearize the above constraint as,

gPi + 1 ≤ gPj +M ⋅ qPCij ,

(3)

gPj + 1 ≤ gPi +M ⋅ (1 − qPCij ) ,

We setM= 1,000,000 and qPCij is a binary auxiliary variable, i.e.,

qPCij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, gPi + 1 ≤ gPj

0, gPj + 1 ≤ gPi

.
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4. Modeling of Drying-Time

Assuming the Gaussian function models the drying-time-increase between two points and
takes the distance as the argument. Within a printing-group, the quantities, relative-size and
-placement of the patterns will have an influence on the corresponding drying-time-increase.

Consider the standard normal distribution N(0,1) and use its probability density function as
our Gaussian function,

f(d) =
1

√
2π
e−

1
2
d2 .

4.1. Mathematical Model

In this section, I introduce the ideal mathematical model and without consideration of implementation.

4.1.1. Drying-Time of Two Points

Concentrate on two points A and B. The distribution of these two points is shown below.

A
d

B

Figure 4.1.: The distribution of A and B.

Let d be the distance between A and B, with respect to the Euclidean norm.

(1) Now consider point A. The drying-time-increase caused by B is described as,

tB→A = f(d) =
1

√
2π
e−

1
2
d2
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4. Modeling of Drying-Time

and the drying-time of A itself is

tA→A = f(0) =
1

√
2π
e0

=
1

√
2π
.

Therefore the drying-time of A including the increase caused by B is

tA = tB→A + tA→A = f(d) + f(0) =
1

√
2π
e−

1
2
d2
+

1
√

2π
.

(2) Now consider point B. The drying-time-increase caused by A is

tA→B = f(d) =
1

√
2π
e−

1
2
d2

and the drying-time of B itself is

tB→B = f(0) =
1

√
2π
e0

=
1

√
2π
.

Thus the total drying-time of B is

tB = tA→B + tB→B = f(d) + f(0) =
1

√
2π
e−

1
2
d2
+

1
√

2π
.

(3) Consider the printing-group containing two points.

A B

Figure 4.2.: The printing-group composed of two points.

Then the drying-time of this printing-group is

t = max{tA, tB} = f(d) + f(0) =
1

√
2π
e−

1
2
d2
+

1
√

2π
.
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4. Modeling of Drying-Time

4.1.2. Drying-Time of One Line and One Point

Consider the printing-group consisting of a line and a point. The distribution of the line and
the point can been seen below,

B C

A x0 x1

y0

x

D

Figure 4.3.: The printing-group composed of a line and a point.

Let the coordinate of A be (xA, yA). For an arbitrary point D = (x, y0) in BC, the distance
between A and D, with respect to the Euclidean norm, is

dist(A,D) =

√

(x − xA)
2
+ (y0 − yA)

2.

(1) Consider point A, the drying-time-increase caused by BC is

tBC→A = ∫

[x0,x1]

f (dist (A, (x, y0))) d(x)

=

x1

∫

x0

f (

√

(x − xA)
2
+ (y0 − yA)

2
) dx =

x1

∫

x0

1
√

2π
e
− 1

2
[(x−xA)2+(y0−yA)2]

dx.

Therefore the drying-time of point A is

tA = tBC→A + tA→A

=

x1

∫

x0

f (

√

(x − xA)
2
+ (y0 − yA)

2
) dx + f (0) =

x1

∫

x0

1
√

2π
e
− 1

2
[(x−xA)2+(y0−yA)2]

dx +
1

√
2π
.

(2) Consider the line BC.
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4. Modeling of Drying-Time

● The drying-time-increase caused by A is

tA→BC = max
D∈BC

f (dist (A,D))

= max
x∈[x0,x1]

f (

√

(x − xA)
2
+ (y0 − yA)

2
) = max

x∈[x0,x1]

1
√

2π
e
− 1

2
[(x−xA)2+(y0−yA)2]

,

● The drying-time of BC itself is

tBC→BC = max
x∈[x0,x1] ∫

BC

f (dist (x̄, x)) d(x̄) = max
x∈[x0,x1]

x1

∫

x0

f (

√

(x̄ − x)2
) dx̄

= max
x∈[x0,x1]

x1

∫

x0

1
√

2π
e−

1
2
(x̄−x)2 dx̄

Therefore the drying-time of BC including the drying-time-increase caused by A is

tBC = max
x∈[x0,x1]

⎧⎪⎪
⎨
⎪⎪⎩

f (dist (A, (x, y0))) + ∫

BC

f (dist (x̄, x)) d(x̄)

⎫⎪⎪
⎬
⎪⎪⎭

= max
x∈[x0,x1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f (

√

(x − xA)
2
+ (y0 − yA)

2
) +

x1

∫

x0

f (

√

(x̄ − x)2
)dx̄

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=
1

√
2π

max
x∈[x0,x1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e−
1
2
[(x−xA)2+(y0−yA)2]

+

x1

∫

x0

e−
1
2
(x̄−x)2 dx̄

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(3) Finally, the drying-time of this printing-group is:

t = max{tA, tBC}

=
1

√
2π

max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x1

∫

x0

e−
1
2
[(x−xA)2+(y0−yA)2] dx + 1, max

x∈[x0,x1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e−
1
2
[(x−xA)2+(y0−yA)2]

+

x1

∫

x0

e−
1
2
(x̄−x)2 dx̄

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

4.1.3. Drying-Time of One Point and One Rectangle

Now consider a printing-group consisting of a point and a rectangle, which can be seen below.
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4. Modeling of Drying-Time

P

A x0 x1

y0

y1

Figure 4.4.: An example of the printing-group consisting of a point and a rectangle.

As before, let the coordinate of A be (xA, yA). The area of the pattern P is denoted by the
Cartesian product of two intervals [x0, x1] × [y0, y1] .

(1) The drying-time-increase of point A caused by P is

tP→A = ∫

P

f (dist (A, (x, y))) d2
(x, y)

= ∫

[x0,x1]×[y0,y1]

f (

√

(x − xA)
2
+ (y − yA)

2
) d2

(x, y) =

x1

∫

x0

y1

∫

y0

1
√

2π
e−

1
2
[(x−xA)2+(y−yA)2] dydx.

Thus the drying-time of A including the increase caused by P is

tA = tP→A + tA→A

= ∫

[x0,x1]×[y0,y1]

f (

√

(x − xA)
2
+ (y − yA)

2
) d2

(x, y) + f(0)

=

x1

∫

x0

y1

∫

y0

1
√

2π
e−

1
2
[(x−xA)2+(y−yA)2] dydx +

1
√

2π

(2) Now consider the pattern P .

● The drying-time-increase caused by A is

tA→P = max
p∈P

f (dist (A,p))

= max
(x,y)∈P

f (

√

(x − xA)
2
+ (y − yA)

2
) = max

x∈[x0,x1],y∈[y0,y1]

1
√

2π
e−

1
2
[(x−xA)2+(y−yA)2]

15



4. Modeling of Drying-Time

● The drying-time of P itself is

tP→P = max
p∈P ∫

P

f (dist (x̄, ȳ) , p) d2
(x̄, ȳ)

= max
(x,y)∈P ∫

P

f (

√

(x̄ − x)2
+ (ȳ − y)2

) d2
(x̄, ȳ)

= max
x∈[x0,x1],y∈[y0,y1]

x1

∫

x0

y1

∫

y0

1
√

2π
e−

1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄.

Therefore the drying-time of P including the drying-time-increase caused by A is

tP = max
p∈P

⎧⎪⎪
⎨
⎪⎪⎩

f (dist (A,p)) + ∫
P

f (dist (x̄, ȳ) , p) d2
(x̄, ȳ)

⎫⎪⎪
⎬
⎪⎪⎭

= max
(x,y)∈P

⎧⎪⎪
⎨
⎪⎪⎩

f (

√

(x − xA)
2
+ (y − yA)

2
) + ∫

P

f (

√

(x̄ − x)2
+ (ȳ − y)2

) d2
(x̄, ȳ)

⎫⎪⎪
⎬
⎪⎪⎭

=
1

√
2π

max
x∈[x0,x1],y∈[y0,y1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e−
1
2
[(x−xA)2+(y−yA)2]

+

x1

∫

x0

y1

∫

y0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(3) Finally, the drying-time of the printing-group which consists of a point and a rectangle is

t = max{tA, tP}

=
1

√
2π

max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x1

∫

x0

y1

∫

y0

e−
1
2
[(x−xA)2+(y−yA)2] dydx + 1,

max
x∈[x0,x1],y∈[y0,y1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e−
1
2
[(x−xA)2+(y−yA)2]

+

x1

∫

x0

y1

∫

y0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

4.1.4. Drying-Time of Two Rectangles

Now, the printing-group consisting of two rectangles is concerned. This is a typical situation.
The figure below shows an example of the distribution of two patterns.
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4. Modeling of Drying-Time

P1

x0
1 x1

1

y0
1

y1
1 P2

x0
2 x1

2

y0
2

y1
2

Figure 4.5.: The distribution of two rectangles in one printing-group.

(1) Consider the pattern P1.

● The drying-time-increase caused by P2 is

tP2→P1 = max
p1∈P1

∫

P2

f (dist ((x, y) , p1)) d2
(x, y)

= max
(x1,y1)∈P1

∫

P2

f (

√

(x − x1)
2
+ (y − y1)

2
) d2

(x, y)

= max
x1∈[x01,x11],y1∈[y01 ,y11]

x12

∫

x02

y12

∫

y02

1
√

2π
e−

1
2
[(x−x1)2+(y−y1)2] dydx

● The drying-time of P1 itself is

tP1→P1 = max
p1∈P1

∫

P1

f (dist ((x, y) , p1)) d2
(x, y)

= max
(x1,y1)∈P1

∫

P1

f (

√

(x − x1)
2
+ (y − y1)

2
) d2

(x, y)

= max
x1∈[x01,x11],y1∈[y01 ,y11]

x11

∫

x01

y11

∫

y01

1
√

2π
e−

1
2
[(x−x1)2+(y−y1)2] dydx
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4. Modeling of Drying-Time

Therefore the drying-time of P1 including the drying-time-increase caused by P2 is

tP1 = max
p1∈P1

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∫

P1

f (dist ((x, y) , p1)) d2
(x, y) + ∫

P2

f (dist ((x, y) , p1)) d2
(x, y)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= max
(x1,y1)∈P1

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∫

P1

f (

√

(x − x1)
2
+ (y − y1)

2
) d2

(x, y) + ∫
P2

f (

√

(x − x1)
2
+ (y − y1)

2
) d2

(x, y)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=
1

√
2π

max
x1∈[x01,x11],y1∈[y01 ,y11]

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x11

∫

x01

y11

∫

y01

e−
1
2
[(x−x1)2+(y−y1)2] dydx +

x12

∫

x02

y12

∫

y02

e−
1
2
[(x−x1)2+(y−y1)2] dydx

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

(2) Analogous for P2, we obtain

tP2 = max
p2∈P2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∫

P1

f (dist ((x, y) , p2)) d2
(x, y) + ∫

P2

f (dist ((x, y) , p2)) d2
(x, y)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= max
(x2,y2)∈P2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∫

P1

f (

√

(x − x2)
2
+ (y − y2)

2
) d2

(x, y) + ∫
P2

f (

√

(x − x2)
2
+ (y − y2)

2
) d2

(x, y)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=
1

√
2π

max
x2∈[x02,x12],y2∈[y02 ,y12]

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x11

∫

x01

y11

∫

y01

e−
1
2
[(x−x2)2+(y−y2)2] dydx +

x12

∫

x02

y12

∫

y02

e−
1
2
[(x−x2)2+(y−y2)2] dydx

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

(3) Therefore, the drying-time of the printing-group with two rectangles is

t = max{tP1 , tP2}

=
1

√
2π

max
x1∈[x

0
1
,x1

1
],y1∈[y

0
1
,y1

1
]

x2∈[x
0
2
,x1

2
],y2∈[y

0
2
,y1

2
]

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x11

∫

x01

y11

∫

y01

e−
1
2
[(x−xi)2+(y−yi)2] dydx +

x12

∫

x02

y12

∫

y02

e−
1
2
[(x−xi)2+(y−yi)2] dydx, i = 1,2

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

4.1.5. Drying-Time of n Rectangles

Let n ∈ N be arbitrary and consider the printing-group with n patterns.
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4. Modeling of Drying-Time

P1

x0
1 x1

1

y0
1

y1
1

Pn

x0
n x1

n

y0
n

y1
n

x0
2 x1

2

y1
2

y0
2

P2

. . . . . .

Figure 4.6.: The distribution of n patterns in one printing-group.

Consider the polygon Pi for i = 1, . . . , n with Pi = [x0
i , x

1
i ] × [y0

i , y
1
i ]. Analogously,

(1) The drying-time-increase caused by Pi itself is

tPi→Pi = max
xi∈[x0i ,x1i ],yi∈[y0i ,y1i ]

x1i

∫

x0i

y1i

∫

y0i

1
√

2π
e−

1
2
[(x−xi)2+(y−yi)2] dydx

(2) The drying-time increase-caused by any other rectangle Pj with i ≠ j is

tPj→Pi = max
xi∈[x0i ,x1i ],yi∈[y0i ,y1i ]

x1j

∫

x0j

y1j

∫

y0j

1
√

2π
e−

1
2
[(x−xi)2+(y−yi)2] dydx

(3) Therefore, the drying-time of Pi including the drying-time-increase by other rectangles is

tPi =
1

√
2π

max
xi∈[x0i ,x1i ],yi∈[y0i ,y1i ]

n

∑
j=1

x1j

∫

x0j

y1j

∫

y0j

e−
1
2
[(x−xi)2+(y−yi)2] dydx
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4. Modeling of Drying-Time

This is analogous for each i = 1, . . . , n. Finally, the drying-time of these n rectangles is

t = max
i=1,...,n

tPi =
1

√
2π

max
i=1,...,n,

xi∈[x
0
i
,x1
i
],yi∈[y

0
i
,y1
i
]

n

∑
j=1

x1j

∫

x0j

y1j

∫

y0j

e−
1
2
[(x−xi)2+(y−yi)2] dydx

4.2. Finding the Maximum-Point with Mathematical Method

The description of the drying-time of a given printing-group have been already obtained with
“max”. In this section, I introduce the approach to find the solution of our expression by using
mathematical method.

4.2.1. Mathematical Background

Definition 4.1 (Hessian-matrix). Let U ⊆ Rd be open and h ∶ U → R; if all second partial
derivatives of h exist and are continuous over U , then the Hessian-matrix Hh(x) of h is a
square d × d matrix, usually defined and arranged as follows:

Hh(x) ∶= (D2h) (x) = [∂j∂kh(x)]j,k =

⎛
⎜
⎜
⎜
⎝

∂2
1h ∂1∂2h ⋯ ∂1∂dh

∂2∂1h ∂2
2h ⋯ ∂2∂dh

⋮ ⋱ ⋮

∂d∂1h ∂d∂2h ⋯ ∂2
dh

⎞
⎟
⎟
⎟
⎠

Notation.

∂j∂kh(x) = ∂j (∂kh(x)) =
∂ (

∂h(x)
∂xk

)

∂xj
=
∂2h(x)

∂xj∂xk
♢

Remark 4.2. In our case, consider solely d = 2, i.e., h ∶ R2 → R, hence the Hessian-matrix has
the form,

Hh(x̄) = (
∂2

1h(x̄) ∂1∂2h(x̄)
∂2∂1h(x̄) ∂2

2h(x̄)
) = (

∂2
xh(x, y) ∂x∂yh(x, y)

∂y∂xh(x, y) ∂2
yh(x, y)

) for x̄ = (x, y). ♢

20



4. Modeling of Drying-Time

Theorem 4.3 (H.A.Schwarz). By [3, Chapter 8, Section 8.1, Theorem 8.8], let U ⊆ Rd be
open, j, k ∈ {1, . . . , d} and h ∶ U → R be partially differentiable; furthermore let ∂k∂jh exist in
U and be continuous. Then ∂j∂kh exists in U and ∂j∂kh = ∂k∂jh. △

Definition 4.4 ((strict) local minimum/maximum). Let U ⊆ Rd, h ∶ U → R. h is said to have

(1) local minimum at point x0 ∈ U , if there exists a neighborhood Ux0 of x0 and for all
y ∈ Ux0 ∩U , h (x0) ≤ h(y).

(2) local maximum at point x0 ∈ U , if for all y ∈ Ux0 ∩U , h (x0) ≥ h(y).

(3) strict local maximum at point x0 ∈ U , if for all y ∈ (Ux0 ∩U) / {x0}, h (x0) > h(y).

(4) and strict local minimum at point x0 ∈ U , if for all y ∈ (Ux0 ∩U) / {x0}, h(x0) < h(y).

We said h has a local extremum if h has a local minimum or a local maximum.

Definition 4.5 (Gradient). By [3, Chapter 8, Section 8.1, Definition 8.4], let U ⊆ Rd be open
and h ∶ U → R be partially differentiable. The gradient of h is denoted by ∇h and gradh ∶= ∇h ∶
U → Rd with x↦ ((∂1h) (x), . . . , (∂dh) (x)) . In particular, ∇ ∶= (∂1, . . . , ∂d) isNabla-operator.

Theorem 4.6 (Necessary Condition for the local Extrema). By [3, Chapter 8, Section
8.4, Theorem 8.34], let U ⊆ Rd be open and h ∶ U → R be partially differentiable. If h have a
local extremum at point x ∈ U , then (∇h) (x) = 0. △

Let Mat (d × d,R) denote the set of d × d real matrices.

Definition 4.7. By [3, Chapter 8, Section 8.4, Definition 8.35], let ⟨⋅, ⋅⟩ ∶ Rd×Rd → R be a inner
product, M ∈ Mat (d × d,R) be symmetric. Then

(1) M is (strict) positive definite if and only if ⟨x,Mx⟩ > 0 for all x ∈ Rd/ {0} ;

(2) M is positive semidefinite if and only if ⟨x,Mx⟩ ≥ 0 for all x ∈ Rd;

(3) M is (strict) negative definite (resp. semidefinite) if and only if −M (strict)
positive definite (resp. semidefinite);

(4) M is indefinite if and only if there exists x, y ∈ Rd with ⟨x,Mx⟩ > 0 and ⟨y,My⟩ < 0.

Theorem 4.8 (Sufficient Condition for Extrema). By [3, Chapter 8, Section 8.4, Theorem
8.38], let U ⊆ Rd open, x ∈ U and h ∶ U → R twice continuously differentiable. Then
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4. Modeling of Drying-Time

(1) If (∇h) (x) = 0 and (D2h) (x) strict positive, then x is the strict local minimum of h.

(2) If (∇h) (x) = 0 and (D2h) (x) strict negative, then x is the strict local maximum of h.

Warning: If (D2h) (x) is positive or negative semidefinite, then there is no statement. △

Definition 4.9. By [2, Page 1] and [4, Page 2], let M ∈ Mat (d × d,R). A k × k submatrix of
M formed by deleting n − k rows of M , and the same n − k columns of M , is called principal
submatrix of M . The determinant of a principal submatrix of M is called a principal minor
of M and denoted by △k.

The k-th oder principal submatrix of M obtained by deleting the last d− k rows and columns of
M is called the k-th oder leading principal submatrix of M and denoted by M (k).

M (k)
=

⎛
⎜
⎜
⎜
⎝

m11 m12 ⋯ m1k

m21 m22 ⋯ m2k

⋮ ⋮ ⋱ ⋮

mk1 mk2 ⋯ mkk

⎞
⎟
⎟
⎟
⎠

.

In particular, M (1) = (m11) and M (d) =M . The determinant of M (k) is called the k-th order
leading principal minor of M and denoted by Dk.

Theorem 4.10 (Sylvester’s Criterion). By [4, Page 5], letM be a symmetric d×d matrix.
Then,

(1) M is positive definite if and only if Dk > 0 for all the leading principal minors.

(2) M is negative definite if and only if (−1)kDk > 0 for all the leading principal minors.

(3) M is positive semidefinite if and only if △k ≥ 0 for all the principal minors.

(4) M is negative semidefinite if and only if (−1)k△k ≥ 0 for all the principal minors.

(5) M is indefinite, if one of its k-th order leading principal minors is negative for an even k
or if there are two odd leading principal minors that have different signs. △

Consider our Hessian-matrix, Hh(x) = (
∂2
xh(x, y) ∂x∂yh(x, y)

∂y∂xh(x, y) ∂2
yh(x, y)

) . By Theorem 4.3 we have

∂x∂yh(x, y) = ∂y∂xh(x, y). Thus,

(1) Hh(x, y) > 0 if and only if ∂2
xh(x, y) > 0 and det(Hh(x, y)) = ∂2

xh(x, y) ⋅ ∂
2
yh(x, y) −

(∂x∂yh(x, y))
2
> 0.
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4. Modeling of Drying-Time

(2) Hh(x, y) < 0 if and only if ∂2
xh(x, y) < 0 and det(Hh(x, y)) = ∂2

xh(x, y) ⋅ ∂
2
yh(x, y) −

(∂x∂yh(x, y))
2
> 0.

4.2.2. Conclusions

Claim 4.11. Consider an arbitrary printing-group containing only one pattern P = [x0, x1] ×

[y0, y1] . Define the central-point of P equals to (x
0+x1
2 , y

0+y1
2 ). Then the drying-time of this

printing-group is the drying-time of the central-point of P . ♢

There are two methods to proof the claim. The first is theoretical and the second is intuitive.

Proof (Method 1). By 4.1 Mathematical Model, the drying-time of P is

max
(x,y)∈P

1
√

2π

x1

∫

x0

y1

∫

y0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄.

We define

g (x, y) =
1

√
2π

x1

∫

x0

y1

∫

y0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄ =

1
√

2π

x1

∫

x0

e−
1
2
(x̄−x)2 dx̄

y1

∫

y0

e−
1
2
(ȳ−y)2 dȳ

then the partial derivatives of g are

● ∂xg (x, y) =
1√
2π

(e−
1
2
(x0−x)2 − e−

1
2
(x1−x)2)

y1

∫
y0
e−

1
2
(ȳ−y)2 dȳ;

● ∂yg (x, y) =
1√
2π

x1

∫
x0
e−

1
2
(x̄−x)2 dx̄(e−

1
2
(y0−y)2 − e−

1
2
(y1−y)2) ;

● ∂2
xg (x, y) =

1√
2π

((x0 − x) e−
1
2
(x0−x)2 − (x1 − x) e−

1
2
(x1−x)2)

y1

∫
y0
e−

1
2
(ȳ−y)2 dȳ;

● ∂2
yg (x, y) =

1√
2π

x1

∫
x0
e−

1
2
(x̄−x)2 dx̄((y0 − y) e−

1
2
(y0−y)2 − (y1 − y) e−

1
2
(y1−y)2) ;

● ∂x∂yg(x, y) = ∂y∂xg(x, y) =
1√
2π

(e−
1
2
(x0−x)2 − e−

1
2
(x1−x)2)(e−

1
2
(y0−y)2 − e−

1
2
(y1−y)2) .
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4. Modeling of Drying-Time

Now we calculate the critical point by setting ∇g(x, y) = (∂xg(x, y), ∂yg(x, y)) = 0.
∂xg(x, y) = 0 implies

1
√

2π
(e−

1
2
(x0−x)2

− e−
1
2
(x1−x)2

)

y1

∫

y0

e−
1
2
(ȳ−y)2 dȳ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

= 0,

i.e., e−
1
2
(x0−x)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

− e−
1
2
(x1−x)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

= 0 and ∂yg(x, y) = 0 implies

1
√

2π

x1

∫

x0

e−
1
2
(x̄−x)2 dx̄

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

(e−
1
2
(y0−y)2

− e−
1
2
(y1−y)2

) = 0,

i.e., e−
1
2
(y0−y)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

− e−
1
2
(y1−y)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

= 0. Therefore, there exists an unique critical point (x̂, ŷ) = (x
0+x1
2 , y

0+y1
2 ).

Theorem 4.8 and Theorem 4.10 (2) can be used to confirm this critical point is the strict local
maximum of g, i.e.,

∂2
xg (x̂, ŷ) =

1
√

2π

⎛
⎜
⎜
⎜
⎝

(
x0 − x1

2
e−

1
4
(x0−x1)2

−
x1 − x0

2
e−

1
4
(x1−x0)2

)

y1−y0

2

∫

y0−y1

2

e−
1
2
(ȳ−y)2 dȳ

⎞
⎟
⎟
⎟
⎠

=
1

√
2π

(x0
− x1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

>0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

e−
1
4
(x0−x1)2

y1−y0

2

∫

y0−y1

2

e−
1
2
(ȳ−y)2 dȳ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

< 0

and

det (Hg(x̂, ŷ)) = ∂
2
xg(x̂, ŷ)∂

2
yg(x̂, ŷ) − (∂x∂yg(x̂, ŷ))

2

=
1

2π
(x0

− x1) e−
1
4
(x0−x1)2

y1−y0

2

∫

y0−y1

2

e−
1
2
(ȳ−y)2 dȳ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

<0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

(y0
− y1) e−

1
4
(y0−y1)2

x1−x0

2

∫

x0−x1

2

e−
1
2
(x̄−x)2 dx̄−0 > 0.
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4. Modeling of Drying-Time

Hence, the claim follows. ∎

Proof (Method 2). Consider the function from Proof (Method 1),

g(x, y) =
1

√
2π

x1

∫

x0

e−
1
2
(x̄−x)2 dx̄

y1

∫

y0

e−
1
2
(ȳ−y)2 dȳ =∶

1
√

2π
g1(x)g2(y)

where g1 only depends on x and g2 only depends on y. The maximum of g will be achieved if
and only if g1 and g2 achieve their maximum respectively. Consider g1 (analogous for g2),

g1(x) =

x1

∫

x0

e−
1
2
(x̄−x)2 dx̄ =

x1−x

∫

x0−x

e−
1
2
x̄2 dx̄.

Since x ∈ [x0, x1], i.e., x0 − x ≤ 0 and x1 − x ≥ 0. The figure of the value of g1 at an arbitrary
point x is shown below.

x0 − x x1 − x

Figure 4.7.: The area of the shadow is the corresponding value of g1.

Therefore, the area of shadow will be maximal if and only if ∣x0 − x∣ = ∣x1 − x∣, i.e., x−x0 = x1−x,
then x = x0+x1

2 . The figure of g1’s value at the point x = x0+x1
2 is shown below.

−x
0+x1
2

x0+x1
2

Figure 4.8.: The value of g1 (
x0+x1

2 ).
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4. Modeling of Drying-Time

Analogous for g2, it will achieve its maximum when y = y0+y1
2 . In other words, g achieves its

maximum at the central-point. ∎

Conclusion 4.12. Consider the pattern P = [x0, x1] × [y0, y1] with the central-point p =

(x
0+x1
2 , y

0+y1
2 ). Concentrate on some special points in P , whose locations are shown in the

following figure.

x

y

x0 x1

y0

y1

l1

l

pA B

l2

C

D

l4

l3

l5

F

E

p2

p1

Figure 4.9.: Some special points in P .

We assume that

dist(A,p) = dist(B,p) = dist (D,p1) = dist (E,p1) = dist (C,p2) = dist (F, p2) =∶ εx;

dist(C,A) = dist(D,A) = dist (E,B) = dist (F,B) .

(1) The drying-time of A is the same as of B and of C is the same as of D. Indeed, the
drying-time of C, D, E and F are the same.

Proof. By Proof (Method 2), all the points in l1 have the same value of g2, since they have
the same y-coordinate. Therefore, the difference between the drying-time of A and of B
depends on their values of g1. The figures below show the value of g1 at point A and at
point B.
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εx εx

−x0+x12
x0+x1

2

Figure 4.10.: The value of g1 at point A is the area of the shadow.

εx εx

−x0+x12
x0+x1

2

Figure 4.11.: The value of g1 at point B is the area of the shadow.

According to the characteristic of the standard normal distribution and the figures, the
area of the shadow in Figure 4.10 is the same as in Figure 4.11. The claim follows.
Analogously, we obtain the rest statements. ∎

(2) Those polygons, whose central-points have the same x-coordinate x̂ (resp. y-coordinate
ŷ), the maximum point will be on the line x = x̂ (resp. y = ŷ).

Proof. Let P1, . . . , Pn be n arbitrary patterns with Pi = [x0
i , x

1
i ] × [y0

i , y
1
i ] for i = 1, . . . , n.

Without loss of generality, let the central-points of them have the same y-coordinate ŷ,

i.e., for all i, j = 1, . . . , n, ŷ =
y0i +y1i

2 =
y0j+y1j

2 . The figure below shows an example of the
locations of the polygons in such situation above.

27



4. Modeling of Drying-Time

x

y y

P1 P2 P3 P4 Pn⋯

y = ŷ

Figure 4.12.: An example of the distributions of the patterns, whose central-points have the
same y-coordinate.

Define for i = 1, . . . , n,

gPi(x, y) =
1

√
2π

x1i

∫

x0i

y1i

∫

y0i

e−
1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄ =

1
√

2π

x1i

∫

x0i

e−
1
2
(x̄−x)2 dx̄

y1i

∫

y0i

e−
1
2
(ȳ−y)2 dȳ

and

gPi,1(x) =

x1i

∫

x0i

e−
1
2
(x̄−x)2 dx̄, gPi,2(y) =

y1i

∫

y0i

e−
1
2
(ȳ−y)2 dȳ.

By 4.1 Mathematical Model, the drying-time for this printing-group can be described as

max
i=1,...,n

tPi = max
(x,y)∈

n
⊔
i=1

Pi

n

∑
i=1

gPi (x, y) =
1

√
2π

max
(x,y)∈

n
⊔
i=1

Pi

n

∑
i=1

gPi,1(x)gPi,2(y).

Claim 4.11 shows that for i = 1, . . . , n, gPi,2(y) achieves its maximum value at ŷ = y0i +y1i
2 .

Then the prove is finished. In particular, all the patterns have the same y-coordinate of
their central points. The value of gPi,2 at ŷ is denoted as a constant ci,y ∈ R. Therefore,

max
i=1,...,n

tPi =
1

√
2π

max
x∈

n
⊔
i=1

[x0i ,x1i ]

n

∑
i=1

ci,ygPi,1(x). ∎
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4.2.3. Introduction to Newton’s Method

Newton’s method is an iterative method designed to provide a sequence (xn)n∈N0
that converges

to a zero of a given function h. With the concepts in 4.1 Mathematical Model and 4.2.1
Mathematical Background, Newton’s method is used to find all the critical points in order
to obtain the global maximum, i.e., the drying-time. The Newton’s iteration is based on [1,
Chapter 6, Section 6.3, Page 127-128].

If U ⊆ R and h ∶ U → R is differentiable, then Newton’s method is defined by the recursion

x0 ∈ U, xn+1 ∶= xn −
h (xn)

h′ (xn)
, for each n ∈ N0.

Analogously, Newton’s method can also be defined for differentiable h ∶ U → Rd with U ⊆ Rd,

x0 ∈ U, xn+1 ∶= xn − (Dh(xn))
−1 h (xn) , for each n ∈ N0.

In practice, in each step of Newton’s method, one will determine xn+1 as the solution to the
linear system

Dh (xn)xn+1 =Dh (xn)xn − h (xn) .

Notation. Dh (x) is the Jacobian-matrix

Dh(x) ∶= [∂jhi(x)]ij =

⎛
⎜
⎜
⎜
⎝

∂1h1(x) ∂2h1(x) ⋯ ∂nh1(x)
∂1h2(x) ∂2h2(x) ⋯ ∂nh2(x)

⋮ ⋱ ⋮

∂1hm(x) ∂2hm(x) ⋯ ∂nhm(x)

⎞
⎟
⎟
⎟
⎠

. ♢

Here for d = 2 and h1, h2 ∶ R2 → R with h(x, y) = (
h1(x, y)
h2(x, y)

) , the Jacobian-matrix is Dh(x, y) =

(
∂xh1(x, y) ∂yh1(x, y)
∂xh2(x, y) ∂yh2(x, y)

) . Therefore, Newton’s method for two-dimensions is

(
xn+1

yn+1
) = (

xn
yn

) − (
∂xh1 (xn, yn) ∂yh1 (xn, yn)
∂xh2 (xn, yn) ∂yh2 (xn, yn)

)

−1

(
h1 (xn, yn)
h2 (xn, yn)

) .
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4. Modeling of Drying-Time

We determine xn+1, yn+1 as the solution to the linear system

(
∂xh1 (xn, yn) ∂yh1 (xn, yn)
∂xh2 (xn, yn) ∂yh2 (xn, yn)

)(
xn+1

yn+1
) = (

∂xh1 (xn, yn) ∂yh1 (xn, yn)
∂xh2 (xn, yn) ∂yh2 (xn, yn)

)(
xn
yn

) − (
h1 (xn, yn)
h2 (xn, yn)

) ,

i.e., the linear system is

⎧⎪⎪
⎨
⎪⎪⎩

∂xh1 (xn, yn)xn+1 + ∂yh1 (xn, yn) yn+1 = ∂xh1 (xn, yn)xn + ∂yh1 (xn, yn) yn − h1 (xn, yn)

∂xh2 (xn, yn)xn+1 + ∂yh2 (xn, yn) yn+1 = ∂xh2 (xn, yn)xn + ∂yh2 (xn, yn) yn − h2 (xn, yn)
.

With Newton’s method we can determine the drying-time of the printing-group consisting of n
patterns. In 4.1.5 Drying-Time of n Rectangles, we have concluded that the drying-time of Pi
including the drying-time increase by other rectangles is

tPi =
1

√
2π

max
xi∈[x0i ,x1i ],yi∈[y0i ,y1i ]

n

∑
j=1

x1j

∫

x0j

y1j

∫

y0j

e−
1
2
[(x−xi)2+(y−yi)2] dydx

for i = 1, . . . , n. In oder to obtain the maximum of the sum for xi ∈ [x0
i , x

1
i ] , yi ∈ [y0

i , y
1
i ] we

define

gi (xi, yi) ∶=
1

√
2π

n

∑
j=1

x1j

∫

x0j

y1j

∫

y0j

e−
1
2
[(x−xi)2+(y−yi)2] dydx.

Then the partial derivatives of g are

∂xig
i
(xi, yi) =

1
√

2π

n

∑
j=1

(e
− 1

2
(x0j−xi)

2

− e
− 1

2
(x1j−xi)

2

)

y1j

∫

y0j

e−
1
2
(y−yi)2 dy

and

∂yig
i
(xi, yi) =

1
√

2π

n

∑
j=1

x1j

∫

x0j

e−
1
2
(x−xi)2 dx(e

− 1
2
(y0j−yi)

2

− e
− 1

2
(y1j−yi)

2

) .

As for each pattern, we apply Newton’s method on the objective function hi ∶ R2 → R for

i = 1, . . . , n, hi (xi, yi) = (
hi1 (xi, yi)
hi2 (xi, yi)

) = (
∂xig

i (xi, yi)
∂yig

i (xi, yi)
) and let the corresponding central-point

(
x0i+x1i

2 ,
y0i +y1i

2 ) be the initial guess. Finally, there are n critical points, p1 = (x̂1, ŷ1) , . . . , pn =
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4. Modeling of Drying-Time

(x̂n, ŷn) . Using Theorem 4.8, the critical points can be evaluated. However the evaluation is
redundant in our case. Define for i = 1, . . . , n, t̂i ∶= gi (x̂i, ŷi) . By doing the comparison of all t̂i
for i = 1, . . . , n the global maximum will be obtained directly.

4.2.4. The Selection of the Initial-Guess

By Claim 4.11, when there is only one piece of polygon, the maximum will be at the central-point.
If there are other patterns, the maximum point of each pattern will shift from the central-point.
Let x0 be the initial-guess and h be the objective function. The method will usually converge,
provided this initial-guess is close enough to the unknown zero, and the fact h′ (x0) ≠ 0. If the
method diverges, which means that the shift is too far from the corresponding central-point.
This indicates the existence of other patterns, whose drying-time is much greater than the
drying-time of this pattern. If there exists a critical point, which is not located in any patterns,
it is a meaningless point, although its drying-time may be greater than the drying-time of any
other points.

According to the information above, the central-points of the underlying patterns in each
printing-group will be chosen as initial-guesses for Newton’s method.

The approach to process the valid results of Newton’s method with the central-points as
initial-guesses will be expressed later in 5.2.1 Computing the Drying-Time with Newton’s Method.
Moreover, the conditions for the convergence of Newton’s method will be introduced in Part II.
Newton’s Method.
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Mixed Integer Linear Programming (MILP) is used to solve the optimization-problem. C++ and
Gurobi[6] are required as the solving tools. In 5.1 Discrete Model, finite sampling points will
be distributed uniformly in each pattern and the drying-time of them will be computed. On
the other hand, infinite sampling points will be considered in 5.2 Continuous Model. Meanwhile,
some typical examples for the calculation of drying-time with Newton’s method will be introduced.

5.1. Discrete Model

In order to obtain the drying-time, finite sampling points are distributed uniformly in each
pattern, which can be seen in the following figure.

xi,0

yi,0

xi,1

yi,1

Figure 5.1.: The distribution of points in the i-th pattern.

The entire design is decomposed into #tilex ×#tiley rectangular tiles. For example, in Figure
5.1, #tilex = 6, #tiley = 3. Define nx ∶= #tilex, ny ∶= #tiley. Then, the coordinate of first point
is (xi,0, yi,0) and then (xi,0 + nx, yi,0) , (xi,0 + 2nx, yi,0) , . . . Finally, the coordinate of the last
point is (xi,1, yi,1) . Now assume nx = ny = 10 for i = 1, . . . ,NP . Let ni be the number of points
in each pattern, i.e., ni = 121 for all i ∈ {1, . . . ,NP } . Let xir and yir , r = 1, . . . , ni indicate the
position of these points in Pi.

Define binary variable qi,m = 1 when Pi is assigned to the m-th printing-group. Then for
i = 1, . . . ,NP and m = 1, . . . ,NG,

NG

∑
m=1

qi,m = 1, (4)

i.e., each pattern is exactly assigned to one printing-group.
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Define binary variable q(i,j),m = 1 when both Pi, Pj are assigned to the m-th printing-group.
We obtain for i, j = 1, . . . ,NP and m = 1, . . . ,NG,

q(i,j),m = qi,m ⋅ qj,m. (5.1.1)

To linearize the constraint above, it can be transformed into the following in-equation,

qi,m + qj,m ≤ q(i,j),m + 1 (5)

By the minimization of the sum of drying-time and the number of printing-group, (5.1.1) can
be realized.

5.1.1. Drying-time of the Points in a Printing-Group

Consider one fixed pattern Pi, i.e., i fixed with i ∈ {1, . . . ,NP} and fixedm, i.e., fixed printing-group
withm ∈ {1, . . . ,NG}. Let ti,m,k, k = 1, . . . , ni denote the drying-time of the point pir = (xir , yir)

in the m-th printing-group. Let [x0
j , x

1
j] × [y0

j , y
1
j ] denote the area of the j-th pattern. Then,

for i = 1, . . . ,NP and m = 1, . . . ,NG, k = 1, . . . , ni,

ti,m,k =
NP

∑
j=1

⎛
⎜
⎜
⎝

x1j

∫

x0j

y1j

∫

y0j

f (

√

(x − xik)
2
+ (y − yik)

2
)dydx ⋅ q(i,j),m

⎞
⎟
⎟
⎠

.

By the definition of our Gaussian function f(x) = 1√
2π
e−

1
2
x2 ,

ti,m,k =
Np

∑
j=1

⎛
⎜
⎜
⎝

x1j

∫

x0j

y1j

∫

y0j

1
√

2π
e
− 1

2
[(x−xik)

2+(y−yik)
2]

dydx ⋅ q(i,j),m

⎞
⎟
⎟
⎠

.

Define the coefficient for i, j = 1, . . . ,NP and k = 1, . . . , ni, c
ij
k =

x1j

∫
x0j

y1j

∫
y0j

1√
2π
e
− 1

2
[(x−xik)

2+(y−yik)
2]

dydx,

which will be computed with the GNU Scientific Library [7]. Thus, for k = 1, . . . , ni,

ti,m,k =
NP

∑
j=1

cijk ⋅ q(i,j),m (6)

In particular, cijk is not the same as cjik . c
ij
k is about the integral over the points in the i-th

pattern and cjik in the j-th pattern.
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5.1.2. Drying-Time of the Patterns in a Printing-Group

Let ti,m,maxPi denote the drying-time of Pi in the m-th printing-group, then for i = 1, . . . ,NP ,
m = 1, . . . ,NG and k = 1, . . . , ni,

ti,m,maxPi ≥ ti,m,k (7)

5.1.3. Drying-Time of a Printing-Group

Let tm,maxm denote the drying-time of the m-th printing-group. Then, for i = 1, . . . ,NP and
m = 1, . . . ,NG,

tm,maxm ≥ ti,m,maxPi (8)

Finally, the complete optimization problem can be modelled as,

Minimize
NG

∑
m=1

tm,maxm +NG Subject to (1)-(8)

5.2. Continuous Model

In this section, we introduce the model using Newton’s method to compute the drying-time.

5.2.1. Computing the Drying-Time with Newton’s Method

Although with Newton’s method the unknown zero of the function and then the maximal
value can be computed, it requires the composition of the printing-group. I.e., we must know
which patterns are contained in each printing-group. For this reason we introduce a new
concept—combination.

If there are NP patterns, P1, . . . , PNP , then there exists 2NP combinations. Let the l-th
combination Cl contain nl patterns for l = 1, . . . ,2NP , then Cl has the following form,

Cl = {P l1, . . . , P
l
nl
} ,

where P l1, . . . , P
l
nl

∈ {P1, . . . , PNP }. Let NC be the number of combinations. For i = 1, . . . , nl,
the area of the i-th pattern is P li = [x0

i , x
1
i ] × [y0

i , y
1
i ]. As in 4.2.3 Introduction to Newton’s
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Method we define for the point (xi, yi) ∈ P
l
i ,

gli (xi, yi) =
1

√
2π

nl

∑
j=1

x1j

∫

x0j

y1j

∫

y0j

e−
1
2
[(x−xi)2+(y−yi)2] dydx.

Algorithm 5.1. For each pattern we apply Newton’s method. Suppose that the root we have
found for the i-th pattern in one printing-group is the point pi = (x̂i, ŷi).

(1) If (x̂i, ŷi) ∈ [x0
i , x

1
i ] × [y0

i , y
1
i ], then we take the value of gli (x̂i, ŷi) as the drying-time of

P li .

(2) If x̂i < x0
i and ŷi ∈ [y0

i , y
1
i ], then we take the value of gli (x

0
i , ŷi) as the drying-time of P li .

(3) If x̂i > x1
i and ŷi ∈ [y0

i , y
1
i ], then we take the value of gli (x

1
i , ŷi) as the drying-time of P li .

(4) If x̂i ∈ [x0
i , x

1
i ] and ŷi < y0

i , then we take the value of gli (x̂i, y
0
i ) as the drying-time of P li .

(5) If x̂i ∈ [x0
i , x

1
i ] and ŷi > y1

i , then we take the value of gli (x̂i, y
1
i ) as the drying-time of P li .

(6) If x̂i < x0
i and ŷi < y0

i , then we take the value of gli (x
0
i , y

0
i ) as the drying-time of P li .

(7) If x̂i < x0
i and ŷi > y1

i , then we take the value of gli (x
0
i , y

1
i ) as the drying-time of P li .

(8) If x̂i > x1
i and ŷi < y0

i , then we take the value of gli (x
1
i , y

0
i ) as the drying-time of P li .

(9) If x̂i > x1
i and ŷi > y1

i , then we take the value of gli (x
1
i , y

1
i ) as the drying-time of P li . ♢

This drying-time may not be the real drying-time since we do not use Theorem 4.8 to verify
whether the critical point is a local extremum. However it will not influence the result for this
particular combination.

5.2.2. Examples for the Special Printing-Group

Conclusion 5.2. If there are n patterns, P1, . . . , Pn.

(1) Consider the following two extreme situations:

(i) Let the distance between each pair of P1, . . . , Pn be great enough such that there
exists no influence between each pair of patterns. I.e., the situation can be treated
as: P1, . . . , Pn are separately assigned to n printing-group. Then by Claim 4.11
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there exist n critical points, which are the central-points of P1, . . . , Pn. In particular,
they are local maxima.

(ii) Let patterns be located directly to each other, which can be seen in the following
figure.

x

y y

P1 P2 ⋯ Pn

Figure 5.2.: An example of the printing-group containing n patterns, which are located directly
to each other.

These n patterns can be incorporated to one pattern. By Claim 4.11, the drying-time
of this printing-group is the drying-time of the central-point of the merged pattern.

We conclude from the extreme situations that if there are n patterns then there exists
maximal n local maxima.

(2) If the figure of the printing-group is completely symmetric and the distance between
patterns is suitable, i.e., they locate not too faraway from each other, then the geometric
center of the figure is the unique local maximum, i.e., the global maximum. ♢

We close this subsection with a discussion about some special locations of patterns in one
printing-group. With the examples below, Conclusion 5.2 will be confirmed. Before beginning,
define the area of each pattern as before, P = [x0, x1] × [y0, y1],

gP (x, y) =

x1

∫

x0

y1

∫

y0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dȳdx̄, for all (x, y) ∈ [x0, x1] × [y0, y1] .

Example 5.3. Consider two patterns P 1
1 and P 1

2 with P 1
1 = [0,1]×[0,1] , P 1

2 = [2,3]×[0,1] . The
locations of P 1

1 and P 1
2 are described in the following figure, let G1 denote the printing-group,

which consists of these two patterns.
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x

y y

1

P 1
1

0

1

1

P 1
2

2 3

(x̂, ŷ)

p̂1

l

Figure 5.3.: The printing-group G1 = {P 1
1 , P

1
2 }. l is the line y = 0+1

2 = .5.

By 4.1.4 Drying-Time of Two Rectangles, the drying-time of G1 can be described as

tG1 = max
(x,y)∈P 1

1 ⊔P 1
2

gP 1
1
(x, y) + gP 1

2
(x, y)

=
1

√
2π

max
x∈[0,1]⊔[2,3],y∈[0,1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

∫

0

1

∫

0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ +

1

∫

0

3

∫

2

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Take the central-points (.5, .5) and (2.5, .5) as the initial guesses for Newton’s method and the
results are the same. I.e., there exists only one critical point p̂1 = (x̂, ŷ) = (1.5, .5) . Thus, this
point is the unique local maximum point and then the global maximum point. However, this
point belongs to none of these two patterns. Conclusion 4.12 (2) shows that the maximum
point will be on the line l. Therefore, the corresponding values of the points on the left and right
side of p̂ are smaller, i.e., for all x < x̂ or x > x̂, we have

gP 1
1
(x, ŷ) + gP 1

2
(x, ŷ) < gP 1

1
(x̂, ŷ) + gP 1

2
(x̂, ŷ) .

In particular, the closer to the point p̂ the greater the value. With such consideration, we use
Algorithm 5.1 to find the drying-time of P 1

1 and P 1
2 .

(P 1
1 ) The original result of Newton’s method conforms to Algorithm 5.1 (3). Thus, the

maximum point of P 1
1 is p̂1

1 = (1, .5) and the drying-time of P 1
1 is gP 1

1
(p̂1

1) + gP 1
2
(p̂1

1) =

.4580884948.

(P 1
2 ) The original result of Newton’s method conforms to Algorithm 5.1 (2). Thus, the

maximum point of P 1
2 is p̂1

2 = (2, .5) and the drying-time of P 1
2 is gP 1

1
(p̂1

2) + gP 1
2
(p̂1

2) =

.4580884948.

It can be seen that the drying-time of these two patterns are the same, since their shapes are
exactly the same and they are located symmetrically to each other. Conclusion 5.2 (2) is also
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be verified through this example. Finally, the drying-time of this printing-group is

max{.4580884948, .4580884948} = .4580884948.

In the next example, consider two identical patterns. However, the distance between them is
a little greater than Example 5.3. We will see the influence on the critical point shift, which
caused by the change of the distance between patterns.

Example 5.4. Consider two patterns P 2
1 and P 2

2 with P 2
1 = [0,1] × [0,1] , P 2

2 = [1,2] × [2,3] .
Let G2 denote the printing-group containing these two patterns and the distribution of them is
shown in the figure below. In particular, line l is generated from the central-points of P 2

1 and
P 2

2 . We also draw the results of Newton’s method, denoted by p̂2
1 and p̂2

2 respectively.

x

y y

0

1

1 2

2

3

l

P 2
1

.5

.5

P 2
2

1.5

2.5

p̂2
1

p̂2
2

Figure 5.4.: The printing-group G2 = {P 2
1 , P

2
2 } .

By 4.1.4 Drying-Time of Two Rectangles, the drying-time of G2 can be described as

tG2 = max
(x,y)∈P 2

1 ⊔P 2
2

gP 2
1
(x, y) + gP 2

2
(x, y)

=
1

√
2π

max
x∈[0,2],y∈[0,1]⊔[2,3]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

∫

0

1

∫

0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ +

3

∫

2

2

∫

1

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Take the central-points (.5, .5) and (1.5,2.5) as the initial guesses for Newton’s method and
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5. Implementation

the results are different. The result of P 2
1 is p̂2

1 = (.7045386024, .9098098415) and the result
of P 2

2 is p̂2
2 = (1.2954613976,2.0901901585) . Thus, these points are the local maxima and

there must be a local minimum between these two maxima. In particular, it can be verified by
Theorem 4.8. According to Algorithm 5.1 (1), the drying-time of P 2

1 is gP 2
1
(p̂2

1) + gP 2
2
(p̂2

1) =

.4195087470 and of P 2
2 is gP 2

1
(p̂2

2) + gP 2
2
(p̂2

2) = .4195087470. Finally, the drying-time of G2 is
max{.4195087470, .4195087470} = .4195087470. Furthermore, the local maxima located on the
line l.

Compare Example 5.3 and Example 5.4. The patterns in the both printing-group are exactly the
same. However, the distance between P 2

1 and P 2
2 in G2 is greater than P 1

1 and P 1
2 in G1. The

result refers to Conclusion 5.2 (1).

Example 5.5. Consider four patterns P 3
1 , P

3
2 , P

3
3 and P 3

4 with P 3
1 = [0,1] × [0,1] , P 3

2 = [2,3] ×
[0,1] , P 3

3 = [0,1] × [2,3] , P 3
4 = [2,3] × [2,3]. Let them be totally symmetrically distributed,

i.e., the figure of this printing-group is completely symmetric, which can be seen below. Such a
printing-group is denoted by G3.

x

y

P 3
1

0

1

1

P 3
2

2 3

P 3
3

2

3

P 3
4

p̂3

1.5

1.5

Figure 5.5.: The printing-group G3 = {P 3
1 , P

3
2 , P

3
3 , P

3
4 } .
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By 4.1.5 Drying-Time of n Rectangles, the drying-time of G3 can be describe as

tG3 = max
(x,y)∈P 3

1 ⊔P 3
2 ⊔P 3

3 ⊔P 3
4

gP 3
1
(x, y) + gP 3

2
(x, y) + gP 3

3
(x, y) + gP 3

4
(x, y)

=
1

√
2π

max
(x,y)∈[0,1]×[0,1]⊔[2,3]×[0,1]⊔[0,1]×[2,3]⊔[2,3]×[2,3]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

∫

0

1

∫

0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ

+

1

∫

0

3

∫

2

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ +

3

∫

2

1

∫

0

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ +

3

∫

2

3

∫

2

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Take the central-points (.5, .5), (2.5, .5),(.5,2.5) and (2.5,2.5) as the initial guesses for Newton’s
method and the results are the same. I.e., there exists only one critical point p̂3 = (x̂, ŷ) =

(1.5,1.5) . Therefore, this point is the unique local maximum point and then the global maximum
point. However, this point belongs to none of these three patterns. Analogously, use the same
method as in Example 5.3.

(P 3
1 ) The original result of Newton’s method conforms to Algorithm 5.1 (9). Thus, the

maximum point of P 3
1 is p̂3

1 = (1,1) and the drying-time of P 3
1 is gP 3

1
(p̂3

1) + gP 3
2
(p̂3

1) +

gP 3
3
(p̂3

1) + gP 3
4
(p̂3

1) = .5709282965.

(P 3
2 ) The original result of Newton’s method conforms to Algorithm 5.1 (7). Thus, the

maximum point of P 3
2 is p̂3

2 = (2,1) and the drying-time of P 3
2 is gP 3

1
(p̂3

2) + gP 3
2
(p̂3

2) +

gP 3
3
(p̂3

2) + gP 3
4
(p̂3

2) = .5709282965.

(P 3
3 ) The original result of Newton’s method conforms to Algorithm 5.1 (8). Thus, the

maximum point of P 3
3 is p̂3

3 = (1,2) and the drying-time of P 3
3 is gP 3

1
(p̂3

3) + gP 3
2
(p̂3

3) +

gP 3
3
(p̂3

3) + gP 3
4
(p̂3

3) = .5709282965.

(P 3
4 ) The original result of Newton’s method conforms to Algorithm 5.1 (6). Thus, the

maximum point of P 3
4 is p̂3

4 = (2,2) and the drying-time of P 3
4 is gP 3

1
(p̂3

4) + gP 3
2
(p̂3

4) +

gP 3
3
(p̂3

4) + gP 3
4
(p̂3

4) = .5709282965. Finally, the drying-time of G3 is

max{.5709282965, .5709282965, .5709282965, .5709282965} = .5709282965.

The example shows Conclusion 5.2 (2). If let the distance between P 3
1 , P

3
2 , P

3
3 , P

3
4 be a little

greater than before but not too far away from each other, i.e., suitable. Then, the result will
be like in Example 5.4. There will exists four critical-points with totally symmetric distribution.
Furthermore, their drying-time will be exactly the same, i.e., it is the drying-time of such
printing-group.
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5. Implementation

Let a special printing-group from our test-case be the following example. The complete pattern
is decomposed into three rectangles, i.e., it is not regular.

Example 5.6. Consider three patterns P 4
1 , P

4
2 and P 4

3 with P 4
1 = [10,12.891]×[848.473,851.363] ,

P 4
2 = [12.891,15.781]×[849.238,850.598] , P 4

3 = [15.781,17.164]×[847.945,851.891] . The locations
of them are drawn in the following figure and let G4 denote this printing-group. In particular,
line l is generated from the central-points of them, i.e., the equation of l is

y =
848.473 + 851.363

2
=

849.238 + 850.598

2
=

847.945 + 851.891

2
= 849.918.

x

y y

P 4
1

0 10 12.891

848.473

851.363

11.4455

P 4
2

848.473

851.363

15.78114.336

P 4
3

17.164

847.945

851.891

16.4725

p̂4
3p̂4

2p̂4
1

849.918 l

Figure 5.6.: The printing-group G4 = {P 4
1 , P

4
2 , P

4
3 } .

By 4.1.5 Drying-Time of n Rectangles, the drying-time of G4 can be described as

tG4 = max
(x,y)∈P 4

1 ⊔P 4
2 ⊔P 4

3

gP 4
1
(x, y) + gP 4

2
(x, y) + gP 4

3
(x, y)

=
1

√
2π

max
x∈[10,12.891]⊔[12.891,15.781]⊔[15.781,17.164]

y∈[848.473,851.363]⊔×[849.238,850.598]⊔[847.945,851.891]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

851.363

∫

848.473

12.891

∫

10

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ

+

850.598

∫

849.238

15.781

∫

12.891

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ +

851.891

∫

847.945

17.164

∫

15.781

e−
1
2
[(x̄−x)2+(ȳ−y)2] dx̄dȳ

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Take the central-points (11.4455,849.918), (14.336,849.918) and (16.4725,849.918) as the initial
guesses for Newton’s method and the results are different. The result of P 4

1 is p̂4
1 = (11.7552380787,849.918) ,

the result of P 4
2 is p̂4

2 = (14.2861194800,849.918) and the result of P 4
3 is p̂4

3 = (15.9221029508,849.918) .
In particular, the results also verify Conclusion 4.12 (2). p̂4

1 and p̂4
3 are the local maxima, p̂4

2
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5. Implementation

is the local minimum. This can be confirmed by Theorem 4.8. The corresponding values are

gP 4
1
(p̂4

1) + gP 4
2
(p̂4

1) + gP 4
3
(p̂4

1) = 1.9382906117,

gP 4
1
(p̂4

2) + gP 4
2
(p̂4

2) + gP 4
3
(p̂4

2) = 1.4041474740,

gP 4
1
(p̂4

3) + gP 4
2
(p̂4

3) + gP 4
3
(p̂4

3) = 1.6321114754.

Finally, the drying-time of this printing-group is

max{1.6321114754,1.4041474740,1.9382906117} = 1.9382906117.

Compare Example 5.5 and Example 5.6. The distance between patterns in G3 is greater than
in G4. However there is only one critical point in the printing-group G3 while three in G4.
Therefore, the relative-size and -placement of the patterns will have an influence on the critical
point shift. In particular, Conclusion 5.2 (1) has also confirmed.

5.2.3. Implementation of the Continuous Model

Construct the combination with the consideration of the Laplace pressure conflict and the
proximity conflict in the following way.

(1) If Pi and Pj have the Laplace pressure conflict then consider only the combinations
without {Pi, Pj}.

(2) Pairs that have proximity conflict cannot be assigned to the same combination.

Use Newton’s method to compute the drying-time for the l-th combination and denote the
result by dl. Let ql,m be binary variable. If the l-th combination is the m-th printing-group,
then let ql,m = 1. Let Cl denote the l-th combination. For example, the l-th combination
consists of Pi and Pj , then Cl = {Pi, Pj} .

Define a matrix Al ∈ {0,1}Np for each combination to indicate, whether a pattern is assigned
to the l-th combination.

Al = (al1, . . . , a
l
NP

) ∈ {0,1}NP

is defined in the following way. For each i = 1, . . . ,Np, if Pi ∈ Cl then ali = 1 and if Pi ∉ Cl,
then ali = 0. Furthermore, we need to guarantee that each pattern is assigned to exactly one
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5. Implementation

printing-group, i.e., for i = 1, . . . ,NP ,

NC

∑
l=1

NG

∑
m=1

ali ⋅ ql,m = 1. (9)

With the same notation as before,

gPi =
NC

∑
l=1

NG

∑
m=1

m ⋅ ali ⋅ ql,m. (10)

Each combination appears at most once, then for l = 1, . . . ,NC ,

NG

∑
m=1

ql,m ≤ 1. (11)

Finally, the complete optimization problem can be modelled as

Minimize
NC

∑
l=1

NG

∑
m=1

dl ⋅ ql,m +NG Subject to (1),(2),(9),(10) and (11).

5.3. Relation Between Two Models

NP patterns have at most 2NP combinations. So, in practice, with the increasing quantity of
patterns usually follows an enlargement of the scale of calculation. Concerning the Laplace
pressure conflict and proximity conflict results in reduction of number of combinations. Still,
the number of combinations is large, furthermore the existence of unnecessary combinations
cannot be avoided. This is an obvious obstacle to the implementation with C++. In order
to solve this problem, utilizing the previous two models one after another provides a way of
further optimization.

Through the first model, we obtain the maximal number of patterns in one printing-group and
denote it by nP . Subsequently using the result from the discrete model and consider those
combinations that contain less equal than nP patterns. At the same time, let εn ∈ N+ be
the number that not too large, such that the combinations with nP + εn patterns can also
be concerned but without huge impact during the implementation with C++. Insert those
combinations that meet this criteria. Finally, comparing the results implemented by the two
models.
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Part II.

Newton’s Method



It can be seen that even for a polynomial of one complex variable we cannot decide if Newton’s
method will converge to a root of the polynomial on a given initial guess. We introduce
quantities α,β and γ which play an important role in analyzing the complexity of algorithms
that approximate the solutions of systems of equations in both chapters.

Our main results in the first chapter, Theorem 6.3 and Theorem 6.12, give the speed of
convergence to a root in terms of these quantities, while other results such as Proposition
6.16 estimate them. In particular, Theorem 6.12 gives us a criterion, computable at a point x,
to confirm that x is “close” to an actual zero ζ of a system of equations. Furthermore, the proof
of Theorem 6.12 with the constant α0 = .130707 is given in 7 n-Dimensional Generalization.

In the second chapter, we deduce consequences from data at a single point. This point of view
has valuable features for computation and its theory. The idea is simply to apply the theorems
to a finite sequence of equations of the form f(z) − tif (z0) = 0, 0 ≤ ti ≤ 1, to solve f(z) = 0.

For purposes of exposition the one-variable case is treated first. Then it its noted how the results
extend to systems of equations f ∶ Cn → Cn and even maps of Banach spaces f ∶ E→ F.
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6. Newton’s Method in One-Variable Case

This chapter, without indication, we follow [8, Chapter 8, Section 1-2].

6.1. Approximate Zeros

We begin this section by solving linear equations. Given a linear equation in one varaible
f(x) = ax + b with a ≠ 0, we solve the equation f(x) = 0 by x = −a−1b. For quadratic equations
f(z) = az2 + bz + c, a ≠ 0, we solve for the two roots, f(z) = 0, by the quadratic formula
ζ+ =

−b+
√
b2−4ac
2a , ζ− =

−b−
√
b2−4ac
2a .

Newton’s method is an iterative method designed to approximate the roots of nonlinear equations.
Given an initial approximation a to a root of the equation f = 0, Newton’s method replaces a
by the exact solution a′ of the best linear approximation to f which is given by the tangent to
the graph of f at the point (a, f(a)). The process of convergence of Newton’s method will be
shown in the following figure.

x

y
y = f(x)

(a, f(a))

a′ a

(a′, f(a′))

a′′

Figure 6.1.: Starting from a, two steps of Newton’s method give a′′, a close approximation to
a zero of f .

Suppose that f(z) = a0 +a1z +⋯+anz
n +⋯ =

∞
∑
i=0
aiz

i is an analytic function of one complex (or

real) variable defined on all of C (or R). Thus, for example, f may be a polynomial, the sine
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6. Newton’s Method in One-Variable Case

or cosine functions, the exponential function, or sums, products, and composition of these, and
so on. Our main application for the theory developed in this chapter is to polynomials.

Newton’s method is an iteration based on the map from C to itself,

Nf(z) = z − (f ′(z))
−1
f(z),

where f ′(z) is the derivative of f at z. This formula is defined as long as (f ′(z))−1 exists. The
formula for Nf is also written Nf(z) = z −(

f(z)
f ′(z)). We say (f ′(z))−1 exists in place of f ′(z) ≠ 0

since the theory we are presenting is valid in the much more general context of maps between
n-dimensional or even Banach spaces. In this context the derivative f ′(z) is a continuous linear
map that we assume has an inverse. We also write N ′

f(z) as we do since the formula is valid in
n-dimensional or Banach spaces where linear maps do not necessarily commute.

We recall that if f(ζ) = 0 and f ′(ζ)−1 exists, then Nf(ζ) = ζ − (f ′(ζ))−1
f(ζ) = ζ and in that

case N ′
f(ζ) = f

′(ζ)−1f ′′(ζ)f ′(ζ)−1f(ζ) = 0. The Taylor series of Nf near ζ is then

TNf (z, ζ) =
∞
∑
k=0

N
(k)
f (ζ)

k!
(z − ζ)k = Nf(ζ) + (z − ζ)N ′

f(ζ) +
1

2
(z − ζ)2N ′′

f (ζ) +⋯ = ζ + c2 (z − ζ)
2
+⋯,

where c2 =
1
2N

′′
f (ζ). I.e.,

Nf(z) − ζ = c2 (z − ζ)
2
+ higher order terms.

Thus the distance from Nf(z) to ζ is decreasing quadratically. We now proceed to make this
more precise.

Definition 6.1. Say that z is an approximate zero of f if the sequence given by z0 = z and
zi+1 = Nf(zi) is defined for all i ∈ N+

0 , and there is a ζ such that f(ζ) = 0 with

∣zi − ζ ∣ ≤ (
1

2
)

2i−1

∣z − ζ ∣ .

Call ζ the associated zero.

Definition 6.2. First we need to define an auxiliary quantity. Let

γ (f, z) = sup
k≥2

∣
f ′(z)−1f (k)(z)

k!
∣

1
k−1

,

where we use f (k) to denote the k-th derivative of f . This definition applies to analytic functions
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6. Newton’s Method in One-Variable Case

f . If f is analytic and f ′(z)−1 exists, then this sup exists as well since f(k)

k! = ak has a geometric
growth rate.

We discuss more details about f(k)

k! in A Analytic Function.

Theorem 6.3. Suppose that f(ζ) = 0 and that f ′(ζ)−1 exists. If

∣z − ζ ∣ ≤
3 −

√
7

2γ (f, ζ)
,

then z is an approximate zero of f with associated zero ζ. △

In order to prove this theorem we first prove two lemmas and a proposition.

Lemma 6.4. We have for 0 ≤ r < 1,

(a)
∞
∑
i=0
ri = 1

1−r .

(b)
∞
∑
i=1
iri−1 = 1

(1−r)2 . △

Proof. In (a) we have summed the geometric series which gives an analytic function of r. We
define Sn ∶= 1 + r + r2 + ⋯ + rn−1 then Snr = r + r2 + ⋯ + rn. Therefore, (1 − r)Sn = 1 − rn, i.e.,
Sn =

1−rn
1−r . Thus, for 0 ≤ r < 1, Sn = 1−rn

1−r
n→∞
ÐÐÐ→ 1

1−r .

In (b) we have differentiated both sides of (a), term by term on the left.

∂

∂r
(
∞
∑
i=0

ri) =
∞
∑
i=0

iri−1
=

∞
∑
i=1

iri−1 and
∂

∂r
(

1

1 − r
) =

(1 − r) ⋅ 0 − (−1) ⋅ 1

(1 − r)2
=

1

(1 − r)2
.

The claim follows. ∎

The following simple quadratic polynomial plays an important role in the estimates in this
section.

ψ(u) = 1 − 4u + 2u2. (6.1.1)

Lemma 6.5. If u ∶= ∣z1 − z∣γ(f, z) < 1 −
√

2
2 , then

(a) f ′(z)−1f ′(z1) = 1 +B, where ∣B∣ ≤ 1
(1−u)2 − 1 < 1;
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6. Newton’s Method in One-Variable Case

(b) ∣f ′(z1)
−1f ′(z)∣ ≤ (1−u)2

ψ(u) . △

Proof. (a) Using the Taylor expansion of f ′ at z,

Tf(z1, z) = f
′
(z) + f ′′(z) (z1 − z) +

1

2
f ′′′(z) (z1 − z)

2
+⋯

=
∞
∑
k=0

f (k+1)(z) (z1 − z)
k

k!
=

∞
∑
k=1

f (k)(z) (z1 − z)
k−1

(k − 1)!
= f ′(z) +

∞
∑
k=2

f (k)(z) (z1 − z)
k−1

(k − 1)!
.

Thus

f ′(z)−1f ′ (z1) = f
′
(z)−1

(f ′(z) +
∞
∑
k=2

f (k)(z) (z1 − z)
k−1

(k − 1)!
) = 1 +B

where

B =
∞
∑
k=2

k
f ′(z)−1f (k)(z) (z1 − z)

k−1

k!
.

By the definition of γ(f, z) in Definition 6.2,

∣B∣ ≤
∞
∑
k=2

k(γ (f, z) ∣z1 − z∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

u

)
k−1

= (
1

(1 − u)2
) − 1 ⋅ u1−1

− 0 = (
1

(1 − u)2
) − 1

which is less than 1 since u < 1 −
√

2
2 .

(b) By Lemma 6.4 (a) we conclude that
∞
∑
k=0

∣B∣
k
= 1

1−∣B∣ , then

∣1 +B∣ = ∣1 − (−B)∣ ≥ ∣1 − ∣B∣∣
∣B∣<1
ÔÔÔ 1 − ∣B∣ ,

which implies 1
∣1+B∣ ≤

1
1−∣B∣ =

∞
∑
k=0

∣B∣k. Therefore,

∣f ′(z1)
−1f ′(z)∣ = ∣(f ′(z)−1f ′(z1))

−1
∣ = ∣(1 +B)

−1
∣ ≤

∞
∑
k=0

∣B∣
k

≤
1

1 − ( 1
(1−u)2 − 1)

=
(1 − u)2

2 (1 − u)2
− 1

=
(1 − u)2

1 − 4u + 2u2
=

(1 − u)2

ψ(u)
. ∎
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Proposition 6.6. Let f(ζ) = 0 and let u = ∣z − ζ ∣γ(f, ζ). Suppose u < 5−
√

7
4 . Then

(a) ∣Nf(z) − ζ ∣ <
γ(f,ζ)∣z−ζ∣2

ψ(u) =
u∣z−ζ∣
ψ(u) .

(b) ∣Nk
f (z) − ζ ∣ ≤ ( u

ψ(u))
2k−1

∣z − ζ ∣ for all k ≥ 0. △

Proof. (a) We consider the Taylor expansion of f and f ′ at ζ

f(z) = f(ζ) +
∞
∑
k=1

f (k)(ζ) (z − ζ)k

k!
=

∞
∑
k=1

f (k)(ζ)

k!
(z − ζ)k

and

f ′(z) =
∞
∑
k=0

f (k+1)(ζ) (z − ζ)k

k!
=

∞
∑
k=1

f (k)(ζ)

(k − 1)!
(z − ζ)k−1

so

f ′(z)(z − ζ) − f(z) =
∞
∑
k=1

f (k)(ζ)

(k − 1)!
(z − ζ)k−1

⋅ (z − ζ) −
∞
∑
k=1

f (k)(ζ)

k!
(z − ζ)k

=
∞
∑
k=1

(
1

(k − 1)!
−

1

k!
) f (k)

(ζ)(z − ζ)k =
∞
∑
k=1

(k − 1)
f (k)(ζ)

k!
(z − ζ)k.

Then

∣Nf(z) − ζ ∣ = ∣(z − ζ) − f ′(z)−1
(f(z))∣ = f ′(z)−1 (f ′(z)(z − ζ) − f(z))

= ∣f ′(z)−1f ′(ζ)
∞
∑
k=1

(k − 1)
f ′(ζ)−1f (k)(ζ)

k!
(z − ζ)k∣

≤ ∣f ′(z)−1f ′(ζ)∣ ∣z − ζ ∣
∞
∑
k=1

(k − 1) (γ(f, z) ∣z − ζ ∣)k−1

In particular,

∞
∑
k=1

(k − 1) (γ(f, z) ∣z − ζ ∣)k−1
=

∞
∑
k=1

(k − 1)uk−1
=

∞
∑
k=1

kuk−1
−

∞
∑
k=1

uk−1
=

1

(1 − u)2
−

1

1 − u
.
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6. Newton’s Method in One-Variable Case

Then by Lemma 6.5 (b)

∣Nf(z) − ζ ∣ ≤
(1 − u)2

ψ(u)
∣z − ζ ∣ (

1

(1 − u)2
−

1

(1 − u)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
u

(1−u)2

≤
u∣z − ζ ∣

ψ(u)
.

Note that if u = ψ(u) we have 2u2 − 5u + 1 = 0, which implies u = 5±
√

17
4 . I.e., u

ψ(u) < 1 for

0 ≤ u < 5−
√

17
4 .

(b) We prove it by mathematical induction. Base Case (k = 0): ∣N0
f (z) − ζ ∣ = ∣z − ζ ∣ ≤ ∣z − ζ ∣ .

Inductive Hypothesis: For k ≥ 1 assume by induction that

∣Nk−1
f (z) − ζ ∣ < (

u

ψ(u)
)

2k−1−1

∣z − ζ ∣ .

Then apply (a) to get

∣Nf(z) − ζ ∣ = ∣Nf (N
k−1
f (z)) − ζ ∣ <

γ(f, z) ∣Nk−1
f (z) − ζ ∣

2

ψ(u)

=
γ(f, z)

ψ(u)

⎛

⎝
(

u

ψ(u)
)

2k−1−1
⎞

⎠

2

∣z − ζ ∣2 =
u

ψ(u)
(

u

ψ(u)
)

2k−2

∣z − ζ ∣ = (
u

ψ(u)
)

2k−1

∣z − ζ ∣

and we are done. ∎

We can now give the proof of Theorem 6.3.

Proof (Theorem 6.3.). We consider the equation u
ψ(u) =

u
1−4u+2u2

= 1
2 , i.e., u =

3±
√

7
2 . Thus 3−

√
7

2

is the first positive solution of u
ψ(u) = 1

2 . In other words, if u < 3−
√

7
2 , then u

ψ(u) < 1
2 and

Proposition 6.6 (b) finishes the proof. ∎

Remark 6.7. Proposition 6.6 implies that Newton’s method converges if u
ψ(u) < 1; that is

∣z − ζ ∣γ(f, ζ) < 5−
√

17
4 . The constant is better than in Theorem 6.3, but z is not guaranteed to

be an approximate zero. ♢

The following result follows immediately from the preceding remark.
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6. Newton’s Method in One-Variable Case

Corollary 6.8. If ζ, ζ ′ are zeros of f , then they are separated by a distance that can be
estimated from below by

∣ζ ′ − ζ ∣ ≥
5 −

√
17

4γ(f, ζ)
. △

Example 6.9. As an example of an application of Theorem 6.3 let us consider the problem of
computing the d-th roots of the unity; that is, we want to compute the roots of the polynomial

f(x) = xd − 1.

Let ζ ∈ C be such that f(ζ) = 0. The k-th derivative of f at ζ is f (k)(ζ) = d(d−1)⋅⋯⋅(d−k+1)ζd−k,
in particular, f ′(ζ) = dζd−1. Thus,

γ(f, ζ) = sup
k≥2

∣
f ′(ζ)−1f (k)(ζ)

k!
∣

1
k−1

= sup
k≥2

∣
d(d − 1) ⋅ ⋯ ⋅ (d − k + 1)ζd−k

dζd−1 ⋅ k!
∣

1
k−1

= sup
k≥2

(
(d − 1) ⋅ ⋯ ⋅ (d − k + 1)

k!
)

1
k−1

We consider only the fraction in the bracket,

(d − 1) ⋅ ⋯ ⋅ (d − k + 1)

k!
≤

(d − 1) ⋅ ⋯ ⋅ (d − k + 1)

2k−1
=
d − 1

2
⋅ ⋯ ⋅

d − k + 1

2
≤ (

d

2
)

k−1

.

Therefore, γ(f, z) ≤ d
2 . According to Theorem 6.3 all points z such that ∣z − ζ ∣ < 3−

√
7

d are
approximate zeros of f with associated zero ζ.

Remark 6.10. The invariant γ(f, ζ), Theorem 6.3, its proof, and its corollaries extend immediately
to systems f ∶ Cn → Cn and even to maps of Banach spaces. See Theorem 7.7 in 7 n-Dimensional
Generalization ♢

6.2. Point Estimates for Approximate Zeros

Theorem 6.3 is useful if we have information about one or more of the roots of f , but we would
like a criterion computable at the point z itself that guarantees that z is an approximate zero
of f . To this end we define two more auxiliary quantities.

Definition 6.11 (The Length of the Newton Step).

β(f, z) = ∣z −Nf(z)∣ = ∣f ′(z)−1f(z)∣
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6. Newton’s Method in One-Variable Case

and

α(f, z) = β(f, z)γ(f, z).

In Theorem 6.12 we show that if α(f, z) < α0 for some universal constant α0, then z is an
approximate zero of f . Proposition 6.14 estimates the reduction in the absolute value of
f after one iterate of Newton’s method. As a consequence of Theorem 6.25 we obtain the
following result.

Theorem 6.12. There is a universal constant α0 with the following property. If α(f, z) < α0,
then z is an approximate zero of f in the sense of Definition 6.2. Moreover, the distance from
z to the associated zero ζ is at most 2β(f, z). △

Remark 6.13. The invariant α(f, z) depends only on derivatives of f at the point z, which can
be computed if f is a polynomial map. Thus Theorem 6.12 gives a criterion that can be used
in principle and in practice to give certainty that z is indeed an approximation to a solution.♢

Proposition 6.14. Let z′ = Nf(z). If α(f, z) < 1, then

∣f(z′)∣

∣f(z)∣
≤

α(f, z)

1 − α(f, z)
. △

Remark 6.15. This is the only result in this part that does not generalize to n-dimensional or
Banach spaces. In the proof we use the fact that f ′(z) and f (k)(z) commute. ♢

Proof. Since z′ = Nf(z) one has z′ − z = −(
f(z)
f ′(z)), by the Taylor expansion of f at the point z

f(z′) = f(z) − f ′(z)(z′ − z) +
∞
∑
k=2

f (k)(z)

k!
(z′ − z)

k
= f(z) + f ′(z)(−

f(z)

f ′(z)
) +

∞
∑
k=2

f (k)(z)

k!
(−

f(z)

f ′(z)
)

k

= f(z) − f ′(z)(
f(z)

f ′(z)
) +

∞
∑
k=2

(−1)k
f (k)(z)

k!
(
f(z)

f ′(z)
)

k

=
∞
∑
k=2

(−1)k
f (k)(z)

k!
(
f(z)

f ′(z)
)

k

so

∣f(z′)∣ ≤ ∣f(z)∣
∞
∑
k=2

∣
f (k)(z)

k!f ′(z)
∣ ∣f ′(z)−1f(z)∣

k−1
≤ ∣f(z)∣

∞
∑
k=2

γ (f, z)k−1 β(f, z)k−1

= ∣f(z)∣
∞
∑
k=2

α(f, z)k−1
= ∣f(z)∣ (

1

1 − α(f, z)
− 1) = ∣f(z)∣

α(f, z)

1 − α(f, z)

as long as α(f, z) < 1. ∎
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The next proposition estimates α,β and γ at a point z1 near z in terms of the values of these
quantities at z.

Proposition 6.16. If u < 1 −
√

2
2 and ∣z1 − z∣γ(f, z) = u, then

(a) β (f, z1) ≤
(1−u)
ψ(u) ((1 − u)β(f, z) + ∣z1 − z∣) ;

(b) γ (f, z1) ≤
γ(f,z)

ψ(u)(1−u) ;

(c) α(f, z1) ≤
(1−u)α(f,z)+u

ψ(u)2 . △

We use the following two lemmas to prove the proposition.

Lemma 6.17. Let 0 ≤ r < 1 and k be a positive integer; then

∞
∑
l=0

(k + l)!

k!l!
rl =

1

(1 − r)k+1
. △

Proof. By mathematical induction, we first prove

(
∞
∑
i=0

ri)

(k)
=

∞
∑
l=0

(k + l)!rl

l!
and (

1

1 − r
)
(k)

=
k!

(1 − r)k+1

Base Case (k = 0, k = 1): For k = 0 this is trivial. Let k = 1, then

∂

∂r
(
∞
∑
i=0

ri) =
∞
∑
i=1

iri−1
=

∞
∑
l=0

(1 + l)rl =
∞
∑
l=0

(1 + l)!

l!
rl and

∂

∂r
(

1

1 − r
) =

1

(1 − r)2
=

1!

(1 − r)1+1
.

Inductive Hypothesis: For k ≥ 1 assume by induction that

(
∞
∑
i=0

ri)

(k)
=

∞
∑
l=0

(k + l)!rl

l!
and (

1

1 − r
)
(k)

=
k!

(1 − r)k+1

Then for k + 1 we conclude that

(
∞
∑
i=0

ri)

(k+1)
=
∂

∂r
(

∞
∑
l=0

(k + l)!rl

l!
) =

∞
∑
l=0

(k + l)!lrl−1

l!

=
∞
∑
l=1

(k + l)!lrl−1

l!
=

∞
∑
l=0

(k + 1 + l)!(l + 1)rl

(l + 1)!
=

∞
∑
l=0

(k + 1 + l)!rl

l!
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and

(
1

1 − r
)
(k+1)

=
∂

∂r
(

k!

(1 − r)k+1
) = k!

(k + 1)(1 − r)k

(1 − r)2k+2
=

(k + 1)!

(1 − r)(k+1)+1

As in Lemma 6.4, (
∞
∑
i=0
ri)

(k)
= ( 1

(1−r))
(k)

. Then we finish the proof. ∎

Lemma 6.18. If u < 1 −
√

2
2 and u ∶= ∣z1 − z∣γ(f, z), then

(a) ∣
f ′(z1)−1f(k)(z1)

k! ∣ ≤ 1
ψ(u) (

γ(f,z)
1−u )

k−1
for k ≥ 2;

(b) ∣f ′(z)−1f(z1)∣ ≤ β(f, z) +
∣z1−z∣
1−u . △

Proof. (a) Write γ for γ(f, z). Using the Taylor expansion of f (k) at z and Lemma 6.5 (b),

∣
f ′(z1)

−1f (k)(z1)

k!
∣ ≤ ∣f ′(z1)

−1f ′(z)∣ ∣
f ′(z)−1

k!

∞
∑
l=0

f (k+l)(z) (z1 − z)
l

l!
∣

≤
(1 − u)2

ψ(u)
∣
∞
∑
l=0

(k + l)!

k!l!

f ′(z)−1f (k+l)(z) (z1 − z)
l

(k + l)!
∣ ≤

(1 − u)2

ψ(u)

∞
∑
l=0

(k + l)!

k!l!
γk+l−1

∣z1 − z∣
l .

According to Lemma 6.17 we conclude that

∞
∑
l=0

(k + l)!

k!l!
γl ∣z1 − z∣

l

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ul

=
1

(1 − u)k+1
.

Thus

∣
f ′(z1)

−1f (k)(z1)

k!
∣ ≤

(1 − u)2

ψ(u)
γk−1 1

(1 − u)k+1
=

1

ψ(u)
(

γ

1 − u
)
k−1

;

(b) Using the Taylor expansion of f at z,

∣f ′(z)−1f(z1)∣ = ∣f ′(z)−1f(z) + f ′(z)−1f ′(z)(z1 − z) +
∞
∑
k=2

f ′(z)−1f (k)(z)

k!
(z1 − z)

k
∣

≤ ∣f ′(z)−1f(z)∣ + ∣z1 − z∣ ∣1 +
∞
∑
k=2

γk−1
∣z1 − z∣

k−1
∣

= β(f, z) + ∣z1 − z∣ ∣1 + (
1

1 − u
− 1)∣ = β(f, z) +

∣z1 − z∣

∣1 − u∣
= β(f, z) +

∣z1 − z∣

1 − u
.
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The last step follows from the bound u < 1. ∎

Proof (Proposition 6.16). (a) By Lemma 6.5 (b) and Lemma 6.18 (b)

β(f, z1) = ∣f ′(z1)
−1f(z1)∣ = ∣f ′(z1)

−1f ′(z)∣ ∣f ′(z)−1f(z1)∣

≤
(1 − u)2

ψ(u)
(β(f, z) +

∣z1 − z∣

1 − u
) =

(1 − u)

ψ(u)
((1 − u)β(f, z) + ∣z1 − z∣) .

(b) By definition γ(f, z1) = sup
k≥2

∣
f ′(z1)f(k)(z1)

k! ∣

1
k−1

and by Lemma 6.18 (a),

γ(f, z1) ≤ sup
k≥2

(
1

ψ(u)
)

1
k−1 γ(f, z)

1 − u
.

u

y

y = ψ(u)

1

1 − 1√
2

1 + 1√
2

Figure 6.2.: The Plot of ψ.

Since ψ(u) < 1 for 0 ≤ u < 1 −
√

2
2 , the supremum is achieved at k = 2,

γ(f, z1) ≤

⎡
⎢
⎢
⎢
⎢
⎣

(
1

ψ(u)
)

1
k−1 γ(f, z)

1 − u

⎤
⎥
⎥
⎥
⎥
⎦k=2

=
γ(f, z)

ψ(u)(1 − u)

and we are done.

(c) Multiplying the inequalities in (a) and (b) proves (c). ∎
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Next we bound the derivative of Newton’s map in terms of α.

Proposition 6.19. For all analytic f and all z, ∣N ′
f(z)∣ ≤ 2α(f, z). △

Proof.

∣N ′
f(z)∣ = ∣

∂

∂z
(z − f ′(z)−1f(z))∣ = ∣1 −

f ′(z)2 − f(z)f ′′(z)

[f ′(z)]2
∣ ∣ = ∣1 − 1 + f ′(z)−2f ′′(z)f(z)∣

= ∣f ′(z)−1f ′′(z)f ′(z)−1f(z)∣ = 2 ∣
f ′(z)−1f ′′(z)

2
∣ ∣f ′(z)−1f(z)∣ ≤ 2γ(f, z)β(f, z) = 2α(f, z).

Then we finish the proof. ∎

The next proposition states a fact about contraction maps of complete metric spaces X. For
most of our applications X is a closed ball and d(x, y) = ∣x − y∣ . We use B(r, z) to denote the
closed ball of radius r around z defined by B(r, z) = {z′ ∶ d(z, z′) ≤ r} .

Definition 6.20. Suppose that X is a complete metric space. A map f ∶X →X satisfying that,
for all x, y in X and c < 1,

d (f(x), f(y)) ≤ cd(x, y)

is called a contraction map with contraction constant c.

Proposition 6.21. Let f ∶ X → X be a contraction map with contraction constant c. Then
there is a unique fixed point p ∈X, f(p) = p and fn(x) converges to p as n→∞ for all x in X.
Moreover, for any x ∈X,

d(x, f(x))

1 + c
≤ d(x, p) ≤

d(x, f(x))

1 − c
. △

Proof. By mathematical induction, we first prove for n ≥ 1,

d (fn(x), fn+1
(x)) ≤ cnd(x, f(x)).

Base Case (n = 1): Since f is a contraction map, there exists a c < 1 such that

d (f(x), f2
(x)) = d (f(x), f(f(x))) ≤ cd (x, f(x))

Inductive Hypothesis: For n ≥ 1 assume by induction that

d (fn(x), fn+1
(x)) ≤ cnd(x, f(x)).
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Then for n + 1 we conclude that,

d (fn+1
(x), fn+2

(x)) = d (f (fn(x)) , f (fn+1
(x))) ≤ cd (fn(x), fn+1

(x)) ≤ cn ⋅ cd (x, f(x)) = cn+1d (x, f(x)) .

In particular, for k ≥ 1,

d (fn(x), fn+1
(x)) ≤ d (fn(x), fn+1

(x)) + d (fn+1
(x), fn+2

(x)) +⋯ + d (fn+k−1
(x), fn+k(x))

≤ (cn + cn+1
+⋯ + cn+k−1)d (x, f(x)) =

n+k−1

∑
i=n

cnd (x, f(x))

=
cn (1 − ck)

1 − c
d (x, f(x)) <

cn

1 − c
d (x, f(x)) .

The last step follows from c < 1. I.e., we have proved that, for each n ≥ 1 and for all m ≥ n,

d (fn(x), fm(x)) ≤
cn

1 − c
d (x, f(x)) .

Since cn tends to zero (fn(x))n≥1 is a Cauchy sequence. By the completeness of X we conclude
that (fn(x))n≥1 converges to a point p in X. The sequence (fn+1(x))

n≥1
also converges to p

so by continuity of f ,

fn+1
(p) = f (fn(p))

n→∞
ÐÐÐ→ f(p),

i.e., f(p) = p. Let p, q be different fix points, i.e., f(p) = p and f(q) = q. Then

d (p, q) = d (f(p), f(q)) ≤ cd (p, q) ,

it follows that p is the unique fixed point of f and that every orbit fn(x) converges to p as
n→∞. Since

d(x, p) ≤ d (x, f(x)) + d (f(x), f2
(x)) +⋯ ≤ (1 + c1

+ c2
+⋯)d (x, f(x)) =

∞
∑
n=0

cnd (x, f(x)) =
1

1 + c
d (x, f(x)) ,

which means

d(x, p) ≤
1

1 − c
d (x, f(x)) .

Finally, by the triangle inequality,

d(x, f(x)) ≤ d(x, p) + d (p, f(x)) = d (x, p) + d (f(p), f(x)) ≤ (1 + c)d (x, p) .

The last step follows from the fact that f is a contraction map. ∎
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Theorem 6.22. If r < 1−
√

2
2

γ(f,z) , then

(a) for all z1 with ∣z1 − z∣ < r, u = rγ(f, z) and ψ(u) = 1 − 4u + 2u2,

∣N ′
f(z1)∣ ≤

2(α(f, z) + u)

ψ(u)2
.

(b) Define r′ = 2(α(f,z)+u)
ψ(u)2 r, then

Nf (B (r, z)) ⊆ B (r′,Nf(z)) . △

Proof. Part (a) follows immediately from Proposition 6.19 and Proposition 6.16 (c),

α(f, z1) ≤
(1 − u)α(f, z) + u

ψ(u)2
<
α(f, z) + u

ψ(u)2
.

For Part (b) we need the following lemma. ∎

Lemma 6.23. Suppose g ∶ B(r, z) → B(r, z) is continuously differentiable with ∣g′ (z1)∣ ≤ c for
all z1 ∈ B(r, z). Then, ∣g (z1) − g (z2)∣ ≤ c ∣z1 − z2∣ for all z1, z2 ∈ B(r, z). △

Proof. Let L be the straight-line segment connecting z1 and z2. So the length of L is ∣z1 − z2∣

and L ⊆ B(r, z).

g

z1

z2
L

z

r

g (z1)

g (z2)

Figure 6.3.: The figure of B (r, z) and the map g.

The distance ∣g (z1) − g (z2)∣ equals the length of the straight-line segment connection g (z1)

and g (z2), which is the shortest differentiable curve joining them. In particular, by the mean
value theorem, there exists a ξ in (z1, z2) such that g′(ξ) = g(z2)−g(z1)

z2−z1 , which implies,

∣g (z2) − g (z1)∣ ≤ ∣z2 − z1∣ ⋅max
z′∈L

∣g′(z′)∣ .

60



6. Newton’s Method in One-Variable Case

z

y

y = g(z)

z1

g (z1)

z2

g (z2)

∣g
(z 1

) −
g (
z 2
)∣

∣z2 − z1∣

Figure 6.4.: The relation between ∣z2 − z1∣ and ∣g (z2) − g (z1)∣.

Finally,

∣g (z1) − g (z2)∣ ≤ ∣z2 − z1∣ ⋅max
z′∈L

∣g′ (z′)∣ ≤ c ∣z1 − z2∣ . ∎

Proof (Theorem 6.22 (b)). By Theorem 6.22 (a) and Lemma 6.23, for all z1 in B(r, z),

∣Nf (z1) −Nf(z)∣ ≤
2 (α(f, z) + u)

ψ(u)2
∣z1 − z∣ ≤

2 (α(f, z) + u)

ψ(u)2
r. ∎

Corollary 6.24. If u ∶= rγ(f, z) < 1−
√

2
2 , c ∶= 2(α(f,z)+u)

ψ(u)2 < 1 and α(f, z)+ cu ≤ u, then Nf is a

contraction map of the ball B ( u
γ(f,z) , z) into itself with contraction constant c. Hence there is

a unique root ζ ∈ B ( u
γ(f,z) , z) of f and all z′ ∈ B ( u

γ(f,z) , z) tend to ζ under iteration of Nf . △

Proof. By Theorem 6.22 (a), c is a contraction constant on B ( u
γ(f,z) , z). By Theorem 6.22

(b) and the triangle inequality, if β(f, z) + cu
γ(f,z) <

u
γ(f,z) , then for all z1 in B ( u

γ(f,z) , z),

∣Nf(z1) − z) = ∣Nf(z1) −Nf(z) +Nf(z) − z∣ ≤ ∣Nf (z1) −Nf(z)∣ + ∣Nf(z) − z∣ ≤
cu

γ(f, z)
+ β(f, z) <

u

γ(f, z)
,

i.e.,

Nf (B (
u

γ(f, z)
, z)) ⊆ B (

u

γ(f, z)
, z)

In particular, β(f, z) + cu
γ(f,z) <

u
γ(f,z) follows from α(f, z) + cu ≤ u by dividing by γ(f, z).
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6. Newton’s Method in One-Variable Case

Now the rest of the proof follows from Proposition 6.21. ForNf ∶ B ( u
γ(f,z) , z) → B ( u

γ(f,z) , z),

there exists a unique fixed point ζ ∈ B ( u
γ(f,z) , z) such that Nf(ζ) = ζ and Nn

f (z
′)

n→∞
ÐÐÐ→ ζ, for

all z′ in B ( u
γ(f,z) , z). In other word, ζ is the unique root of f in B ( u

γ(f,z) , z). ∎

Corollary 6.24 gives us a good criterion in terms of α and γ for convergence of the iterates of
Newton’s map by a contraction map in a neighborhood of a point z. The next theorem gives
a simpler criterion in terms of α and u. The three inequalities in Corollary 6.24 hold if α
and u are small enough. Further restrictions on α and u guarantee that B ( u

γ(f,z) , z) consists
of approximate zeros.

Theorem 6.25 (Robust α Theorem). There are positive real numbers α0 and u0 such that:
if α(f, z) < α0, then there is a root ζ of f such that

B (
u0

γ(f, z)
, z) ⊆ B (

3 −
√

7

2γ(f, ζ)
, ζ)

and

Nf ∶ B (
u0

γ(f, z)
, z) → B (

u0

γ(f, ζ)
, ζ)

with contraction constant less than or equal to 1
2 . △

Remark 6.26. It follows from Theorem 6.3 that B ( u0
γ(f,ζ) , ζ) consists of approximate zeros with

associated zero ζ. ♢

Proof (Theorem 6.25). Choose α0 > 0, u0 > 0, l0 > 2 to satisfy,

(6.2.1) c0 =
2(α0+u0)
ψ(u0)2

< 1
l0
< 1

2 < 1;

(6.2.2) α0 + c0u0 < u0;

(6.2.3) ( α0

1+c0 + u0)( 1

ψ( α0
1−c0

)(1− α0
1−c0

)
) < 3−

√
7

2 ;

(6.2.4) 1

ψ( α0
1−c0

)(1− α0
1−c0

)
≤ l0

2 .

Let ζ be the root of f given by (6.2.1),(6.2.2) and Corollary 6.24. Then by Proposition
6.21 we obtain the following in-equation.
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6. Newton’s Method in One-Variable Case

(6.2.5) ∣z − ζ ∣ ≤
∣z−Nf (z)∣

1−c0 =
β(f,z)
1−c0 .

By the triangle inequality, if z′ ∈ B ( u0
γ(f,z) , z), then

∣z′ − ζ ∣ ≤ ∣z′ − z∣ + ∣z − ζ ∣ ≤
β(f, z)

1 − c0
+

u0

γ(f, z)
.

Multiplying by γ(f, z) gives ∣z′ − ζ ∣γ(f, z) ≤ α(f,z)
1−c0 + u0 and then multiplying by γ(f,ζ)

γ(f,z) ,

∣z′ − ζ ∣γ(f, ζ) ≤ (
α(f, z)

1 − c0
+ u0)

γ(f, ζ)

γ(f, z)
.

By Proposition 6.16 (b) and (6.2.5) multiplied by γ(f, z),

γ(f, ζ) ≤
γ(f, z)

ψ (∣z − ζ ∣γ(f, z))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ α0
1−c0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥ψ( α0
1−c0

)

(1 − ∣z − ζ ∣γ(f, z))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥1− α0
1−c0

≤
γ(f, z)

ψ ( α0

1−c0 ) (1 − α0

1−c0 )
,

i.e.,

(6.2.6) γ(f,ζ)
γ(f,z) ≤

1

ψ( α0
1−c0

)(1− α0
1−c0

)
.

Thus,

∣z′ − ζ ∣γ(f, ζ) < (
α(f, z)

1 − c0
+ u0)

γ(f, ζ)

γ(f, z)

1

ψ ( α0

1−c0 ) (1 − α0

1−c0 )
<

3 −
√

7

2

and

B (
u0

γ(f, z)
, z) ⊆ B (

3 −
√

7

2γ(f, ζ)
, ζ) .

Moreover, by Corollary 6.24, (6.2.1) and (6.2.2), ζ ∈ B ( u0
γ(f,z) , z) and Nf has contraction

constant less than 1
l0

on B ( u0
γ(f,z) , z). Hence if z1 belongs to the ball B ( u0

γ(f,z) , z), then

∣z1 − ζ ∣ = ∣z1 − z + z − ζ ∣ ≤ ∣z1 − z∣ + ∣z − ζ ∣ ≤
2u0

γ(f, z)
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6. Newton’s Method in One-Variable Case

and by (6.2.4) and (6.2.5),

∣Nf (z1) − ζ ∣γ(f, ζ) = ∣Nf(z1) −Nf(ζ)∣γ(f, ζ)

<
1

l0
∣z1 − ζ ∣γ(f, ζ) =

2

l0

u0

γ(f, z)
γ(f, ζ) ≤

2

l0
u0

1

ψ ( α0

1−c0 ) (1 − α0

1−c0 )
≤ u0,

so we are done. ∎

Remark 6.27. We may take l0 = 3 and α0 = .03, u0 = .05. This may be checked by substitution.

● α0

1−c0 = .0398;

● ψ(u0) = 1 − 4u0 + 2u2
0 = .805;

● ψ ( α0

1−c0 ) = 1 − 4 α0

1−c0 + 2 ( α0

1−c0 )
2
= .8438;

● c0 =
2(α0+u0)
ψ(u0)2

=
2×(.03+.05)

.8052
= .2469 < 1

3 = 1
l0
< 1

2 < 1;

● α0 + c0u0 = .03 + .2469 × .05 = .0423 < .05 = u0;

● ( α0

1+c0 + u0)( 1

ψ( α0
1−c0

)(1− α0
1−c0

)
) = (.0398 + .05) ( 1

.8438×.9601
) = .1109 < .1771 = 3−

√
7

2 ;

● 1

ψ( α0
1−c0

)(1− α0
1−c0

)
= 1.234 < 1.5 = l0

2 . ♢

Theorem 6.12 will be proved with the constant α0 = .130707 in the 7 n-Dimensional Generalization.
The distance from z to the associated zero ζ, by (6.2.5), is

∣z − ζ ∣ ≤
β(f, z)

1 − c0
<
β(f, z)

1
2

= 2β(f, z),

i.e., at most 2β(f, z).

We close this chapter with a discussion about the level of generality of the results we have just
proved. We began this chapter assuming that f was an analytic function of one complex or
real variable defined on all of C or R. In fact, we have been careful to present our definitions,
theorems, and proofs to be valid in a broader context. Now we explain the context.

We suppose that E and F are complete normed vector spaces, that is, Banach spaces, over the
real or complex numbers. So E and F might be Rn or Cm or subspaces of them, or they might
even be infinite-dimensional spaces such as C0 ([0,1] ,R), the space of continuous functions φ
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6. Newton’s Method in One-Variable Case

with domain the closed unit interval [0,1] and taking real values. When dealing with elements
of E or F where we have used absolute value it should be replaced by the norm so, for example,
in C0 ([0,1] ,R) a standard norm which makes it a complete normed vector space is

∣ψ∣ = sup
x∈[0,1]

∣ψ(x)∣ .

Next f is presumed to be defined and analytic on some open set D ⊆ E with values in F . Where
we have written f ′ it should be considered as a continuous linear operator f ′ ∶ E → F , which
is the derivative of f . Then f (k) is the k-th derivative of f and is a symmetric multilinear
operator, operation on k-tuples of elements in E with values in F . When the k-tuple has a
vector x repeated l times, f (k)xl denotes the operator on k − l-tuples obtained by substituting
x in l places.

In the definition of γ(f, z), f ′(z)−1f (k)(z) is a composition so that it operates on k-tuples of
elements of E and takes values in E . Absolute values of operators are understood to be operator
norms; that is, for an operator A, its operator norm is

∥A∥ = sup
x≠0

∥Ax∥

∥x∥
.

That f ′(z)−1 exists means that f ′(z) has a continuous linear operator inverse. So that now

N ′
f(z) = f

′
(z)−1f ′′(z)f ′(z)−1f(z)

makes sense as a linear operator from E to itself and is indeed the derivative of Newton’s map.
That f ′(z) = 0 means it is identically zero as linear operator. Several places where we have
written 1, such as in Lemma 6.5, should be read as the identity linear map.

The entire section now makes sense for analytic f ∶ E → F , where E and F are Banach
spaces over the real or complex numbers. Our definitions, theorems, corollaries, lemmas, and
propositions remain the same with the exception of Proposition 6.14 which is restricted to
one dimension.

When our map f is defined on an open set D ⊆ E and not on all of E , f ∶ D → F , our
theorems, corollaries, lemmas, and propositions remain valid with the additional hypothesis

that B (
1−

√

2
2

γ(f,z) , z) ⊆ D. In fact it is natural to have the open ball of radius 1
γ(f,z) contained in

D as the next proposition shows.

Proposition 6.28. Let f be analytic at z and r be the radius of convergence of the Taylor
series of f at z. Then r ≥ 1

γ(f,z) . △

Proof. The Taylor expansion of f at z is Tf(x, z) =
∞
∑
k=0

f(k)(z)
k! (x − z)n then by (A.2.1) in A.2.1
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Basics,

r =
1

lim sup
k→∞

∣
f(k)(z)
k! ∣

1
k

.

and

lim sup
k→∞

∣
f (k)(z)

k!
∣

1
k

≤ lim sup
k→∞

∣f ′(z)∣
1
k ∣
f ′(z)−1f (k)(z)

k!
∣

1
k

≤ lim sup
k→∞

∣
f ′(z)−1f (k)(z)

k!
∣

1
k

≤ lim sup
k→∞

∣
f ′(z)−1f (k)(z)

k!
∣

1
k−1

≤ sup
k→∞

∣
f ′(z)−1f (k)(z)

k!
∣

1
k−1

≤ γ(f, z). ∎

We end this section with a version of the inverse function theorem that is valid in this context
and which gives an estimate of the size of the ball on which the inverse is defined in terms of
γ(f, z).

If f ′(z)−1 exists, the inverse function theorem asserts that there is an inverse function f−1
z

defined on a ball B around f(z), with the property that, for all w ∈ B, f−1
z (f(z)) = z,

f (f−1
z (w)) = w and f−1

z is differentiable. We use Theorem 6.25 to estimate the size of this ball.

Proposition 6.29 (Inverse Function Theorem). Let f ∶ B(r, z0) → F be analytic. Then

B (
α0

∣f ′(z0)
−1∣γ (f, z0)

, f (z0)) ⊆ f
⎛

⎝
B

⎛

⎝

1 −
√

2
2

γ (f, z0)
, z0

⎞

⎠

⎞

⎠

and f−1
z0 exists and is differentiable on this ball. △

Proof. Let c ∈ F with ∣c∣ ≤ α0

∣f ′(z0)−1∣γ(f,z0) and we define fc(z) ∶= f(z) − c − f (z0) . Then,

f ′c(z) = f
′(z), which means f (k)

c (z) = f (k)(z). In particular, γ (fc, z0) = γ (f, z0) and

β (fc, z0) = ∣f ′c (z0)
−1 c∣ = ∣f ′ (z0)

−1 c∣ ≤ ∣f ′ (z0)
−1

∣ ∣c∣ ≤ ∣f ′ (z0)
−1

∣
α0

∣f ′(z0)
−1∣γ(f, z0)

=
α0

γ (f, z0)
=

α0

γ (fc, z0)
.

Thus α (fc, z0) < α0 and by Theorem 6.25 Nk
fc

(z0) converges to the unique root ζc of fc in the

open ball B (
1−

√

2
2

γ(f,z0) , z0) . Moreover, by fc (ζc) = 0, we obtain f (ζc) = c + f (z0) and f ′ (ζc)
−1

exists by Lemma 6.5. Thus

∣f (ζc) − f (z0)∣ = ∣c + f(z0) − f(z0)∣ = ∣c∣ ≤
α0

∣f ′ (z0)
−1

∣γ (f, z0)
,
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which means for ζc ∈ B (
1−

√

2
2

γ(f,z0) , z0), f (ζc) ∈ B ( α0

∣f ′(z0)−1∣γ(f,z0) , f (z0)) . The proposition follows.∎

More details about the n-dimensional generalization will be discussed in the next chapter.
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This chapter, without indication, we follow [9].

A standing hypothesis in this section is that f ∶ E → F is an analytic map from one Banach
space to another, both E and F are real or both are complex. Main examples are the finite
dimensional cases E = Cn,F = Cn, where n ∈ N. The map f could be given by a system of
polynomials.

7.1. Approximate Zeros

The derivative of f ∶ E → F at z ∈ E is a linear map Df(z) ∶ E → F . If Df(z) is invertible,
Newton’s method provides a new vector z′ from z by z′ = z −Df(z)−1f(z) = Nf(z).

Let β(f, z) denote the norm of this Newton step z′ − z, i.e., β(f, z) = ∥Df(z)−1f(z)∥ . In case
Df(z) is not invertible, let β(z, f) = ∞. For a point z0 ∈ E , define inductively the sequence
zn = zn−1 −Df (zn−1)

−1 f (zn−1) , if possible.

Definition 7.1. Say that z0 is an approximate zero of f if zn is defined for all n and satisfies,
for all n ∈ N.

∥zn − zn−1∥ ≤ (
1

2
)

2n−1−1

∥z1 − z0∥ .

Clearly, this implies that zn is a Cauchy sequence with a limit, say ζ ∈ E . That f(ζ) = 0 can be
seen as follows. Since zn+1 − zn = −Df (zn)

−1 f (zn) , then

∥f (zn)∥ = ∥Df (zn) (zn+1 − zn)∥ ≤ ∥Df (zn)∥ ∥zn+1 − zn∥ .

Take the limit as n→∞ and f is continuous differentiable, so

∥f(ζ)∥ ≤ ∥Df(ζ)∥ lim
n→∞

∥zn+1 − zn∥ = 0.
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Proposition 7.2. If z0 is an approximate zero and zn → ζ as n→∞, then

∥zn − ζ∥ ≤ (
1

2
)

2n−1

∥z1 − z0∥K,

where K =
∞
∑
k=0

(1
2
)

2k
≤ 7

4 . △

Proof. For the proof, sum both sides in the definition of approximate zero.

∥zN − zn∥ = ∥zN − zN−1 + zN−1 −⋯ − zn+1 + zn+1 − zn∥ ≤
N

∑
k=n+1

∥zk − zk−1∥ ≤ ∥z1 − z0∥
N

∑
k=n+1

(
1

2
)

2k−1−1

.

Let N →∞,

∥zn − ζ∥ = lim
N→∞

∥zN − zn∥ ≤ ∥z1 − z0∥
∞
∑

k=n+1

(
1

2
)

2k−1−1

= ∥z1 − z0∥
∞
∑
k=0

(
1

2
)

2k+n−1

≤ ∥z1 − z0∥
∞
∑
k=0

(
1

2
)

2k

(
1

2
)

2n−1

.

Then we are done. ∎

Toward giving criteria for z to be an approximate zero define

γ(f, z) = sup
k>1

∥Df(z)−1D
kf(z)

k!
∥

1
k−1

or, if Df(z)−1 or the supremum does not exist, let γ(f, z) = ∞. Here Dkf(z) is the k-th
derivative of f at z as a k-linear map. Define α(f, z) = β(f, z)γ(f, z).

Theorem 7.3. There is a naturally defined number α0 approximately equal to .130707 such
that if α(f, z) < α0, then z is an approximate zero of f . △

Suppose now f ∶ E → F is a map which is expressed as f(z) =
d

∑
k=0

akz
k, for all z ∈ E ,0 < d ≤ ∞.

Here E and F are Banach spaces and ak is a bounded symmetric k-linear map from E ×⋯ × E

(k times) to F . Thus akzk is a homogeneous polynomial of degree k. For E = Cn, this is the
case in the usual sense, and in one variable ak is the k-th coefficient (real or complex) of f .
Then if d is finite, f is a polynomial. Define ∥f∥ = sup

k≥0
∥ak∥, where ∥ak∥ is the norm of ak as a

bounded map. Define

φd(r) =
d

∑
i=0

ri, φ′d(r) =
∂

∂r
φd(r) =

d

∑
i=1

iri
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and φ(r) = φ∞(r).

Theorem 7.4.

γ(f, z) < ∥Df(z)−1∥ ∥f∥
φ′d(∥z∥)

2

φd ∥z∥
.

Here, if Df(z) is not invertible interpret ∥Df(z)−1∥ = ∞ as usual. △

Thus combining Theorem 7.3 and Theorem 7.4, we have a first derivative criterion (at z) for
z to be an approximate zero.

Corollary 7.5. If

∥Df(z)−1∥ ∥f∥
φ′d(∥z∥)

2

φd(∥z∥)
β(f, z) < α0

then z is an approximate zero of f . △

Proof. By the definition of α(f, z), we finish the proof. ∎

There is a reason to consider an alternate definition of approximate zero. This second notion
is in terms of an actual zero ζ of f ∶ E → F .

Definition 7.6. We say that z0 is an approximate zero of the second kind of f ∶ E → F

provided there is some ζ ∈ E with f(ζ) = 0 and for n ≥ 1,

∥zn − ζ∥ ≤ (
1

2
)

2n−1

∥z0 − ζ∥ ,

where zn = zn−1 −Df (zn−1)
−1 f (zn−1) .

While the first definition of approximate zero deals with information at hand, and computable
quantities, an approximate zero of the second kind can often be studied statistically or theoretically
more handily.

Theorem 7.7. Suppose that f ∶ E → F is analytic, ζ ∈ E , f(ζ) = 0 and z ∈ E satisfies

∥z − ζ∥ < (
3 −

√
7

2
)

1

γ(f, ζ)
.

Then z is an approximate zero of the second kind. △
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This result gives more evidence for the importance of the invariant γ(f, ζ).

7.2. Proofs of Preparations for the Main Theorems

Here we prove some lemmas and propositions from which the main results will follow easily.
Suppose E and F are Banach spaces, both real or both complex.

Lemma 7.8. Let A,B ∶ E → F be bounded linear maps with A invertible such that ∥A−1B − I∥ <

c < 1. Then B is invertible and ∥B−1A∥ < 1
1−c . △

Proof. Let v = I −A−1B. Since ∥v∥ = ∥I −A−1B∥ < c < 1,
∞
∑
i=0
vi exists with norm

∥
∞
∑
i=0

vi∥ = ∥
1

I − v
∥ =

1

∥I − v∥
<

1

1 − c
.

The last step follows from ∥I − v∥ ≤ ∣∥I∥ − ∥v∥∣ = 1 − ∥v∥ > 1 − c. Note

(I − v)
n

∑
i=0

vi = (I − v)
I − vn+1

I − v
= I − vn+1.

By taking limits and A−1B = I − v, we obtain A−1B
∞
∑
i=0
vi = I, i.e., A−1B is seen to be invertible

with inverse
∞
∑
i=0
vi. By the last equation, B can be written as the composition of invertible

maps,
∞
∑
i=0
vi = B−1A. Therefore, ∥B−1A∥ = ∥

∞
∑
i=0
vi∥ < 1

1−c . Then the proof is finished. ∎

Lemma 7.9. Suppose f ∶ E → F is analytic, z′, z ∈ E such that ∥z′ − z∥γ(f, z) < 1 −
√

2
2 . Then

(a) Df(z′) is invertible.

(b) ∥Df(z′)−1Df(z)∥ < 1
2−φ′(∥z′−z∥γ(f,z))

(c) γ (f, z′) ≤ γ(f, z) 1
2−φ′(∥z′−z∥γ(f,z)) (

1
1−∥z′−z∥γ(f,z))

3

Here φ′(r) = 1
(1−r)2 could be replaced by φ′d. △

Proof. Take a Taylor series expansion of Df about z, i.e., the map E → L(E ,F), as follows

Df(z′) =
∞
∑
k=0

Dk+1f(z)

k!
(z′ − z)

k
.
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From this,

Df(z)−1Df(z′) =
∞
∑
k=0

Df(z)−1D
k+1f(z)

k!
(z′ − z)

k

=Df(z)−1Df(z)

1
(z′ − z)0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

+
∞
∑
k=1

(k + 1)
Df(z)−1Dk+1f(z)

(k + 1)!
(z′ − z)

k

and

∥Df(z)−1Df(z′) − I∥ ≤
∞
∑
k=1

(k + 1) ∥
Df(z)−1Dk+1f(z)

(k + 1)!
∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤γ(f,z)k

∥z′ − z∥
k

≤
∞
∑
k=1

(k + 1) (γ(f, z) ∥z′ − z∥)
k
=

∞
∑
k=2

k (γ(f, z) ∥z′ − z∥)
k−1

Lemma 6.4 (b)
ÔÔÔÔÔÔÔ

∞
∑
k=1

k (γ(f, z) ∥z′ − z∥)
k−1

− 1

=
1

(1 − γ(f, z) ∥z′ − z∥)2
− 1 = φ′ (γ(f, z) ∥z′ − z∥) − 1.

Observe, that since γ(f, z) ∥z′ − z∥ < 1 −
√

2
2 < 1, all the series converge. Moreover, note that

φ′(r) = 1
(1−r)2 , so that if r < 1 −

√
2

2 , then φ′(r) − 1 < 1. Thus Lemma 7.8 applies to yield parts
(a) and (b) of Lemma 7.9 with A ∶=Df(z), B ∶=Df(z′), c ∶= φ′ (γ(f, z) ∥z′ − z∥) − 1. ∎

The following simple formulae come up frequently.

φ(l)

l!
(r) =

∞
∑
k=0

(
l + k

k
)rk =

∞
∑
l=0

(k + l)!

k!l!
rl

Lemma 6.17
ÔÔÔÔÔÔ

1

(1 − r)l+1
.

Both quantities on the right are seen to be equal to the l-th derivative.

1

2 − φ′(r)
⋅

1

(1 − r)2
=

2(1 − r)2 − 1

(1 − r)2

(1 − r)2

2(1 − r)2 − 1
=

1

2(1 − r)2 − 1
=

1

2r2 − 2r + 1
=

1

ψ(r)
,

i.e.,

1

2 − φ′(r)

1

(1 − r)2
=

1

ψ(r)
. (7.2.1)

where ψ(r) = 2r2 − 4r + 1.
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Proof (Lemma 7.9 (c)). Let γk(f, z) = ∥Df(z)−1D
kf(z)
k! ∥

1
k−1 and γ(f, z) = sup

k>1
γk(f, z). Then by

Taylor’s theorem

γk (f, z
′)
k−1

= ∥Df(z′)−1Df(z)
∞
∑
l=0

Df(z)−1Dk+lf(z)(z′ − z)l

l!k!
∥

= ∥Df(z′)−1Df(z)∥
∞
∑
l=0

(
k + l

l
)∥

Df(z)−1Dk+lf(z)(z′ − z)l

(k + l)!
∥

≤ ∥Df(z′)−1Df(z)∥γ(f, z)k+l−1
∞
∑
l=0

(
k + l

l
) ∥z′ − z∥

l

= ∥Df(z′)−1Df(z)∥γ(f, z)k−1
∞
∑
l=0

(
k + l

l
)(∥z′ − z∥γ(f, z))

l

≤ ∥Df(z′)−1Df(z)∥γ(f, z)k−1
(

1

1 − ∥z′ − z∥γ(f, z)
)

k+1

Now use Lemma 7.9 (b) and take the (k − 1) root to obtain

γk(f, z
′
) ≤

γ(f, z)

(2 − φ′ (γ(f, z) ∥z′ − z∥))
1
k−1

(
1

1 − ∥z′ − z∥γ(f, z)
)

k+1
k−1

.

The supremum is achieved at k = 2, yielding the statement of Lemma 7.9 (c). ∎

Lemma 7.10. (a) Let α(f, z) < 1 and z′ = z −Df(z)−1f(z). Then

∥Df(z)−1f(z′)∥ ≤ β(f, z)(
α(f, z)

1 − α(f, z)
) .

(b) Let z, z′ ∈ E with f(z) = 0 and ∥z′ − z∥γ(f, z) < 1. Then

∥Df(z)−1f(z′)∥ ≤
∥z′ − z∥

1 − ∥z′ − z∥γ(f, z)
△

Proof. We first prove part (a). The Taylor series yields

Df(z)−1f(z′) =
∞
∑
k=0

Df(z)−1D
kf(z)(z′ − z)k

k!
.
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The first two terms drop out. Since β(f, z) = ∥z′ − z∥,

∥Df(z)−1f(z′)∥ ≤ β(f, z)
∞
∑
k=2

(γ(f, z)β(f, z))k−1
= β(f, z)

∞
∑
k=2

α(f, z)k−1

= β(f, z)
∞
∑
k=1

α(f, z)k = β(f, z)(
1

1 − α(f, z)
− 1) = β(f, z)

α(f, z)

1 − α(f, z)

For part (b), we start as above and now the first term is zero since f(z) = 0. We have

Df(z)−1f(z′) =
Df(z)−1f(z)(z′ − z)

0!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

+
Df(z)−1Df(z)(z′ − z)

1!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z′−z

+
∞
∑
k=2

Df(z)−1D
kf(z)(z′ − z)k

k!

= (z′ − z)(1 +
∞
∑
k=2

Df(z)−1D
kf(z)(z′ − z)k−1

k!
) ≤ (z′ − z)(1 +

∞
∑
k=2

γk(f, z)
k−1 (z′ − z)

k−1
)

= (z′ − z)
∞
∑
k=0

γk(f, z)
k (z′ − z)

k
≤ (z′ − z)

∞
∑
k=0

γ(f, z)k (z′ − z)
k
= (z′ − z)

1

1 − γ(f, z)(z′ − z)
,

i.e.,

∥Df(z)−1f(z′)∥ ≤ ∥z′ − z∥
1

1 − γ(f, z) ∥z′ − z∥
.

This finishes the proof of Lemma 7.10. ∎

Proposition 7.11. Let f be an analytic map from the Banach space E to F as usual.

(a) if α(f, z) < 1 −
√

2
2 , then

β(f, z′) ≤ β(f, z)(
α(f, z)

1 − α(f, z)
)(

1

2 − φ′(α(f, z))
) .

(b) if f(z) = 0 and γ(f, z) ∥z′ − z∥ < 1 −
√

2
2 then

β(f, z′) ≤ ∥z′ − z∥(
1

2 − φ′ (γ(f, z) ∥z′ − z∥)
)(

1

1 − γ(f, z) ∥z′ − z∥
) . △
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Proof. Write

β(f, z′) = ∥Df(z′)−1f(z′)∥ = ∥Df(z′)−1Df(z)Df(z)−1f(z′)∥

≤ ∥Df(z′)−1Df(z)∥ ∥Df(z)−1f(z′)∥ ≤ (
1

2 − φ′(α(f, z))
)β(f, z)(

α(f, z)

1 − α(f, z)
) .

The last step uses Lemma 7.9 (b) and Lemma 7.10 (a).

Similarly for the second part of the proposition. If f(z) = 0, use Lemma 7.9 (b) and Lemma
7.10 (b) as follows,

β(f, z′) ≤ ∥Df(z′)−1Df(z)∥ ∥Df(z)−1f(z′)∥ ≤ (
1

2 − φ′ (γ(f, z) ∥z′ − z∥)
)(

∥z′ − z∥

1 − γ(f, z) ∥z′ − z∥
) .

This proves Proposition 7.11. ∎

Proposition 7.12. Recalling ψ(r) = 2r2−4r+1 and using the notation of Proposition 7.11,

(a) if α < 1 −
√

2
2 ,

α(f, z′) ≤ (
α(f, z)

ψ(α(f, z))
)

2

.

(b) if f(ζ) = 0 and γ(f, ζ) ∥z′ − ζ∥ < 1 −
√

2
2 ,

α(f, z′) ≤
γ(f, ζ) ∥z′ − ζ∥

ψ (γ(f, ζ) ∥z′ − ζ∥)2
. △

Proof. For the proof of (a), not that α(f, z′) = β(f, z′)γ(f, z′). Use Lemma 7.9 (c) and
Proposition 7.11 (a) to obtain

α(f, z′) ≤ β(f, z)(
α(f, z)

1 − α(f, z)
)(

1

2 − φ′(α(f, z))
)γ(f, z)

1

2 − φ′ (∥z′ − z∥γ(f, z))
(

1

1 − ∥z′ − z∥γ(f, z)
)

3

= β(f, z)γ(f, z)α(f, z)
⎛

⎝
(

1

1 − α(f, z)
)

2

(
1

2 − φ′(α(f, z))
)
⎞

⎠

2

,
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by (7.2.1),

α(f, z′) ≤ (β(f, z)γ(f, z))α(f, z)(
1

ψ(α(f, z))
)

2

= (
α(f, z)

ψ(α(f, z))
)

2

.

The proof of Proposition 7.12 (b) is similar by using Lemma 7.9 (c) and Proposition
7.11 (b).

α(f, z′) = β(f, z′)γ(f, z′)

≤
∥z′ − ζ∥

2 − φ′ (γ(f, ζ) ∥z′ − ζ∥)
(

1

1 − γ(f, ζ) ∥z′ − ζ∥
)

γ(f, ζ)

2 − φ′ (γ(f, ζ) ∥z′ − ζ∥)
(

1

1 − γ(f, ζ) ∥z′ − ζ∥
)

3

= ∥z′ − ζ∥γ(f, ζ)
⎛

⎝
(

1

1 − γ(f, ζ) ∥z′ − ζ∥
)

2

(
1

2 − φ′(γ(f, ζ) ∥z′ − ζ∥)
)
⎞

⎠

2

=
∥z′ − ζ∥γ(f, ζ)

ψ (γ(f, ζ) ∥z′ − ζ∥)2
.

Then the claim follows. ∎

Proposition 7.13. Suppose that A > 0, ai > 0, i ∈ N0 satisfy, for all i ∈ N0, ai+1 ≤ Aa
2
i . Then,

for all k ∈ N0,

ak ≤ (Aa0)
2k−1 a0. △

Proof. By mathematical induction, we first prove for Base Case (k = 0): a0 ≤ (Aa0)
20−1 a0 = a0.

Inductive Hypothesis: for all k ≥ 0,

ak ≤ (Aa0)
2k−1 a0.

Then for k + 1 we conclude that,

ak+1 ≤ Aa
2
k ≤ A ((Aa0)

2k−1 a0)
2
= A ((Aa0)

2k+1−2 a2
0) = A

2k+1−1a2k+1−1
0 a0 = (Aa0)

2k+1−1 a0 ∎

We end this section with a short discussion of sharpness. Lemma 7.9 (b) can be seen to be
sharp by taking z = 0 and for 0 < a < 1 −

√
2

2 ,

f(z) = 2z − φ(z) + 1 − a.

Then, for z′ = a,

● f(z) = 2z − 1
1−z + 1 − a, f(0) = 0 − 1 + 1 − a = −a;
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● Df(z) = 2 − 1
(1−z)2 , Df(0) = 2 − 1 = 1.

It is easy to see that for k ≥ 2,

Dkf(z) =
k!

(1 − z)k+1
.

Therefore,

γ(f,0) = sup
k>1

∥Df(z)−1D
kf(z)

k!
∥

1
k−1

RRRRRRRRRRRRRz=0

= sup
k>1

∥Df(z)−1 1

(1 − z)k+1
∥

1
k−1

RRRRRRRRRRRRz=0

= 1

and ∥z′ − z∥γ(f, z) = a at z = 0. Thus,

∥Df(z′)−1Df(z)∥∣
z=0,z′=a =

1

2 − 1
(1−a)2

=
1

2 − φ′(a)
.

The same example may be used to see that Lemma 7.9 (c) is sharp. One only needs to make
the easy computation that

γ(f, a) = sup
k>1

∥Df(z)−1D
kf(z)

k!
∥

1
k−1

RRRRRRRRRRRRRz=a

= sup
k>1

XXXXXXXXXXXXXX

1

(2 − 1
(1−z)2 ) (1 − z)k+1

XXXXXXXXXXXXXX

1
k−1

RRRRRRRRRRRRRRRRz=a

= sup
k>1

XXXXXXXXXXXX

(
1

2 − φ′(z)
)

1
k−1

(
1

1 − z
)

k+1
k−1

XXXXXXXXXXXX

RRRRRRRRRRRRz=a
.

The supremum is achieved at k = 2, so

γ(f, a) = (
1

2 − φ′(z)
)(

1

1 − z
)

3

∣
z=a

= (
1

1 − a
)

3

(
1

2 − φ′(a)
) .

Again, the same example shows that Lemma 7.10 (a) is sharp, just observing that

● α(f,0) = β(f,0)γ(f,0) = ∥z′ − z∥γ(f,0) = a;

● f(a) = 2a − 1
1−a + 1 − a = 1 − 1

1−a + a =
1−a−1+a−a2

1−a = a2

1−a .

Thus,

● Df(z)−1f(z′)∣
z=0,z′=a = f(a) =

a2

1−a ;
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● β(f, z) (
α(f,z)

1−α(f,z))∣z=0,z′=a
= a ⋅ a

1−a =
a2

1−a .

One can see that Lemma 7.10 (b) is sharp with the example. Let z = 0 and 0 < z′ < 1,

g(z) = φ(z) − 1.

Similarly,

● Dkg(z) = k!
(1−z)k+1 , Dg(0) =

1
(1−z)2 ∣z=0

= 1;

● γ(g,0) = ( 1
2−φ′(z)) ( 1

1−z )
3
∣
z=0

= 1
2−φ′(0) (

1
1−0

)
3
= 1.

Then

● ∥Dg(z)−1g(z′)∥∣
z=0,0<z′<1

= ∥g(z′)∥ = ∥ 1
1−z′ − 1∥ = ∥ z′

1−z′ ∥ =
z′

1−z′ ;

●
∥z′−z∥

1−∥z′−z∥γ(g,z) ∣z=0,0<z′<1
=

∥z′∥
1−∥z′∥ =

z′

1−z′ .

Proposition 7.11 (a) is sharp with the example of Lemma 7.9. The same applies to Proposition
7.12 (a). We have for Proposition 7.11 (a),

● β(f, z′)∣z′=a = ∥Df(z′)−1f(z′)∥∣
z′=a = ( 1

2−φ′(a)) ( a2

1−a);

● β(f, z) (
α(f,z)

1−α(f,z)) ( 1
2−φ′(α(f,z)))∣z=0,z′=a

= a ⋅ a
1−a ⋅

1
2−φ′(a) = ( 1

2−φ′(a)) ( a2

1−a)

and for Proposition 7.12 (a)

α(f, z′)∣
z′=a = α(f, a) = β(f, a)γ(f, a) ≤ (

1

2 − φ′(a)
)(

a2

1 − a
)(

1

1 − a
)

3

(
1

2 − φ′(a)
)

= (
a

(1 − a)2
(

1

2 − φ′(a)
))

2

= (
a

ψ(a)
)

2

= (
α(f, z′)

ψ(α(f, z′))
)

2RRRRRRRRRRRz′=a

7.3. The Proofs of Main Results

In this final section we finish the proofs of our main results. Toward the proof of Theorem 7.3,
consider our polynomial ψ(r) = 2r2 −4r+1 and the function (

α(f,z)
ψ(α(f,z)))

2
of Proposition 7.11

(a).

In the range of concern to us, 0 ≤ r ≤ 1 −
√

2
2 , ψ(r) is a parabola decreasing from 1 to 0 as r
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goes from 0 to 1 −
√

2
2 , which can be seen in Figure 6.2. Therefore, r

ψ(r)2 increases form 0 to

∞ as r goes from 0 to 1 −
√

2
2 .

Let α0 be the unique r such that r
ψ(r)2 = 1

2 . Thus α0 is a zero of the real quadric polynomial
ψ(r)2 − 2r. Using Newton’s method one calculates approximately, α0 = .130707.

With this discussion, Theorem 7.3 is a consequence of the following proposition where a = 1
2 .

Proposition 7.14. Let f ∶ E → F be analytic, z = z0 ∈ E and α(f,z)
(ψ(α(f,z)))2 = a < 1. Let

zk = zk−1 −Df (zk−1)
−1 f (zk−1) for k = 1,2, . . . , then

(a) zk is defined for all k.

Let αk = α (f, zk) , ψk = ψ (α(f, zk)), k = 1,2, . . . ,

(b) αk ≤ a2k−1α (f, z0), k = 1,2, . . . ,

(c) ∥zk − zk−1∥ ≤ a
2k−1−1 ∥z1 − z0∥, for all k. △

Proof. Note that (a) follows from (b) and that (b) is a consequence of Proposition 7.12
(a) and Proposition 7.13,

αk+1 ≤ (
αk

ψ (αk)
)

2

=
αk

ψ (αk)
2
⋅ αk < aαk,

i.e., αk
k→∞
ÐÐÐ→ 0. Therefore, the condition in Proposition 7.13 is satisfied. Thus,

αk ≤ (aα (f, z0))
2k−1 α (f, z0) = a

2k−1
⋅ α (f, z0)

2k
< a2k−1

⋅ α (f, z0) .

It remains to check (c). The case k = 1 is trivial so assume k > 1. We may write using
Proposition 7.11 (a) and our relation between φ′ and ψ,

∥zk − zk−1∥ ≤ ∥zk−1 − zk−2∥ (
αk−2

1 − αk−2
)(

1

2 − φ′ (αk−2)
)

= ∥zk−1 − zk−2∥αk−2 (1 − αk−2)(
1

(1 − αk−2)
2
)(

1

2 − φ′ (αk−2)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

ψ(αk−2)

= ∥zk−1 − zk−2∥
αk−2 (1 − αk−2)

ψ (αk−2)
.
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Now use part (b) and induction on this inequality to obtain

∥zk − zk−1∥ ≤ a
2k−2−1

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
<1

∥z1 − z0∥a
2k−1−1α (f, z0) (

1 − αk−2

ψk−2
) ≤ a2k−1−1

∥z1 − z0∥
α (f, z0)

ψk−2
.

However,

α (f, z0)

ψk−2
≤

α (f, z0)

ψ (α (f, z0))
=

α (f, z0)

ψ (α (f, z0))
2
⋅ ψ (α (f, z0)) = aψ (α (f, z0)) < 1,

thus

∥zk − zk−1∥ ≤ a
2k−1−1

∥z1 − z0∥
α (f, z0)

ψk−2
≤ a2k−1−1

∥z1 − z0∥ . ∎

Remark 7.15. Theorem 7.3 and most of the lemmas and propositions of 7.2 Proofs of Preparations
for the Main Theorems can be slightly sharpened in case that f is a polynomial map E → F of

Banach spaces of degree d < ∞. Replace φ(r) by φd(r) =
d

∑
i=0
ri everywhere in the proofs and

conclusions. ♢

For example, going through proofs this way yields the following generalization of Proposition
7.12 (a).

Proposition 7.16. If f ∶ E → F has degree d, then if φ′d(α (f, z)) < 2,

α (f, z′) < α (f, z)2 φd−2 (α(f, z))

φd (α(f, z))
(

φ′d (α(f, z))

2 − φ′d (α(f, z))
)

2

If d = ∞, this reverts to Proposition 7.12 (a). △

Proof. First of all, we prove Lemma 7.10 (a) and Lemma 7.9 (b) for φd.

∥Df(z)−1f(z′)∥ ≤ β(f, z)
d

∑
k=2

∥
Df(z)−1Dkf(z)

k!
∥β(f, z)k−1

= β(f, z)
d

∑
k=2

(γ(f, z)β(f, z))k−1

= β(f, z)
d−1

∑
k=1

α(f, z)k = β(f, z)
α(f, z) (1 − α(f, z)d−1)

1 − α
= β(f, z)α(f, z)φd−2(α(f, z)).
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For Lemma 7.9 (b),

Df(z)−1Df(z′) =
∞
∑
k=0

Df(z)−1Dk+1f(z)

k!
(z′ − z)

k

= I +
∞
∑
k=1

(k + 1)
Df(z)−1Dk+1f(z)

(k + 1)!
(z′ − z)

k
= I +

d−1

∑
k=1

(k + 1)
Df(z)−1Dk+1f(z)

(k + 1)!
(z′ − z)

k

Therefore,

∥Df(z)−1Df(z′) − I∥ =
d−1

∑
k=1

(k + 1) ∥
Df(z)−1Dk+1f(z)

(k + 1)!
∥

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤γ(f,z)k

β(f, z)k ≤
d−1

∑
k=1

(k + 1)α(f, z)k = φ′d(α(f, z)) − 1

We also need Lemma 7.8 for φd, as before we define v = I −A−1B. Then

(1 − v)
d

∑
i=0

vi = (1 − v)
1 − vd+1

1 − v
= 1 − vd+1,

which implies (1 − v)
d+1

∑
i=0

vi = 1, i.e., A−1B
d+1

∑
i=0

vi = 1 and B−1A =
d+1

∑
i=0

vi = 1−vd+2
1−v . Thus

∥B−1A∥ = ∥
1 − vd+2

1 − v
∥ =

∥1 − vd+2∥

∥1 − v∥
<

1 + cd+2

1 − c
<

1 + c

1 − c
.

We let c = φ′d(α(f, z)) − 1, thus

∥Df(z′)−1Df(z)∥ <
1 + φ′d(α(f, z)) − 1

1 − (φ′d(α(f, z)) − 1)
=

φ′d(α(f, z))

2 − φ′d(α(f, z))
. (7.3.1)

Finally, we obtain

β(f, z′) ≤ ∥Df(z′)−1Df(z)∥ ∥Df(z)−1f(z′)∥ ≤ β(f, z)α(f, z)φd−2(α(f, z))
φ′d(α(f, z))

2 − φ′d(α(f, z))
.

Analogously,

γ(f, z′) ≤ γ(f, z)
1

φd(α(f, z))

φ′d(α(f, z))

2 − φ′d(α(f, z))
. (7.3.2)

In order to prove this claim, we first prove the following two statements.
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(7.3.3) φ(k)
d (r) = (1 − αd+1)φ(k)(r) −

k

∑
i=1

(
k
i
)(d + 1)d⋯(d − i + 2)rd−i+1φ(k−i)(r);

(7.3.4) φ
(k)
d

(r)
k! ≤ 1

φd(r) .

By φd(r) =
d

∑
i=0
ri = 1−rd−1

1−r = (1 − rd+1)φ(r) and mathematical induction, we obtain (7.3.3).

Base Case (k = 1): For k = 0 this is trivial. Let k = 1, then

φ′d(r) = (1 − rd+1)φ′(r) − (d + 1)rdφ(r) = (1 − rd+1)φ′(r) −
1

∑
i=1

(
1

i
)(d + 1)d⋯(d − i + 2)rd−i+1φ(1−i)

(r).

Inductive Hypothesis: For k > 1 assume by induction that

φ
(k)
d (r) = (1 − αd+1)φ(k)

(r) −
k

∑
i=1

(
k

i
)(d + 1)d⋯(d − i + 2)rd−i+1φ(k−i)

(r).

Therefore, φ(k+1)
d (r) can be described as,

(1 − rd+1)φ(k+1)
(r) − (d + 1)rdφ(k)

(r) −
k

∑
i=1

(
k

i
)(d + 1)d⋯(d − i + 2)rd−i+1φ(k−i+1)

(r)

−
k

∑
i=1

(
k

i
)(d + 1)d⋯(d − i + 2)(d − i + 1)rd−iφk−i(r)

= (1 − rd+1)φ(k+1)
(r) − (d + 1)rdφ(k)

(r) − (
k

1
)(d + 1)rdφ(k)

(r) −
k

∑
i=2

(
k

i
)(d + 1)d⋯(d − i + 2)rd−i+1φ(k+1−i)

(r)

−
k

∑
i=2

(
k

i − 1
)(d + 1)d⋯(d − i + 2)rd−i+1φ(k+1−i)

(r) − (
k

k
)(d + 1)d⋯(d − k + 1)rd−kφ(r)

= (1 − rd+1)φ(k+1)
(r) −

k+1

∑
i=1

(
k + 1

i
)(d + 1)d⋯(d − i + 2)rd−i+1φ(k+1−i)

(r),

the last step follows from (
k+1
i
) = (

k
i−1

) + (
k
i
).

Thus, φ(k)
d (r) ≤ (1 − rd+1)φk(r) = (1 − rd+1) k!

(1−r)k+1 for r < 1 and

φ
(k)
d (r)

k!
≤

(1 − r)k+1

(1 − rd+1)
≤

1 − r

(1 − rd+1)
=

1

φd(r)
.
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Using the same notation in Lemma 7.9 (c),

γk (f, z
′)
k−1

= ∥Df(z′)−1Df(z)
∞
∑
l=0

Df(z)−1Dk+lf(z)(z′ − z)l

l!k!
∥

= ∥Df(z′)−1Df(z)∥
d−k
∑
l=0

(
k + l

l
)∥

Df(z)−1Dk+lf(z)(z′ − z)l

(k + l)!
∥

≤ ∥Df(z′)−1Df(z)∥γ(f, z)k+l−1
d−k
∑
l=0

(
k + l

l
) ∥z′ − z∥

l

= ∥Df(z′)−1Df(z)∥γ(f, z)k−1
d−k
∑
l=0

(
k + l

l
)(∥z′ − z∥γ(f, z))

l

= ∥Df(z′)−1Df(z)∥γ(f, z)k−1 ⎛

⎝

φ
(k)
d (α(f, z))

k!

⎞

⎠
.

Now use (7.3.1), (7.3.3) and (7.3.4) and take the (k − 1) root to obtain

γk (f, z
′) ≤ (

φ′d (α(f, z))

2 − φ′d (α(f, z))
)

1
k−1

γ(f, z)(
1

φd(α(f, z))
)

1
k−1

.

The supremum is achieved at k = 2, yielding (7.3.2). Then the claim follows. ∎

Example 7.17. The following shows that α0 must be less than or equal 3 − 2
√

2 in Theorem
7.3. Let fa ∶ C→ C be

fa(z) = 2z −
z

1 − z
− a, a > 0.

Then

● Dkfa(z) = −
k!

(1−z)k+1 ;

● γ (fa,0) = sup
k≥2

∥Dfa(z)
−1D

kfa(z)
k! ∥

1
k−1

∣
z=0

= sup
k≥2

∥1 ⋅ (−k!
k!
)∥

1
k−1 = 1;

● β (fa,0) = ∥Dfa(z)
−1fa(z)∥∣z=0

= ∥1 ⋅ (−a)∥ = a;

● α (fa,0) = β (0, fa)γ (fa,0) = a

and fa(ζ) = 0 where

ζ =
(1 + a) ±

√

(1 + a)2
− 8a

4
.
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7. n-Dimensional Generalization

If α = a > 3 − 2
√

2, i.e., (1 + a)2 − 8a < 0, these roots are not real, so that Newton’s method for
solving fa(ζ) = 0, starting at z0 = 0 will never converge.

Toward the proof of Theorem 7.7, we use the following proposition.

Proposition 7.18. Let f ∶ E → F , ζ, z ∈ E satisfy f(ζ) = 0 and γ (f, ζ) ∥z − ζ∥ < 1 −
√

2
2 . Then

∥Df(z)−1f(z) − (z − ζ)∥ ≤
γ(f, ζ) ∥z − ζ∥2

ψ (γ(f, ζ) ∥z − ζ∥)
. △

Note that this proposition gives an estimate on how well the Newton vector −Df(z)−1f(z)
approximates ζ − z, the exact vector from z to ζ.

Proof. For the proof we consider the two Taylor series, f(z) =
∞
∑
k=0

Dkf(ζ)
k! (z − ζ)k =

∞
∑
k=1

Dkf(ζ)
k! (z − ζ)k

and Df(z) =
∞
∑
k=0

Dk+1f(ζ)
k! (z−ζ)k. Now apply the second to (z−ζ) and subtract it from the first

to obtain,

f(z) −Df(z)(z − ζ) =
∞
∑
k=1

Dkf(ζ)

k!
(z − ζ)k −

∞
∑
k=0

Dk+1f(ζ)

k!
(z − ζ)k+1

=
∞
∑
k=1

Dkf(ζ)

k!
(z − ζ)k −

∞
∑
k=1

Dkf(ζ)

(k − 1)!
(z − ζ)k

=
∞
∑
k=1

(
1

k!
−

1

(k − 1)!
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1−k) 1
k!

Dkf(z)(z − ζ)k = −
∞
∑
k=1

(k − 1)
Dkf(ζ)

k!
(z − ζ)k.

Then multiple both sides with Df(z)−1,

Df(z)−1f(z) − (z − ζ) = −Df(z)−1Df(ζ)
∞
∑
k=1

(k − 1)
Df(ζ)−1Dkf(ζ)(z − ζ)k

k!
.
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Take norms and apply Lemma 7.9 (b) to obtain,

∥Df(z)−1f(z) − (z − ζ)∥ = ∥Df(z)−1Df(ζ)∥
∞
∑
k=1

(k − 1) ∥
Df(ζ)−1Dkf(ζ)(z − ζ)k

k!
∥

≤ (
1

2 − φ′(γ(f, ζ) ∥z − ζ∥)
)

∞
∑
k=2

(k − 1) (γ(f, ζ) ∥z − ζ∥)k−1
∥z − ζ∥

= (
1

2 − φ′(γ(f, ζ) ∥z − ζ∥)
)

∞
∑
k=1

k (γ(f, ζ) ∥z − ζ∥)k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ(f,ζ)∥z−ζ∥
∞

∑
k=1

k(γ(f,ζ)∥z−ζ∥)k−1

∥z − ζ∥

= (
1

2 − φ′(γ(f, ζ) ∥z − ζ∥)
)γ(f, ζ) ∥z − ζ∥(

1

γ(f, ζ) ∥z − ζ∥
)

2

∥z − ζ∥

=
γ(f, ζ) ∥z − ζ∥2

ψ (γ(f, ζ) ∥z − ζ∥)
,

which proving the proposition. ∎

Corollary 7.19. Suppose f, ζ, z are as in the proposition. Let A =
γ(f,ζ)∥z−ζ∥

ψ(γ(f,ζ)∥z−ζ∥) < 1 or
equivalently

∥z − ζ∥ <
5 −

√
17

4
(

1

γ(f, ζ)
) .

Then

∥zn − ζ∥ ≤ A
2n−1

∥z − ζ∥ ,

where z = z0, zn = zn−1 −Df (zn−1)
−1 f (zn−1) . △

Proof. This follows from Proposition 7.18 using Proposition 7.13. Using notations of
propositions, we obtain,

∥Df(z)−1f(z) − (z − ζ)∥ ≤ A ∥z − ζ∥

and

∥Df(z)−1f(z) − (z − ζ)∥ = ∥−Nf(z) + ζ∥ ,

i.e., for all k ≥ 0,

∥zk+1 − ζ∥ ≤ A ∥zk − ζ∥ ,

86



7. n-Dimensional Generalization

i.e., ∥zk − ζ∥
k→∞
ÐÐÐ→ 0. By Proposition 7.13,

∥zk − ζ∥ ≤ (A ∥z − ζ∥)2k−1
∥z − ζ∥ = A2k−1

∥z − ζ∥2k−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<1

∥z − ζ∥ ≤ A2k−1
∥z − ζ∥ . ∎

Now Theorem 7.7 follows by choosing A = 1
2 in the corollary.

For the sharpness of the corollary, consider

f(z) =
z

1 − z

with ζ = 0. Then

● Dkf(z) = k!
(1−z)k+1

● γ (f, ζ) = sup
k≥2

∥Df(z)−1D
kfa(z)
k! ∥

1
k−1

∣
z=0

= sup
k≥2

∥1 ⋅ (k!
k!
)∥

1
k−1 = 1;

In particular,

zn = zn−1 −Df (zn−1)
−1 f (zn−1) = zn−1 − (1 − zn−1)

2 zn−1

1 − zn−1
= zn−1 − (zn−1 − z

2
n−1) = z

2
n−1,

i.e.,

● zn = z
2
n−1. Therefore,

A =
γ(f, ζ) ∥z − ζ∥

ψ (γ(f, ζ) ∥z − ζ∥)
=

z

ψ(z)

and the root for ψ(z) − z = 0 is 5−
√

17
4 .
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A. Analytic Function

A.1. Line Integrals

This section is followed by [10, Section 0.5.1, 0.5.2, Page 18-20].

A.1.1. Paths in C

We consider continuous functions g ∶ [a, b] → C, where a, b ∈ R and a < b. Two continuous
functions g1 ∶ [a, b] → C, g2 ∶ [c, d] → C are called equivalent if there is a continuous monotone
increasing function ϕ ∶ [a, b] → [c, d] such that g1 = g2 ○ ϕ. The equivalence classes of this
relation are called path (in C), and a function g ∶ [a, b] → C representing a path is called a
parametrization of the path.

A (continuously) differentiable path is a path represented by a (continuously) differentiable
function g ∶ [a, b] → C.

Let γ be a path. Choose a parametrization g ∶ [a, b] → C of γ. We call g(a) the start point and
g(b) the end point of γ. Further, g ([a, b]) is called the support of γ. By saying that a function
is continuous on γ, or that γ is contained in a particular set, etc., we mean the support of γ.

The path γ is said to be closed if its end point is equal to its start point, i.e., if g(a) =

g(b). The path γ is called a contour if it is closed, has no self-intersections, and is traversed
counterclockwise.

Let γ1, γ2 be paths, such that the end point of γ1 is equal to the start point of γ2. We define
γ1+γ2 to be the path obtained by first traversing γ1 and then γ2. For instance, if g1 ∶ [a, b] → C
is a parametrization of γ1 then we may choose a parametrization g2 ∶ [b, c] → C of γ2; then
g ∶ [a, c] → C defined by

g(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

g1(t), if a ≤ t ≤ b,
g2(t), if b ≤ t ≤ c

is a parametrization of γ1 + γ2.

Given a path γ, we define −γ to be the path traversed in the opposite direction, i.e., the start
point of −γ is the end point of γ and conversely.

i



A. Analytic Function

Let γ be a path and F ∶ γ → C a continuous function on (the support of) γ. Then F (γ)
is the path such that if g ∶ [a, b] → C is a parametrization of γ then F ○ g ∶ [a, b] → C is a
parametrization of F (γ).

Definition A.1 (Homotopy). Let U ⊆ C and γ1, γ2 two paths in U with start point z0 and end
point z1. Then γ1, γ2 are homotopic in U if one can be continuously deformed into the other
within U . More precisely this means the following. There are parametrizations g1 ∶ [0,1] → C
of γ1, g2 ∶ [0,1] → C of γ2 and a continuous map H ∶ [0,1] × [0,1] → U with the following
properties,

H(0, t) = g1(t), H(1, t) = g(t), for 0 ≤ t ≤ 1;

H(s,0) = z0, H(s,1) = z1, for 0 ≤ s ≤ 1.

A.1.2. Definition of Line Integrals

All paths occurring in our context will be built up from circle segments and line segments. So for
our purposes, it suffices to define integrals of continuous functions along piecewise continuously
differentiable paths, these are paths of the shape γ1 + γ2 + ⋯ + γr, where γ1, γ2, . . . , γr are
continuously differentiable paths, and for i = 1, . . . , r − 1, the end point of γi coincides with
the start point of γi+1.

Let γ be a continuously differentiable path, and f ∶ γ → C a continuous function. Choose a
continuously differentiable parametrization g ∶ [a, b] → C of γ. Then we define

∫
γ

f(z) dz ∶=

b

∫
a

f (g (t)) g′(t) dt.

Further, we define the length of γ by

L(γ) ∶=

b

∫
a

∣g′(t)∣ dt.

If γ = γ1+γ2+⋯+γr is a piecewise continuously differentiable path with continuously differentiable
pieces γ1, γ2, . . . , γr and f ∶ γ → C is continuous, we define

∫
γ

f(z) dz ∶=
r

∑
i=1
∫
γi

f(z) dz

ii



A. Analytic Function

and

L(γ) ∶=
r

∑
i=1

L (γi) .

In case that γ is closed, we write

∮
γ

f(z) dz.

A.2. Complex Analysis

This section is based on [10, Section 0.7.1-0.7.3, Page 25-34].

A.2.1. Basics

Let U be a non-empty open subset of C and f ∶ U → C a function. We say that f is holomorphic
or analytic in z0 ∈ U , if

lim
z→z0

f(z) − f (z0)

z − z0
exists.

In that case, the limit is denoted by f ′ (z0). We say that f is analytic on U if f is analytic
in every z ∈ U ; in that case, the derivative f ′(z) is defined for every z ∈ U . We say that f is
analytic around z0 if it is analytic on some open disk D (z0, δ) = {z ∈ C ∶ ∣z − z0∣ < δ} for some
δ > 0. Finally, given a not necessarily open subset A of C and a function f ∶ A→ C, we say that
f is analytic on A if there is an open set A ⊆ U such that f is defined on U and analytic on U .
An everywhere analytic function f ∶ C→ C is called entire.

Recall that a power series around z0 ∈ C is an infinite sum

f(z) =
∞
∑
n=0

an (z − z0)
n

with an ∈ C for all n ∈ Z+0 . The radius of convergence of this series is given by

R = Rf = (lim sup
n→∞

n
√

∣an∣)
−1

. (A.2.1)

We state without proof the following fact.
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A. Analytic Function

Theorem A.2. By [10, Theorem 0.19], let z0 ∈ C and f(z) =
∞
∑
n=0

an (z − z0)
n a power series

around z0 ∈ C with radius of convergence R > 0. Then f defines a function on D (z0,R), which
is analytic infinitely often. For k ≥ 0 the k-th derivative f (k) of f has a power series expansion
with radius of convergence R given by

f (k)
(z) =

∞
∑
n=k

n (n − 1)⋯(n − k + 1)an (z − z0)
n−k . △

A.2.2. Cauchy’s Theorem and Some Applications

Theorem A.3 (Cauchy’s Theorem). Let U ⊆ C be a non-empty open set and f ∶ U → C an
analytic function. Further, let γ1, γ2 be two paths in U with the same start point and end point
that are homotopic in U . Then

∫
γ1

f(z) dz = ∫
γ2

f(z) dz. △

Corollary A.4. By [10, Corollary 0.21], let γ1, γ2 be two contours, such that γ2 is contained
in the interior of γ1. Let U ⊆ C be an open set which contains γ1, γ2 and the region between γ1

and γ2. Further, let f ∶ U → C be an analytic function. Then

∮
γ1

f(z) dz = ∮
γ2

f(z) dz. △

Proof. Let z0, z1 be points on γ1, γ2 respectively and let α be a path from z0 to z1 lying inside
the region between γ1 and γ2 without self-intersections. Then γ1 is homotopic in U to the path
α + γ2 − α, which consists of first traversing α, then γ2 and then α in the opposite direction.
Hence, by Theorem A.3,

∮
γ1

f(z) dz =
⎛
⎜
⎝
∫
α

+∮
γ2

−∫
α

⎞
⎟
⎠
f(z) dz = ∮

γ2

f(z) dz. ∎

Corollary A.5 (Cauchy’s Integral Formula). By [10, Corollary 0.22], let γ be a contour in
C, U ⊆ C an open set containing γ and its interior, z0 a point in the interior of γ and f ∶ U → C
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an analytic function. Then

1

2πi
∮
γ

f(z)

z − z0
dz = f (z0) . △

Proof. Let γz0,δ be the circle with center z0 and radius δ, traversed counterclockwise. Then by
Corollary A.4 we have for any sufficiently small δ > 0,

1

2πi
∮
γ

f (z)

z − z0
dz =

1

2πi
∮

γz0,δ

f (z)

z − z0
dz.

Furthermore, f is continuous, hence uniformly continuous on any sufficiently small compact set
containing z0,

RRRRRRRRRRRRR

1

2πi
∮
γ

f (z)

z − z0
dz − f (z0)

RRRRRRRRRRRRR

=

RRRRRRRRRRRRRR

1

2πi
∮

γz0,δ

f (z)

z − z0
dz − f (z0)

RRRRRRRRRRRRRR

=

RRRRRRRRRRRRR

1

∫

0

f (z0 + δe
2πit)

δe2πit
δe2πit dt − f (z0)

RRRRRRRRRRRRR

=

RRRRRRRRRRRRR

1

∫

0

f (z0 + δe
2πit) − f (z0) dt

RRRRRRRRRRRRR

≤ sup
0≤t≤1

∣f (z0 + δe
2πit) − f (z0)∣

δ↘0
ÐÐ→ 0.

This completes our proof. ∎

A.2.3. Taylor Series

Theorem A.6. By [10, Theorem 0.25], let U ⊆ C be a non-empty, open set and f ∶ U → C an
analytic function. Further, let z0 ∈ U and R > 0 be such that D (z0,R) ⊆ U . Then f has a
Taylor series expansion

f (z) =
∞
∑
n=0

an (z − z0)
n

converging for z ∈D (z0,R). Further, we have for n ∈ Z+0 ,

an =
1

2πi
∮
z0,r

f(z)

(z − z0)
n+1

dz (A.2.2)

for any r with 0 < r < R. △
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Proof. We fix z ∈ D (z0,R) and use w to indicate a complex variable. Choose r with ∣z − z0∣ <

r < R. By Corollary A.5,

f(z) =
1

2πi
∮

γz0,r

f(w)

w − z
dw.

We rewrite the integrand.

f(w)

w − z
=

f(w)

(w − z0) − (z − z0)
=
f(w)

w − z0
(1 −

z − z0

w − z0
)
−1

=
f(w)

w − z0

∞
∑
n=0

(
z − z0

w − z0
)
n

=
∞
∑
n=0

f(w)

w − zn+1
0

(z − z0)
n .

The lattr series converges uniformly on γz0,r. Let M ∶= sup
w∈γz0,r

∣f (w)∣. Then

sup
w∈γz0,r

∣
f(w)

w − zn+1
0

(z − z0)
n
∣ ≤

M

r
(
∣z − z0∣

r
)

n

=∶Mn

and
∞
∑
n=0

Mn converges since ∣z − z0∣ < r. Consequently,

f(z) =
1

2πi
∮

γz0,r

f(w)

w − z
dw =

1

2πi
∮

γz0,r

∞
∑
n=0

f(w)

w − zn+1
0

(z − z0)
n dw =

∞
∑
n=0

(z − z0)
n
⎛
⎜
⎝

1

2πi
∮

γz0,r

f(w)

w − zn+1
0

dw
⎞
⎟
⎠
.

Now Theorem A.6 follows since by Corollary A.4 the integral in (A.2.2) is independent of r.∎

Corollary A.7. By [10, Corollary 0.26], let U ⊆ C be a non-empty, open set and f ∶ U → C
an analytic function. Then f is analytic on U infinitely often, i.e., for every k ≥ 0 the k-the
derivative f (k) exists and is analytic on U . △

Proof. Let z arbitrary in U . Choose δ > 0 such that D (z, δ) ⊆ U . Then for w ∈ D (z, δ) we
have for 0 < r < δ,

f(w) =
∞
∑
n=0

an (w − z)n , an =
1

2πi
∮
γz,r

f(w)

(w − z)n+1
dw.

Now for every k ≥ 0, the k-th derivative f (k)(z) exists and is equal to k!ak. Since, by Theorem
A.2,

f (k)
(w)∣

w=z
=

∞
∑
n=k

n (n − 1)⋯(n − k + 1)an (w − z)n−k∣
w=z

= n (n − 1)⋯(n − k + 1)an (w − z)n−k∣
w=z,n=k

= k!ak. ∎

vi



A. Analytic Function

Corollary A.8. By [10, Corollary 0.27], let γ be a contour in C and U an open subset of C
containing γ and its interior. Further, let f ∶ U → C be an analytic function. Then for every z
in the interior of γ and every k ≥ 0 we have

f (k)
(z) =

k!

2πi
∮
γ

f(w)

(w − z)k+1
dw. △

Proof. Choose δ > 0 such that γz,δ lies in the interior of γ. By Corollary A.4,

1

2πi
∮
γ

f(w)

(w − z)k+1
dw =

1

2πi
∮
γz,δ

f(w)

(w − z)k+1
dw.

By the argument in Corollary A.7, this is equal to f(k)(z)
k! . ∎
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