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Assessing indoor spaces in existing buildings has recently evolved beyond conven-

tional measurement techniques. Contemporary practices now involve point cloud uti-

lizing laser scanners, enabling precise spatial data capture. This thesis delves into 

transforming segmented point cloud data into parametric 3D models. This transfor-

mation is accomplished via a structured framework. The primary objective of this re-

search is to harness the potential of segmented point cloud data for parametric mod-

eling of indoor space. This modeling process plays a crucial role when the functionality 

of a building undergoes changes or when there is a need to enhance facility manage-

ment workflows and achieve additional objectives. The input of the proposed frame-

work includes 3D semantic segmented and space-wise labeled point clouds and the 

adjacency matrices among corresponding spaces. The outcome of the study consists 

of parametric models, which provide a detailed representation of the indoor environ-

ment, such as space dimensions, height, boundary thickness, and lengths. The pro-

posed method is tested and validated on different datasets. The results show the ef-

fectiveness of the proposed method in creating a parametric model. The average ac-

curacy of the constructed walls in the constructed model and the reference model is 

0.13 m in length and less than 0.1 m in width, and height. 
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Die Bewertung von Innenräumen in bestehenden Gebäuden hat sich in jüngster Zeit 

über herkömmliche Messverfahren hinaus entwickelt. Heute werden Punktwolken mit 

Hilfe von Laserscannern erstellt, die eine präzise Erfassung räumlicher Daten ermög-

lichen. Diese Arbeit befasst sich mit der Umwandlung von segmentierten Punktwol-

kendaten in parametrische 3D-Modelle. Diese Umwandlung wird mit Hilfe eines struk-

turierten Rahmens durchgeführt. Das primäre Ziel dieser Arbeit ist es, das Potenzial 

von segmentierten Punktwolkendaten für die parametrische Modellierung von Innen-

räumen zu nutzen. Dieser Modellierungsprozess spielt eine entscheidende Rolle, 

wenn sich die Funktionalität eines Gebäudes ändert oder wenn die Arbeitsabläufe im 

Facility Management verbessert und zusätzliche Ziele erreicht werden sollen. Die Ein-

gabe des vorgeschlagenen Rahmens umfasst semantisch segmentierte und raum-

weise beschriftete 3D-Punktwolken und die Adjazenz Matrizen zwischen den entspre-

chenden Räumen. Das Ergebnis der Studie besteht aus parametrischen Modellen, die 

eine detaillierte Darstellung der Innenraumumgebung liefern, z. B. Raumabmessun-

gen, Höhe, Grenzdicke und -länge. Die vorgeschlagene Methode wurde an verschie-

denen Datensätzen getestet und validiert. Die Ergebnisse zeigen die Wirksamkeit der 

vorgeschlagenen Methode bei der Erstellung eines parametrischen Modells. Die 

durchschnittliche Genauigkeit der konstruierten Wände im konstruierten Modell und im 

Referenzmodell beträgt 0,13 m in der Länge und weniger als 0,1 m in der Breite und 

in der Höhe. 
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1.1 Preface 

BIM and DT are pivotal technologies designed to offer virtual digital representations of 

constructed structures and buildings for vital functions such as examination, strategiz-

ing, administration, and regulation (Bortoluzzi et al., 2019) (Boje et al., 2020). These 

technologies have garnered substantial attention due to their transformative potential 

in building design, construction, and facility management, offering enhanced insights 

and capabilities (Sepasgozar et al., 2023). BIM provides a collaborative way for multi-

disciplinary information storing, sharing, exchanging, and managing throughout the 

real estate asset life cycle (L. Tang et al., 2017). 

DT is a virtual depiction of a tangible entity, mechanism, or operation, offering imme-

diate observations and examination in real-time (Voas et al., 2021). It is a powerful tool 

across various industries, including manufacturing and construction. Digital twins ena-

ble continuous monitoring, analysis, and optimization of physical assets and opera-

tions. By integrating data from sensors and other sources, they facilitate data-driven 

decision-making and predictive maintenance (van Dinter et al., 2022). Digital twins are 

becoming increasingly essential in complex systems, offering opportunities for im-

proved building efficiency, sustainability, and innovation (Michael Grieves and John 

Vickers, 2017). The process of building digital twinning via laser scanner point cloud 

datasets involves the creation of a virtual duplicate of a building's physical assets. This 

is accomplished by utilizing data acquired from both indoor and exterior spaces. De-

spite the potential advantages offered by high-density point cloud collection in terms of 

speed and precision, it is worth noting that scanning large-scale buildings remains a 

challenging endeavor. This is primarily due to factoring space layouts, clutter, and ob-

structions (Ochmann et al., 2016). 

In recent years, advanced technologies like BIM and DT have been used to improve 

the life cycle of the building (Barazzetti, 2016). One popular method for creating BIM 

models from an existing environment is known as "SCAN-to-BIM," which involves us-

1 Introduction 
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ing remote sensing technologies such as laser scanning and photogrammetry to cap-

ture 3D data from a physical building and then processing that data to create a BIM 

model with coherent geometry (Pepe et al., 2021). 

In this thesis, we expound upon the procedural intricacies of converting segmented 

point cloud data into parametric models. This process serves as the cornerstone for 

the comprehensive reconstruction of indoor spaces. Our primary objective revolves 

around architectural structures, evolving functional requirements, and streamlining fa-

cility management workflows. The methodology is designed to fortify building manage-

ment practices, enhance operational efficiency, and promote sustainability within the 

dynamic milieu of AEC environments. 

1.2 Motivation 

The construction sector grapples with harmonizing the digital and physical realms. A 

significant hurdle lies in the disconnect between data analysis and subsequent actions, 

leading to fragmented information, redundant data, and inefficiencies spanning the en-

tire building lifecycle (J. Zhang et al., 2022). 

Creating a building floor plan is considered an essential initial step in constructing a 

3D virtual DT model, as it provides the basic layout and structure of the building 

(Mehranfar et al., 2022). Once the floor plan is established, additional parameters such 

as wall thickness, ceiling height, and material properties can be added to a parametric 

model to create a more comprehensive representation of the building. This digital par-

ametric model has numerous applications in the AEC industry (Adán et al., 2023).  

The generated digital parametrized model can be used for virtual reality applications, 

such as developing a hybrid model for building energy consumption prediction consid-

ering building envelope retrofitting, indoor navigation, robotic applications, and remote 

collaboration (Donato, 2015).  

The process of parametric modeling using space-wise segmented point cloud data 

represents a pivotal methodology in generating precise and intricate 3D representa-

tions of building indoor environments. The parametric model encompasses variables 

for walls’ locations, dimensions, and areas of space. These parametric models em-

power users to customize the model to suit diverse objectives, hold substantial utility 

across various applications. 
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1.3 Research objectives 

The objective of this thesis is to create a parametric model of the building indoor envi-

ronment based on segmented point cloud data. This endeavor encompasses several 

vital steps, including the use of the segmented point cloud of the indoor environment 

to extract the adjacency matrix for the relation of the spaces and the extraction of ge-

ometric attributes such as width, length, height, and the quantification of walls. The 

proposed methodology initially entails the establishment of spatial boundaries. Subse-

quently, the model is fine-tuned to align with the data points by manipulating global 

wall parameters for further layout optimization. 

These data play a pivotal role in the construction of a comprehensive 3D digital repre-

sentation of the built environment. The approach adopted in this study effectively ad-

dresses various challenges encountered in previous solutions, including issues related 

to data volume. 

1.4 Thesis structure 

 The present thesis is structured as follows:  

- Chapter 2 provides an initial theoretical foundation for BIM and DT technologies, ex-

ploring the complexity of point cloud technology with a focus on the segmentation pro-

cess. Additionally, it reviews relevant research on the creation of parameterized mod-

els from indoor point clouds.  

- Chapter 3 focuses on the proposed methodology, intricately workflow underpinning 

the proposed approach and outlines the practical application of the proposed method-

ology, detailing the steps taken to execute the research plan.  

- Chapter 4 presents the empirical findings, data analysis, and their significance in 

addressing the research objectives and supporting or refuting the methodology. 

- Chapter 5 addresses the entirety of the research inquiries, engages in a comprehen-

sive discussion of the research findings, and encapsulates the contributions made by 

this thesis. Additionally, it delineates the constraints inherent in the proposed method-

ology and contemplates prospects for its ongoing enhancement. 
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This chapter delves into the theoretical foundation and concepts to foster a more pro-

found comprehension of this thesis's terminologies, techniques, and procedures. 

2.1 Building Information Modeling  

BIM represents a comprehensive digital depiction of a constructed facility, rich in infor-

mational content. It typically encompasses the 3D geometry of building elements at a 

specified level of detail. Additionally, it includes non-physical entities like spaces and 

zones, a hierarchical project structure, and schedules. Objects within this model are 

generally associated with precise semantic parameters, such as component types, 

materials, technical attributes, costs, and the relationships between components and 

other physical entities. Consequently, the term BIM encompasses both the process of 

creating these parametric digital building models and the processes involved in main-

taining, utilizing, and exchanging them throughout the entire lifespan of the constructed 

facility (Borrmann et al., 2018). 

The parametric BIM model is crucial for representing and managing building infor-

mation. BIM Parameters allow for the definition and control of various aspects of build-

ing elements, from their geometric characteristics to their associated data. The ability 

to define and manipulate these parameters is central to the efficiency and accuracy of 

the BIM process (Mora et al., 2020). Parametric BIM enhances design efficiency 

through intelligent modeling. The ability to create designs driven by parameters and 

rules ensures consistency and reduces design errors (Eastman et al., 2008). These 

models enable rapid prototyping, iteration, and automation of design processes, ulti-

mately saving time and resources (Becerik-Gerber et al., 2012). It fosters improved 

collaboration among AEC stakeholders. The models are accessible to all project team 

members, allowing architects, engineers, and contractors to work in a shared environ-

ment. Collaborative decision-making based on real-time data leads to a reduction in 

conflicts and rework (Azhar, 2011). Parametric BIM provides precise cost estimation 

capabilities by integrating cost data with the model (Eastman et al., 2008). This inte-

gration allows for real-time cost tracking and helps project managers make informed 

2 State of the art 
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decisions on budget allocation (Elmualim et al., 2010). Figure 2.1 shows a BIM model 

of two floors and a basement containing walls and floor objects. 

 

Figure 2. 1: Example of the BIM model (Abu-Hamd, 2015) 

2.1.1 Evolution of BIM 

BIM gained momentum in the early 2000s through companies like Autodesk and Bent-

ley Systems, primarily targeting cost-effective solutions for large-scale construction 

projects, including visual and quantitative representations, material procurement, and 

scheduling. Over time, BIM evolved into a repository of geometric and semantic build-

ing information repositories collaboration across design, construction, and operation 

phases. Digital prototypes facilitate pre-construction testing (Eastman et al., 2008). In-

itially, BIM faced a slow adoption rate, evolving from manual drafting to CAD and com-

puter-based systems. The building information exchange suffered from inefficiencies, 

rework, data loss, and falsification due to paper-based methods. BIM revolutionized 
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this by offering end-to-end project support, ensuring a transparent model flow through-

out the lifecycle, enhancing efficiency, and promoting information integration among 

stakeholders. Visualization and simulation capabilities enable aesthetic design, user 

value interpretation, risk reduction, and comprehensive analysis, covering energy con-

sumption and workflow. (J. Zhang et al., 2022) 

2.1.2 BIM Dimensions and LODs 

BIM has undergone significant development, encompassing diverse dimensions. 

These dimensions contain 4D, representing time-related aspects; 5D, which pertains 

to cost considerations; 6D, which focuses on sustainability and energy performance; 

and most prominently, 7D, which addresses the realm of facility management. These 

dimensions add layers of information and functionality to the core BIM model, trans-

forming it into a comprehensive tool for the entire building lifecycle. (Charef et al., 2018) 

In Figure 2.2, a graphical representation is presented that encapsulates the concept of 

BIM dimensions, along with associated attributes elucidating the characteristics and 

functionalities of each dimension. 

 

Figure 2. 2: BIM dimensions (Max Rodriguez, 2022) 
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BIM is renowned for its 3D geometric modeling capabilities. The representation of 

buildings in 3D enables enhanced visualization and spatial analysis. It incorporates a 

range of elements, including the LOD and the LOG, which play critical roles in the 

effectiveness of BIM processes through the project life cycle. The LOD reflects the 

detail and accuracy of the design, materials, components, and systems. The LOD 

helps to improve collaboration and coordination among different stakeholders and dis-

ciplines with a clear understanding of the level of detail and information from the BIM 

model required. LOD is categorized according to stages ranging from 100 to 500, 

where the numbers represent a lower to a high level of completeness of the BIM model 

as it relates to each phase of the Building Lifecycle. The LOD is measured according 

to LOG and LOI, as shown in Figure 2.3. LOG focuses on the appearance of the ob-

jects in a model, while LOI focuses on the properties of the things in a model. (Oliver 

Eischet, 2023) 

 

Figure 2. 3: BIM Levels of development as related to all phases of the building lifecycle (Oliver Eischet, 

2023) 

2.1.3 BIM and facility management 

Effective facility management can help ensure the safety and compliance of the real 

estate, protect assets, improve employee productivity, and reduce costs. For example, 

a study conducted by the IFMA found that effective facility management can lead to 

savings of up to 20% on overall operating costs (Bortoluzzi et al., 2019). The seventh 
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dimension extends BIM into the operational phase. It incorporates real-time data re-

lated to facility management, including equipment performance, energy consumption, 

and occupancy patterns. By connecting IoT devices and sensors, facility managers 

gain a holistic view of the building's performance. This data-driven approach optimizes 

maintenance schedules, minimizes downtime, and reduces operational costs. This 

multidimensional approach aligns with the growing demand for more innovative, effi-

cient, and sustainable built environments. BIM's contribution to facilities extends to life-

cycle management, allowing for better decision-making regarding renovations, expan-

sions, or maintenance interventions (Gholizadeh et al., 2018). 

2.2   Digital Twin 

2.2.1 Digital Twin definition 

The term "Digital Twin" encompasses several distinct definitions across various fields 

of application. One such definition posits that a DT is a realistic representation of a 

physical object (Wicaksana & Rachman, 2018). Another perspective defines a digital 

image of a value object, process, or system in the built or natural environment (Bolton 

A., 2018). Yet another interpretation characterizes a Digital Twin as a true-to-life de-

piction of the operational dynamics inherent to its physical counterpart. This fidelity is 

made possible through near real-time synchronization between the digital realm and 

the physical domain (Schleich et al., 2017). 

Notably, utilizing DT should yield tangible benefits, including cost reduction, time sav-

ings, and enhanced comprehension of system interrelationships. DTs find applications 

in many domains, serving diverse purposes such as system analysis, predictive mod-

eling, and support for conservation management efforts. Their versatility extends 

across various disciplines, encompassing mechanical engineering, aerospace, manu-

facturing systems, and civil engineering, where their transformative potential is har-

nessed for manifold objectives (Bolton A., 2018). it furnishes actionable insights that 

are readily comprehensible and adeptly communicated, thus facilitating the establish-

ment of trust among stakeholders and lending substantial support to the decision-mak-

ing apparatus. (Akanmu et al., 2021) 

DT is a dynamic simulation model that faithfully mirrors the present state of an opera-

tional system. It enables a spectrum of functions, including experimentation, in-depth 
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analysis, and effective communication. Consequently, the digital twin framework be-

comes a conduit for formulating hypothetical scenarios needed to unravel intricate sys-

tem behaviors and validate outcomes across multiple hierarchical levels (Davila Del-

gado & Oyedele, 2021). 

2.2.2 Integration of DT with different technologies 

Numerous studies have been conducted to study the relationship between DT and BIM 

and are divided into four primary categories. Some researchers have posited the as-

sumption that BIM is a component of DT. BIM is the initial step towards Industry 4.0, 

encompassing virtual reality and DT. Integrating BIM models into DT information sys-

tems can enhance organizational operations. The construction industry uses BIM data 

to create DT (Gurevich & Sacks, 2020).  

In contrast, other researchers consider DT a subset of BIM. They think of DT as a 

multidimensional digital representation of physical assets that can accelerate BIM's 

development and benefits in the construction industry (Moretti et al., 2021; Zhao et al., 

2021).On the other hand, it is considered that DT is used to map and store component 

information of existing facilities within BIM, maintaining consistency, (Kaewunruen & 

Lian, 2019). Some researchers use DT as a synonym for BIM, stating that BIM is, in 

fact, a form of DT (Sacks et al., 2020), (Twin, 2022). Figure 2.4 illustrates the distribu-

tion of researchers based on their varying definitions of the relationship between DT 

and BIM. 

 

Figure 2. 4: The relationship between DT and BIM (Twin, 2022) 
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Within the construction domain, the term DT assumes three distinct usages: In the 

context of the construction industry, DT denotes a genuine representation of struc-

tures, processes, or systems. It pertains to a realistic digital portrayal confined within 

the construction sector. Secondly, DT emerges as an extension of BIM, encompassing 

data acquisition and processing systems. This interpretation even posits DT as a com-

prehensive replacement for BIM technology in certain instances. Under this perspec-

tive, various DTs are employed for discrete phases of the construction process, sug-

gesting a phased implementation. DT is delineated as a closed-loop digital-physical 

system designed for the operational management of structures. This conceptualization 

extends beyond the design and construction phases to encompass constructed assets' 

ongoing operating life cycle, which will be discussed in more detail. (Boje et al., 2020) 

The information mirroring model and later refined as the mirrored spaces model. Until 

recently, these concepts were collectively referred to as Digital Twins. DT opens fresh 

perspectives and research avenues for scholars and academics, particularly in areas 

like integrating BIM and DT for sustainable design and construction (Nguyen & Adhi-

kari, 2023). 

Recently, BIM still needs to create intricate digital models encompassing the physical 

and functional attributes of buildings throughout their visual representation and mainte-

nance (L. Tang et al., 2017). It has emerged as a collaborative approach that fosters 

efficient communication among various stakeholders involved in the construction pro-

cess (Bosché et al., 2015). This not only streamlines decision-making but also aids in 

optimizing building performance. On the other hand, digital twinning involves replicat-

ing physical structures in a digital format, enabling real-time monitoring and assess-

ment (Lu & Brilakis, 2019). 

Recent advancements have propelled the development of sensors and reality-captur-

ing methodologies, ushering in a new era of precision and accuracy in data collection 

and representation. This progress has been instrumental in bolstering the capabilities 

of both BIM and DT technologies (Alizadehsalehi & Yitmen, 2023). Integrating ad-

vanced sensors, such as LiDAR and 3D scanners, has facilitated the meticulous cap-

ture of building geometry and attributes, creating highly detailed digital replicas. (Kan-

taros et al., 2023) 
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2.2.3 Use of DT in the building life cycle 

DT has various criteria that are identified for describing and categorizing. These criteria 

include representation accuracy, creation timeline, potential applications, maturity 

level, degree of integration, and hierarchy, among others, which serve as distinguish-

ing points. We will focus on the creation of timeline classification. (Gurevich & Sacks, 

2020) 

DT can be established at various stages in a project's lifecycle. The timing of their 

development distinguishes them, with early creation being the most efficient, enabling 

extensive data accumulation. DT is known as DTP when generated before the physical 

construction phase. This DTP is a prototype of the future real-world object and contains 

essential information like material quantities, 3D models, and simulation results. DTP’s 

development begins virtually, facilitating various tests for construction optimization (Mi-

chael Grieves and John Vickers, 2017). On the other hand, a DTI is initiated at the 

outset of production, continuously updated with real-world data after construction con-

cludes, providing an accurate representation of the system's current state and predic-

tive capabilities. The construction industry also employs a hybrid approach, blending 

elements of DTP and DTI methods. (Gurevich & Sacks, 2020) 

 

Figure 2. 5: Life cycle of physical and digital building twins (Sacks et al., 2020) 
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A digital model is crafted according to the client's specifications during the design 

phase. LOG and LOD of this model progressively increase during the planning phase. 

Following the analogy of human development stages, this digital model is called a 

"Foetal Digital Twin" by (Sacks et al., 2020). In this developmental phase, the DT 

serves as a foundation for simulations and optimizations of the construction process 

and is denoted as a DTP (Michael Grieves and John Vickers, 2017). 

Once construction begins, the physical twin is brought into existence, and its level of 

detail increases throughout the construction phase. The real-time construction pro-

gress is simultaneously reflected in the "Child Digital Twin" through the "As-built prod-

uct." After construction, the actual system's information content changes minimally, 

while the digital system continues receiving new data through sensors and state infor-

mation (Sacks et al., 2020). This continuous enrichment of the DT with sensor data 

over its lifecycle aligns with the concept of a DTI as described by (Michael Grieves and 

John Vickers, 2017). Figure 2.5 shows the life cycle of DT in building construction pro-

jects. 

2.3 Scan-to-BIM 

Scan-to-BIM is a transformative process in architecture and construction that involves 

converting laser-scanned point cloud data into BIM (Andriasyan et al., 2020). The pri-

mary purpose of the Scan-to-BIM process is to offer a high degree of accuracy, cap-

turing intricate details of existing structures with precision (Bosché et al., 2015). It fa-

cilitates clash detection, helping identify potential conflicts between new and existing 

building elements (Kor et al., 2023). Scan-to-BIM aids facility managers in efficiently 

maintaining and managing buildings by offering a comprehensive digital twin (Hosamo 

et al., 2023). 

2.3.1 Point cloud 

A widely recognized form of 3D data representation is the point cloud. It is character-

ized by an ensemble of unstructured points defined by their 3D coordinates (x, y, z). 

Point clouds portray the occupied space exclusively, leaving unoccupied or undefined 

space (Bello et al., 2020). Some point clouds include color or intensity information, 

enhancing visual realism (Tatoglu & Pochiraju, 2012). Point clouds can vary in point 

density, with denser clouds providing more detailed representations. While the location 
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of sources significantly affects the quality of parts (Xu et al., 2017). Figure 2.6 shows 

a sample point cloud dataset from building No.1 of the Technical University of Munich.  

 

Figure 2. 6:  Sample indoor point cloud data. 

Point clouds provide exceptionally accurate representations of objects and environ-

ments, making them indispensable for tasks requiring precision (Yang et al., 2020), 

such as the following phases: 

• Pre-construction phase: precise as-built documentation from high-density point 

cloud data provides a detailed view of a location's topography, structures, utilities, 

and infrastructure. Designers and engineers utilize this data to create plans that 

seamlessly integrate with existing conditions, reducing conflicts and ensuring pro-

ject feasibility (P. Tang et al., 2010). Figure 2.7 represents a point cloud dataset 

depicting an outdoor environment coexisting with a BIM model. 

• Design and planning phase: accurate as-built documentation is crucial for design, 

planning, and immersive 3D visualization. BIM software combines reality capture 

hardware's point clouds to create precise 3D models. This allows construction pro-

fessionals to identify issues, make informed decisions, and optimize designs effec-

tively. (Macher et al., 2017).  
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• Construction phase: Accurate as-built documentation remains crucial. Construction 

teams can acquire point cloud data to compare with design models at different pro-

ject stages. This early identification of deviations and conflicts ensures alignment 

with the design, minimizing costly re-work and ensuring establishing connectivity.  

 

 

Figure 2. 7: Point cloud of the existing building environment (overlapping with the BIM model) 

• As-built phase: The point cloud of the completed project serves as a precise and 

detailed digital record of the natural world, facilitating as-built documentation and 

preservation of historical or architectural heritage, creating enhancements, manage-

ment, and future modifications. Facility managers and owners leverage this docu-

mentation to grasp the structure, streamline maintenance, locate specific compo-

nents, and monitor post-construction changes, ensuring sustained and sustainable 

use of the facility. (Tsay et al., 2022) 

2.3.2 Point cloud acquisition 

Over time, advancements and developments in point cloud acquisition techniques 

such as laser scanning, photogrammetry, and others have refined the generation and 

utilization of point cloud data (Wang et al., 2018). Numerous methodologies have been 

developed for the acquisition of point cloud data, for instance: 

• Image-derived methodologies directly yield spectral imagery data. This process com-

mences with the acquisition of stereo or multi-view images employing electro-optical 

systems, such as cameras. Subsequently, 3D point information is computed based on 

the principles derived from photogrammetry or computer vision theory, either autono-

mously or in a semi-automated manner. Depending on the distinct platforms involved, 
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stereo and multi-view image-derived systems can be categorized as airborne, space-

borne, UAV-based, or close-range systems. (Javadnejad et al., 2020) In the early 

stages of aerial traditional photogrammetry, 3D point data were generated with a semi-

automated human-computer interaction in digital photogrammetric systems. This ap-

proach was characterized by stringent geometric constraints and high survey accuracy 

but was time-consuming due to manual labor requirements. Consequently, it was not 

practical to generate dense point datasets over extensive areas. These early image-

based point clouds found utility in surveying and remote sensing, particularly in the 

creation of DSMs and DEMs. (Rakotosaona et al., 2020) 

 

Figure 2. 8: Image-derived point cloud sample (Montgomery et al., 2021) 

However, due to limitations in image resolution and the processing capabilities of multi-

view images, traditional photogrammetry was constrained to acquiring close to nadir 

views with a limited representation of building facades from aerial or satellite platforms, 

leading to the generation of 2.5D point clouds rather than complete 3D models. In spe-

cific scenarios, photogrammetry principles could be applied as close-range photogram-

metry to obtain points from objects or small-area scenes. However, manual editing was 

often required at this point of the cloud generation process (Mielcarek et al., 2020). 

• LiDAR point cloud generation is a fundamental component of surveying and remote 

sensing technology. Most LiDAR systems operate on a pulse-based methodology, 

wherein a laser pulse is emitted, and the time taken for this pulse to traverse the dis-

tance to the target is measured. The resultant point cloud exhibits considerable varia-

tion in point density or resolution, ranging from less than 10 points per square meter 
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(pts/m2) to many thousands of pts/m2. LiDAR scanning systems are divided into the 

following methods: 

a) Aerial LiDAR system acquired 2.5D point clouds from airborne LiDAR sensors. 

These point clouds are commonly used in topographic mapping and forestry (Sam-

path & Shan, 2010). 

b) Terrestrial LiDAR captured from stationary terrestrial LiDAR scanners, these point 

clouds are suitable for indoor and outdoor environments (Heo et al., 2013). 

 

Figure 2. 9: Dense TLS indoor point cloud of a building at Oregon State University (Person et al., 

2022) 

c) Mobile LiDAR operates from ground vehicles, primarily used for HD mapping 

(Hackel et al., 2017). 

d) Unmanned LiDAR operates from drones collecting dense point clouds, and it is 

helpful for agriculture and forestry surveying, disaster monitoring, and mining sur-

veying applications (Z. Zhang & Zhu, 2023). 

LiDAR is crucial for various applications and has been a primary data source for point 

cloud research and quality evaluation (Elhashash et al., 2022).  

• RGB-D Point Cloud is captured from an RGB-D camera, which is a type of sensor 

capable of simultaneously capturing RGB color and depth information. Three primary 

categories of RGB-D sensors exist, each based on different principles such as struc-

tured light, stereo vision, and Time-of-flight. Similar to LiDAR systems, an RGB-D cam-

era can measure the distance between the camera and objects, but it does so on a 

pixel-wise basis. Notably, RGB-D sensors are significantly more cost-effective com-
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pared to LiDAR systems (Collings et al., 2015). Within an RGB-D camera, relative ori-

entation parameters among various sensors are calibrated and known, facilitating the 

synchronized acquisition of RGB images and depth maps. While the point cloud is not 

a direct output of RGB-D scanning, the known position of the camera's center point 

enables the straightforward determination of the 3D spatial position of each pixel in a 

depth map, which can then be directly employed to generate the point cloud. (Cui et 

al., 2022) 

 

 

Figure 2. 10: Point cloud captured by RGB-D camera in typical indoor scenes (Chen et al., 2018) 

• SAR Point Clouds or Interferometric Synthetic Aperture Radar is a vital remote sensing 

radar technique that produces maps of surface deformation and digital elevation by 

comparing multiple SAR image pairs. In recent years, SAR point clouds have gained 

prominence, opening new possibilities for various applications. Two significant tech-

niques, Synthetic Aperture Radar Tomography, and Persistent Scatterer Interferome-

try, extend SAR principles into 3D. Synthetic Aperture Radar Tomography excels in 

detailed urban area reconstruction, while Persistent Scatterer Interferometry achieves 

denser point clouds comparable to Aerial LiDAR. These point clouds are valuable for 

urban building reconstruction, offering insight into building facades, temporal defor-

mation, and microwave scattering properties. (Burgmann et al., 2000) 

2.3.3 Point cloud preprocessing 

The accuracy and completeness of point clouds can be affected by scanning equip-

ment limitations, such as occlusions or environmental conditions. Factors such as ob-
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structions in the scanning path or adverse weather conditions can impede the scan-

ner's ability to capture data accurately. These limitations underscore the importance of 

considering environmental factors and ensuring unobstructed line-of-sight during scan-

ning processes to attain high-quality point cloud data, which is crucial for various 

(Abreu et al., 2023). Point clouds can represent irregular shapes and complex geom-

etries with high fidelity, meaning the points are not evenly sampled across the different 

regions of an object/scene (Bello et al., 2020). Therefore, performing some pre-pro-

cessing steps on the point cloud data is expected. This may include noise reduction, 

outlier removal, subsampling, and data alignment to ensure that the point cloud is as 

clean and accurate as possible (Rakotosaona et al., 2020).  

• Outlier Removal methodology used to mitigate noise, filtering, and smoothing meth-

ods are applied. Outliers can significantly increase the computational cost of subse-

quent algorithms, making their removal a crucial preprocessing step. Numerous ap-

proaches exist for outlier treatment, broadly categorized as traditional, wavelet-

based, and artificial intelligence AI-based methods. Traditional methods encompass 

distribution-based, depth-based, clustering, distance-based, and density-based 

techniques, but they struggle with high-dimensional data in sizeable 3D point clouds 

and real-time constraints (Zaman et al., 2017). Wavelet transformations and AI-

based methods serve as alternatives. Wavelet-based methods involve space trans-

formation to identify outliers in non-dense regions. AI methods employ neural net-

works, support vector machines, and fuzzy logic, offering the advantage of limited a 

priori assumptions on data. Nonetheless, the challenge of real-time outlier removal 

in sizeable 3D point clouds remains a concern, especially in AI approaches. (Li et 

al., 2015) 

 

Figure 2. 11: Results of outliers’ removal on a horse model: (a) The original point cloud (b) The outliers 

detected in red color, (c) The resultant point cloud after removing outliers (Zaman et al., 2017)  
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• Point cloud subsampling is a fundamental process in managing point cloud data, 

serving to reduce data volume while retaining essential geometric details. This op-

eration is critical for optimizing storage and computational efficiency in applications 

such as 3D modeling, robotics, and autonomous navigation. Various methods have 

been developed for point cloud subsampling. One widely used method is voxel grid 

subsampling, which segments the point cloud into uniform voxels and retains one 

point per voxel. This technique substantially decreases point cloud density without 

significant information loss and has been applied in numerous scenarios (Koide et 

al., 2023). Figure 2.12 shows the difference between an example of a point cloud 

before and after subsampling. 

 

Figure 2. 12: Point cloud subsampling. (a): the point cloud before subsampling. (b): the point cloud af-

ter down-sampling (Cai et al., 2021) 

Another approach is random sampling, where points are randomly selected from 

the original point cloud, and the density of the subsampled point cloud can be ad-

justed by varying the sampling rate. This technique is simple and computationally 

efficient, making it suitable for real-time applications. Advanced techniques con-

sider point saliency, such as Poisson disk sampling, which selectively retains 

points based on their importance to the overall object or scene shape. These meth-

ods are beneficial when preserving crucial features and details in the subsampled 

point cloud is necessary (Hu et al., 2022). 

• Point clouds from different sources or scans may not be initially aligned, making it 

crucial to perform data alignment for coherent modeling or analysis. ICP algorithms 
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(Besl & McKay, 1992) are widely used for point cloud registration. ICP iteratively 

refines the transformation parameters to align two or more point clouds, minimizing 

the overall error. 

In accordance with each project's specific requirements, supplementary post-pro-

cessing procedures on the segmented point clouds are decided. 

2.3.4 Point cloud processing 

Point cloud processing is a fundamental component of 3D data analysis and interpre-

tation, involving the manipulation, research, and extraction of valuable information from 

point cloud datasets. Various aspects of point cloud processing include segmentation, 

feature extraction, registration, classification, object recognition, and modeling. 

In the realm of 3D point cloud processing, point segmentation is pivotal in the Scan-to-

BIM process. The choice of segmentation criteria and algorithms should align with the 

specific goals and characteristics of the point cloud data (Varga & Healthineers, 2016). 

Point cloud segmentation encompasses various methodologies, which can be catego-

rized into both traditional and contemporary AI-based approaches. Traditional tech-

niques include edge-based methods, region growing, and model fitting. An example of 

a different way for point cloud Segmentation for various building categories is illustrated 

in Figure 2.13. 

 

Figure 2. 13 Point cloud segmentation (a) region-based, (b) model-based, (c) hybrid approach. (Shi et 

al., 2019): 

The following techniques can be enumerated for point cloud segmentation: 

• Edge-based segmentation method involves the identification of edges within an 

object, followed by the aggregation of data points located within these delineated 
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edges to assign the object to a defined element, as proposed. (Betsas & Georgop-

oulos, 2022). 

• Region-growing methods initiate their process from one or more initial points, com-

monly referred to as seed points, which exhibit distinct characteristics of interest. 

Subsequently, this method expands its influence by iteratively encompassing 

neighboring points sharing analogous elements, which may contain attributes such 

as surface orientation, curvature, and others, as described by (Rabbani et al., 

2006). Region-based approaches within this framework can be categorically delin-

eated into: 

a) Bottom-up approach: Data-driven techniques are often used while creating a 

building model using a point cloud dataset through the region-growing segmen-

tation and plan intersection. On the other side, the most problematic points are 

data density, the quality of the point cloud data can vary depending on the 

method used to capture it, and data complexity. Point clouds can contain vast 

amounts of data, making it challenging to extract relevant information efficiently. 

(Che et al., 2019) 

b) The top-down approach takes a massing or boundary as an input and a series 

of entities as fillers or targets for insertion. The input design is subdivided based 

on geometric constraints to assigning spaces. The transformations are done 

directly on the global boundary conditions, resulting in a solution always con-

forming to the initial boundary conditions. (Che et al., 2019) 

• Model fitting is grounded in the premise that numerous artificially fabricated objects 

can be deconstructed into fundamental geometric primitives, such as planes, cyl-

inders, and spheres, as illustrated in Figure 2.14 Consequently, these basic 

shapes are employed in the fitting of point cloud data, and the points that align with 

the mathematical representation of the respective primitive shape are ascribed to 

a singular segment. Within the paradigm of model fitting-based categorization, two 

extensively utilized algorithms include the Hough transform and the RANSAC 

method. (Buldo et al., 2023) 
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Figure 2. 14: Segmentation of 3D point cloud using geometric primitive fitting (Che et al., 2019) 

In recent years, notable advancements in artificial intelligence have revolutionized 

point cloud processing. Modern AI-driven methods have been developed to achieve 

tasks such as point cloud classification, semantic segmentation, and object detection. 

These AI-based approaches have demonstrated significant progress in enhancing the 

accuracy and efficiency of point cloud segmentation, marking a crucial shift in the field 

of 3D data analysis. (He et al., 2021) 

 

Figure 2. 15: Semantic segmentation of indoor point cloud. (Engelmann et al., 2017) 

• Regular supervised machine learning, referring to non-deep supervised learning 

algorithms. These approaches can be categorized into two main groups: individual 

point cloud semantic segmentation, which classifies each point or point cluster 

based solely on its features, and statistical contextual models. (Xie et al., 2020) 

Individual PCSS methods include classifiers like maximum Likelihood, Support 

vector machines, AdaBoost, Random Forests, and Bayesian discriminant classifi-

ers (Siemers & Bajorath, 2023). In contrast, statistical contextual models encom-

pass techniques like Conditional Random Fields and Markov Networks, aiming to 



 

  35 

 

alleviate noise issues inherent in individual classification. A regularization frame-

work is introduced to address these issues, improving PCSS accuracy. (Niemeyer 

et al., 2014) 

• Deep learning, a rapidly evolving technique in pattern recognition, computer vision, 

and data analysis, surpasses traditional approaches by utilizing multiple hidden 

layers to extract high-dimensional features from training data. (Te et al., 2018) 

While initially applied in 2D computer vision tasks, such as image recognition, ob-

ject detection, and semantic segmentation, its migration to 3D analysis gained 

prominence after 2015. (Engelmann et al., 2017) The concept of multiview-based 

methods and voxel-based 3D CNNs fueled this shift. Point cloud data poses unique 

challenges due to its unordered nature, necessitating preprocessing transfor-

mations. Deep learning-based PCSS methods can be categorized into multiview-

based, voxel-based, and point-based, depending on the format of ingested data, 

such as multiview-based, voxel-based, and directly process point cloud data. 

(Meng et al., 2019) 

• Hybrid segment-wise techniques have garnered attention recently. A hybrid ap-

proach typically consists of two key stages: employing an over-segmentation algo-

rithm for initial segmentation and subsequently applying PCSS to the segments 

generated in the first stage rather than individual points. Pre-segmentation serves 

a dual purpose in PCSS, reducing data volume and extracting local features. Over-

segmentation, a form of pre-segmentation generating super voxels, efficiently re-

duces data volume with minimal loss in accuracy (J. Zhang et al., 2013). Some 

PCSS studies also utilize non-semantic PCS methods for pre-segmentation. Deep 

learning methods incorporate super point structures or supervised algorithms for 

effective pre-segmentation, exemplifying innovative approaches in point cloud pro-

cessing. (Landrieu & Boussaha, 2019) 

2.3.5 Model reconstruction 

The development of point cloud processing methodologies continues to evolve, with a 

focus on automation and efficiency, mainly through the integration of machine learning 

techniques. The final step in points cloud processing is identifying and recognizing ob-

jects or entities in the point cloud and generating 3D models, including surface recon-

structions, BIM, and DEMs. In this context, the following techniques primarily address 
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the indoor building reconstruction domain. This exposition is subsequently enriched 

with a summarization of supplementary, albeit closely connected, abstraction method-

ologies and their respective applications. 

• Deriving 2D floor plans from 3D point clouds. The approach involves constructing a 

histogram representing the vertical positions of all measured points within the point 

cloud data. Okorn observed in this histogram indicated prominent horizontal planar 

surfaces, specifically the floors and ceilings within the captured space. Subse-

quently, points associated with these detected flat structures were excluded from 

consideration (Okorn et al., 2010).  

Following removing such points, linear fittings is performed on the remaining data 

points. However, it is essential to note that the resulting line segments, which to-

gether constituted the floor plan representation, were found to be disjointed and 

needed to encapsulate complete boundaries of rooms or spaces (Okorn et al., 

2010). 

 

 

 

• Extracting planar structures about floors, ceilings, and walls through a planar sweep 

process. This method entails partitioning the XY-plane into piecewise linear seg-

ments, followed by classifying these segments into "inside" and "outside" based on 

the occupancy of cells determined by measured points. Densely occupied cells are 

designated as "inside," culminating in deriving a 2.5D extrusion representing the 

room boundary (Budroni & Boehm, 2010). 

• Another approach proposes extracting planar structures from point clouds while ad-

hering to regularity constraints. The optimization methodology strikes a balance be-

tween data fitting accuracy and the simplicity of the resulting arrangement of planes 

Figure 2. 16: 3D point cloud of a facility (a), histogram Projection (b), resulting 2D floor plan 

model(c) (Okorn et al., 2010) 
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(Monszpart et al., 2015). The building's geometry is reconstructed through an in-

verse CSG approach, which involves the identification of planar structures and their 

subsequent fitting with cuboid primitives. These primitives are integrated using CSG 

operations, and the model's quality is assessed using an energy functional. To com-

plete the process, captured images are employed for texturing the resulting mesh 

model. However, it's important to note that this approach requires the building to be 

reasonably well approximated by the cuboid primitives, which represents a draw-

back. (Monszpart et al., 2015) 

• Reconstructing planar surfaces encompassing floors, ceilings, and walls within 

multi-story point clouds. This process begins with detecting modes within a histo-

gram of point height values, enabling the identification of horizontal planes. Subse-

quently, vertical planes are discerned through the application of the Hough trans-

form. The approach further involves the recovery of occluded segments of the re-

constructed surfaces and employs SVM learning for detecting openings. (Adan & 

Huber, 2011) 

• Developing an automated and robust algorithm for partitioning large-scale indoor 

point clouds into individual spaces has been a longstanding research focus. Previ-

ous methods predominantly relied on structural-architectural definitions of buildings, 

employing various techniques and assumptions for detecting space separators, 

such as walls. In 3D building modeling, Xiong emphasized using the similarity of 

planar surfaces for indoor space separation (Xiong et al., 2013). Additionally, It is  

proposed an iterative clustering algorithm that estimated point affiliations to individ-

ual rooms based on visibility probabilities (Ochmann et al., 2016). 

Some researchers sought simplification through tools like RGB image features (Ren 

et al., 2012) and depth features (Silberman et al., 2012) for identifying planar walls 

and separating spaces in complex building designs (Ochmann et al., 2016). They 

introduced an automatic parametric building modeling approach focused on detect-

ing shared wall elements between rooms, as shown in Figure 2.17. Further improve-

ments were made using the RANSAC plane detection algorithm and integer linear 

optimization to achieve fully automatic room segmentation (Ochmann et al., 2019).  
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Figure 2. 17: Detecting the parameters of the shared wall between rooms (Ochmann et al., 2019)  

A density-based histogram is also developed to analyze and parse 3D space, fa-

cilitating the division of indoor point clouds into disjoint areas, thus enabling easy 

access to information such as space adjacency (Armeni et al., 2016). However, 

most of these methods required prior knowledge about space layouts or laser 

scanner locations and were primarily applicable to small-scale environments. Ad-

ditionally, unsupervised segmentation methods using density-based features often 

need to be revised related to over-segmentation (Ochmann et al., 2016). 

• The delineation and characterization of interior spaces within existing buildings are 

critical tasks with multifaceted interpretations, dependent on specific applications 

and purposes (Zlatanova et al., 2020). In the context of 3D model reconstruction 

and navigation, the demarcation of an enclosed interior space primarily relies on 

essential structural elements such as floors, ceilings, and walls, which exhibit top-

ological relationships with interconnected spaces (Nikoohemat et al., 2017). Ex-

ploring the importance of deducing topological connections among interior spaces, 

it becomes evident how these insights play a crucial role in achieving accurate 

geometric modeling of complex areas and simplifying analysis in indoor navigation 

applications (Zlatanova et al., 2014). 

In conjunction with those pioneering efforts and research that mark the foundation the-

ory for automated architectural layout generation from point cloud. This thesis intro-

duces an automatic knowledge-based algorithm that harnesses BIM, DT, Point Cloud, 

and Scan-to-BIM capabilities and knowledge discussed in this chapter. The focus is 

on precise region growing segmentation top-down approach space partitioning in di-

verse real-world indoor environments point cloud to create parameterized BIM Models.  
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This chapter presents the proposed framework for creating a parameterized DT model 

of an indoor environment using point cloud data, as shown in Figure 3.1. The proposed 

method serves as a strategic guide to effectively tackle the challenges and gaps men-

tioned in Chapter 2, which aims to bridge the existing gaps and drawbacks by following 

the Top-Bottom approach inherent in creating parameterized 3D models from indoor 

point cloud data. The proposed method comprises four primary steps: point cloud data 

preparation, space placement, setting wall parameters, and refinement. The details of 

each stage will be elaborated in the following sections. An in-depth analysis of the 

outcomes stemming from using the envisaged framework will also be presented and 

thoroughly examined. Dataset 1 shall serve as the primary reference point for most 

procedural implementations. 

  

  

 

 

3 Methodology 

Figure 3. 1: The workflow of the framework 
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3.1 Data preparation 

3.1.1 Data acquisition 

A rigorous examination of the methodology mentioned in Figure 3.1 shall be under-

taken, focusing on its practical application to various point cloud datasets acquired 

from the academic institutions of TUM and Stanford University. An in-depth analysis of 

the outcomes stemming from using the envisaged framework will also be presented 

and thoroughly examined. Figure 3.2 RGB point clouds of Data Set 1. Dataset 1 shall 

serve as the primary reference point for most procedural implementations. 

 

Figure 3. 2: Raw point cloud of Data set 1 

3.1.2 Point cloud preprocessing 

Point clouds often contain unwanted data points that can distort the accuracy and reli-

ability of 3D models or reconstructions. Noise refers to random, sporadic points intro-

duced by measurement errors or sensor limitations, while outliers are points signifi-

cantly deviating from the expected model. The provided point cloud should be filtered 

to eliminate prevalent noise elements, down-sampling, including outlier points removal, 

and fine-tuning specific details. Scientific methods for noise and outlier removal typi-

cally involve statistical analysis, filtering algorithms, and geometric consistency checks. 

These techniques aim to differentiate genuine data from artifacts, enhancing the pre-

cision of point cloud data and making it valuable for further steps. Subsequently, the 
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resolution of the model and scene point clouds is computed, as the key serves as a 

critical parameter in the registration process. Following this, preprocessing procedures 

were employed on the provided dataset to curtail the data volume and harmonize the 

resolutions. The comprehensive elucidation of this subject matter is expounded in its 

entirety within the confines of Chapter 2. 

3.1.3 Point cloud segmentation 

 

Figure 3. 3: 3D view of ceiling and wall semantic point cloud 

semantic segmentation is instrumental in categorizing and understanding the various 

components within the point cloud data, facilitating subsequent enhanced 3D data 

analysis by assigning meaning to individual points, enabling object recognition, scene 

understanding, and improved decision-making. The point cloud data from data set 1 

has undergone semantic segmentation using established techniques outlined in Chap-

ter 2. Figure 3.3 illustrates the 3D representation of the resultant semantic ceiling and 

wall point cloud. Additionally, Table 3.1 provides an example of four points extracted 

from this point cloud, each assigned a semantic index (0, 1, 2, 3) as indicated. Each 

semantic index is associated with a specific semantic class, such as ceiling, floors, 

furniture, and walls.  
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X Y Z Segmentation 
Index 

Class 

19.57049942 5.06750011 2.73000002 0 ceiling 

14.41349983 1.26450002 2.71900010 2 furniture 

15.73849964 1.26750004 2.72199988 1 floors 

13.51636947 3.98419843 2.83166155 3 walls 
 

Table 3. 1: An example of points extracted from semantic point cloud 

Dataset 1 has been categorized based on spatial distinctions across the eight discrete 

spaces according to the placement of the scanning device. Figure 3.4 illustrates the 

top view of the spaces-wise point cloud for the semantic floor point cloud.  

 

Figure 3. 4: Top view of the space-wise point cloud 

Table 3.2 provides an example of three points extracted from the space-wise floor point 

cloud categorized by the space index. 

X Y Z Space Index 

19.57049942 5.06750011 2.73000002 4 

14.41349983 1.26450002 2.71900010 5 

15.73849964 1.26750004 2.72199988 9 

 



 

  43 

 

Table 3. 2: Three points extracted from space-wise floor point cloud 

A space adjacency matrix establishes and elucidates the relationships or connections 

between distinct rooms or areas. This matrix presents a structured representation of 

how the rooms are interconnected, serving as a visual aid in comprehending the spatial 

organization within the project. A space adjacency matrix often represents binary spa-

tial relationships between elements, such as rooms, spaces, or regions in a layout or 

network. In this binary representation, a "1" in the matrix indicates adjacency (i.e., two 

spaces are adjacent), and a "0" shows non-adjacency (i.e., two areas are not contigu-

ous). Table 3.3 presents the adjacency matrix representing the spatial relationships 

among eight distinct spatial entities delineated in Data Set 1. 

Rooms Room 
1 

Room 2 Room 3 Room 4 Room 5  Room 6 Room 7 Room 8  

Room 1 0 0 0 1 0 0 0 0 

Room 2 0 0 1 0 0 0 1 1 

Room 3 0 1 0 0 0 0 0 0 

Room 4 1 0 0 0 1 0 1 0 

Room 5 0 0 0 1 0 0 0 0 

Room 6 0 0 0 0 0 0 1 1 

Room 7  0 1 0 1 0 1 0 1 

Room 8 0 1 0 0 0 1 1 0 

 

Table 3. 3: Adjacency matrix 

3.1.4 Rooms initial characteristics 

The rooms initial characteristics are created through a computational process involving 

the determination of the maximum X value minus the minimum X value across all data 

points comprising the spatial point cloud to derive the width, and likewise, the maximum 

Y value minus the minimum Y value to establish the length of the spatial domain. The 

derivation of the bottom-left coordinate entails the identification of the data point char-

acterized by the minimum X and minimum Y values. Concurrently, the computation of 

the number of neighboring points is derived by an adjacency matrix.  
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By applying this methodology, the examination of segmented floor points of data set 1, 

comprising diverse spatial elements across eight floors within a point cloud dataset, is 

undertaken. The primary objective of this analysis is to ascertain the dimensions of 

bounding boxes enclosing individual rooms, determine the bottom-left coordinates, and 

quantify the number of neighboring rooms, as presented in Table 3.4. 

Room ID Length Width Bottom Left Coordi-

nate (x,y,z) 

Number of adjacent 

spaces 

1 28.62 16.06 (-43.13, -178.14, 0) 1 

2 26.16 11.07 (38.36, -169.22, 0) 3 

3 11.05 19.55 (52.18, -157.46, 0) 1 

4 22.03 44.04 (-14.35, -183.33, 0) 3 

7 29.34 32.61 (-9.06, -189.91, 0) 4 

5 7.08 7.02 (-13.43, -154.16, 0) 1 

6 26.03 14 (36.72, -196.4, 0) 2 

8 24.69 12.88 (38.22, -182.69, 0) 3 

 

Table 3. 4: Rooms characteristics 

3.2 Spaces placement 

3.2.1 Placement of the primary room 

The predominant geometric characteristic of rooms or spaces within a building often 

conforms to a rectangular shape. This prevalent geometric simplicity renders rectan-

gles suitable approximations for modeling purposes in many cases. (Mura et al., 2016) 

A more systematic approach entails initiating the placement process by considering 

spaces with larger areas or those exhibiting more substantial interconnections with 

adjacent rooms. This strategy facilitates their placement based on their respective spa-

tial coordinates. Subsequently, adjacent spaces of the primary can be arranged in re-

lation to the primary room. In this proposed framework, the selection of the primary 
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room should be prioritized by the highest number of adjacent spaces, as indicated in 

the room’s characteristics table. Employing this principle and referencing table 3.4, the 

primary room is identified as the room of ID 7, having four adjacent spaces. The pri-

mary room should be positioned in accordance with the specified bottom-left coordi-

nates and dimensions found in the table. When this approach is applied to data set 1, 

Figure 3.5 provides a visual representation of the primary spatial room's placement 

within the context of its point cloud. 

3.2.2 Iterative placement of the adjacent spaces 

In the process of positioning adjacency spaces or rooms, an iterative approach is em-

ployed. The adjacent space is systematically placed around the perimeter of the pri-

mary room with specific spacing (d1), and the number of points of spaces-wise point 

cloud inside corresponding to the same adjacent space’s bounding box in each place-

ment is counted and stored. After all iterations, the trail with the highest points count is 

identified and labeled as the “Adjacent room’s trail has the highest number of points,” 

as shown in Figure 3.6. Then comes the second series of iterations by the placement 

of the adjacent room’s bounding box along the path between the bounding boxes, have 

an index of (Adjacent room’s trail o highest number of points) +1 and index of (Adjacent 

Table 3. 5: Primary room placement Figure 3. 5: Data set 1 – Rooms Characteristics 
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room’s trail o highest number of points) -1 from first series of trails but with a smaller 

value of spacing (d2) as shown in Figure 3.7. Implementing this approach showed 

Figure 3.6 and Figure 3.7 yields accurate results while significantly reducing computa-

tional time, as it filters the number of points within the spaces effectively. 

 

Figure 3. 6: Procedure of space alignment – first series of iteration 

 

Figure 3. 7: Procedure of space alignment – second series of iteration 
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Subsequently, the same iterative process should be applied to each room derived from 

the initially created spaces. However, it is imperative to exclude any connections be-

tween rooms that have already been made. While implementing the previous algo-

rithm, the applied values of d1 and d2 are 30.48 cm (1 ft) and 7.62 cm (0.25 ft), re-

spectively. Figure 3.8 illustrates the bounding boxes' final arrangement of adjacent 

rooms surrounding the primary room implemented on data set 1, with alignment along 

its boundary. 

 

Figure 3. 8: Adjacent spaces around the primary room 

Upon completing the placement of adjacent rooms for the primary space, an identical 

procedure will be implemented for all the newly generated rooms to arrange their re-

spective adjacent spaces. The rooms already in existence are excluded to prevent any 

instances of overlapping. 

3.2.3 Check the reliability of spaces 

An additional verification step during room placement, as shown in Figure 3.1, is re-

quired to assess the ratio of points positioned within the modeled space to the total 

points defined in the space-specific point cloud. This ratio, denoted as the "Reliability 

factor, " is subsequently compared to the allowable reliability factor. 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑠𝑝𝑎𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑

≥ 𝑈𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 
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If the reliability space factor exceeds the user-defined allowable reliability threshold, 

the placement of space is considered successful. Conversely, if it does not meet this 

criterion, the space must be relocated to the bottom left coordinates previously defined 

in Table 3.1. 

A critical verification step ensures the reliability of bounding box positioning, assessing 

the ratio of points inside the box to the total number of points within the room. Figure 

3.9 illustrates the results of the execution of the iterative placement of adjacent spaces 

algorithm discussed in section 3.2.2 on data set 1, incorporating the evaluation of 

space placement reliability with a user-defined allowable reliability ratio of 95%.   

3.2.4 Adjust spaces’ boundaries 

Establishing connectivity between the disconnected spaces’ boundaries is necessary 

before proceeding in extracting boundaries parameters. To address spatial disconnec-

tions arising from their non-interconnection as initially defined in the adjacency matrix. 

To resolve such instances, the joint edge of adjacent spaces repositioned in the middle 

between the disjoint rooms as elaborated in Figure 3.10 or illustrating sample. 

Figure 3. 9: Check the reliability of space placement 
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Figure 3. 10: Adjustment of spaces’ boundaries 

3.3 Boundary parameters 

3.3.1 Merging common walls 

To model the wall or space edges effectively, it is imperative to address the issue of 

edge overlap, aiming to create a unified edge that can subsequently serve as a basis 

for modeling the walls. This conflict solution involves identifying individual edges, which 

are parallel in direction and with a specific range of width as distinct walls. To tackle 

this challenge, a computational approach is employed. A loop is implemented to iterate 

through each potential edge merger candidate, systematically checking for edges with 

the same orientation and within a specified distance tolerance. If those common edges 

are found, an attempt is made to merge them into a single line, as illustrated in Figure 

3.6. The detailed code used in this algorithm is provided in Appendix A.1.2 for refer-

ence. While implementing this approach of delineation of spaces and boundaries for 

data set 1, a tolerance of 50 cm for shared edges is assumed. 



 

  50 

 

 

Figure 3. 11: Merging the common walls 

3.3.2 Refinning the boundaries of spaces 

Given that not all spaces or rooms may possess a rectangular shape, it is imperative 

to undertake a refinement of their boundary delineations. Subsequently, the entire spa-

tial area is subdivided into smaller units, each separated by initial distance, and an 

approximation of the number of spaces is made. Then, the total length or width of the 

spatial area is then proportionally distributed over these approximated spaces, as 

shown in Figure 3.12. An assessment is subsequently conducted to identify rectangu-

lar areas that either lack any data points or contain a percentage of points defined in 

the semantic floor point cloud falling below a predetermined threshold. These identified 

rectangles and their respective boundaries are subsequently subtracted from the over-

all spatial area, resulting in the creation of new spaces with modified boundaries. 

While implementing the same approach on data set 1, the determination of the initial 

dimension has been derived empirically to be 2 meters through an iterative process 

aimed at identifying the most suitable value. It is essential to emphasize that reducing 

the number of smaller rectangles into which a room is divided will inevitably result in 

increased computational time.  
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Figure 3. 12: Refinning the boundaries of spaces 

In Figure 3.12, it is evident that the rectangular area situated in the top-left corner of 

room 4 does not contain any points within its confines. Consequently, this rectangle is 

deemed ineligible for inclusion. Therefore, a revision is necessitated, involving the re-

drawing of the boundary for room 4. 

This redrawing operation results in an overlap occurring between the upper boundary 

of Room 4 and the corresponding boundary line of Room 5. To rectify this conflict, two 

potential strategies may be employed. The first entails manual intervention within the 

Revit software, wherein the overlapped walls are deleted during the creation process. 

The second strategy involves the implementation of an overlapping boundary algorithm 

once more, with the objective of autonomously resolving this overlap issue. 

3.3.3 Extraction of wall parameters 

Specific prerequisites have already been found in the preceding phases to establish 

the dimensions of the walls. To ascertain the wall thickness, the walls generated along 

the boundaries of the rooms have been classified into two distinct types. The first type 

contains the common borders between rooms or internal walls, and the second type is 

the barriers found in one room only. For the first category, the semantic wall point cloud 
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is employed. This involves filtering the points corresponding to edges or walls by en-

capsulating them within bounding boxes, each corresponding to an edge from the pre-

viously generated list of merged edges in step 3.3.1. Only the points located within 

these bounding boxes are considered for further analysis. Subsequently, the average 

distance of all points to the center line of the wall within its bounding box is computed, 

and this value is then multiplied by 2 to determine the width of the respective walls. 

𝑊𝑎𝑙𝑙 𝑊𝑖𝑑𝑡ℎ = ( 
1

𝑛
 ∑ 𝑑𝑖

𝑛

𝑖=1

) ∗ 2 

di = the distance between the point to the corresponding planned point on the wall centerline 

n = Total number of points inside the bounding box 

Regarding wall height, it is also determined using the bounding box approach. This 

entails calculating the difference between the maximum Z value among the segmented 

points enclosed within each bounding box and the minimum Z value within the same 

bounding box. 

While implementing this approach on data set 1, the minimum and maximum values 

for common wall thickness are assumed to be 300 mm and 600 mm, respectively. 

Furthermore, increments in wall width are restricted to 50 mm intervals. It is important 

to emphasize that, to ensure the algorithm's error-free operation, wall families corre-

sponding to the specified wall dimensions must be preloaded into the Revit model prior 

to its execution. Appendix A1.3 shows the algorithm used for finding Internal wall width.  

Also, the second category of walls comprises what is referred to as "outside walls," 

which are postulated to possess a uniform width of 300 mm throughout their extent.  

In consideration of wall height determination, as previously elucidated, it is imperative 

to adhere to specific calculations. However, it is noteworthy that the minimum allowable 

wall height should be established at 3000 mm. Subsequently, any incremental adjust-

ment should be carried out at intervals of 100 mm, aligning with the approximate value 

of the disparity between the highest and lowest points identified within the segmented 

wall point cloud data encompassed within the expanded bounding box associated with 

the respective wall. This approach ensures a precise and contextually relevant deter-

mination of wall height that accounts for the nuanced variations within the observed 

wall geometry. 
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Figure 3. 13: Top view of reconstructed BIM model 

3.4 Summary 

An essential primary objective during framework development is the minimization of 

iterations over the points to enhance computational efficiency. Additionally, various 

tools are employed for testing and refining the framework. These tools include Auto-

desk Revit as geometry generation and modeling program. Revit's comprehensive ca-

pabilities align closely with the framework's needs, excelling in managing complex spa-

tial representations and parametric relationships. Its integration with the Revit API is 

crucial, allowing custom applications to translate indoor data into parameter-based 

models. The API enables the integration of custom algorithms, making it a robust plat-

form for synthesizing indoor environment data into models. The framework is encap-

sulated within a dedicated tool accessible within Revit, facilitating analysis and model-

ing tasks. The automated procedural framework is implemented in the C# program-

ming language because it can minimize execution time. This framework is integrated 

into the Revit environment by incorporating the respective dynamic link library (.dll) into 

the existing set of Revit .dll files. Upon successful integration, the resultant add-in be-

comes accessible within the Revit interface.  
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4 Results 

In this section, we present an analysis of the outcomes obtained by applying the pro-

posed reconstruction framework, as delineated in Chapter 3. The methodology has 

been tested and validated on four distinct datasets of point clouds acquired from the 

academic institutions of TUM and Stanford University. 

4.1  Inputs 

 

 

 

 

 

 

  

 

Figure 4. 4: Raw point cloud of data set 4 

Figure 4. 1: Raw point cloud of data set 1 Figure 4. 2: Raw point cloud of data set 2 

 

Figure 4. 3: Raw point cloud of data set 3 
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Figures 4.1, 4.2, 4.3, and 4.4 provide visual representations of the unprocessed point 

clouds for the four distinct datasets. Additionally, Table 4.1 presents essential quanti-

tative information for each dataset, including the number of rooms, the point count for 

the semantic floor and wall point clouds, and the total length and width for each point 

cloud. Furthermore, the table offers an assessment of the point cloud quality through 

optical visualization. 

Data 

sets 

No. of 

rooms 

PC 

Quality 

Number of 

points – wall PC 

Number of 

points – floor PC 

Length 

(m) 

Width 

(m) 

Data 

set 1 

8 9 32001 361640 32.8 17.9 

Data 

set 2 

12 8 64033 66949 58.95 25.4 

Data 

set 3 

11 5 16811 35446 53.75 51.95 

Data 

set 4 

19 8 20995 50616 28.9 25.65 

Table 4. 1: Data sets input  

Furthermore, it is imperative to document the specific threshold values and underlying 

assumptions employed during the implementation of the proposed framework the four 

data ses, and these parameters should be explicitly detailed in Table 4.2. 

Variable / Threshold Assumed value  

d1 30.48 cm 

d2 7.62 cm 

User defined allowable reliability ratio 95 % 

Common edge tolerance width 50 cm 

Refinning initial space 200 cm 

Minimum / Maximum wall width 30 / 60 cm 

Minimum wall height 300 cm 

Wall width step 5 cm 

Wall height step  10 cm 

Table 4. 2: The threshold values use in the proposed workflow. 
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4.2 Data set 1 

The dataset comprises segmented point cloud data obtained from the indoor environ-

ment of the TUM, encompassing eight distinct rooms. Figure 4.5 visually represents 

the semantic floor and wall point cloud. Furthermore, the dataset covers information 

about the adjacency matrix, elucidating the spatial relationships among the various 

spaces. 

 

Figure 4. 1: The semantic segmented point cloud of Data set 1, walls (in green) and space-wise ceiling 

(in red) 

Figure 4.6 presents the conclusive BIM model after the successful execution of the 

prescribed framework described in Chapter 3. This visualization exhibits the amalgam-

ation of parameterized wall elements with segmented point clouds, thus illustrating the 

outcomes achieved through the framework's implementation. 

The visual examination of the point cloud reveals a high level of quality and average 

density, as does the accuracy of the class segmentation performed on the point cloud. 

Some challenges are encountered in the segmentation of walls within room 1, sug-

gesting the presence of concealed spaces within the same room. 
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Figure 4. 2: The reconstructed BIM model of data set 1 

However, the incidence of noise within the dataset is minimal. Furthermore, the com-

putational execution time for the algorithm is about 13.8 seconds. In Figure 4.7, a top 

view of the generated rooms and walls are depicted, accompanied by their respective 

name tags.  

 

 

Figure 4. 3: Top view of rooms and walls of Data set 1 
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4.3 Data set 2 

The dataset comprises segmented point cloud data obtained from the indoor environ-

ment of the TUM, encompassing 12 distinct rooms interconnected by a lengthy corri-

dor. Figure 4.8 visually represents the semantic floor and wall point cloud. Furthermore, 

the dataset covers information about the adjacency matrix. 

In Figure 4.9, a reconstructed BIM model of data set 2 is presented, illustrating the 

results of the applied framework after the execution. The run time is 22.4 sec. 

Figure 4.10 depicts top views of the generated rooms and walls, accompanied by their 

respective name tags. The quality of the point cloud data in dataset 2 is generally com-

mendable, except for instances of inadequate segmentation in the entrance and exit 

regions of the corridor. Notably, there are no discernible defects or errors within the 

dataset, except for minor room refinement discrepancies, which have been rectified 

through manual intervention.  

 

Figure 4. 4: The semantic segmented point cloud of Data set 2, walls (in green) and space-wise floor 

(in red) 
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Figure 4. 5: The reconstructed BIM model of data set 2 
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Figure 4. 6: A top view of rooms and walls of Data set 2 
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4.4 Data set 3 

 

Figure 4. 7: The semantic segmented point cloud of Data set 3, walls (in green) and space-wise floor 

(in red) 

Data Set 3 comprises a point cloud representation of 11 distinct rooms within a building 

located at Stanford University. Upon visual inspection, it is evident that this dataset 

exhibits several notable characteristics, which include discernible issues related to 

spatial boundaries and a substantial presence of noise artifacts, particularly within 

rooms numbered 1, 7, and 8. Moreover, there needs to be more data points within 

spaces 5 and 2, leading to compromised accuracy in delineating space boundaries. 

This decrease in data quality, coupled with the absence of well-defined space defini-

tions as outlined in the algorithm detailed in Appendix A.1, further exacerbates the 

situation. Even after applying the algorithm for merging walls with overlapping regions 

within a range of 350 mm width, there are instances where walls remain unmerged, 

resulting in intersecting walls. The processing time for this dataset is approximately 

10.4 seconds due to a remarkable decrease in the number of points in related point 

clouds compared to data sets 1 and 2. 



 

  62 

 

Figure 4.11 presents semantic representations of wall and floor point clouds. Figure 

4.12 showcases the reconstructed BIM model derived from the dataset. In Figure 4.13, 

a top view illustrates the wall and room tags superimposed on the point cloud.  

 

Figure 4. 8: The reconstructed BIM model of data set 3. 
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Figure 4. 9: Top view of labeled rooms and walls of Data set 3 
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4.5 Data set 4 

 

Figure 4. 10: The semantic segmented point cloud of Data set 4, walls (in green) and space-wise floor 

(in red) 

Data Set 4 represents a complex dataset encompassing a point cloud derived from a 

building at Stanford University comprising 19 rooms that are spatially arranged based 

on the provided adjacency matrix. Figure 4.14 visually represents semantic floor and 

wall point clouds. Furthermore, the dataset encompasses information about the adja-

cency matrix. 

Upon visual inspection, the quality of the point cloud appears to be satisfactory. None-

theless, certain intricacies are discernible in the refinement of room boundaries. These 

intricacies manifest mainly in the merging of room boundaries, as exemplified by the 

amalgamation of rooms W49 and W47, which is depicted in Figure 4.16. Furthermore, 

there is a noticeable alteration in the minimum threshold for the determination of mini-

mum wall heights, primarily because a substantial portion of the walls measure less 

than 3 meters in height. This alteration may be attributed to the presence of false ceil-

ings within the building. Figure 4.15 depicts the constructed BIM models of Data set 4 

of walls superimposed upon the segmented point cloud data. The processing time for 

this dataset is approximately 21.2 seconds. 



 

  65 

 

 

Figure 4. 11: The reconstructed BIM model of data set 4. 

 

Figure 4. 12: Top view of labeled rooms and walls of Data set 4 
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4.6  Quantitative evaluation of model reconstruction 

The reconstructed BIM model for each test dataset was subjected to a comparative 

analysis against the corresponding reference BIM model, focusing specifically on the 

wall dimension parameters (length, width, and height). Table 4.2 presents the average 

difference values across all walls within each dataset and reference BIM model. This 

tabulated data serves as a valuable resource for evaluating the accuracy of the recon-

structed BIM model and provides insights into the degree of alignment achieved with 

respect to the reference BIM model. 

Data sets Parameters 

δ Length (m) δ Width (m) δ Height (m) 

Data set 1 0.08 0.05 0.08 

Data set 2 0.15 0.09 0.06 

Data set 3 0.12 0.06 0.05 

Data set 4 0.17 0.11 0.07 

Average 
0.13 0.08 0.07 

   

 

 

Table 4. 3: Quantitative evaluation of model construction 
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5.1 Conclusion 

Within this thesis, we have undertaken an exploration of the proposed framework de-

signed for the conversion of indoor environment point cloud data into a parametrized 

BIM model. The resulting BIM model, as previously articulated, holds the potential to 

significantly impact diverse domains. The framework developed herein aims to address 

challenges encountered in prior research endeavors, particularly in relation to issues 

such as data volume. 

 

Figure 5. 1: Run time analysis of the 4 Data sets 

Figure 5.1 presents the analysis results of the four datasets that have been previously 

discussed in Chapter 4 including the graph representations of the number of points 

within segmented floor spaces and wall point clouds, the number of rooms, and the 

associated run time for each. 

It is evident from the analysis that the run time is closely correlated with the number of 

points. This relationship is primarily due to the utilization of multiple iterations within 

the algorithms embedded in the framework, as elucidated in the details provided in 

Appendix A. Furthermore, the modeling of wall elements in Revit and the number of 

rooms play crucial roles in determining the run time. It is important to note that the 

5 Conclusion and future work 
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computational capabilities of the host computer may also influence the actual run time. 

Nevertheless, the analysis presented herein is intended for relative comparison among 

the different data sets. 

 

Figure 5. 2: Walls Parameter differences between the reconstructed and the reference BIM models 

Figure 5.2 presents a comprehensive analysis of the four data sets. It involves the 

graphical representation of the data sets and their correlation with the average differ-

ence in wall dimensions between the created parameterized BIM model and the point 

cloud data. Those readings are depicted in the primary axes. In addition, the number 

of rooms and the quality of the point cloud within each data set are visually observed 

on the secondary axes. 

Notably, the results indicate that the precision of the BIM model is affected by the qual-

ity of the point cloud. However, an increase in the number of rooms or a rise in the 

complexity of room boundaries within the point cloud data is associated with a de-

crease in the accuracy of the generated BIM model. There are multiple avenues for 

potential enhancements within the present framework. These considerations encom-

pass the need for a meticulous assessment of the quality of segmented point clouds, 

particularly in relation to their spatial distribution. This scrutiny serves as a vital pre-

cautionary measure to mitigate potential challenges, a significance underscored by the 

complexities encountered in Data set 3. 
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Eventually, the workflow proposed in the thesis was adopted. Enabling the creation of a 

parametric BIM derived from semantic space-wise point cloud data and adjacency matri-

ces can be employed. The resultant model outputs demonstrate a level of accuracy that 

can competitively compare with outcomes obtained through alternative frameworks suffer-

ing from data sizing. However, the pivotal determinant of accuracy rests in the quality of 

the initial point cloud data. Moreover, it is essential to acknowledge that this framework 

may not represent the optimal solution for processing large-scale point clouds. In such 

cases, further research and adaptations may be necessary to address the unique chal-

lenges posed by extensive and complex datasets. 

5.2  Limitations and future works 

The proposed framework exhibits certain limitations, which can be delineated as fol-

lows:  

• In the realm of room refinement, a novel approach to partitioning rooms into rectan-

gles, as expounded upon in section 3.4.2, is introduced. The proposal advocates 

the implementation of a convex hull algorithm, elucidated in Appendices B.1 and 

B.2, as a promising solution to rectify issues arising from non-rectangular, irregular 

room geometries. It is noteworthy that this adjustment may impact computational 

time, given the necessity for multiple passes through the spatial point data. 

• It is logically expected that the walls of a room exhibit consistent or uniform height. 

Nevertheless, it is noteworthy that the presented framework does not address this 

constraint, as evidenced in Figure 5.3. Therefore, it is advisable to consider the in-

corporation of these limitations in subsequent developmental efforts. This change in 

procedure is designed to improve the consistency and accuracy of defining room 

boundaries. 

 

Figure 5. 3: Difference in wall heights of the same room 
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• The current wall thickness determination method needs to be more investigated. As 

detailed in section 3.4.3, the existing algorithm employs the assignment of the se-

mantic wall point cloud to the assigned wall through grouping them by checking each 

point existence inside the wall’s bounding box. However, assigning might be better 

grouping them by assigning each point to the nearest wall as shown in figure 5.4. 

 

Figure 5. 4: Alternative procedure for points assignment to the corresponding walls 

• Development for refinement and automation of the process involves developing a 

mechanism to identify wall openings, such as windows or doors, from the seg-

mented wall point cloud and to be modeled in the reconstructed BIM model. 

• A significant suggestion pertains to adopting a global parameterization approach 

akin to Autodesk Revit for defining wall coordinates. This transition promises in-

creased flexibility in wall positioning, allowing for effortless modifications through the 

implementation of optimizing architectural design layout algorithms for creating func-

tional and efficient spaces. Those algorithms should respect two fundamental as-

pects: space usage optimization and accessibility optimization. Space usage opti-

mization focuses on maximizing space utility while minimizing wastage, achieved 

through strategic placement of structures, furniture, and amenities. This not only 

reduces the environmental footprint but also promotes sustainable resource utiliza-

tion. Accessibility optimization aims to create spaces inclusive of individuals with 

diverse needs, aligning with universal design principles to enhance inclusivity. 
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A .1 Overlapping wall algorithm  

 

foreach (var curve1 in mergedLines) 
{              
     // define first point and last point from each curve in list 
     XYZ curveStartPoint = curve1.GetEndPoint(0); 
     XYZ curveEndPoint = curve1.GetEndPoint(1); 
 
     XYZ curveLowestXValuePoint;  XYZ curveHighestXValuePoint; 
 
     // sort the intial point along the first and the last point 
if (curveStartPoint.X  < curveEndPoint.X) 
  curveLowestXValuePoint = curveStartPoint; curveHighestXValuePoint = curveEndPoint;          
 
else 
curveLowestXValuePoint = curveEndPoint;   curveHighestXValuePoint = curveStartPoint; 
      
     bool merged = false;    bool isConsidered = false; 
 
     //check the line with already merged lines or not 
     foreach (var line in newMergedLines) 
     { 

if (line!= curve1 && 
line.Direction().Normalize().IsAlmostEqualTo(XYZ.BasisX) && 
Math.Abs(curve1.GetEndPoint(0).Y - line.GetEndPoint(0).Y) <= 0.3) 

             { 
                isConsidered = true; 
             } 
     } 
 
// check if the line already checked with the merged lines, so continue 
if (isConsidered == false) 
{ 

// check the line with other lines of all the spaces' boundaries 
       foreach (Line otherLine in mergedLines) 
       { 

//check if the curves having the same direction and within the same location 
with 0.3 ft 

 
if (otherLine != curve1 
&&otherLine.Direction().Normalize().IsAlmostEqualTo(XYZ.BasisX) &&  
Math.Abs(curve1.GetEndPoint(0).Y - otherLine.GetEndPoint(0).Y) <= 0.3) 

      { 
         merged = true; 
         List<XYZ> endPoints = new List<XYZ>(); 
 
   endPoints.Add(otherLine.GetEndPoint(0)); endPoints.Add(otherLine.GetEndPoint(1)); 
   endPoints.Add(curve1.GetEndPoint(0));    endPoints.Add(curve1.GetEndPoint(1)); 
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             XYZ pointWithLowestX = endPoints.OrderBy(p => p.X).First(); 
             XYZ pointWithHighestX = endPoints.OrderBy(p => p.X).Last(); 
 
             //consider the new  
             if (curveLowestXValuePoint.X >= pointWithLowestX.X) 
                    curveLowestXValuePoint = pointWithLowestX; 
 
             if (curveHighestXValuePoint.X <= pointWithHighestX.X) 
                    curveHighestXValuePoint = pointWithHighestX; 
             } 
 
         } 
    } 

     // add the new line to the list 
       if (merged == false && isConsidered == false) 
           newMergedLines.Add(curve1 as Line); 
 
       if (merged== true && isConsidered == false) 
      

Line newCurve1 = Line.CreateBound(curveLowestXValuePoint, 
curveHighestXValuePoint); 

             newMergedLines.Add(newCurve1); 
                     
} 

 

A .2 Reliability check algorithm  
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//check if the BB is reliable according to number of points inside that should 
exceed specific precentage like 90 % 
 
double reliablityFactor = 0.9; 
 
double numOfPointsInBB = pointsCounterListinBB.Max(); 
 
double roomPCPointsCount = roomPCPoints.Count; 
 
double precentageOfExistingPointsInAssumedBB = numOfPointsInBB / roomPCPointsCount; 
                 
 
if (precentageOfPointsInsideBB >= reliablityFactor) 
{ 

int indexMaxPointsCounterinBB = 
pointsCounterListinBB.IndexOf(pointsCounterListinBB.Max()); 

 
Solid sol = BBList[indexMaxPointsCounterinBB].ToSolid(); 

 
Helper.CreateCuboidFromSolid(doc, sol); 

 
} 
 
else 
{ 

XYZ startPoint = new XYZ(roomPCPoints.Min(point => point.X), 
roomPCPoints.Min(point => point.Y), roomPCPoints.Min(point => point.Z)); 

 
var BB = Helper.CreateBoundaryBox(doc, startPoint, roomDimensionX, 
roomDimensionY, roomDimesnionZ); 

 
  Solid sol = BB.ToSolid(); 
   

Helper.CreateCuboidFromSolid(doc, sol); 
                 
} 
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A .3 Algorithm for extracting internal walls 

 

foreach (var point in pointsInWallBB) 
{ 
          IntersectionResult projectionResult = newMergedLines[i].Project(point); 
 
          if (projectionResult != null && projectionResult.XYZPoint != null) 
          { 
               // Get the projected point 
               XYZ projectedPoint = projectionResult.XYZPoint; 
 
               // Calculate the distance btw. the original point and the projected one 
               double distance = point.DistanceTo(projectedPoint); 
 
               averageDistances.Add(distance); 
          } 
 } 
  
 double average = averageDistances.Average(); 
 
 double originalNum = average * 2; 
 
 int nearestMultipleOf5 = (int)Math.Round(originalNum / 50.0) * 50; 
 
 if (nearestMultipleOf5 <= 300) 
     nearestMultipleOf5 = 300; 
 
 else if (nearestMultipleOf5 >= 500) 
      nearestMultipleOf5 = 500; 
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B .1 Convex hull algorithm  

public static List<XYZ> ConvexHull(this List<XYZ> points) 
{ 
     if (points == null) throw new ArgumentNullException(nameof(points)); 
     XYZ startPoint = points.MinBy(p => p.X); 
     var convexHullPoints = new List<XYZ>(); 
     XYZ walkingPoint = startPoint; 
     XYZ refVector = XYZ.BasisY.Negate(); 
     do 
     { 
         convexHullPoints.Add(walkingPoint); 
         XYZ wp = walkingPoint; 
         XYZ rv = refVector; 
         walkingPoint = points.MinBy(p => 
         { 
             double angle = (p - wp).AngleOnPlaneTo(rv, XYZ.BasisZ); 
             if (angle < 1e-10) angle = 2 * Math.PI; 
             return angle; 
         }); 
         refVector = wp - walkingPoint; 
     } while (walkingPoint != startPoint); 
     convexHullPoints.Reverse(); 
     return convexHullPoints; 
} 
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