
Technische Universität München
TUM School of Computation, Information and Technology

A Framework to Design and Synthesize Vehicle E/E
Architecture

Hadi Askaripoor

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der Technis-
chen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Jörg Ott

Prüfer der Dissertation:

1. Prof. Dr.-Ing. habil. Alois C. Knoll

2. Prof. Dr. Ali Mosleh

Die Dissertation wurde am 18.12.2023 bei der Technischen Universität München eingereicht und durch die
TUM School of Computation, Information and Technology am 05.07.2024 angenommen.

Abstract

In recent years, the field of automotive electrical and electronic (E/E) architecture has under-
gone substantial evolution. The latest generation of road vehicles necessitates a substantial
infusion of computational power to support the execution of a multitude of safety-critical
applications and advanced driver assistance systems (ADAS) functionalities. Centralized ar-
chitecture, enhanced by the incorporation of high-performance computing units, emerges as
a pivotal approach to reinforce the capability of vehicles in handling these resource-intensive
applications. The high number of sensors and actuators demands high-bandwidth communi-
cation protocols to facilitate a seamless data flow. In addition, to harmonize the integration
of safety-critical and real-time applications, known as mixed-criticality systems, determin-
istic and redundancy protocols are necessary. However, configuring and integrating essen-
tial applications into a vehicle’s E/E architecture, all while meeting various requirements,
guaranteeing reliable communication, and considering optimization objectives, can be time-
consuming, complex, and error-prone tasks.

This thesis presents a novel model-based framework to facilitate the synthesis of car E/E
architectures, which supports modeling for automotive embedded systems. The introduced
tool automates mapping of software components to hardware elements and computes sched-
ules for application threads. It establishes network message routing and schedules commu-
nication tasks within the car’s topology while addressing safety requirements, including re-
dundancy, homogeneous redundancy, and reliability. The proposed computer-aided tool also
optimizes the system model, covering multiple optimization objectives. It supports multi-
objective optimization and utilizes a single-step approach to solve mixed-integer program-
ming (MIP) constraints, reducing solving time and considering the relationships among var-
ious constraints. Moreover, the proposed tool offers a web-based frontend that allows users
to model their desired E/E systems and select various hardware and software requirements
and properties, along with the boundary and optimization goals. The developed frontend
also visualizes the solution of the designed system after it has been solved.

There are situations where a designed E/E architecture is not satisfiable, meaning that
feasible solutions cannot be found by a MIP solver. Unlike simple models, navigating and
correcting the unsatisfiability of complex E/E models is a complex and time-consuming task,
leading to increased development costs. To tackle this issue, this thesis also introduces an
approach to identify design errors when violations occur in a constraint set included in a
system model after the solving step.

The performance of this model-based framework is assessed at three key stages. Design-
time, where the solving and generation times of constraint sets in various scenarios are
evaluated, including scalability analysis. Run-time, where the solution is deployed on an
experimental setup, and finally, quantitative and qualitative evaluations. The results of the
design-time experiments indicate that the formulations can scale to systems of reasonable
size. During the run-time experiments, it is observed that there are no instances of timing
deadline breaches following the deployment of the design-time solutions on an experimental
setup.

Zusammenfassung

In den letzten Jahren hat sich der Bereich der elektrischen und elektronischen (E/E-) Ar-
chitektur von Kraftfahrzeugen erheblich weiterentwickelt. Die neueste Generation von Straßen-
fahrzeugen erfordert eine erhebliche Steigerung der Rechenleistung, um die Ausführung
einer Vielzahl von sicherheitskritischen Anwendungen und fortschrittlichen Fahrerassistenz-
systemen (ADAS) zu unterstützen. Eine zentralisierte Architektur, die durch den Einbau von
Hochleistungsrecheneinheiten verbessert wird, erweist sich als entscheidender Ansatz, um
die Fähigkeit von Fahrzeugen zur Handhabung dieser ressourcenintensiven Anwendungen
zu verbessern. Darüber hinaus erfordert die zunehmende Anzahl von Sensoren und Ak-
toren Kommunikationsprotokolle mit hoher Bandbreite, um einen nahtlosen Datenfluss zu
ermöglichen. Zur Harmonisierung der Integration von sicherheitskritischen und Echtzeitan-
wendungen, die als Systeme mit gemischter Kritikalität bezeichnet werden, sind außerdem
deterministische und redundante Protokolle unerlässlich. Die Konfiguration und Integration
wichtiger Anwendungen in die E/E-Architektur eines Fahrzeugs unter Berücksichtigung der
verschiedenen Anforderungen, der Gewährleistung einer zuverlässigen Kommunikation und
der Optimierungsziele kann jedoch zeitaufwändig, komplex und fehleranfällig sein.

In dieser Arbeit wird ein neuartiges modellbasiertes Framework zur Erleichterung der
Synthese der E/E-Architektur eines Fahrzeugs vorgestellt, das die Modellierung für eingebet-
tete Systeme im Automobil unterstützt. Das vorgestellte Werkzeug automatisiert die Zuord-
nung von Softwarekomponenten zu Hardwareelementen und berechnet Zeitpläne für An-
wendungsthreads. Es legt das Routing von Netzwerknachrichten fest und plant Kommunika-
tionsaufgaben innerhalb der Fahrzeugtopologie unter Berücksichtigung von Sicherheitsan-
forderungen wie Redundanz, homogener Redundanz und Zuverlässigkeit. Das vorgeschla-
gene computergestützte Tool optimiert auch das Systemmodell und deckt mehrere Opti-
mierungsziele ab. Es unterstützt die Mehrzieloptimierung und verwendet einen Ein-Schritt-
Ansatz zur Lösung von MIP-Beschränkungen (Mixed-Integer Programming), wodurch die
Lösungszeit reduziert und die Beziehungen zwischen den verschiedenen Beschränkungen
berücksichtigt werden. Darüber hinaus bietet das vorgeschlagene Tool ein webbasiertes
Frontend, mit dem Benutzer ihre gewünschten E/E-Systeme modellieren und verschiedene
Hardware- und Softwareanforderungen und -eigenschaften sowie die Randbedingungen und
Optimierungsziele auswählen können. Das entwickelte Frontend visualisiert auch die Lö-
sung des entworfenen Systems, nachdem es gelöst wurde. Es gibt Situationen, in denen
eine entworfene E/E-Architektur nicht zufriedenstellend ist, was bedeutet, dass der MIP-
Löser keine machbaren Lösungen finden kann. Im Gegensatz zu einfachen Modellen ist
das Navigieren und Korrigieren der Unerfüllbarkeit komplexer E/E-Modelle eine komplexe
und zeitaufwändige Aufgabe, die zu erhöhten Entwicklungskosten führt. Um dieses Problem
anzugehen, wird in dieser Arbeit auch ein Ansatz zur Identifizierung von Entwurfsfehlern
vorgestellt, wenn nach dem Lösungsschritt Verletzungen in der im Systemmodell enthalte-
nen Constraintmenge auftreten.

Die Leistung dieses modellbasierten Rahmens wird in drei Schlüsselphasen bewertet: zur
Entwurfszeit, in der die Lösungs- und Generierungszeiten von Constraint-Sets in verschiede-
nen Szenarien bewertet werden, einschließlich einer Skalierbarkeitsanalyse; zur Laufzeit,

v

in der die Lösung in einem Versuchsaufbau eingesetzt wird, sowie durch quantitative und
qualitative Bewertungen. Die Ergebnisse der Experimente zur Entwurfszeit zeigen, dass die
Formulierungen auf Systeme angemessener Größe skaliert werden können. Bei den Laufzeit-
experimenten wurde festgestellt, dass nach dem Einsatz der Lösungen aus der Entwurfszeit
in einem Versuchsaufbau keine Verstöße gegen die Zeitvorgaben auftraten.

Acknowledgement

I extend my deepest gratitude to all those who have contributed to the realization of this
Ph.D. thesis. First and foremost, I express my sincere appreciation to my supervisor, Professor
Alois Knoll, for his unwavering support, mentorship, and invaluable guidance throughout this
research journey and for giving me the chance to pursue my Ph.D. at his research group. His
expertise and commitment have been instrumental in shaping the trajectory of my academic
pursuits. I would also like to express my heartfelt thanks to Professor Ali Mosleh, my second
examiner from University of California, Los Angeles (UCLA), for his valuable feedback and
insightful comments on my research. His expertise has been instrumental in refining the
quality of my work. Additionally, my sincere appreciation goes to Professor Jörg Ott, the
chairman of my defense, for overseeing the defense process and for his time and support in
ensuring everything runs smoothly.

A special acknowledgment is reserved for Dr. Morteza Hashemi Farzaneh as my mentor.
His guidance and insightful hints provided in the early stages were pivotal in helping me
find my research direction. I wish to express my gratitude to my colleagues at the Chair of
Robotics, Artificial Intelligence, and Real-time Systems. In particular, I extend my special
thanks to Amy Buecherl for her consistent help and kindness. A heartfelt thank you goes to
Ute Lomp, the former member of the chair, for her unwavering support and care. Welcoming
Janine Delle, a new member of the chair, deserves my appreciation for her kindness and
contributions to the dissertation process. I also want to thank Marie-Luise Neitz for her
valuable assistance. Dr. Alex Lenz merits special thanks for his unwavering support, help,
and kindness throughout this journey. My sincere gratitude extends to Thilo Mueller, my
student, for his contributions. I am indebted to my colleagues and friends, including Hossein
Malmir, Walter Zimmer, and Soubarna Banik, for their proofreading of this thesis. A profound
thank you goes to my best friend, Andreas Wieser, for his help and for being an exceptional
companion and friend during this journey.

In conclusion, I express deep gratitude to my family, including my sister and brothers, for
their continuous support, motivation, and assistance. To my parents, Fatemeh and Yousef,
my heartfelt and special thanks for their unwavering love, motivation, and constant sup-
port throughout this challenging journey. Despite the long distance, my parents and family
send their love and support. I am immensely grateful and love you all dearly. This work is
dedicated to them.

Los Angeles, 14.12.2023 Hadi Askaripoor

Contents

1 Introduction 1
1.1 Vehicle E/E Architecture and its Development . 1

1.1.1 The Main Bottlenecks of Current E/E Architecture 3
1.1.2 The Main Technologies for Future’s E/E Architecture 4

1.2 Motivation and Research Questions . 5
1.2.1 Motivation . 5
1.2.2 Research Questions . 6

1.3 Thesis Contributions . 7
1.4 Thesis Structure . 9

2 Basic Concepts and Terms 11
2.1 Task Mapping or Resource Allocation . 11
2.2 Time-triggered Scheduling . 12
2.3 Communication Message Routing . 13
2.4 Vehicle Communication Protocols . 15

2.4.1 CAN and TTCAN Buses . 15
2.4.2 FlexRay . 16
2.4.3 LIN Bus . 16
2.4.4 Automotive Ethernet and Ethernet TSN . 16

2.5 Automotive Safety Standards . 18
2.5.1 ISO 26262 (Functional Safety for Road Vehicles) 18
2.5.2 SOTIF/ISO 21448 . 19

2.6 Safety Requirements . 19
2.6.1 Redundancy . 20
2.6.2 Freedom from Interference . 20
2.6.3 ASIL . 20
2.6.4 Reliability . 21

2.7 Design Space Exploration (DSE) . 22
2.8 Hypervisor . 22

3 State of the Art 25
3.1 Communication Message Routing and Synthesis of Time-triggered Schedules

in Automotive Networks . 25
3.1.1 Communication Message Routing . 25
3.1.2 Synthesis of Time-triggered Schedules in Automotive Domain 26

3.2 Software Architecture Synthesis-related Studies 27
3.2.1 Software Architecture Synthesis . 27
3.2.2 E/E System Synthesis Considering Safety Requirements 27

3.3 Task Mapping in Multi-Core Computing Units . 29
3.3.1 Mapping Techniques . 29

vii

viii Contents

3.3.2 Optimization Parameters in Mapping . 30
3.4 Technologies and Tools for Software Integration and Configuration in Design

Process . 31
3.4.1 Non-commercial/Open-source Frameworks 32
3.4.2 Overview of Non-commercial Frameworks Analysis 42
3.4.3 Commercial Tools for E/E Architecture Configuration 45
3.4.4 Overview of Commercial Tools Analysis . 47

3.5 Summary & Discussion . 48

4 Methodology 51
4.1 Framework Architecture . 51

4.1.1 Model-Driven Development . 54
4.1.2 Object-oriented Metamodel . 55
4.1.3 Constraint Set . 55
4.1.4 Optimization . 58
4.1.5 Design Error Identifier . 58
4.1.6 An Overview of Framework Architecture 59

4.2 Framework System Model . 60
4.2.1 Application Thread . 60
4.2.2 Communication Task . 60
4.2.3 Mapping Action . 61
4.2.4 Communication Message . 61
4.2.5 Application . 62
4.2.6 Timing Limitations . 62

4.3 Constraints MIP Formulation . 65
4.3.1 Automated Mapping . 65
4.3.2 Automatic Message Routing . 66
4.3.3 Overlapping-Free Application Threads Considering Automated Map-

ping . 74
4.3.4 Overlapping-Free Communication Tasks Considering Automatic Mes-

sage Routing . 75
4.3.5 Path Dependency . 76
4.3.6 Message Dependency . 77

4.4 Boundary Constraints & Optimization Objectives 77
4.4.1 End-to-End Latency . 78
4.4.2 Response Time . 79
4.4.3 Resource Utilization (RU) . 80
4.4.4 Load Balancing in Vehicle Communication Network 81
4.4.5 Cost Reduction (CR) . 83
4.4.6 Reliability . 83
4.4.7 Hypervisor-related Constraints . 87

4.5 Multi-Objective Optimization . 88
4.5.1 Gurobi Multi-Objective Optimization . 89
4.5.2 Multi-Objective Optimization in the E/E Designer Framework 89

4.6 Single-Step Solving Algorithms . 91
4.6.1 CMR Algorithm . 91
4.6.2 CSCT Algorithm . 91
4.6.3 PD Algorithm . 93

4.7 Constraint Formulation as Mixed Integer Programming for Gurobi Optimiza-
tion Solver . 94
4.7.1 Big M Method . 94

Contents ix

4.7.2 Quadratic Expression . 95
4.8 Discussion . 96

5 The Framework Frontend 97
5.1 Modeling . 97

5.1.1 Web-based Modeling Tool . 97
5.1.2 Drag and Drop Functionality . 99
5.1.3 Full-mesh Topology . 99
5.1.4 Automatic Creation of Software/Hardware Components 100

5.2 Requirements and Properties . 100
5.2.1 Hardware/Software Requirements and Properties 100
5.2.2 Optimization and Solving Properties . 101

5.3 Solving and Solutions . 102
5.3.1 Solving . 102
5.3.2 Solutions . 103

5.4 Model Validation . 105
5.5 Implementation . 107

5.5.1 Sirius Web . 107

6 Design Error Analysis 109
6.1 Background . 109

6.1.1 Conjunctive Normal Form . 110
6.1.2 Minimal Unsatisfiable Subset (MUS) or Unsatisfiable Core 111

6.2 Approach . 111
6.2.1 Using Irreducible Inconsistent Subsystem (IIS) 112
6.2.2 Using MARCO Algorithm . 114

6.3 Evaluation . 116

7 Evaluation 119
7.1 Design-time Evaluation . 119

7.1.1 Evaluation of Communication Message Routing Generation 120
7.1.2 Automated Mapping Approach and Application Threads’ Scheduling

Evaluation . 122
7.1.3 Evaluation of Full Capabilities of the E/E Designer Framework in a

Single-Step Solving . 124
7.1.4 Scalability Analysis . 125
7.1.5 Discussion . 126

7.2 Run-time Evaluation . 127
7.2.1 Hardware Platform Analysis . 127
7.2.2 Experimental Setup . 128

7.3 Quantitative and Qualitative Evaluation . 139
7.3.1 Quantitative Analysis of Various Case Studies 139
7.3.2 Qualitative Analysis . 142

8 Conclusion and Future Work 143
8.1 Summary . 143
8.2 Limitations . 145

8.2.1 Constraints Formulation . 145
8.2.2 Verification . 145
8.2.3 Placement of E/E Components . 145
8.2.4 Design Error Analysis . 146

x Contents

8.3 Future Works . 146
8.3.1 New Requirements and Features . 146
8.3.2 Run-time E/E Configurator . 147
8.3.3 Uncertain Optimization . 147
8.3.4 Run-time Simulation . 147

A Appendix 1 149

Bibliography 153

List of Figures

1.1 The figure presents the evolution of vehicle E/E architecture. Distributed E/E
architectures were used until 2019, while domain-centralized architectures
are used nowadays as vehicle architectures. The zonal architecture shows the
future car E/E architecture [AHK22]. 2

1.2 The manual procedures must be executed by a system integrator to create
configuration syntheses for automotive software components and the vehicle
E/E architecture model. 6

2.1 Assignment of applications to an HPCU consisting of six cores. 12
2.2 The time-triggered slots of four periodic tasks, namely T1, T2, T3, and T4. An

arrow alongside each slot indicates the starting point of the respective task. . 13
2.3 Single and multicast routes within a car E/E topology for transferring com-

munication messages from senders to receivers. The communication messages
are generated by applications executing on ECUs. 14

2.4 Two types of hypervisors including (a) Type-1 or Bare Metal hypervisor and
(b) Type-2 or Hosted hypervisor. 22

2.5 The software architecture integrated into the vehicle’s HPCU using a type-
1 hypervisor consisting of four mixed-critical partitions. The yellow dash
lines show the hard separations between partitions starting from the hardware
level [AHK22]. 23

3.1 The AADL text editor (a) to synchronized graphical editor (b) in OSATE frame-
work. 32

3.2 The AADL text editor for a lane detection application including flow analysis,
processor and memory bindings in OSATE framework. 33

3.3 The synchronized graphical editor for a lane detection application created
based on the AADL text in the OSATE framework. 33

3.4 The report of end-to-end latency analysis for the specified flows in the OSATE
tool. 34

3.5 Binpacking analysis and thread to processor bindings report in OSATE frame-
work. 34

3.6 The architecture of ArcheOpterix framework [AMK23]. 35
3.7 The APP4MC architecture [AMK23]. 37
3.8 A model of the hardware and software system in the automotive industry has

been developed using the APP4MC framework. This model encompasses tim-
ing and mapping constraints (a) and includes a visual representation of the
hardware model (b) [AHK22]. 38

3.9 The working scheme of the AQOSA toolkit [AHK22]. 41

xi

xii List of Figures

4.1 The architecture of the proposed model-based framework. The left and right
columns, representing E/E System Integrator Inputs and the E/E Designer Out-
put, respectively, constitute the frontend. The middle box denotes the back-
end of the tool. In the framework’s frontend, an E/E architecture is modeled
by an E/E system architect. This modeling includes defining requirements,
properties, and addressing various problems. The modeled E/E architecture is
transformed into MIP formulations using the MDD approach. These formula-
tions are then solved and optimized in the tool’s backend. Finally, the optimal
solution is visualized in the frontend of the framework. 53

4.2 The overview of the framework, including modeling, synthesis, and design
error analysis parts. 59

4.3 A vehicle architecture including assignment of applications to an HPCU (ncz
1). 61

4.4 (a) A vehicle topology which shows generated paths for communication mes-
sages from senders to the receivers and mapped applications to the control
nodes. Each colorful dot represents a communication task associated with a
communication message. In this example, each application comprises a single
application thread. (b) Calculated time-triggered schedules from the sender
(ncz

1) to the receiver (ncz
7). It includes schedules for the sender (number one,

with thread slots that are not crossed) and the receiver application threads
(number seven, with thread slots that are crossed). The schedules of com-
munications tasks (yellow and light green frames of the tasks in numbers two
to six) over the generated path (only the enumerated route in (a)) are also
included. The path routing two communication messages (d1 and d2) is con-
sidered. As can be seen, message dependency for the sender and receiver and
path dependency for communication tasks are fulfilled. The representations
for light green and dark green frames are similar to the yellow ones [AMK23]. 63

4.5 A vehicle architecture comprising intermediate and control nodes, links, and
assigned applications to ECUs. A single (arrows with S) and a multicast (ar-
rows with M) paths are generated in order to send communication messages
(colored dots), created by applications, from sender nodes to receiver nodes. 67

4.6 A modeled car architecture comprising intermediate and control nodes, links,
and assigned applications to ECUs. A redundant (yellow dot with red border
line) and a homogeneous redundant (green dot with red border line) routes
are created in order to send communication messages (colored dots), created
by applications, from sender nodes to receiver nodes. 70

4.7 End-to-end latency and response time for a communication message (di .el and
di .r t, respectively). Number one indicates ak.ts

ik slot, as a sender, number two
represents ci frame. As a receiver, a j .t

r
ji slot is shown by number three [AMK23]. 78

4.8 a) A parallel system including multiple elements. b) A series system compris-
ing multiple elements. 84

4.9 Graphical representation of the functioning of the hypervisor constraints im-
plemented in the meta-model presented in Chapter 4, exemplified by the trans-
mission of communication messages. This exemplary scenario shows an HPCU
comprising 10 CPU cores and two communication interface devices running
two partitions. Partition 1 has exclusive control over two cores and one in-
terface device, while partition 2 controls three cores, as indicated by the dark
green boxes. The rest of the CPU cores and the other interface device are
shared among both partitions. Assume that communication messages are sent
between a1 and a6, a2 and a4, and a3 and a5. The two concepts of exclusive
resource allocation and resource sharing are shown in this figure [MAK24]. . . 86

List of Figures xiii

4.10 The UML classes required for the hypervisor-related constraints. 87

5.1 An example of zonal E/E architecture model using the presented model-based
framework [AMK23]. 98

5.2 A designed full-mesh E/E model including links and ECUs using the E/E De-
signer tool. By clicking on "Generate full-mesh", each hardware node is con-
nected to other nodes. 99

5.3 Component properties (a), (b), (c), (e), (g), and optimization and solving
settings (d) and (f) in the frontend of the presented framework [AMK23]. . . . 101

5.4 A modeled E/E architecture by the presented tool including applications (No.
one), application threads (No. two), communication messages (No. three),
communication tasks (No. four), links (No. five), and ECUs (No. six). The
model is solved and optimized by clicking on the Solve option (red rectan-
gle) [AMK23]. 102

5.5 A solution of the designed model in Figure 5.4 including mapping, message
routing, and scheduling. Here, only the mappings for applications one and
two related to the communication message four are displayed [AMK23]. . . . 103

5.6 Calculated time-triggered schedules by the introduced tool for running appli-
cation threads on ECU3 after mapping action as the solution for the model in
Figure 5.5 [AMK23]. 104

5.7 Computed time-triggered schedules by the introduced tool for running 20 ap-
plication threads belonging to 10 applications on an ECU after mapping action. 104

5.8 Time-triggered schedules of two communication tasks over a link. 105

5.9 A solution of a modeled E/E topology including mapping and message routing.
On the left side, several warnings are displayed regarding the validation of the
model. 106

5.10 An outline of the proposed framework’s frontend describing the interaction of
modified Sirius Web with other modules existing in the backend. 107

6.1 The design error analysis flowchart using the IIS method. 113

6.2 The solutions of design error analysis approach created for various case studies
using the IIS method. 115

6.3 The partial output of IIS computation for the case study presented in fig-
ure 6.2 (a). 116

6.4 The result of design error analysis approach using the IIS method for the use
case described in figure 6.2 (a). 117

7.1 The architectural synthesis times for the defined experimental scenarios in-
volving communication message routing integrated into the E/E Designer tool.
The constant variables for each scenario are established as follows: (a) Two
applications and one hundred nodes. (b) Twenty applications and one hun-
dred nodes. (c) Six HR paths and two applications. (d) One hundred nodes
and six HR paths. 121

xiv List of Figures

7.2 Design-time performance evaluation of the introduced model-based frame-
work. The resource utilization constraint is applied to all use cases. (a) Each
application consists of two threads. (b) It is applied on a topology including
8 ECUs, and each application has two threads. (c) The topology consists of 8
applications and 8 ECUs. (d) The topology comprises 8 ECUs, and each ap-
plication consists of two threads with odd periods. (e) A zonal architecture
including 15 ECUs is applied in this use case, and each safety-critical applica-
tion has one thread. The boundary goals for resource utilization, maximum
memory usage, and safety-critical mapping constraints are applied. 123

7.3 The measurement of solving time in a case study includes the full capabilities
of the proposed tool while considering different types of paths for transferring
communication messages. The same architecture as in Figure 7.2 (e) is used
in this experiment. This study incorporates the multi-objective optimization,
which encompasses end-to-end latency, response time, and LOR, as well as the
goals for resource utilization and maximum memory usage [AMK23]. 124

7.4 Scalability analysis of the presented computer-aided tool. Generation and solv-
ing times for (a) a full-mesh architecture and (b) a zonal topology, each includ-
ing 15 ECUs [AMK23]. 126

7.5 The six relevant development kits serve as an HPCU including (1) Nvidia Drive
AGX Xavier, (2) Nvidia Pegasus, (3) MPPA-DEV4 development platform, (4) R-
Car H3 and M3 Starter Kits, (5) AVA 3501, (6) Nuvo 7208VTC. 128

7.6 The mapping experimental setup using the Nvidia Drive AGX. On the left is
the host computer, and on the right is the Nvidia Drive AGX Xavier with the
power adapter. Both are connected to a monitor and other peripherals. 129

7.7 The Monitoring mechanism flow chart. 130
7.8 The Monitoring GUI. The threshold values for each specified requirement can

be chosen. For example, the threshold value of the CPU usage can be defined
inside the red rectangle. 131

7.9 The Monitoring GUI. A warning message can be observed in case of violation
(red rectangle). 131

7.10 The primary GUI including all features. Users can select the priority and as-
signment for each task on the window. 132

7.11 The primary GUI including all features. The window visually represents the
priority, period, and execution time associated with each task. 133

7.12 Gantt charts of the different scheduling solutions for CPU 5. The red bars
represent the planned execution, while the hatched bars stand for the actual
execution [AMK23]. 134

7.13 Start and stop jitters of each thread measured for the time-triggered scheduling
over one hyperperiod. These are the measurements on CPU core 5. Red bars
represent the start jitter, and the green bars the stop jitter [AMK23]. 135

7.14 Comparison of different metrics. Yellow is the time-triggered scheduling, red
is FIFO scheduling, and green is Round Robin scheduling [AMK23]. 136

7.15 Spread of start and stop jitter for the tested scheduling policies. The box plot
shows the minimum and maximum values, the lower and upper quantiles,
and the mean. The yellow, red, and green boxes represent results for time-
triggered, FIFO, and Round Robin scheduling schemes, respectively. 136

7.16 Topology of the tested communication setup. Threads 1-3 on ECU1 each send
a communication packet to threads 4-6 on ECU3. All three packets (c1, c2, c3)
are routed over ECU2 [AMK23]. 137

List of Figures xv

7.17 Measured end-to-end latency and response times of the three communication
messages using Nvidia Drive AGX, Nvidia TX2, and Intel i210 developer kits
as the setup. 138

7.18 Results of the communication evaluation experiment using STM development
kits. The yellow bars represent the expected execution, while the hatched bars
represent the actual execution times of the sender and receiver applications.
The green bars indicate the planned schedule of the communication messages.
The response time and end-to-end latency of each communication message are
also shown [AMK23]. 138

7.19 Results of the quantitative evaluation for the mapping case studies using a
manual approach and the E/E Designer tool. (a) The required setup time for
each use case. (b) The required solving time for each use case. 140

7.20 Results of the quantitative evaluation for the mapping and routing case studies
using manual and tool-assisted approaches. (a) The required setup time for
each use case. (b) The required solving time for each use case. The manual
solving time does not include visualization and optimality of the solutions. . . 142

A.1 Object-oriented metamodel for the E/E Designer framework. The green boxes
indicate the classes, and the white boxes represent the types of data and ele-
ments used within the classes. 151

List of Tables

3.1 Problem’s type, problem’s attributes, and DSE type of the above-mentioned
open-source frameworks. 42

3.2 The used optimization algorithms, and the covered optimization and safety-
relevant attributes in the above-explained open-source frameworks. 43

3.3 Features and DSE type of the above-presented commercial tools. 47

7.1 Periods and execution times of threads for each sample application. 134
7.2 Communication solution calculated by the presented framework. 137

A.1 Notation Reference. 149

xvii

List of Algorithms

1 Cycle Breaker and Connection of Incoming & Outgoing Messages 73
2 CMR . 90
3 CSCT . 92
4 PD . 93

5 DVC . 114

xix

1
Introduction

1.1 Vehicle E/E Architecture and its Development

The automotive industry is profoundly transforming, driven by technological advancements
and a growing emphasis on safety, connectivity, and automation. Central to these changes is
the concept of electrical and/or electronic (E/E) architecture, which refers to the organiza-
tional structure and integration of electrical and electronic systems within a vehicle. The de-
velopment of E/E systems, including the technical approaches, requirements, design structure
decisions, and methods, are heavily influenced by the vehicle’s E/E architecture [AFK21a;
AMK23].

The E/E architecture can be viewed from multiple perspectives. One is the physical aspect
that shows the positioning and connections of elements in the car, such as electronic control
units (ECUs), sensors, actuators, gateways, power supply, and switches. It also includes
the placement of communication networks, wiring harnesses, and power distribution setups.
Furthermore, the software used in the vehicle plays a crucial role in the E/E architecture,
especially as the level of autonomy in cars has been advancing in recent years. Another
perspective is that the E/E architecture can be seen as a logical representation, emphasizing
the connection and interaction between the components and elements incorporated into the
vehicle. In this context, the E/E architecture can be understood as pertaining to the transfer of
data, the movement of signals, and the protocols for communication and interfaces [AHK22].

Recent advancements in driving automation have led to a significant increase in the num-
ber of companies investing in the development of autonomous vehicles. This effort has not
only resulted in the inclusion of non-essential features, such as gaming using a vehicle’s info-
tainment system, but also the implementation of advanced driver assistance systems (ADAS)
to enhance safety and comfort for drivers. As a result, the E/E architecture of automobiles
has undergone significant improvements, including the integration of various sensors, actua-
tors, and powerful computing units to process the large amounts of data collected from the
sensors for both critical and non-critical functions [AHK22].

Over the past few years, as the number of functionalities and features in vehicles has
grown, the E/E architecture of cars has undergone significant changes [AFK20]. Initially,
each ECU was responsible for managing a single function. As the number of functions in-
creased, domain-specific ECUs emerged, responsible for controlling a set of functions related
to a specific area or domain. These functional domains that require domain ECUs are usually
compute-intensive and connect to many input/output (I/O) devices [AFK21b]. Each domain
ECU is connected to multiple function-specific control units. A zonal ECU is responsible for
distributing data and power throughout the vehicle, for example, by distributing the power

1

2 Chapter 1 Introduction

Distributed E/E Architecture
Domain Centralized E/E

Architecture
Zonal E/E Architecture with

High-Performance Computing Unit

Automotive ECUs (function-specific)

Optional ECUs e.g., central gateway

Domain-specific ECUs

Central high-performance computing unit

Zonal ECUs

CAN bus connection

Automotive Ethernet connection

Figure 1.1: The figure presents the evolution of vehicle E/E architecture. Distributed E/E architectures were
used until 2019, while domain-centralized architectures are used nowadays as vehicle architectures. The zonal
architecture shows the future car E/E architecture [AHK22].

from the vehicle battery to various sensors and actuators using zonal controllers. Similarly,
data is spread over the vehicle’s network and transferred from sensors to other actuators/sen-
sors and controllers using zonal ECUs. In addition, this type of ECU supports any feature
available in the specific vehicle zone and acts as a gateway, switch, and smart junction box.
Furthermore, it supports any interface for sensors, actuators, and displays [AMK23; AHK22].

Considering the ADAS and self-driving applications, using domain-specific ECUs increases
the number of ECUs with substantial growth in the wiring harness, communication band-
width, cost, software variants, and software complexity. Therefore, multi-core ECUs can be
considered a solution to reduce the number of ECUs, cost, wiring harness, software compli-
cation, and variations. In addition, the multi-core technology has promptly been extending
in different areas of embedded systems to deliver an appropriate performance for artificial
intelligence (AI)-based applications and systems by giving scalable computing power [Bro06;
AHK22]. A high-performance computing unit (HPCU) is a multi-core ECU that is composed
of multiple system on chips (SoCs) that include several cores, a graphics processing unit
(GPU), random access memory (RAM), and deep learning accelerators. These components
work together to process high computational power-demand applications such as various ob-
ject detection applications for ADAS functionalities [AFK21b]. The central computing unit is
a fully scalable and upgradeable platform that connects to Edge and Cloud backend and uses
cloud computing to process intensive vehicle functionalities. Additionally, it can act as the
zonal gateway, meaning it serves as the master and core functionality of the vehicle [AHK22].

As shown in Figure 1.1, the development of E/E architectures has progressed through
various stages. The initial stage referred to as distributed E/E architecture, involves using
function-specific ECUs and a central gateway connected via a controller area network (CAN)
bus. This architecture allows for stronger collaboration among ECUs and the ability to handle
more complex functions, such as adaptive cruise control, as well as the potential for cross-
functional connections. The next evolution in E/E architecture is known as domain central-
ized architecture, which utilizes domain-specific ECUs [AHK22]. As shown in Figure 1.1,
function-specific control units are connected to domain-specific ECUs using both a CAN bus
and an Ethernet connection. Moreover, this type of architecture also utilizes the central gate-
way ECU. This architecture is capable of handling even more complex functions and can also
optimize cost through the consolidation of functions. For example, one domain-specific ECU

1.1 Vehicle E/E Architecture and its Development 3

can be assigned for the parking assistance system, which includes two function-specific con-
trollers related to vision processing and actuator commands, such as for brake and steering
wheel [AHK22].

The domain centralized architecture, which incorporates domain controllers and a cen-
tral gateway, has become increasingly sophisticated over time, encompassing the car’s wiring
harness. The implementation of autonomous driving features exacerbates the complexity of
the architecture due to the increased number of sensors and actuators, the growth in data
processing capabilities, and required bandwidth, as well as the high demand for intelligent
power distribution [AMK23; AMK23; AFK21b]. To address the complexity present in previous
architectures, the future of E/E architecture is envisioned as a zonal architecture, which will
utilize a central HPCU [AMK23]. The zonal architecture is designed to include cutting-edge
vehicle functions and technologies while reducing weight and cost. As presented in Fig-
ure 1.1, the zonal architecture consists of an HPCU, zonal ECUs, and function-specific ECUs.
The central HPCU acts as the master, processing all data from various vehicle zones and con-
trolling the car’s operation. Furthermore, the HPCU serves as a central gateway, transmitting
data between different zones [Jia19]. The ECUs and HPCU are interconnected using an Eth-
ernet connection, which offers fast and high-bandwidth data transmission [AFK21a; AHK22].
Furthermore, the zonal architecture supports virtual domains, transferring embedded func-
tions to the cloud and providing software updates and downloads via the over-the-air (OTA)
service for the HPCU [AHK22].

Further details regarding automotive communication protocols such as CAN bus and au-
tomotive Ethernet will be explained in Chapter 2.

1.1.1 The Main Bottlenecks of Current E/E Architecture

Although current E/E architectures can meet a wide range of requirements, they may need
to be fully equipped to handle the demands of self-driving or future vehicles. With the grow-
ing number of functionalities, applications, sensors, and actuators, as well as the need to
adhere to functional safety standards, future ECUs will require a greater level of compu-
tational power, communication interfaces, and software integration and architecture com-
pared to their current counterparts [AHK22]. Furthermore, the communication bandwidth
required for autonomous vehicles presents a significant challenge in the current E/E architec-
ture. Although current communication networks, such as CAN, have been used for in-vehicle
communication in the past decade, their communication distance and rate cannot compare
with Ethernet, which offers a wide range of communication protocols and allows for sys-
tem interoperability, compatibility and efficient resource sharing [AHK22]. In addition, low
latency, safe persistency, secure data transmission, and high network security are crucial fac-
tors for future vehicles. Furthermore, external communication, such as software updates
or vehicle-to-vehicle (V2V) communication, requires higher data traffic and protection. To
meet these requirements, communication protocols such as the automotive Ethernet will be
necessary [AHK22; AMK23].

Integrating new technology into existing E/E architectures is currently a major chal-
lenge in developing autonomous vehicles. To address this issue, the E/E architecture for
autonomous cars must be designed to allow for future extensions and the integration of new
technologies without compromising the existing structure [AHK22]. To achieve this goal,
powerful computing units, high-speed communication protocols that meet automotive safety
regulations, and approaches to facilitate the integration of new features into the existing ve-
hicle architecture are crucial. These features will help to overcome the current limitations of
the E/E architecture [AFK21b].

4 Chapter 1 Introduction

1.1.2 The Main Technologies for Future’s E/E Architecture

The new functionalities integrated into self-driving cars require advanced technologies to
fulfill future automotive feature requirements. Critical technologies for automated driv-
ing cars include employing zonal ECUs, which also function as advanced gateways with
increased computing power, utilizing central computing units as the vehicle’s core, imple-
menting novel in-vehicle communication networks, and establishing new vehicle software
architectures [AMK23].

To meet the growing demand for in-vehicle network bandwidth, automotive Ethernet
emerges as a viable solution, offering higher bandwidth, enhanced security, and improved
compliance with safety requirements outlined in ISO 26262 [ISO18]. Moreover, the achieve-
ment of low-latency communication within the network, facilitated by novel message routing
mechanisms, plays a pivotal role in advancing in-car networks, particularly in the context of
autonomous vehicles [AHK22].

One of the most crucial technologies for transitioning to a centralized E/E architecture is
the utilization of multi-core processors, including artificial intelligence (AI) accelerators, as
the primary computing units. With the proliferation of AI applications, particularly ADAS ap-
plications that employ deep learning and machine learning algorithms demanding significant
computational power, especially in the vision domain, there arises a need for incorporating a
central HPCU within the vehicle’s E/E architecture to efficiently process and compute these
applications. Furthermore, the core software architecture for the entire vehicle is established
within the HPCU. This architecture accommodates various software domains, encompassing
perception, mapping, planning, ADAS applications, and infotainment. Additionally, employ-
ing such a centralized architecture, complemented by an advanced software-defined vehicle
(SDV) architecture, opens up opportunities for original equipment manufacturers (OEMs)
to seamlessly integrate and update advanced software, similar to the approach seen with
smartphones [AHK22; AFK21b].

SDV is a type of vehicle that relies heavily on software to control its functions and fea-
tures. This can include everything from the vehicle’s powertrain and propulsion systems to
its navigation, entertainment, and safety features. One of the main benefits of using software
to define the functions of a vehicle is that it allows for greater flexibility and adaptability.
With traditional vehicles, making changes or updates to the hardware can be challenging,
as it requires physical modifications to the vehicle itself. With an SDV, however, many of
the vehicle’s functions can be controlled and updated through software, making adding new
features or making changes to existing ones easier. In addition to providing greater flexibility,
software-defined vehicles can be more efficient and reliable. Using software to control and
optimize various functions can achieve better performance and reduce the risk of mechan-
ical failures. There are also several potential applications for SDVs, including autonomous
vehicles, electric vehicles, and connected vehicles that can communicate with each other and
with infrastructure. An essential element in advancing software-defined vehicles involves de-
coupling software and hardware development. A valid comparison can be drawn from the
evolution of cell phones. Initially, cellphone software and hardware were closely intertwined.
However, the introduction of smartphones transformed phones into software platforms that
can host various applications independently of the underlying hardware. Similarly, the auto-
motive industry is undergoing a shift where vehicle software is becoming a platform [Apt23;
QNX23].

As mentioned previously, the new software-defined architecture is integral to the future
E/E architecture. Hardware virtualization technology should be considered to enable the
integration of safety and non-safety-critical software domains into the HPCU in a manner
that complies with safety requirements while optimizing hardware resource utilization. This

1.2 Motivation and Research Questions 5

technology can be implemented using a hypervisor [AHK22; MAK22]. Further details about
hypervisors will be provided in Chapter 2.

1.2 Motivation and Research Questions

1.2.1 Motivation

With the increasing level of vehicle automation, such as ADAS, the demand for computa-
tional power in vehicle ECUs has grown dramatically in recent years. Currently, cars are
equipped with anywhere from 70 to 100 ECUs to manage their software systems [Pel+17].
Furthermore, the complexity and variety of required applications in today’s vehicles have sub-
stantially increased, especially with the inclusion of ADAS and automated driving features.
Meeting both non-safety and safety requirements in compliance with automotive standards,
such as ISO 26262 [ISO18] and SOTIF [ISO19], during the design and configuration of
automotive architectures has increased complexity. This complexity arises from integrating
new applications and features into the vehicles and the limitations of traditional E/E archi-
tectures [AHK22; AMK23; AFK21b]. Consequently, the vehicle E/E architecture has been
evolving recently concerning the complexity described in Section 1.1.

A significant amount of data must be transmitted over the in-vehicle communication net-
work to support new infotainment and driver assistance features [AMK23]. However, reli-
able transmission is crucial when vehicles rely on network messages to make safety-critical
decisions. Low latency and, in some cases, deterministic message transmission with accurate
schedules for each communication frame are also necessary to meet the demands of real-time
applications [AFK20; AMK23].

Therefore, developing an E/E architecture with ADAS functionalities and algorithms that
meet all safety-related (e.g., timing, freedom from interference (FFI), and redundancy) and
non-safety-related requirements is a laborious and time-consuming task that requires domain-
specific knowledge [AFK21a; AFK20]. Manually integrating and configuring the software
architecture for an automotive HPCU is challenging and prone to errors, given the need to
fulfill various hardware, application, operating system (OS), middleware, and hypervisor re-
quirements and properties. The same applies to configuring an automotive communication
network, ensuring reliable data transmission for safety-critical ADAS applications. These
configuration syntheses can be optimized for multiple goals, comprising power consumption,
resource utilization, reliability, bandwidth usage, temperature, cost, response time, end-to-
end latency, and more [AHK22; AFK20; AMK23].

Additionally, as the number of hardware and software components continues to grow
within the vehicle E/E system, along with their corresponding requirements and properties,
the task of finding the ideal configuration synthesis and solutions for specified problems,
e.g., mapping problem, becomes increasingly complex for system architects. In addition,
the need for a new update in the configuration may lead to unknown risks and becomes
costly. For example, Figure 1.2 presents a brief overview of a system integrator’s manual pro-
cess of vehicle E/E architecture synthesis. The system integrator must consider the software
model specifications that will be deployed on the car’s E/E system, including applications
and their requirements, OS and middleware, and virtualization technologies (e.g., hypervi-
sors) [AHK22]. Moreover, as shown in Figure 1.2, the system architect must take into account
the E/E system components and their properties, comprising HPCU, communication proto-
cols, ECUs, sensors, and actuators. This holistic approach is necessary to generate a correct
configuration synthesis that fulfills all predefined requirements and optimization objectives.

It should be noted that the problem of finding the configuration synthesis can become a

6 Chapter 1 Introduction

Software Model

Vehicle E/E Architecture Model

HPCU Model

System Integrator

Used by

Performed by

Timing Reqs

Safety Reqs

Transmission
Reqs

Application C

Timing Reqs

Safety Reqs

Transmission
Reqs

Timing Reqs

Safety Reqs

Transmission
Reqs

Application B

Timing Reqs

Safety Reqs

Transmission
Reqs

Timing Reqs

Safety Reqs

Transmission
Reqs

Application A

Timing Reqs

Safety Reqs

Transmission
Reqs

Ports

Processor

USB

Ethernet

GPU

RAM

CAN

Cache
Communication
protocols e.g.,
CAN, FlexRay,

Ethernet

Sensors

Actuators

OS & Middleware

Hypervisor

Assignment of software elements to
hardware components satisfying

established requirements and
optimization objectives

Run-time verification of
configuration synthesis

solution after deploymentECUs

Figure 1.2: The manual procedures must be executed by a system integrator to create configuration syntheses
for automotive software components and the vehicle E/E architecture model.

non-deterministic polynomial (NP) problem, depending on the problems [SC13; AHK22]).
This is due to the vast number of safety-critical/non-critical application and user require-
ments, such as reliability [Xie+17b], timing, latency, resource utilization, bandwidth usage,
memory usage, power consumption, FFI, ASIL level [AMK23], redundancy, the expansive
design space for the specified problems, and the non-deterministic or dynamic workload.

1.2.2 Research Questions

As explained above, current and future E/E architectures encounter various challenges and
bottlenecks, including configuration synthesis for software and hardware of the vehicles, as
illustrated in Subsection 1.2.1. Making the synthesis of E/E architectures semi-automated
or automated facilitates the whole synthesis process and reduces the design process’s effort,
possible design mistakes, and complexity. Also, it helps to avoid undesired functional safety
violations. This can be achieved by using computer-assisted software tools. Following this
motivation, it aims to answer two research questions related to the automated configuration
synthesis of a car’s E/E architecture.

• How to facilitate design and synthesis of E/E architectures?

As mentioned in Subsection 1.2.1, the design and configuration synthesis of vehicle E/E
systems are complex and time-consuming, demanding domain-specific knowledge, par-
ticularly when faced with increasing requirements, optimization objectives, and bound-
ary constraints. Specific synthesis problems, such as time-triggered scheduling, mes-
sage routing, and mapping or resource allocation, are also of critical importance. For
example, finding feasible time-triggered schedules is an NP-complete problem.

Tool-assisted approaches can be utilized to address these challenges in the design phase,
simplifying the design and configuration synthesis of E/E systems. In the current state

1.3 Thesis Contributions 7

of the art, a plethora of commercial and non-commercial tools are available for mod-
eling and synthesizing E/E architectures and automotive embedded systems, as elabo-
rated upon in Chapter 3. These tools can accommodate various hardware and software
properties, safety and non-safety requirements, synthesis problems, and optimization
objectives, thereby facilitating the design and synthesis of car E/E architectures. How-
ever, they have limitations regarding the diversity of synthesis problems, optimization
goals, and safety and non-safety requirements.

The process involves gathering relevant information for synthesis problems and selected
requirements and objectives, realizing them, transforming them into mathematical con-
straints, and solving them to find optimized solutions using solvers.

• How to simplify analysis of design errors in E/E architectures?

Ensuring that there are always feasible solutions for the design of E/E systems is not
guaranteed. E/E architects can model E/E architectures while selecting various spec-
ified requirements and optimization goals. However, after solving the designed E/E
models, sometimes the solver concludes that no feasible solutions exist. This occurs
due to conflicts within the constraints system. Identifying the source of the violation
is necessary to correct the errors and make the system model feasible. This process
becomes exceedingly time-consuming and complex when there are many constraints
within the system model. Thus, an approach is needed to address this issue, enabling
the identification of violated constraints more quickly to make the system model satis-
fiable.

1.3 Thesis Contributions

Addressing the first research question, automation is pivotal in simplifying the design and
synthesis of car E/E architecture. To contribute to this question, we present a model-based
software framework. While numerous tools are available for modeling and synthesizing E/E
systems, they often come with limitations in areas such as synthesis problems, safety require-
ments, optimization goals, and more. These limitations are comprehensively analyzed in the
literature review in Chapter 3.

Therefore, the introduced modeling tool offers new features including automatic map-
ping/resource allocation for multi-core computing units and software and hardware com-
ponents, automatic creation of various types of communication message routings for auto-
motive networks, and the computation of time-triggered schedules for application threads
and communication tasks. These synthesis problems are all addressed in a single step to
reduce solving time and account for the interrelations between defined constraints. The
framework leverages advanced algorithms to achieve this goal. Furthermore, the presented
tool encompasses a wide range of safety requirements, including FFI, ASIL considerations,
reliability, redundancy, and homogeneous redundancy. It also caters to various optimization
goals and boundary conditions, such as end-to-end latency, response time, resource utiliza-
tion (including memory and processor), link occupation rate (LOR), bandwidth usage, and
E/E components cost. Detailed explanations of these terms can be found in Chapters 2 and
4.

To develop this framework, we employ a model-driven development (MDD) approach,
wherein an object-oriented metamodel serves as the foundation for all defined synthesis prob-
lems, requirements, optimization objectives, and boundary constraints. Linear programming
is utilized to implement all the features discussed above in the form of constraints. The com-
plexity of linear programming is hidden from system integrators and E/E system architects by

8 Chapter 1 Introduction

creating an object-oriented graphical modeling tool as the frontend of the framework. As a
result, E/E architectures, comprising hardware and software components, can be easily mod-
eled. The modeler offers various user-friendly features such as drag-and-drop functionality
and automatic hardware/software components creation, simplifying the modeling process.

Once the modeling step is complete, all logical requirements and properties are collected
to build the E/E system knowledge database. This database is then used to generate con-
straints related to the previously mentioned problems and goals. A solver subsequently
solves and optimizes these constraints, resulting in an optimized configuration synthesis for
the designed model. The methodology and approach used in the introduced framework are
explained in Chapter 4. The solution is integrated into the frontend to be accessible and
observable by the user. The details of the frontend are addressed in Chapter 5.

Various evaluation schemes are employed to evaluate the developed software tool, as
described in Chapter 7. These include:

• Design-time evaluation: This assessment focuses on the tool’s performance, applicabil-
ity, and scalability during the design phase. It involves using diverse case studies to test
the tool’s capabilities.

• Run-time evaluation: In this phase, solutions created by the tool are deployed on a real
hardware platform to assess their practical performance.

• Qualitative and quantitative evaluation: This approach examines the tool’s perfor-
mance, usability, and practicality. It involves modeling and synthesizing a series of
use cases performed by multiple users, both manually and using the introduced tool.

To address the first research question, Chapters 4, 5, and 7 are introduced.
In response to the second research question, when a solver cannot find feasible solu-

tions, these solutions become unsatisfiable or infeasible, which is common when solving
a constraint system. This arises from the conflicts between constraints within the system
model. Identifying the source of violation can be time-consuming and complex, especially
when dealing with many constraints within the system model. To address this challenge,
an approach is presented in Chapter 6 for identifying design errors or pinpointing conflicts
between constraints after the solving process. This approach uses two distinct methods to
generate a minimal set of unsatisfiable constraints and cores. The proposed approach then
utilizes these methods to identify the most critical constraints responsible for model infeasi-
bility. As part of this approach, a list of constraints is created, with each constraint assigned
a weight proportional to the number of times it has been identified as the cause of model
unsatisfiability. Consequently, using these weighted constraints, the system integrator can
pinpoint the origins of conflicts between constraints. Furthermore, it is possible to make the
model satisfiable again by addressing and correcting the source of the violation. In addition,
in Chapter 6, evaluations of various scenarios for the design error analysis approach are dis-
cussed. Each method is assessed individually. However, one particular method is considered
the primary approach in this presentation, primarily due to its compatibility with the solver
used in the tool.

Most of this thesis’s content has been published in various international journals and
conferences. In addition, the proposed software framework has become open-source and
accessible on GitHub [AMK23], offering the research community an opportunity to explore,
utilize, and contribute to its development. It is believed that open sourcing the introduced
tool is essential for fostering collaboration, reproducibility, and transparency in research. The
most relevant publications are as follows.

• H. Askaripoor, T. Mueller and A. Knoll, "E/E Designer: a Framework to Design and

1.4 Thesis Structure 9

Synthesize Vehicle E/E Architecture," in IEEE Transactions on Intelligent Vehicles, doi:
10.1109/TIV.2023.3324617.

• Askaripoor, H., Hashemi Farzaneh, M. and Knoll, A., 2022. E/e architecture synthesis:
Challenges and technologies. Electronics, 11(4), p.518.

• Askaripoor, H., Farzaneh, M.H. and Knoll, A., 2021, September. A model-based ap-
proach to facilitate design of homogeneous redundant e/e architectures. In 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC) (pp. 3426-3431).
IEEE.

• Askaripoor, H., Farzaneh, M.H. and Knoll, A., 2021, September. A platform to config-
ure and monitor safety-critical applications for automotive central computers. In 2021
26th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA) (pp. 1-4). IEEE.

• Askaripoor, H., Farzaneh, M.H. and Knoll, A., 2020, September. Considering safety
requirements in design phase of future e/e architectures. In 2020 25th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA) (Vol. 1,
pp. 1165-1168). IEEE.

• Askaripoor, H., Shafaei, S. and Knoll, A., 2021. A flexible scheduling architecture of
resource distribution proposal for autonomous driving platforms. In Proceedings of the
7th International Conference on Vehicle Technology and Intelligent Transport Systems.

• T. Müller, H. Askaripoor and A. Knoll, "Advancing E/E Architecture Synthesis: A Per-
spective on Reliability Optimization and Hypervisor Integration," 2024 IEEE Intelligent
Vehicles Symposium (IV), Jeju Island, Korea, Republic of, 2024, pp. 1996-2003, doi:
10.1109/IV55156.2024.10588416.

• Müller, T., Askaripoor, H. and Knoll, A., 2022, October. Performance analysis of KVM
hypervisor using a self-driving developer kit. In IECON 2022–48th Annual Conference
of the IEEE Industrial Electronics Society (pp. 1-7). IEEE.

1.4 Thesis Structure

The thesis is structured as follows.

• The fundamental concepts and terms are elaborated upon in Chapter 2, where a range
of topics, including resource allocation, time-triggered scheduling, message routing in
automotive networks, vehicle communication protocols, automotive safety standards,
safety requirements relevant to this thesis, and virtualization technologies, are dis-
cussed.

• In Chapter 3, a comprehensive analysis of the state of the art is presented. This anal-
ysis primarily focuses on studies related to automotive software architecture synthe-
sis, technologies, and frameworks/tools for modeling and synthesizing E/E systems,
as well as software integration and configuration in the design process. Additionally,
it encompasses research on mapping problem, communication message routing, and
time-triggered scheduling. The final section of this chapter includes a discussion and
summary.

10 Chapter 1 Introduction

• The approach of the proposed framework is explained in Chapter 4. This chapter in-
cludes various sections, such as framework architecture, framework system model, and
mixed-integer programming (MIP) formulation of constraints. Moreover, it discusses
boundary constraints, optimization objectives, multi-objective optimization, single-step
solving algorithms, and constraint formulation for the Gurobi optimization solver and
provides a discussion section [Gur22].

• The frontend of the proposed software tool is detailed in Chapter 5, which comprises
sections on modeling, requirements and properties, solving and solutions, model vali-
dation, and implementation.

• In Chapter 6, the approach for identifying design errors when violations occur in the
constraint set after it has been solved is explained. This chapter involves background,
approach, and evaluation sections.

• The performance of the introduced software framework is assessed in Chapter 7, cov-
ering design-time, run-time, and both quantitative and qualitative evaluations.

• In Chapter 8, the thesis conclusion, its limitations, and potential avenues for future
research are discussed.

2
Basic Concepts and Terms

In this chapter, the foundation for exploring the subject matter is laid by introducing the fun-
damental concepts and key terminology that will form the basis of this thesis. This section
defines relevant terms and provides background information on task mapping, communica-
tion message routing, time-triggered scheduling, automotive safety standards, vehicle com-
munication protocols, safety-related requirements in vehicle E/E architecture, design space
exploration, and virtualization technology.

2.1 Task Mapping or Resource Allocation

Multi-core architecture can be classified into two categories, homogeneous and heteroge-
neous, based on the application’s and user’s specific needs and requirements. In the homoge-
neous multi-core architecture, all cores are the same, possessing similar computing capacity
and instruction set architecture (ISA). On the other hand, heterogeneous architecture com-
prises a combination of different cores, each specifically designed to meet particular needs,
such as high performance or low power consumption [GBI21]. Integrating multiple types
of processing units onto a single chip through heterogeneous architecture results in lower
energy consumption and increased flexibility [Sin+13]. This approach is beneficial for au-
tomotive applications that have varying contexts and requirements. However, it is essential
to note that homogeneous processors require less task mapping complexity than heteroge-
neous processors, as they have identical cores. Furthermore, homogeneous multi-cores do
not require an analysis of core properties for task execution, unlike heterogeneous multi-core
architecture.

The allocation of tasks in a multi-core system can occur either during design-time or run-
time. Design-time task allocation is performed when no application is running, in contrast to
run-time mapping, which allows tasks to be assigned to different cores while the system is
in operation. In cases where the application requirements are predictable and stable, design-
time mapping is favored. However, the run-time assignment should be utilized when the
application requirements are subject to change in dynamic scenarios, and there is a require-
ment for reassignment [AHK22; AMK23].

Design-time mapping is preferably utilized when the application requirements are fairly
deterministic. On the other hand, in case of changes in the requirements in dynamic scenar-
ios, the run-time assignment is preferred because reassignment is required. Static mapping
uses all system information (e.g., hardware and application properties) to find the optimal
solution. In addition, this type of mapping is appropriate when there is a set of predefined

11

12 Chapter 2 Basic Concepts and Terms

A1 A2 ...

Mapping Action

Including

Figure 2.1: Assignment of applications to an HPCU consisting of six cores.

requirements for the applications and hardware. In other words, the design-time methodol-
ogy cannot solve the mapping problem dynamically. Higher quality solutions can be obtained
with the design-time mapping rather than the run-time allocation due to less limitation of
the computational power [AHK22; AMK23]. Figure 2.1 shows the static mapping of several
applications, each including threads with different periods and execution times, to an HPCU
comprising six cores.

2.2 Time-triggered Scheduling

In mixed-critical systems, especially those focused on real-time applications, enabling deter-
ministic message delivery (i.e., all computations must be complete before their respective
deadlines), avoiding message overlap, and ensuring low latency are extremely important.
Scheduling policies help to meet these requirements using various algorithms. Time-triggered
scheduling is one of the most common scheduling schemes used in the automotive industry
to schedule communication tasks and activities. In the automotive domain, time-triggered
scheduling is used in various systems, including engine control, braking, steering, and info-
tainment. This scheduling scheme also controls safety systems, such as airbags and seatbelts.
These systems must respond quickly and reliably to potential hazards, and this scheduling
scheme can ensure that the tasks related to these systems are executed at the appropriate
times. It is also used in other real-time and mixed-critical systems, such as aviation and in-
dustrial control, where predictability and reliability are critical [Zen+10; Luk+12; AMK23].

In this type of scheduling, activities/tasks that are periodic are initiated at predefined
times (see Figure 2.2). A deterministic scheduling approach ensures that tasks in a system are
executed at a predictable and repeatable rate. In other words, everything is scheduled before
the system is deployed, and it is known in advance which activity will run and when [SW00].
Moreover, all tasks must not overlap during execution [Zha+14]. The running processes in
ECUs and HPCUs can be scheduled using the time-triggered method. This policy can be ap-
plied to the in-vehicle communication network to schedule communication frames/tasks over
a communication protocol, e.g., Ethernet. Time-triggered scheduling is often used with other
scheduling algorithms, such as event-triggered scheduling, to provide a balance between pre-
dictability and flexibility [Zen+10]. In an event-triggered system, a processing task begins in
response to the occurrence of a notable event [Tab07]. While in a time-triggered system, the

2.3 Communication Message Routing 13

T1

T2

T3

Hyperperiod

time

6 12

T4

0

Figure 2.2: The time-triggered slots of four periodic tasks, namely T1, T2, T3, and T4. An arrow alongside each
slot indicates the starting point of the respective task.

activities are initiated periodically at predetermined points in real-time.
To illustrate how time-triggered scheduling works, an example of scheduling four tasks is

considered within an automotive real-time operating system (RTOS) running on an HPCU.
Each task is specified as Ti ={T p

i , T e
i }, where T p

i represents the task’s period, and T e
i de-

notes its execution time. The four periodic tasks are as follows: T1 ={6,0.5}, T2 ={6,1.5},
T3 ={6,0.8}, and T4 ={12,2}. In the context of time-triggered scheduling, the objective is
to ensure that each task executes once within its specified period without overlapping with
other tasks. As illustrated in Figure 2.2, each task completes within its defined period, e.g.,
T4 finished its job once within its period, which is 12. The visualized schedules confirm no
overlap between task execution slots; this demonstrates the correctness of the task schedules
under time-triggered scheduling.

In Figure 2.2, hyperperiod refers to the least common multiple (LCM) of the periods
of all periodic tasks or events in a system. It represents the time interval after which all
periodic tasks will simultaneously repeat or hyperperiodically align. It helps to determine
the maximum scheduling interval required to ensure that all tasks can be scheduled without
deadline violations. When the scheduling interval is set to the hyperperiod, it guarantees
that all tasks will complete their cycles within that interval, thus avoiding task deadline
misses [AMK23]. In this specific example, the hyperperiod is calculated as 12, which is the
LCM of the periods T1, T2, T3, and T4.

2.3 Communication Message Routing

Message routing plays a crucial role in automotive networks, where many ECUs collaborate
to ensure smooth vehicle operations. As modern automobiles become increasingly sophis-
ticated, incorporating various functionalities and advanced systems, efficient and reliable
message routing becomes paramount.

14 Chapter 2 Basic Concepts and Terms

a1

a2

a3

a4

a5

a6

d1.c1

Sender Node

d3.c3d2.c2

Receiver Node

a7

Single Path Multicast Path

S
S

S

S

M

MM

M

M

MS

ECU1

ECU4 ECU7 ECU8

ECU6

Mapping

Figure 2.3: Single and multicast routes within a car E/E topology for transferring communication messages from
senders to receivers. The communication messages are generated by applications executing on ECUs.

The ADAS capabilities and new infotainment systems introduce an increasing amount of
computational power in control units and data, which needs to be transmitted via an in-car
communication network. A valid routing is required in an in-vehicle network to transmit
messages from a node (e.g., an ECU) as a sender to another node as a receiver. Due to
increasing the size of automotive communication networks, which causes a large number
of applications, nodes, and transmitted messages, finding a valid path between two nodes
becomes extremely time-consuming and complex because of a significant expansion of the
design space [AFK21a; Smi+17; AMK23; AFK21b].

One commonly used technique in message routing is the concept of gateways. Gateways
act as intermediaries, connecting different network domains or protocols within the vehicle.
They receive messages from one network and forward them to another, often performing pro-
tocol conversions or message translations. Gateways play a critical role in integrating legacy
and newer ones, enabling seamless communication between nodes, e.g., ECUs operating on
different protocols. The most essential vehicle communication protocols will be explained in
the next section. Another essential aspect of message routing is the consideration of real-time
constraints. Many automotive applications demand deterministic and timely message deliv-
ery to ensure safety and optimal system performance. Therefore, routing algorithms must
prioritize critical messages and allocate network resources accordingly. This involves analyz-
ing the network’s traffic patterns, identifying potential bottlenecks, and selecting the most
efficient paths to ensure timely message delivery and avoid congestions [AMK23; AFK21a;
Smi+18].

The framework introduced in this thesis has the capability to create various types of com-
munication message routings, encompassing single, multi-cast, redundant, and homogeneous
redundant paths. Detailed descriptions of each type are provided in Chapter 4. Based on the
car topology depicted in Figure 2.3, two types of communication paths, from senders to
receivers, are presented. The single route involves the transfer of two communication mes-
sages, d1 and d2, along with their respective tasks, c1 and c2, from ECU1 as the sender to
ECU4 as the receiver. The multicast route demonstrates the transmission of a communication

2.4 Vehicle Communication Protocols 15

message, d3, from a sender, ECU6, to two receivers, namely ECU7 and ECU8.

2.4 Vehicle Communication Protocols

Vehicle communication protocols play a pivotal role in modern automotive systems, en-
abling seamless data exchange and coordination among various nodes, sensors, and actuators
within a vehicle. The demand for robust and efficient communication solutions has become
paramount as the automotive industry rapidly evolves. The following subsections provide
concise explanations of the most important communication protocols.

2.4.1 CAN and TTCAN Buses

Controller area network (CAN) is the most common in-vehicle communication network. The
CAN protocol, developed by Robert Bosch GmbH in the early 1980s, serves as a multi-master
communication interface primarily designed for in-vehicle communication purposes. The
CAN bus uses a twisted pair of wires, including CAN low and CAN high, as its physical layer
and can deliver data transfer rates of up to one megabit per second (Mbps). One of its notable
strengths is its exceptional resistance to electrical interference, simplifying installation due
to its ease of wiring. Furthermore, CAN possesses self-diagnostic capabilities, allowing it to
identify and rectify errors autonomously. The network’s distributed architecture contributes
to simplified maintenance procedures and reduces the overall system cost [BSJ18]. CAN bus
is a robust, flexible, and low-cost communication system that has become a de facto standard
for in-vehicle communication. It uses a message-based protocol, where each message is called
a frame and consists of a header and a data field. The header contains information about
the message, such as the sender’s identifier and the data field’s length, while the data field
contains the actual data being transmitted [Bus23a].

CAN bus has several advantages over other communication protocols, such as low cost,
its ability to operate at high speeds, and its high level of noise immunity. It is also designed
to be simple and efficient, making it well-suited for use in the harsh environments of vehi-
cles. However, this protocol has drawbacks, including limited bandwidth and message length
(typically eight bytes per frame rate), lack of security [BSJ18], wiring complexity, and limited
distance. In addition, CAN has a maximum node limit of 64 devices, and its operation can
generate electrical noise due to varying voltage levels [Dis23].

TTCAN

The basic CAN protocol itself does not support time-triggered scheduling. However, there is
an extension to the CAN protocol called time-triggered CAN (TTCAN) that does support time-
triggered scheduling. TTCAN is a protocol designed specifically for safety-critical automotive
applications where reliable and deterministic communication is required [LH02]. It provides
a time-triggered communication mechanism, meaning messages are sent and received at
specific times rather than in response to events, as illustrated in Section 2.2. In TTCAN, the
time-triggered communication is implemented using a time base and a schedule table. The
time base is a clock used to synchronize all nodes on the network, and the schedule table
specifies the times at which messages are sent and received.

16 Chapter 2 Basic Concepts and Terms

2.4.2 FlexRay

FlexRay is a communication protocol that was developed as a collaborative effort between
Bosch, Continental, and Siemens. It is a network protocol specifically designed for use in the
automotive industry but has also been used in other industries. FlexRay is a high-speed, fault-
tolerant communication system designed to support the real-time requirements of automotive
control systems. The dual-channel redundancy ensures high reliability and fault tolerance. It
uses a deterministic communication protocol, which guarantees a fixed communication delay
for each message, making it well-suited for safety-critical systems [MT06].

FlexRay operates over a physical layer that uses a pair of fiber optic cables or a pair of
twisted shielded pairs of wires. It uses a time-division multiple access (TDMA) scheme to
share the communication channel among multiple nodes. This protocol has a data rate of up
to 10 Mbps and can support up to 64 nodes on the network. It supports time-triggered and
event-triggered communication, providing flexibility for various application requirements.
FlexRay is used in a variety of automotive applications, including powertrain, chassis, and
safety systems. It is also used in other industries, such as aerospace, military, and industrial
automation.

Nonetheless, this protocol is more complex than others and can be costly. The bus also
has certain disadvantages, such as lower operating voltage levels and asymmetry in signal
edges, which can pose challenges when extending the network length [Fle23].

2.4.3 LIN Bus

The local interconnect network (LIN) is a low-speed, low-cost communication protocol that
is commonly used in automotive systems for non-critical applications, such as controlling
interior lighting and window motors. This protocol is designed to provide a low-cost and
low-complexity time-triggered solution for automotive systems without high bandwidth and
determinism of protocols like FlexRay or TTCAN. It is, therefore, well-suited for applica-
tions that require moderate determinism and reliability, such as some interior lighting and
infotainment systems [DeN+01]. Modern automotive networks use a combination of LIN
for low-cost applications, primarily in body electronics, CAN for mainstream powertrain and
body communications, and the emerging FlexRay bus for high-speed synchronized data com-
munications in advanced systems such as active suspension. The LIN bus uses a master/slave
approach that comprises a LIN master and one or more LIN slaves. LIN is a byte-oriented
protocol, which means data is sent one byte at a time. A byte field contains a start bit, 8 data
bits, and a stop bit. The data bits are sent the least significant bit first [Bus23b].

However, the LIN protocol has certain limitations, including limited bandwidth, unsuit-
ability for complex applications, restricted network size (typically accommodating up to 16
nodes), and reliance on a master-slave configuration where one master node can communi-
cate with up to 15 slave nodes. In the event of a master node failure, the entire network can
be affected.

2.4.4 Automotive Ethernet and Ethernet TSN

Communication among ECUs has become more complex, and network throughput has grown
in bandwidth with increased software functionality in cars. Ethernet-based communication
presents an appealing solution due to its capacity for high bandwidth and greater adaptabil-
ity, facilitating seamless integration with cloud services and consumer products. Automo-
tive Ethernet is a specialized Ethernet network with a physical layer adopted for automotive

2.4 Vehicle Communication Protocols 17

applications. It utilizes advanced PHY transceivers (a transceiver component for transmit-
ting and receiving data or Ethernet frames) to reduce cable costs while meeting automotive
electromagnetic compatibility and immunity standards. This technology enables faster com-
munication compared to traditional automotive networks and facilitates the integration of
internet protocol (IP) software technologies, including adaptations for automotive use, func-
tional safety, and cybersecurity [SZ18; MK21].

The difference between Ethernet and automotive Ethernet lies within the physical layer.
In terms of communication, both utilize IP, similar to other Ethernet variants. However, au-
tomotive Ethernet optimizes its physical layer for specific automotive applications. While
100Base-T1 and 1000Base-T1 function as switched networks, similar to standard Ethernet,
they employ distinct Phy transceivers and cables. These cables consist of a more cost-effective
single twisted pair, enabling full duplex communication instead of the dual twisted pair con-
figuration. The choice between shielded (STP) or unshielded twisted pairs (UTP) depends
on the requirements. Moreover, 10Base-T1S employs a single twisted pair but operates as
a multi-drop bus, similar to CAN, rather than functioning as a switched network [SZ18;
Eth23]. Automotive Ethernet can support data transfer rates of up to 10 Gbps. This is much
higher than traditional automotive networking protocols, which can only support rates of up
to 1 Mbps. Various Automotive Ethernet standards exist, including 100BASE-T1 (capable of
transferring data at speeds of 100 Mbps), 1000BASE-T1 (transferring data at speeds of 1,000
Mbps), and 10GBASE-T1 (transferring data at speeds of 10 Gbps). There is ongoing develop-
ment of Automotive Ethernet PHY standards to accommodate speeds higher than 10 Gbps,
such as 25, 50, and 100 Gbps [Eth23; Tek23].

Ethernet TSN

Time-sensitive networking (TSN) has emerged as a revolutionary technology born out of the
necessity to address the evolving demands of real-time communication in networking. Ini-
tially developed by the institute of electrical and electronics engineers (IEEE) as part of the
IEEE 802.1 working group, TSN introduces a set of standardized protocols and mechanisms
to ensure precise and predictable data delivery in Ethernet networks [Fin18; IEE18]. TSN
enables several key features for automotive networks comprising redundancy in two areas:
data transmission paths and network time masters. IEEE 802.1CB, which refers to frame
replication and elimination for reliability, provides the redundancy capability for data trans-
mission. TSN enables deterministic communication, ensuring critical data is delivered with
low and bounded latency. This is crucial for real-time applications. This technology provides
precise time synchronization across networked devices, allowing for coordinated actions and
event triggering. This feature is particularly beneficial in scenarios where multiple devices or
systems must act in harmony, such as in distributed automation and autonomous vehicles.
It also introduces enhanced quality of service (QoS) mechanisms prioritizing time-sensitive
traffic over less critical data streams. It ensures that different types of traffic receive the
appropriate level of service. It includes not only prioritization but also traffic shaping, band-
width reservation, and congestion control. TSN also provides the frame preemption capa-
bility, allowing high-priority, time-sensitive Ethernet frames to interrupt and take precedence
over lower-priority frames that may be transmitting on the network. This mechanism ensures
that critical data gets delivered promptly, even if the network is busy with non-time-sensitive
traffic [Fin18; IEE18; AFK21b].

However, automotive Ethernet technology has some disadvantages, including costs re-
lated to required switches, overheads for real-time communication (such as TSN), electro-
magnetic interference, and a more expensive physical layer interface [Eth23].

18 Chapter 2 Basic Concepts and Terms

2.5 Automotive Safety Standards

Automotive safety standards are a set of regulations and guidelines established to ensure the
safety of vehicles, passengers, and road users. These standards are developed and enforced
by governmental agencies and international organizations to reduce the risk of accidents, in-
juries, and fatalities in the automotive industry. In the following subsections, two of the most
common and pertinent standards relevant to the vehicle E/E architecture, will be explained.

2.5.1 ISO 26262 (Functional Safety for Road Vehicles)

ISO 26262 [ISO18] is an international standard for functional safety in road vehicles. The
international organization for standardization (ISO) defined the standard in 2011 and revised
it in 2018. It applies to E/E systems in production vehicles, including driver assistance,
propulsion, and vehicle dynamics control systems. It provides guidelines for the development
and integration of safety-related systems in vehicles, intending to reduce the risk of injuries
or fatalities resulting from accidents involving a failure of these systems [AHK22; ISO18;
AFK21a].

The standard is organized into eleven parts as follows, each covering a different aspect of
functional safety [ISO18].

• Vocabulary (Part 1): This part defines the terms and definitions used in the standard.

• Management of functional safety (Part 2): This part of ISO 26262 determines the re-
quirements for functional safety management for automotive applications.

• Concept phase (Part 3): It describes the early phase of product development. The
concept phase includes an impact analysis covered in Part 2.

• Product development at the system level (Part 4): It covers specifications for technical
safety, including technical safety concepts, system integration design, item integration,
and testing. The purpose of Part 4 is to ensure that the system design and technical
safety concept comply with the functional safety requirements.

• Product development at the hardware level (Part 5): Part 5 of ISO 26262 is a standard
that specifies the hardware architectural metrics for product development at the hard-
ware level for automotive applications. The standard aims to reduce random hardware
failures that impact functional safety.

• Product development at the software level (Part 6): It covers product development at
the software level, including design, production, and testing. It also provides require-
ments for detecting, indicating, and controlling faults in safety-related hardware. This
part of ISO 26262 comprises different safety requirements which have been considered
in this thesis.

• Production, operation, service land decommissioning (Part 7): This part of the standard
includes planning activities for automotive system safety during the remaining phases
of the product lifecycle. It involves production, operation, service, and decommission-
ing.

• Supporting processes (Part 8): It describes a framework for functional safety to help
with the development of safety-related E/E systems. The framework is meant to be used
to integrate functional safety activities into a company-specific development frame-
work.

2.6 Safety Requirements 19

• Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses (Part 9):
It specifies the requirements for ASIL-oriented and safety-oriented analyses. The stan-
dard utilizes a risk classification scheme to define the safety requirements.

• Guidelines on ISO 26262 (Part 10): It provides guidance on the interpretation and use
of the standard.

• Guidelines on application of ISO 26262 to semiconductors (Part 11): This part is an
adaptation of ISO 26262 to make it easier to apply the standard’s requirements to
semiconductor devices. It comprises a more detailed definition of transient faults than
the original version of ISO 26262.

• Adaption of ISO 26262 for motorcycles (Part 12): It specifies functional safety require-
ments for motorcycle E/E systems.

2.5.2 SOTIF/ISO 21448

SOTIF [ISO19], which stands for safety of the intended functionality, is a methodology for
evaluating and demonstrating the safety of automated systems. It is a risk-based approach
that focuses on the potential risks to human safety that may arise from the intended function-
ality of an automated system. The goal of this standard is to identify and mitigate potential
safety hazards before they can cause harm, rather than relying on traditional safety measures
that are reactive and only activated after an accident has occurred. To do this, SOTIF in-
cludes a series of steps for identifying, analyzing, and mitigating risks related to the intended
functionality of an automated system [ISO19].

The SOTIF process typically involves the following steps:

• Identify the intended functionality of the automated system, including the tasks it is
designed to perform and the conditions under which it will operate.

• Detect the potential safety hazards that may arise from the automated system’s in-
tended functionality, including physical hazards (such as collisions or entrapment) and
psychological hazards (such as confusion or discomfort).

• Analyze the likelihood and severity of these hazards, using techniques such as hazard
analysis and risk assessment.

• Mitigate the identified hazards by implementing appropriate safety measures, such as
design changes, warning systems, or training programs.

• Validate the effectiveness of the implemented safety measures through testing and ver-
ification.

2.6 Safety Requirements

Safety requirements are essential throughout the entire car production process, following
automotive functional safety standards [ISO18; ISO19]. Consequently, these safety require-
ments must be taken into account and ultimately met during the car’s E/E architecture de-
sign. Several safety conditions arise during the architectural design phase, aligning with ISO
26262 [ISO18]. The following subsections discuss the safety conditions most relevant to this
thesis.

20 Chapter 2 Basic Concepts and Terms

2.6.1 Redundancy

Redundancy is a key concept in the context of functional safety, as it refers to the use of mul-
tiple redundant components or systems in order to provide backup and increase the overall
reliability of a system. This is particularly important in safety-critical systems, where a mal-
function or failure can have serious consequences. According to ISO 26262 [ISO18], there
are two types of redundancy: homogeneous redundancy, which necessitates the duplication
of elements, either hardware components or software processes, and heterogeneous redun-
dancy, which can be implemented using diverse elements [AMK23; AFK21a]. Redundancy
can be employed in various ways to enhance the reliability of a system. The first method is
hardware redundancy, which entails using multiple redundant components within a system,
such as multiple sensors or actuators, to provide backup in case one component fails. An-
other approach is software redundancy, which involves the utilization of multiple redundant
software algorithms or programs to perform the same function, thus providing backup in
case one algorithm fails. Finally, functional redundancy encompasses using multiple redun-
dant systems or subsystems to perform the same function, serving as a backup if one system
fails [ISO18; AFK21a; AFK20].

In this thesis, the need for redundancy is automatically taken into account when design-
ing and synthesizing E/E systems, which may include hardware, software, and functional
redundancies. Further details will be provided in Chapter 4.

2.6.2 Freedom from Interference

Freedom from interference (FFI) is a concept denoting the prevention of cascading failures
among components within a system. Such failures have the potential to violate safety re-
quirements. FFI refers to the ability of a vehicle’s systems to operate correctly and safely
without interference from external sources. This is an essential aspect of vehicle safety, as
interference can disrupt the functioning of critical systems, leading to accidents or other haz-
ards. This safety requirement holds significant importance in mixed-criticality systems, where
it guarantees that components of lower criticality do not impact those of higher criticality. To
attain FFI, block partitioning ensures that a fault detected within one block remains isolated
and does not propagate into other blocks. This requirement is just one aspect of dependent
failure analysis [AMK23; ISO18; AHK22]. FFI requirement is considered in this thesis, and
its details will be explained in Chapter 4.

2.6.3 ASIL

ASIL, which stands for automotive safety integrity level, is a risk classification framework
applied for the functional safety of road vehicles. The ASIL classification is established by
ISO 26262, specifically detailed in its ninth Section [ISO18]. This system is derived from
the safety integrity level (SIL) principles initially outlined in IEC 61508 [Com23]. There are
typically four ASIL classes, namely ASIL A, ASIL B, ASIL C, and ASIL D. ASIL D represents
the most rigorous level of risk management. At the same time, ASIL A is associated with
the lowest level of risk. ASIL D imposes the highest integrity and safety requirements, en-
suring that components or systems developed for ASIL D adhere to the most stringent safety
standards [ISO18; AFK21a]. There is a fifth classification called quality management or QM,
which means a risk needs to be higher to require a dedicated safety goal. QM indicates there
is no need to implement additional risk reduction measures beyond the industry-acceptable
quality system.

2.6 Safety Requirements 21

ASIL targets critical safety [ISO18; AHK22; AMK23]. Systems like airbags, anti-lock
brakes, and power steering require an ASIL D grade, representing the highest level of rigor
in safety assurance due to the elevated risks associated with their failure. Moreover, ADAS
applications capable of controlling the steering wheel and brakes are also classified as ASIL-D
applications. On the other end of the safety spectrum, components like rear lights require
only an ASIL A rating. Headlights and brake lights are typically categorized as ASIL B, while
cruise control is generally classified as ASIL C. Game applications integrated into the info-
tainment system are defined as QM applications [Per23].

ASILs are determined through hazard analysis and risk assessment. Engineers evaluate
three specific variables for each electronic component in a vehicle as follows:

• Severity: The type of injuries to the driver and passengers

• Exposure: The frequency at which the vehicle encounters the potential hazard

• Controllability: How much control the driver possesses in preventing injuries

Each of the abovementioned variables is further subdivided into subclasses. Severity in-
cludes four classes ranging from no injuries (S0) to life-threatening/fatal injuries (S3). Ex-
posure consists of five classes covering the incredibly unlikely (E0) to the highly probable
(E4). Controllability comprises four classes ranging from generally controllable (C0) to un-
controllable (C3). All variables and their sub-classifications are analyzed and combined to
determine the required ASIL. For instance, a combination of the highest hazards (S3, E4,
and C3) results in an ASIL D classification [ISO18]. Details on how the ASIL requirement is
applied in this thesis will be described in Chapter 4.

2.6.4 Reliability

Reliability plays a pivotal role in the design of an E/E architecture. It is quantified using
the failure rate denoted as λ, which represents the number of failures occurring within a
specified time frame. Typically, this metric is expressed in failures in time (FIT), indicating
the number of failures per billion hours of operation. In the field of reliability engineering,
it is customary to utilize metrics like mean time to failure (MTTF), which measures how
long a non-repairable item is expected to last before it fails, and mean time between failure
(MTBF), which measures how reliable a product is, instead of the failure rate for assessing
reliability [Com+17]. If the failure rate remains constant over time, it can be assumed that

M T T F =
1
λ

. (2.1)

Note that ISO 26262 does not provide explicit formulas or calculations for reliability, but
it does emphasize the importance of understanding the reliability characteristics of safety-
critical components. Reliability is considered a factor in assessing the safety of these com-
ponents, but the standard itself does not prescribe specific methods for calculating reliability
metrics like MTTF or failure rate.

The integration of reliability into this thesis follows a component-based approach inspired
by the reliability block diagram (RBD) method in the sense that the overall reliability predic-
tion is calculated by looking at the individual components of the system while considering
serial and parallel component configurations [Com23; Com+17]. Further details will be
expressed in Chapter 4.

22 Chapter 2 Basic Concepts and Terms

2.7 Design Space Exploration (DSE)

Design space exploration (DSE) is a critical aspect of the engineering and design process,
serving as a methodical approach to navigating numerous possibilities within the space of
potential solutions during system development. It systematically investigates various design
alternatives, considering multiple dimensions. This process enables engineers and designers
to evaluate trade-offs, identify optimal configurations, and make informed decisions based on
a thorough analysis of the available design options. A substantial and complex system may
encompass an extensive range, potentially reaching millions or even billions of design alter-
natives, with some scenarios presenting an infinite design space [KJS11]. DSE is particularly
valuable in complex and multidisciplinary domains where diverse factors influence the over-
all system performance. By embracing DSE methodologies, practitioners gain insights into
complicated relationships among design parameters, fostering innovation and efficiency. In
the context of synthesizing E/E architectures for vehicles, DSE involves a comprehensive anal-
ysis of alternative configurations, considering various factors such as system requirements,
performance metrics, and resource constraints [AFK21b; AFK21a].

Hardware

VM1 VM2 VMn

Hypervisor

...

Hardware

VM1 VM2 VMn

Hypervisor

...

Host OS

(a) (b)

Figure 2.4: Two types of hypervisors including (a) Type-1 or Bare Metal hypervisor and (b) Type-2 or Hosted
hypervisor.

2.8 Hypervisor

Hypervisors are commonly used in the automotive software domain to enable the develop-
ment, testing, and deployment of software applications in a virtualized environment. This
can reduce the cost and complexity of hardware infrastructure and provide a stable and iso-
lated environment for testing and deploying applications. Moreover, hypervisors can be used
to host multiple operating systems and applications on a single physical host, allowing for
greater flexibility and scalability in deploying automotive software [MAK22].

The emerging software-defined architecture plays an integral role in shaping the future
E/E architecture [AHK22]. It is essential to consider hardware virtualization technology to
seamlessly integrate safety-critical and non-safety-critical software domains into the HPCU
while ensuring compliance with safety requirements and optimizing hardware resource uti-
lization. This technology can be effectively implemented through a hypervisor, software

2.8 Hypervisor 23

OSC

High-Performance Central Computer

Hypervisor

OS

Perception OSC

OS

Mapping &
Planning

OSC

OS

ADAS OSC

OS

Infotainment

IPC

Figure 2.5: The software architecture integrated into the vehicle’s HPCU using a type-1 hypervisor consisting of
four mixed-critical partitions. The yellow dash lines show the hard separations between partitions starting from the
hardware level [AHK22].

designed to create and manage virtual machines (VMs). The hypervisor facilitates shar-
ing virtualized hardware resources among multiple instances running various operating sys-
tems [AHK22; MAK22]. There are two types of hypervisors:

• Type-1: It is also known as the Bare Metal or Native hypervisor since it is installed and
operates directly on the host’s hardware without relying on any host operating system.
According to Figure 2.4 (a), this hypervisor possesses direct authority over and access
to the hardware resources. For instance, a type-1 hypervisor can allocate a dedicated
core to a partition (an execution environment supervised by the hypervisor that utilizes
virtualized services) in a manner that prevents other partitions from accessing that
core [AHK22; MAK22].

• Type-2: It is also referred to as a Hosted hypervisor. This type of hypervisor operates
as an application within the host OS and leverages hardware resources for its virtual
machines (VMs) by directing requests through the host’s OS based on Figure 2.4 (b).
Importantly, the host OS remains unaware of this hypervisor type, treating it like any
other regular process [MAK22; AHK22].

The FFI requirement can be satisfied for safety-critical applications by using a hypervisor.
For instance, based on the structure of the Bare Metal hypervisor presented in Figure 2.4 (a),
safety-critical applications can be run on VM1. While QM applications can be executed on
VM2, ensuring that safety and non-safety-critical applications do not interfere with each
other. Figure 2.5 illustrates a high-level software architecture for a vehicle integrated into
a central HPCU. Different partitions are configured to isolate various application domains,
including merging mixed-critical applications, to efficiently utilize hardware resources. This
is achieved through the use of a type-1 hypervisor [MAK22], allowing each partition direct
access to HPCU resources, such as cores, RAM, GPU, cache, network buses, and universal
serial bus (USB) interfaces. As shown in Figure 2.5, each partition operates with its OS and
application domain, such as perception, layered on top of the OS. This arrangement ensures
that each partition can utilize HPCU resources directly, thereby adhering to the principle of
FFI as specified in ISO 26262 [ISO18]. However, it is important to note that the extent to

24 Chapter 2 Basic Concepts and Terms

which resources follow the FFI requirement may vary depending on the choice of hypervisor.
Various open-source and commercial hypervisors, developed by different companies, may
offer different levels of FFI compliance based on the specific hardware configurations to be
employed [AHK22].

In the context of the type-1 hypervisor, resources among partitions cannot be shared or
accessed by other partitions, as indicated by the yellow dashed lines in Figure 2.5 [AHK22].
Furthermore, the inter-process communication (IPC) feature can activate communication
between two partitions using a type-1 hypervisor. For example, suppose one process in a
safety-critical partition (e.g., perception) intends to interact with another process in another
(e.g., ADAS) to transfer messages. In that case, it can be accomplished by IPC (see Fig-
ure 2.5) [AHK22].

3
State of the Art

In this chapter, the related works and studies are presented with respect to our research
questions and motivation. Additionally, a wide range of commercial, and non-commercial
frameworks/tools have been developed for automotive software integration, configuration,
and E/E architecture synthesis. These tools aim to address mapping issues and model soft-
ware components, including DSE and optimization methods. A comprehensive examination
and analysis of these tools are provided in Section 3.4. Furthermore, we discuss our contri-
butions to the current state of the art.

3.1 Communication Message Routing and Synthesis of Time-triggered
Schedules in Automotive Networks

In this section, we go through the most relevant studies to create valid paths over the vehicle
network in order to transfer a communication message from a sender to a receiver in the
automotive architectures. Moreover, studies and approaches related to the synthesis of time-
triggered scheduling are illustrated.

3.1.1 Communication Message Routing

In their work, Lukasiewycz et.al [LSF14] presented a model based on graphs and a con-
straint system that enables the creation of message routing for applications running on an
ECU within an architecture. They also introduced a binary encoding strategy in a previous
work [Luk+09], which uses Satisfiability (SAT)-encoding to allocate resources, bind tasks,
and route messages for optimal one-linear objectives. In [Smi+18], an automated method
was presented for producing automotive architectures that have low redundancy and sin-
gle routings. The method takes predefined optimization objectives into account by utilizing
SAT-Decoding. It involves assigning resources to the system based on the mapping of applica-
tions. Generated routes are then optimized based on the number of allocated links and MTTF.
MTTF is defined as the individual failure rate for all the components of the architecture.

This study [Smi+17] focuses on optimizing the communication within automotive net-
works where multiple systems with varying levels of criticality coexist. The authors propose
a message routing and scheduling strategy for time-triggered networks in such environments
to ensure efficient and reliable communication. This strategy takes into account the dif-
ferent criticality levels of the messages and assigns appropriate priorities to them to avoid

25

26 Chapter 3 State of the Art

congestion and minimize latency. Optimization is achieved by using mathematical models to
determine the best routing and scheduling decisions in real-time. The results of the proposed
strategy are evaluated and compared to other existing methods, demonstrating its effective-
ness in improving communication performance in automotive mixed-criticality systems.

The recent introduction of TSN standards has further enhanced the safety of E/E archi-
tectures, including mechanisms that ensure deterministic timing and high network reliabil-
ity. IEEE developed TSN standards [IEE18] to address the hard real-time requirements of
Ethernet-based distributed applications. The primary goal of these standards is to facilitate
the implementation of distributed applications with varying levels of criticality on the same
network infrastructure. In particular, the IEEE 802.1DG TSN standard was developed for the
automotive industry and includes profiles for secure, highly reliable networks (e.g., utiliz-
ing IEEE 802.1CB for seamless redundancy), deterministic latency, and automotive in-vehicle
bridged IEEE 802.3 Ethernet networks. Nayak et.al [NDR16] propose a method for ensuring
real-time communication of time-sensitive data through transmission scheduling. Their ap-
proach employs integer linear programming (ILP) formulations to generate schedules. Their
work focuses on the relationship between message routing and the schedule of time-triggered
traffic, while they do not address redundant routing. Authors of [Gav+17] present a solu-
tion to an optimization problem that involves the synthesis of TSN-based distributed network
topologies and stream routing. This approach considers the applications’ real-time and re-
dundancy requirements and aims to minimize the cost of the architecture as an optimization
goal. Meanwhile, [Smi+19] introduces an automated approach for optimizing routing that
takes the regions in a given network into consideration that lack routing variety. The authors
also propose an algorithm for identifying proxy areas in the network.

3.1.2 Synthesis of Time-triggered Schedules in Automotive Domain

There are many studies on time-triggered schedule synthesis. In the following, the most
relevant ones in relation to this thesis are discussed.

Over the past few years, various research studies have been conducted on software inte-
gration and architecture synthesis within the automotive domain. One such example is the
study conducted by the author in [Ter18], who proposed an optimized reconfiguration of
industrial automation systems. This study utilized the DSE approach to determine optimal
architectural configurations for control applications by taking into account constraints and
optimization goals. Similarly, a framework was introduced in [Zhe+16] that offers a model
for architecture in automotive systems. Authors claimed that the framework they presented
enables integration of systems while incorporating optimization techniques and also takes
into account validation for various design metrics, such as reliability and timing [AHK22]. In
[Zhe+05], the authors discuss a time-triggered scheduling scheme that can help to reduce
development and re-verification efforts in the automotive domain. Meanwhile, [Smi+17]
presents a methodology for generating valid time-triggered schedules for routing communica-
tion frames over network links. This approach leverages a 0-1 ILP formulation. In [Sag+15],
the authors describe a technique for synthesizing time-triggered schedules for automotive
hardware architectures. This method generates release times for periodic tasks and messages
and can also support multi-schedule synthesis for different hardware architecture variants.
Authors also conduct several evaluations to measure the effectiveness of their approach, in-
cluding tests for resource utilization, run-time evaluation for both variant and non-variant
use cases, and end-to-end delay analysis.

This study [LC12] proposes a methodology to optimize time-triggered automotive sys-
tems with a particular focus on FlexRay bus scheduling. An extended architecture model
of this work considers resource utilization and configuration, path delays. Furthermore, the

3.2 Software Architecture Synthesis-related Studies 27

authors present a strategy to enable an efficient selection of architecture decisions to avoid
an infeasible schedule. Authors of [FKK17] propose a graphical modeling tool to reduce con-
figuration effort and overhead by automating gate control list (GCL) schedule synthesis for
TSN networks. Moreover, they use a model-based development approach to develop their
framework and apply logic programming to transform a designed graphical network to a
network knowledge base. Zhang et al. [Zha+14] formulate a method for computing time-
triggered schedules for tasks routing over communication links and applications running on
network end stations. Authors in [AHM20] aim to address the problem of computing no-
wait schedules and multi-path routings for large-scale TSN networks. This study introduces
an iterated ILP-based scheduling approach to achieve high scheduling scalability and also
provides a degree of conflict (DOC)-aware multi-path routing methodology to achieve fault
tolerance. Developing proper scheduling approaches, as well as modeling and verification
tools, including experimental setups, is essential in traffic planning and verification of TSN
networks. However, this process can be time-consuming and requires advanced expertise,
which highlights the need for motivation in this area of research [Cra+16; Ash+17; FK17].

3.2 Software Architecture Synthesis-related Studies

This section presents related papers on software architecture and E/E system synthesis, in-
cluding those that consider safety requirements.

3.2.1 Software Architecture Synthesis

In [Zim+18], a new methodology is presented for solving optimization problems in engi-
neering design, particularly those with a nested structure of design parameters. The authors
introduce the concept of "existence-dependent parameters," which are found to arise in var-
ious problems, including the optimization of system architectures. A model-driven approach
is proposed in this study to address these issues. A prototype tool is introduced that integrates
multiple domain-specific tools. A methodology and tool are demonstrated in the context of
a distributed embedded system design example, which includes hardware architecture and
software mapping. An analysis of timing in embedded computer systems is the focus of this
study [Edm+15], which proposes a new approach. Authors observe that current methods
are inadequate as they do not consider the layered, distributed, and heterogeneous nature of
these systems. The framework proposed is aimed to be more adaptable and multipurpose,
giving developers the liberty to choose and utilize a collection of timing analysis tools that
would be appropriate for each individual subsystem. This tool considers the interdependence
among the subsystems and delivers a thorough timing analysis from end-to-end. A method-
ology presented in [TVW18] outlines a process for identifying the best deployment configu-
rations for systems that adhere to the IEC 61499 standard. This approach involves exploring
various design options within the system’s design space to identify the optimal configuration
that satisfies the given requirements and constraints. The objective is to enhance the system’s
efficiency and performance by deploying it in an appropriate manner. DSE outcomes are
utilized to compute deployment configurations that fulfill the desired specifications.

3.2.2 E/E System Synthesis Considering Safety Requirements

Mody [Mod+18] provides an analysis of two automated driving (AD)/ADAS system topolo-
gies to explain their characteristics. The study compares the two topologies based on various

28 Chapter 3 State of the Art

parameters, such as bandwidth, functional safety, number of ECUs, and cost. This work
also explains the system partitioning specific to the AD/ADAS domain for each topology.
The authors of [ZL19] examine the future E/E architectures in the automotive industry and
the components that will be necessary for these architectures, such as cyber security, en-
ergy management, and appropriate middleware. [DS18] examines the safety aspects of the
Ethernet network used in the automotive domain, and provides a comparison of bit flip be-
tween Ethernet-based and CAN-based networks. Furthermore, this study presents a short
overview of future automotive networks considering some functional safety characteristics
such as seamless redundancy. Authors of [Abd+17] suggest a safety method to enhance
the safety of the architecture employed in an autonomous vehicle, as well as evaluate the
architectural design of the self-driving system during the development stage. In addition,
the introduced approach functions as a hazard analysis technique, named system theoretic
process analysis (STPA), in compliance with ISO 26262.

Yoneda et al. [Yon+19] propose a technique for safety-critical applications in the automo-
tive industry that is suitable for a centralized ECU. This technique utilizes a network-on-chip
(NOC) platform specifically designed to address link and delay faults. In this work, Anicu-
laesei and colleagues [Ani+16] put forward a method for ensuring the safety of autonomous
systems. This method involves combining static verification techniques during the design
phase with dynamic verification techniques during operation, allowing for the transfer of re-
sults from the design phase to the run time environment. Furthermore, the authors proposed
a real-time monitoring approach to assess the accuracy of the system assumptions during op-
eration based on the assumptions made during the design phase. In this study [Chi+17], the
focus is on identifying safety requirements for the software of a self-driving car. The study
lists four methods that can be used to ensure safety:

• Implementing redundancy at multiple levels of the system.

• Designing the software and hardware architecture based on redundancy requirements.

• Utilizing FFI technique.

• Monitoring the software and hardware at runtime to detect and avoid any potential
failures.

In [Xie+17a], the authors investigate the reliability of a heterogeneous automotive sys-
tem using ASIL decomposition. They propose two heuristic algorithms to increase reliability
while minimizing development costs for each ASIL decomposition scheme. The approach cal-
culates reliability by considering tasks mapped on the ECUs and their corresponding failure
rates. In both [GPM14] and [TP11], the authors aim to address the real-time requirements of
distributed automotive applications while optimizing development costs. Haupt introduced a
safety monitoring method for autonomous systems in 2019, as documented in [HL19]. This
method uses a collection of safety rules to identify any safety-critical violations that may occur
in the system during runtime. Additionally, the method provides the system with the ability
to maintain self-awareness and ensure safe operations while in use. In their work, Gosavi et
al. [GRC18] put forward three different architectural models for autonomous vehicles that
ensure the functional safety of their E/E components in accordance with ISO26262 [ISO18].
Another group of researchers, Tlig et al. [Tli+18], focus on a model-based approach for as-
sessing the safety of automated driving systems. In this approach, a model can be developed
that includes the environment, perception, fusion, and control units for an autonomous car.
This methodology also involves sequence extraction and analysis to validate particular sce-
narios. The model is then simulated, which includes visualizing the car and its surroundings.

3.3 Task Mapping in Multi-Core Computing Units 29

3.3 Task Mapping in Multi-Core Computing Units

As previously discussed, this section will outline the current mapping techniques and meth-
ods, as well as the optimization objectives for task mapping in multi-core platforms.

3.3.1 Mapping Techniques

Static or design-time mapping uses all available system information, including hardware and
application properties, to find the optimal solution. This type of mapping is most suitable
when there are predefined requirements for both the applications and hardware, as it can-
not dynamically address changes in application or hardware requirements. Subsequently,
it cannot dynamically be solved using design-time methodology. As a result, solutions of
higher quality can be achieved through design-time mapping due to the lack of limitations in
computational power compared to run-time mapping [AHK22].

Design-Time Mapping

There are a number of algorithms used for design-time mapping, including graph-theoretic al-
gorithms, mathematical programming algorithms, and heuristic-based algorithms. In graph-
theoretic algorithms, the application is divided into separate tasks, which can then be as-
signed to the cores for execution and take advantage of parallelism [GBI21],[Dev+15]. This
approach encompasses various theories such as Levelized Weight Timing [Shi+04], Shortest
tree [Bok81], Max-Min [Bra+01], hyper-graph [Dev+15], A∗ [Shi+04], and Kahn Process
networks [Cas+12].

Another design-oriented method for resolving the mapping problem is through mathe-
matical programming, where the requirements are translated into mathematical inequalities.
These inequalities are then solved through various mathematical programming solutions, in-
cluding mixed-integer linear programming (MILP) [NM97], Branch & Bound [HM05], con-
straint programming (CP) [Bha+12], and ILP [Kai+12]. This approach provides an optimal
solution as long as the mapping problem does not fall into the category of NP problems. In
such cases, heuristic-based algorithms can be employed.

The final design-time approach is the utilization of heuristic-based algorithms. As pre-
viously stated, as the complexity of the problem and proximity to an NP problem increases
(for example, with an increase in the number of cores and the complexity of application
requirements), finding an optimal solution through mathematical programming algorithms
becomes unfeasible within the desired time frame. Hence, heuristic algorithms are intro-
duced to provide a solution that may not necessarily be the best, but can still approximate
the exact solution in a faster and more efficient manner.

The alternative options in search algorithms are classified at each branching step based on
the available information in order to determine the next branch to follow. These heuristic al-
gorithms can be further divided into two categories: Population-Based and Single Solutions.
for example, single solution algorithms refer to iterative search methods, such as greedy ran-
domized adaptive search procedure (GRASP) [PML11], simulated annealing (SA)[Gia+14],
and Tabu search[Bra+01]. These algorithms are known for utilizing an iterative search pro-
cess. In addition to these algorithms, there are several other heuristic-based algorithms that
fall under the category of population-based, such as genetic algorithms (GA)[Gan+16], ant
colony optimization (ACO)[Fer+10], and particle swarm optimization (PSO) [Xu+16].

30 Chapter 3 State of the Art

Run-Time Mapping

In this type of mapping, the allocation of tasks to various cores is carried out during the
execution of applications. The amount of time required to find a feasible and optimal solu-
tion is a crucial factor in this mapping approach. Run-time mapping can be categorized into
two approaches, On-the-fly mapping and Hybrid mapping, as reported in [Sin+13; GBI21].
On-the-fly mapping refers to a scenario where task allocation is performed online or dur-
ing application execution without utilizing any offline or design-time information. While in
Hybrid mapping, the task planner leverages the results of offline or design-time mapping to
perform dynamic task assignments. This approach combines the benefits of both run-time and
design-time techniques. For run-time mapping, there are three commonly used algorithms
that can be utilized, including Greedy [CCM07], Feedback control theoretic, and Heuristic-
based algorithms [GBI21]. These algorithms offer a range of options for run-time mapping
tasks.

3.3.2 Optimization Parameters in Mapping

For the purpose of enhancing the task assignment quality in multi-core processors, whether
through static or dynamic mapping, it is crucial to take into account certain critical require-
ments.

Performance

The design of multi-core processors has grown increasingly complex due to the growing
number of applications and the increasing requirements placed on them. To optimize per-
formance and improve mapping, various design-time and run-time approaches have been
developed, such as reducing task execution time during task allocation [Kai+12] or increas-
ing the utilization of the central processing unit (CPU). When evaluating the performance of
a multi-core system, several metrics can be used, including execution time, latency, response
time, and throughput [Meh+09]. These metrics allow for an assessment of the system’s
efficiency and effectiveness in executing tasks.

Power Consumption

Given the increasing popularity of electric vehicles, particularly in the realm of autonomous
cars, energy conservation plays a critical role in optimizing the E/E system of the vehicle.
Minimizing energy consumption during the application mapping process in multi-core com-
putational units is a critical factor in optimizing the mapping process [Xie+18]. Research has
shown that reducing cache miss rates can lead to a substantial decrease in energy consump-
tion, with a 76 percent reduction in energy usage being reported in [Per09].

Reliability

When optimizing multi-core computing units, it is essential to take into account reliability
as a key factor. ISO 26262 has established various ASILs to guarantee the reliability of the
system [ISO18]. The reliability of the system can be evaluated through the use of MTTF,
MTBF, and MTTR as failure metrics [DKV14]. As an illustration of the benefits of the SA
approach, improved system reliability is demonstrated in [HYX09]. The study calculates the
MTTF by considering the temperature variations of the cores. Based on this calculation, task
allocation is performed in a manner that minimizes the MTTF.

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 31

A considerable number of studies have been conducted on the topic of the static map-
ping problem, and many of these have used the ILP method. For example, [Kai+12; NM97;
DLM13; Cos+08] focuses on the design-time mapping problem in a homogeneous multi-
core architecture and utilized the ILP method to optimize their solutions. These studies
aimed to optimize parameters such as performance, energy consumption, and temperature.
In [GZ+19], the authors employed a similar approach to address the mapping issue in a het-
erogeneous architecture, considering various optimization objectives such as execution time,
reliability, and temperature. Other studies, including [Gia+14; HTM10; HYX09; Das+14],
have explored the mapping problem for homogeneous architecture during the design phase
by employing heuristic-based methods, such as SA, ant ACO, and GA, to optimize the final
solution based on factors such as response time, reliability, and energy consumption.

A significant amount of research has been conducted to dynamically allocate tasks to
multi-core processors. For example, studies by Kinsy et al. [KD14], Lee et al. [LR14], and
Liu et al. [LPM13] focused on heterogeneous architectures and employed the ILP method to
perform the run-time mapping. These studies aimed to optimize their solutions with respect
to performance and power consumption. On the other hand, Bolchini et al. [Bol+16] uti-
lized a heuristic approach, specifically the Age Balancer Heuristics, for dynamic mapping on
heterogeneous architectures with the aim of minimizing computation energy and enhancing
reliability. As a result of the growing demand for improved efficiency in mapping consid-
ering the aforementioned optimization parameters, new challenges have arisen in the area
of multi-core processors. These challenges include managing thermal issues in integrated
circuits (ICs), implementing machine learning techniques for efficient mapping, and main-
taining QoS in multi-core architecture [GBI21], [Sin+13].

3.4 Technologies and Tools for Software Integration and Configuration
in Design Process

As previously noted, the manual integration of software for future vehicles is expected to pose
significant challenges. This section provides in-depth information on existing technologies for
software integration, specifically focusing on model analysis, model checking and validation
based on requirements, and mapping problems in embedded systems. Each technology is
evaluated based on various attributes, including problem attributes, design metrics, DSE
approaches, optimization algorithms, and safety-related and optimization attributes.

It is worth noting that the tools we review in this section play a critical role in the devel-
opment of complex E/E systems. These systems can range from automotive to aerospace to
industrial automation and require a lot of resources, time, and effort to design and develop.
However, with the help of the tools that have been reviewed, designers and engineers can
significantly reduce the time and effort required for design, implementation, and testing. One
of the main reasons for analyzing these tools is to provide a clear understanding of the state-
of-the-art in the field of E/E system design and synthesis. It is essential to understand the
capabilities and limitations of these tools to make informed decisions about which tool is best
suited for specific applications. It is important to note that the synthesis of software architec-
ture in E/E systems is an ongoing and constantly evolving field as new safety requirements
and standards continue to emerge. As such, it is essential for researchers and practitioners
to stay up-to-date with the latest developments in this field to ensure that their designs are
always compliant with the latest safety guidelines.

32 Chapter 3 State of the Art

a

b

Figure 3.1: The AADL text editor (a) to synchronized graphical editor (b) in OSATE framework.

3.4.1 Non-commercial/Open-source Frameworks

This subsection discusses non-commercial computer-aided tools to design and synthesize em-
bedded and E/E systems. At the end of this subsection, an overview of this analysis is pre-
sented as a table, including details regarding each illustrated framework.

OSATE (Open Source AADL Tool Environment)

It is a highly effective open-source tool for creating models using the architecture analysis
and design language (AADL) with a syntax-aware text editor and a synchronized graphical
editor (as seen in Figure 3.1)[AHK22]. OSATE is an Eclipse-based tool that provides mod-
eling elements specifically designed for aerospace and automotive systems using the AADL
language [Fei19],[OSA21].

AADL is a versatile modeling language designed to provide early and recurrent assess-
ments of system architecture with a focus on performance-critical properties. This is achieved
through the use of a customizable notation, a comprehensive tool framework, and well-
defined semantics. The language is based on formal modeling principles that allow for the
characterization and examination of application system architectures through the identifi-
cation of individual components and their interactions. The scope of this includes abstract
representations of software elements such as processes and threads, computational hard-
ware, e.g., processors, buses, devices, and memory, and various system components. This is

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 33

Figure 3.2: The AADL text editor for a lane detection application including flow analysis, processor and memory
bindings in OSATE framework.

Figure 3.3: The synchronized graphical editor for a lane detection application created based on the AADL text in
the OSATE framework.

done with the aim of determining and analyzing automotive, aerospace, and real-time em-
bedded systems, as well as examining the performance capabilities of the designed system
through techniques like data-flow analysis. This involves collecting information about the set
of values computed at different points within the designed model or system. Additionally, the
AADL facilitates the mapping of software components, such as processes, to computational
hardware elements, such as processors. AADL has been proven to be particularly useful in the
model-based analysis and specification of complex real-time embedded systems [FGH06].

For example, Figure 3.2 shows an AADL text for a lane detection application that takes
flow analysis and processor bindings into account. Moreover, Figure 3.3 presents the graphi-
cal visualization of the AADL text for the lane detection application.

The OSATE tool allows users to model a system, including both hardware and software
components, down to the application level, as demonstrated in Figure 3.1. With this tool,
users can model the threads used for each application, specifying properties such as period,
computation execution time, million instructions per second (MIPS) budget, and reference
processor. The OSATE verifies the model created by the user for syntax errors in the AADL
text and property definition violations for each component specified. In addition, this frame-
work allows for a range of model analyses to be performed, including a flow latency check
that computes the end-to-end flow latency. For example, Figure 3.4 shows the latency re-
sults for the defined flows of a use case in the tool. This tool includes scheduling analysis
such as scheduling bound threads, i.e., determining processor utilization as a report, binding
and scheduling threads, i.e., thread binding report, and assigning rate monotonic priority.
For instance, the binpacking analysis and also thread to processor bindings report for a spe-
cific use case generated by the OSATE are displayed in Figure 3.5. The OSATE also covers
budget analysis that involves analyzing bus load, power requirements, resource allocations,

34 Chapter 3 State of the Art

Figure 3.4: The report of end-to-end latency analysis for the specified flows in the OSATE tool.

computer resource budgets, and calculating the total weight. Moreover, the OSATE tool com-
prises safety analysis that incorporates fault tree analysis (FTA), functional hazard assessment
(FHA), fault impact analysis, failure mode effect analysis (FMEA), and the identification of
unhandled faults [OSA21; AHK22]. Furthermore, this framework allows for the performance
of a variety of semantic checks and functional integration analyses, including the examination
of binding constraints, the consistency of connection bindings, and port connection consis-
tency. This tool also boasts diverse code generation capabilities through the use of various
plugins, such as Ocarina, and has the capability of importing models from both MATLAB and
Simulink into the OSATE [Oca21; Hug+08; MAT10].

Despite its capabilities, the OSATE does not incorporate any DSE techniques, such as
solving mapping problems for multi-core automotive computing units. As a result, it does not

Figure 3.5: Binpacking analysis and thread to processor bindings report in OSATE framework.

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 35

OSATE

AADL Model Generator AADL Model Parser

Architecture Analysis Module Architecture Optimization Interface

Optimization Algorithms

Architecture Constraint
Validation Interface

Architecture Quality Evaluation
Interface

Constraint Evaluators Attribute Evaluators

Evaluate Attributes

AADL Model
Initial Architecture

AADL Model AADL Model Near Optimal Solutions

Figure 3.6: The architecture of ArcheOpterix framework [AMK23].

offer any optimization capabilities. Additionally, its coverage of safety attributes is limited as
previously discussed [AHK22].

ArcheOpterix

It was previously stated that determining a suitable architecture design is a difficult task for
software and system architects, as they must take into account both quality and functional re-
quirements during the design phase. ArcheOpterix is a tool designed to make the task of eval-
uating, designing, and optimizing AADL specifications easier and more efficient. This open-
source tool [Ale+09], which is based on the Eclipse platform, utilizes evaluation techniques,
a DSE approach, and optimization heuristics to achieve its goals. The framework in question
provides the capability to model software components, as well as the communication between
software components, ECUs, buses, and services. Moreover, the tool has the ability to opti-
mize the deployment of software components to ECUs while considering design constraints
and optimization objectives such as redundancy allocation and cost-effectiveness [Ale+09].

The ArcheOpterix tool is designed to identify uncertain information related to system pa-
rameters and search for the optimal and robust candidate architecture. It also provides a list
of the most appropriate optimization algorithms, including multi-objective genetic algorithm
(MOGA), non-dominated sorting genetic algorithm (NSGA-II), pareto ant Colony algorithm
(P-ACO), simulated annealing (SA), Hill Climbing, Bayesian Heuristic for component de-
ployment optimization (BHCDO), Random Search Algorithm, and Brute-Force Algorithms,
allowing the user to select the most suitable one [Mee+11]. As depicted in Figure 3.6, the
high-level architecture of the ArcheOpterix framework comprises of multiple modules, the
key components of which will be outlined below [Mee+11].

• AADL Model Parser: It is a module that is designed to interpret and extract informa-
tion from an AADL specification generated by the OSATE tool. This module has the
capability to access various AADL elements, such as components, services, and buses.
The extracted parameters are then passed on to the Architecture Analysis Module as
input, which provides support for two interfaces for analyzing the model, including the

36 Chapter 3 State of the Art

Architecture Constraints Validation Interface and the Architecture Quality Evaluation
Interface (as illustrated in Figure 3.6).

• Architecture Constraints Validation Interface: As illustrated in Figure 3.6, offers a con-
nection point for the implementation of Constraint Evaluator modules that assess the
compliance of a given architecture with established constraints.

• Architecture Quality Evaluation Interface: In this part, a variety of quality evaluation
functions can be considered. The Attribute Evaluator module in ArcheOpterix performs
these evaluation functions, which can be expanded to include additional evaluated
features. Currently, ArcheOpterix includes the evaluation of Service Reliability, Data
Transmission Reliability, and Communication Overhead as integrated features.

• Architecture Optimization Interface: The current framework offers the possibility of in-
corporating new optimization algorithms. The tool currently includes Exact Algorithms,
Genetic Algorithms, and Ant Colony Optimization [Mee+11].

Despite its usefulness, this tool has several limitations when it comes to mapping, archi-
tecture synthesis, and software integration for automotive platforms. Initially, the frame-
work is outdated and lacks proper documentation for usage. It does not provide support
for mapping analysis or solving mapping problems for multi-core architectures and does not
place a focus on multi-core computing platforms for automotive applications. Moreover, the
safety attributes specified in ISO 26262, excluding reliability, are not incorporated in this
tool. Additionally, the framework itself does not have any model checking or model analysis
capabilities. The optimization objectives covered by ArcheOpterix are limited to cost, com-
munication overhead, and data transmission reliability. Furthermore, the tool has a limited
set of architectural elements [AHK22].

PerOpteryx

Another open-source framework exists for feature configuration and clustering during the
design phase within the software domain, as described by the authors in [KKR11]. They
assert that this approach can lead to finding the optimal solutions for software architecture,
taking into consideration the predefined requirements and constraints, by utilizing multi-
objective evolutionary optimization on software architectures modeled using the Palladio
Component Model. With this approach, software architects have the ability to choose the
most appropriate architecture for their specific circumstances. The proposed methodology
offers software architectural solutions that are optimized based on various quality attributes,
including performance, cost, and reliability, utilizing the DSE technique. PerOpteryx is a
tool that generates potential software architecture candidates based on various degrees of
freedom in component-based software architectures. Afterward, these candidates are eval-
uated and optimized to meet the specified requirements. The effectiveness of this approach
was demonstrated through the application of two different architecture models, including a
business reporting system and an industrial control system [BFK19].

However, this framework lacks support for mapping analysis or a DSE approach for task
mapping, meaning it cannot find a solution for assigning processes, such as those integrated
into automotive high-performance computing units, to cores while meeting all safety and
non-safety requirements. Additionally, the framework has limited elements for use in the
software architecture and does not include any model checking or analysis. Furthermore, the
open-source framework does not define automotive safety parameters, and the PerOpteryx
tool is outdated and suffers from inadequate documentation.

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 37

MechatronicUML

Due to the complex nature of modern technical systems, particularly reconfigurable mecha-
tronic systems where most control and reconfiguration functionality is embedded in soft-
ware, it is necessary to meet specific requirements in order to effectively utilize a model-
driven development approach for these types of systems. Consequently, a research paper
presented an open-source framework, built on the Eclipse framework, for modeling soft-
ware and hardware components, specifying constraints, and verifying the models through
the use of a model checker called UPPAAL for embedded systems. This framework is de-
scribed in [Beh+06], [BGT04].

This tool is an innovative model-based approach that aims to bring the benefits of model-
based design and formal analysis to the field of mechatronics. By utilizing a DSE approach,
it helps users to find solutions based on predefined constraints in the model. Furthermore, it
offers software reconfiguration capabilities that allow for automatic adaptation of the system
at runtime to accommodate changes in the environment, providing the user with greater
flexibility in the design process. This framework possesses the ability to generate code in the C
programming language, and the models created can be simulated through the use of MATLAB
Simulink, Modelica, or the functional mock-up interface (FMI)[FE98],[MAT10],[SW10].

Nonetheless, the limitations of this tool must be acknowledged based on the criteria set
for mapping and software integration within the automotive industry. Firstly, the framework
does not address mapping analysis or DSE related to mapping problems in computing units,
and MechatronicUML does not provide optimization capabilities. Furthermore, the tool does
not take into consideration safety-related attributes for modeling, analysis, and problem-
solving purposes. Additionally, this tool is outdated and lacks an active community or proper
documentation.

AMALTHEA System Model
(including Optimization)

Constraints

CostsHW Platform

SW Applications Decisions

Performance Simulation
(Focus on timing and

Scheduling)

Figure 3.7: The APP4MC architecture [AMK23].

App4MC

As previously mentioned, the automotive industry has increasingly adopted the use of multi-
core and many-core systems to manage ADAS and autonomous driving functionalities due
to the significant number of applications that require a high level of computational power

38 Chapter 3 State of the Art

for processing. APP4MC is an open-source Eclipse platform that focuses on the performance
simulation of scheduling and timing analysis in multi-core platforms. This platform utilizes
a model-based development approach, as shown in Figure 3.7. It is dedicated to providing
insights into the performance of multi-core systems [HKI15; Höt+17]. The hardware and
software components can be modeled, including specific properties like the processor type,
connections between various modules, OS schedulers, and task properties such as execution
time and deadline. Furthermore, different timing constraints related to the tasks, OS sched-
ulers, and mapping constraints (i.e. the assignment of tasks and schedulers to a specific core)
can be defined, visualized, verified, and validated using this tool.

a b

Figure 3.8: A model of the hardware and software system in the automotive industry has been developed using
the APP4MC framework. This model encompasses timing and mapping constraints (a) and includes a visual
representation of the hardware model (b) [AHK22].

In addition, the hardware and software model, as well as its constraints, can be defined
and simulated by utilizing various visual aids such as graphs (e.g., Gantt chart) and tables to
present the results. This simulation takes into account different optimization goals, including
load balancing, energy consumption, and memory mapping. Figure 3.8 illustrates a modeled
automotive system within APP4MC that includes components such as tasks, hardware, op-
erating system, stimuli, constraints, and mapping. For example, the mapping section of the
model allows schedulers to be assigned to cores and tasks, as depicted in Figure 3.8 (a). In
Figure 3.8 (b), the hardware model, which includes a processor with four cores, an integrated
GPU (iGPU), shared modules such as cache and memory, and communication between these
components, is visualized using the visualization feature of AAP4MC [AHK22].

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 39

However, the APP4MC framework has limitations when it comes to automating the map-
ping of tasks to hardware elements such as cores, taking into account both safety and non-
safety requirements (i.e. the task mapping problem using DSE). While it provides analysis
and simulation of task mapping, it does not provide a solution. Moreover, it has limited cover-
age of safety attributes and optimization goals, and a significant number of E/E architecture
elements are not considered in the framework [AHK22].

Autofocus3

Another open-source tool that is based on the Eclipse platform utilizes a model-based devel-
opment approach to synthesize E/E architectures. This framework supports the modeling of
architecture, starting from requirements all the way to the generation of code for embed-
ded systems. Furthermore, the tool is equipped with the capability to simulate the designed
model, including the defined constraints, and to perform checks and validate the model.
The tool employs a domain-specific modeling language to formalize exploration problems
and has the capability to determine end-to-end latency and schedule synthesis through the
use of the DSE method. Additionally, optimization algorithms such as binary search have
been integrated into the tool to apply defined optimization objectives, such as timing and
communication load, to the solution that is explored [Ara+15; VEH14; HF07].

Autofocus3 falls short in addressing the issue of mapping configuration automation on
multi-core platforms, taking into consideration both functional and non-functional require-
ments. There is also a lack of mapping analysis for these platforms. Moreover, it only offers
limited support for safety attributes, specifically the ASIL level, and for the optimization goals
related to the synthesis of the electronic and electrical architecture [AHK22].

Clafer

A methodology has been developed that combines structural modeling with behavioral for-
malism to aid in the mapping of feature configurations to component configurations or model
templates. This approach, known as Calfer, allows for the integration of feature models
(representing variability), component models, and discrete control models (in the form of
automata) into a single, unified syntax and semantic framework. The language component
is constructed using a combination of first-order logic with quantifiers for modeling struc-
tures and linear temporal logic for modeling behavior. This approach engages in DSE with
a focus on timing as an attribute, and it allows for model analysis. Additionally, it provides
multi-objective optimization for the discovered solution by considering factors such as mass,
end-to-end latency, and cost [Juo+18; Ros+19].

Despite its potential, Clafer lacks certain important features for modeling and analysis in
embedded systems. Specifically, it does not offer model checking, mapping analysis, or DSE
for mapping problems. Additionally, the architectural elements in Clafer are limited and do
not include safety-related attributes for model analysis. Furthermore, this approach has not
taken into account the modeling and analysis of multi-core computing units. To add, the
available information on this approach is not extensive and outdated [AHK22].

AAOL Framework

The model-based approach is a framework for optimizing E/E architecture using a constraint-
based methodology and a domain-specific language. The accompanying tool leverages the
DSE method to determine the optimal solution for the deployment problem while considering
design constraints such as memory capacity, and it implements a multi-objective optimization
mechanism with cost and weight as the defined objectives [Kug+15; KP14].

40 Chapter 3 State of the Art

However, this tool has several limitations that hinder its full potential. In terms of archi-
tectural elements at the software and hardware level, it lacks a definition of software appli-
cation parameters and does not address mapping problems in multi-core computing units.
Furthermore, it lacks support for model analysis and checking. The tool only considers the
ASIL as a safety-related parameter in architecture synthesis and only covers a limited num-
ber of optimization objectives. Furthermore, this tool is outdated and lacks comprehensive
documentation [AHK22].

Assist

The aviation electronics, or avionics, used aboard airplanes are complex and highly dis-
tributed systems. With the constant addition of new functionalities in software, the complex-
ity of these systems continues to increase. The use of multi-core processors enables multiple
functions to be performed on a single hardware unit while still meeting all safety require-
ments, resulting in improved system performance. This represents a major advancement in
the aviation industry. A model-based solution, named Assist, is introduced in [HD13] to ad-
dress mapping problems and optimize deployment of safety-critical applications on avionics
hardware in distributed systems within the aviation domain. The approach employs a DSE
mechanism to determine optimal mapping solutions while taking into account optimization
objectives, such as resource usage, weight, and cost. Furthermore, the Eclipse-based tool has
the capability to generate a periodic schedule for real-time tasks and ensure a deterministic
timing behavior [HB17].

Despite its benefits, this framework has certain limitations that must be taken into consid-
eration. Firstly, the hardware and software level of the specified architectural elements are
quite restricted, and its primary focus is on the aviation domain, rather than the automotive
and E/E architecture. Secondly, it only takes into account redundancy as a safety-relevant
attribute based on ISO 26262 for mapping purposes, and does not provide support for model
checking and analysis. Lastly, the number of defined optimization goals is limited [AHK22].

Deepcompass Framework

The design of embedded systems for multi-processor platforms necessitates the prediction
and balance of multiple system quality attributes at an early stage. In [BCK07], a DSE frame-
work is introduced for component-based software systems that provides architects with a
means to explore a range of possible design options and evaluate and compare these alterna-
tives. This framework facilitates the creation of multiple alternatives for both software and
hardware architectures, and is equipped with the ability to conduct model analysis, mapping
analysis, and model validation. Additionally, the tool employs a DSE method to determine
the optimal software/hardware architecture options while considering multiple optimization
objectives, including cost, throughput, and resource utilization.

However, it lacks any automotive-related elements and multi-core computing unit at-
tributes and does not incorporate a DSE for the mapping problem. It also lacks any consider-
ations for safety-related attributes, and the specified optimization goals are severely limited.
Moreover, this open-source tool is outdated and lacks proper documentation [AHK22].

SCALL

The prototype tool described here utilizes an allocation method to provide deployment solu-
tions for system architects during the design phase by leveraging the concept of DSE [ŠC15].
It also supports multi-objective DSE, which encompasses the allocation of heterogeneous
components, the optimization of bandwidth, and the minimization of communication cost.

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 41

To assist system architects in making complex allocation decisions during the early design
stages, the tool incorporates both heuristics and analytic hierarchy process (AHP) approaches.

Despite these advancements, the current approach lacks consideration for model anal-
ysis, model checking, or mapping analysis. There is also no coverage of DSE for mapping
problems in multi-core computing units and no provisions for safety-related constraints and
requirements. Furthermore, the automotive architectural elements have not been clearly
defined within this framework, and it lacks any optimization capabilities, rendering it out-
dated [AHK22].

Model Design Tool

Evaluator

Transformer

Abstractor

Evolutionary Optimizer

ROBOCOP AADL

Initial Architectures

Alternative Architectures

Topology and/or Mapping Transformation

Quality Properties (i.e., Power Consumption,

Resources Load, Missing Deadlines, etc.)

Performance Analysis Results

Figure 3.9: The working scheme of the AQOSA toolkit [AHK22].

AQOSA

Authors in [Li+11] present the automated quality-driven optimization of software architec-
ture (AQOSA) toolkit as a solution for improving the design process of software architecture
in advanced component-based software development. AQOSA integrates various technolo-
gies, including modeling techniques, performance analysis methods, and advanced evolution-
ary multi-objective optimization algorithms to automate the improvement of non-functional
properties in software systems. The toolkit enables the modeling of software components
and maps feature configurations to component configurations or model templates, thereby
streamlining the design process. Furthermore, the AQOSA framework supports the DSE
method, including multi-objective optimization, such as optimization of data flow latency,
processor usage, and architecture cost. The architect can easily create the initial architecture
using the OSATE tool [OSA21] and the AADL [FGH06], and then import it into the AQOSA
framework. With regards to software architecture modeling, AQOSA incorporates the ROBO-
COP modeling language [BC+06] (robust open component-based software architecture for
configurable devices project) as shown in Figure 3.9.

The AQOSA framework consists of several architectural elements but lacks examination
of mapping analysis and DSE for mapping issues. Moreover, it does not consider multi-core
platforms and covers no model-checking functionality, with limited optimization targets. The
framework also lacks proper documentation and is outdated [AHK22].

42 Chapter 3 State of the Art

SQuAT-Vis

A tool that can be integrated into software architecture optimization methodologies is avail-
able to architects, providing them with the ability to analyze the results of their optimization
efforts [FH20]. This tool aims to help architects attain an optimal software architecture that
meets quality-attribute requirements. The tool employs the DSE approach, incorporating op-
timization techniques to search for the best design solution for software clustering problems.

On the other hand, the current framework lacks consideration of the mapping problem as
a DSE issue, and it does not incorporate model checking or mapping analysis for multi-core
processing units. Moreover, the optimization goals are limited to response time and CPU
utilization and it does not take into account any safety-related attributes, such as exploration
parameters during software clustering.

3.4.2 Overview of Non-commercial Frameworks Analysis

The following tables present the problem being studied, the type of DSE, optimization algo-
rithms and attributes, as well as safety-related attributes for each of the above-mentioned
open-source technologies under examination [AHK22].

Table 3.1 showcases the problem type (such as mapping, deployment, model checking,
model analysis, etc.) that each technology aimed to address, along with its corresponding
problem attributes or DSE items, including resource usage, scheduling, and task response
time. The table also highlights the DSE method used in each technology. The table presented
below has been adapted from the source [AHK22].

Table 3.1: Problem’s type, problem’s attributes, and DSE type of the above-mentioned open-source frameworks.

E/E Configurator Problem Problem Attributes Design Space Exploration

ArcheOpterix
Deployment
and Mapping

Memory Consumption
and Response time

Multi-Objective Optimization
and Constraints Satisfaction

PerOpteryx

Software Clustering
including Component
/Resource Selection,

Allocation, and
Feature Configuration

Response time Multi-Objective Optimization

MechatronicUML

Model Checking,
Deployment,

Formal Analysis
of the Requirements,

and the Design

Allocation Specification
Language Constraints Satisfaction

APP4MC

Mapping,
Resource Management,

Performance
Simulation,

and Validation

Task Response Time,
Scheduling, and

Partitioning focused on
Timing

Multi-Objective Optimization
and Constraints Satisfaction

Autofocus3
Model Checking and

Deployment
Schedule Synthesis and

Latency
Optimization

and Constraints Satisfaction

Clafer
Model Analysis

and Feature Modelling Timing
Multi-Objective Optimization
and Constraints Satisfaction

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 43

Table 3.1. Continued.

OSATE
Model Analysis

and Model Checking

Scheduling Analysis,
End-to-End Latency,

Safety Analysis,
Computer Budget Analysis,

and Weight Analysis

Constraints Satisfaction
excluding DSE method

AAOL
Deployment
and Mapping

Memory Usage, CPU Time,
Network Bandwidth, and

ASIL Level

Multi-Objective Optimization
and Constraints Satisfaction

ASSIST
Deployment
and Mapping

Redundancy, Scheduling, and
Managing Shared Resources

Multi-Objective Optimization
and Constraints Satisfaction

Deepcompass
Framework

Model Analysis,
Model Validation,

and Mapping

Task Completion Latency
and Missing Deadline

in Scheduling

Multi-Objective Optimization
and Constraints Satisfaction

SCALL
Software Component

Allocation

Heterogeneous Components
Allocation, Bandwidth,

and Communication Cost
Constraints Satisfaction

AQOSA
Software Clustering

and Mapping

Task Latencies,
Processor Utilization, and

Architecture Cost

Multi-Objective Optimization
and Constraints Satisfaction

SQUAT Software Clustering Response Time
Multi-Objective Optimization
and Constraints Satisfaction

As previously mentioned, there are multiple optimization attributes that must be consid-
ered when designing embedded systems for the automotive industry. Table 3.2 focuses on
the most crucial optimization attributes. Table 3.2 presents the coverage of optimization pa-
rameters achieved by the various approaches discussed before, while also highlighting the
optimization algorithms used, such as the genetic algorithm. Furthermore, given the crucial
importance of satisfying safety requirements during the configuration of automotive software,
Table 3.2 also includes an examination of safety-related attributes taken into consideration
by each approach, such as the ASIL level, reliability, FFI, redundancy, and others. Reliability,
previously noted, is a crucial optimization parameter and a safety-related aspect of the em-
bedded system, which is calculated based on the failure rate to ensure the reliability of the
system [Xie+18].

The cost of a system refers to the expenses incurred in its design, where the goal is to
reduce the number of components used. Latency and execution time play a crucial role
in improving system performance by reducing the latency during task allocation. Energy
consumption, as discussed in Subsection 3.3.2, is also a crucial optimization parameter in
embedded systems. The optimal utilization of the system’s CPU and memory is achieved by
studying CPU utilization and memory usage, which both contribute to enhancing system per-
formance. The following table has been adapted from [AHK22].

Table 3.2: The used optimization algorithms, and the covered optimization and safety-relevant attributes in the
above-explained open-source frameworks.

E/E Configurator Optimization Algorithms Safety-related Attributes Optimization Attributes

44 Chapter 3 State of the Art

Table 3.2. Continued.

ArcheOpterix

Genetic Algorithm
(GA),

ParetoAnt Colony
Algorithm (P-ACO),

Simulated Annealing
(SA),

Ayesian Heuristic
for Component

Deployment optimization
(BHCDO),

Random Search
Algorithm,

and Brute-Force Algorithms

Reliability

Cost, data
transmission

reliability,
and communication

overhead

PerOpteryx Genetic Algorithm (GA) Reliability
Performance,

Reliability,
and Monetary Cost

MechatronicUML
Not Applicable

(N.A.) N.A. N.A.

APP4MC Genetic Algorithm (GA)
Safety

parallelization
and Traceability

Load Balancing,
Energy

Consumption,
Memory Mapping,

and Inter-Core
Communication

Autofocus3
Meta Search,

e.g. Binary Search Safety Integrity Level
Timing and

Communication
Load

Clafer

Guided Improvement
Algorithm (GIA)

Using Alloy, Z3 SMT,
and Choco 3
CSP Solvers

N.A.
Mass,

End-to-End Latency,
and Cost

OSATE N.A.
FTA, FMEA,

and FHA N.A.

AAOL Evolutionary Algorithms ASIL Level Cost, Weight

ASSIST
Heuristic approach

e.g. Simulated Annealing Redundancy
Resource Usage,

Weight,
and Power

Deepcompass
Framework Pareto approach N.A.

Cost, Throughput,
and Resource

Utilization

SCALL
Genetic

Algorithm (GA) N.A. N.A.

AQOSA

Nondominated Sorting
Genetic Algorithm,

Strength Pareto
Evolutionary, and
S-metric Selection

N.A.

Data Flow
Latency,

Architecture
Cost, and

Processor Usage

SQUAT Genetic Algorithm (GA) N.A.
Response Time

and
CPU Utilization

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 45

3.4.3 Commercial Tools for E/E Architecture Configuration

A variety of companies have developed commercial tools that play a crucial role in the design
of E/E architectures and the integration and configuration of automotive software [Was+13].
The most noteworthy of these tools will be discussed in detail below [AHK22].

PreeVision

This is a commercially available tool developed for the model-based development of dis-
tributed, embedded systems in the automotive industry. This tool offers a wide range of
functions for both classic and service-oriented architecture construction and covers all as-
pects of an E/E system. This includes requirements engineering, AUTOSAR, software and
communication design, as well as wiring harness evolution [Für+09]. The integration of
a model-based approach simplifies the management of complex tasks, making them both
straightforward and manageable. This approach is aligned with established system engi-
neering principles of abstraction, decomposition, and reuse and can serve as a foundational
engineering structure. Furthermore, it allows for parallel work to be performed on a shared
database from multiple locations, as reported in [AHK22]. The design of E/E architecture
platforms for various vehicles is facilitated by this tool [Sch16]. It offers support for the
design and evaluation of components, signal routing, checks for model consistency, and func-
tional safety analysis.

MotionWise

This commercial platform offers the ability for users to integrate, test, validate, and schedule
a multitude of components and applications, thus simplifying the development, testing, and
validation process. Additionally, it helps users to meet the essential safety and mission-critical
requirements for both single and multi SoC environments related to automotive platforms.
The tool abstracts the hardware and operating system, creating a uniform management en-
vironment from heterogeneous elements [TTT21; AHK22].

Volcano Vehicle Systems Architect (VSA)

A commercial platform based on Eclipse technology has been developed to generate a design
environment for E/E systems [Ecl23; VSA21]. This platform provides support for both soft-
ware architecture design, including the definition of software components and compositions,
and hardware architecture design, such as defining ECUs, networks, sensors, and actuators.
The VSA encompasses the complete AUTOSAR metamodel and its formats, and has the abil-
ity to perform automatic code generation [Für+09]. It encompasses a range of capabilities,
including mapping analysis, connecting software components to ECUs and system signals, as
well as topology and communication design and model validation. Furthermore, VSA sup-
ports the exchange of AUTOSAR XML files in both directions for software components and
compositions with the use of MATLAB and Simulink [MAT10].

ASCET-DEVELOPER

A commercial software model, specifically designed for the automotive industry, is con-
structed on the Eclipse platform [ETA21; Wik14]. This software offers support to system
architects in developing high-performance, secure, and safe embedded software with mini-
mal overhead. Given its compliance with safety certifications such as ISO26262 ASIL D, it is

46 Chapter 3 State of the Art

well-suited for the development of safety-critical software [ISO18]. This commercial frame-
work provides support for model analysis, which includes graphical and textual specifications
as well as model validation. Additionally, it allows for automatic generation of C code from a
designed model and includes the capability for unit testing. The framework is designed to be
easily integrated into a development process and toolchain through the provision of different
interfaces and a standardized file exchange format, which enables toolchain integration.

Autosar Builder

Another commercially available tool for the design, configuration, and simulation of E/E sys-
tems that adheres to Autosar standards is the Autosar Builder [Aut21; Aut20]. This tool is
built on the Eclipse platform and incorporates the Autosar development environment (Artop).
The Autosar Builder framework offers support for the development, verification, and valida-
tion of E/E components and the associated embedded software in the automotive industry,
as well as for the creation of system descriptions at the application level. Moreover, the sys-
tem includes graphic visualizations and diagrams to simplify the development of complicated
architectures and offers the advantage of effortless integration with third-party tools.

SymTA/S

SymTA/S is a commercial framework designed to evaluate the performance and enhance the
efficiency of real-time embedded systems that accommodate diverse architectural designs.
This framework serves as a tool for estimating the budget, verifying the scheduling, and
improving the performance of processors, ECUs, communication buses, and networks. This
tool provides support for the timing and scheduling analysis of distributed embedded archi-
tectures and can calculate the worst-case execution time (WCET). It offers a one-of-a-kind
capability for end-to-end timing analysis and visualization, and it allows for the design of the
system to be optimized by defining multiple optimization objectives, integrating concepts,
and determining its reliability and safety through the use of the DSE approach as described
in references [Hen+05] and [Ham+04].

ChronSIM/ChronVAL

This commercial framework is a tool for analyzing the timing of automotive systems, lever-
aging formal verification methods to examine the real-time functionality of safety-critical
embedded systems. The DSE approach allows for the end-to-end analysis of distributed func-
tions. The framework also offers graphical validation and simulation of the timing require-
ments of the system, and supports multi-objective optimization, such as resource utilization
and response time objectives, as described in references [Ans+12] and [INC21].

Limitations of Commercial E/E Configurators

While the commercial frameworks discussed above provide various features for E/E archi-
tecture synthesis, they also have certain limitations. None of these platforms incorporate
mapping analysis, except VSA and ASCET-DEVELOPER, which provide mapping analysis.
In addition, none of these frameworks offer a solution for the mapping problem using the
DSE method for multi-core computing units or take into account safety-relevant attributes
based on ISO 26262 [ISO18]. Furthermore, the above-mentioned frameworks do not have
model checking capabilities, except for PreeVision, VSA, and ASCET-DEVELOPER. Only three
of these frameworks, ASCET-DEVELOPER, SymTA/S, and ChronSIM/ChronVAL, offer opti-
mization for their synthesis results, but with a limited number of objectives. None of these

3.4 Technologies and Tools for Software Integration and Configuration in Design Process 47

platforms take into account a comprehensive range of architectural elements at both the
hardware and software levels in the E/E architecture configuration [AHK22].

3.4.4 Overview of Commercial Tools Analysis

As discussed before in the open-source technologies, there are multiple attributes that must
be considered when designing embedded systems. Table 3.3 provides a summary of the most
essential features related to the design of E/E systems integrated into the commercial tools
discussed above. Moreover, it states the DSE coverage and type for the above-discussed tools.

Table 3.3: Features and DSE type of the above-presented commercial tools.

Commercial E/E Configurator Features Design Space Exploration

PreeVision

Requirements Engineering,
Software Design,

Wiring Harness and
Communication Design,

Functional Safety
Analysis, Model

Consistency Check,
and Signal Routing

N.A.

Motionwise

Abstraction Tool
supporting hardware
and OS Validation,

Test, and Scheduling of
Components and Applications

Not Explained

Volcano Vehicle
Systems Architect (VSA)

Eclipse-based Platform,
software/hardware Architecture Design,

Mapping Analysis,
Topology and

Communication Design,
and Model Validation

N.A.

ASCET-DEVELOPER

Eclipse-based Platform,
Model Analysis

including Graphical
and Textual Specifications,

and Model Validation

N.A.

Autosar Builder

Eclipse-based Platform,
Design, Configuration,

and Simulation of E/E Systems,
Verification and

Validation of E/E Components

N.A.

SymTA/S

Budgeting, Scheduling Verification,
WCET calculation

and optimization for processors,
ECUs, communication buses,

and networks
and End-to-end Timing

Analysis

Multi-Objective
Optimization and

Constraints Satisfaction

48 Chapter 3 State of the Art

Table 3.3. Continued.

ChronSIM/
ChronVAL

Timing analysis of
Automotive Systems,

Analysis of Real-time Capability
of Safety-critical

Embedded Systems
using Formal Verification

method, Graphical Validation
and Simulation,

End-to-end Analysis

Multi-Objective
Optimization and

Constraints Satisfaction

3.5 Summary & Discussion

Various approaches, methods, and software frameworks were explained above while taking
our research questions and motivation into account.

In Subsection 3.1.1, the message routing for automotive networks is discussed, and rele-
vant previous works were reviewed. It aims to improve upon existing message routing con-
straints by extending them to automatically create homogeneous redundant and multi-cast
routings, using a model-based development approach. This approach involves using mod-
els to represent the behavior and communication of various components in the system, and
using those models to automatically generate code or configurations. Additionally, changes
are made to the constraints to enable a single-step solving approach. This means that the
routing can be determined in a single step, rather than requiring multiple iterations to refine
the solution.

Similarly, Subsection 3.1.2 presents a review of related works focused on synthesizing
time-triggered schedules for a vehicle’s network including applications mapped on different
nodes and communications messages routing over network’s links. We draw on existing re-
search to support the introduced approach in this thesis, and the time-triggered conditions
introduced in one of the reviewed works are extended to align with the proposed single-step
solving approach in this dissertation. In addition, path and message dependencies constraints
are introduced that are tailored to their automation message routing creation approach.
These constraints support our methodology of solving the problem in a single step, which
aims to streamline the process of creating time-triggered schedules for processes running on
different car’s ECUs/HPCUs and communication messages.

Section 3.2 discusses the synthesis of software architecture, particularly in the context
of E/E systems. Furthermore, it reviews studies that consider safety requirements specific
to the automotive industry, such as redundancy and reliability, during the synthesis process.
These studies provide valuable insights into the necessary safety conditions that must be met
according to the ISO 26262 standard [ISO18], which sets guidelines for the functional safety
of road vehicles. In the automotive industry, ensuring the safety of E/E systems is crucial,
as any failure in these systems can potentially lead to catastrophic consequences. Thus, the
synthesis process must take into account various safety-related requirements to minimize the
likelihood of failures. Some of the key safety requirements that must be addressed during
synthesis include identifying potential hazards, assessing their severity, and determining the
probability of their occurrence. The studies discussed in this section provide an overview of
the various methods and techniques that can be used to meet these safety requirements.

Section 3.4 covers a comprehensive review of both non-commercial and commercial soft-
ware frameworks/tools that have been developed to support configuration and synthesis for
E/E architectures and systems. The focus has been on analyzing the functionalities and capa-

3.5 Summary & Discussion 49

bilities of these tools to determine their suitability for specific problems types and attributes.
This section also looked at the DSE methods, optimization attributes and algorithms, as well
as safety-relevant features of these tools, to identify their strengths and limitations while con-
sidering our research questions and motivation. Overall, it is believed that the review of the
tools presented in this section provides a comprehensive overview of the current state of the
art in E/E system design and synthesis. This review is useful to the exact contributions of this
thesis, as it provides valuable insights into the tools. Based on this analysis, the following
limitations are addressed compared to the contributions of this thesis.

None of the aforementioned frameworks/tools provide a comprehensive solution for man-
aging complex distributed systems. In particular, these tools do not provide:

• Automated mapping and time-triggered scheduling for assigned applications, including
their threads running on different control nodes. This feature is essential for managing
complex systems with multiple nodes and applications that require coordination.

• Automatic message routing creation, comprising single, redundant, multi-cast, and ho-
mogeneous redundant paths, and the calculation of time-triggered schedules for com-
munication messages supporting path and message dependencies while applying multi-
objective optimization. This is critical for guaranteeing that messages are delivered in a
timely and efficient manner, while also ensuring redundancy and fault tolerance in the
mixed-critical system.

• Capable of modeling virtualization techniques like hypervisors in the context of vehicle
E/E architecture and automating the allocation of hardware and software resources to
partitions within each hypervisor.

• A single-step solving approach to determine the last three items in a single step, avoid-
ing multiple iterations to refine the solution and respecting interrelations between de-
fined constraints decisions. This feature is essential for optimizing complex distributed
systems and ensuring that all constraints are met efficiently.

• A performance evaluation through deploying solutions created by frameworks/tools
on a real automotive-related hardware platform. This is important for ensuring that
the solutions are viable in real-world scenarios and can handle the demands of actual
hardware.

• Different optimization goals and boundary limits such as response time, end-to-end
latency, link occupation rate, bandwidth usage, reliability, cost, and resource usage in
one package. This feature is crucial for allowing system designers to optimize their
systems according to a variety of different criteria and goals.

• Various safety constraints and optimization objectives, comprising ASIL level, FFI, re-
liability (using MTTF and failure rate), redundancy, and homogeneous redundancy in
one package. This is important for ensuring that the system is safe and reliable and that
it meets all required safety standards and regulations.

• An approach to identify design errors in case of having violations in the constraint
set included in the system model after the solving step. This feature is important for
identifying and addressing errors in the system design within a reasonable amount of
time, ensuring that the system is optimized and satisfies all necessary constraints and
requirements.

4
Methodology

4.1 Framework Architecture

In order to tackle the difficulties and overcome the obstacles and limitations identified in
Section 3.5 and answering the defined research questions in Chapter 1, it is essential to
establish a set of requirements that can guide the development of modeling frameworks used
for the synthesis of E/E architectures and systems.

• Easing E/E architecture design: various hardware/software components, safety re-
quirements, and other properties need to be taken into consideration when design-
ing E/E systems and vehicle network topology. To accomplish this, graphical and tex-
tual modeling elements are necessary. These modeling elements enable E/E architec-
tures/systems to be easily modeled using drag and drop features. This feature allows
designers to create and manipulate components with ease and flexibility. Furthermore,
the drag and drop feature makes it easy to create and edit models, thus reducing the
time and effort required to design an E/E architecture.

• Flexibility and adaptability: The modeling framework should be flexible enough to
accommodate various design requirements, and adaptable to changes in the system’s
specifications or design goals.

• Scalability: The framework should be scalable to handle systems of different sizes and
complexities, from simple components to large-scale systems.

• Quick access to components, elements, and properties: In the field of automotive engi-
neering, designing an E/E system or car network topology involves creating a complex
architecture that includes a wide range of interconnected components, elements, and
properties. Once this architecture has been modeled, it is essential to have a way to
quickly and easily access all of these elements and their associated properties. By hav-
ing quick access to these elements and properties, designers/system integrators can
streamline their programming efforts and avoid the time-consuming process of manu-
ally coding each component and property. This approach also allows for easier mod-
ification and testing of the system, as designers can quickly make changes to specific
elements and properties without having to rewrite large portions of code.

• Facilitating E/E architecture synthesis: As vehicles continue to become more complex
and require more computational power, there is a growing need for efficient methods

51

52 Chapter 4 Methodology

to automate the process of mapping, communication message routing, and scheduling.
To achieve this, constraint-based system models can be employed. These models can
automate the mapping and scheduling for E/E systems including multi-core architec-
tures, and can also transform safety requirements into constraints that can be easily
solved and utilized for E/E configurations. This not only reduces the complexity of the
process, but also significantly decreases the time required for synthesis. In addition to
these benefits, facilitating E/E architecture synthesis can also lead to improved vehi-
cle safety and reliability. By automating the process, errors and inconsistencies can be
minimized, ensuring that the resulting E/E systems fulfill all safety requirements and
operate as intended.

• Optimization: It is a critical consideration for any E/E system design, and system inte-
grators should be given the freedom to optimize their designs based on various criteria
and objectives. One of the most significant factors in optimization is cost, as the cost
of an E/E system can be a determining factor in whether a project is feasible or not.
By allowing system integrators to optimize their designs based on cost, they can create
efficient and cost-effective solutions that meet the required performance and reliability
standards while keeping the project within budget. In addition to cost, redundancy,
reliability, FFI, timing, etc.

• Synthesis time: Solving time is a critical parameter for reducing the effort and time
required for E/E configuration. Therefore, it is important to consider approaches to
speed up the solving process, such as implementing a single-step solving method. This
method can help avoid the need for multiple iterations to clarify a solution, while still
respecting the interrelations between specified constraints and decisions. In addition,
it is important to ensure that any optimization techniques used still produce reliable
and high-quality solutions, as compromising on solution quality can result in increased
costs or potential safety risks.

• Unsatisfiable system model: Infeasible solutions are common when solving a constraint
system, and addressing this issue can be complex and time-consuming, especially when
dealing with a large number of constraints or conditions. To address this challenge,
a methodology for identifying violated constraints can assist E/E system architects in
identifying the source of conflicts much earlier in the design process, thereby enabling
them to navigate towards a feasible solution more efficiently.

Considering the first research question specified in Chapter 1, the architecture of the pro-
posed framework, which is called E/E Designer, consists of three main parts. As Figure 4.1
illustrates, the left sidebar of the figure represents the framework’s inputs, which can be
provided by an E/E system integrator/architect. These inputs include various properties and
requirements related to hardware and software components, the mapping process, communi-
cation message routing, time-triggered scheduling, and safety. More specifically, they consist
of ASIL level, turbo boost technology feature, communication and process/thread execution
times and periods, cost considerations, forced mapping, link type, node type, sender and
receiver information for communication messages, the desired network topology (e.g., full-
mesh or other topologies, including the number of required nodes and links), MTTF, failure
rate, etc. Moreover, a graphical E/E system modeler can select different optimization objec-
tives and boundary goals. They can also design a desired E/E architecture or a car network
topology using drag-and-drop functionalities.

The middle part of Figure 4.1 primarily represents the back-end of the framework, where
all mathematical formulations and calculations are performed. This part remains hidden from

4.1 Framework Architecture 53

System Metamodel

Solving & Optimization Design Error
Identifier

MIP Constraint Set

Mapping

Message Routing

Time-triggered
Scheduling

Safety Requirements

Optimization
Objectives

 Properties, Requirements, Topology,

and Optimization goals regarding

Mapping, Routing, Scheduling, and

Safety

E/E System Integrator Inputs

Infeasible
SolutionUsed by

Executing

Automated Mapping and Message

Routing Creation, Time-triggered

Schedules Calculation, Fulfillment of

Safety Requirements, Optimization

E/E Designer Output

Figure 4.1: The architecture of the proposed model-based framework. The left and right columns, representing
E/E System Integrator Inputs and the E/E Designer Output, respectively, constitute the frontend. The middle
box denotes the backend of the tool. In the framework’s frontend, an E/E architecture is modeled by an E/E
system architect. This modeling includes defining requirements, properties, and addressing various problems.
The modeled E/E architecture is transformed into MIP formulations using the MDD approach. These formulations
are then solved and optimized in the tool’s backend. Finally, the optimal solution is visualized in the frontend of the
framework.

the user for the sake of simplicity. As observed, the introduced approach utilizes an object-
oriented metamodel following the model-driven development (MDD) approach [Sel03] which
is explained in the following section. This metamodel serves as the foundation for graphical
modeling, which is used by the integrator or modeler to create graphical model instances.
Using a formal system metamodel, the graphical model instances, which encompass all se-
lected requirements and properties, are transformed into a set of mixed-integer programming
(MIP) constraints within the framework of linear programming (LP) (indicated by the green
box in Figure 4.1) [Van+20; FL05].

This constraint set includes conditions for mapping (which can be applied to multi-
core architecture and other hardware/software components), message routing for car net-
work topologies, time-triggered scheduling for application threads and communication tasks,
safety and non-safety requirements, as well as optimization objectives and boundary goals
(refer to Figure 4.1). In the final step, depicted in the middle part of Figure 4.1, a MIP
solver is employed to solve and optimize the specified set of constraints while considering
the defined optimization goals.

Finally, after the solving step, the E/E Designer framework provides automated mapping

54 Chapter 4 Methodology

or resource allocation (e.g., automatically assigning various application threads to different
cores of a multi-core HPCU) and creates message routes (i.e., finding the correct path from
the sender of a communication message to its receiver) for a modeled E/E architecture or
network topology that satisfies the predetermined requirements. Furthermore, the E/E De-
signer computes time-triggered schedules for the assigned running application threads, for
example, on a multi-core HPCU, and manages communication task routing over the car’s net-
work links. The resulting solution, as the tool’s output, fulfills all requirements selected by
the E/E system modeler and is optimized based on the chosen optimization goals.

Moreover, in the event of a feasible solution, an error identification approach (depicted by
the yellow box in Figure 4.1) is invoked to locate the constraints most likely responsible for
conflicts. This approach significantly assists the task of identifying violated constraints, which
can be an intricate and time-intensive process, especially when dealing with a substantial
number of conditions. This pertains to the second research question outlined in Chapter 1.

4.1.1 Model-Driven Development

Model-driven development (MDD) is a software development methodology that has gained
popularity in recent years due to its ability to increase development efficiency and reduce er-
rors. MDD is based on the idea that software development can be greatly improved through
the use of visual models and pre-constructed application components. This approach allows
developers to focus on the high-level design of an application rather than the low-level de-
tails of programming. MDD provides a structured and standardized approach to software
development, which makes it easier for developers to create complex applications quickly
and accurately. Instead of writing code from scratch, developers use graphical models to de-
scribe the behavior and structure of the application. These models can then be automatically
transformed into executable code using specialized tools [Sel03; HT06].

Advantages of model-based development include:

• Increased efficiency: By using models to represent the system, developers can analyze
and design the system more quickly and accurately than if they had to do so manually.
This can lead to shorter development cycles and faster time to market.

• Improved quality: Models can help developers identify and fix problems early in the
development process, reducing the risk of defects in the final product.

• Enhanced communication: Models can be used to communicate complex ideas and
designs to stakeholders, making it easier for everyone involved in the development
process to understand the system.

• Reusability: Models can be reused and repurposed for different projects, which can
save time and effort in the development process.

With MDD, software developers can create sophisticated applications through the use of pre-
constructed application components and graphical models. MDD’s primary objective is to
automate challenging programming tasks. In addition, this method can speed up the rede-
ployment, rebuild, and testing procedures, especially when developing multiple applications,
compared to the traditional approach [AK03]. Considering all the aforementioned advan-
tages of MDD, this approach has been employed in the presented framework by develop-
ing a system metamodel to serve as the foundation for the graphical modeler. There are
various types of MDD tools available for creating models for software design purposes. In
this work, an open-source graphic modeling tool that employs unified modeling language
(UML) [Med+02] from Eclipse Foundation was utilized [AFK21a; AMK23; Ecl23].

4.1 Framework Architecture 55

4.1.2 Object-oriented Metamodel

A metamodel is a model that defines the structure, elements, and relationships of other mod-
els. An object-oriented metamodel is a fundamental concept that defines how UML itself is
structured and represented. It essentially provides a set of rules and constructs for defin-
ing UML elements and their relationships. This typically involves representing and defining
modeling elements and relationships using object-oriented concepts such as classes, objects,
attributes, methods, and inheritance. Such a metamodel provides a structured approach to
define and organize the elements and semantics of a modeling language, simplifying the
process of creating, comprehending, and manipulating models in a consistent and modular
manner [HT06; Med+02; AFK21a].

A metamodel is developed for the proposed tool, as depicted in Figure A.1, building the
foundation for the graphical modeler. The developed metamodel, which employs UML to
describe another model as an instance, comprises 39 elements. This metamodel includes 33
classes, with 14 of them serving as the primary classes within the system model. These 14
key elements encompass Node, Application, Link, Data, Data_in, Data_out, Process, Task,
Mapping, ECU, Processor, Core, Hypervisor, and Settings. Furthermore, the metamodel en-
compasses various attribute types, including ASIL level, memory, optimization goal, link, and
node types. It also includes a data type used by the system model’s elements for the Gurobi
solver, which serves as a MIP solving engine [Gur22]. In the following paragraph, the rela-
tionships between primary classes, as illustrated in Figure A.1, are explained

According to Figure A.1, the Node class encompasses several attributes and types. Node
types include ECU, HPCU, gateway, and network switch. Each Node can have one-to-many
links, zero-to-many applications as both senders and receivers, and zero-to-many mapping
elements. Mapping class refers to the action of mapping or resource allocation. The Applica-
tion class can have zero-to-many processes and maintains a one-to-one relationship with the
Mapping class, signifying that each application has a unique mapping attribute. Each pro-
cess is associated with only one application, and each application process can send/receive
only one communication message indicated as Data class in Figure A.1. Each communication
message consists of a one-to-many relationship with communication tasks (depicted in Fig-
ure A.1 under as Task), meaning it can be received by one or multiple application processes
but can only be sent by one process. Furthermore, each communication message exhibits a
one-to-many relationship with outgoing and incoming messages, denoted as Data_Out and
Data_In, respectively, in accordance with the metamodel presented in Figure A.1. Further-
more, there exists a bidirectional reference between each Data_In and Data_Out [AFK21a].
A communication link has two one-to-one relations with the Node, serving as the starting and
finishing points of each link. Additionally, each Link can have one-to-many communication
tasks and outgoing and incoming messages. It is important to note that each communication
task is associated with only one link. The Settings class includes several attributes related to
different requirements, such as reliability, message routing, boundary goals, optimization ob-
jectives, and visualization-related options. This incorporates the display of desired mapping
solutions for applications and paths for communication messages. Each ECU, as a type of
node, can own zero-to-many processors (where each processor can have zero-to-many cores)
and memories. In the case of an HPCU, the same relationships apply. Moreover, an HPCU
can own zero-to-many GPUs, hypervisors, and partitions [AFK21a; AMK23].

4.1.3 Constraint Set

56 Chapter 4 Methodology

Constraint Satisfaction Problem

Constraint satisfaction problem or CSP is a type of problem in computer science, artificial
intelligence, and mathematics that involves finding a solution to a set of constraints or con-
ditions. In a CSP, the problem is typically defined by a set of variables, each with a corre-
sponding set of possible values or domains and a set of constraints that must be satisfied by
the variables’ values. The goal of the problem is to discover a consistent assignment of values
to the variables that fulfills all the constraints. CSPs have numerous applications, including
scheduling, resource allocation, planning, and design. They find use in various fields, such as
computer science, operations research, artificial intelligence, and engineering. Solving a CSP
can be complex due to the potentially vast number of solutions and the challenge of satisfy-
ing all constraints. Many algorithms and techniques have been developed to efficiently solve
CSPs, including backtracking, forward checking, and constraint propagation [PM10; Rus10].

A constraint satisfaction problem includes three components, X , D, and C where X is a
set of variables, {X1, ..., Xn}, D is a set of domains, {D1, ..., Dn}, one for each variable, and C is
a set of constraints that specify allowable combinations of values [Rus10].

ILP and LP

In integer linear programming (ILP) or integer programming (IP), all the decision variables
are required to be integers, whereas in linear programming (LP), all the decision variables
are continuous. ILP is a type of optimization problem where the objective function and
constraints are linear, but some or all of the decision variables are restricted to be inte-
gers [Van+20]. While LP can be efficiently solved in the worst case, IP problems can pose
significant challenges in many practical situations. This is particularly true for problems with
bounded variables, where the number of possible solutions is limited. As a result, integer
programming problems are often classified as NP-hard. NP-hard problems are a class of com-
putational problems that are at least as hard as the hardest problems in the complexity class
NP. The abbreviation NP stands for nondeterministic polynomial time, which refers to the set
of decision problems that can be solved by a nondeterministic Turing machine in polynomial
time. An NP-hard problem is a problem that is at least as difficult as any problem in NP. In
other words, if an NP-hard problem can be solved in polynomial time, then every problem in
NP can also be solved in polynomial time. This is because an NP-hard problem can be reduced
to any problem in NP in polynomial time. There are many important computational prob-
lems that are known to be NP-hard, including the traveling salesman problem, the knapsack
problem, and the Boolean satisfiability problem. These problems have important applications
in fields such as operations research, computer science, and artificial intelligence [For09].

One special case of integer programming is 0-1 integer programming, also known as
binary integer programming (BIP). In this type of problem, variables are restricted to take
on values of either 0 or 1 rather than arbitrary integers. Despite this restriction, 0-1 integer
programming is still classified as NP-hard and is known to be one of Karp’s 21 NP-complete
problems. The decision version of 0-1 integer programming involves determining whether
there exists a feasible solution that satisfies a given set of constraints. This decision problem
is known to be NP-complete, meaning that it is at least as hard as any other NP problem and
cannot be solved in polynomial time. However, despite the theoretical difficulty of solving
0-1 integer programming problems, there exist powerful algorithms and techniques that can
be used to find good approximate solutions in practice [Van+20; GJS74].

MIP and MILP

MIP is a more general type of optimization problem, where some of the decision variables
can be continuous, and others can be restricted to be integers. It can contain both integer

4.1 Framework Architecture 57

and continuous variables. MIP is also able to include quadratic constraints; in other words,
it combines the features of both LP and ILP. MIP problems can be more challenging to solve
than LP or ILP problems, as including integer and continuous variables can make the problem
non-convex and non-linear, leading to a more complex solution process.

Mixed-integer linear programming (MILP) is a subset of MIP where all variables, whether
continuous or integer, have linear relationships in both the objective function and constraints.
In MILP, the objective function and constraints are linear, but some or all of the decision vari-
ables can be integers, binary (0 or 1), or a combination of both. MIP and MILP are widely
used in various fields, including operations research, engineering, finance, and economics.
They are a powerful tool for solving many real-world optimization problems, such as pro-
duction planning, scheduling, resource allocation, transportation planning, and portfolio op-
timization. MIP and MILP can help decision-makers to make better decisions by optimizing a
wide range of objective functions, such as minimizing cost, maximizing profit, or maximizing
efficiency [Jün+09; Van+20]. These problems are generally also NP-hard because they are
even more general than ILP programs. Mixed-integer linear programs are problems that can
be expressed in canonical form as follows:

minx ,y cT x + hT y

subject to:
Ax + G y ≥ b

(x , y) ∈ Rn
+ ×Z

p
+

where A and G are m×n and m× p matrices, respectively. Moreover, b, c, and h represent m-,
n-, and p-dimensional vectors, respectively. In the last constraint, Rn

+ is the n-dimensional
space of all non-negative real numbers (Rn

+ = {x ∈ R
n : x ≥ 0}) and Zp

+ is the p-dimensional
space of all non-negative integer numbers (Zn

+ = {y ∈ Z
n : y ≥ 0}). Accordingly, a set of

feasible solutions can be defined below as X :

X = {(x , y) ∈ Rn
+ ×Z

p
+ : Ax + G y ≥ b}

In the following, a simple mathematical example of MILP is presented :

max : x + y

subject to:
C1 : −2x + 2y ≥ 1

C2 : 8x − 10y ≤ 13

C3 : x , y ≥ 0

C4 : x , y ∈ R

In this example, x and y are decision variables for which the optimal values are sought.
The objective function to be maximized is x + y. The first two constraints (C1 and C2) are
linear inequalities that restrict the possible values of x and y. The third and fourth constraints
(C3 and C4) specify that x and y must be greater than zero, and they belong to the set of
real numbers, respectively. One approach to solving this MILP problem is to use a branch
and bound algorithm. This algorithm works by branching on the integer variables, creating
subproblems, each of which is a smaller version of the original problem. The algorithm solves
each subproblem by applying linear programming techniques and then determines whether
the solution is integer-feasible. If the solution is not integer-feasible, the algorithm branches
further and repeats the process until an integer-feasible solution is found [LW66]. Therefore,

58 Chapter 4 Methodology

the optimal solution of its LP relaxation is (x , y) = (4, 4.5) with an objective value of 8.5 using
the branch and bound algorithm.

One of the key challenges of MIP and MILP is to find an optimal solution within a reason-
able time frame. These problems are generally more complex and computationally intensive
than LP or IP problems due to the inclusion of integer variables. Solving a MIP problem
involves exploring a large solution space and requires a combination of mathematical algo-
rithms and computational methods. To solve MIP problems, various software packages are
available, such as Gurobi, CPLEX, and GLPK [Gur22; Cpl09; GNU00]. These software pack-
ages employ advanced algorithms and optimization techniques, including branch-and-bound,
cutting planes, and heuristics, to discover an optimal solution or a near-optimal solution
within a reasonable amount of time.

Based on the explanation provided above, MIP is employed to formulate the problems
and requirements presented in this thesis. These encompass tasks such as mapping or re-
source allocation, message routing, time-triggered scheduling, addressing message and path
dependencies, and ensuring safety-related conditions. These requirements are then trans-
formed into a set of constraints. To solve these constraints, the Gurobi MILP solver [Gur22]
is utilized as referenced in [AFK21a; AMK23]. The forthcoming sections will detail the for-
mulation of these constraints and provide additional insights into their specifics.

4.1.4 Optimization

To apply MIP to the synthesis of E/E architecture, the problem must first be formulated as
a mathematical model, as mentioned before. This involves identifying the variables, con-
straints, and optimization goals of the problem. Once the model is formulated, the optimiza-
tion goals can be specified [AFK21a; AFK21b]. In the automotive domain, a system model
can be used to optimize the performance of various components and systems in a vehicle. A
system model is a representation of a complex system that can be used to simulate and ana-
lyze its behavior under different conditions. Optimization involves finding the best possible
set of inputs or parameters to achieve a specific goal or objective. These goals may include
minimizing the cost of the architecture, maximizing its reliability, or optimizing its perfor-
mance. Different optimization goals will result in different optimal solutions, so it is essential
to choose the goals carefully based on the specific requirements of the E/E architecture. For
instance, cost optimization can be used to reduce the cost of production and operation of a
vehicle by optimizing the design of the components and systems to reduce material and labor
costs, and improve efficiency.

Once the optimization goals are specified, the MIP solver can be used to solve the opti-
mization problem and generate an optimal solution. The solver searches for the values of the
variables that minimize or maximize the optimization goals while satisfying the constraints
of the model. In the introduced framework, several optimization objectives are integrated,
including cost reduction (CR), end-to-end latency, response time, resource utilization (RU),
load balancing in-vehicle communication network, and reliability. In addition, the introduced
tool supports multi-objective optimization as well. The details of all these objectives will be
described in Section 4.4.

4.1.5 Design Error Identifier

As depicted earlier, based on the yellow box in Figure 4.1, it is common to encounter infea-
sible solutions while solving a constraint system. Tackling this problem can be difficult and
time-consuming, particularly with many constraints or conditions involved. To overcome this

4.1 Framework Architecture 59

Logical Requirements
& Properties Creator

Object-oriented
Metamodel Definitions

Graphical E/E
Architecture Modeler

Model Instance

MIP Constraints
Generator

MIP Solver, Optimizer

Design Error
Identifier

Logic Programming
Metamodel Definitions

Logical Requirements
& Properties Creator

Logic Programming
Metamodel Definitions

E/E Designer Output

Feasible Solution

Infeasible

Solution

E/E Designer
Conditions

E/E System
Integrator

E/E System Knowledge
Database

M
od

el
in

g
E/

E
A

rc
hi

te
ct

ur
e

Sy
nt

he
si

s
&

 D
es

ig
n

Er
ro

r
A

na
ly

si
s

Created by
Design-time

Run-time Deals with

Used by

Figure 4.2: The overview of the framework, including modeling, synthesis, and design error analysis parts.

challenge, an approach to identify violated constraints can help E/E system architects identify
conflicts’ sources early in the design process, allowing them to navigate towards a feasible
solution more efficiently. Therefore, an approach is introduced called the design error ap-
proach, which uses infeasible inconsistent subsystem (IIS) and minimal unsatisfiable cores
(MUC). A MUC is a subset of the negation of the constraint that is itself unsatisfiable, i.e., no
assignment of variables can make all of the clauses in the MUC true. The MUC gives infor-
mation about which parts of the negation of the constraint are causing the violation. IIS is
also similar to MUC. This information can pinpoint the violated part of the original constraint
used in the approach. Specifically, the negation of the MUC can be taken and intersected with
the original constraint to obtain a minimal set of clauses responsible for the violation [LM04;
DHN06]. In Chapter 6, this approach will be discussed in detail.

4.1.6 An Overview of Framework Architecture

In Figure 4.2, the modeling approach involves an object-oriented metamodel, which serves as
the foundation for a graphical E/E architecture modeler. This modeler enables the creation
of visual representations of the model instances. E/E system integrators utilize the graphical
modeler, which offers drag-and-drop functionality, to design car E/E systems. These systems
consist of both hardware and software components, along with their corresponding physical
properties. The user can specify timing requirements and choose from a range of safety
conditions, boundary goals, and optimization objectives. For instance, it is possible to define
an application that includes a thread with a specific period and execution time, designating it
as a safety-critical application. This designation implies that redundancy requirements must
be met during mapping and routing for this particular application.

A formal metamodel based on logic programming is used to transform graphical model

60 Chapter 4 Methodology

instances into a knowledge database for E/E systems. The E/E system database is analyzed
to extract conditions and requirements, which are then converted into mathematical formu-
lations called MIP constraints. These constraints cover mapping problems, message routing,
time-triggered scheduling, boundary considerations, and optimization objectives. The con-
straints are solved using an MIP solver and optimizer to determine if a feasible solution exists
for the designed model. If a feasible solution is found, it is presented as output for the E/E
system integrator. However, if conflicts in the constraint set prevent the tool from solving
the system model, the design error identifier approach is activated. This approach identifies
the most critical conditions causing the violation and presents the findings to the E/E system
integrator. In Figure 4.2, run-time and design-time states for each step is visualized.

4.2 Framework System Model

The system model of the E/E Designer framework is a distributed system comprising multi-
ple nodes and links. It can be depicted as a graph denoted as G(N , L), where the vertices
N represent vehicle nodes (such as HPCUs, ECUs, gateways, and network switches), and
the edges L represent full-duplex links (like Ethernet, FlexRay, and time-triggered CAN bus).
Gateways and switches function as intermediate or networking nodes, facilitating data trans-
fer between different points. On the other hand, HPCUs and ECUs can function as control
nodes, responsible for executing applications and sending or receiving data. Control nodes
can also act as intermediate nodes [AMK23].

Furthermore, each HPCU may consist of sub-components like processors, cores, GPUs, and
memory. We use the notation ncz to differentiate between node types to indicate a control
node and nnz to represent a networking node. A single core belonging to a control node, such
as an HPCU core, is denoted as nczc . A full-duplex link connecting two nodes na and nb is
represented by la,b ∈ L and lb,a ∈ L, signifying directed links from na to nb and from nb to na,
respectively. The E/E Designer tool’s system model encompasses several components, which
are explained as follows [AMK23; AFK21a].

4.2.1 Application Thread

In the proposed framework’s system model, there can be multiple processes/threads for each
application that runs on a control node. An application thread refers to a thread running on
a control node. An assumption is made that these threads are periodic and represented by
a tuple t i = {t i .p, t i .st, t i .e}, which consists of three elements: t i .p, t i .st, and t i .e represent
thread’s period, starting time, and execution time, respectively. The details of each element
are described in Table A.1. In the example provided in Figure 4.3, there are four applications,
each containing a single thread, running on ncz

1 [AMK23].

4.2.2 Communication Task

A communication task ci can be specified as ci = {ci .p, ci .st, ci . f l}. ci .p and ci .st designate the
period and starting time of a communication task, respectively. Besides, each communication
task is represented as a unique frame with frame length ci . f l (see Table I). As explained in
Chapter 2 and based on Figures 4.4 (a) and 4.5, a route is defined as a path from a sender
to a receiver transmitting ci. For example, in Figure 4.5, there are two communication tasks

4.2 Framework System Model 61

a1 a2

Mapping Action

Referring to ECU Network Switch HPCU

a4

Link

a3

n1
cz

Application

Figure 4.3: A vehicle architecture including assignment of applications to an HPCU (ncz
1).

routed from one control node (ECU1) to another (ECU4) over a created path which is indi-
cated with the S arrow. A single schedule on a link la,b is indicated as ci .st la,b , which repre-
sents the starting time of the frame ci. It should be noted that the entire process of sending,
forwarding, and receiving a frame over the network is represented as a communication task.
Note that an application thread and a communication task can have different and arbitrary
periods [AMK23].

4.2.3 Mapping Action

Assigning applications, which consist of processes/threads, to control nodes such as ECUs
or the cores of an HPCU is defined as a mapping action (see Figure 4.3), as explained as
fundamental concepts in Chapter 2. To automate the mapping process, a mapping indication
as mi j is considered in the system model comprising different sub-variables. It represents a
possible assignment of different applications (j) to various control nodes (i) [AMK23]. Ac-
cording to the example presented in Figure 4.3, assigning a4 to ncz

1 is denoted by m14.a4
ncz

1

as a mapping variable. Moreover, the mapping variables of a thread belonging to an appli-
cation that is set as a sender or a receiver are symbolized as mi j

s and mi j
r , respectively. For

example, the mapping variables of t1 from a1 as the sender running on ncz
1 , and t1 from a4 as

the receiver executing on ncz
7 are indicated with ms

11.a1
ncz

1 and mr
74.a4

ncz
7 , respectively (refer to

Figure 4.4 (a)). Similarly, each ncz
i includes all mappings of existing applications, meaning

that each ai, which consists of a t i or multiple t i, can be executed on each ncz
i [AMK23].

4.2.4 Communication Message

Multiple variables are defined in the system model to create automatic message routings for
a designed vehicle E/E architecture using the introduced computer-aided tool. A communi-
cation message is a piece of information sent from a sender to a receiver. In the specified
model, a communication message di is specified by a tuple di = {di .chi, di .ci, d in

i , dout
i , di .r t,

di .el}. The message chain is characterized by di .chi, containing the threads, as the sender
and receiver, and a communication task that transfers the communication message and con-
stitutes the related application in a correct temporal order. Each di includes a communication
task, as described before, which carries the message symbolized with di .ci. The message di
received by a node n is represented as d in

i while dout
i designates the di sent by the node n.

62 Chapter 4 Methodology

Following the shown example in Figure 4.4, the message chain d1.ch1 for d1 consists of two
threads related to applications a1 and a4 and a communication task c1 (yellow dots in Fig-
ure 4.4 (a) over the enumerated path) routing over five links in the visualized temporal order
(yellow frames in Figure 4.4 (b)). Note that each application thread can only generate one
communication message, which is then transmitted via one communication task [AMK23].

In addition, the message di sent out from na over la,b is denoted as dout
i .lna

a,b, whereas
the message di received by na over lb,a is characterized as d in

i .lna
b,a (refer to Table A.1). The

response time of a communication message is indicated by di .r t, which represents the time
between the beginning of the period and the end of the last communication task. Meanwhile,
the end-to-end latency di .el represents the time between the start of the first task and the end
of the last task [AMK23]. The significance of these two parameters will be explained in the
following sections.

4.2.5 Application

An application ai is a collection of application threads that can act as senders or receivers of
communication messages to perform a specific function. The application is defined by the
tuple ai = {ai .t i j , ai .t

s
i j .di , ai .t

r
i j .di}, where ai .t i j includes one or multiple application threads

t i j = {t i1, t i2, ..., t i j}, with j ∈ N, indicating that each ai can have one or many t. Additionally,
ai .t

s
i j .di represents the application thread t j belonging to ai that sends the communication

message di, whereas ai .t
r
i j .di denotes the t j of ai that receives di, as stated in Table A.1.

4.2.6 Timing Limitations

The current version of the proposed framework in this thesis offers a non-preemptive time-
triggered scheduling scheme for all application threads running on the control nodes and
routed communication tasks over the network links. As a result, some additional timing
constraints have been incorporated into the system, similar to those presented in [Zha+14],
which are explained below.

Serialization Delay

When an application thread completes its task, it takes some time before the data can be
packed into frames and sent over the network. This time, often called the serialization delay,
is crucial to overall system performance. In the system model, this time is denoted by sd. The
serialization delay represents the time required to convert the processed data into a format
suitable for transmission. In other words, it is the time it takes to serialize a packet, meaning
how long it takes to physically put the packet on the wire. During this stage, the data is
typically transformed into a serialized representation, such as binary or JSON, allowing it to
be efficiently transmitted across the network. The duration of the serialization delay can vary
depending on factors such as the complexity of the data, the chosen serialization method,
and the underlying hardware resources. It is worth noting that the network conditions and
bandwidth limitations can influence the serialization delay. In scenarios where the available
network bandwidth is constrained, the serialization delay may become more noticeable as
the system waits for available network resources to transmit the serialized data. Considering
these factors during system design and network provisioning is essential to ensure efficient
data transfer [AMK23].

4.2 Framework System Model 63

2

34

5

6

1

7

a1

a2

a3

a4

a5

a6

1

2

3

4

5

6

7

d1.c1

0 Hyperperiod

a1.ts11.d1 frame of d1.c1 a4.tr41.d1

Sender Node (n1
cz)d3.c3d2.c2 Receiver Node (n7

cz) Link

(a)

(b)

Figure 4.4: (a) A vehicle topology which shows generated paths for communication messages from senders to
the receivers and mapped applications to the control nodes. Each colorful dot represents a communication task
associated with a communication message. In this example, each application comprises a single application
thread. (b) Calculated time-triggered schedules from the sender (ncz

1) to the receiver (ncz
7). It includes schedules

for the sender (number one, with thread slots that are not crossed) and the receiver application threads (number
seven, with thread slots that are crossed). The schedules of communications tasks (yellow and light green frames
of the tasks in numbers two to six) over the generated path (only the enumerated route in (a)) are also included.
The path routing two communication messages (d1 and d2) is considered. As can be seen, message dependency
for the sender and receiver and path dependency for communication tasks are fulfilled. The representations for
light green and dark green frames are similar to the yellow ones [AMK23].

64 Chapter 4 Methodology

Deserialization Delay

When a frame arrives at a control node, it requires a specific amount of time to be unpacked
and processed before the relevant node can effectively utilize the contained data. This time,
commonly known as the deserialization delay and indicated as rd in the framework’s system
model, plays a vital role in the overall efficiency and responsiveness of the system. This delay
stands for the time needed to extract the serialized data from the received frame and convert
it back into its original format. This process involves reversing the serialization process, which
may comprise operations like decoding binary representations, parsing JSON structures, or
reconstructing complex data objects. The duration of the deserialization delay can change
due to various factors, such as the complexity of the data, the selected approach, and the
computational resources available at the control node [AMK23].

Processing Delay

The maximum processing delay of a communication frame in a networking node is a crucial
metric that characterizes the time required for the node to process and forward the received
frame. It signifies the delay from when the last bit of the frame is received on the input port
until the earliest possible transmission of the first bit on the output port. This delay is rep-
resented as pd. The processing delay encompasses various stages of frame handling within
the networking node. Once the frame is received, it undergoes several essential operations,
including header parsing, routing table lookup, potential payload processing, and potential
modifications or encapsulations before being transmitted to the next destination. Each of
these operations contributes to the overall processing delay. This delay can be influenced by
factors such as the frame’s complexity, the computational resources available in the node, and
the network traffic load. For the complex frames or resource-constrained nodes, the process-
ing delay may be longer, potentially leading to increased latency in the network. Therefore,
it is essential to consider these factors during network design and provisioning to ensure that
the processing delay remains within acceptable limits [AMK23].

Interpacket Gap

The interpacket gap indicated as ipg, is considered, which represents the required time inter-
val between consecutive network packets or frames. The interpacket gap serves as a crucial
recovery period that allows network devices to prepare for the reception of the next packet.

The purpose of the interpacket gap is to ensure proper synchronization and coordination
between transmitting and receiving devices within a network. It allows devices to handle the
processing and forwarding of the received packet, update internal states, and make neces-
sary preparations before the arrival of the subsequent packet. This recovery time is critical in
high-speed or heavily loaded networks, where devices require a momentary pause to avoid
congestion, buffer overflows, or potential data loss. The duration of the ipg is typically de-
fined by network protocols or standards and can be different based on the specific require-
ments of the network environment. It may be specified in terms of time, e.g., microseconds
or milliseconds, or as a multiple of the packet transmission time. The duration of this gap
should be carefully chosen to strike a balance between efficient data transmission and allow-
ing sufficient recovery time for network devices. Properly setting and managing the ipg can
significantly impact network performance and reliability. If the gap is too short, devices may
not have enough time to process and prepare for the next packet, leading to increased packet
loss, errors, or degraded performance. On the other hand, an excessively long ipg can result
in reduced network throughput and underutilization of available bandwidth [AMK23].

Network administrators and engineers often fine-tune the ipg based on the network in-
frastructure’s specific characteristics and the traffic’s nature. They consider factors such as

4.3 Constraints MIP Formulation 65

network speed, latency, device capabilities, and the presence of other network optimization
techniques like flow control or congestion avoidance algorithms.

Bandwidth

Finally, the bandwidth, denoted by bw, is a fundamental metric that characterizes the maxi-
mum potential data transfer rate between two points in a network over a specific link within
a given time frame. It plays a crucial role in determining a network connection’s overall
capacity and performance.

Bandwidth, typically measured in bits per second (bps), represents the amount of data
that can be transmitted within a specified time duration. It limits the rate at which infor-
mation can be exchanged between network devices, such as routers, gateways, switches, or
communication links. The higher the bandwidth, the greater the volume of data that can be
transferred in a given time, leading to faster and more efficient communication. bw can be
affected by the underlying infrastructure and technology used in the network. Factors such
as cable quality, transmission medium (e.g., copper or fiber optic), and network equipment
capabilities influence the achievable bandwidth for wired connections. In wireless networks,
variables such as spectrum availability, modulation techniques, signal strength, and interfer-
ence impact the available bandwidth. Various techniques are employed to make the most
efficient use of available bandwidth. Network protocols and algorithms implement strate-
gies such as congestion control, QoS mechanisms, and traffic prioritization to optimize data
transfer and ensure fair sharing of network resources [AMK23].

4.3 Constraints MIP Formulation

The E/E Designer framework creates automated mapping and automatic message routings.
It considers path and message dependencies and calculates the time-triggered schedules for
different application threads and communication tasks ci for a modeled vehicle E/E system.
These threads run on various control nodes ncz

i , and the communication tasks route over
the network. The framework takes predefined boundary and optimization objectives into ac-
count. The E/E architecture presented in Figure 4.4 is characterized as a distributed system.
This is done to proceed with the E/E Designer goals using a set of constraints.

4.3.1 Automated Mapping

To automatically assign applications, including their threads, to control nodes, the following
constraint set is formulated:

∀i, j, k ∈ N, mi j, mik, ms
i j, mr

i j ∈M, a j, ak, ao, ap, asc, aasilD , anon−asilD ∈A, ncz
i ∈N :

if a j /∈ asc then
∑

i∈N
mi j .a j

ncz
i = 1 (4.1)

∑

j∈N
mi j .a j

ncz
i ≥ 1 (4.2)

ms
i j .a j

ncz
i +mr

ik.ak
ncz

i ≤ 1 (4.3)

66 Chapter 4 Methodology

if ak ∈ asc then
∑

i∈N
mik.ak

ncz
i = 2 (4.4)

mi j .a j
ncz

i +mik.ak
ncz

i ≤ 1 (4.5)

if ao ∈ aasilD and ap ∈ anon−asilD then

mio.ao
ncz

i +mip.ap
ncz

i ≤ 1. (4.6)

The condition (4.1) ensures that each application is only mapped once on each ncz
i . More-

over, to distribute the applications, including their threads, to all existing control nodes, each
ncz

i must execute at least one application (a j) which is encoded in Eq. (4.2). Based on the
constraint (4.3), the sender and receiver threads from two different applications, transferring
a communication message, cannot be executed on the same control node [AMK23].

Redundancy in Mapping

To meet the redundancy requirement following ISO 26262 [ISO18], the safety-critical appli-
cations asc set must be run redundantly. Hence, condition (4.4) forces each asc to be executed
twice on various ncz

i [AMK23; AHK22].

FFI in Mapping

In addition, to fulfill the FFI demand for asc and aasil , non-safety a j and safety-critical ak
applications must not be run on the same ncz

i which is formulated in (4.5). Similarly, to pro-
vide FFI condition during the automated mapping process for ASIL D applications, constraint
(4.6) is stated. Based on (4.6), ASIL D and non-ASIL D applications cannot be executed on
the same control node [AHK22; AMK23]. The sets of all mapping variables are defined as M
and all applications, including safety-critical ones, as A. Note that all mapping variables are
specified as binary variables (i.e., 0 or 1). The same constraints are applied for each core of
an HPCU (nczc). That is, the redundancy and FFI conditions are valid for various cores with
different ASIL levels.

4.3.2 Automatic Message Routing

Message routing plays a pivotal role in automotive networks, where many nodes, comprising
ECUs, HPCUs, switches, and gateways, collaborate to ensure smooth vehicle operations. As
modern automobiles become increasingly sophisticated, incorporating various functionalities
and advanced systems, efficient and reliable message routing becomes paramount. In auto-
motive networks, messages flow between nodes to exchange vital information about engine
control, transmission, braking, safety systems, entertainment, and more. These messages
typically follow predetermined protocols and data formats, such as the CAN, time-triggered
CAN, FlexRay, LIN, and Ethernet, to ensure compatibility and interoperability across the net-
work. The primary goal of message routing is to deliver messages from their source nodes to
their intended destinations, optimizing the data transmission process while adhering to the
network’s constraints. Several factors influence the routing decisions within automotive net-
works, including the message’s priority and criticality, the available bandwidth, the network
topology, and the characteristics of the nodes involved, as illustrated in Chapter 2.

4.3 Constraints MIP Formulation 67

a1

a2

a3

a4

a5

a6

d1.c1

Sender Node

d3.c3d2.c2

Receiver Node

a7

Single Path Multicast Path

S
S

S

S

M

MM

M

M

MS

ECU1

ECU4 ECU7 ECU8

ECU6

Mapping

Figure 4.5: A vehicle architecture comprising intermediate and control nodes, links, and assigned applications to
ECUs. A single (arrows with S) and a multicast (arrows with M) paths are generated in order to send communica-
tion messages (colored dots), created by applications, from sender nodes to receiver nodes.

The presented model-based framework proposes automatic message routing for modeled
E/E systems, including single, multicast, redundant, and homogeneous redundant paths. In
the following, each of these routes is explained and encoded.

Single Routing

Single routing, also known as unicast routing, involves the transmission of a message from
a source control node to a single destination control node (see Figure 4.5). In this type of
routing, each message is addressed to a specific destination node, and the routing process
focuses on finding the optimal path to deliver the communication message to that particular
node. Single routing is commonly used for point-to-point communication, where a message
is intended for a specific recipient [AFK21a]. The routing decisions are typically based on
various factors such as network topology, available bandwidth, latency requirements, cost,
and reliability, which will be illustrated in the following sections.

In Figure 4.5, a single path (indicated as S) is shown to transmit two communication
messages (d1 and d2) from their senders to their receivers— yellow and light green dots in
the Figure 4.5 represent two communication tasks belonging to two communication messages
routed over the network’s links.

Considering the previous work [AFK21a], the following constraints are utilized to encode
the single message routing:

∀i, j, k, n j ∈N , d in
k , dout

k ∈ D, mi j
s, mr

i j ∈M:

ms
i j −mr

i j −
∑

j∈N
n j .d

out
k ≤ 0 (4.7)

68 Chapter 4 Methodology

ms
i j +
∑

j∈N
n j .d

in
k ≤ 1 (4.8)

mr
i j −ms

i j −
∑

j∈N
n j .d

in
k ≤ 0 (4.9)

mr
i j +
∑

j∈N
n j .d

out
k ≤ 1 (4.10)

ms
i j −mr

i j +
∑

j∈N
n j .d

in
k −
∑

j∈N
n j .d

out
k = 0. (4.11)

Based on constraint (4.7), there must be at least one outgoing communication message
(dout

k) over a link for a sender node. This constraint applies when the automated mapping
assigns a mapping variable ms

i j equal to 1 for the sender node n j. However, this condition
does not affect the routing process when the node is not a sender. In Eq. (4.8), a sender
node n j is required to block all incoming communication messages (d in

k) related to dk that
are coming from other nodes. This ensures that no activated d in

k messages exist for the sender
node n j, which means that ms

i j = 1 and mr
i j = 0. For example, in Figure 4.5, the sender node

ECU1 has only one activated dout
k and no triggered d in

k to route communication messages to
the next node.

Similarly to condition (4.7), but this time for a node (n j) as a receiver (ms
i j = 0 and

mr
i j = 1) of a communication message, at least one incoming message (d in

k) over a link must
be set, according to Eq. (4.9). Also, constraint (4.10) expresses that the receiver node must
not have any triggered outgoing data (dout

k). In Figure 4.5, there is only one activated d in
k

and no dout
k for ECU4 as a receiver to create a single route. Considering Eqs. (4.7) and (4.8),

it is possible for the sender and receiver to have multiple dout
k and d in

k values, respectively.
Therefore, to create a single path, it is necessary to ensure that the sender and receiver
nodes have only one triggered outgoing and incoming communication message, respectively,
as stated in Eq. (4.11). Furthermore, this condition applies to intermediate nodes that are
neither senders nor receivers of a message. These intermediate nodes must either have no
triggered message or have exactly one activated incoming message (d in

k) and one triggered
outgoing message (d in

k).

Multicast Routing

Multicast routing involves the transmission of a message from a source node to multiple des-
tination nodes simultaneously. In this type of routing, a single message is addressed to a
group of destination nodes rather than a specific node. The routing process aims to replicate
the message and deliver it to all the nodes in the multicast group efficiently. It is commonly
used for applications where the same information needs to be sent to multiple recipients,
such as video streaming, software updates, and distributed simulations. A multicast path
(indicated by the arrow visualized with M) is shown in Figure 4.5 for transmitting the d3
message from ECU6 to two receivers, namely ECU7 and ECU8. The E/E Designer uses the
following conditions to automatically create multicast routes for the designed automotive
networks [AMK23].

∀i, j, k, n j ∈N , d in
k , dout

k ∈ D, mi j
s, mr

i j ∈M:

ms
i j × (m

s
i j −mr

i j)−ms
i j ×
∑

j∈N
n j .d

out
k ≤ 0 (4.12)

4.3 Constraints MIP Formulation 69

ms
i j ×
∑

j∈N
n j .d

in
k ≤ 0 (4.13)

mr
i j × (m

r
i j −ms

i j)−mr
i j ×
∑

j∈N
n j .d

in
k = 0 (4.14)

mr
i j ×
∑

j∈N
n j .d

out
k ≤ 0 (4.15)

∑

j∈N
n j .d

out
k −
∑

j∈N
n j .d

in
k = ms

i j −mr
i j (4.16)

or
∑

j∈N
n j .d

out
k ≥ ms

i j −mr
i j +
∑

j∈N
n j .d

in
k .

Constraint (4.12) reveals that at least one outgoing communication message (dout
k) over

a link must be activated for a sender node. This rule is triggered for the sender node, i.e.,
ms

i j equal to 1 for the sender node n j, as each variable of the Eq. (4.12) is multiplied by ms
i j.

Moreover, a sender node cannot have any activated communication message coming into the
sender from other nodes, according to Eq. (4.13). As a receiver, a node must comprise pre-
cisely one triggered inflowing message (d in

k) to fulfill requirements for generating multicast
paths (refer to Eq. (4.14)). Considering the multiplication terms, this condition is only valid
for the receiver nodes. Furthermore, a receiver must inhibit all outgoing communication
messages (dout

k) related to dk that are coming from other nodes, based on constraint (4.15).
This guarantees that no initiated dout

k messages exist for the receiver node n j.
According to Eq. (4.16), the intermediate nodes must either have an equal number of

incoming and outgoing communication messages or the number of dout
k messages must be

greater than equal to d in
k messages. This condition enforces the intermediate nodes to include

either one input and one output or one input and multiple outputs to meet the multicast
routing requirements. In Figure 4.5, considering the multicast path, the network switch has
only one entering message or d in

k and two departing messages (dout
k) to receivers ECU7 and

ECU8.

Redundant Routing

It plays an essential role in ensuring reliable and fault-tolerant communication in automotive
communication networks between various nodes, such as control and networking nodes in
vehicles. As automotive systems become increasingly complex and interconnected, redun-
dancy becomes essential to maintain system functionality and safety, especially for mixed-
critical systems. This type of routing involves the provision of multiple communication paths
between nodes, allowing for alternate routes in case of link failures, congestion, or other
communication disruptions. These redundant paths serve as backups in case of link failures
or congestion. The redundant paths in physical routes, protocols, or transmission media may
differ. This redundancy enhances the robustness and resilience of the network, minimizing
the risk of communication failures and providing backup options in case of any unforeseen is-
sues. One approach to implementing redundant routing is the use of parallel communication
channels. Multiple physical or virtual links between nodes, e.g., ECUs, can be established,
allowing for simultaneous data transmission over different paths. If one link experiences
a failure or degradation, the system can automatically switch to an alternate path, ensur-
ing uninterrupted communication. This redundancy helps to mitigate the impact of single-
point failures and enhances the overall reliability of the network [ISO18; Smi+18; AFK21a;
AMK23].

70 Chapter 4 Methodology

a1 a3

a2 a4

d1.c1

Sender Node

d2.c2

Receiver Node

ECU1

ECU4 ECU7

ECU6

Redundant d1.c1 Homogeneous Redundant d2.c2

Figure 4.6: A modeled car architecture comprising intermediate and control nodes, links, and assigned applica-
tions to ECUs. A redundant (yellow dot with red border line) and a homogeneous redundant (green dot with red
border line) routes are created in order to send communication messages (colored dots), created by applications,
from sender nodes to receiver nodes.

The E/E Designer framework creates redundant physical paths for safety-critical applica-
tions to transmit critical communication messages. Redundant routings are not necessarily
disjoint, meaning they may share common nodes or links between senders and receivers.
For example, in Figure 4.6, there is one redundant path for the communication message, d1,
from ECU1 to ECU4. This route transmits an additional communication task (c1) belonging
to a communication message (d1) (it is shown with a yellow dot with a red border) from the
sender to the receiver. This routing is not disjoint as it shares two network switches with the
other related to d1. The set of constraints below is integrated into the framework’s system
model to generate automatic redundant routing.

∀i, j, k, n j ∈N , d in
k , dout

k ∈ D, mi j
s, mr

i j ∈M:

ms
i j −mr

i j −
∑

j∈N
n j .d

out
k ≤ −1×ms

i j (4.17)

ms
i j ×
∑

j∈N
n j .d

in
k ≤ 0 (4.18)

mr
i j −ms

i j −
∑

j∈N
n j .d

in
k ≤ −1×mr

i j (4.19)

mr
i j ×
∑

j∈N
n j .d

out
k ≤ 0 (4.20)

4.3 Constraints MIP Formulation 71

2×md
i j − 2×ms

i j −
∑

j∈N
n j .d

in
k +
∑

j∈N
n j .d

out
k = 0. (4.21)

Constraint (4.17) illustrates that a sender node must activate at least two outgoing com-
munication messages (dout

k) over a link. This requirement is applied to the sender node; in
other words, when the mapping variable, ms

i j, has a value of 1 for the sender node n j. In
addition, the sender node must not have any activated communication messages coming into
it from other nodes, as specified in constraint (4.18). As for a receiver node, it must have
at least two incoming triggered messages (d in

k) in order to meet the requirements for cre-
ating a redundant path, as indicated in constraint (4.19). This condition is only applicable
to receiver nodes. Furthermore, a receiver node must prevent any outgoing communication
messages (dout

k) associated with dk from reaching other nodes, according to Eq. (4.20). This
ensures no existing dout

k messages for the receiver node n j.
When Eq. (4.21) is applied to intermediate nodes, it enforces them to have an equal num-

ber of incoming and outgoing messages. Moreover, it obliges sender and receiver nodes to
have exactly two outgoing (dout

k) and inflowing (d in
k) messages, respectively. This is crucial

because based on Eqs. (4.17) and (4.19), sender and receiver nodes can potentially have
more than two dout

k and d in
k messages, respectively. As visualized in Figure 4.6, ECU1, as a

sender, and ECU4, as a receiver, have two triggered outgoing and incoming paths, respec-
tively. Besides, the network switches, which function as intermediate nodes between ECU1
and ECU4, possess two dout

k and d in
k each, applying Eq. (4.21).

Homogeneous Redundant Routing

It refers to a network design approach where there are multiple redundant paths between any
two nodes in the network, and each path is capable of carrying the same type of data. This
redundancy helps to improve the reliability and fault tolerance of the network, as data can
still be transmitted even if one path fails. The redundant paths in homogeneous redundant
routing are typically designed to be functionally identical. In other words, each node in
the network has redundant communication data flows to other nodes, which are designed
to be functionally similar. This redundancy helps to ensure that even if one way fails, the
data can still be transmitted using an alternative path. This type of routing is critical in
automotive networks, where reliability is crucial for safety-critical applications. Ensuring that
multiple redundant paths are available for transmitting critical data reduces the likelihood of
a communication failure. In contrast to redundant routing, homogeneous redundant paths
are disjoint so that they do not share any common nodes or links [AFK21a; ISO18]. In
Figure 4.6, a homogeneous redundant pathway is shown from ECU6 to ECU7 to route a
communication message (d2). This path does not share any standard components with the
main data flow related to d2, as displayed in Figure 4.6.

The introduced tool uses the constraints below to provide the homogeneous redundant
routing described in our previous paper [AFK21a]. These constraints encode the homoge-
neous redundant data flows with duplication of the entire routing elements comprising the
nodes (except for the source and destination nodes) and the links. Note that the following
equations are applicable for the automated mapping approach, which have not been dis-
cussed in [AFK21a].

∀i, j, k, n j ∈N , d in
k , dout

k ∈ D, mi j
s, mr

i j ∈M, nhmr ∈ N:

72 Chapter 4 Methodology

ms
i j × (m

s
i j −mr

i j)−ms
i j ×
∑

j∈N
n j .d

out
k ≤ −nhmr ×ms

i j (4.22)

ms
i j ×
∑

j∈N
n j .d

in
k ≤ 0 (4.23)

mr
i j × (m

r
i j −ms

i j)−mr
i j ×
∑

j∈N
n j .d

in
k ≤ −nhmr ×mr

i j (4.24)

mr
i j ×
∑

j∈N
n j .d

out
k ≤ 0 (4.25)

mr
i j −ms

i j + nhmr × (mr
i j −ms

i j) +
∑

j∈N
n j .d

out
k −
∑

j∈N
n j .d

in
k = 0 (4.26)

(1−mr
i j)× (1−ms

i j)×
∑

j∈N
n j .d

out
k ≤ (1−mr

i j)× (1−ms
i j) (4.27)

(1−mr
i j)× (1−ms

i j)×
∑

j∈N
n j .d

in
k ≤ (1−mr

i j)× (1−ms
i j). (4.28)

Based on constraint (4.22), a sender node must at least comprise one plus nhmr outflowing
communication messages (dout

k) over a link. Here, nhmr represents the number of required
homogeneous redundant routes that can be chosen in the framework fronted by the user. As
an example, the number of nhmr is set as one to create one homogeneous redundant pathway
in Figure 4.6. Furthermore, all possible inflowing messages d in

k directed into a sender node
from other nodes are deactivated, as defined in constraint (4.23). Condition (4.24) indicates
that a receiver node must have at least 1+nhmr incoming triggered messages (d in

k) to establish
nhmr homogeneous redundant routings. In addition, according to Eq. (4.25), messages can
not flow out (dout

k) of a destination node. Both sender and receiver nodes must have an
exact number of outgoing and incoming messages, respectively, as determined in Eq. (4.26).
The same constraint guarantees that intermediate nodes have an equal number of out and
inflowing messages (dout

k and d in
k). As mentioned earlier, the homogeneous redundant path

is entirely disjoint. Consequently, conditions (4.27) and (4.28) are formulated to ensure all
investigated routes are disjoint. When executed on an intermediate node, the number of
outgoing and incoming messages must be less than or equal to one, based on Eqs. (4.27) and
(4.28), respectively.

All the constraints explained above are simultaneously applied to all nodes, including
sender, receiver, and intermediate nodes, and they are valid for all of these nodes.

Outgoing/Incoming Messages Connection and Cycle Breaker

As explained previously, each directed link (e.g., la,b), connecting two nodes (e.g., na to nb),
consists of an outgoing (dout

k) and an incoming (d in
k) messages which belong to the same

communication message. This is indicated to activate a directed path from, e.g., na to nb.
Therefore, in the introduced routing system model, dout

k and d in
k related to a directed link

between two nodes must be connected to make the routing process possible. Cycle breaking
in communication message routing refers to the process of preventing or resolving cycles in
a network topology when routing messages between nodes [AFK21a]. In a network, cycles
occur when there is a loop in the routing path, causing messages to circulate indefinitely
or causing routing protocols to become stuck. Cycle breaking is essential in communica-
tion networks to ensure the efficient and timely delivery of messages and to avoid network
congestion or packet loss.

4.3 Constraints MIP Formulation 73

dout
k .lna

a,b − d in
k .lnb

a,b = 0 (4.29)

dout
k .lna

a,b − dout
k .lnb

b,a ≤ 1 (4.30)

or

d in
k .lnb

a,b − d in
k .lna

b,a ≤ 1.

In order to connect outgoing (dout
k) and incoming (d in

k) messages, which belong to the
same communication message and are transmitted on the same directed link between two
nodes, Eq. (4.29) is introduced. Eq. (4.29) states that dout

k .lna
a,b, which represents the message

dk being sent out from node na over the directed link la,b between na and nb, must be equal
to d in

k .lnb
a,b, which indicates the message dk being received by node nb over the directed link

la,b between na and nb. Constraint (4.30) prevents routing cycles during path generation. A
routing cycle occurs when two dout

k or two d in
k , associated with each directed link between

two nodes, are set in both directions.
Algorithm 1 is presented to fulfill the cycle breaker condition for paths and connect the

incoming and outflowing messages over the same link. The details of this algorithm are
explained as follows. For each application (line 1), all nodes pass through several conditions,
and also, for each node (line 2), all incoming messages pass through different rules (line 3).
For all d in, based on line (4) each dout goes through two if conditions. The first one ensures
that the d in and dout belong to the same link; if so, the Eq. (4.29) is applied to connect
the incoming and outgoing messages. The constraint (4.30) is executed where a loop/cycle
in the path can be created based on the second if condition in line (8). In this condition,
the possible routing cycle for each communication message between two nodes is identified
according to the source and destination nodes for dout and d in. Afterward, to avoid a loop,
either a dout or a d in for a related communication message is considered by applying (4.30).

Algorithm 1: Cycle Breaker and Connection of Incoming & Outgoing Messages
Input: N = {n1, n2, ..nn}, A= {a1, a2, ..aa},

Din = { d in
1 , d in

2 , ..d in
q }, Dout = {dout

1 , dout
2 , ..dout

p }, n, a, q, p ∈ N
Output: Breaking cycles for created communication message routings and

connecting incoming and outgoing messages transmitting only over the
same link

1 for i← 0 to a do
2 for j← 0 to n do
3 for k← 0 to q do
4 for l ← 0 to p do
5 if d in

k .get(l ink) = dout
l .get(l ink) then

6 Apply constraint (4.29);
7 end
8 if d in

k .get(source_node) = dout
l .get(source_node) &

d in
k .get(dest ination_node) = dout

l .get(dest ination_node) then
9 Apply constraint (4.30);

10 end
11 end
12 end
13 end
14 end

74 Chapter 4 Methodology

4.3.3 Overlapping-Free Application Threads Considering Automated Mapping

To apply the time-triggered scheduling, as illustrated in Section 2.2, only to the assigned
application threads on each control node, taking the automated mapping into account, the
following set of constraints are introduced. In other words, the constraint set ensures that on
every single control node, one mapped application thread is only triggered when the node
is idle, i.e., after the last thread is finished. The presented overlapping constraints in (4.31)
from [Zha+14] are extended based on the E/E Designer’s system model so that automated
mapping and time-triggered scheduling for application threads on each control node can be
performed in a single-step solving [AMK23].

The set of all application threads is specified as T . In addition, the activated mapping vari-
ables, mkα and mkβ , regarding each pair of application threads running on a control node,
are specified as the mapping variable denoting M. The pair of threads can belong to the
same or different applications. This condition can be encoded as follows:

∀i, j(i ̸= j), k, α, β ∈ N; t i, t j ∈ T ; mkα, mkβ ∈M:

v × (t i .p×wi + t i .st + t i .e)< v × (t j .p×w j + t j .st) (4.31)

or

v × (t j .p×w j + t j .st + t j .e)< v × (t i .p×wi + t i .st)

t i .st ≥ 0 (4.32)

t i .st + t i .e ≤ t i .p (4.33)

t j .st ≥ 0 (4.34)

t j .st + t j .e ≤ t j .p (4.35)

considering

v = mkα.aα
ncz

k .tαi ×mkβ .aβ
ncz

k .tβ j

∀wi ∈
�

0,
LC M(t i .p, t j .p)

t i .p
− 1

�

∀w j ∈
�

0,
LC M(t j .p, t i .p)

t j .p
− 1

�

, where LC M(t j .p, t i .p) symbolizes the least common multiple of periods t i .p and t j .p. More-
over, mkα.aα

ncz
k .tαi and mkβ .aβ

ncz
k .tβ j represent the related binary mapping variables of the

threads t i and t j, respectively. In this set of constraints, all variables are defined as dou-
ble precision except for binary mapping variables. Based on constraint (4.31), one of the
equations is valid at the time; hence, the two conditions must be checked simultaneously in

4.3 Constraints MIP Formulation 75

the constraint system. Constraints (4.32) ensure that the calculated starting time of thread
t i becomes greater than or equal to zero, and condition (4.33) states that the thread job t i
must be finished in its period slot. The same conditions (4.34) and (4.35) are applied for t j.
Following Figure 4.4, there are three sender application threads from three diverse applica-
tions a1.ts

11, a2.ts
21, and a3.ts

31 which are assigned to a control node ncz
1 automatically and the

correct schedule of each thread is visualized in the number one slot in Figure 4.4 (b) using
this constraint set [AMK23].

4.3.4 Overlapping-Free Communication Tasks Considering Automatic Message Rout-
ing

Similarly to the previous subsection, the time-triggered scheduling is implemented for com-
munication tasks routing over communication links in the vehicle’s network. To ensure that
there is no collision of frames being sent over a single directed link, a frame can only start its
transmission ipg time units after the last frame is finished. The same time-triggered schedul-
ing policy for application threads is applied for the communication tasks routing over a di-
rected link only once the related link is activated, i.e., when the relevant link is part of a
created route. The set of all communication tasks is defined as C, and dout

i and dout
j , which

are pairs of dout relevant to a directed link, are part of the set of activated routing variables
symbolized by D [AMK23]. This condition can be formulated as follows.

∀i, j(i ̸= j) ∈ N; ci, c j ∈ C; dout
i , dout

j ∈ D:

r × (ci .p×wi + ci .st + ci . f l/bw+ ipg)< r × (c j .p×w j + c j .st) (4.36)

or

r × (c j .p×w j + c j .st + c j . f l/bw+ ipg)< r × (ci .p×wi + ci .st)

ci .st ≥ 0 (4.37)

ci .st + ci . f l/bw≤ ci .p (4.38)

considering

r = dout
i .ci × dout

j .c j

∀wi ∈
�

0,
LC M(ci .p, c j .p)

ci .p
− 1

�

∀w j ∈
�

0,
LC M(c j .p, ci .p)

c j .p
− 1

�

.

76 Chapter 4 Methodology

Constraints (4.36), (4.37), and (4.38) are encoded for the same reason as constraints
(4.31), (4.32), and (4.33) for application threads, with the only difference that here they
are applied for pair of communication tasks ci and c j instead. Using r ensures that the
starting time of communication tasks is only computed for the activated links, which are
part of a generated path. Note that ci . f l/bw represents the transmission time of the packet
ci . f l for a given bandwidth bw. In this constraint set, all variables are specified as double
precision float numbers except for binary variables dout

i .ci and dout
j .c j which represent dout

i
related to communication task ci and dout

j related to communication task c j, respectively. In
Figure 4.4 (a), for example, in link number two, three communication tasks share the same
link to route three messages (d1.c1, d2.c2, and d3.c3) and their schedules are displayed in the
number two slot of Figure 4.4 (b) [AMK23].

4.3.5 Path Dependency

Path dependency in computed schedules for a communication network refers to the fact that
the schedule of communication events (such as the transmission of data packets) depends
on the path the data takes through the network. This means that the order in which the
events occur is determined by the route the data takes through the network and not by any
other factors [Zha+14]. As mentioned previously, several communication tasks can be sent
over each link. In a communication task, a frame must only be forwarded along the routes
in the correct temporal order. In other words, the timing order of all tasks belonging to a
communication message for a path consisting of a link or multiple links must be correct.
In Figure 4.4 (b), the correct temporal order of a communication task c1 for a route (the
numbered path), including five links, is visualized. For example, the finishing times of the
frames over link two must be less than the starting times of the same frames over link three,
which can be observed in Figure 4.4 (b) [AMK23].

To satisfy path dependency only for the activated routes in communication, the following
constraint set is encoded:

∀i ∈ N; ci ∈ C; di , dout
i ∈ D; ∀k ∈ [2, nl] ⊆ N; ∀lk, lk−1 ∈ L:

dout
i .lk−1 × (ci .st lk−1

di
+ ci . f l lk−1

di
/bw+ pd + s ync)< dout

i .lk × ci .st lk
di

. (4.39)

The constraint (4.39) is encoded to ensure path dependency only for the activated routes
in communication. This condition only becomes activated when the corresponding outgoing
message over the related link, e.g., dout

i .lk−1, is active. In Figure 4.4 (a), the enumerated path
consists of five links (nl = 5) and on each link, communication tasks are transmitted. The
starting time of these tasks is represented with ci .st lk

di
, must be in the correct temporal order

satisfying Eq. (4.39) (see, for example, the yellow schedule slots for links number two to six
in Figure 4.4 (b)). Here, k represents the link number that bounds to nl, representing the
number of existing links in each possible path, and L is defined as the set of directed links. In
addition, ci . f ldi

/bw represents the transmission time of the communication packet ci . f l for
a given bandwidth bw. It should be added that sync represents the maximum difference be-
tween any two clocks in the system, as depicted in Table A.1. It is assumed that all schedules
are referenced to the local time of the networking nodes [AMK23].

4.4 Boundary Constraints & Optimization Objectives 77

4.3.6 Message Dependency

In the context of communication networks in automotive systems, message dependency refers
to the relationship between different messages or data packets that are exchanged between
various components or nodes within the network. It represents the interdependence and
order in which messages must be transmitted or processed to ensure the correct functioning
of the system. Message dependency is essential because specific messages may depend on
the reception or processing of other messages [Zha+14]. For example, consider a scenario
where an ECU responsible for brake control needs information from another ECU responsible
for wheel speed. The brake control ECU may rely on the wheel speed data to decide when and
how to engage the brakes. In this case, the brake control message depends on the availability
and timely reception of the wheel speed message. The presented framework supports the
temporal dependency for message dependency. Temporal dependency refers to the ordering
or sequencing requirements of messages. Some messages must be sent or received before or
after specific other messages to maintain the correct functionality of the system [AMK23].

Due to the message dependency, the application threads and communication tasks in the
message chain must be executed in the correct temporal order, as illustrated above. Further-
more, constraint (4.40) states that the thread’s starting time of the sender, ts

i .stdi
, sending di,

must be less than the starting time of the related communication task over the first link of
the path denoted by ls. This rule is only applied to the activated link, dout

i .ls, which is part
of a created route. While the thread’s starting time of the receiver, t r

i .stdi
, must be greater

than the related communication task over the last link l f of the route based on (4.41), con-
sidering only the activated edge. For instance, in Figure 4.4 (b), the yellow slot a1.ts

11.d1, as
a sender, is followed by d1.c1 over link number two, based on (4.40). Also, d1.c1 over link six
is followed by a4.t r

41.d1, as a receiver, according to the Eq. (4.41) [AMK23].

∀i ∈ N; ts
i , t r

i ∈ T ; ci ∈ C; dout
i ∈ D; ls, l f ∈ L:

dout
i .ls × (ts

i .stdi
+ ts

i .edi
+ sd)< dout

i .ls × (ci .st ls
di
) (4.40)

dout
i .l f × (ci .stdi

+ ci . f ldi
/bw+ rd)< dout

i .l f × t r
i .stdi

. (4.41)

Therefore, the temporal dependencies for a sender thread and its related communication
task over the first link of a path, and for the same communication task over the last link of
the path and its receiver thread are met in a single step using Eqs.(4.40) and (4.41).

4.4 Boundary Constraints & Optimization Objectives

Boundary conditions refer to the limitations and constraints imposed on the design process.
In the automotive domain, these conditions encompass various factors such as technical re-
quirements, safety regulations, industry standards, environmental considerations, and cus-
tomer expectations. The purpose of defining boundary conditions is to ensure that the re-
sulting design meets the necessary criteria and aligns with the desired objectives and user
expectations. The E/E architecture should accommodate future technology advancements,

78 Chapter 4 Methodology

1

2

3

ak.tski.di frame of di.ci aj.t
r
ji.di

ak.tski.st aj.t
r
ji.st + aj.t

r
ji.eci.st

p

di.el

di.rt

Figure 4.7: End-to-end latency and response time for a communication message (di .el and di .r t , respectively).
Number one indicates ak.t s

ik slot, as a sender, number two represents ci frame. As a receiver, a j .t
r
ji slot is shown

by number three [AMK23].

new features, and vehicle variants. Boundary rules include the ability to integrate additional
components, support software updates, and provide a scalable platform for different vehi-
cle models and configurations. Optimization goals in design automation for a vehicle’s E/E
architecture comprise defining the objectives to be achieved during the design process, as il-
lustrated in Chapter 2. These objectives typically involve enhancing performance, efficiency,
safety, and cost-effectiveness. By leveraging computational methods and algorithms, design-
ers aim to optimize various aspects of the automotive design [AHK22; AFK21a; AFK21b;
AFK20; AMK23].

As a result, several boundary conditions as requirements and optimization goals are sup-
ported by the E/E Designer, which are explained in the following.

4.4.1 End-to-End Latency

In the automotive communication domain, end-to-end latency refers to the time it takes
for a message to be transmitted from the sender to the receiver and for a response to be
received. This latency can be affected by a number of factors, including the distance between
the devices, the type of communication technology being used, the amount of traffic on
the communication channel, and the processing time required by the devices to handle the
message. This metric considers all the delays that may occur along the way, such as network
congestion, processing delays, and transmission delays. Low end-to-end latency means the
system can transmit messages quickly and reliably [Zha+14; AHK22; AMK23]. In the context
of automotive real-time communication, low end-to-end latency is important for ensuring the
smooth operation of the vehicle and the safety of the passengers and in situations where the
car relies on real-time data to make decisions or take actions.

As an example, ADAS relies on real-time communication between sensors and other sys-
tems; high latency can lead to delays in processing critical information and may negatively
impact the performance of the system. Another example can be a car equipped with a sensor
that detects obstacles in the road. If the sensor sends a message to the car’s HPCU indi-
cating that an obstacle is present, the HPCU needs to process this information and take the
appropriate action (such as applying the brakes) as quickly as possible. If the end-to-end

4.4 Boundary Constraints & Optimization Objectives 79

latency is too high, there may be a delay between when the obstacle is detected and when
the car takes action, which can result in a dangerous situation. To reduce the end-to-end
latency in automotive communication, various measures can be taken, such as optimizing
the communication protocol, using high-speed communication technologies, and minimizing
the processing time required by the devices during the design phase.

Based on Figure 4.7, the end-to-end latency of a communication message (di .el) is the
time between the start of the application thread acting as the sender (ak.ts

ki .st) and the
finishing of the application thread operating as the receiver (a j .t

r
ji .st+ a j .t

r
ji .e) of its message

chain (di .chi) (see Eq. (4.42) and Figure 4.7) [AMK23].

di .el = a j .t
r
i .st + a j .t

r
i .e− ai .t

s
i .st. (4.42)

Figure 4.7 depicts an example of an end-to-end latency computation for a communication
message where the message chain comprises two threads belonging to various applications
and a communication task. To minimize the end-to-end latency of each communication mes-
sage, (4.43) is applied as an optimization goal. In addition, a hard constraint, as (4.44), can
be used to limit the end-to-end latency to under a specific maximum bearable value, inter-
preted as a boundary condition.

∀i ∈ N; di ∈ D:
el i

min = min(di .el) (4.43)

di .el ≤ di .elmax . (4.44)

4.4.2 Response Time

Response time refers to the time it takes for a system to respond to a request or input. This
metric is important because it reflects the system’s ability to process requests quickly and
efficiently. A low response time means that the system is able to handle requests quickly and
respond promptly [Zha+14]. In the automotive real-time communication domain, response
time is critical because it affects the safety and efficiency of the vehicle. For example, if a
vehicle’s communication system takes too long to respond to a request from the driver or
another system, it can cause a delay or malfunction that can lead to an accident. For exam-
ple, if a car’s brake system has a slow response time, it may take longer for the brakes to
engage, potentially leading to an accident. Similarly, suppose car’s navigation system has a
slow response time. In that case, it may take longer to update and provide accurate direc-
tions, leading to delays and potential confusion for the driver. Therefore, the communication
system needs to have a fast response time in order to ensure the safety and smooth operation
of the vehicle.

The presented computer-aided tool supports the response time optimization as well as the
response time condition for a communication message. The response time of a communica-
tion message (di .r t) is explained as the time between the beginning of a period, represented
as p.st, and the time when the job of the last thread in the corresponding message chain is
finished [AMK23]. It is given by

di .r t = a j .t
r
ji .st + a j .t

r
ji .e− p.st. (4.45)

80 Chapter 4 Methodology

Figure 4.7 shows an example of the response time for a communication message (di)
similar to the end-to-end latency. In practice, because of the unavailability of resources,
ak.ts

ki .st ̸= p.st. Note that if ak.ts
ki .st = p.st, the response time becomes equal to the end-to-

end latency (di .el = di .r t). Like the end-to-end latency optimization objective, to minimize
the response time, which is stated as a time limit that the information of time-triggered sys-
tems requires to be updated within this time bound, the Eq. (4.46) is presented. Similar to
the end-to-end latency, condition (4.47) can be specified as a boundary constraint to enforce
the response time to be within a tolerable maximum limit.

∀i ∈ N; di ∈ D:
r t i

min = min(di .r t) (4.46)

di .r t ≤ di .r tmax . (4.47)

Hint: Note that multicast messages are treated as separate messages when calculating the
end-to-end latency. Therefore, the end-to-end latency for a multicast message is determined
by the maximum of the individually calculated latencies. Furthermore, each route has its
latency for redundant and homogeneous redundant routes, and the maximum latency is
considered the final latency for a redundant message. The same policy is applied to the
response time.

4.4.3 Resource Utilization (RU)

Resource usage optimization is crucial for embedded system developers to avoid facing lim-
ited resources. Load balancing can prevent irregularly overloading some control nodes while
leaving others idle. Therefore, a boundary condition and an optimization goal are defined to
automatically assign applications to available resources, such as ECUs and HPCUs, including
cores and processors, while satisfying the resource usage rule.

Based on Eq. (4.48), as an optimization goal, the number of mapped applications on each
control node is minimized, i.e., the applications a j are distributed on control nodes ncz

i .a j
possibly to keep load balancing of each control node the same [AMK23]. The Eq. (4.49)
is utilized to average the usage of control nodes as a boundary constraint. The number of
mapped applications on each control node must be greater than or equal to a tolerable bound
denoted as the apn value, which is the total number of applications divided by the total num-
ber of control nodes according to Eq. (4.49). As a result, the applications are as equally as
possible distributed on control nodes to maintain the load balancing of each control node.
Condition (4.50) shows a boundary constraint similar to Eq. (4.49), which is considered for
control node cores such as HPCU cores and apc, indicating a bearable limit [AMK23].

∀i, j ∈ N; mi j ∈M; a j ∈A; ncz
i ∈N :

rui
min = min(
∑

j∈N
mi j .n

cz
i .a j) (4.48)

∑

j∈N
mi j .n

cz
i .a j ≥ apn (4.49)

∑

j∈N
mc

i j .n
czc
i .a j ≥ apc. (4.50)

4.4 Boundary Constraints & Optimization Objectives 81

Maximum Resource Usage

It is necessary to consider maximum resource utilization, such as the maximum usage of
memory and processor of an ECU, due to vehicle software updates. In other words, a specific
amount of memory and processor usage must be left intact during the design-time configura-
tion process, as a vehicle software update may require extra memory and processor capacities.
The updated software may put additional load on the processor; therefore, ensuring that the
processor can handle the increased computational requirements without affecting the overall
system performance is required. This can be achieved by having enough unused processor
usage and sufficient computational power on the processor [AHK22; AMK23].

Memory: The amount of available memory on the ECU should be determined, and the
memory requirements of the updated software should be assessed. It must be ensured
that the new software fits the memory constraints and leaves enough space for other crit-
ical functions. Hence, the proposed tool considers the maximum memory utilization, for-
mulated as Eq. (4.51). Based on this boundary condition, the sum of application mem-
ories that is mapped on ncz

i must be within the maximum memory capacity of the node
(ncz

i .mmax) [AMK23].

∀i, j ∈ N; mi j ∈M; a j ∈A; ncz
i ∈N :
∑

j∈N
(mi j .n

cz
i .a j × a j .mu)≤ ncz

i .mmax . (4.51)

ECU: Resource usage optimization is important to embedded systems developers to avoid
facing limited resources. Moreover, the load balancing scenario, which is the process of dis-
tributing a set of tasks over a set of resources, plays a pivotal role in overall processing and
makes it more efficient. Using load balancing avoids irregularly overloading some control
nodes while others are idle. Therefore, to automatically assign applications to available re-
sources, e.g., ECU, HPCU including core and processor while optimizing the resource usage,
an optimization goal is defined and integrated into presented the model-based framework
using Eq. (4.52) to minimize the control nodes utilization [AMK23].

∀i, j, mi ∈M, a j ∈A, ncz
i ∈N :

rumin = min(
∑

j∈N
m j .n

cz
i .a j) (4.52)

, based on Eq. (4.52), the number of mapped applications on each control node is minimized,
i.e., the applications a j are equally distributed on control nodes ncz

i .a j possibly to keep load
balancing of each control node the same. Furthermore, similar to the last two optimization
goals, a hard constraint can be formulated to restrict the number of assigned applications on
each control node to a maximum mapped number as follows.

∀i, ncz
i ∈N :

ncz
i .ru≤ ncz

i .rumax . (4.53)

4.4.4 Load Balancing in Vehicle Communication Network

Overloading of communication links in automotive networks can occur when the network
experiences a higher volume of data traffic than it can handle. As vehicles become more

82 Chapter 4 Methodology

connected and advanced, the demand for data transmission between various components and
systems increases, which can strain the communication infrastructure. This overload can lead
to delays in message delivery, increased latency, and even system failures. Load balancing is
also a technique used to manage communication messages in a network. It aims to evenly
distribute the communication traffic across these links, avoiding overutilizing any specific
path and maximizing the network’s capacity. This helps prevent bottlenecks, reduces latency,
and improves overall network performance. Communication messages or data packets can
be distributed across multiple links based on predefined load-balancing algorithms.

Link Occupation Rate (LOR)

The presented tool helps to reduce the overall density of communication tasks and prevents
the overloading of links. It also decreases the number of scheduling competitions which mit-
igates the system’s complexity, resulting in shorter synthesis times. To accomplish this, the
introduced framework uses an optimization objective as (4.54) that assists in lessening the
LOR ratio [AMK23].

∀i, j ∈ N; dout
i ∈ D; l j ∈ L:

lormin = min(
∑

i∈N
dout

i .l j) (4.54)

∑

i∈N
dout

i .l j ≤ l j .lormax (4.55)

, according to Eq. (4.54), during exploration of message routing for each communication
message di, the sum of possible outgoing messages dout

i over each link l j must be minimized,
leading to frame balancing for each link. Correspondingly to the last optimization goals, the
LOR can also be forced to be within a maximum acceptable bound by specifying a boundary
constraint as (4.55) [AMK23].

Maximum Bandwidth Utilization

By defining the maximum bandwidth usage for each communication link, E/E system inte-
grators can efficiently allocate the available network resources. It allows them to ensure that
critical systems and applications receive the necessary bandwidth to function reliably. It helps
prevent network overloading and ensures bandwidth is distributed appropriately among dif-
ferent components. E/E architects can optimize the overall network’s performance by setting
maximum bandwidth limits, and they can analyze the bandwidth requirements of different
components and applications and design the network topology accordingly. This allows them
to avoid bottlenecks and ensure smooth data flow within the network. In some cases, au-
tomotive networks may need to provide guarantees on bandwidth availability. For instance,
certain data transmissions must occur within specific time constraints in time-critical appli-
cations like autonomous driving. Specifying maximum bandwidth utilization ensures that
the required bandwidth is reserved and available when required. For future scalability and
expansion of the network, considering maximum bandwidth utilization helps. As automo-
tive technologies evolve and new applications are introduced, the bandwidth requirements
may change. By defining the maximum bandwidth usage in the design phase, future growth
can be accommodated and ensured that the network can handle increased data volumes and
communication demands [AMK23].

Therefore, the LOR constraint can be extended by adding the bandwidth of each link to
ensure that each network link’s maximum bandwidth utilization is not exceeded during find-
ing message paths. This leads to condition (4.56), which states that the sum of bandwidths

4.4 Boundary Constraints & Optimization Objectives 83

used by communication tasks over each link l j must be less than or equal to the maximum
bandwidth specified by the user for the same link (l j .bwmax). Here, t ransT represents the
transmission time of each frame [AMK23].

∀i, j ∈ N; dout
i ∈ D; l j ∈ L:
∑

i∈N

(dout
i .l j × dout

i .ci . f l/t ransT)≤ l j .bwmax . (4.56)

4.4.5 Cost Reduction (CR)

Cost optimization in automotive network topologies involves designing and implementing
network architectures that balance cost efficiency and performance. Since each communi-
cation link in the E/E Designer can have different types, such as Ethernet, FlexRay, and
TTCAN-bus, and subsequently varying costs, a cost optimization goal constraint is defined
(4.57) to minimize the cost of the created paths. Similarly, this objective can be applied to
other software/hardware components [AFK21a; AFK21b; AFK20; AMK23].

∀i, j, dout
j ∈ D, li ∈ L:

crmin = min(
∑

i∈N
cost.dout

j .li) (4.57)

∑

i∈N
cost.dout

j .li ≤ path.costmax . (4.58)

In Eq. (4.72), the cost of a chosen path is forced to be less than or equal to the bound-
ary cost value of a path specified by the user. This is considered a cost boundary con-
straint [AMK23; AFK21a].

4.4.6 Reliability

Reliability is an essential concept in the context of ISO 26262 [ISO18] because it is one of
the critical factors that must be considered when designing and implementing safety-related
systems. Reliability refers to the ability of a system or component to perform its intended
function consistently and without failure over a specified time, as expressed in Chapter 2.
There are several ways in which reliability is addressed in ISO 26262 [ISO18], including
reliability models and reliability testing. Reliability models are mathematical models that
are used to predict the probability of failure of a system or component based on various
factors, such as operating conditions and environmental factors. Reliability testing involves
subjecting a system or component to simulated or actual operating conditions in order to
measure its performance and identify any potential failure points [Xie+18].

In addition to reliability models and testing, ISO 26262 also specifies requirements for the
design and implementation of safety measures, such as redundant systems and fail-safe mech-
anisms, to ensure the reliability of safety-related systems. To compute the reliability, there are
various metrics which can be used. For instance, the failure rate of E/E system components
can be defined by E/E architects, and the reliability, e.g., routing and mapping, can be cal-
culated accordingly. As stated in Chapter 2, our proposed tool follows the component-based
approach using the reliability RBD method [Com+17; Men16].

84 Chapter 4 Methodology

R1

R2

Rn

R1 R2 Rn

a)

b)

Figure 4.8: a) A parallel system including multiple elements. b) A series system comprising multiple elements.

According to Figure 4.8, the reliability can be computed by considering individual com-
ponents of the system and taking serial and parallel configurations into account [Men16].
Firstly, the user specifies the reliability/failure rate for each individual (hardware) compo-
nent. These failure rates can be obtained from norms, data sheets, field experience values,
or by exploring thermal, electrical, or mechanical mission profiles. Secondly, the overall re-
liability score of the system is calculated from the individual reliability scores; thirdly, the
computed overall reliability score is constrained by an expected reliability score. Alterna-
tively, constraints can be formulated by requiring reliability scores for sub-systems. These
expected reliability scores can be derived from required ASIL levels.

In a series system, as depicted in Figure 4.8 (b), the failure of any component can lead to
the failure of the entire system. Therefore, the overall reliability of the series system can be
calculated as the product of the individual reliabilities [Men16]:

Rs(t) =
n
∏

i=1

Ri(t). (4.59)

Given that λi represents the failure rate and Ri indicates the reliability of the i-th compo-
nent:

Ri(t) = e−λi t (4.60)

and considering Eq. (4.59), Eq. (4.60) can be expressed as follows:

Rs(t) = e−(
∑n

i=1 λi)t . (4.61)

A parallel system, as shown in Figure 4.8 (a) and which models redundancy, only fails if
all its components fail. As a result, the system reliability is calculated as follows [Men16]:

Rp(t) = 1−
n
∏

i=1

(1− Ri(t)) (4.62)

and by using the Eq. (4.60), Eq. (4.62) can be stated as below

Rp(t) = 1−
n
∏

i=1

(1− eλi t) =
n
∑

i=1

e−λi t − e−(
∑n

i=1 λi)t . (4.63)

4.4 Boundary Constraints & Optimization Objectives 85

MTTF

As mentioned in Chapter 2, MTTF stands for mean time to failure, and it is a commonly used
metric in the automotive domain and other engineering fields. MTTF represents the average
time elapsed between the start of a system or component’s operation and the occurrence of its
first failure. It is a measure of reliability and indicates the expected lifespan of a component
or system under normal operating conditions. In the automotive domain, MTTF assesses the
reliability of various vehicle components such as engines, transmissions, electrical systems,
braking systems, and other critical parts. Depending on the specific application, MTTF is
typically expressed in time units, such as hours, miles, or kilometers. It is an important factor
considered during automotive systems’ design and development stages to ensure that they
meet the required reliability standards and customer expectations [AMK23; AHK22].

As stated in Chapter 2, if the failure rate remains constant over time, it can be assumed
that

M T T F =
1
λ

(4.64)

, and taking Eq. (4.64) into account, the MTTFs for the series and parallel systems, as
visualized in Figure 4.8, are computed using Eqs. (4.65) and (4.66), respectively, as fol-
lows [Men16]:

M T T Fseri =

∫ ∞

0

e−(
∑n

i=1 λi)t d t =
1
∑n

i=1λi
(4.65)

M T T Fpar =

∫ ∞

0

n
∑

i=1

e−λi t − e−(
∑n

i=1 λi)t d t =
n
∑

i=1

1
λi
−

1
∑n

i=1λi
. (4.66)

To calculate the reliability of a path in an automotive network when the failure rate or
MTTF of each link is provided as a constant value, a similar approach to the one used for the
series and parallel systems can be applied.

Single Message Routing

The introduced framework calculates the reliability of the entire path by multiplying the re-
liabilities of all activated links, as they are in series, and this calculation is performed in a
single step. Reliability is specified as a boundary constraint and an optimization objective in
the proposed tool. During the process of creating paths for communication messages from
senders to receivers, the reliability of each possible path is computed, ensuring that the gen-
erated route meets the specified reliability boundary value (see Eqs. (4.67) and (4.68)). The
same method is employed to find the most optimized route regarding reliability [MAK24].

Rsingle(t) =
n
∏

i=1

Rli (t) (4.67)

Rsingle(t) = e−(
∑n

i=1 d i
out .li .λi)t (4.68)

M T T Fsingle =

∫ ∞

0

e−(
∑n

i=1 d i
out .li .λi)t d t =

1
∑n

i=1 d i
out .li .λi

. (4.69)

Based on Eq. (4.68), the reliability of each path is calculated only for the activated links.
Determining which links are activated depends on the failure rate of each link, as it aligns

86 Chapter 4 Methodology

with the intended reliability optimization goals. In addition, the MTTF for a single path is
computed according to Eq. (4.69), where only the activated links’ failure rates are consid-
ered.

Redundant Message Routing

The reliability formula for the parallel system, as explained in Eq. (4.62), is employed to
calculate the reliability for redundant paths. According to (4.70), the reliability for the re-
dundant message routing, which consists of two single paths (depicted as the upper limit of
the product in Eq. (4.70), is computed by treating each single path, as part of the redundant
routings, as an element of a parallel system containing two elements. In Eq. (4.70), the
single path’s reliability is obtained similar to Eq. (4.67) [MAK24].

Rredundant(t) = 1−
2
∏

j=1

(1− Rsingle j
(t)). (4.70)

In the proposed system model, the uncertainty of reliability is not taken into account.
This means that the failure rates of the E/E components, as provided by the user, are treated
as fixed values, not as ranges. In other words, uncertain optimization is not included in the
above-mentioned equations.

Partition 1 Partition 2

App 1 App 2 App 3

HPCU
App 4 App 5

App 6

Mapping Action Physical Link Virtual Link

Figure 4.9: Graphical representation of the functioning of the hypervisor constraints implemented in the meta-
model presented in Chapter 4, exemplified by the transmission of communication messages. This exemplary
scenario shows an HPCU comprising 10 CPU cores and two communication interface devices running two par-
titions. Partition 1 has exclusive control over two cores and one interface device, while partition 2 controls three
cores, as indicated by the dark green boxes. The rest of the CPU cores and the other interface device are shared
among both partitions. Assume that communication messages are sent between a1 and a6, a2 and a4, and a3
and a5. The two concepts of exclusive resource allocation and resource sharing are shown in this figure [MAK24].

4.4 Boundary Constraints & Optimization Objectives 87

4.4.7 Hypervisor-related Constraints

Virtualization is increasingly important in the automotive industry as it can facilitate many
aspects of the E/E design process by improving flexibility, efficiency, and security. This tech-
nology is explained in Chapter 2. This section explains the hypervisor-related constraints
integrated into the E/E Designer tool [MAK24].

Exclusive Resource Allocation for Partitions of Type-1 Hypervisor

A fundamental aspect of hypervisor technologies is the exclusive allocation of resources,
which refers to dedicating specific hardware resources to individual virtual machines. This
ensures that each VM has its isolated portion of CPU, memory, storage, and other hardware
resources, preventing interference and contention among VMs [MAK22]. In safety-critical
systems, such as those used in automotive applications, sharing critical resources like the
CPU is generally not a common practice due to stringent requirements for reliability, pre-
dictability, and fault tolerance. Sharing CPU resources among multiple tasks or applications
introduces uncertainty and potential contention for processing time, leading to unpredictable
behavior and jeopardizing the system’s safety. In the proposed framework, exclusive resource
allocation is realized by treating each component of the virtualized hardware as an indepen-
dent entity. Thus, the exclusivity of these resources is captured by the mapping and routing
constraints already defined in the framework. For example, Figure 4.9 shows a hardware
platform running a hypervisor with two partitions. Through exclusive resource allocation,
partition 1 and all its exclusively used resources are treated as stand-alone nodes in the
modeling, implicitly ensuring the exclusiveness of the communication interface device and
the two CPU cores. The physical link is only available to transfer communication messages
between a1 and a6 without requiring an explicit constraint [MAK24].

Resource Sharing Among Partitions of Type-2 Hypervisor

In addition to splitting up the available resources as a whole, hypervisor technologies also
allow the sharing certain resources among multiple partitions, as explained in Chapter 2.
In vehicle E/E architectures, resource sharing is typically used for non-critical I/O devices,

VirtualizationMapping

name: Estring

virtGurobi: GRBRS

Memory

name: Estring

DDRType : DDRType = DDI

memorySizeGB: EInt

GPU

name: Estring

memorySizeGB: EInt

cudaCores: EInt

Partition

safetyCritical: EBoolean = false

capacityGB: EInt

0..1

0..1

0..1

0..1

0..1

0..1

Figure 4.10: The UML classes required for the hypervisor-related constraints.

88 Chapter 4 Methodology

such as communication interfaces or sensors with less stringent timing requirements, and
networking interfaces for diagnostics or non-real-time data transfer.

In the E/E Designer, this concept is realized by introducing virtual links between the
shared resource and the respective partitions. These virtual links are not visible in the fron-
tend but have the same properties as regular links. The bottom-most interface device is
shared among both partitions in the example presented in Figure 4.9. Interface sharing is
achieved by introducing virtual links that connect the partitions with the interface. Thus,
messages can be transported between the interface and a2 or a3 in parallel; however, only
one communication message can be transmitted between the ECU and the interface at a time.
Thereby, only the interface device, subject to the hypervisor, controls the flow of messages.

In the UML class diagram shown in Figure 4.10, which is part of the metamodel explained
in Chapter 4, the VirtualizationMapping UML class is connected to the hardware resource
classes, including GPU and memory, and the Partition class via bidirectional association rela-
tions. Other than that, the VirtualizationMapping class has the same relationships to other
classes as the Link class in order to replicate its functionality. The basic idea is similar to that
presented earlier. Instead of explicitly programming all the constraints necessary to enforce
the correct behavior of all components during resource sharing, the virtual links are a way to
encode these constraints into the metamodel. Virtual links mimic the independence of access
requests. In that way, the shared interface acts as a multiplexer on the partition’s messages,
imitating the actual physical implementation [MAK24].

Memory Constraint

Using virtualization, the memory of an HPCU can be shared among multiple partitions. From
a modeling perspective, this corresponds to the requirement that the sum of the memory
utilization of the individual partitions must be smaller or equal to the total available memory
of the HPCU:

∀h ∈H :
∑

i∈N
pi .max Memor y ≤ h.memor y. (4.71)

According to constraint (4.71), the sum of allocated memories for hypervisor partitions
running on an HPCU must be less than or equal to the memory capacity of an HPCU. H
indicates a set of HPCUs, and p represents a hypervisor partition executing on an HPCU.

4.5 Multi-Objective Optimization

Multi-objective optimization (MOO) is a branch of optimization that deals with problems
involving multiple conflicting objectives. In traditional optimization, the goal is to find a
single optimal solution that minimizes or maximizes a single objective function. However, in
many real-world scenarios, multiple objectives must be simultaneously considered, and these
objectives may conflict. The MOO aims to find solutions representing the trade-offs between
the different objectives rather than a single optimal solution. These solutions are known
as Pareto-optimal or non-dominated solutions. A solution is considered Pareto-optimal if
no other solution improves one objective without worsening at least one objective [Gun18;
AHK22; AFK21b; AMK23].

4.5 Multi-Objective Optimization 89

4.5.1 Gurobi Multi-Objective Optimization

Gurobi is a widely used commercial optimization solver that provides powerful capabilities
for solving optimization problems, including multi-objective optimization. Gurobi supports
MOO through its Python interface, allowing users to define and solve problems with multiple
goals [Gur22]. Gurobi solver supports two MOO approaches, each explained below and
summarized below.

Hierarchical Approach

In a hierarchical or lexicographic approach, a priority is allocated to each objective, and
optimization is performed by considering objectives in descending order of priority. At each
stage, the best solution for the current objective is determined while ensuring it does not
negatively impact the quality of solutions for higher-priority objectives. Priorities for each
objective can be specified using the "setObjectiveN" function or the "ObjNPriority" attribute.
Priorities are represented as whole numbers, with higher values indicating higher priorities.
The default priority for an objective is 0. For instance, consider a model with two objectives,
where the first objective has a priority of 7 and the second has a priority of 3. Assuming the
optimal solution for the first objective is 80. In this case, the solver will identify the solution
that optimizes the negative of the second objective among all solutions that achieve the first
objective value of 100 [Gur22; AMK23].

Blended Approach

To generate a single objective, a blending technique combines linearly various objectives by
assigning a weight to each objective using the "setObjectiveN" function. Alternatively, the
default weight of 1.0 can be adjusted by utilizing the "ObjNWeight" attribute in conjunction
with "ObjNumber" [Gur22].

4.5.2 Multi-Objective Optimization in the E/E Designer Framework

Given the above representation of the presented tool optimization goals, different classes
of objectives can be considered in the MOO problem integrated into the framework. For
instance, one combination of objectives can simultaneously minimize the end-to-end latency,
response time, LOR, and resource usage, with different predefined priorities as shown in Eq.
(4.72) to (4.75). The hierarchical approach, as illustrated above, is utilized where it assigns
a priority to each objective and optimizes the objectives in reducing priority order [AMK23].

Ob j1 (elmin, 4) (4.72)

Ob j2 (r tmin, 3) (4.73)

Ob j3 (LORmin, 2) (4.74)

Ob j4 (rumin, 1) (4.75)

For example, considering the objective (4.72), the number four represents the priority of
the objective; moreover, the higher number is interpreted as a higher priority. As a result, in
the shown combination of MOO goals, the end-to-end latency has the highest priority (4.72),
while the resource usage has the least (4.75).

90 Chapter 4 Methodology

Algorithm 2: CMR

Input: N = {n1, n2, ..nn}, D = {d1, d2, ..dd}, ms, md ∈ {0,1}, and, n, d ∈ N
Output: Creation of single, multi-cast, redundant, and homogeneous redundant

routes in a single-step solving
1 for i← 0 to d do
2 for j← 0 to n do
3 for k← 0 to size.n j.get(links) do
4 ndin_list← addAll(n j.get(k).get(din));
5 ndout_list← addAll(n j.get(k).get(dout));
6 end
7 for r ← 0 to size.ndin_list do
8 if ndin_list.get(r).d = di then
9 din_list.add(ndin_list.get(r));

10 end
11 end
12 for s← 0 to size.ndout_list do
13 if ndout_list.get(s).d = di then
14 dout_list.add(ndout_list.get(s));
15 end
16 end
17 mapping_list← addAll(n j.get(mapping));
18 for t ← 0 to size.mapping_list do
19 mappingthreads_list.addAll(mapping_list.get(t).get(app).get(thread));
20 for u← 0 to size.mappingthreads_list do
21 if mappingthreads_list.get(u).get(receive d) ̸=di or

mappingthreads_list.get(u).get(send d) ̸=di &
mappingthreads_list.get(u).get(receive d) = di) then

22 md ← mappingthreads_list.get(u).get(mbinar y)
23 end
24 if mappingthreads_list.get(u).get(send d) ̸=di or

mappingthreads_list.get(u).get(receive d) ̸=di &
mappingthreads_list.get(u).get(send d) = di) then

25 ms ← mappingthreads_list.get(u).get(mbinar y)
26 end
27 end
28 end

// use dout_list, din_list, ms, and md for the following if
conditions

29 if single route for di becomes true then
30 Apply constraints (4.7), (4.8), (4.9), (4.10), and (4.11);
31 end
32 if multi-cast route for di becomes true then
33 Apply constraints (4.12), (4.13), (4.14), (4.15), and (4.16);
34 end
35 if redundant route for di becomes true then
36 Apply constraints (4.17), (4.18), (4.19), (4.20), and (4.21);
37 end
38 if homogeneous redundant route for di becomes true then
39 Apply constraints (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), and (4.28);
40 end
41 end
42 end

4.6 Single-Step Solving Algorithms 91

4.6 Single-Step Solving Algorithms

As depicted earlier, the illustrated framework system model, comprising automated mapping,
automatic message routing, and time-triggered scheduling, is solved in a single step. This
approach allows us to use the same joint constraint set for mapping, routing, and scheduling
throughout the entire optimization run.

When mapping, routing, and scheduling are treated independently, each step introduces
its own set of constraints. However, merging these constraints into a single joint set eliminates
redundancy and reduces the overall number of constraints. This consolidation simplifies the
problem formulation and reduces computational complexity. In addition, these problems are
tightly interconnected. Changes in one aspect can affect the feasibility and optimality of the
others. The optimization algorithm can explicitly consider these interdependencies, leading
to better solutions using the joint set of constraints. For example, when a new application is
assigned to a specific ECU/HPCU, it may impact the optimal routing or require adjustments
in the schedule. With a joint constraint set, changes made during the optimization process
can be propagated efficiently across mapping, routing, and scheduling. When a solution is
modified to satisfy a particular constraint, the impacts can be automatically reflected in the
other aspects, ensuring consistent and coherent solutions. Furthermore, the search space for
the optimization algorithm is reduced. This reduction occurs because incompatible solutions
that violate any aspect of the joint constraints can be pruned early on. Consequently, the op-
timization algorithm can focus on exploring only the feasible and promising solution space,
leading to faster convergence [AFK21b; AFK21a; Smi+17; AMK23]. Therefore, several al-
gorithms are applied to satisfy this approach. In this section, three of these algorithms are
explained in detail.

4.6.1 CMR Algorithm

Algorithm 2 is used to create various types of routes, such as single, multi-cast, redundant,
and homogeneous redundant paths, while considering the automated mapping. According
to the CMR algorithm, all nodes pass through multiple conditions for each communication
message (d). Initially, each node’s incoming and outgoing messages are extracted and stored
in a list (lines 3 to 6). Subsequently, the din and dout carrying the same communication
message as the current iteration (di in lines 8 and 13) are obtained from the incoming and
outgoing lists (lines 7 to 16). To identify the potential mapping variables for both sender and
receiver, lines (17) to (28) are introduced.

Firstly, all mapping variables associated with each node are stored in a list (line 17). Then,
the mapping variables for the threads are extracted from the mapping list and saved sepa-
rately (19). The relevant mapping variable for receiving the current iterated communication
message (di) is investigated and saved using mappingthread_list (lines 21 to 23). The same
process is followed to identify the related mapping variable for the sender of di according
to lines (24) to (26). Finally, in the last step, the routing constraints for a communication
message di are applied based on its routing requirement, including single, multicast, redun-
dant, and homogeneous redundant. This is done by utilizing the dout_list, d in_list, ms, and
md (lines 29 to 40) [AMK23].

4.6.2 CSCT Algorithm

Algorithm 3 is utilized to compute the starting time of each communication task, following
the time-triggered scheduling and non-conflict frames, only for activated paths. The details of

92 Chapter 4 Methodology

Algorithm 3: CSCT
Input: N = {n1, n2, ..nn}, L = {l1, l2, ..ll}, C = {c1, c2, ..cc}, Dout = {dout

1 , ..dout
d },

v, m1, m2 ∈ {0,1}, and n, l, c, d,λ,κ ∈ N
Output: Calculated time-triggered schedules for communication tasks only for

activated paths in a single-step
1 for i← 0 to n do
2 for j← 0 to l do
3 for a← 0 to c do
4 for b← 0 to c do
5 if a ̸= b & a < b then
6 Calculate wi and w j using (4.36);
7 λ← maximum of wi;
8 κ← maximum of w j;
9 for z← 0 to d do

10 if d.ca is d.dout
z then

11 m1← dout
z .ca;

12 end
13 else if d.cb is d.dout

z then
14 m2← dout

z .cb;
15 end
16 end
17 v←QuadEx pr.add(1, m1, m2);
18 for r ← 0 to λ do
19 for e← 0 to κ do
20 Calculate ca.ST and cb.ST only for activated paths using

condition (4.36);
21 end
22 end
23 for u← 0 to c do
24 Apply constraints (4.37) and (4.38);
25 end
26 end
27 end
28 end
29 end
30 end

this algorithm are illustrated as follows. For each node, all links pass through the conditions
specified for each pair of communication tasks (lines 3 and 4). For each non-repetitive pair
of tasks (line 5), all conditions from line (6) to (24) are applied. The wi and w j presented in
condition (4.36) are calculated (line 6). After that, for each out-going data (dout), the related
dout of each task is extracted (lines 8 to 15), and their multiplication is assigned to a binary
variable (v) (line 17) in order to trigger the schedule computation only for the activated
routes. In the next step, for each calculated λ and κ in lines (7) and (8) respectively, the
constraint set introduced in (4.36) are applied (line 18 to 26). Finally, for all communication
tasks, the Eqs. (4.37) and (4.38) are executed.

4.6 Single-Step Solving Algorithms 93

Algorithm 4: PD
Input: D = {d1, d2, ..dp}, L = {l1, l2, ..lp}, C = {c1, c2, ..cp}, Dout = {dout

1 , ..dout
p }, t ∈ C ,

and p ∈ N
Output: Path depndency for communication tasks schdules only for activated paths

1 for i← 0 to D do
2 for j← 0 to L do
3 for a← 0 to C do
4 if d.ca = di then
5 t ← ca;
6 end
7 end
8 link_list← addAll(l j.get(dest_node).get(links));
9 for z← 0 to size.link_list do

10 if link_list.get(z).get(source_node) = l j. get(dest_node) &
link_list.get(z).get(dest_node) ̸= l j. get(source_node) then

11 task_list←addAll (link_list.get(z).get(task));
12 end
13 end
14 dout_list← add (l j .dout);
15 for b← 0 to size.dout_list do
16 if dout_list.get(b).d = di then
17 idout_list← add (task_list.get(u));
18 end
19 end
20 for u← 0 to size.task_list do
21 if task_list.get(u).d = di then
22 itask_list← add (task_list.get(b));
23 end
24 end
25 for r ← 0 to size.idout_list do
26 for e← 0 to size.itask_list do
27 if idout_list.get(r).get(link) = t.get(link) then
28 Apply constraint (4.39);
29 end
30 end
31 end
32 end
33 end

4.6.3 PD Algorithm

To meet the path dependency, the PD algorithm is introduced. The path dependency is only
triggered for activated paths. In algorithm 4, all links pass through several conditions for each
communication message (d). Firstly, the task carrying the same message as di for all tasks
is obtained and saved in the variable t (lines 3 to 7). The subsequent tasks over subsequent
links are investigated and stored in a list (lines 8 to 13). Then, from line (14) to (19), the
douts related to the same di are retrieved and saved in a list. In addition, all tasks with the
same communication message are acquired from the list of subsequent tasks (lines 20 to

94 Chapter 4 Methodology

24). In the last step, for each variable of the last created list regarding dout (line 25), all
variables of the task list generated in line (22) pass through an i f condition, which checks if
the extracted task (t) in line 5 has the same related link as each dout listed in idout_list. If the
condition is fulfilled, the Eq. (4.39) is applied.

4.7 Constraint Formulation as Mixed Integer Programming for Gurobi
Optimization Solver

In this section, the formulations for the constraints, which are considered as either-or condi-
tions, are introduced. All constraints described in Section 4.3 can be converted into a MIP
problem supported by the Gurobi solver. Each condition is represented as a single inequality
or equation. As an example, constraints (4.32) and (4.33) are already in this format. Nev-
ertheless, as the constraints (4.16), (4.31), and (4.36) are either-or conditions, they need to
be converted. Two approaches are used to convert such constraints.

The first approach formulates the either-or condition for constraint (4.16) by multiplying
two different binary variables x and y to Eq. (4.76). However, only one of these variables
can be one at a time, as specified by Eq. (4.77) [AMK23].

∀ncz , n j ∈N ; i, j(i ̸= j) ∈ N; d in
i , dout

i ∈ D; mi j
s, mr

i j ∈M; x , y ∈ [0,1]:

x ×
∑

j∈N
n j .d

out
i − x ×
∑

j∈N
n j .d

in
i = x × (ms

i j −mr
i j) (4.76)

y ×
∑

j∈N
n j .d

out
i ≥ y × (ms

i j −mr
i j) + y ×
∑

j∈N
n j .d

in
i

x + y = 1 (4.77)

4.7.1 Big M Method

The second approach is the Big M method [Wil13], which is used for constraints (4.31) and
(4.36) to apply the logical "OR". This method is a technique used in linear programming
to handle problems with constraints that are not easily expressed in the standard form (i.e.,
constraints with inequalities and/or logical implications). The method introduces a sizeable
positive constant (M) to convert these constraints into equivalent constraints that standard
linear programming algorithms can handle. The choice of the value of M is crucial for the
success of the Big M method. It should be a large enough value to ensure that the auxiliary
variables are driven to zero whenever possible but not too large to cause numerical instability
or difficulty finding an optimal solution. The approach is an iterative process that aims to find
a feasible and optimal solution to the linear programming problem while satisfying all the
constraints, including those initially not in the standard form [Wil13; Ars06; AMK23].

The Big M technique is utilized by introducing a binary decision variable as an auxiliary
variable for conditions (4.31) and (4.36). As a result, these conditions can be represented
as (4.78) for application thread scheduling and (4.79) for communication task scheduling.
In these equations, q indicates the defined binary variable and M is specified as a sizeable
constant number. ω represents the total number of possible collisions between application

4.7 Constraint Formulation as Mixed Integer Programming for Gurobi Optimization Solver 95

threads on each control node for (4.78) and γ denotes the total number of possible overlap-
ping between communication tasks over each link for (4.79) [AMK23].

∀i, j(i ̸= j) ∈ N; t i, t j ∈ T ;ci , c j ∈ C; λ ∈ [1,ω]; κ ∈ [1,γ]:

v × (t i .p×wi + t i .st + t i .e)< v × (t j .p×w j + t j .st + qλ ×Mλ) (4.78)

v × (t j .p×w j + t j .st + t j .e)< v × (t i .p×wi + t i .st + (1− qλ)×Mλ)

r × (ci .p×wi + ci .st + ci . f l/bw+ ipg)< r × (c j .p×w j + c j .st + qκ ×Mκ) (4.79)

r × (c j .p×w j + c j .st + c j . f l/bw+ ipg)< r × (ci .p×wi + ci .st + (1− qκ)×Mκ)

4.7.2 Quadratic Expression

To apply the multiplication of Gurobi variables (e.g., v and r in constraints (4.78) and (4.79),
respectively) to each variable of inequality as their coefficients, the Gurobi quadratic expres-
sion approach is used (QuadExpr). A quadratic expression is formed by adding a linear ex-
pression to a collection of coefficient-variable triplets representing the quadratic terms. These
quadratic expressions are utilized in constructing quadratic objective functions and quadratic
constraints [Gur22]. For example, the following code block shows the multiplication of two
binary variables (k = m1×m2) and multiplying the result (k) by a linear expression (ex pr10)
using QuadExpr.

GRBVar m1 = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "m1");
GRBVar m2 = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "m2");
GRBVar k = model.addVar(0.0, 1.0, 0.0, GRB.BINARY, "k");
// Model k = m1 * m2
GRBQuadExpr quad_expr_k = new GRBQuadExpr();
quad_expr_k.addTerm(1, m1, m2);
model.addQConstr(quad_expr_k, GRB.EQUAL, k, "c1");

// Multiply k by the linear expression
GRBQuadExpr quad_expr = new GRBQuadExpr();
for (int i=0; i < expr10.size(); ++i) {
double coeff = expr10.getCoeff(i);
GRBVar var_1 = expr10.getVar(i);
quad_expr.addTerm(coeff, var_1, k);

}

96 Chapter 4 Methodology

4.8 Discussion

The presented model-based tool incorporates various architectural modules, as depicted in
Figure 4.2, to effectively tackle the challenges mentioned earlier. The future development
of E/E architectures necessitates modularity and extensibility as crucial requirements. It is
essential to ensure that the implemented modules can be modified, enhanced, or replaced
independently, with minimal impact on the other modules.

The E/E Designer tool facilitates easy integration of new features due to its utilization of
the MDD approach, as described in Section 4.1.2. For instance, event-triggered scheduling
algorithms can be seamlessly integrated into this tool by introducing new constraints to the
existing constraint set and new classes and attributes to the current framework metamodel,
if required. Furthermore, additional automotive safety features can be accommodated by in-
corporating new safety requirements into the tool’s functionality. This adaptability allows the
tool to evolve and meet the changing demands of the automotive industry. Another exten-
sibility aspect lies in enhancing the graphical E/E architecture modeler shown in Figure 4.2.
This can be achieved by modifying the frontend, as explained in Chapter 6, and adjusting the
presented metamodel. By incorporating new requirements and hardware/software properties
into the modeler, the tool can effectively capture and represent the evolving complexities of
E/E architectures. Moreover, the choice of solver is not limited to the current Gurobi solver.
Alternative solvers, such as SMT solvers, can be utilized by adapting the constraint gener-
ation algorithms and implementing the necessary changes. This flexibility empowers the
computer-aided tool to accommodate different types of solvers and leverage their strengths
in solving the introduced constraints. All the MIP constraints within the presented system
model, forming the backend of the introduced framework, were implemented using the Java
programming language [AGH05] in the Eclipse integrated development environment (IDE)
platform [Ecl23].

In conclusion, the introduced framework is a versatile tool that can be extended and
enhanced to address a wide range of requirements and challenges in E/E architecture design.
Its modularity, extensibility, and adaptability make it well-suited for future developments
in the automotive industry. As mentioned in Chapter 1, the proposed framework is open-
source and accessible on Github [AMK23] offering the research community an opportunity
to explore, utilize, and contribute to its development

5
The Framework Frontend

In this chapter, the frontend of the presented framework is explained. It presents a graphical
modeling tool where the user can model a desired car E/E architecture or vehicle topol-
ogy comprising various hardware/software components. In the following, the details of the
framework’s frontend are described.

5.1 Modeling

Modeling is a powerful and versatile technique used across various fields to represent, sim-
ulate, or describe real-world systems, processes, or phenomena. It involves creating simpli-
fied, abstract representations of complex entities to gain insights, make predictions, or solve
problems. Modeling aims to capture the essential features and behaviors of the subject be-
ing studied while discarding unnecessary details. In today’s fast-paced automotive industry,
where innovation drives, creating cutting-edge vehicles requires a seamless integration of
complex electrical and electronic systems. This is where sophisticated modeling tools step in,
empowering automotive engineers to bring their ideas to life with precision and efficiency.

The proposed framework includes a frontend providing the modeling functionality. The
user can graphically design E/E architectures and car topologies using the introduced tool.
Figure 5.1 presents a designed example utilizing our tool where, after creating a project,
the user is able to select various hardware/software components such as a gateway, network
switch, application, ECU, HPCU, communication message, communication task, etc [AMK23].

5.1.1 Web-based Modeling Tool

The E/E Designer framework uses a web-based frontend. In the following, several advantages
of web-based tools are illustrated.

One of the key advantages of web-based modeling tools is their accessibility. They can be
accessed from any device with an internet connection, eliminating the need for specific soft-
ware installations [AMK23]. This accessibility allows for collaboration and sharing of models
across different teams, locations, and devices. In addition, it eases collaboration among team
members. Multiple users can work on the same model simultaneously, making collaborat-
ing, discussing, and making real-time updates easier. This enhances team productivity and
reduces the time spent on model synchronization and version control. Also, changes made

97

98 Chapter 5 The Framework Frontend

ecu7 ecu8 ecu5 ecu6

ecu1 ecu2 ecu3 ecu4

network
switch1

network
switch2

gateway1

gateway2

Data1

App1 App2

P2.App2 P1.App1
hpcu1

P3.App1

T1.Data1

Figure 5.1: An example of zonal E/E architecture model using the presented model-based framework [AMK23].

by one user are instantly visible to all other users. This enables real-time updates and fos-
ters efficient communication and decision-making within the team. It eliminates the need
for manual merging of changes and reduces the chances of errors or conflicts in the model.
Web-based modeling tools can quickly scale to accommodate projects of varying sizes and
complexities. They can handle large models with extensive diagrams, multiple components,
and interconnected systems. The cloud-based infrastructure of these tools enables seamless
scaling without the need for additional hardware or software upgrades. They often come
with built-in version control features. This allows users to track and manage different ver-
sions of the model, view revision history, and revert to previous versions if needed. Version
control ensures the model remains consistent and provides a safety net for experimentation
and exploration.

The web-based frontend stores models and associated data in a centralized location like
a cloud server. This centralized storage ensures that the latest version of the model is always
accessible and eliminates the risk of data loss due to hardware failures or local storage issues.
It also provides a secure backup and facilitates easy sharing and retrieval of models. Another
feature of the web-based tools is cross-platform compatibility. This makes them compatible
with different operating systems and platforms. Users can access and use these tools on
Windows, Mac, Linux, or any other platform that supports a modern web browser. This
feature enhances flexibility and convenience for users. Another advantage of web-based
tools is integration capabilities with other software tools and systems. They can be easily
integrated with version control systems, requirements management tools, issue trackers, and
various development environments. Additionally, web-based tools often provide application
programming interfaces (APIs) and extensibility options, allowing users to customize and
extend the functionality of the tool to suit their specific needs.

The E/E Designer consists of a web-based frontend where all above-explained features
are supported.

5.1 Modeling 99

5.1.2 Drag and Drop Functionality

The E/E Designer tool supports drag-and-drop functionality, a valuable feature in a modeler
tool, as it provides an intuitive and user-friendly way to create and manipulate models. Here
are some advantages of incorporating drag-and-drop functionality [AMK23]. This feature
simplifies the modeling process by allowing users to visually create and arrange elements
in the model. Users can drag elements from a palette or toolbox and drop them onto the
canvas, eliminating the need for manual drawing or coding. This intuitive approach makes
the tool accessible to users with varying technical expertise. Moreover, users can quickly
create models by selecting and placing predefined elements onto the canvas. This accelerates
the E/E system development process and reduces the time required for the manual creation
and positioning of model components. System integrators can focus more on the overall
structure and logic of the E/E model rather than spending time on tedious placement and
alignment tasks. Model elements can be easily modified and rearranged. Architects can drag
existing elements to different locations on the canvas, change their connections, or even drag
new elements into existing ones to create hierarchical relationships.

Based on the Figure 5.1, after creating a project, users can select various hardware/soft-
ware components, such as gateways, network switches, applications (including threads),
ECUs (comprising sub-components like processors and memory), HPCUs (including sub-
components such as processors, cores, memory, and GPUs), communication messages (in
this case, data), communication tasks, and more. Clicking on an empty field brings up a
window that displays the available objects that can be selected and generated. Furthermore,
users can force applications to be mapped to specific hardware components before the solv-
ing step. For example, in Figure 5.1, App2 is forced to run on ECU6 (blue arrow) [AMK23].

5.1.3 Full-mesh Topology

In the context of E/E architecture, a full-mesh topology refers to a network configuration
where every node (or component) is directly connected to every other node in the system.
Each node serves as a point-to-point link with all other nodes, forming an extensive and

ecu2

ecu1

ecu3

ecu4

hpcu1

Figure 5.2: A designed full-mesh E/E model including links and ECUs using the E/E Designer tool. By clicking on
"Generate full-mesh", each hardware node is connected to other nodes.

100 Chapter 5 The Framework Frontend

redundant interconnection pattern. The full mesh topology is known for its robustness and
fault tolerance because if one node fails, the communication pathways remain intact through
alternative routes. However, this topology can become complex and costly as the number
of nodes increases, as the number of connections grows exponentially [AFK21a; AFK20;
AMK23]. To increase the design diversity and facilitate the modeling process, the framework
supports a full-mesh generation option that creates a full-mesh network topology for selected
hardware nodes where each node is connected directly to all other nodes (see Figure 5.2).

5.1.4 Automatic Creation of Software/Hardware Components

As hardware/software components increase, the modeling and drag-and-drop action become
complex and time-consuming. For instance, a designer wants to model an architecture in-
cluding 100 ECUs and 200 applications. This process takes considerable time. Consequently,
an option is integrated into the framework that allows the users to have multiple components
at once without dragging and dropping. This saves a significant amount of time for modeling
extended topologies/architectures.

5.2 Requirements and Properties

In this section, all safety and non-safety requirements that can be chosen by the user in
the frontend are discussed. Moreover, the properties regarding solving and optimization
objectives integrated into the frontend are explained.

5.2.1 Hardware/Software Requirements and Properties

Apart from modeling, the requirements and properties relevant to each component can be
determined, and they are a must-have for solving a designed model. The details of each
component are displayed on the right side of the modeling window. Figure 5.3 illustrates the
details regarding several components. As presented in Figure 5.3 (a), for example, as part of
an HPCU, a core can have various ASIL levels as a safety-critical property, comprising ASILs
A, B, C, D, and QM, a turbo boost feature, a defined clock frequency, a maximum memory
utilization, a failure rate, interface to environment choice, and an arbitrary name. For a link,
its type (comprising Ethernet, FlexRay, and TT CAN bus), maximum bandwidth capacity, cost,
and name can be selected (refer to Figure 5.3 (c)). Moreover, each link’s type has a unique
visualization symbol, e.g., ECU7 and ECU8 are connected with two different links to gateway2
based on Figure 5.1. The application thread properties consist of the execution time, period,
and name of each thread (in the tool named process), as shown in Figure 5.3 (g). It should
be added that an application can be defined as safety or non-safety-critical in the application
properties and have a determined memory usage. Also, the ASIL level of each application can
be specified similarly to the core’s properties. Additionally, each communication task includes
a name, frame length, and period as its properties, as displayed in Figure 5.3 (b). Also, the
sender and receiver of a communication message can be specified as Data details depicted in
Figure 5.3 (e) [AMK23].

5.2 Requirements and Properties 101

a

b
c

d

e

f

g

Figure 5.3: Component properties (a), (b), (c), (e), (g), and optimization and solving settings (d) and (f) in the
frontend of the presented framework [AMK23].

5.2.2 Optimization and Solving Properties

As mentioned in Chapter 4, the presented model-based framework supports several require-
ments, optimization goals, and multi-objective optimization [AMK23; AFK21a]. Hence, a
setting module has been integrated into the frontend where the user can choose the multi-
objective type, activate or deactivate the whole optimization method (Use Optimization Goals
checkbox in Figure 5.3 (d)), each objective and boundary constraint/requirement, e.g., LOR
and LOR maximum tolerable bound, maximum bandwidth utilization, RU, maximum re-
source utilization, maximum reliability, and cost (see Figure 5.3 (d)). Furthermore, the type
of route, such as single, multi-cast, redundant, homogeneous redundant, and the number of
required homogeneous redundant paths, can be chosen as indicated in Figure 5.3 (f).

102 Chapter 5 The Framework Frontend

ecu7

ecu6 ecu8

ecu2

ecu3

ecu5

ecu4

Data3

Data4

ecu1

Data1

Data2

App8App7

App1
P1.App1

P2.App1

P1.App2

P2.App2
App2

App4 App3

App5

App6

P1.App5

P1.App6

P1.App3

P2.App3

T1.Data3

T1.Data4

T1.Data1

T1.Data2

1
1

2

3

4

6

5

Received by

Sent by

P1.App4

P2.App4

Sent by

Received by

Received
by

Received
by

Sent by

Sent by

Figure 5.4: A modeled E/E architecture by the presented tool including applications (No. one), application threads
(No. two), communication messages (No. three), communication tasks (No. four), links (No. five), and ECUs (No.
six). The model is solved and optimized by clicking on the Solve option (red rectangle) [AMK23].

5.3 Solving and Solutions

After modeling a vehicle’s topology and defining the requirements and properties related to
the components, optimizations, and solving, the designed E/E architecture is ready to be
solved and optimized.

5.3.1 Solving

To solve and optimize a created model considering the defined properties, requirements,
and optimization objectives, e.g., the model shown in Figure 5.4, a Solve option is inte-
grated [AMK23]. Clicking on Solve option enables the tool to solve the problems associated
with the modeled architecture while optimizing the solution and satisfying the specified re-
quirements, as described in Chapter 4. In the model shown in Figure 5.4, there are eight
applications, six of which include one or two threads with the same periods and different
execution times and two applications without a thread. Two applications here are selected
as safety-critical (App5 and App6 shown with a red frame). Also, the model consists of four
communication messages with the same periods as application threads and various frame
lengths. It is aimed to automatically assign the applications to eight ECUs while meeting
defined requirements. It is required to ensure that the threads running on each ECU have the
correct time-triggered schedules and that all conditions for automated mapping of safety and
non-safety-critical applications are fulfilled.

5.3 Solving and Solutions 103

ecu1 ecu4

ecu2

ecu3
ecu5

ecu6

ecu7

ecu8

App8

App7

App5

App3
App2

App6

App1

App4

P1.App4

P2.App4

P2.App2

P1.App2

P1.App6

P1.App1

P2.App1T1.Data1

T1.Data2

T1.Data4

T1.Data3

P1.App3

P2.App3

P1.App5

Data1

Data2
Data3

Data4

Sent by

Received by
Sent
by

Received
by

Received
by

Received
by

Sent
by

Sent
by

Figure 5.5: A solution of the designed model in Figure 5.4 including mapping, message routing, and schedul-
ing. Here, only the mappings for applications one and two related to the communication message four are dis-
played [AMK23].

5.3.2 Solutions

After getting the model solved, the user can observe the optimized solutions for mapping,
scheduling of application threads and communications tasks, and message routing. Figure 5.5
displays the solution of the design model depicted in Figure 5.4, which includes message rout-
ing, mapping, and scheduling for application threads and communication tasks [AMK23].

Mapping

As a mapping solution, the E/E Designer tool determines which applications should be as-
signed to which ECUs (e.g., blue arrows in Figure 5.5). The current mapping requirements
in this example are redundancy conditions for safety-critical applications, and the constraint
ensures that the threads running on each ECU are not the sender and receiver of the same
communication message. In Figure 5.5, only mappings related to sender and receiver appli-
cations of communication message Data4 are visualized.

It is important to note that the visualization in Figure 5.5 exclusively highlights the
mapped applications functioning as both senders and receivers for a selected communica-
tion message (here, communication message number four). This design choice is motivated
by enhancing clarity and comprehensibility within the model, mainly when dealing with
extensive complexity. By focusing on this specific aspect, potential confusion is mitigated,
resulting in a cleaner representation that facilitates a more intuitive understanding of the
mapping scenario.

Time-triggered Scheduling for Application Threads

Figure 5.6 shows the calculated schedules for the application threads executing on ECU3 in
Figure 5.5 within a computed hyperperiod. As can be observed, each color represents an
application, and each slot indicates a thread’s schedule. Each slot may be executed multiple

104 Chapter 5 The Framework Frontend

P1.App2(Sender
of Data3)

P2.App2(Receiver
of Data4)

P1.App3(Sender
of Data1)

P2.App3(Sender
of Data2)

ms
3.00 3.90 4.80 5.70 6.60 7.50 8.40 9.30 10.20 11.10 12.00

Figure 5.6: Calculated time-triggered schedules by the introduced tool for running application threads on ECU3
after mapping action as the solution for the model in Figure 5.5 [AMK23].

times within the hyperperiod, depending on the thread’s period. Figure 5.7 presents another
example of a mapping schedule related to 20 threads executing on an ECU.

Figure 5.7: Computed time-triggered schedules by the introduced tool for running 20 application threads belonging
to 10 applications on an ECU after mapping action.

5.4 Model Validation 105

Figure 5.8: Time-triggered schedules of two communication tasks over a link.

Communication Message Routing

A created route for a specific communication message to route a message from a sender to
a receiver can be shown in the frontend. In Figure 5.5, four communication messages need
to be sent from senders to receivers. As described in Chapter 4, each message comprises a
communication task routing over the network links, and the user must specify the threads
as the sender and receiver of each message in the frontend before the solving step. There-
fore, after solving the model, the user can observe the correct path for each communication
message and related mappings for sender and the receiver applications relevant to the same
communication message by choosing a desired message. Based on Figure 5.5, the red path
shows a generated route from ECU8 as a sender to a receiver ECU3 routing the communication
message d4.

Time-triggered Scheduling for Communication Tasks

Similar to the scheduling for application threads, the communication task slots are displayed
during the related hyperperiod. It should be added that end-to-end latency optimization goal
was applied in the solution presented in Figure 5.5. In addition, the computed time-triggered
schedules for four communication tasks routed over links can be visualized similarly to Fig-
ures 5.6 and 5.7. For example, Figure 5.8 illustrates correct schedules for two communication
tasks over a link. Also, in Figure 5.8, each row relates to each communication task relevant
to a specific message.

5.4 Model Validation

Model validation plays a crucial role in ensuring the accuracy, reliability, and quality of an
E/E model created using a modeling tool. To effectively utilize the tools for architectural
design, it is essential to validate the models against various criteria and requirements. Model
validation involves systematically examining and verifying the E/E architecture model to en-
sure that it conforms to the desired specifications, standards, and constraints. It aims to
identify and rectify potential errors, inconsistencies, or design flaws that can impact the fi-
nal system’s performance, safety, or reliability. When modeling an E/E system, validation
encompasses multiple aspects. First, it involves verifying the correctness and coherence of

106 Chapter 5 The Framework Frontend

Figure 5.9: A solution of a modeled E/E topology including mapping and message routing. On the left side, several
warnings are displayed regarding the validation of the model.

the model’s structure and behavior. This includes ensuring that the components, interfaces,
signals, and their interactions are accurately represented. Moreover, the validation checks
the model’s compliance with domain-specific guidelines and defined requirements. Further-
more, model validation focuses on assessing the consistency and completeness of the model.
It involves analyzing whether the model adequately captures all the necessary system re-
quirements, functional specifications, and performance constraints. System integrators can
detect missing or ambiguous requirements, redundant or conflicting specifications, and in-
complete or inaccurate representations by conducting thorough validation. Another critical
aspect of model validation in E/E architecture modeling tools is the evaluation of system
properties and performance attributes. For example, in the case of safety requirements, if the
user assigns an ASIL D application to a core of an HPCU which does not support ASIL D, the
validation process gives a warning to the user. Hence, the validation process ensures that the
model adheres to these properties and meets the necessary performance targets.

Since several different model requirements must be met to create a valid model, as ex-
plained above, errors, warnings, and general tips can assist the user in having a valid model.
The validation of the introduced tool is a continuous process, checking the model after each
change and displaying validation messages if required. The message validation consists of a
problem description and includes the elements, mappings, or attributes that lead to an issue.
Moreover, the message indicates the acuteness of the problem and the urgency to change
the model [AMK23]. Based on this, three different message types are introduced, including
error, warning, and message that each of them are described in the following.

Error

An error occurs when there is a violation in the model, which disrupts critical safety measures
or breaks the rules of MIP constraints [AMK23]. This message indicates that the user needs
to adjust the model to fix the error. Promptly addressing such errors is crucial, as they not
only affect how well the system works but also endanger the overall reliability of the system.

Warning

A warning serves as an advisory signal intended to highlight potential violations or discrep-
ancies that, while not necessarily leading to critical problems, merit attention and rectifica-
tion [AMK23]. It points out areas of concern that should be addressed to enhance the overall
quality and effectiveness of the subject under consideration. For instance, as illustrated in
Figure 5.9, the designed model is accompanied by a series of warnings. These cautionary
indications shed light on aspects of the model’s design that may not align with best practices

5.5 Implementation 107

or desired standards. While these warnings may not immediately result in severe issues,
they serve as essential signposts that prompt further investigation and possible adjustment.
Ignoring such warnings can lead to compounded issues or hinder the model’s optimal perfor-
mance.

Message

Finally, the system displays a message to provide users with helpful tips, essential notes, and
additional information. This feature aims to enhance the user experience by offering valuable
insights and guidance [AMK23]. Whether it is a brief pointer to optimize their workflow or
a noteworthy caution about potential pitfalls, these messages serve as a valuable resource to
users, aiding them in making informed decisions and using the system more effectively.

5.5 Implementation

This section discusses the prototypical implementation of the E/E Designer’s frontend. As
Chapter 4 mentioned, the Eclipse IDE platform was selected as the development environment.
The Eclipse IDE supports various plugins for Java that assist in the development process. One
of the main plugins used in this project was the eclipse modeling framework (EMF), which
Sirius and Sirius Web utilize for creating class models and aiding in code generation [Ecl23].

5.5.1 Sirius Web

Sirius Web is used as the front-end’s foundation of the E/E Designer to provide the web-based
functionality. It is an open-source web-based extension of Sirius Desktop. Eclipse Sirius Web
is a framework to easily create and deploy studios to the web [Ecl22]. By using the Sirius

EMF

MIP Solver, Optimizer

Sirius

Fr
on

te
nd

 S
tr

uc
tu

re
 O

ve
rv

ie
w

Metamodel

Viewpoint Specification
Project

Sirius Web

G
raphQ

L A
PI

Spring A
PI

Used by

Figure 5.10: An outline of the proposed framework’s frontend describing the interaction of modified Sirius Web
with other modules existing in the backend.

108 Chapter 5 The Framework Frontend

Web, the modeling features of Sirius can directly be utilized from a web browser. Once the
Sirius Web is deployed on a server, users can access and modify editing contexts and down-
load and upload projects without requiring specific installation on their desktops [Ecl22]. To
integrate all defined attributes, functional requirements, boundary constraints, and optimiza-
tion objectives specified in the E/E Designer backend as explained in the Chapter 4, the Sirius
Web has been modified and developed to provide an appropriate frontend for the introduced
tool. Furthermore, all outputs generated by the framework, such as mapping, routing, and
scheduling, can be visualized by the developed frontend. The Figures 5.1 to 5.9 shown above
are screenshots from the E/E Designer frontend, which is based on the Sirius Web.

Figure 5.10 presents an overview of how the frontend (i.e., modified Sirius Web) interacts
with other modules integrated in the backend. The EMF plugin allows creating a metamodel,
which other plugins can then utilize. The metamodel is employed by the MIP solver and
optimizer (the presented tool uses the Gurobi Solver as mentioned in Chapter 4) and by
Sirius. Sirius is the local version of Sirius Web and is technically a sub-project of Sirius. Sirius
identifies the existing object classes and their relationships through the model. This enables
Sirius to define the appearance and behavior of each instance object. Sirius Web reuses
some of the functionality of Sirius. A distinction is also made within the system between the
frontend, which uses JavaScript, and the backend, which employs Java. Both systems need to
interact with each other. An interface is required since two separate programming languages
cannot directly communicate. Therefore, Sirius Web comes natively with a GraphQL interface
that offers various types of data and methods for data uploading. For the Java component, the
Spring Framework is used. A call to a Spring method is executed in the development process
when a user wants a model solved or requests other features, such as full-mesh generation.
After the solver completes solving the model, the GraphQL API uploads the new model to
Sirius Web, where it becomes available for the user in the web interface.

6
Design Error Analysis

This chapter focuses on situations where a designed E/E architecture is not satisfiable, which
means that the solver cannot find feasible solutions. Unlike simple models, navigating and
correcting the unsatisfiability of complex E/E models is an intricate and time-consuming task,
leading to increased development costs.

To address this issue, an approach is introduced to identify design errors when violations
occur in the constraint set included in the system model after the solving step. This fea-
ture is crucial for detecting and rectifying errors in the system design within a reasonable
timeframe, ensuring that the system is optimized and meets all necessary constraints and
requirements [AMK23; AHK22; AFK21b].

6.1 Background

In numerous domains of technology and science, a prevalent problem-solving strategy in-
volves discovering solutions that meet a set of formal constraints. These constraint systems
are utilized across various sectors, including formal verification, automated configuration of
hardware or software, planning tasks, and other applications within artificial intelligence.

Propositional logic stands out as an extensively used formal framework for representing
constraints. It facilitates modeling logical connections between facts that can be either true
or false [BL99]. The boolean satisfiability (SAT) problem concerns determining whether a
combination of facts makes a propositional formula valid. Due to its NP-completeness, the
SAT problem plays a crucial role in many realms of computer science, and there’s no known
algorithm capable of efficiently solving every instance [BHM09]. A substantial area of formal
methods research focuses on unsatisfiable constraint sets where sets of constraints are proven
unsolvable through formal methodologies. In various scenarios, such sets emerge due to
design flaws it aims to identify. A productive approach to gaining insights into these errors
involves extracting a minimal explanation from a collection of conflicting constraints. This
explanation elucidates which constraints or interactions between them are causing the issue.

In the context of the SAT problem, constraints are expressed using formulas in proposi-
tional logic. In this scenario, every variable has a binary value of either TRUE or FALSE. When
the constraint conditions are met, the outcome of the boolean logic evaluation is considered
True. Conversely, if the conditions are unmet, the result is False [BHM09]. Conventionally,
SAT problems are often represented using conjunctive normal form (CNF) [Sül+08].

Although most of present research is directed towards extracting minimal unsatisfiable
sets from an unsatisfiable constraint system, only a few studies delve into recognizing re-

109

110 Chapter 6 Design Error Analysis

quirements and rectifying them to transform the constraint system into a satisfiable state.
Hence, this chapter aims to bridge this gap by investigating the process of identifying min-
imal unsatisfiable sets linked to the introduced set of constraints within the framework. In
addition, this chapter suggests pragmatic approaches to render the constraints feasible.

6.1.1 Conjunctive Normal Form

CNF is a fundamental concept in propositional logic, a branch of formal logic that deals
with manipulating and analyzing logical statements involving propositions and their truth
values [Sül+08]. CNF serves as a structured representation for logical formulas, allowing
complex statements to be broken down into simpler components that are easier to analyze,
manipulate, and process using automated tools and algorithms.

A logical formula is said to be in CNF if it is a conjunction ∧ (AN D) of one or more clauses,
where each clause is a disjunction ∨ (OR) of literals. A literal is either a propositional variable
(denoted by a letter or its negation) or the negation of a propositional variable. In CNF,
the logical operators are reduced to only conjunction and disjunction. The following is a
breakdown of the components of CNF:

• Clause: A clause is a disjunction of literals. It represents a statement that is true if at
least one of the literals in the clause is true. For example, (A OR B) is a clause where A
and B are literals.

• Literal: A literal is either a propositional variable or the negation of a propositional
variable. For example, A and ¬B (not B) are literals.

• Conjunction (AN D/∧): The conjunction operator combines multiple clauses or literals
with the AN D operator. It indicates that all the statements it connects must be valid for
the entire formula to be true.

• Disjunction (OR/∨): The disjunction operator combines literals within a clause. It
indicates that at least one of the literals in the clause must be valid to be true.

Below are examples of two formulas in CNF:

(A∨¬B)∧ (¬A∨ C)∧ (B ∨ C ∨ D) (6.1)

(m1 +m2 ≤ 3)∧ (m1 ≥ 5)∧ (m2 ≤ 7)∧ (m1 ≤ 4). (6.2)

A CNF formula is satisfied when an assignment of truth values (true or false) to the
variables in the formula makes the entire formula accurate. In other words, for a CNF formula
to be satisfied, every clause within the formula must have at least one literal that evaluates
to true under the given assignment. For example, the logical formula presented in (6.1)
consists of three clauses. To identify each clause, they are separated by AN D/conjunctions.
To determine if the CNF formula is satisfiable, it is required to find assignments for the
variables (A, B, and C) that satisfy at least one literal in each clause. If A, B, C , and D are set
as TRUE, FALSE, FALSE, and TRUE, respectively, this assignment satisfies all clauses, so the
CNF formula is satisfiable.

Mathematical statement in (6.2) illustrates a CNF formula as a SMT interpretation in-
cluding four clauses. Because of the conflicting m1 clauses which define m1 value, the CNF
formula is unsatisfiable.

6.2 Approach 111

6.1.2 Minimal Unsatisfiable Subset (MUS) or Unsatisfiable Core

An unsatisfiable core, also known as a minimal unsatisfiable subset (MUS), is a subset of
the original set of clauses (constraints) that, when taken together, is itself unsatisfiable. In
other words, if any clause gets removed from the unsatisfiable core, the remaining subset
becomes satisfiable. The concept of an unsatisfiable core is often utilized in solving constraint
satisfaction problems, including SAT problems. It helps identify a smaller subset of conflicting
clauses that are causing the unsatisfiability of the entire problem [Sül+08; BHM09].

In the example presented in (6.1), the CNF clause, B ∨ C ∨ D, is considered. If B and C
are both FALSE and A is TRUE, the entire clause evaluates to TRUE, which means the original
CNF formula is satisfiable. However, when dealing with a more extensive set of clauses and a
particular combination of them results in an unsatisfiable formula, the goal is to identify the
smallest possible subset of clauses responsible for the unsatisfiability. This subset is known as
the unsatisfiable core.

The concept of a MUS gives rise to various algorithmic tasks, showcasing significant dif-
ferences in complexity and achievable performance and the methods employed to address
them. Among these tasks, the simplest one entails discovering a single MUS, a process com-
monly called MUS extraction. Note that a minimal unsatisfiable subset may not necessarily
be the smallest size, as smaller unsatisfiable subsets can exist. This simplifies the task into a
linear search space traversal, continuing until a subset that fulfills the definition is found.

Moving to a more challenging endeavor, the aim is to uncover a MUS with the smallest
possible cardinality, often known as the smallest MUS (SMUS). In other words, an SMUS
is the most minor collection of constraints that cannot be satisfied simultaneously. In the
realm of algorithms for this task, the initial reliance was on non-chronological backtrack-
ing [LM04], although a more efficient approach has emerged in the form of a branch-and-
bound technique [Mne+05]. However, the practical applicability of this problem appears
to be somewhat limited. This is due to the fact that discovering a MUS of minimal size
is notably more intricate than finding any MUS and frequently yields minimal additional
information. The most ambitious task is exhaustively enumerating all MUSes within an un-
satisfiable clause set. Current methodologies addressing this challenge incorporate ingenious
enumeration techniques to optimize the assessment of subset candidates [BSW03]. Alterna-
tively, these methodologies capitalize on the duality shared by MUSes and maximal satisfiable
subsets through an interleaved approach [BS05] or a two-level approach [LS08] to address
a hypergraph transversal problem. Considering that a clause set may potentially comprise
an exponential multitude of distinct MUSes, a universally efficient technique for identifying
all MUSes is improbable. Nonetheless, even in substantial industrial scenarios, the count of
unique MUSes often proves surprisingly limited, lending practical significance to extant tools
for MUS enumeration. This significance arises from the collective set of MUSes offers an
all-encompassing understanding of the underlying error’s characteristics.

6.2 Approach

The design error analysis approach aims to bridge the gap in identifying the constraints
responsible for model infeasibility in a constraint system. While previous studies have focused
on generating sets of unsatisfiable or infeasible constraints, the specific constraints causing
the system’s infeasibility have yet to be thoroughly explored. This aspect holds significance
in the context of this thesis because identifying violated constraints following the solution
of elaborate E/E systems models is an intricate and time-consuming task. Consequently,
an approach is introduced to identify the core satisfiable constraint by building upon the

112 Chapter 6 Design Error Analysis

algorithms that generate minimal unsatisfiable sets.
To extract the unsatisfiable sets, the proposed approach employs two methods, including

the irreducible infeasible subsystem (IIS) and the MUSes using MARCO algorithm [GR90;
Lif+16], which will be explained below. Once the MUSes are generated, the design er-
ror analysis approach introduces a method to assign weights to each constraint based on
its contribution to the system’s infeasibility. This facilitates the identification of the precise
constraints that result in unsatisfiability within the constraint system. By assigning weights
to individual constraints, the approach provides practical solutions to modify the constraint
system, making the system model feasible.

6.2.1 Using Irreducible Inconsistent Subsystem (IIS)

As the first approach, the IIS method is used. It focuses on finding a minimal set of con-
straints that, when removed from the problem, render the system consistent or satisfiable.
In other words, an IIS is a subset of the constraints that, when removed, allows the remain-
ing constraints to be satisfied [GR90]. The IIS approach is commonly used in the context of
ILP and MIP constraints. As Chapter 4 mentions, the presented model-based tool uses the
Gurobi optimizer to solve the MIP constraints. Consequently, the computeIIS command, inte-
grated within the Gurobi, creates IISes that encompass unsatisfiable sets [Gur22]. Based on
the Gurobi [Gur22] and [GR90], an IIS refers to a subset of constraints and variable limits
characterized by the following attributes:

• It remains infeasible, and

• The subsystem becomes feasible if a constraint or boundary is omitted.

The proposed approach using the IIS method consists of several steps, illustrated as a
flowchart in Figure 6.1. The process involves providing an infeasible set of MIP constraints
and empty lists as inputs. In the subsequent step, the calculation of IIS from the infeasible
constraints is executed, and the results are stored in a list. An IIS represents a minimal
subset of constraints that renders the system infeasible, as explained earlier. This implies that
including any constraints within an IIS leads to an infeasible solution.

Following the computation of IIS, the next step involves examining each constraint within
the IIS list. One constraint at a time is removed from the set of infeasible constraints. The
IIS calculation is then reapplied to the updated set of infeasible constraints, excluding the re-
moved constraint. The model’s feasibility is assessed based on the IIS computation’s outcome
during this iteration. If the model becomes feasible after excluding the constraint, it indi-
cates that the removed constraint significantly contributes to the unsatisfiability of the entire
system model. A weight is assigned to the excluded constraint to capture this influence and
saved in a separate list. The assigned weight of a constraint is proportional to the number of
times it has been identified as a cause of model infeasibility when excluded from the set of
infeasible constraints. According to the flowchart presented in Figure 6.1, the process con-
tinues until all constraints in the IIS list are covered. As a result, a list of constraints, along
with their respective weights, becomes available.

Finally, by taking into account the weights assigned to each constraint, the most crucial
constraints contributing to the unsatisfiability of the system model are identified. With the
aid of these identified constraints, users can rectify the model by addressing issues present
in the critical constraints. For instance, this may involve validating the provided inputs as re-
quirements for the tool. Subsequently, after making the necessary adjustments, the designed
E/E system can be rendered satisfiable upon being re-solved.

6.2 Approach 113

StartInfeasible constraint set (ICS) &
empty lists (S and D)

Compute IIS of ICS
and store in a list

named S
Exclude a constraint,
belonging to S list,

from ICS

Compute IIS for new
ICS without the

excluded constraint

System model is
feasible?

No

Add the excluded constraint to
D list with a given weight

Yes

D list including constraints
 with different weights

End

Cover all constraints
existing in S list?

Yes

No

Identify the origin of
unsatisfiablility based on
constraints frequencies in

the D list

Figure 6.1: The design error analysis flowchart using the IIS method.

Algorithm 5 is also introduced within this approach. Building upon the DVC algorithm,
for each constraint present in the IIS_list, which is derived from the computation of IIS for the
list of infeasible constraints, denoted as c_list (line number 1), it undergoes exclusion from
the c_list upon encountering an identical constraint within it (lines 2 to 5). Subsequently,
the modified constraint is saved back into the c_list, effectively updating it (line number
5). Following this, the IIS is recalculated for the updated c_list and stored within the result
variable (line number 6). If the result variable yields a null outcome, the constraint that
was excluded, attributed either to the IIS_list or s as per line (8), is assigned a weight and
recorded within the d_list. However, in the scenario where the constraint s already resides
within the d_list (line 12), the assigned weight is incrementally added to its existing weight
(lines 9 to 11).

ConstrIISForce

When determining an IIS for an infeasible model, the ConstrIISForce parameter, as an at-
tribute integrated into the Gurobi optimizer, determines the inclusion or exclusion of a gen-
eral constraint within the IIS. If the value is set to −1 by default, the decision is left to the IIS

114 Chapter 6 Design Error Analysis

Algorithm 5: DVC
Input: A list of infeasible MIP constraints (c_list), s ∈ Constr
Output: Weighted constraints S

1 IIS_list← computeIIS(c_list);
2 for i← 0 to IIS_list.size do
3 for j← 0 to c_list.size do
4 if IIS_list.get(i) = c_list.get(j) then
5 c_list.remove(j);
6 result← c_list.computeIIS;
7 if result == null then
8 s←IIS_list.get(i);
9 if s∈ d_list then

10 d_list.get(s).setWeight(d_list.get(s).get(Weight) + 1);
11 else
12 d_list.add(s.setWeight(1));
13 end
14 end
15 end
16 end
17 end

algorithm itself. Alternatively, if the attribute is set to 0, the constraint is deemed ineligible for
the IIS inclusion. Conversely, setting the attribute to 1 guarantees the constraint’s inclusion
in the IIS, with the algorithm disregarding any consideration of its removal [Gur22].

Note that configuring this attribute as 0 can potentially make the derived subsystem fea-
sible or consistent. Consequently, attempting to construct an IIS may lead to a GRB _ER-
ROR_IIS_NOT_INFEASIBLE error, even if attempted. Similarly, assigning this attribute a
value of 1 may yield an IIS that lacks full irreducibility. The system’s irreducibility pertains
solely to model elements bearing force values of −1 or 0 [Gur22]. Hence, in order to remove
a constraint in line (5) of the DVC algorithm, this parameter is utilized.

6.2.2 Using MARCO Algorithm

MARCO is an algorithm designed to analyze infeasible constraint systems with the primary
objective of systematically listing all MUSes and maximal satisfiable subsets (MSSes). Gen-
erally, MUSes hold a higher degree of significance due to their more comprehensive range of
applications. MARCO is an acronym for Mapping Regions of Constraints, succinctly captur-
ing its operational essence. The underlying concept revolves around mapping, which can be
effectively visualized on the power set lattice of a given constraint system. The power set of
constraints refers to the complete collection of all possible subsets of constraints within that
set [Lif+16].

To identify the constraints responsible for unsatisfiability, a brute-force method can be
employed, involving the counting and sorting all constraints’ frequencies in the MUS sets, as
outlined in Kleiman et al.’s work [Kle09]. The constraint with the highest frequency may be
the root cause of the unsatisfiability. Altering this criterion increases the likelihood of render-
ing the constraint satisfiable. However, this method may not always be the most efficient, as
it can be computationally demanding, particularly for large systems encompassing numerous
constraints.

6.2 Approach 115

The MIP constraints introduced in the presented framework tool must be transformed
into SMT constraints to use the MARCO algorithm. These type of constraints are used in
optimization problems involving continuous and integer variables, while the SMT constraints
are employed in logical constraint satisfaction problems with complex logical formulas across
various theories. After employing the MARCO algorithm to generate all MUSes from the
SMT constraints, the constraints are sorted and grouped based on their corresponding re-
quirements. Next, the frequency of each constraint is analyzed to identify the conditions
most likely to lead to system unsatisfiability. This approach shares similarities with the IIS
approach, where constraints were prioritized based on their weights to identify the most in-
fluential ones. Following the transformation of the MIP to the SMT constraints, the Z3 solver
is employed to solve the set of SMT constraints [DB08]. In cases of infeasible solutions after
solving, the SMT file generated by the Z3 solver is integrated into the MARCO algorithm. In
the final step, the frequency of each constraint is tallied, and the most critical constraints are
investigated as the source of the unsatisfiability of the system model.

Since the proposed framework includes the MIP constraints and utilizes the Gurobi opti-
mizer, the IIS approach is preferred over the MARCO approach due to both the implementa-
tion effort involved and the effectiveness of the Gurobi solver in solving the MIP problems.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c483
0

200

400

co
ns

tr
ai

nt
w

ei
gh

t

(a)

c1 c2 c3 c4371
0

0.5

1

(b)

c1 c2 c3 c4 c4371
0

0.5

1

co
ns

tr
ai

nt
w

ei
gh

t

(c)

c1 c2 c3 c4 c4371
0

0.5

1

(d)

Figure 6.2: The solutions of design error analysis approach created for various case studies using the IIS method.

116 Chapter 6 Design Error Analysis

6.3 Evaluation

This section provides and analyzes the design error solutions generated by the introduced
methods. For the IIS approach, the primary design error analysis method used in the E/E
Designer tool, solutions for four infeasible case studies are presented as shown in Figure 6.2.
Figure 6.2 (a) depicts the weights of each constraint in an infeasible system model after
solving, which includes 15 ECUs, six applications, and three communication messages. The
generated analysis shows that only eight constraints have a weight higher than zero out of
483. This means that only these nine constraints render the design model unsatisfiable.
Furthermore, the higher the weight of a constraint, the more significant its impact on making
the system model infeasible.

For instance, in Figure 6.2 (a), the execution times of application threads were defined
close to their respective periods. Since this error involves several constraints, different con-
straints were assigned weights based on their importance in causing an unsatisfiable model.
In this example, c1 has the highest weight related to the message routing constraints, while
the other constraints are associated with the mapping and the time-triggered scheduling con-
ditions. To correct the system model, the weighted constraints must be analyzed to identify
the source of the violation.

In Figure 6.2 (b), the source of violation was identified for a modeled E/E system com-
prising 15 ECUs, 60 applications, and 30 communication messages. In this model, the frame
length of a communication message was specified to be greater than its period. As observed,
only constraint c3, out of 4371 constraints, has a weight, indicating that the condition stat-
ing that the frame length of a message must be less than its period was violated. Since this
violation does not involve the other conditions, only c3 received a weight after the design
error calculation using the IIS approach. In the following scenario, the same model as in
Figure 6.2 (b) is used. However, this time, the execution time of an application thread is set
higher than its period. As can be observed in Figure 6.2 (c), which is the solution provided by
the proposed approach using IIS, the related constraint c4 received a weight from the other
4371 constraints. Therefore, the user can achieve a feasible model by correcting the issue
related to this specific constraint during the solving process.

Figure 6.3: The partial output of IIS computation for the case study presented in figure 6.2 (a).

6.3 Evaluation 117

Figure 6.4: The result of design error analysis approach using the IIS method for the use case described in
figure 6.2 (a).

Finally, in Figure 6.2 (d), a routing constraint in the system model was modified, resulting
in an infeasible model after the solving step. This modification was done to verify whether
the presented approach can accurately identify the source of the violation. Following the
application of the design error approach, the routing constraint (c1 in Figure 6.2 (d)) was
successfully identified.

Note that the computation time required to identify the source of unsatisfiability varies
depending on whether the source of conflict impacts a single or multiple constraints. It also
varies based on whether the error is self-explanatory, as defined by the constraints, or if the
error becomes apparent only after solving half of the system model due to adding values
that render the system infeasible. For example, in the use case shown in Figure 6.2 (a), the
execution time of a thread was defined to be close to its period. Initially, this does not appear
to cause conflicts based on the scheduling constraints. However, after determining the correct
schedules for multiple applications, it became evident that the overlapping between threads
occurred due to the small gap between their execution time and period, leading to conflicts
in other conditions, such as routing. Therefore, the computation time plays a pivotal role in
extensive models, mainly when the error involves multiple constraints.

Figure 6.3 shows a partial output comprising 483 constraints after calculating the IIS for
the infeasible model described in Figure 6.2 (a) using the computeIIS command in the Gurobi
optimizer. As can be observed, a list of MIP constraints includes their names. Meanwhile,
Figure 6.4 displays the results of the designed error analysis approach for the presented
case study in Figure 6.2 (a). A weight is calculated for each constraint name based on the
information presented in Figure 6.4.

The solution consists of nine constraints with computed weights, and the c1 constraint
has the highest influence, as indicated by the number in the red box, on making the model
infeasible, as also explained in Figure 6.2 (a). With this solution, the user can review the
weighted constraints in order to correct the system and obtain a feasible solution after solving
it.

An infeasible mapping case study was conducted to assess the design error analysis ap-
proach using the MARCO algorithm. This use case involves 16 ECUs and 13 applications.
Similar to the previously described approach, the results yielded three constraints with as-
signed weights. However, it is essential to acknowledge that the MARCO algorithm generates
only one minimal unsatisfiable subset (MUS) based on specific constraints within the system.
Consequently, the outcomes produced by the MARCO algorithm are significantly influenced
by the precise number of constraints associated with particular requirements in the constraint
system. To gain a more comprehensive insight into the infeasibility of the constraint system,
it becomes imperative to execute the MARCO algorithm multiple times, each employing a

118 Chapter 6 Design Error Analysis

distinct set of constraints.

7
Evaluation

This chapter delves into the comprehensive evaluation and experimentation phase that forms
the cornerstone of this research endeavor. The primary objective is to rigorously assess the
proposed software framework’s viability, effectiveness, and real-world applicability. A sys-
tematic series of experiments and assessments, including three types of evaluations, aims to
validate the hypotheses formulated in the earlier stages of this study and provide empirical
evidence to support the claims. The chapter unfolds as follows:

• Section 7.1 outlines the design-time evaluations of the introduced tool, providing an
in-depth analysis of the experimental results for various scenarios.

• Section 7.2 presents an experimental setup using a real hardware platform and de-
tailing methods and parameters utilized to conduct our evaluations. This section also
offers insights into the rationale behind selecting these components and their alignment
with real-world scenarios.

• In Section 7.3, the focus is shifted towards a qualitative evaluation that offers a nu-
anced perspective on the introduced tool. Here, the emphasis lies on elucidating how
this tool facilitates the design and synthesis of intricate E/E systems. Through this anal-
ysis, the tool’s potential is uncovered in streamlining the design process and enhancing
the synthesis of systems, thus contributing to advancing engineering practices. More-
over, this section undertakes an evaluation of the installation process of the framework,
providing a comprehensive assessment of its usability and ease of integration.

7.1 Design-time Evaluation

Through diverse case studies, this section assesses the tool’s performance, applicability, and
scalability in the design phase. The goal is to highlight its strengths, adaptability, and poten-
tial areas for improvement, providing empirical insights into its real-world value.

The proposed framework serves as a valuable asset in streamlining the design process
for system architects. However, the practical utility of this framework can be hampered by
prolonged computation times involved in both constraint generation and solving processes.
To address this challenge, a comprehensive investigation is conducted to discern the impact
of various parameters within the presented system model on the time required for efficient
constraint set generation and solving [AFK21a; AMK23]. Furthermore, this study includes

119

120 Chapter 7 Evaluation

a meticulous scalability analysis, underscoring the tool’s capability to seamlessly accommo-
date systems of considerable magnitude. This entails an exploration of the novel single-step
solving algorithms and formulations, demonstrating their scalability even when dealing with
intricately large systems [AMK23].

Notably, the Gurobi 9.5 solver [Gur22], as mentioned in Chapter 4, is used for effectively
solving the system models. It is worth noting that all experiments conducted during the
design phase are performed on a laptop equipped with a robust 2.80GHz Core i7 processor
and a 16 GB memory capacity. This setup ensures that the experimental conditions align
with real-world scenarios while upholding consistent standards throughout the evaluation
process.

7.1.1 Evaluation of Communication Message Routing Generation

This experimental study solely evaluates the synthesis time associated with generating com-
munication message routing constraints concentrating on homogeneous redundant routes.
The synthesis time encompasses two fundamental components: the duration required to
formulate the system model’s variables and constraints and the time to effectively solve the
resultant constraint set. This investigation is centered around comprehending the direct influ-
ence of the message routing constraint set on the synthesis time, particularly in the context
of homogeneous redundant paths. The underlying motivation is to dissect how these con-
straints shape the temporal aspects of the synthesis process. The analysis is performed under
four distinctive scenarios, each carefully curated to encapsulate specific conditions and vari-
ables [AFK21a]. It is essential to underline that the chosen experimental scenarios are char-
acterized by deploying fully interconnected topologies or architectures—commonly referred
to as full-mesh arrangements as illustrated in Chapter 4. This choice allows us to isolate and
interrogate the impact of message routing constraints within a controlled environment.

First Case Study

In the first scenario, the count of homogeneous redundant (HR) routes is increased while
keeping the number of applications and nodes constant. Moving to the second scenario, the
number of applications remains constant but increases compared to the previous scenario,
and the synthesis time is subsequently measured. In the third scenario, the number of appli-
cations increases while maintaining a constant number of nodes and HR routes. Lastly, the
number of nodes is incremented in the fourth scenario, while the count of HR routes and
applications remains unchanged. Each measurement comprises two components: the time to
generate MIP constraints and the time to solve. It should be added that the cost optimization
goal for the communication links was applied during these experiments [AFK21a; AFK20].

Second Case Study

To assess the impact of increasing the number of HR routes in the synthesis time, refer to
Figure 7.1 (a); topologies were generated with the same number of nodes and applications,
fixed to 100 and 2 respectively, while the number of routes was increased from one to six. As
Figure 7.1 (a) depicts, the number of HR routes does not significantly influence the constraint
generation time in contrast to the solving time, which exhibits a noticeable linear rise. A
similar experiment to the last scenario was conducted to observe the effect of the number
of applications on HR routes, with the only difference being that the number of applications
was altered to 20 instead of 2. As shown in Figure 7.1 (b), both the generation and solving

7.1 Design-time Evaluation 121

times exhibit similar linear trends to the previous scenario; however, the solving process takes
considerably longer in this particular experiment [AFK21a].

2 4 6
0

2,000

4,000

number of HR routes

ti
m

e
[m

s]

(a)

2 4 6
0

2

4

6

·104

number of HR routes
(b)

40 80 120 160

0

500

1,000

1,500

number of nodes

ti
m

e
[m

s]

(c)

20 40 60 80 100
0

2

4

·104

number of applications

(d)

Solving time Generation time

Figure 7.1: The architectural synthesis times for the defined experimental scenarios involving communication
message routing integrated into the E/E Designer tool. The constant variables for each scenario are established
as follows: (a) Two applications and one hundred nodes. (b) Twenty applications and one hundred nodes. (c) Six
HR paths and two applications. (d) One hundred nodes and six HR paths.

Third Case Study

In the third scenario, the number of applications and HR routes remains constant at 2 and 6,
respectively, while the number of nodes increases to 160 in order to observe the influence of
nodes on the synthesis time. As depicted in Figure 7.1 (c), the generation time expands as
the number of nodes increases. Moreover, it is evident that the run-time displays non-linear
growth. Furthermore, Figure 7.1 (c) illustrates exponential escalation in the solving time as
the number of nodes increases. For instance, the solving time for 80 nodes is approximately
400 milliseconds, while it escalates to 1700 milliseconds for 160 nodes [AFK21a].

Forth Case Study

In the final scenario, the number of applications is increased from 20 to 100 while keeping
the number of nodes and HR routes fixed at 100 and 6, respectively. The objective is to
investigate the impact of the increased number of applications on constraint generation and

122 Chapter 7 Evaluation

solving times. As shown in Figure 7.1 (d), the run-time for constraint generation non-linearly
increases (from approximately 4500 to 27000 milliseconds) in correlation with the growth
in the number of applications when transitioning from 20 to 100 applications. Similarly, Fig-
ure 7.1 (d) illustrates an increase in solving time as the number of applications increases,
while the nodes and number of HR routes remain constant. For instance, solving the con-
straints for an architecture with 100 nodes and 20 applications supporting six HR routes takes
about 10 seconds. In contrast, the architecture with 100 applications and the same number
of nodes and HR routes requires approximately 50 seconds. In contrast to the trend seen
in Figure 7.1 (c), the solving time displays a less exponential behavior, as depicted in Fig-
ure 7.1 (d) [AFK21a]. It is worth noting that, based on Figures 7.1 (c) and (d), the number
of nodes has a comparatively more minor impact on constraint generation and solving times
than the number of applications does.

7.1.2 Automated Mapping Approach and Application Threads’ Scheduling Evaluation

This experiment explores the synthesis time related to the integrated automated mapping
approach and the time-triggered scheduling for mapped application threads within the pro-
posed framework. This investigation focuses on understanding the direct impact imposed
by the mapping and scheduling constraint sets on the synthesis time. The primary motive
is to dissect how these constraints intricately shape the temporal dimensions of the synthe-
sis process. Notably, this experiment unfolds within the context of four different scenarios.
These scenarios were carefully designed to help understand how mapping and scheduling
constraints influence the system. It is vital to highlight that the selected experimental scenar-
ios involve using zonal topologies or architectures. This specific choice enables isolating and
carefully studying the constraints’ subtle impacts in a controlled environment [AMK23].

In the first three case studies, Figures 7.2 (a), (b), and (c), the mapping problem is
solved by applying the resource utilization (RU) as a hard constraint and the scheduling for
threads running on each control node using the E/E Designer framework. Note that in this
experiment, the single-step solving algorithms for mapping and scheduling were applied as
explained in Chapter 4.

First Case Study

In the initial case study, a distributed E/E system model is constructed comprising ten appli-
cations, each encompassing two threads with randomly assigned execution times represented
as t i .e, along with even periods denoted as t i .p. Additionally, ten ECUs were employed as
control nodes within this setup. For the subsequent case study, the system dimensions is ex-
tended to encompass fifty applications and ECUs. This expansion allowed to evaluate both the
time taken for solving the constraint set and the time needed for generating MIP constraints
(as depicted in Figure 7.2 (a)). The trend observed in the solving time presents a clear
exponential pattern, particularly when the count of applications exceeds thirty [AMK23].

Second Case Study

In the second case study, the design of a distributed system featuring 8 ECUs and 10 appli-
cations, each application comprising two threads, is undertaken. The same constraints and
solving options as those used in the first use case are applied. Subsequently, the scope is
extended by increasing the number of applications from 10 to 70 while maintaining a con-
sistent number of ECUs. This expansion allows us to keenly perceive the timing behavior
during constraint set solving and generation. As described in Figure 7.2 (b), the solving time

7.1 Design-time Evaluation 123

10 20 30 40 50
0

0.5

1

·105

number of applications/ECUs

ti
m

e
[m

s]

(a)

10 20 30 40 50 60 70

0

0.5

1

·104

number of applications

(b)

2 4 6 8 10 12
0

1,000

2,000

3,000

number of threads
(c)

4 7 9 11 13 15
0

1

2

·105

number of applications

ti
m

e
[m

s]

(d)

4 20 36 48 60
0

500

1,000

1,500

number of safety-critical applications

(e)

Solving time Generation time

Figure 7.2: Design-time performance evaluation of the introduced model-based framework. The resource uti-
lization constraint is applied to all use cases. (a) Each application consists of two threads. (b) It is applied on
a topology including 8 ECUs, and each application has two threads. (c) The topology consists of 8 applications
and 8 ECUs. (d) The topology comprises 8 ECUs, and each application consists of two threads with odd periods.
(e) A zonal architecture including 15 ECUs is applied in this use case, and each safety-critical application has
one thread. The boundary goals for resource utilization, maximum memory usage, and safety-critical mapping
constraints are applied.

reveals exponential growth due to the augmented number of thread schedules that must be
computed for each ECU. For instance, when we contemplate allocating 70 applications across
the 8 ECUs, it implies that each ECU handles a minimum of eight applications or 16 threads
(factoring in the RU objective). Each of these threads necessitates an accurate schedule, thus
contributing to the observed trend in the solving time [AMK23].

Third Case Study

In the context of the use case depicted in Figure 7.2 (c), a precise measurement is conducted
using a model comprising eight applications and eight ECUs. However, in this specific sce-
nario, the thread count for each application is only increased from 2 to 12. As illustrated
in Figure 7.2 (c), discernible exponential increments become evident in both solving and
generation times [AMK23].

Forth Case Study

Since deriving schedules for multiple threads with odd periods is notably more intricate than
even periods due to the complexities of least common multiple and hyperperiod calcula-
tions, a practical case is formulated to witness this phenomenon firsthand. As a result, Fig-

124 Chapter 7 Evaluation

ure 7.2 (d) illustrates the observed durations within a system model comprising 5 ECUs and
four applications, each housing four threads. The number of applications remains constant,
ranging from 4 to 15, with the only variation in the threads’ periods, which are odd numbers
such as 5, 7, 11, and 13. The graphical representation visually demonstrates the exponential
increase in the solving time, substantiating the intricacies involved in computing schedules
for threads with odd periods. Conversely, the generation time depicts a relatively consistent
trend when juxtaposed with the solving time.

Fifth Case Study

Figure 7.2 (e) illustrates the measurements committed to address a mapping problem and
ascertain accurate schedules for application threads. For this purpose, a zonal architecture is
employed, similar to the one presented in Figure 5.1 of Chapter 5, comprising 15 ECUs. The
range of applications is expanded from 4 to 60, each flagged as safety-critical, encompassing
a single application thread. During the solving phase, boundary constraints were established
for ECU utilization and maximum memory usage on each ECU. Furthermore, supplementary
mapping constraints were incorporated, as delineated within the automated mapping condi-
tions, including redundancy provisions in safety-critical applications. It is crucial to empha-
size that owing to the requisite redundancy when dealing with 60 safety-critical applications,
a total of 120 applications are concurrently executed within the topology [AMK23].

8 16 24 32 40 50

0

1

2

·105

number of communication messages

ti
m

e
[m

s]

Single route
Redundant route

HR route

16 32 48 64 80 100

number of applications

Figure 7.3: The measurement of solving time in a case study includes the full capabilities of the proposed tool
while considering different types of paths for transferring communication messages. The same architecture as in
Figure 7.2 (e) is used in this experiment. This study incorporates the multi-objective optimization, which encom-
passes end-to-end latency, response time, and LOR, as well as the goals for resource utilization and maximum
memory usage [AMK23].

7.1.3 Evaluation of Full Capabilities of the E/E Designer Framework in a Single-Step
Solving

In this experiment, the complete capabilities of the tool are assessed, incorporating single-
step solving algorithms like CMR, CSCT, and PD, as detailed in Chapter 4. In this partic-
ular use case, the experiment encompasses automatic message routing and mapping, time-
triggered scheduling of threads and communication tasks, and resolving path and message

7.1 Design-time Evaluation 125

dependencies, all within a single step. Various optimization objectives and boundary con-
straints are applied during this process. In addition, the impact of creating different types
of paths on solving time while employing the features mentioned above is investigated. This
investigation aims to comprehensively understand how the interplay between route types,
communication volume, and application count manifests in the solving time dynamics. This
analysis serves as a crucial step in assessing the efficiency and scalability of the introduced
approach within a representative zonal E/E architecture [AMK23].

Figure 7.3 explores the impact of generating various route types on the solving time.
This study involves the application of automatic mapping, alongside scheduling application
threads and communication tasks within a single step, all within the context of the same
zonal E/E architecture depicted in Figure 7.2 (e). The focal point of our investigation is to
gauge how the creation of distinct routes influences the time required for solving. The solv-
ing time is quantified across three distinct route types, including single, redundant, and HR
paths, each responsible for generating three independent routes. These routes are automati-
cally determined based on mapping constraints. Concurrently, the number of communication
messages is systematically varied from 4 to 50, and the count of applications is increased
from 8 to 100. Each of these applications encompasses a single thread [AMK23].

Moreover, the multi-objective optimization is applied, as illustrated in Chapter 4, in-
cluding end-to-end latency, response time, and LOR. This optimization uses a hierarchical
methodology, with RU and maximum memory usage acting as single boundary objectives. To
illustrate, consider Figure 7.3 as an example. In scenarios involving 50 communication mes-
sages and 100 applications, the solution consists of a variety of 50 paths. These paths include
single, redundant, and HR routes, all carefully constructed from senders to receivers. These
solutions also comprise task schedules over links solely for activated routes and application-
to-ECU mappings and thread schedules on each individual ECU [AMK23].

As anticipated, the number of generated routes can impact the solution time. Therefore,
referring to Figure 7.3, the HR path necessitates more time due to the requirement of iden-
tifying three distinct routes in each scenario. Similarly, a redundant route exhibits a longer
solving time than a single route (see Figure 7.3).

7.1.4 Scalability Analysis

In order to assess the scalability of the proposed framework, an evaluation comprising di-
verse aspects is conducted. The main objective is to evaluate the time required to generate
system model variables and the subsequent resolution of the associated constraint set. This
evaluation is performed on two distinct architectural paradigms: a comprehensive full-mesh
topology and a more streamlined zonal topology. Each of these architectures comprises 15
ECUs. The introduced tool showcases its prowess within this evaluation by seamlessly han-
dling various intricate tasks. The automatic routing of messages, leading to the generation of
single paths, mapping, and scheduling application threads and communication tasks, are all
adeptly solved in a single step for both the full-mesh and zonal architectures.

To further enrich the analysis, a multi-objective optimization approach comes into play.
This approach considers goals, including the end-to-end latency, the response time, and the
LOR. Moreover, the RU and the maximal memory usage serve as boundary objectives, effec-
tively guiding the optimization process. Every application thread shares the exact execution
times and periods. Likewise, the frame lengths of communication tasks are equal, with their
periods aligned to match the time values of their corresponding senders’ and receivers’ peri-
ods.

Referring to Figure 7.4 (a), in the case of the full-mesh topology, the message count is
expanded from 10 to 90, along with the number of applications growing from 20 to 180, each

126 Chapter 7 Evaluation

15 30 50 70 90

0

1

2

·106

number of communication messages

ti
m

e
[m

s]

30 60 100 140 180

number of applications

(a) Full-mesh topology

20 35 50 65 80 100

0

1

2

3

·105

number of communication messages

40 70 100 130 160 200

number of applications

(b) Zonal topology

Solving time Generation time

Figure 7.4: Scalability analysis of the presented computer-aided tool. Generation and solving times for (a) a full-
mesh architecture and (b) a zonal topology, each including 15 ECUs [AMK23].

equipped with its dedicated application thread. Meanwhile, as depicted in Figure 7.4 (b) for
the zonal topology, the number of messages escalates to 100 while the applications increase
to 200. This implies that the illustrated framework generates 100 routes along with their
schedules, spanning from senders to receivers. As illustrated in Figure 7.4, the solving time
for both scenarios experiences exponential growth. Furthermore, as expected, the full-mesh
topology’s solving time is notably longer than the zonal topology’s. This is attributed to the
larger space of exploration involved. Looking at the zonal topology shown in Figure 7.4 (b)
and its expansion to accommodate 100 communication messages and 200 applications, the
time taken for solving problems like mapping, scheduling, and routing is reasonable. These
tasks are recognized as NP-hard problems [AHM19], but the introduced single-step solving
approach handles them effectively. Notably, the values showcased here are well-suited for
real-world applications in the automotive domain [AMK23].

7.1.5 Discussion

The outcomes of the experiments in the design stage vividly illustrate the efficacy of the
aforementioned formulation and approach. It allows users to efficiently create their intended
system models, including mapping, routing, and scheduling, all within a commendable time
frame and following predetermined criteria. Moreover, the integration of single and multi-
objective optimizations empowers the resolution of intricate challenges and diverse scenarios.
It is significant to emphasize that the model-based tool, the E/E Designer, is suitable for
synthesizing any type of vehicle E/E architecture and network topology, including various
configurations of applications, threads, and communication tasks.

7.2 Run-time Evaluation 127

7.2 Run-time Evaluation

As mentioned in the previous section, the framework’s performance and applicability are
evaluated. In this section, the solutions computed by the tool are deployed on a real hard-
ware platform to observe the applicability of the design-time solutions in a real-world im-
plementation. Within the scope of this section, the solutions meticulously calculated by the
tool find tangible expression through deployment on an actual hardware platform. This
strategic deployment serves as a bridge, connecting the realm of design-time decisions with
the dynamic environment of run-time execution. By doing so, it aims to explore how the
design-time solutions seamlessly integrate with and translate into practical outcomes during
active operational scenarios. In essence, this hands-on deployment provides an opportunity
to assess the framework’s efficacy in real-world contexts. As it is witnessed the design-time
solutions unfolding in real-time scenarios, it gains a more comprehensive understanding of
their adaptability, performance, and practical utility. This experiential approach contributes
to the holistic assessment of the framework, bridging the gap between concept and imple-
mentation [AMK23; AFK21b].

7.2.1 Hardware Platform Analysis

As explained previously, the automotive E/E architecture is shifting towards a centralized ar-
chitecture, necessitating high-performance computing units capable of processing vast amounts
of data. In order to make an informed choice for selecting a vehicle centralized computer or
a HPCU, a hardware analysis is conducted [AFK21b; AHK22].

Figures 7.5 (1) and (2) showcase the Drive AGX Xavier and Pegasus Developer Kits, re-
spectively. These kits are designed to provide a comprehensive suite of standard software,
hardware, and sample applications tailored to develop self-driving vehicles. Notably, they
support diverse input/output (I/O) interfaces, including cameras, LiDAR, radar, and vehicle
I/O. Both of these kits are equipped with two Xavier SoCs, each capable of accommodating
six distinct processor types. These encompass a CPU boasting eight cores, a GPU, a deep
learning accelerator (DLA), a programmable vision accelerator (PVA), an image signal pro-
cessor (ISP), and a stereo/optical flow accelerator. The Pegasus Developer Kit shown in
Figure 7.5 (2) leverages the computational power of additional Turing GPUs, enabling it to
achieve an elevated tera operations per second (TOPS) rate [NVI21; AFK21b]. The DRIVE
AGX Xavier software stack comprises sample applications, a software development kit (SDK),
an embedded RTOS, and a hypervisor. Although Nvidia offers a preconfigured firmware
package, it limits industrial partners’ access to platform development kit (PDK) details. As a
result, Nvidia’s proprietary hypervisor is not applicable for academic use.

The MPPA-DEV4 development platform, as depicted in Figure 7.5 (3), serves as another
central computer within the vehicle. This platform provides a readily available environment
for evaluating, developing, and optimizing applications across domains such as automotive,
data-centric, robotics, and communication [KAL20]. Similarly, Figure 7.5 (4) introduces the
R-Car H3 and M3 Starter Kits, designed to bolster automotive software development. These
products have played a pivotal role in facilitating the establishment of open-source automo-
tive Linux environments [REN21; AFK21b]. AVA3501 is a computing platform designed for
autonomous vehicles, featuring components like the Intel Xenon 9th Gen CPU and RTX8000
GPU (refer to Figure 7.5 (5)) [ADL21]. The last associated HPCU, named Nuvo7208VTC, is
equipped with an 8-core processor (see Figure 7.5 (6)) [Neo21].

Drawing upon the analysis provided above, several critical factors informed the decision-
making process. These factors encompass computational power, the number of cores, the

128 Chapter 7 Evaluation

1 2

43

5 6

Figure 7.5: The six relevant development kits serve as an HPCU including (1) Nvidia Drive AGX Xavier, (2)
Nvidia Pegasus, (3) MPPA-DEV4 development platform, (4) R-Car H3 and M3 Starter Kits, (5) AVA 3501, (6) Nuvo
7208VTC.

spectrum of automotive applications, the diversity of interfaces, the quality of customer sup-
port, and the comprehensiveness of documentation. Within these considerations, Nvidia AGX
Drive emerged as the chosen HPCU for the envisaged hardware platform, primed for in-depth
run-time evaluation. The capabilities offered by Nvidia AGX Drive align seamlessly with the
demanding requirements of the introduced evaluation. Its computational may, augmented
by a robust core count, promises a solid foundation for the real-time processing of intricate
automotive tasks. The array of interfaces it offers caters to the multifaceted connectivity
needs of modern automotive systems. Furthermore, the availability of substantial customer
support and well-documented resources adds a layer of reliability and ease to the operational
endeavors. With Nvidia AGX Drive at the helm, the proposed hardware platform appeared
poised for an insightful run-time assessment [AFK21b; AMK23].

Nonetheless, it is important to note that due to technical considerations linked to Nvidia,
as elaborated upon in the subsequent subsections, an alternative development kit was also
subjected to testing and subsequent comparison with the Nvidia solution.

7.2.2 Experimental Setup

This subsection outlines the experimental evaluation of the design-time solutions computed
by the proposed tool as they were deployed on real hardware platforms. The experiments
encompassed utilizing three distinct hardware platforms commonly featured in automotive
systems.

7.2 Run-time Evaluation 129

Figure 7.6: The mapping experimental setup using the Nvidia Drive AGX. On the left is the host computer, and
on the right is the Nvidia Drive AGX Xavier with the power adapter. Both are connected to a monitor and other
peripherals.

The primary hardware platform chosen for these experiments was the Nvidia Drive AGX
Xavier Developer kit, which stands as a prominent selection for HPCUs in autonomous driv-
ing (see Figure 7.6). This kit revolves around two Xavier SoCs, each encompassing an 8-core
ARM CPU, RAM, and hardware accelerators tailored for deep-learning inference, as illus-
trated in the previous subsection. This platform orchestrates a modified version of Ubuntu
18.04 integrated with the Preempt-RT-patch as its operating system. In addition to the
Nvidia platform, a series of experiments were conducted on an evaluation board grounded
on the Intel i210, effectively simulating the functionality of a communication network gate-
way [Int23]. Lastly, a Discovery kit featuring an STM32L476VG microcontroller was har-
nessed to exemplify an energy-efficient ECU [ST23]. This triad of hardware platforms col-
lectively forms the foundation for empirically assessing the framework’s design-time solu-
tions [AMK23].

Reference computer: As a reference based on Figure 7.6, a standard computer with an
Intel Core i7-4770 @ 3.90 GHz processor with eight cores, 16384 MB of DDR3 memory,
a 500 GB disk, and an NVIDIA GeForce GTX 645 graphics card with 1024 MB was used.
In addition, all performance tests ran on the Nvidia Drive natively to determine the actual
overhead produced by the hypervisor configurations.

Software Setup

In the following bullet points, the details of the software setup used in the experimental setup
are presented.

• Tasks: Each task is modeled as a Linux process running a customized benchmark appli-
cation. This benchmark employs the Gauss–Legendre algorithm to calculate ten digits
of pi in an infinite loop, making it CPU-bound. Additionally, the setup includes sender
and receiver applications that facilitate TCP-based message transfers [AMK23].

• Scheduling and Dispatching:

The scheduling process is simulated by employing a separate standard Linux process,
which is endowed with the highest real-time priority of 99. This is achieved using a C

130 Chapter 7 Evaluation

timer function that triggers a callback every 1000 nanoseconds. This callback ascertains
whether a task should be scheduled or stopped at that specific timestamp. Prior to the
start of the simulation, it is imperative to specify the number of hyperperiods. This
enables the anticipation and pre-calculation of each task’s start and stop times, which
are then meticulously stored in a sorted array. Consequently, during the timer callback,
the comparison is confined to the current counter value and the leading entry in the
aforementioned array. This optimization drastically curtails the callback’s invocation
time to the bare minimum. When task initiation or cessation is warranted, the scheduler
executes the dispatch by transmitting a POSIX signal to the corresponding task. The
SIGKILL signal orchestrates the killing of the task, while the SIGCONT signal indicates
its restart [AMK23].

• Task mapping: The tasks are assigned to specific cores before the simulation com-
mences. Their CPU affinity is established using the taskset command, which instructs
the Linux scheduler to associate the process with a designated CPU core to achieve
this. To ensure the uninterrupted execution of these tasks, each one is endowed with
the second-highest real-time priority of 98. This strategic prioritization by the Linux
scheduler places these tasks above all other processes, though they remain susceptible
to interruption by the simulation scheduler. Moreover, CPU core 0 is reserved for all re-
maining system operations and external processes, excluding bounded kernel threads.
This deliberate allocation of tasks serves the purpose of isolating the simulated cores,
thus maintaining a focused and controlled environment [AMK23].

• Task synchronization: The precision time protocol (PTP) was employed to synchronize
the system clocks of multiple nodes. Leveraging the inherent PTP hardware support
across all utilized devices, a master clock offset value of approximately 100 ns was
attained. Through this synchronization of system time across nodes, the starting time
of the simulation can be uniformly communicated to all devices, thereby ensuring a
synchronized simulation start. Other performance metrics encompassed CPU and RAM
utilization, as well as the thermal behavior of the CPU [CBB05; AMK23].

• Monitoring Mechanism: As for the run-time behavior of the operating system and
middleware within the hardware platform, uncertainty arises due to event-based ac-
tivities, such as application service discovery and other dynamic, interacting processes

Start

Requirements extracted from
the tool in design-time

Violation Warning
YesNo

Continuous verification of
requirements at run-time

End

Figure 7.7: The Monitoring mechanism flow chart.

7.2 Run-time Evaluation 131

Figure 7.8: The Monitoring GUI. The threshold values for each specified requirement can be chosen. For example,
the threshold value of the CPU usage can be defined inside the red rectangle.

that lead to non-deterministic utilization of system resources. Given this complexity,
creating and considering pertinent constraints at the design stage by the presented tool
becomes impractical. In order to establish the validation of requirements, e.g., timing

Figure 7.9: The Monitoring GUI. A warning message can be observed in case of violation (red rectangle).

132 Chapter 7 Evaluation

requirements, during run-time after the deployment of solutions computed by the intro-
duced framework onto the hardware platform, a monitoring mechanism has been de-
veloped. The methodology outlined in [ASK21] is followed to execute this mechanism.
This approach introduces a monitoring mechanism for identifying timing violations in
autonomous driving platforms.

The flow chart, depicted in Figure 7.7, illustrates the steps involved. To mitigate risks
arising from requirement violations, the monitoring module receives the predefined re-
quirements initially given to the tool. Concurrently, it collects real-time values from the
hardware platform. In the subsequent phase, a continuous comparison and verification
process is initiated between the design-time requirements and the real-time status con-
cerning these requirements. Furthermore, if any violation occurs, an alert is issued to
announce the breached requirement, as illustrated in Figure 7.7 [AFK21b]. Figure 7.8
shows the graphical user interface (GUI) for the integrated monitoring mechanism as
part of the main GUI. Within this interface, the option to establish a threshold value
for each requirement is presented, exemplified by CPU usage, as depicted in Figure 7.8.
Furthermore, in instances where the value of any requirement surpasses the deter-
mined threshold, an immediate warning message is generated, as demonstrated based
on Figure 7.9 [ASK21; AFK21b; AMK23].

The monitoring mechanism is a substantial part of the performance evaluation as the

Figure 7.10: The primary GUI including all features. Users can select the priority and assignment for each task
on the window.

7.2 Run-time Evaluation 133

Figure 7.11: The primary GUI including all features. The window visually represents the priority, period, and
execution time associated with each task.

measuring must be very accurate but also very light-weight to not influence the mea-
sured metrics [ASK21; AFK21b; AMK23]. The primary performance metric during the
ongoing run-time evaluation pertained to each task’s initiation and cessation times.
This specific metric allowed for the computation of both start and stop jitter, represent-
ing the variance between the actual and expected start and stop times. The determina-
tion of start and stop times was facilitated through a meticulous tracing of system calls
that signified transitions in process states, a process efficiently carried out usingstrace.
Other performance metrics included CPU and RAM utilization, as well as the thermal
development of the CPU, which are discussed in the following.

• GUI: A user-friendly graphical interface has been developed to facilitate the deploy-
ment of the calculated solutions. This interface seamlessly integrates all the function-
alities described above into a single program. This integration enables the automated
deployment of mapping and communication solutions onto the hardware, simplifying
the process of replicating experiments. Moreover, the developed GUI assumes the role
of initiating the monitoring procedures. It adeptly manages the collection and pro-
cessing of the measured data, a process elucidated in the finer details of the monitoring
mechanism. This cohesive integration ensures a seamless and efficient flow of tasks, en-
hancing the overall user experience and research methodology [AMK23; ASK21]. Fig-
ure 7.10 illustrates the GUI configuration for deploying the mapping and time-triggered
scheduling solutions on the hardware platform. For example, based on Figure 7.10, the

134 Chapter 7 Evaluation

Table 7.1: Periods and execution times of threads for each sample application.

Name t.p (Period) [ms] t.e (Execution time) [ms]

T0 600 5
T1 1200 1
T2 600 20

priority of each task and its allocation to a specific core can be managed. In Figure 7.11,
the designated period and execution time of each task, along with its name and priority,
are presented.

Mapping evaluation

The mapping evaluation was based on 40 applications, each consisting of three threads.
The periods and execution times of these threads can be found in Table 7.1. A total of
120 application threads are mapped onto different cores. The time-triggered scheduling
was evaluated against first in, first out (FIFO) and Round Robin with a time quantum of 1
ms, which was selected based on the shortest execution time [AMK23; LA07; RT08]. FIFO
scheduling is a simple and intuitive scheduling algorithm that operates on a first-come, first-
served basis. In this approach, the process that arrives first is executed first, and subsequent
processes are executed in the order of their arrival [LA07]. In comparison, Round Robin
scheduling is a preemptive scheduling algorithm that allocates a fixed time quantum to each

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

0 1 2 3 40 50 100 150 200

t [ms]

(a) Time-triggered Scheduling

0 1 2 3 40 50 100 150 200

t [ms]

(b) FIFO

0 1 2 3 40 50 100 150 200

t [ms]

(c) Round Robin

Figure 7.12: Gantt charts of the different scheduling solutions for CPU 5. The red bars represent the planned
execution, while the hatched bars stand for the actual execution [AMK23].

7.2 Run-time Evaluation 135

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

0

10

20
Ji

tte
r[

m
s]

(a) Nvidia Drive AGX Xavier

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

0.5

1

Ji
tte

r[
m

s]

(b) Intel i210

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

0.5

1

Ji
tte

r[
m

s]

(c) STM32

Figure 7.13: Start and stop jitters of each thread measured for the time-triggered scheduling over one hyperperiod.
These are the measurements on CPU core 5. Red bars represent the start jitter, and the green bars the stop
jitter [AMK23].

process in a cyclic manner. It ensures fairness by allowing each process to execute for a
predefined time slice or quantum before moving to the next process. If a process does not
complete its execution within the time quantum, it is temporarily suspended, and the next
process in the queue is allowed to run. The suspended process is then placed back in the ready
queue, and execution resumes from where it left off during the next scheduling cycle [RT08].

Given that the execution of all cores operates independently from each other and the
workload is distributed relatively evenly across all cores in the assessed solution, for the sake
of illustration, only the results from one core are presented. This is due to the similarity in
behavior demonstrated by the other cores.

Figure 7.12 depicts the expected and actual start and stop times for the three evaluated
scheduling policies. It is noticeable that across all setups, there are cases where threads
commence even after the expected stop time. This tendency is more pronounced with shorter
execution times, making it especially notable in the Round Robin configuration.

Figure 7.13 shows the jitter measurements for time-triggered scheduling across various
hardware platforms, namely Nvidia Drive AGX Xavier, Intel i210 development kit, and STM
development kit [Int23; ST23; NVI21]. The observation reveals a noteworthy disparity in
jitter generation. Particularly, the Nvidia Drive exhibits a notable level of jitter. The average
jitter on the Nvidia Drive surpasses that on the Intel i210 by a factor of approximately 36.6,
despite both setups being the same [AMK23].

The results of the CPU, RAM, and temperature measurements are illustrated in Fig-
ure 7.14. While there are observable distinctions among all the setups, they are not deemed
significant. Moreover, none of the scheduling schemes exhibits superior performance across

136 Chapter 7 Evaluation

0 100 200

5

6

time [ms]

C
PU

us
ag

e
[%

]

(a) CPU Utilization

0 100 200
1.66

1.68

1.7

1.72

·106

time [ms]

R
A

M
us

ag
e

[K
iB

]

(b) Ram Usage

0 100 200

46

48

50

52

54

time [ms]

te
m

pe
ra

tu
re

[°
C

]

(c) Temperature

Time Triggered Scheduling FIFO Round Robin

Figure 7.14: Comparison of different metrics. Yellow is the time-triggered scheduling, red is FIFO scheduling, and
green is Round Robin scheduling [AMK23].

TT
start/stop

FIFO
start/stop

RR
start/stop

0

10

20

jit
te

r
[m

s]

Figure 7.15: Spread of start and stop jitter for the tested scheduling policies. The box plot shows the minimum
and maximum values, the lower and upper quantiles, and the mean. The yellow, red, and green boxes represent
results for time-triggered, FIFO, and Round Robin scheduling schemes, respectively.

all metrics.
Furthermore, the offset between the actual and expected execution times remains com-

paratively constant with FIFO scheduling. This can also be seen by looking at Figure 7.15,
which shows that the jitter is much more predictable for FIFO than for the time-triggered
scheduling solution. This indicates that the jitter produced by the dispatcher is centered
around a constant value with a low spread. Nevertheless, all threads finished within their
specified period, and no deadline violation occurred in any of the tested setups [AMK23].

Communication evaluation

Apart from the mapping evaluation, a communication assessment was performed where an
E/E architecture is modeled using the introduced computer-aided tool, and its provided so-
lution is deployed on an actual hardware setup with the same topology designed by the
tool. The solution consists of schedules for application threads executing on each ECU, as a
sender and receiver, and for communication tasks routing over each link. The multi-objective
optimization comprising end-to-end latency and response time was applied to the solution.
This experiment measured the end-to-end latency and response time for communication mes-
sages [AMK23].

7.2 Run-time Evaluation 137

App1, 2, 3 (t1 , t2, t3) App4, 5, 6 (t4 , t5, t6)

D1, 2, 3 (c1, c2,c3)

ECU1 ECU2 ECU3

D1, 2, 3 (c1, c2,c3)

Figure 7.16: Topology of the tested communication setup. Threads 1-3 on ECU1 each send a communication
packet to threads 4-6 on ECU3. All three packets (c1, c2, c3) are routed over ECU2 [AMK23].

Communication was tested using a scenario consisting of three connected nodes: an
Nvidia TX2 Developer kit (ECU1), the Nvidia Drive AGX Xavier (ECU2), and an Intel i210 De-
veloper kit (ECU3) based on Figure 7.16. On ECU1 ran three applications, each comprising a
thread, each of those sending a communication packet to a respective receiver task on ECU3
via ECU2. Figure 7.16 visualizes the setup. As mentioned earlier, the end-to-end latencies
and response times of the three communication messages, each including a communication
task defined above, are measured [AMK23].

Table 7.2: Communication solution calculated by the presented framework.

Name Start time [µs] Stop time [µs]

t1.st 0.00 90.00
t2.st 90.00 290.00
t3.st 290.00 440.00

c1.st l1 100.0 112.60
c2.st l1 300.00 312.60
c3.st l1 450.00 462.00

c1.st l2 127.60 140.20
c2.st l2 327.60 340.20
c3.st l2 477.60 490.20

t4.st 150.20 250.20
t5.st 650.20 850.20
t6.st 500.20 650.20

The communication links had a theoretical bandwidth of 1000 Mbit/s; however, 940
Mbit/s were measured when also running PTP synchronization over the same links. The
size of the communication messages was chosen to fit into one single Ethernet frame of
1500 B size. Therefore, the frame length of each communication task was set to 12.6 µs.
The solution calculated by the proposed tool is presented in Table 7.2. It shows the start and
stop times for the sender and receiver applications and the communication tasks over one
hyperperiod [AMK23].

Figure 7.17 shows the results of the experiments. It is noticeable that the measured end-
to-end latencies do not vary much but are in the order of 10 ms. Even though the actual
frame length is considerably smaller than these values, the influence of start and stop jitters

138 Chapter 7 Evaluation

d1 d2 d3

0

20

40

ti
m

e
[m

s]

End-to-End Latency
Response Time

Figure 7.17: Measured end-to-end latency and response times of the three communication messages using
Nvidia Drive AGX, Nvidia TX2, and Intel i210 developer kits as the setup.

in the application threads profoundly impacts the overall latency metrics. This, in turn, led
to instances of deadline violations during the communication testing phase [AMK23]. This
phenomenon can be attributed to the significant jitter introduced by the Nvidia AGX Drive,
vividly illustrated in Figure 7.13.

Due to this effect, a decision was made to execute the communication experiment using
STM32-based development boards [ST23]. These boards exhibit a notably lower scheduling

d1.rt = 254.16

d1.el = 253.16

T1

d2.rt = 857.38

d2.el = 764.99

T2

d3.rt = 652.41

d3.el = 357.72

T3

0 1 2 3 4 5 6 7 8 9 100 100 200 300 400 500 600 700 800 900

t [ms]

Figure 7.18: Results of the communication evaluation experiment using STM development kits. The yellow bars
represent the expected execution, while the hatched bars represent the actual execution times of the sender
and receiver applications. The green bars indicate the planned schedule of the communication messages. The
response time and end-to-end latency of each communication message are also shown [AMK23].

7.3 Quantitative and Qualitative Evaluation 139

jitter, ensuring minimal disruption to the execution of the synthesized communication solu-
tion. It is important to note that this particular experiment adhered to the same topology and
design-time outcomes, shown in Table 7.2, as the initial communication experiment, both of
which were generated by the tool.

The CAN configuration was chosen as the communication protocol between ECUs in this
setup. This choice stems from its widespread usage within the automotive domain and its
comparative simplicity when contrasted with other protocols regarding the essential hard-
ware setup and software implementation, as described in Chapter 2. Moreover, it has rel-
atively little overhead and thus simplifies the calculations. The communication links had a
theoretical bandwidth of 11,520 bytes/s, which is a common baud rate. The size of the com-
munication messages was chosen to be 145 bytes, deliberately kept small to fit into a single
frame and avoid fragmentation and long verification times that can potentially influence the
results. Each communication task’s frame length was set to 12.6 ms, calculated by divid-
ing the size of the communication message by the bandwidth. The interpacket gap was set
to 10 ms. The user can specify these communication properties for each network protocol
in the framework, similar to how timing parameters can be determined in the framework’s
frontend.

Figure 7.18 shows the results of the communication experiments using the STM boards.
It can be seen that the measured response times and end-to-end latencies for all three com-
munication messages, d1, d2, and d3, closely align with the anticipated values, indicating the
absence of any deadline violations.

7.3 Quantitative and Qualitative Evaluation

To evaluate the performance, usability, and practicality of the illustrated model-based tool,
a series of use cases were addressed through both manual and automated approaches. The
following subsections provide a detailed analysis of the findings, encompassing both quanti-
tative and qualitative aspects.

7.3.1 Quantitative Analysis of Various Case Studies

For the quantitative evaluation of the proposed framework, a series of mapping and map-
ping & routing use cases are undertaken. These cases are addressed through two distinct
approaches: manual solution and utilization of the E/E Designer tool.

Mapping Case Studies

The mapping use cases center solely on accurately assigning applications to diverse ECUs and
determining schedules for the application threads. However, these use cases do not encom-
pass aspects such as message routing and scheduling communication tasks. To facilitate the
evaluation process, the ensuing use cases have been established. The following case studies
are given to a group of students to execute the quantitative and qualitative analysis utilizing
manual and tool-assisted approaches.

• M_1 :4 ECUs, 4 applications

• M_2: 6 ECUs, 8 applications

• M_3: 8 ECUs, 12 applications

140 Chapter 7 Evaluation

M 1 M 2 M 3 M 4 M 5 M 6
2

4

6

8

10

12

14

ti
m

e
[m

in
]

(a) Configuration time of mapping use cases

M 1 M 2 M 3 M 4 M 5 M 6

0

5

10

15

20

(b) Solving time of mapping use cases

Manual Tool

Figure 7.19: Results of the quantitative evaluation for the mapping case studies using a manual approach and the
E/E Designer tool. (a) The required setup time for each use case. (b) The required solving time for each use case.

• M_4: 8 ECUs, 18 applications

• M_5: 8 ECUs, 24 applications

• M_6: 8 ECUs, 32 applications.

Note that each application consists of two threads within the above-mentioned use cases. To
address these use cases, the following constraints are taken into consideration.

• Time-triggered scheduling constraints for application threads. This ensures the feasi-
bility of application execution

• Each ECU must execute at least one application

Figure 7.19 (a) illustrates the time required for modeling and designing each of the use
cases, as discussed earlier, employing both the manual and proposed framework approaches.
Notably, for smaller topology sizes, the proposed model-based framework introduces a slight
overhead that leads to a marginally extended configuration time. However, as the topology
size scales up, particularly when the case study encompasses multiple objects sharing simi-
lar properties, a discernible acceleration in the process becomes evident. This acceleration
is closely tied to the intrinsic capability outlined in Chapter 5, which pertains to the auto-
matic creation of software/hardware components. This feature empowers the simultaneous
generation of multiple elements, thereby contributing significantly to the observed speedup.

In Figure 7.19 (b), the mapping use cases are illustrated using two distinct approaches:
manual and tool-assisted. It is noteworthy that the solving time exhibits exponential growth
as the number of components in the topologies increases when these case studies are solved
manually. While it may be relatively straightforward to intuitively derive solutions for use
cases with a limited number of constraints, the complexity rises exponentially as the con-
straints multiply. In contrast, referring to Figure 7.19 (b), the time required for solving these
same use cases via the tool remains remarkably low and consistent in comparison to the man-
ual method. This holds true even as the scale of topologies expands, with the time needed
to solve the mapping constraint set remaining relatively unaffected. Furthermore, the ad-
dition of further constraints does not significantly impact the solution time. This serves as

7.3 Quantitative and Qualitative Evaluation 141

evidence of how the proposed framework adeptly streamlines the design process for vehicle
E/E architectures.

Mapping & Routing Case Studies

In addition to the mapping use cases, routing and mapping use cases have also been taken
into account. These specific use cases serve the purpose of comprehensively evaluating the
overall functionality of the E/E Designer framework. The following case studies are consid-
ered and given to a group of students to perform the quantitative and qualitative analysis
similar to the mapping case studies.

• M&R_1: 5 ECUs, 2 applications with up to one thread, 1 communication message

• M&R_2: 5 ECUs, 8 applications with up to two threads, 4 communication messages

• M&R_3: 5 ECUs, 12 applications with up to two threads, 6 communication messages

• M&R_4: 5 ECUs, 16 applications with up to two threads, 8 communication messages

• M&R_5: 5 ECUs, 20 applications with up to two threads, 10 communication messages

• M&R_6: 5 ECUs, 28 applications with up to two threads, 14 communication messages

• M&R_7: 5 ECUs, 74 applications with up to two threads, 37 communication messages

To handle the routing and mapping use cases, the following constraints have been taken
into account.

• Scheduling constraints for applications threads and communication tasks

• Message routing conditions to find a reliable path from a sender to a receiver

• Each ECU must execute at least one application

• Each LOR’s link must be maximum three

Moreover, within the solving process, the optimization objectives of end-to-end latency and
response time are duly taken into account.

Figure 7.20 (a) expresses the configuration times associated with the design of the map-
ping and routing case studies illustrated above using both manual and tool-assisted ap-
proaches. In parallel to the mapping experiment, the framework’s modeling process con-
sumes more time at a smaller scale than the manual approach. However, as the model size
increases, the utilization of the tool becomes advantageous, resulting in an expedited design
process, as evident in Figure 7.20 (a).

The solving process of the mapping and routing experiment demonstrates significantly
longer durations than the mapping experiment within the manual solving, as illustrated in
Figure 7.20 (b). The extended durations can be attributed to the complexity introduced by
optimization goals and the number of problems necessitating resolution. Moreover, as can
be seen, there is a significant difference in solving time between using the manual and tool-
based approaches. It should be added that the manual solving time does not account for
solution optimality or visualization. The comparisons drawn here distinctly emphasize the
pronounced enhancements offered by the proposed framework, not only in the setup but
particularly in the resolution of use cases, from a quantitative standpoint. These insights
underscore the tool’s efficacy and efficiency in navigating intricate design scenarios.

142 Chapter 7 Evaluation

M
&R

1

M
&R

2

M
&R

3

M
&R

4

M
&R

5

M
&R

6

M
&R

7

5

10

15

20

ti
m

e
[m

in
]

(a) Configuration time of mapping and routing use cases

M
&R

1

M
&R

2

M
&R

3

M
&R

4

M
&R

5

M
&R

6

M
&R

7

0

10

20

30

40

50

(b) Solving time of mapping and routing use cases

Manual Tool

Figure 7.20: Results of the quantitative evaluation for the mapping and routing case studies using manual and
tool-assisted approaches. (a) The required setup time for each use case. (b) The required solving time for each
use case. The manual solving time does not include visualization and optimality of the solutions.

7.3.2 Qualitative Analysis

In addition to the quantifiable benefits, qualitative distinctions exist between the outcomes
of manual approaches and the solutions offered by the introduced tool.

• The manual solving process necessitates a complete restart whenever a single object
property changes. While the need to re-solve remains applicable to the introduced
framework’s approach, it is evident that the framework enables rapid exploration of
various property permutations. This accelerated process is an important advantage.

• The tool swiftly offers an overview of the feasibility of a desired configuration. Con-
versely, the manual method mandates a comprehensive exploration of all feasible com-
binations, a time-consuming task. This process can potentially be expedited when par-
tial mappings breach the constraints. Nevertheless, validating this condition requires
substantial additional time.

• The visualization of results quickly becomes disorganized when manual mapping is
carried out. In contrast, the E/E Designer automatically presents the outcomes in a
visually coherent manner, adeptly avoiding the issue of overlapping visuals.

• The E/E Designer offers a significant advantage. The tool ensures the finding of an
optimal solution. In contrast, when attempting manual solutions, especially for more
extensive use cases, it is possible to find solutions; however, discovering the optimized
solution becomes exceedingly challenging or unattainable.

8
Conclusion and Future Work

The demand for applications in modern vehicles has grown significantly, primarily due to the
integration of ADAS and automated driving technologies. To ensure that automotive designs
meet both safety and non-safety criteria in accordance with established standards like ISO
26262 and SOTIF [ISO18; ISO19], designers face increasingly intricate challenges when
configuring automotive architectures. This complexity stems from the need to seamlessly
integrate new applications and features into vehicles while working within the confines of
conventional E/E architectures [AHK22; AMK23; AFK21b].

Developing an E/E architecture with ADAS functionalities and algorithms that not only
fulfill safety-related aspects like timing, FFI, and redundancy but also meet various non-
safety-related requirements is a demanding and time-consuming endeavor. This task requires
a deep understanding of the specific domain [AFK21a; AFK20]. The manual integration and
configuration of a software architecture for an automotive HPCU pose considerable chal-
lenges and are susceptible to errors. This complexity arises from the need to align with
many hardware, application, OS, middleware, and hypervisor prerequisites and attributes.
The same level of intricacy applies to an automotive communication network setup, which
must guarantee secure data transmission for safety-critical ADAS applications. In addition,
synthesizing these configurations can be optimized for various objectives. These goals en-
compass minimizing power consumption, efficient resource utilization, enhanced reliability,
bandwidth optimization, temperature control, cost efficiency, response time, end-to-end la-
tency, and more [AHK22; AFK20; AMK23]. The following sections summarize the key con-
tributions of this thesis and provide perspectives on the limitations of this thesis and future
work.

8.1 Summary

This thesis addresses two research questions, and the results for each question are summa-
rized below. Before delving into these questions, a comprehensive analysis of current ap-
proaches and frameworks/tools for synthesizing vehicle E/E systems and embedded systems
is performed in Chapter 3.

• How to facilitate design and synthesis of E/E architectures?

To address this question, a novel model-based framework called E/E Designer is presented
for modeling and synthesizing automotive E/E architectures. The framework enables users

143

144 Chapter 8 Conclusion and Future Work

to model mixed-critical networks, providing automated mapping of applications, calculating
schedules for mapped application threads on different ECUs, processors, and cores, creating
valid paths for communication messages between senders and receivers (including single,
multicast, redundant, and homogeneous redundant routings), and computing schedules for
communication tasks routing over network links while considering message and path depen-
dencies. The proposed tool also supports and facilitates modeling hypervisors, covering both
types by considering different requirements and constraints, as explained in Chapter 4. It also
supports various safety requirements, such as ASIL, redundancy, FFI, and reliability. These
requirements are considered during the configuration process, which includes resource allo-
cation and message routing. For example, considering the failure rates of components, the
reliability of each communication route can be calculated; hence, the most reliable path can
be selected to route messages from senders to receivers.

The presented framework considers a range of boundary goals and optimization objec-
tives for the designed model, including end-to-end latency, response time, resource utiliza-
tion (including maximum resource usage, memory, and ECU), load balancing in the vehicle
communication network (comprising LOR and maximum bandwidth utilization), reliability
for single and redundant paths, and CR. Additionally, the introduced tool supports multi-
objective optimization using a hierarchical approach. This approach assigns priority to each
objective, and optimization is performed by considering objectives in descending order of
priority.

As illustrated in Chapter 4, the proposed framework utilizes an object-oriented meta-
model following MDD methodology. This metamodel is the foundation for graphical mod-
eling, which the E/E system integrator or modeler uses to create graphical model instances.
Using a formal system metamodel, the graphical model instances, which include the require-
ments, boundary goals, and optimization objectives, are transformed into MIP constraints.
Furthermore, an approach is employed to solve all constraint sets for mapping, application
thread scheduling, message routing, and communication task scheduling in a single optimiza-
tion run. This single-step approach reduces the solving time and maintains the interrelations
between the specified constraint decisions. Moreover, the proposed tool offers a web-based
frontend that allows users to model their desired E/E systems and select various hardware
and software requirements and properties, along with the aforementioned boundary and op-
timization goals. The developed frontend also visualizes the solution of the designed system
after it has been solved, as described in Chapter 5.

The performance of the model-based tool is assessed using three methods: a design-time
evaluation, where the solving and generation times of constraint sets in different scenarios
are evaluated, including scalability analysis; a run-time evaluation, where the solution is de-
ployed on an experimental setup; and quantitative and qualitative evaluation, where the per-
formance, usability, and practicality of the E/E Designer are assessed by addressing a series
of use cases through both manual and automated approaches. The design-time experiments
show that our formulations scale to systems with reasonably large sizes. During the run-time
experiments, it was noted that there were no instances of timing deadline breaches following
the deployment of the design-time solutions on an experimental setup. The evaluation is
explained in Chapter 7.

• How to simplify analysis of design errors in E/E architecture?

To address this question, an approach, called design error analysis, is introduced, as de-
picted in Chapter 6. This approach focuses on situations where a designed E/E architecture is
not satisfiable, meaning that the solver cannot find feasible solutions. Unlike simple models,
navigating and correcting the unsatisfiability of complex E/E models is a complex and time-
consuming task, which leads to increased development costs. To tackle this issue, the design

8.2 Limitations 145

error analysis approach is introduced to identify design errors when violations occur in the
constraint set included in the system model after the solving step. This feature is crucial for
detecting and rectifying errors in the system design within a reasonable timeframe, ensuring
that the system is optimized and meets all necessary constraints and requirements.

Two methods are used and evaluated, which include the IIS and Marco algorithms, to
apply the introduced approach. Since the proposed framework incorporates MIP constraints
and utilizes the Gurobi optimizer, the IIS method is preferred over the MARCO algorithm.
This preference is based on the implementation effort required and the effectiveness of the
Gurobi solver in handling MIP problems.

8.2 Limitations

8.2.1 Constraints Formulation

In this thesis, logical requirements and properties are automatically generated from the
graphical model and metamodel definitions. Also, the specified problems, converted into
MIP constraints, are acquired from analyzing the defined E/E system database. However, the
existing problems, boundary and optimization objectives do not cover all possible problems,
scenarios, and optimization goals related to vehicle E/E architecture, including real-time and
mixed-critical systems. Formulation of problems and goals for synthesizing the modeled E/E
systems (which can comprise various scheduling schemes and other hardware/software re-
quirements) requires a background in logic programming; in other words, the E/E system
integrator must have knowledge about MIP in order to develop and add new problems and
optimizations goals to the current system model. Therefore, this framework does not use spe-
cific modeling-based languages such as object constraint language (OCL) [WK03] and AADL
or any other modeling-based languages to define the problems. However, these languages
have their limitations in defining various problems.

8.2.2 Verification

As explained in Chapter 4, the developed tool, as a modular framework, uses Eclipse mod-
eling framework, Sirius Web, and Gurobi optimizer as software artifacts. These software
modules are utilized for the synthesis of E/E systems, which include safety requirements as
depicted in Chapter 4. The quality and correctness of the synthesis results depend highly on
the correct implementation of these software modules. Verification of the software compo-
nents directly impacts the certification of the safety-relevant parts of the model configured
using the framework. Ada programming language [Bar84] can be considered in the context
of formal verification. Ada is known for its strong support of formal methods and formal
verification. Ada’s type system and design principles make it more amenable to formal ver-
ification techniques. However, using Ada depends on whether that can fit into the system
model and if it is necessary to be used in the context of E/E architecture synthesis.

8.2.3 Placement of E/E Components

Modeling the positioning of E/E components in a car’s body is important in terms of cost,
safety-criticality, wiring harness design, thermal management, and overall performance. How-
ever, the introduced computer-aided tool does not support the exact placement of E/E com-

146 Chapter 8 Conclusion and Future Work

ponents in the car, considering the size of the car’s body. This can assist E/E system architects
in calculating and predicting various parameters such as wiring harness, material usage,
overheating of components, electromagnetic interference, damage to ECUs in case of crash,
etc.

8.2.4 Design Error Analysis

The presented design error analysis approach for finding the source of system model unsat-
isfiability contains the information that aids in navigating the origin of violation in the set of
constraints and reduces time and complexity. In other words, the most critical constraints,
which have caused the model infeasibility, are weighted based on their criticality level.

However, this approach does not create any explanations or correcting recommendations
or proposals. There is also no guarantee of how many iterations are required to achieve the
satisfiability of the E/E model. The number of iterations depends on the correction actions
and modifications of the model. Incorrect modifications can also cause more conflicting
constraints. Hence, knowledge of E/E systems and understanding of defined problems are
required to derive adequate modifications in the designed model.

8.3 Future Works

8.3.1 New Requirements and Features

As part of future work, additional challenges, safety requirements, and optimization objec-
tives can be incorporated into the existing system model of the framework. For example,
new scheduling schemes, such as priority-based scheduling, event-triggered scheduling, ear-
liest deadline first (EDF), rate monotonic (RM) scheduling, and others, can be seamlessly
integrated into the tool. This expansion will provide a more comprehensive coverage of
scheduling possibilities for application threads and communication tasks. Furthermore, there
is potential for an increased level of granularity in the modeling and synthesis of E/E archi-
tectures. This means that more intricate details, encompassing additional requirements and
properties, can be included in the current hardware and software components model. This
extension may encompass various elements such as applications, threads, hypervisors, ECUs,
HPCUs, switches, gateways, etc.

The ability to position and configure E/E components such as ECUs, switches, wiring har-
nesses, connectors, and HPCUs within a vehicle’s body, taking into account standard vehicle
dimensions, assists engineers in determining the optimal component locations and configu-
rations, as discussed in Subsection 8.2.3. This process can also generate estimates for various
aspects of the vehicle’s wiring harness, including its length, weight, type, required space,
cost, connector types, voltage and current ratings, and more. Proper placement of E/E com-
ponents helps minimize the length of wiring harnesses. Shorter harnesses reduce material
usage, which can lead to cost savings. Reduced harness complexity and simplified assem-
bly lead to cost-efficient manufacturing processes. Accurate placement of safety-critical E/E
components is vital to ensure their proper operation, and proper positioning helps prevent
electromagnetic interference, overheating, and damage, which can impact the vehicle’s safety.
Optimal placement ensures that wiring harnesses are routed efficiently, reducing complexity
and the likelihood of signal interference. It also minimizes signal propagation delays and the
risk of signal degradation or electromagnetic interference. Effective modeling considers heat
dissipation from E/E components and can help avoid overheating issues, ensuring long-term

8.3 Future Works 147

reliability. Furthermore, the positioning of HPCUs must be ensured to minimize signal la-
tency and facilitate efficient data flow for advanced features. The same condition is applied
to ECUs related to safety-critical systems (e.g., airbag deployment), which require careful
positioning to ensure that they operate reliably and are protected from damage in case of a
collision.

8.3.2 Run-time E/E Configurator

The developed framework solely focused on the design phase for modeling and synthesizing
car E/E systems. However, synthesizing E/E systems in real-time is both innovative and valu-
able. To achieve this objective, various perspectives and requirements must be considered.
This concept becomes relevant during OTA updates for vehicle software. In this scenario,
when a new application is installed on the current software platform, it is vital to check
the application’s requirements and perform a new synthesis to ensure it does not disrupt
the existing E/E configuration before the software update. This process can occur while the
car is charging overnight or parked in a designated slot. The synthesis may encompass the
above-mentioned issues and potentially introduce new challenges. For cases where new re-
quirements have not been integrated into the existing system model, a new approach must
be devised to incorporate these new requirements and conditions into the previous system
model before re-synthesizing the car’s E/E system.

8.3.3 Uncertain Optimization

As described in Chapter 4, to compute reliability, constant failure rates of components pro-
vided by the user are considered. However, this thesis does not address the uncertainty in
these failure rates. As a future endeavor, exploring the introduction of uncertainty into re-
liability calculations can be investigated. This would involve defining a range for each com-
ponent’s failure rate, including its mean and standard deviation. Based on this information,
reliability for each sample at a specific time can be computed. In this scenario, multiple con-
figurations with varying reliabilities can be generated while considering other optimization
goals such as cost, response time, end-to-end latency, etc., using different uncertain optimiza-
tion approaches like robust and scenario-based optimizations. The failure rate can also be
modeled by considering a specific failure rate for each failure mode.

8.3.4 Run-time Simulation

Another aspect of future work involves testing and evaluating synthesized configurations
within a simulated environment. In this thesis, the solutions created by the E/E Designer
framework were deployed on a real hardware platform for assessment. However, incorporat-
ing a simulation environment that is interconnected with the introduced tool enhances the
visualization and analysis of design-time solutions, thereby improving the usability of this
framework. Furthermore, the simulation can illustrate the differences between optimized
and non-optimized solutions, presenting how an optimized solution impacts the system’s
performance.

A
Appendix 1

The following table illustrates the notation references for the variables used in the equations
presented in Chapter 4.

Table A.1: Notation Reference.

MIP Input

aasil ASIL level of an application

apn a tolerable limit for number of assigned applications

bw maximum amount of data transfer over a network link

ci .p, ci . f l period and frame length of communication task ci

G(N , L) set of vehicle topology nodes and full-duplex links

ipg required time between network packets

pd maximum processing delay of a communication frame

rd required time for preparation of receiving a packet by a ncz

sd required time for preparation of sending a packet by a ncz

s ync maximum difference between two any clocks in the system

t i .p, t i .e period and execution time of thread t i, i ∈ N
ts
i j sender thread of application a j for communication message di, j ∈ N

t r
i j receiver thread of application a j for communication message di

MIP Decision Variables

ci .st continuous: starting time of communication task ci

di
in binary: 1 if communication message di enters to a node via link

di
out binary: 1 if communication message di goes out from a node via link

mi j binary: 1 if application a j is executing on node ncz
i

mi j
s binary: 1 if sender thread t from a j is executing on node ncz

i

mi j
r binary: 1 if receiver thread t from a j is executing on node ncz

i

t i .st continuous: starting time of thread t i

v, r, q binary: decided based on expression’s solution

149

150 Appendix A Appendix 1

Table A.1. Continued.

Assistive Terms

A a set of applications

Asc a set of safety-critical applications

ai .t i j one/many threads j belong to ai

ai .t
s
i j .di sender thread t j, which belongs to ai, sending di out

ai .t
r
i j .di receiver thread t j, which belongs to ai, receiving di

a j .mu memory usage of a j

C a set of communication tasks

ci .st
l j

di
starting time of ci related to di over link l j

D a set of communication messages

di .chi message chain of di containing sender and receiver threads for di

di .ci communication task of di

di .r t, di .el response time and end-to-end latency of di

dout
i .lna

a,b message di is sent out from na over la,b

d in
i .lna

b,a message di is received by na over lb,a

L a set of links

la,b, lb,a directed link from na to nb and directed link from nb to na

M a set of mapping variables

mi j .a j
ncz

i mapping variable of a j running on ncz
i

ms
i j .a j

ncz
i mapping variable of sender thread from a j running on ncz

i

mr
i j .a j

ncz
i mapping variable of receiver thread from a j running on ncz

i

N a set of nodes

n j .d
in
p message dp enters to n j over a link

n j .d
out
p message dp goes out from n j over a link

ncz, nnz control node and networking node

nczc single processor core of a control node

ncz
i .mmax maximum memory capacity of ncz

i

nl number of links related to each possible path

T a set of application threads

ts
i .stdi

starting time of sender t i sending di

t r
i .stdi

starting time of receiver t i receiving di

In the following, a visual representation of the object-oriented metamodel created for the
computer-assisted tool introduced in this thesis is provided.

151

Fi
gu

re
A

.1
:

O
bj

ec
t-o

rie
nt

ed
m

et
am

od
el

fo
r

th
e

E
/E

D
es

ig
ne

r
fra

m
ew

or
k.

Th
e

gr
ee

n
bo

xe
s

in
di

ca
te

th
e

cl
as

se
s,

an
d

th
e

w
hi

te
bo

xe
s

re
pr

es
en

tt
he

ty
pe

s
of

da
ta

an
d

el
em

en
ts

us
ed

w
ith

in
th

e
cl

as
se

s.

Bibliography

[Abd+17] Abdulkhaleq, A., Wagner, S., Lammering, D., Boehmert, H., and Blueher, P. “Us-
ing STPA in compliance with ISO 26262 for developing a safe architecture for
fully automated vehicles”. In: arXiv preprint arXiv:1703.03657 (2017).

[ADL21] ADLINK. ADLINK AVA-3501. 2021. URL: https : //www.adlinktech . com/en/
Connected-Autonomous-Vehicle-Solutions.

[Ale+09] Aleti, A., Bjornander, S., Grunske, L., and Meedeniya, I. “ArcheOpterix: An ex-
tendable tool for architecture optimization of AADL models”. In: 2009 ICSE
Workshop on Model-Based Methodologies for Pervasive and Embedded Software.
IEEE. 2009, pp. 61–71.

[Ani+16] Aniculaesei, A., Arnsberger, D., Howar, F., and Rausch, A. “Towards the verifica-
tion of safety-critical autonomous systems in dynamic environments”. In: arXiv
preprint arXiv:1612.04977 (2016).

[Ans+12] Anssi, S., Albers, K., Dörfel, M., and Gérard, S. “chronval/chronsim: A tool suite
for timing verification of auto-motive applications”. In: Embedded Real Time
Software and Systems (ERTS2012). 2012.

[Apt23] Aptiv. SDV. 2023. URL: https://www.aptiv.com/en/insights/article/what-is-a-
software-defined-vehicle.

[Ara+15] Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., and Schätz, B. “AutoFOCUS 3: Tool-
ing Concepts for Seamless, Model-based Development of Embedded Systems.”
In: ACES-MB&WUCOR@ MoDELS 1508 (2015), pp. 19–26.

[AGH05] Arnold, K., Gosling, J., and Holmes, D. The Java programming language. Addison
Wesley Professional, 2005.

[Ars06] Arsham, H. “A big-M free solution algorithm for general linear programs”. In:
International Journal of Pure and Applied Mathematics 32.4 (2006), p. 549.

[Ash+17] Ashjaei, M., Patti, G., Behnam, M., Nolte, T., Alderisi, G., and Lo Bello, L.
“Schedulability analysis of Ethernet Audio Video Bridging networks with sched-
uled traffic support”. In: Real-Time Systems 53 (2017), pp. 526–577.

[AFK20] Askaripoor, H., Farzaneh, M. H., and Knoll, A. “Considering Safety Require-
ments in Design Phase of Future E/E Architectures”. In: 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA).
Vol. 1. 2020, pp. 1165–1168. DOI: 10.1109/ETFA46521.2020.9212001.

[AFK21a] Askaripoor, H., Farzaneh, M. H., and Knoll, A. “A Model-Based Approach to Fa-
cilitate Design of Homogeneous Redundant E/E Architectures”. In: 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC). 2021, p. 3426
3431. DOI: 10.1109/ITSC48978.2021.9565115.

153

https://www.adlinktech.com/en/Connected-Autonomous-Vehicle-Solutions
https://www.adlinktech.com/en/Connected-Autonomous-Vehicle-Solutions
https://www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle
https://www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle
https://doi.org/10.1109/ETFA46521.2020.9212001
https://doi.org/10.1109/ITSC48978.2021.9565115

154 Bibliography

[AFK21b] Askaripoor, H., Farzaneh, M. H., and Knoll, A. “A Platform to Configure and
Monitor Safety-Critical Applications for Automotive Central Computers”. In:
2021 26th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). 2021, pp. 1–4. DOI: 10.1109/ETFA45728.2021.9613692.

[AHK22] Askaripoor, H., Hashemi Farzaneh, M., and Knoll, A. “E/E Architecture Synthe-
sis: Challenges and Technologies”. In: Electronics 11.4 (2022), p. 518.

[AMK23] Askaripoor, H., Mueller, T., and Knoll, A. “E/E Designer: a Framework to Design
and Synthesize Vehicle E/E Architecture”. In: IEEE Transactions on Intelligent
Vehicles (2023), pp. 1–18. DOI: 10.1109/TIV.2023.3324617.

[ASK21] Askaripoor, H., Shafaei, S., and Knoll, A. C. “A Flexible Scheduling Architec-
ture of Resource Distribution Proposal for Autonomous Driving Platforms.” In:
VEHITS. 2021, pp. 594–599.

[AHM19] Atallah, A. A., Hamad, G. B., and Mohamed, O. A. “Routing and scheduling
of time-triggered traffic in time-sensitive networks”. In: IEEE Transactions on
Industrial Informatics 16.7 (2019), pp. 4525–4534.

[AHM20] Atallah, A. A., Hamad, G. B., and Mohamed, O. A. “Routing and Scheduling
of Time-Triggered Traffic in Time-Sensitive Networks”. In: IEEE Transactions on
Industrial Informatics 16.7 (2020), pp. 4525–4534. DOI: 10.1109/TII .2019.
2950887.

[AK03] Atkinson, C. and Kuhne, T. “Model-driven development: a metamodeling foun-
dation”. In: IEEE software 20.5 (2003), pp. 36–41.

[Aut20] Autosarbilder. Simulation Toolset: Autosarbuilder. Last accessed 10 October 2021.
2020. URL: https://www.3ds.com/fileadmin/Welcome_to_AUTOSAR_Builder_
2020x.pdf.

[Aut21] Autosarbilder. Simulation Toolset: Autosarbuilder - Dassault Systemes. https://
www.3ds.com/products- services/catia/products/autosar- builder/. Last ac-
cessed 9 October 2021. 2021. URL: https://www.3ds.com/products-services/
catia/products/autosar-builder/.

[BS05] Bailey, J. and Stuckey, P. J. “Discovery of minimal unsatisfiable subsets of con-
straints using hitting set dualization”. In: Practical Aspects of Declarative Lan-
guages: 7th International Symposium, PADL 2005, Long Beach, CA, USA, January
10-11, 2005. Proceedings 7. Springer. 2005, pp. 174–186.

[BSW03] Banda, M. G. de la, Stuckey, P. J., and Wazny, J. “Finding all minimal unsatisfi-
able subsets”. In: Proceedings of the 5th ACM SIGPLAN international conference
on Principles and practice of declaritive programming. 2003, pp. 32–43.

[Bar84] Barnes, J. G. Programming in ADA. Addison-Wesley Longman Publishing Co.,
Inc., 1984.

[Beh+06] Behrmann, G., David, A., Larsen, K. G., Håkansson, J., Pettersson, P., Yi, W., and
Hendriks, M. “Uppaal 4.0”. In: (2006).

[Bha+12] Bhatti, Z. W., Miniskar, N. R., Preuveneers, D., Wuyts, R., Berbers, Y., and
Catthoor, F. “Memory and communication driven spatio-temporal scheduling
on MPSoCs”. In: 2012 25th Symposium on Integrated Circuits and Systems De-
sign (SBCCI). IEEE. 2012, pp. 1–6.

[BHM09] Biere, A., Heule, M., and Maaren, H. van. Handbook of satisfiability. Vol. 185.
IOS press, 2009.

https://doi.org/10.1109/ETFA45728.2021.9613692
https://doi.org/10.1109/TIV.2023.3324617
https://doi.org/10.1109/TII.2019.2950887
https://doi.org/10.1109/TII.2019.2950887
https://www.3ds.com/fileadmin/Welcome_to_AUTOSAR_Builder_2020x.pdf
https://www.3ds.com/fileadmin/Welcome_to_AUTOSAR_Builder_2020x.pdf
https://www.3ds.com/products-services/catia/products/autosar-builder/
https://www.3ds.com/products-services/catia/products/autosar-builder/
https://www.3ds.com/products-services/catia/products/autosar-builder/
https://www.3ds.com/products-services/catia/products/autosar-builder/

Bibliography 155

[Bok81] Bokhari, S. H. “A shortest tree algorithm for optimal assignments across space
and time in a distributed processor system”. In: IEEE transactions on Software
Engineering 6 (1981), pp. 583–589.

[Bol+16] Bolchini, C., Carminati, M., Mitra, T., and Muthukaruppan, T. S. “Combined
on-line lifetime-energy optimization for asymmetric multicores”. In: 2016 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnol-
ogy Systems (DFT). IEEE. 2016, pp. 35–40.

[BC+06] Bondarev, E., Chaudron, M., et al. “A process for resolving performance trade-
offs in component-based architectures”. In: International Symposium on Compo-
nent Based Software Engineering. Springer. 2006, pp. 254–269.

[BCK07] Bondarev, E., Chaudron, M. R., and Kock, E. A. de. “Exploring performance
trade-offs of a JPEG decoder using the DeepCompass framework”. In: Pro-
ceedings of the 6th International Workshop on Software and Performance. 2007,
pp. 153–163.

[BSJ18] Bozdal, M., Samie, M., and Jennions, I. “A survey on can bus protocol: At-
tacks, challenges, and potential solutions”. In: 2018 International Conference
on Computing, Electronics & Communications Engineering (iCCECE). IEEE. 2018,
pp. 201–205.

[Bra+01] Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther,
A. I., Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., et al. “A comparison
of eleven static heuristics for mapping a class of independent tasks onto hetero-
geneous distributed computing systems”. In: Journal of Parallel and Distributed
computing 61.6 (2001), pp. 810–837.

[Bro06] Broy, M. “Challenges in automotive software engineering”. In: Proceedings of the
28th international conference on Software engineering. 2006, pp. 33–42.

[BL99] Büning, H. K. and Lettmann, T. Propositional logic: deduction and algorithms.
Vol. 48. Cambridge University Press, 1999.

[BGT04] Burmester, S., Giese, H., and Tichy, M. “Model-driven development of reconfig-
urable mechatronic systems with mechatronic UML”. In: Model Driven Architec-
ture. Springer, 2004, pp. 47–61.

[Bus23a] Bus, C. CAN Bus. 2023. URL: https://www.csselectronics.com/pages/can-bus-
simple-intro-tutorial.

[Bus23b] Bus, L. LIN Bus. 2023. URL: https://www.ni.com/en/shop/seamlessly-connect-
to - third - party - devices - and- supervisory - system/introduction- to - the - local -
interconnect-network-lin-bus.html.

[BFK19] Busch, A., Fuchß, D., and Koziolek, A. “Peropteryx: Automated improvement
of software architectures”. In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). IEEE. 2019, pp. 162–165.

[CCM07] Carvalho, E., Calazans, N., and Moraes, F. “Heuristics for dynamic task map-
ping in NoC-based heterogeneous MPSoCs”. In: 18th IEEE/IFIP International
Workshop on Rapid System Prototyping (RSP’07). IEEE. 2007, pp. 34–40.

[Cas+12] Castrillon, J., Tretter, A., Leupers, R., and Ascheid, G. “Communication-aware
mapping of KPN applications onto heterogeneous MPSoCs”. In: DAC Design Au-
tomation Conference 2012. IEEE. 2012, pp. 1262–1267.

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisory-system/introduction-to-the-local-interconnect-network-lin-bus.html
https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisory-system/introduction-to-the-local-interconnect-network-lin-bus.html
https://www.ni.com/en/shop/seamlessly-connect-to-third-party-devices-and-supervisory-system/introduction-to-the-local-interconnect-network-lin-bus.html

156 Bibliography

[Chi+17] Chitnis, K., Mody, M., Swami, P., Sivaraj, R., Ghone, C., Biju, M., Narayanan,
B., Dutt, Y., and Dubey, A. “Enabling functional safety ASIL compliance for au-
tonomous driving software systems”. In: Electronic Imaging 29 (2017), pp. 35–
40.

[Com+17] Commission, I. E. et al. Electric components- Reliability- Reference conditions for
failure rates and stress models for conversion: IEC 61709. 2017.

[Com23] Commission, I. E. IEC 61508. 2023. URL: https://webstore.iec.ch/publication/
5515.

[CBB05] Correll, K., Barendt, N., and Branicky, M. “Design considerations for software
only implementations of the IEEE 1588 precision time protocol”. In: Conference
on IEEE. Vol. 1588. 11. 2005.

[Cos+08] Coskun, A. K., Rosing, T. S., Whisnant, K. A., and Gross, K. C. “Temperature-
aware MPSoC scheduling for reducing hot spots and gradients”. In: 2008 Asia
and South Pacific Design Automation Conference. IEEE. 2008, pp. 49–54.

[Cpl09] Cplex, I. I. “V12. 1: User’s Manual for CPLEX”. In: International Business Ma-
chines Corporation 46.53 (2009), p. 157.

[Cra+16] Craciunas, S. S., Oliver, R. S., Chmelık, M., and Steiner, W. “Scheduling real-
time communication in IEEE 802.1 Qbv time sensitive networks”. In: Proceed-
ings of the 24th International Conference on Real-Time Networks and Systems.
2016, pp. 183–192.

[DKV14] Das, A., Kumar, A., and Veeravalli, B. “Communication and migration energy
aware task mapping for reliable multiprocessor systems”. In: Future Generation
Computer Systems 30 (2014), pp. 216–228.

[Das+14] Das, A., Kumar, A., Veeravalli, B., Bolchini, C., and Miele, A. “Combined DVFS
and mapping exploration for lifetime and soft-error susceptibility improvement
in MPSoCs”. In: 2014 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). IEEE. 2014, pp. 1–6.

[DB08] De Moura, L. and Bjørner, N. “Z3: An efficient SMT solver”. In: International
conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2008, pp. 337–340.

[DeN+01] DeNuto, J. V., Ewbank, S., Kleja, F., Lupini, C. A., and Perisho Jr, R. A. “LIN
Bus and its Potential for use in Distributed Multiplex Applications”. In: SAE
transactions (2001), pp. 135–142.

[DHN06] Dershowitz, N., Hanna, Z., and Nadel, A. “A scalable algorithm for minimal un-
satisfiable core extraction”. In: Theory and Applications of Satisfiability Testing-
SAT 2006: 9th International Conference, Seattle, WA, USA, August 12-15, 2006.
Proceedings 9. Springer. 2006, pp. 36–41.

[Dev+15] Deveci, M., Kaya, K., Uçar, B., and Çatalyürek, Ü. V. “Hypergraph partitioning
for multiple communication cost metrics: Model and methods”. In: Journal of
Parallel and Distributed Computing 77 (2015), pp. 69–83.

[DS18] Dijk, L. van and Sporer, G. “Functional safety for automotive ethernet net-
works”. In: Journal of Traffic and Transportation Engineering 6.4 (2018), pp. 176–
182.

[DLM13] Ding, H., Liang, Y., and Mitra, T. “Shared cache aware task mapping for WCRT
minimization”. In: 2013 18th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). IEEE. 2013, pp. 735–740.

https://webstore.iec.ch/publication/5515
https://webstore.iec.ch/publication/5515

Bibliography 157

[Dis23] Dis, C. B. CAN Bus. 2023. URL: https://www.itrelease.com/2021/12/advantages-
and-disadvantages-of-controller-area-network-can/.

[Ecl22] Eclipse. Sirius Web. https://www.eclipse.org/sirius/sirius-web.html. Last ac-
cessed 16 September 2022. 2022. URL: https://www.eclipse.org/sirius/sirius-
web.html.

[Ecl23] Eclipse Foundation, I. The Community for Open Innovation and Collaboration:
The Eclipse Foundation. http://www.eclipse.org/. Last accessed 29 September
2023. 2023. URL: http://www.eclipse.org/.

[Edm+15] Edman, R., Shackleton, H., Shackleton, J., Smith, T., and Vestal, S. “A Frame-
work for Compositional Timing Analysis of Embedded Computer Systems”. In:
2015 IEEE 17th International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security, and 2015 IEEE 12th International Conference on Embedded Software
and Systems. 2015, pp. 1001–1004. DOI: 10.1109/HPCC-CSS-ICESS.2015.239.

[ETA21] ETAS. ASCET-DEVELOPER. [Online;Last accessed 25 September 2021]. 2021.
URL: https://www.etas.com/en/products/ascet-developer.php.

[Eth23] Ethernet, A. Automotive Ethernet. 2023. URL: https://www.plm.automation.
siemens.com/global/en/our- story/glossary/what- is- automotive- ethernet/
109722.

[FK17] Farzaneh, M. H. and Knoll, A. “Time-sensitive networking (TSN): An exper-
imental setup”. In: 2017 IEEE Vehicular Networking Conference (VNC). IEEE.
2017, pp. 23–26.

[FKK17] Farzaneh, M. H., Kugele, S., and Knoll, A. “A graphical modeling tool supporting
automated schedule synthesis for time-sensitive networking”. In: 2017 22nd
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE. 2017, pp. 1–8.

[Fei19] Feiler, P. The Open Source AADL Tool Environment (OSATE). Tech. rep. Carnegie
Mellon University Software Engineering Institute, 2019.

[FGH06] Feiler, P. H., Gluch, D. P., and Hudak, J. J. The architecture analysis & design
language (AADL): An introduction. Tech. rep. Carnegie-Mellon Univ Pittsburgh
PA Software Engineering Inst, 2006.

[Fer+10] Ferrandi, F., Lanzi, P. L., Pilato, C., Sciuto, D., and Tumeo, A. “Ant colony heuris-
tic for mapping and scheduling tasks and communications on heterogeneous
embedded systems”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 29.6 (2010), pp. 911–924.

[Fin18] Finn, N. “Introduction to time-sensitive networking”. In: IEEE Communications
Standards Magazine 2.2 (2018), pp. 22–28.

[Fle23] FlexRay. FlexRay Bus. 2023. URL: https://automotivetechis.wordpress.com/
flexray / # : ~ : text = Disadvantages % 20of % 20Flexray % 3A , %2C % 20non %
2Dsafety%20critical%20applications.

[FL05] Floudas, C. A. and Lin, X. “Mixed integer linear programming in process schedul-
ing: Modeling, algorithms, and applications”. In: Annals of Operations Research
139 (2005), pp. 131–162.

[For09] Fortnow, L. “The status of the P versus NP problem”. In: Communications of the
ACM 52.9 (2009), pp. 78–86.

https://www.itrelease.com/2021/12/advantages-and-disadvantages-of-controller-area-network-can/
https://www.itrelease.com/2021/12/advantages-and-disadvantages-of-controller-area-network-can/
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/sirius/sirius-web.html
https://www.eclipse.org/sirius/sirius-web.html
http://www.eclipse.org/
http://www.eclipse.org/
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.239
https://www.etas.com/en/products/ascet-developer.php
https://www.plm.automation.siemens.com/global/en/our-story/glossary/what-is-automotive-ethernet/109722
https://www.plm.automation.siemens.com/global/en/our-story/glossary/what-is-automotive-ethernet/109722
https://www.plm.automation.siemens.com/global/en/our-story/glossary/what-is-automotive-ethernet/109722
https://automotivetechis.wordpress.com/flexray/#:~:text=Disadvantages%20of%20Flexray%3A,%2C%20non%2Dsafety%20critical%20applications
https://automotivetechis.wordpress.com/flexray/#:~:text=Disadvantages%20of%20Flexray%3A,%2C%20non%2Dsafety%20critical%20applications
https://automotivetechis.wordpress.com/flexray/#:~:text=Disadvantages%20of%20Flexray%3A,%2C%20non%2Dsafety%20critical%20applications

158 Bibliography

[FH20] Frank, S. and Hoorn, A. van. “SQuAT-Vis: Visualization and Interaction in Soft-
ware Architecture Optimization”. In: European Conference on Software Architec-
ture. Springer. 2020, pp. 107–119.

[FE98] Fritzson, P. and Engelson, V. “Modelica—A unified object-oriented language for
system modeling and simulation”. In: European Conference on Object-Oriented
Programming. Springer. 1998, pp. 67–90.

[Für+09] Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper, P.,
Kinkelin, G., Nishikawa, K., and Lange, K. “AUTOSAR–A Worldwide Standard is
on the Road”. In: 14th International VDI Congress Electronic Systems for Vehicles,
Baden-Baden. Vol. 62. 2009, p. 5.

[GPM14] Gan, J., Pop, P., and Madsen, J. Tradeoff analysis for dependable real-time em-
bedded systems during the early design phases. DTU Compute, 2014.

[Gan+16] Gan, Z., Zhang, M., Gu, Z., and Zhang, J. “Minimizing energy consumption
for embedded multicore systems using cache configuration and task mapping”.
In: 2016 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC). IEEE. 2016, pp. 328–334.

[GJS74] Garey, M. R., Johnson, D. S., and Stockmeyer, L. “Some simplified NP-complete
problems”. In: Proceedings of the sixth annual ACM symposium on Theory of com-
puting. 1974, pp. 47–63.

[Gav+17] Gavrilut, V., Zarrin, B., Pop, P., and Samii, S. “Fault-tolerant topology and rout-
ing synthesis for IEEE time-sensitive networking”. In: Proceedings of the 25th
International Conference on Real-Time Networks and Systems. 2017, pp. 267–
276.

[Gia+14] Giannopoulou, G., Stoimenov, N., Huang, P., and Thiele, L. “Mapping mixed-
criticality applications on multi-core architectures”. In: 2014 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE. 2014, pp. 1–6.

[GZ+19] Girault, A., Zarandi, H. R., et al. “Erpot: A quad-criteria scheduling heuristic
to optimize execution time, reliability, power consumption and temperature
in multicores”. In: IEEE Transactions on Parallel and Distributed Systems 30.10
(2019), pp. 2193–2210.

[GR90] Gleeson, J. and Ryan, J. “Identifying minimally infeasible subsystems of inequal-
ities”. In: ORSA Journal on Computing 2.1 (1990), pp. 61–63.

[GNU00] GNU. The GNU Linear Programming Kit (GLPK). http://www.gnu.org/software/
glpk/glpk.html. Last accessed 28 February 2023. Oct. 2000. URL: http://www.
gnu.org/software/glpk/glpk.html.

[GRC18] Gosavi, M. A., Rhoades, B. B., and Conrad, J. M. “Application of functional
safety in autonomous vehicles using ISO 26262 standard: A survey”. In: South-
eastCon 2018. IEEE. 2018, pp. 1–6.

[Gun18] Gunantara, N. “A review of multi-objective optimization: Methods and its ap-
plications”. In: Cogent Engineering 5.1 (2018), p. 1502242.

[GBI21] Gupta, M., Bhargava, L., and Indu, S. “Mapping techniques in multicore pro-
cessors: current and future trends”. In: The Journal of Supercomputing (2021),
pp. 1–56.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022. URL: https:
//www.gurobi.com.

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://www.gurobi.com
https://www.gurobi.com

Bibliography 159

[HT06] Hailpern, B. and Tarr, P. “Model-driven development: The good, the bad, and
the ugly”. In: IBM systems journal 45.3 (2006), pp. 451–461.

[Ham+04] Hamann, A., Henia, R., Racu, R., Jersak, M., Richter, K., and Ernst, R. “Symta/s-
symbolic timing analysis for systems”. In: WIP Proc. Euromicro Conference on
Real-Time Systems 2004 (ECRTS04). Citeseer. 2004, pp. 17–20.

[HTM10] Hartman, A. S., Thomas, D. E., and Meyer, B. H. “A case for lifetime-aware
task mapping in embedded chip multiprocessors”. In: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis. 2010, pp. 145–154.

[HL19] Haupt, N. B. and Liggesmeyer, P. “A runtime safety monitoring approach for
adaptable autonomous systems”. In: Computer Safety, Reliability, and Security:
SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE,
Turku, Finland, September 10, 2019, Proceedings 38. Springer. 2019, pp. 166–
177.

[Hen+05] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and Ernst, R. “Sys-
tem level performance analysis–the SymTA/S approach”. In: IEE Proceedings-
Computers and Digital Techniques 152.2 (2005), pp. 148–166.

[HB17] Hilbrich, R. and Behrisch, M. “Experiences gained from modeling and solving
large mapping problems during system design”. In: 2017 Annual IEEE Interna-
tional Systems Conference (SysCon). IEEE. 2017, pp. 1–8.

[HD13] Hilbrich, R. and Dieudonné, L. “Deploying safety-critical applications on com-
plex avionics hardware architectures”. In: (2013).

[HF07] Hölzl, F. and Feilkas, M. “13 autofocus 3-a scientific tool prototype for model-
based development of component-based, reactive, distributed systems”. In: Work-
shop on Model-Based Engineering of Embedded Real-Time Systems. 2007, pp. 317–
322.

[HKI15] Höttger, R., Krawczyk, L., and Igel, B. “Model-based automotive partitioning
and mapping for embedded multicore systems”. In: International Conference on
Parallel, Distributed Systems and Software Engineering. Vol. 2. 1. Citeseer. 2015,
p. 888.

[Höt+17] Höttger, R., Mackamul, H., Sailer, A., Steghöfer, J.-P., and Tessmer, J. “APP4MC:
Application platform project for multi-and many-core systems”. In: it Informa-
tion Technology 59.5 (2017), pp. 243–251.

[HM05] Hu, J. and Marculescu, R. “Energy-and performance-aware mapping for regular
NoC architectures”. In: IEEE Transactions on computer-aided design of integrated
circuits and systems 24.4 (2005), pp. 551–562.

[HYX09] Huang, L., Yuan, F., and Xu, Q. “Lifetime reliability-aware task allocation and
scheduling for MPSoC platforms”. In: 2009 Design, Automation & Test in Europe
Conference & Exhibition. IEEE. 2009, pp. 51–56.

[Hug+08] Hugues, J., Zalila, B., Pautet, L., and Kordon, F. “From the prototype to the final
embedded system using the Ocarina AADL tool suite”. In: ACM Transactions on
Embedded Computing Systems (TECS) 7.4 (2008), pp. 1–25.

[IEE18] IEEE. Institute of Electrical and Electronics Engineers, Inc, Time-Sensitive Network-
ing (TSN) Task Group. https://1.ieee802.org/tsn/. Last accessed 21 May 2020.
2018. URL: https://1.ieee802.org/tsn/.

https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/

160 Bibliography

[INC21] INCHRON. ChronVALWorst-Case Timing Analysis. https://www.inchron.com/
chronval/. Last accessed October 2021. 2021. URL: https://www.inchron.com/
chronval/.

[Int23] Intel. Inteli210. 2023. URL: https://www.intel .com/content/www/us/en/
products/details/ethernet/gigabit-controllers/i210-controllers.html.

[ISO18] ISO. ISO 26262-1:2018. https://www.iso.org/standard/68383.html. Last ac-
cessed 30 August 2021. 2018. URL: https://www.iso.org/standard/68383.html.

[ISO19] ISO. Safety Of The Intended Functionality (SOTIF). Last accessed 16 September
2021. 2019. URL: https://www.iso.org/standard/70939.html.

[Jia19] Jiang, S. Vehicle e/e architecture and its adaptation to new technical trends. Tech.
rep. SAE Technical Paper, 2019.

[Jün+09] Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R.,
Reinelt, G., Rinaldi, G., and Wolsey, L. A. 50 Years of integer programming 1958-
2008: From the early years to the state-of-the-art. Springer Science & Business
Media, 2009.

[Juo+18] Juodisius, P., Sarkar, A., Mukkamala, R. R., Antkiewicz, M., Czarnecki, K., and
Wasowski, A. “Clafer: Lightweight modeling of structure, behaviour, and vari-
ability”. In: arXiv preprint arXiv:1807.08576 (2018).

[Kai+12] Kaida, J., Hieda, T., Taniguchi, I., Tomiyama, H., Hara-Azumi, Y., and Inoue,
K. “Task mapping techniques for embedded many-core socs”. In: 2012 Interna-
tional SoC Design Conference (ISOCC). IEEE. 2012, pp. 204–207.

[KAL20] KALRAY. Safe compute acceleration for automotive. 2020. URL: https://www.
kalrayinc.com/automotive/.

[KJS11] Kang, E., Jackson, E., and Schulte, W. “An approach for effective design space
exploration”. In: Foundations of Computer Software. Modeling, Development, and
Verification of Adaptive Systems: 16th Monterey Workshop 2010, Redmond, WA,
USA, March 31-April 2, 2010, Revised Selected Papers 16. Springer. 2011, pp. 33–
54.

[KD14] Kinsy, M. A. and Devadas, S. “Algorithms for scheduling task-based applications
onto heterogeneous many-core architectures”. In: 2014 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE. 2014, pp. 1–6.

[Kle09] Kleiman, M. A. When brute force fails: How to have less crime and less punishment.
Princeton University Press, 2009.

[KKR11] Koziolek, A., Koziolek, H., and Reussner, R. “PerOpteryx: automated application
of tactics in multi-objective software architecture optimization”. In: Proceed-
ings of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT symposium–
ISARCS on Quality of software architectures–QoSA and architecting critical sys-
tems. 2011, pp. 33–42.

[KP14] Kugele, S. and Pucea, G. “Model-based optimization of automotive e/e archi-
tectures”. In: Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis. 2014, pp. 18–29.

[Kug+15] Kugele, S., Pucea, G., Popa, R., Dieudonné, L., and Eckardt, H. “On the deploy-
ment problem of embedded systems”. In: 2015 ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE). IEEE. 2015,
pp. 158–167.

https://www.inchron.com/chronval/
https://www.inchron.com/chronval/
https://www.inchron.com/chronval/
https://www.inchron.com/chronval/
https://www.intel.com/content/www/us/en/products/details/ethernet/gigabit-controllers/i210-controllers.html
https://www.intel.com/content/www/us/en/products/details/ethernet/gigabit-controllers/i210-controllers.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/70939.html
https://www.kalrayinc.com/automotive/
https://www.kalrayinc.com/automotive/

Bibliography 161

[LW66] Lawler, E. L. and Wood, D. E. “Branch-and-bound methods: A survey”. In: Oper-
ations research 14.4 (1966), pp. 699–719.

[LR14] Lee, S. and Ro, W. W. “Workload and variation aware thread scheduling for
heterogeneous multi-processor”. In: The 18th IEEE International Symposium on
Consumer Electronics (ISCE 2014). IEEE. 2014, pp. 1–2.

[LH02] Leen, G. and Heffernan, D. “TTCAN: a new time-triggered controller area net-
work”. In: Microprocessors and Microsystems 26.2 (2002), pp. 77–94.

[LA07] Leontyev, H. and Anderson, J. H. “Tardiness bounds for FIFO scheduling on mul-
tiprocessors”. In: 19th Euromicro Conference on Real-Time Systems (ECRTS’07).
IEEE. 2007, pp. 71–71.

[Li+11] Li, R., Etemaadi, R., Emmerich, M. T., and Chaudron, M. R. “An evolutionary
multiobjective optimization approach to component-based software architec-
ture design”. In: 2011 IEEE Congress of Evolutionary Computation (CEC). IEEE.
2011, pp. 432–439.

[Lif+16] Liffiton, M. H., Previti, A., Malik, A., and Marques-Silva, J. “Fast, flexible MUS
enumeration”. In: Constraints 21 (2016), pp. 223–250.

[LS08] Liffiton, M. H. and Sakallah, K. A. “Algorithms for computing minimal unsat-
isfiable subsets of constraints”. In: Journal of Automated Reasoning 40 (2008),
pp. 1–33.

[LPM13] Liu, G., Park, J., and Marculescu, D. “Dynamic thread mapping for high perfor-
mance, power-efficient heterogeneous many-core systems”. In: 2013 IEEE 31st
international conference on computer design (ICCD). IEEE. 2013, pp. 54–61.

[LC12] Lukasiewycz, M. and Chakraborty, S. “Concurrent architecture and schedule op-
timization of time-triggered automotive systems”. In: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis. 2012, pp. 383–392.

[Luk+12] Lukasiewycz, M., Schneider, R., Goswami, D., and Chakraborty, S. “Modular
scheduling of distributed heterogeneous time-triggered automotive systems”.
In: 17th Asia and South Pacific design automation conference. IEEE. 2012, p. 665
670.

[LSF14] Lukasiewycz, M., Shreejith, S., and Fahmy, S. A. “System simulation and opti-
mization using reconfigurable hardware”. In: 2014 International Symposium on
Integrated Circuits (ISIC). IEEE. 2014, pp. 468–471.

[Luk+09] Lukasiewycz, M., Streubuhr, M., Glaß, M., Haubelt, C., and Teich, J. “Combined
system synthesis and communication architecture exploration for MPSoCs”. In:
2009 Design, Automation & Test in Europe Conference & Exhibition. IEEE. 2009,
pp. 472–477.

[LM04] Lynce, I. and Marques-Silva, J. P. “On computing minimum unsatisfiable cores”.
In: (2004).

[MT06] Makowitz, R. and Temple, C. “Flexray-a communication network for automotive
control systems”. In: 2006 IEEE International Workshop on Factory Communica-
tion Systems. IEEE. 2006, pp. 207–212.

[MK21] Matheus, K. and Königseder, T. Automotive ethernet. Cambridge University Press,
2021.

[MAT10] MATLAB. version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.,
2010.

162 Bibliography

[Med+02] Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., and Robbins, J. E. “Modeling
software architectures in the unified modeling language”. In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 11.1 (2002), pp. 2–57.

[Mee+11] Meedeniya, I., Buhnova, B., Aleti, A., and Grunske, L. “Reliability-driven deploy-
ment optimization for embedded systems”. In: Journal of Systems and Software
84.5 (2011), pp. 835–846.

[Meh+09] Mehrara, M., Jablin, T., Upton, D., August, D., Hazelwood, K., and Mahlke,
S. “Multicore compilation strategies and challenges”. In: IEEE Signal Processing
Magazine 26.6 (2009), pp. 55–63.

[Men16] Menčík, J. “Reliability of Systems”. In: Concise Reliability for Engineers. Ed. by
Mencik, J. Rijeka: IntechOpen, 2016. Chap. 5. DOI: 10.5772/62358. URL: https:
//doi.org/10.5772/62358.

[Mne+05] Mneimneh, M., Lynce, I., Andraus, Z., Marques-Silva, J., and Sakallah, K. “A
branch-and-bound algorithm for extracting smallest minimal unsatisfiable for-
mulas”. In: Theory and Applications of Satisfiability Testing: 8th International
Conference, SAT 2005, St Andrews, UK, June 19-23, 2005. Proceedings 8. Springer.
2005, pp. 467–474.

[Mod+18] Mody, M., Jones, J., Chitnis, K., Sagar, R., Shurtz, G., Dutt, Y., Koul, M., Biju,
M., and Dubey, A. “Understanding vehicle E/E architecture topologies for au-
tomated driving: System partitioning and tradeoff parameters”. In: Electronic
Imaging 2018.17 (2018), pp. 358–1.

[MAK22] Müller, T., Askaripoor, H., and Knoll, A. “Performance Analysis of KVM Hyper-
visor Using a Self-Driving Developer Kit”. In: IECON 2022 – 48th Annual Con-
ference of the IEEE Industrial Electronics Society. 2022, pp. 1–7. DOI: 10.1109/
IECON49645.2022.9968908.

[MAK24] Müller, T., Askaripoor, H., and Knoll, A. “Advancing E/E Architecture Synthesis:
A Perspective on Reliability Optimization and Hypervisor Integration”. In: 2024
IEEE Intelligent Vehicles Symposium (IV). 2024, pp. 1996–2003. DOI: 10.1109/
IV55156.2024.10588416.

[NDR16] Nayak, N. G., Dürr, F., and Rothermel, K. “Time-sensitive software-defined net-
work (TSSDN) for real-time applications”. In: Proceedings of the 24th Interna-
tional Conference on Real-Time Networks and Systems. 2016, pp. 193–202.

[Neo21] Neosys. Nuvo-7208VTC. 2021. URL: https://omtec.de/industrie- pc/rugged-
embedded/nuvo-7000-serie/nuvo-7208vtc.

[NM97] Niemann, R. and Marwedel, P. “An algorithm for hardware/software partition-
ing using mixed integer linear programming”. In: Design Automation for Embed-
ded Systems 2.2 (1997), pp. 165–193.

[NVI21] NVIDIA. NVIDIA DRIVE HARDWARE. 2021. URL: https://www.nvidia.com/en-
us/self-driving-cars/drive-platform/hardware/.

[Oca21] Ocarina. Introduction to Ocarina Plugin. https://ocarina.readthedocs.io/en/
latest/introduction.html. Last accessed 10 November 2021. 2021. URL: https:
//ocarina.readthedocs.io/en/latest/introduction.html.

[OSA21] OSATE. Welcome to OSATE. https ://osate .org/. Last accessed 11 November
2021. Oct. 2021. URL: https://osate.org/.

[PML11] Pascual, J. A., Miguel-Alonso, J., and Lozano, J. A. “Optimization-based map-
ping framework for parallel applications”. In: Journal of Parallel and Distributed
Computing 71.10 (2011), pp. 1377–1387.

https://doi.org/10.5772/62358
https://doi.org/10.5772/62358
https://doi.org/10.5772/62358
https://doi.org/10.1109/IECON49645.2022.9968908
https://doi.org/10.1109/IECON49645.2022.9968908
https://doi.org/10.1109/IV55156.2024.10588416
https://doi.org/10.1109/IV55156.2024.10588416
https://omtec.de/industrie-pc/rugged-embedded/nuvo-7000-serie/nuvo-7208vtc
https://omtec.de/industrie-pc/rugged-embedded/nuvo-7000-serie/nuvo-7208vtc
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://ocarina.readthedocs.io/en/latest/introduction.html
https://ocarina.readthedocs.io/en/latest/introduction.html
https://ocarina.readthedocs.io/en/latest/introduction.html
https://ocarina.readthedocs.io/en/latest/introduction.html
https://osate.org/
https://osate.org/

Bibliography 163

[Pel+17] Pelliccione, P., Knauss, E., Heldal, R., Ågren, S. M., Mallozzi, P., Alminger,
A., and Borgentun, D. “Automotive architecture framework: The experience of
volvo cars”. In: Journal of systems architecture 77 (2017), pp. 83–100.

[Per09] Peress, Y. “Multi-core Design and Memory Feature Selection Survey”. In: 2009.
URL: https://api.semanticscholar.org/CorpusID:42876232.

[Per23] Perforce. ASIL Level. 2023. URL: https://www.perforce.com/blog/qac/what-is-
iso-26262#:~:text=Automotive.

[PM10] Poole, D. L. and Mackworth, A. K. Artificial Intelligence: foundations of computa-
tional agents. Cambridge University Press, 2010.

[QNX23] QNX. SDV. 2023. URL: https : / / blackberry. qnx . com / en / ultimate - guides /
software-defined-vehicle.

[RT08] Rasmussen, R. V. and Trick, M. A. “Round robin scheduling–a survey”. In: Euro-
pean Journal of Operational Research 188.3 (2008), pp. 617–636.

[REN21] RENESAS. R-Car-H3-M3-Starter-Kit. 2021. URL: https://www.renesas.com/jp/
en/products/automotive-products/automotive- system-chips- socs/r-car-h3-
m3-starter-kit.

[Ros+19] Ross, J. A., Murashkin, A., Liang, J. H., Antkiewicz, M., and Czarnecki, K. “Syn-
thesis and exploration of multi-level, multi-perspective architectures of automo-
tive embedded systems”. In: Software & Systems Modeling 18.1 (2019), pp. 739–
767.

[Rus10] Russell, S. J. Artificial intelligence a modern approach. Pearson Education, Inc.,
2010.

[Sag+15] Sagstetter, F., Waszecki, P., Steinhorst, S., Lukasiewycz, M., and Chakraborty, S.
“Multischedule synthesis for variant management in automotive time-triggered
systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35.4 (2015), pp. 637–650.

[SC13] Sahu, P. K. and Chattopadhyay, S. “A survey on application mapping strategies
for network-on-chip design”. In: Journal of systems architecture 59.1 (2013),
pp. 60–76.

[SZ18] Samii, S. and Zinner, H. “Level 5 by layer 2: Time-sensitive networking for au-
tonomous vehicles”. In: IEEE Communications Standards Magazine 2.2 (2018),
pp. 62–68.

[SW10] Schäfer, W. and Wehrheim, H. “Model-driven development with mechatronic
uml”. In: Graph transformations and model-driven engineering. Springer, 2010,
pp. 533–554.

[Sch16] Schäuffele, J. E/e architectural design and optimization using preevision. Tech.
rep. SAE Technical Paper, 2016.

[SW00] Schild, K. and Würtz, J. “Scheduling of time-triggered real-time systems”. In:
Constraints 5 (2000), pp. 335–357.

[Sel03] Selic, B. “The pragmatics of model-driven development”. In: IEEE software 20.5
(2003), pp. 19–25.

[Shi+04] Shivle, S., Castain, R., Siegel, H. J., Maciejewski, A. A., Banka, T., Chindam, K.,
Dussinger, S., Pichumani, P., Satyasekaran, P., Saylor, W., et al. “Static mapping
of subtasks in a heterogeneous ad hoc grid environment”. In: 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings. IEEE. 2004,
p. 110.

https://api.semanticscholar.org/CorpusID:42876232
https://www.perforce.com/blog/qac/what-is-iso-26262#:~:text=Automotive
https://www.perforce.com/blog/qac/what-is-iso-26262#:~:text=Automotive
https://blackberry.qnx.com/en/ultimate-guides/software-defined-vehicle
https://blackberry.qnx.com/en/ultimate-guides/software-defined-vehicle
https://www.renesas.com/jp/en/products/automotive-products/automotive-system-chips-socs/r-car-h3-m3-starter-kit
https://www.renesas.com/jp/en/products/automotive-products/automotive-system-chips-socs/r-car-h3-m3-starter-kit
https://www.renesas.com/jp/en/products/automotive-products/automotive-system-chips-socs/r-car-h3-m3-starter-kit

164 Bibliography

[Sin+13] Singh, A. K., Shafique, M., Kumar, A., and Henkel, J. “Mapping on multi/many-
core systems: survey of current and emerging trends”. In: 2013 50th IEEE Design
Automation Conference (DAC). IEEE. 2013, pp. 1–10.

[Smi+17] Smirnov, F., Glaß, M., Reimann, F., and Teich, J. “Optimizing message routing
and scheduling in automotive mixed-criticality time-triggered networks”. In:
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE. 2017,
pp. 1–6.

[Smi+19] Smirnov, F., Pourmohseni, B., Glaß, M., and Teich, J. “Variety-aware Routing
Encoding for Efficient Design Space Exploration of Automotive Communication
Networks.” In: VEHITS. 2019, pp. 242–253.

[Smi+18] Smirnov, F., Reimann, F., Teich, J., Han, Z., and Glaß, M. “Automatic optimiza-
tion of redundant message routings in automotive networks”. In: Proceedings of
the 21st International Workshop on Software and Compilers for Embedded Sys-
tems. 2018, pp. 90–99.

[ST23] ST. STM32L476VG. 2023. URL: https ://www.st .com/en/evaluation- tools/
stm32-nucleo-boards.html.

[Sül+08] Sülflow, A., Fey, G., Bloem, R., and Drechsler, R. “Using unsatisfiable cores to
debug multiple design errors”. In: Proceedings of the 18th ACM Great Lakes sym-
posium on VLSI. 2008, pp. 77–82.

[ŠC15] Švogor, I. and Carlson, J. “SCALL: Software component allocator for heteroge-
neous embedded systems”. In: Proceedings of the 2015 European Conference on
Software Architecture Workshops. 2015, pp. 1–5.

[Tab07] Tabuada, P. “Event-triggered real-time scheduling of stabilizing control tasks”.
In: IEEE Transactions on Automatic control 52.9 (2007), pp. 1680–1685.

[TP11] Tamaş-Selicean, D. and Pop, P. “Optimization of time-partitions for mixed crit-
icality real-time distributed embedded systems”. In: 2011 14th IEEE Interna-
tional Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops. IEEE. 2011, pp. 1–10.

[Tek23] TekEthernet, A. Automotive Ethernet. 2023. URL: https://www.tek.com/en/
solutions/industry/automotive-test-solutions/in-vehicle-networks/automotive-
ethernet.

[TVW18] Terzimehic, T., Voss, S., and Wenger, M. “Using Design Space Exploration to Cal-
culate Deployment Configurations of IEC 61499-based Systems”. In: 2018 IEEE
14th International Conference on Automation Science and Engineering (CASE).
2018, pp. 881–886. DOI: 10.1109/COASE.2018.8560591.

[Ter18] Terzimehić, T. “Optimization and reconfiguration of iec 61499-based software
architectures”. In: Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. 2018,
pp. 180–185.

[Tli+18] Tlig, M., Machin, M., Kerneis, R., Arbaretier, E., Zhao, L., Meurville, F., and
Van Frank, J. “Autonomous driving system: Model based safety analysis”. In:
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE. 2018, pp. 2–5.

[TTT21] TTTechAuto. MotionWise. https : / / www. tttech - auto . com / products / safety -
software - platform/motionwise. Last accessed 20 October 2021. 2021. URL:
https://www.tttech-auto.com/products/safety-software-platform/motionwise.

https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html
https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html
https://www.tek.com/en/solutions/industry/automotive-test-solutions/in-vehicle-networks/automotive-ethernet
https://www.tek.com/en/solutions/industry/automotive-test-solutions/in-vehicle-networks/automotive-ethernet
https://www.tek.com/en/solutions/industry/automotive-test-solutions/in-vehicle-networks/automotive-ethernet
https://doi.org/10.1109/COASE.2018.8560591
https://www.tttech-auto.com/products/safety-software-platform/motionwise
https://www.tttech-auto.com/products/safety-software-platform/motionwise
https://www.tttech-auto.com/products/safety-software-platform/motionwise

Bibliography 165

[Van+20] Vanderbei, R. J. et al. Linear programming. Springer, 2020.

[VEH14] Voss, S., Eder, J., and Hölzl, F. “Design Space Exploration and its Visualization
in AUTOFOCUS3.” In: Software Engineering (Workshops). 2014, pp. 57–66.

[VSA21] VSA. Volcano Vehicle Systems Architect (VSA). https://www.mathworks.com/
products/connections/product_detail/volcano-vehicle-systems-architect.html.
Last accessed 1 October 2021. 2021. URL: https : / / www. mathworks . com /
products/connections/product_detail/volcano-vehicle-systems-architect.html.

[WK03] Warmer, J. B. and Kleppe, A. G. The object constraint language: getting your
models ready for MDA. Addison-Wesley Professional, 2003.

[Was+13] Waszecki, P., Lukasiewycz, M., Masrur, A., and Chakraborty, S. “How to en-
gineer tool-chains for automotive e/e architectures?” In: ACM SIGBED Review
10.4 (2013), pp. 6–15.

[Wik14] Wikipedia. Matrix exponential. [Online; accessed 12-May-2014]. 2014. URL:
http://en.wikipedia.org/wiki/Matrix_exponential.

[Wil13] Williams, H. P. Model building in mathematical programming. John Wiley &
Sons, 2013.

[Xie+17a] Xie, G., Chen, Y., Liu, Y., Li, R., and Li, K. “Minimizing development cost with
reliability goal for automotive functional safety during design phase”. In: IEEE
Transactions on Reliability 67.1 (2017), pp. 196–211.

[Xie+18] Xie, G., Peng, H., Li, Z., Song, J., Xie, Y., Li, R., and Li, K. “Reliability en-
hancement toward functional safety goal assurance in energy-aware automotive
cyber-physical systems”. In: IEEE Transactions on Industrial Informatics 14.12
(2018), pp. 5447–5462.

[Xie+17b] Xie, G., Zeng, G., Liu, Y., Zhou, J., Li, R., and Li, K. “Fast functional safety
verification for distributed automotive applications during early design phase”.
In: IEEE Transactions on Industrial Electronics 65.5 (2017), pp. 4378–4391.

[Xu+16] Xu, X.-X., Hu, X.-M., Chen, W.-N., and Li, Y. “Set-based particle swarm optimiza-
tion for mapping and scheduling tasks on heterogeneous embedded systems”.
In: 2016 Eighth International Conference on Advanced Computational Intelligence
(ICACI). IEEE. 2016, pp. 318–325.

[Yon+19] Yoneda, T., Imai, M., Saito, H., Mochizuki, A., Hanyu, T., Kise, K., and Naka-
mura, Y. “Network-on-Chip based multiple-core centralized ECUs for safety-
critical automotive applications”. In: VLSI Design and Test for Systems Depend-
ability (2019), pp. 607–633.

[Zen+10] Zeng, H., Di Natale, M., Ghosal, A., and Sangiovanni-Vincentelli, A. “Schedule
optimization of time-triggered systems communicating over the FlexRay static
segment”. In: IEEE Transactions on Industrial Informatics 7.1 (2010), pp. 1–17.

[ZL19] Zerfowski, D. and Lock, A. “Functional architecture and E/E-Architecture–A
challenge for the automotive industry”. In: 19. Internationales Stuttgarter Sym-
posium. Springer. 2019, pp. 909–920.

[Zha+14] Zhang, L., Goswami, D., Schneider, R., and Chakraborty, S. “Task-and network-
level schedule co-synthesis of Ethernet-based time-triggered systems”. In: 2014
19th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE.
2014, pp. 119–124.

https://www.mathworks.com/products/connections/product_detail/volcano-vehicle-systems-architect.html
https://www.mathworks.com/products/connections/product_detail/volcano-vehicle-systems-architect.html
https://www.mathworks.com/products/connections/product_detail/volcano-vehicle-systems-architect.html
https://www.mathworks.com/products/connections/product_detail/volcano-vehicle-systems-architect.html
http://en.wikipedia.org/wiki/Matrix_exponential

166 Bibliography

[Zhe+16] Zheng, B., Liang, H., Zhu, Q., Yu, H., and Lin, C.-W. “Next generation automo-
tive architecture modeling and exploration for autonomous driving”. In: 2016
IEEE computer society annual symposium on VLSI (ISVLSI). IEEE. 2016, pp. 53–
58.

[Zhe+05] Zheng, W., Chong, J., Pinello, C., Kanajan, S., and Sangiovanni-Vincentelli, A.
“Extensible and scalable time triggered scheduling”. In: Fifth International Con-
ference on Application of Concurrency to System Design (ACSD’05). IEEE. 2005,
pp. 132–141.

[Zim+18] Zimmermann, A., Maschotta, R., Wichmann, A., and Hilbrich, R. “Optimization
of systems with nested design space”. In: 2018 Annual IEEE International Sys-
tems Conference (SysCon). IEEE. 2018, pp. 1–8.

	Introduction
	Vehicle E/E Architecture and its Development
	The Main Bottlenecks of Current E/E Architecture
	The Main Technologies for Future's E/E Architecture

	Motivation and Research Questions
	Motivation
	Research Questions

	Thesis Contributions
	Thesis Structure

	Basic Concepts and Terms
	Task Mapping or Resource Allocation
	Time-triggered Scheduling
	Communication Message Routing
	Vehicle Communication Protocols
	CAN and TTCAN Buses
	FlexRay
	LIN Bus
	Automotive Ethernet and Ethernet TSN

	Automotive Safety Standards
	ISO 26262 (Functional Safety for Road Vehicles)
	SOTIF/ISO 21448

	Safety Requirements
	Redundancy
	Freedom from Interference
	ASIL
	Reliability

	Design Space Exploration (DSE)
	Hypervisor

	State of the Art
	Communication Message Routing and Synthesis of Time-triggered Schedules in Automotive Networks
	Communication Message Routing
	Synthesis of Time-triggered Schedules in Automotive Domain

	Software Architecture Synthesis-related Studies
	Software Architecture Synthesis
	E/E System Synthesis Considering Safety Requirements

	Task Mapping in Multi-Core Computing Units
	Mapping Techniques
	Optimization Parameters in Mapping

	Technologies and Tools for Software Integration and Configuration in Design Process
	Non-commercial/Open-source Frameworks
	Overview of Non-commercial Frameworks Analysis
	Commercial Tools for E/E Architecture Configuration
	Overview of Commercial Tools Analysis

	Summary & Discussion

	Methodology
	Framework Architecture
	Model-Driven Development
	Object-oriented Metamodel
	Constraint Set
	Optimization
	Design Error Identifier
	An Overview of Framework Architecture

	Framework System Model
	Application Thread
	Communication Task
	Mapping Action
	Communication Message
	Application
	Timing Limitations

	Constraints MIP Formulation
	Automated Mapping
	Automatic Message Routing
	Overlapping-Free Application Threads Considering Automated Mapping
	Overlapping-Free Communication Tasks Considering Automatic Message Routing
	Path Dependency
	Message Dependency

	Boundary Constraints & Optimization Objectives
	End-to-End Latency
	Response Time
	Resource Utilization (RU)
	Load Balancing in Vehicle Communication Network
	Cost Reduction (CR)
	Reliability
	Hypervisor-related Constraints

	Multi-Objective Optimization
	Gurobi Multi-Objective Optimization
	Multi-Objective Optimization in the E/E Designer Framework

	Single-Step Solving Algorithms
	CMR Algorithm
	CSCT Algorithm
	PD Algorithm

	Constraint Formulation as Mixed Integer Programming for Gurobi Optimization Solver
	Big M Method
	Quadratic Expression

	Discussion

	The Framework Frontend
	Modeling
	Web-based Modeling Tool
	Drag and Drop Functionality
	Full-mesh Topology
	Automatic Creation of Software/Hardware Components

	Requirements and Properties
	Hardware/Software Requirements and Properties
	Optimization and Solving Properties

	Solving and Solutions
	Solving
	Solutions

	Model Validation
	Implementation
	Sirius Web

	Design Error Analysis
	Background
	Conjunctive Normal Form
	Minimal Unsatisfiable Subset (MUS) or Unsatisfiable Core

	Approach
	 Using Irreducible Inconsistent Subsystem (IIS)
	Using MARCO Algorithm

	Evaluation

	Evaluation
	Design-time Evaluation
	Evaluation of Communication Message Routing Generation
	Automated Mapping Approach and Application Threads' Scheduling Evaluation
	Evaluation of Full Capabilities of the E/E Designer Framework in a Single-Step Solving
	Scalability Analysis
	Discussion

	Run-time Evaluation
	Hardware Platform Analysis
	Experimental Setup

	Quantitative and Qualitative Evaluation
	Quantitative Analysis of Various Case Studies
	Qualitative Analysis

	Conclusion and Future Work
	Summary
	Limitations
	Constraints Formulation
	Verification
	Placement of E/E Components
	Design Error Analysis

	Future Works
	New Requirements and Features
	Run-time E/E Configurator
	Uncertain Optimization
	Run-time Simulation

	Appendix 1
	Bibliography

