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Summary 

Global population growth is a major challenge to the agricultural sector. While plant 

breeding is a key contributor to food security, a fundamental prerequisite for germplasm 

improvement is the availability of sufficient genetic variation for target traits. Today’s elite 

germplasm captures only a small proportion of the species-wide genetic diversity for most 

crops, thus broadening the genetic base of elite germplasm is an important task. A very 

rich source for additional diversity are landraces that are stored in seed banks all around 

the world. Their use is hampered by a lack of information (both, genetic and phenotypic), 

their heterogeneity and heterozygosity (in allogamous crops), and a performance gap to 

current elite germplasm. While the performance gap is only of minor importance in cases 

where the aim is to use single genes of qualitative traits (e.g. disease resistances) derived 

from landrace material, the utilization of landraces for improving quantitative traits in elite 

germplasm is more difficult. Efficient strategies for the successful utilization of landraces 

for this purpose are still in development. 

In this thesis, three preselected European flint maize landraces were subjected to two 

different strategies of population development and the developed populations were 

characterized genotypically and phenotypically. The two contrasting strategies for 

obtaining populations of reproducible genetic units were the production of doubled-

haploid lines (DH, as a pure approach without elite introgression) and crosses to an 

important European flint maize founder inbred line with subsequent selfing from the 

crosses (termed gamete capture (GC), as an example for an admixed approach). The DH 

and GC populations were genotyped at high density and phenotyped for over 25 traits in 

up to eleven environments to link molecular data to meaningful phenotypes. This unique 

resource allows to compare the different sampling strategies and study the prospects of 

genomic selection for landrace material in order to drive the development of landrace 

utilization strategies. 

Both approaches (DH and GC) were able to capture the diversity present in the landrace 

in an unbiased way. With the theoretical framework developed as part of this thesis, the 

expectations for molecular and genetic variation in the derived populations can be 

formulated and were validated experimentally. Phenotypically, the landrace-derived 

populations did show the expected yield gap (15-20%). Genomic prediction accuracies 

reached promisingly high levels when calibration set size was sufficient (minimum N > 200, 

but no plateau reached up to N = 450). Prediction accuracies were highest within DH 

populations, followed by predictions within GC populations and predictions across the two 
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population types (from DH to GC and vice versa). Prediction accuracies in across landrace 

predictions were practically zero for DH populations, but higher for GC populations, which 

is to be expected because of the shared inbred line in the pedigree of all GC lines. In 

general, the prediction accuracies indicate that both pre-breeding strategies should 

include the use of genomic selection. 

Although unbiased sampling from landraces was successful in both populations, the pure 

approach was shown to have several advantages over the admixed approach. The lines 

exhibit the full additive variance, show no masking of genetic effects by the crossing 

partner’s alleles, no risk of reconstruction of the elite crossing partner genome in selection 

and a generally higher prediction accuracy. However, the efficiency of DH production 

varies greatly among different landraces. If the admixed approach is followed, the informed 

choice of the crossing partner is of crucial importance as it has large impact on the 

resulting populations. The choice between the pure and the admixed approach depends 

on if the production of DH lines is possible in the used genetic resource or crop (in 

extension to other allogamous crops beyond maize) and has to be evaluated together with 

the goal and the structure of the entire pre-breeding strategy. The results from this thesis 

might be complemented by additional research considering rapid genomic selection 

scenarios (for faster closing of the performance gap). The presented resource is an 

excellent starting point for such studies. 
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Zusammenfassung 

Die Ernährung der wachsenden Weltbevölkerung ist eine große Herausforderung für die 

Landwirtschaft. Die Pflanzenzüchtung leistet einen wichtigen Beitrag zur Überwindung 

dieser Herausforderung. Eine Voraussetzung für den Selektionsfortschritt, und damit auch 

den Erfolg der Pflanzenzüchtung insgesamt, ist die Verfügbarkeit genetischer Variation. 

Für die meisten Kulturarten deckt das Elitematerial jedoch nur einen sehr kleinen Teil der 

speziesweiten Variation der Kulturart ab, weshalb eine Erweiterung der genetischen Basis 

des Elitematerials eine wichtige Aufgabe ist. Eine umfangreiche Quelle für momentan 

ungenutzte Diversität sind die in Genbanken auf der ganzen Welt aufbewahrten 

Landrassen. Deren Nutzung wird jedoch durch einen Mangel an Informationen über sie 

(phänotypisch sowie genotypisch), ihre Heterogenität und Heterozygotie sowie ihren 

Rückstand in der Ertragsleistung gegenüber Elitematerial gehemmt. Während für die 

Nutzung von Landrassen zur Verbesserung von qualitativen Merkmalen (z.B. 

Krankheitsresistenzen) das Ertragsdefizit ein eher geringes Problem darstellt, ist die 

Nutzung von Landrassen zur Verbesserung von quantitativen Merkmalen im Elitematerial 

eine große Herausforderung. Die dafür benötigten effizienten Nutzungsstrategien befinden 

sich in der Entwicklung. 

In dieser Dissertation wurden drei vorselektierte europäische Hartmais-Landrassen zwei 

unterschiedlichen Populationsentwicklungsstrategien unterzogen und die entwickelten 

Populationen anschließend phänotypisch und genotypisch charakterisiert. Die beiden 

angewandten Strategien zur Erzeugung von Populationen aus reproduzierbaren 

genetischen Einheiten waren die Produktion von Doppelhaploiden (DH) Linien (als Beispiel 

für ein Vorgehen ohne Beimischung von Elitematerial) und Kreuzungen mit einer wichtigen 

Gründerlinie des europäischen Hartmais Elite-Genpools (als „gamete capture“ (GC) 

bezeichnet, als Beispiel für ein Vorgehen mit Beimischung von Elitematerial). Die DH und 

GC Populationen wurden hochauflösend genotypisiert und über 25 Merkmale in bis zu 11 

Umwelten phänotypisch erfasst. Diese einzigartige Ressource erlaubt es, die beiden 

Strategien eingehend zu vergleichen und die Nutzung von genomischer Selektion im 

Landrassenmaterial zu untersuchen. 

Die Populationen aus beiden Ansätzen repräsentierten die Diversität der Landrassen ohne 

nennenswerte Verluste. Die Erwartungswerte der molekularen und genetischen Variation 

in den jeweiligen Populationen wurden mit Hilfe der in dieser Arbeit vorgestellten Theorie 

vorhergesagt und experimentell bestätigt. Die Populationen aus Landrassen zeigten den 

erwarteten Ertragsrückstand (15-20%). Die Genauigkeit der genomischen Vorhersage war 
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hoch, wenn die Größe des Trainingsdatensatzes ausreichend groß war (mindestens N > 

200, aber kein Plateau bis N = 450 erreicht). Die Vorhersagegenauigkeit war am höchsten 

bei Vorhersagen innerhalb der DH Populationen, gefolgt von Vorhersagen innerhalb der 

GC Populationen und Vorhersagen zwischen den beiden Populationsarten (von DH zu GC 

und vice versa). Die Vorhersagegenauigkeit zwischen Landrassen war praktisch Null bei 

DH und etwas höher für GC Populationen, was durch die von allen GC Individuen geteilte 

Inzuchtlinie im Stammbaum zu erklären ist. Insgesamt zeigen die 

Vorhersagegenauigkeiten, dass jede der beiden Züchtungsstrategien mit 

Landrassenmaterial genomische Vorhersagen nutzen sollte. 

Obwohl die Landrassen durch beide Methoden der Populationsentwicklung gut 

repräsentiert werden können, konnte gezeigt werden, dass der Ansatz ohne Beimischung 

von Elitematerial mehrere Vorzüge mit sich bringt. Die Linien zeigen die volle additive 

Varianz, es gibt keine Maskierung von Landrassen-Allelen durch die Allele des 

Kreuzungspartners, kein Risiko einer Rekonstruktion des Genoms des Elite-

Kreuzungspartners und eine insgesamt höhere Vorhersagegenauigkeit in der genomischen 

Selektion. Die Effizienz der DH Produktion variiert jedoch sehr stark zwischen 

verschiedenen Landrassen. Wenn der Ansatz mit Beimischung von Elitematerial verfolgt 

wird, ist eine fundierte Auswahl des Kreuzungspartners von sehr hoher Bedeutung, weil 

dieser einen sehr starken Einfluss auf die produzierten Populationen hat. Welche Methode 

zu bevorzugen ist hängt davon ab, ob eine DH Produktion in den ausgewählten Landrassen 

oder Kulturarten (bei anderen Kulturarten außer Mais) überhaupt möglich ist. Außerdem 

muss die Populationsentwicklung im Kontext der gesamten Züchtungsstrategie evaluiert 

werden. Die Ergebnisse dieser Dissertation können durch zusätzliche Forschung über die 

Verwendung schneller Zuchtschemata mit wiederholter genomischer Selektion erweitert 

werden. Die hier vorgestellten Ressourcen sind ein exzellenter  Startpunkt für 

nachfolgende Forschung. 
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1 Introduction 

1.1 Background 

The global population is growing and forecasted to surpass nine billion within the next 20 

years and reach ten billion before 2060 (United Nations, 2019). Additional pressure is 

applied to the food supply system by increasing wealth in many countries, resulting in 

greater demands for processed food, meat, dairy, and fish, which require more resources 

per calory than plant-based food (Godfray et al. 2010), as well as by the increasing demand 

for crops for fiber and fuel use (Edgerton 2009). Agricultural production is additionally 

challenged by the effects of climate change, land shortages due to urbanization, and other 

consequences of suboptimal land management like desertification, salinization, and soil 

erosion (Nellemann and MacDevette 2009). As a consequence, an immense increase in 

agricultural production has to be realized in a sustainable way that allows adaptation to 

the changing environmental conditions (Godfray et al. 2010; Lobell and Tebaldi 2014). A 

tremendous production gain of 125% was achieved during the so-called green revolution 

between 1960 and 2000 (Khush 2001). The main driver of production increase during the 

green revolution was genetic improvement and the widespread adoption of the improved 

varieties (Khush 2001). Plant breeding is of critical importance also for today’s challenges, 

yet it relies on optimal exploitation of available genetic variation for ensuring the required 

genetic gains. However, current elite germplasm of many crop species represents only a 

small part of the total available diversity (McCouch et al. 2013) because it went through a 

series of diversity reducing bottlenecks in domestication and plant breeding (Tanksley and 

McCouch 1997; Mir et al. 2013; Russell et al. 2016). The evolution of diversity through 

those bottlenecks has been graphically described for three classes of genes by Yamasaki 

et al. (2005) (Figure 1). Neutral genes are expected to be only mildly affected by bottlenecks 

(genetic drift), while the diversity of domestication genes is heavily reduced already early, 

during the step from wild ancestor to landraces. The diversity in improvement genes is still 

large in landraces but greatly reduced in the step from landraces to modern inbred lines. 

The seed banks around the world harbor thousands of untapped landrace accessions with 

large remaining genetic diversity and the utilization of those resources is considered 

essential to leverage plant breeding for a sustainable intensification of agricultural 

production (Hoisington et al. 1999; Ortiz et al. 2010; McCouch et al. 2013). 
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Figure 1: Effect of domestication and plant breeding on genetic diversity of maize genes (Yamasaki 

et al. 2005).  

 

Maize (Zea mays L. ssp. mays) is the geographically most ubiquitous cereal (Leff et al. 

2004), a critical staple crop worldwide (Nuss and Tanumihardjo 2010), and also an 

important model organism in biological research (Strable and Scanlon 2009). After the 

domestication from the wild relative teosinte (Zea mays L. ssp. parviglumis) approximately 

10,000 years ago in today’s Mexico (Piperno et al. 2009), maize has spread across the 

world, first within the Americas and after the discovery of the New World by Columbus also 

to Europe (Rebourg et al. 2003) and into Africa and Asia (Mir et al. 2013). The domestication 

and spread of maize across the world were accompanied by a series of genetic 

bottlenecks. During domestication, allelic diversity was reduced due to selection for 

domestication phenotypes such as increased ear size and no lateral branching (Piperno et 

al. 2009; Hufford et al. 2012). The following spread during the Americas took place over 

thousands of years (Mir et al. 2013), resulting in a high number of locally adapted landraces 

with a negative correlation between distance to the center of origin and diversity (Vigouroux 

et al. 2008). The introduction to Europe was very rapid with strong founder effects and 

followed by local adaptation through selection by farmers, leading to the creation of several 

hundred new landraces (Dubreuil et al. 2006). The thousands of landraces created during 

the global maize diffusion process maintained a high level of species-wide phenotypic and 

genetic variation across the globe (Buckler et al. 2006; Warburton et al. 2008; Sood et al. 

2014). The change from open-pollinated to hybrid varieties more than 100 years ago was 
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a turning point for maize breeding, leading to tremendous yield increases on the one hand 

(Duvick 2005), but also strong genetic bottlenecks on the other hand. With the introduction 

of hybrid breeding, the heterotic pools of today were founded by intermating a small 

number of lines derived by selfing in landraces and subsequent breeding was 

characterized mainly by crossing within the established breeding pools (Messmer et al. 

1992; White et al. 2020). As a result, the genetic basis of the current elite germplasm is 

comparatively narrow (Tanksley and McCouch 1997; Allier et al. 2019). To broaden the 

genetic diversity, new variation can be introduced by different approaches like crossing 

elite germplasm to non-adapted elite material or tapping the large diversity present in 

landraces and introduce it into the elite germplasm. The genetic material from which 

breeders can choose differs mainly in two important characteristics: level of adaptation to 

the target environments and performance gap to elite germplasm. Although landraces 

always exhibit a performance gap they are considered the prime resource for broadening 

the genetic basis of elite germplasm due to large genetic variation within and between 

them (Pollak 2003; Salhuana and Pollak 2006; Warburton et al. 2008; Strigens et al. 2013; 

McCouch et al. 2013; Navarro et al. 2017). 

The use of genetic resources like landraces for improving mono- or oligogenic traits has 

been shown to be comparatively straightforward, as screening and mapping large numbers 

of accessions for large effect genes and their subsequent introgression into elite 

germplasm through backcrossing is feasible (Visscher et al. 1996; McCouch et al. 2012). 

Several examples for the application of this strategy exist for disease resistances (Marone 

et al. 2021), or abiotic stress tolerance like submergence (Bailey-Serres et al. 2010) or 

boron tolerance (Paull et al. 1992). However, most agronomically important traits are of a 

polygenic nature and examples for successful use of landraces for improving those traits 

are scarce (Sood et al. 2014). 

Recently, it has been shown that landraces carry beneficial haplotypes that are not present 

in elite germplasm (Mayer et al. 2020; Würschum et al. 2022). When judging the breeding 

potential of landraces for specific quantitative traits the first challenge is the limited 

information available on seed bank accessions. A preselection solely relying on passport 

data might therefore be of limited value apart from the possibility to exclude e.g. non-

adapted material based on its geographic origin. A possible source of information for 

characterizing germplasm in gene banks is genotypic data obtained through technologies 

such as array genotyping or whole-genome sequencing, which can be used for population 

genetic analyses of, e.g., molecular variation, linkage disequilibrium or population structure 
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(Mayer et al. 2017). Although cost-reduction in genotyping and sequencing technologies 

allows the generation of large-scale molecular inventories of plant genetic resources (Wang 

et al. 2017; Darrier et al. 2019), meaningful phenotypic data is usually lacking, constituting 

a major hindrance for the utilization of landraces in breeding (McCouch et al. 2012; Sood 

et al. 2014). In addition, if the crop is allogamous like maize, the landrace accessions 

themselves are collections of heterogeneous and heterozygous individuals, making 

phenotypic evaluation and maintenance difficult. For evaluation and breeding applications, 

reproducible genetic units are required. Different approaches for obtaining reproducible 

genetic units can be followed. They can mainly be divided into two fundamentally different 

concepts: landrace material can be used directly, keeping it “pure” without elite 

introgression, or crosses with elite material can be carried out, resulting in an admixed 

approach. Independent of the approach applied for obtaining reproducible genetic units, 

landrace-derived material usually shows a substantial performance gap for several traits 

compared to elite germplasm due to the presence of deleterious and unfavorable alleles, 

requiring efficient strategies for pre-breeding before introgression into current elite 

germplasm pools (Hallauer and Sears 1972; Holland et al. 1996; Böhm et al. 2017; Brauner 

et al. 2019).  

For the pure pre-breeding approach, inbred lines can serve as reproducible genetic units. 

They can be produced directly from landraces by recurrent selfing, or, for accelerating the 

procedure, by in vivo haploid induction (Geiger 2009). It has been shown that the 

production of libraries of doubled-haploid (DH) lines from landraces is feasible (Hölker et 

al. 2019a) and that the libraries capture the allelic diversity of the original landraces in an 

unbiased way (Melchinger et al. 2017), but with some loss of diversity (Zeitler et al. 2020). 

In addition, DH lines have been proposed not only as a basis for breeding with landraces 

but also for maintaining the landraces themselves, as they are immortal resources that can 

be multiplied ad libitum (Melchinger et al. 2017).  

An example for a coordinated project for utilizing landrace diversity in an admixed 

approach through crosses with elite germplasm is the Germplasm Enhancement of Maize 

(GEM) program (Pollak 2003), which followed the Latin American Maize Program (LAMP 

(Salhuana and Pollak 2006)). In LAMP, promising landrace accessions were identified and 

in GEM they were crossed to two proprietary elite inbred lines of industry cooperators in 

successive generations and subsequently inbred (Salhuana and Pollak 2006). After 

selection for adaptation to target environments in early generations, S2-lines were selected 

based on their testcross performance (Salhuana and Pollak 2006), resulting in the 
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registration of the best performing lines from GEM. However, even after intense selection, 

the material showed rather poor agronomic properties and a substantial yield gap in 

comparison with elite materials (Salhuana and Pollak 2006).  

While LAMP and GEM were solely based on phenotypic selection, modern pre-breeding 

strategies must consider the use of genomic prediction (GP). The possibility of assessing 

far more individuals in the lab compared to the field lead to increased selection intensity 

and higher genetic gain with the use of GP in elite germplasm (Crossa et al. 2017). The 

idea to predict the genetic value of selection candidates based on whole-genome 

molecular marker data was first suggested by Bernardo (1994) for the prediction of hybrid 

performance. The current form of genomic selection was proposed for cattle breeding in 

the landmark paper by Meuwissen et al. (2001), who used genome-wide dense marker 

maps and best linear unbiased prediction (BLUP) (Henderson 1975) as well as two 

Bayesian methods to establish the association between marker information and 

phenotypic performance. Genomic selection was adopted in animal (Hayes et al. 2009) 

and plant breeding (Crossa et al. 2014) and further development of additional methods, 

e.g. Bayesian methods (Gianola et al. 2009), and machine learning (Maenhout et al. 2010), 

followed. The statistical method for a particular application of GP needs to be chosen in 

accordance with the assumptions associated with the respective method and there is no 

best method for all traits and populations (Heslot et al. 2012). While for genomic predictions 

with the original BLUP approach, ridge regression is used (RR-BLUP), the genomic BLUP 

(GBLUP) uses a kinship matrix calculated from the marker data. Habier et al. (2007) have 

shown the equivalence of both approaches. GBLUP has the advantage of reduced 

complexity and therefore increased efficiency over RR-BLUP, if the number of markers is 

larger than the number of individuals in the prediction. GBLUP has developed into the 

benchmark method for genomic prediction due to its robustness in many different 

scenarios and, compared to Bayesian methods, a relatively low computational burden 

(Bernardo 2020). 

In GP, the most important drivers of prediction accuracy are training set size, heritability of 

the phenotypic data, linkage disequilibrium (LD) and relatedness among genotypes in the 

training and prediction sets (Habier et al. 2007; Auinger et al. 2021). In autogamous crops, 

genetic variation within landraces is often low, so that prediction accuracy across 

landraces is of primary interest. High prediction accuracies for those types of predictions 

were observed in wheat (Crossa et al. 2016) and sorghum (Yu et al. 2016), making it 

promising to mine natural variation present in gene banks across a broad collection of 
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landraces. In contrast, in allogamous crops, a large proportion of the genetic variation is 

found within landraces (Böhm et al. 2017; Mayer et al. 2017), making the prediction of 

genetic values within landraces the prime target. Landraces of allogamous crops show 

much lower LD than elite germplasm (Mayer et al. 2017) and, if not artificially introduced 

during the multiplication of the landraces or the production of reproducible genetic units, 

progenies derived from landraces also have low relatedness because landraces have a 

history of random mating. The lower levels of LD and relatedness generally make 

employing GP in landraces more challenging compared to elite germplasm. Nevertheless, 

there are several cases for which the use of GP has been recommended for increased 

genetic gains or more efficient pre-breeding efforts. Studies with small DH populations 

derived from European flint maize landraces showed first promising indication of sufficient 

prediction accuracy for within-landrace prediction (Brauner et al. 2018). Genomic 

prediction models were suggested for identifying suitable genetic resources for enriching 

elite germplasm (Allier et al. 2020a), and simulation studies showed the usefulness of GP 

in pre-breeding strategies for improvement of landrace material prior to its introgression 

into elite germplasm (Gorjanc et al. 2016).  

1.2 Outline 

When working with genetic resources, the first decision to take is which of the vast amount 

of available genetic resource accessions to choose for the study. The available resources 

for genotyping and phenotyping can either be allocated to many accessions from various 

origins each with few individuals, thus maximizing overall diversity, or, in allogamous crops 

like maize, to large numbers of individuals from few landrace accessions for exploiting 

both, within- and between-landrace diversity. Sampling few individuals from a wide range 

of landraces can be advantageous for studying signals of adaptation (Navarro et al. 2017), 

crop evolution (Heerwaarden et al. 2011), or the effects of rare alleles (Kremling et al. 2018) 

but has limitations in breeding due to confounding effects of adaptation. This thesis follows 

the proposition of Mayer et al. (2017) to focus on a limited set of preselected landraces. In 

this study, large numbers of progenies from three different landraces were derived. The 

landraces were chosen according to their phenotypic and molecular variation (Hölker et al. 

2019a) and for their adaptation to the European conditions to avoid undesired large effects 

of adaptative alleles, a confounding factor in the study of Navarro et al. (2017).  

After the decision regarding the source material, reproducible genetic units are required 

for further study and for linking phenotypic and genotypic information. For obtaining 

reproducible genetic units for this thesis, the three selected landraces were subjected to 



1 Introduction 

7 

two different types of population development that represent the pure approach (without 

elite introgression) and the admixed approach (with elite introgression). In Hölker et al. 

(2019a), as an example of the pure approach, ~1,000 doubled-haploid (DH) lines were 

produced from landraces Kemater Landmais Gelb (KE), Petkuser Ferdinand Rot (PE) and 

Lalin (LL), and characterized for their phenotypic performance (as lines per se and 

testcrosses), as well as for their molecular properties and population structure, 

representing the first comprehensive study of such large DH populations from landraces. 

In Hölker et al. (2022), the same landraces were crossed to the line FV2, an elite founder 

inbred line of the European flint heterotic pool, derived from the landrace Lacaune, 

adapting a scheme suggested by Stadler (1944). Doing so, populations were produced to 

study an admixed approach of pre-breeding in comparison with the pure approach already 

introduced using DH lines. The population development schemes for the two approaches 

are displayed graphically in Figure 2. 

 

Figure 2: Population development schemes for the pure and admixed approaches. Modified after 

Hölker et al. (2022). 

 

The choice of the sampling approach is of crucial importance and has wide-ranging 

implications for pre-breeding. Simulation studies have shown the merit of a fast reduction 

of the performance gap with the admixed approach, but also a high risk of reconstructing 

the elite parent genome in genomic selection during pre-breeding initiated from crosses of 
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genetic resources with elite germplasm (Gorjanc et al. 2016). In Hölker et al. (2022), both 

approaches were jointly investigated for their genomic prediction accuracy within as well 

as across populations and landraces. The method GBLUP was chosen as the statistical 

method for calculating genomic predictions in this thesis. The results in Hölker et al. (2022) 

were complemented with the development of a theoretical framework to link molecular 

inventories of genetic resources to phenotypic variation. The results are of crucial 

importance for making an informed choice of landraces and crossing partners in possible 

pre-breeding scenarios. 

In this thesis, the findings of Hölker et al. (2019a) and Hölker et al. (2022) are combined 

with additional results relevant for evaluating the prospects of maize landraces for elite 

germplasm improvement with the use of genomic prediction in pre-breeding scenarios. 
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2 Material and methods 

2.1 Genotypic and phenotypic data 

2.1.1 Plant material 

The three landraces Kemater Landmais Gelb (KE, Austria), Petkuser Ferdinand Rot (PE, 

Germany) and Lalin (LL, Spain) were selected from a set of 35 European maize landraces 

covering a broad area of Europe. The original analysis of the complete set of 35 landraces 

is described in Mayer et al. (2017). Criteria for selection of KE, PE and LL were that the 

landraces had low levels of linkage disequilibrium (LD) and population structure within 

populations and showed phenotypic variation for early development within landraces in 

preliminary field trials. Two different strategies for sampling gametes from the landraces 

were initiated for the selected landraces. For the first sampling strategy, the pure approach, 

doubled-haploid (DH) lines were directly derived from the landraces by in vivo haploid 

induction (Röber et al. 2005). For the second sampling strategy, the admixed approach, a 

modification of a scheme originally proposed by Stadler (1944) was used. For each of the 

landraces, 20 different and non-overlapping pollen mixtures from three landrace plants 

each were collected and used to pollinate the capture line FV2. FV2 is a founder line of the 

European flint heterotic group developed by INRAE from the French landrace Lacaune and 

was a very important parent line in commercial hybrids between the 1960s and 1990s. This 

procedure was termed gamete capture (GC). The plants resulting from this cross (GC-So) 

are all half-sibs and have one gamete from FV2 and one from the landrace. For obtaining 

populations for genotyping and phenotyping, the GC-S0
 plants were selfed to produce GC-

S1 ears. From each of the GC-S1 ears, one plant was selfed again and genotyped. The field 

evaluation was performed on the resulting GC-S2 lines, planted ear to row (subsequently 

referred to as GC-S1:2). The populations for the pure and admixed approaches were derived 

from the same seed source of each landrace which is defined as the ancestral landrace 

(LS). An additional sample of the ancestral landrace (N = 48 per landrace) from this seed 

source was drawn for genotyping. In total, 1,015 DH lines were derived in the pure 

approach (516 DH_KE, 432 DH_PE, 67 DH_LL) and 957 GC-S1:2 lines were derived in the 

admixed approach (288 GC_KE, 289 GC_PE, 380 GC_LL). Randomly chosen lines from 

the DH and GC populations of KE and PE (216 DH_KE, 203 DH_PE, 103 GC_KE, 54 

GC_PE) were hand-crossed as pollinators onto the dent inbred line F353 (INRAE, France) 

for production of testcross seed. 
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2.1.2 Genotypic data 

All material (inbred line FV2, DH and GC lines and ancestral landrace samples) was 

genotyped with 616,201 markers, using the 600k Affymetrix® Axiom® Maize Array 

(Unterseer et al. 2014). The datasets were filtered for markers assigned to the best quality 

class (Poly High Resolution, (Unterseer et al. 2014)), a call rate ≥ 0.9 and a known physical 

position on the AGPv4 (Jiao et al. 2017) B73 reference sequence. One sampled plant from 

the ancestral landrace sample of PE was excluded in this step due to an insufficient call 

rate. The remaining genotypes were subjected to following stringent quality filtering. 

For the DH and GC lines used in Hölker et al. (2019a) and Hölker et al. (2022) an ancestry 

analysis was conducted with the software ADMIXTURE (Alexander et al. 2009) in 

supervised mode with four pre-defined groups (KE, PE, LL, FV2) determined from the 

sample of the ancestral landrace and the genotypic data of FV2. DH and GC lines with less 

than 75% concordance with the landrace assigned to by pedigree (or assigned landrace 

and FV2 in the case of GC) were excluded from further analysis. Markers and individuals 

with > 10% missing values were removed. Only in DH lines, markers and individuals with 

> 5% heterozygous calls were removed, and all remaining heterozygous calls were set to 

missing values. The missing values of the DH lines were imputed separately for each 

landrace using Beagle version 5.0 (Browning et al. 2018) and default settings. Pairwise 

modified Rogers’ distances (MRD, (Wright 1978)) were calculated among DH lines and 

lines showing a MRD of < 0.05 were discarded as duplicates. For LS and GC, phasing of 

two gametes from each individual and imputation was also done with Beagle version 5.0, 

but with parameters iterations = 50, phase-segment = 10 and phase-states = 500 and the 

corresponding DH lines and FV2 were used as a reference panel during imputation.  

After quality filtering and imputation 941 DH lines (501 DH_KE, 409 DH_PE, 31 DH_LL) and 

286 gametes from the ancestral landrace (96 LS_KE, 94 LS_PE, 96 LS_LL) with 499,574 

common markers remained for analysis in Hölker et al. (2019a). For the analyses in Hölker 

et al. (2022), LL was disregarded due to the small number of DH lines and only genotypes 

for which also phenotypic data was available were kept, resulting in a total of 1,512 

genotypes (LS_KE = 48, LS_PE = 47, DH_KE = 471, DH_PE = 402, GC_KE = 274, GC_PE 

= 270), genotyped with 472,169 polymorphic single nucleotide polymorphisms (SNPs). The 

markers were coded as counts of the FV2 allele (0: homozygous for opposite allele of FV2, 

1: heterozygous, 2: homozygous for FV2 allele). 
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2.1.2 Field experiments and phenotypic data analysis 

Phenotyping for line per se performance of the DH lines was done in Germany at four 

locations in 2017 and three locations in 2018. The trials used ten separate 10 × 10 lattice 

designs in 2017 (1000 entries in total, of which 958 were DH lines and the rest checks), 

and eight separate 10 × 10 lattice designs in 2018 (800 entries in total, of which 756 were 

DH lines and the rest checks). In both years, a randomly chosen subset of 500 entries was 

also evaluated in five 10 × 10 lattice designs (500 entries, of which 458 and 468 where DH 

lines in 2017 and 2018, respectively, and the rest checks) at two locations in Spain. The 

trials were located in Einbeck (EIN, Germany, 2017 and 2018), Roggenstein (ROG, 

Germany, 2017 and 2018), Bernburg (BBG, Germany, 2017), Klein Wanzleben (KLW, 

Germany, 2018), Oberer Lindenhof (OLI, Germany 2017), Golada (GOL, Spain, 2017 and 

2018) and Tomeza (TOM, Spain, 2017 and 2018). The reduction of the number of tested 

DH lines from 2017 to 2018 was due to seed shortages and the exclusion of lines that did 

not pass the above-described quality filtering of the genotypic data. The GC populations 

were evaluated in separate but adjacent field trials at locations EIN and ROG in 2017 and 

2018. In both years, the GC trials were randomized in ten 10 x 10 lattice designs with 958 

entries plus checks. The DH and GC trials were connected using common checks. In 2017, 

those checks were 14 flint (CH10 provided by Agroscope Changins-Wädenswil 

(Switzerland); D152, DK105, UH006, UH007, and UH009 provided by the University of 

Hohenheim (Germany); EP1 and EP44 provided by Misión Biológica de Galicia, Consejo 

Superior de Investigaciones Científicas, (CSIC, Spain); F03802, FV2, F283, F64, and F7 

provided by Institut national de la recherche agronomique (INRAE, France); EC49A 

provided by Centro de Investigaciones Agrarias Mabegondo, Instituto Galego da Calidade 

Aumentaria (CIAM-INGACAL, Spain) and one dent line (F353, INRAE, also tester in 

testcross evaluations), all planted as duplicate entries. For the 2018 trials, the number of 

checks was reduced to four lines (DK105, EP1, FV2, F353) and each check was planted in 

each lattice design per location. In all trials, sampled plants from the ancestral landraces 

were included as quadruplicate entries. The DH and GC lines were evaluated with two 

replications per location. All line per se evaluation plots were single rows of 3 m length with 

0.75 m distance between rows, resulting in a planting density of 8.8 plants m-2. 

Testcross performance was evaluated in four 10 × 10 lattice designs for the DH lines in 

2018 (EIN, KLW, ROG, OLI) and 2019 (ROG and EIN); and in a generalized α-lattice design 

with 200 entries in ROG and EIN in 2019 for GC lines. Testcrosses of the ancestral landrace 

and either four (2018) or two (2019) inbred lines and either two (2018) or six (2019) 

commercial hybrids were included as checks in the trials and connected DH and GC trials. 
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Plots were double rows of 5 m or 6 m length with 0.75 m distance between rows and 

planting density varying between 9 and 11 plants m-2. Sowing, fertilization, and plant 

protection in all trials (line per se and testcross) followed standard agricultural practice at 

the experimental stations. 

In the DH line per se trials more than 25 traits were measured to cover as many different 

traits as possible for which the landraces showed variation. An emphasis was placed on 

traits related to early development. The early development related traits were early vigor 

(EV, at three growths stages V3, V4 and V6, 1-9 score, 1 = very poor, 9 = very vigorous), 

early plant height (PH, at V4 and V6 stage, cm), a cold tolerance score (CT, 1-9 score, 

1 = low cold tolerance, 9 = high tolerance), and physiological traits measured in the 

Spanish environments only, like maximum efficiency of photosystem II (Fv/Fm, using a 

fluorometer (OS-30p, Opti-Sciences Inc., USA)) measured at V4 and V6, leaf greenness 

(SPAD, with chlorophyll content meter CCM-200, Opti-Sciences Inc., USA) measured at 

V3, V4 and V6. Final plant height (PH_final, cm), female flowering (FF, days after sowing 

until 50% of plants in a plot show silks) and male flowering (MF, days after sowing until 

50% of the plants in a plot shed pollen) were measured as further important agronomic 

traits. At occurrence, additional traits like tillering (TILL, score 1-9, 1 = no tillers, 9 = many 

and long tillers), root lodging (RL, 1 = no lodging, 9 = all plants show severe lodging) and 

drought/heat tolerance (DT, 1-9 score, 1 = low drought/heat tolerance, 9 = high 

drought/heat tolerance) were measured at individual locations. At one location, also 

morphological traits of the tassel architecture were scored (tassel length, spike length, 

number of tassel branches, and tassel angle). In the testcross trials EV, PH, PH_final, FF, 

TILL and RL were scored as described for line per se testing. In GC trials only a small 

subset of traits was used for the comparative analyses and genomic prediction studies. 

The DH testcross trials were phenotyped for a subset of the already described traits and, 

in addition, testcross evaluation plots of GC and DH trials were harvested and total dry 

matter yield (TDMY, dt/ha) and dry matter content (DMC, %) were measured at forage 

harvest. See Table 1 for a detailed list of all trait and environment combinations used for 

this thesis. 
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Table 1: Table specifying which traits were measured in which environments for line per se (LP) and 

testcross (TC) trials. Traits are emergence (EME), early vigor and early plant height at stages V3, V4, 

and V6 (EV_V3, EV_V4, EV_V6, PH_V3, PH_V4, PH_V6), ear height (EH), final plant height (PH_final), 

male flowering (MF), female flowering (FF), anthesis-silking-interval (ASI), root lodging (RL), tillering 

(TILL), cold tolerance (CT), drought/heat tolerance (DT), tassel length (TL), spike length (SL), number 

of tassel branches (NB), tassel angle (TA), maximum photosystem II efficiency at stages V4 and V6 

(Fv/Fm_V4, Fv/Fm_V6), leaf greenness at stages V3, V4, and V6 (SPAD_V3, SPAD_V4, SPAD_V6), 

dry matter content (DMC), and total dry matter yield (TDMY). 

Trait 
Environments per 
se performance 

DH 

Environments per 
se performance 

GC 

Environments 
testcross 

performance DH 

Environments 
testcross 

performance GC 

EME All DH* - 
All 2018 DH 

environments 
- 

EV_V3 
All DH*, except 

EIN 2018 
- 

KLW 2018, OLI 

2018, ROG 2018 
- 

EV_V4 All DH* - 
All 2018 DH 

environments 
- 

EV_V6 All DH* - 
All 2018 DH 

environments 
- 

PH_V3 
GOL and TOM 

2017 and 2018 
- 

KLW 2018 and 

OLI 2018 
- 

PH_V4 All DH* - 
All 2018 DH 

environments 
- 

PH_V6 All DH* 
EIN and ROG 

2017 and 2018 
All DH* 

EIN and ROG 

2019 

EH 
ROG 2017 and 

2018 
- ROG 2018  

PH_final All DH* 
EIN and ROG 

2017 and 2018 
All DH* 

EIN and ROG 

2019 

MF 

EIN and TOM 

2017 and 2018, 

GOL 2018 

- - - 

FF 
All DH* except 

GOL 2017 

EIN and ROG 

2017 and 2018 

All DH*, except 

KLW 2018 

EIN and ROG 

2019 

ASI 

EIN and TOM 

2017 and 2018, 

GOL 2018 

- - - 

RL 
BBG 2017, EIN 

2017 and 2018, 
- 

EIN 2018, OLI 

2018, ROG 2018 
- 
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OLI 2017, ROG 

2017 and 2018 

TILL 

EIN and ROG 

2017 and 2018, 

KLW 2018 

- OLI 2018 - 

CT OLI 2017 - - - 

DT EIN 2018 - - - 

TL ROG 2018 - - - 

SL ROG 2018 - - - 

NB ROG 2018 - - - 

TA ROG 2018 - - - 

Fv/Fm_V4 
GOL and TOM; 
2017 and 2018 

- - - 

Fv/Fm_V6 
GOL and TOM 

2017 
- - - 

SPAD_V3 
GOL and TOM; 
2017 and 2018 

- - - 

SPAD_V4 
GOL and TOM; 
2017 and 2018 

- - - 

SPAD_V6 
GOL and TOM 

2017 
- - - 

DMC - - All DH* 
EIN and ROG 

2019 

TDMY - - All DH* 
EIN and ROG 

2019 

* All DH environments for line per se performance are Einbeck (EIN, Germany, 2017 and 2018), Roggenstein 

(ROG, Germany, 2017 and 2018), Bernburg (BBG, Germany, 2017), Klein Wanzleben (KLW, Germany, 2018), 

Oberer Lindenhof (OLI, Germany 2017), Golada (GOL, Spain, 2017 and 2018) and Tomeza (TOM, Spain, 2017 

and 2018); for testcross performance EIN, KLW, ROG, OLI in 2018 and ROG and EIN in 2019  

 

The analysis of phenotypic data for Hölker et al. (2019a) was based on the following model: 𝑦𝑖𝑗𝑘𝑜𝑝𝑠𝑡 = µ + 𝑚𝑖  +  𝛿𝐶ℎ𝑒𝑐𝑘𝑠𝑙𝑗 + 𝑔𝑘(𝑖𝑗) + 𝑢𝑜 +  𝛿𝐶ℎ𝑒𝑐𝑘𝑠𝑙𝑢𝑗𝑜 + 𝑔𝑢𝑘𝑜(𝑖𝑗) + 𝑘𝑝(𝑜) + 𝑟𝑠(𝑜𝑝) +𝑏𝑡(𝑜𝑝𝑠) + 𝜀𝑖𝑗𝑘𝑜𝑝𝑠𝑡  (1) 𝑦𝑖𝑗𝑘𝑜𝑝𝑠𝑡 trait observation µ overall mean 𝑚𝑖 effect of group i, with i = 1, 2, 3 (DH, LS, checks) for line per se and i = 1, 2 

(DH, checks) for testcrosses 𝛿𝐶ℎ𝑒𝑐𝑘𝑠 dummy variable with 𝛿𝐶ℎ𝑒𝑐𝑘𝑠 = 1 if the line belongs to DH and 0 

otherwise 



2 Material and methods 

15 

𝑙𝑗 effect of landrace j in group i = 1, with j = 1, 2, 3 (DH_KE, DH_PE, DH_LL) for 

line per se and j = 1, 2 (DH_KE, DH_PE) for testcrosses 𝑔𝑘(𝑖𝑗) effect of genotype k nested in group i and landrace j 𝑢𝑜 effect of environment o 𝑙𝑢𝑗𝑜 interaction effect of landrace j and environment o 𝑔𝑢𝑘𝑜(𝑖𝑗) interaction effect of genotype k and environment o nested in group i and 

landrace j 𝑘𝑝(𝑜) effect of the lattice p nested in environment o 𝑟𝑠(𝑜𝑝) effect of replicate s nested in lattice p and environment o 𝑏𝑡(𝑜𝑝𝑠) effect of block t nested in replicate s, lattice p and environment o 𝜀𝑖𝑗𝑘𝑜𝑝𝑠𝑡 residual error 

 

All effects except 𝑚𝑖 and 𝑙𝑗 were treated as random for estimating genotype and genotype 

× environment variance components. Variance components for 𝑔𝑘(𝑖𝑗) and 𝑔𝑢𝑘𝑜(𝑖𝑗) were 

modeled individually for the three landraces, assuming that DH lines were unrelated. 

Residuals were assumed to be normally distributed with mean zero and different variances 

for DH lines (𝛿𝐶ℎ𝑒𝑐𝑘𝑠 = 1) and checks/LS (𝛿𝐶ℎ𝑒𝑐𝑘𝑠 = 0), but equal residual variances were 

assumed for all landraces in all environments. Raw data and outlier curation was done 

manually by inspection of residual plots. Measurements of lines that did not pass quality 

filtering of genotypic data but were still evaluated in the field in 2017 were set to missing 

values in the data analysis. Variance components and their standard errors were estimated 

using restricted maximum-likelihood estimation implemented in the ASReml-R package 

(Butler et al. 2009). Differences among means 𝑙𝑗 were tested with pairwise t-tests with the 

R-package asremPlus. Heritabilities were calculated separately for each landrace on an 

entry-mean basis following Hallauer et al. (2010): 

ℎ2 =  𝜎𝑔2𝜎𝑔2+ 𝜎𝑔𝑢2𝑛𝑢 + 𝜎𝜀2𝑛𝑢𝑛𝑟          (2) 

ℎ2 entry-mean heritability 𝜎𝑔2 genotypic variance 𝜎𝑔𝑢2  genotype × environment variance 𝜎𝜀2 residual variance 𝑛𝑢 number of environments 𝑛𝑟 number of replications 
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Standard errors of heritability estimates were derived from standard errors of 

corresponding variance components with the delta method (Holland et al. 2010). Variance 

components and heritabilities exceeding twice their standard error were considered 

significant. Best linear unbiased estimates (BLUEs) of the genotype mean for each trait and 

DH line were obtained from a simplified model in Eq. (1) after dropping factors 𝑚𝑖, 𝛿𝐶ℎ𝑒𝑐𝑘𝑠𝑙𝑗, and 𝛿𝐶ℎ𝑒𝑐𝑘𝑠𝑙𝑢𝑗𝑜, and treating genotype as a fixed effect. The same model was 

also used for forming linear contrasts to test for significant differences (t-tests) between 

LS and the mean of the corresponding DH population (both for line per se and testcross 

performance) and between the mean of the commercial check hybrids and the mean of 

the DH population (only for testcross evaluation). The predicted response from selection 

within DH populations (line per se and testcrosses) was calculated according to Falconer 

and Mackay (1996) for a selection intensity of 𝛼 =  10% (𝑖(10%) ≈ 1.76):  ∆𝐺(𝛼) =  𝑖(𝛼)ℎ𝜎𝑔          (3) ∆𝐺(𝛼) predicted response from selection 𝑖(𝛼) selection intensity ℎ square root of the heritability 𝜎𝑔 genetic standard deviation 

 

To account for mean differences and different selection responses, the usefulness criterion 

(Schnell 1983) was calculated as 𝑈(10%) =  �̅�  ± ∆𝐺(10%) where  �̅� = mean of the respective 

DH population. The BLUEs were used to calculate phenotypic correlations among traits as 

Pearson correlation coefficients within populations and in lines per se and testcrosses. For 

evaluating the prospects of selection on line per se performance, Spearman rank 

correlations were calculated across line per se and testcross performance for the same 

traits. Multiple-testing correction was done for all phenotypic correlations within DH 

populations by Bonferroni-Holm correction (Holm 1979). The model from Eq. (1) was 

expanded to a bivariate model with pairs of traits (or the same trait in lines per se and 

testcrosses) for estimating genetic correlations. The genetic correlations were considered 

significant if they exceeded twice their standard error. 
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This analysis of only DH lines was expanded for Hölker et al. (2022) to accommodate a 

joint analysis of the DH and GC experiments using the following model: 𝑦𝑖𝑗𝑘𝑜𝑝𝑠𝑡 = µ + 𝑚𝑖  +  𝛿𝐶ℎ𝑒𝑐𝑘𝑠𝑙𝑗 + 𝑔𝑘(𝑖𝑗) + 𝑢𝑜 + 𝑔𝑢𝑘𝑜(𝑖𝑗) +  𝛿𝐷𝐻{𝑙𝑢𝑗𝑜 + 𝑘𝑝(𝑜) + 𝑟𝑠(𝑜𝑝) +𝑏𝑡(𝑜𝑝𝑠)} +  𝛿𝐺𝐶{𝑙𝑢𝑗𝑜 + 𝑘𝑝(𝑜) + 𝑟𝑠(𝑜𝑝) + 𝑏𝑡(𝑜𝑝𝑠)} + 𝜀𝑖𝑗𝑘𝑜𝑝𝑠𝑡  (4) 

 𝑦𝑖𝑗𝑘𝑜𝑝𝑠𝑡 trait observation µ overall mean 𝑚𝑖 effect of group i, with i = 1, 2, 3, 4 (GC, DH, LS, checks) for line per se and i = 

1, 2, 3 (GC, DH, checks) for testcrosses 𝛿𝐶ℎ𝑒𝑐𝑘𝑠 dummy variable with 𝛿𝐶ℎ𝑒𝑐𝑘𝑠 = 1 if the line belongs to DH or GC and 0 

otherwise 𝑙𝑗 effect of landrace j in group i = 1, with j = 1, 2, 3, 4 (GC_KE, GC_PE, DH_KE, 

DH_PE) for lines per se and for testcrosses 𝑔𝑘(𝑖𝑗) effect of genotype k nested in group i and landrace j 𝑢𝑜 effect of environment o 𝛿𝐷𝐻 dummy variable with 𝛿𝐷𝐻 = 1 if data belongs to the DH experiment and 0 

otherwise 𝛿𝐺𝐶 dummy variable with 𝛿𝐺𝐶 = 1 if data belongs to the GC experiment and 0 

otherwise 𝑙𝑢𝑗𝑜 interaction effect for landrace j and environment o 𝑔𝑢𝑘𝑜(𝑖𝑗) interaction effect for genotype k and environment o 𝑘𝑝(𝑜) effect of the lattice p nested in environment o 𝑟𝑠(𝑜𝑝) effect of replicate s nested in lattice p and environment o 𝑏𝑡(𝑜𝑝𝑠) effect of block t nested in replicate s, lattice p and environment o 𝜀𝑖𝑗𝑘𝑜𝑝𝑠𝑡 residual error 

 

The remaining analysis was done the same way as described above, e.g. same random 

and fixed effects, heritability calculation, calculation of BLUEs with the above-described 

simplified model that was also used to obtain tests for significant differences (t-tests) 

between LS, DH, GC and FV2 in linear contrasts, and estimation of genetic covariances 

and genetic correlations between line per se and testcross performance for a given trait in 

a bivariate extension of Eq. (4). In this case, significance of genetic covariances was tested 

in likelihood-ratio-tests comparing the model including the covariance with the reduced 

model without the covariance. 
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2.2 Genetic data analysis 

2.2.1 Population structure and linkage disequilibrium 

With DH and LS, a principial coordinate analysis (Gower 1966) was carried out with the R-

package ape. The modified Rogers’ distance (MRD, Wright 1978), a scaled Euclidean 

distance measure ranging between 0 and 1 was calculated for pairs of individual 

genotypes: 

𝑀𝑅𝐷 =  1√2𝑚 √∑ ∑ (𝑝𝑖𝑗 − 𝑞𝑖𝑗)2𝐼𝑖𝑗=1𝑚𝑖=1        (5) 

𝑚 number of markers 𝐼𝑖 number of alleles at marker i (for biallelic SNPs, 𝐼𝑖 = 2) 𝑝𝑖𝑗, 𝑞𝑖𝑗 allele frequencies of the j-th allele at the i-th locus in the two individuals 

under consideration (𝑝𝑖𝑗, 𝑞𝑖𝑗  𝜖 {0, 0.5, 1}) 
 

The MRD matrices were hierarchically clustered using the unweighted pair group method 

with arithmetic mean (UPGMA) implemented in the hclust function in R. The results were 

displayed as 1-MRD. Linkage disequilibrium (LD) was measured using r2 (Hill and 

Robertson 1968) for samples of 94 gametes within each population of landraces KE and 

PE. The value for r2 was calculated for pairs of SNPs within a distance of 1 Mb. The r2 decay 

with physical distance was investigated with nonlinear regression (Hill and Weir 1988). The 

physical distance δ for which the curve reaches r2 = 0.2 is defined as the LD decay 

distance. LD across chromosomes was estimated by sampling 5,000 markers per 

chromosome with replacement for all 45 pairwise combinations of chromosomes and 

calculating r2 for all pairs of markers across chromosomes. Following Schopp et al. (2017), 

linkage phase similarities (LPS) between populations were calculated and LPS according 

to physical distance was calculated by grouping pairs of markers into bins of between 10 

kb and 1 Mb. 

2.2.2 Molecular variance and genetic diversity 

Different types of analysis of molecular variance (AMOVA) were carried out, all based on 

Euclidean distances (Excoffier et al. 1992). For Hölker et al. (2019a), the proportion of 

molecular variance explained by the three landraces under study was estimated by 

partitioning the molecular variation into within- and between-landrace components, using 

the DH and the original panel of 35 European landraces from Mayer et al. (2017) for 

comparison. A second AMOVA was carried out with DH and LS to decompose variation 



2 Material and methods 

19 

within and between DH lines and LS gametes to investigate how much of the molecular 

variance lies within and between those groups. For Hölker et al. (2022), an AMOVA was 

done to estimate molecular variance within and between individuals of LS, DH, and GC 

separately for landraces KE and PE. 

Genetic diversity was estimated by sampling 80 gametes from each population (LS, DH, 

and GC) and landraces KE and PE with 500 replicates for comparing the number and 

percentage of polymorphic markers across populations. The allele frequencies between 

DH and LS and between the experimental and expected GC were compared for KE and 

PE. The expected GC allele frequency was obtained by (𝑝 + 1)/2, with p being the 

frequency of the FV2 allele in the respective LS. The simple matching coefficient (𝑆𝑀) was 

calculated across all SNP loci as described by Jacobson et al. (2015) and the genetic 

distance (𝐺𝐷) between two genotypes was measured as 𝐺𝐷 = 1 − 𝑆𝑀.  
2.3 Genome-based prediction 

2.3.1 Genomic prediction model 

Genome-based prediction in Hölker et al. (2022) for all scenarios and per se and testcross 

performance was done with genomic best linear unbiased prediction (GBLUP), always 

applying the following model 𝐲 = 𝟏µ + 𝐙𝐮 + 𝐞   (6) 
 𝐲 vector of BLUEs of the training set, from phenotypic analysis 𝟏 vector of 1s µ population mean 𝐙 incidence matrix for 𝐮 𝐮 vector of random genetic values with distribution 𝐮 ~ 𝑁(0, 𝐔𝜎𝑔2); where 𝐔 is 

the realized relationship matrix calculated after method 1 of VanRaden (2008) 

considering all genotypes (GC and DH of KE and PE) and 𝜎𝑔2 is the genetic 

variance pertaining to the GBLUP model 𝐞 vector of residuals, with distribution 𝐞 ~ 𝑁(0, 𝐈𝜎𝑒2), where 𝐈 is the identity 

matrix and 𝜎𝑒2 denotes the residual variance pertaining to the GBLUP model 

 

Relationship matrices were calculated using R version 3.6.0 (R Core Team 2019) and R-

package synbreed in version 0.12-9 (Wimmer et al. 2012). Estimation of the variance 

components pertaining to the GBLUP model was done using ASReml-R in version 3.0 
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(Butler et al. 2009). The genomic variance estimate was tested for significance with a 

likelihood-ratio-test by comparing the models with and without the model term. Predictive 

ability was determined by calculating the Pearson correlation between the predicted values 

with the observed phenotypic values in the prediction set. The results were reported as 

genomic prediction accuracy (ρ), which is the correlation between predicted and 

unobservable true genetic values. For estimating ρ, the calculated predictive abilities were 

divided by the square root of the heritability of the prediction set (Dekkers 2007). 

2.3.2 Scenarios for genomic prediction 

For obtaining a comprehensive evaluation of prediction accuracies in landrace material, 

several scenarios were considered for genomic prediction, which are depicted in detail in 

Figure 3. 

 

Figure 3: Genomic prediction scenarios in this thesis. For sampling the number of markers M and 

number of individuals N, 100 sampling replications were drawn for each level of M and N, 

respectively. On each of those samples, ten times fivefold cross-validation (CV) was applied (a). In 

each of the CV reps, the sample was split in five folds ten times and in each CV rep always four 

folds are used for predicting the remaining fold. The prediction and training folds are rotated until 
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all folds are predicted once. For predictions across and within DH and GC populations (b), one 

population (either DH or GC, in the example it is DH) is used for sampling both, a training and a 

prediction set. In addition, a prediction set is also sampled from the other population of the same 

landrace. The training set is used to predict both prediction sets (b). For predictions across 

landraces (c), again a training set for each population type and landrace was sampled and used to 

predict the same population type of the other landrace. For b) and c) 100 samples were drawn. 

 

The scenarios can be divided into studying the influence of technical parameters like 

number of markers and number of individuals in the training set on the prediction accuracy 

on the one hand and in investigating the prediction accuracy in prediction scenarios within 

and across populations and landraces on the other hand. For studying the influence of 

number of markers M on prediction accuracy, 1,000, 2,000, 5,000, 10,000, 15,000, 20,000, 

50,000, 100,000, 150,000, 200,000, and 250,000 markers were sampled. Sample size N 

was increased from 50 to the maximum possible number for the respective population in 

increments of 50 (except for the last increment up to the maximum). The sampling of M 

and N without replacement was repeated 100 times (except for the maximum value of N) 

yielding 100 sampling replications. Within each sample, 10 times fivefold cross-validation 

(CV) was carried out with line per se data. Prediction accuracies ρ were averaged across 

the 50 CV replications and the 95% quantile was calculated from the 100 sampling 

replications. With small sample sizes N, the mixed model algorithm did not converge for 

some training sets. In those cases, ρ was set to missing value. 

For comparing ρ within and between the DH and GC populations, either 200 (per se 

performance) or 75 (testcross performance) genotypes were randomly sampled from one 

of the two population types (either DH or GC) as the training set. The prediction set always 

comprised a disjoint set of 50 (per se performance) or 25 (testcross performance) 

genotypes either from the same or a different population. Sampling without replacement 

was repeated 100 times. The DH and GC populations of KE and PE were used as training 

population with line per se data, with testcross data only GC_KE was analyzed and GC_PE 

was excluded as training population due to its small sample size. The same sampling 

procedure was applied for across landrace predictions, but in this case only predictions 

with line per se data were studied.  
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3 Discussion 

Continuous genetic improvement of crops is necessary to secure agricultural productivity 

and meet the challenges current production systems are facing. Increased awareness of 

the environmental impact of management practices and the changing climate will be a key 

requirement in future breeding programs. However, in elite germplasm relevant genetic 

variation for genetic improvement towards stress resilience and resource use efficiency in 

crops is limited. In this thesis, the objective was to develop whole-genome based 

strategies for the utilization of genetic resources, such as landraces, for elite germplasm 

improvement for quantitative traits, using European flint maize landraces as an example. 

In the following chapter, the results from the two publications included in this thesis (Hölker 

et al. 2019a, 2022) are discussed and complemented by additional results. 

3.1 Choice of landraces and sampling method 

3.1.1 Choice of source material 

The global germplasm of maize genetic resources, currently stored in gene banks across 

the world, contains extensive genetic variation (Lu et al. 2009), resulting from a long history 

of open pollination, mutation, drift, and selection over a broad range of environments 

(Mercer and Perales 2010; Hufford et al. 2012). Due to local adaptation to specific 

environments, it is likely that landraces contain favorable alleles that could prove useful for 

the improvement of current elite germplasm (Hellin et al. 2014; Mayer et al. 2020). However, 

the total number of accessions stored in gene banks is too large to be able to study all of 

them in detail (Hoisington et al. 1999), thus a preselection of the source material is a 

prerequisite for working with this source of diversity. The first question therefore is how to 

decide which landrace or landraces should be evaluated in more detail. For an informed 

decision regarding how to sample (many accessions with few individuals vs. many 

individuals from few accessions), knowledge concerning the distribution of genetic 

diversity within and across landraces is important. The molecular diversity of landraces of 

allogamous crops has been studied in many ways, but a common result was that the 

majority of molecular variation can be found within instead of across landraces (Sood et 

al. 2014). For European flint maize, chosen as an example for this thesis, Mayer et al. (2017) 

showed that sampling from five of the 35 studied landraces was, on average, enough to 

capture 95% of the total molecular variation of the whole set. Therefore, sampling of many 

individuals of fewer landraces seems a suitable strategy for the improvement of elite 

germplasm for quantitative traits. On the other hand, sampling few individuals from many 



3 Discussion 

23 

landraces has been shown to be appropriate for studying broad signals of adaptation, crop 

evolution or the effects of rare alleles (Heerwaarden et al. 2011; Navarro et al. 2017; 

Kremling et al. 2018). Such a diverse set of landraces is expected to harbor a wide range 

of adaptive alleles, which might hamper the landraces’ utilization in a specific target 

population of environments. Thus, the use of more diverse material (compared to material 

already adapted to the target region) offers more novel genetic variation, but comes at a 

much higher investment for the successful incorporation into elite germplasm of a given 

target environment (Sood et al. 2014).  

In the Latin American Maize Project (LAMP, late 1980s and 1990s), 12 countries of North 

and South America evaluated their native accessions of genetic resources together. In 

total, 12,000 accessions were phenotypically evaluated (per se and in elite testcrosses) in 

a wide range of environments and several testing stages (Pollak 2003). The best LAMP 

accessions were identified, and pre-breeding was initiated during the follow-up project 

Germplasm Enhancement of Maize (GEM). These efforts were based on phenotypic 

selection only and consumed a lot of field-testing capacities and time. More recent studies 

indicated that genomic prediction can be employed also across a broad range of diversity 

(Crossa et al. 2016; Yu et al. 2016) and could therefore be used to identify genetic 

resources that are promising based on their predicted performance. Allier et al. (2020b) 

developed a strategy for a targeted identification of donors from a panel of genetic 

resource inbred lines (important founder lines, lines derived from landraces, elite material 

in the public domain and breeding material from public institutes) that have been 

characterized phenotypically and genotyped with molecular markers. The donors were 

selected to complement the elite germplasm, balancing their own genetic value as an 

indicator of short-term genetic gain, and their allelic originality at quantitative trait loci 

(QTLs), influencing the expectation for long-term genetic gain (Allier et al. 2020b). However, 

this concept has not been proven in practice. Other studies in maize evaluating the use of 

landrace material for elite germplasm improvement sampled only one or very few 

individuals per landrace (Takuno et al. 2015; Navarro et al. 2017). Only few reports sampled 

larger numbers of progenies per landrace with 21 to 113 DH lines per landrace from up to 

six different landraces (Böhm et al. 2017; Melchinger et al. 2017; Brauner et al. 2019; 

Würschum et al. 2022). 

As a conclusion, sampling from landrace source material should be guided by the 

respective research aim. When investigating genome-based prediction in landrace-derived 

material for improving elite germplasm, as in this thesis, the strategy of sampling intensively 
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from fewer landraces that are already adapted to the target environment should be the 

method of choice. Even after making general decisions on the strategy and reducing the 

plethora of possible choices of source material to the ones originating from the same 

geographic region as the breeding target (e.g. European flint for the improvement of flint 

elite material, as for this thesis), the number of possible accessions is still prohibitively 

large. The main options for further material selection are the use of small-scale geographic 

origin, molecular data, and/or predicted or observed phenotypic performance.  

During the preselection carried out on the material for this thesis, all of these information 

sources were used: geographic origin, phenotypic performance and variability for the traits 

of interest as well as molecular data. The search was restricted to material adapted to the 

target region so that only European flint landraces were considered. A phenotypic pre-

screening for variation in early development within landraces was done and high molecular 

diversity within the chosen landraces was ensured. The landraces KE, PE, and LL selected 

for this study together represent 95% of the molecular variance of the full set of 35 

landraces analyzed by Mayer et al. (2017). Thus, the applied preselection resulted in a 

higher representation of the full allelic spectrum in these three landraces than expected 

from random sampling (Hölker et al. 2019a). The three landraces constitute a promising 

starting point for improving European flint maize elite breeding pools, as the selected 

landraces cover much of the relevant diversity, show no indication of pronounced hidden 

population structure (Mayer et al. 2017) and the landraces are expected to be adapted to 

the Central European target region (Mayer et al. 2020).  

The next crucial step for initiating a pre-breeding effort is to develop populations of 

reproducible genetic units that capture the genetic variance of the source material in the 

best possible way for further breeding activities.  

3.1.2 Population development in pre-breeding 

Reproducible genetic units can be obtained in different ways that come with different 

advantages and disadvantages. The most basic categorization of strategies is into “pure” 

approaches, keeping landrace material without elite introgression, or “admixed” 

approaches, where crosses between landrace and elite material are made before the 

evaluation process. Eventually, all pre-breeding efforts will lead to crosses between 

landrace and elite germplasm, but the timing of these crosses has large impact, e.g. on 

the opportunities for selection along the way and the final output. The main criteria for 

comparing different strategies of population development are the required time and 

resources, the expected performance level of the resulting population and the unbiased 
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representation of the original source by the developed population. The general expectation 

for all landrace material is that a substantial gap of performance to current elite germplasm 

exists and needs to be bridged (Sood et al. 2014; Böhm et al. 2017).  

When landraces are evaluated choosing the “pure” approach, reproducible genetic units 

can be obtained either by recurrent selfing or by direct production of DH lines. Recurrent 

selfing requires only a low to medium effort per generation, but several subsequent 

generations (> 5) need to be produced before sufficient inbreeding levels are reached for 

the material to be stable and reproducible. Selection can be applied during the inbreeding 

process, which would theoretically increase the performance level, but only for highly 

heritable traits that can be evaluated on the lines per se. The recurrent inbreeding 

additionally harbors the risk of losing many lines in late generations of inbreeding, as the 

percentage of homozygous loci increases, which also increases the risk of unmasking 

deleterious alleles in a homozygous state.  

The production of DH lines yields fully inbred lines much faster and promises to purge the 

population of deleterious alleles immediately instead of after several generations of selfing, 

which should generally result in a performance improvement compared to the original 

landrace (Melchinger et al. 2017). However, the initial effort for producing DHs is often high 

due to the low efficiency of DH production in genetic resource material (Melchinger et al. 

2017). Some landraces carry such a high genetic load of deleterious alleles that efforts for 

production of DH lines are prohibitive for these landraces. The low efficiency in DH 

production for LL observed in this thesis compared to the other two landraces may indicate 

a stronger load of deleterious alleles in LL, which could possibly also result in a stronger 

effect on phenotypic performance. 

All pure methods of population development have in common that the performance level 

of the resulting populations is mainly determined by the choice of the source material, as 

the possibilities for reducing the performance gap to elite material during population 

development (selection during selfing, purging of deleterious alleles in DH process) are 

minor compared to the effect a direct cross with more elite material has. The pure 

populations are expected to result in mostly unbiased representations of the source 

landraces, as no introgression of other germplasm happens and the applied selection, if 

any, cannot be focused on the most important traits, like yield. Any deviation in allelic 

frequencies or phenotypic performance from the original source population would originate 

from purging or, in the case of DH production, from unintentional selection through the DH 

production procedure. A previous study by Melchinger et al. (2017) showed that the 
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production of DH lines from maize landraces results in populations that represent the 

ancestral landrace in an unbiased way, but the study indicated strongly varying efficiency 

in the DH production across different source landraces, which is most likely a result of the 

substantial number of deleterious alleles the landraces harbor (Yang et al. 2017) that are 

uncovered instantaneously during DH production. An analysis of the same data focusing 

on those deleterious, often rare (Mezmouk and Ross-Ibarra 2014), alleles by Zeitler et al. 

(2020) indicated that the DH production indeed resulted in limited loss of diversity in some 

regions of the genome. In summary, the pure approach in general, and the DH approach 

in particular, is suitable for successful sampling and production of reproducible genetic 

units from landraces for subsequent pre-breeding efforts. The performance gap to elite 

germplasm will more or less persist during population development with a pure approach. 

The admixed approaches have in common that the source material is crossed to a crossing 

partner, which could, for example, be an inbred line. A process like this was termed gamete 

selection by Stadler et al. (1944). The initial crossing can be considered low effort, but the 

resulting F1-hybrids are not yet reproducible genetic units. They need at least a few 

generations of selfing or could also be followed by an additional DH production step to 

obtain fully homozygous inbred lines. Independent of the exact procedure, the 

performance, molecular variation and representation of the source material by the resulting 

population is strongly influenced by the properties of the crossing partner and the selection 

pressure applied during population development. The higher the crossing partner’s 

performance level, the smaller will be the overall performance gap of the resulting 

population to elite germplasm. However, simulation studies indicate that a strong crossing 

partner and immediate selection carry the risk of reconstructing the elite crossing partner’s 

genome in subsequent selection cycles (Gorjanc et al. 2016). A crossing partner of lower 

performance level is expected to result in less selection pressure against the source 

material but will on the other hand result in a larger remaining performance gap (Hölker et 

al. 2022). In Hölker et al. (2022) theoretical derivations were developed to derive 

expectations for the molecular and genetic variation in the admixed approach.  

For this thesis the goal was to empirically compare the pure and the admixed approach. 

The aim was to show how molecular variances of the resulting populations can be 

predicted and to investigate if the molecular variance also predicts genetic variation 

measured in multi-environment field trials. Therefore, the three preselected landraces were 

intensively sampled by direct DH production from the landraces (pure approach) and by 

crossing to a capture line (admixed approach, following a modification of Stadler (1944)). 
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The required efforts for DH production confirmed the varying efficiencies in DH production 

observed by Melchinger et al. (2017). The landrace LL resulted in a much smaller number 

of DH lines compared to the other two landraces, although the input during DH production 

for LL was even larger than for the two other landraces. The analysis of population structure 

and molecular variation showed that a low level of population structure was already present 

in all of the ancestral landrace populations, but no further structuring was introduced 

through the DH production process (Hölker et al. 2019a). On the phenotypic level, the direct 

comparison of performance of the ancestral landrace and the derived DH population is not 

possible due to the different levels of inbreeding in the two populations. However, a 

comparison can be made on the level of testcrosses, as, without directed selection, the 

mean testcross performance of the DH population is expected to be equal to the testcross 

performance of the ancestral landrace. As shown in Hölker et al. (2019a) and Hölker et al. 

(2022), those differences were almost always nonsignificant for the DH populations. The 

result shows that no inadvertent selection pressure was applied. For the DH, it indicates 

that the possible loss of diversity during DH production indicated by Zeitler et al. (2020) 

did not affect the phenotypic performance, at least for the landraces KE and PE. All 

landraces were sampled from gene bank accessions and their history before storage in the 

gene bank and also the propagation history since storage is not fully documented. The 

landraces KE and PE might have gone through stronger bottlenecks than LL before storage 

in a gene bank or inadvertently during propagation cycles, increasing the efficiency of DH 

production by a reduction of genetic load (Hölker et al. 2019a). However, no testcrosses 

for LL were produced for this research so it remains an open question if the low production 

efficiency is an indication of selection pressure that changed the phenotypic performance 

in this case. 

The generic theoretical framework developed as part of this thesis allows to predict the 

molecular variances in the GC populations and highlights the large influence of the choice 

of the capture line (Hölker et al. 2022). Depending on which alleles are present in the 

capture line and landrace, the genetic variance of the resulting population can be larger, 

equal or smaller than in a corresponding pure population of DH lines. In the GC populations 

evaluated in this study the proportion of the capture line genome was on average about 

50%, thus meeting expectations. In addition, a significant correlation between per se 

performance and capture line genome proportion (ranging between 21.5 and 75.6% 

among the GC lines) could not be observed except for flowering time in testcrosses of KE. 

Although significant, the correlation was still only weak (r = -0.25).  
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The genetic makeup and performance of the capture line can have a large influence on the 

derived populations (mean, genetic variance, risk of masking (favorable) landrace alleles). 

In the case of the studied populations, the difference between phenotypic per se 

performance of the capture line and the mean of the ancestral landrace provided an 

indication for which traits the capture line might carry alleles absent in the landrace. The 

capture line used in this study is an important founder line of Flint elite germplasm. It needs 

to be shown that this pattern also persists for other combinations of landraces and capture 

lines, especially when the capture line is a very recent high performing elite line. Locus-

specific allele frequencies can be predicted from the molecular data. Hölker et al. (2022) 

showed that those parameters do not provide sufficient guidance for the choice of the 

capture line in a quantitative trait setting, where many loci contribute to the genetic 

variance. In summary, the DH and GC approach both capture the diversity present in the 

landrace.  

3.1.3 Phenotypic performance of landrace material 

The possibility to capture molecular variation in populations derived from landraces has 

been described intensively for qualitative traits like disease resistance. In this thesis, the 

hypothesis that the molecular variance of the landraces translates to genetic variation in 

quantitative traits could be validated for both, DH and GC populations (Hölker et al. 2019a, 

2022). The landrace-derived populations were evaluated for line per se and testcross 

performance and revealed large genetic variances within landraces but only small 

phenotypic differences among landrace means. Due to the availability of data for only three 

landraces, a full decomposition of genetic variance into within and across landrace 

variance was not meaningful, but the results are in agreement with a previous study of 

European flint maize landraces that sampled more landraces with less individuals and 

decomposed genetic variances with the result of the majority of variation being found 

within landraces (Böhm et al. 2017). However, the large number of over 25 traits studied in 

this thesis revealed that the variation of individual traits must still be evaluated specifically 

as genetic variance differed substantially among traits and landraces (Hölker et al. 2019a).  

Several studies point towards a yield performance gap between landrace and elite material 

of between 15 and 40%. These results are in agreement with the 15% yield gap found in 

Hölker et al. (2019a) for the DH populations in comparison with a small number of elite 

check hybrids evaluated together in 2018. In Hölker et al. (2022) another year of testcross 

evaluation with more commercial check hybrids and the joint evaluation of DH and GC 

populations confirmed a yield gap between 13% (DH_KE) and 16% (GC_PE). For 
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appropriate assessment of the yield differences, it has to be considered that the tester 

used in this study (F353) was released in 2001 and therefore is expected to have better 

performance than genetic resources but also a yield gap in comparison to recent 

commercial check hybrids that are highly selected on general and specific combining 

ability. A small set of DH lines from landraces that have been preselected, but not further 

bred or recombined, and tested with a modern tester in a public breeding program in direct 

comparison to current elite material of the same breeding program showed that some 

individual lines reached competitive yield (Hölker et al. 2019b). However, on average the 

DH lines showed a substantial yield gap of about 17% compared to the recent elite lines 

(Hölker et al. 2019b). For this thesis, six of the best performing (total dry matter yield) 

landrace DH lines from PE were used for testcross seed production with a modern elite 

dent tester. The testcrosses were evaluated in trials together with new flint elite breeding 

lines crossed to the same tester by the breeding company KWS SAAT SE & Co. KGaA. 

The results for total dry matter content (DMC) and total dry matter yield (TDMY) are shown 

in Figure 4. The six preselected DH lines yielded on average about 9% less than the mean 

of all elite entries. The best performing DH_PE line yielded about 5% less than the elite 

entries. The performance gap to the best 5% of elite entries amounts to about 17% on 

average and 13% for the best performing DH_PE line, respectively. 

 

Figure 4: Scatter plot of total dry matter content (DMC) and total dry matter yield (TDMY) at silage 

maturity for testcrosses of elite inbred lines from a commercial breeding program (Elite entry),  six 

preselected DH lines from landrace Petkuser Ferdinand Rot (DH_PE) crossed to the same elite 

tester, and five commercial hybrids. Presented results are adjusted means across up to six locations 

in Germany in 2021. 
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Even more interesting than the yield gap is the difference in total dry matter content. The 

landrace PE is expected to be early in maturity, with its origin in the northeast of Germany 

(Brandenburg). As previously established, the DH process did not introduce a selection. 

The total dry matter content of the six DHs selected for elite testcrosses was not lower 

than the mean of the total DH_PE population in previous trials with F353 as a tester. Thus, 

the difference in total dry matter content was also not introduced by the selection after the 

DH process. Nevertheless, the DH_PE lines have, on average, 2.3% lower total dry matter 

content than the mean of the elite entries. This indicates that either the dry-down 

characteristics of the landrace PE differs strongly or that it actually belongs into a later 

maturity range than the early flint material from the elite breeding program it was compared 

with.  

Besides the yield, there are many other traits relevant in the changing environment we are 

currently facing. Landraces are expected to carry beneficial variation for traits they have 

either been selected for in the past or also due to a reduced loss of genetic variation 

through selection compared to elite material. As shown by Mayer et al. (2020), the studied 

landraces actually carried beneficial haplotypes for cold tolerance and early plant 

development. For this thesis, early development under cold conditions was chosen as an 

example trait. The landraces are derived from regions with naturally occurring cold 

conditions during early development and, indeed, many testcrosses of landrace-derived 

lines (both DH and GC and both landraces) outperformed a set of recent commercial 

hybrids for example for early plant height at V6 stage. 
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Figure 5: Density plot for testcross plant height at V6 stage (cm) for testcrosses of lines from DH_KE 

(N = 183), GC_KE (N = 103), DH_PE (N = 173), and GC_PE (N = 54) along with the performance of 

six commercial check hybrids (indicated as arrows). Phenotypic evaluation was done in in two 

environments in 2019. 

 

Similar advantages for early development performance have been shown also for other 

European maize landraces (Weiß et al. 2022a). The early development trait is only one 

example showing that a proportion of the variation present in landraces is beneficial and 

useful for elite germplasm improvement. This example also highlights the necessity of 

developing suitable strategies for the utilization of the diversity, as in all landrace material 

favorable genetic variation can be linked to unfavorable alleles for yield and possibly also 

other agronomically relevant traits. The trait networks presented in Hölker et al. (2019a), 

indicate that the genetic correlations between early development traits and the most 

important agronomically unfavorable traits (e.g. root lodging, tillering) are only low to 

intermediate, making an improvement of agronomic performance while keeping the good 

performance in early development traits feasible. 

3.2 Genome-based prediction accuracy in landrace populations 

Genome-based prediction has quickly developed into a standard method in plant 

breeding. Genomic prediction in elite germplasm is strongly driven by relatedness in the 

breeding populations. In populations derived from panmictic landraces relatedness 
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between individuals is low (Hölker et al. 2019a), thus raising the question whether genome-

based prediction will result in equally high predictive abilities as observed in elite 

germplasm. The prediction accuracies presented as part of this thesis demonstrate great 

potential for genome-based selection also in landrace-derived material (Hölker et al. 2022). 

For this thesis a variety of important factors that are known to influence the prediction 

accuracy were studied in detail. 

3.2.1 Factors influencing genome-based prediction accuracy  

Many parameters are known to influence genome-based prediction accuracy, for example 

relatedness, linkage phase similarity, and number of polymorphic SNPs shared between 

training and validation set (Auinger et al. 2021). Those parameters in return influence the 

maximum achievable prediction accuracy and the required training set size and number of 

markers to reach said maximum prediction accuracy. Therefore, especially the required 

number of markers to reach a plateau in the prediction accuracy can be indicative for 

population structure and LD in the population. With large LD blocks and very strong 

population structure, the required number of markers for the maximum prediction accuracy 

is expected to be low. In elite germplasm, < 1,000 markers can already be sufficient to 

describe the relationship well enough to reach sufficiently high prediction accuracies 

(Crossa et al. 2014), but many studies in maize used around 10,000 to 20,000 markers 

(Windhausen et al. 2012; Albrecht et al. 2014; Auinger et al. 2021). In research on genetic 

resources, studies often use much larger numbers of markers in order to capture all present 

diversity (Yu et al. 2016; Navarro et al. 2017). For landraces KE and PE, the number of 

markers used in the prediction did have a strong influence on the prediction accuracy, as 

expected (Hölker et al. 2022). The plateau of prediction accuracy was reached at around 

15,000 markers with the studied traits early and final plant height and flowering time. This 

is only a small proportion of the total number of genotyped markers used on the landrace-

derived populations, but quite high compared to elite germplasm, where prediction 

accuracies close to the maximum could sometimes be reached with less than 1000 

markers (Crossa et al. 2014; Albrecht 2015). More markers are required for successful 

genomic predictions in landrace material, as the level of LD and the amount of population 

structure are much lower compared to common population types in elite breeding (e.g. 

biparental populations). The plateau of prediction accuracy at 15,000 markers indicates 

that the remaining polymorphisms of the 600k chip seem to be well-represented already 

through this limited set of markers (e.g. because of LD). However, the landraces were not 

part of the discovery set used for array design of the chip, which might result in missing 

loci that are relevant in the landrace material but were not polymorphic in the discovery set 
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(Nielsen 2004). An inclusion of such loci could theoretically lead to further increase of the 

prediction accuracy and would have to be investigated with sequence-based genotyping 

approaches instead of pre-defined chips, requiring further research.  

A second well-known factor influencing the prediction accuracy is the size of the training 

set (N). Increasing training set size has been shown to generally increase prediction 

accuracy (Auinger et al. 2021). So far, most results available in literature were not obtained 

in the context of genetic resources, though. The size of the training set could be even more 

important in this case, as the LD and population structure in the landrace-derived 

populations is lower than in elite germplasm. For within landrace predictions, Brauner et 

al. (2018) showed strong influence of the training set size on the prediction accuracy and, 

with the limited available maximum size, they did not reach any plateau in prediction 

accuracy. The results of this thesis (Hölker et al. 2022) highlighted that even with large 

samples derived from a single landrace (up to N > 450), no clear plateau of prediction 

accuracy was reached yet. Therefore, for successfully applying genomic selection in 

landrace-derived populations large training sets are required and the maximum sample 

size studied in this thesis can be recommended as a lower boundary.  

3.2.2 Prediction accuracy within and across populations and landraces 

Sampling of admixed and pure populations from different landraces allows to study 

prediction accuracies within and across the sampled populations and landraces. The main 

questions to be answered are (i) if there are systematic differences between pure and 

admixed populations with respect to within population prediction accuracies, (ii) how high 

prediction accuracies are in across population predictions for the same landrace (pure to 

admixed or vice versa), and (iii) which prediction accuracies can be achieved in across 

landrace predictions, dependent on the used population type. The results of this thesis 

give insights into how to set up efficient GP schemes for landrace improvement in pre-

breeding. Obviously, pre-breeding activities from landrace material aim at closing the 

performance gap to elite germplasm as fast as possible. To achieve this, a high prediction 

accuracy is key. However, the achieved prediction accuracy must not be evaluated 

isolated from other aspects that influence the maximum possible genetic gain like time 

required for population development and recycling. It could for example be a potential 

strategy to set up high-quality training sets using the pure DH approach and afterwards 

use these calibrations for predicting admixed populations from the same landrace, which 

can be produced at much lower costs than DH populations. This would require the high 

effort for DH production only once, but is only feasible, if the high-quality DH calibration 
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set has sufficiently high prediction accuracy when used for predicting other admixed 

populations from the same landrace. 

The prediction results in this study show differences in prediction accuracy among traits, 

but the overall tendency is that the population type determines the prediction accuracy. 

DH lines had consistently higher prediction accuracies than GC lines at comparable 

sample sizes in calibration and prediction sets (Hölker et al. 2022). Prediction accuracies 

across the different types of populations were lower than within populations and no 

advantage of the direction of prediction (from DH to GC or vice versa) could be observed. 

Thus, the use of one high-quality DH population in training for prediction of large GC 

populations in pre-breeding is not very promising. 

In sorghum it has been shown that predictions across a broad set of landrace accessions 

had high prediction accuracy, but this result was influenced strongly by mean differences 

driving prediction accuracies (Yu et al. 2016). The prediction of mean differences is not 

useful for ranking the individuals within a landrace in across landrace predictions. In this 

thesis, prediction accuracies across landraces differed for the two population types. In DH 

populations, prediction accuracy was close to zero. The GC populations had higher 

accuracies across landraces (Hölker et al. 2022). The generally high prediction accuracy 

within DH populations can be attributed to accurate phenotyping (no segregation in lines) 

and the full exploitation of the genetic variance in the DH lines. For a given trait, 

nonsignificant estimates of the genetic variance in the training set occurred in more 

samples in GC than in DH, indicating the lower genetic variance present. Training and 

prediction within GC populations resulted in higher prediction accuracies than the across 

population prediction. In the GC population development process, a relatedness among 

the produced populations was introduced with the use of the common capture line FV2, 

resulting in higher prediction accuracies. This increase was mainly driven by increased 

linkage phase similarities in GC lines due to shared haplotypes from FV2 (Hölker et al. 

2022). Accordingly, the, at a first glance, advantage of higher across landrace prediction 

accuracies in GC populations is not useful in pre-breeding as it relies mainly on the 

common capture line and the situation in the DH populations represents the true expected 

across-landrace prediction accuracies. 

3.2.3 Implications for the use of genomic prediction in pre-breeding 

This thesis delivers important insights on the use of genomic prediction in pre-breeding 

with landrace material. Achieving high genomic prediction accuracies in landrace-derived 

populations is possible and prediction accuracies > 0.5 with training set sizes > 200 can 
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be considered realistic in DH populations from landraces. With sufficiently sized high-

quality calibration data, despite much lower LD and relatedness, prediction accuracies 

within landrace-derived populations can be close to values observed in elite germplasm 

(Auinger et al. 2021). Therefore, any strategy for utilizing landrace material should make 

use of genomic prediction.  

The method used for developing populations of reproducible genetic units from landraces 

(pure vs. admixed) has strong influence on prediction accuracy. Prediction accuracies in 

this thesis were consistently higher for the fully inbred DH populations. However, genomic 

prediction in GC populations was also feasible, just at a lower prediction accuracy. The 

overall impact of this result must be considered as part of a comprehensive pre-breeding 

strategy. Achieving the highest possible prediction accuracy will not be the goal of a pre-

breeding strategy. It is the overall selection gain per year of pre-breeding that should be 

maximized and in which the prediction accuracy is only one component. Here, the admixed 

approach can still have advantages, e.g. if the capture line is a high-performing elite line 

the performance gap can be reduced in the GC populations or if DH line production is not 

possible with reasonable resource input. If the prediction accuracy in the GC lines is, at 

least partially, driven by additive effects of the capture line haplotypes might be undesirable 

if the goal is to select the best landrace-derived haplotypes. However, it is not proven that 

this will necessarily be the case. 

As an alternative to genomic prediction, the use of phenomic selection may be a promising 

approach to improve prediction accuracy in across-population and across-landrace 

scenarios, as constructing the relationship matrix from spectral data and using this matrix 

for prediction of genotypes has been shown to be less influenced by population structure 

and therefore may exceed the accuracy of marker-based predictions (Weiß et al. 2022b). 

The two relationship matrices can also be combined in multi-kernel models that have been 

shown to be superior to any of the two single-kernel prediction models (Galán et al. 2020; 

Robert et al. 2022). The implementation of phenomic selection therefore could be a 

comparatively cheap and promising extension to further enhance prediction accuracies, 

due to the cost-efficient options to screen samples with near-infrared spectroscopy or 

gather hyperspectral imaging data through drones. This topic requires further research. 

3.3 Prospects of improving elite germplasm through landraces 

Maize is known for its very large species-wide variation, of which only a part is currently 

captured in current elite breeding germplasm (Buckler et al. 2006; Sood et al. 2014). This 



3 Discussion 

36 

is not inherently a problematic situation, but in order to make selection gain, genetic 

variation needs to be present and intense selection, as done in the breeding process, leads 

to a reduction in genetic variation. This could eventually lead to a situation where further 

gain is not possible without the introduction of new genetic variation. While the variance in 

breeding programs will be monitored by breeders to avoid the depletion of variation for 

traits that are currently in the focus of the breeding, this is not the case for many traits 

currently not in focus of the breeding activities. However, the future changes in agriculture 

and the climatic conditions in which maize is grown in may require a focus on traits other 

than yield. For new target traits elite germplasm might then still exhibit genetic variation by 

chance, but this is not guaranteed. Genetic drift introduced through the history of strong 

bottlenecks in domestication and breeding may have resulted in fixation of alleles for traits 

relevant for future crop cultivation. Another possibility is that landraces that harbored 

variation for the desired traits might not have contributed as founders to the current elite 

germplasm at all. If this was the case, there is the need to look for new sources of variation. 

The obvious choice before turning to landrace material as a source would of course be 

competitor material under the breeder’s exemption, where possible, or US material with 

expired Plant Variety Protection Act certificates (exPVP). Although this material group has 

either no (competitor material) or only a small to intermediate performance gap (exPVP), it 

still requires caution and a strategy for integrating it successfully into the breeding 

germplasm (Allier et al. 2020a). If there is no beneficial variation present in these sources, 

it will be necessary to turn to landrace material with the desired variation. As shown in this 

thesis and by Mayer et al. (2020), preselected landraces can be competitive with elite 

material in some specific traits and do indeed carry beneficial haplotypes. For having a 

chance to successfully utilize landraces for elite germplasm improvement two main 

aspects need to be fulfilled: First, the pressure on the elite germplasm breeding program 

to search for new variation and accept the possibility of a yield drawback through landrace 

introgression needs to be high enough to invest extra efforts into breeding strategies using 

landrace-derived material. Secondly, the drawbacks of landrace utilization need to be 

minimized by having efficient strategies in place. The amount of pressure exerted onto 

breeding programs to start venturing into genetic resources is driven by characteristics of 

their germplasm pools (e.g. lack of variation for specific traits) and external factors that 

might come through demand changes based on climate or also political changes (e.g. 

Green New Deal and European Green Deal). The required efficient strategies for the 

incorporation of landraces into elite germplasm are under development and there are 

several conclusions that can be drawn from this thesis. The choice of source material is 
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very important and should be as informed as possible (Mayer et al. 2017). The production 

of reproducible genetic units from landraces can be done in different ways, following either 

admixed or pure approaches. Both approaches were shown to be feasible, but with many 

advantages of the pure approach, as presented in this thesis. Nevertheless, if following a 

pure approach efficiently is not possible (e.g. allogamous crops without DH system), 

making crosses for an admixed approach is suitable, too.  

The private/public partnership projects LAMP and GEM were already introduced earlier. 

They are examples for large pre-breeding efforts from landraces and follow the admixed 

approach. The industry partners used in total 51 preselected LAMP accessions and 

crossed them to each industry partner’s proprietary inbred lines to obtain progeny 

containing 50% (crosses to one elite inbred line) or 25% (use 50% inbred/elite crosses and 

cross to another, but different, inbred line) exotic material (Pollak 2003). Later, populations 

were also produced using recycled GEM and exPVP lines and genomic selection (GS) was 

evaluated for selections in GEM (Rogers et al. 2022). As can be seen by the fact that the 

GEM program has been running since in 1993, it was initiated as a long-term pre-breeding 

project. Up to now, 334 inbred lines were released (Rogers et al. 2022), most of them 

coming from the conventional breeding and bridging process described above. Only 

recently, the first evaluation of GS in GEM was considered successful so that it was 

recommended to switch from the original phenotyping-only protocol to the use of GS in 

GEM (Rogers et al. 2022) for the future. Another project carrying the acronym HOPE 

(Hierarchical Open-Ended Corn Breeding System) was designed to increase genetic 

diversity and long-term gain by a continuous introgression of variability-adding germplasm 

into breeding populations (Cramer and Kannenberg 1992). The introgression followed a 

pyramid-like scheme with increasingly stringent selection criteria while the material moved 

from a low via an intermediate and a high to a final elite performance level. The HOPE 

results reported in 1992 reflect efforts from 5 years during the 1980s and thus were based 

on phenotypic selections only (using mass selection in the lower, ear-to-row methods in 

the intermediate and reciprocal recurrent selection in the highest performance levels) and 

without any consideration of molecular information. The authors could show improved 

performance, but the project cannot be viewed as a suitable strategy under today’s 

conditions.  

Beyond the described example projects of practical pre-breeding efforts, studies on the 

theory and simulations of pre-breeding schemes have been done in many ways. Breeding 

programs often use truncation selection for highest yield as an intuitive way to ensure high 
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short-term genetic gain. This method of selection is associated with loss of genetic 

variation (Jannink 2010) and may lead to a reduction in long-term genetic gain 

(Vanavermaete et al. 2020). In the context of admixed populations in pre-breeding it 

additionally carries the risk of reconstructing the elite crossing partner’s genotype during 

selection after crosses between genetic resource and elite material (Gorjanc et al. 2016). 

Any pre-breeding strategy for the utilization of genetic resources has large long-term 

genetic gain as the goal and will not be able to outperform a conventional breeding 

program using simple truncation selection from elite material in the short term. Therefore, 

for the pre-breeding strategies maintaining diversity besides selecting the best genomic 

estimated breeding values (GEBVs) is necessary. For elite breeding populations, several 

ways to maximize long-term genetic gain were suggested, like applying the expected 

maximum haploid breeding value (Müller et al. 2018), optimum contribution selection 

(Gorjanc et al. 2018) or the scoping method which combines a performance-based 

truncation selection (GEBV-based) with a mating design that maximizes genetic variation 

of the offspring (marker-based coupling of diverse crossing partners) to maximize long-

term genetic gain (Vanavermaete et al. 2020). These methods were tested on populations 

exhibiting broad genetic variation. However, when using landrace material for elite 

germplasm improvement, the breeding population might rather be a variation depleted 

population with little room for genetic gain for certain traits. Vanavermaete et al. (2021) 

developed a strategy for this specific case and termed it “deep scoping”. Briefly, the 

method involves using a selected fraction of a breeding population for pre-breeding and a 

combination of short-term gains with purely elite individuals with highest GEBVs and a 

layered pre-breeding that introduces favorable alleles gradually from the source to the elite 

population. The simulation results indicate that the deep scoping method increases the 

achievable long-term genetic value of the breeding program while not increasing its costs 

(Vanavermaete et al. 2021). It would be very interesting to implement deep scoping in pre-

breeding and evaluate the simulation results empirically. 

Genomic selection is working very well and should be part of any strategy for the utilization 

of landraces in elite germplasm improvement. GS is suitable to speed up the breeding 

process and therefore increase genetic gains, which is why it also is standard practice in 

elite breeding. Recently, it has been suggested for elite breeding to increase speed of 

breeding (and therefore selection gain) with stable budget even further by inserting 

selection and recombination cycles that are only based on GS while making use of contra 

season nurseries that can handle three or four generations per year (Bernardo 2021). 

Moving from adding one additional recombination as suggested by Bernardo (2021) to 
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several recombinations without retraining of the prediction model may increase selection 

gain even further and has been proposed as rapid cycling genomic selection (Zhang et al. 

2017). Encouraging results for such schemes have been shown for wheat (Dreisigacker et 

al. 2023) and it can be expected that those rapid GS breeding schemes are also adopted 

in a broad range of commercial breeding schemes, including in pre-breeding. The 

expected increase in selection gain by adoption of those new fast schemes in elite 

breeding further enlarges the challenge of closing the performance gap in pre-breeding 

with landrace material. Further research is warranted if and how rapid GS schemes in 

landrace-derived populations can be employed. If the prediction accuracy remains 

sufficiently high over several cycles without retraining, two different applications can be 

imagined for pre-breeding with landraces: On one hand, a small number of rapid GS cycles 

over 1-2 years could be used for fast extraction of the best alleles per landrace as a short-

termed approach. The rapid cycling would then be a way to recombine the genetic material 

as often as possible in a very quick way in order to enrich as many beneficial alleles of the 

landrace as possible in just a few individuals to be integrated into the elite germplasm. On 

the other hand, a recurrent improvement of a specific landrace population over a longer 

term could also be possible with rapid GS. In both cases, a very big challenge is the huge 

variability in landrace-derived populations. The selection procedure needs to be well 

designed and sophisticated to produce useful material in the end. Besides the required 

reduction of the yield gap, the landrace material may show large variation for many other 

unwanted agronomic traits like tillering, root lodging, disease susceptibility and many 

more. In conventional breeding schemes more time is available to also make selections for 

these traits while in rapid GS every relevant trait needs to be covered through predictions 

and the different traits need to be considered in selection simultaneously, e.g. by an index 

or separate truncation selections, which is also a challenge. The unique data and plant 

material generated for this thesis are an ideal starting point for further research on the use 

of rapid-GS schemes in genetic resources. 
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3.4 Conclusion 

In this thesis, the prospects of using maize landraces for elite germplasm improvement 

with the use of genomic prediction in pre-breeding scenarios were evaluated. The main 

conclusions can be summarized as follows: 

• Sampling from landraces following a pure or admixed approach is equally possible 

and both result in an unbiased representation of the original landrace. The pure 

approach has several advantages (full additive variance, no masking by crossing 

partner alleles, no risk of reconstruction of elite crossing partner genome, higher 

prediction accuracy).  

• As expected from literature results, the landrace-derived populations exhibit a 

performance gap to elite germplasm of about 15-20% in yield. Besides the yield 

performance gap, landraces exhibit variation for unwanted traits against which 

selection pressure needs to be applied. However, landraces also show large 

variation and superior performance compared to elite hybrids for desirable traits, 

for which early development is one example in this thesis. 

• If an admixed approach is followed, intense consideration related to the choice of 

the crossing partner is strongly advised, as its genetic makeup and performance 

has very large influence on the populations that are produced and the risk of a 

reconstruction of the elite crossing partner in subsequent selections. 

• The genomic prediction accuracies are strongly influenced by factors already 

known from research in elite germplasm. They are training set size, linkage 

disequilibrium and population structure, linkage phase similarity between training 

and prediction set and number of markers required for maximum prediction 

accuracy.  

• If training set sizes and number of markers are sufficiently high, prediction 

accuracies close to those in elite germplasm can be achieved. 

• Using genomic prediction while working with landrace material is feasible. It is not 

restricted to a specific utilization strategy and can be used no matter which type of 

populations are chosen. Genomic prediction is already a standard tool in elite 

breeding and should also be part of any strategy for utilizing genetic resources. 

• In particular, fast recombinations in rapid cycles with heavy use of genomic 

selection (without retraining before each selection) might be an interesting option 

for fast closure of the performance gap when working with landrace material, but 

require further research before application in pre-breeding.  
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Key message Doubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantita-

tive traits and make it accessible for breeding and genome-based studies.

Abstract Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European 
flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, 
variances, and trait correlations. In total, 899 DH lines were evaluated using high-quality genotypic and multi-environment 
phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular variation present in 35 landraces 
of an earlier study and represent the original three landrace populations in an unbiased manner. A comprehensive analysis 
of the target trait plant development at early growth stages as well as other important agronomic traits revealed large genetic 
variation for line per se and testcross performance. The majority of the 378 DH lines evaluated as testcrosses outperformed the 
commercial hybrids for early development. For total biomass yield, we observed a yield gap of 15% between mean testcross 
yield of the commercial hybrids and mean testcross yield of the DH lines. The DH lines also exhibited genetic variation for 
undesirable traits like root lodging and tillering, but correlations with target traits early development and yield were low or 
nonsignificant. The presented diversity atlas is a valuable, publicly available resource for genome-based studies to identify 
novel trait variation and evaluate the prospects of genomic prediction in landrace-derived material.

Introduction

Maize (Zea mays L. ssp. mays) seed banks around the world 
harbor thousands of landrace accessions, representing a rich 
resource of currently untapped native diversity that could 
be harnessed for plant improvement and adaptation to 
environmental changes (Hoisington et al. 1999; Ortiz et al. 
2010; McCouch et al. 2013; Hellin et al. 2014; Wang et al. 
2017). European flint maize went through several bottle-
necks, the first of which occurred in the Americas (Doe-
bley et al. 1986), followed by the introduction to Europe 
(Rebourg et al. 2003). In the course of maize breeding, lan-
draces were replaced by hybrids. For the establishment of 
hybrid breeding, only a limited set of founder landraces was 
sampled, and the inbred lines produced were subjected to 
second cycle breeding (Messmer et al. 1992; Barrière et al. 
2006). Subsequent selection at high intensities has led to an 
additional decline in genetic diversity of elite germplasm, 
especially within the flint heterotic pool important for Euro-
pean maize breeding (Messmer et al. 1992; Reif et al. 2005a, 
b; Lu et al. 2009). Revisiting the vast diversity of landraces 
stored in seed banks is considered a promising approach 
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for broadening the genetic base of current germplasm pools 
(Pollak 2003; Salhuana and Pollak 2006; Warburton et al. 
2008; Strigens et al. 2013; McCouch et al. 2013; Navarro 
et al. 2017). However, opening this avenue for quantitative 
traits entails considerable challenges, and efficient strategies 
are still lacking.

In a first step, the most promising landraces have to be 
identified from several thousand stored in seed banks, even 
if only the flint pool is of interest. Information on stored 
landraces is limited, and the choice has to be based either on 
passport data from seed banks, or the per se and/or testcross 
performance of the landraces has to be evaluated in field 
trials (Pollak 2003; Salhuana and Pollak 2006; Böhm et al. 
2014). In allogamous species like maize, landrace collec-
tions represent populations of heterogeneous and heterozy-
gous individuals. Thus, the evaluation of populations either 
per se or in testcrosses would disregard the large genetic 
variation found within landraces, and without prior self or 
cross, it is not possible to evaluate the breeding potential of 
individual genotypes. In order to harness the genetic diver-
sity within landraces, reproducible genetic units such as 
libraries of doubled-haploid (DH) lines from landraces have 
been suggested to overcome some of the aforementioned 
drawbacks since they are suitable for genotyping and high-
precision phenotyping (Wilde et al. 2010; Strigens et al. 
2013; Melchinger et al. 2017). Diversity from landraces 
captured in such DH libraries could help in improving traits 
such as plant development at early growth stages, for which 
genetic variation is small in breeding material. However, 
improving quantitative traits by utilizing lines derived from 
landraces is complex because the targeted introgression of 
favorable alleles at major genes is not possible (Bernardo 
2002). Any introgression of landrace material therefore car-
ries the risk of an undesired correlated response in traits 
other than the trait under selection due to the overall poor 
agronomic performance of the landrace material. To achieve 
a targeted utilization of natural diversity, an exhaustive char-
acterization of line per se and testcross performance for the 
trait of interest and as many other agronomic and morpho-
logical traits as possible has to be carried out in order to 
develop a pre-breeding strategy that allows introgression of 
favorable diversity into elite germplasm without introducing 
major disadvantages in other traits (Sood et al. 2014).

In the research at hand, we employed large-scale produc-
tion of DH lines to make native diversity for quantitative 
traits in maize landraces accessible for the purpose of germ-
plasm improvement and genome-based studies. Our objec-
tives were (i) to create a publicly available diversity atlas 
of European flint maize by characterizing landrace-derived 
DH libraries genotypically and phenotypically for line per se 
and testcross performance, (ii) to provide a comprehensive 
analysis of the DH libraries in terms of population structure, 
performance level, trait correlations, and genetic variances 

for a broad range of traits, and (iii) to gain insights into 
potential strategies for capturing native diversity for use in 
germplasm improvement.

Materials and methods

Plant material

The three landraces Kemater Landmais Gelb (KE, Austria), 
Petkuser Ferdinand Rot (PE, Germany), and Lalin (LL, 
Spain) were chosen for the production of DH lines because 
they showed phenotypic variation for early development as 
well as low levels of linkage disequilibrium (LD) and popu-
lation structure within populations. They were selected from 
a set of 35 European maize landraces covering a broad geo-
graphical region of Europe that was described in detail by 
Mayer et al. (2017). Together, they represented 95.0% of the 
molecular variance of the full set of 35 landraces. From the 
selected landraces, 1015 DH lines (516 KE, 432 PE, 67 LL) 
were produced and multiplied using the in vivo haploid 
induction method (Röber et al. 2005). Phenotyping of lines 
per se (LP) was conducted in 2017 and 2018. Testcrosses 
(TC) of a subset of 378 DH lines from landraces KE and PE 
were evaluated in 2018. To warrant successful TC evalua-
tion, the shortest, earliest, and late maturing lines as well as 
lines with a high score for lodging were not included in the 
TC production. The dent line F353 (Institut national de la 
recherche agronomique, INRA) was used as the female par-
ent in TC production to ensure uniform seed quality across 
DH lines and because variation in tassel architecture of DH 
lines hampered detasseling.

Analysis of genotypic data and population structure

The 1015 DH lines and 144 S0 plants (48 per landrace) 
from the landraces KE, PE, and LL were genotyped using 
the 600 k  Affymetrix®  Axiom® Maize Array (Unterseer 
et al. 2014). Only markers assigned to the best quality class 
(Unterseer et al. 2014), with a call rate of ≥ 0.9 and with 
a known physical position in the B73 reference sequence 
[AGPv4, (Jiao et al. 2017)], were used for the analyses. One 
 S0 plant from landrace PE was excluded due to an insuffi-
cient call rate (≤ 0.9). Assignment of lines to their respective 
landrace was performed using the ADMIXTURE software 
tool (Alexander et al. 2009) in supervised mode with three 
pre-defined groups (KE, PE, and LL) that were determined 
from  S0 plants. DH lines with less than 75% concordance 
with the landrace to which they were assigned by pedigree 
records were excluded from further analysis. Markers and 
individuals with > 10% missing values were removed. In DH 
lines, markers and individuals with > 5% heterozygous geno-
type calls were discarded, and all remaining heterozygous 
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calls were set to missing values. Missing values in the 
DH lines were imputed separately for each landrace using  
BEAGLE 5.0 (default parameters) (Browning et al. 2018). 
Missing values in the  S0 plants were imputed, and two 
gametes were phased from each  S0 plant separately in each 
landrace using BEAGLE 5.0 (iterations = 50, phase-seg-
ment = 10, phase-states = 500) and a reference panel consist-
ing of the corresponding DH lines. Pairwise modified Rog-
ers’ distances [MRD; (Wright 1978)] were calculated, and 
DH lines showing a pairwise MRD of < 0.05 were assumed 
to be duplicates and excluded from further analyses. Markers 
were identified which overlapped between DH lines and  S0 
gametes. Quality filtering and imputation resulted in 941 DH 
lines (501 KE, 409 PE, and 31 LL) and 286  S0 gametes (96 
KE, 94 PE, and 96 LL) genotyped with 499,574 common 
markers.

We performed a principal coordinate analysis [Gower 
(1966), R-package ape] based on MRD for DH lines and  S0 
plants. The MRD matrices of DH lines and  S0 plants were 
hierarchically clustered using the unweighted pair group 
method with arithmetic mean (UPGMA) implemented in the 
hclust function in R and are displayed as 1-MRD. In order 
to estimate the proportion of molecular variance explained 
by the three landraces under study, an analysis of molec-
ular variance [AMOVA; Excoffier et al. (1992)] was per-
formed to partition the molecular variation into within- and 
between-landrace components. This analysis used the panel 
of 35 European landraces described by Mayer et al. (2017) 
for comparison. In addition, a second AMOVA decomposing 
the variance within and between DH lines and  S0 gametes 
was performed to investigate how much of the molecular 
variance lies within and between those two groups.

Field experiments and phenotypic analysis

Line per se (LP) performance was evaluated in Germany 
during 2017 using ten separate 10 × 10 lattice designs in four 
locations (1000 entries: 958 DH lines plus checks) and dur-
ing 2018 using eight 10 × 10 lattice designs in three locations 
(800 entries: 756 DH lines plus checks). A randomly chosen 
subset (five 10 × 10 lattice designs, 458 and 468 DH lines 
plus checks in 2017 and 2018, respectively) was evaluated 
in two locations in Spain in both years. The trial locations 
were Einbeck (EIN, Germany, 2017 + 2018), Roggenstein 
(ROG, Germany, 2017 + 2018), Bernburg (BBG, Germany, 
2017), Klein Wanzleben (KLW, Germany, 2018), Oberer 
Lindenhof (OLI, Germany, 2017), Golada (GOL, Spain, 
2017 + 2018), and Tomeza (TOM, Spain, 2017 + 2018). 
See Table S1 for a detailed description of the test locations 
[geographical coordinates, elevation, precipitation, tem-
perature; the climate data was obtained from the Bavarian 
State Research Center for Agriculture, Landwirtschaftli-
ches Technologiezentrum Augustenberg, and Menne et al. 

(2012)]. Each combination of year and location was consid-
ered to be one environment in later analyses. The number 
of lines tested had to be reduced between 2017 and 2018 
due to seed shortage and the exclusion of lines that did not 
pass the quality control described above for the genotypic 
data analysis. In 2017, 14 flint (CH10 provided by Agro-
scope Changins-Wädenswil (Switzerland); D152, DK105, 
UH006, UH007, and UH009 provided by the University of 
Hohenheim (Germany); EP1 and EP44 provided by Misión 
Biológica de Galicia, Consejo Superior de Investigaciones 
Científicas, (CSIC, Spain); F03802, F2, F283, F64, and F7 
provided by Institut national de la recherche agronomique 
(INRA, France); EC49A provided by Centro de Investiga-
ciones Agrarias Mabegondo, Instituto Galego da Calidade 
Aumentaria (CIAM-INGACAL, Spain) and one dent (F353, 
INRA, tester in testcross evaluation) inbred line served as 
checks and were included as duplicate entries. The checks 
were chosen in order to exhibit variation in plant develop-
ment at early growth stages and flowering time. In 2018, the 
number of checks was reduced to four lines (DK105, EP1, 
F2, and F353) included in each lattice design per location 
(eight in Germany, five in Spain). In both years, the three 
landraces were included as quadruplicate entries. Plots were 
single rows 3 m in length with a distance of 0.75 m between 
rows and twenty plants per plot, corresponding to a sowing 
density of about 9 plants  m−2.

The testcrosses (TC) were evaluated in four 10 × 10 lattice 
designs in four locations in Germany in 2018 (EIN, KLW, 
ROG, OLI). In the TC trials, testcrosses of lines DK105, 
EP1, and F2 as well as testcrosses of the two landraces KE 
and PE and two commercial hybrid varieties (CH1 = KWS 
Stabil, CH2 = KWS Figaro) were planted as checks. The test-
crosses of landraces KE and PE were planted in one lattice 
only, while all other checks were planted in every lattice. In 
TC, plots were double rows 5 m in length at locations ROG 
and OLI and 6 m in length at locations KLW and EIN, in 
both cases with 0.75 m distance between rows. Sowing den-
sity followed local practice at the experimental stations and 
varied between 9 and 11 plants  m−2. Fertilization and plant 
protection were carried out according to standard agricul-
tural practices in both the LP and the TC trials.

In the LP trial, a total of 25 morphological, agronomic, 
and early-development-related traits were measured 
(Table S2 provides detailed information on trait × environ-
ment combinations). The traits that were scored in ≥ 10 envi-
ronments included emergence (EME, ratio of emerged plants 
to sown seeds, %), early vigor (EV, at three different growth 
stages V3, V4, and V6, 1–9 score, 1 = very poor vigor, 
9 = very vigorous), early plant height (PH, at V4 and V6, 
average over three measured plants per plot, cm), final plant 
height (PH_final, cm), and female flowering (FF, d). Root 
lodging at the R6 stage (RL, 1 = no lodging, 9 = all plants 
showing severe lodging) was scored in six environments; 
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tillering (TILL, 1 = no tillers, 9 = all plants showing many 
and long tillers) and male flowering (MF, d) were scored 
in five environments. The anthesis-silking interval (ASI, d) 
was calculated for the environments in which both MF and 
FF were scored. Ear height (EH, cm) was measured in four 
environments. In the Spanish environments, physiological 
traits like the maximum efficiency of photosystem II [Fv/
Fm, using a fluorometer (OS-30p, Opti-Sciences Inc., USA)] 
were measured at stages V4 (2017 + 2018) and V6 (only 
2017), and leaf greenness (SPAD) was measured by a chlo-
rophyll content meter (CCM-200, Opti-Sciences Inc., USA; 
V3, V4 in both years, V6 only 2017). Reaction to stress 
was scored as cold tolerance (CT, 1–9 score, 1 = low cold 
tolerance, 9 = high cold tolerance; symptoms were chlorosis 
and necrosis on the leaves) after a very cold night with a 
slight frost at OLI 2017, drought/heat tolerance (DT, 1–9 
score, 1 = low drought/heat tolerance, 9 = high drought/heat 
tolerance; symptoms were dry leaves and tassels) at EIN 
2018, and rust susceptibility (binary) at TOM 2018. Traits 
related to tassel architecture were measured in ROG 2018. 
Tassel length was measured from the lowest tassel branch 
to the tassel tip (TL, cm), spike length was measured as the 
length of the top spike (SL, cm), the number of branches was 
counted (NB), and the tassel angle was scored on a 1–9 scale 
(TA, 1 = completely upright, 9 = branches horizontal). In the 
TC trial, EME, EV, PH, EH, PH_final, FF, TILL, and RL 
were scored as was described for LP. In addition, TC plots 
were harvested with a forage harvester to measure total dry 
matter yield (TDMY, dt/ha) and dry matter content (DMC, 
through near infrared spectroscopy or drying, in %).

The statistical model for estimating genotype and geno-
type × environment interaction variance components for 
lines derived from the same landrace was

where i = 1, 2, 3 denotes three groups, i.e., DH lines from 
landraces (DHL), checks (CH), and landrace populations 
 (LR_S0); j = 1, 2, 3 denotes the three landraces KE, PE, and 
LL; µ is the overall mean; m

i
 is the effect of group i; lj is the 

effect of landrace j in group i = 1; �ij is a dummy variable 
with �ij = 1 for i = 1 and j = 1, 2, 3 and �ij  = 0 otherwise; 
gk(ij) is the effect of line k nested in group i and landrace 
j; u

o
 is the effect of environment o; lujo is the interaction 

of landrace j and environment o; guko(ij) is the interaction 
effect for genotype k and environment o. The effects kp(o) , 
r

s(op) , bt(ops) , and �ijkopst refer to the effect of the lattice (nested 
in environments), replicate (nested in lattices in environ-
ments), incomplete block (nested in replicates in lattices 
in environments), and the residual error, respectively. All 
effects except m

i
 and lj were treated as random. Genotype 

and genotype × environment ( guko(ij) ) variance components 

(1)
yijkopst = � + mi + �ijlj + gk(ij) + uo + �ijlujo

+ guko(ij) + kp(o) + rs(op) + bt(ops) + �ijkopst

were modeled individually for the three landraces (j = 1, 2, 
3), assuming that DH lines across and within landraces were 
unrelated. Residuals were assumed to be normally distrib-
uted with mean zero and two heterogeneous variances, one 
for �ij = 1 and one for �ij = 0 assigning the same residual 
variance to all three landraces in all environments. Raw data 
and outliers were manually curated by inspection of residual 
plots. Since genotyping and the first year of phenotyping 
were carried out in parallel, some lines were evaluated in 
the field during 2017 that did not pass quality control in 
the genotypic data analysis. Measurements for those entries 
were treated as missing values in the data analysis. The same 
model was used for the analysis of TC experiments, except 
that i = 1, 2 referred to DHL and CH and j = 1, 2 referred 
to landraces KE and PE. Restricted maximum-likelihood 
estimation implemented in the ASReml-R package (Butler 
et al. 2009) was used for estimating variance components 
and their standard errors. Differences among means lj were 
tested with pairwise t-tests using the R-package asremlPlus. 
Trait heritabilities were calculated on an entry-mean basis 
within landraces (Hallauer et al. 2010), and standard errors 
of heritability estimates were derived from standard errors of 
corresponding variance components using the delta method 
(Holland et al. 2010). Heritabilities and variance component 
estimates exceeding twice their standard errors were consid-
ered significant. Best linear unbiased estimates (BLUEs) of 
the genotype mean for each trait and DH line were obtained 
from a simplified version of the model in Eq. (1), dropping 
factors m

i
 , �ijlj and �ijlujo and treating genotype ( gk ) as a 

fixed effect. This model was also used to form linear con-
trasts used to test for significant differences (t-tests) between 
original landraces and the mean of the corresponding DH 
library (LP and TC) and between the mean of the two check 
hybrids and the mean of the DH library (TC only). We cal-
culated the predicted response from selection within DH 
libraries (LP and TC) according to Falconer and Mackay 
(1996) as ΔG(�) = i(�)h�G

 , where i(�) = selection intensity 
for selection with � = 10%

(

i(10%) ≈ 1.76
)

 , h = square root of 
heritability, and �

G
= genetic standard deviation. To account 

for mean differences and different selection responses, 
we calculated the usefulness criterion (Schnell 1983) as 
U(10%) = x̄ ± ΔG(10%) where x̄ = mean of the respective DH 
library. Phenotypic correlations among traits were calcu-
lated from BLUEs as Pearson correlation coefficients within 
libraries in LP and TC, respectively. For evaluating the pros-
pects of selection on LP performance in this material, we 
calculated Spearman rank correlations for same traits across 
LP and TC. To adjust for multiple testing, Bonferroni–Holm 
correction was applied for significance tests of phenotypic 
correlations in each DH library (Holm 1979). For estimating 
genetic covariances and genetic correlations between traits, 
the model in Eq. (1) was expanded to a bivariate model 
with pairs of traits. Genetic correlations were considered 
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significant if they exceeded twice their standard error. The 
same method was applied for estimating genetic correlations 
between LP and TC performance.

In summary, high-quality phenotypic line per se data 
are available from up to 11 environments for 899 DH lines 
(471 KE, 402 PE, and 26 LL) and for a subset of 378 lines 
(190 KE, 188 PE) that were evaluated as testcrosses in four 
environments. For all lines, data on almost 500,000 SNP 
markers are available.

Results

Population structure and molecular variation

The principal coordinate analysis clearly separated the 
three landraces, with the first two coordinates explaining 
13.3% and 4% of the total molecular variance, respectively 
(Fig. 1). DH lines and  S0 gametes derived from the same 
landrace clustered together except for four gametes from 
 S0_PE, which fell outside the PE-cluster. Complementing 
our data with those from Mayer et al. (2017) revealed that 
 S0 gametes sampled from landraces KE, PE, and LL indi-
vidually accounted for 77, 75, and 89% of the total molec-
ular variance captured in the collection of 35 European 
landraces used in their study. The AMOVA on  S0 gam-
etes and DH lines from the same landrace confirmed the 
results from the PCoA. While 95.3, 96.6, and 96.7% of the 
molecular variance were found within  S0 and DH of KE, 
PE, and LL, respectively, less than 5% of the molecular 
variance was explained by differences between  S0 gametes 
and DH lines of different landraces. Matrices of 1-MRD 

Fig. 1  Principal coordinate analysis (PCoA) of DH libraries and  S0 
gametes based on modified Rogers’ distances between individuals. 
Landrace KE is colored in green, PE in blue, and LL in red. Darker 
colors were used for  S0 gametes and brighter ones for DH.  S0 gam-
etes were plotted as filled circles and DH lines as filled triangles. Axis 
labels show the percentage of explained variance per principal coor-
dinate (PCo)

Fig. 2  Heatmaps of 1-MRD matrices  S0_KE (N = 48 individuals), 
DH_KE (N = 471 lines),  S0_PE (N = 47 individuals), DH_PE (N = 409 

lines),  S0_LL (N = 48 individuals), and DH_LL (N = 31 lines). Matri-
ces were ordered according to hierarchical clustering with UPGMA
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(Fig. 2) gave no indication of pronounced population struc-
ture for either DH or  S0 plants. As expected, the similarity 
between  S0 plants within landraces was on average higher 
than in DH lines due to the higher level of heterozygosity 
in the former.

Phenotypic variation within and across landraces

In the following, we will refer to a subset of traits as 
“core traits” since they are considered most important for 
improvement of early plant development in elite germplasm. 
These traits were EV_V4 and PH_V4 as representatives 
for early development, RL and TILL as representatives for 
traits for which genetic variation is not acceptable in elite 
germplasm, PH_final and FF as important agronomic traits, 
and DMC and TDMY for evaluating yield performance. 
Phenotypic variation for core traits within and across lan-
draces is shown in Fig. 3 (LP) and Fig. 4 (TC) and for all 
other traits in Fig. S1 (LP) and Fig. S2 (TC). Phenotypic 
means, variance components, and heritabilities for all 
traits are provided in Table S3 and Table S4 for LP and 
TC performance, respectively. The DH libraries exhibited 
considerable phenotypic variation for all traits. In LP and 
TC, a similar range of trait values was observed for all DH 

libraries. Probably due to the small sample size, distribution 
of phenotypes in LL deviated slightly from the other two 
landraces, e.g., for traits EV and TILL. Mean performance 
differed significantly (P < 0.05) across landraces for 20 out 
of 25 traits in LP and for 5 out of 14 traits in TC, which was 
a result of the high-quality phenotypic data and large sam-
ple sizes of KE and PE. As expected, mean LP performance 
of the DH libraries was significantly (P < 0.05) lower than 
the respective landraces for almost all traits. The reduction 
was most pronounced for early development traits, final 
plant height, and photosynthetic efficiency (Fig. 3, Fig. S1). 
Flowering time of the DH library was delayed by 10 (LL) 
and 6 (KE, PE) days compared to the non-inbred material. 
While the LL DH library had consistently lower mean per-
formance in early development traits, ear height, and final 
plant height compared to KE and PE, this was not true for 
the original landraces.

When choosing DH lines to be evaluated as TC, we had 
applied mild selection for flowering time, plant height, and 
lodging (see “Materials and methods” for details). Mean TC 
performance of the DH libraries KE and PE did not differ 
significantly from the TC mean of their respective landrace 
populations for all traits except for TDMY in PE, indicating 
that DH lines evaluated as TC represented a random sample 

Fig. 3  Boxplots of phenotypic data for line per se (LP) performance 
for the DH libraries from landraces KE, PE, and LL. Boxplots show 
the upper and lower quartiles, median (horizontal bar), mean (open 

diamond), whiskers (vertical bars), and the performance of the 
respective landrace (filled circle in green, blue, and red for KE, PE, 
and LL, respectively). Points above and below the whiskers indicate 

values ± 1.5 times the interquartile range. Usefulness for a selection 
intensity of 10%  (U10 %) is indicated with black filled triangles. Traits 
are early vigor and early plant height at stage V4 (EV_V4, PH_V4), 
final plant height (PH_final), female flowering (FF), root lodging 
(RL), and tillering (TILL)
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of the entire DH library. The TC of many DH lines outper-
formed the commercial hybrids as well as the TC of founder 
lines and landraces for the target trait early development, as 

is shown for PH_V4 in Fig. 5. Only the testcross of inbred 
DK105 fell into the upper 10% of the distribution of PH_V4. 
As expected, the commercial hybrids significantly (P < 0.05) 
outperformed the TC mean of DH lines for TDMY by about 
15% and, in contrast to the DH lines, showed no TILL or 
RL (Fig. 4).

Genetic variances were highly significant in LP and TC 
for most traits under investigation (Table S3, Table S4). 
Variance component estimates for LL were similar to the 
other two libraries, but, due to the small sample size, they 
were estimated with considerably larger error, resulting in 
nonsignificant genetic variances for PH_V3, TILL, ASI, 
photosynthesis-related traits, and SPAD. As expected from 
quantitative genetic theory, genetic variance component 
estimates were smaller in TC than in LP. In the statistical 
model, we allowed for heterogeneity of genetic variances 
estimated within landraces, but only a few traits (e.g., DT, 
RL) showed strong differences (> twofold) in genetic vari-
ance estimates between KE and PE in LP, which were even 
alleviated in TC.

In LP, trait heritabilities were generally high and simi-
lar across landraces, ranging from 0.35 to 0.96. Except 
for PH_V3, TILL, ASI, Fv/Fm, and SPAD in LL, the 

Fig. 4  Boxplots of phenotypic data for testcross (TC) performance 
for DH libraries from landraces KE and PE. Boxplots show the upper 
and lower quartiles, median (horizontal bar), mean (open diamond), 
whiskers (vertical bars) and the performance of the respective lan-
drace (filled circle in green and blue for KE and PE, respectively). 
Points above and below the whiskers indicate values ± 1.5 times the 
interquartile range. Performance of the two commercial check hybrids 

is indicated with a filled circle and filled triangle in magenta for 
CH1 and CH2, respectively. Usefulness for a selection intensity of 
10%  (U10  %) is indicated with black filled triangles. Traits are early 
vigor and early plant height at V4 stage (EV_V4, PH_V4), final plant 
height (PH_final), female flowering (FF), root lodging (RL), tiller-
ing (TILL), dry matter content (DMC), and total dry matter yield 
(TDMY)

Fig. 5  Histogram of testcross (TC) performance of DH lines from 
landraces KE (N = 190, colored in green) and PE (N = 188, colored 
in blue) for trait early plant height at V4 stage (PH_V4), including 
the mean of the DH lines per population (green and blue horizontal 

bar) and the performance of testcrosses of lines EP1, F2, DK105, the 
landrace populations (LR_KE, LR_PE), as well as two commercial 
check hybrids (CH1, CH2) indicated by labeled black triangles 
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heritability estimate always exceeded twice its standard 
error (Table S3). In TC, heritabilities were slightly lower 
overall than in LP (Table S4), ranging from 0.31 to 0.92, 
which was expected from the lower number of testing 
environments and the lower genetic variance compared 
to LP.

Variation across environments

DH libraries were evaluated in a total of 11 environments 
comprising seven different locations and two years. Loca-
tions covered a geographical region spanning from north-
ern Germany to northwestern Spain at altitudes ranging 
from 29 to 706 m above sea level (Table S1). Average 
temperatures differed by 5 °C between the coldest (OLI 
2017, 14.0 °C) and the warmest (TOM 2018, 19.0 °C) 
environments, and precipitation varied from 159 (KLW 
2018) to 548  mm (ROG 2018) during the vegetation 
period. The ratio of genotype by environment and geno-
type variance components depended on the trait under 
study. In LP, values ranged from 0.11 (EH in KE) to 1.22 
(ASI in PE), but varied between 0.2 and 0.7 for most 

traits with a mean of 0.51 (Table S3). Similar ratios were 
observed in TC (Table S4).

Correlations between locations for traits measured in at 
least five environments ranged from 0.40 to 0.87 in 2017 
and from 0.19 to 0.86 in 2018 (Table S6). Correlations 
between years of a given trait and location ranged from 
0.31 to 0.83 (Table S6).

Trait correlations

In LP and TC, phenotypic correlations among early devel-
opment traits measured at different growth stages were 
high and stable across DH libraries, ranging from 0.58 to 
0.95 (Fig. 6). The corresponding genetic correlations were 
slightly higher, ranging from 0.65 to 1 (Fig. S3). For LL in 
LP, only phenotypic correlations among early development 
traits (ranging from 0.82 to 0.93, data not shown), PH_final 
and EH (0.75), and FF and MF (0.69) were significant.

In LP, the early development traits showed intermediate 
to high positive phenotypic and genetic correlations with 
final plant height (phenotypic 0.4 to 0.6, genetic 0.4 to 0.7). 
In TC, only the phenotypic correlation between PH_V6 and 

Fig. 6  Phenotypic Pearson correlation coefficients for line per se [LP, 
left, N = 471 (KE) and 402 (PE)] and testcross [TC, right, N = 190 
(KE) and 188 (PE)] data within DH libraries KE (above diagonal) 
and PE (below diagonal) for the traits emergence (EME), early vigor, 
and early plant height at stages V4 and V6 (EV_V4, EV_V6, PH_V4, 
PH_V6), ear height (EH), final plant height (PH_final), male flower-

ing and female flowering (MF, FF), anthesis-silking interval (ASI), 
root lodging (RL), tillering (TILL), cold tolerance (CT), drought/
heat tolerance (DT), maximum photosynthetic efficiency at V4 stage 
(Fv/Fm_V4), dry matter content (DMC), and total dry matter yield 
(TDMY). P-values were adjusted using Bonferroni–Holm correction 
for multiple testing. Nonsignificant correlations are labeled with ns
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final plant height was significant, but it was lower than in LP. 
Genetic correlations for EV_V4, EV_V6, PH_V4, and PH_
V6 with PH_final ranged between 0.2 and 0.5. Intermediate 
positive correlations were found between early development 
traits and TDMY in TC (phenotypic 0.3 to 0.6, genetic 0.4 
to 0.8) as well as negative correlations of early development 
with flowering time in LP (FF and MF, phenotypic − 0.2 to 
− 0.4, genetic − 0.2 to − 0.5) in KE and PE libraries. Phe-
notypic and genetic correlations of RL with all other traits 
were nonsignificant or small in LP and TC. The same was 
true for TILL except for TC of PE, where intermediate cor-
relations with early and late plant height, ear height, and 
TDMY were observed.

Phenotypic correlations between LP and TC performance 
were significant for all traits except EME. Genetic correla-
tions between LP and TC were intermediate (early develop-
ment traits, 0.35 to 0.68) to high (PH_final and FF > 0.78) 
(Table S5).

Discussion

Our study is part of a long-term research project which aims 
to make maize landrace diversity amenable to plant breeding 
(www.europ eanma ize.net). We produced DH libraries from 
three landraces for obtaining reproducible genetic units for 
phenotyping and genotyping and characterized them com-
prehensively to build a publicly available, immortal genetic 
resource that is ready to use for pre-breeding and for investi-
gations on functional diversity and the prospects of genomic 
prediction.

DH libraries capture native diversity for germplasm 
improvement

The three landraces were chosen to represent the molecular 
variance of the European landraces characterized by Mayer 
et al. (2017). Individually, they accounted for more than 
75% of the molecular variance in this collection, together 
for 95%. These findings corroborate results from the litera-
ture where it has been shown for several outcrossing species, 
including maize, that a large proportion of the molecular 
variation can be found within landraces, while differences 
between landraces account only for a small proportion 
(Böhm et al. 2014; Greene et al. 2014; Monteiro et al. 2016). 
Genotyping with the SNP array technology might have led 
to an overestimation of the captured molecular variance 
due to an enrichment of markers with intermediate allele 
frequencies. For truly quantitative traits, however, the con-
tribution of rare alleles to the additive genetic variance is 
small and the molecular variance assessed with array data 
should translate directly into genetic variation observable 
in phenotypes. With only three (LP) or two (TC) landraces 

in the statistical model, decomposition of the genetic vari-
ance within and across landraces is not meaningful, but from 
Figs. 3, 4 and Figs. S1, S2 it becomes obvious that differ-
ences in trait means across landraces were small compared 
to the range of values within landraces. Although each lan-
drace accounted for a large proportion of molecular variance 
individually, we still advise to analyze progenies from sev-
eral landraces for capturing the genetic variance segregating 
in a germplasm pool. Molecular variance might be a good 
indicator for genetic variance averaged across traits, but vari-
ation for individual traits must be evaluated for each landrace 
specifically, as was shown here for TILL, RL, DT, and CT. 
Different landraces may also differ with respect to their suc-
cess rates in DH production (Melchinger et al. 2017), point-
ing to different multiplication histories. While KE and PE 
may have encountered bottlenecks or inbreeding in the past, 
LL seems to carry a much higher genetic load that limited 
the production of fully homozygous DH lines for this lan-
drace. This assumption is also supported by the significantly 
lower LP mean performance of the LL DH library for early 
development, ear height, and final plant height compared to 
KE and PE that was not observed for the original landraces.

The DH libraries generated in this study represented 
their respective landraces accurately in terms of molecular 
variance. DH lines and  S0 gametes from the same landrace 
overlapped nicely in the PCoA (Fig. 1) and the AMOVA 
showed that almost all molecular variation was found within 
 S0 gametes and DH lines (> 95%) and not between them. 
Individuals sampled from a maize landrace are assumed to 
be unrelated, but pairwise comparisons share different num-
bers of alleles alike in state, leading to variation in similar-
ity between them. Patterns of variation in similarity were 
comparable for  S0 plants and DH lines (Fig. 2), corroborat-
ing that the two types of progeny represent their original 
landraces in a similar way. We thus conclude that the three 
DH libraries derived from KE, PE, and LL represent a valu-
able resource for genetic improvement of elite flint germ-
plasm, since they cover a large proportion of the genomic 
and genetic variance of the landrace collection described in 
Mayer et al. (2017).

Improving early plant development

In many growing regions worldwide, maize encounters 
low to moderate temperatures during the early vegetative 
phase. Under these conditions, accelerated early develop-
ment can increase final biomass yield. Genetic enhancement 
of early growth can also improve resource efficiency, pre-
serve soil fertility, and reduce the need for herbicide treat-
ment. European flint maize germplasm has been adapted to 
the temperate climate conditions of Northern and Central 
Europe through breeding, but genetic variation for early 

http://www.europeanmaize.net
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development under cool temperatures has been depleted 
simultaneously (Greaves 1996; Rodríguez et al. 2010).

In LP and TC of the DH libraries, the target trait early 
development assessed through early vigor scores and early 
plant height measurements showed ample genetic variation 
(Figs. 3, 4, Figs. S1, S2). In TC, the majority of DH lines 
outperformed the commercial hybrids for PH_V4, and only 
one check (F353 × DK105) ranged among the best 10% DH 
lines, suggesting that the DH libraries can serve as a valu-
able source of alleles for improving early development traits 
of the elite European flint pool (Fig. 5).

Identifying maize flint germplasm with superior early 
growth has been the objective of several studies in both, 
field and controlled environments (Peter et al. 2009a, b; Rod-
ríguez et al. 2010; Revilla et al. 2016). In most studies, early 
development was assessed as a visual score, which delivers 
ordinal endpoints and can be rather subjective. On the other 
hand, early plant height measurements consume consider-
able resources. Early vigor scores showed a substantially 
higher correlation with plant emergence compared to early 
plant height in this research (Fig. 6, Fig. S3). Even though all 
TC seed was produced on inbred line F353, the higher phe-
notypic and genetic correlation of early vigor and EME was 
maintained. For PH_V4, the commercial hybrids were on 
average not different from the TC mean of the DH libraries, 
but they scored better for EV. Thus, the early plant height 
measurement neglects information that can be accounted for 
by EV scores, such as differences in leaf coloration or the 
overall lower EME of the DH library testcrosses. In addi-
tion, genetic correlations between TDMY and EV were sub-
stantially higher compared to between TDMY and PH_V4 
supporting the hypothesis that, although highly correlated, 
the two types of measurements target different components 
of early development. For a comprehensive characterization 
of early growth development, it seems advisable to assess 
both, EV and early plant height. To allow dissection of early 
growth development into its genetic components and con-
sequently provide a better understanding of the underlying 
genetic mechanisms, we propose establishing growth models 
by monitoring early development at high resolution in time 
using remote sensing in the field (Huang et al. 2013; Bendig 
et al. 2015) or in controlled conditions (Gioia et al. 2017). 
The three DH libraries KE, PE, and LL are most suitable 
for further investigation on this topic as they exhibit more 
pronounced genetic variation in early growth traits than can 
be expected from elite material (Revilla et al. 1999; Peter 
et al. 2009a).

Comprehensive phenotypic characterization of DH 
libraries

The prospects for the genetic improvement of elite germ-
plasm for early growth development through the use of 

landrace-derived material have to be evaluated in a multi-
trait context. Comprehensive data on trait correlations are 
crucial in order to avoid undesired selection response in 
traits of agronomic importance.

In LP, EV_V4 and PH_V4 showed intermediate nega-
tive genetic correlations with flowering time and positive 
genetic correlations with PH_final, corroborating results of 
Böhm et al. (2017) on DH lines derived from landraces. 
Thus, selection for accelerated early development will lead 
to increased plant height and early flowering which, depend-
ing on the target environment, might not be desirable. The 
DH libraries also showed variation for RL and TILL. Given 
the low levels of genetic correlations with early develop-
ment traits and the usefulness of the best 10% of DH lines 
being close to zero, a simultaneous reduction or removal of 
lodging and tillering should be possible in a recurrent selec-
tion program devoted to the improvement of early develop-
ment traits. In TC, correlations between early development 
traits and TDMY were positive. However, the commercial 
hybrids significantly outperformed the DH lines for TDMY, 
while testcrosses of founder lines (F2, EP1, DK105) lay well 
within the range of the DH libraries for both traits (Fig. 4, 
Fig. S4). The yield gap between the mean testcross yield of 
the DH lines and the mean testcross yield of two commer-
cial hybrids amounted to about 15% and was comparable 
to what was reported in the literature for other European 
landraces (Wilde et al. 2010; Brauner et al. 2019). The use-
fulness of the best 10% DH lines in KE and PE, respectively, 
remained 8% below the performance level of the commer-
cial hybrids for TDMY (Fig. 4). Given that the inbred line 
F353 used as tester for the DH libraries was developed about 
20 years ago (year of release 2001, C. Bauland, personal 
communication) and that the parental components of the 
commercial check hybrids were highly selected based on 
their general and specific combining ability, the difference 
in TDMY between commercial hybrids and the top 10% 
DH lines seems small and could likely be reduced by the 
use of modern testers (Hölker et al. 2019). In many material 
groups, a negative correlation between DMC and TDMY is 
expected. In our research, phenotypic correlations between 
TDMY and DMC were nonsignificant when averaged across 
environments (Fig. 6, Fig. S4) as well as in all four indi-
vidual environments where TC performance was evaluated 
(data not shown). This outcome can most likely be attributed 
to the exceptionally hot and dry conditions during the 2018 
growing season (Table S1), the genetic material under study, 
or an interaction of both. Thus, an additional year of TC 
evaluation, including more and also later maturing commer-
cial check hybrids, will be conducted for investigating the 
DMC/TDMY relationship in material derived from genetic 
resources more closely and for evaluating the overall yield 
potential of the DH libraries.



3343Theoretical and Applied Genetics (2019) 132:3333–3345 

1 3

Multi‑environment testing

One of the aims of this study was to assess trait differen-
tiation in diverse environments and to estimate the mag-
nitude of genotype × environment interactions of landrace-
derived material. Thus, the chosen environments covered a 
broad spectrum of target regions for European flint material 
(Table S1). Despite locations with very different climatic 
conditions (e.g., OLI and TOM) and large differences in 
temperature and precipitation in 2017 and 2018, the ratio 
of genotype × environment and genetic variance ( �2

gu
∶ �

2

g
 , 

Tables S3, S4) was moderate for most traits. If landraces 
from which DH libraries are derived are adapted to simi-
lar environmental conditions as the target elite breeding 
germplasm, the confounding effects of adaptive alleles and 
strong genotype × environment interactions can be avoided 
and meaningful phenotypes obtained. Thus, our results are 
encouraging with respect to the prospects of incorporating 
environmentally stable alleles from pre-selected DH librar-
ies into elite germplasm.

Evaluating landrace-derived material in 11 environments 
might not be practicable for applied pre-breeding programs. 
In this study, the large number of test environments was 
highly useful because we detected the segregation of unfa-
vorable alleles in specific environments such as segregation 
for rust in TOM (Fig. S5) and drought susceptibility in EIN 
(Fig. S6), both in 2018. Although infections with rust or 
severe drought may not occur frequently, it would be devas-
tating if these susceptibilities were transferred inadvertently 
to elite germplasm through the introgression of landrace-
derived material. If evaluating the landrace-derived material 
in a large number of environments is not possible, prioritized 
testing in environments known for high disease pressure, 
abiotic stress, or frequent occurrence of undesirable traits 
like RL is highly advisable.

DH libraries from landraces make native diversity 
accessible

The DH libraries presented in this study link the large 
molecular diversity present in landraces to meaningful phe-
notypes. DH lines from landraces outperformed flint founder 
lines and commercial hybrids in early development, and 
as immortal genetic units they are directly accessible for 
plant breeding. Improving one or several target traits and 
simultaneously closing the performance gap between elite 
and landrace-derived genetic material for multiple traits of 
agronomic importance requires efficient recurrent popula-
tion improvement. In this context, knowledge of trait cor-
relations is crucial in order to broaden the narrow genetic 
base of the elite flint germplasm pool without introducing 

undesired traits from landraces into elite breeding popu-
lations. To obtain maximum selection gain per unit time, 
theory offers different strategies, such as multi-stage or index 
selection (Bernardo 2002), which need to be evaluated in 
the framework of the respective breeding programs. Opti-
mal strategies may vary conditional on species, budget, and 
short-term or long-term perspectives. Böhm et al. (2017) 
suggested multi-stage phenotypic selection of landrace-
derived DH libraries. In a simulation study, Gorjanc et al. 
(2016) compared different scenarios for initiating pre-breed-
ing for maize landraces using genomic prediction (GP) and 
suggested starting directly from landraces (e.g., without 
crossing to elite lines).

The implementation of GP in pre-breeding of landrace-
derived material is still underexploited. The comprehensive 
phenotypic data and derived quantitative genetic parameters 
presented for the three DH libraries in this study provide an 
excellent basis for optimizing genome-based pre-breeding 
schemes. Multi-environment phenotypic data are available 
for model training in LP and TC. Sample sizes and marker 
densities are large, allowing to investigate the effects of 
population size and required marker densities in popula-
tions with relatively low linkage disequilibrium compared to 
elite germplasm. In addition to investigating the prospects of 
genome-based prediction, our data provide a comprehensive 
framework for the discovery of genes controlling favorable 
and unfavorable traits as well as for the genetic analysis of 
additional relevant traits such as nutrient efficiency, pho-
tosynthesis-related traits, and additional biotic and abiotic 
stress tolerances.
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Discovery and enrichment of favorable alleles in landraces are key to making them
accessible for crop improvement. Here, we present two fundamentally different con-
cepts for genome-based selection in landrace-derived maize populations, one based on
doubled-haploid (DH) lines derived directly from individual landrace plants and the
other based on crossing landrace plants to a capture line. For both types of populations,
we show theoretically how allele frequencies of the ancestral landrace and the capture
line translate into expectations for molecular and genetic variances. We show that the
DH approach has clear advantages over gamete capture with generally higher prediction
accuracies and no risk of masking valuable variation of the landrace. Prediction accura-
cies as high as 0.58 for dry matter yield in the DH population indicate high potential of
genome-based selection. Based on a comparison among traits, we show that the genetic
makeup of the capture line has great influence on the success of genome-based selection
and that confounding effects between the alleles of the landrace and the capture line are
best controlled for traits for which the capture line does not outperform the ancestral
population per se or in testcrosses. Our results will guide the optimization of genome-
enabled prebreeding schemes.

landraces j genomic selection j doubled haploids j gamete capture

Genetic improvement is essential to secure sustainable crop production. Future crops
will have to combine high yield potential with major sustainability factors, such as
stress tolerance and resource efficiency. To meet these demands, plant breeding will
require a reservoir of genetic variation much larger than what is currently found in
commercial varieties (1). For maize, it has been estimated that US breeding populations
represent only 2% of the entire maize germplasm (2). In contrast, seed banks around
the world harbor thousands of untapped landrace accessions (1, 3, 4). Revisiting this
vast diversity of landraces is considered promising for elite germplasm improvement (1,
5–9), and developments in molecular, computational, and quantitative genetics open
new avenues to make native diversity accessible.
Landraces have been shown to harbor beneficial alleles for traits with limited genetic

variation in breeding populations (10), but for most agronomically important traits,
they exhibit a substantial performance gap compared with elite germplasm (11–13).
While for qualitative traits targeted introgression of favorable alleles discovered in land-
races is possible, many traits have a polygenic foundation, which is determined by a
large number of genes with small effects. Consequently, marker-based introgression of
individual alleles is limited for those traits. Extracting inbred lines directly from landra-
ces and selecting them for superior performance can close the performance gap only
partially. Therefore, recurrent population improvement with additional rounds of
recombination and selection is necessary to increase the frequency of favorable alleles
before introducing landrace-derived genetic material into elite populations. Genome-
based selection can accelerate this process, but the theoretical basis of its implementa-
tion in prebreeding still needs to be developed.
In outcrossing species, population improvement generally includes three distinct

phases (14): 1) sampling candidates from the population to establish progeny for evalu-
ation, 2) evaluating them in multienvironment field trials, and 3) recombining the best
candidates to form the next cycle. In genome-based recurrent selection, genomic data
are collected in the first phase, and together with data from the second phase, a statisti-
cal model is trained for prediction of breeding values of untested candidates from the
same or future breeding cycles. The success of this approach depends strongly on the
prediction accuracy that can be achieved with the training data. One major determi-
nant is the type of progenies that can be derived from the ancestral landrace (e.g.,
inbred lines, full- or half-sib families). Additional factors are the quality of phenotyping
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expressed as the heritability (h2) of the target traits, the sample
size (N), and the number of markers (M).
Here, we developed the quantitative genetic framework for

two fundamentally different concepts for establishing training
populations from landraces. The two concepts are displayed in
Fig. 1 and differ with respect to the proportion of landrace
genome and technical steps for their production. The “pure”
approach entails the production of fully homozygous doubled-
haploid (DH) lines from the ancestral landraces. The DH lines
exhibit twice the additive genetic variance of the ancestral land-
race and allow high-precision phenotyping. The “admixed”
approach captures gametes of the landraces in a cross with an
inbred (capture) line of different genetic background followed by
subsequent selfing of the offspring. When the aim of the pre-
breeding program is the immediate development of superior
inbred lines, a natural choice for the capture line would be a
high-performing elite line to increase the usefulness of the result-
ing population compared with the pure approach. However, the
use of an elite capture line has been shown to carry a high risk of
reconstructing the elite genome, associated with a loss of landrace
alleles in later selection steps (15). We, therefore, investigated the
role of the capture line for the genetic improvement of landrace-
derived populations with a focus on genome-based recurrent
selection. We link generic theory with population-specific molec-
ular parameters and experimental results on several traits, includ-
ing yield, in four unique populations representing the pure and
the admixed approach as well as two ancestral landraces.

Results

Molecular Variances of DH and Gamete Capture Populations

Can Be Predicted. We developed populations of DH and gam-
ete capture (GC) lines from two flint maize landraces, Kemater
Landmais Gelb (KE) and Petkuser Ferdinand Rot (PE). The
French inbred FV2 derived from population Lacaune served as
the capture line. Both populations were produced from the
same seed batch of the respective landrace, which we defined as
the ancestral landrace. In addition to the derived DH and GC
populations, a random sample from the ancestral landrace (LS)
was genotyped. Across populations, 85 and 92% of the total
472,169 single nucleotide polymorphisms (SNPs) were poly-
morphic in KE and PE, respectively. The majority of the

polymorphic markers (80.9% for KE and 78.4% for PE) segre-
gated in all three populations (Fig. 2A and SI Appendix, Fig.
S1A). In both landraces, each population showed a small per-
centage of segregating markers that were fixed in one or both of
the other two populations due to independent sampling from
the ancestral landrace. The capture line FV2 carried a SNP
allele not present in the LS and DH lines at 13,315 (KE) and
11,488 (PE) genomic positions, thus contributing about half of
the private polymorphisms of the GC lines. For both landraces,
allele frequencies observed in DH and GC corresponded with
allele frequencies estimated from LS and FV2 (Fig. 2 E and F
and SI Appendix, Fig. S1 E and F).

Mean pairwise genetic distances of genotypes ð�X GD) in the
three types of populations are depicted in Fig. 2B and SI
Appendix, Fig. S1B for landrace KE and PE, respectively. Under
the assumption of Hardy–Weinberg equilibrium in the ances-
tral landrace and no selection, the expected �X GD in LS and
DH is a function of the ancestral allele frequencies with
�X GDðLSÞ ¼ �X GDðDH Þ (SI Appendix, SI Text A1 and Table A1).
In the GC populations, the allele frequencies of the capture
line need to be accounted for. In the experimental LS and DH
populations, mean and range of pairwise genetic distances were
similar but not identical, with �X GDðLSÞ <

�X GDðDH Þ in KE and
vice versa in PE. The more pronounced difference between LS
and DH in KE was most likely the result of mild population
admixture in the LS, which is reflected by an excess of closely
related genotypes (Fig. 2B). Mean genetic distances between GC
lines and the capture line FV2 calculated based on SNPs for
which the LS and DH were monomorphic for the allele not
carried by FV2 were in agreement with the expected value 0.5
in both landraces (Fig. 2C and SI Appendix, Fig. S1C). For
this reduced set of markers, the variation of genetic distances
to FV2 in GC reflects the effect of Mendelian sampling, as
GC-S0 plants are fully heterozygous, and the resulting genetic
distances should be equivalent to what is expected in the F2
generation of a biparental cross.

For all three types of populations, we derived expectations of
the total molecular variance and its decomposition between and
within genotypes assuming absence of selection. For a single locus,
the total molecular variance calculated based on biallelic SNP allele
frequencies is expected to be identical for DH and the sample
from the ancestral landrace (LS) with ς2DH ¼ ς2LS ¼ 2p 1� pð Þ,

Fig. 1. Scheme of population development for the pure and admixed approaches.
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with p being the frequency of the allele carried by the capture line
(SI Appendix, Table A3). For GC, the expected total molecular var-
iance amounts to ς2GC�S1

¼ 0:5 1þ pð Þ 1� pð Þ (SI Appendix,

Table A3). Consequently, for a given locus, ς2GC�S1
≥ ς2LS if and

only if the allele present in the capture line has frequency p ≤ 1=3
in the ancestral landrace. Loci where the ancestral landrace and
therefore also its sample are fixed for an allele different from FV2
(i.e., p ¼ 0) contribute maximally to ς2GC�S1

but not to ς2LS and

ς2DH . Our theoretical results demonstrate the importance of the
genetic makeup of the capture line for building the GC. Here, the
capture line FV2 contributed new alleles (p ¼ 0 in LS and DH) at
2% (PE) and 3% (KE) of all polymorphic SNP positions, and the
proportion of SNPs with p ≤ 1=3 in LS was about 25% in both
landraces (Fig. 2D and SI Appendix, Fig. S1D). Thus, the observed
molecular variances for LS, DH, and GC (SI Appendix, Table S1)
meet expectations.
The linkage disequilibrium (LD) decay distance (δ), for which

the pairwise LD of markers on the same chromosome was
greater than r2 > 0.2, was slightly higher in the GC than in the
DH lines and was higher in populations derived from KE
(1,032 ≤ δ ≤ 1,263 kb) than from PE (399 ≤ δ ≤ 660 kb)
(Fig. 3A). Within landraces, linkage-phase similarities (LPS)
were high for the pairwise comparison of LS and DH but

substantially reduced for LS and GC (Fig. 3B). Across landraces,
LPS for the pairwise comparison of the same type of population
was low for LS and DH but moderate to high for GC (Fig. 3C).
Average LD between markers on different chromosomes was
negligible in all populations and both landraces.

Experimental and Theoretical Results Are in Good Agreement

for All Populations. The conceptual differences between the
pure and the admixed approach with respect to means and
genetic variances in DH and GC are visualized in SI Appendix,
Fig. A1 based on the theoretical expectations given in Table 1
and SI Appendix, Table A2. In hybrid breeding, selection candi-
dates are evaluated not only for their per se performance (PP)
but mainly, for their combining ability with a tester from a dif-
ferent heterotic group. We, therefore, considered both the PP
of the LS and of GC-S1:2 and DH lines as well as their testcross
performance (TP) with an inbred line from the dent heterotic
pool. Assuming absence of epistasis, the PP of fully inbred gen-
erations (DH lines, GC-S1:∞ lines) and of all testcrosses can be
described with a purely additive model (Table 1 and SI
Appendix, SI Text A2 and Table A2). For PP of the LS and for
GC-S1:2 lines, the mean and dispersion of the genotypic values
depend on unknown landrace- and capture line specific domi-
nance effects d½ � and d �½ �, respectively (Table 1).

Fig. 2. Venn diagram of the number and percentage of marker polymorphisms shared by and exclusive to the sample of the ancestral landrace (LS), DH
lines, and GC lines of KE (A). Means and estimated densities of genetic distances (GD) between genotypes within LS, DH, and GC using all markers (B) and
between GC lines and FV2 using only markers for which DH and LS were monomorphic for the allele not carried by FV2 (C). Estimated density of the fre-
quency of the FV2 allele in LS and GC (D). Allele frequencies in DH vs. LS (E) and expected frequencies in GC (calculated from LS and known FV2 genotype)
vs. observed GC (F). The calculated numbers of marker polymorphisms (A) are the result of sampling 80 gametes per population with 500 replications and
are shown as the absolute number and percentage of polymorphic markers (± SD). In GC, the number of polymorphic markers resulting from the cross
with FV2 (LS and DH monomorphic for the allele not carried by FV2) is shown as the average across 500 sampling replications. The tables in B and C show
the means of the genetic distances and their expected values (calculated from LS allele frequencies). B–F are based on the whole set of lines (i.e., N = 48
[LS], N = 471 [DH], and N = 274 [GC]).
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In the following, we use the trait flowering time exemplarily
to link theoretical and experimental results (Fig. 4 and SI
Appendix, Fig. S2). Phenotypic values should be indicative
of genotypic values, as heritabilities were high, ranging between
0.85 and 0.93 (Fig. 4 A and B and SI Appendix, Fig. S2 A

and B). The LS flowered significantly earlier than most DH
lines, and estimates of d½ � amounted to about 7% of the LS
performance for both landraces. The inbred capture line FV2
flowered significantly earlier than the mean of the DH lines
from KE and PE, pointing to an enrichment of early flowering

Fig. 3. Decay of LD with physical distance for the sample of the ancestral landrace (LS), the DH lines, and the GC lines of landraces KE and PE (A). Linkage
phase similarities (LPS) for pairwise comparisons of the three types of populations within each landrace (B) and LPS for pairwise comparisons of the same
type of population across the two landraces (C). For all calculations, 94 gametes were randomly sampled for each group.

Table 1. Quantitative-genetic expectations of means and genetic variances for per se (PP) and testcross (TP)
performance in the sample of the ancestral landrace (LS), derived DH, and GC lines

Population

Coefficient of parameters†

Population mean‡ �x

Genetic variances

Primary
variance

Variance
within families Total variance

aþΔ p� ð1� pÞð Þa
d½ � ¼

2pð1� pÞd12

d�½ � ¼
pd1x þ ð1� pÞd2x σ2A σ2A� σ2A σ2A� σ2A σ2A�

LS 0 1 1 0 1 0 — — 1 0
DH 0 1 0 0 2 0 0 0 2 0
GC-S1:2 1/2 1/2 0 1/4 3/4 1/4 1/8 1/8 7/8 3/8
GC-S1:∞ 1/2 1/2 0 0 3/4 1/4 1/4 1/4 1 1/2
FV2 1 0 0 0 — — — — — —

For GC lines, the total genetic variance is decomposed into the primary variance between families as observed for GC-S1:2 lines in this study and the variance within families.
†Parameters ½d� and ½d� � are not required for TP.
‡p and ð1� pÞ refer to the frequencies of alleles A1 and A2 in LS, respectively. a and aþΔ refer to the additive effects in LS and the capture line, respectively, with different meanings for

PP and TP. d½ � and d�½ � refer to the contribution of dominance effects to the PP of LS and GC-S1:2, respectively, where d12 , d1x , and d2x refer to the dominance effect of genotypes A1A2 ,

A1Ax , and A2Ax , respectively, with Ax being the allele of the capture line. σ2A refers to the additive variance inherent in the ancestral landrace, with σ2A ¼ 2pð1�pÞa2 . σ2A� refers to the

additive variance resulting from the effects of the capture line alleles, with σ2A� ¼ 2 1� pð ÞaþΔ=2ð Þ2 (details are in SI Appendix, SI Text A2).
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alleles in FV2. Mean flowering time of GC lines was signifi-
cantly earlier than of DH lines. Under an additive model, the
mean of the GC lines is expected to lie exactly between the
mean of the DH lines and the capture line but was shifted
toward FV2 in both landraces, indicating capture line specific
dominance effects d �½ � contributing to GC per se performance.

In the testcrosses, differences between the capture line and the
mean of the DH lines were attenuated, and consequently,
mean DH and GC testcross performance was not significantly
different in both landraces.
We derived expected genetic variances of the DH and GC pop-

ulations (Table 1). The DH delivers the maximum additive genetic

variance inherent in the respective landrace with σ2gðDH Þ ¼ 2σ2A.

The additive genetic variance among GC lines is σ2gðGC�S1:2Þ
¼

3

4
σ2A þ

1

4
σ2A� (Table 1), with σ2A� ¼ 2 1� pð ÞaþΔ=2ð Þ2 being a

function of the effect and frequency of the alleles in the ances-
tral landrace and the effects of alleles originating from the cap-
ture line. If for a given trait the capture line contributes only
alleles present in the ancestral landrace, as would be the case for
a random DH line derived from the ancestral landrace, the
genetic variance of the GC lines should be half the genetic vari-
ance among DH lines as σ2A� = σ2A (SI Appendix, SI Text A2).

Fig. 4. Estimated densities showing the distribution of phenotypic values for per se performance (PP; A) and testcross performance (TP; B) of the DH and
GC lines for landrace KE, scatterplots of proportions of FV2 genome vs. TP for flowering time (C), and estimated genetic values of PP vs. estimated genetic
values of TP for flowering time in DH (D) and GC (E) lines. In A and B, the means (vertical lines) of the landrace sample (LS, dark green) and the capture line
FV2 (yellow) are indicated, and the tables show the means (�X ), genetic variances (σ̂g2), and heritabilities (h2). Means with a shared letter are not significantly
different (P > 0.05). C–E indicate the Pearson correlation coefficients and corresponding P values of the shown correlations.
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If the capture line contributes alleles not present in the landrace
at many loci and the allelic effects at these loci differ substan-
tially from the respective landrace alleles, the genetic variance
among GC lines can be equal to or even larger than the variance
among DH lines.
Estimates of genetic variances for flowering time were signifi-

cant for PP and TP in both landraces (Fig. 4 A and B and SI
Appendix, Fig. S2 A and B). For PP, the ratio σ2g GCð Þ=σ

2
gðDH Þ

was 0.55 in KE and 0.67 in PE. The results suggest that the
additive genetic variance σ2A� generated by crossing the landrace
with FV2 did not differ substantially from σ2A, despite the
enrichment of earliness alleles in FV2. In the testcrosses, how-
ever, the ratio σ2g GCð Þ=σ

2
gðDH Þ was 1.28 in KE and 1.35 in PE,

indicating σ2A� > σ2A. The reduction in σ2g in the testcrosses

compared with per se performance was much higher for DH
than GC lines. These results indicate that dominance interac-
tions with the tester allele differed for the DH and FV2, and
consequently also for GC, in both landraces. Nevertheless,
genetic covariances between PP and TP were significant for
both types of populations and both landraces. Genotypic corre-
lations as well as correlations of estimated genetic values
between PP and TP for flowering time were higher for DH
than for GC lines (Fig. 4 D and E and SI Appendix, Fig. S2 D
and E and Table S2).
One concern with the GC population is the overrepresenta-

tion of the capture line genome in the progeny after selection.
The proportion of FV2 genome of GC-S1 plants determined
with the reduced marker set (SNP alleles with p ¼ 0 in LS and
DH) ranged from 21.9 to 75.6% in KE and from 21.5 to
73.1% in PE, with averages of 50.3 and 50.2%, respectively,
meeting expectations. A significant correlation of FV2 genome
proportion and phenotypic performance was observed for flower-
ing time only in the testcrosses of KE. As expected, the correlation
was negative but weak (r = �0.25) (Fig. 4C and SI Appendix,
Fig. S2C), demonstrating that GC lines enriched with earliness
alleles can be selected without strong overrepresentation of the
FV2 genome.
Results for the other traits are presented in SI Appendix, Figs.

S3 and S4. In general, experimental results were in agreement
with theoretical expectations and highly consistent across land-
races. Estimates of d½ � for the two plant height traits amounted
on average to about 26% relative to the performance of the LS.
The mean of the GC lines for plant height was about halfway
between LS and FV2, also indicating dominant type of gene
action. For all traits, the ratio of genetic variances
σ2g GCð Þ=σ

2
gðDH Þ followed the same trend as shown for flowering

time in both landraces for PP and TP. Correlations of FV2
genome proportion and observed phenotypic performance were
not significant for all traits and both landraces (except flowering
time in testcrosses as described above). For early plant height,
the GC lines showed only low (PE) or nonsignificant (KE)
genetic correlations between PP and TP, while for DH lines,
they were intermediate to high (SI Appendix, Table S2).

Population Type Determines Accuracy of Genomic Prediction.

The accuracy ρ of genome-based prediction is the success crite-
rion for genomic selection. Increasing the sample size of the
training set affected the magnitude and precision of ρ, and no
plateau was reached up to N = 250 (Fig. 5A and SI Appendix,
Fig. S5A). With respect to marker density, an increase in pre-
diction accuracy could be observed up to 15,000 SNPs (SI
Appendix, Fig. S6). Prediction accuracies ρ were consistently
higher in DH lines compared with GC lines for the two plant

height traits for all tested sample sizes of the training set. Dif-
ferences were most pronounced for small sample sizes. For
flowering time, differences between the two types of popula-
tions were negligible. Yield and dry matter content were
assessed in testcrosses only. Accuracies for yield exceeded 0.5 in
DH lines even with sample sizes N < 200 (Fig. 5B and SI
Appendix, Fig. S5B). However, in the GC lines, prediction for
yield failed (ρ = �0.09 in KE) and was very low for early plant
height. The strong decrease in prediction accuracies of testcross
traits in the GC can partially be accounted for by a combina-
tion of nonsignificant genetic variances in a high number of
training sets (Fig. 5D and SI Appendix, Fig. S5D) and the lim-
ited size of the prediction sets in cross-validation (N = 25). In
DH lines, however, testcross accuracies exceeded those of per se
performance in some cases, despite lower genetic variances,
lower heritabilities, and smaller training set size (plant height at
V6 stage in KE, flowering time in PE).

Prediction accuracies across the two types of populations
(Fig. 5 C and D and SI Appendix, Fig. S5 C and D) were low
(0.20 to 0.49 for lines per se, 0.03 to 0.41 for testcrosses). The
higher accuracies observed within DH lines (e.g., for final plant
height) were not reflected in prediction across populations.
Accuracies were similar irrespective if the prediction model was
trained on DH to predict GC or vice versa. We also investi-
gated if combining the two populations yielded a predictive
advantage over within-population prediction. Despite a sub-
stantial increase in sample size, accuracies changed only margin-
ally (from 0.53 to 0.55 on average across traits) (SI Appendix,
Table S3), which was not expected considering the increase in
prediction accuracy within populations with increasing N (Fig.
5A and SI Appendix, Fig. S5A).

Prediction across landraces (e.g., using DH lines of KE for
training and DH lines of PE for prediction or vice versa)
yielded estimates of ρ close to zero for DH lines irrespective of
which landrace was used for model training (Fig. 5E and SI
Appendix, Fig. S5E). For GC lines, higher values were obtained
especially for final plant height and flowering time (0.25 ≤ ρ ≤

0.29), most likely due to shared haplotypes originating from
FV2, resulting in much higher linkage phase similarities of GC
compared with DH populations (Fig. 3C).

Estimates of ρ varied substantially for the different (cross-)
validation runs (Fig. 5 and SI Appendix, Fig. S5) within and
across populations as well as across landraces. In testcrosses
with a training set size of N = 75 (per se N = 200), this was
most pronounced. The variation was in part attributable to
nonsignificant estimates of the genetic variance in the training
set, which was more common in GC and most pronounced in
testcross prediction.

Discussion

Extraction of beneficial haplotypes from landraces is a long-
term endeavor. In landrace genomes, favorable alleles for one
trait are often in high LD with unfavorable alleles for the same
or other traits, and consequently several rounds of recombina-
tion and selection are required to close the performance gap to
elite material and reduce linkage drag (16). With this study, we
aimed to fill the knowledge gap on genome-based prediction
accuracies that can be achieved in landrace-derived material in
outcrossing species.

Prediction Accuracies Are High in Landrace-Derived DH Popu-

lations. Prediction accuracies achieved in this study with
landrace-derived DH lines clearly demonstrate that genome-
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Fig. 5. Prediction accuracy (ρ) in landrace KE for per se performance (PP) in the DH and GC lines as a function of sample size N (A), for prediction of PP and test-
cross performance (TP) at the maximum available number of lines (Nmax; B), for predictions within and across populations for PP (C) and TP (D) in DH and GC, and
for across-landrace prediction for PP from KE (training on PE; E). Traits are plant height at V6 stage (PH_V6), final plant height (PH_final), and flowering time (FF) in
PP and TP and dry matter content (DMC) and total dry matter yield (TDMY) in TP. For each N (A), sampling of lines was repeated 100 times, and 10 times fivefold
cross-validation was carried out within each sample, yielding the basis for calculating the presented means and 95% quantiles (shaded areas around the curve).
Prediction across and within populations as well as across landraces was carried out by randomly sampling N = 200 and N = 75 lines for training in PP (C and E)
and TP (D), respectively, for predicting N = 50 (PP; C and E) or N = 25 (D) genotypes of the same or corresponding population (C and D) or the same population of
the other landrace (E). Sampling was repeated 100 times. The violin plots (C–E) show all 100 values, with the diamonds indicating the means. Black dots show val-
ues of the prediction accuracy estimated from models where the genomic variance estimate was not significant (likelihood-ratio-test, P > 0.05).
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based selection has great potential. Cross-validated accuracies
for prediction of total dry matter yield were as high as 0.58 in
testcrosses of PE DH lines (0.51 in KE) and even higher for
other traits, despite sample sizes of less than 150 DH lines in
the training set. Correlated estimated genetic values for PP and
TP indicate effective genomic selection for traits like flowering
time and plant height on the per se level, carrying over to corre-
lated response for TP.
In landrace-derived DH populations, prediction accuracies

should be merely a function of LD between markers and quan-
titative trait loci (QTL), as gametes are sampled at random
from the ancestral population. Thus, it was surprising that
accuracies were of similar magnitude as reported for elite maize
germplasm with much higher LD and substantial relatedness
between genotypes (17). Inflation of accuracies caused by DH
lines with extreme values due to strong inbreeding depression
could be ruled out by investigating cross-validation prediction
sets manually. Hidden relatedness and population structure in
the DH population, both factors that might inflate prediction
accuracy, were not observed when investigating pairwise genetic
distances of DH lines (Fig. 2 and SI Appendix, Fig. S1).
We, therefore, conclude that in DH populations derived

from landraces preselected for molecular and phenotypic prop-
erties as suggested by Mayer et al. (18), prediction accuracies of
0.5 or higher can be considered a realistic benchmark in
genome-based selection of complex traits with training set sizes
of N ≥ 200 due to large additive genetic variance, high herit-
abilities, and moderate LD.

Efficiency of the Admixed Approach. Some landrace popula-
tions carry high genetic load, leading to low efficiency of DH
production. Thus, crossing the landrace with an inbred capture
line from a different genetic background might be the only
option to avoid homozygous deleterious allele combinations.
So, what are the consequences for prediction accuracies in com-
parison with DH populations? As expected from theory and
observed in the experimental populations of this study, average
allele frequencies of polymorphic SNPs were shifted toward
more unbalanced allele frequencies in the GC lines (Fig. 2 and
SI Appendix, Fig. S1), affecting locus-specific contributions to
the total genetic variance. If the capture line carries an allele
present in the ancestral landrace, the locus-specific variance in
the GC decreases compared with the DH population, except
for loci with extreme allele frequencies in the ancestral landrace
(p ≤ 1=6) (SI Appendix, SI Text A3). If the capture line carries
an allele not present in the ancestral landrace, the locus-specific
variance in the GC will depend on the effect of this allele as
well as on the frequencies and effects of the alleles in the ances-
tral landrace. If the allele of the capture line exhibits dominance
over the landrace alleles (i.e., d �½ � > 0), the dominance variance
might increase at this locus (SI Appendix, SI Text A2). Thus,
when training the model on DH or GC lines, the weight
assigned to individual SNPs can differ markedly between the
two populations, explaining the fairly low prediction accuracies
across populations, irrespective if model training was conducted
on DH or GC lines.
Crossing with a capture line will affect linkage phases

between markers and QTL and the extent of LD compared
with the DH lines (Fig. 3). All GC-S0 plants are half-sibs and
share one identical gamete. Through the subsequent selfing
process, haplotypes may arise with different linkage phases and
LD decay compared with those of the ancestral landrace,
compromising prediction accuracies within the GC and across
populations. This effect will be trait-specific and will depend

strongly on the genetic makeup of the capture line. As could be
seen from the experimental data, linkage phase similarities with
the LS were considerably reduced in GC compared with DH
lines. Prediction accuracies for plant height and especially for
testcross yield were substantially reduced in the GC popula-
tions, but not for flowering time or dry matter content. We
hypothesize that for the two maturity-related traits, the capture
line FV2 enriched the GC populations with alleles not present
in either of the two landraces at a substantial number of loci.
These alleles occur with frequency 0.5 in the GC population
and thus, obtain high weight in prediction compensating for
the negative effects of opposing linkage phases between markers
and QTL at other loci.

When predicting across landraces, accuracies were close to 0
for DH populations but >0.2 for GC lines when predicting in
KE onto PE and vice versa. These results corroborate the
hypothesis that prediction in the GC populations was at least
partially driven by additive effects of shared FV2 haplotypes
and/or their dominance over the landrace alleles (Fig. 3C).

Genome-Based Improvement of Landraces. In this study, we
investigated the potential of genome-based prediction to
increase the frequency of favorable alleles of target traits in
landrace-derived populations. We conclude that the pure
approach is to be preferred over the admixed approach, because
with the admixed approach a substantial reduction in prediction
accuracy must be expected unless prediction is driven by capture
line alleles. When implementing the admixed approach, the
choice of capture line will have a major impact on the success of
the prebreeding program. It determines the mean and genetic
variance of the GC population and the risk of masking favorable
landrace alleles. Molecular data can inform about locus-specific
allele frequencies in the ancestral landrace and the capture line,
and under certain assumptions, these allele frequencies translate
directly into expectations for the molecular and genetic variance
in the GC population (SI Appendix, SI Text A3). For quantitative
traits, however, many loci contribute to the genetic variance, and
unless a large proportion of causal variants for the traits of interest
is known, molecular parameters will provide little guidance on
the choice of capture line. In this study, the phenotypic per se
performance of inbred line FV2 compared with the LS and the
mean of the DH lines provided a first indication for which traits
the capture line might contribute alleles not present in the ances-
tral landrace and which type of gene action to expect. It remains
to be shown for other GC populations derived from different
landraces and capture lines if this pattern holds. We could also
show that dominance interactions with the tester alleles differed
for landrace and capture line alleles, affecting prediction accura-
cies in the DH and the GC populations differently. Thus, not
only the capture line per se but also its interaction with the tester
had a direct effect on the genetic variance accessible for selection.

In summary, the results of this study show that the pure
approach has clear advantages over the admixed approach for
genome-based improvement of landraces. With continuous tech-
nological advances, the application of DH technologies is likely
to become routine in many plant genetic resources (19). If the
production of fully inbred lines either by the DH technology or
by recurrent selfing is not possible, the admixed approach is still
a good alternative. The risk of masking valuable variation present
in the landrace needs to be minimized by an informed choice of
capture line and tester. Our study shows that the confounding
effects between the alleles of the landrace and the capture line
are best controlled for traits for which the capture line does not
outperform the ancestral population per se or in testcrosses.
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Materials and Methods

Plant Material. We applied two different strategies (Fig. 1) for sampling game-
tes from European maize landraces. The landraces KE and PE of European flint
maize were chosen of 35 landraces for this study on the basis of population-
genetic analyses described by Mayer et al. (18) and phenotypic screening for vari-
ation in early-development traits assessed in field trials. DH lines were derived
directly from the landraces for the first sampling strategy (pure approach) (11).
For the second sampling strategy (admixed approach), we modified a scheme
originally proposed by Stadler (20): pollen mixtures from the landraces were
used to pollinate the capture line FV2. FV2 is an important founder line of the
European flint heterotic group developed by INRA from the French landrace
Lacaune and was intensively used as parent in commercial hybrids between the
1960s and 1990s. We termed this procedure “gamete capture” (GC). The GC-S0
plants are half-sibs, with one gamete from FV2 and the other gamete from the
landrace. Subsequently, the GC-S0 plants were selfed to produce GC-S1 ears. One
GC-S1 plant per ear was genotyped and selfed. Field evaluation was performed
with the corresponding GC-S2 lines planted ear to row, subsequently referred to
as GC-S1:2. For each landrace, all populations were derived from the same seed
source, which we define as the ancestral landrace. Three different sets of seeds
from this ancestral landrace were randomly sampled to obtain 1) the sample of
the ancestral landrace (LS), 2) the landrace plants used for DH induction, and 3)
the landrace plants used to pollinate the capture line. For production of testcross
seed, randomly chosen lines from each population as well as FV2 and plants sam-
pled from the ancestral landrace were hand-crossed as pollinators onto the inbred
line F353 (INRA, France), a prominent line of the European dent heterotic group.

Field Experiments and Phenotypic Data Analysis. The DH and GC popula-
tions were evaluated in adjacent field trials connected through common checks.
Field experiments for the DH populations were described in detail by H€olker
et al. (11); phenotyping of the GC populations was performed analogously.
Briefly, per se performance (PP) was evaluated in four environments in Germany:
Roggenstein (ROG) and Einbeck (EIN) in 2017 and 2018. Two separate but adja-
cent sets of 8 (DH 2018) or 10 (DH and GC 2017, GC 2018) 10 × 10 lattice
designs with two replicates per line were used in each environment. As common
checks, we added plants sampled from the ancestral landrace (LS) as well as 15
(2017) or 4 (2018) inbred lines, including in both years the line FV2. Plots were
single rows of 3 m length, with 0.75 m distance between rows, and planting
density was 8.8 plants m�2.

Testcross performance (TP) was evaluated in two environments (ROG and EIN)
in 2019. Testcrosses of DH lines were grown in four 10 × 10 lattice designs; for
GC lines, a generalized α-lattice design with 200 entries was used. Testcrosses of
the LS and of two inbred lines together with six commercial hybrids were
included as checks in all trials, and FV2 was included in GC trials only. Plots
were double rows of 6 m length, with 0.75 m distance between rows and plant-
ing density of 9 or 11 plants m�2. Sowing, fertilization, and plant protection in
per se and testcross evaluation followed standard agricultural practice at the
experimental stations.

The traits plant height at V6 stage (PH_V6, cm), final plant height (PH_final,
cm), flowering time (FF, days from sowing until 50% of plants in the plot silked),
dry matter content (DMC, percentage, only TP), and total dry matter yield (TDMY,
dt/ha, only TP) at forage harvest were investigated.

We expanded the analysis described for the DH experiments in H€olker et al.
(11) for joint analysis of the GC and DH experiments in a single step using the
following model:

yijkopst ¼ μþ mi þ δCheckslj þ gkðijÞ þ uo þ guko ijð Þ

þ δDHflujo þ kp oð Þ þ rs opð Þ þ bt opsð Þg

þ δGCflujo þ kp oð Þ þ rs opð Þ þ bt opsð Þg þ εijkopst , [1]

where i = 1, 2, 3, 4 denotes four groups (GC, DH, LS, and checks); j = 1, 2, 3, 4
denotes the different populations (GC_KE, GC_PE, DH_KE, and DH_PE); μ is the
overall mean; mi is the effect of group i; lj is the effect of population j in groups
i = 1 and 2; δChecks is a dummy variable with δChecks = 1 if the line belongs to
DH or GC populations and δChecks = 0 for LS or inbred lines used as checks; δDH
(δGC ) is a dummy variable with δDH = 1 (δGC = 1) if data belong to the DH
(GC) experiment and δDH = 0 (δGC = 0) otherwise; gkðijÞ is the genotypic effect
of line k nested in group i and population j; uo is the effect of environment o;

lujo is the interaction of population j and environment o; and guko ijð Þ is the inter-
action of genotype k and environment o. The effects kp oð Þ, rs opð Þ, bt opsð Þ, and
εijkopst refer to the effect of the lattice (nested in environments), replicate (nested
in lattices in environments), incomplete block (nested in replicates in lattices in
environments), and the residual error, respectively. All effects except mi and lj
were treated as random. Genotype [gkðijÞ] and genotype × environment
[guko ijð Þ] variance components were modeled individually for the populations
(j = 1, 2, 3, 4), assuming that DH and GC lines across and within landraces were
stochastically independent. Residuals were assumed to be normally distributed
with mean zero and four heterogeneous variances, one each for δChecks = 1 and
δChecks = 0 in GC and DH experiments, assigning the same residual variance to
all GC and DH lines within all environments. Raw data and outliers were manu-
ally curated by inspection of residual plots. The model in Eq. 1 refers to the anal-
ysis of PP. TP was analyzed analogously, adjusting for the generalized α-lattice
design used in GC trials. Variance components and their SEs were estimated
with ASReml-R package 3.0 (21). Entry-mean heritabilities were calculated for
each population following Hallauer et al. (14), and SEs of heritability estimates
were derived using the delta method (22). Heritabilities (h2) and variance com-
ponent estimates exceeding twice their SEs were considered significant. For
obtaining best linear unbiased estimates (BLUEs) of the genotypic value of each
entry, the model from Eq. 1 was simplified, replacing factors mi, δCheckslj with a
factor separating the two experiments (DH and GC), dropping δDHlujo and
δGC lujo from the model, and treating genotype as a fixed effect. This model was
also used to test for significant differences (t-tests) between LS, DH, GC, and FV2
in linear contrasts calculated with the package asremlPlus (23). For estimating
genetic covariances and genetic correlations between PP and TP for a given phe-
notypic trait, we expanded the model from Eq. 1 to a bivariate model treating
PP as one trait and TP as the other trait. Significance of genetic covariances was
tested in likelihood-ratio-tests comparing the model including the covariance
with the reduced model without the covariance.

Genetic Data Analysis. The inbred line FV2, samples from each ancestral land-
race (LS), DH lines, and GC plants were genotyped with the 600k Affymetrix
Axiom Maize Array (24). The quality filtering of the SNP data for the LS and DH
populations was described in detail in H€olker et al. (11) and was done analo-
gously for the GC populations. Briefly, markers were filtered according to the
best quality class (24) and an unambiguously mapped physical position in the
B73 reference sequence AGPv4 (25). Markers and individuals with>10% miss-
ing values were removed. For DH lines, markers and individuals with>5% het-
erozygous genotype calls were removed, and the remaining heterozygous calls
(0.19%) were set to missing values. For DH lines, missing values were imputed
separately for each population using Beagle version 5.0 (26) with default set-
tings. Missing values in the LS and GC were imputed, and two gametes from
each individual were phased using Beagle version 5.0, with parameters itera-
tions = 50, phase-segment = 10, and phase-states = 500. Markers were coded
as counts of the FV2 allele (0: homozygous for opposite allele of FV2; 1: hetero-
zygous; 2: homozygous for FV2 allele). In total, 1,512 genotypes (LS_KE = 48,
LS_PE = 47, DH_KE = 471, DH_PE = 402, GC_KE = 274, GC_PE = 270) with
472,169 polymorphic SNPs remained for further analysis. Thereof, all DH and GC
have been evaluated for PP, and a subset (DH_KE = 183, DH_PE = 173, GC_KE
= 103, GC_PE = 54) has also been evaluated for TP.

Analysis of Molecular Variance and Genetic Diversity. We sampled 80
gametes from each population (LS, DH, and GC) and landrace with 500 repli-
cates for comparing the number and percentage of polymorphic markers across
populations.

LD was measured using r2 (27) for samples of 94 gametes within each popu-
lation. We calculated r2 for pairs of SNPs within a distance of 1 Mb and used
nonlinear regression to investigate the r2 decay with physical distance (28). The
LD decay distance is defined as the physical distance δ for which the curve
reaches r2 = 0.2. For estimating LD across chromosomes, we sampled 5,000
markers per chromosome with replacement for all 45 pairwise combinations of
chromosomes and calculated r2 for all pairs of markers across chromosomes.
Linkage phase similarities (LPS) between populations were calculated according
to Schopp et al. (29). LPS according to physical distance was calculated grouping
marker pairs into bins of 10 kb up to a maximum distance of 1 Mb.

Genetic distance (GD) between two genotypes was measured as GD¼
1� SM, where SM is the simple matching coefficient across all SNP loci calcu-
lated as detailed by Jacobson et al. (30). We also compared allele frequencies 1)
between DH and LS and 2) between the experimental and expected GC, where
the expected GC was obtained by ðpþ 1Þ=2, with p being the frequency of the
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FV2 allele in the respective LS. An analysis of molecular variance (31) based on
Euclidean distances was used to estimate the molecular variance within and
between individuals of LS, DH, and GC for each landrace. Calculations of the pro-
portion of markers with p¼ 0 and p ≤ 1=3 as well as the average allele fre-
quency for each population were based on 415,346 (KE) and 446,687 (PE)
markers polymorphic across LS, DH, and GC.

Genome-Based Prediction Model. We performed genomic best linear unbi-
ased prediction (GBLUP) in several scenarios for PP and TP, always applying the
model

y ¼ 1μþ Zuþ e, [2]

where y is a vector of BLUEs of the training set obtained from the phenotypic
analysis, 1 is a vector of 1s, μ is the population mean, u is a vector of random
estimated genetic values with the distribution u ∼ Nð0, Uσ2gÞ, and Z is the
corresponding incidence matrix. U is the realized relationship matrix calculated
on the basis of marker data following method 1 of VanRaden (32), and σ2g is the
genetic variance pertaining to the GBLUP model. The matrix U was calculated
considering all genotypes (both population types and landraces) as one popula-
tion. The vector of residuals e is assumed to be normally distributed with a
mean of zero and equal variance [e ∼ Nð0, Iσ2eÞ], where I is the identity
matrix and σ2e denotes the residual variance pertaining to the GBLUP model.
The relationship matrices were calculated using R [version 3.6.0 (33)] and the
R-package synbreed version 0.12-9 (34). Variance components pertaining to the
GBLUP model were estimated using the R-package ASReml-R version 3.0 (21).

Genomic prediction accuracy (ρ) is reported as the correlation between pre-
dicted and unobservable true genetic values. Estimates of ρ were obtained from
the Pearson correlation between the observed phenotypes and the estimated
genetic values divided by the square root of h2 of the prediction set (35).

Scenarios for Genomic Prediction. We studied the influence of the number
of markers M and sample size N on ρ within populations by randomly sampling
M markers using all genotypes from the respective population or sampling N
lines without replacement from the population using all markers and carrying
out 10 times fivefold cross-validation. The number of markers M was increased
from 1,000 to 250,000. Sample size N was increased from 50 lines to the
maximum possible number for the respective population in increments of 50.
Sampling was repeated 100 times for each M and N. Prediction accuracy ρ was
averaged across replications. The 95% quantile of ρ was calculated from the

sampling replications. With small sample sizes N, ρ was set to “missing value” if
the mixed model algorithm for a particular training set did not converge.

For comparing the prediction accuracy ρ within and between the DH and GC
populations from the same landrace, N = 200 (PP) or N = 75 (TP) lines were
sampled randomly from one population (either DH or GC) for training the
model. The prediction set always comprised a disjoint set of N = 50 (PP) or N =

25 (TP) lines either from the same or from a different population. Sampling was
repeated 100 times. The same sampling procedure was applied for investigating
across landrace predictions using the same type of population of the other land-
race as the prediction set.

Data Availability. Seeds from all genotypes used in the study are available
through material transfer agreements. The genotypic data of the inbred line FV2,
873 DH lines, 544 GC lines, and 95 landrace plants and all corresponding phe-
notypic data of PP and TP have been deposited in Figshare (https://doi.org/10.
6084/m9.figshare.17014421) (36).
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