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Abstract

Small and medium enterprises in Europe face pressure to produce goods with com-
petitive pricing. Additionally, they are facing constant changes in production volume,
product variety, and labor shortages. Collaborative robots are a promising technology
for helping small and medium enterprises overcome these challenges as long they can
help with dull and repetitive tasks. However, their adoption is now in a market sober-
ing phase, and three main adoption barriers have been identified: safety, design, and
interfaces. Overcoming these barriers can enable personnel at small and medium en-
terprises to reprogram these systems with minimal effort, thus enabling non-experts
to perform such tasks on multiple occasions. This work addresses the three barriers
by proposing and studying the effects of methods to simplify the programming of col-
laborative robots, mainly using spatial interactions through the users’ movements of
3D sensors or workpieces. First, when experts and non-experts program robots by the
placement of workpieces, non-experts select workpieces’ locations that do not endan-
ger their physical ergonomics. In contrast, experts set locations that could endanger
their ergonomics mainly because they were twice as close to the robot than non-experts
during the interaction. Second, when non-experts program the grasping location of a
robot, conventional systems do not provide easy-to-use interfaces, and a spatial interac-
tion can improve usability by 38% while improving the robustness of the taught grasp
location. Third, when non-experts program robot trajectories via spatial interactions,
they create trajectories that require 5% more separation distance between the user and
the robot to ensure safety. Last, workflow-based programming for integrating the spa-
tial interactions improves non-experts’ usability by 51% when compared with similar
programming methods. Therefore, the studies reveal that when users are empowered
to program the robot behaviors through these interactions, different levels of robotic
expertise impact the task and the operator differently. More specifically, the methods
developed in the course of this work enable simplified programming of robots and lead
to an improvement in workload compared to the state of the art. This work thus em-
phasizes the importance of user-friendly methods for robot programming. Using the
presented methods and other algorithms could empower European small and medium-
sized enterprises to produce goods at competitive prices with high product variety and
frequently changing product volumes.
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Zusammenfassung

Kleine und mittlere Unternehmen in Europa stehen zunehmend unter Druck, Waren zu
wettbewerbsfähigen Preisen herzustellen. Zusätzlich müssen sie mit ständigen Verän-
derungen im Produktionsvolumen zurechtkommen, eine große Teilevielfalt bedienen
und sehen sich einem Fachkräftemangel ausgesetzt. Kollaborative Roboter sind eine
vielversprechende Technologie, um kleinen und mittleren Unternehmen bei der Be-
wältigung dieser Herausforderungen zu helfen. Sie können eingesetzt werden, um
bei monotonen und repetitiven Aufgaben zu unterstützen. Die Nutzung von kollab-
orativen Robotern befindet sich derzeit jedoch in einer Phase der Marktabkühlung.
Dabei verhindern folgende drei Hauptbarrieren eine weitere Verbreitung der kollabo-
rativen Roboter: Sicherheit, Design und Schnittstellen. Das Überwinden dieser Bar-
rieren ermöglicht Mitarbeitern in kleinen und mittleren Unternehmen, solche Sys-
teme mit minimalem Aufwand trotz fehlender Robotikexpertise bei neuen Aufgaben
zu verwenden. Diese Arbeit befasst sich mit der Überwindung der genannten Her-
ausforderungen. Sie stellt Methoden zur Vereinfachung der Programmierung kollab-
orativer Roboter vor und untersucht deren Auswirkungen. Dabei liegt der Fokus auf
räumlichen Interaktionen des Benutzers mit dem Werkstück oder einem 3D Sensor zur
Programmierung des Roboters. Erstens zeigte sich, dass Nicht-Experten bei der Pro-
grammierung von Robotern durch die Platzierung von Werkstücken Arbeitsplatzposi-
tionen auswählten, die ihre physische Ergonomie nicht gefährden. Im Gegensatz dazu
wählten Experten Positionen aus, die im Hinblick auf ihre Ergonomie als kritisch bew-
ertet werden können, da der Abstand zwischen Mensch und Roboter während der In-
teraktion halb so groß war wie bei Nicht-Experten. Zweitens kann eine räumliche Inter-
aktion zur Programmierung des Greiforts eines Roboters die Benutzerfreundlichkeit um
38% verbessern und gleichzeitig die Robustheit des gedachten Greiforts erhöhen. Drit-
tens erstellen Nicht-Experten, wenn sie Robotertrajektorien über räumliche Interaktio-
nen programmieren, Trajektorien, die einen um 5% erhöhten Sicherheitsabstand zwis-
chen Benutzer und Roboter erfordern. Zuletzt steigert die workflowbasierte Program-
mierung zur Integration räumlicher Interaktionen die Benutzerfreundlichkeit für Nicht-
Experten um 51% im Vergleich zu ähnlichen Programmiermethoden. Diese Arbeit
unterstreicht damit die Bedeutung von benutzerfreundlichen Methoden zur Roboter-
programmierung. Die vorgestellten Methoden ermöglichen die vereinfachte Program-
mierung von Roboter und führen zu einer Verbesserung der Arbeitsbelastung im Vergle-
ich zum aktuellen Stand der Technik. Die Nutzung der vorgestellten Methoden, auch
in Kombination mit weiteren Algorithmen, könnte kleine und mittlere Unternehmen
in Europa dazu befähigen, Waren zu wettbewerbsfähigen Preisen bei hoher Produk-
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tvielfalt und sich häufig ändernden Produktvolumina herzustellen.
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Chapter 1

Introduction

1.1 Motivation

Robotics is set to play a tremendously important function in achieving the United Na-
tions (UN) Sustainable Development Goals (SDG) [1]. For example, robotics can help
reduce pollution with solutions for sorting or collecting trash [2], thus allowing hu-
manity to flourish in the digitization age. Such expectation is widely shared, and news
about robots can spark interest worldwide to create "viral" content, especially when im-
pressive features are shown [3]. Such technological advancements are the offspring of
numerous research activities in the last two decades. One embodiment of the progress
achieved in robotics is the new robotics breed of collaborative robots (cobots). Cobots
are robots designed with human interaction in mind. They integrate technical elements
that allow them to work in a shared workspace with humans, thus removing the need to
cage them in specific work areas as with standard industrial robots. For their peculiari-
ties, cobots have been warmly accepted in the market, and, since their first appearance
as finished products, their market share grew up to 5.7% in 2021, showing always a
yearly increase [4]; yet, the addressable market is much broader. One appealingly cus-
tomer segment for cobots are Small-Medium Enterprises (SMEs). SMEs are companies
with a staff headcount lower than 250 and annual turnover lower than C 50 million
as defined by the European Union (EU) [5]. SMEs are compellingly for cobots be-
cause robots’ adoption in these enterprises is much lower when compared with larger
ones [6]. Therefore, there is a large, highly untapped room for growth. Additionally,
SMEs are known to be highly relevant to countries’ economic growth. For example,
only in the EU during 2018, SMEs represented more than 99% of the businesses, and
created more than half of the European Gross Domestic Product (GDP) [6–8]. Lastly,
a literature study showed that SMEs that adopted robots achieved higher productivity,
efficiency, and employment when compared to the ones that did not [9]. In light of
these points, it is visible that both cobots manufacturers and SMEs can benefit from

1
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cobots’ adoption. However, their diffusion could be faster, and several barriers hin-
der cobots’ growth. A prominent literature research article has identified three main
obstacles when introducing cobots, which are: applications, intuitive interfaces, and
safety [10], where applications refers to the need to tailor cobots for a well-defined
set of use-cases. Intuitive interfaces refers to the need that end-users of cobots must
be enabled with simple-to-use interfaces. Safety refers to the need for transparent,
documented methodologies to deal with the risks of cobots and human interaction. A
summary of cobots’ history and actual developments is useful to review for understand-
ing how these needs affect cobots’ technological developments. The following sections
underline the main drivers behind specific barriers and the challenges to address.

1.2 Cobots’ History and Challenges

Origins

Cobots origins date back to the 1990s. The first cobot systems were part of a small
family of passively actuated mechanisms that guided human operators’ movements in
the General Motors production line [11]. Specifically, these devices were actuated
through human-exerted forces, and using software-programmed variable transmission
elements, they guided a particular device and the operator on a well-defined path,
thus reducing the operator’s workload [12]. However, this idea of cobots as passively
actuated devices lasted briefly, and the concept moved toward a lightweight robotic
system. The first designs of a light robot appeared in space robotics research. Such a
design was meant to address the needs of robotics operations without gravity. There-
fore, a 1:1 weight-to-payload ratio, to avoid joint control motors’ overloading, was
embraced [13]. Out of this design, the German robot manufacturer KUKA released
the first commercial product in 2008 under the name of iiwa. Iiwa’s peculiarities were
threefold. First, iiwa integrated a walk-through programming that allowed the robot
to move through user-defined positions. Second, compliance with current legislation
on robot machinery and safety through sensors enabled the robot to stop in case of
collisions. And, finally, a low weight-to-payload ratio [14]. Similarly, the Danish start-
up Universal Robots (UR) released its first cobot, the UR5, during the same decade.
However, unlike the iiwa, the main features of the robot were a simple programming
user interface (UI), safety through work-zone monitoring, and database structures for
saving programming commands [15]. Therefore, the first decade of the 2000s ended
with two fundamentally different approaches to cobot design and human interaction.
On one side, the KUKA iiwa lightweight robot with embedded collision detection and
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walk-through programming meant for direct interaction with humans. Conversely, a
lightweight robot without embedded collision detection but with a UI meant to be used
by non-robotic experts.

With the emergence of cobot systems in the market, a need for standardization was
essential to guarantee customers’ safety and compliance with regulations. Once cobots
reached the market, only general standards, which do not describe how a cobot could
be made safe, like the type A ISO12100:2010 [16] standard, were available. There-
fore, the 2020s began with a revision of a crucial robot standard from the International
Organization for Standardization (ISO), the ISO 10218. ISO 10218 is a type C stan-
dard that dictates common design features that should be adopted when designing or
integrating industrial robots, and it is divided into two parts. Part 1, also referred to
as ISO 10218-1 [17], describes which features should be integrated into the design
of a safe industrial robot by the manufacturer. Part 2, also called ISO 10218-2 [18],
defines safety requirements that should be followed while integrating a robot designed
according to ISO 10218-1 in an industrial robot cell by a system integrator. Consider-
ing that the standard is a type C, which provides detailed safety design features for a
specific type of machinery, accurate guidance on how safety should be ensured is also
given for cobots. This standard has thus advocated for four types of safety modalities.
However, due to the field novelty, the specification of such modalities did not limit it-
self to safety but recommended four types of collaborations considered inherently safe.
Those modalities are known as Safety-Rated Monitored Stop (SRMS), Hand Guiding
(HG), Speed and Separation Monitoring (SSM), and Power and Force Limiting (PFL).
An illustration of those modalities is shown in Fig. 1.1. The first, SRMS, is the most
elementary methodology for ensuring safety. With this approach, the robot and the
human can work in a shared workspace, but the utilization of such an area is restricted
to only one participant. This means the robot is driven to a halt when the human en-
ters the shared space until the human leaves. However, to allow a natural operation’s
continuation, the robot stops through a Category 2 stop according to IEC 61800-5-
2 [19]. Therefore, the drive power is not detached, and the machine stays in a secure
interruption monitored through redundant software and electronics. The second, HG,
allows the human to drive the robot in different positions by exerting forces on the
machine. To guarantee safety, the robot operates in SRMS, and whenever the human
enters the shared space, the hand-guiding device is switched on, and the human can
guide the robot to defined positions. The third, SSM, is similar to SRMS but allows for
expanded usage of the shared workspace. Specifically, the work zone is divided into
three areas on the relative distance between the human and the robot, as shown by the
color-coded Fig. 1.1. The robot operates at full speed whenever the human is in the
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farthest area, denoted with green in the illustration. The robot reduces its speed once
the relative distance decreases, denoted in yellow in the illustration. Finally, once the
relative distance is small, the robot goes to Category 2 stop as in SRMS. A set of sensors
or vision systems to detect the human and compare it with the robot’s actual position
is necessary to enable the relative distance measurement. Moreover, the zones must be
computed with proper equations considering the robot’s relative speed and stopping
time, as illustrated by [20]. Last, PFL allows the robot to operate continuously in the
shared zone, but its movement should be limited in motor power and force, allow-
ing controlled collisions to happen. To enable PFL, the robot must embed dedicated
hardware and software to deal with such controlled collisions. Additionally, the force
and motor limits must be computed according to the collision area and the involved
blunt element as described by [21, 22]. This process of calculating limits has been
standardized under a technical specification (TS) released by ISO in 2016, the ISO TS
15066 [23]. Therefore, this first part of the decade ended with several guidelines on
integrating cobots safely. In summary, those guidelines stated that whenever a cobot
has to be introduced, a risk assessment should be conducted, and according to the
level of the measured risks, proper mitigations following the collaboration modalities
described above had to be introduced.

However, despite this effort for standardization, in nowadays robotic applications,
technology adopters prefer not using cobots due to misunderstandings of the safety
procedures [24], probably also driven by the cobots manufacturers campaigns which
advocated for no requisite for proper safety analysis [25].

Nowadays

With several guidelines available on how to make and introduce safe cobots. The last
five years of the 2020s saw a dozen new cobots released to the market [10], and for
example, 2018 reported a cobots’ year-on-year growth of 67% [4]. With this sharp in-
crease and numerous new players in the market, cobot manufacturers started looking
into ways to differentiate their products. One clinging idea across the manufacturers
was to seek ease of use for their products as long this demonstrated to be a winning
factor for the UR company [26]. More specifically, the ease of use targeted by these
companies relates to the cobots’ programming as long it is the most cognitively inten-
sive task [10].

Initially, cobot programming followed the same programming methods as in stan-
dard industrial robots. This method, also known as lead-through programming, re-
quires the human to use a teach pendant to program precisely defined robot motions
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Safety-Rated Monitored Stop Hand Guiding

SRMS HG
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Speed and Separation Monitoring Power and Force Limiting

speed

Figure 1.1: Representation of the four safety collaboration modalities described in ISO 10218-1 and ISO 10218-2.
Reprinted from Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications,
Mechatronics, Vol 55, Villani V. et al. [10], Copyright (2018), with permission from Elsevier.

as shown in Fig. 1.2. Specifically, the human has to jog the robot, i.e., move the robot
in one or more of its axes and save positions or trajectories that satisfy the applica-
tion’s needs. Afterward, such information is played back by the robot controller to
achieve robot autonomy. However, lead-through programming is considered dull, time-
consuming, and must halt the machine for a long time. This method is best economi-

Figure 1.2: Traditional lead-through programming with the human holding and interacting with the teach pendant to
program robot sequences or positions.
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cally justified for production lines with large amounts of products (e.g., automotive).
Therefore, cobots integrated variations of lead-through programming, alleviating some
of the process’s tediousness [27]. The first is off-line programming (OLP). In OLP, a
software engineer in the design office can simulate robot behaviors through the digital
representation of the robotic work cell. By these means, the engineer can walk through
all the robotic steps, ensuring the task and its constraints are satisfied. Then, the simu-
lation software generates the robot program, which can be downloaded to the machine.
Although this method can reduce robot downtime, it requires expensive software. This
method has been confined to robots acting as machine tools in specific processes (e.g.,
welding, polishing); one example is in the context of Wire Arc Additive Manufacturing
(WAAM) [28]. The second is walk-through programming. Walk-through programming
foresees a human operator to physically move the robot end effector (EE) through the
desired trajectory and save key points. This method makes the robot programming
intuitive because constant trajectory feedback is given. However, proper care should
be given to safety and usability when using this method as long the robot compen-
sates for its weight to allow the user to move the manipulator quickly. This is usually
implemented through impedance control. Due to its nature, such control can have
different parameters, and the literature demonstrated that a trade-off between accu-
racy and usability has to be made upon the application [29]. Therefore, walk-through
programming is used alongside lead-through programming for mitigating this trade-
off [30]. The third is learning from demonstration (LfD). It is a natural extension of
lead-through programming. However, it bears the remarkable difference that LfD can
learn trajectories and generalize them to new scenarios, i.e., object location change, by
an appropriate trajectory encoding [31]. However, due to LfD novelty, its application
still brings challenges like efficiency [31]. Considering these innovations, it is easy to
understand that none can solve programming in all situations; therefore, there is still
a need to bring different programming features together, thus limiting their drawbacks
and improving usability [30].

Aside from programming, in the same five-year period, experiences from imple-
menting cobots in industrial scenarios have been well described in the literature. The
main field where cobots have been introduced is in automotive [10], mainly because
this sector often introduces robots across the product life cycle [32]. Within this sec-
tor, cobots have been allocated to simple but repetitive dull tasks in the assembly line.
More precisely, cobots have been used in the robot-as-tool scenario. Therefore, the
machine is employed in use cases where it can help the operator lift heavy objects or
avoid hazardous postures, which could lead to ergonomic hazards [10]. As a matter of
fact, in this sector, cobots are used with a low level of autonomy [33]. In other manu-
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facturing sectors, however, cobots are used slightly differently. Instead of introducing
cobots as tools to relieve humans from hazardous tasks, cobots are also adopted to
achieve higher productivity and flexibility. This is often the case for SMEs in different
manufacturing sectors. More precisely, SMEs are searching for highly adaptable man-
ufacturing systems, and cobots are an excellent asset for answering those needs [34].
Cobots introduced by SMEs are employed between different workstations to perform
several tasks. The most famous examples are machine tending and material handling.
In these applications, the cobot is either placed in front of a machine (e.g., lathe) or at
a general-purpose workspace, and its task is to move raw materials and finished prod-
ucts, thus increasing the machine utilization rate. However, these applications require
extensive programming knowledge, and SMEs are still looking for cobot technologies
that can sense the environment and adapt to its changes to satisfy volatile production
demands [35] without requiring robot experts for their reprogramming [36].

High-level Challenges

In the current landscape of cobots, adoption barriers need to be addressed to make
them more accessible to a broader customer base, particularly SMEs. The previous
overview of the current state of cobots highlighted the necessity for streamlined, user-
friendly programming approaches that seamlessly incorporate various cobot program-
ming techniques (Challenge 1). This approach should also simplify safety assessments,
ultimately easing the adoption of cobots (Challenge 2). Furthermore, it should al-
low SMEs to deploy cobots that adapt to changing work environments and production
demands (Challenge 3.1). However, these methods must ensure ease of use because
SMEs’ primary obstacle when using robot programming methods is the lack of access
to robotic experts (Challenge 3.2).

In light of these challenges, this research proposes a comprehensive suite of intu-
itive programming methods grounded in spatial interactions, which non-experts can
efficiently utilize to streamline robot programming. Additionally, such programming
methods are designed to seamlessly incorporate safety considerations into the work-
flow. This is achieved by adhering to a standardized programming process that facili-
tates documentation and robust safety assessment tools.

However, proposing intuitive programming methods is complex, requiring an in-
depth examination of their usability and accessibility. Therefore, this work places a
particular emphasis on thoroughly investigating and refining these aspects to ensure
that the programming solutions are innovative but also practical and user-friendly.
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Intuitive Programming Interfaces
User Impacts Safety Implications

Scalability to Industrial Applications

Ch.2 Ch.3 Ch.4

Ch.5

Challenge 3.2 Challenge 2

Challenge 1 & 3.1

Figure 1.3: Thesis structure with relevant chapters and addressed challenges. The thesis follows the workflow a user
should adopt for the programming of a collaborative robot, initially starting from Chapter 2 with the personalization of
the workspace. Then, the user defines the grasping location as defined in Chapter 3. Next, the trajectory that the
robot has to follow is programmed as defined in Chapter 4. Finally, the complete workflow of the robot is described
and assessed in terms of safety as defined in Chapter 5.

1.3 Overview of the Thesis

As highlighted in the section above, several challenges exist for introducing an inte-
grated workflow-based programming method for cobot programming with spatial user
interactions. More precisely, such interactions must be easy for a broad customer base.
In order to present the contents of this research, this work is structured in three main
areas following the workflow a user would need to adopt for programming a cobot,
as shown by Fig. 1.3. This section describes each of the three main areas and their
contributions in detail.
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1.3.1 Intuitive Programming Interfaces and User Impacts

As highlighted above, when robot programming should be integrated, it should be easy
for a vast pool of users and allow simple modifications without requiring deep robotics
expertise as outlined in Challenge 3.2. To present the research work behind this line,
chapters 2 and 3 present novel, simple programming modalities to allow the operator
to program behaviors of cobots when dealing with pick and place operations.

Chapter 2 introduces a programming method based on computer vision (CV) to
allow the operator to define where the parts shall be located to increase the level of
robotic acceptance, as long as task personalization is essential [37]. However, the
chapter investigates how operator decisions influence the robot and the operator’s
well-being to understand how personalization should be introduced as a programming
method. Some of the material presented in this chapter is also published in:

• Pantano, M., Yang, Q., Blumberg, A., Reisch, R., Hauser, T., Lutz, B., Regulin,
D., Kamps, T., Traganos, K., and Lee, D., "Influence of task decision autonomy
on physical ergonomics and robot performances in an industrial human–robot
collaboration scenario," 2022, Frontiers in Robotics and AI, Volume 9.

• Pantano, M., Curioni A., Regulin D., Kamps, T., and Lee, D., "Effects of Robotic
Expertise and Task Knowledge on Physical Ergonomics and Joint Efficiency in a
Human-Robot Collaboration Task," 2023, IEEE-RAS International Conference on
Humanoid Robots.

Once the task has been personalized, the next step is to allow users to define lo-
cations where objects should be grasped. Chapter 3 introduces a spatial programming
method for the definition of such locations. More precisely, considering that industrial
users must be able to define such locations considering task requirements and reliabil-
ity [38], the chapter proposes a novel metric to fuse an initial grasp guess given by an
operator with a state-of-the-art neural network (NN) to ensure reliable grasps which
respect users’ suggestions. The section investigates how this definition influences grasp
point robustness and user acceptance. The material presented in this chapter is par-
tially published in:

• Reisch, R. T., Pantano, M., Janisch, L., Knoll, A., and Lee, D., "Spatial Annotation
of Time Series for Data Driven Quality Assurance in Additive Manufacturing,"
2022, 17th CIRP Conference on Intelligent Computation in Manufacturing Engi-
neering (ICME).

• Caporali, A., Pantano, M., Janisch, L., Regulin, D., Palli, G., and Lee, D., "A Weakly
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Supervised Semi-automatic Image Labeling Approach for Deformable Linear Ob-
jects," 2023, IEEE Robotics and Automation Letters (RA-L), Volume 8.

• Pantano, M., Klass V., Yang Q., Sathuluri A., Regulin D., Janisch L., Zimmermann
M., and Lee, D., "Simplifying Robot Grasping in Manufacturing with a Teaching
Approach based on a Novel User Grasp Metric," 2023, 5th International Confer-
ence on Industry 4.0 and Smart Manufacturing (ISM).

1.3.2 Intuitive Programming Interfaces and Safety Implications

Once the user has partly personalized the task, it is essential to understand how this
will impact the level of safety to understand the impacts for Challenge 2. More pre-
cisely, the safety standards describe how robot movements should be considered when
a cobot can move outside a caged environment. In this regard, analyzing the robot’s
trajectories is crucial for defining safe behaviors. Chapter 4 studies how integrating
operator programming affects a robot’s safety. This chapter is partly based on the fol-
lowing publications:

• Pantano, M., Regulin, D., Lutz, B., and Lee, D., "A human-cyber-physical system
approach to lean automation using an industrie 4.0 reference architecture", 2020,
Procedia Manufacturing, Volume 51.

• Pantano, M., Blumberg, A., Regulin, D., Hauser, T., Saenz, J., and Lee, D., "Design
of a Collaborative Modular End Effector Considering Human Values and Safety
Requirements for Industrial Use Cases," 2022, Human-Friendly Robotics 2021,
Springer Proceedings in Advanced Robotics, Volume 23.

• Pantano, M., Schmidt, M., Bolano G., Schulenburg, E., Regulin, D., and Saenz, J.,
"Analyzing the Influence of Self-defined Trajectories on Safety and Task Owner-
ship: An Empirical Study," 2023, industrial paper at the 19th IEEE Conference of
Automation Science and Engineering (CASE).

1.3.3 Scalability to Industrial Applications

Finally, to ensure that the proposed personalized, safe workflows can be successfully
integrated into SMEs considering the requirement for a single programming workflow,
chapter 5 studies how the presented novel interaction methods can be brought together
as required by Challenge 3.1 and Challenge 1. More precisely, this chapter outlines
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a proposal for standard nomenclature to describe robot motions and perform a risk
assessment. Additionally, the user acceptance of a programming method based on the
standard nomenclature is investigated. This chapter is partly based on the following
publications:

• Pantano, M., Eiband, T., and Lee, D., "Capability-based Frameworks for Indus-
trial Robot Skills: a Survey," 2022, 18th International Conference on Automation
Science and Engineering (CASE).

• Pantano, M., Pavlovskyi, Y., Schulenburg, E., Traganos, K., Ahmadi, S., Regulin,
D., Lee, D., and Saenz, J., "Novel Approach using Risk Analysis Component to
Continuously Update Collaborative Robotics Applications in the Smart, Connected
Factory Model," 2022, Applied Sciences, Volume 12.

1.4 Contributions

As previously highlighted in this work methods to reduce barriers of adoption of cobots
for SMEs are addressed. More precisely the contributions of this work can be listed as
follows.

Intuitive Programming Interfaces and User Impacts

In chapter 2, a method for allowing users to program robot end-locations is proposed,
and its effects are analyzed to tackle Challenge 3.2. Therefore, the main contributions
of this chapter are the in-depth analysis of how the user’s robotic background can influ-
ence human-robot collaboration and an evaluation framework for estimating physical
ergonomics via camera inputs. This contribution shows that user background must
be considered when allowing users to design their workspace to ensure that different
robotic expertise levels are supported.

In chapter 3, a method to allow operators to propose candidate grasp locations
via a spatial sensor is proposed, and its impacts are examined to tackle Challenge 3.2.
Consequently, the main contributions in this chapter are the NN based methods to
fuse spatial sensor data with visual data accounting for user and calibration errors.
These methods show that neural network-based techniques to fine-tune user initial
label points on visual data can be beneficial and that the quality of the selected labels is
improved to automatically grasp location selections while reducing the need for robotic
expertise.
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Intuitive Programming Interfaces and Safety Implications

In chapter 4, a method to program trajectories using a spatial sensor and its impacts
on safety and user acceptance are presented to tackle Challenge 2. Therefore, the main
contributions of this chapter are a method to correct inaccuracies of a spatial sensor
based on photodiode sensors and, additionally, insights on how user-defined trajecto-
ries might influence the safety of the applications considering different levels of user
robotic background. This chapter shows that robotics expertise plays a significant role
in programming trajectories that are considered safe and that a spatial sensor based on
photodiode sensors should not be calibrated only with conventional calibration tech-
niques.

Scalability to Industrial Applications

In chapter 5, a workflow-based programming method that allows integrating different
programming modalities with safety evaluations is presented to tackle Challenge 3.1
and Challenge 1. The main contribution of this chapter is a standard nomenclature
and structure based on a business process model notation for robot programming. This
chapter shows that having a standard nomenclature and structure in programming
facilitates user programming when compared with state-of-the-art methods and also
allows the creation of documentation relative to the safety evaluations.

1.5 Notes for the reader

Chapters’ structure

This work comprises four main chapters, delineating the procedural steps users should
follow when programming a robot in an SME. To enhance readability, each chapter
adheres to a structured format. It begins with an exhaustive review of the prevailing
state-of-the-art, which is succeeded by preliminary research. Subsequently, the meth-
ods necessary to address the identified challenges are outlined. Lastly, primary evalu-
ations of these methods are presented to demonstrate their impact on overcoming the
challenges. Thus, readers are encouraged to comprehensively analyze each chapter to
understand various topics correctly.

Statistical analysis

Statistical analysis is often conducted when analyzing different results of this work.
More precisely, when such analysis is performed, the primary evaluation often is to
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ensure that two populations have a different average value with different statistical
tests depending on the distributions. When the data is presented, the applied method
is reported; if the method is omitted, the t-test should be considered. Aside from this,
it is essential to underline that statistical results are also reported in the results graph.
Asterisks are used to report the level of the p value to report statistical significance.
The selected convention is as follows: ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p
≤ 0.001, ****: p ≤ 0.0001.
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Personalizing the human-robot collaboration can improve the application intuitive-
ness and ownership for the operator. Therefore, there is a need for research on how
to allow the integration of personalization and analyzing its effects on collaboration.
This chapter studies how allowing operators to define co-assembly locations for robot
motion influences the users’ tasks and physical well-being. The contents of this chapter
are partly based on the following publications:

• Pantano, M., Yang, Q., Blumberg, A., Reisch, R., Hauser, T., Lutz, B., Regulin,
D., Kamps, T., Traganos, K., and Lee, D., "Influence of task decision autonomy
on physical ergonomics and robot performances in an industrial human–robot
collaboration scenario," 2022, Frontiers in Robotics and AI, Volume 9.

• Pantano, M., Curioni A., Regulin D., Kamps, T., and Lee, D., "Effects of Robotic
Expertise and Task Knowledge on Physical Ergonomics and Joint Efficiency in a
Human-Robot Collaboration Task," 2023, IEEE-RAS International Conference on
Humanoid Robots.
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The structure to present the contents of this chapter is as follows. Initially, the
motivation behind this work is outlined. Second, an overview of the current state
of the art concerning the personalization of robotic tasks is given, and the need for
a higher degree of human-robot task personalization is discovered. Next, with the
discovered need, a method for allowing users to personalize a robotic task by speci-
fying co-assembly locations is presented. Third, the results of two studies that try to
underline the relationship between users’ background and satisfaction with the robot
personalization are presented. Finally, the chapter gives conclusions and concluding
remarks on how the identified results can benefit the future of personalized robotic
applications.

2.1 Motivation

In human-robot collaboration (HRC), humans and robots should collaborate. However,
the design of this collaboration can be challenging depending on the task or the human
operator’s background. To overcome some of these issues, including the human opera-
tor in the design can be beneficial [37]. By including the operator, the creation of good
mental models of the application is encouraged [39–45]. One recent example proving
the benefit of good mental models can be seen in the work of [46]. In this work, the
authors found that greater satisfaction in human-robot interaction can be achieved if
operators design their sequence of tasks. However, no investigation in industrial sce-
narios was performed in the study. Therefore, there is a need for further research in
this sector. By looking at the adoption of HRC in industry, the applications that could
benefit the most from those design suggestions are the ones known as cooperation and
collaboration [47]. In these modes, teammates (i.e., human and robot) perform tasks
in a shared workspace on different components or the same ones [48]. If these modes
are successfully implemented, several benefits can be achieved. One of those is the
improvement of operators’ physical ergonomics [49]. Therefore, to better grasp the
connection between mental models, task design, and performance in industrial scenar-
ios, there is a need for more investigation.

2.2 Related Works
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Evaluation of Physical Ergonomics

When considering operators’ physical ergonomics, an evaluation must be carried out.
These assessments can be based on two principles. First, a posture-based analysis, in
this assessment, deviations of joint angles from the natural standing pose are observed,
and, upon their magnitude, scores representing the exposure to hazards related to mus-
culoskeletal disorders (MSDs) are given. Second, a biomechanics-based analysis, in this
assessment, repetitions of actions involving a load, namely pushing, pulling, carrying,
lowering, or lifting, are counted to obtain the exposure to risks of MSDs [50]. However,
those principles provide only methods to record measurements, and task observations
must be made. Two classes of task observations are known. On one hand, simula-
tions via digital human models (DHM) [51–53]. On the other hand, in-situ process
studies [54]. In the former, digital representations for the task must be available [55].
Often, this happens when planning production lines that will run for several years, like
an automotive assembly line [56, 57]. Consequently, commercial tools are available
(e.g., Siemens Tecnomatix™ Process Simulate). However, they bear a high degree of
complexity; therefore, they are not often used by SMEs [9]. In the latter, digital sim-
ulations are not used; instead, experts are studying the task and providing the level
of exposure to MSDs by actual observations at the factory [58]. As a consequence,
this type of evaluation can carry errors due to its nature [59]. However, it is easier to
introduce in SMEs and does not require high levels of digitization.

Physical Ergonomics in HRC

Posture-based assessments and in-situ observations have been widely adopted to es-
timate and improve HRC’s physical ergonomics. Rahal et al. [60] propose a haptic
control based on the human arm’s inverse kinematics (IK) to derive user comfort and
change the control strategy in a teleoperation use case. Through this approach, they
achieve lower muscular loading. Shafti et al. [61] present an algorithm that reduces
operators’ armload by controlling the manipulator positioning following muscular and
physical ergonomics assessments in hand-over interactions. Makrini et al. [62] demon-
strate that task allocation based on physical ergonomics can improve the overall work-
ing conditions of the operators in an assembly use case. However, their outcomes were
influenced by a human posture algorithm in sub-optimal operation. A similar approach,
but with an improved visual algorithm based on OpenPose [63], is proposed by [64].
In this work, they demonstrate that a physical ergonomics assessment can be used to
derive compliant robot motions that follow the postures of different operators, thus re-
ducing the operator joint torque overloading in hand-over tasks. Such state-of-the-art
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approaches demonstrate how exposure to ergonomics hazards can be reduced when
the robot hands over tools to the operator. However, this appears barely in industrial
scenarios. More precisely, as highlighted in the introduction, collaborative robots are
being employed by SMEs for material handling. Therefore, handing over tools is not
the primary concern for applications in SMEs. Therefore, investigations in other tasks
are needed.

Task Design

As highlighted in previous sections, to improve cobot acceptance, users should be able
to design their task sequence [46]. However, this study was performed with ideal fic-
titious scenarios. A following study involving real robots identified that such design of
the task sequence is extremely dependent on the task and operator’s subjective pref-
erence [65]. Therefore, operators should be empowered to choose the design of a
human-robot collaborative task [65, 66]. Different robot programming modalities are
available to empower operators to influence the task design. However, non-experts
do not always accept conventional methods, and usability can strongly depend on the
manufacturer interface [30, 67]. Interfaces that mimic natural behavior can decouple
users from robots’ requirements. Recent market examples are Tracepen™ from Wandel-
bots1 and Mimic™ from Nordbo Robotics2. However, such systems focus more on the
robot’s trajectory than the objects’ location. Therefore, there is a need to investigate
other task design approaches with natural interfaces. One promising approach is using
visual data coming from cameras [68]. However, no example is present in the literature
to the author’s knowledge.

2.3 Definition of Co-Assembly Locations via a Visual Interaction

As highlighted from the state-of-the-art, there needs to be more research in inves-
tigating how operator-designed tasks influence physical ergonomics. To study these
scenarios, a method for allowing operators to program tasks via the specification of co-
assembly locations is proposed. This approach is based on identifying components with
an object detection algorithm and a parameterizable robot IK for component move-
ments. Additionally, to study the influence of human exposure to MSDs, posture-based
physical ergonomics evaluated with CV is introduced. This chapter describes these
different components and their connection to the proposed study.

1https://wandelbots.com (accessed on 22/12/2022)
2https://www.nordbo-robotics.com (accessed on 22/12/2022)
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Teach-in

Final 
location

Figure 2.1: Illustration of the movement-based interaction during teach-in. The operator can personalize the task by
physically moving a workpiece toward a final co-assembly location from which the robot and the operator will perform
a subsequent collaboration.

Envisioned Interaction

A movement-based interaction is selected to allow a human operator to personalize
the task. More precisely, to personalize the task, the human has to first position the
objects in a workspace location that best suits the task and themselves in an operation
also denoted as teach-in as shown in Fig. 2.1. Afterward, a camera records the object’s
location, and the robot collaborates with the human for task accomplishment. This
movement-based interaction is selected as long it allows the operator to select a defined
spatial organization of the workspace, which proved beneficial for the perceived work
efficiency in [69].

Object Detection and Adaptive Robot Inverse Kinematics

A CV pipeline based on an object detector is introduced to enable the robot to sense
the environment and locate the position of objects in the workspace. The pipeline
goal is to obtain parts’ location in robot coordinates through a camera, as shown from
Fig. 2.2. To solve this problem, the You Only Look Once (YOLO) NN algorithm [70]
has been selected due to its good performance with few training data. This algorithm
can predict a Bounding Box (BB) describing where an object in an image is through
its pixel coordinates, thus allowing an operator to place parts at preferred positions.
However, these coordinates in 2D space must be transformed into 3D ones to allow the
robot to reach the detected components. The camera was calibrated to the robot to
compute this transformation using the method in [71], and the 2D-pixel coordinates
were transformed into 3D ones with Eq. 2.1.
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Camera
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𝑷𝒊𝒄
𝑷𝒊𝒓

𝑻𝒓 𝒄

Figure 2.2: Illustration of the different coordinate frames in the use case. To enable the robot to handle a part
in the workspace, its location computed in pixel coordinates, denoted with P c

i , must be transformed to robot coor-
dinate frames, denoted with P r

i . This transformation is done through the homogeneous matrix r Tc . Reprinted and
adapted from Influence of task decision autonomy on physical ergonomics and robot performances in an industrial hu-
man–robot collaboration scenario, Pantano M. et al. [72], Copyright (2022), with permission from Frontiers in Robotics
and AI.
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Where [x , y, z] is the 3D point representing the position of a component in robot
coordinate frames, K are the intrinsic camera parameters, r Tc is the transformation
between the robot coordinate frame to the camera coordinate frame and u, v are pixel
coordinates with u = u′/w′, v = v′/w′ and w′ as scaling factor. Henceforth, with the
parts’ coordinates in the robot system, the machine can interact with them for the
envisioned task as described in the previous section.

Physical Ergonomics Assessment

A posture-based assessment with in-situ observations with a camera is selected to cal-
culate exposure to physical ergonomics hazards. More precisely, the rapid upper limb
assessment (RULA) [73] is employed due to its superior capability to evaluate risks
ranging from low to high when compared with other assessment methods [74]. How-
ever, according to this assessment, joint angles must be known for scoring postures.
RULA is implemented with the human limb detection algorithm OpenPose [63] for this
calculation. Therefore, angles between limbs are calculated with Eq. 2.2.
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(2.2)

Where a, b are the vectors representing two limbs obtained through the human limb
detection, and θ is the angle between those two limbs. Afterward, postures are scored
via look-up tables, which assign ordinal values to each part of the body, knowing the
angles’ quantitative information (assuming that non-repetitive actions and loads under
0.5kg are present due to the task design). For clarity, an example of this conversion
is reported here. Suppose a task where an operator has the upper arm with an angle
between ±20◦, the lower arm with an angle above 100◦ from the natural position of
lower and upper arms aligned with the torso, and wrist without twisting. This leads to
an intermediate risk level of 2 for the wrist-arm compound. Then, if the other limbs are
considered where the neck and trunk are straight and the leg well supported, an inter-
mediate risk level of 3 for the neck, trunk, and legs compound is obtained. Therefore,
by considering both levels and looking at the second row and third column of the RULA
evaluation tables, a final risk level of 3 for this posture can be obtained. Therefore, this
posture assessment can be used in HRC tasks as long the human operator is monitored
with cameras.

2.4 Effects of User-Defined Co-Assembly Locations on the Well-being and

the Task

Two sets of studies are performed to investigate the effect of this visual programming
method on human well-being. The first is a preliminary study that tries to gather some
first insights into the first-order effect of the method. The second details how different
levels of operator experience influence the task design and how these considerations
can be considered for future studies.

2.4.1 Preliminary Study on the First-Order Effects

In this study, the goal is to identify if leaving decision autonomy freedom can benefit
the operators. Therefore, in this first study, two hypotheses are made. The first con-
cerns the operator’s perceived level of autonomy. The second is the measured physical
ergonomics. More specifically, the hypothesis can be stated as follows:

• Hypothesis 1 (H1) If the operator can decide the object location, the operator
perceives a higher task decision autonomy
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• Hypothesis 2 (H2) if the operator decides by itself the object location, the opera-
tor’s physical ergonomics is the best

This section presents the experiment conducted to find answers to these questions.

Industrial Use Case and Envisioned Interaction

For the scope of this study, a use case concerning a stack preparation for a sintering
process is considered. In this task, an operator must stack different materials onto each
other to create a pile, which will go into a furnace for heat treatment. This task has
been selected for two reasons. First, nowadays, tasks are performed manually. Second,
in the manual process, operators displace objects at their will during the operation.
Therefore, by adopting the proposed interaction, operators can, on the one hand, exert
their will on part displacement. On the other hand, they can be helped by the robot
with some dull, repetitive actions. Hence, they complement each other. Therefore, the
placement of the parts is customizable. This customization allows the human to select
the material’s co-assembly locations on an x-y plane before the interaction. Afterward,
the collaboration unfolds, and each actor (i.e., robot, human) performs its duties in the
use-case. This collaboration unfolds with five sub-steps. In step 1, the robot moves the
fragile part towards the stack. In step 2, the user places three separators on the stack.
In step 3, the robot places a separating sheet on the stack while the user exposes the
following fragile part. In step 4, the robot moves the fragile part while the user ensures
the stack is straight. In step 5, the user exposes another fragile part so the process can
start again. For clarity, this is shown in Fig. 2.3.

Experiment Design

A study with two levels of interaction has been envisioned to investigate how the free-
dom of placing parts influences the operator’s well-being. This design ensures that the
investigation compares the effects of the co-assembly teach-in proposed in this section
against a typical interaction. With this experimental design, two variables are manipu-
lated. On the one hand, the level of personalization (user versus apriori defined). On
the other hand, the level of collaboration familiarity (first versus second interaction).
The following abbreviations are used for these interactions: usr for the user-defined
interaction, std for the apriori-defined interaction, Interaction I for the first interaction
in the experiment, and Interaction II for the second one. Using these abbreviations,
the experiment procedure was as follows. At first, users were introduced to the task
by showing an explanatory video with the task. Then, any doubts in the collabora-
tion were answered, and the familiarization phase ended with the users replying to
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1 2

3 4 5

Teach-in Collaboration

Figure 2.3: Representation of the unfolding interaction. The cooperation is composed of the teach-in phase and
collaboration phases. The human operator takes over the actions marked with light green. The robot takes over the
actions marked in pink. Reprinted and adapted from Influence of task decision autonomy on physical ergonomics and
robot performances in an industrial human–robot collaboration scenario, Pantano M. et al. [72], Copyright (2022), with
permission from Frontiers in Robotics and AI.

a questionnaire regarding their demographics and informed consent. Next, the user
performed the collaborative task with the two methods. After each interaction, the
level of decision autonomy was measured through two subjective measures from the
Work Design Questionnaire (WDQ) [75] with a Likert scale. Additionally, during the
interaction, the robot and operator were monitored to calculate the objective measures
of exposure to ergonomic hazards and the task time. For clarity, the study design is
shown in Fig. 2.4.

Introduction Familiarization 
and video 

Human-Robot 
Interaction I

Human-Robot 
Interaction II

t1 t2 t3

time

t0

Figure 2.4: Experiment design schema. At first, the users were introduced to the task, and a video of the interaction
was shown. This initial phase ended at t1, where informed consent and general demographics were collected. Then,
the two interactions unfolded, and during them, the RULA and the task times were collected. Finally, at t2 and
t3, the perceived level of decision autonomy with WDQ was gathered. Reprinted and adapted from Influence of
task decision autonomy on physical ergonomics and robot performances in an industrial human–robot collaboration
scenario, Pantano M. et al. [72], Copyright (2022), with permission from Frontiers in Robotics and AI.
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Figure 2.5: Results of the experiment investigating the physical ergonomics. The statistical significance of the results
is displayed with asterisks. If no statistical significance is found, ns is displayed. The first two graphs report the
outcomes of the WDQ criteria. The third graph shows the recorded physical ergonomics. Finally, the last graph shows
the time used for the task execution. From the evaluation, it is possible to denote that usr achieved a higher level of
decision autonomy while maintaining the same level of physical ergonomics and required time.

Results

As highlighted in the introduction, this study aims to identify how the definition of
object location influences decision autonomy and the operator’s physical ergonomics.
In the study, 17 individuals not trained in physical ergonomics participated, age M =
33.05 yrs, SD = 12.89, height M = 180.11 cm, SD = 9.26. One did not perform
the task correctly, and the data was discarded from the analysis. Regarding task deci-
sion autonomy, responses to two WDQ criteria were compared. For the sake of clarity,
the WDQ questions were respectively: "The system gives me a chance to use my per-
sonal initiative or judgment in carrying out the work," and "The system provides me
with significant autonomy in making decisions" from now on denoted as criteria one
and criteria 2. In this evaluation, the recorded results for criteria 1 were M=68.75%,
SD=23.06 and M=86.25%, SD=9.57 for std and usr. For criteria 2, the results were
M=62.50%, SD=27.20 and M=81.25%, SD=13.60 for std and usr. Therefore, con-
sidering that the results proved statistically significant, allowing the part placement
can improve the level of task decision autonomy. The measured levels of physical
ergonomics via the RULA assessment were compared. The results were M=5.74 er-
gonomic hazard, SD=0.56, and M=5.78 ergonomic hazard, SD=0.64 for std and usr,
respectively. However, considering that no statistical difference was found, it is possible
to conclude that the part placement did not influence the level of physical ergonomics
in this experiment. Finally, regarding the taken time, the outcomes were M=123.56 s,
SD=17.29 for std and M=125.56 s, SD=21.44 for usr, which was not found statisti-
cally different. Therefore, part displacement did not influence the required task time.
For clarity, the results with statistical significance are displayed in Fig. 2.5.
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Discussion

Table 2.1: Correlation analysis of the metrics related to the user group which saw std as Interaction I calculated
with the Pearson correlation coefficient. Significant correlations (p < 0.05) are marked with an asterisk (*). Metrics
definitions have been abbreviated with the following. Erg. for risk level, Aut. for autonomy representing the average
response to criteria 1 and 2.

M SD Erg. std Erg. usr Time std Time usr Aut. std Aut. usr

Erg. std 5.57 0.60 -
Erg. usr 5.69 0.54 0.59 - -
Time std 129.13 17.63 −0.16 0.53 -
Time usr 123.50 23.29 0.52 0.86* 0.59 -
Aut. std 2.75 1.06 0.49 0.02 −0.17 0.29 -
Aut. usr 3.50 0.72 0.02 −0.36 −0.38 −0.05 0.70 -

Table 2.2: Correlation analysis of the metrics related to the user group which saw usr as Interaction I calculated
with the Pearson correlation coefficient. Significant correlations (p < 0.05) are marked with an asterisk (*). Metrics
definitions have been abbreviated with the following. Erg. for risk level, Aut. for autonomy representing the average
response to criteria 1 and 2.

M SD Erg. usr Erg. std Time usr Time std Aut. usr Aut. std

Erg. usr 5.92 0.70 -
Erg. std 5.83 0.52 0.09 - -
Time usr 127.63 20.80 −0.62 0.30 -
Time std 118.00 16.10 0.07 0.23 0.66 -
Aut. usr 4.41 0.44 −0.22 0.13 −0.21 0.11 -
Aut. std 3.91 0.88 −0.05 0.40 0.15 0.13 0.60 -

From the results, it is possible to understand that allowing for user-defined co-
assembly locations can increase the level of task decision autonomy while not altering
the task time and the exposure to ergonomic hazards. Therefore, considering in more
detail the hypotheses stated before, it is possible to accept H1 saying that allowing the
operator to decide about part placement increases task decision autonomy. Unfortu-
nately, such positive results cannot be recorded for H2 as when the operator decided
the co-assembly locations, the physical ergonomics was not the best. More precisely, the
statistical difference across the two samples was not found for the ergonomic hazard.
Therefore, H2 must be rejected as long the risk level is similar in the two interactions,
and no reduction of the ergonomic hazard is achieved by leaving the operators with a
high level of task decision autonomy. A study of correlations between recorded mea-
sures was conducted to better understand how task decision autonomy influenced the
interaction. Therefore, the Pearson correlation coefficient was calculated among the
different metrics. Results of the analysis are shown in Tab.2.1 and 2.2. In line with
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the previous findings, task decision autonomy has always been more significant in the
usr interaction. Additionally, this analysis shows that the time taken to conduct the
task has always been lower in Interaction II. This is probably related to the fact that
repetition of an error-free interaction can increase familiarity and acquaintance, as dis-
covered by [76]. Interestingly, in the case where std was the Interaction I, a significant
positive correlation between time and risk level is recorded. Therefore, users in usr
were driven to maintain a hazardous posture for an extended period. This might be re-
lated to the closer distance to the work table. Despite these additional insights, it is not
possible to understand how data for H2 was affected. Therefore, an additional analysis
of the parts’ positioning was performed. More precisely, the x and y displacement on
the worktable was monitored, and the Euclidean distance between the position in std
and usr was measured. The results are shown in Fig. 2.6. From the figure, it is possible
to understand that user selection plays an important role. Each user selecting the dis-
placement of a specific part chooses similar delta values for both parts. A correlation
analysis among the Euclidean distances of the two parts is conducted to check if there is
a correlation between the displacement of one part and the one of the second part by a
single user. The correlation returned a significant value (p < 0.05) c = 0.82. Therefore,
it is possible to understand that there is a specific co-assembly location selection de-
pending on the user’s background. During the test, users were requested with an open
question format why the parts were displaced with such positions. Often, the recurring
answers were, "I placed the part closer to the robot so I can be faster, although this
leads to a bad position for me," or "I placed the parts closer to me so I can handle them
better." Therefore, the user background could influence the robot’s vicinity. However,
further analysis on this topic needs to be done.

Limitations

This study analyzed the impact of user decisions in a human-robot collaborative task
on user physical ergonomics. For such analysis, the users were in charge of displac-
ing parts on the x-y plane according to their beliefs. However, during the study, some
limitations were encountered. More specifically, those were as follows. Initially, when
users were instructed on how to place the parts, no clear goal was given to them aside
from completing the task itself. Therefore, the users had to consciously know what
they should try to optimize. This led to high variability in parts’ displacement, and the
users randomly selected the parts’ position. This might have led to unwanted results.
The reported average RULA levels are also relatively high for normal standing opera-
tions. During the task, it was observed that the table on which users were working was
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Figure 2.6: Parts’ positioning on the work table with respect to the robot base. The plot displays the x-y displacement
of the two parts, one denoted with X and the other with O, for each user participating in the study. Additionally, the
Euclidean distance of the parts’ position from the initial placement in std is shown through a colored hue. Last, dotted
lines show how a single user selected the placement of the two parts in the conducted test. From this figure, it is
possible to understand that a correlation might be present between the delta values of the two parts given by the user
preference due to the similar hue colors between connected points.

low compared to typical working tables, and this led to elbow angles higher than 90
degrees, which in the RULA evaluation leads to high scores. Therefore, these limita-
tions should be addressed to better understand the impact of user decisions on physical
ergonomics and task performance. The following section presents another study where
these limitations were addressed.

2.4.2 Follow-up Study with Focus on the User Background

As highlighted in the previous study, no relation between task decision autonomy and
improvement in physical ergonomics was found. However, the study identified that
different groups of people are selecting positions with contrasting rationales. More
precisely, some people preferred to place parts close to the robot as long they wanted
to simplify the task for the machine. Others preferred to place the parts close to them
to improve their well-being. In other words, some participants tried to minimize their
effort by reducing travel distance, thus maximizing the robot’s travel path. In contrast,
others maximized their effort by incrementing the traveling distance, thus minimizing
the robot’s travel path despite the first group adhering to the findings of the litera-
ture, which states that humans try to minimize the traveling distance [77, 78]. The
other group decided on a contradictory option, considering their travel path. From the
previous study, additionally, it was observed that the people belonging to the group de-
ciding on the contradictory option appertained to individuals with robotics experience.
Thus, considering the scarce literature, a follow-up study is necessary to investigate
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RH
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Figure 2.7: Configuration of the simulation engine. The simulation uses Tecnomatix™ Process Simulate Human
Modeling and Simulation. To properly assess the collaboration, four levels of part displacement are defined (see
figure on the right). Each level has a different impact on the human and robot effort. To highlight the difference
between the four displacements, the configurations are named with the first letter stating to which actor they are
closest and the second letter for the height from the table. Those configurations are then Robot-Low (RL), Robot-High
(RH), Human-Low (HL), and Human-High (HH).

how robotics experts make spatial decisions. To better frame this study, one additional
hypothesis is formulated considering the recent literature on joint-task efficiency, which
states that when humans work together, they select options that minimize the effort of
both the human individuals, i.e., maximize joint task efficiency [79, 80]. More pre-
cisely, the hypothesis is:

• Hypothesis 3 (H3) Robotic experts, due to their better understanding of the robot’s
behavior, will select positions that optimize the robot task, potentially jeopardiz-
ing their physical ergonomics for optimizing joint task efficiency

Workplace Design

As previously highlighted, some limitations on the workplace design were present in
the previous study. Therefore, a better understanding of the workplace according to
the task description in Sec. 2.3 is necessary. To achieve this goal, an analysis in a simu-
lation engine is performed. Siemens Tecnomatix™ Process Simulate Human Modeling
and Simulation is used. Therefore, the robotic cell’s Computer Aided Design (CAD)

Table 2.3: Qualitative representation of the four selected configurations for understanding how robot and human effort
are allocated. The four configurations have been selected to have opposite efforts. The level of effort is displayed
using↗ (increasing) and↘ (decreasing) effort. Erg. Risk stands for the physical ergonomics risk in the configuration.

Conf.
Effort Human Robot

Path Erg. Risk Time Path Extension Time

RL ↗ ↗↗ ↗ ↘ ↘ ↘
RH ↗ ↗ ↗ ↘↘ ↘↘ ↘↘
HL ↘ ↘ ↘ ↗↗ ↗↗ ↗↗
HH ↘ ↘↘ ↘ ↗ ↗ ↗
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Figure 2.8: Experiment design schema. At first, the users were introduced to the task, and a video of the human-
robot collaborative manipulation was shown. This initial phase ended at t1, where informed consent and general
demographics regarding robotics background were collected. Then, five equal repetitions of the task unfolded. The
individual could choose a different configuration between t1 and t2 in each replica. However, once the best one was
identified, the individual had to repeat the same interaction until reaching the fifth one. Thus, users could test all the
levels first and then decide on the best one. At the end, t3, the users were asked which configurations they preferred
the most.

model is created respecting real-world dimensions. Afterward, two human models with
anthropomorphic data accommodating 95% of the German female and male popula-
tion were introduced to ensure that different individuals are considered as suggested
by [81, 82]. Finally, four parts configurations with different levels of robot and human
effort as shown from Tab. 2.3 were selected, and robotic programs were created. The
final configuration of the workplace with the four configurations is shown in Fig. 2.7.
With this simulation, it is identified that the previous study did not allow the individuals
to optimize their physical ergonomics as long the parts displaced on the table surface
were too low, thus leading to considerable elbow bending, which leads to high RULA
values. Therefore, in this second study, configurations Robot-High (RH) and Human-
High (HH) have been selected to have a z displacement from the table of around 0.30
m; in this way, the elbow angle is reduced, and the physical ergonomics is improved.
Additionally, configurations Human-Low (HL) and Robot-Low (RL) were added to ac-
count for the robot’s vicinity. By creating an experiment study with this configuration,
individuals participating could choose to optimize for the robot or themselves with
different magnitudes, thus allowing to gather data regarding H3.

Experiment design

Having four different configurations, this second experiment was designed to under-
stand the decisions of the individuals. The experiment schema is shown in Fig. 2.8.
At first, between time t0 and t1, the users were introduced to the experiment, and a
video of the interaction was shown. To mitigate their bias toward one configuration or
another, the users were given the goal of deciding on a configuration that was the most
efficient for the human-robot team; the implementation of the configurations is shown
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HLRL HHRH

Figure 2.9: Implementation of the four configurations in the robotic cell. A box with markers for fixed part positions
ensures that positions are constant between users. The box or boxes had to be moved to the respective position
marked on the table to allow the user to select between different configurations.
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Figure 2.10: Outcomes of the decisions in experts and novices. The decisions are reported by displaying the number
of users, divided upon expertise, that selected a specific configuration across the five trials.

in Fig. 2.9; therefore, leaving freedom to interpret the meaning of the word efficient.
Afterward, at time t1, informed consent and general demographics regarding robotics
usage were collected. Having this information, two groups could be identified: the
robotic experts and the novices. More precisely, considering the results of the previous
study, robotic experts and novices were divided against a hard constraint: if they ever
programmed one robotic manipulator. Next, between t1 and t3, the users had to per-
form five repetitions of the task, and at the beginning of each repetition, between t1

and t2, they could select the preferred configuration. However, once they identified the
one satisfying the efficiency requirement, they had to repeat the interaction until they
reached the fifth repetition. Finally, at time t3, they were asked to select which config-
uration they preferred through a multiple choice questionnaire. During the experiment
configurations, physical ergonomics, decision time, robot path, and human distances
to the robot were collected.

Results

In the user study, 16 users were invited, but four did not perform the test correctly;
therefore, the sample was shrunk to 12. The analysis in this section thus concerns a
user group of 12 male individuals age M = 26.08 yrs, SD = 2.24, height M = 183.00
cm, SD = 6.55. Half of them had medium to high experience with robotics; the other
half had none.



2.4 Effects of User-Defined Co-Assembly Locations on the Well-being and the Task 31

The first outcome of the experiment regarded how the decision varied across repe-
titions. This is shown in Fig. 2.10. As the figure shows, the number of users selecting
a specific configuration changed across the five trials. Interestingly, most users decided
on configurations favoring good physical ergonomics (configurations HH or HL) in the
first repetition. However, across the succeeding trials, this distribution changed. At
the last trial, half of the user group decided on non-optimal configurations consider-
ing their physical ergonomics (configurations RH or RL). Therefore, starting from the
initial distribution primarily skewed to the configurations close to the human (RL: 0,
RH: 1, HL: 5, HH: 6) the users concluded with a more even distribution of selections
(RL: 1, RH: 3, HL: 2, HH: 6). Yet, despite the redistribution, half of the user population
preferred level HH, the best in terms of physical ergonomics. A correlation analysis
with the Pearson coefficient between the different factors collected during the experi-
ment is conducted to better understand these changes. Results for the metrics at the
first trial are shown in Tab. 2.4. At the same time, results for the last trial are shown
in Tab. 2.5. From the analysis, it is possible to understand that the robot experience
influences just the first trial, meaning that the robot experts preferred HH and novices
preferred more HL considering the variations in decisions in Fig. 2.10. However, this
correlation disappears at the last trial.

Aside from the selected configuration, the physical ergonomics was monitored using
the tool described in Sec. 2.3. The RULA risk level across the different configurations
in all trials is checked to verify the correctness of the user study and the physical er-
gonomics level. The results are shown in Fig. 2.11. From the results, it is possible to
see that the trend in the RULA respects what the simulator calculated. Therefore, if
configurations are seen, the lower RULA levels are more frequent in HL and HH. Thus

M SD Exp. Time Config.

Exp. 0.34 0.38 -
Time 22 10.52 -0.57 -

Config. 0.80 0.22 0.64* -0.73** -

Table 2.4: Correlation analysis of the metrics related to
the user group at the first trial. Exp. stands for robotic ex-
pertise and Config. stands for configuration. M of robotic
expertise and configuration are adimensional and normal-
ized between 0 and 1, whereas M of Time is expressed
in seconds. The higher the configuration, the better the
physical ergonomics. The statistical significance of the re-
sults is displayed with asterisks. In the case of the first trial,
correlations are identified between configuration time and
robotic expertise.

M SD Exp. Time Config.

Exp. 0.34 0.38 -
Time 8.51 2.20 0.02 -

Config. 0.69 0.36 0.03 0.45 -

Table 2.5: Correlation analysis of the metrics related to
the user group at the last trial. Exp. stands for robotic
expertise and Config. stands for configuration. M of
robotic expertise and configuration are adimensional and
normalized between 0 and 1, whereas M of Time is ex-
pressed in seconds. The higher the configuration, the
better the physical ergonomics. The statistical signifi-
cance of the results is displayed with asterisks. In the
case of the last trial, the meaningful correlations disap-
pear.
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Figure 2.11: Results of the average RULA risk level across the four configurations. Results are displayed with
normalized frequency of risk level. For clarity, the Kernel Density Estimation (KDE), in red, is displayed to give a better
insight into the differences across the configurations. As the graph shows, the resulting risk levels reflect the results
obtained in the simulator. The higher the RULA risk level, the worse.

providing insight into the experiment’s being well designed. Additionally, to better a
correlation analysis with the Pearson coefficient was performed as shown in Tab. 2.6.
This analysis also yields the same result that the experiment was well designed as long
as a strong correlation between the RULA and the configuration is found.

Thus, knowing that the design was well implemented due to the previous finding,
the analysis of the results can continue. Regarding the physical ergonomics, the av-
erage RULA levels across the five trials were monitored as shown in Fig. 2.12. Upon
analyzing the data, it becomes apparent that experts began with a lower average Rapid
Upper Limb Assessment (RULA) score. However, experts were found to increase their
susceptibility to physical ergonomic hazards throughout the trials. Conversely, novice
operators of robotic systems initially exhibited a higher RULA score but exposed them-
selves more to physical ergonomic hazards.

Conversely, the novice robotic operators displayed a high RULA level during the first
trials. However, their trend decreased over time, culminating in a significantly lower
RULA level than the experts. More precisely, during the first trial, the measured RULA
was M = 4.08, SD = 0.45, and M = 4.18, SD = 0.35 for experts and novices, respec-
tively. However, during the last trial, the measured RULA was M = 4.13, SD = 0.35,
and M = 4.03, SD = 0.49 for experts and novices, respectively. When comparing the
RULA score of the last trial between experts and novices, the t-test shows a statistical
difference. Moreover, when comparing novices’ first and last trials, the t-test also shows
statistical differences. However, this did not hold for experts.

The distance between the robot workplace and the operator’s trunk was measured
as mentioned. The results of these measurements across the experiments are shown
in Fig. 2.13. From these results, it seems that experts tended to be closer to the robot
when compared to novices. Additionally, experts tended to move closer to the robot
across the trials, whereas novices kept a constant distance. More precisely, during
the first trial, the measured distance was M = 1.59 m, SD = 0.80 and M = 2.42 m,
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Figure 2.12: Measured RULA lev-
els across the five experiments.
Robotic experts show a trend of
increased RULA levels, thus in-
creasing exposure to ergonomic
hazards. On the contrary, the
novices tended to decrease their
RULA level.
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Figure 2.13: Measured distance
between the operator trunk and
the robot base. Experts posi-
tioned closer to the robot and
moved even closer over time,
while novices tended to move far-
ther away. Distances were mea-
sured in meters from the camera.
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Figure 2.14: Measured robot
travel path across the five rep-
etitions. During the repeti-
tions, robotic experts and novices
tended to reduce the robot travel
path. However, initially, experts
tended to select a shorter robot
travel path.

Table 2.6: Correlation analysis of the metrics across the five trials calculated with the Pearson correlation coefficient.
Significant correlations are marked with asterisks. M of Robot. exp and configuration are adimensional and normalized
between 0 and 1; time is expressed in seconds, and height is in centimeters. Strong correlations are found between
the RULA level and the selected configuration.

M SD RULA Height Time Configuration Robot exp.

RULA 4.15 0.39 -
Height 183.00 6.55 -0.33* -
Time 13.15 7.17 0.14 -0.2 -

Configuration 0.59 0.37 -0.5*** 0.19 0.02 -
Robot exp. 0.34 0.38 -0.04 0.2 -0.3* 0.1 -

SD = 1.36 for experts and novices, respectively. However, during the last trial, the
measured distance was M = 1.32 m, SD = 0.40 and M = 2.54 m, SD = 1.36 for
experts and novices, respectively. When comparing the average distance to the robot in
experts and novices in the last trial, the t-test shows significance. Moreover, the t-test
performed between the first and last trials in experts showed significance. Considering
these results, it is possible to deduce that experts effectively reduced their distance to
the manipulator across the trials, whereas novices did not.

The third set of measurements regarded the resulting robot travel path given by the
different selected configurations. The resulting travel paths divided upon expertise are
shown in Fig. 2.14. In contrast to the observed trends in physical ergonomics and dis-
tances, the travel paths taken by experts and novices exhibited similar trends. Specifi-
cally, both groups displayed reduced robot travel paths across the repetitions. However,
it is noteworthy that experts initially opted for a shorter travel path when compared to
novices. More precisely, during the first trial, the measured travel path was M = 3.56
m, SD = 0.37 and M = 3.82 m, SD = 0.59 for experts and novices, respectively. How-
ever, during the last trial, the measured path was M = 3.47 m, SD = 0.33 and M = 3.44
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m, SD = 0.31 for experts and novices, respectively. The t-test performed on the last
trial between experts and novices did not report statistical differences. Therefore, it is
possible to conclude that experts and novices selected similar robot travel paths.

The fourth set of measurements concerned the decision time required by partici-
pants to select a configuration before commencing the collaborative task or referring
to Fig. 2.8 the time between t2 and t1. The outcomes are shown in Fig. 2.15. In a
manner analogous to the observed trend in robot travel paths, both groups tended to
decrease the time required for configuration selection. Nevertheless, the expert group
displayed a faster initial decision-making speed, as shown by the significant correlation
in Tab. 2.6. In detail, the measured decision time was M = 16.30 s, SD = 3.55 and
M = 27.70 s, SD = 12.40 for experts and novices, respectively, at the first trial. How-
ever, in the last trial, the time decreased to M = 8.57 s, SD = 2.33 and M = 8.47 s,
SD = 2.28 for experts and novices, respectively. The t-test confirmed that both groups
had a significant difference in time between the last trial and the first one. However, no
statistical difference was found between novices and experts in the last trial. Therefore,
it is possible to conclude that experts and novices showed a similar decision time after
the five repetitions. Across the repetitions, they reduced the time necessary for making
a decision.

The last analysis concerned the execution time needed for the task, or referring to
Fig. 2.8 the time between t3 and t2. The outcomes are shown in Fig. 2.16. The trend in
this last set of measurements is similar to the one in the decision time, where experts
and novices tended to reduce the time with repetitions. More precisely, the experts’
execution time during the first trial was M = 58.92 s, SD = 9.50, whereas in the last
trial, it was M = 44.72 s, SD = 3.83. In novices, the execution time was M = 76.03 s,
SD = 15.86 and M = 52.32 s, SD = 17.12 for the first and last trials. A t-test confirmed
that both groups significantly reduced the execution time between the first and the last
trial. Additionally, the t-test confirmed no statistical difference between experts and
novices at the last trial despite statistical differences in the first trial. Therefore, it is
possible to conclude that experts and novices reduced the execution time across the
trials at the end, reaching the same average execution time.

Discussions

This follow-up study investigated the relationship between task autonomy, physical er-
gonomics, and operator background after the results obtained in the first study. To de-
sign this study, the limitations identified in the previous one were addressed with three
main differences. Firstly, the experiment required operators to choose between con-



2.4 Effects of User-Defined Co-Assembly Locations on the Well-being and the Task 35

1 2 3 4 5
Trial [number]

10

15

20

25

30

35

40

D
ec

is
io

n 
tim

e 
[s

]

Figure 2.15: Variations of deci-
sion time (t2 − t1) for the differ-
ent trials. At the end of the ex-
periments, both groups opted for
shorter decision times. However,
at first, experts were faster in the
process.
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Figure 2.16: Execution time
variations (t3 − t2) for the differ-
ent trials. Experts show a con-
stant execution time. However,
novices did not. Interestingly,
novices at the last trial slightly in-
creased the execution time.

Table 2.7: Qualitative summary of the experiments’ results for experts with differences between the first and last trials.
The level of effort is displayed using ↗ (increasing) and ↘ (decreasing) effort. If the level of effort between trials
maintains the same arrow, it is kept constant. Erg. Risk stands for the physical ergonomics risk in the configuration,
conf. for the most preferred configuration, Exec. time for the execution time, dec. time for decision time, and H-R
stands for human to robot.

Trial
Effort Expert

Conf. Erg. risk Exec. time Dec. time H-R distance Robot path

1st Trial HH ↘ ↗ ↗ ↘ ↘
5th trial n.a ↗ ↘ ↘ ↘ ↘↘

Table 2.8: Qualitative summary of the experiments’ results for novices with differences between the first and last trials.
The level of effort is displayed using ↗ (increasing) and ↘ (decreasing) effort. If the level of effort between trials
maintains the same arrow, it is kept constant. Erg. Risk stands for the physical ergonomics risk in the configuration,
conf. for the most preferred configuration, Exec. time for the execution time, dec. time for decision time, and H-R
stands for human to robot.

Trial
Effort Novice

Conf. Erg. risk Exec. time Dec. time H-R distance Robot path

1st Trial HL ↗ ↗ ↗ ↗ ↗
5th trial n.a ↘ ↘ ↘ ↗ ↘

straining options, prioritizing either the robot or the operator’s well-being. Secondly,
the user group was divided into robotic experts and novices. Finally, the operators were
exposed repetitively to the collaboration to account for different exposure rates. Dur-
ing the experiment, the type of configuration selected by the operator, decision time,
execution time, average distance between the robot workplace and operator, and robot
travel path were measured. Through these measurements, a better understanding of
the complex decision-making process of operators was thus possible. For clarity, all the
results divided upon robotics expertise are summarized in Tab. 2.7 and Tab. 2.8.

This second study identified that expertise and task knowledge significantly im-
pact the ability to choose the best ergonomics. Experts identified the best ergonomic
configuration at the first encounter of the task. However, over time, they tended to
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incorporate the robot partner in optimizing the task, resulting in a slight tendency to
deteriorate their physical ergonomics. On the other hand, novices developed a better
task model over time and improved their physical ergonomics. Therefore, the develop-
ment of task knowledge should be encouraged as it allows operators to optimize their
interaction with the robot.

The distance between the operator and the robot was also affected by expertise
and experience with the task. Novices kept a higher distance overall than experts, but
over time, experts reduced their distance from the robot, potentially indicating that
their risk perception was reduced by experience. This allowed experts to incorporate
the robot into their action space, facilitating the development of a better model of the
robot’s behavior. It is still being determined whether, with more repetitions, novices
would also show a similar effect.

Finally, experts and novices learned to reduce the robot’s travel path, decision time,
and execution time over repetitions. This indicates that experience with the specific
task is needed to develop a more optimal task model. In summary, these findings
suggest that experience and exposure are critical factors for operators to develop a
model of the joint task and the robot behavior. Allowing operators to develop a task
interaction history with the robot partner would allow them to optimize both individual
and joint task design.

Considering these results, it is possible to conclude that the initial hypothesis H3 is
confirmed, suggesting that robot experts may optimize joint task efficiency better than
novices as long they tend to reduce both the robot travel path and their distance to
the robot system. Furthermore, considering recent literature [83], it is possible that,
with longer habituation, robotic novices may understand how to optimize for robot
travel path as their perception of the safety of the robot’s behavior increases. However,
further research is needed to better understand why robotic experts did not improve
their physical ergonomics with exposure to the task, while novices did.

2.5 Conclusions

Summary

Through this chapter, this work wanted to discover the user impacts of intuitive pro-
gramming interfaces. More specifically, this section tackled Challenge 3.2 (intuitive
programming interfaces that do not require robotics expertise) by proposing a novel
intuitive programming method based on co-assembly locations and studying its influ-
ences on the users.
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To study such influence, the chapter presents two studies to analyze the impact of
allowing operators to define co-assembly locations in physical human-robot collabora-
tion scenarios. Initially, the chapter started with a literature overview concerning the
benefits of allowing operators to configure tasks, discovering that physical ergonomics
could be improved if users have task configurability. Next, the chapter presented how
such interaction could be integrated using CV techniques to allow the definition of
co-assembly locations and measure the level of physical ergonomics. Last, the chapter
presented the two studies that tried to identify the decisions’ impact on the task and the
operators’ well-being considering the physical ergonomics and other task parameters
like execution time or travel paths.

From the studies, it was possible to measure that allowing operators to decide on
the co-assembly locations can benefit the task decision autonomy as long the measured
autonomy score with WDQ was on average 86.25% while the score for pre-defined lo-
cations was on average 68.75%. Additionally, it was discovered that operators selected
co-assembly locations in different ways upon previous exposure to robotic program-
ming. More precisely, robotic experts decided on locations that better optimized the
efficiency of the joint task between robot and human by reducing the robot’s travel path
while jeopardizing the operator’s physical ergonomics as long the average physical er-
gonomics in the last trial measured with RULA was 4.13, the average distance human
to the robot was 1.32 m, and the average robot travel path was 3.47 m. In contrast,
novices selected displacements that mainly benefited the task efficiency of the single
individual by improving the operator’s physical ergonomics as long the average phys-
ical ergonomics in the last trial measured with RULA was 4.03, the average distance
from human to robot was 2.54 m, and the average robot travel path was 3.44 m.

Discussions and future work

Considering these findings, it is possible to underline that allowing operators to select
co-assembly locations can also benefit task decision autonomy in industrial tasks and
thus be an excellent user-friendly programming method initially identified by [46] but
in non-industrial tasks. However, such a programming method can have extensive user
impacts. The studies identified that background robotic expertise plays a role in how
users define the co-assembly locations and how the human-robot interaction unfolds.
The study hinted that experts might treat the robot as a teammate while novices did
not, considering recent literature [79, 80]. Nevertheless, the intuitive programming
method allowed for high decision autonomy for different robotic expertise; therefore,
it can be an excellent tool to address the above-mentioned challenge and help SMEs
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program robots without needing robotics expertise. Therefore, practitioners who want
to integrate similar programming methods should ensure that previous robotics exper-
tise is adequately addressed by either constraining choices or providing guidance to
ensure that users do not select co-assembly locations that might lead to injuries or in-
efficiencies. Unfortunately, it is essential to underline that the studies presented in this
chapter mainly targeted collaborative pick-and-place applications; therefore, the appli-
cability of these results to other, more complex tasks requires further investigations.
Future works should investigate if these results apply to other tasks.



Chapter 3

Influences of User-Defined Labeling Points Through

a Spatial Device on Robotic Grasp Points

Contents

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Usage of a Spatial Sensor for General Purpose Point Labeling . . . . . . . 43

3.3.2 Refinement of Labeling Candidates . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Grasp labeling in Conventional Bin-picking Systems . . . . . . . . . . . . . 50

3.4 Definition of User-Defined Grasp Points . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Exploring User-Defined Grasp Points: Benefits and Performances . . . . . . . 58

3.5.1 Virtual Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Physical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

When robots are dealing with tasks, they often fall within two scenarios. Either
the robot moves in the space to reach a target location or directly interacts with the
environment to perform some action through its EE. The previous chapter presented
studies on the influences given by defining end-locations from the operators. This chap-
ter studies how operators can define approaches of the robot EE with target objects.
The contents of this chapter are partly based on the following publications:

• Reisch, R. T., Pantano, M., Janisch, L., Knoll, A., Lee, D., "Spatial Annotation of
Time Series for Data Driven Quality Assurance in Additive Manufacturing," 2022,
17th CIRP Conference on Intelligent Computation in Manufacturing Engineering
(ICME).
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• Caporali, A., Pantano, M., Janisch, L., Regulin, D., Palli, G., and Lee, D., "A Weakly
Supervised Semi-automatic Image Labeling Approach for Deformable Linear Ob-
jects," 2023, IEEE Robotics and Automation Letters (RA-L), Volume 8.

• Pantano, M., Klass V., Yang Q., Sathuluri A., Regulin D., Janisch L., Zimmermann
M., and Lee, D., "Simplifying Robot Grasping in Manufacturing with a Teaching
Approach based on a Novel User Grasp Metric," 2023, 5th International Confer-
ence on Industry 4.0 and Smart Manufacturing (ISM).

The contents of this chapter are structured as follows. Initially, the motivation for
this work is outlined. Second, an overview of the state of the art concerning robotic
approaches with target objects is given, and a need for simpler interfaces to define
grasping locations is discovered. Next, considering the discovered need, three prelim-
inary studies to understand how interactions of the EE with the environment can be
defined with spatial interactions are presented. Fourth, a novel method for defining the
grasp position using a novel spatial interaction is described. Finally, the results of user
experiments underlying the effectiveness of the proposed method are outlined together
with remarks on its applicability in industrial use cases.

3.1 Motivation

Robots can be used at their best when they can perform direct interactions with the
environment, meaning that the EE is used to perform operations on objects. This trans-
lates mainly into object grasping and un-grasping. However, these actions are not
trivial and can hardly be solved without using external information [38]. Therefore,
several research works have proposed methods to fuse sensor data with objects’ proper-
ties to extract robust locations for grasping. The most exciting results in this topic have
been presented at the Amazon Picking Challenge as extensively summarized in [84]. In
this contest, robotic systems had to detect unknown objects and select the best grasping
position to ensure a robust pick-up. The most successful teams proved that combining
cameras, hybrid EE, and Convolutional Neural Networks (CNN) makes solving the task
for several objects possible. Unfortunately, the proposed systems were optimized to
ensure the best grasp success rate but not to satisfy task needs (e.g., grasp in a defined
location) [38, 85]. Therefore, there is a need to research how task-specific knowledge
can be integrated into those systems. More precisely, as long as operators know any
task requirements, the question remains on defining constraints for the robot to pick
parts.
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3.2 Related Works

Analytical Robotic Grasping

In the initial stages of robotics, grasp poses computations primarily relied on analytical
solutions. This approach involved considering mathematical models of the object’s dy-
namics and kinematics, focusing on estimating grasp poses by considering the object’s
equilibrium and stability, as discussed in [38]. While a comprehensive domain analy-
sis is deemed unnecessary here, it is pertinent to note that analytical methods exhibit
high complexity, a limited solution space, and often exclusively address grasp stability,
neglecting location considerations and practical boundaries [38, 86]. However, the
landscape has witnessed a paradigm shift over the past decade with the emergence
of Deep Learning (DL). Data-driven approaches facilitated by DL have demonstrated
outcomes surpassing those achieved by analytical methods.

Data-driven Robotic Grasping

Data-driven, or learning, approaches exploit data from visual sensors mounted on the
robot cell. Such data is then used to identify relevant regions on the target object to
estimate grasp poses, hence not involving an explicit mathematical model that defines
stability and equilibrium during inference. However, to identify the relevant grasp re-
gions, labeled data for training is necessary. However, two approaches are used in
learning-based methods. On the one hand, model-based approaches have a priori ob-
ject knowledge (e.g., 3D model) during training like in [87, 88]. On the other hand,
model-free methods have no prior object information like in [89, 90]. An in-depth
review of these two methods can be found in this section in [38, 84, 91]; therefore,
analysis of their performances will be redundant. Nonetheless, citing prominent tech-
nologies and approaches in model-based and free methods is required to understand
their capabilities and inefficiencies. In model-based approaches, object information
is used to generate training data, which can then be fed to a CNN to compute grasp
reliability. A noteworthy example in this class is Dex-Net [88]. This algorithm sam-
ples possible grasp candidates on image data provided by depth cameras and then
assesses their performances, i.e., quality, via a Grasp Quality Convolution Neural Net-
work (GQ-CNN). Employing this approach, the latest version of this algorithm, Dex-
Net 4.0, achieves a grasp success rate up to 95% with unknown objects [92]; thus,
it is assessed as state-of-the-art model-based DL grasp computation network [38]. In
model-free methods, training is driven by a lack of object knowledge due to application
requirements; thus, grasp sampling is often skipped, as shown in [93, 94]. Therefore,
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model-free approaches build on Fully Convolution Networks (FCN) rather than CNNs.
A prominent example in this class is GG-CNN [89], which, despite the name, uses
fully convolution networks to generate pixel-wise grasp poses. Therefore, GQ-CNN
achieves faster grasp computation due to fewer network parameters when compared
with model-based approaches and shows an 83% grasp success rate [89]. Despite the
remarkable results achieved with these two methods, they still need solutions to se-
lect grasp poses that consider task constraints and not only object properties. In other
words, the presented methods base the grasp quality computation only on the robotic
EE and the target object, neglecting any other constraint that might appear after the
grasp is executed. For example, if a hammer needs to be grasped and handed to a
human, the network will compute the best grasp pose, generalizing on previous data;
therefore, the solution of taking the hammer on the head might be disregarded. Thus,
the hammer will be handed to the human with the head facing the human, which may
cause higher hazards than handing the hammer with the handle facing the human. Ad-
ditionally, when the robot has to take the hammer through the handle, it might fall off
from the EE, as its center of mass needs to be accounted for correctly. An example of
this problem can be seen in [85]. This problem has also been highlighted in one of the
challenges for industrial applications of data-driven grasping by [38]. To the best of
the author’s knowledge, the only works that try to bridge this gap are proposed in [95,
96]. Nonetheless, these approaches require embedding a knowledge representation
for the object, which becomes too cumbersome if the products to be picked change
often. Therefore, a gap is still present in the solution to this problem. More precisely,
no research has proposed how knowledge of the operator can be leveraged directly at
the robotic cell to solve this issue. There is a need for more investigation on this topic.

Influencing Grasp Poses via Labeling

Labeling must be performed to influence the selection of grasping poses. Marking
candidate grasps is often known to happen when creating datasets for training data-
driven robotic grasping algorithms, and robotic experts have mainly performed this
task. Therefore, visual data is obtained from a photo-realistic simulation or real-world
data. Then, annotations in the form of pixel-wise information or oriented bounding
boxes are inserted via point-clicks. Examples of datasets created with these processes
are the Cornell Grasp Dataset [97] or the Dex-Net one [88]. However, this method
might not be optimal if an operator would have to do it as it bears the disadvantages
of any other point-click labeling approach [98]. Additionally, the operator might need
more robotic experience to define a robust grasping position. Therefore, the research
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community has proposed novel methods for simplifying the labeling. One example has
been presented in [96] where the authors propose using LfD to generate objects’ task
constraints. However, no demonstration was given on its effectiveness with different
users. Another method has been proposed in [99], where they try to infer the correct
grasping pose by physically simulating the handled object instead of using operator
demonstrations. However, the improvement in the success rate was minimal. In [100],
the authors propose using a digital pen to mark the EE pose in relation to the target
object via technical drawings. However, their approach was limited to welding applica-
tions. Therefore, to the author’s knowledge, the only work that tried to integrate grasp
labeling via natural interactions and considered the impact on test subjects has been
proposed in [101]. In this work, the authors suggest that operators can gather infor-
mation about grasp labeling if they point directly at the object that has to be taken. Un-
fortunately, their approach is limited to the target object rather than the exact grasping
location. Therefore, there is a need to investigate how to integrate grasp pose labeling
while considering both operator inaccuracies and natural interaction methodologies.

3.3 Preliminaries

As seen from the state-of-the-art, no tangible work suggest integrating grasp pose la-
beling while considering operator inaccuracies and natural interaction methodologies.
However, a promising approach for gathering labeling information can be through spa-
tial sensors, as suggested by [102]. To investigate the potential of using a spatial sensor,
two preliminary studies have been performed in advance to assess the capabilities of
such sensors. The Tracepen™ spatial sensor was used for these studies. The Tracepen™

is a spatial pen-shaped sensor based on the principle of reflective photodiode receivers.
Thus, the travel time from the signal emission to its reception is measured to calcu-
late the sensor position. However, the sensor can bear some inaccuracies. Therefore,
this section describes the recorded outcomes when giving the sensor to an operator
for labeling time series and image data. Additionally, to better understand how the
spatial sensor can be used for industrial grasp labeling, a preliminary study comparing
different industrial bin-picking systems is also reported in this section.

3.3.1 Usage of a Spatial Sensor for General Purpose Point Labeling

A first use case concerning anomaly detection has been used to investigate the possibil-
ity of labeling features via a spatial sensor. Parts produced by the additive manufactur-
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ing process WAAM can present defects given by printing parameters or environmental
factors. Anomaly detection algorithms can reduce the number of such defects, as il-
lustrated in [103]. However, such algorithms require labeled anomaly data. In this
preliminary study, using a spatial sensor, as shown in Fig. 3.1 was envisioned to gen-
erate such data. The choice of using a spatial sensor was driven by the need to reduce
the time to label anomaly data, which nowadays is very time-consuming as long the
data to be labeled is a time series.

Method

To ensure that the spatial sensor can produce labeled information that can be correlated
to the part. Transformations of labeled points in the part coordinate system are neces-
sary as spatial sensors have their reference frame. This problem is shown in Fig. 3.2.
Therefore, the transformation problem can be reformulated using the figure nomencla-
ture. First, the transformation between the reference frame of the spatial sensor and
the origin of the part t Tp had to be computed. For this calculation, a method similar
to [104] was employed. Therefore, the spatial sensor was used to sample three points
on the part coordinate frame: the origin P1, one on the x-axis P2, and one on the x-y
plane P3. Then, Eq. 3.1 was solved.

t Tp =
pPi

t P−1
i ,∀i(i = 1, 2,3) (3.1)

In this equation, pPi denotes points in the part coordinate system, while t Pi repre-
sents points in the spatial sensor coordinate system. Subsequently, with the obtained
t Tp, the positions of anomalies can be calculated using Eq. 3.2.

Ap
i =

t Tp
tA−1

i ,∀i(i = 1,2, 3) (3.2)

In this formula, Ap
i represents the anomalies in the part coordinate system, and tAi

represents the anomalies in the spatial sensor coordinate system. Subsequently, these
identified anomalies, recorded as points in the part coordinate system, are utilized for
marking specific regions in the time series data of the part through a proximity search.

Performances and User Effects

Two tests were performed to investigate some of the first-level effects of using a spatial
sensor. The first experiment evaluates the accuracy of the spatial sensor, and the second
one evaluates the accuracy of labeled points with the device. For the first evaluation,
a test bench with mechanical mechanisms to induce controlled translations was used
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Figure 3.1: Example of part labeling using the
Tracepen™ spatial sensor. The human operator stands
in front of the part and marks anomalies. Any marked
anomaly point is then displayed back to the user with a
display.
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Figure 3.2: Transformations involved in labeling anoma-
lies. t Tp represents the transformation from the sensor
coordinate system to the part one calculated with Pi .

tAi
are the anomalies in the sensor coordinate system, and
pAi are the anomalies in the part system.

as long as relative movements from the part origin have been used in the described
method. Therefore, small translations were applied, and sample points were collected
before and after the transformation to calculate the delta change with Eq. 3.3.

δ = Ps
i − P e

i ,∀i(i = 1,2, 3) (3.3)

Where Ps
i denotes the measured position by the spatial sensor before the transfor-

mation, and P e
i denotes the measured position by the spatial sensor after the transfor-

mation. This test was repeated three times for each main axis, and the results were as
follows. For the x-translation δ = 0± 1mm. For the y-translation δ = 0± 1mm. For the
z-translation δ = 0± 1mm.

For the second test evaluation, an exploratory user study was conducted. In the user
study, users had to label points with two methods. On the one hand, with the method
proposed here. On the other hand, with a 3D computed tomography scan. In this
test, the users had 10 min for labeling as many anomalies as possible, and at the end,
labeling performances in terms of recall (t pr), precision (ppv) and balanced accuracy
(acc) were calculated. For this study, two users with age M = 28.70 yrs, SD = 2.23 were
invited to perform the labeling, and the results yielded as follows. For the method with
the spatial sensor, t pr = 30.5± 27.6%, ppv = 11.5± 4.9%, and acc = 60.0± 11.3%. For
the method with the computed tomography scan, t pr = 42.0±1.4%, ppv = 43.5±0.7%,
and acc = 68.5± 2.1%.

Thus, it is possible to extract two outcomes from the testing. First, the spatial sensor
is unreliable for precise measurements as long it has accuracy in relative movements
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of ±1mm. Additionally, by allowing an operator to use the spatial sensor for marking
features, the quality of the labeling points can be highly dependent on the user, as
shown by the recorded high standard deviation values. Therefore, from this study, the
following primary outcome is drawn. If this spatial sensor should be used for labeling,
additional algorithms should be integrated to increase the precision of the marked
features to ensure stable outcomes despite users’ variances.

3.3.2 Refinement of Labeling Candidates

As seen from the previous section, accessory algorithms must be integrated to improve
user accuracy if the spatial sensor is used for point labeling. A use case with small
components has been selected to investigate a novel method for integrating labeling
fine-tuning algorithms. More precisely, a use case concerning deformable linear ob-
jects (DLOs). DLOs are objects with an elongated cylindrical form that lack relevant
features; electrical wires are the most prominent examples of DLOs. DLOs are present
in several manufacturing domains, and robust DLO detection via CV can enable their
manipulation with robotic solutions. One common approach for DLOs detection is via
data-driven methods. However, their performances are heavily affected by the size and
quality of the datasets. To solve this issue, datasets with a mix of real-world and syn-
thetic data can be used. However, there is a need to investigate how real-world data
can be efficiently generated and mixed with synthetic one without burdening the oper-
ator [105]. Therefore, this section proposes a novel approach for generating real-world
data for DLOs with operators’ error correction methods, and its effect on the operator
is analyzed.

Background on Image Labeling

Several methodologies for labeling real-world data are available to reduce the opera-
tor’s burden. The most prominent methods are weakly supervised labeling approaches.
With these techniques, the person in charge of labeling provides a few pixel-wise
points marking some features, and the underlying algorithms predict pixel-wise masks
that mark the whole feature. A state-of-the-art example of this approach is proposed
in [106]. However, despite the low effort in labeling one image, these systems can
only quickly scale to multiple images if they require the user’s input for each image.
Therefore, to the author’s knowledge, the only method to create large datasets with a
low number of clicks is Chroma Key (CK). However, CK is limited to single-color back-
grounds; therefore, it can be challenging to adopt in real-life scenarios (e.g., control
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cabinets).

Method

An approach based on the Tracepen™ spatial sensor is proposed to address the above-
mentioned issues. This method aims to create several annotated images that a data-
driven algorithm can use to learn DLO features. Therefore, the spatial sensor’s labeling
points in 3D coordinates must be transformed into pixel coordinates for the images.
Therefore, coordinate transformations must be considered. The problem is shown in
Fig. 3.4. Hence, the problem can be expressed as follows using the figure nomencla-
ture. First, the transformation between the sensor coordinate system and the robot
coordinate system (t Tr) is calculated by mounting the sensor on the robot flange and
sampling three points which are then used to solve Eq. 3.4.

t Tr = (P
r
i +M) (P t

i )
−1, ∀i (i = 1,2, 3) (3.4)

In this equation, P r
i represents the sampled point coordinates in the robot coor-

dinate frame, M is the fixed transformation between the robot flange and the sensor
mounting point, and P t

i denotes the sampled point coordinates in the sensor coordinate
system. Subsequently, by utilizing t Tr , the sampled points can be projected onto pixel
coordinates using Eq. 3.5.

Figure 3.3: Example of DLO labeling using the
Tracepen™. The user can mark points via the device
and immediately receive feedback on the point location
via the display, showing a live feed of the DLO from the
robot’s perspective.

DLO
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𝑷𝒊𝒄

Figure 3.4: Illustration of the different coordinate frames
involved in labeling a DLO with the spatial sensor. A
point marked by the spatial sensor(P t

i ) must be trans-
formed to a point in the image coordinate frame (P c

i )
through r Tc and t Tr .
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t Tr P t
i , ∀i ( i ∈ C) (3.5)

Where u, v are pixel coordinates of a point i which belongs to a DLO C with u =
u′/w′ and v = v′/w′, w′ is the camera scaling factor, K is the intrinsic camera matrix,
r Tc is the camera extrinsic matrix calculated as in [71] and P t

i is the sampled point
via the spatial sensor belonging to the cable C . Next, an error correction method for
the user input was integrated with the point in the pixel coordinates. Considering that
the points are in the pixel coordinates, a method based on CNN error computation is
employed. The approach consists of having the network calculate a pixel error between
the input point u, v and the center of the DLO by evaluating an image crop of 96× 96

pixels around the input point u, v. Therefore, a ResNet-18 feature extractor [107] is
used along two Fully Connected linear layers FC512,256 and FC256,96. In this way, the
network outputs an array of dimension 96 representing the probability of an image
column containing the DLO center. In this way, the offset between the input u, v and
the column with the highest probability is obtained with Eq. 3.6.

ϵ = v − vmax (3.6)

Where v is the column index for the labeled point and vmax is the column index
with the highest probability for the DLO center computed by the network. An example
of how this pipeline works is shown in Fig. 3.5. A synthetic dataset generated with a
photo-realistic simulator in Blender [108] is employed to train the network mentioned
above. Thus, 40000 randomly extracted crops with simulated user error from 0 to 8
pixels were used, and the network was trained with Adam optimizer for 50 epochs with
a batch size of 128 and learning rate of 5× 10−5.

Performances and User Effects

To evaluate and determine if fine-tuning user input via a CNN can be beneficial, a user
test is envisioned to compare the proposed labeling approach (from now on denoted
with DLO-WSL) with state-of-the-art ones. The user test comprises three randomized
subsequent interactions with three different labeling tools. Therefore, DLO-WSL is com-
pared against CK to evaluate its scalability with big datasets. Additionally, the method
is compared against Reviving Iterative Training with Mask Guidance for Interactive
Segmentation (RITM) [106] for comparison against state-of-the-art weakly supervised
labeling known to reduce the number of clicks (NoC) for single image labeling tasks.
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In the test, the users had to label 10 images; after the interaction, the usability was
measured with the System Usability Scale (SUS) [109], and the workload with the
NASA-TLX [110] scale was measured. Additionally, the NoC and the Intersection over
Union (IoU) were recorded during the interaction. A total of 13 users not experienced
with labeling age M = 32.70 yrs, SD = 9.23, participated in the study. All of them per-
formed the task correctly, and no data sample was discarded. Concerning usability, the
recorded SUS scores were M = 60.38%, SD = 21.00, M = 69.61%, SD = 16.26, and M
= 82.30%, SD = 9.54 for CK, DLO-WSL and RITM respectively. Concerning workload,
the recorded NASA-TLX scores were M=30.51%, SD=15.08, M=29.74%, SD=12.96,
and M=22.31%, SD=13.12 for CK, DLO-WSL and RITM respectively. Concerning the
performance, IoU and IoU/NoC ratios calculated using the three methods are used.
A comparison with raw user input labels connected with a spline without CNN fine-
tuning is added and denoted with SPL. For the former, recorded performances were
M=91.68%, SD=6.56, M=91.32%, SD=1.52, M=81.05%, SD=6.22 and M=36.88%,
SD=12.45 for CK, RITM, DLO-WSL and SPL respectively. For the latter, recorded per-
formances were M=15.31%/clicks, SD=1.09, M=6.54%, SD=2.78, M=3.16%/clicks,
SD=2.05 and M=0.21%/clicks, SD=0.13 for CK, DLO-WSL, SPL and RITM respectively.
The results with statistical significance are shown in Fig. 3.6. Analyzing these results,
it is possible to understand three primary outcomes. First, the usability of DLO-WSL is
comparable with state-of-the-art tools. Second, DLO-WSL is an excellent tool to reduce
the NoC for labeling a dataset while maintaining a high average IoU score. Third, fine-
tuning with a CNN-based network can improve the quality of user labels. Therefore, it
is possible to conclude that labeling with the Tracepen™ spatial sensor enabled via an
NN-fine tuning algorithm is a valuable method that can provide good usability while
minimizing the necessary number of clicks.

Resnet
-18 FC FC

∀ point ∈ DLO

𝜀
256-96

(a) User labels points (b) Spline is created (d) Spline with refined points
512-256

(c) Fine-tuning of points
96x96

Figure 3.5: Example of the method for refining user inputs. At first, the user labels all the points regarding one DLO
instance (a); second, a spline is created to obtain a line describing the DLO (b). Third, the spline direction is used to
obtain a rotated crop around each label point with dimension 96× 96, and a CNN evaluates the image for computing
the offset ϵ (c). Finally, each fine-tuned point is used to obtain a refined spline, which, with the DLO diameter, gives a
DLO mask (d).
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Figure 3.6: Results of DLO-WSL evaluation with the user test. The statistical significance of the results is displayed
with asterisks. If no statistical significance is found, ns is displayed, or no statistical marking is shown. CK stands for
Chroma Key, RITM stands for Reviving Iterative Training with Mask Guidance for Interactive Segmentation [106], and
SPL stands for raw user input points without CNN correction. From the evaluation, it is possible to see how DLO-WSL
can reduce the NoC while maintaining a good IoU.

3.3.3 Grasp labeling in Conventional Bin-picking Systems

Knowing that labeling with the Tracepen™ spatial sensor can help improve usability
and reduce NoC, a last study is necessary to understand how grasp pose labeling is
performed in modern industrial applications. Therefore, this section provides the out-
comes of a preliminary study conducted to identify the pain points of these methods.
In industrial applications, grasp candidates are defined in bin-picking 3D vision sys-
tems, as shown from [84]. Therefore, this study focused on their evaluation focusing
on three market-ready systems.

Method

For evaluating the different bin-picking systems, considering the goal of identifying
pain points related to grasp pose labeling, a between-subject design evaluating time
and user experience was conceived. Therefore, three bin-picking systems were selected
on the market. Three main criteria were used to select such systems: first, the bin-
picking provider provided testing without system purchase; second, the underlying
vision sensors differed between the systems. Third, the bin-picking kit’s price range
differed from the already selected systems. Thus, RoboceptionTM rc_viscore (in short
Rc), PhotoneoTM Phoxi M (in short Pt), and Mech-MindTM Mech-Eye Pro S 1000M (in
short Mm) were used for the evaluation. More precisely, a user study was envisioned in
which users had to label one or more grasp points for a suction EE. The study involved
21 male subjects with age M = 27.3 yrs, SD = 3.40, and medium to high experience in
robotic grasping divided evenly across the different systems. Each of them performed
the task of grasp labeling with an eye-to-hand configuration, as shown in Fig. 3.7. At
the interaction’s end, usability, workload, and autonomy were measured with SUS,
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Figure 3.7: Example of set-up with conventional bin-picking systems. Cameras for the evaluation were mounted on
the top of the work cell. Afterward, a part was placed under the camera, and the users were instructed to label a grasp
point using the interface provided by the system. In this picture, the Mech-MindTM Mech-Eye Pro S 1000M and the
RoboceptionTM rc_viscore are shown on the top.

NASA-TLX, and WDQ. Additionally, the time for executing the task was monitored.

Results

All 21 users performed the task correctly; the results are shown in Fig. 3.8. The results
show that different outcomes have been recorded from the three systems. Concerning
usability, the SUS scores were M = 27.41%, SD = 10.84, M = 67.85%, SD = 11.76,
and M = 75.00%, SD = 8.16, for Mm, Pt and Rc respectively. Statistical difference is
found between Mech-MindTM and the other two systems. Concerning workload, the
TLX scores were M = 51.66%, SD = 11.78, M = 30.92%, SD = 12.46, and M =
30.71%, SD = 10.62, for Mm, Pt and Rc respectively. Statistical difference is found
only for RoboceptionTM and Mech-MindTM. Third, concerning autonomy the WDQ
scores were M = 55.10%, SD = 18.12, M = 60.81%, SD = 16.22, and M = 75.91%,
SD = 6.35, for Mm, Pt and Rc respectively. Statistical difference is found between
RoboceptionTM and Mech-MindTM. Finally, concerning the time taken the results were
M = 1335.28 s, SD = 286.70, M = 792.14 s, SD = 193.64, and M = 473.78, SD =
120.20, for Mm, Pt and Rc respectively. Statistical difference is found for all the pairs.
Out of this comparison, therefore, it is possible to understand that different bin-picking
systems with their interfaces might have different impacts on the users. A higher level
of usability and a lower workload can reduce the system programming time, as shown
from the results of Rc. Additionally, the results show that the Mm system is largely
underperforming in terms of usability compared to the other two. Moreover, Mm and
Rc seem to have comparable user acceptance, yet with Rc, users were able to complete
the task the fastest. Despite these results, which show the better performance of Rc in
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Figure 3.8: Results of the conventional bin-picking evaluation with the user test. The statistical significance of the
results is displayed with asterisks. If no statistical significance is found, ns is displayed, or no statistical marking is
shown. Mm stands for Mech-MindTM Mech-Eye Pro S 1000M, Pt stands for PhotoneoTM Phoxi M, and Rc stands
for RoboceptionTM rc_viscore. From the evaluation, it is possible to see how RoboceptionTM rc_viscore can often
outperform the other systems.

terms of usability. It is important to underline the replies to SUS questions four and
ten, which are: "I think that I would need the support of a technical person to be able
to use this system" and "I needed to learn many things before I could get going with this
system" reported ratings above two for all systems. More precisely, using the inverse
Likert rating, the recorded scores for question four are M = 4.28 pt, SD = 0.75, M
= 2.71 pt, SD = 1.38, and M = 2.57 pt, SD = 0.79, for Mm, Pt and Rc respectively.
Whereas for question ten are M = 4.14 pt, SD = 0.69, M = 2.71 pt, SD = 1.25, and
M = 2.28 pt, SD = 0.95, for Mm, Pt and Rc respectively. Therefore, this underlined
that learning to use any conventional bin-picking system involves several challenges
and steps. Therefore, first-time users might be overwhelmed by such complexity; thus,
the goal of programming and testing grasping points becomes hard. Therefore, as also
highlighted in the introduction, there is a need to allow the definition of a grasping
point in a simpler way, which allows the users to speed up the process of grasping point
definition and its testing. In this way, the cycle time can be reduced. Additionally, if
the grasping point definition is intuitive, users with lower skills in bin-picking can be
up-skilled to configure such a complex system.

3.4 Definition of User-Defined Grasp Points

From the previous analysis, it is possible to identify that the interaction approach of the
tested bin-picking systems has some flaws, as both the time required for the teaching
and the usability could be improved. As seen from state-of-the-art, natural interaction
approaches, like the ones provided with the Tracepen™, can improve the grasp point
location definition. However, as shown from Sec. 3.3.1, such a natural interface must
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Figure 3.9: Schema of the user interaction. The user is in front of the target object to allow the user to define the
grasping location. Then, using the Tracepen™ sensor, the user points to a position in an object satisfying the grasping
requirements for the application. To confirm the location, the individual pushes an external button to avoid transmitting
unwanted movement to the tracked sensor. Finally, the marked point is transmitted to the user via a Human Machine
Interface (HMI) via a picture taken with a camera mounted on the top of the cobot cell.

be associated with additional refinement layers to reduce user errors. Therefore, this
section presents a method to refine a user’s grasp candidates by exploiting existing
data-driven robotic grasping algorithms.

Envisioned Interaction

To achieve the goal of fine-tuning a grasp candidate, the following novel envisioned
interaction is thus proposed. For clarity, the interaction is shown in Fig. 3.9. The user
first places the part on the worktable center under a visible camera. Afterward, the
individual grasps the spatial sensor and moves the device’s tip to an appropriate object
position for the robot to grasp, considering the task constraints. Finally, the decision is
confirmed with an external button to avoid unwanted movements of the spatial sensor
while saving the position. To conclude, the marked position is displayed to the user
through an HMI, which shows a picture of the object taken by an overhead camera
overlaid with the marked position. If the user is unsatisfied with the selection, the
position can be canceled, and the procedure can start again. A movement to the grasp
location is also initiated if the user wants to test the position with an actual robot.
Upon the outcome, the grasp location can be redefined. Once the grasp position is
finalized, it can be used program existing conventional bin-picking systems through
their Application Programming Interface (API). Such set-up in the work cell is realized
as shown in Fig. 3.11.
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Figure 3.10: Illustration of the different coordinate
frames involved in labeling a grasp point candidate with
the spatial sensor. A point marked by the spatial sen-
sor (P t

i ) must be transformed to a point in the image
coordinate frame (P c

i ) through r Tc and t Tr . Afterward,
the point must be transformed in the object coordinate
system (Po

i ) through c To to ensure that conventional bin-
picking systems can use it.

Figure 3.11: Example of grasp point candidate labeling
using the Tracepen™. The user can mark points via the
device and immediately receive feedback on the point lo-
cation via the display, showing a live feed of the grasp
point and the object from the robot’s perspective. To
avoid unwanted vibrations when labeling the grasp point,
the user has an additional teach pendant with buttons for
saving and deleting labeling points.

Grasp Point Labeling and Coordinate Transformations

However, several technical hurdles need to be resolved to allow the integration of the
target interaction. The first challenge regards the coordinate transformations between
the robot, the camera, and the spatial sensor. To solve this issue, an approach similar
to Sec. 3.3.1 and Sec. 3.3.2 is employed. However, some modifications have been
added as the camera is mounted in an eye-to-hand configuration, as common in bin
picking systems, and the object pose had to be accounted for. The problem is shown in
Fig. 3.10. Therefore, first the (t Tr) is calculated by with Eq. 3.4. Then, r Tc is calculated
with the algorithm proposed in [71]. Finally, by knowing c To through a previously
trained 6D pose detection algorithm, it is possible to transform the labeled grasping
point in the object coordinate frame with Eq. 3.7.

Po
i =

c To
r Tc P r

i , ∀i (3.7)

In this equation, the i represents all the grasp-labeled candidates the user has sam-
pled. Therefore, by employing this method, the labeled candidates can be utilized to
program traditional bin-picking systems.
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Definition of a User Grasp Metric

Taking raw labeling pints from the user, however, might lead to unsatisfactory results
as demonstrated in Sec. 3.3.1 and Sec. 3.3.2. Therefore, to ensure that robust grasp
labeled points are selected, a refinement step after the user input is added. Instead of
developing a new CNN as in the previous section, however, this refinement wants to
exploit the existing algorithms in the state-of-the-art. Therefore, Dex-Net 4.0, one of
the best-performing data-driven robot grasping algorithms, is selected for this purpose.
As outlined before, Dex-Net 4.0 can select grasp candidates by applying computational
steps. First, possible grasp candidates are sampled on a depth image using an analytical
method described in [111]. Second, scores are given to the sampled grasps based on
a GQ-CNN network. Therefore, if user input must be considered, constraining rules
must be applied to one or more of the computational steps in Dex-Net 4.0. However,
a definition of a constraining rule is necessary. As pointed out, the goal is to allow an
operator to define a region where the grasp should be performed. In other words, a
user has defined a point P′ ∈ R3 on a surface S of an object O, S ∈ R3 ∧ S ∈ O,
where the grasp should be executed. However, considering that P′ does not represent
a precise position of a grasp due to human inaccuracies, it is possible to define that a
neighborhood of such a point does. This can be then expressed with Eq. 3.8.

B(P′,ε) = {P′ ∈ R3 t.c |P −P′|< ε}, (ε ∈ R3 ∧ ε ∈ S) (3.8)

Therefore, to integrate the human initial guess, it is necessary to identify a grasp
u ∈ U , u ∈ R3 × S1, which is contained in the boundary defined above for ensuring
vicinity to the user initial guess. Additionally, such grasp should be the one with the
highest probability of success, or adopting the nomenclature of Dex-Net 4.0, the one
with the highest grasp quality or robustness, robustness or grasp quality is defined as
Q(u) ∈ [0, 1]. Thus, considering these additional boundaries, a novel metric denom-
inated User Grasp Metric (UGM), π(P′,u),π ∈ [0, 1], is proposed. The scope of the
metric is to find the grasp u with maximum quality Q in the neighborhood B(P′,ε) of
the initial labeling candidate P′. To regard both terms equally, the UGM thus uses the
geometric mean for two terms. However, as the UGM is π ∈ [0, 1], a definition of
the boundary B(P′),ε ∈ [0,1] is necessary. For this goal, the boundary is expressed
as the inverse of the normalized Euclidean distance between the labeling candidate
P′ and the grasp u. This yields the following mathematical formulation for the UGM
represented in Eq. 3.9.
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Figure 3.12: Transformations involved using a synthetic camera for sampling grasps with DexNet 4.0. First, the object
pose is obtained via a 6D pose detector. This information is then used to project the object mesh in the synthetical
world. Next, the synthetical camera, with camera parameters such as the one used to train Dex-Net 4.0, is used to
sample grasp candidates and find the one with the highest UGM. In the end, exploiting the information of the object
position in the synthetical o Tcs and real-world c To the selected grasp is projected back in the real world by using cs Tc .
Finally, the robot executes the grasp by knowing the camera position r Tc .
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(3.9)

Therefore, the grasp u to best fulfill robustness and vicinity of the user input should
be the one with the highest π f (P′,u). This can be written as in Eq. 3.10.

π f (P′,u) = argmaxu∈Uπ(P′,u) (3.10)

Implementation of the User Grasp Metric

Having a mathematical formulation of the UGM, the final step is its integration of the
cobot cell. As pointed out previously, the sampling of the grasp candidates is performed
via the Tracepen™ as long it allows simple integration of natural interaction and sam-
pling points in R3. However, for the computation of the quality Q(u), it is important
to denote the generalization capabilities of Dex-Net 4.0. As pointed out in [90, 92],
Dex-Net 4.0 performances can suffer if the camera used for obtaining depth images is
placed in a different position than the set-up used by the authors for generating train-
ing data. To overcome this issue, a novel depth generation pipeline is thus proposed to
guarantee maximum compatibility with the existing network without retraining. The
pipeline is based on the concept of synthetical data. More precisely, the idea behind
this pipeline is to generate synthetical depth data that represents the target object with
a camera configuration similar to the one used in Dex-Net training. However, a real-
world picture must be transformed into a synthetical one to achieve this goal. A novel
data generation approach based on transformations is thus proposed. The concept be-
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Figure 3.13: Qualitative representation of the sampling process using Dex-Net 4.0. First, a synthetic camera image
is taken alongside its projection of the user grasped labeled point (a). Second, to speed up the computation time, the
image is masked to the search region close to the user input B(P′,ε) (b). Third, Dex-Net 4.0 is used to sample grasps
and compute their raw quality Q(u) (c). Fourth, the grasp u with highest π(P′,u) is selected and saved (d). Finally,
the process is reiterated for multiple camera views to ensure the best π f (P′,u) in the boundary B(P′,ε)(e).

hind the approach is shown in Fig. 3.12. To apply this method, first, the object pose
with respect to the real camera c To must be sampled via a 6D pose detector by the
conventional bin-picking system. Afterward, the object is projected in the synthetical
world origin alongside the grasp labeled point Po = P′. Then, the synthetical camera
samples a depth image, and Dex-Net 4.0 is used to sample grasps u in the image. Fi-
nally, the grasp u with highest π(P′,u) according to Eq. 3.10 is selected. Having this
grasp, its pose is used for robot execution via the transformation csTc computed with
Eq. 3.11.
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(3.11)

Where [x , y, z] are the grasp coordinates in the robot coordinate frame, K are the
intrinsic camera parameters, and [u′, v′, w′] are the pixel coordinates of the grasp with
highest π(P′,u). However, denoting three points for applying this method and its speed
computation is essential. First, the parameter ε had to be selected. For this, the maxi-
mum allowable object size of the robot EE is chosen. To speed computational complex-
ity, thus, when Dex-Net 4.0 searches for all the possible grasps u, the area of search is
constrained in B(P′,ε). Second, for using the synthetical camera sampling and a 6D
pose detector, the object digital representation, i.e., object mesh, is necessary. Third, as
long as the camera is in the synthetic world, several camera views are evaluated within
the boundaries of Dex-Net 4.0 to select the best grasp out of several views. This whole
process with qualitative images is shown in Fig. 3.13.
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Figure 3.14: Objects selected for the virtual and physical evaluations. The objects are selected as long they represent
objects common in industrial scenarios. The objects marked with an asterisk on the top right are also used for the
physical evaluations.

3.5 Exploring User-Defined Grasp Points: Benefits and Performances

Having a method now to refine grasp labeling candidates given by a user with the
best UGM π f (P′,u) the next step is to evaluate the accuracy and performances of this
method. For doing so, three sets of experiments are thus conceived. The first set
is formed by virtual experiments conducted in the simulator to asses robustness and
differences of UGM π f (P′,u) again the raw quality of Dex-Net 4.0 Q(u) in a simulation
environment. The second set of experiments is constituted by physical evaluations
conducted with a real robot to assess the successful picking rate of UGM versus raw
quality as suggested by [87]. Finally, the last experiment is a user study to evaluate the
usability and workload using the proposed natural interaction.

3.5.1 Virtual Experiments

For this set of experiments, a set of different objects from three industrial datasets [112–
114] are selected, summing up to a total of 19 objects as shown in Fig. 3.14. Then, the
quality calculated with the two methods with random grasp label points is assessed.
More precisely, depth images for all the objects were generated, and afterward, for
each object, grasp label points with a uniform distribution on the object surface were
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Figure 3.15: Results of the three involved metrics for evaluating a sampled grasp with either raw Dex-Net 4.0 or with
the proposed metric UGM for a suction EE. To the left UGM value π f (P′,u), in the center raw quality Q(u), and to
the right, distance from sampled grasp and user labeled grasp d(u,P′). For the suction EE, the proposed sampling
method selects grasps with the same raw quality as Dex-Net 4.0 but simultaneously closer to the user-labeled grasp.

generated. Finally, the UGM of the final grasp, either with Dex-Net 4.0 or with the
presented approach, is compared. The results for a suction EE are shown in Fig. 3.15,
whereas the results for an antipodal EE are shown in Fig. 3.16. Concerning the suction
EE, it is possible to understand that adopting the proposed metric UGM grasps, which
are closer to the user-labeled grasp point but have the same probability of success as
Dex-Net 4.0, can be selected. More precisely, looking the UGM score π f (P′,u) yielded
M = 29.16%, SD = 27.14, and 34.05%, SD = 24.66 for Dex-Net 4.0 and the proposed
approach respectively. Second, looking at raw grasp quality Q(u) the results are M
= 35.98%, 33.41, and M = 32.43%, SD = 32.69 for Dex-Net 4.0 and the proposed
approach respectively. Last, looking at the distance between the final grasp and the
user-labeled grasp point d(u,P′) the results yielded M = 34.44 mm, SD = 20.89, and
M = 23.00 mm, SD = 11.41 for Dex-Net 4.0 and the proposed approach respectively.
Therefore, the statistical analysis finds a difference in the distance of grasps sampled by
the two methods, but no statistical difference is found in the raw quality of the grasps.
The proposed UGM can be well used for a suction EE to better select grasps that best
fit the user’s initial label while guaranteeing grasp robustness.

UGM score π f (P′,u) yielded M = 38.85%, SD = 23.19, and M = 42.76%, SD =
22.85 for Dex-Net 4.0 and the proposed approach respectively. Second, outcomes for
the raw grasp quality Q(u) yielded M = 44.14%, SD = 28.86, and M = 39.09%, and
SD = 28.24 for Dex-Net 4.0 and the proposed approach respectively. Last, evaluation
of the distance d(u,P′) are M = 27.17 mm, SD = 12.95, and M = 21.76 mm, SD =
9.52 for Dex-Net 4.0 and the proposed approach respectively. Thus, considering that
statistical significance is found only for results regarding the distance, the UGM score
was not good enough for selecting grasps in the case of an antipodal EE. Therefore, raw
Dex-Net 4.0 would perform as the proposed approach. Thus, the UGM is not beneficial
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Figure 3.16: Results of the three involved metrics for evaluating a sampled grasp with either raw Dex-Net 4.0 or with
the proposed metric UGM for an antipodal EE. To the left UGM value π f (P′,u), in the center raw quality Q(u), and
to the right, distance from sampled grasp and user labeled grasp d(u,P′). For the antipodal EE, the proposed UGM
does not lead to any meaningful differences when compared with the baseline Dex-Net 4.0.

Figure 3.17: Example of set-up for the physical experiments. The robot was configured with a suction EE with a
random part of the set in front of it. Afterward, a random user point close to the object’s center of mass was inserted,
and the system executed the calculated grasp with UGM.

for these cases.

3.5.2 Physical Experiments

The virtual evaluation highlighted that the proposed UGM for selecting candidate
grasps could be beneficial in case of a suction EE to select robust grasps while guar-
anteeing they are in the vicinity of an initially labeled grasp guess given by an inex-
perienced operator. However, to ensure the correctness of these findings in the virtual
experiment, a physical experiment with a real robot with a suction EE was envisioned.
The experiment setup can be seen in Fig. 3.17. Therefore, a subset of eight objects
out of those used for the virtual evaluation was selected, as shown from Fig. 3.14,
and grasps were tested. More precisely, to guarantee results that might respect real-
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Figure 3.18: Results of the three involved metrics for evaluating a sampled grasp with either raw Dex-Net 4.0 or with
the proposed metric UGM for the suction EE in physical experiments. To the left UGM value π f (P′,u), in the center
raw quality Q(u), and to the right, distance from sampled grasp and user labeled grasp d(u,P′). For the suction
EE, the proposed UGM does not lead to any meaningful differences when compared with the baseline Dex-Net 4.0.
However, the distance between the final selected grasp and the user grasp label point is meaningful.

world usage, three input grasp label points at the center and edges of each object
were marked, and evaluation was performed accordingly for a total of 24 trials. The
outcomes of these trials are shown in Fig. 3.18.

Differently from the virtual evaluations, no meaningful difference is found in the
value of the UGM for the physical experiments; however, results for the raw quality
Q(u) and distance d(u,P′) are comparable to the previous experiments. More precisely,
results for the UGM score π f (P′,u) yielded M = 29.29%, SD = 29.37, and M = 36.72%,
SD = 26.29 for Dex-Net 4.0 and the proposed approach respectively. Second, results
for the raw grasp quality Q(u) yielded M = 39.38%, SD = 33.54, and M = 35.95%,
and SD = 35.63 for Dex-Net 4.0 and the proposed approach respectively. Last, results
for the distance d(u,P′) are M = 36.23 mm, SD = 18.15, and M = 25.94 mm, SD
= 9.54 for Dex-Net 4.0 and the proposed approach respectively. To shed more light
on these results, the successful grasping success rate defined by [87] was monitored
during the physical evaluation. This yielded 83.3% for Dex-Net 4.0 and 87.5% for the
proposed approach. Therefore, it is possible to deduce that, despite not having found
a statistical difference for the UGM value, the proposed method for selecting the grasp
position can improve the grasp success rate while guaranteeing selecting grasps that
are closer to the user grasp label when compared with Dex-Net 4.0.

3.5.3 User Study

Having identified that the proposed approach can select grasps that are closer to an
initial guess given by an inexperienced operator, the next step is to assess the proposed
method in terms of usability and compare it with conventional systems as outlined
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Figure 3.19: Results of the user experiment comparing the proposed method based on the tracker (i.e., spatial sensor)
and the best performing conventional bin-picking system RoboceptionTM rc_viscore. The statistical significance of the
results is displayed with asterisks. If no statistical significance is found, ns is displayed, or no statistical marking is
shown. From the evaluation, it is possible to see how using a tracker for grasp labeling positively affects usability,
workload, and time. No difference is found in the level of autonomy.

in Sec. 3.3.3. Therefore, a user study experiment with one object was conducted for
this scope. In the study, differently from the previous investigation, users had the
goal of labeling a suction grasp point with two different methods: the proposed ap-
proach with the spatial sensor and the best performing conventional bin-picking sys-
tem RoboceptionTM rc_viscore. After each interaction, users were administered the
SUS, TLX, and WDQ. Additionally, the time taken was monitored. In the user study,
ten male users with low to medium experience in robotic grasping, age M = 30.2 yrs,
SD = 11.78, participated. All of them performed the task correctly, and no data was
discarded. The outcomes of the user test is shown in Fig. 3.19.

The results show that using a tracker (i.e., spatial sensor) can benefit usability,
workload, and time but not on the level of autonomy. More precisely, the results yielded
the following. For SUS, the scores are M = 59.50%, SD = 17.62, M = 82.25%, and SD
= 11.87 for Roboception and tracker, respectively. For TLX, the scores are M = 41.33%,
SD = 6.91, M = 19.17%, and SD = 9.34 for Roboception and tracker, respectively. For
WDQ, the scores are M = 67.14%, SD = 11.84, and M = 72.00%, SD = 5.50 for
Roboception and tracker, respectively. For the time, the outcome is M = 374.70 s, SD
= 123.27, M = 10.40 s, and SD = 3.03 for Roboception and tracker. Thus, considering
that statistical significance was found for SUS, TLX, and time, it is possible to conclude
that using the tracker can be better perceived than conventional bin-picking systems.
Additionally, looking at questions four and ten of the SUS questionnaire, the results for
tracker are, using an inverse Likert scale, M = 1.50 pt, SD = 0.53, and M = 1.30 pt,
SD = 0.48 for questions four and ten, respectively. Therefore, considering the results
obtained in Sec. 3.3.3, it is possible also to add that the tracker system results less
cumbersome and less information is needed by a person to use it, thus allowing any
user to quickly learn and use the system.
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Type mAP(IoU=0.5) Pos. Error [mm] Rot. Error [deg]

CAD 0.94 0.27 ± 0.91 1.47 ± 14.40
SIM NeRF 0.74 0.73 ± 1.15 4.58 ± 25.31
REAL NeRF 0.85 1.39 ± 3.12 9.63 ± 38.11

Table 3.1: Outcomes of the evaluation of the CADMatch 6D pose algorithm trained with different kind of source data
(± denotes the standard deviation).

3.6 Conclusions

Summary

Through this chapter, this work wanted to discover further impacts given by intuitive
programming interfaces. More specifically, this section tackled Challenge 3.2 (intuitive
programming interfaces that do not require robotics expertise) by proposing and study-
ing the impacts of an intuitive method for defining robotic grasping points via spatial
interaction.

To present these investigations, initially, the current state-of-the-art and challenges
identified in defining grasping locations according to user needs were introduced, and
the need for more accessible programming of grasps considering task constraints with-
out robot experts was discovered. Second, the chapter presented an approach for la-
beling points based on raw data from a spatial sensor, but limited sensor accuracy was
discovered. Therefore, the third section presented improved labeling by fusing visual
and spatial sensor data to correct the inaccuracies. This approach resulted in more suc-
cess. Henceforth, using the knowledge of the previous two experiences, a final method
to best fuse an initial grasp guess and a state-of-the-art visual NN based on a novel
user grasp metric for grasp selection is presented. This last approach presents stud-
ies to evaluate the method’s accuracy regarding absolute positioning and user impacts
compared with conventional market-ready solutions.

The proposed approach for grasp labeling showed that the usability and workload
are improved with the proposed method. More precisely, the usability measured with
the SUS scored an average of 82.25%, and the average workload measured with TLX
scored 19.17%. Aside from the higher usability, the investigations yielded results that
showed higher or equal grasp reliability when comparing grasps programmed with
the proposed method against conventional approaches, as the grasp success rate was
87.5%.
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Discussions and Future Work

Based on the usability results, it is possible to conclude that a broad user pool can
accept the proposed method for defining grasps [115]. Additionally, when comparing
test results with traditional bin-picking systems, which showed equal or worse perfor-
mance, the barrier for grasp definition considering task constraints has been lowered.
This reduction in required knowledge makes it possible for non-experts to program
robotic grasp points. Beyond the enhanced usability, improvements in accuracy were
also observed. Therefore, the suggested approach, incorporating the user grasp metric,
proves effective in achieving both usability and accuracy improvements. Furthermore,
despite testing with a single state-of-the-art neural network and hardware setup, the
method’s applicability can extend to various use cases and applications. This adapt-
ability is attributed to the approach based on a synthetic image pipeline, allowing it
to go beyond current research or specific hardware setups as highlighted by [90, 92].
Last, being the approach usable with low robotics expertise as the user does not need
to know in detail about the constraints of grasping the benefits of the approach, and it
is possible to conclude that with this tool, SMEs can partially program robots without
the need for robotic experts thus answering to the aforementioned challenge.

Unfortunately, despite this approach’s benefits, it is essential to underline that this
method requires the CAD model of the object to train 6D pose detectors for the object.
Therefore, if an SME does not have this available due to manufacturing limitations,
this method cannot be applied anymore. To overcome this issue, the creation of CAD
artifacts of the target object is needed. Neural Radiance Fields (NeRF) [116] can be
used for this task as suggested by [117]. To ensure this approach could be used in
future work, a small set of experiments to start understanding the limits of this method
was conducted. For such testing, one object out of our dataset was selected, and the
RoboceptionTM CADMatch 6D pose algorithm was trained with CAD data, NeRF from
simulation, and NeRF from real-world data generated with the EyecanTM scanning sta-
tion. Afterward, a test set of 68 images from the simulation was taken, and the metrics
of mAP at IoU = 0.5 and errors in rotational and positional accuracy were measured.
The scores are shown in Tab. 3.1. From the results, it is possible to draw two outcomes.
First, the detection rates are slightly lower in the case of NeRF reconstructions, and in
the case of bin-picking applications, this might result in a not-complete depletion of
the bin. Second, the positional error is not too different between the different models.
However, the rotational error is still considerable for the parts scanned. The results on
the performances of the pose detection are not as promising as the user tests; however,
fair results have been achieved. Therefore, future works should further investigate
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how to improve the scanning capabilities of NERF to ensure the integration of objects
without CAD data.
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The previous chapters presented two studies on how defying part locations influ-
ences the robot and the user. However, the studies did not account for the entire motion
of the robot but just for final locations, thus limiting the operator’s level of control of
the robot’s motion. Considering that this might be a crucial acceptance factor consid-
ering literature, there is a need to investigate this matter further. This chapter looks
into how trajectories defined by operators affect the interaction. This chapter is partly
based on the content of the following publications:

• Pantano, M., Regulin, D., Lutz, B., and Lee, D., "A human-cyber-physical system
approach to lean automation using an industrie 4.0 reference architecture", 2020,
Procedia Manufacturing, Volume 51.

67
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• Pantano, M., Blumberg, A., Regulin, D., Hauser, T., Saenz, J., and Lee, D., "Design
of a Collaborative Modular End Effector Considering Human Values and Safety
Requirements for Industrial Use Cases," 2022, Human-Friendly Robotics 2021,
Springer Proceedings in Advanced Robotics, Volume 23.

• Pantano, M., Schmidt, M., Bolano G., Schulenburg, E., Regulin, D., and Saenz, J.,
"Analyzing the Influence of Self-defined Trajectories on Safety and Task Owner-
ship: An Empirical Study," 2023, industrial paper at the 19th IEEE Conference of
Automation Science and Engineering (CASE).

To present the content of this chapter, first, the motivation behind the need to study
the influence given by trajectories on human operators is presented. Next, the main
related works are identified, together with two preliminary investigations necessary to
identify which method is suitable for teaching trajectories. Third, a novel method for
teaching trajectories through spatial interactions is proposed, and last, the evaluation
is presented with final remarks and discussions.

4.1 Motivation

In the previous chapters, two studies on how defying part locations influence the robot
and the user. However, this definition did not account for the entire motion of the robot
but just the final locations. Therefore, trajectories were not explicitly addressed by the
users. However, the literature expressly identifies that trajectories strongly influence
the perceived safety and human-robot collaboration [118]. One of the most known
research works in this field is regarding the legibility of robot motion [119]. In this
research, the authors discovered that the robot should make its intentions transparent
for seamless human-robot collaboration, meaning the human collaborator can easily
understand the robot’s next steps. However, their studies identified that the observer
can understand legibility differently. Therefore, there is a need to investigate the topic
better, considering a human observer. Building on the previous works, which defines
that humans better collaborate with robots if they define their task [46]. This section
investigates how human-defined trajectories impact motion legibility and robot and
human performances.

4.2 Related Works
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Trajectories Legibility

Humans have natural boundaries in defining acceptable distances for Human-Human
interactions as described by the Proxemics model [120]. Later studies have found that
this applies also to HRC. For example, in [121], the authors identified that once the
cobot entered the personal space between 0.46 m and 1.20 m, humans backed up to
increase their distance from the manipulator. Additionally, the study reported that the
users’ comfort level decreased when the robot moved closer. To improve human com-
fort, studies proposed several motion planning frameworks to reduce robots’ disruption
when entering personal space. One of the first ground research works on this topic was
done by [122]. In this work, the researchers identified that any possibility of a robot
crossing the path of a human reduced the level of human comfort. Additionally, robot
paths were classified with a level of legibility for understanding their impacts on user
comfort, and often, higher motion legibility results in higher human comfort. The au-
thors then took a further step in a more formal definition of legibility in [119]. In this
research, a legible motion was defined as a movement from which an observer can
confidently infer its goal. The quicker the final goal deduction, the higher the motion
legibility. Legibility is also known in the literature as readable motion [123]. Since
this discovery, robots showing higher legibility are better perceived in different use
cases, like virtual reality (VR) applications [124]. Therefore, the uncertainty of robot
movements must be avoided to ensure user well-being [125].

Adaptive Robot Motions

Another approach to improve the comfort level in motions performed in HRC is to in-
clude adaptive robot movements rather than legible motions. One of the first research
to report the benefit of adaptive trajectories is presented in [126]. In this work, the
authors propose a robot control algorithm that plans motions that do not enter the per-
sonal space or cross the human path by monitoring the human position. Through this
approach, they demonstrate that human-aware planning can increase human comfort
and decrease task cycle time. Other works achieve the same goal by including a cost
function in the motion planner to select paths without collision with humans. Notable
examples are presented in [127, 128]. Similarly, [129] proposes a cost function that
penalizes areas previously occupied by humans. However, despite being this useful
for collaboration and modeling, these cost functions have yet to consider delays in the
collaboration itself [130]. Therefore, in [130], a novel cost function for accounting
for these stops has been proposed. The robot can maximize the cycle time through
this modeling, even considering stops due to safety regulations; however, despite the
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advantages of these planners based on a cost function. There is still a need to reduce
the uncertainty of robot motions. In the previous work, this has been mainly addressed
by predictable motion planners [118]. However, these follow trajectories often not
defined by the operator working with the cobot. Therefore, the operator might feel
excluded from the task, thus raising feelings of uncertainties [131]. So, similar to the
above, an open question remains on how robot trajectories can be defined considering
the task ownership of the observer to reduce uncertainties.

Teaching of Robot Motions

Different methodologies can be used to create robot trajectories, as seen in Sec. 1.2.
However, once an operator must teach the trajectories, the number of methodologies
decreases due to the need for simple interfaces. Out of the known programming meth-
ods, the best for this task is LfD [132, 133]. In this approach, the robot’s motion should
be obtained by capturing trajectories from demonstrators through different user in-
terfaces [134]. The most known are kinesthetic teaching [135] and spatial-sensor
demonstrations [134]. In the former, the robot’s physical movement is recorded to
obtain the movements, thus avoiding transforming the information through different
coordinate systems. Such physical movement is obtained by having a human guid-
ing the manipulator via pushing or pulling the EE and recording different sensor data
from the manipulator (e.g., force, position) during the procedure. Then, the trajectory
is reproduced, trying to mimic the recorded behavior. However, despite the method
being intuitive to teach and has demonstrated to achieve sound movement reproduc-
tion and recovery [136]. Kinesthetic teaching user acceptance could be influenced by
the force control algorithm that balances the robot weight [29]. The latter, spatial-
sensor demonstration, is more complex in the coordinate transformations. However, it
uses more natural methodologies for teaching, like motion-tracked gloves [137]. Com-
mercial solutions based on motion-tracked pens are also available for different robot
brands. Notable products are the Tracepen™ and the Mimic™. However, these solutions
often base the recording on positions, and their accuracy has yet to be investigated in
detail. Nevertheless, spatial-sensor demonstrations and kinesthetic teaching can help
an operator teach robot paths. However, to the author’s knowledge, there is no study
on the effect of kinesthetic or spatial-sensor demonstrations on the user’s acceptance
or the robot’s safety. Therefore, there is a need for further investigation on this topic.
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Trajectories and Safety in HRC

As humans and robots collaborate closely within factory settings, an increasing em-
phasis is placed on ensuring human safety. Typically, safety considerations involve a
thorough risk assessment (as exemplified by ISO 12100:2010 [16]) and a rigorous
adherence to established international standards like ISO 10218-2 [18] and ISO/TS
15066 [23]. Within Europe, the Machinery Directive [138] outlines the indispensable
health and safety prerequisites that a robotic application must meet. Among the four
principal collaborative operation modes delineated in ISO/TS 15066, SSM is one of
the most widely implemented choices for collaborative robotics applications. In this
operational mode, a sensor is employed to constantly monitor the separation distance
between nearby humans and the robot. Accordingly, adjustments can be made to the
robot’s speed and trajectory to uphold a minimum safe distance. Therefore, in SSM,
the robot’s trajectory is significant regarding safety as long it can define the separation
or the robot’s speed during the application. Earlier research has primarily concentrated
on establishing a foundation for robotic applications employing SSM [20]. This has en-
compassed efforts to enhance its dynamism [139] and the development of sensor im-
plementations [140] crucial for enabling this operational mode. Subsequent investiga-
tions have utilized simulation techniques to assist in planning such applications [141].
Additionally, they have showcased the utilization of key performance indicators (KPIs)
in design, such as overall spatial requirements and the minimal separation distances
necessary. These indicators have been instrumental in evaluating different possibilities
[142], encompassing safety sensor selection and robot trajectory choices. Therefore,
these techniques can be used to rate the safety level of an application once trajectories
are made available.

4.3 Preliminaries

To ensure that users can program their trajectories safely, the robot EE should first un-
dergo defined tests according to the safety guidelines; additionally, the users should
have interfaces for teaching their trajectories. This section first presents how a robotic
EE can be designed and tested safely for this collaboration, following the actual regu-
lations for implementing safe human-robotic applications. The second part describes
how a spatial sensor can allow users to define their trajectories using the Tracepen™.
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4.3.1 Risk Mitigation Measures for Cobot Trajectories

Before applying SSM, to evaluate the current level of safety, each area that can cause
a collision must be evaluated regarding the maximum allowable pressure exerted at
a certain speed. In the case of cobots, the most dangerous area for the operator is
the EE [143, 144]. The EE is the component of a robotic system in charge of directly
interacting with the surrounding environment (e.g., moving, grasping) through the
application of a specific physical principle (e.g., impactive) as outlined by ISO 20218-
1 [145]. Therefore, in the case of collaborative applications, the EE should satisfy both
safety constraints and application requirements. In the case of SMEs, a flexible EE that
can grasp different parts should be conceived [38].

Design Methodology

To ensure a design considering all the requirements for both flexibility and safety, the
iterative design methodology proposed in [146] was followed. First, the tasks were
examined, and requirements were obtained. For this step, publications and standards
targeting flexible grasping were targeted, namely [23, 84, 145, 147]. Second, several
abstract design solutions were created by combining different design primitives. In this
process, physical principles were evaluated and selected. Third, morphological struc-
tures (i.e., EE concepts) were created. Finally, concepts were evaluated from technical
and user perspectives.

Users and Technical Evaluations

The evaluation method proposed in VDI 2225 [148] was selected, which suggests rat-
ing mechanical designs according to technical soundness and economic viability. How-
ever, the economic viability axis was substituted with a human value score to reflect the
integration of human values to evaluate the different EE concepts created in the pro-
cess. The method is based on two scales, rated from 0 to 4 (4 being the best rating).
When evaluating concepts, scores should be given to each of the two scales. In the end,
concepts with the highest compound scores are the ones that best suit the application
needs. In this evaluation, the two selected scores were technical performance (e.g.,
cost, manufacturing efficiency) and human aspects (e.g., human wellbeing, universal
usability). Therefore, a pool of 12 males with M = 9.5 yrs SD = 10 of experience
in engineering were invited to reply to a questionnaire. In the questionnaire, each
concept had to be evaluated on the different scores using a Likert scale [149]. The out-
come of the questionnaire is shown in Fig. 4.1. The concepts with the highest scores
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Figure 4.1: Outcomes of the evaluations of the four dif-
ferent prototypes. The evaluation methodology followed
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Figure 4.2: Manufactured hybrid EE with modules.
Reprinted from Design of a Collaborative Modular End
Effector Considering Human Values and Safety Re-
quirements for Industrial Use Cases, Human Friendly
Robotics 2021, Pantano M. et al. [114], Copyright (2022),
with permission from Springer.

were the vacuum and hybrid gripper with vacuum and two-finger jaws. The hybrid
gripper was selected for manufacturing due to the higher flexibility to adapt to several
geometries. Therefore, the concept was manufactured using additive manufacturing
(AM) technology and the integration of market-ready solutions. The final EE, shown
in Fig. 4.2, was obtained through this process. Considering the numbering in Fig. 4.2,
the EE can be described as follows. The main structure is connected to an adapter
plate (3) with different mounting slots for an off-the-shelf two-finger jaw module and
an angular adjuster (4) for additional modules is necessary. Then, to customize the
grip of the two-finger jaw module, 3D-printed interchangeable jaws (1) with silicone
tips (2) are added. Third, two additional modules, (7) and (9), are added to integrate
different physical principles. On the one hand, vacuum, and the other hand, magnetic.
These modules were primarily designed to maintain the Tool Center Point (TCP) of the
robot constant despite tip (8) changes.

Safety Testing

To evaluate the risk given by the EE design, a risk analysis had to be performed ac-
cording to ISO 12100 [16]. Therefore, hazards had to be first identified, and then risk
mitigation measures had to be integrated. In the case of an EE for a flexible cobot cell
with close contact with humans, many hazards are either given by the robot motion or
the actuation of one of the physical principles of the EE. To mitigate these hazards, it
was then decided to program the robot with the PFL risk reduction method and limit
the object mass handled by the cobot. However, for the integration of PFL, limit veloc-
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Figure 4.3: Outcomes of the safety evaluations. The two lines represent the measured contact pressure for two differ-
ent gripper locations. Dangerous values are measured above 250 N/cm2. Reprinted from Design of a Collaborative
Modular End Effector Considering Human Values and Safety Requirements for Industrial Use Cases, Human Friendly
Robotics 2021, Pantano M. et al. [114], Copyright (2022), with permission from Springer.

ities had to be identified according to the EE minimum contact area and the maximum
allowable contact pressure. The COVR [150] GRI-LIE-1 protocol was followed to pro-
ceed with this evaluation. Therefore, the robot was programmed to travel at different
speeds and collide with pressure foils. This procedure was repeated several times for
two of the smallest EE contact areas until the limit contact pressure constraint was
satisfied. The results of this study are shown in Fig. 4.3.

From this evaluation, considering the worst-case scenario, it is possible to deduce
that the designed EE can be considered safe only when the robot moves at 50 mm/s.
Therefore, whenever an operator is near the robot, the manipulator must be slowed
down to this velocity to reduce hazards to acceptable levels.

4.3.2 Trajectory Teaching via Spatial Interactions

As highlighted from the state-of-the-art, different methodologies for demonstrating
robot motions exist. The most prominent are kinesthetic teaching and spatial-sensor
demonstrations. However, to the author’s knowledge, there needs to be a comparison
between these two methods from a user perspective. Therefore, before studying how
self-defined trajectories affect the task, there is a need for preliminary studies to select
which impact each method has. This section reports the findings of this study and the
implications of using a spatial sensor for demonstration.
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Accuracy Performances

In the case of kinesthetic demonstrations, the accuracy of the recorded points is high
as long as the robot’s internal data is used, which often leads to errors in the millimeter
range. However, as highlighted in chapter 3, if a spatial sensor is used to demonstrate
trajectories, the robot needs to execute motions considering coordinate transformations
between the spatial sensor and the robot. The reader is invited to review Sec. 3.3.2 to
understand how such transformations are applied. However, for clarity, it is essential
to underline that such transformation is accomplished by sampling three points while
the spatial sensor is mechanically linked to the robot. Then, having such information,
equation Eq. 4.1 can be solved.

t Tr = (P
r
i +M) (P t

i )
−1, ∀i (i = 1,2, 3) (4.1)

In this formula, P r
i represents the sampled point coordinates within the robot’s co-

ordinate frame, while M denotes the constant transformation between the robot flange
and the location where the pen is mounted for tracking. Additionally, P t

i refers to the
sampled point coordinates in the coordinate system of the tracked pen. However, it
is important to denote that such calibration is not adaptive and may not account for
sensor drifts or inaccuracies. Therefore, the sensor’s accuracy was analyzed to under-
stand the impact of such calibration. Therefore, the sensor was again rigidly connected
to the robot, and the robot was instructed to move across the whole workspace. Dur-
ing the movement, both the sensor’s calibrated position and the robot’s positions were
recorded with respect to a common coordinate frame; in this way, the accuracy could
be compared as the robot’s location could be considered the ground truth. The results
of this evaluation are shown in Fig. 4.4. More precisely the average distance on the
x-axis was M = 9.74×10−4 m SD = 2.8×10−3 m. For the y-axis it was M = −5.41×10−4

m SD = 2.2× 10−3 m. Third, for the z-axis it was M = 1.44× 10−3 m SD = 7.0× 10−3

m. Finally, for the angular it was M = 4.60× 10−3 rad SD = 2.5× 10−3 rad. Therefore,
looking at these values, it is possible to understand that the average accuracy is fine
with the application because it is in the millimetric to sub-millimetric range. However,
the main issue looking at the data is the rather large standard deviation, which could
lead to a sudden loss of such precision. A 3D plot showing the differences between the
sensor and the ground truth is created, as shown in Fig. 4.5. Interestingly, the graph
shows that the error increases further outwards when the sensor is moved from the
calibration location where the points for Eq. 4.1 were sampled. Therefore, if a user is
using the sensor, good performances can be achieved in the vicinity of the calibration;
however, the farther the sensor is moved away from the calibration location, the more
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Figure 4.4: Distance error of the measured positions recorded with the spatial sensor versus ground truth measured
through the robot location as long the spatial sensor is connected rigidly with the robot. From the figure, it is possible to
understand that the average accuracy is good, but the standard deviation can lead to sudden changes in the sensor’s
accuracy.
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Figure 4.5: Visual representation of the differences between the ground truth and the measured location of the spatial
sensor. The error is plotted with arrows, which, as starting points, have the ground truth data and, as the final point,
the measured value of the spatial sensor. Interestingly, the error increases the farther the sensor is moved from the
center. The center is the calibration location where points for Eq. 4.1 were sampled.

sudden changes can appear, leading to errors that could be in the centimetric range
as the euclidean distance infinity norm is ∥x∥∞ = 1.40 × 10−2 m. Considering these
results, if the spatial sensor needs to be used for teaching spatial trajectories, a method
to account for this variability in its accuracy is mandatory to ensure precision in the
whole workspace where the user could create trajectories.

User Evaluations

Aside from the accuracy, the second set of experiments regarding the usage of the spa-
tial sensor is to examine the impact of utilizing a spatial sensor in terms of usability.
In this study, participants were required to demonstrate robot trajectories for a hand-
over motion using two methods, namely kinesthetic demonstration and spatial sensor
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Figure 4.7: Results of the user evaluation for the trajectory demonstration. To the left, usability is measured in
percentage according to the SUS scale; to the right, workload is measured in percentage according to the NASA-TLX
scale. The statistical significance of the results is displayed with asterisks. If no statistical significance is found, ns is
displayed.

demonstration. Therefore, after a brief introduction, they had to save the 3D positions
along an imaginary trajectory indicating where the robot should move near the calibra-
tion point to avoid issues with the accuracy performances. Such demonstrations were
performed with two subsequent interactions. At the end of each interaction, users had
to rate the usability and workload of each method using the System Usability Scale
(SUS) [109] and the NASA-TLX scale [110]. In the end, generated trajectories were
also saved. For clarity, the experiment schema is shown in Fig. 4.6. For these studies,
the Tracepen™ spatial tracked pen was used as a spatial sensor, and the default stan-
dard lead-through teaching of a UR10 robot was used as kinesthetic teaching. In the
study, eight individuals participated, age M = 27.00 yrs, SD = 8.99, height M = 182.88
cm, SD = 11.61. All of them performed the task correctly, and no data was discarded.
For evaluating usability and workload, the questionnaires’ responses were compared.
Regarding the former, results were M=75.63%, SD=17.31 and M=77.50%, SD=12.17
for kinesthetic and spatial-sensor teaching, respectively. Regarding the latter, outcomes
were M=27.29%, SD=14.42 and M=21.67%, SD=13.45 for kinesthetic and spatial-
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Figure 4.8: Illustration of the spatial-based interaction for recording points of a trajectory. The operator can specify
where the robot should drive by moving the spatial sensor and confirming the recording or deletion of points via a
teach pendant.

sensor teaching respectively. A Mann-Whitney U test was applied to check statistical
significance as long the t-test preconditions did not hold and no statistical difference
among the samples was measured. For clarity, Fig. 4.7 shows the outcomes of this eval-
uation. For such analysis, it is then possible to gather two primary outcomes. First, the
force control algorithm of the UR10 robot does not have the same usability problems as
the ones pointed out in the literature [29]. Second, the spatial-sensor demonstration
is as usable as kinesthetic teaching and bears a low workload level. Considering this
information, spatial-sensor teaching can record user-defined trajectories if the accuracy
issues are resolved.

4.4 Definition of Trajectory Profiles Through a Spatial Interaction

As previously highlighted, more research is needed to understand how user-defined
trajectories influence acceptance and robot safety. A method for allowing operators to
program trajectories is proposed to study this topic further. This method is based on a
spatial sensor as long as it was demonstrated to have a good usability level. However,
the device data has to be corrected to reduce inaccuracies. Additionally, simulation-
based evaluation is introduced to study the influence of trajectory teaching on safety.
This chapter describes the various elements and their association with the suggested
research.
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Figure 4.9: Clarified example of the barycentric coordinates using the Delaunay triangulation. The black numbered
points are the center of the calibration locations where U is calculated. The black lines are describing a tetrahedron
in the cuboid grid. Finally, the colored points and lines show how the barycentric coordinates are used to calculate
weights necessary for the translation and rotation interpolation.

Envisioned Interaction

For allowing a human to record a trajectory, an interaction based on the movement of a
spatial sensor is envisioned, as shown in Fig. 4.8. During this interaction, the user first
places the objects involved in the interaction on the work table. Then, points where
the robot EE should navigate, are recorded by moving the spatial sensor and clicking a
button on an external teach pendant. If the user wants, points can be deleted using an
additional button on the external teach pendant. In this way, the user can freely decide
where the robot should navigate with minimum effort.

Spatial Pose Recording

As previously identified, the spatial sensor’s accuracy can be improved. However, to
understand how this goal can be achieved, it is essential to underline the following
results from the previous accuracy evaluation. First, the previously identified and de-
scribed calibration method with Eq. 4.1 works well in a defined space. This means the
spatial sensor is accurate in an area near the sampled points. Second, the accuracy of
the spatial sensor seems to be proportionally decreasing with the distance from where
the sensor was initially calibrated. Considering these findings, to improve the accuracy
of the spatial sensor, it is possible to imagine that the initial calibration matrix t Tr needs
to be corrected in different locations to account for the inaccuracies of the spatial sen-
sor. In other words, if the spatial sensor is rigidly coupled with the robot flange while
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performing the calibration, it is possible to define that an undistortion matrix U must
be applied to obtain the correct calibrated location as defined with Eq. 4.2.

t Tr = (P
r
i +M) (P t

i )
−1 ∗ U−1, ∀i (i = 1,2, 3) (4.2)

However, if the U is computed only once, then the undistortion matrix will mit-
igate the errors near the area where the points are sampled. Therefore, to ensure
that the concept can be applied in the robot workspace, U is calculated at different
locations in a cuboid grid 3x3x3, resulting in 27 undistortion matrices. However, an
interpolation-based method is introduced to ensure the correct selection of the suitable
undistortion matrix in the workspace for a specific area. Therefore, the cuboid grid is
divided into tetrahedrons using Delaunay triangulation [151] to allow for a barycentric
coordinate system which can be used to calculate intermediate undistortion matrices
upon distances to the vertices of the tetrahedrons. More precisely, the barycentric co-
ordinate system allows the identification of the closest vertices in the tetrahedrons;
therefore, such distances are then used to weight the interpolation between the differ-
ent U where the translation part of U is interpolated linearly, and the rotational part is
interpolated using linear interpolation (LERP) using its quaternion representation. For
clarity, Fig. 4.9 shows how such distances are calculated for two sample points. In this
way, intermediate U can be calculated in the workspace to reduce errors of the spatial
sensor. Therefore, following the idea of the envisioned interaction, the user will be able
to move the sensor through the desired trajectory while holding down the recording
button, and in this way, robot trajectories can be recorded for the latter execution.

Calculation of Safety KPIs

As mentioned in the introduction, safety KPIs can be calculated based on the trajec-
tory used by the robot. In SSM, the most important KPIs are the distance between the
robot and the human. To assess such safety parameters, the robot trajectories for both
collaborations were recorded and subsequently simulated using the 3D-simulation tool
Visual Components (VC) with a Computer-aided-safety (CAS) plugin [141]. This plugin
computes and visualizes the separation distance following the ISO/TS 15066 formula.
Among other factors, it considers the robot’s joint states, velocities, and braking char-
acteristics to ascertain the swept volume of a sphere when the robot halts suddenly at
each point in time. The requirement for safety is that this volume must not intersect
the space occupied by the human operator. To simplify matters, the 2D projections of
safety volumes are aggregated onto the working area for the entire trajectory. To eval-
uate safety performance, we compare the sizes of these areas and the distance between
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Figure 4.10: Qualitative representation of the safety area calculation in the CAS tool. The robot and human endpoints
are used to calculate the area considering the speed and the robot extension. Afterward, the human end position
calculates the distances between humans and robots.

the safety area and the human operator. A smaller safety area and a greater distance
from the human operator help avert situations where the robot must stop to avoid col-
lisions, enhancing the system’s performance. One caveat of this approach is that the
control algorithms utilized in the simulation differ from those of the actual control unit.
Therefore, instead of reprogramming the authentic robot program to execute the sim-
ulated motions, the natural motions were duplicated in the simulation by employing
the discrete robot joint angles recorded during the experiments at a sampling rate of
20 Hz. A qualitative figure shows this plugin’s safety area in Fig. 4.10.

4.5 Evaluation of Safety Levels on User-Defined Trajectories

Having now a method to record precise robot trajectories via a spatial sensor, the next
step is to understand which effects such a method has. To perform this evaluation,
a user study is conceived. However, considering the previous results on the effect of
expertise on teaching outcomes as defined in Chapter 2, a similar experiment design is
implemented. This section reports the applied methods for this investigation.

4.5.1 Industrial Use Case

In manufacturing a gearbox for a healthcare product, see Fig. 4.11, variability is high in
the preparation of the kitting box due to different materials employed in the gearbox.
Therefore, the tasks involved in the process could change often depending on the bill
of materials (BOM). Unfortunately, a fully autonomous solution is not economically
viable. However, a method to reduce the mental effort of an operator could help re-
duce errors. More precisely, such a gearbox has the highest variability in the type and
configuration of the base plate. Therefore, users are constantly pressured to select the
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Figure 4.11: Rendering of the gearbox assembly.The assembly is composed of numerous gears and components
affixed to a base plate. To assemble all the parts, several manual steps must be performed. Reprinted from Augmented
Reality for Supporting Workers in Human–Robot Collaboration, Moya A. et al. [152], Copyright (2023).

Figure 4.12: Representation of the industrial use case. The user assembles the kitting box with components stored
on one side of the worktable. Meanwhile, the robot picks one of the base plates according to the production order and
delivers it to the human operator with a particular trajectory.

correct base plate for the production order. Depending on the manufacturing sched-
ule, an autonomous robot can pick and deliver the correct base plate configuration to
simplify this procedure. However, to account for different operators of the robot’s tra-
jectory for the base plate delivery, it is suggested that the operators themselves devise
the trajectory. In this way, they can better personalize the task to their needs. For clar-
ity, Fig. 4.12 shows the main steps in the delivery trajectory teaching and the kitting
box preparation.

4.5.2 Experiment Design

A within-subjects design with a randomized interaction sequence is conceived to an-
alyze the influence given while allowing operators to devise their trajectory as shown
from Fig. 4.13. In this design, the operators perform the interaction described in the
industrial use case with two robot control methodologies. On the one hand, one inter-
action is through the proposed trajectory teaching through the spatial sensor; the other



4.5 Evaluation of Safety Levels on User-Defined Trajectories 83

Introduction Familiarization 
and video 

Human-Robot 
Collaboration I

t1 t2 t3

time

t0

Human-Robot 
Collaboration II

Figure 4.13: Experiment design schema to evaluate the impact of collision-free and self-defined trajectories. The
users were exposed to two interactions after an initial introduction and familiarization with the two systems. At the end
of each interaction, they had to express their level of trajectory acceptance according to the questionnaire of [126].

interaction is through a collision avoidance algorithm, which selects a collision-free
trajectory for delivering the component. The selected collision avoidance algorithm is
an implementation of previous work [153] to use a similar experiment design as [126].
This method relies on 3D cameras combined with the GPU-Voxels library to obtain a
voxel map with 0.02 m resolution for a detailed representation of workspace occu-
pancy. The robot collision model removes the manipulator from the voxel map and
computes the swept volume of planned trajectories. This allows real-time replanning
for collision-free trajectories during the interaction.

Therefore, using the nomenclature of Fig. 4.13, the users were initially given an
introduction to the system and had time to familiarize themselves with it by looking
at some videos between time t0 and t1. Then, the two interactions unfolded, and at
the end of each interaction, namely at times t2 and t3, they had to express their level
of trajectory acceptance according to the questionnaire of [126] and their level of task
decision autonomy according to the WDQ [75]. Additionally, during the interactions,
the executed robot trajectories and the position of the user’s hands were monitored and
saved for later analysis. Through this experiment, therefore, the following hypotheses
are tested. One concerns the level of acceptance, and the other regards the level of
safety. More specifically, the hypothesis can be stated as follows:

• Hypothesis 1 (H1) Users who are able to describe their trajectories feel a higher
level of acceptance

• Hypothesis 2 (H2) Higher level of acceptance leads to safer interactions

This section presents the experiments conducted to find answers to these questions.
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Figure 4.14: Results of the user evaluation for the trajectory demonstration. To the left, the level of task decision
autonomy was measured with the WDQ, and to the right, the level of trajectory acceptance was measured with the
questionnaire of [126]. The statistical significance of the results is displayed with asterisks. If no statistical significance
is found, ns is displayed.

4.5.3 Results

Having defined a method for users to create their trajectories using a spatial device
with corrected accuracy, a user study designed as mentioned above was conducted.
The user study aimed to identify the effects of user-defined trajectories on the users
compared to collision avoidance trajectories. More specifically, the acceptability of the
trajectory and its relative safety level are calculated through the CAS tool.

In the study, 12 users participated; however, two did not perform the test correctly,
so results from 10 users were analyzed M = 27.00 yrs, SD = 8.99, height M = 182.88
cm, SD = 11.61. This group was subdivided between robotic experts and novices, con-
sidering the results of the previous chapter. The first set of results regarded perceived
task decision autonomy and acceptance. These are shown in figure Fig. 4.14. As shown
from the figures, the level of autonomy is improved when operators can define their
trajectory. However, their level of acceptance is not. More specifically, the recorded
measures for the autonomy were M = 61.60%, SD = 11.40, and M = 78.20%, SD =
9.22 for the collision-free and self-defined trajectories, respectively. On the other hand,
the recorded levels of acceptance were M = 82.40%, SD = 10.03, M = 85.90%, and SD
= 13.95 for collision-free and self-defined trajectories, respectively. A Mann-Whitney
U test was applied to check statistical significance as long the t-test preconditions did
not hold, and the statistical difference was found just for the level of perceived task
decision autonomy.

The second set of measurements regarded the time taken during the task; the results
are presented in Fig. 4.15. According to the measurements made during the task, the
total time necessary to execute the task drastically reduced between the self-defined
trajectory and the collision-free motion. More specifically, the recorded timings were
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Figure 4.15: Time evaluations of the tasks. From left to right, the total time, the percentage of human idle time, the
percentage of robot idle time, and finally, the percentage of concurrent robot and human motions are shown. The
statistical significance of the results is displayed with asterisks. If no statistical significance is found, ns is displayed.

M = 563.00 s, SD = 198.00, M = 941.10 s, and SD = 400.60 for the collision-free
and self-defined trajectories. A Mann-Whitney U test was applied to check statistical
significance as long the t-test preconditions did not hold and a statistical difference was
found. Additionally, to the total time, the percentage of the total time falling into three
categories was measured as suggested by [126] to understand which percentages of
the time were used either for performing concurrent robot-human movements or for
idle times either for the robot or the human. Interestingly, the percentage of human
idle time increased in the self-defined trajectory. Thus, the robot’s idle time and the
concurrent motion decreased compared to the collision-free. More specifically, the
recorded values for the three measurements were as follows. Concerning the human
idle time, the recorded values were M = 11.25%, SD = 19.12, M = 29.03%, and SD =
26.01 for the collision-free and the self-defined trajectory, respectively. Concerning the
robot idle time, the recorded values were M = 47.63%, SD = 23.78, and M = 40.46%,
SD = 14.66 for the collision-free and the self-defined trajectory, respectively. Finally,
concerning the percentages of concurrent motions, the recorded values were as follows:
M = 41.12%, SD = 22.69, M = 30.50%, and SD = 23.43 for the collision-free and
the self-defined trajectory, respectively. A Mann-Whitney U test was applied to check
statistical significance as long the t-test preconditions did not hold, and a statistical
difference was found for the human idle time and the concurrent motion. Therefore, it
is possible to understand that in the case of self-defined trajectories, operators waited
for longer for the robot to execute motions, and they tended to move whenever the
robot was not moving.

The third set of measurements concerned the travel paths of the human operators
and the robot; the results are displayed in Fig. 4.16. Regarding the robot travel paths,
the values were M = 1.50 m, SD = 0.22, M = 1.23 m, and SD = 0.30 for the collision-
free and the self-defined trajectory, respectively. Regarding the human travel paths, the
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Figure 4.16: Results of the travel paths in the two scenarios. To the left comparison of robot travel paths. To the right
comparisons of the human travel paths. The statistical significance of the results is displayed with asterisks. If no
statistical significance is found, ns is displayed.
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(b) Distance human to EE
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Figure 4.17: Recorded levels of distances and safety areas for the two scenarios. To the left is the distance between
the human operator trunk and the robot base. The distance between the human operator’s hands and the robot EE
is in the middle. To the right is the recorded safety area. The statistical significance of the results is displayed with
asterisks. If no statistical significance is found, ns is displayed.

values were M = 4.95 m, SD = 1.10, M = 5.35 m, and SD = 2.30 for the collision-
free and the self-defined trajectory, respectively. A Mann-Whitney U test was applied
to check statistical significance as long the t-test preconditions did not hold, and a
statistical difference was found for the robot travel path but not for the human travel
path. Therefore, it is possible to understand that operators, when they could program
robot motions, preferred program motions that were shorter compared to the collision-
free ones.

The last set of evaluations regarded the distance between the human operators and
the robot and the level of safety measured in the safety area. The results for both
experts and non-experts are shown in Fig. 4.17. The recorded values regarding the
distance between the human trunk and the robot base were as follows. The collision-
free values were M = 1.42 m, SD = 0.24. For the self-defined trajectory, the values
were M = 1.29 m, SD = 0.15. The recorded values regarding the distance between
the human hands and the robot EE were as follows. The collision-free values were M
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(b) Novices

Figure 4.18: Results of the human operator’s trunk distances to the robot base. To the left are results for the experts,
and to the right are results for the novices. The statistical significance of the results is displayed with asterisks. If no
statistical significance is found, ns is displayed.

= 0.81 m, SD = 0.24. For the self-defined trajectory, the values were M = 0.71 m,
SD = 0.18. Regarding the safety area, the recorded areas were as follows. For the
collision-free, the values were M = 1.01 m2, SD = 0.13. For the self-defined trajectory,
the values were M = 1.02 m2, SD = 0.10. A Mann-Whitney U test was applied to check
statistical significance as long the t-test preconditions did not hold, and a statistical
difference was found for all three measures. Therefore, it is possible to understand
that operators, when able to define the robot trajectories, tended to stay closer to the
robot base. A similar result can be seen also in the distance between the human and
robot EE. Therefore, the level of safety decreased as long as the average recorded safety
area was larger than the one in the collision-free. However, considering the results of
Ch. 2, it is crucial to understand how different levels of expertise might have influenced
these factors.

Concerning the distances between the human operator trunk and the robot base,
the results are shown in Fig. 4.18. From these graphs, it is possible to see that the
possibility of creating self-trajectories had a different impact on the distance from the
robot base upon expertise level. The average values were M = 1.27 m, SD = 0.13, and
M = 1.44 m, SD = 0.24 for the self-trajectories and collision-free in novices. Differently,
the experts showed an opposite trend. The recorded values were as follows for the self-
trajectories and collision-free M = 1.34 m, SD = 0.19, and M = 1.26 m, SD = 0.13.
A Mann-Whitney U test was applied to check statistical significance as long the t-test
preconditions did not hold, and a statistical difference was found for both groups.
Therefore, it is possible to conclude that novices kept closer to the robot base than
experts whenever they could program their trajectory. On the contrary, experts stayed
closer to the robot base whenever the robot was performing collision-free motions.

Connected to these results is also the distance between the human operators’ hands
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(b) Novices

Figure 4.19: Results of the distances of human operators’ hands to the robot EE. To the left are results for the experts,
and to the right are results for the novices. The statistical significance of the results is displayed with asterisks. If no
statistical significance is found, ns is displayed.
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(b) Novices

Figure 4.20: Results of safety area in the collaborations divided by group. To the left are results for the experts, and to
the right are results for the novices. The statistical significance of the results is displayed with asterisks. If no statistical
significance is found, ns is displayed.

and the robot EE; the results are shown in Fig. 4.19. As expected, the results are similar
to the one above. The recorded values for the novices were as follows: M = 0.85 m,
SD = 0.23, and M = 0.75 m, SD = 0.17, respectively, for the collision-free and the self-
defined trajectories. The recorded values for the experts were as follows: M = 0.62 m,
SD = 0.15, M = 0.66 m, and SD = 0.19, respectively, for the collision-free and the self-
defined trajectories. A Mann-Whitney U test was applied to check statistical significance
as long the t-test preconditions did not hold, and a statistical difference was found for
both groups. Therefore, experts stayed closer to the robot when performing collision-
free motions, like in the previous findings. In contrast, novices tended to stay closer
when the robot performed self-defined trajectories.

This experiment’s last set of results is the recorded safety area; the results divided
upon expertise group are shown in Fig. 4.20. Similarly to the results above, the dif-
ferent groups influenced the safety area. For the experts, the recorded values were M
= 1.02 m2, SD = 0.13, and M = 0.99 m2, SD = 0.11, respectively, for the collision-
free and the self-defined trajectories. For the novices, the results for the collisions-free
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and self-defined trajectories were M = 1.02 m2, SD = 0.14, and M = 1.04 m2, SD
= 0.09, respectively. Therefore, it is possible to understand that experts could define
trajectories with smaller safety areas than novices.

Discussions

This study highlighted how allowing operators to define their trajectories can influence
the level of collaboration between operators and robots. To understand the changes
of such collaboration, this study tried to analyze and compare the differences with a
state-of-the-art collision avoidance algorithm.

Firstly, similar to the findings in Ch. 2, allowing users to define their trajectories
allows them to perceive a higher level of task decision autonomy when compared to
collision-free ones. Unfortunately, this level of higher decision autonomy did not in-
fluence the trajectory acceptance as previously found by [126]. Thus, the level of
trajectory acceptance was found to be high for the self-defined and collision-free tra-
jectories. Thus partially confirming H1. Interestingly, this level of decision autonomy
changed the type of collaboration. In terms of total time, users needed more time to
complete the task during the self-defined trajectories. A more detailed analysis revealed
that humans spent more time idle in such cases and reduced the levels of concurrent
motion with the robot. This result is interesting considering that, on average, users
programmed trajectories shorter than the collision-free ones as shown from the robot
travel path. Therefore, in the case of self-defined trajectories, users waited more for
the robot to perform actions.

However, an exciting result is when outcomes of behaviors in the two types of tra-
jectories upon expertise are analyzed. In the results, it is possible to see that experts
and novices programmed trajectories differently. In the case of experts, the trajectories
were programmed to result in a higher distance between the robot EE and the human
hands when compared with collision-free ones, probably due to the more considerable
distance to the robot base. In the case of novices, an opposite trend can be observed.
Trajectories in the self-defined case were programmed to result in a closer distance to
the human hands than the collision-free ones, also probably due to the closer distance
of the human to the robot base. Therefore, considering the findings of [79, 80] and
Ch. 2, it is possible to infer that experts tried to optimize for joint task efficiency in case
of collision-free motions as long they moved closer to the robot in this kind of collab-
oration. However, novices showed an opposite trend trying to optimize the joint task
efficiency in the case of self-defined trajectories. Due to these different optimization
levels, direct influences on the required safety area are thus observed. Experts reduced
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Figure 4.21: Results of the accuracy of the spatial sensor with the proposed method. The statistical significance of
the results is displayed with asterisks. If no statistical significance is found, ns is displayed.

the safety area in the collision-free movement, while novices reduced their safety area
in the self-defined trajectories.

Aside from the in-group differences, it is also interesting to see the comparison
between the different expertise groups. The analysis shows that experts ended up in
situations where the safety area was, on average, smaller than novices. However, they
also kept a closer distance to the robot when compared to novices. Therefore, despite
both groups being in safe collaborations, experts tended to program the robot in a way
that the safety braking parameters of individual joints were in a more optimal area of
operation [154] compared to novices, leading to slightly smaller safety areas despite
their closeness to the robot.

Considering these results, therefore, when allowing users to personalize the tra-
jectories, their background must be considered to provide the best workspace that fits
their requirements. For example, experts could benefit from a smaller workspace to
reduce the travel paths of the users. However, further investigations with a larger user
sample size might be needed to understand how this optimization could change with
more repetitions, as it could be expected that both groups might evolve their interac-
tion strategies.

Aside from the results obtained from the user study, to ensure that the study was
correctly designed, a further analysis of the accuracy of the spatial sensor with the
proposed correction algorithm was performed. The results of this study are shown
in Fig. 4.21. The analysis shows that the proposed method improves the translation
accuracy while keeping the rotation accuracy unchanged but still at a good level. More
precisely, for the translation, the proposed method reports M = 2.5 ×10−3 m, SD = 1.3
×10−3 whereas the raw data from the spatial sensor with a single calibration point (i.e.,
raw) reports M = 7.2 ×10−3 m, SD = 3.4 ×10−3. Additionally the euclidean distance
infinity norms are ∥x∥∞ = 1.40 × 10−2 m and ∥x∥∞ = 4.3 × 10−3 m for the raw and
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Table 4.1: Average deviation of simulated robot properties to actual measured values, the table reports the average
change in degree and its standard deviation. The deviation of joint angles is on the line above. On the bottom line is
the deviation of joint speeds.

Joint J3 J2 J1 J4 J5 J6

deg ×10−3 49 ± 7 -34 ± 4 35 ± 3 119 ± 4 -46 ± 3 -9 ± 3
deg/s ×10−3 -3 ± 2 -1 ± 1 0 ± 1 0 ± 1 1 ± 1 -1 ± 1

the proposed method respectively. A t-test reported statistical significance. Therefore,
it is possible to conclude that the proposed method can reduce the translation error
of the spatial device. In the case of angular accuracy, an improvement could not be
measured, and the two populations should be considered similar. However, the error
is relatively small. Therefore, no major influences were recorded during the study as
long the raw method reported M = 4.6 ×10−3 rad, SD = 2.5 ×10−3 and the proposed
method reported M = 5.5 ×10−3 rad, SD = 2.3 ×10−3.

An additional evaluation was done on the CAS simulator by comparing the simu-
lated joint angles with the real ones in various motions. The results are reported in
4.1. As the table shows, the average deviation of the simulated values compared to
the actual measured values is very insignificant. For the angle comparison, the maxi-
mum average difference is 0.119°. This results in a maximum simulation difference of
0.79%. Therefore, similar to the evaluation of the spatial sensor calibration, the sim-
ulator behaved as expected. Therefore, no significant limitations to the study besides
the small user sample size are identified.

4.6 Conclusions

Summary

Through this chapter, this work wanted to discover further impacts given by intuitive
programming interfaces. More specifically, this section tackled Challenge 2 (intuitive
programming interfaces that simplify safety assessments) by proposing and studying
the impacts of a method for defining robotic trajectories via a spatial interaction.

To study these impacts, the chapter started with an overview of the state of the art
and identified the main challenges in the field. During this literature review, it was
discovered that few examples exist regarding how operator-defined trajectories could
influence human-robot collaboration, especially regarding safety. Therefore, the chap-
ter proceeded with an overview of some preliminaries allowing users to define their
safe trajectories. Initially, a new EE design was proposed. Such design was necessary
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as the literature did not have any example of an EE that could be adapted to different
grasping tasks while satisfying requirements for evaluating safe trajectories like robot
operating speeds. Therefore, with this design, safe robot operating speeds for a recon-
figurable EE were identified. Second, the precision of the selected spatial sensor was
measured to identify if the sensor could be used for recording trajectories. Potential in-
accuracies were observed during this step when the spatial sensor was moved far away
from the calibration point as errors up to 1.40×10−2 m were measured. Third, the level
of usability of trajectory recording via the spatial sensor was measured, which yielded
a usability score of 77.5% when measured with the SUS. Next, with this data from the
preliminaries, a method for defining trajectories based on an algorithm to improve the
accuracy of the spatial sensor was presented alongside a study to identify the relations
between robotic expertise and safety levels.

The method proposed for recording trajectories was more accurate, with spatial
sensor errors decreasing to a maximum value of 4.3× 10−3 m. Additionally, using the
proposed method exhibited high decision autonomy from the users, averaging 78.20%
when measured with WDQ. Then, when comparing robotics experts and novices, it was
observed that novices tended to create trajectories having a higher distance between
humans and the robot EE, with an average distance of 0.75 m. In contrast, experts cre-
ated trajectories with an average distance of 0.66 m. Despite these differences, novices
maintained a closer distance from the robot base than experts during the execution of
such trajectories, averaging a distance of 1.27 m for novices and 1.34 m for experts.
This behavior directly influenced safety in the case of self-defined trajectories, as the
safety area was smaller for experts, with an average value of 0.99 m2 than for novices,
with an average value of 1.02 m2.

Discussions and Future Work

In this study, the effects of allowing users to define their trajectory on the safety level
of the application were presented. According to the conducted studies, allowing users
to define their trajectories can be done, and the method of the spatial sensor provided
is a promising approach that could lead to a high level of usability. However, the level
of safety can be strongly impacted by how the trajectory is defined. First, if a robot
can move freely without a safety cage, safety tests on the hazardous robot areas must
be done as clarified with the robot EE. Second, the robot’s trajectories must be verified
with additional software like Computer Aided Safety to ensure that the selected safety
sensor can stop the robot in time. In this latter point, different levels of robot expertise
require different types of collaboration to ensure safe interactions. The study with ten
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individuals identified that robot experts define trajectories with smaller safety areas
than novices while being closer to the robot. Nevertheless, the in-group comparison
identifies that experts optimized the joint-task efficiency in the collision-free scenario.
In contrast, novices optimized the joint-task efficiency in the self-defined trajectories
scenario.

However, despite these differences, the methods presented here allow SMEs to al-
low users to create their trajectories and conduct safety evaluations with an easy-to-use
method based on spatial interaction, thus providing an intuitive programming method
that embeds safety evaluations and answers positively to the aforementioned challenge.
Nevertheless, future work should consider how to design the collaborative workspace
based on user background due to different trajectory requirements to ensure high levels
of acceptability while guaranteeing safe collaboration. Additionally, future work could
guide users on which areas are best suited for programming safe trajectories to guaran-
tee users a high level of autonomy while not jeopardizing their safety and simplifying
the safety analysis.
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To ensure the adoption of the proposed methods for successfully addressing the
needs of SMEs, however, all the components in the previous chapters must fit well
together, considering the common practices and standards in the industry. Therefore,
this section presents how user-defined cobot behaviors can be integrated into manufac-
turing SMEs processes. This section describes how a simple modeling language can be
used for robot programming and safety risk assessments. The content of this chapter is
partially based on the following publications:

• Pantano, M., Eiband, T., and Lee, D., "Capability-based Frameworks for Indus-
trial Robot Skills: a Survey," 2022, 18th International Conference on Automation
Science and Engineering (CASE).
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• Pantano, M., Pavlovskyi, Y., Schulenburg, E., Traganos, K., Ahmadi, S., Regulin,
D., Lee, D., and Saenz, J., "Novel Approach using Risk Analysis Component to
Continuously Update Collaborative Robotics Applications in the Smart, Connected
Factory Model," 2022, Applied Sciences, Volume 12.

To present the content of this chapter, the structure is as follows. Initially, a detailed
literature review regarding a common terminology for describing robotic capabilities is
presented. Next, a method of how this terminology can be used for simplifying the risk
analysis together with a common Business Process Model Notation (BPMN) is outlined.
Finally, the results of a user test to evaluate the acceptability of this method based on
standard terminology for robot programming are outlined.

5.1 Definition of a Common Terminology

For integrating user-defined cobot behaviors, standardization is needed on how differ-
ent user-defined robot behaviors can be interpreted. This need is driven by the fact
that SMEs might need to change robot programs often due to heterogeneous product
variants. Therefore, it is essential to understand how user-defined behaviors can be
interpreted and executed by the control algorithms of several robot brands. In other
words, considering some fundamental concepts of Industry 4.0 (I4.0), it is necessary to
define generalized robot capabilities that can be employed to execute user-defined be-
haviors. Capabilities are defined by I4.0 as "implementation-independent specification
of a manufacturing function to accomplish a virtual or physical effect" [155]. There-
fore, if users are defining robot behaviors, for their execution, the robot must have
capabilities that fulfill the user behavior definition. In other words, if the user shows
that the robot should reach one position, the robot must be able to move to a defined
position, which should be robot control-independent. However, despite the concept
being pretty trivial, the literature on robotics capabilities is diverse, and several defini-
tions and nomenclatures have been proposed [156]. Therefore, recent literature needs
to be reviewed to understand how robot capabilities are defined [157].

5.1.1 State-of-the-art Survey

As mentioned in the introduction, the literature regarding robot capabilities is various.
Therefore, to shed light on the topic, a structured literature review (SLR) [158] is
conducted to assess the main topics of capabilities and robots. The main goals of this
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review are to find the most common nomenclatures used in robotics for describing
capabilities, which are the most requested for industrial scenarios, and how those are
implemented. SLR is selected as long it is a reliable approach to summarize a specific
research field that can be well documented, and it is known to reduce the impact of
researchers’ bias in the review [159].

Background, Nomenclature and Research Method

A structured method with well-defined boundaries and data collection procedures must
be set to implement an SLR. Therefore, as long as this research wants to find the most
common nomenclature used, reviewing a few concepts related to capability engineer-
ing and how those can influence the robotics field is crucial. As initially mentioned,
capability-based engineering envisions the production of goods by matching the re-
quired capability to manufacture a specific good with machines able to satisfy the pro-
duction needs. To allow this linking between product manufacturing requirements and
available machines, the concept of Product Process and Resources (PPR) was thus in-
troduced [160]. PPR is a modeling approach that defines relations between products,
the necessary resources (e.g., machines), and the process value chain. Therefore, it
has been widely adopted by several Product Lifecycle Management (PLM) systems but
not by robotics [156] as long the research community preferred the usage of other def-
initions as the IEEE 1872 Cora Ontology [161, 162]. Thus, a standard nomenclature
that fits PPR and robotics must be set to allow an SLR. Unfortunately, no proposal is
available in the literature; hence, one based on both terms from PPR and the robotics
Factories of the Future (FoF) ontology [163] is proposed. Similar to PPR, the nomen-
clature has a hierarchical structure representing the necessary entities for production
steps. However, additions to integrate robotics capabilities are done. A representation
of this hierarchical nomenclature is shown in Fig. 5.1. The structure, using a top-down
representation, can be explained as follows. First Task, this entity represents a complex
manufacturing step that is part of a manufactured good value chain. Therefore, the
good increases its value once a Task is performed. An example of a Task is the assembly
of a gearbox. Thus, referring to PPR, a Task is intended as Process. Second Parameter-
ized skill, this entity represents a detailed step within a Task for achieving a specific goal
needed along the value chain creation. The information in this entity is used by one
or more Resource (e.g., machine) for actuating actions needed to fulfill a goal. Thus,
Parameterized skill can be seen as implementation-dependent Skill. With this consid-
eration, then, Skill is an implementation-independent specification of a manufacturing
function, and it is an aggregation of simple functions denoted as Primitive with specific
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Figure 5.1: Schema of the hierarchical nomenclature describing capability-based frameworks in robotics. The scheme
is obtained by merging nomenclature from Product Process Resource (PPR) [160] and robotics FoF ontology [163].

Parameter. To conclude, Skill are part of a Skill group, allowing easier search within
different manufacturing functions. For clarity, an example of how to use this nomen-
clature is reported here. The example is also shown in Fig. 5.2. A transmission gearbox
needs to be automatically assembled. Therefore, an operator creates a new Process
and assigns different robotic Skills for its assembly by selecting them from several Skill
group. Then, the operator populates Parameters via some user-defined behaviors, and
Parameterized skill for a specific robot is automatically created considering the robot
selected as Resource. Finally, the robot executes the Task by using Primitive and the
assigned parameters. Once the research questions and the nomenclature used for the
literature classification are defined, the next step in the SLR is to define the inclusion
and exclusion criteria. Regarding inclusion, the research considered robotics applica-
tions, defined as using robotic skills to allow the robot to face altering environments
and connect to industrial scenarios. The paper had to be listed in the Scopus database.
Other databases like Web of Science and ISI Web of Knowledge were discarded as long
they did not provide additional results. Regarding exclusions, any research discussing
the human skills necessary to program a robot was discarded as long as this review
wants to highlight how capability-based engineering is integrated into robotics. Fi-
nally, the classification of the research results was defined. As initially mentioned by
the research questions, this review aims to assess the most common nomenclatures
for robot capabilities, which are the most studied, and how they are implemented. To
answer these questions, the terminology previously defined was used to organize the
nomenclature used by the literature identified with the inclusion and exclusion criteria
and the implementation framework.

5.1.2 Results and Discussions

Having defined the research method, the Scopus database was queried on 6 October
2021, and the database obtained 210 results for a time frame between 2014 and the
query date. This time frame was selected because, with a larger time frame, no addi-
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tional relevant literature was identified. Then, the papers were analyzed by reading
the title and abstract, and according to the exclusion criteria, 149 works were dis-
carded. The remaining 61 papers were thoroughly analyzed and classified according
to the research method. An additional 27 papers were included in the analysis, as they
contained references to the preliminary work of some of the authors whose papers
were already included in the set. Through the classification, it was identified that the
terminologies related to regarding Skill, Process, and Primitive as shown from Fig. 5.3
are the most used. More precisely, the literature showed that 79 out of 88 employ
concepts similar to Skill, 65 out of 88 use concepts similar to Process, and 49 out of
88 use concepts similar to Primitive. However, the naming given to these three classes
varies across researchers. In particular, researchers often call Skill as Skill (39 out of 79
works), Process as a task (35 out of 65) but rarely Primitive as primitive (12 out of 49
works). Therefore, to ensure a common understanding of PPR in the robotics domain,
the word task should describe a Process, and the usage of the word primitive should be
well explained. Regarding all the other classes, they were found less relevant, with Skill
group used only by 14 out of 88, Parameterized skill 17 out of 88, and Parameter 39 out
of 88 works. Additionally, the classification yielded that the most common Process type
is assembly (4 out of 49), and the most common Skill types are pick (10 out of 79) and
place (7 out of 79). The most frequent Primitive type is open gripper (10 out of 49) as
shown in Fig. 5.4. Regarding implementation, the reviewed literature reported various
frameworks. However, of the works that reported on implementation (39 out of 88),
the most common one was the Robot Operating System (ROS) [165] (9 out of 39).

Therefore, considering that the research specifically targeted manufacturing use
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Figure 5.2: Usage example of the hierarchical framework for Process transmission gearbox assembly. The Process
is an ensemble of several Parameterized skill containing Primitive. Parameterized skill are generated by general Skill,
which have specific parameters for determined resources (i.e., robot). Reprinted from Capability-based Frameworks
for Industrial Robot Skills: a Survey, International Conference on Automation Science and Engineering, Pantano M. et
al. [164], Copyright (2022), with permission from IEEE.
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a) Process b) Skill c) Primitive© 2022 IEEE

Figure 5.3: Wordcloud representing the frequency of appearance of words used to describe Process (a), Skill (b),
and Primitive (c) in the reviewed literature. The bigger the word, the more frequent. Reprinted from Capability-based
Frameworks for Industrial Robot Skills: a Survey, International Conference on Automation Science and Engineering,
Pantano M. et al. [164], Copyright (2022), with permission from IEEE.
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Figure 5.4: Worldcloud is used to represent the frequency of Process (a), Skill (b), and Primitive (c) types in the
reviewed literature. The bigger the word, the more frequent.Reprinted from Capability-based Frameworks for Industrial
Robot Skills: a Survey, International Conference on Automation Science and Engineering, Pantano M. et al. [164],
Copyright (2022), with permission from IEEE.

cases, it is possible to conclude that for industrial scenarios, pick and place operations
skills should be integrated for targeting assembly processes and that ROS is an accepted
framework. Henceforth, when proposing a programming tool for industrial SMEs, it is
essential to support pick-and-place applications that use the ROS framework.

5.2 Safety for Industrial Scenarios with a Common Terminology

As previous chapters show, safety can be integrated with cobots and user-defined be-
haviors. However, following the safety procedure outlined by ISO 12100:2010 [16],
the risk assessment process is iterative, and documentation must be provided before
any cobot application rollout. This applies also to any change performed after the ini-
tial commissioning [138]. Having identified that the most investigated capabilities for
industrial scenarios are pick and place, there is now a need to investigate how pick and
place operations can be described so the safety procedure according to ISO 12100 can
be efficiently integrated, avoiding the usage of paper and pencil approaches, which can
be hard to edit and review.
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5.2.1 Motivation and Related Works

The risk assessment of any cobot operation comprises two parts: the risk analysis,
where possible hazards are identified, and the risk evaluation, where the hazard sever-
ity and probability of occurrence are evaluated. Thus, the risk assessment process
involves identifying potential hazards, proposing mitigation measures, and then re-
peating the assessment to ensure that the measures effectively reduce risk and is a
continuous, cyclical process that can be seen as dull and time-consuming [166]. Novel
research has proposed automated methods to reduce the number of steps, like in [167].
Other works focus on empowering non-safety experts to conduct a risk assessment, like
in [168]. However, to the author’s knowledge, the presented work has yet to give spe-
cific solutions for pick and place while allowing frequent changes given by user-defined
behaviors. Therefore, this section describes a novel software tool employing a stan-
dard modeling approach for allowing the risk assessment review for frequent changes
in cobot behavior in industrial pick and place.

5.2.2 Risk Analysis for Frequent Changes Based on BPMN

The software tool needs a shared description across process changes to allow docu-
mentation across different risk assessment iterations. The approach presented here is
grounded in describing the human-cobot operations to satisfy this requirement. Such
description follows the common terminology identified in Sec. 5.1 as a considerable
share of the research community adopts it. However, it is integrated with a standard-
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Figure 5.6: Screenshot of the review tab of the risk analysis tool. To the left, all the Primitive are shown, and if reviews
are necessary to change, a pink text is displayed. To the right, the tab to assess the risk level and propose mitigations
for each Primitive is shown. In the tab, hazards are selected and rated based on severity and probability of occurrence.

ized machine-readable modeling language to allow interaction with a software tool.
The Business Process Model and Notation (BPMN) is thus selected. The selection is
driven by the fact that BPMN is a modeling language that can also be used for the
execution of processes [169], it can be easily used to bridge between business and
manufacturing [170] and has a standardized Extensible Markup Language (XML) in-
terpretation. Furthermore, research presented in [171–173] showed how BPMN could
be adapted to human-cobot collaborations. However, the modeling notation, in this
case, requires several communication messages to synchronize humans and robots,
which adds unneeded complexity to the modeling. This is because different pools are
associated with each actor, requiring precise timing of actions. In order to simplify
these complexities, the proposed modeling approach uses single pools to represent a
Process with swim lanes associated with a Resource. Then, logical gates with merge
points divide the work among different Resource. Finally, each action of a Resource is
represented by an activity that symbolizes a Primitive with connected data objects as
Parameter. An example of a human-cobot Process using this interaction is shown in
Fig. 5.5. With this modeling method with XML representation, the risk analysis tool
can interpret the Process and its changes. More specifically, the risk analysis tool needs
to be used in designing and adapting cobot applications, and it is meant to guide a user
to review relevant changes. To do so, the risk analysis software component parses the
BPMN XML description with its parameters first. Then, it guides the safety reviewer to
check all the process steps (i.e., Primitive), and the risk analysis tool asks to assign haz-
ards and hazard levels considering the probability of occurrence and severity. To sim-
plify the steps, hazards can be selected from a drop-down list containing HRC-related



5.2 Safety for Industrial Scenarios with a Common Terminology 103

risks from Annex A of ISO 10218-2. Through this level of granularity, which considers
different robot motions and their interaction with the environment, it is thus possible
for the safety expert to consider hazard levels as long each Primitive has information
about robot speed, movement type and involved Resource. Once the review process is
finished, the safety expert can approve or not the Process. If the changes to the Process
appear along the way, the risk analysis uses the unique identification numbers of the
BPMN XML description to highlight modifications requiring a review. An example of
these steps is shown in Fig. 5.6. Thus, with this tool, it is easier to avoid omission errors
as long the Process is well documented and the tool prompts the reviewer to check all
the changes.

5.2.3 Results and Discussions

Having the concept of the risk analysis tool, its efficacy has to be evaluated when com-
pared with legacy tools based on an Excel spreadsheet designed in Visual Basic for
Applications (VBA) as long it is a standard tool used in Siemens factories. Therefore,
a user study is conceived. The study aims to measure if the risk analysis tool can ef-
fectively reduce omission errors in a scenario where a change to an existing process
must be made. Therefore, a use case concerning manufacturing a medical gearbox,
often subjected to changes due to its small batch production, is selected. In this situ-
ation, the users are requested to change the specification of a component and the EE
used for the assembly. With these changes, the collision surfaces increased; therefore,
the hazard severity had to be reduced along with the mitigation measures. A within-
subject study design was performed to conduct the study and compare the tools. In the
experiment, eight users participated and interacted with the two systems to achieve
the desired modification with a balanced, randomized order. After each interaction,
the users rated tool usability with SUS. Additionally, the performance in completing
the tasks was recorded. Namely, true positives, false positives, and false positives were
monitored. The experiment results with statistical significance are shown in Fig. 5.7.
By analyzing the results, it is possible to perceive that the proposed software tool can
diminish errors (i.e., false positives) and omissions (i.e., false negatives) while main-
taining the same accuracy as the legacy tool (i.e., true positives) with higher usability.
More specifically, for the false negative rates, the measured error rates were M = 0.0%,
SD = 0.0 for the proposed method, and M = 19.0%, SD = 17.0 for the legacy tool.
For the false positive rates, the measured error rates were M = 43.0% SD = 44.0 for
the proposed method and M = 3.0% SD = 5.0 for the legacy tool. For the true positive
rates, the measured rates were M = 56.87%, SD = 44.79 for the proposed method, and
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Figure 5.7: Outcomes of the user test. The statistical significance of the results is displayed with asterisks. If no
statistical significance is found, ns is displayed. The evaluation shows that the risk analysis tool can reduce the
number of false negatives (i.e., omissions) and false positives (i.e., errors). Reprinted from Novel Approach using Risk
Analysis Component to Continuously Update Collaborative Robotics Applications in the Smart, Connected Factory
Model, Pantano M. et al. [174], Copyright (2022).

M = 77.14%, SD = 15.72 for the legacy tool. For usability using SUS, the proposed
tool scored M = 65.0%, SD = 18.32, and the legacy tool scored M = 35.0%, SD =
16.03. A Welch’s t-test was conducted after ensuring preconditions to the test. The test
yielded statistical significance for usability, false positive rate, and false negative rate
but not for the true positive rate.

Considering this data, it is possible to conclude that using a model-based BPMN
flow description with the defined common terminology to guide users in reviewing and
performing the safety analysis is beneficial as it can reduce the number of omissions
and be accepted by a broad user pool. However, further work is required to improve
the false positive and true positive rates. Once these have been solved, the barrier of
entry for performing risk analysis with frequent changes may be reduced as the tool
ensures that all the data is inserted into the tool while reviewing a safety assessment.

5.3 User Acceptance of a Model-based Programming

With a well-defined concept for modeling human cobot workflows that can be used for
risk analysis, the last step is to allow the integration of user-defined cobot behaviors
and monitor the level of acceptance and usability.

5.3.1 Motivation and Related Works

As pointed out in the introduction, cobot programming is one of the barriers that influ-
ence the acceptance of the cobot design. More precisely, applications in SMEs require
cobots that can sense the environment and adapt to its changes [35]. A comprehensive
review of cobot programming for industrial tasks is already presented in [30]. How-
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ever, in this section, it is essential to consider robot programming technologies that
can be applied to different robot brands with Generic Robot Programming (GRP). In
GRP, robot programming is done in a programming language or model that is robot-
independent; thus, the same program can be executed by different robot brands [175].
However, to allow integration of GRP, a robot must be enabled with skills that can be
parameterized, as also identified in Sec. 5.1. Therefore, "low-level drivers," which spec-
ify how a robot should interpret each skill, must be integrated. Common examples of
GRP usage are in commercial and open source tools like RAZER [176], Collaborative
Programming in programming by demonstration [136], Assembly [175] or ArtiMinds1.
The user is presented with an intuitive interface to program robot motions decoupled
from the robot programming language in these tools. Thus, the user selects robot
skills and parameterizes them by LfD or simulator. Then, the generalized program is
translated into robot execution through appropriate drivers. However, to the author’s
knowledge, none of the tools allow the user to integrate additional information in the
programming, like sensors’ data or human-robot collaboration sequences. Thus, an ex-
tension of GRP, which also considers possible additional steps, has been integrated with
ADAPT [171–173]. In this work, the authors argue that workflow-based programming
based on BPMN can create more complex flows that integrate external information. Ad-
ditionally, robot code can be generated using the standardized BPMN format. However,
they need to show if this approach is as usable as the GRP ones. Therefore, although
the BPMN approach helps to model complex interactions, usability studies still need to
be performed. Therefore, there is a need to investigate if GRP based on BPMN can be
as usable as other GRP programming techniques.

5.3.2 Programming through a Business Notation

As highlighted in Sec. 5.2, the modeling approach for describing human-robot collab-
oration workflows is based on a BPMN description. Such workflow contains informa-
tion regarding Process, Resource, Parametrized skill, Primitive, and Parameter using the
BPMN constructs of the pool, swim lane, group artifacts, actions, and data objects.
Therefore, three crucial steps exist to allow the programming of robot behaviors for
GRP. First is the workflow description. Second, the population of parameter values is
connected to each action. Third, the execution of the robotic hardware. This section
describes the adopted approach on the three levels.

1https://www.artiminds.com (accessed on 12/12/2022)
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Workflow Description

As highlighted before, a unique BPMN pool contains the workflow describing one pro-
cess. Therefore, each action is allocated in separate swim lanes depending on the actor
that should execute it. To connect between different actions, a non-robotic expert needs
to select and connect directional arrows between them to outline the actions’ order.
However, following the BPMN standard, actions added by a user can be countless and
cannot be easily related to robot operations. Additionally, such actions might not have
the correct level of granularity, considering that the modeling approach requires each
action to be a Primitive. To overcome these limitations and hurdles, an action library
describing a limited set of Primitive is introduced. By having this library, users are then
prompted to select a limited set of actions when describing the workflow. However, a
similar set of actions as described by [173] has been selected to ensure that users can
express any modeling need. Therefore, actions available in the library are Primitive
extracted from the Methods Time and Measurement (MTM) [177] and the Robot Time
and Motion (RTM) [178] systems. This selection was made as long as MTM and RTM
are well adopted in the industrial domain to calculate the performance of robot and
human movements. More precisely, considering that the review performed in Sec. 5.1
highlighted that the most investigated operations are pick and place, the set of Primi-
tive available in the library are Move, Reach, Grasp, and Release. Where Move stands
for motions in the free space not close to objects, Reach stands for robot motions close
to physical objects. Moreover, Grasp and Release are for actuating the EE. Through this
library, users have all the necessary building blocks for creating pick-and-place scenar-
ios. However, decision points had to be integrated to describe complex flows. In this
regard, the logical gates of AND and OR from the BPMN standard are available to the
user. Using these, the user can model parallel executions or decision points with if-else
statements.

Workflow Parametrization

However, to allow the execution of a workflow, the defined Primitive with logical gates
need parameters either describing positions or trajectories that the robot has to reach
or follow. Data artifacts with data object references are used to embed this information
in the workflow. Therefore, parameters expressed as data artifacts are connected via
references to the Primitive. More specifically, the Reach is connected to the object po-
sition location, whereas Move is connected to a trajectory to be executed. In this way,
the user must specify the target object and trajectory for the execution. A 6D object
pose detector and grasp selection are used through a camera system as described in the
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Figure 5.8: Example of workflow parametrization using a vision sensor and trajectory teaching. When the workflow
starts, the camera detects the housing and saves it in a parameter while the operator teaches a trajectory. Once
these steps are done, the robot reaches the housing, grasps it, and then moves it, following the trajectory saved by
the operator.

methods of Sec. 3 to obtain position information. Therefore, to consider different parts
locations, an additional Primitive Detection is added for a camera resource. The path
is recorded and saved to obtain trajectory information using the methods explained
in Sec. 4. Therefore, to consider teaching different trajectories, an additional Primi-
tive Teach trajectory is added to the operator resource. An example of this modeling
approach is shown in Fig. 5.8.

Workflow Execution

Once the workflow has been parameterized, it is time to execute it. As long the work-
flow is based on BPMN, the BPMN execution semantic is thus exploited. However,
considering that the Process might have multiple actors, it is mandatory to connect
the execution semantics to a common communication framework that can exchange
information between robotic systems and environment (e.g., camera, HMI). The ar-
chitecture proposed in the Smart Human-Oriented Platform for Connected Factories
(SHOP4CF) has been adopted for this scope. The architecture in SHOP4CF defines
that software components can be used to address manufacturing tasks, which can be
used on global or local tasks [179]. Global means that components deal with infor-
mation between different manufacturing cells, and local means that components deal
with information for a single manufacturing cell. A schematic representation of this
architecture is shown in Fig. 5.9. In this design, the local layer is the most important
because the presented workflow execution deals with processes within a single manu-
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Figure 5.9: Architecture for software components developed in SHOP4CF. The system design comprises two primary
layers: local and global. The local layer encompasses components dedicated to handling data from individual work
cells, while the global layer includes components responsible for managing data across multiple work cells. Reprinted
from Deliverable 3.2 SHOP4CF Zimniewicz M. et al. [179], Copyright (2020).

facturing cell. In this layer, the SHOP4CF architecture defines manufacturing processes
as being subdivided into several sub-steps known as tasks. Each Task is assigned to an
agent in charge of its execution. However, considering that there might be different
agents with different software components on a shopfloor, the SHOP4CF architecture
defines a standard data model for communicating Task information across agents and
components [180]. The data model is displayed in Fig. 5.10. An agnostic middle-
ware, Fiware, is selected to implement this data model. Fiware is a standard-based
open-source Internet of Things (IoT) platform [181]. The platform uses a common
communication channel to exchange information using standardized data models. The
communication pattern follows the publisher/subscriber paradigm. Therefore, data en-
tities, expressed through the NGSI-LD format, are published on a Context Broker (CB)
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Figure 5.10: Data model used in SHOP4CF. The data model defines entities for the execution on the bottom layer
and the specification on the top layer. Reprinted from Deliverable 3.3 SHOP4CF Zimniewicz M. et al. [179], Copyright
(2021).
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through a simple Representational State Transfer Application Programming Interface
(REST API), and each agent with CB access can read and write the information. Using
the Fiware platform, data entities reflecting the SHOP4CF data model can be published
and subscribed. Among the different entities defined in SHOP4CF, the most relevant
to the workflow execution is the Task. As previously defined, a task is a substep in a
manufacturing process. Therefore, considering the results of Sec. 5.1, it can be iden-
tified as Primitive. Interacting actors to communicate via Tasks makes it possible to
integrate a workflow execution. Task in the SHOP4CF data model are NGSI-LD en-
tities containing information regarding the manufacturing substep, and they can be
grouped into four main classes. First, a unique id identifying the Task in the CB and a
reference to the activity id of a BPMN workflow. Second is a set of involved agents re-
sponsible for executing the Task. Third, work and output parameters are given before
or after the task execution—finally, a status parameter describing the task progress.
Therefore, once Tasks are published on a CB, they can be queried by different actors,
and orchestration among several agents can be achieved. More specifically, the status
parameter is designed to contain different values: pending, assigned, inProgress, com-
pleted, paused, and failed. Therefore, by reading this parameter, it is possible to know
the Task progress and allow the workflow execution. However, for its implementation,
Task orchestration software has been added. In this case, the Camunda BPMN exe-
cution engine, known as the Camunda platform, is selected. The Camunda platform
allows the execution of a BPMN flow and works on the principle of a moving token.
More precisely, whenever the token reaches an activity, a signal to start its execution
is sent, a Task is published on the CB with a status equal to pending, and the BPMN
execution is halted. Afterward, agents read the Task content from the CB and iden-
tify if it involves them. If yes, they start the Task execution and change the status to
inProgress. Next, once the Task is completed or failed, the status is updated to its re-
spective state. This way, the Camunda platform can resume the BPMN execution once
the Task status changes, and the token can move to a new Task. For clarity, this process
is shown through the pseudo-code in Algorithm 1. Using this paradigm based on a Task
published in a CB and monitored by the Camunda platform, the execution of a BPMN
workflow can be simply integrated.

Execution on Robotic Hardware

Once a BPMN task workflow has been created, the last step is to allow the execution
of Primitive on robotic hardware. As highlighted previously, the goal is that different
robotic platforms can be used for the execution. Therefore, hardware independence
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Algorithm 1 Execution of a workflow

1: Initialize a token T to represent the progress in the BPMN flow
2: while T is not at the end of the BPMN flow do
3: if T reaches an activity then
4: Send a signal to start the execution of the activity
5: Publish a Task τ on the CB with status set to ’pending’
6: Halt the BPMN execution
7: Agents read Tasks from the CB
8: if τ involves the agent and status is set to ’pending’ then
9: Start executing τ

10: Change the τ status to ’inProgress’
11: Wait for τ to be completed or failed
12: Change the τ status to either ’completed’ or ’failed’
13: Resume the BPMN execution

is necessary. To solve this issue, a software-based abstraction method is selected. The
main scope of this software generalization is to allow the parametrization of robotic
actions with standard interfaces, which different robot systems can adapt. The ROS is
selected for this scope as long as it is a widely accepted robotic middleware, as also
identified in Sec. 5.1. ROS allows the control of different robot brands using standard-
ized interfaces that communicate via a publisher and subscriber paradigm. However,
considering the workflow parametrization and description, it is important to denote
that the information received by the robotic software will be either the positions of ob-
jects with grasping points or trajectories. Moreover, this information will be delivered
once the robot must execute the Primitive. Thus, an enabled ROS robot must be able
to accept goals containing either positions or trajectories and execute them at defined
timestamps, reporting their status back to the workflow execution. For this purpose,
the Moveit! [182] framework can be used. MoveIt! is an ensemble of libraries and
tools for planning and executing robot-independent trajectories. However, an addi-
tional abstraction layer based on ROS actions is introduced to simplify the integration
of MoveIt! for orchestration with other processes. ROS actions are templates to design
a goal-oriented robot behavior and track its progress. In other words, a ROS action en-
ables a robot to have capabilities related to movements abstracted by a software layer.
The working principle of ROS actions is relatively simple as long they adopt a server/-
client approach. Therefore, a server node is always running in the background, waiting
for a signal (i.e., goal) to execute the movement while the client node sends the goal
and monitors its execution. This process can be visualized with the following pseudo-
code in Algorithm 2. ROS action goals, however, can be customized to the application’s
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needs. Therefore, a custom goal has been created. The custom goal is structured with
eleven parameters to satisfy the requirements previously identified. These parameters
include two controlling variables specifying if the robot must drive to a goal either with
a Point To Point (PTP) trajectory in a straight line or following a predefined trajectory
with a linear (LIN) motion. A set of coordinates and orientations of an end position
to be reached by the robot EE in the case of the PTP motion control. A set of points
defining the trajectory to be followed together with the TCP to which trajectories and
end points are defined in the case of LIN control. In this way, the client and server can
easily communicate to actuate motions either to reach an endpoint via PTP or follow
a predefined trajectory path. Therefore, by using this pattern, robotic actions can be
triggered and monitored.

Algorithm 2 ROS Action paradigm for robot motion

1: Initialize ROS Action Server S and ROS Action Client C
2: if Task τ for robot is in ’pending’ then
3: Define custom goal parameters G for robot motion
4: Send goal G to ROS Action Server S
5: Change τ status to ’inProgress’
6: while S is not finished executing G do
7: Monitor execution status using ROS Action Client C
8: Change τ status to ’completed’ or ’failed’ depending on the outcome of S

Sensors Integration

Similar to the robotic Primitive, sensors Primitive need to be considered. Analogously
to the paradigm proposed in the previous section, actions can be exploited to allow
monitoring and execution of sensor capabilities. ROS is a middleware mostly known
for integrating libraries for robots; however, it also provides an extensive collection
of drivers for sensor devices. Therefore, it can be easily used for sensors’ actions.
However, different from the robot ones, these actions must be able to both receive
goals and send information about the desired sensor value; therefore, feedback has to
be integrated. For the camera detection action, this is incorporated as follows. For
the goal, the action is structured to require the target object’s name, the coordinate
frame to which position and orientation are expressed, and finally, the id of the BPMN
data object to which this data refers. As feedback, this action returns the path of a file
containing the position and orientation of a reliable object’s grasping pose alongside
the object’s position and orientation. For the trajectory recording action, integration
was slightly different. For the goal, the action accepts an id of a BPMN data object
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referring to the trajectory, a trigger signal to start and stop the recording, and the
coordinate system to which the trajectory is saved. As feedback, it returns the path of
a file containing the trajectory points with reference to a defined coordinate system.
With this approach, sensors can be triggered, and the outcomes of their detection are
saved in files that the BPMN process execution can use to parameterize robot actions,
as explained in the previous sections.

Software Implementation and Connection to Workflow Execution

The last step for the workflow execution is to generate programming instructions to in-
terpret data published in the Fiware CB and coordinate the execution of ROS actions,
minimizing the need for programming knowledge. To achieve this goal, three com-
ponents are needed. First is the integration of ROS actions in ready-to-use packages.
Second, a software interpreter will read the data from the Fiware CB and redirect the
different requests to the ROS action packages using the paradigm of ROS action clients.
Third, deployment of the correct software for each workflow.

To fulfill the first goal, the concept of containerization is exploited [183]. Container-
ization, or dockerization, consists of creating standalone software containers that fulfill
determined actions in a distributed application. Containers are considered standalone
as long they include all necessary libraries and dependencies for running specific soft-
ware, thus limiting the need for an end user to have a software background to use
them. Therefore, goals can be sent once application containers are created for each
ROS action, avoiding the need to implement software functions, allowing hardware
devices to inherit capabilities of performing functions via the installation of application
containers, and reducing the need for specialized hardware by the user.

For the second goal, automatic software generation is used. More specifically, con-
sidering that each BPMN workflow is modeled following a defined set of rules, as pre-
viously explained, it is possible to generate calls to ROS actions automatically. Thus
removing the need to reprogram the software interpreter whenever changes to the
BPMN workflow are applied. A software parser based on the XML schema of BPMN is
used to integrate this capability. The parser is responsible for reading the XML schema
and generating code to call the ROS actions with the suitable parameters. This is possi-
ble by exploiting the standard structure of the XML and assigning defined ROS actions
by classifying the content of a BPMN activity to one of the available Primitive via a
Natural Language Processing (NLP) pipeline. This pipeline works by reading the name
given to each activity in the BPMN and assigning a similarity score to the available
capabilities in the ROS actions by using the text classifier of GPT-3 [184] and finally,
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creating a file with calls to the ROS actions referring them to the correct BPMN activity
ids. Thus, the interpreter can be automatically generated whenever a new BPMN work-
flow is created. Finally, an automatic deployment of application containers is employed
to achieve the last goal. The scope of this last component is to ensure the delivery of
software packages to the target hardware. To achieve this goal, methods highlighted
before are again applied. Therefore, software deployment is based on the application
containers generated for the ROS actions but simplified using the technology of Docker
swarm. Docker swarm is a tool for orchestrating containers, and it is provided by
Docker2. Through Docker Swarm, it is possible to use already-built application con-
tainers to deploy applications on target hardware. In this case, Docker swarm is used
to deploy a recipe compromising a list of application containers necessary for work-
flow execution. The list is created by analyzing the BPMN XML schema to identify
the necessary actions. Then, the corresponding application container is obtained by
the same classification for selecting the correct ROS action. Thus, all the necessary
software components are already available when the workflow needs to be executed.
Aside from the software pipeline, to guarantee smooth usage in industrial settings, the
Siemens Industrial Edge platform is employed in the robotic cell as long it allows the
deployment of docker containers to different target devices, which is essential to ensure
hardware compatibility. The Siemens Industrial Edge platform was used on a hybrid
network and hardware topology, integrating devices for Information Technology (IT)
and Operational Technology (OT). This way, the novel workflow based on the IT tech-
nologies described above can interface with signals and information from the OT level
(e.g., digital signals, safety signals). For clarity, this new topology is shown in Fig.5.11.
This integration guarantees that existing hardware for interfacing with signals can be
leveraged without developing additional software.

5.3.3 Experimental Results

The previous sections presented a novel method for workflow programming, which
will be denominated Multi-modal programming for clarity. The next step is to assess its
usability against programming methods, which can include sensor data and allow users
to customize the robot to drive through defined points given by a sensor or a defined
trajectory. The literature review identified that a promising GRP method similar to the
one proposed here is Assembly [175]. Therefore, this section presents the results of a
user study comparing Multi-modal programming and Assembly.

2https://www.docker.com (accessed on 22/12/2022)
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Figure 5.11: Network and hardware topology used for the software implementation. The topology fuses hardware
from both the IT and OT domains. This guarantees integrating legacy components (e.g., digital inputs) with state-
of-the-art IT software. To enable this architecture, the Siemens Industrial Edge Platform. The platform allows the
management of apps on different devices.

Use Case and Experiment Design

A use case from the assembly of a medical gearbox is considered for measuring the
difference in usability. More specifically, the slot insertion of a stepper motor into a
specific holder is required whenever gearboxes with different torque characteristics
need to be assembled. For the sake of clarity, Fig. 5.12 shows the experimental setup
for this task. To accomplish this task, the user was in charge of programming three
trajectories. This led the robot to pick each motor and then drive towards one of the
holders, avoiding an obstacle in the middle with a specific order, i.e., each motor was
assigned to a specific holder.

A user study with subsequent interactions was envisioned to compare the two pro-
gramming methods. For clarity, Fig. 5.13 shows the experiment design. In this ex-
periment, therefore, users were initially introduced to the systems by watching an ex-
planatory video and conducting an exemplary interaction with each method until time
t1. Afterward, two subsequent programming interactions unfolded, and at the end of
each interaction, usability and workload were measured with SUS and NASA TLX at
times t2 and t3. In this way, data for comparing the two methods was available. It is
important to denote that in this experiment, the user was mainly in charge of defin-
ing the specific trajectory and the order of execution. This was necessary as long as
this evaluation concentrated on the workflow programming. Therefore, other parame-
ters like motors’ positions and grasp locations were already specified with the method
explained in Sec. 3 for the Multi-modal programming and were manually predefined
for the Assembly method. Moreover, before replying to the questionnaires after each
interaction, the user was shown the outcome of the programming by execution of the
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Figure 5.12: Use case for the evaluation of the Multi-modal programming. The user was responsible for programming
trajectories required for the robot to retrieve motors and position them into their respective holders. During trajectory
programming, the users had to navigate around an imaginary obstacle.
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Figure 5.13: Experiment design for the comparison of Assembly with Multi-modal programming. Initially, the users
were given an introduction. They had time to familiarize themselves with the two systems by watching a video and
trying the approach on an exemplary task between t0 and t1. Afterward, the programming interactions unfolded, and
at the end of each usability with SUS and workload with NASA TLX were measured at t2 and t3.

programmed workflow on real robotic hardware. This ensured that the usability and
workload evaluations considered the outcome of the programming effort.

Results and Discussions

In the study, 12 individuals participated, age M = 26.07 yrs, SD = 2.09, height M =
178.43 cm, SD = 10.66, and the group was equally distributed between robot experts
and non-experts. All of them performed the test correctly, and no data was discarded.
The results for usability and workload for the whole user group are shown in Fig. 5.14.
As it is possible to see from the figure, the Multi-modal programming approach proves
to be more usable and leads to a smaller workload. More precisely, the reported SUS
values were M=85.42%, SD=6.56 and M=56.04%, SD=19.17 for Multi-modal pro-
gramming and Assembly, respectively. Regarding the NASA-TLX values, outcomes were
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Figure 5.14: Results of the user evaluation for the proposed programming (Multi-modal programming) and a state-of-
the-art tool (Assembly). To the left, usability is measured in percentage according to the SUS scale, and to the right,
workload is measured in percentage according to the NASA-TLX scale. The statistical significance of the results is
displayed with asterisks. If no statistical significance is found, ns is displayed.

M=14.31%, SD=9.59 and M=40.14%, SD=13.51 for Multi-modal programming and
Assembly, respectively. A Mann-Whitney U test was applied to compare the results as
long normality precondition did not apply, and the test reported statistical significance.
Aside from the general evaluation, it is interesting to see how experts and novices rated
the Multi-modal programming; the results for the user group divided upon expertise
are shown in Fig. 5.15. Like the whole user group, Multi-modal programming is more
usable when discerning between robotic expertise and the Assembly. More specifically,
the reported SUS values were M=85.42%, SD=7.31 and M=58.33%, SD=24.88 for
Multi-modal programming and Assembly, respectively, for non-experts. For experts,
the reported SUS values were M=85.42%, SD=6.41 and M=53.75%, SD=13.30 for
Multi-modal programming and Assembly, respectively. The reported TLX values were
M=11.67%, SD=3.80 and M=41.39%, SD=14.74 for Multi-modal programming and
Assembly, respectively, for non-experts. For experts, the reported TLX values were
M=16.94%, SD=13.09 and M=38.89%, SD=13.44 for Multi-modal programming and
Assembly, respectively. A Mann-Whitney U test was applied to compare the results as
long normality precondition did not apply; the test reported statistical significance for
all the results.

Considering the results of this evaluation, it is possible to conclude that the pro-
posed Multi-modal programming proves to be more usable compared with the As-
sembly one both for non-experts and novices. Therefore, it is a good tool for robot
programming in industrial pick-and-place tasks. Therefore, the barrier to entry into
robot programming with frequently changing pick-and-place applications and various
expertise levels can be addressed when using this tool. However, future work should
investigate how the tool behaves in different scenarios and robot brands to ensure the
interoperability of the tool in diverse situations.
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Figure 5.15: Results of the user evaluation for the proposed programming (Multi-modal programming) and a state-of-
the-art tool (Assembly). To the left, usability is measured in percentage according to the SUS scale, and to the right,
workload is measured in percentage according to the NASA-TLX scale. The statistical significance of the results is
displayed with asterisks. If no statistical significance is found, ns is displayed.

5.4 Conclusions

Summary

Through this chapter, this work wanted to discover how the proposed intuitive pro-
gramming interfaces could be scaled to industrial applications. More specifically, this
section tackled Challenge 3.1 (allow SMEs to change robot programs frequently to meet
production demands) and Challenge 1 (intuitive programming interfaces that incorpo-
rate various programming techniques) by proposing and studying the impacts of a
standard programming framework to integrate all the programming aspects for a col-
laborative application.

The chapter analyzes the most relevant robotics applications for industrial envi-
ronments to study such influences. In this part, it was identified that the most com-
mon industrial applications require methods for pick and place and that a skill-based
representation of robot programming can be beneficial. Henceforth, a workflow rep-
resentation of the robot behavior was presented to simplify the risk analysis and aid
companies in the complex safety evaluation process in collaborative robotic environ-
ments with pick-and-place applications based on skills. Such safety analysis leads to
lower omission errors than a conventional safety review application, as the measured
error rate was null. Last, a robot programming method based on the previous find-
ings and the safety workflow representation was proposed. The programming method,
Multi-modal programming, allows for the programming of different robot brands due
to the usage of a general architecture proposed in the SHOP4CF project and the ROS.
Moreover, the programming tool was tested against a state-of-the-art one in an assem-
bly task. The test reported that the Multi-modal programming method was more usable
and led to less workload as long the usability measured with SUS was 85.42% and the
workload measured with TLX was 14.31%.
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Discussions and Future Work

As mentioned above, this chapter focused on the applicability of the proposed human-
robot interactions in industrial applications. To address this challenge, this chapter
proposes a workflow-based programming method for robots that addresses both robot
programming simplification and risk assessment for typical industrial applications. Re-
garding the application, the proposed tool tries to address the pick and place appli-
cations, which resulted in being the most investigated in the industry. Regarding risk
evaluation, the workflow-based tool simplifies the risk assessment process as long it
allows the tracking and classifying of hazards consistently and reliably, reducing er-
rors during the process. Third, regarding integration and scalability in different sce-
narios, the workflow-based programming, using the SHOP4CF architecture and ROS,
can quickly adapt to different robot brands and sensors. Last, regarding usability, the
workflow-based tool, with its ability to receive data from multiple sensors like a spa-
tial sensor for trajectory programming, proved much more straightforward considering
state-of-the-art tools and considering these points and the initial challenge of this work
to address the needs of SMEs to be able to program robots frequently to meet pro-
duction demands. It is possible to conclude that the workflow-based notation can be
integrated into industrial scenarios as long it allows the integration of pick-and-place
applications while considering safety, reducing the effort needed for its usage, and al-
lowing for integrating multiple sensors and robots, thus solving the aforementioned
challenges. However, future work should focus on testing such tools on a broader user
pool to effectively estimate the improvements in usability in long-term studies. Ad-
ditionally, future work should address how applications different from pick-and-place
could be addressed with the workflow-based tool; however, being the tool built around
a standardized architecture, this process should be relatively straightforward.
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Collaborative robots can be an excellent tool for small and medium enterprises to
address challenges given by volatile market demands and competitive manufacturing
prices. However, their introduction poses some challenges, and their adoption has
shown a slowdown, as shown by the change of cobots’ year-on-year growth, which re-
duced to 6% in 2020 [4]. Therefore, the market is now in a sobering phase [143].
Notwithstanding, this phase is typical after an initial hype. Therefore, there is a
need for a new technology assessment to determine cobot possibilities and prerequi-
sites [25]. Several technologies and standards have been introduced for cobots. How-
ever, there is a need to evaluate how those perform regarding end-user usability and
applications in industrial scenarios to ensure acceptance of the technology in manu-
facturing. This work focused on this latter point and addressed three main barriers
to cobots’ adoption: interfaces, safety, and applications by proposing a set of ease-
to-use programming methodologies that are integrated into a single workflow, which
simplifies integration and safety reviews. To present this work’s primary outcomes, a
summary of each chapter is given, and then discussions and future research directions
are presented.

6.1 Summary

To present the research content, this work has been structured into four main chap-
ters to address some of the main challenges identified when adopting collaborative

119
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robots, like the necessity for streamlined, user-friendly programming approaches that
seamlessly incorporate various cobot programming techniques (Challenge 1). Next, the
cobot programming techniques should integrate simplified safety assessments (Chal-
lenge 2). Finally, SMEs must deploy cobots that adapt to changing work environ-
ments and production demands (Challenge 3.1). However, with ease-of-use interfaces,
SMEs’ primary obstacle when using robot programming methods is the lack of access
to robotic experts (Challenge 3.2).

Chapter 2 investigates the influences of user robotic expertise and the level of
robotic task personalization through user-defined co-assembly locations for tackling
challenge Challenge 3.2. Therefore, the need to allow end users to personalize the
task was discovered after an initial state-of-the-art review. To address this need, the
work proposed a method for users to personalize the task by allowing them to lo-
cate materials for the human-robot collaboration at user-defined positions based on
computer vision and parameterizable robotic inverse kinematics. Next, considering
different robotics backgrounds, two studies were conducted to investigate the impact
of such personalization on the user’s physical ergonomics and task performance. The
studies underlined that allowing users to define co-assembly locations benefits the level
of autonomy as the measured average autonomy score improved by 25% independent
of the robotics expertise. Moreover, with the approach, users could maintain relatively
safe physical ergonomics with an average RULA of 4 while not drastically changing the
task performances. Last, it was observed that experts tended to stay 1.00 m closer to
the robot compared to the novices.

Chapter 3 focused on investigating influences given by user-defined robotic grasp
points on acceptance and robustness to tackle challenge Challenge 3.2. Therefore, after
an initial state-of-the-art review, which underlined the need for users to be able to bias
automatic grasp selection algorithms towards a specific region. The chapter presented
three preliminary studies to investigate the precision of users when defining points via
a spatial device. Next, having discovered the performances of the spatial device, a
method for allowing users to influence the grasp location via a novel user grasp metric
was proposed. Finally, the chapter presented studies to compare the proposed method
with existing market solutions. The investigations showcased that the approach can
improve usability with an average usability score of ca 82% while maintaining a low
average workload score of ca 19% and a high grasp success rate of ca 87%, thus allow-
ing non-experts to define grasp locations without extensive prior knowledge.

Chapter 4 focused on the influences on safety and acceptance when users can de-
fine their trajectories considering the user’s robotic background to tackle Challenge 2.
Therefore, after an initial state-of-the-art review, which underlined the need for users
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to create their trajectories and to study how this influences safety. The chapter pre-
sented some preliminary studies to underline how safe applications can be integrated
when robots navigate in the free space without cages. Then, a method to allow users
to define their trajectories using a spatial device correctly calibrated was presented.
Finally, the chapter concluded with a study of how safety is impacted when robotic
experts and novices program their trajectories through the spatial device. The studies
underlined that such a programming method achieves a high level of autonomy of ca
78% independent from robotics expertise. However, the investigations also identified
that expertise plays a role in defining robotics trajectories as novices tended to create
trajectories requiring 5% more safety area than experts while maintaining ca 0.10 m
larger distance to the robot end-effector.

Chapter 5 presented a workflow-based programming for integrating the different
programming methods in a unique tool, which allows for integrated safety revision,
especially for pick-an-place applications to tackle Challenge 3.1 and Challenge 1. There-
fore, the chapter initially investigated a standard nomenclature known to industrial au-
diences and then proposed a taxonomy for allowing the programming of robots based
on skills. Then, the tool integration on a robotic cell was outlined, and user tests were
presented to measure the tool’s usability level. The studies identified that with this
tool, users do not omit any step in the risk assessment process while achieving a high
level of usability as it improved by 51% when compared with a state-of-the-art tool
independent from the robotics expertise.

6.2 Discussions

This work addressed the main adoption barriers of collaborative robots, proposing and
studying novel programming methods based on spatial interactions. The main results
of this research are presented following the chapter structure for clarity.

Intuitive Programming Interfaces and User Impacts

In the scope of intuitive programming interfaces and their user impact, this work pro-
poses and investigates the impacts of two spatial-based interactions.

The first is a novel spatial programming method based on the user’s definition of
co-assembly locations. This method was proposed as the research shows that users
who can personalize their tasks can better collaborate with a robot. However, consid-
ering that adjusting co-assembly locations might influence the task and the operator’s
well-being, this chapter investigated how different levels of robotics expertise can in-



122 6 Conclusion and future research directions

fluence these factors. The primary outcomes of this chapter were as follows. Firstly,
users who can place parts and thus program co-assembly locations perceive a higher
task decision autonomy. This higher level of autonomy can benefit collaboration, as
also identified by other works in different domains [65, 66]. However, robotic experts
and robotic novices use this level of autonomy differently. The studies underlined that
when operators can decide on the co-assembly locations, novices tend to choose loca-
tions that benefit their physical ergonomics while keeping a larger distance from the
robot. Experts chose locations that worsened their physical ergonomics while keeping
a closer distance from the robot. Therefore, considering the literature on joint task effi-
ciency [79, 80], this work underlines that experts might treat the robot as a teammate
as long they try to minimize the overall travel path, both theirs and the robot. On the
other hand, novices might feel differently, and they minimize the robot’s travel path
while increasing their travel path to minimize the impact on the physical ergonomics,
thus optimizing for individual efficiency. Therefore, this work highlights that when
operators can personalize the task by modifying co-assembly locations, the operator’s
background should be considered to ensure a task design that best satisfies the opera-
tor’s needs.

The second is a novel spatial programming method that enables the user’s defini-
tion of grasp locations. Similar to the one above, this method was proposed to allow
users to personalize the grasp location and improve human-robot collaboration. The
primary outcomes of this chapter were as follows. First, if an operator is empowered
to mark a location via a spatial device and the information is used to label camera
images, inaccuracies of the spatial sensor and the operator must be accounted for dif-
ferently from what was found by [102]. The chapter demonstrated that convolutional
neural networks could solve the issue. Secondly, when users can label points with the
spatial device, the usability and workload are improved compared to state-of-the-art
techniques based on point clicks. Therefore, this method highlights that non-experts
can be empowered to define grasping locations via a natural interaction with a spatial
device, and such empowerment leads to improved usability and quality of the defined
locations. Therefore, this work highlights that the proposed spatial interaction can be
used for robot programming by non-experts. However, they must be aided by algo-
rithms to fine-tune the initial labeling locations, as pointed out by [185].

Taking into account these results, the two chapters demonstrated that the proposed
spatial interaction methods can be easily used by non-experts, thus allowing SMEs to
better integrate robots without deep robotic expertise and successfully answering the
requirements set by Challenge 3.2.
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Intuitive Programming Interfaces and Safety Implications

In the scope of intuitive programming interfaces and safety implications, this work
proposed monitoring and estimating how the safety level is impacted when users are
empowered to define their trajectory via a spatial sensor. However, considering that
the spatial sensor can have inaccuracies and that the level of expertise could impact
the type of collaboration, this chapter investigated how expertise influences safety and
how to improve the accuracy of the spatial sensor. The primary outcomes of this chapter
were as follows. Firstly, the usage of a spatial sensor based on photo-reflective sensors
requires a unique calibration technique as long inaccuracies appear the far away the
sensor is placed from the initial calibration region; therefore, the proposed calibration
can reduce errors that appear in these sensors [186]. Secondly, experts and novices
have different ways to program robot trajectories when empowered via the spatial
device. More specifically, robotic experts tend to program trajectories that require a
smaller safety area than those programmed by novices. Moreover, it was found that
novices tended to stay closer to the robot when using the spatial sensor compared to
the experts. In contrast, experts tended to stay closer to the robot when executing
collision-free trajectories. Hence, considering [79, 80], it is possible to deduce that
joint task efficiency is interpreted differently by experts and novices. Experts improve
the joint task efficiency when the robot is operating in the autonomous collision-free
mode, whereas novices improve the joint task efficiency when they define their trajec-
tory. Therefore, this work highlights that collision avoidance motions might guarantee
acceptance only in certain conditions, depending on the user background, thus extend-
ing the results of [126]. Therefore, the user’s background must also be considered
when designing safe robot applications, as operators might behave differently upon
their previous exposure to robot collaboration.

Considering these results, it is possible to summarize that the spatial-based pro-
gramming method can satisfy the needs of SMEs in terms of a simple programming
method that can simplify the safety evaluation, also allowing for different user back-
grounds, thus satisfying the requirements outlined in Challenge 2.

Scalability to Industrial Applications

In the scope of scalability to industrial applications, this work proposed a programming
method based on a workflow description, which can simplify the programming and
review the safety hazards. However, since non-experts can conduct the programming
of the robot, the research concentrated on proposing an ease-to-use method for the
definition of robotic behaviors, especially targeting pick-and-place applications as long
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they are the most required in industrial applications at the time of this research. The
primary outcomes of this chapter are as follows. First, workflow-based programming
with standardized robotic skills simplifies the review of the risk evaluation, mitigating
the number of errors made, and it can be an ease-to-use tool for SMEs to integrate
and simplify the safety evaluation as highlighted by [10]. Second, the workflow-based
programming method was tested with users, and it was discovered that it improves
usability and workload compared to state-of-the-art methods like [175]. Third, the
workflow programming method allows the integration of all the spatial programming
methods proposed in the previous chapters. Last, the workflow programming method
can be integrated, levering existing technology stacks. Therefore, this method answers
the primary needs of SMEs to have methods to easily program, deploy, and maintain
collaborative robotic applications [10].

Considering this, it is then possible to conclude that the proposed workflow-based
programming allows SMEs to integrate different programming methods for satisfying
different production demands, thus successfully answering the needs outlined in Chal-
lenge 3.1 and Challenge 1.

6.3 Future work

This research proposed methods to program robots using spatial interactions and a
workflow-based programming method to address four main challenges SMEs face when
integrating collaborative applications. During the investigations and the proposal of
methods for tackling the challenges, careful attention has been placed on the user’s
background to ensure that users with limited robotics expertise can use the proposed
methods to ensure inclusivity across the diverse employee base. Therefore, this work
highlighted that considering the user background is essential for ensuring smooth
human-robot collaborations when spatial interactions are used. The proposed methods
can help towards this goal. However, to the best of the author’s knowledge, this is
one of the only works that puts enough effort into investigating the effects of robotic
expertise in human-robot collaboration to ensure inclusivity across different ranges of
users. Unfortunately, this is just the first ground-stone towards the final goal of allow-
ing anyone, regardless of background, to use robots to help in their tasks. Therefore,
there are still several gaps in our understanding regarding how expertise might influ-
ence the full spectrum of human-robot collaboration. Therefore, future works should
concentrate more on these aspects. Most importantly, when considering different levels
of robotics expertise, future work should investigate how robotics knowledge evolves
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from novices to experts, especially grounding the research with real-use cases with
meaningful robot interactions. To achieve this goal, robotics should work more closely
with fields from psychology or neuroscience to deeply understand human behaviors
and influences given by previous exposure to robotics technology. For example, com-
pelling research areas are trust levels in human-robot teams and impacts on collabo-
ration, or more specifically, impacts on relative distances between users and robots,
especially when users are empowered to personalize their tasks. By studying these
relations more, it will be possible to answer some questions about how robotics knowl-
edge evolves and changes human-robot interaction. Understanding these relations will
allow engineers and researchers to craft human-robot interactions tailored around the
user, ensuring everyone can interact with robots safely and inclusively.

Aside from this, it is essential to underline that the research was unfortunately
limited to performing evaluations with user groups ranging between ten and twenty
individuals; therefore, aside from the more significant research questions regarding
user background highlighted above, future work should focus on testing the proposed
concepts with larger user groups. Additionally, of further interest for deeper investiga-
tion are spatial interactions that consider pick-and-place applications and have more
complex interactions with objects like grinding or insertions as they allow users to bet-
ter express their needs in different scenarios. This will ensure that a broader range of
capabilities can be integrated with collaborative robots, ensuring companies can satisfy
all the manufacturing demands considering employees’ inclusivity.
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