
Technische Universität München

TUM School of Computation, Information and Technology

Adaptive Optimizations for Databases

Christoph Maximilian Anneser

Technische Universität München

TUM School of Computation, Information and Technology

Adaptive Optimizations for Databases

Christoph Maximilian Anneser

Vollständiger Abdruck der von der TUM School of Computation, Information
and Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Thomas Neumann

Prüfende der Dissertation:
1. Prof. Alfons Kemper, Ph.D.
2. Prof. Dr. Jana Giceva Makreshanska
3. Prof. Dr. Maximilian E. Schüle

Die Dissertation wurde am 18.12.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Tech-
nology am 25.04.2024 angenommen.

Abstract

The increasing demand for big data analytics highlights the impor-
tance of database systems. The concurrent shift towards resource disag-
gregation, multi-tenancy cloud databases, and hardware diversification
and specialization requires re-architecting databases for adaptive opti-
mizations. This dissertation contributes three novel adaptive optimization
approaches concerning index structures, query optimization, and leverag-
ing fully disaggregated systems.

Index structures substantially contribute to the memory footprint
of databases. First, we propose Adaptive Hybrid Indexes that compress
rarely accessed nodes while optimizing frequently accessed nodes for
performance. Adaptive Hybrid Indexes significantly reduce the memory
footprint while incurring almost no performance overhead under skewed
workloads. Second, we address the challenges in rule-based query opti-
mization, where statically applied rewrite rules can occasionally degrade
performance. We introduce a new framework that uses a machine-learned
cost model to adaptively find and turn off these rules per query. Experi-
ments show that our framework significantly reduces dashboard appli-
cations’ tail latencies for a petabyte-scale PrestoDB deployment at Meta.
Third, resource disaggregation and hardware specialization make it chal-
lenging for database developers to leverage modern hardware. We propose
a blueprint for a new programming model for fully disaggregated systems
that raises the memory abstraction level and defers the task and memory
mapping to hardware devices to execution time. A runtime system then
adaptively co-optimizes data and compute placement.

Zusammenfassung

Die steigende Nachfrage nach Analysen großer Datenmengen unter-
streicht die Bedeutung von Datenbanksystemen. Die gleichzeitigen Verän-
derungen hin zur Trennung von Hardwareressourcen, mehrbenutzerfähi-
gen Cloud-Datenbanken und die Diversifizierung und Spezialisierung
der Hardware erfordert eine Neuarchitektur von Datenbanksystemen für
adaptive Optimierungen. Diese Dissertation stellt drei neuartige adaptive
Optimierungsansätze in Bezug auf Indexstrukturen, Anfrageoptimierung
und die Ausnutzung von Systemen mit vollständig getrennten Hardwar-
eressourcen vor.

Indexstrukturen tragen wesentlich zum Speicherbedarf von Daten-
banken bei. Als Erstes schlagen wir daher adaptive hybride Indexstruk-
turen vor, die selten zugegriffene Knoten komprimieren und gleichzeitig
häufig zugegriffene Knoten für schnellere Zugriffe optimieren. Adap-
tive hybride Indexstrukturen reduzieren den Speicherbedarf deutlich und
büßen bei ungleich verteilter Arbeitslast kaum Performanz ein. Zweit-
ens gehen wir auf die Herausforderungen bei der regelbasierten Anfra-
geoptimierung ein, bei der statisch angewandte Regeln die Leistung des
Anfrageplans gelegentlich auch verschlechtern können. Wir führen ein
neues Framework ein, das ein maschinell erlerntes Kostenmodell ver-
wendet, um diese Regeln adaptiv pro Abfrage zu finden und auszuschal-
ten. Unsere Experimente zeigen, dass das Framework die Ladezeiten von
Metas Dashboard-Anwendungen, die PrestoDB verwenden, um Daten
im Petabyte Bereich zu analysieren, erheblich verringern kann. Drittens
machen es die Trennung der Hardwareressourcen und die Spezialisierung
der Hardware für Datenbankentwickler schwierig, das Potenzial moderner
Hardware vollständig auszunutzen. Wir schlagen einen Entwurf für ein
neues Programmiermodell für Systeme mit vollständig getrennten Hard-
wareressourcen vor, der die Speicherabstraktionsebene anhebt und die
Zuordnung von Tasks und Speicher zu Hardware erst zur Ausführungszeit
festlegt. Ein Laufzeitsystem optimiert dann die gemeinsame Platzierung
von Daten und Berechnungen.

Acknowledgments

First, I would like to thank the members of my thesis committee, Prof. Alfons
Kemper, Prof. Jana Giceva, Prof. Maximilian E. Schüle, and Prof. Thomas Neu-
mann.

I am deeply thankful to my advisor, Prof. Alfons Kemper, for his invaluable
guidance. He provided me with the opportunity to pursue a Ph.D. in his group
and encouraged me to explore my research ideas, for which I am very grateful.

I want to thank Prof. Thomas Neumann for his excellent courses on database
implementation and lab work on compiling query engines.

I extend my gratitude to Prof. Jana Giceva for the inspiring discussions and
innovative ideas. I very much appreciate her for helping me become a better
researcher.

I thank Prof. Andreas Kipf, my mentor and first point of contact, for his
guidance and for our collaborations on several publications.

During my Ph.D., I had the privilege of interning at Intel. I want to thank
my hosts, Dave Cohen and Nesime Tatbul, for their exceptional support and for
making the internship possible.

Special thanks go to my co-authors Prof. Huanchen Zhang, Prof. Ryan
Marcus, Lukas Vogel, Ferdinand Gruber, Maximilian Bandle, Zhenggang Xu,
Prithviraj Pandian, and Nikolay Laptev.

Thank you also to all my colleagues at the Technical University of Munich
for the exciting research discussions and all the other fun activities.

Finally, I want to thank my parents, siblings, and friends for all their support
and love during this journey. This thesis would not have been possible without
you.

i

Preface

This doctoral thesis is based on the following peer-reviewed core publications,
which are included in the appendix of this document. Throughout this thesis,
excerpts and findings from these publications are integrated and presented
without additional labeling.

P1 Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann,
and Alfons Kemper. “Adaptive Hybrid Indexes”. In: SIGMOD ’22: Interna-
tional Conference on Management of Data, Philadelphia, PA, USA, June 12 -
17, 2022. ACM, 2022, pp. 1626–1639

P2 Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithvi-
raj Pandian, Nikolay Laptev, and Ryan Marcus. “AutoSteer: Learned
Query Optimization for Any SQL Database”. In: PVLDB 16.12 (2023),
pp. 3515–3527

P3 Christoph Anneser, Lukas Vogel, Ferdinand Gruber, Maximilian Bandle,
and Jana Giceva. “Programming Fully Disaggregated Systems”. In: HotOS.
ACM, 2023, pp. 188–195

In addition to these publications, I also co-authored the following work, which
is not part of this thesis:

Artem Kroviakov, Petr Kurapov, Christoph Anneser, and Jana Giceva.
“Heterogeneous Intra-Pipeline Device-Parallel Aggregations”. In: DaMoN.
ACM, 2024, pp. 1–10

Leon Windheuser, Christoph Anneser, Huanchen Zhang, Thomas Neu-
mann, and Alfons Kemper. “Adaptive Compression for Databases”. In:
EDBT. OpenProceedings.org, 2024, pp. 143–149

Christoph Anneser, Mario Petruccelli, Nesime Tatbul, David Cohen,
Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus, and
Alfons Kemper. “QO-Insight: Inspecting Steered Query Optimizers”. In:
PVLDB 16.12 (2023), pp. 3922–3925

Christian Winter, Andreas Kipf, Christoph Anneser, Eleni Tzirita Zachara-
tou, Thomas Neumann, and Alfons Kemper. “GeoBlocks: A Query-Cache
Accelerated Data Structure for Spatial Aggregation over Polygons”. In:
EDBT. OpenProceedings.org, 2021, pp. 169–180

ii

Christoph Anneser, Andreas Kipf, Harald Lang, Thomas Neumann, and
Alfons Kemper. “The Case for Hybrid Succinct Data Structures”. In: EDBT.
2020, pp. 391–394

Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Christoph Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive Main-
Memory Indexing for High-Performance Point-Polygon Joins”. In: EDBT.
OpenProceedings.org, 2020, pp. 347–358

Although I am the first author and main contributor to the core publications
of this thesis, I use the first person plural to recognize the contributions of my
co-authors.

iii

Contents

Acknowledgments i

Preface ii

1 Introduction 1
1.1 Increasing Demand for Data Analytics 1
1.2 Adaptive Optimizations for Databases 2

1.2.1 Index Structures . 4
1.2.2 Query Optimization . 4
1.2.3 Fully Disaggregated Systems 5

1.3 Outline . 6

2 Research Methodology 7
2.1 Adaptive Hybrid Indexes . 7

2.1.1 Scientific Method . 9
2.1.2 Implementation Overview 16
2.1.3 Evaluation . 16

2.2 Steering Query Optimizers . 18
2.2.1 Scientific Method . 20
2.2.2 Implementation Overview 23
2.2.3 Evaluation . 23

2.3 Programming Fully Disaggregated Systems 25
2.3.1 Key Trends in Large-Scale Data-Center Computing . . . 25
2.3.2 Programming Model Design 27
2.3.3 Conclusions . 32

3 Related Work 33
3.1 Adaptive Hybrid Indexes . 33
3.2 Learned Query Optimization . 35
3.3 Programming Fully Disaggregated Systems 36
3.4 Adaptive Query Optimization and Execution 36
3.5 Self-Driving Database System 37

4 Conclusions 40

P1 Adaptive Hybrid Indexes 43
P1.1 Synopsis . 43
P1.2 Contributions and Publication Details 44

iv

P2 AutoSteer: Learned Query Optimization for Any SQL
Database 61

P2.1 Synopsis . 61
P2.2 Contributions and Publication Details 62

P3 Programming Fully Disaggregated Systems 78
P3.1 Synopsis . 78
P3.2 Contributions and Publication Details 79

Bibliography 90

v

CHAPTER 1
Introduction

1.1 Increasing Demand for Data Analytics
Data explosion. The world’s digitization is accelerating at an unprecedented
pace. In 2015, a whitepaper projected that the global datasphere would reach
33 Zettabytes in 2018 and will grow to over 175 by 2025 [145]. Recognizing the
immense (economic) potential of big data, Clive Humby declared as early as
2006 that ‘data is the new oil’ [79]. However, to uncover the potential of big
data, data mining aims at identifying relationships and correlations within the
datasets [87, Chapter 17]. These help to better understand the data, evaluate
decisions, and predict their consequences more reliably.
Democratizing data analytics. With the decline in computing and memory
costs since the early 2000s, data mining of large datasets – often referred to
as data analytics – as well as plenty of commercial and open-source software
solutions have been made increasingly accessible and affordable to a broader
range of users [144, Chapter 1]. This has facilitated more sophisticated analyses
of large datasets across various domains [94, 169]. In today’s digital landscape,
numerous industries rely on fast analytics of large datasets. Examples include on-
line marketplaces utilizing shopping basket analysis and customer segmentation
for personalized advertising [144] and healthcare analytics systems employing
big data to decrease costs and implement personalized treatments [50].
From data to decision. However, the pathway from raw data to informed
business decisions is far from straightforward [169]. Before data can inform
decision-makers, multiple Extraction-Transformation-Loading (ETL) steps must
be performed. Only a few database systems like HyPer directly support complex
data analytics tasks being performed within the database system [78, 150, 152].
Instead, in most cases, data must be first exported from various sources in
different formats. These formats span from unstructured data in text files, semi-
structured data in CSV and JSON files to relational data persisted in database
systems [144]. Then, data pipelines integrate data cleansing, preprocessing,
and validation steps [158] to facilitate later analyses through data analytics
tools [116, 122].

1.2. Adaptive Optimizations for Databases

Optimizing data analytics. Data analytics applications have not only high
data rate requirements but also high computational needs, which results in high
energy consumption and imposes challenges for data centers [110]. Therefore,
optimizing the performance and resource efficiency of data-intensive applica-
tions is an important goal to achieve environmentally sustainable ‘green’ data
analytics [179]. Application optimizations can be primarily differentiated into
two categories: static and adaptive optimizations [97].

Static optimizations are performed before a program is executed, typically
during the design, implementation, or compilation phase. Since static optimiza-
tions are independent of input data and do not have access to runtime infor-
mation, they do not introduce runtime overhead for decision-making. Static
optimizations mostly concern algorithms and data structures, e.g., by reducing
their asymptotical runtime and improving data locality. Also, Ahead-Of-Time
(AOT) compilers play a crucial role in this optimization stage, employing various
techniques when generating efficient machine code [117].

Adaptive optimizations (also referred to as dynamic optimizations) are per-
formed during a program’s execution and optimize the program by adjusting
to runtime conditions and user inputs [97]. These optimizations can take real-
time information into account, including the current system load, the available
hardware resources, the workloads, and datasets, among others. Examples
of adaptive optimizations include Just-In-Time (JIT) compilation [17], where
individual parts of the source code can be optimized based on their access fre-
quencies. Another example is adaptive query optimization in databases [54, 71,
75], which includes the reordering of operators during query execution when
cardinality estimates turn out to be wrong [104].

Besides their large potential for improving performance and resource ef-
ficiency, adaptive optimizations also introduce new challenges. For example,
decision-making at runtime incurs computational overhead, which can also out-
weigh the optimization’s improvements. Additionally, adaptive optimizations
can make systems more complex, unpredictable, and difficult to test.

1.2 Adaptive Optimizations for Databases
Database systems are the underpinning of many data analytics applications
and are responsible for data storage, retrieval, and management, all of which
are performance-critical tasks. Therefore, optimizing database systems also
enhances the performance of data analytics. While both static and adaptive
optimizations are pivotal to improving the performance of database systems,
recent trends emphasize the need for adaptive optimizations:

2

1.2. Adaptive Optimizations for Databases

SQL Parser Query Optimizer [P2]

Tables Indexes [P1]

Buffer Manager

Execution
Engine Result

Database Management System

Software

Hardware
Programming Model & RTS [P3]

DRAM1 DRAM2CXL DRAM

CPU1TPU CPU2

GPU1

GDDR1

GPU2

GDDR2

FPGA

PMEM

M
ac

hi
ne

1 CXL DRAM

TPU

FPGA

PMEM

M
ac

hi
ne

2

…

network

Figure 1.1: The publications of this thesis in the context of a database system.

Multi-tier systems. The diversification of memory and storage devices moti-
vates multi-tier systems, which consist of various memory and storage layers.
Since each layer has different capacity, performance, and cost characteristics and
dataset sizes increase at an unprecedented pace while most workloads access
only few data frequently [35, 180], data placement within these systems requires
adaptive optimization accounting for data access types and frequencies, and
resource constraints at runtime [172, 190].
Resource disaggregation and multi-tenancy. The shift toward resource
disaggregation, where multiple machines share their compute, memory, and
storage resources over high-speed networks has facilitated the implementation
of cloud-based multi-tenant data warehouses and analytics. Cloud databases
process a wide spectrum of queries with CPU times ranging frommilliseconds to
years and data sizes span from kilobytes to petabytes, as a recent analysis by van
Renen and Leis shows [141]. To achieve high performance and efficient resource
utilization, databases must dynamically adapt to fluctuating workloads, e.g.,
switching to distributed processing of very large queries and adding compute
nodes during peak workloads.
Contributions. As highlighted by these trends, adaptive optimizations for
database systems are becoming increasingly important. This thesis contributes
three novel adaptive optimization approaches, which are visualized in the con-
text of a database system in Figure 1.1. The first publication (P1) investigates
adaptive optimizations to reduce the storage overhead of index structures. The
second publication (P2) addresses the challenges in rule-based query optimiza-

3

1.2. Adaptive Optimizations for Databases

tion, where statically applied rules occasionally degrade performance. The
third publication (P3) envisions a new programming model that facilitates the
adaptive co-optimization of dataflow systems’ task and data placement in fully
disaggregated systems. The following sections briefly introduce the publications
and their associated research questions.

1.2.1 Index Structures
Many database systems rely on order-preserving index structures like B- [23],
UB- [22], and B+-trees [26] to answer queries with highly selective predicates.
Their efficiency and reliability are the results of years of engineering and opti-
mization. Nevertheless, these index structures often utilize a single encoding for
all nodes, which cannot account for the specific distribution and access patterns
of the data they organize, thereby missing opportunities for adaptive optimiza-
tions. For example, while the default node encodings in B+-trees trade space for
performance, index structures often account for more than half of the database’s
memory footprint [185], presenting a significant compression potential.

Furthermore, since workloads and key accesses are often skewed [35, 45, 180],
so-called Adaptive Hybrid Indexes could leverage multiple node encodings with
different space-performance trade-offs within one index structure to dynamically
adapt to workloads: applying more compressed encodings to rarely accessed
nodes could reduce the index structure’s memory footprint while not harming
the index performance. These observations motivate the following research
question:

Research Question 1: Can Adaptive Hybrid Indexes optimize the
performance-memory trade-off under skewed workloads and outper-
form conventional index structures when space and performance are
considered equally important?

The first publication in this thesis introduces a novel framework that enables
the implementation of Adaptive Hybrid Indexes. Furthermore, it applies the
framework to two popular index structures — B+-trees and prefix trees.

Sections concerning publication 1. Section 2.1 delineates the research
methodology, Section 3.1 presents the related work, and appendix P1 includes a
summary and the full text.

1.2.2 Query Optimization
Query optimization is essential for enhancing query performance in database
systems. Based on the abstract syntax tree the parser generated from the SQL

4

1.2. Adaptive Optimizations for Databases

query, the query optimizer tries to find an efficient query plan. Besides cost-
based optimizers, which generate multiple plans and select the cheapest one,
rule-based query optimizers apply rewrite rules to transform one query plan.
These rewrite rules consist of a criterion and a rewrite action, and the optimizer
recursively searches for subplans that match the rules’ criteria, where it applies
the rewrite actions. However, in some cases, rewrite rules can also degrade the
performance of a query plan [12, 111, 118, 178, 188]. To address this problem,
previous work explored the use of hint-sets that enable or disable rewrite rules [12,
111, 118, 188]. Applying hint-sets to queries, which is often referred to as steering,
can result in alternative query plans. These plans are then evaluated using cost
or machine-learned models to predict the best plan.

While previous steering approaches can achieve significant performance
improvements, they have several limitations. For example, they are tailored to
specific database systems and do not efficiently explore the search space of all
potential hint-sets. These limitations motivate the following research question:

Research Question 2: Can one framework steer rule-based query
optimization across database systems to automatically identify query-
aware hint-sets and thereby discover faster query plans?

The second publication in this thesis introduces a novel framework called
AutoSteer, which implements the steering approach outside the database system
and uses an adaptive greedy search to find query-aware hint-sets. We test Au-
toSteer with five open-source database systems and use real-world and public
benchmarks to evaluate its performance.

Sections concerning publication 2. Section 2.2 explains the research method-
ology, Section 3.2 presents the relatedwork, and appendix P2 includes a summary
and the full text.

1.2.3 Fully Disaggregated Systems
Driven by the end of Moore’s law, data centers have shifted to disaggregated
architectures with specialized compute and memory devices in recent years [76].
As illustrated in the lower part of Figure 1.1, disaggregated systems connect
multiple machines over fast networks and share their memory and compute
devices [157]. Furthermore, advancements like cache-coherent interconnects,
such as Compute Express Link™ (CXL™) [46], and the latest 4th generation of
Intel™ Xeon™ scalable processors [80] enable new data and compute placement
options. However, leveraging the full potential of these systems becomes in-
creasingly complex and is the developer’s burden, since traditional programming

5

1.3. Outline

models are not designed for fully disaggregated systems where data movement
is the dominating cost factor [93, 135]. Fully leveraging the capabilities of dis-
aggregated systems is essential to achieve cost-effective and sustainable data
analytics. However, this requires adaptive optimizations taking the workloads,
the available hardware, and their utilization into account. These observations
lead to the third research question:

Research Question 3: Can high-performance data-intensive appli-
cations like database systems be developed and optimized for fully
disaggregated systems sustainably?

The third publication in this dissertation proposes design principles for a
new programming model that facilitates the sustainable development of data-
intensive applications for fully disaggregated systems.

Sections concerning publication 3. Section 2.3 outlines the research method-
ology, Section 3.3 presents the related work, and appendix P3 provides a sum-
mary and the full text.

1.3 Outline
This thesis is organized into the following sections:

- Chapter 2 explains the research methodologies that were used to answer
the research questions.

- Chapter 3 presents the most important related work of each publication
and the related work on adaptive query optimization and self-driving
database systems, two other important fields where adaptive optimizations
have been applied successfully.

- Chapter 4 concludes the thesis by summarizing the main results and
discussing opportunities for future work.

- Appendices P1 to P3 present the full publications, prefaced by synopses
that summarize their contributions.

6

CHAPTER 2
Research Methodology

This chapter explains the research methodologies used to address the research
questions presented in Chapter 1. To provide a comprehensive understanding
of the applied research methodologies, the following sections outline them for
every publication separately.

2.1 Adaptive Hybrid Indexes
Motivation. As discussed in Chapter 1, database systems rely on order-
preserving index structures, such as trees, to accelerate queries with selective
predicates. Given that a single table can often have multiple indexes on different
columns, these index structures contribute significantly to the database system’s
overall memory footprint [185]. Consequently, index structures have a large
potential to reduce the storage overhead of database systems.

Many conventional index structures, including B- [23], UB- [22], and B+-
trees [26] use node encodings that facilitate various operations efficiently, e.g.,
inserts, updates, deletes, reads, and scans. Therefore, we call them universal
encodings. These encodings, however, often trade space for query performance,
negatively affecting the database system’s memory footprint. The same obser-
vation also applies to entire classes of index structures that are either optimized
for performance or space. For example, succinct tree index structures reduce
the space consumption to the theoretical limit by implicitly encoding node rela-
tionships in bitmaps, but also negatively impact query performance [186]. On
the contrary, traditional pointer-based data structures use 64-bit per indirection
on a modern machine. While this allows for differentiation among 264 elements,
it comes at the expense of a higher memory footprint.

At the same time, recent studies have shown that real-world workloads often
exhibit skewed access patterns: only a few key ranges are frequently accessed,
whereas most keys are rarely or not accessed [35].

Therefore, in publication P1, we propose Adaptive Hybrid Indexes that use
lightweight tracking of the workload’s access patterns to identify hot and cold
data. We differentiate two types of Adaptive Hybrid Indexes:

2.1. Adaptive Hybrid Indexes

Type 1: Multiple node encodings with different space and performance charac-
teristics are utilized within one index.

Type 2: Two or more index structures are combined into one logical index, e.g., a
performance-optimized and a succinct index structure.

At execution time, the tracked accesses inform adaptive decisions like (1) chang-
ing the node encodings or (2) migrating nodes between the indexes.

These observations lead to the first research question:

Research Question 1: Can Adaptive Hybrid Indexes optimize the
performance-memory trade-off under skewed workloads and outper-
form conventional index structures when space and performance are
considered equally important?

Before introducing hypotheses that can be empirically validated, the trade-
offs between an index structure’s space utilization and its query latency must be
made measurable. Therefore, we adopt the following cost function introduced
by Zhang et al. [187]:

𝐶 = 𝑃 𝑟 ⋅ 𝑆 (2.1)

In this equation, 𝑃 denotes the latency of index operations, thereby serving
as an indicator of performance. 𝑆 stands for the space occupied by the index. The
parameter 𝑟 controls the balance between these two aspects. Specifically, for 0 ≤
𝑟 < 1, the equation prioritizes minimizing space over enhancing performance.
Conversely, when 𝑟 > 1, the focus shifts to maximizing performance at the
cost of increased space usage. Space and performance are considered equally
important throughout this thesis and we set 𝑟 = 1. To use this cost function
in the evaluation, the raw values for space and performance – i.e., latency and
memory consumption – are scaled to the range between 0 and 1 using max
normalization. This step is necessary since the number of elements inserted into
the index and the type of workload being processed can substantially influence
both the space and performance metrics, thereby affecting the final cost.

We propose two hypotheses to answer Research Question 1. The first hy-
pothesis addresses the Hybrid B+-tree, which is a Type 1 Adaptive Hybrid Index
introduced in publication P1:

Hypothesis 1.1: An adaptive hybrid B+-tree having different leaf
node encodings can achieve a lower cost 𝐶 than a conventional B+-tree
with only one encoding under skewed workloads.

8

2.1. Adaptive Hybrid Indexes

The second hypothesis concerns Adaptive Hybrid Indexes of Type 2:

Hypothesis 1.2: A hybrid index that combines a performance-
optimized with a space-optimized prefix tree can balance the trade-offs
betweenmemory footprint and query performance, resulting in a lower
cost 𝐶 than either type of prefix tree alone under skewed workloads.

Outline. Section 2.1.1 presents the scientific methods used to address the
research question and test the two hypotheses. Section 2.1.2 provides imple-
mentation details and Section 2.1.3 presents the evaluation.

2.1.1 Scientific Method
We develop two novel index structures to empirically validate the two hypothe-
ses: the Hybrid B+-tree (Type 1) and the Hybrid Trie (Type 2). The following
sections outline their foundational principles and discuss the mechanisms en-
abling their workload adaptivity at runtime.

2.1.1.1 Hybrid B+-tree

Traditional B+-tree implementations employ a universal encoding for all leaf
nodes, whichwe refer to asGapped. Figure 2.1 visualizes the conceptual overview
of a node in the Gapped encoding: each node has a fixed size1 with a static
number of slots, irrespective of the number of key-value pairs the node contains.
This encoding not only enables efficient inserts in the case that the node is not
yet full, but it also defers merge operations in case an entry is removed from
the node. Thus, the Gapped encoding prioritizes query performance, such as
fast inserts and updates, while requiring more memory than necessary to store
the existing entries. As pointed out by Alhomssi and Leis [5], this memory
inefficiency yields a space utilization below 70% in classical B-trees. To address
this issue, we extend the STX B+-tree [26] with two encodings:

The Packed encoding applies the same storage principles as the Gapped
encoding but does not retain empty slots. Therefore, the node size is no longer
static but depends on the number of items the node contains. Figure 2.1 illustrates
the Packed encoding. While this encoding improves space utilization, insert
and delete operations suffer. For example, nodes in the Packed encoding must
always be reorganized to make space for new entries or shrink after removing an
item. Because of this trade-off, the Packed encoding is particularly well-suited
for read-heavy workloads with only a few or no updates.

1This thesis focuses on B+-trees storing fixed-size data types, such as numerics or integers.

9

2.1. Adaptive Hybrid Indexes

Gapped: header slotuse 𝑘0 𝑘1 𝑘2 ⟂ 𝑣0 𝑣1 𝑣2 ⟂

Packed: header slotuse 𝑘0 𝑘1 𝑘2 𝑣0 𝑣1 𝑣2

Succinct: header slotuse 𝑘𝑚𝑖𝑛 𝑣𝑚𝑖𝑛 Δ𝑘1 Δ𝑘2 Δ𝑣1 Δ𝑣2

Figure 2.1: Leaf node encodings of the Hybrid B+-tree.

The Succinct encoding optimizes memory efficiency further. It extracts
the minimum key 𝑘𝑚𝑖𝑛 and value 𝑣𝑚𝑖𝑛 from all items in the node and stores them
separately. For all keys and values, we store only the differences to the minimum
key (Δ𝑘) or value (Δ𝑣). Furthermore, the Succinct encoding leverages bit packing
to reduce space consumption by only occupying the minimum number of bits
required to represent the key or value. However, this representation requires
more computational steps like additional shift operations to retrieve the keys
and values. Figure 2.1 shows the detailed memory layout of a node stored in the
Succinct encoding.
Performance implications. After introducing the different leaf node encod-
ings, we execute multiple micro-benchmarks to evaluate their space utilization
and performance. Initially, we assess the lookup efficiency of B+-trees employ-
ing one of the three leaf node encodings. We use the Open Street Map Cells
dataset [125] and generate uniformly distributed lookups. We conducted the
experiment on Testbed 1 (refer to Section 2.1.3 for more details of the experi-
ment setups), and we measured the leaf node accesses’ performance, excluding
the inner node traversal. The results are shown in Table 1 of P1 and indicate
that both the Packed and Succinct encodings significantly reduce the memory
footprint compared to the Gapped encoding.
Enabling workload adaptivity. However, to fully validate Hypothesis 1.1, the
Hybrid B+-tree must achieve a lower cost 𝐶 than a conventional B+-tree with
a static encoding for all leaf nodes under skewed workloads. To this end, the
Hybrid B+-tree must become workload-aware and adaptively select suitable
leaf node encodings. Therefore, information is required on both the number of
accesses and the access types at runtime. There are two options to collect this
information:

• In a decentralized tracking approach, each leaf node independently keeps
track of its accesses. Access counters for reads and updates are directly
stored in the leaf node’s header.

• In a centralized tracking approach, a dedicated data structure, such as a

10

2.1. Adaptive Hybrid Indexes

…

…

…

Leaf Nodes:

Gapped

Packed
Succinct

Legend

A B C D E F

D

C

E

Hash Table:
14 3 34 01101101
2 0 10 00000000
5 0 34 01111001

Ide
nt
ifie

r (
pt
r)

Re
ad
s
W
rit
es

La
st
Ep
oc
h

Ac
ce
ss
Hi
sto
ry

Figure 2.2: Hybrid B+-tree with different leaf node encodings. A hash table
tracks the access statistics.

hash table, maintains distinct counters for reads and updates per accessed
leaf node.

While the decentralized approach would require intrusive modifications to all
leaf nodes – including those that never get accessed – the centralized track-
ing approach only tracks accessed nodes, thereby saving space under skewed
workloads. Due to these advantages, we adopt the centralized approach for
the Hybrid B+-tree to collect the access information in a hash table. Figure 2.2
visualizes the centralized tracking approach. The Hybrid B+-tree is shown at
the bottom, leveraging the different leaf node encodings introduced above. To
the top right, a hash table tracks the access information for the leaf nodes. It
uses the leaf node’s memory address as the key and maintains separate counters
for reads and writes. This example illustrates a read access to node C . The
according read counter is incremented in the hash table. The two other hash
table entries Last Epoch and Access History will be explained later.

To confirm Hypothesis 1.1, the overall cost 𝐶 of the Hybrid B+-tree must be
lower than the cost of conventional, static B+-trees that use one node encoding
for all leaf nodes. However, tracking all leaf node accesses yields substantial
performance overhead. To explore the tracking overhead, we conduct an experi-
ment on Testbed 1 using the same dataset as before. Figure 5 of P1 shows the
results: Tracking all accesses (skip length = 1) incurs a substantial overhead of
60% compared to the conventional B+-tree without tracking.
Sampling node accesses. To address this issue, we adopt a lightweight sam-
pling technique proposed by Vitter et al. [171], which defines a parameter called

11

2.1. Adaptive Hybrid Indexes

skip length, specifying the number of accesses ignored between two successive
tracked accesses. For every index operation, the skip length is decremented
by one. When the skip length reaches zero, the access is tracked in the hash
table and the skip length is subsequently reset to its default value. As shown
in Figure 5 of P1, a skip length of 2 reduces the tracking overhead to 40%. By
sampling only every 20th access, the overhead drops to 1.6%.

While a higher skip length effectively reduces the tracking overhead, it also
delays the hybrid index’s ability to detect and adapt to changing workload
patterns. Therefore, adaptively adjusting the skip length at runtime can help
improve its performance and adaptability. For instance, if the workload patterns
are stable and the node encodings do not change, increasing the skip length
could further reduce the tracking overhead. Conversely, if the node encodings
frequently change, the need for precise tracking information could justify a
higher sampling rate and the resulting tracking overhead.
Sample size. In addition to the sampling rate, another key parameter to consider
is the sample size, which determines how many accesses must be tracked before
deciding on suitable leaf node encodings. While smaller samples can be col-
lected more quickly and require fewer resources, they may result in suboptimal
encoding decisions.

Given that computing environments have limited memory resources, we
use a memory budget to constrain the problem scope. The memory budget sets
an upper limit within which the Hybrid B+-tree can optimize its leaf nodes.
The next task is to identify how many compressed nodes (e.g., Succinct or
Packed) 𝑘 can be optimized – such as by using the Gapped encoding – without
exceeding the memory budget. Considering the average node sizes from the
prior experiment and the number of Succinct, Packed, and Gapped leaf nodes in
the Hybrid B+-tree, one can derive an approximation for 𝑘.

Once 𝑘 is determined, a sufficient sample size 𝑠 must be found. We use an
approach proposed by Pietracaprina et al. [134] that calculates the minimum
sample size 𝑠 that is required to identify the top-𝑘 nodes at a reliability 𝛿 and a
classification error rate 𝜖. We then conduct experiments to derive reasonable
values for 𝜖 and 𝛿 across various workloads, as shown in Figure 2 of P1. Setting
𝜖 = 𝛿 = 0.05 yields a good trade-off between sample size and accuracy. Based
on Equation (1) of P1, the sample size can be dynamically adjusted.
Designing a generic framework for Adaptive Hybrid Indexes. Building
on the previous findings, we conceptualize and develop a new framework that
seamlessly combines sampling and node access tracking. The resulting frame-
work leverages the implementation of Adaptive Hybrid Indexes. Figure 4 of P1
visualizes the framework on a conceptual level. It comprises two phases:

12

2.1. Adaptive Hybrid Indexes

Sampling Phase: During this phase, node accesses are tracked in the
hash table. Once the sample size is reached, the framework transitions to
the adaptation phase.

Adaptation Phase: In this phase, the framework uses the aggregated
access statistics to find the most frequently accessed nodes and migrates
them to performance-optimized encodings, such as Gapped or Packed,
while ensuring that the memory bound is not exceeded.

Furthermore, the framework utilizes a global epoch, which is incremented in
every adaptation phase. Each node in the hash table records the epoch of its
last access (cf. Figure 2.2). When a node is accessed and its recorded epoch is
less than the global epoch, the read and write counters for that node are reset
to zero and its epoch is updated to the global epoch. Additionally, each hash
table entry maintains the access history – a bitmap that tracks the last epochs
in which the node was accessed. This information helps to mitigate oscillatory
effects that could otherwise result in frequent node encoding changes.
Improving performance with bloom filters. In addition to the hash table, we
use a bloom filter to enhance the tracking framework’s performance. A bloom
filter is a hash-based data structure that enables fast, approximate membership
tests [27]. This optimization prevents infrequently accessed nodes from being
inserted into the hash table, which is computationally more expensive than
inserting a node into the bloom filter. Figure 2.3 illustrates the tracking process
of an initially untracked node F .

First, the framework queries the hash table to verify the node’s existence 1 .
Since the node has not yet been added to the hash table, the system proceeds to
check the bloom filter 2 . Since the node is also absent from the bloom filter, it
is inserted there 3 .

Figure 2.3b illustrates a subsequent read access to the same node F . The
framework, once again, queries the hash table 4 , which reports that the node
has not yet been inserted. However, this time, the bloom filter indicates that the
node has been previously registered 5 , followed by the node’s insertion into
the hash table 6 .

Lastly, Figure 2.3c demonstrates a third read access to node F . This time,
the hash table already contains an entry for node 7 and its read counter is
incremented by one 8 .

As part of the above-introduced micro-benchmark, we also evaluate the
impact of the bloom filter. Figure 5 of P1 shows that the bloom filter significantly
reduces the relative tracking overhead compared to the Hybrid B+-tree without
the bloom filter.

13

2.1. Adaptive Hybrid Indexes

…

…

…

A B C D E F

D

C

E

0001000100100011
Bloom Filter

FTrack a read access to �1

�

2

3
Insert into Bloom filter.

14 3 34 01101101
1 0 10 00000000
5 0 34 01111001

Ide
nt
ifie

r (
pt
r)

Re
ad
s
W
rit
es

La
st
Ep
oc
h

Ac
ce
ss
Hi
sto
ry

(a) Initial State: Node not yet inserted into hash table or bloom filter.

D

C

E

0001000100100011
Bloom Filter

FTrack a read access to �4

�

5

6
Insert node into hash table.

14 3 34 01101101
1 0 10 00000000
5 0 34 01111001

(b) Hash Table Insert: Node exists in the bloom filter and is added to the hash table.

D

C

E

F

0001000100100011
Bloom Filter

FTrack a read access to �7

8

14 3 34 01101101
1 0 10 00000000
5 0 34 01111001
2 0 34 00000000

(c) Hash Table Update: Node exists in the hash table and its read counter is incre-
mented.

Figure 2.3: Tracking multiple read accesses to a leaf node in the Hybrid B+-tree.

14

2.1. Adaptive Hybrid Indexes

2.1.1.2 Hybrid Trie

After designing the Hybrid B+-tree, we use the adaptation framework to imple-
ment the Adaptive Hybrid Trie. Tries, also called prefix trees, organize keys
hierarchically, with each tree level storing a part of the key. Hybrid Trie is a
Type 2 hybrid index that combines two well-known prefix trees: the Adaptive
Radix Tree (ART) [99] and the Fast Succinct Trie (FST) [187].

ART is a high-performance, state-of-the-art, pointer-based index that serves
as the default index structure in HyPer [88]. Although ART employs four node
encodings to optimize space utilization depending on the number of elements
stored in a node, its pointer-based structure consumes more memory than the
information-theoretical minimum requires.

On the other end of the spectrum, FST focuses on optimizing memory usage,
employing bitmaps instead of pointers to navigate to subsequent nodes, albeit
at the expense of higher computational overhead. FST leverages two encodings:

Dense encoding: Nodes implicitly store the existing items within a fixed-
size bit array. For example, if each level represents 8 bits of a key, then
the bit array would have a size of 28 = 256 per node. An index in this
bitmap is set to 1 if the corresponding item exists and 0 otherwise.

Sparse encoding: Nodes explicitly store the existing items, providing a
more compact representation if nodes are sparsely populated.

Both encodings require an additional bitmap to indicate whether a specific
entry represents the terminal of a key or the item is a prefix of at least one key
continuing in the next level. Zhang et al. [187] provide more details on the
node traversal in FST. Table 2 of P1 shows that ART has a significantly higher
space consumption but achieves better lookup performance than FST-dense and
FST-sparse.

These observations motivate a level-wise combination of the two index
structures. Because of its better performance, ART represents the upper levels,
where all index operations start, while FST stores the lower levels. Figure 10
of P1 illustrates this idea. We leverage the existing adaptation framework to
monitor the accesses to the ART nodes. This data enables runtime decisions on
whether nodes should be encoded in the performance-optimized ART or stored
in the space-efficient FST. Considering skewed workloads, where only a few
keys are accessed frequently, combining ART’s performance advantages with
FST’s space efficiency could achieve a lower cost 𝐶 compared to using either
ART or FST exclusively. Should the Adaptive Hybrid Trie outperform ART and
FST regarding the overall cost 𝐶 under skewed workloads, this would be an
empirical validation for Hypothesis 1.2.

15

2.1. Adaptive Hybrid Indexes

2.1.2 Implementation Overview
The tracking framework is implemented as a header-only C++ library and
compiled using GCC 9.3.0 with optimization flags -O3 and -march=native. All
experimental evaluations are conducted on Testbed 1 (cf. Section 2.1.3).

An exhaustive set of test cases asserts the correctness of the implemented
index structures.

Performance optimization strategies are incorporated at various levels of
the framework. For example, the skip length is realized through thread-local
counters to mitigate thread contention and improve parallel processing. On
the single-threaded side, the hash table responsible for access tracking employs
an optimized hopscotch hash map [33]. For the multi-threaded experiments
concerning the Hybrid B+-tree, a concurrent Cuckoo hash map [32, 105] tracks
the node accesses. Furthermore, atomic data types, like std::atomic_uint,
are used to implement efficient read and write counters, obviating the need for
mutex-based synchronization. For better multi-threaded performance, Opti-
mistic Lock Coupling (OLC) techniques are employed [101], providing a more
efficient alternative to basic lock coupling.

The Hybrid B+-tree implementation is built upon the well-established STX-
B+-tree [26]. Our approach is not tightly bound to this specific B+-tree but
should also work with other implementations. A more detailed discussion on
the implementation can be found in Section 4 of P1.

2.1.3 Evaluation
The following machine is used for all experiments:

- Testbed 1: 16-core AMD Ryzen 9 3950X CPU @ 3.5GHz equipped with
64GB DDR4-2667 RAM. The operating system is Ubuntu 21.04.

Evaluating Hypothesis 1.1. Let us start with the first hypothesis:

“An adaptive hybrid B+-tree having different leaf node encodings can
achieve a lower cost 𝐶 than a conventional B+-tree with only one
encoding under skewed workloads.”

To validate the hypothesis, we must show that a skewed workload exists for
which the Adaptive Hybrid B+-tree achieves a lower cost 𝐶 than a conventional
B+-tree that employs one static leaf node encoding. Figure 13 of P1 investigates
the trade-off between space and performance for the Adaptive Hybrid B+-tree
and its competitors for two skewed workloads. Here, we focus on workload
W1.3, whose read, scan, and insert operations follow a log-normal distribution.

16

2.1. Adaptive Hybrid Indexes

Table 2.1: Results from Figure 13 of P1 (W1.3) and the max-normalized scores
for performance 𝑃 and space 𝑆 as well as the computed cost 𝐶 = 𝑃 × 𝑆.

Competitor Latency [ns] Size [GB] 𝑃 𝑆 𝐶

AHI-BTree 291.8 2.36 66.4 27.2 1808.5
Succinct 439.2 2.3 100.0 26.5 2652.8
Packed 260.4 6.15 59.3 70.9 4205.7
Gapped 246.2 8.67 56.1 100.0 5605.6

Table 2.2: Results from Figure 19 of P1 (W6.1) and the max-normalized scores
for performance 𝑃 and space 𝑆 as well as the computed cost 𝐶 = 𝑃 × 𝑆.

Competitor Latency [ns] Size [MB] 𝑃 𝑆 𝐶

AHI-Trie 381.0 374.5 36.5 37.0 1350.0
FST 1045.1 322.6 100.0 31.9 3190.0
ART 250.6 1011.3 24.0 100.0 2397.9

All index structures store 8-byte keys from the OSM dataset [125] and 8-byte
tuple identifiers as values.

Table 2.1 shows each competitor index’s average latency and size, along with
the normalized values of performance 𝑃 and space 𝑆. The last column shows
the cost according to Equation (2.1). The adaptive Hybrid B+-tree achieves a
lower cost 𝐶 = 1808.5 than the conventional B+-trees that either use the Gapped
(5605.6), Packed (4205.7), or Succinct (2652.8) encodings for all leaf nodes. This
finding validates Hypothesis 1.1.
Evaluating Hypothesis 1.2. The second hypothesis addresses the Hybrid Trie:

“A hybrid index that combines a performance-optimized with a space-
optimized prefix tree can balance the trade-offs between memory
footprint and query performance, resulting in a lower cost 𝐶 than
either type of prefix tree alone under skewed workloads.”

To validate the hypothesis, we must find a skewed workload where the
Adaptive Hybrid Trie (AHI-Trie) yields a lower cost 𝐶 than the Fast Succinct Trie
(FST) [187] and Adaptive Radix Tree (ART) [99]. Figure 19 of P1 investigates
the space and performance trade-off for AHI-Trie and its competitors FST and
ART. It also shows a pre-trained, static variant of AHI-Trie that is tuned for the
most frequently accessed keys (assuming a priori knowledge of the workload).
The indexes store 33 million email addresses in host-reversed order and process
workload W6.1, which comprises read accesses that follow a Zipfian distribution.

17

2.2. Steering Query Optimizers

Table 2.2 summarizes the results and shows the calculated scores for 𝑃, 𝑆
and 𝐶 = 𝑃 × 𝑆. As AHI-Trie achieves a lower cost of 1350.0 compared to FST
(3190.0) and ART (2397.9), Hypothesis 1.2 is successfully validated.
Conclusions. The proposed framework facilitates the implementation of the
Hybrid B+-tree and the Hybrid Trie, which are two examples of Adaptive Hybrid
Indexes. The experiments confirm Hypothesis 1.1 and Hypothesis 1.2 and
demonstrate that Adaptive Hybrid Indexes can achieve lower costs 𝐶 compared
to their non-adaptive counterparts under skewed workloads. These findings
positively answer Research Question 1.

2.2 Steering Query Optimizers
Motivation. SQL is the de facto standard for retrieving and manipulating data
in database systems. It is a declarative language that allows users to specify
what data should be retrieved, leaving it up to the database to determine how to
efficiently retrieve it. After accepting an SQL statement, the database system first
parses it into an Abstract Syntax Tree (AST). Next, the query optimizer searches
for an efficient execution plan [83]. Query optimization is crucial in enhancing
a database’s performance and has been the subject of extensive research efforts,
including cardinality estimation [90, 91, 119, 120], query rewriting [192], and
join ordering [113].

Query optimizers primarily follow two paradigms: cost-based or rule-based
optimization. Cost-based query optimizers use cost functions and statistics to
estimate the cost of different query plans and pick the cheapest one. Rule-based
query optimizers use rewrite rules to transform one query plan. Each rewrite rule
consists of a criterion and a rewrite action. For every rewrite rule, the optimizer
searches the query plan for subtrees that satisfy the criterion and applies the
rewrite action to transform it.

Hybrid query optimizers combine cost-based and rule-based optimization
strategies and are prevalent in both open-source and commercial databases,
including PrestoDB [156], SCOPE [189], SparkSQL/Catalyst [13], Green-
plum/Orca [159], and Apache Calcite [24].
Challenges in rule-based query optimization. Rule-based query optimiz-
ers implement many rewrite rules. For example, PrestoDB has more than 170
rewrite rules [136]. Some of these rules are tailored for specific scenarios, mak-
ing assumptions on or having been tested with a certain number of worker
nodes, network latencies, and dataset sizes. For instance, PrestoDB’s HashGen-
erationOptimizer accelerates query processing on larger datasets, but it can
significantly slow down query processing on smaller datasets [10]. As a result,

18

2.2. Steering Query Optimizers

the rule’s effectiveness depends on multiple parameters and can also negatively
impact performance [111, 118, 188].
Database knobs. Many database systems have configurable knobs to address
these issues, allowing their users to selectively activate or deactivate rewrite
rules per query, a process known as steering. For instance, PostgreSQL users
can turn off index scans, which becomes useful when the query optimizer
overestimates a predicate’s selectivity.

SQL
Query

Parser Hint-Set 2

Hint-Set 1

Hint-Set 3

Execution Plan 1

Execution Plan 2

Execution Plan 3

optimize

optimize

optimize

Rewrite Rule 1: enabled
Rewrite Rule 2: disabled

65
estimate

estimated
cost

12
estimate

42
estimate

�

�

�

execute

Steered Query Optimizer

Figure 2.4: A steered query optimizer with three predefined hint-sets.

Prior work, such as the Bandit Optimizer (Bao) [111] and its adoptions for
Microsoft Scope [118, 188], Vertica, Azure Synapse, and RedShift [12], have
investigated automated steering approaches for rule-based query optimizers.
Figure 2.4 illustrates Bao’s approach: predefined hint-sets specify which rules
are turned on or off. Then, Bao uses these hint-sets to steer the query optimizer
and generates an optimized plan for every hint-set. Finally, a machine-learned
model estimates the execution times of these plans, allowing Bao to pick the
cheapest one.
Limitations of state-of-the-art steered optimizers. Steered query optimizers
have already achieved significant performance improvements, but they have
several limitations:

• Integration complexity: Previous steering approaches are tightly cou-
pled to specific database systems and are thus not generalizable to other
database systems.

• Required expertise: The effective use of these strategies requires expert-
level knowledge of a database system and its query optimizer to predefine
useful hint-sets.

19

2.2. Steering Query Optimizers

• Static hint-sets: Given a large number of configurable knobs in database
systems, the limitation of predefining static and query-agnostic hint-sets
becomes apparent: it significantly narrows the search space, thereby
overlooking many effective hint-sets. Additionally, not all of these static
hint-sets will impact a given query, but they are still evaluated by the
steered optimizer, leading to inefficiencies.

These limitations motivate the following research question:

Research Question 2: Can one framework steer rule-based query
optimization across database systems to automatically identify query-
aware hint-sets and thereby discover faster query plans?

We introduce two hypotheses to address the different aspects of this question.

Hypothesis 2.1: Rule-based query optimizers can be steered exclu-
sively through SQL and explain statements, thereby obviating the need
for system-level integrations.

The second hypothesis addresses the steering framework’s performance
improvements:

Hypothesis 2.2: The steering framework can identify alternative
execution plans that reduce the query execution time for established
database benchmarks.

Outline. Section 2.2.1 outlines the scientific methods and research process
employed to address the research question and the first hypothesis. Section 2.2.2
delves into implementation details, while Section 2.2.3 focuses on the quantita-
tive evaluation to test the second hypothesis.

2.2.1 Scientific Method
While publication P2 elaborates on the technical details and results of the steering
framework, this section summarizes the research methodology and explains
how the research questions and hypotheses are addressed.

2.2.1.1 Conceptual Approach and Idea

In contrast to previous steering approaches like Bao [111] that use static, query-
agnostic hint-sets, our goal is to create adaptive, query-aware hint-sets. There-
fore, we must first identify those rewrite rules that impact a query’s optimization.

20

2.2. Steering Query Optimizers

Identifying effective rewrite rules. To reduce the large search space of
hint-sets, Negi et al. [118] proposed the concept of query spans. A query span
includes only the effective rewrite rules for which toggling it on or off results
in a different query plan. However, interdependencies among rewrite rules
complicate calculating the query span. Instead, Section 3.2 of P2 explores two
heuristics to approximate query spans. While identifying effective rewrite rules
is straightforward within a rule-based query optimizer (cf. Listing 3 of P2),
identifying them outside the database system would broaden the approach’s
applicability across other systems, thereby addressing Hypothesis 2.1.
Approximating query spans using EXPLAIN. Although not part of the SQL
standard [81], EXPLAIN statements are supported across a wide range of rela-
tional database management systems – including PostgreSQL [61], MySQL [60],
DuckDB [58], SparkSQL [64], PrestoDB [62], Snowflake [63], Hyper [59], Ama-
zon Redshift [57] – to help users understand the query processing. Invoking
EXPLAIN <statement> typically yields the optimized query plan without exe-
cuting it. Selectively disabling rewrite rules and then comparing the explained
query plans allows identifying the effective rewrite rules outside the database
system. The proposed steering framework in publication P2 implements this
idea. However, it is important to note that this approach has limitations, as it
cannot find all effective rewrite rules, particularly those affecting the query plan
only at an algorithmic level. Such fine-granular changes are often not included
in the explained query plans.
Adaptive hint-sets. Next, we conduct an experiment to evaluate the query
span approximation algorithms. Considering queries e6a, 8d, and 16d from the
extended Join Order Benchmark (JOB) [100, 113], Figure 9 of P2 shows that only
13 to 15 rewrite rules effectively contribute to the query plan’s optimization.
However, while 15 effective rewrite rules per query reduce the search space,
there are still 215 potential hint-sets, which are too many to explore. Detailed
experiments across various databases in Section 4 of P2 lead to two observations:

(1) Most beneficial hint-sets, i.e., hint-sets resulting in a speedup over the
original query plan, are small and consist of fewer than four rewrite rules.

(2) Most beneficial hint-sets consist of smaller hint-sets, which are also bene-
ficial.

Observation (2) implies that in most cases, larger beneficial hint-sets could
be constructed from smaller beneficial hint-sets bottom-up. Therefore, we
implement a greedy algorithm (cf. Listing 1 of P2) that comprises three phases:

Phase 1: Execute the query using the default plan to establish a baseline.

21

2.2. Steering Query Optimizers

Phase 2: Based on the query span, use the effective rewrite rules to
generate singleton hint-sets and collect their execution metrics.

Phase 3: Iteratively construct larger hint-sets by selectively combining
beneficial hint-sets identified in the previous steps. Execute the larger
hint-sets only when they yield a new, previously unexplored query plan.

This algorithm generates query-aware hint-sets, thereby addressing Re-
search Question 2: “[…] automatically identify query-aware hint-sets […]”.
Predict query plan execution times. Like Bao’s reinforcement learning-based
approach, the query plans generated through the adaptive hint-set search can
serve as training data for a learned cost model. The greedy hint-set search
can then use the cost model to estimate the execution times of the generated
query plans, thereby eliminating the need for their actual execution. Due to
the inference overhead, this approach is more beneficial for long-running and
analytical than short-running queries.
Automatically steering query optimizers with AutoSteer. Building on the
previous ideas and experimental findings, we propose a new framework called
AutoSteer. This framework automatically steers rule-based query optimizers of
SQL database systems that expose binary knobs and support EXPLAIN statements
for detailed query plan analysis. AutoSteer combines the approximation of query
spans, the adaptive hint-set search, and the prediction of query plan execution
times based on learned cost models.
Connecting AutoSteer to a database. As illustrated in Figure 2 of P2, only
two database-specific files are required to connect AutoSteer to a new database
system:

Knobs: This file contains the names of the binary knobs belonging to the
query optimizer’s rewrite rules that the database system exposes.

Connector: A connector for AutoSteer and the database system, imple-
menting knob toggling, query explanation, and query execution.

We can also integrate AutoSteer directly into a database system’s query
optimizer for better performance. However, such integrated connectors require
more engineering effort. If the framework is used with a custom, integrated
connector, we refer to the framework as AutoSteer-C. Otherwise, when it uses
the generic connector, we refer to it as AutoSteer-G. According to Research
Question 2, this thesis focuses on AutoSteer-G.
AutoSteer’s integration effort. We integrated AutoSteer-G into five open-
source database systems and evaluated it with TPC-H [167], TPC-DS [166], and
the extended Join Order Benchmark [100, 111]. We use the Lines of Code (LOC)
metric to quantify the integration effort, excluding comments, import and log

22

2.2. Steering Query Optimizers

Table 2.3: Comparison of AutoSteer-G’s Database Connectors.

Database System Lines of Code Tunable Knobs

PostgreSQL 49 20
PrestoDB 53 177
SparkSQL 68 49
DuckDB 34 14
MySQL 55 22

statements, and blank lines. Table 2.3 summarizes the findings. For AutoSteer-
G’s integration with PrestoDB, adaptations were made to the database’s source
code [136] to expose the 177 knobs. Remarkably, each connector is implemented
in less than 100 lines of Python code, demonstrating the minimal programming
effort needed for AutoSteer-G’s integration. Furthermore, the evaluation in
Section 4 of P2 shows that AutoSteer-G, which uses only SQL and EXPLAIN
statements to steer rule-based query optimization in five database systems,
successfully identifies query-aware hint-sets that significantly improve the
performance and thereby confirms Hypothesis 2.1.

2.2.2 Implementation Overview
AutoSteer-G. AutoSteer-G and all of its algorithms are implemented in Python
3.10. We use SQLite 3 to persist all generated data, such as the query spans, the
hint-sets, the query plans, and the measurements. A comprehensive set of test
cases covers AutoSteer’s key functionalities.

The inference of query plan execution times is based on the Bao-for-
PostgreSQL prototype, which uses Tree Convolutional Neural Networks to
predict the query plans’ execution times [19]. AutoSteer-G’s source code and
generic connectors are open-source and available under the MIT license [15].
AutoSteer-C. AutoSteer’s system-level integration for PrestoDB is based on
version 0.274 and uses Java 8. The query span approximation is implemented
directly within PrestoDB’s rule-based query optimizer. Listing 3 of P2 illustrates
this idea in pseudocode.

2.2.3 Evaluation
Section 2.2.3.1 presents the testbeds that were used in the experimental evalua-
tion. Following this, Section 2.2.3.2 provides an overview of the experiments
that address Hypothesis 2.2.

23

2.2. Steering Query Optimizers

2.2.3.1 Testbeds

The experiments in publication P2 were conducted using the following testbeds:

Testbed 2.1: PrestoDB is deployed on a Kubernetes cluster with one
coordinator and four worker nodes. Each node is equipped with a dual-
socket Intel® Xeon® Platinum 8280 CPU, featuring 2 × 28 cores at 2.7 GHz.
These nodes have 256 GB of memory and an Intel® DC S3500 SSD for data
storage. Each SSD holds a copy of the datasets used in the experiments.
All nodes are connected with a 1 Gbit Ethernet network. All queries are
executed in isolation and with warm caches.

Testbed 2.2: PrestoDB is deployed on a large-scale cluster consisting of
hundreds of compute nodes at Meta.

Testbed 2.3: PostgreSQL 13 is installed on a machine with a 16-core
AMD Ryzen 3950X@3.5 GHz. It has 96GB of DDR4-2667 memory. Only
those hint-sets that yield new query plans are considered. All queries are
executed with warm caches.

Testbed 2.4: SparkSQL v3.2.2 is configured as it is internally used at Intel
and runs on a single machine with a dual-socket Intel® Xeon® Platinum
8280 CPU with 2×28 cores at 2.7 GHz and 256 GB of memory. All datasets
reside in memory using tmpfs.

2.2.3.2 Experiments

To empirically evaluate Hypothesis 2.2, we conduct several experiments using
AutoSteer-G for PostgreSQL and SparkSQL.

• AutoSteer-G for PostgreSQL is evaluated using the extended Join Order
Benchmark [100, 111] and executed on Testbed 2.3. The adaptive hint-
set search generates alternative query execution plans that reduce JOB’s
execution time by up to 33.5% when always choosing the best known
hint-set. Further details can be found in Section 4.5 of P2.

• AutoSteer-G for SparkSQL is evaluated using TPC-DS [166] and runs on
Testbed 2.4. The best hint-sets that AutoSteer finds achieves relative run
time improvements of 44.3%. Further details can be found in Section 4.6
of P2.

While the primary focus of this thesis is on AutoSteer-G, additional evidence
supporting Hypothesis 2.2 is obtained from AutoSteer-C for PrestoDB.

24

2.3. Programming Fully Disaggregated Systems

• AutoSteer-C for PrestoDB is evaluated through the extended Join Or-
der [100, 111] and the Stack Benchmark [160] on Testbed 2.1 (cf. Table 4 of
P2). The best known hint-sets that AutoSteer discovers reduce the overall
execution time by 30.25% for JOB and by 42.38% for Stack. AutoSteer’s
inference mode uses the pre-trained TCNN to predict the execution time
of query plans and achieves improvements of up to 27.93% for JOB and
31.54% for Stack.

Conclusions. The experiments show that AutoSteer-G identifies alternative
query plans that reduce the end-to-end benchmark execution times, thereby
confirming Hypothesis 2.2. The presented qualitative and quantitative analyses
validate Hypothesis 2.1 and Hypothesis 2.2, thereby providing a positive answer
to Research Question 2.

2.3 Programming Fully Disaggregated Systems
The research methodology for publication P3 diverges from the two previous
publications because of its theoretical and visionary nature. It comprises two
steps:

1. A comprehensive literature review identifies and discusses recent trends
and advancements in data center hardware and disaggregated systems,
specifically considering the implications on the development of data-
intensive applications. Section 2.3.1 discusses these trends in more detail
and explains how they motivate Research Question 3.

2. Building upon the literature review, Section 2.3.2 presents the foundational
concepts of a new programming model and a runtime system for fully
disaggregated systems. We show each concept’s relevance and how it
contributes to answering Research Question 3.

2.3.1 Key Trends in Large-Scale Data-Center Computing
This section presents six important trends identified by thoroughly reviewing
current literature and related work.
Trend 1: Data explosion. The data volume’s exponential growth described in
Chapter 1 has significant implications, particularly for companies focusing on
large-scale data analytics. For instance, at Meta, dashboard applications must
process petabytes of data from various sources, running on clusters with hun-
dreds of compute nodes [10]. Given the growing data volumes and the demand
for fast analytics, developing scalable and efficient data-intensive applications
has become an important challenge.

25

2.3. Programming Fully Disaggregated Systems

Trend 2: Disaggregated memory. In traditional computer architectures,
memory and compute resources are tightly coupled. To reliably run multiple
applications on a single machine, they are assigned static, fixed memory and
compute resources to not risk the other applications’ stability. However, this
approach requires the overprovisioning of resources to applications to reliably
serve peak workloads, even though the resource demands can significantly
fluctuate over their lifetimes, which results in a low memory utilization with
average effective use between 50–65% [103, 164]. Considering that memory is an
expensive resource that constitutes up to 50% of Azure’s server costs [48] and 40%
of Meta’s rack costs [114], enhancing memory utilization reduces operational
costs. Therefore, modern data centers adopt disaggregated architectures that
separate memory [4, 46, 56, 137, 142] and compute resources [14, 28, 34, 37, 51, 84,
89, 138] and share them across multiple machines via high-speed networks [18,
135]. Disaggregation creates flexible and efficient memory and compute pools
that optimize resource utilization and enhance the applications’ scalability.
Trend 3: Data movement. While memory disaggregation addresses the prob-
lem of low utilization and availability, recent studies have shown that the domi-
nant cost driver in data centers has become data movement [93, 135]. Optimized
data placement strategies that minimize data movement are required and have
a large potential to reduce the operational costs of data center applications.
Trend 4: Cache-coherent interconnects. Beyond pooling memory and com-
pute resources across multiple machines, new cache-coherent interconnect (CCI)
standards like Compute Express Link™ (CXL™) [46] enable memory and com-
pute resource pooling within single machines. CXL is based on PCIe 5.0 and
enables memory expansions and cache-coherent memory sharing across multi-
ple devices. CXL has already been adopted by data center processors, such as
AMD’s 4th generation EPYC™ processor [6] and the 4th generation of Intel™
Xeon™ scalable processors [80]. While technologies like CXL allow for more
flexible data and compute placement, they also contribute to the system’s com-
plexity and require advanced optimization strategies to exploit their potential.
Trend 5: Diverse memory types. Adopting CCIs like CXL facilitates the devel-
opment of new PICe 5.0 memory devices, which further enrich and contribute
to the memory device pool shown in Table 1 of P3. For example, the first CXL
memory expansion modules have already been announced [115, 146]. However,
to optimize data placement, developers must be aware of the memory devices’
properties, including their latencies, bandwidths, supported access types, and
persistency guarantees, as they substantially impact the performance.
Trend 6: Optimization complexity. Given these trends, optimizing applica-
tions for a heterogeneous hardware environment with accelerators and differ-
ent memory types becomes increasingly complex. For instance, developing a
hardware-efficient external merge sort algorithm for a system involving DRAM,

26

2.3. Programming Fully Disaggregated Systems

PMEM, and SSD is a non-trivial endeavor even for expert developers [173]. To
fully exploit the potential of such a memory-tiered system requires the usage of
specialized libraries like the Storage Performance Development Kit (SPDK) [162]
to move data from one device to another more efficiently without involving
the host CPU [173]. However, such optimizations are non-trivial and increase
the algorithm’s complexity significantly. Since the utilization of compute and
memory devices is not known at development time, such applications must be
optimized adaptively at runtime.
Programming model for disaggregated systems. These trends show that
hardware capabilities evolve and CCI standards enable new data placement
strategies, but leveraging these advancements is becoming increasingly com-
plex and currently the application developer’s burden. Existing programming
models and frameworks such as MapReduce [52] or Spark [184] already support
developers in focusing on the application logic, but they are often too restricted
and specialized to a specific use case. Furthermore, each of these frameworks
must implement new optimization strategies to leverage the full potential of
disaggregated systems. Therefore, the identified trends and the lack of suitable
programming models collectively motivate the following research question:

Research Question 3: Can high-performance data-intensive appli-
cations like database systems be developed and optimized for fully
disaggregated systems sustainably?

2.3.2 Programming Model Design
This section explains the key design principles of a new programming model for
fully disaggregated systems. We show how every principle specifically addresses
Research Question 3.

2.3.2.1 Positioning the Programming Model

To answer Research Question 3, we propose a new programming model to sup-
port existing frameworks in leveraging the capabilities of fully disaggregated
systems more sustainably. Figure 2.5 provides a high-level overview of the
programming model. Data-intensive applications A are often implemented
using frameworks like MapReduce [52], Spark [184], Tensorflow [1], and Py-
Torch [129], which utilize declarative languages that allow developers to specify
what needs to be accomplished rather than how it should be executed [149].
Such programs are usually first parsed into a logical plan B , which is then
transformed into a physical plan C . Our programming model’s API D takes
over at this stage. It accepts the physical plan in the form of a task-based directed

27

2.3. Programming Fully Disaggregated Systems

DBMSML/AIStreaming

Data-Intensive Applications

HPC

Logical Plan/Computation Graph

Physical Plan/Execution Plan

API
- Task-based directed acyclic dataflow graph
- Annotated with logical memory regions
- Declarative properties

�
Dataflow Developer

Runtime
System

- Co-optimize data and compute placement
- Manage ownership and lifetime of regions

En
vi
si
on

ed
Pr

og
ra
m
m
in
g
M
od

el
A

B

C

D

E

Figure 2.5: High-level overview of the envisioned programming model.

acyclic graph (DAG) as input. The DAG’s nodes represent computational tasks
and its arrows denote data flowing from one task to another. Further optimiza-
tions, such as data and compute placement, are performed at the application’s
execution time by the programming model’s runtime system E . Additional in-
formation can be annotated in the physical plan in a declarative manner, details
which will be discussed further in the following.

2.3.2.2 Foundational Design Principles

Abstraction through memory regions. As highlighted by trends 4, 5, and
6, different memory types and cache-coherent interconnects enable new data
placement options but also make the optimization more complex. Moreover, in
cloud-based disaggregated systems, the available devices and their utilization
are unknown during the application’s development. Furthermore, trend 3 shows
that data movement dominates the costs of data centers. The envisioned pro-
gramming model implements a memory-centric design by raising the memory
abstraction level and adopting the concept of memory regions [68, 70, 165]. Fig-
ure 2.6 visualizes this idea: rather than specifying a particular memory device,
dataflow developers define memory regions 1 and attach the required memory
properties like low latency or high bandwith 2 . This idea has recently been
adopted in Intel’s Unified Memory Framework [124]. As discussed later in

28

2.3. Programming Fully Disaggregated Systems

this section, memory regions could also be annotated with other attributes like
confidentiality 4 . At execution time, the runtime system has more information
to better co-optimize data and compute placement and map logical memory
regions to suitable devices 3 .

Addressing Research Question 3: The programming model uses memory re-
gions to raise the abstraction level, which makes the application’s development more
sustainable as it becomes independent of the physical memory devices available at
runtime.

DRAM1 DRAM2

PMEM CXL DRAM

Disaggregated Memory

Memory Abstraction Layer
M
em

or
y

Re
gi
on

1
M
em

or
y

Re
gi
on

2

Latency: low
Bandwidth: high

Latency: medium
Persistent: true
Confidential: true

3

load/store

2

1

4

Figure 2.6: Logical memory regions abstract from physical memory devices.

Typed memory regions. Dataflow applications commonly utilize memory for
three primary objectives: synchronization, exchanging data, and thread-local
computations. Predefining typed memory regions for each objective lets the
programming model cover most memory usages and simplifies the application’s
development. Additionally, predefined memory regions facilitate compile-time
checks, like ensuring that different tasks do not concurrently access thread-local
memory regions. Table 3 of P3 shows how these three predefined memory
regions can be utilized across different application types.
Memory region ownership. As outlined by trend 4, technologies like CXL al-
low for cache-coherent access tomultiple compute devices, raising new questions
concerning memory ownership, for example, ‘who is responsible for cleaning up
allocated memory in case of unexpected errors?’

Memory ownership is a well-established concept in modern low-level pro-
gramming languages like C++11 and Rust, facilitated through smart pointers.
Building upon its memory-centric design with explicitly defined memory re-
gions, these concepts can be integrated into the programming model.

Figure 2.7 introduces the key ideas of memory region ownership. Like a
unique pointer, a task can exclusively own memory regions (cf. Figure 2.7a).
Upon task completion, uniquely owned memory regions get deallocated. The
ownership of these memory regions can also be transferred between tasks with-
out the need for physical data movement, as illustrated in Figure 2.7b. Essentially,

29

2.3. Programming Fully Disaggregated Systems

the memory region is reassigned, similar to moving a unique pointer in C++.
Additionally, multiple tasks can share a memory region for synchronization or
message passing (cf. Figure 2.7c).

Addressing Research Question 3: Typed memory regions with explicit own-
ership can prevent various memory errors and support the applicaton’s development.
Data placement in disaggregated systems can be optimized based on the memory
region’s lifetimes.

Task 1 Memory Regionown

(a) Unique ownership of a memory region.

Task 1

Task 2

Memory Region

own

tran
sfer

owners
hip

(b) Transferring the ownership of a memory region.

Task 1

Task 3

Memory Region

Task 2

(c) Shared ownership of a memory region.

Figure 2.7: Different ownership types of memory regions.

Declarative annotations. Many data-intensive applications deployed in data
centers share common requirements, including data confidentiality and security,
persistence and materialization of (intermediate) results, and acceleration on
specialized compute devices. Instead of requiring each application to implement
these functionalities and optimize them for disaggregated systems independently,
the envisioned programming model makes them reusable across applications. To
achieve this, developers could attach declarative properties to the DAG’s tasks
and memory regions. For example, declaring a memory region as confidential
triggers the runtime system to encrypt the region’s data to prevent unauthorized

30

2.3. Programming Fully Disaggregated Systems

access 4 . Declarative annotations simplify the development of data-intensive
applications on disaggregated systems and allow developers to focus on the
application logic instead of re-implementing complex and error-prone core
functionalities.

Addressing Research Question 3: Annotating common requirements declar-
atively to tasks and memory regions simplifies the development and optimization
of data-intensive applications for disaggregated systems.

DRAM

PMEM

GDDR

MR1

MR2

MR3

CPU

Task 2Task 1 Task 3

MR1

MR2

MR3

GPU

Memory Abstraction Layer

Figure 2.8: Optimizing data and compute placement on fully disaggregated
systems is interdependent.

2.3.2.3 Runtime System

The implementation of the programming model requires a complex runtime
system (RTS) intersecting multiple layers of the system stack. This section
focuses on the RTS’s key challenges concerning data and compute placement.
Data placement. The RTS maps the memory regions to specific memory
devices. However, this challenge is particularly complex due to the variety of
memory devices distributed acrossmultiplemachines inmodern data centers and
their concurrent usage by different applications. Thus, the RTS must optimize
the memory region’s mapping while considering various factors, including
device utilization, the expected size of memory regions, and their required
properties. Additionally, the RTS must also reduce data movement, which has
become the dominating cost factor in modern data centers (cf. trend 3).
Task placement. Data and compute-intensive tasks can often benefit sig-
nificantly from offloading to specialized co-processors. Specifically, previous
research efforts investigated how FPGAs [36, 65, 86, 128], GPUs [29, 30, 151, 153,
154] and TPUs [77] can be used to accelerate database workloads. While modern
data center CPUs come with various built-in accelerators, such as for streaming

31

2.3. Programming Fully Disaggregated Systems

or encryption [80], choosing the right processing unit for a task is crucial for
optimizing energy efficiency and performance. Since the available accelerators
and their utilization are not known at development time, it is the RTS’s task to
cost-efficiently map computational tasks to the most suitable devices.
Co-optimizing data and compute placement. The presented challenges in
data and compute placement are interdependent and must be co-optimized for
optimal system performance and efficient resource utilization. The need for such
co-optimization provides plenty of opportunities for further research, including
effective cost models for fully disaggregated systems. Figure 2.8 visualizes this
problem for a task that a CPU or a GPU could process, showing that the optimal
memory device also depends on the processing device the task runs on. For
example, when a task runs on the GPU, memory regions will preferably be
mapped to GDDR as it provides a lower latency and a higher bandwidth than
DRAM. The opposite is the case for a task running on the CPU.

Addressing Research Question 3: Given that important information, such
as device availability and utilization, is only known at the application’s execution
time, the proposed programming model delegates the co-optimization of data and
compute placement to the runtime system.

For a more comprehensive discussion of the runtime system, its design and
functionality, and further challenges, please refer to Section 3 of P3. However,
since these details are not directly linked to Research Question 3, they are not
discussed here.

2.3.3 Conclusions
We identified six important trends in large-scale data center computing and
introduced the design concepts of a novel programming model that facilitates
the implementation of dataflow applications and their optimization for fully
disaggregated systems. The main idea is to use logical memory regions to
make the application development independent of the memory devices that are
available at runtime. The memory regions are dynamically mapped to physical
devices at execution time, which is facilitated through a runtime system that
adaptively co-optimizes data and compute placement. The proposed design
principles collectively answer Research Question 3.

32

CHAPTER 3
Related Work

This chapter provides an overview of the work on adaptive optimizations in
database systems. First, we present the most important related work of the
publications of this thesis. Section 3.1 focuses on Adaptive Hybrid Indexes. Sec-
tion 3.2 investigates related work on learned query optimization and Section 3.3
examines work related to the programming of disaggregated systems. Beyond
our publications, adaptivity plays a crucial role in many other parts of database
systems: Section 3.4 focuses on adaptive optimizations that interleave query
optimization and execution. Furthermore, Section 3.5 discusses self-driving
database systems that can adapt to changing workloads.

3.1 Adaptive Hybrid Indexes
A more comprehensive overview of the related work on Adaptive Hybrid Indexes
can be found in Section 6 of P1.
Hot/cold clustering is a data management strategy that differentiates fre-
quently (hot) from rarely (cold) accessed data. This approach enhances appli-
cation performance by moving cold data to slower storage while keeping hot
data in faster main memory. Funke et al. [67] implemented this strategy within
hybrid transactional/analytical processing systems, utilizing workload skewness
to efficiently categorize pages into hot, cold, and frozen. Levandoski et al. [102]
sample accesses at a record level, exploring different offline analysis techniques
to accurately estimate the record’s access frequencies.
Succinct trees use space close to the information-theoretic lower

A
B C

D

110 0 10 0

Figure 3.1:
LOUDS En-
coding.

bound but still enable efficient read operations. Instead of using
fixed-size memory addresses (pointers) to store node relationships
explicitly, these are encoded implicitly. One such encoding is the
Level-Ordered Unary Degree Sequence (LOUDS), introduced by Ja-
cobson in 1988, which encodes ordinal trees in bit vectors [82].
This encoding method uses zero bits to mark the end of nodes,
while the number of 1 bits represents the number of child nodes.
Figure 3.1 illustrates the LOUDS encoding at the bottom for a
simple binary tree shown at the top. While LOUDS significantly

3.1. Adaptive Hybrid Indexes

reduces memory usage, it increases the number of instructions for traversal,
leading to slower performance compared to pointer-based data structures [7].
To mitigate this performance problem, Zhang et al. developed the Fast Succinct
Trie, which combines two LOUDS-based encodings. LOUDS-Dense optimizes
the access performance for the frequently accessed but smaller upper levels,
whereas LOUDS-Sparse reduces space consumption for the lower levels, thereby
balancing space efficiency and performance [187].
Hybrid index structures. As discussed in Section 2.1, there are two types
of hybrid index structures. To facilitate the implementation of Type 1 hybrid
indexes, Zhang et al. introduced the dual-stage reference architecture [186]. The
dynamic stage prioritizes performance and primarily stores frequently accessed
data; the static stage focuses on space efficiency and compactly stores the rarely-
accessed majority of the data. Additionally, they propose compaction rules to
minimize the memory footprint of conventional index structures such as B+-
trees, radix trees, and skip lists. Dual-stage hybrid indexes periodically merge
cooling data and updates from the dynamic into the static stage.

The B2-tree combines trie- and comparison-based search strategies to opti-
mize string indexing in database systems [147]. Its design is similar to a B+-tree
with interlinked leaf nodes that improve scan performance. It uses two different
node types: decision nodes are similar to traditional B+-tree nodes and link to
child nodes, whereas span nodes are organized as search tries that store the keys’
common prefixes to reduce the tree’s height and cache misses. The B2-tree is a
Type 1 hybrid index that uses different node encodings to adapt to the stored
data. However, it does not adapt to the workload’s node accesses.

In 2023, Zhou et al. proposed 2-Tree [191], a reference architecture to improve
performance under skewed workloads for indexes that are larger than the
available memory. The idea is to utilize two indexes: one index structure stores
the frequently accessed records, while a separate index stores rarely accessed
data. Their experiments show that 2-Tree increases memory utilization while it
reduces the number of page evictions.

The 𝐵link-hash is a new Type 2 hybrid index and a B+-tree variant optimized
for time-series data [38]. Similar to the Hybrid B+-tree, it employs two leaf node
encodings. For rarely updated nodes, 𝐵link-hash uses the conventional B+-tree
node encoding, which is less efficient for inserting monotonically increasing
data due to high contention. Contrary, hash nodes enhance the concurrent
insert operations by distributing them across multiple buckets.

The Scalable Adaptive Learned Index (SALI) uses decentralized, lightweight
probabilistic models to improve the performance of concurrent workloads [69].
The probabilistic models facilitate more informed decision-making, like retrain-
ing nodes or changing their encodings.

DiffLex improves memory usage by storing rarely accessed keys in dense

34

3.2. Learned Query Optimization

arrays, thus conserving memory space [47]. Recently inserted keys are stored in
a performance-optimized delta array, similar to the dual-stage hybrid index [186].
Once the delta array is full, it is merged into the primary array. Additionally,
DiffLex enhances scalability on multi-node platforms by replicating hot keys
across NUMA nodes.

Morphtree [106] implements different leaf node encodings that are optimized
for read- or write-dominated workloads, similar to the Hybrid B+-tree. Leaf
node encodings are chosen adaptively at runtime based on the sampled accesses.

3.2 Learned Query Optimization
For a more exhaustive overview of the work related to learned query optimization,
please refer to Section 2 of P2.

In recent years, machine-learning-based approaches have been proposed to
improve traditional query optimizers. These range from improved cardinality
estimation [90, 91, 120, 163, 174, 182] to join ordering [113, 183]. Furthermore,
fully learned drop-in replacements for query optimizers have been proposed,
like Neo in 2019 [112] and Balsa in 2022 [181]. However, these approaches
require long training times and can lead to significant performance regression.

In contrast to fully learned query optimizers, steered query optimizers en-
hance existing query optimizers by machine-learned hints to steer the optimiza-
tion process (refer to Section 2.2.1.1 for more details). A prominent example
is the Bandit Optimizer (Bao) from 2021 [111], which has seen successful in-
dustrial adoption in Microsoft Scope [118, 188] and other database systems like
Vertica, Amazon Redshift, and Microsoft Azure Synapse [12]. These approaches
use predefined static hint-sets to generate multiple alternative query plans. A
machine-learned tree convolutional neural network (TCNN) predicts the execu-
tion times of these query plans. Instead of always selecting the best plan, Bao
balances exploitation and exploration using Thompson sampling.

FastGres from 2023 leverages context-aware learned models to predict hint-
sets for incoming analytical SQL queries in PostgreSQL [178], which is in contrast
to Bao’s approach of predefining the hint-sets.

Lero, proposed in 2023, is a learning-to-rank query optimizer [193]. Instead
of predicting query plan latencies, it leverages a pairwise TCNN-based plan
comparator model to rank the different query plans and select the cheapest one.

35

3.3. Programming Fully Disaggregated Systems

3.3 Programming Fully Disaggregated Systems
A more comprehensive overview of the work related to the programming of fully
disaggregated systems can be found in P3.
Memory regions. Besides the two popular memory management strategies
allocation-deallocation (like malloc/free in C) and garbage collection, region-
based memory management organizes memory into discrete regions [68]. This
method allocates objects with similar lifetimes within the same region and fa-
cilitates collective deallocation, significantly reducing the deallocation time of
nested index structures like trees and graphs. Region-based memory has been
shown to surpass traditional memory management techniques in performance
for dataflow applications under certain workloads [68]. Broom leverages mem-
ory regions to enhance performance in garbage-collected distributed dataflow
systems [70]. Since the dataflow operator’s allocated objects usually persist
for no longer than the operator itself, these objects are grouped into the same
memory region and deallocated all at once when the operator finishes.
Programming models. The end of Moore’s law and the rise of multi-core
processors, specialized accelerator devices, and the disaggregation of mem-
ory and compute resources have complicated the implementation of dataflow
applications. In response, several programming languages and models have
been proposed to simplify application development. One example is IBM’s X10,
an open-source parallel and object-oriented programming language initiated
in 2004 [39]. X10 specifically addresses the challenges of parallel and high-
performance non-uniform cluster computing. It introduces partitioned global
address spaces, which divide memory among nodes to enhance efficient data
access. X10’s places allow the programmer to define where data and tasks are
placed. However, these placements are fixed and cannot be changed at runtime.

Following this, in 2010, the SMPS programming model dynamically detects
task dependencies at runtime and automatically extracts parallelism [133]. Le-
gion is another example of a parallel programming model. It uses logical regions
that describe the data organization [21]. In addition to SSMP, Legion supports
arbitrary partitioning of logical regions.

3.4 Adaptive Query Optimization and Execution
Traditional query optimization. Traditional cost-based approaches for query
optimization and execution date back to System R in 1979 [155] and adhere to the
‘optimize-then-execute’ paradigm, which distinctly separates query optimization
and execution. Despite its widespread adoption over the years [44, 72, 73, 74, 98,
159, 168], this paradigm imposes several challenges. One is the accumulation of

36

3.5. Self-Driving Database System

inaccuracies in estimating join cardinalities and predicate selectivities, especially
with a growing number of joined relations and predicates. These inaccuracies
can lead to suboptimal plans significantly impacting query performance [100].
To address these challenges, different approaches combine query optimization
and execution and transform them into an adaptive process that adjusts the plan
upon detecting estimation errors [54, 71, 75].
Adaptive join order. In contrast to System R’s static approach, the Ingres
database system’s query decomposition scheme uses a greedy algorithm that
adaptively chooses the next smallest relation [161]. Ingres’ approach of dy-
namic re-optimization has also recently found its way into modern big data
management systems [132]. In addition, even more flexible approaches have
been proposed. For example, the eddy operator dynamically optimizes the query
plan on a per-tuple basis, known as row-routing [16, 53, 104, 139]. In row-routing
approaches, a runtime optimizer actively monitors and adjusts to the operator
selectivities observed during execution and independently routes individual
rows or batches through a series of operators.
Adaptive operators. For long-running analytical queries, the available memory
resources may fluctuate during execution since resources are shared among
multiple concurrently executed queries. This presents a significant challenge for
memory-intensive operations like sorting. Memory-adaptive sort [126] and hash
join operators [127] have been proposed to efficiently utilize additional memory
buffers while gracefully degrading under memory constraints. In distributed
database systems, locality-sensitive operators can dynamically determine whether
they should execute locally or broadcast to other nodes during execution [143].
Adaptive compilation. Also, adaptive optimizations are crucial to enhance
query performance in compilation-based database systems, such as HyPer [88]
and Umbra [121]. For instance, the compilation overhead for short-running
queries can exceed the execution time. The adaptive execution framework uses a
bytecode interpreter for LLVM IR for short-running queries, thereby avoiding
the expensive compilation overhead [95]. Based on the adaptive execution
framework, Schmidt et al. proposed Dynamic Blocks to enable intra-query
optimization without the need for recompilation [148]. In this approach, several
query plans are explored and the most efficient one is used to process the
remaining query.

3.5 Self-Driving Database System
Self-driving database systems are designed to autonomously adjust to work-
load changes and have attracted researchers and industrial professionals for
decades. The sustained interest and the enormous potential of self-driving

37

3.5. Self-Driving Database System

database systems is well-documented [25, 42, 43, 175]. While most approaches
are not fully autonomous, they are rather decision-support tools aiding database
administrators (DBA) in specific tasks. Pavlo et al. introduce a new taxonomy
that categorizes autonomous database systems into six levels, from manual sys-
tems requiring significant human intervention to fully autonomous, self-driving
systems [131]. Next, we provide a non-exhaustive overview of the existing
approaches.
Physical database design. IBM’s DB2 database system implements several
methods to achieve more autonomy. The DB2 Partition Advisor analyzes SQL
statements and automatically determines the most efficient data partitioning
strategy to minimize the overall workload cost [140]. DB2’s Design Advisor
recommends suitable indexes [170], materialized views, or multidimensional
clusterings of tables [194]. Parallel to IBM’s efforts, the AutoAdmin project at
Microsoft Research started in 1996 and focuses on automating physical database
design [2, 42], including indexes [40, 41] and materialized views [3].
Index selection. Index structures can significantly improve the performance
of query processing. However, indexes also degrade the performance of write-
and update-heavy workloads [66]. Additionally, limited memory resources
prevent the implementation of all potential indexes, but they require a careful
selection, which is known as the index selection problem [66]. In 1998, Chaudhuri
and Narasayya proposed the hypothetical ‘what-if ’ indexes, which are used to
estimate the query costs if the index would exist [41]. Also, commercial tools
from Microsoft [40], IBM DB2 [170], and Oracle [49] assist DBAs in the selection
of suitable indexes.

Several machine learning-based approaches have addressed the index se-
lection problem in recent years. In 2015, Basu et al. proposed a cost model
oblivious approach based on reinforcement learning [20]. In 2019, machine-
learned models used query execution statistics to recommend indexes [55].
Furthermore, in 2020, active learning automated index selection in Microsoft
Azure, demonstrating the practicability in a cloud database environment [108].
Self-driving database systems. In recent years, self-driving databases with
higher levels of autonomy have emerged. They surpass mere recommendation
tools for single aspects like index selection. One example is the Peloton database
system [130]. Peloton continuously monitors query execution and resource
utilization and uses them for workload classification and ML/AI-based forecast-
ing. Its control framework oversees the system and the workloads and derives
appropriate actions. These actions range from data migration and partitioning to
configuration adjustments and modifications of the storage layout. Furthermore,
Peloton dynamically adjusts the number of compute nodes to adapt to changing
workloads.

38

3.5. Self-Driving Database System

Further advancements in query forecasting [107] and enhanced data collec-
tion methodologies [31] have been pivotal in the development of NoisePage,
the successor of Peloton [123, 131]. Recognizing the complexity of DBMSs,
NoisePage adopts a novel approach by decomposing the system into distinct
operating units, all of which are then modeled separately [109].

39

CHAPTER 4
Conclusions

This thesis introduced novel frameworks for index structures and query opti-
mization and proposed the main design principles for a new programming model
for fully disaggregated systems. Our contributions demonstrate the significant
potential of adaptive optimizations in database systems.

Adaptive Hybrid Indexes
We presented a novel framework that facilitates the implementation of workload-
aware Adaptive Hybrid Indexes. The Hybrid Trie combines the Adaptive Radix
Tree (ART) [99] and the slower but more space-efficient Fast Succinct Tree
(FST) [187]. ART encodes the more frequently accessed upper levels, while
the FST stores the rarely accessed majority of the data. Hybrid Trie adapts to
changing workloads by sampling node accesses and then migrating frequently
accessed nodes to ART and cold nodes to FST.

The Hybrid B+-tree uses three leaf node encodings, each having different
implications on space and query performance. Sampled node accesses are used
to adaptively change the leaf nodes’ encodings to minimize space consumption
and maximize performance.

The experimental evaluation shows that our framework can significantly
compress index structures while causing negligible performance overhead, out-
performing traditional indexes when space and query performance are consid-
ered equally important.
Future work. There are several opportunities to further improve Adaptive
Hybrid Indexes. One major limitation is the contention the centralized access
tracking introduces, particularly when multiple threads try to update the statis-
tics for a single node concurrently. Therefore, decentralized access tracking –
similar to the idea proposed in Scalable Adaptive Learned Indexes [69] – could
improve the performance of concurrent workloads. Furthermore, graph work-
loads often exhibit skewed access patterns. Our framework could facilitate
the implementation of hybrid graph structures that improve performance and
reduce memory consumption [35].

Learned Query Optimization
Our second publication introduced AutoSteer, a novel framework that automat-
ically steers rule-based query optimizers. AutoSteer builds upon the Bandit
Optimizer (Bao) [111] but requires minimal integration effort and human exper-
tise as it connects to database systems only via SQL and EXPLAIN statements.
Therefore, it can be applied effortlessly to other database systems and it achieves
excellent generalizability. However, one limitation of this approach is that it
does not reliably identify all effective rewrite rules since not all changes made
by the rewrite rules are discoverable through explained query plans.

We integrated AutoSteer successfully into five widely used, open-source
database systems. Moreover, we tested AutoSteer with synthetic benchmarks
and real-world workloads from a petabyte-scale PrestoDB deployment at Meta,
which significantly reduced tail latencies of dashboard queries. Furthermore, our
experiments have shown that AutoSteer’s query span approximation algorithm
and the adaptive greedy hint-set search discover alternative query plans more
efficiently than previous approaches.
Future work. Instead of solely optimizing execution time, future research could
explore multi-objective cost functions, considering other important metrics like
memory usage and processing time. Additionally, AutoSteer can be an invaluable
tool for query optimization experts since it systematically detects problematic
rewrite rules and provides concrete example queries for which the rule degrades
the performance. Such insights can help to enhance rule-based query optimizers.

Programming Fully Disaggregated systems
We identified six prevailing trends influencing the design and implementation
of data-intensive applications and their optimization for fully disaggregated
systems. Based on these trends, we introduced the key design principles of
a new programming model that adopts a memory-centric approach based on
logical memory regions. Building upon execution plans from data-intensive
applications like database systems, streaming, or ML/AI applications as input
broadens our programming model’s applicability and facilitates its adoption.
The programming model delegates decisions on data and task placement to the
runtime system, which adaptively co-optimizes them at execution time.
Future work. The proposed programming model opens up many questions
and challenges. For example, future research could investigate the implemen-
tation of the memory abstraction layer and how the logical memory regions
could be integrated into general-purpose programming languages. A first step
towards memory allocation across different devices based on declarative anno-

41

tations could be Intel’s Unified Memory Framework [124]. Additionally, the
runtime system crosses multiple layers of the system stack and raises ques-
tions like ‘Who is responsible for managing the utilization of the disaggregated
resources’? Furthermore, leveraging different compute devices to accelerate
database workloads introduces new challenges. A layered compilation stack
based on MLIR, as adopted in LingoDB, could be a promising approach [85].
Section 3 of P3 sets up the stage for future work and deeper investigation into
these challenges.

42

PUBLICATION P1
Adaptive Hybrid Indexes

P1.1 Synopsis
Database systems use index structures to improve the performance of queries
with highly selective predicates. Index lookups are significantly cheaper than
scanning the entire relation when only a few tuples qualify. However, index
structures also contribute substantially to the memory footprints of database
systems. Sometimes, they comprise half of the database system’s memory
usage [185]. As data volumes grow faster thanmemory capacities, more compact
index representations can fit larger datasets into memory. However, compressed
index structures not only reduce the memory footprint but also incur runtime
overhead due to the additional decompression steps.

This publication introduces Adaptive Hybrid Indexes, a new framework that
uses lightweight tracking of the workload’s queries to identify hot and cold
data. Based on the workload’s access patterns, Adaptive Hybrid Indexes migrate
frequently accessed nodes to performance-optimized encodings, while rarely
accessed nodes are compressed. We differentiate two types of hybrid indexes:

Type 1: Multiple node encodings with different space-performance trade-offs
are utilized within one index.

Type 2: Two or more index structures are combined into one logical index, e.g.,
a performance-optimized and a succinct index.

To show our approach’s effectiveness, we integrate the framework into
B+-trees and prefix trees, which are widely used index structures in database
systems. The Hybrid B+-tree (Type 1) uses different leaf node encodings, each
being optimized for different access types. The Hybrid Trie (Type 2) combines
the Adaptive Radix Tree [99] and the Fast Succinct Trie [187] into one index.

We conduct experiments to evaluate specific components and parameters of
the framework. Comprehensive end-to-end tests based on established public
benchmarks and real-world workloads allow us to assess the overall implications
on performance and space, demonstrating that Adaptive Hybrid Indexes can
significantly reduce space consumption while hardly affecting performance.

P1.2. Contributions and Publication Details

P1.2 Contributions and Publication Details
Author Contributions. Christoph Anneser developed the ideas and the
concepts of Adaptive Hybrid Indexes. Furthermore, he implemented the
framework and integrated it into B+-trees and prefix trees. In addition, he
conducted the experiments and authored substantial parts of the paper.

Reference. Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas
Neumann, and Alfons Kemper. “Adaptive Hybrid Indexes”. In: SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12
- 17, 2022. ACM, 2022, pp. 1626–1639.

DOI. https://doi.org/10.1145/3514221.3526121

Copyright Notice. Copyright held by the owner/author(s). Publication rights
licensed to ACM. Usage in accordance with the ACM publication policies
(https://authors.acm.org/author-resources/author-rights):
“Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the Versions
of Record in the ACM Digital Library are included.”

44

https://doi.org/10.1145/3514221.3526121
https://authors.acm.org/author-resources/author-rights

ACM Author Rights
ACM exists to support the needs of the computing community. For over sixty years ACM has
developed publications and publication policies to maximize the visibility, impact, and reach of the
research it publishes to a global community of researchers, educators, students, and practitioners.
ACM has achieved its high impact, high quality, widely-read portfolio of publications with:

Affordably priced publications

Liberal Author rights policies

Wide-spread, perpetual access to ACM publications via a leading-edge technology
platform

Sustainability of the good work of ACM that benefits the profession

Choose

ACM gives authors the opportunity to choose between two levels of rights management for their
work. Note that both options obligate ACM to defend the work against improper use by third parties:

Exclusive Licensing Agreement: Authors choosing this option will retain copyright of
their work while providing ACM with exclusive publishing rights.

Non-exclusive Permission Release: Authors who wish to retain all rights to their work
must choose ACM's author-pays option, which allows for perpetual open access to their
work through ACM's digital library. Choosing this option enables authors to display a
Creative Commons License on their works.

Post

Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published authors of magazine
articles, journal articles, and conference papers retain the right to post the pre-submitted (also known
as "pre-prints"), submitted, accepted, and peer-reviewed versions of their work in any and all of the
following sites:

Author's Homepage

Author's Institutional Repository

Any Repository legally mandated by the agency or funder funding the research on which
the work is based

Any Non-Commercial Repository or Aggregation that does not duplicate ACM tables of
contents. Non-Commercial Repositories are defined as Repositories owned by non-profit
organizations that do not charge a fee to access deposited articles and that do not sell
advertising or otherwise profit from serving scholarly articles.

For the avoidance of doubt, an example of a site ACM authors may post all versions of their work to,
with the exception of the final published "Version of Record", is ArXiv. ACM does request authors,
who post to ArXiv or other permitted sites, to also post the published version's Digital Object
Identifier (DOI) alongside the pre-published version on these sites, so that easy access may be
facilitated to the published "Version of Record" upon publication in the ACM Digital Library.

Examples of sites ACM authors may not post their work to are ResearchGate, Academia.edu,
Mendeley, or Sci-Hub, as these sites are all either commercial or in some instances utilize predatory
practices that violate copyright, which negatively impacts both ACM and ACM authors.

After an ACM journal submission has been accepted and has entered the production process, ACM
makes the Author’s Accepted Manuscript (AAM) available for preview under the ACM “Just
Accepted” program until the “Version of Record” is available and assigned to its proper issue. The
AAM carries the article’s permanent DOI and can be cited immediately.

https://authors.acm.org/author-resources/author-rights. Last accessed: 2024/06/10.

https://authors.acm.org/author-resources/author-rights

Copyright © 2024, ACM, Inc

Distribute

Authors can post an Author-Izer link enabling free downloads of the Definitive Version of the work
permanently maintained in the ACM Digital Library.

On the Author's own Home Page or

In the Author's Institutional Repository.

Reuse

Authors can reuse any portion of their own work in a new work of their own (and no fee is expected)
as long as a citation and DOI pointer to the Version of Record in the ACM Digital Library are
included.

Contributing complete papers to any edited collection of reprints for which the author is
notthe editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is expected) in a
dissertation as long as citations and DOI pointers to the Versions of Record in the ACM
Digital Library are included. Authors can use any portion of their own work in
presentations and in the classroom (and no fee is expected).

Commercially produced course-packs that are sold to students require permission and
possibly a fee.

Create

ACM's copyright and publishing license include the right to make Derivative Works or new versions.
For example, translations are "Derivative Works." By copyright or license, ACM may have its
publications translated. However, ACM Authors continue to hold perpetual rights to revise their own
works without seeking permission from ACM.

Minor Revisions and Updates to works already published in the ACM Digital Library are welcomed
with the approval of the appropriate Editor-in-Chief or Program Chair.

If the revision is minor, i.e., less than 25% of new substantive material, then the work
should still have ACM's publishing notice, DOI pointer to the Definitive Version, and be
labeled a "Minor Revision of"

If the revision is major, i.e., 25% or more of new substantive material, then ACM considers
this a new work in which the author retains full copyright ownership (despite ACM's
copyright or license in the original published article) and the author need only cite the
work from which this new one is derived.

Retain

Authors retain all perpetual rights laid out in the ACM Author Rights and Publishing Policy, including,
but not limited to:

Sole ownership and control of third-party permissions to use for artistic images intended
for exploitation in other contexts

All patent and moral rights

Ownership and control of third-party permissions to use of software published by ACM

https://authors.acm.org/author-resources/author-rights. Last accessed: 2024/06/10.

https://authors.acm.org/author-resources/author-rights

Adaptive Hybrid Indexes
Christoph Anneser

Technical University of Munich
anneser@in.tum.de

Andreas Kipf
Massachusetts Institute of Technology

kipf@mit.edu

Huanchen Zhang
Tsinghua University

huanchen@tsinghua.edu.cn

Thomas Neumann
Technical University of Munich

neumann@in.tum.de

Alfons Kemper
Technical University of Munich

kemper@in.tum.de

ABSTRACT
While index structures are crucial components in high-performance
query processing systems, they occupy a large fraction of the avail-
able memory. Recently-proposed compact indexes reduce this space
overhead and thus speed up queries by allowing the database to
keep larger working sets in memory. These compact indexes, how-
ever, are slower than performance-optimized in-memory indexes
because they adopt encodings that trade performance for memory
efficiency. Applying different encodings within a single index might
allow optimizing both dimensions at the same time – however, it is
not clear which encodings should be applied to which index parts
at build-time.

To take advantage of multiple encodings in one index structure,
we present a new framework forming the basis ofworkload-adaptive
hybrid indexes which moves encoding decisions to run-time instead.
By sampling incoming queries adaptively, it tracks accesses to index
parts and keeps fine-grained statistics which are used for space-
and performance-optimized encoding migrations. We evaluated
our framework using B+-trees and tries, and examine the adapta-
tion process and space/performance trade-off for real-world and
synthetic workloads. For skewed workloads, our framework can
reduce the space by up to 82% while retaining more than 90% of
the original performance.

CCS CONCEPTS
• Information systems→ Data access methods; Data layout.

KEYWORDS
Space-efficient Index; Adaptive Index; Hybrid Index

ACM Reference Format:
Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann,
and Alfons Kemper. 2022. Adaptive Hybrid Indexes. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22), June
12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3514221.3526121

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526121

A B C D

Queries
Adaptation Manager

1 Track node accesses 2 Compact cooling nodes 3 Expand hot nodes

Aggregated Samples

D 13 reads, 1 write

B 2 reads, 0 writes

Classify Nodes
D

B

hot
cold

1

3

2

Figure 1: Our sampling-based workload adaptation supports
hybrid index structures in choosing the most suitable encod-
ing for each part based on fine-grained access statistics at
run-time. It supports user-defined settings such as an upper
memory budget and it keeps sampling-related overhead lim-
ited by following an adaptive cost-optimized approach.

1 INTRODUCTION
Back in 2006, Jim Gray stated that memory is the new disk and disk
is the new tape [5]. This also applies to modern database systems
that store the entire data in random access memory (RAM) to allow
real-time analyses for trading companies and financial services, for
example. They need to process large datasets efficiently to react to
new developments and updates within a few milliseconds.

While the DRAM-prices have been stable during the last six
to seven years, the data collected by sensors, smartphones, social
media platforms, IoT-devices, and digital market-places increases at
a high rate resulting in data overflows [54], and storing all data in
memory becomes infeasible in many cases. However, as in-memory
database systems become more and more popular for performance-
critical businesses, AWS offers RAM instances that are optimized
for in-memory database systems [1]. These instances are equipped
with in-memory capacities of up to 24 TB, but the hourly cost of
such an instance is more than $120.

To achieve high-performance query-processing for real-time
analyses, index structures such as B-trees, tries, and hash tables are
widely used by DBMSs. Because there might be multiple indexes per
table, especially in OLTP DBMSs, the storage overhead for indexes
can be significant. In many cases, more than half of the available
memory of a DBMS can be attributed to index structures [54].

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1626

https://doi.org/10.1145/3514221.3526121
https://doi.org/10.1145/3514221.3526121
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3514221.3526121&domain=pdf&date_stamp=2022-06-11

Over the last decades, multiple approaches have been developed
to represent traditional data structures using more compact en-
codings [39]. For example, succinct representations avoid storing
unnecessary pointers in a data structure by calculating the nodes’
position offsets directly [55]. While succinct indexes require sig-
nificantly less memory compared to performance-optimized state-
of-the-art indexes, most of them are slower in point lookups and
scans, and they do not support updates efficiently.

To overcome the disadvantages of memory-efficient but static in-
dexes, Zhang et al. [53] proposed hybrid index which is a dual-stage
architecture combining a regular dynamic index and the memory-
efficient read-only one into a single logical index. The dynamic
component in hybrid index absorbs all updates and periodically
merges all the delta into the more compressed static component.
This approach, however, imposes overhead in the expensive merge
process because different node encodings are separated into two
stand-alone data structures.

“The RUM conjecture” states that we cannot have all three of
read, update, and space optimized for a data structure [11]. For
example, succinct data structures achieve close to theoretically
optimal space, but they sacrifice read performance and updatability.
Most index structures used in today’s DBMSs are designed for
fast reads and updates, and therefore, often at the expense of the
memory overhead.

However, we found that the RUM conjecture could have less
effect when the workloads are skewed. Unlike standard benchmarks
such as TPC-H where the data is uniformly distributed, we observe
heavy skews in real-world workloads. The skew appears in multiple
dimensions such as in query patterns, keys, and access-space [14].

We, therefore, propose to leverage the skewed workload pat-
terns to determine node layouts at a fine-granularity based on their
access frequencies sampled adaptively at run-time so that we can re-
duce the memory overhead of an index while sacrificing minimum
performance (cf. Figure 1). More precisely, given an unbounded
stream of index queries where the keys follow an unknown distri-
bution, our approach adjusts the layout for each node adaptively so
that “hot” nodes are encoded using performance-optimized formats
while “cold” nodes are highly compressed.

The framework we proposed in this paper is divided into two
phases: during the first phase, we sample and aggregate accesses
to different parts in an index 1 . In the second phase, we run a
heuristic-based classification to identify hot and cold parts. Based on
the access statistics and the most recent classifications, we compact
cold parts 2 and expand hot parts 3 adaptively using different
encodings to achieve a better performance-space trade-off. Fur-
thermore, our framework separates all index-related code from the
sampling and classification logic so that it can be easily integrated
into existing indexes and systems.

The evaluation in Section 5 shows that our framework can suc-
cessfully identify the hot and cold parts of an index at a fine gran-
ularity and then adjust their encodings adaptively. For skewed
workloads, our workload-adaptive hybrid indexes reduce the mem-
ory overhead by up to 82% while retaining more than 90% of the
performance compared to the original state-of-the-art indexes.

We make the following contributions:
1. A novel framework that helps indexes choose different encod-

ings adaptively based on our lightweight workload sampling
to make better performance-memory trade-offs.

2. An alternative offline training for hybrid indexes based on
historic or predicted workloads.

3. Applied the framework to two widely-used index structures:
B+- and prefix trees.

4. An in-depth evaluation using both real-world and synthetic
workloads.

In the following, we first present an overview of sampling-
based classification approaches in Section 2. These preliminary
approaches are internally used by our approach, which is intro-
duced in Section 3. We provide detailed insights into our approach
at an algorithmic level and experimentally evaluate the used param-
eters. In Section 4, we integrate our approach into a B+-tree and
a prefix tree. For both indexes, we present an in-depth evaluation
in Section 5. We provide an overview of the related work in Sec-
tion 6. Ultimately, we draw conclusions and outline possible future
work in Section 7. Further experiments based on other datasets and
workloads can be found in the online appendix, which is available
at https://www.hybrid-index.online.

2 PRELIMINARIES
Many existing works leverage skew in the context of database
systems (e.g., [8, 29, 33, 42, 45]). The main idea is to keep frequently
accessed data in DRAM to improve overall system performance [29].
For example, Levandoski et al. proposed different offline algorithms
to efficiently identify hot tuples in Microsoft’s in-memory database
Hekaton so that the cold ones can be swapped out to disk [33]. To
speed up classification, they uniformly sample 10% of all record
accesses and accept a memory hit rate loss of 2.5% compared to
evaluating all record accesses. Depending on the context such as
the available memory and the working set (data which is actively
used), they rephrase the hot-cold-classification as a top-𝑘 frequent
item detection problem: the 𝑘 records with the highest estimated
frequency are classified as hot and are thus kept in memory.

Existing optimizations to the top-𝑘 algorithms [15, 16, 37, 38]
often assume predefined sizes for the data samples. Therefore, it
requires us to determine an appropriate sample size first before we
can identify frequently accessed items at run-time. While a smaller
sample size can lead to higher classification errors, larger sample
size brings extra overhead in collecting and analyzing the samples.

To keep classification errors limited, we make use of error-
bounded top-𝑘 approximations which we formally define as follows.
Let I be a set of items and let D be a multiset defined as a 2-tuple
⟨I,𝑚D⟩ with a function𝑚D : I → N0 describing the multiplicity
of each item in D. Let S = ⟨I,𝑚S⟩. We call S a sample of D,
iff ∀𝑥 ∈ I : 𝑚S (𝑥) ≤ 𝑚D (𝑥). We define 𝑓X : I → [0, 1] to be
a function mapping items to their relative frequencies within an
arbitrary multiset X, with 𝑓X (𝑦) = 𝑚X (𝑦)/

∑
𝑥 ∈I𝑚X (𝑥), and let

𝑓 𝑘X be the kth largest frequency within X for 1 ≤ 𝑘 ≤ |I|.
According to [43], we define the set of top-𝑘 frequent items as
follows:

𝑇𝑂𝑃𝐾 (D,I, 𝑘) = {(𝑥, 𝑓D (𝑥)) | 𝑥 ∈ I ∧ 𝑓D (𝑥) ≥ 𝑓 𝑘D }

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1627

https://www.hybrid-index.online
https://www.hybrid-index.online

66

68

70

72

Su
m

of
To
p-
𝑘

Fr
eq
ue
nc
ie
s
[%

]

sum of sampled
top-𝑘 frequencies

sum of true
top-𝑘 frequenciessum of sampled

top-𝑘 frequencies

sum of true
top-𝑘 frequencies

2 4 6 8 10
Error 𝜖 [%]

0

20e4

Sa
m
pl
e
Si
ze

27,396179,897
12,376

k=250 k=1000

Figure 2: Sample sizes according to Equation (1) for error-
bounded top-𝒌 analyzes for 1M items. Dashed lines denote
the sum of the true top-𝒌 frequencies whereas solid lines
show the sum of the sampled top-𝒌 item frequencies. The
workload is generated using a Lognormal distribution.While
𝝐 < 5% does not yield considerable precision gains, it yields
larger sample sizes. Experiments using other distributions
show similar results and can be found in the online appendix.

An 𝜖-approximation to 𝑇𝑂𝑃𝐾 (D,I, 𝑘) is a set𝑊 of 𝑘 pairs (𝑥, 𝑓)
such that 𝑥 ∈ I, 𝑓 ∈ [0, 1], and for which the following holds:

∀(𝑥, 𝑓) ∈𝑊 : 𝑓D (𝑥) ≥ 𝑓 𝑘D (𝑥) − 𝜖

∀(𝑥, 𝑓) ∉𝑊 : 𝑓D (𝑥) < 𝑓 𝑘D (𝑥) + 𝜖

∀(𝑥, 𝑓) ∈𝑊 : |𝑓 − 𝑓 𝑘D (𝑥) | ≤ 𝜖
We use the equation introduced in [43] to calculate the required

sample size |S| for an 𝜖-approximation at a probability of 1−𝛿 with
𝛿 ∈ (0, 1).

|S| = 2
𝜖2

ln
2𝑛 + 𝑘 (𝑛 − 𝑘)

𝛿
, with 𝑛 = |I | (1)

In Figure 2, we visualize the classification precision and the
required sample sizes for varying error rates 𝜖 . In the upper plot, we
compare the sum of the top-𝑘 frequencies based on the entire dataset
(dashed line) to the one based on the sample (solid line). The lower
plot shows the required sample size based on Equation (1), where
we observe fast-growing samples for decreasing 𝜖 . We conducted
this experiment for other distributions as well (see online appendix)
and found that 𝜖 = 𝛿 = 0.05 results in an overall frequency decrease
of at most 2.5% for 𝑘 ≤ 1000, which provides a reasonable trade-off
between sample size and accuracy for our application.

In the following section, we present our workload-adaptive ap-
proach which internally uses Equation (1) to calculate sufficient
sample sizes for error-bounded top-𝑘 analyses. The result is used
to adjust the node encodings adaptively in hybrid index structures.

3 ADAPTIVE HYBRID INDEXES
Many DBMS indexes are designed to equally support all possible
access types such as lookups, updates, inserts, or deletes, by using
universal encodings. An example of a universal encoding can be
found in traditional B+-tree implementations (e.g. Postgres [48] and
Umbra [40]): all leaf nodes use the same encoding where a fixed

Samsung
870 SSD

Samsung
970 NVMe

PMEM DRAM
compressed

DRAM
uncompressed

0

25

50

75

La
te
nc
y
[𝜇
𝑠
]

Random Write Random Read

Figure 3: Read and write latencies to LZ4-compressed and
uncompressed B+-tree leaf nodes having an average occu-
pancy of 70% and being stored on different storage devices.
The experiments were carried out on an Intel Xeon 6212U
CPU (24 cores) equipped with 192GB DRAM and 768GB Intel
Optane persistent memory. Before each leaf node access, we
drop the caches to get IO-related latencies more accurately.

number of key and value slots are pre-allocated to allow efficient
reads and writes. While such encodings simplify the implementa-
tion, on the one hand, they often result in space overhead. In some
cases, this overhead might also result in indexes larger than main
memory, leading to significant performance degradations due to
paging. Therefore, it is attractive to minimize the space overhead
of an index to allow pure memory residency.

If data does not fit in memory, buffer managers or more light-
weight approaches such as LeanStore [30] will manage the page
replacements. Despite recent advances in SSDs and NVMe-devices,
I/O operations are still multiple orders of magnitude slower than
memory accesses [52]. In Figure 3, we experimentally compare
lookup and insert operations on uncompressed and compressed
B+-tree leaf nodes. With the leaf nodes having an average oc-
cupancy of 70%, LZ4-based compression allowed to reduce the
storage overhead by up to 47%. On-the-fly (de-)compression of
in-memory nodes is faster by multiple orders of magnitude com-
pared to (de-)compression of disk-resident nodes but much slower
compared to uncompressed in-memory nodes. Therefore, applying
more compact or even compressed encodings to rarely accessed
parts might improve the overall latency of indexes by reducing
storage overhead and preventing expensive I/O operations.

However, the main problem of index structures with different
encoding schemes is that the actual workload is not available be-
forehand – instead, indexes get optimized for all possible access
types at development time by applying universal encodings. Using
different encodings, therefore, requires us to get more fine-grained
information at run-time.

There are two different approaches to collect the required infor-
mation. In a decentralized scheme, we would store tracking infor-
mation in the index structure itself. For example, we could add an
information unit (IU) that contains the last access time, the number
of reads, writes, etc. for each index part. Such intrusive changes,
however, add space overhead to all parts of the index – even to
the never-accessed ones. Instead, we propose a new centralized
approach, which stores IUs for accessed parts only. We combine it
with lightweight sampling to reduce tracking-related overhead.

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1628

https://www.hybrid-index.online

A B C D A B C D

Index Index’

Queries

B ++6 2 1001 6 . . .

C

ide
nti

fie
r

0

rea
ds

1

wri
tes

1100

his
tor

y

4

las
t epo

ch

. . .

sample up to
s accesses

1 Store Aggregated Samples2

Phase I: Sampling Phase II: Adaptation

repeat for s samples î

Sampling
Parameters

Skip
Length

Sample
Size s

k n ε δ

5

Legend: inner optimized compressed

3Classification of top-k nodes:

hot: B cold: C

Change Encodings based on:
- Memory Budget
- Hot/Cold Classification
- Historic Classifications
- Index Heuristics

4

Expand()

Compact()

Adapt Sampling Parameters 5

Continue with Phase I 6

Figure 4: Basic overview of our workload-sampling approach applied to the example of a tree-like index structure.

In Figure 4, we show a conceptual overview of our approach
applied to a tree having both a performance-optimized and a space-
optimized encoding for the leaf nodes which is similar to our pro-
posed Hybrid B+-tree in Section 4.1 (for implementation details,
please refer to Section 3.1). To identify an appropriate encoding for
each leaf node based on its access frequency, our approach has a
sampling and an adaptation phase.

Phase I – Sampling: As the index processes incoming queries,
it traverses the internal structure from top to bottom. Based on
a predefined, adaptive skip length 𝑠𝑘 , every 𝑠𝑘th leaf node access
gets sampled 1 . For each sample, the leaf node and the access
type (cf. Figure 4 read access to node B) get passed to the adap-
tation manager and stored in aggregated form 2 . To consider the
most recent accesses of the current sampling phase only, we enu-
merate the sampling phases by increasing epoch numbers and let
aggregates store the epoch in which they were accessed last. In
Section 3.1.3, we discuss the usage of epochs in more detail. When
the required sample size 𝑠 has been reached, the approach continues
to the adaptation phase.

Phase II – Adaptation: Based on the aggregations, all samples
get classified as either hot or cold 3 . As an abbreviation, let N𝑒
denote the set of nodes accessed during epoch 𝑒 . Therefore, we run
a top-𝑘 classification on all nodes in N𝑐 with 𝑐 being the current
epoch, while nodes that were not sampled during 𝑐 are considered
to be cold. In this context, we set 𝑘 to the number of theoretically
expandable nodes based on the index size and the memory budget.
Affording 𝑛 additional bytes, we can keep up to 8𝑛 of the last classi-
fication results as historic information to support future encoding
decisions.

Next, the adaptation manager determines promising encoding
changes based on the available memory, the current and the his-
toric classifications, and heuristics 4 . These heuristics are index-
dependent as they take encoding migration costs and performance
gains into account (cf. Section 3.1.4).

For example, as in Figure 4, node B , which has been classified
as hot, gets expanded from the compressed to the performance-
optimized encoding, whereas node C , which is no longer hot, gets
compacted the other way around.

Sample-based Classification: As tracking all of the internal
node accesses will cause severe performance overhead (cf. Sec-
tion 3.1.3), the adaptation manager considers a sampled subset of
queries only. In this context, we introduce two relevant sampling
parameters: the skip length and the sample size. The skip length
corresponds to the number of skipped queries between two samples,
while the sample size defines the number of sampled accesses before
starting Phase II. Based on the skip length 𝑠𝑘 , the costs for sampling
one access get amortized over 𝑠𝑘 queries: larger skip lengths will
reduce the costs per query and vice versa. However, larger skips
will also increase the time until optimizing frequently accessed
nodes. The adaptation manager sets the skip length adaptively at
run-time: frequent encoding migrations will lead to smaller skip
lengths so that the hybrid index can quickly adapt to workload
changes. For more details, please refer to Section 3.1.3.

To bound sampling errors, we introduced Equation (1) in Sec-
tion 2 to get the sample sizes for error-bounded top-𝑘 approxima-
tions, with 𝑛 being the number of leaf nodes, 𝜖 denoting the classi-
fication error, and 𝛿 representing its reliability. Based on the results
in Figure 2, we set 𝜖 = 𝛿 = 5% as the default values because they pro-
vide a reasonable trade-off between sample size and precision. To
set 𝑘 , we approximate the number of nodes that could be expanded
without exceeding the memory budget. Assuming a tree has𝑛𝑐 com-
pressed and 𝑛𝑢 uncompressed nodes, where compressed/uncom-
pressed nodes use𝑚𝑐 /𝑚𝑢 bytes each on average. For a memory bud-
get𝑚𝑏, we can approximate𝑘 = (𝑚𝑏−(𝑛𝑐 ·𝑚𝑐+𝑛𝑢 ·𝑚𝑢))/(𝑚𝑢−𝑚𝑐).

At the end of each adaptation phase, the adaptation manager
changes both parameters skip length and sample size adaptively 5 .

We next present the architecture, the unified interface, and the
different strategies for sampling-based classifications in detail. We
then discuss supported user-defined parameters and show how to
use heuristics to determine nodes for potential encoding migrations.

3.1 Architecture and Interface
While Figure 4 shows the concepts of adaptive hybrid indexes, this
section describes the concrete steps to implement them. We present
the framework’s architecture and its unified interface in more detail.
In the rest of this paper, we refer to the controlling instance of the
workload adaptation framework as adaptation manager.

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1629

3.1.1 Tracking Granularity and Encodings. Before making a hybrid
index adaptive, we must determine the tracking granularity: the
basic unit (e.g., key, node, bucket) where we collect statistics and
apply encoding migrations. We then design different encodings for
this basic unit. Each encoding comes with different trade-offs in
read/write performance and space efficiency. Based on the different
encoding characteristics, we implement heuristics that map a basic
unit to an encoding by taking its sampled access information and
the available resources into account. We describe the usage of such
heuristics in more detail in Section 3.1.4.

We must also provide unique identifiers for the basic units. In
most cases (e.g., B-tree nodes) we simply use pointers. For others
such as succinct index representations, we use position offsets.

In our approach, each hybrid index keeps its adaptation man-
ager as a member variable (cf. Listing 1, line 50). This instance is
then used for all workload adaptation-related tasks such as moni-
toring the space consumption and storing the fine-grained access
information, which separates index- from sampling-related code.

3.1.2 Interface. As a next step, we identify those functions which
access or modify the index at the predefined granularity, such as
lookups, inserts, or iterator increments and dereferencing operators.
Each of the relevant functions first checks whether the current
access is considered to be a sample (Listing 1, lines 38 and 42).
Depending on the return value we conditionally pass the accessed
part (here cur_node) alongside the access type to the adaptation
manager using the Track-function (lines 39 and 43).

To enable the adaptation manager to change the encoding of a
tracked part, we implement a callback function that handles the
migration logic between different encodings (line 49). As an exam-
ple, for a B+-tree with compressed and uncompressed leaf nodes,
we provide a callback function implementing the compression and
decompression of leaf nodes.

3.1.3 Phase I: Sampling Phase. During the sampling phase, the
hybrid index invokes the adaptation manager to track a sampled
subset of basic units and corresponding access types. For each unit,
the adaptation manager maintains individual access statistics (cf.
Listing 1, line 6), where accesses are grouped by access type (read,
insert, update, and delete).

To consider only the sampled accesses of the current phase, the
adaptation manager maintains a global epoch counter (cf. line 28),
and each access statistic stores the epoch of last access (cf. line 6).
Before updating access statistics, we first check if its epoch matches
the global epoch. In the case of different epochs, we first reset the
aggregate counters and set the local to the global epoch before
registering new accesses. Storing the epoch of the last access fur-
ther adds new relevant information when deciding which node
encodings should be changed.

To efficiently map identifiers to their access statistics (cf. line 25),
we use a high-performance hop-scotch hashmap for single-threaded
execution [6], and a concurrent cuckoo-based hash map for parallel
workloads (cf. Listing 1, line 25) [34]. It allows concurrent readers
and writers while it retains high throughput under contention.

As an optimization, we install a bloom filter in front of the hash
table to prevent cold nodes from being tracked accidentally (cf.
line 26). Before an identifier gets tracked in the hash map, it must
be added to the filter first. Only in the case the identifier is already

1 // AdaptationManager.hpp
2 template <class Index, typename Identifier, typename Context>
3 class AdaptationManager {
4 public:
5 enum AccessType { READ, WRITE, UPDATE, DELETE };
6 enum AccessStats { size_t reads, size_t writes, BitSet

last_classifications, Epoch last_epoch, ... };↩→
7 explicit AdaptationManager(Index *index);
8 bool IsSample() {
9 if (--skip_length == 0) {
10 skip_length = global_skip_length_.load(); // synchronized
11 return true;
12 }
13 return false;
14 };
15 template <typename... Args>
16 void Track(Identifier&, AccessType&, Args&& ...);
17 void UpdateContext(Identifier&, Context&);
18 private:
19 void Classify(); // Classify nodes as hot and cold
20 void Adapt(); // Start encoding migrations
21 atomic<size_t> global_skip_length_; // Adaptive parameter
22 static thread_local size_t skip_length;
23 atomic<size_t> global_sample_size_; // Adaptive parameter
24 static thread_local size_t sample_size;
25 HashMap<Identifier, pair<AccessStats, Context>> samples_;
26 BloomFilter<Identifier> filter_;
27 Index *index_;
28 Epoch current_epoch_;
29 };
30 // HybridIndex.hpp
31 #include "AdaptationManager.hpp"
32 template <typename K, typename V>
33 class HybridIndex {
34 struct Node {...}
35 friend class AdaptationManager;
36 public:
37 V Lookup(const K& k) { // leave out lookup logic
38 if (adapt_manager_.IsSample())
39 adapt_manager_.Track(node, READ)
40 }
41 bool Insert(K& k, V& v) { // leave out insert logic
42 if (adapt_manager_.IsSample())
43 adapt_manager_.Track(node, INSERT)
44 }
45 private:
46 // Callback functions invoked by adapt_manager_
47 size_t GetUsedMemory();
48 Encoding EvaluateHeuristic(const AccessStats&);
49 void Encode(Node*, EncodingSchema& /*target*/, Node*

/*parent*/);↩→
50 AdaptationManager<HybridIndex<K,V>, Node*, /*Parent-*/ Node*>

adapt_manager_;↩→
51 };

Listing 1: Simplified draft of theworkload sampling interface.
We left out constructors, index-dependent lookup- and insert-
function logic, and thread-local sampling maps.

contained in the filter, it gets added to the hash map. We reset the
filter after each sampling phase. The bloom filter is configured to
use 10 bits per item and its capacity is set to half of the sample size.

To reduce the tracking-related overhead, (e.g. hashing the iden-
tifiers, accessing and modifying the aggregated sampling statistics)
we do not consider all node accesses, but a sampled subset only. As
our approach aims to classify index parts into categories such as
hot and cold, the chance to miss frequently accessed parts decreases
inversely proportional with increasing access frequencies.

While sampling reduces the tracking-related overhead, it intro-
duces new overhead to decide which accesses get sampled. Instead

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1630

0 1 2 3 4 5 10 15 20
Skip Length

0
20
40
60

Re
la
tiv

e
O
ve
rh
ea
d
[%
]

Figure 5: Relative sampling overhead for different skip
lengths using the Hybrid B+-tree (cf. Section 4.1). The well-
known STX-B+-tree represents the baseline. The blue line
additionally samples leaf nodes accesses and collects individ-
ual tracking information. It shows the relative overhead of
the workload sampling. The red line shows the performance
overhead for the filter-based optimization. Further experi-
ments can be found in the online appendix.

of probabilistically deciding for each access whether it gets sampled
or not, Vitter et al. suggest minimizing sampling-related overhead
by defining so-called skip lengths: a skip length defines how many
accesses are skipped between two samples [49]. We experimentally
evaluated the sampling overhead for different skip lengths using
the OSM dataset and a log-normal distributed workload in Figure 5.
The STX-B+-tree is the baseline in this experiment, and the tree
represented by the blue line additionally collects access statistics.
For a skip length of 0, which means that all accesses get sampled, we
observe significant overhead of up to 61.9% compared to the base-
line. However, the sampling overhead quickly decrease for larger
skip lengths, e.g. 1.6% for a skip length of 20. The red line shows
the overhead after adding the additional bloom filter. The filter pre-
vents cold nodes from being tracked and reduces sampling-related
overhead significantly. While this experiment shows results for the
log-normal workload, other workloads show similar overhead.

We can further reduce contention by defining one skip per thread
(line 24): decrementing the thread-local skip (line 9) does not require
synchronization. Only in case the skip becomes zero, we reset the
skip to the global skip using an atomic load instruction (line 10).

In some cases we need a way to store additional context in-
formation alongside the identifier to allow for efficient encoding
migrations. For example, we could integrate the adaptation man-
ager to identify hot and cold leaf nodes in a B+-tree. Whenever
we expand or compact a node, its parent must efficiently be made
available to change the corresponding child-node pointer. Based on
variadic template arguments and perfect forwarding, hybrid indexes
can efficiently pass arbitrary context information to the adaptation
manager without requiring changes of our framework.

As context information might change over time (e.g. parent
changes because of node splits), our framework allows to propagate
context changes to the adaptation manager (cf. line 17).

3.1.4 Phase II: Adaptation Phase. When the sample reaches the
predefined size, the adaptation manager terminates the sampling
and passes over to the adaptation phase, which consists of three
steps (cf. 3 - 5 in Figure 4). First, the top-𝑘 frequent nodes of the
last sampling phase get labeled as hot, the rest is considered to be
cold. Second, based on the classification and the index heuristic
function, the adaptation manager determines the most suitable en-
coding for each tracked node and applies the appropriate encoding

0 2000 4000 6000𝑘

20

40

Ti
m
e
pe
rU

ni
qu

e
Sa
m
pl
e
[n
s]

0.0

0.2

0.4

0.6

Si
ze

of
H
as
ht
ab
le
[M

iB
]

L2

L1

No. of Unique Samples: 1000 2000 5000 10000

Figure 6: The left plot shows the classification overhead per
sample for different sample sizes and different values for 𝒌.
In the right subplot, we show the size of the hash map that
stores the individual samples and the access statistics.

migrations. Last, the adaptation manager adapts the parameters
skip length and sample size before the next sampling phase starts.

Classification: We implement the top-𝑘 analysis using a pri-
ority queue based on a binary heap having a capacity of 𝑘 . In our
experiment, we use the sum of the read and write access counters
as default priority. However, we could also assign custom weights
to the different access counters. Then, we traverse the hash map
and insert those aggregated samples whose epoch matches the
global epoch, and label them as hot. Nodes, which were not ac-
cessed during the last sampling phase will not be inserted into the
priority queue at all – instead, we can directly classify them as
cold. When nodes are displaced from the priority queue, they are
marked cold again. Therefore, we find the top-𝑘 frequent items in a
single pass and classify all nodes accordingly. This algorithm runs
in O(𝑢 (1 + 𝑙𝑜𝑔(𝑘))) with 𝑢 being the number of unique samples,
and the space to store the priority queue is O(𝑘).

We experimentally evaluated the classification performance for
different numbers of unique samples and different values for 𝑘 in
Figure 6. For 𝑘 ≈ 𝑠/2, the sum of heap inserts and removals reaches
its maximum, while it decreases for smaller and larger 𝑘 , explaining
the different latencies. Assuming a classification latency of 60ns
per sample and a skip length of 𝑠𝑘 = 20, the classification overhead
per query can be amortized to 60ns/20 = 3ns.

Identifying hot nodes based on sampling will also introduce in-
accuracies, therefore, we further back up future encoding decisions
by keeping the most recent 𝑛 classifications. In our example im-
plementation, we use one additional byte to keep the last eight
classifications. This information can be used in the heuristics to
further improve encoding decisions.

Heuristics: After the classification, the adaptation manager
might optionally change the encoding for tracked parts. Making op-
timal encoding-decisions is not possible, as there will be sampling
inaccuracies and future queries and accesses are not known before-
hand. However, we can react to current workload developments
based on the sampled access statistics. Therefore, context-sensitive
heuristic functions (CSHF) support the workload manager to decide
which encoding migrations might improve the performance. As
shown in Figure 7, a CSHF is similar to a decision tree that takes
sampled access statistics and other context information into ac-
count and returns an encoding. Branches represent decisions, while

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1631

https://www.hybrid-index.online

leaf nodes contain the suggested encoding. Furthermore, the CSHF
can decide to stop tracking of specific nodes, e.g. if they are cold or
were not sampled for a longer time. Each hybrid index will imple-
ment its own, tailored CSHF as it must take the different encodings
and space-performance implications into account (cf. line 48).

last
classification

. . .cold

memory
budget

hot
phases . . .≤ 1

Optimized≥ 2

≤ 95%

Compr.> 95%

hot

Figure 7: Heuristic functions propose target encodings de-
pending on a variety of factors such as the current and the
last classifications, system resources, or the last access.

Next, the adaptation manager evaluates the CSHF for all tracked
items and if required, migrates the basic units to their suggested en-
coding. Therefore, the hybrid index implements a callback function
(cf. line 49) to handle the migration between different encodings.

Sampling Parameters: Providing an equation or a metric that
adequately considers all parameters is challenging. Instead, we
identified three important parameters sample size, skip length, and
encoding migration costs and provided experimental validation for
each. Based on these experiments, we let the adaptation manager
set the parameters adaptively at runtime. E.g., the adaptation man-
ager will calculate the new sample size based on Equation (1) as
well as a new skip length. As we discussed earlier, a smaller skip
length allows hybrid indexes to adapt more quickly to workload
changes, but it imposes more sampling overhead. And we use the
number of node encoding changes in the current adaptation phase
to approximate workload stability. For example, if the migrated
nodes make up less than 10% of the sampled accesses, the skip
length will increase to reduce the sampling overhead. Contrary, if
the share exceeds 30%, we decrease the skip length and therefore
increase the sampling frequency. In our example implementation,
the adaptation manager will adaptively set the skip length within
the range [50, 500]. Additionally, the adaptation manager could
randomize 𝑠𝑘 in a limited range to cope with query patterns.

3.1.5 Concurrency. While hybrid indexes work best under skewed
workloads, concurrency requires contention and synchronization
to be kept at a minimum. We compare and evaluate two approaches:
(1) GS: All worker threads (WT) track samples in a global cuckoo
hash map which is optimized for concurrent readers and writ-
ers [34]. During adaptation, the map gets locked globally to process
each sample. (2) TLS: All WTs track the samples in thread-local
maps, which get merged once the target sample size is reached. In
both approaches, one WT runs the adaptation, while the remaining
WTs continue with the sampling phase. While GS optimizes space
efficiency, TLS allocates more memory for thread-local sampling.

3.1.6 OptionalMemory Budget. Our framework allows to set either
an absolute or a relative memory budget. While absolute budgets
are suited for read-only workloads, relative budgets allow us to
define an average ratio of bits per item and therefore provide more
flexibility with inserts and deletes. In other words, a memory budget

Gapped: header slotuse 𝑘0 𝑘1 𝑘2 ⊥ 𝑣0 𝑣1 𝑣2 ⊥

Packed: header slotuse 𝑘0 𝑘1 𝑘2 𝑣0 𝑣1 𝑣2

Succinct: header slotuse 𝑘𝑚𝑖𝑛 𝑣𝑚𝑖𝑛 Δ𝑘1 Δ𝑘2 Δ𝑣1 Δ𝑣2

Figure 8: Three different leaf node encodings are used in our
Hybrid B+-tree implementation. The Gapped encoding stores
a fixed number of slots with possible empty slots (⊥) at the
end. The Packed encoding stores keys and values densely
packed, and the Succinct layout further employs frame-of-
reference encoding.

lets us define a compression ratio in which the index structure can
be adaptively optimized. During execution, the adaptation manager
optimizes the index while keeping its size below the upper bound.

3.2 Trained Hybrid Indexes
In some contexts, dataset and workload remain stable for a longer
time, or a workload prediction might be available beforehand. E.g.,
self-driving database systems as proposed by Pavlo et al. in 2017 [41]
build indexes based on predicted workload patterns. Therefore,
more space-efficient hybrid indexes could make use of such fine-
grained predictions for training. Furthermore, onlineworkload adap-
tation imposes additional overhead to collect, aggregate, and classify
samples, so it might be desirable to train hybrid indexes based on
previous workloads in these cases beforehand.

Therefore, our framework also implements an offline solution
for hybrid indexes: given a predicted or a historic workload, the
adaptation manager analyzes the access patterns and ranks the
nodes according to their access frequencies. Starting with the most
promising nodes, the adaptation manager optimizes the nodes until
all nodes are optimized or the memory budget is reached.

4 EXAMPLE IMPLEMENTATIONS
In this section, we apply our approach to two state-of-the-art index
structures: B+trees and radix trees.

4.1 Hybrid B+-Tree
Although invented for disk-based database systems, B+-trees are
still the most widely-used indexes, even for in-memory DBMSs [53].
Most implementations make use of two encoding schemes: one for
inner and another one for leaf nodes. While both node types have a
fixed number of slots, long-running systems with millions of insert
and delete queries lead to unused slots. While these empty slots
do allow for efficient inserts and deletes, they also often result in
space utilization below 70% [8].

4.1.1 Tracking Granularity and Encodings. We first determine a
suitable tracking granularity. For the B+-tree, leaf nodes make a
good candidate as they make up the largest part of the overall data
structure and maintain all keys and values. Figure 8 introduces
three leaf node encodings that trade-off space and performance
differently.

Gapped is the traditional, universal encoding for B+-tree leaf
nodes. Those nodes support all access types efficiently by accepting

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1632

free slots (⊥), but they require a fixed amount of memory. The more
space-efficient Packed layout allocates memory for the used slots
only. This packed representation supports efficient read, update,
and delete operations (using tombstones), but does not support
efficient inserts. It stores the number of elements and two arrays
for keys and values. As an alternative, the Succinct encoding trades
performance for space efficiency more aggressively. For a leaf node,
it combines frame-of-reference (FOR) encoding with bit packing to
store the keys and values in a compressed fashion. The first (and
smallest) key/value is stored separately. While this node layout still
allows for random access, it requires additional instructions and
bitwise operations to access keys and values. This results in higher
access latencies compared to the gapped and packed encoding
schemes for smaller indexes, however, for larger indexes exceeding
the caches, the succinct layout will cause fewer cache misses which
might outweigh the additional CPU costs. In Table 1, we provide a
performance analysis for the different layouts. Gapped and packed
nodes achieve significantly higher throughput, whereas succinct
nodes require 73% less space on average compared to gapped nodes.
Furthermore, special allocators and memory pools can optimize the
allocation of differently sized nodes to prevent heap fragmentation.

4.1.2 EncodingMigrations. In Figure 9, we experimentally evaluate
the migration costs between the different node encodings for two
index sizes. The left index consumes around 10MB and entirely fits
into the L3 cache, while the right index needs around 1GB. For both
indexes, we observe significant overhead for switching between
the succinct and one of the other encodings: in these cases, the
migration will modify the physical key and value representation
and comes at the cost of additional instructions. In contrast, migrat-
ing between packed and gapped node layouts is cheaper as these
migrations use a system call to copy keys and values.

4.1.3 Tracking Leaf Nodes. Tracking leaf nodes during reads and
inserts is straightforward as the leaf and its context is directly
available. Scans, however, require minor, structural changes: each
inner node has a link to its right sibling, and iterators keep a pointer
to the current parent. In the case of a sampled leaf node access
through an iterator, the parent can be efficiently retrieved.

4.1.4 Handling Updates. Inserts and deletes will cause split and
merged nodes. In case a leaf node gets a new parent, this information
must be propagated to the tracking framework: we pass the leaf
node and its new parent to the adaptation manager, that will update
the context information of the actually tracked leaf nodes only.

Table 1: Different leaf node encodings storing 64-bit key-
value pairs of the OSM dataset (cf. Section 5.1) and their
performance implications on uniform lookups for a node
occupancy of 70%.

Leaf Node
Encoding

Average
Size

Lookup
Latency Instruc. LLC

Misses
Branch
Misses

Gapped 4096B 56ns 85 2.1 4.44

Packed 2872B 57ns 84 1.4 4.46

Succinct 1076B 125ns 341 1.1 6.69

≈ 10M ≈ 1GIndex Size
0

500

1000

1500

M
ig
ra
tio

n
La
te
nc
y
[n
s]

Gapped→Packed
Packed→Gapped

Succinct→Packed
Succinct→Gapped

Gapped→Succinct
Packed→Succinct

Figure 9: Evaluation of the migration costs between different
leaf node encodings for two selected index sizes. The used
CPU is equipped with an L3 cache size of 64MB.

4.1.5 Concurrency Control. We synchronize Hybrid B+-tree using
Optimistic Lock Coupling (OLC) as described in [32]. Each node
stores a lock and an atomic version counter. Compared to lock
coupling, OLC scales significantly better on multi-core systems,
because it minimizes the number of acquired locks.

4.2 Hybrid Trie: ART and FST
Tries are pointer-based index structures and are mainly used to in-
dex variable-length keys. Especially on modern hardware, research
has shown that tries achieve high performance [10, 13, 31, 35, 50, 55].
Compared to B-trees, tries do not store entire keys on each level,
but they index key suffixes, also referred to as labels, instead, where
each level stores the next 𝑘 > 0 bits of the key.

The Adaptive Radix Tree (ART) was introduced in 2013 and
represents the default index structure in HyPer [31]. It allows to
dynamically choose between four differently sized node types based
on the number of labels stored within a node. While each node type
has different implications on lookup performance [19], the node
type is chosen based on the indexed keys only and does not depend
on the actual workload. ART requires 𝑘 to be 8 and therefore limits
the maximum fanout to 28 = 256.

Besides ART, there is another state-of-the-art trie called Fast
Succinct Trie (FST) which has been introduced by Zhang et al. in
2018 [55]. Compared to ART, FST does not store child pointers to
traverse the index structure, but instead, it computes the position of
the next node based on two bitmaps, one storing the existing labels
and another one maintaining the information whether a path termi-
nates. While FST does not impose any restrictions on 𝑘 , we assume
𝑘 = 8 in the following for the sake of simplicity. Furthermore, FST
uses two different encoding schemes for upper and lower levels:
The upper, more frequently accessed parts are encoded using amore
performance-optimized and space-demanding encoding, referred
to as FST-dense, where each node stores the key-labels implicitly by
using 2𝑘 bits per node, which allows for fast random access within
each node. The lower levels use the FST-sparse encoding which
stores existing labels explicitly. This might reduce the space usage1
but also requires an explicit search within the nodes and therefore
more computations for sparse-encoded nodes.

1The sparse encoding requires less space compared to the dense encoding when the
average number of stored labels 𝑙 within the nodes is smaller than 256/8 = 32.

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1633

𝑐𝐴𝑅𝑇

𝑐𝐹𝑆𝑇

ART

FST
dense

sparse

ART pointer
FST node number
Implicit

Queries 1 Expand hot nodes
2 Compact cold nodes

1

1

2

Figure 10: Our workload-adaptive Hybrid Trie. It combines
the Adaptive Radix Tree and the Fast Succinct Trie level-wise
at build-time. Combined with our sampling framework, it
supports branch-wise refinements at run-time.

In Table 2, we compare the sizes of ART and the two FST en-
codings for the prefix-random dataset (cf. Section 5.1). While ART
allows for faster lookups, it requires significantly more memory.
FST requires additional instructions to compute the position of
the next node and value resulting in decreased performance. For
FST-sparse, we measured more cache misses than for ART, which
can be explained with the efficient path compression in ART: while
FST-sparse requires less memory, its lookups will traverse more
nodes on average and therefore cause more cache misses.

Based on the work of Anneser et al. in 2020 [9], we introduce
Hybrid Trie: an adaptive, level-wise combination of ART and FST.

4.2.1 Tracking Granularity and Encodings. Hybrid Trie combines
ART and FST level-wise: levels 0 to 𝑐𝐴𝑅𝑇 (incl.) are represented by
ART, levels between 𝑐𝐴𝑅𝑇 and 𝑐𝐹𝑆𝑇 (incl.) are represented by FST-
dense, and the remaining levels are encoded using FST-sparse, as
illustrated in Figure 10. We chose the level-wise combination with
ART being at the top based on the fact that all queries start at the
root node and ART achieves significantly higher throughput.

To allow for more fine-grained control and branch-wise expan-
sions beyond the cutoff level 𝑐𝐴𝑅𝑇 , we extend Hybrid Trie with verti-
cal refinements. While ART uses pointer tagging to differentiate
pointers and inlined TIDs, we use an extra bit to further differentiate
the case of inlined FST node numbers. The tagged pointers can then
be used as unique identifiers by the adaptation manager.

4.2.2 Interface and Callbacks. Since FST is a static index supporting
only lookups and range scans, we do not handle inserts as they
would require a complete rebuild of FST each time. To support
efficient inserts, we experimented with storing multiple FSTs (one
per “cold” subtree) instead of a single, global one. However, as
each FST adds some storage overhead (for header information and
auxiliary data structures), this approach did not pay off. We hence
leave inserts for future work.

Next, we identify the functions accessing nodes below 𝑐𝐴𝑅𝑇 . In
Listing 2, we show how the simplified lookup code integrates with
the sampling framework. To enable fast node migrations, we pro-
vide additional context for each tracked identifier: we store its
parent, the key label within the parent, and the FST node number.

The callback function Encode(...) implements the migration
logic between ART and FST nodes. Compacting ART nodes to
the FST representations (cf. 2 in Figure 10) requires deleting the
expanded node and replacing the tagged identifier within the parent

1 V Lookup(const K& key) {
2 const bool isSample = adapt_manager_->IsSample();
3 Node* node = root_;
4 while (node != nullptr && isARTPointer(node)) {
5 node = findChild(node, key[level++]);
6 if (isSample && level > c_art)

7 adapt_manager_->Track(node, READ, ...);
8 }
9 if (isFSTNode(node))
10 return fst_->Lookup(getFSTNode(node), key, level);
11 return getValue(node);
12 }

Listing 2: Simplified lookup code for Hybrid Trie. The high-
lighted lines handle the required calls to the workload sam-
pling framework. In line 7, we dropped additional arguments
such as the parent identifier and the key-part at the current
level. This function is intentionally not declared const as it
may modify the internal structure.

Table 2: Space and performance metrics for different trie
indexes measured for the prefix-random dataset and work-
load (cf. Section 5.1).

Per Lookup-Query

Index Size Latency Instruc. LLC
misses

Branch
misses

ART 274MB 81ns 177 8.49 0.03

FST-dense 116MB 206ns 675 6.33 1.82

FST-sparse 104MB 576ns 4337 9.2 9.64

node with the FST node number. Expanding FST nodes to ART
nodes (cf. 1) requires us to determine the appropriate ART node
type based on the number of labels within the node. In both cases,
we retain the historic access statistics in the workload tracking.

We experimentally evaluated the latencies for migrating nodes
between ART and FST. Migrations from FST to ART cause overhead
of up to ≈5000ns on average (assuming a node occupancy of 50%):
labels stored within the FST node must first be collected and then
inserted into the new ART node. Migrating the other way around
takes up to ≈100ns only, as it does not involve the construction
of a new node, but the deletion of the existing ART node and its
replacement in the parent node with the FST node number.

5 EVALUATION
We conduct all experiments on a 16-core AMD Ryzen 9 3950X CPU
@ 3.5GHz equipped with 64GB DDR4-2667 RAM and compile the
C++ code with GCC 9.3.0, using the flags O3 and march=native.
Please note that the CPU overhead for sampling, compacting, and
expanding nodes are already included in the shown performance.

5.1 Datasets and Workloads
The OSM-dataset [26, 36] comprises 400M uniformly sampled Open
Street Map locations represented as 64-bit S2-cell-identifiers [4]. We
further use the RocksDB tool dbbench to generate 64-bit user-ids

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1634

Table 3: Operation counts and distribution types for each
workload. The synthetic workloadsW1.1-W2 were generated
by us, W3 is a realistic workload generated using RocksDB’s
dbbench [14], and W4 has been generated using YCSB [17].
The scan length is uniformly distributed within [10, 50], and
for W4 [100, 250].

Reads Scans Inserts

W1.1 49% Zipfian 49% Zipfian 2% Zipfian
W1.2 49% Normal 49% Normal 2% Zipfian
W1.3 49% Lognormal 49% Lognormal 2% Lognormal

W2 56% Lognormal 20% Lognormal24% Uniform
W3 [14] 100% prefix-rand.
W4 YCSB 75% Zipfian 25% Zipfian
W5.1 20% Zipfian 80% Zipfian
W5.2 20% Zipfian 80% Zipfian
W6.1 100% Zipfian
W6.2 100% Zipfian

and anonymized workloads that contain common patterns seen
at Facebook [3, 14]. Besides fixed-size keys, we use a dataset of
33M unique email addresses (host-reversed, e.g. foo.com@) drawn
from a real-world dataset (average length = 22 bytes, max length
= 49 bytes). Further optimizations such as key compression are
orthogonal to our approach: Adaptive indexes choose the most
promising internal node encodings adaptively at run-time, while
key compression, e.g. [56], is performed at key granularity.

Based on the datasets, we generate different workloads. Figure 11
visualizes the cumulative distribution functions (CDF) of the work-
loads W1.1 - W1.3 applied to the OSM dataset.

In Table 3, we show the number of operations and the used
distribution for each workload and query type.We use the following
relative distributions to decide on record selections and scan lengths:
Zipf with 𝛼 ∈ [1, 1.5] and 𝑁 being the number of keys, Normal with
𝜇=0.5 and 𝜎=0.03, Lognormal with 𝜇=0 and 𝜎=0.1, and Uniform.

Additionally, we used RocksDB’s dbbench to generate a more
realistic workload based on the prefix-random configuration de-
scribed by Cao et al. in 2020 [14]. They analyzed RocksDB work-
loads at Facebook and extracted common characteristics, which are
re-generated by dbbench. Furthermore, they found a correlation
between key prefixes and lookup frequencies: while most keys are
not accessed at all, there are some hot key prefix ranges which are

0 1
0

1
Zipfian

0 1

Normal

0 1

Lognormal

0 1

Uniform

Figure 11: Cumulative distribution functions (CDFs) of the
workloads (from left to right) W1.1, W1.2, W1.3, and a uni-
form distribution on the OSM dataset.

accessed frequently. We evaluate this workload using ART and FST.
We use a custom read-only YCSB configuration with a hot set size
of 1% of the dataset (cf. W4).

We further use the Yahoo! Cloud Service Benchmark (YCSB) [17]
to generate a dataset of 200M key-value pairs (16 bytes each) and
workloadW4with 200MZipfian-distributed queries.WorkloadsW5.1
and W5.2 let us investigate the performance of adaptive indexes for
write-dominated workloads, while workload W6 evaluates point
lookups and scans on the mail dataset using Hybrid Trie.

5.2 Hybrid B+-tree
For the following evaluation of the Hybrid B+-tree, we assume
an average leaf node occupancy of 70%. We refer to the adaptive
Hybrid B+-tree as AHI-BTree.

In Figure 12, we use the OSM dataset and the workloads W1.1 -
W1.3 to show the performance developing over time and the average
space consumption for the adaptive and pre-trained Hybrid B+-tree
and compare them to the succinct, packed, and gapped tree variants
which do apply a single encoding to all of their leaf nodes. For each
workload phase, we observe a short period of time in which the la-
tencies of the adaptive index decrease, and then stabilize at a lower
level. During this time, the workload adaptation detects frequently
accessed nodes and migrates them to performance-optimized en-
codings. In contrast to the first and last phases, the second phase
W1.2 is less skewed, which is the reason for the increased latencies.
The adaptive tree achieves 85%, 99%, and 84% of the throughput of
the performance-optimized Gapped tree on average per workload
phase. At the same time, the adaptive tree reduces the memory foot-
print (2.36GB) by up to 72% compared to the Gapped tree (8.66GB).

To better understand the space-performance trade-off, we use
the cost function𝐶 = 𝑃𝑟𝑆 defined by Zhang et al. in 2018 [55], with
𝑃 representing the performance (latency) and 𝑆 representing the
index size. The exponent 𝑟 defines the relative importance between
𝑃 and 𝑆 : 0 ≤ 𝑟 < 1 considers space to be more important, while
𝑟 > 1 trades performance for space.

Figure 13 visualizes 𝐶 for 𝑟 = 1 (space and performance are
equally important) by using blue curves and shows the average per-
formance and last measured index size. Indexes on the same curve
are considered to be “indifferent” in the space-performance trade-
off. According to𝐶 , the succinct, adaptive, and pre-trained variants
provide a better space-performance trade-off than the gapped and
packed variants. For the highly skewed Lognormal workload W1.3,
the adaptive tree achieves the best trade-off.

In Figure 14, we investigate to what extent the adaptive tree can
leverage differently skewed workloads. We generate the workloads
based on W1.1 for parameter 𝛼 ∈ (0, 1.6]. For 𝛼 = 1, our adaptive
tree reduces the index size by 71%/59% while it increases query la-
tency by 17%/7% wrt. the Gapped/Packed trees. With decreasing 𝛼 ,
AHI-BTree cannot retain the high performance improvements: the
access frequency of the 10K most frequent nodes (out of 2M nodes)
decreases from 67% for 𝛼 =1 to 45%/28%/11% for 𝛼 = 0.9/0.8/0.7.
For this experiment, the break-even point is at 𝛼 ≈0.6: for 𝛼 <0.6,
sampling overhead outweighs performance improvements due to
node expansions, and for 𝛼 >0.6, the contrary is the case.
Despite the sampling overhead, we observe no considerable perfor-
mance decreases for AHI-BTree wrt. the Succinct tree (3% higher

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1635

Zipfian [W1.1] Normal [W1.2] Lognormal [W1.3]

0 50 100 150
Time [intervals of 1M queries]

300

400

500

Q
ue
ry

La
te
nc
y
[n
s]

50M queries 0

9

Si
ze

[G
B]

sampling
memory

Succinct
Packed
Gapped

AHI-BTree
Pre-Trained

Figure 12: Query latency evolving over time for the OSM-dataset and three selected workloads using the Hybrid B+-tree and its
baselines. Each workload phase comprises 50M queries and at the top, we show the corresponding CDF. For all phases, we
observe a performance increase over time for the adaptive tree (AHI-BTree). The bar chart to the right shows the overall index
structure sizes. The sampling framework takes up to 2.53MB, which is 0.1% of the adaptive index size of 2.36GB.

0 2 4 6 8
Size [GB]

0

200

400

La
te
nc
y
[n
s]

Normal [W1.2]

0 2 4 6 8
Size [GB]

0

200

400

Lognormal [W1.3]

low cost high cost
AHI-BTree Pre-Trained Succinct

Packed Gapped

Figure 13: Average latencies and index sizes for B+-trees hav-
ing different leaf encodings for the OSM dataset and work-
loads W1.2 and W1.3. The blue curves show a cost function
that considers performance and space as equally important.
Points on the same curve are considered to be indifferent.

0.0 0.4 0.8 1.2 1.6
0

500

1000

La
te
nc
y
[n
s]

break-even
point

0.0 0.4 0.8 1.2 1.6

3

6

9

Si
ze

[G
B]

lo
g-
sc
al
e

Zipfian Reads & Writes [W1.1]

Skew 𝛼← less skewed more skewed→

AHI-BTree Pre-Trained Succinct Packed Gapped

Figure 14: Average latencies and sizes of the Hybrid B+-tree
indexing the OSM dataset for workload W1.1 for varying 𝜶 .

latency) under less skewed workloads (𝛼 =0.01).
AHI-BTree eagerly migrates Succinct nodes to the Gapped encod-
ing on inserts and defers their compaction until they are cold again.
For 𝛼 = 0.01, inserts affect 26% of all nodes and the adaptive tree
allocates 46% more memory compared to the Succinct tree.

Figure 15 shows the impact of the memory budget on the per-
formance of AHI-BTree. With increasing budgets, AHI-BTree can
expand more nodes to the performance-optimized encodings. As

150 175 200 225 250
Memory Bound [MiB]

0

200

400

600

La
te
nc
y
[n
s]

0.0

0.5

1.0

Si
ze

[G
B]

0.
13

0.
76

1.
08

Zipfian Reads & Writes [W1.1]
Succinct Packed Gapped AHI-BTree

Figure 15: Latency and size of Hybrid B+-tree indexing 50M
consecutive 64-bit keys for different memory budgets.

50 100

1

2

La
te
nc
y
[𝜇
s]

Writes
[W5.1]

Reads
[W5.2]

50 100

3

6

9

Si
ze

[G
B]

lo
g-
sc
al
e

Writes
[W5.1]

Reads
[W5.2]

Time [intervals of 100k queries]

Compactions
Expand hot nodes

AHI-BTree Succinct Packed Gapped

Figure 16: Latencies and index sizes for the Hybrid B+-tree
running workload W5 on the OSM dataset. W5.1 is write-
dominated and W5.2 is scan-dominated. We run both work-
loads consecutively.

the most frequently accessed nodes get optimized first, the per-
formance improvements per additional MB are larger for smaller
memory budgets under skewed workloads.

Figure 16 shows the performance for AHI-BTree running work-
load W5. With Succinct nodes being optimized for read accesses
only, insert operations during the write-intensive workload W5.1
require expensive changes to the node structure. While AHI-BTree
uses the Succinct encoding as default for cold nodes, it eagerly mi-
grates nodes to the Gapped encoding on inserts. At the beginning

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1636

0 2 4
Size [GB]

0

500

1000

La
te
nc
y
[n
s]

Lognorm. & Uniform [W2]

0 2 4
Size [GB]

0

500

YCSB [W4]

AHI-BTree
Succinct

Packed
Gapped

DualStage-Succinct
DualStage-Packed

Figure 17: We compare the space and performance of our
Hybrid B+-tree to the Dual-Stage Hybrid B+-Tree described
in [53]. During the benchmark, the dynamic stage contains
the latest inserted keys (5% of all data). The dataset contains
200M consecutive 64-bit keys and 64-bit TIDs.

1 2 4 8 16
0
3
6
9

M
op

er
at
io
ns
/s

Writes [W5.1]

1 2 4 8 16
0

10

20

Reads [W5.2]

Threads [log]

Succinct Packed Gapped
AHI-BTree-GS AHI-BTree-TLS

Figure 18: Average throughput for the two concurrent work-
load adaptations based on Global Sampling (GS) and Thread-
Local Sampling (TLS) applied to the Hybrid B+-tree. We run
both workloads W5.1 and W5.2 separately using different
numbers of worker threads.

of W5.2, previously expanded nodes, which are rarely accessed in
W5.2, get compacted again to reduce the memory footprint.

In Figure 17, we compare our approach to the Dual-Stage (DS)
framework proposed by Zhang et al. in 2016 [53]. DS consists of a
dynamic stage for recently modified data and a static stage for the
remaining data. Inserts, deletes, and updates modify the dynamic
stage, whereas reads first check the dynamic stage, and if the key
was not found, they continue the lookup in the static stage. We can
see that our approach outperforms DS in both dimensions, space
and performance. Based on the access statistics, it allows for more
fine-grained encoding decisions and can therefore leverage skew
to a higher extent. Contrary, DS keeps only recently inserted or
modified items in performance-optimized structures independent
of the workload skew. As described in [53], we add the LevelDB [2]
bloom filter to DS to further speed up lookups as it allows to skip
the dynamic stage in most cases when the key does not exist there.

In Figure 18, we compare the performance of the two concurrent
adaptation approaches (cf. Section 3.1.5) and apply them to the Hy-
brid B+-tree to run workloads W5.1 and W5.2 on the OSM dataset.
We pin each thread to one logical core. For both workloads, thread-
local sampling (TLS) achieves higher throughputs compared to
global sampling (GS). GS locks the entire map during the adaptation
phases and table resizing operations, which leads to high contention
that severely degrades performance while executing the read-only

0 500 1000
Size [MB]

0.00
0.25
0.50
0.75
1.00

La
te
nc
y
[𝜇
s]

Point [W6.1]

0 500 1000
Size [MB]

0

2

Scan [W6.2]
AHI-Trie FST ART Pre-Trained

Figure 19: Space and performance for point lookups (W6.1)
and scans (W6.2) on 33M unique email addresses.

0 1
0

7
Phase 1

0 1
0

7
Phase 2

0 50 100

Time [intervals of 1M queries]

0

1000

#
M
ig
ra
tio

ns

AHI-Trie ART FST Pre-Trained

100

200

300

La
te
nc
y
[n
s]

100

200

300

Si
ze

[M
iB
]

Sampling Phase

Adaptations

ExpansionsExpansions

Compactions

Figure 20: Latencies, index sizes, and encoding migrations
shown over time for the prefix-random workload W3 and
a dataset of 172M user ids. We split the workload into two
phases, each containing different hot prefix ranges visualized
by the two histograms at the top. The vertical dashed lines
show the time of the adaptations. Sampling phases take place
between two subsequent adaptations.

workloadW5.2. The skewed inserts in W5.1, however, already incur
high contention and the performance gains due to node expansions
outweigh the sampling overhead of both approaches. Compared to
single-threaded workload adaptation, the shared and the thread-
local maps allocate up to 10x more memory (up to 1.5%/2.4% of the
index) to reduce sampling-related contention.

5.3 Hybrid Trie
In Figure 19, we consider index size and performance of FST, ART,
as well as the trained and the adaptive Hybrid Tries (AHI-Trie) for
point lookups and scans on 33M email addresses. While FST stores
one character per level, ART nodes inline up to eight common prefix
characters. This reduces the tree height from 49 to 32 levels and
improves performance. For Hybrid Trie, ART stores the upper 9
levels which contain 5.23% of all nodes (≈ 4.28% of the size).

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1637

Table 4: Overview of the Lines of Code (LOC) per lookup
and insert functions of our two workload adaptive hybrid
indexes compared to their non-adaptive counterparts.

Lookup Insert
Index Logic Tracking Logic Tracking

B+-tree 13 - 100 -
AHI-BTree 15 +1 119 +5

ART/FST 18/46 - - -
AHI-Trie (ART/FST) 25/47 +3/+0 - -

We compare the performance and size of the adaptive and pre-
trained Hybrid Trie to ART and FST in Figure 20 for the prefix-
random workload W3 and a dataset of 172M 64-bit user ids. We
split the workload into two phases and assigned the different prefix
ranges (defined by the 44 most significant key bits) randomly to one
of the phases. The sampling and adaptation phases for the adaptive
trie are highlighted: black dots indicate adaptation phases, while
sampling phases take place between two adaptations. The duration
of a sampling phase is the product of skip length and sample size.
As the sample size does not significantly change in this example
(not visualized), the sampling phase duration is mainly determined
by the changing skip lengths.

At the beginning of each phase, we observe an increased number
of encoding migrations. For phase 1, there are expansions only, as
all nodes below 𝑐𝐴𝑅𝑇 are stored in FST. However, during phase 2,
nodes frequently accessed in phase 1, are considered to be cold now,
and, after a short delay, get compacted again.

After the workload manager identified and expanded/compacted
the hot/cold nodes, it increases the skip length to lower sampling-
related overhead (cf. Section 3.1.3). This increase results in a larger
distance between two consecutive adaptation phases. In contrast,
when the workload manager detects an increased number of mi-
grations, it decreases the skip length to allow faster adaptations.

5.4 Code Complexity
To give a rough overview of the required changes and the addi-
tional code complexity, we use the metric Lines of Code (LoC) –
without considering comments, locks, and empty lines. In Table 4,
we denote the lookup and insert functions of the original indexes
and compare them to our workload-adaptive variants. We differ-
entiate LoC into the actual logic (e.g., traversing the B+-tree) and
the workload-tracking-related code (e.g., adding a sample to the
adaptation manager). It can be seen that the tracking-related over-
head is limited to at most 3/5 additional lines for lookups/inserts
while coping with different encodings adds also extra complexity.
An additional function handles the encoding migrations (140 lines
for the Hybrid B+-tree, 51/70 lines for expansions/compactions in
Hybrid Trie). Subclasses further encapsulate the communication
between index and adaptation manager. These consist of 107/88
LoC for Hybrid B+-tree/Hybrid Trie.

6 RELATEDWORK
Previous research proposed different strategies to reduce storage
overhead and to leverage skew in DBMSs. Back in 2012, Funke et al.

introduced an online compaction of hybrid in-memory OLTP/OLAP
DBMSs based on a hot/cold clustering [21]. In this approach, the
access frequencies get tracked at a VM page level. In contrast to
this, Levandoski et al. monitor sampled accesses at a record level
and write them to a log-file which is evaluated offline at a later
point in time [33]. Both approaches primarily aim to move cold
data to secondary storage devices to free memory capacities.

In 2016, Zhang et al. propose several compaction rules to reduce
the memory footprints of in-memory DBMSs by reducing the space
overhead of index structures such as B+-trees, radix trees, and skip
lists [53]. In contrast to previous work, these techniques aim for
full in-memory indexing as opposed to migrating cold data to disk:
frequently accessed parts get stored using performance-optimized
structures, whereas cold data gets compacted, but remains in mem-
ory. Our experiment in Figure 3 confirms that despite the most
recent advances of SSD and NVMe disks, random I/O is still mul-
tiple orders of magnitude slower than on-the-fly in-memory de-
compression. While the introduced compaction rules might create
immutable indexes, this problem is mitigated by their proposed dual-
stage architecture: the dynamic stage contains the deltas created
by inserts which are periodically merged into the compacted index.

Contrary, our approach applies different encodings within one
single-stage index based on fine-grained access statistics. It does
not require index developers to define complicated or expensive
merge routines. Nevertheless, implementing different encodings
and migration functions might also increase the code complexity.
Besides the complexity, our adaptation framework has shown that
it can leverage skewed workloads to a higher extent.

Succinct data structures such as FST [55] (which we use in Hy-
brid Trie) or its alternatives [12, 23, 44] also trade performance for
memory efficiency. Succinct [7] and BlowFish [25] are two exam-
ples of data systems that use succinct data structures (in this case
compressed suffix arrays [24]) for reduced space utilization and
improved query performance through fitting more data in memory.

Learned indexes [18, 20, 22, 27, 28, 46, 47] also aim to reduce index
size while retraining or even increasing lookup performance over
traditional structures. Yet, we argue that the idea of learned indexes
is orthogonal to our approach. For example, the Learned Index with
Precise Precisions (LIPP) provides tight precision guarantees for
all key ranges [51]. Combined with our approach, we could detect
hot/cold ranges and increase/lower their precision bounds to reduce
LIPP’s size without affecting query performance.

7 CONCLUSIONS
We have presented an adaptive workload sampling approach that
allows for switching between different node encodings at run-time
and applied it to B+-trees and tries. We have shown that it provides
significant space benefits without severely impacting performance
under skewed workloads while causing negligible overhead under
uniform workloads.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This work was funded by the German Research Foundation (DFG)
within the SPP2037 under grant no. Ke 401/22-2.

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1638

REFERENCES
[1] AWS EC2 Instances. https://aws.amazon.com/en/ec2/instance-types/

high-memory [accessed 2021-03-01].
[2] LevelDB. https://github.com/google/leveldb [accessed 2021-03-01].
[3] RocksDB. https://rocksdb.org/ [accessed 2021-03-01].
[4] S2 Geometry Library. https://s2geometry.io/ [accessed 2021-03-01].
[5] Tape is dead, Disk is tape, Flash is disk, RAM locality is king.

http://research.microsoft.com/en-us/um/people/gray/talks/Flash_
is_Good.ppt [accessed 2021-03-01].

[6] C++ HopscotchMap. https://github.com/Tessil/hopscotch-map [accessed
2021-03-01].

[7] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct: Enabling
Queries on Compressed Data. In NSDI. USENIX Association, 337–350.

[8] Adnan Alhomssi and Viktor Leis. 2021. Contention and Space Management in
B-Trees. In CIDR. 26–37.

[9] Christoph Anneser, Andreas Kipf, Harald Lang, Thomas Neumann, and Alfons
Kemper. 2020. The Case for Hybrid Succinct Data Structures. In EDBT. 391–394.

[10] Nikolas Askitis and Ranjan Sinha. 2007. HAT-Trie: A Cache-Conscious Trie-Based
Data Structure For Strings. In ACSC. 97–105.

[11] ManosAthanassoulis, Michael S Kester, LukasMMaas, Radu Stoica, Stratos Idreos,
Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Methods: The
RUM Conjecture. In EDBT. 461–466.

[12] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman,
and S. Srinivasa Rao. 2005. Representing Trees of Higher Degree. Algorithmica
43, 4 (Nov. 2005), 275–292.

[13] Matthias Böhm, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk
Habich, and Wolfgang Lehner. 2011. Efficient In-Memory Indexing with General-
ized Prefix Trees. In BTW. 227–246.

[14] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In USENIX. 209–223.

[15] Kun-Ta Chuang, Jiun-Long Huang, and Ming-Syan Chen. 2008. Mining top-k
frequent patterns in the presence of the memory constraint. The VLDB Journal 17,
5 (Aug. 2008), 1321–1344. https://doi.org/10.1007/s00778-007-0078-6

[16] Edith Cohen, Nadav Grossaug, and Haim Kaplan. 2006. Processing Top k Queries
from Samples. In CoNEXT.

[17] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC. 143–154.
https://doi.org/10.1145/1807128.1807152

[18] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
et al. 2020. ALEX: An Updatable Adaptive Learned Index. In SIGMOD. 969–984.
https://doi.org/10.1145/3318464.3389711

[19] Philipp Fent, Michael Jungmair, Andreas Kipf, and Thomas Neumann. 2020.
START—Self-Tuning Adaptive Radix Tree. In ICDEW. IEEE, 147–153. https:
//doi.org/10.1109/ICDEW49219.2020.00015

[20] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175. https://doi.org/10.14778/3389133.3389135

[21] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012. Compacting
Transactional Data in Hybrid OLTP&OLAP Databases. VLDB 5, 11 (2012).
https://doi.org/10.14778/2350229.2350258

[22] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD. ACM,
1189–1206. https://doi.org/10.1145/3299869.3319860

[23] Roberto Grossi and Giuseppe Ottaviano. 2014. Fast Compressed Tries through
Path Decompositions. ACM J. Exp. Algorithmics 19, 1 (2014). https://doi.org/
10.1145/2656332

[24] Roberto Grossi and Jeffrey Scott Vitter. 2005. Compressed Suffix Arrays and Suffix
Trees with Applications to Text Indexing and String Matching. SIAM J. Comput.
35, 2 (2005), 378–407. https://doi.org/10.1137/S0097539702402354

[25] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2016. BlowFish: Dynamic
Storage-Performance Tradeoff in Data Stores. In NSDI. USENIX Association,
485–500.

[26] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned
Indexes. NeurIPS Workshop on Machine Learning for Systems (Dec. 2019). http:
//arxiv.org/abs/1911.13014

[27] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass Learned
Index. In aiDM. 1–5.

[28] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In SIGMOD. ACM, 489–504. https:
//doi.org/10.1145/3183713.3196909

[29] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation. In SIGMOD. ACM, 311–326.

[30] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. IEEE,
185–196. https://doi.org/10.1109/ICDE.2018.00026

[31] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases. In ICDE, Vol. 13. 38–49.

[32] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of Practical Synchronization. In DaMoN. 1–8.

[33] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identifying Hot and
Cold Data in Main-Memory Databases. In ICDE. IEEE, 26–37.

[34] Xiaozhou Li, David GAndersen,Michael Kaminsky, andMichael J Freedman. 2014.
Algorithmic Improvements for Fast Concurrent Cuckoo Hashing. In EuroSys.
1–14.

[35] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness
for Fast Multicore Key-Value Storage. In EuroSys. 183–196.

[36] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13. https://doi.org/10.14778/
3421424.3421425

[37] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-
putation of Frequent and Top-k Elements in Data Streams. In ICDT. Springer,
398–412.

[38] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. 2006. Continuous
Monitoring of Top-k Queries over Sliding Windows. In SIGMOD. 635–646.

[39] Gonzalo Navarro. 2016. Compact Data Structures - A Practical Approach. Cam-
bridge University Press.

[40] Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR.

[41] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
Driving Database Management Systems. In CIDR.

[42] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-Aware Automatic
Database Partitioning in Shared-Nothing, Parallel OLTP Systems. In SIGMOD.
61–72.

[43] Andrea Pietracaprina, Matteo Riondato, Eli Upfal, and Fabio Vandin. 2010. Min-
ing top-K frequent itemsets through progressive sampling. Data Mining and
Knowledge Discovery 21, 2 (2010), 310–326.

[44] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. 2007. Succinct Index-
able Dictionaries with Applications to Encoding k-ary Trees, Prefix Sums and
Multisets. ACM Trans. Algorithms 3, 4 (2007), 43.

[45] Wolf Rödiger, Sam Idicula, Alfons Kemper, and Thomas Neumann. 2016. Flow-
Join: Adaptive Skew Handling for Distributed Joins over High-Speed Networks.
In ICDE. IEEE, 1194–1205.

[46] Benjamin Spector, Andreas Kipf, Kapil Vaidya, Chi Wang, Umar Farooq Minhas,
and Tim Kraska. 2021. Bounding the Last Mile: Efficient Learned String Indexing.
3rd International Workshop on Applied AI for Database Systems and Applications
(2021).

[47] Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. PLEX: Towards
Practical Learned Indexing. 3rd International Workshop on Applied AI for Database
Systems and Applications (2021).

[48] Michael Stonebraker, Lawrence A Rowe, and Michael Hirohama. 1990. The imple-
mentation of POSTGRES. IEEE Transactions on Knowledge and Data Engineering
2, 1 (1990), 125–142.

[49] Jeffrey S Vitter. 1985. Random Sampling with a Reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[50] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,Michael
Kaminsky, and David G Andersen. 2018. Building a Bw-Tree Takes More Than
Just Buzz Words. In SIGMOD. 473–488.

[51] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao
Xing. 2021. Updatable Learned Index with Precise Positions. VLDB 14, 8 (2021),
1276–1288.

[52] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
Analysis of NVMe SSDs and their Implication on Real World Databases. In
SYSTOR. 1–11.

[53] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma,
and Rui Shen. 2016. Reducing the Storage Overhead of Main-Memory OLTP
Databases with Hybrid Indexes. In SIGMOD. ACM, 1567–1581.

[54] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. 2015.
In-Memory Big Data Management and Processing: A Survey. TKDE 27, 7 (2015),
1920–1948.

[55] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range
Query Filtering with Fast Succinct Tries. In SIGMOD. 323–336.

[56] Huanchen Zhang, Xiaoxuan Liu, David G Andersen, Michael Kaminsky, Kimberly
Keeton, and Andrew Pavlo. 2020. Order-Preserving Key Compression for In-
Memory Search Trees. In SIGMOD. 1601–1615.

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1639

https://aws.amazon.com/en/ec2/instance-types/high-memory
https://aws.amazon.com/en/ec2/instance-types/high-memory
https://github.com/google/leveldb
https://rocksdb.org/
https://s2geometry.io/
http://research.microsoft.com/en-us/um/people/gray/talks/Flash_is_Good.ppt
http://research.microsoft.com/en-us/um/people/gray/talks/Flash_is_Good.ppt
https://github.com/Tessil/hopscotch-map
https://doi.org/10.1007/s00778-007-0078-6
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1109/ICDEW49219.2020.00015
https://doi.org/10.1109/ICDEW49219.2020.00015
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/2350229.2350258
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/2656332
https://doi.org/10.1145/2656332
https://doi.org/10.1137/S0097539702402354
http://arxiv.org/abs/1911.13014
http://arxiv.org/abs/1911.13014
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.14778/3421424.3421425

PUBLICATION P2
AutoSteer: Learned Query Optimization for

Any SQL Database

P2.1 Synopsis
Rule-based query optimizers use rewrite rules that consist of a criterion and a
rewrite action to optimize query plans. For every rewrite rule, the optimizer
recursively searches the query plan for subtrees that satisfy the rule’s criterion
and applies the rewrite action. While rule-based query optimizers often de-
fine hundreds of rewrite rules, some are tailored for specific scenarios, making
assumptions on or having been tested only with specific parameters, like the
number of worker nodes and network latencies. As a result, the rule’s effective-
ness depends on multiple parameters and it can also degrade the query plan’s
performance [111, 118, 188].

To address this issue, database systems expose configurable knobs that allow
users to toggle rewrite rules per query, a process known as steering. Recent
work explored how query optimizers can be steered automatically. They use
so-called hint-sets, which define the state of the database knobs, to generate
multiple query plans and then use cost or machine-learned models to predict
their execution time [111, 118, 188].

However, these approaches have several limitations. First, the number of
hint-sets grows exponentially with the number of knobs. Since many database
systems expose hundreds of knobs, predefining hint-sets or randomly selecting
them at query optimization time significantly restricts the search space. Second,
previous methods require deep integration into the database system’s query
optimizer, which limits their applicability to other systems.

This publication introduces AutoSteer, a novel framework that steers query
optimizers automatically without requiring deep integration into database
systems. Applying AutoSteer to a new system requires only a text file that
contains the names of all the rule’s knobs and a connector that establishes the
connection with the database system. As a result of this design, AutoSteer
shows excellent generalizability across database systems. We successfully
applied AutoSteer to five open-source database systems: PrestoDB, PostgreSQL,
DuckDB, SparkSQL, and MySQL.

P2.2. Contributions and Publication Details

P2.2 Contributions and Publication Details
Author Contributions. Christoph Anneser realized the conceptualization
and development of AutoSteer, along with the implementation of the five
database connectors. Additionally, he conducted all evaluations, except for the
experiments conducted at Meta. He authored substantial parts of the manuscript.

Reference. Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang
Xu, Prithviraj Pandian, Nikolay Laptev, and Ryan Marcus. “AutoSteer:
Learned Query Optimization for Any SQL Database”. In: PVLDB 16.12 (2023),
pp. 3515–3527.

DOI. https://doi.org/10.14778/3611540.3611544

Copyright Notice. This work is licensed under the Creative Commons BY-NC-
ND 4.0 International License (https://creativecommons.org/licenses/
by-nc-nd/4.0/). Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment. Usage in this dissertation is in accordance
with the Creative Commons BY-NC-ND 4.0 International License.

62

https://doi.org/10.14778/3611540.3611544
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ACM Author Rights
ACM exists to support the needs of the computing community. For over sixty years ACM has
developed publications and publication policies to maximize the visibility, impact, and reach of the
research it publishes to a global community of researchers, educators, students, and practitioners.
ACM has achieved its high impact, high quality, widely-read portfolio of publications with:

Affordably priced publications

Liberal Author rights policies

Wide-spread, perpetual access to ACM publications via a leading-edge technology
platform

Sustainability of the good work of ACM that benefits the profession

Choose

ACM gives authors the opportunity to choose between two levels of rights management for their
work. Note that both options obligate ACM to defend the work against improper use by third parties:

Exclusive Licensing Agreement: Authors choosing this option will retain copyright of
their work while providing ACM with exclusive publishing rights.

Non-exclusive Permission Release: Authors who wish to retain all rights to their work
must choose ACM's author-pays option, which allows for perpetual open access to their
work through ACM's digital library. Choosing this option enables authors to display a
Creative Commons License on their works.

Post

Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published authors of magazine
articles, journal articles, and conference papers retain the right to post the pre-submitted (also known
as "pre-prints"), submitted, accepted, and peer-reviewed versions of their work in any and all of the
following sites:

Author's Homepage

Author's Institutional Repository

Any Repository legally mandated by the agency or funder funding the research on which
the work is based

Any Non-Commercial Repository or Aggregation that does not duplicate ACM tables of
contents. Non-Commercial Repositories are defined as Repositories owned by non-profit
organizations that do not charge a fee to access deposited articles and that do not sell
advertising or otherwise profit from serving scholarly articles.

For the avoidance of doubt, an example of a site ACM authors may post all versions of their work to,
with the exception of the final published "Version of Record", is ArXiv. ACM does request authors,
who post to ArXiv or other permitted sites, to also post the published version's Digital Object
Identifier (DOI) alongside the pre-published version on these sites, so that easy access may be
facilitated to the published "Version of Record" upon publication in the ACM Digital Library.

Examples of sites ACM authors may not post their work to are ResearchGate, Academia.edu,
Mendeley, or Sci-Hub, as these sites are all either commercial or in some instances utilize predatory
practices that violate copyright, which negatively impacts both ACM and ACM authors.

After an ACM journal submission has been accepted and has entered the production process, ACM
makes the Author’s Accepted Manuscript (AAM) available for preview under the ACM “Just
Accepted” program until the “Version of Record” is available and assigned to its proper issue. The
AAM carries the article’s permanent DOI and can be cited immediately.

https://authors.acm.org/author-resources/author-rights. Last accessed: 2024/06/10.

https://authors.acm.org/author-resources/author-rights

Copyright © 2024, ACM, Inc

Distribute

Authors can post an Author-Izer link enabling free downloads of the Definitive Version of the work
permanently maintained in the ACM Digital Library.

On the Author's own Home Page or

In the Author's Institutional Repository.

Reuse

Authors can reuse any portion of their own work in a new work of their own (and no fee is expected)
as long as a citation and DOI pointer to the Version of Record in the ACM Digital Library are
included.

Contributing complete papers to any edited collection of reprints for which the author is
notthe editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is expected) in a
dissertation as long as citations and DOI pointers to the Versions of Record in the ACM
Digital Library are included. Authors can use any portion of their own work in
presentations and in the classroom (and no fee is expected).

Commercially produced course-packs that are sold to students require permission and
possibly a fee.

Create

ACM's copyright and publishing license include the right to make Derivative Works or new versions.
For example, translations are "Derivative Works." By copyright or license, ACM may have its
publications translated. However, ACM Authors continue to hold perpetual rights to revise their own
works without seeking permission from ACM.

Minor Revisions and Updates to works already published in the ACM Digital Library are welcomed
with the approval of the appropriate Editor-in-Chief or Program Chair.

If the revision is minor, i.e., less than 25% of new substantive material, then the work
should still have ACM's publishing notice, DOI pointer to the Definitive Version, and be
labeled a "Minor Revision of"

If the revision is major, i.e., 25% or more of new substantive material, then ACM considers
this a new work in which the author retains full copyright ownership (despite ACM's
copyright or license in the original published article) and the author need only cite the
work from which this new one is derived.

Retain

Authors retain all perpetual rights laid out in the ACM Author Rights and Publishing Policy, including,
but not limited to:

Sole ownership and control of third-party permissions to use for artistic images intended
for exploitation in other contexts

All patent and moral rights

Ownership and control of third-party permissions to use of software published by ACM

https://authors.acm.org/author-resources/author-rights. Last accessed: 2024/06/10.

https://authors.acm.org/author-resources/author-rights

AutoSteer: LearnedQuery Optimization for Any SQL Database

Christoph Anneser1

Technical University
of Munich

anneser@in.tum.de

Nesime Tatbul
Intel Labs and MIT
tatbul@csail.mit.edu

David Cohen
Intel

david.e.cohen@intel.com

Zhenggang Xu
Meta

zhenggang@fb.com

Prithviraj Pandian
Meta

prithvip@fb.com

Nikolay Laptev
Meta

nlaptev@fb.com

Ryan Marcus
University of Pennsylvania
rcmarcus@seas.upenn.edu

ABSTRACT

This paper presents AutoSteer, a learning-based solution that au-
tomatically drives query optimization in any SQL database that
exposes tunable optimizer knobs. AutoSteer builds on the Bandit op-
timizer (Bao) and extends it with new capabilities (e.g., automated
hint-set discovery) to minimize integration effort and facilitate
usability in both monolithic and disaggregated SQL systems. We
successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-
SQL, MySQL, and DuckDB ś five popular open-source database en-
gines with diverse query optimizers. We then conducted a detailed
experimental evaluation with public benchmarks (JOB, Stackover-
flow, TPC-DS) and a production workload from Meta’s PrestoDB
deployments. Our evaluation shows that AutoSteer can not only
outperform these engines’ native query optimizers (e.g., up to 40%
improvements for PrestoDB) but can also match the performance
of Bao-for-PostgreSQL with reduced human supervision and in-
creased adaptivity, as it replaces Bao’s static, expert-picked hint-sets
with those that are automatically discovered. We also provide an
open-source implementation of AutoSteer together with a visual
tool for interactive use by query optimization experts.

PVLDB Reference Format:

Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj
Pandian, Nikolay Laptev, and Ryan Marcus. AutoSteer: Learned Query
Optimization for Any SQL Database. PVLDB, 16(12): 3515 - 3527, 2023.

doi:10.14778/3611540.3611544

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/IntelLabs/Auto-Steer.

1 INTRODUCTION

Our research community has been making rapid strides in applying
modern machine learning (ML) techniques to tackle longstanding
problems in databases [6, 24, 48]. Learned query optimization lies at
the forefront of this progress [51]. Various techniques from query-
driven and data-driven to their combinations have been proposed
[19, 20, 23] ś not only to improve core query optimization tasks

1Work done while at Intel.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611544

Query Span
Approximation

ğ3.2
Hint-Set

Exploration

ğ3.3 Inference ğ3.4

Debugging ğ5

AutoSteer ğ3

Any SQL Database
e.g. PostgreSQL, PrestoDB, SparkSQL

SQL Queries

knobs.txt DB Connector ğ3.5

Figure 1: AutoSteer is a framework for steering query opti-

mizers of SQL databases autonomously. For each query, we

search for effective rewrite rules and store them in the query

span. Then, we use a greedy algorithm to explore alternative

query plans efficiently. The results can be used to train pre-

dictive models or to debug existing query optimizers.

such as cardinality estimation [22, 23, 31, 32, 37, 39, 43], join order
enumeration [29], or query rewriting [50], but also to build end-to-
end query optimizers replacing [28, 42] or enhancing [27, 30, 44, 47]
traditional ones. The practicality and robustness of these techniques
are critical when applying them in industrial settings [47].

The so-called łsteering approachž of Bao (Bandit optimizer) has
been a successful example of a practical solution due to its empha-
sis on shortening training times, adaptivity to dynamic workloads,
and ability to integrate with traditional optimizers [27]. Given a
pre-determined collection of łhint-setsž (a hint-set indicates which
query rewrite rules (RRs) should be considered in query optimiza-
tion), Bao learns to steer an already existing query optimizer by
helping it choose the right hint-set to use for every incoming query.
This way, potential planning mistakes of traditional query optimiz-
ers can be avoided. As Bao’s initial success continues to drive wider
adoption in increasingly more sophisticated deployment and work-
load settings [3, 47], it also brings new challenges to the surface.
We tackle two such challenges in this paper:
Integration effort: Adopting Bao to a new database system re-
quires coming up with the right collection of hint-sets. In the origi-
nal approach developed for PostgreSQL [1], a static collection of
48 hint-sets is manually selected based on deep knowledge of the
underlying PostgreSQL optimizer [5], after which Bao indepen-
dently learns to choose among these hint-sets on a per-query basis.
Unfortunately, manually engineering feature hint-sets can be quite

3515

https://doi.org/10.14778/3611540.3611544
https://github.com/IntelLabs/Auto-Steer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611544

challenging, as first noted by Negi et al. [30]. It is especially hard to
hand-select hint-sets for those systems with a high number of pos-
sible hints to explore (e.g., Microsoft’s query engine SCOPE has 256
rewrite rules, leading to 2256 possibilities to consider [30]). While it
is possible to handcraft effective hint-sets for almost every database
system [7ś10], the knobs available in a particular system are not
only different from all the other systems but are also implemented
at different granularities. For example, PostgreSQL, PrestoDB, and
MySQL expose these knobs at a session level [7ś9], while SQLServer
extends the structured query language to embed the knobs directly
within the queries [10]. Therefore, integrating Bao into a new sys-
tem requires deep insights and a solid understanding of the query
optimizer to determine a promising collection of hint-sets. This
impedes a generic application of Bao to new database systems and
their optimizers. Instead, we need a more systematic approach that,
given a SQL database, automates the hint-set selection process
as well as minimizing the overall expert knowledge and manual
engineering effort involved in integrating Bao.
Use in disaggregated settings: Database systems have been evolv-
ing away from their traditional monolithic architectures (e.g., fed-
erated, connector-based, coordinator/worker-style, data lake, and
lakehouse querying systems [4, 13, 26, 34, 35, 40, 45, 49]). In such
disaggregated settings with loosely-coupled database components,
query optimizers must operate in complex and dynamic environ-
ments, often with limited access to accurate statistics and meta-
data [16, 21, 26]. Therefore, they often lack reliable cost models and
rely on rules or heuristics for optimization. As such, an ML-based
approach that can be easily integrated and automatically self-adapts
could bring significant improvements to query performance [2, 41].

In this paper, we present AutoSteer, a new łplug-and-playž query
optimization solution that builds on and extends Bao with new capa-
bilities so it can be easily integrated and used with any SQL database
system that exposes tunable optimization knobs. As illustrated in
Figure 1, given a list of knobs as input (knobs.txt) and interacting
with the database through SQL and explain statements (DB Connec-

tor), our solution uses a greedy algorithm to systematically explore
promising hint-sets. This approach takes advantage of the notion
of łquery spansž [30] together with the compositional structure of
advantageous hint combinations. This is in contrast to manually
generated static hint-sets [27] and other previous approaches that
rely on leveraging cost models or random sampling [30, 47]. Further-
more, AutoSteer generates hint-sets dynamically on a per-query
basis, which maximizes workload adaptivity.

Furthermore, AutoSteer also provides an interactive usage mode
to support human database experts in debugging and improving
existing optimizers. For example, AutoSteer automatically discovers
new hint-sets, generates alternative query plans, and evaluates the
performance of the generated plans. This approach can assist query
optimizer experts in gaining a deeper understanding of the cases
where specific rewrite rules have a negative impact.

Overall, our extensions to Bao significantly expand the prac-
tical applicability of steering optimizers [27, 30, 47]. We provide
experimental evidence from AutoSteer’s use in five open-source
databases. We further tested our solution using a real PrestoDB
workload deployed at Meta, showing that it can also be effectively
used in large-scale industrial settings.

Contributions. The key contributions of this paper include:

• We introduce AutoSteer, a practical learning-based framework
to steer existing Cascades-style query optimizers.

• AutoSteer builds on and extends Bao with a novel hint-set
discovery approach, which helps to generalize the technology
behind Bao for a wide variety of SQL systems.

• We provide an open-source prototype implementation of Au-
toSteer2 together with an interactive tool3 to help human ex-
perts better understand AutoSteer’s results. Our prototype has
łplug and playž support for PrestoDB, PostgreSQL, SparkSQL,
MySQL, and DuckDB and is extensible to other SQL engines.

• We demonstrate AutoSteer’s practicality, generality, and effec-
tiveness in query performance improvement via an extensive
experimental evaluation based on several public benchmarks
and a production workload tested inside Meta.

• Based on the experience gained along the course of this project,
we share a few key insights which we believe can inform future
work in query optimizer development.

2 RELATED WORK

Traditional Query Optimization. Our work primarily focuses on
improving query optimization in SQL databases with traditional,
Cascades-style query optimizers. First proposed in the 1990s [17],
Cascades is an extensible query optimization framework that has
been widely used in many industrial-scale as well as open-source
database systems (e.g., PrestoDB [35], SCOPE [49], SparkSQL/Cata-
lyst [13], Greenplum/Orca [36], Apache Calcite [14]). The Cascades
framework follows a unified approach to logical/physical query
planning by supporting both rule- and cost-based optimization,
which is achieved by a set of transformation (logical) and imple-
mentation (physical) rules that are applied to the query plan. While
rewrite rules drive logical planning, physical planning requires a
reliable model to estimate the costs of query plan alternatives. Cost
models, in turn, rely on the availability of accurate, up-to-date sta-
tistics and cardinality estimates [18]. Since mistakes happen, most
industrial systems provide various workarounds to minimize the
impact of such mistakes in their production deployments. For ex-
ample, most of these systems support query hinting mechanisms as
a tool to guide the optimizer’s choices in exploring the plan search
space more effectively [7ś10, 15, 33]. Furthermore, in big data sys-
tems with federated architectures, such as PrestoDB [35], SCOPE
[49], or SparkSQL [13], rule-based optimization is more heavily
used in lack of the required statistics and cost models, which are
harder to maintain in their larger scale and more heterogeneous
production environments [16, 26].
Learned Query Optimization. Unsolved challenges of traditional
query optimization have been investigated by several novel ap-
proaches that leverage recent advances in ML [51]. While there are
too many to enumerate here [6], we believe it is sufficient to give a
few representative examples. ML has been applied to improve both
key components of a query optimizer such as the cardinality estima-
tor [22, 23, 31, 32, 37, 39, 43] and the query planner [29, 44, 50], as
well as the query optimizer itself as a whole [28, 42]. As an example
of the use of ML in query planning, the LearnedRewrite approach

2https://github.com/IntelLabs/Auto-Steer
3https://github.com/christophanneser/QO-Insight

3516

https://github.com/IntelLabs/Auto-Steer
https://github.com/christophanneser/QO-Insight

recently proposed by Zhou et al. uses Monte Carlo tree search to
find better orders in which rewrite rules should be applied, reducing
both query optimization and execution time in PostgreSQL’s query
optimizer [50]. As another example, HybridQO proposed by Yu et
al. can produce better join orders by combining cost- and learning-
based optimization and leveraging an optimizer’s hint functionality
in candidate plan generation [44]. In contrast, end-to-end learned
query optimizers such as Neo [28] and Balsa [42] are designed as
more performant drop-in replacements for traditional ones. While
Neo bootstraps itself by learning from an expert optimizer (e.g.,
PostgreSQL’s query optimizer), Balsa leverages a simulation-based
approach. Both approaches have been shown to outperform open-
source and commercial query optimizers, but only under certain
workload assumptions (e.g., static datasets and schemas) and at
the expense of long training times, which prohibits their frequent
retraining. This motivated the more practical approach taken in
Bao [27], which aims at steering traditional optimizers towards
making better plan choices instead of entirely replacing them.
Steering Query Optimizers with Bao. The Bandit optimizer
(Bao) learns to assist an already existing optimizer by providing it
with hints, indicating which rewrite rules (RRs) should be turned
off during query optimization [27]. Providing hints to a database
system does not involve intrusive changes, as most database sys-
tems already expose optimizer knobs or flags that can be configured.
Database experts and administrators can use these knobs to enable
or disable specific RRs.

Bao was first applied to PostgreSQL, where it leveraged 𝑛 = 48

different hint-sets to generate 𝑛 (not necessarily different) query
execution plans (QEP). Each hint-set disables a subset of the rewrite
rules and can be seen as a simpler version of the default PostgreSQL
query optimizer. In the second step, a tree convolutional neural net-
work (TCNN) predicts the cost (e.g., the query latency or the CPU
time) of each QEP. Based on the generated plan alternatives and
their predicted costs, Bao decides which QEP should be executed.
Instead of always choosing the plan with the best-predicted perfor-
mance, Bao uses Thompson sampling to balance the exploration of
new, alternative QEPs and the exploitation of plans already known
to be efficient. Next, PostgreSQL executes the selected plan and
records the execution time. Finally, both plan and execution times
are added to Bao’s experience, which is used to periodically re-train
the model. After PostgreSQL, Bao has also been successfully applied
to several commercial and open-source database systems, includ-
ing Vertica, Microsoft Azure Synapse (SQL Server), and Amazon
RedShift [3].

To assess Bao’s industrial promise, Negi et al. explored how to
apply Bao at the scale of Microsoft’s SCOPE workloads [30]. SCOPE
is Microsoft’s internal query processing system for big data work-
loads, which primarily uses a rule-based query optimizer, though
it can also support cost-based optimization through its cost model
[49]. Negi et al.’s work on łBao-for-SCOPEž introduced a number of
key concepts which we also leverage in our work: rule categories,
rule configurations, rule signatures, and job/query spans. There are
four rule categories: required, off-by-default, on-by-default, and
implementation. While required rules must be turned on to gen-
erate valid query plans, only rules from the other categories can
be turned off to generate new query plans. A rule configuration is
a bit vector specifying which rules are turned on and off during

query optimization. Rule signatures track which rules have effec-
tively contributed to the final query plan during the optimization. In
addition to the rule signature, a job/query span contains only non-
required rules. Based on these definitions, Negi et al. introduced a
randomized configuration search to generate𝑀 rule configurations
that produce possibly yet unknown QEPs.

In follow-up work, Zhang et al. built QO-Advisor to prepare Bao-
for-SCOPE for actual production deployments at Microsoft [47].
This required adding support to deal with various operational chal-
lenges, such as the steering overhead, unexpected performance re-
gressions, and the need for debugging. To reduce steering overhead,
expensive tasks such as query span approximation and alternative
plan exploration are done offline, as well as utilizing the cost model
provided by SCOPE where possible.

All previous adoptions of Bao described above were done as
custom integrations, each time targeting a particular system con-
sidering its specific architecture and workloads. Our approach fun-
damentally differs from these due to its focus on generality, i.e.,
making Bao more easily applicable in any SQL database system.
The key enabler for this has been our automated hint-set discovery

approach, which not only removes the need for manually designing
system-specific hint-sets, but also makes them more flexible to use
under changing workload conditions. Unlike previous Bao exten-
sions [30, 47], AutoSteer is publicly available2 to enable use across
a wide range of SQL systems.

3 AUTOSTEER

In this paper, we present AutoSteer ś a practical framework for
adding Bao-style, steering-based learned query optimization capa-
bility to any SQL database that: (i) has a Cascades-style, rule-based
query optimizer and (ii) exposes binary knobs to configure its rules.

Given a database system (DBMS) with an existing rule-based
query optimizer, we aim to find semantically equivalent query plan
alternatives that execute faster than the default plan generated by
that system’s native query optimizer. We follow the same general
learned query optimization framework as in Bao [27]: Several hand-
selected static hint-sets define which rewrite rules of the DBMS are
turned on and off during optimization. Bao then leverages these
different hint-sets to generate alternative query plans and picks the
cheapest plan for execution using its TCNN-based neural prediction
model. This approach is shown to be effective in finding query plans
that are better than the ones that the underlying query optimizer
can find, but there are two fundamental limitations:

(1) Database experts must manually identify a good collection
of static hint-sets from scratch for each system Bao is to be
integrated. Such an approach requires a deep understanding of
that system and its optimizer.

(2) Scaling the number of hint-sets comes at the cost of additional
optimization overhead. Bao always considers the same pre-
determined collection of hint-sets, since they are chosen in ad-
vance and independent of the actual query workloads, whether
they impact a query’s optimization or not.

In the following, we introduce AutoSteer as a new approach that
overcomes these limitations. AutoSteer’s key focus is on practicality.
It builds on and extends Bao to make it more easily and adaptively
applicable in SQL databases, no matter how simple or sophisticated

3517

DBMS

AutoSteer-G

Config
RR1=Ë
RR2=é

Parser
Logical

Optimizer
Physical
Optimizer

Execution
Engine

Connector
ğ3.5

Query Span
ğ3.2

0knobs
.txt

 Greedy
HS Search

ğ3.3
TCNN
ğ3.4

SQL Queries Hint-Sets & Evaluation ğ5 10

Query
Plan Diff

Data
Loader

C++/Wasm
QO-

INSIGHT

Upload

Postgres

TPC-H

Q14
1

9

1

2 3

3 62

Apply a
hint-set  4

Explained
Query Plan

IR exec.

7
8

preprocess ğ3.4

IR

5

6
7 Result &
Exec. Time

Notation
Training mode
Inference mode
All modes

 Database-specific

Figure 2: This figure illustrates AutoSteer-G, which communicates with the DBMS through a connector that is completely

external to the DBMS. DBMS components are gray, and AutoSteer’s components are blue. AutoSteer has two different execution

modes: (1) generate training data and build the learned model (Training), (2) optimize queries at run time using the model

(Inference). AutoSteer’s results can also be interactively explored in QO-Insight [12] for debugging and analysis.

their optimizers are. As such, it generalizes recent industrial efforts
on integrating Bao to specific systems [3, 30, 47], thereby facilitat-
ing broader adoption of this novel technology in a larger number
and variety of DBMSs in the ecosystem. To maximize practicality,
AutoSteer has been designed to support several usage options in
terms of its: (i) DBMS integration level (custom vs. generic), (ii)
execution mode (training vs. inference), and (iii) interaction mode
(steering vs. debugging). We will describe these options in detail as
part of the following subsections.

3.1 Architectural Overview

In Figure 3, we sketch two alternative ways of integrating AutoSteer
into an existing DBMS: (1) AutoSteer-Generic leverages an exter-

nal connector whose communication is purely based on SQL and
explain statements; (2) AutoSteer-Custom implements a connec-
tor which is directly integrated into the DBMS optimizer. In this
subsection, we assume AutoSteer-G, and provide further details on
these two integration options in Section 3.5.

In Figure 2, we illustrate a typical SQL query optimization
pipeline in a DBMS and show our AutoSteer-G solution in action.
First, we provide a text file containing the knobs exposed by the
optimizer to AutoSteer 0 . Based on these knobs, AutoSteer will
automatically explore and discover hint-sets without additional
user input. Furthermore, instead of sending them to the DBMS,
users and applications submit all queries to AutoSteer 1 .

For each query, AutoSteer approximates a ‘query span’ by turn-
ing off rewrite rules (RR) systematically 2 . Query spans track those
RRs that actually rewrite the query plan. E.g., when such RRs are
turned off, the optimizer would generate an alternative plan [30] (cf.
to Section 3.2 for more details). As we are assuming AutoSteer-G in

AutoSteer-G External Connector DBMS

AutoSteer-C Integrated Connector DBMS

Figure 3: Integration Options: AutoSteer-G and -C.

Figure 2, we use an external connector to approximate query spans:
First, it configures the DBMS’s RRs through its exposed knobs and
then lets the DBMS explain the query plan (3 & 4). We call the
RRs effective if the plan changes and add them to the query span.

Based on the query span 5 , AutoSteer searches for alternative
query plans using a greedy hint-set exploration strategy, which
is explained in more detail in Section 3.3. For a query span with
𝑛 effective RRs, the algorithm first creates 𝑛 hint-sets, with each
hint-set disabling one of the query span’s RRs. In AutoSteer-G, as
a next step, we send the query and each hint-set to the external
connector 6 and let the DBMS explain the resulting plans 4 .

For the following steps, we differentiate two execution modes:
(1) Training mode: In the training mode, we execute the query
plans from step 6 and track their execution times 7 . Then, the
aforementioned greedy search explores the search space of the
beneficial hint-sets4 by iteratively combining smaller beneficial
hint-sets to create larger hint-sets, which might be beneficial as
well. Later, we leverage the query execution plans (QEPs) and their
run times to train a tree convolutional deep neural network 8 .
(2) Inference mode: In contrast to the training mode, where QEPs
have been executed to find out their actual run times, in the infer-
ence mode, we leverage the pre-trained tree convolutional neural
network (TCNN)5 to predict plan execution times 7 . As before,
when a query is submitted, we use the greedy search to find promis-
ing hint-sets more efficiently by pruning those hint-sets expected
to perform poorly. Once the greedy search finishes, we sort all
explored hint-sets by their predicted execution times and use con-
textual bandit to pick one hint-set to steer the query.

Finally, AutoSteer supports two user interaction modes:
(1) Steering mode: AutoSteer steers query execution at run time
and uses the pre-trained TCNN to predict the execution time of the
hint-sets (steps 1 ś 7 , as described above).

4We call a hint-set beneficial iff it reduces the execution time wrt. the default plan.
5The DBMS could also be leveraged here if it provides a reliable cost model. In our
experiments with PostgreSQL, however, we observed that the learned model leads to
choosing better hint-sets and QEPs than the cost model.

3518

B
a
se
li
n
e

G
e
n
.
S
in
g
le
to
n
s

G
re
e
d
y
E
x
p
lo
ra
ti
o
n

(2) Debugging mode: AutoSteer exports the generated and evalu-
ated hint-sets alongside the queries 9 . These results can then be
interactively explored in QO-Insight [12] 10 .

3.2 Query Spans

In Bao, hint-sets define which rewrite rules (RRs) are turned on and
off, and they are used to generate alternative query plans [27]. We
cannot consider all the exponentially many hint-sets as database
systems usually implement several tens to hundreds of RRs. How-
ever, creating a fixed number of valuable hint-sets, as suggested
in [27], limits the search space and requires a deep understanding of
the system’s query optimizer and the workloads. Furthermore, Bao
considers the same hint-sets for all queries regardless of whether
the hint-sets turn off rules impacting the plan.

Instead, Negi et al. consider effective rules only (rules that actually
rewrite the plan) and therefore introduce the concept of query
spans [30]. A query span belongs to exactly one query and contains
all the non-required rules that can potentially modify the query plan
during its optimization. A rule 𝑟 is non-required if the optimizer can
generate a valid query plan without 𝑟 . Calculating the true query
span is challenging, as rules might have unknown dependencies
on other rules. For example, turning off a set of rules could result
in a different intermediate query plan that causes other alternative
rules to become active.
Batch Approximation. Negi et al. [30] use a heuristics-based
approximation of query spans instead. They leverage the SCOPE
system for their work, whose query optimizer already tracks the
effective RRs. Then, they turn off all effective RRs in one batch, and
the process repeats until it does not detect other alternative rules.
Iterative Approximation. Alternatively, we use a more fine-
grained, iterative approach: We iteratively turn off one effective
rule (and its dependencies) at a time and check if other rules be-
come effective. While this approach requires the query optimizer
to run more often, it tracks rule dependencies more accurately.
Later, we can utilize these dependencies during the exploration of
hint-sets.

AutoSteer’s integration level also impacts the query span ap-
proximation and the detected rules. When a connector is directly
integrated into the query optimizer, it can track all rules program-
matically in one pass. However, an external connector will not detect
those RRs that change the query plan at an algorithmic level be-
cause such changes are usually not included in the explained query
plan. Of course, themore effective RRs AutoSteer finds themore and
potentially better hint-sets it can generate later. We evaluate the
impact of the integration level for PrestoDB in Section 4.4.

While PrestoDB’s optimizer implements 170 RRs, our experi-
ments with AutoSteer-C and the iterative query span approxima-
tion for the 137 JOB queries show that only a few rules (≤ 20)
effectively contribute to the query plans. This observation reduces
the theoretical search space of hint-sets from 2

170 to 2
20. As 220

configurations are still too many to explore, we propose a greedy
exploration approach, as described next.

3.3 Dynamic Exploration of Hint-Sets

For a given SQL query, AutoSteer’s goal is to find the most bene-
ficial hint-sets that steer the optimizer toward better query plans.

Although there are 2𝑛 potential hint-sets for a query span with 𝑛

non-required effective RRs, in our experiments in Section 4 with
several different systems and workloads, we observed that only a
few hint-sets are beneficial in practice. AutoSteer aims to find those
few beneficial hint-sets as efficiently as possible.

Negi et al. propose an algorithm that randomly generates 𝑀
hint-sets first and then filters for the most promising query plans
according to SCOPE’s cost model [30]. However, this approach
requires an accurate cost model. Otherwise, we must execute the
plans to determine whether they are beneficial. Furthermore, our
experimental findings in Section 4.5 suggest:

(1) Most beneficial hint-sets consist of smaller, beneficial hint-sets.
(2) Most beneficial hint-sets are small (fewer than four knobs).

Based on these two empirical observations, we introduce a more
structured and efficient way to explore the hint-sets. Our proposed
algorithm, outlined in pseudocode in Listing 1, utilizes a greedy
approach consisting of three building blocks:
First, we use the empty hint-set {} to execute the default plan,

serving us as a baseline (i.e., the native optimizer’s optimized plan)
in line 4. In results, we map the hint-sets to their resulting query
plans and execution times. The function exec executes the given
query and hint-set, and returns the query plan and the execution
time. When infer=true, AutoSteer does not execute the plan but
instead uses a pre-trained model to predict its run time.
In the second block starting in line 7, we leverage the query

span’s effective RRs to generate singleton hint-sets, which turn off
exactly one rule. Then, we let the DBMS execute these and track
their resulting query plans and execution times in lines 11 and 12
if they perform better than the default plan. Please note that the
greedy search is easily extendable. E.g., we could consider only
those hint-sets whose improvements exceed a certain threshold.

1 def explore_hint_sets(query, query_span, infer):

2 results = dict() # Hint-set → (QP, exec. time)

3 # 1. Execute baseline ({} is the empty hint-set)

4 results[{}] = exec(query, {}, infer)

5 singleton_hint_sets = []

6 # 2. Run query with one rule turned off at a time

7 for rule in query_span.effective_rules:

8 QP, exec_time = exec(query, {rule}, infer)

9 # Keep track of beneficial hint-sets only

10 results[{rule}] = {QP, exec_time}

11 if exec_time < results[{}].exec_time: # Beneficial?

12 singleton_hint_sets.push({rule})

13 # 3. Run a bottom-up greedy search

14 hint_sets = copy(singleton_hint_sets)

15 while not hint_sets.is_empty():

16 hs = hint_sets.pop()

17 # Generate larger hint-sets

18 combined_hs = combine(hs, singleton_hint_sets)

19 for new_hs in combined_hs:

20 QP, exec_time = exec(query, new_hs, infer)

21 results[new_hs] = {QP, exec_time}

22 if exec_time < results[{}].exec_time: # Beneficial?

23 hint_sets.push(new_hs)

24 return results

Listing 1: Pseudocode of AutoSteer’s greedy hint-set search.

3519

0

←
It
er
at
io
n

1

2

3

Alternative
Rewrite Rules∅ → 60𝑠

{6}→ 40𝑠{1}→ 45𝑠 {10} {12}

Query Span: 1 3 6 9 10 12

{3}→ 65𝑠 {9}→ 90𝑠

{1, 10}→ 44𝑠{1, 6}→ 30𝑠 {6, 12}→ 120𝑠

{1, 6, 10}→ 50𝑠

Figure 4: Example for AutoSteer’s greedy exploration.

Third, the bottom-up greedy hint-set exploration loops over the
previously seen beneficial hint-sets (line 15). We extract one hint-
set at a time from the queue of beneficial hint-sets (line 16) and
generate all other combinations with other singleton hint-sets in
line 18. Note that we do not show the handling of alternative rules
and tracking of the best-performing hint-sets (which is necessary
for the inference mode) due to space limitations.

Figure 4 visualizes the algorithm for an example query span
with effective RRs 1, 3, 6, and 9, and alternative RRs 10 and 12.
Outgoing arrows denote rule dependencies of alternative rules. E.g.,
if rule 𝑐 has been identified as an alternative to rule 𝑎, there is
an edge 𝑐 → 𝑎. We use the empty hint-set in the first iteration to
execute the default plan. We then generate alternative plans using
the hint-sets 1, 3, 6, and 9 and track their execution times. Hint-sets
resulting in query plans with execution times exceeding the default
plan execution time (3 and 9) are discarded and not considered
in subsequent iterations. We also consider alternative rules in the
following iterations while generating larger hint-sets.

3.4 Inference Mode using TCNNs

When AutoSteer executes in its inference mode (cf. step 7), it uses
a learned model to make predictions about plan execution times.
We borrow this part from Bao which uses a tree convolutional neu-
ral network (TCNN) for its predictive model [27]. Before query
plans can be used with TCNNs, we must preprocess and featur-
ize them. However, this step will slightly differ between DBMSs
as databases have their custom query plan formats and operator
types (e.g., PostgreSQL supports index scans, but PrestoDB does
not). In addition to the preprocessing of PostgreSQL plans in [27],
we implemented the preprocessing of PrestoDB’s query plans and
made the code publicly available.2 We use, however, the same con-
figuration for training as in [27]. We refer the reader to [28] for a
deeper investigation into tree convolution applied to query plans.

3.5 Generic vs. Custom Integration

Generic Integration. As was already illustrated in Section 3.1,
AutoSteer-G leverages an external connector whose communication
is purely based on SQL and explain statements. This option is ap-
pealing due to its low programming effort. We thus far implemented
external connectors for PostgreSQL, PrestoDB, SparkSQL, MySQL,
and DuckDB, in less than 100 lines of code each. We show an ex-
ample implementation of such an external database connector for
PostgreSQL and PrestoDB in Listing 2. Since databases have their
own custom APIs for exposing knobs or explaining query plans,

1 class PostgreSQLConnector(ExternalDBConnector):

2 def __init__(url: str):

3 self.conn = ... # setup PostgreSQL connection

4 def set_knob(knob: str, enable: bool) -> void:

5 self.conn.exec(f"SET {knob} TO \

6 {'ON' if enable else 'OFF'}")

7 def explain(query: str) -> dict:

8 return self.execute(f'EXPLAIN {query}')

9 class PrestoDBConnector(ExternalDBConnector):

10 def __init__(url: str):

11 self.conn = ... # setup PrestoDB connection

12 def set_knob(knob: str, enable: bool) -> void:

13 self.conn.exec(f'SET SESSION {knob} = {enable}')

14 def explain(query: str) -> dict:

15 return self.execute(f'EXPLAIN JSON {query}')

Listing 2: External connectors for PostgreSQL and PrestoDB.

1 class QueryOptimizer:

2 def optimize(root_node) -> QuerySpan:

3 query_span = QuerySpan()

4 for rewrite_rule in self.rewrite_rules:

5 rewrite_rule.apply(root_node, query_span)

6 return query_span

7 class RewriteRule:

8 def apply(node, query_span):

9 if self.condition(node):

10 query_span.add(rule_id)

11 rewrite(node)

12 for child in node.child_nodes:

13 apply(child, query_span)

Listing 3: Tracking query spans in AutoSteer-C for PrestoDB.

these connectors implement functions to toggle knobs, explaining,
and executing queries. As can be seen in this example, our external
connectors only slightly vary in syntax from one system to another.
Custom Integration. As an alternative, AutoSteer-C’s connector
is directly integrated into the database’s optimizer (i.e., similar to
previous DBMS-specific applications of Bao [3, 30, 47]). While the
implementation of an integrated connector involves more program-
ming effort and requires a deeper understanding of the DBMS’s
optimizer, it can also make AutoSteer more efficient to execute.
For example, AutoSteer-C would allow tracking effective RRs in a
single pass and find RRs that cannot be detected by comparing the
explained query plans. In contrast, AutoSteer-G would runmultiple

explain statements in the number of exposed knobs. Furthermore,
AutoSteer-C reduces the run time overhead of optimizing queries in
the inference mode by more efficiently interacting with the DBMS.

Listing 3 sketches how PrestoDB’s query optimizer can be ex-
tended for AutoSteer-C to track query spans during optimization
directly. First, PrestoDB parses the SQL statement into a logical
query plan and then invokes the query optimizer on the root node
in line 2. The query optimizer sequentially executes the RRs’ apply
function and passes references of the root node and the query span
in lines 4 and 5. The modified RR directly adds itself to the query
span once its conditions is fulfilled and it is applied to the query
plan. Then, similar to explain statements, we would extend SQL’s
grammar to run the in-database query span approximation. Conse-
quently, the custom integration avoids AutoSteer-G’s overhead of
running multiple explain statements.

3520

Table 1: Benchmarks and workloads.

Benchmark Dataset Size Number of Queries

JOB [25] 7.2 GB 137

Stack [27] 100 GB 100

TPC-DS [38] 1/10/100 GB 100

Meta >1 PB >3000

Table 2: List of experiments.

Section Experiment Workload Setup

ğ4.2 AutoSteer-C for PrestoDB JOB, Stack 1
ğ4.3 AutoSteer-C for PrestoDB Meta 2
ğ4.4 AutoSteer-C vs. -G for PrestoDB JOB 1
ğ4.5 AutoSteer-G vs. Bao for PostgreSQL JOB 3
ğ4.6 AutoSteer-G for SparkSQL TPC-DS 4
ğ4.7 AutoSteer Coding Effort N/A N/A

We implemented both an external (see Listing 2) and an inte-
grated connector for PrestoDB, and provide an empirical compari-
son in Section 4.4 and a more general discussion on coding effort in
Section 4.7. In general, both of these integration options will be use-
ful in practice. For example, we envision AutoSteer-G to be used for
rapid proof-of-concept prototyping to show the feasibility and to
approximate potential performance gains on a DBMS, after which
AutoSteer-C is implemented for use in production deployments
where its run time efficiency would matter more.

4 EVALUATION

To evaluate AutoSteer, we applied it to five different SQL databases:
PrestoDB, PostgreSQL, SparkSQL, MySQL, and DuckDB. We report
our experimental findings with the former three in this section and
provide a summary of our experience with the latter two as part of
Section 5. The high-level goals of our experimental study are:

• Show AutoSteer’s generality and practicality by testing its effec-
tiveness on a variety of open-source systems and benchmarks
commonly used by database researchers and practitioners.

• Validate AutoSteer’s effectiveness when applied to real-world
workloads from large-scale deployments in industrial settings.
• Evaluate how AutoSteer’s automatically generated hint-sets

fare against the expert-selected hint-sets of original Bao and
the randomized approach used in its SCOPE adaptation [30].

• Quantify the productivity and performance tradeoffs of using
AutoSteer in its custom and generic integration levels.

4.1 Experimental Setup

Benchmarks and Workloads. Table 1 shows the workloads we
used in our experiments. Three of these are public benchmarks
heavily used by the database and query optimization communities
(JOB w/o FK indexes [25], Stack [27], and TPC-DS [38]), and the
fourth is a real-world workload from large-scale PrestoDB deploy-
ments at Meta. These workloads cover a range of scales regarding
dataset sizes (GBs-PBs) and the number of queries (100s-1000s).
Hardware and Software Setups.We used multiple different hard-
ware/software setups for our experiments:
Setup 1: As sketched in Figure 5, we deploy PrestoDB on a 5-node
Kubernetes cluster. All nodes have a dual-socket Intel® Xeon®

Platinum 8280 CPU with 2 × 28 cores at 2.7 GHz, 256 GB memory,

CoordinatorAutoSteer-C
SQL

Worker 1 Worker 2 Worker 3 Worker 4

data data data data

Pod 1 Pod 2 Pod 3 Pod 4

Pod 0

SQL Queries (e.g. Stack & JOB)

1000 Mbit/s

6 Gbit/s 6 Gbit/s 6 Gbit/s 6 Gbit/s

Figure 5: In Setup 1, we run PrestoDB on a 5-pod K8s cluster.

AutoSteer intercepts queries and automatically explores al-

ternative plans. Datasets are cached on worker-local SSDs.

and an Intel® DC S3500 SSD attached, which stores a copy of the
datasets to reduce transfer times between nodes. The compute
nodes are connected with 1000 MbE. We run all queries in isolation
and with warm caches.
Setup 2: This setup corresponds to our real-world workload exper-
iments with PrestoDB conducted at Meta. This involved executing
a large interactive dashboarding workload scanning petabytes of
data against a large PrestoDB cluster with hundreds of nodes. We
tested more than 3000 queries that run every day at Meta.
Setup 3: We run PostgreSQL 13 on a 16-core AMD Ryzen
3950X@3.5 GHz machine with 96GB DDR4-2667 memory. We only
execute hint-sets yielding new query plans and use warm caches.
Setup 4: We configured SparkSQL v3.2.2 as it is internally used at
Intel and deployed it on a single machine equipped with a dual-
socket Intel® Xeon® Platinum 8280 CPUwith 2×28 cores at 2.7 GHz
and 256 GB memory. All datasets were stored in memory.

To account for runtime variances in Setups 1, 3, and 4, we ex-
ecuted the query plans generated by each hint-set multiple times
and compared their median execution times.
Overview of Experiments. Table 2 provides an overview of the
conducted experiments together with the experimental workloads
and setups used for each. In terms of its usage options, we explicitly
state if AutoSteer was used in the custom (AutoSteer-C) vs. generic
(AutoSteer-G) integration level in each of the following subsections.
For each experiment, we state whether we used the Training or the
Inference execution mode. We set the interaction mode to Steering

for all of our experiments.

4.2 AutoSteer-C for PrestoDB

Does AutoSteer-C find better plans than PrestoDB? In Figure 6,
we compare AutoSteer-C to PrestoDB. We executed all 137 JOB
queries on the PrestoDB cluster (Setup 1), and we show the rela-
tive performance changes for a uniform sample. Then, we sort the
queries by their relative performance improvements achieved by
the best known6 query plan generated by AutoSteer-C’s training
mode and plot them in ascending order. Here, we consider only
alternative plans that differ from the default query plan. Our ap-
proach finds a better alternative execution plan for most queries
(green bars). For this selection, there are only four queries for which
the best known alternative plan performed worse than the default
plan generated by PrestoDB (28a, 5c, 25a, 21a). However, those
queries have short execution times of ≤ 4 seconds. In contrast, by

6The term łbest known hint-setž refers to the hint-set that leads to the fastest execution
plan among all plans explored by either AutoSteer or its competitors.

3521

1
7
b

1
7
d

1
7
c

6
b

1
7
e

6
e

6
a

7
a

7
b

1
9
d

e
1
2
a

e
1
0
a

2
8
c

e
1
2
b

8
c

1
8
c

1
6
c

1
6
a

2
6
c

3
3
a

8
d

2
0
c

2
7
c

3
1
a

1
3
d

2
0
b

3
0
a

2
0
a

2
d

2
4
b

2
6
a

e
5
a

2
9
c

1
a

3
3
c

e
7
b

2
3
a

e
4
a

1
5
d

2
6
b

1
5
a

2
3
b

2
9
a

2
c

2
c

3
0
c

9
d

1
2
b

5
b

1
8
b

e
9
b

e
1
b

e
8
a

2
2
b

e
2
b

2
a

9
b

1
d

2
3
c

e
1
a

1
0
a

1
b

e
7
a

3
3
b

e
5
b

e
8
b

1
1
b

1
4
b

4
b

3
1
c

8
a

8
b

e
6
a

2
7
b

3
0
b

1
5
b

2
9
b

3
b

e
3
a

2
8
a

5
c

2
5
a

2
1
a

−40

−30

−20

−10

0

10

∆
R

u
n
ti

m
e

[%
]

1

Figure 6: The relative run time changes (lower is better) of the best known alternative (non-default) query plan found by

AutoSteer-C’s training mode compared to PrestoDB’s default plan. For space reasons, we consider a uniform sample of the JOB

queries executed in Setup 1. We used the greedy algorithm described in Section 3 to explore beneficial hint-sets.

1
7
b

1
7
d

1
7
c

6
b

1
7
e

6
e

6
a

7
a

7
b

1
9
d

e
1
2
a

e
1
0
a

2
8
c

e
1
2
b

8
c

1
8
c

1
6
c

1
6
a

2
6
c

3
3
a

8
d

2
0
c

2
7
c

3
1
a

1
3
d

2
0
b

3
0
a

2
0
a

2
d

2
4
b

2
6
a

e
5
a

2
9
c

1
a

3
3
c

e
7
b

2
3
a

e
4
a

1
5
d

2
6
b

1
5
a

2
3
b

2
9
a

2
c

3
0
c

9
d

1
2
b

5
b

1
8
b

e
9
b

e
1
b

e
8
a

2
2
b

e
2
b

2
a

9
b

1
d

2
3
c

e
1
a

1
0
a

1
b

e
7
a

3
3
b

e
5
b

e
8
b

1
1
b

1
4
b

4
b

3
1
c

8
a

8
b

e
6
a

2
7
b

3
0
b

1
5
b

2
9
b

3
b

e
3
a

2
8
a

5
c

2
5
a

2
1
a

−40

−30

−20

−10

0

10

∆
R

u
n
ti

m
e

[%
]

Best Alternative Plan found in Training Mode

Plan selected in Inference Mode

1

Figure 7: The relative run time savings of the best known plan () found by AutoSteer-C’s training mode compared to PrestoDB.

For the inferencemode, a pre-trained TCNNpredicts plan run times and selects the planwith the best-predicted performance ().

Solid colors represent unseen queries from the test set, and transparent colors represent those from the training set.

Table 3: The top-5 hint-sets that yield the largest performance

gains wrt. to PrestoDB’s default plan. We ran JOB queries

in isolation (Setup 1). The last column shows the number of

JOB queries for which this hint-set produced the fastest plan.

Run Time Changes [%]

Hint-Set Average Worst Case # Best HS

HashGenOptimizer -30.35% +12.82 75

HashGenOptimizer,
-38.29% +0.07 25UnaliasSymbolRefs

PickTabLayoutForPred -5.75% +0.03 13

UnaliasSymbolRefs -8.99% -0.44 9

PruneTabScanCols -8.63% +3.01 8

turning off the HashGenOptimizer, the execution time of query 17b
decreases by more than 40% (127 − 75 = 52 seconds).
What are the top hint-sets AutoSteer-C generates? Table 3
presents the top-5 hint-sets discovered byAutoSteer-C for PrestoDB.
The second column shows the average run time reduction achieved
by each hint-set when it generated the fastest query plan. Out of
all 137 JOB queries, the third column shows the impact on the per-
formance in the worst case. The last column shows the number
of queries for which the hint-set produced the best known plan.
The top hint-set disables HashGenOptimizer and yields the fastest
execution plan for 75 JOB queries. As described in [35], HashGenOp-
timizer adds local projections to compute hash codes early during
execution, increasing the cost of downstream shuffles and filling up
buffer memory. Moreover, as our experiments show, these shuffles’
overhead will outweigh the parallelism’s performance gains. While
most JOB queries (75/137) benefit from disabling HashGenOpti-
mizer, a few will regress by up to 12.8%. In Section 5, we discuss
how experts could leverage AutoSteer’s insights to improve a spe-
cific rule conceptually.

Table 4: AutoSteer’s relative and absolute run time improve-

ments compared to PrestoDB’s default plans on average using

Setup 1. The results belong to the queries from the test set.

JOB Stack

Rel. Improv. (Best Known Hint-Set) 30.25% 42.38%

Rel. Improv. (Inference Mode) 27.93% 31.54%

Abs. Improv. (Best Known Hint-Set) 305s 284s

Abs. Improv. (Inference Mode) 282s 211s

Can AutoSteer-C’s Inference Mode improve PrestoDB? To
answer that question, we fit a tree convolutional neural network
(TCNN) that we later use to infer the query plans’ execution times.
First, we use AutoSteer’s training mode to explore hint-sets for the
JOB and Stack benchmarks in Setup 1. We split the 237 (100 Stack
and 137 JOB) queries into training and test sets at an 80/20 ratio.
Next, we train the TCNN in a supervised fashion on the training
set and choose the same configurations as suggested in [27]. Then,
the TCNN predicts the run time for each query plan.

Figure 7 compares the best-performing plans found in training
mode to those selected in AutoSteer’s inference mode for JOB. The
orange bars show the relative improvements of the best known
plan wrt. PrestoDBs default query plan. Blue bars show the relative
improvements of the plans selected by AutoSteer’s inference mode.
For most queries, the TCNN chooses a hint-set that improves the
execution time compared to PrestoDB’s default plan. However, for
a few queries, such as e9b and 15d, the TCNN chooses hint-sets
that negatively impact the execution time. Overall, the inference
mode generalizes well to unseen queries from the test set.

Table 4 considers AutoSteer’s overall impact on the JOB and
Stack benchmarks in Setup 1. We compare the average relative
and absolute performance improvements of the hint-sets found

3522

50% 75% 98% 99% 99.9%
Percentile

0

10

20

30

40

50

W
a
ll

T
im

e
[m

]

0
.3

8

1
.3

5 6
.9

7

9
.7

8 3
2
.0

6

0
.4

8

1
.4

5 7
.6

5 1
2
.8

8 3
7
.0

9

0
.7

7

2
.0

3 1
0
.1

7 1
9
.0

8

5
0
.1

7Best Known Plan
AutoSteer’s Inference Mode
PrestoDB

1

(a) AutoSteer’s inference mode using the top hint-set reduces tail

query latency closer to performance of the best known plans.

0 500 1000 1500 2000 2500 3000 3500

Query Rank

0

20

40

60

∆
W

a
ll

T
im

e
[m

]

Best Known Plan
AutoSteer’s Inference Mode

1

(b) Distribution of raw query time changes for AutoSteer with

the top hint-set. A few queries regress, but tail latency improves.

Figure 8: Experiments with a production workload at Meta.

by AutoSteer-C when choosing either the best hint-sets known
from the training mode or the selected hint-sets in the inference
mode. For Setup 1 and the Stack queries, the best plans discovered
in AutoSteer’s training mode reduce the run time by up to 42%.
AutoSteer’s inference mode reduces the relative run time by up to
31%. The absolute, overall JOB execution time decreases by 305 sec-
onds when selecting the best known hint-set. AutoSteer’s inference
mode reduces the absolute run time by 282 seconds.
RESULT SUMMARY. AutoSteer-C can generate better query plans

than PrestoDB’s native query optimizer in both of its execution modes

(Training and Inference), with zero help from a human expert in hint-

set selection. It finds łHashGenOptimizerž to be the top hint-set.

4.3 AutoSteer-C for PrestoDB: Meta Workload

To validate AutoSteer’s effectiveness in real-world scenarios, we
tested our approach on a large-scale dashboard application deployed
at Meta (Setup 2). The dashboard application runs on PrestoDB and
executes thousands of queries every day over petabytes of data.
Since dashboard views commonly consist of many widgets (queries)
and the dashboard is only helpful once a large portion of queries
are completed, we focus our analysis on tail latency.

We first run a selection of hint-sets generated by AutoSteer on
the workload. To minimize computation time, we leverage the most
promising hint-set known from the experiments described in Sec-
tion 4.2 (i.e., disablingHashGenOptimizer as shown in Table 3). First,
we run AutoSteer’s training mode to generate alternative query
plans and track their execution times. Then, we use that training
data to fit a TCNN, which is later used by AutoSteer’s inference
mode. Figure 8a shows the tail latencies achieved from an łoptimal
oraclež that always chooses the best query plan known from Au-
toSteer’s training mode, best-predicted plan from AutoSteer’s infer-
ence mode, and the default plan from Meta’s production PrestoDB
configuration, respectively. With the single hint-set discovered by
our approach, we observe a noticeable reduction in the tail latency.

10
0

10
1

R
u

n
T

im
e

[s
][

lo
g

]

AutoSteer-C AutoSteer-G

batch iterative batch iterative

Qe6a Q8d Q16d

0

5

10

15

#
F

o
u

n
d

R
u

le
s

1

Figure 9: Time elapsed and number of rules found for dif-

ferent query span approximation variants in AutoSteer for

PrestoDB. We consider three random queries from JOB [25].

While our predicted approach does not quite reach the performance
of the best known plan, it comes close in most cases.

Any change to a query optimizer might result in a regression. We
plot the query performance changes for our approach (AutoSteer)
and the best known plan in Figure 8b. The łlong tailž is significantly
decreased by our approach, although a few regressions (in the order
of 10 minutes) do occur. Since the slowest queries determine this
application’s performance, these regressions are negligible, and the
overall performance is improved.
RESULT SUMMARY. AutoSteer can help reduce tail query latency

of a PB-scale interactive dashboard application running on a PrestoDB

cluster at Meta. Even with one top hint-set discovered by AutoSteer

(łHashGenOptimizerž), about 20% reduction in 99% tail latency can

be achieved over PrestoDB’s native query optimizer.

4.4 Approximating Query Spans in PrestoDB

In this section, we evaluate the impacts of AutoSteer’s integration
level (Section 3.5) as well as its two approximation heuristics batch
and iterative (Section 3.2) on query span approximation perfor-
mance. We measure the performance considering two dimensions:
the execution time and the number of effective RRs found.
How long does query span approximation take for the differ-

ent variants? In the upper part of Figure 9, we compare the execu-
tion times of the query span approximations based on AutoSteer-C
andAutoSteer-G for PrestoDB on three selected JOB queries.We fur-
ther differentiate between the batch and the iterative approximation
heuristics. AutoSteer-C, whose connector is directly integrated into
PrestoDB’s optimizer, tracks effective RRs during the optimization
phase, which allows AutoSteer-C to achieve better performance and
makes it almost an order of magnitude faster than AutoSteer-G’s
external connector. In contrast, the external connector runs one
explain statement for each of the exposed knobs (170).

The batch approximation requires the query optimizer to run
the fewest iterations, therefore, completes faster than the iterative
approximation, which additionally tracks dependencies of the alter-
native RRs. The rule dependencies, however, help reduce the search
space in the following hint-set exploration (cf. Section 3.3).

Given the significant overhead of AutoSteer-G using the iterative
heuristic, this approach is not suitable for short-running and trans-
actional queries, but it might amortize for long-running and analyt-
ical queries. Furthermore, it could help database experts in quickly

3523

implementing a first proof-of-concept revealing the potential per-
formance improvements, where the query span approximation time
would not be as critical.
How many rules do the different query span approximation

variants detect? In the lower part of Figure 9, we plot the number
of detected RRs for each approach. The experiments show that
AutoSteer-C for PrestoDB finds the same number of RRs indepen-
dent of the used approximation heuristic. AutoSteer-G detects fewer
rules (especially in the batch mode) because some of the RRs change
operator details at an algorithmic level which are not included in
the explained query plan that is used by the generic integration
level. For instance, the rules SetFlatteningOptimizer, PickTableLay-
outWithoutPredicate, and ApplyConnectorOptimization affect the
execution plan for JOB query 8d, but their changes are transpar-
ent in the explained plans. When using the iterative heuristic, the
degradation in the number of RRs is not as noticeable.
RESULT SUMMARY. AutoSteer-C with batch heuristic is most effi-

cient in finding the most number of rules during query span approxi-

mation. Despite being slower, AutoSteer-G can also find a significant

majority of the rules and, as such, can be a suitable option to use for

workloads with long-running queries and initial prototyping.

4.5 AutoSteer-G for PostgreSQL

We use Setup 3 to compare AutoSteer-G to (1) the original Bao-
for-PostgreSQL [27] and (2) the randomized hint-set search used
in its SCOPE adaptation [30, 47]. We analyze what hint-sets these
approaches explore and their impact on query performance.
Does AutoSteer-G find better hints than Bao-for-PostgreSQL?

Remember that the key difference between AutoSteer and Bao-
for-PostgreSQL is which and how hint-sets are selected. In con-
trast to Bao’s 48 static hint-sets chosen manually by an expert,
AutoSteer generates them automatically. Considering the 137 JOB
queries, both approaches found the best known hint-set6 in 99 cases.
AutoSteer-G, however, discovered better hint-sets for 23 queries.
In the remaining 15 cases, Bao-for-PostgreSQL found at least one
hint-set, which performed better than all hints-sets generated by
AutoSteer-G. However, for those queries where AutoSteer-G did
not find the best hint-set but Bao-for-PostgreSQL did, we missed
performance improvements of 2% on average. Bao-for-PostgreSQL
decreases the overall JOB run time by 33.1%, whereas AutoSteer-G
saves an additional 0.4%, which results in a relative improvement
of 33.5%. However, further experiments showed that the explored
hint-sets and their performance implications also depend on the
PostgreSQL configuration. In other words, AutoSteer-G matches Bao-

for-PostgreSQL’s performance improvements, even though its hint-sets

are automatically explored and not pre-selected by human experts.
What are the top hint-sets found by AutoSteer-G? The top
hint-set AutoSteer-G’s training mode found is turning off Nested

Loop-Joins. That hint-set improves query performance the most
for 29 JOB queries, reducing the run time by 30.7% on average.
The second-best hint-set turns off index scans: in many cases, Post-
greSQL overestimates the selectivity of complex predicates and,
therefore, index lookups yield substantial overhead compared to a
sequential scan. These two top hints are also part of Bao-for-Post-
greSQL. However, AutoSteer-G also discovered brand-new hint-sets,
e.g., disabling Parallel Hashing and GatherMerge, which improved
selected queries by up to 38.5% and 91.1%, respectively.

Is the greedy hint-set exploration approach effective? In Sec-
tion 3, we hypothesized that beneficial hint-sets are often composed
of smaller beneficial hint-sets and argued for using a greedy hint-
set exploration approach. In Figure 10, we experimentally evaluate
this assumption and visually compare AutoSteer-G’s hint-set explo-
ration with Bao-for-PostgreSQL’s 48 handcrafted hint-sets for the
JOB queries 10b, 12b, and e2a: The 𝑦-axis shows the hint-set size.
Some hint-sets () defined by Bao-for-PostgreSQL result in dupli-
cated execution plans. Contrary, AutoSteer-G tracks already-seen
query plans and does not execute duplicates. The colors encode the
query plan’s relative performance wrt. the best and the worst plans
known from both approaches (on a logarithmic scale). Light colors
indicate better plans, and vice versa. Compared to PostgreSQL’s de-
fault plan (the bottom-most square), most hint-sets result in worse
plans, but only a few lead to better plans. Squares with black edges
were discovered by AutoSteer-G’s greedy training mode. Here, Au-
toSteer finds the best hint-sets (★) for each query.
Howdoes AutoSteer-G’s greedy hint-set exploration compare

to randomized approaches? The hint-set exploration approaches
used in Bao-for-SCOPE [30, 47] first uniformly draw hint-sets and
then use SCOPE’s cost model to select the ten hint-sets gener-
ating the cheapest plans. As discussed in Section 1, cost models
may not always be available or sufficiently accurate. Therefore,
AutoSteer-G’s greedy hint-set exploration strategy does not rely
on cost models. To compare these two strategies on fairgrounds,
we tested both variants (w/ and w/o using the DBMS cost model)
under Setup 3. We use eight representative JOB queries {10a,. . . ,17a},
execute all query plans (for this experiment, we include duplicates,
as some changes might not be exposed in the QEP) seven times to
get robust measurements and we do not limit the execution time.

Greedy vs. Randomized for a Single JOB Query (Figure 11): We
first compare greedy to randomized exploration without using the
PostreSQL cost model. We consider the expected query performance

improvements E(𝑘) = (
∑︁
𝑥∈X𝑘 max(𝑥))/|X𝑘 | for randomly drawing

𝑘 hint-sets. Here, X𝑘 is the set of all combinations with 𝑘 hint-sets
and max(𝑥) returns the relative improvement of the top hint-set
in 𝑥 , or 0, if there are no improvements. We show the expected
query performance improvements for JOB query 10a in Figure 11,
for which we executed 250 randomly selected hint-sets. Greedy
quickly gains the expected improvements in iteration 1 and stops
after the second iteration 2 after exploring eight hint-sets. In con-
trast, the randomized exploration has to search significantly more
hint-sets to achieve similar improvements (e.g., 95%/99% of greedy’s
improvements after exploring 32/43 hint-sets). These findings indi-
cate that our greedy approach reaches higher query performance
improvements faster than the randomized approach.

Greedy vs. Randomized for Multiple JOB Queries (Table 5): Next,
we compare the two approaches for JOB queries {10a, . . . , 17a} (first
w/o, then w/ using the cost model). As summarized in Table 5,

Table 5: Greedy vs. Randomized Hint-Set Exploration

Approach Query Perf. Imp. Time (min)

Greedy 48.68% 90.45

Randomized 50.22% 4597.10

Greedy w/ cost model 24.85% 1.58

Randomized w/ cost model 24.87% 10.77

3524

0

1

2

3

4

H
in

t
-S

e
t

S
iz

e

⋆

Q10b

⋆

Q12b

⋆

Qe2a

← worst plan best plan → Duplicated Plan ⋆ Best Known Plan Found by AutoSteer

1

Figure 10: We compare AutoSteer-G’s training mode with the 48 hint-sets defined in Bao-for-PostgreSQL [27] for three JOB

queries. AutoSteer finds the best known hint-set for each of the three queries while it aggressively prunes the search space.

0 5 10 15 20 25 30
𝑘 (No. Explored Hint-Sets)

10

20

E
(𝑘
)
[%

]

1 2

Exploration Mode

Greedy Randomized

Figure 11: Expected performance improvements for greedy

and randomized explorations for JOB Q10a and PostgreSQL.

greedy explores 86 hint-sets in about 90 minutes to reach a perfor-
mance gain of 48.68%, while randomized explores 2000 hint-sets in
about 4597 minutes to reach 50.22%. Thus, greedy reaches a similar
level of performance improvement in about 2% of the time it takes
for the randomized to do so. Finally, we compare variants of the two
approaches that leverage the PostgreSQL cost model to limit their
exploration to the ten cheapest QEPs. This significantly reduces
the run times of both approaches but also degrades how much they
can improve query performance to less than 25% since the Post-
greSQL cost model overestimated the execution times of the most
beneficial hint-sets. Overall, we observe that greedy strikes a good
tradeoff between query performance improvement and exploration
overhead while not requiring a reliable DBMS cost model.
RESULT SUMMARY. AutoSteer-G’s automated approach can find

plans as good as those found based on Bao-for-PostgreSQL’s expert-

selected hint-sets, while also exploring the plan search space more

efficiently. Furthermore, AutoSteer-G’s greedy hint-set exploration

strategy makes a better tradeoff between plan quality and exploration

overhead than randomized alternatives.

4.6 AutoSteer-G for SparkSQL

To further demonstrate our solution’s general applicability, we also
evaluated it with another widely used SQL engine, SparkSQL.
Can AutoSteer-G improve SparkSQL’s query performance?

Inspired by Intel’s use of TPC benchmarks for its internal projects
around SparkSQL, we experimented with different TPC-DS work-
loads and compared AutoSteer-G to SparkSQL’s native optimizer
for scale factors 1, 10, and 100. AutoSteer-G reduces the overall run
time by up to 44.3% for SF1, 31.0% for SF10, and 22.0% for SF100.
Does the benchmark’s scale factor impact AutoSteer-G’s hint-

set selection decisions? We interestingly observe that AutoSteer-
G explored and selected a different collection of beneficial hint-sets
at different scale factors. For smaller scale factors, the performance
improvements primarily come from turning off expensive RRs such
as ConstantFolding, which do not amortize for most short-running
queries. SparkSQL primarily focuses on large-scale data processing.
As performance is mainly dominated by query execution and not by

its optimization, the RRs’ efficiency was probably not a priority dur-
ing development. With larger scale factors 10 and 100, performance
improvements can be attributed to hint-sets improving the query
plans on a structural level (e.g., ReorderJoins and CombineUnions).
RESULT SUMMARY. AutoSteer-G can generate better query plans

than SparkSQL’s native query optimizer. Furthermore, due to its more

adaptive approach, it can use different hint-sets at different scale

factors ś something that Bao would not be able to do due to its static

approach to hint-set selection.

4.7 AutoSteer-G vs. AutoSteer-C: Coding Effort

We implemented AutoSteer-G connectors for five well-known open-
source database systems using Python3. We use the metric lines of
code (LOC) to approximate the connectors’ code complexity and
exclude all comments, empty lines, import, and log statements. The
connector for DuckDB has the fewest lines of code (34), followed
by PrestoDB (53), PostgreSQL (49), MySQL (55), and SparkSQL’s
connector with 68 lines. For SparkSQL, we had to implement a post-
processing step to remove random identifiers from the explained
query plans. In contrast, implementing AutoSteer-C’s custom inte-
gration for PrestoDB was significantly more complex, as we had to
modify 1757 lines of code. The LOCmetric indicates how simple the
connectors are and prototyping a new connector for AutoSteer-G
can be done in a few hours. All connectors are publicly available.2

5 LESSONS LEARNED AND FUTUREWORK

Applying AutoSteer in a Production Environment.We encoun-
tered several additional difficulties when applying AutoSteer to a
large-scale production environment at Meta. First, PrestoDB’s opti-
mizer is cache-oblivious, meaning that the optimizer selects query
plans without using information about the caches of a particular
compute node. Cache hits or misses can significantly affect query
performance. Thus, a change to a query plan that appears positive
or negative may result from caching. Past works on learned query
optimization dealt with this issue by simply assuming a warm or
cold cache (e.g., [28, 42]), but in reality, the cache is rarely entirely
warm or cold. An entirely warm or cold cache will often impact
query performance more than many plan changes. Of course, the
best solution to this problem would be to take the state of the cache
into account as a feature (e.g., [46]), but this is easier said than
done in large distributed environments: measuring the contents of
Meta’s PrestoDB deployment would take significantly longer than
most queries. It is thus beneficial to examine many executions for
a single query plan, preferably across a wide time range, to ensure
different cache states are observed and accounted for statistically.

3525

Second, many academic assumptions about query performance
do not match the needs of some large organizations: (1) A few re-
gressions are inevitable and acceptable with any optimizer change.
Therefore, we use tail metrics ś like P90/P95/P99 ś to evaluate
cluster performance and to accept or reject optimizer changes.
(2) Changes in relative query performance are less important than
changes in absolute query performance. For example, a 50ms query
becoming a 200ms query looks like a 4x regression but is likely
irrelevant in analytics. However, a 60s query becoming a 50s query,
which łonlyž looks like a 15% improvement, is a desirable change.
Thus, many past works using geometric means or relative latency
metrics might be misleading. Metrics such as the geometric mean
make an optimizer update that induces both previously described
changes resemble a regression. However, it would actually be a
significant upgrade. We suggest future evaluations of optimizers to
include statistics about absolute changes in query latency.
Optimization Goals. In this work, we focus on minimizing query
latencies. However, in industrial settings, there are different pa-
rameters that one would like to optimize for, including network
transfers, I/O, and memory footprint, amongst others. For example,
in Meta’s PrestoDB deployments, memory is at a premium: increas-
ing the concurrency of a particular query might improve its run
time, but if the query’s memory footprint increases substantially,
other queries on the cluster might run out of resources, spilling
to disk and causing general chaos. As a general rule of thumb, a
10% decrease in a query’s memory footprint is as desirable as a
30% decrease in query latency (there are many exceptions to this
rule, especially for queries with tight deadlines). Similarly, the CPU
usage of a query is relevant to overall data center costs. Trading de-
creased latency for an overall increase in CPU time (e.g., again from
parallelism) might be undesirable if the query was not time-critical.

Fortunately, AutoSteer can be easily extended to support arbi-
trary optimization functions. By changing the reward signal to
whatever combination of measurable performance metrics is de-
sired, AutoSteer can adapt to many different performance require-
ments. Unfortunately, real-world performance requirements often
do not fit in single-query performance metrics. For example, a par-
ticular optimization might increase the memory footprint of one
query by 60MB but decrease the footprint of two others by 25MB
each. If these three queries run concurrently, this nets 10MB sav-
ings. However, such query-to-query tradeoffs are not expressible
as a function of a single query’s performance, so AutoSteer cannot
yet handle them. We leave considerations for multi-query ś and
perhaps even entire workload ś optimization to future work.
AutoSteer as a Tool for Human Experts. Query optimizers
are highly complex software systems, as we observed firsthand
in our collaboration with the PrestoDB team at Meta. Developed
by over 130 software engineers, it has accrued almost 200 rewrite
rules (RRs) [11]. While developers strive to make each rule ap-
plicable in general, this is impossible in practice; a rule that is
helpful in one context may be harmful in another. For example,
the HashGenOptimizer rule in PrestoDB enforces parallel gener-
ation of hash values for all joins, which improves the joining of
large tables. However, the rule’s overhead outweighs its perfor-
mance gains for smaller tables. To address this issue, we crafted
a heuristic that turned the HashGenOptimizer on or off based on
the predicted input size, which resolved most of the regressions

we observed in Meta’s dashboard workload. It was AutoSteer that
helped us improve PrestoDB’s query optimizer by discovering this
new heuristic, which is now being considered as a contribution to
PrestoDB’s upstream.

Furthermore, some rewrite rules can seem like łno-brainersž that
ought to improve query performance wherever they are applied,
but will surprisingly regress some queries. Since AutoSteer can
automatically identify these kinds of surprising interactions like in
the PrestoDB example above, it could serve as an invaluable tool
for human experts in improving the design and implementation of
their optimizers. On the other hand, investigating and debugging
rule-based query optimizers for larger and more complex query
plans that comprise tens to hundreds of relations would get in-
creasingly more challenging. To simplify this process, one can use
QO-Insight [12] ś a visual tool that lets database experts explore
AutoSteer’s results interactively (i.e., by setting its interaction mode
to Debugging) and supports a query- and rule-centric exploration
mode. The former enables experts to analyze the potential improve-
ments of benchmarks or individual queries, while the latter groups
the performance results by hint-sets.
Integrating AutoSteer-G into other DBMSs. AutoSteer-G is eas-
ily applicable to other SQL databases. For MySQL and DuckDB,
it took us less than an hour to implement the external con-
nector. The main task is to figure out the database’s syntax
for toggling optimizer knobs. DuckDB has the session property
disabled_optimizers, which is a string containing the list of dis-
abled rules. MySQL exposes one session property per knob. For
MySQL, AutoSteer found only around three effective rules because
most of their changes were not exposed in the explained plan. For
DuckDB, which exposes 14 knobs, we could improve the execution
time of all JOB queries by 1.66% on average, but its tail is signifi-
cantly enhanced, with a few queries improving by more than 10%.

To generalize, AutoSteer works best when the underlying DBMS
(1) exposes a clean interface to modify the optimizer’s configura-
tion and (2) provides sufficiently detailed query plans to observe
changes. Therefore, we argue that exposing more detailed opti-
mizer statistics will help AutoSteer to detect better query plans. For
example, database systems could have an option such as EXPLAIN
OPTIMIZATION <query> returning a list or statistics describing the
effective RRs. Such a feature would also help database developers
see which RRs directly contribute to the final query plan.

6 CONCLUSIONS

In this paper, we introduced AutoSteer, a generic, learning-based
query optimization framework that automatically steers traditional
query optimizers of SQL databases. AutoSteer achieves this by ex-
tending Bao with automatically generated dynamic hint-sets, which
can easily adapt to different query workloads and optimizers and
lead to better plans than the manually selected static hint-sets in
Bao. We have shown that our solution can be easily applied to sev-
eral SQL databases and improve their query performance by up to
40% on well-known benchmarks. Furthermore, we tested AutoSteer
on a real-world PrestoDB workload at Meta, where it achieved more
than 20% reduction in 99% tail latency. Query optimization experts
can also use AutoSteer as an interactive tool to generate insights
that can be leveraged to improve existing RRs.

3526

REFERENCES
[1] 2020. Bao for PostgreSQL. https://github.com/learnedsystems/

BaoForPostgreSQL [Last Accessed: 2023/08/02].
[2] 2020. Solving Query Optimization in Presto. https://www.infoworld.com/

article/3587781/solving-query-optimization-in-presto.html [Last
Accessed: 2023/08/02].

[3] 2021. Applying Bao to Distributed Systems. https://rmarcus.info/blog/

2021/06/17/bao-distributed.html [Last Accessed: 2023/08/02].
[4] 2021. Presto-on-Spark. https://prestodb.io/blog/2021/10/26/Scaling-

with-Presto-on-Spark [Last Accessed: 2023/08/02].
[5] 2022. Bao Online Appendix. https://rm.cab/bao_appendix [Last Accessed:

2023/08/02].
[6] 2022. ML for Systems Papers. http://dsg.csail.mit.edu/mlforsystems/

papers/ [Last accessed: 2023/08/02].
[7] 2022. MySQL Hints. https://dev.mysql.com/doc/refman/8.

0/en/server-system-variables.html#sysvar_optimizer_switch [Last
Accessed: 2023/08/02].

[8] 2022. PostgreSQL Hints. https://www.postgresql.org/docs/current/

runtime-config-query.html [Last Accessed: 2023/08/02].
[9] 2022. PrestoDB Hints. https://prestodb.io/docs/current/optimizer/

cost-based-optimizations.html [Last Accessed: 2023/08/02].
[10] 2022. SQLServer Hints. https://docs.microsoft.com/en-us/sql/t-sql/

queries/hints-transact-sql-query [Last Accessed: 2023/08/02].
[11] 2023. PrestoDB on GitHub. https://github.com/prestodb/presto [Last

Accessed: 2023/08/02].
[12] Christoph Anneser, Mario Petruccelli, Nesime Tatbul, David Cohen, Zhenggang

Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus, and Alfons Kemper. 2023.
QO-Insight: Inspecting Steered Query Optimizers. Proc. VLDB Endow. 16, 12
(2023), 3922 ś 3925.

[13] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark.. In SIGMOD
Conference. ACM, 1383ś1394.

[14] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources.. In SIGMOD Conference.
ACM, 221ś230.

[15] Nicolas Bruno, Surajit Chaudhuri, and Ravishankar Ramamurthy. 2009. Power
Hints for Query Optimization.. In ICDE. IEEE Computer Society, 469ś480.

[16] Amol Deshpande and Joseph M. Hellerstein. 2002. Decoupled Query Optimiza-
tion for Federated Database Systems.. In ICDE. IEEE Computer Society, 716ś727.

[17] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE
Data Eng. Bull. 18, 3 (1995), 19ś29.

[18] Peter J. Haas, Ihab F. Ilyas, Guy M. Lohman, and Volker Markl. 2009. Discover-
ing and Exploiting Statistical Properties for Query Optimization in Relational
Databases: A Survey. Stat. Anal. Data Min. 1, 4 (2009), 223ś250.

[19] Benjamin Hilprecht and Carsten Binnig. 2022. One Model to Rule them All:
Towards Zero-Shot Learning for Databases. In CIDR. www.cidrdb.org.

[20] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992ś1005.

[21] Holger Kache, Wook-Shin Han, Volker Markl, Vijayshankar Raman, and Stephan
Ewen. 2006. POP/FED: Progressive Query Optimization for Federated Queries
in DB2. In VLDB. ACM, 1175ś1178.

[22] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-depth Study.. In
SIGMOD Conference. ACM, 1214ś1227.

[23] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning.. In CIDR. www.cidrdb.org.

[24] Tim Kraska, Umar Farooq Minhas, Thomas Neumann, Olga Papaemmanouil, Jig-
nesh M. Patel, Christopher Ré, and Michael Stonebraker. 2021. ML-In-Databases:
Assessment and Prognosis. IEEE Data Eng. Bull. 44, 1 (2021), 3ś10.

[25] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204ś215.

[26] Zhenxiao Luo, Lu Niu, Venki Korukanti, Yutian Sun, Masha Basmanova, Yi He,
Beinan Wang, Devesh Agrawal, Hao Luo, Chunxu Tang, Ashish Singh, Yao Li,
Peng Du, Girish Baliga, and Maosong Fu. 2022. From Batch Processing to Real
Time Analytics: Running Presto® at Scale. In ICDE. IEEE, 1598ś1609.

[27] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practi-
cal.. In SIGMOD Conference. ACM, 1275ś1288.

[28] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. CoRR abs/1904.03711 (2019).

[29] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for
Join Order Enumeration.. In aiDM@SIGMOD. ACM, 3:1ś3:4.

[30] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim
Kraska, Marc T. Friedman, and Alekh Jindal. 2021. Steering Query Optimizers: A
Practical Take on Big Data Workloads.. In SIGMOD Conference. ACM, 2557ś2569.

[31] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus Where
it Matters.. In ICDE Workshops. IEEE, 154ś157.

[32] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019ś2032.

[33] Fatma Ozcan, Sena Nural, Pinar Koksal, Mehmet Altinel, and Asuman Dogac.
1995. A Region Based Query Optimizer Through Cascades Query Optimizer
Framework. IEEE Data Eng. Bull. 18, 3 (1995), 30ś40.

[34] Zhifei Pang, Sai Wu, Haichao Huang, Zhouzhenyan Hong, and Yuqing Xie. 2021.
AQUA+: Query Optimization for Hybrid Database-MapReduce System. Knowl.
Inf. Syst. 63, 4 (2021), 905ś938.

[35] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything.. In ICDE. IEEE, 1802ś1813.

[36] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,
Zhongxian Gu, Entong Shen, George C. Caragea, Carlos Garcia-Alvarado, Foyzur
Rahman, Michalis Petropoulos, Florian Waas, Sivaramakrishnan Narayanan,
Konstantinos Krikellas, and Rhonda Baldwin. 2014. Orca: A Modular Query
Optimizer Architecture for Big Data.. In SIGMOD Conference. ACM, 337ś348.

[37] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-
dinality Estimation: A Design Space Exploration and A Comparative Evaluation.
Proc. VLDB Endow. 15, 1 (2021), 85ś97.

[38] TPC-DS Benchmark 2022. TPC-DS Benchmark. https://www.tpc.org/tpcds

[Last Accessed: 2022/11/27].
[39] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.

2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640ś1654.

[40] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. 2011. Query optimization
for massively parallel data processing.. In SoCC. ACM, 12.

[41] Liqi Xu, Richard L. Cole, and Daniel Ting. 2019. Learning to Optimize Federated
Queries.. In aiDM@SIGMOD. ACM, 2:1ś2:7.

[42] Zongheng Yang,Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query OptimizerWithout Expert Demonstrations..
In SIGMOD Conference. ACM, 931ś944.

[43] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61ś73.

[44] Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or
Learning-based? A Hybrid Query Optimizer for Query Plan Selection. Proc.
VLDB Endow. 15, 13 (2022), 3924ś3936.

[45] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics.. In CIDR. www.cidrdb.org.

[46] Chi Zhang, Ryan C. Marcus, Anat Kleiman, and Olga Papaemmanouil. 2020.
Buffer Pool Aware Query Scheduling via Deep Reinforcement Learning. In
AIDB@VLDB.

[47] Wangda Zhang, Matteo Interlandi, Paul Mineiro, Shi Qiao, Nasim Ghazanfari,
Karlen Lie, Marc T. Friedman, Rafah Hosn, Hiren Patel, and Alekh Jindal. 2022.
Deploying a Steered Query Optimizer in Production at Microsoft.. In SIGMOD
Conference. ACM, 2299ś2311.

[48] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin
Cui. 2022. Facilitating Database Tuning with Hyper-Parameter Optimization:
A Comprehensive Experimental Evaluation. Proc. VLDB Endow. 15, 9 (2022),
1808ś1821.

[49] Jingren Zhou, Nicolas Bruno, Ming-ChuanWu, Per-Åke Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. VLDB J.
21, 5 (2012), 611ś636.

[50] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A Learned
Query Rewrite System using Monte Carlo Tree Search. Proc. VLDB Endow. 15, 1
(2021), 46ś58.

[51] Rong Zhu, Ziniu Wu, Chengliang Chai, Andreas Pfadler, Bolin Ding, Guoliang Li,
and Jingren Zhou. 2022. Learned Query Optimizer: At the Forefront of AI-Driven
Databases.. In EDBT. OpenProceedings.org, 1ś4.

3527

https://github.com/learnedsystems/BaoForPostgreSQL
https://github.com/learnedsystems/BaoForPostgreSQL
https://www.infoworld.com/article/3587781/solving-query-optimization-in-presto.html
https://www.infoworld.com/article/3587781/solving-query-optimization-in-presto.html
https://rmarcus.info/blog/2021/06/17/bao-distributed.html
https://rmarcus.info/blog/2021/06/17/bao-distributed.html
https://prestodb.io/blog/2021/10/26/Scaling-with-Presto-on-Spark
https://prestodb.io/blog/2021/10/26/Scaling-with-Presto-on-Spark
https://rm.cab/bao_appendix
http://dsg.csail.mit.edu/mlforsystems/papers/
http://dsg.csail.mit.edu/mlforsystems/papers/
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_switch
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_switch
https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
https://prestodb.io/docs/current/optimizer/cost-based-optimizations.html
https://prestodb.io/docs/current/optimizer/cost-based-optimizations.html
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query
https://github.com/prestodb/presto
https://www.tpc.org/tpcds

PUBLICATION P3
Programming Fully Disaggregated Systems

P3.1 Synopsis
The shift towards disaggregated systems where multiple machines share their
memory and compute resources over high-speed networks offers new potential
for data processing. Furthermore, modern data center processors like Intel’s
4th Generation Intel® Xeon® scalable processors [80] have on-die accelerators
for streaming and encryption and adopt Compute Express Link™ (CXL™) [46] –
a new industry standard for cache-coherent interconnects based on PCIe 5.0.
CXL enables devices to share memory coherently and facilitates new data and
compute placement options. Especially data-intensive applications, such as
database systems, machine learning frameworks, high-performance computing,
and streaming applications can greatly benefit from offloading tasks to spe-
cialized accelerators and sharing memory across different compute devices via
CXL. However, several challenges make it difficult to exploit the full potential
of these new technologies so that the development of basic algorithms and their
optimization for disaggregated systems becomes a challenging endeavor even
for experts [173]:

1. Memory devices differ in several ways, such as access bandwidth, latency,
and persistence guarantees, which also depend on the accessing compute
device and the hardware topology. These aspects must be kept in mind
when developing and optimizing dataflow applications.

2. The availability and utilization of memory devices at runtime are often not
known at development time but only at execution time, which requires
applications to apply adaptive optimizations.

This publication proposes a new programming model that addresses the
above-mentioned challenges and facilitates the sustainable development of
data-intensive applications for the modern data center hardware landscape. It
introduces a memory-centric view together with the concept of typed memory
regions. The mapping of memory regions to memory devices is done by a
runtime system, which adaptively co-optimizes data and compute placement
during the application’s execution.

P3.2. Contributions and Publication Details

P3.2 Contributions and Publication Details
Author Contributions. Christoph Anneser contributed substantially to the
content of the paper. He thoroughly reviewed the related work, which provided
the foundation of the proposed programming model’s blueprint. Additionally,
he authored substantial parts of the publication.

Reference. Christoph Anneser, Lukas Vogel, Ferdinand Gruber, Maximilian
Bandle, and Jana Giceva. “Programming Fully Disaggregated Systems”. In:
HotOS. ACM, 2023, pp. 188–195.

DOI. https://doi.org/10.1145/3593856.3595889

Copyright Notice. This work is licensed under the Creative Commons
BY-NC-ND 4.0 International License (https://creativecommons.org/
licenses/by-nc-nd/4.0/). Copyright is held by the owner/author(s). Usage
in this dissertation is in accordance with the Creative Commons BY-NC-ND 4.0
International License.

79

https://doi.org/10.1145/3593856.3595889
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ACM Author Rights
ACM exists to support the needs of the computing community. For over sixty years ACM has
developed publications and publication policies to maximize the visibility, impact, and reach of the
research it publishes to a global community of researchers, educators, students, and practitioners.
ACM has achieved its high impact, high quality, widely-read portfolio of publications with:

Affordably priced publications

Liberal Author rights policies

Wide-spread, perpetual access to ACM publications via a leading-edge technology
platform

Sustainability of the good work of ACM that benefits the profession

Choose

ACM gives authors the opportunity to choose between two levels of rights management for their
work. Note that both options obligate ACM to defend the work against improper use by third parties:

Exclusive Licensing Agreement: Authors choosing this option will retain copyright of
their work while providing ACM with exclusive publishing rights.

Non-exclusive Permission Release: Authors who wish to retain all rights to their work
must choose ACM's author-pays option, which allows for perpetual open access to their
work through ACM's digital library. Choosing this option enables authors to display a
Creative Commons License on their works.

Post

Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published authors of magazine
articles, journal articles, and conference papers retain the right to post the pre-submitted (also known
as "pre-prints"), submitted, accepted, and peer-reviewed versions of their work in any and all of the
following sites:

Author's Homepage

Author's Institutional Repository

Any Repository legally mandated by the agency or funder funding the research on which
the work is based

Any Non-Commercial Repository or Aggregation that does not duplicate ACM tables of
contents. Non-Commercial Repositories are defined as Repositories owned by non-profit
organizations that do not charge a fee to access deposited articles and that do not sell
advertising or otherwise profit from serving scholarly articles.

For the avoidance of doubt, an example of a site ACM authors may post all versions of their work to,
with the exception of the final published "Version of Record", is ArXiv. ACM does request authors,
who post to ArXiv or other permitted sites, to also post the published version's Digital Object
Identifier (DOI) alongside the pre-published version on these sites, so that easy access may be
facilitated to the published "Version of Record" upon publication in the ACM Digital Library.

Examples of sites ACM authors may not post their work to are ResearchGate, Academia.edu,
Mendeley, or Sci-Hub, as these sites are all either commercial or in some instances utilize predatory
practices that violate copyright, which negatively impacts both ACM and ACM authors.

After an ACM journal submission has been accepted and has entered the production process, ACM
makes the Author’s Accepted Manuscript (AAM) available for preview under the ACM “Just
Accepted” program until the “Version of Record” is available and assigned to its proper issue. The
AAM carries the article’s permanent DOI and can be cited immediately.

https://authors.acm.org/author-resources/author-rights. Last accessed: 2024/06/10.

https://authors.acm.org/author-resources/author-rights

Copyright © 2024, ACM, Inc

Distribute

Authors can post an Author-Izer link enabling free downloads of the Definitive Version of the work
permanently maintained in the ACM Digital Library.

On the Author's own Home Page or

In the Author's Institutional Repository.

Reuse

Authors can reuse any portion of their own work in a new work of their own (and no fee is expected)
as long as a citation and DOI pointer to the Version of Record in the ACM Digital Library are
included.

Contributing complete papers to any edited collection of reprints for which the author is
notthe editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is expected) in a
dissertation as long as citations and DOI pointers to the Versions of Record in the ACM
Digital Library are included. Authors can use any portion of their own work in
presentations and in the classroom (and no fee is expected).

Commercially produced course-packs that are sold to students require permission and
possibly a fee.

Create

ACM's copyright and publishing license include the right to make Derivative Works or new versions.
For example, translations are "Derivative Works." By copyright or license, ACM may have its
publications translated. However, ACM Authors continue to hold perpetual rights to revise their own
works without seeking permission from ACM.

Minor Revisions and Updates to works already published in the ACM Digital Library are welcomed
with the approval of the appropriate Editor-in-Chief or Program Chair.

If the revision is minor, i.e., less than 25% of new substantive material, then the work
should still have ACM's publishing notice, DOI pointer to the Definitive Version, and be
labeled a "Minor Revision of"

If the revision is major, i.e., 25% or more of new substantive material, then ACM considers
this a new work in which the author retains full copyright ownership (despite ACM's
copyright or license in the original published article) and the author need only cite the
work from which this new one is derived.

Retain

Authors retain all perpetual rights laid out in the ACM Author Rights and Publishing Policy, including,
but not limited to:

Sole ownership and control of third-party permissions to use for artistic images intended
for exploitation in other contexts

All patent and moral rights

Ownership and control of third-party permissions to use of software published by ACM

https://authors.acm.org/author-resources/author-rights. Last accessed: 2024/06/10.

https://authors.acm.org/author-resources/author-rights

Programming Fully Disaggregated Systems
Christoph Anneser Lukas Vogel Ferdinand Gruber

Maximilian Bandle Jana Giceva
Technical University of Munich
firstname.lastname@in.tum.de

Abstract
With full resource disaggregation on the horizon, it is unclear
what the most suitable programming model is that enables
dataflow developers to fully harvest the potential that recent
hardware developments offer. In our vision, we propose to
raise the abstraction level to allow developers to primarily
reason about their dataflow and the requirements that need
to be met by the underlying system in a declarative fashion.
Underneath, the system works with typed memory regions
and uses the notion of ownership that allows for more flexible
memory management across the different compute devices
and the tasks mapped onto them. This requires a holistic
approach that crosses multiple layers of the system stack,
opening exciting systems research questions.

ACM Reference Format:
Christoph Anneser, Lukas Vogel, Ferdinand Gruber, Maximilian
Bandle, and Jana Giceva. 2023. Programming Fully Disaggregated
Systems. In Workshop on Hot Topics in Operating Systems (HOTOS
’23), June 22–24, 2023, Providence, RI, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3593856.3595889

1 Introduction
With the ever-increasing demand for data, where the datas-
phere volume is expected to reach 175ZB by 2025 [50], we
have reached the point where moving data is the dominating
cost factor in data centers [34, 45]. Cloud providers race to
serve the different requirements of modern workloads better
but with pressure to achieve it in a more sustainable fash-
ion [51]. To improve efficiency, data centers have evolved
to more loosely coupled software-defined racks, where they
disaggregate resources over fast network interconnects [52].
However, until recently, coherent memory remained

tightly coupled, and servers had to be equipped with large
memory capacities to serve peak workloads reliably. This

HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595889

CXL
DRAM DRAM DRAM

TPU CPU1 CPU2

FPGA GPU1 GPU2

PMEM GDDR GDDR

PCIe/CXL

(a) Current Architectures

DRAM GDDR

PMEM CXL DRAM

Memory Pool

Runtime System

CPU1 CPU2 TPU

GPU1 GPU2 FPGA

(b) Our Vision

Figure 1: Moving from a compute-centric to a memory-
centric architecture.
overprovisioning is a considerable cost (50% of Azure’s
servers [5] and 40% of Meta’s rack costs come from mem-
ory [40]) for a resource that could not be properly pooled.
The average memory utilization reported by many cloud ven-
dors remains low, typically in the range of 50-65% [38, 56].
Therefore, data centers could reduce costs by pooling dif-
ferent types of memory [9, 11, 21, 57] and compute de-
vices [6, 13, 17–19, 30, 33, 47] by connecting them with fast
networks [14, 45].

However, data and compute placement within these pools
significantly impacts the overall system performance. For
example, non-uniform memory accesses (NUMA) can slow
down algorithms by up to 3× [39]. Similarly, a naïve data
placement in a heterogeneous storage landscape can reduce
a database system’s performance by up to 3× [59].

Moreover, today, optimal placement has become an issue
even within single processors. For example, take the recently
introduced Intel’s 4th Generation Intel® Xeon® Scalable Pro-
cessors – codenamed Sapphire Rapids [7]. They have built-in
encryption, compression, streaming, and high-bandwidth
memory accelerators. Its most promising feature, however,
is the adoption of Compute Express Links™ (CXL™) – an
industry standard for cache-coherent interconnects for pro-
cessors, memory expansion, and accelerators based on PCIe
5.0, which has been adopted by companies like Intel, AMD,
ARM, Samsung, and NVIDIA, amongst others [9]. CXL en-
ables us to first scale-up nodes by extending their compute
and memory pools with ‘pluggable’ compute devices and
DRAM/PMem expansion cards before we have to rely on
more expensive ‘scale-outs’ to other compute nodes that

188

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

https://doi.org/10.1145/3593856.3595889
https://doi.org/10.1145/3593856.3595889
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595889&domain=pdf&date_stamp=2023-06-22

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

Table 1: Memory device properties as seen from a CPU.

Name Bw. Lat. Gran. Attached Sync Persist.

Cache ++ ++ 1 B CPU ✓ ✗
HBM ++ + 64 B CPU ✓ ✗
DRAM + + 64 B CPU ✓ ✗
PMem ◦ ◦ 256 B CPU ✓ ✓
CXL-DRAM ◦ ◦ 64 B PCIe ✓/ ✗ ✓/ ✗
Disagg. Mem. ◦ − ? NIC ✗ ✓/ ✗
SSD − − 4 KiB PCIe ✗ ✓
HDD −− −− 4 KiB SATA ✗ ✓

would require the implementation of more complex con-
sistency protocols [38]. Furthermore, CXL-based compute
devices can coherently access and cache host CPU memory,
enabling new data and compute placement combinations but
making optimal placement decisions much more complex,
as Figure 1a shows.
We believe that in such a heterogeneous hardware land-

scape, existing programming models are not suitable any-
more. Traditionally, a developer has to explicitly place data
on a memory device and specify which accelerator performs
the computation. In particular, this explicit data placement
requires the developer to be aware of various memory types’
different properties, as shown in Table 1. For example, to
optimize applications and data placement, developers must
consider access latencies, their granularities (bytes or logical
blocks), and how devices are physically attached. Otherwise,
they will be unable to fully unlock the potential of these
exciting, emerging hardware platforms. Unsurprisingly, this
topic is being discussed in several recent proposals on how
to write programs for scale-out cloud systems [20, 29, 61]
and how to do memory-tiering at warehouse scale [22, 40].

Recent work suggested that we should switch away from
CPU- or process-centric architectures to overcome the com-
plexity of disaggregated systems and thus allow develop-
ers to primarily focus on their application logic [22, 23, 28,
53, 54, 60]. For example, by lifting the abstraction level, Vo-
gel et al. proposed a new framework enabling developers
to get declarative control over data movement in heteroge-
neous, disaggregated environments [58], while HetCache
co-optimizes data placement by taking different memory,
compute devices, and queries into account [43].
In this paper, we ask ‘what should be the appropriate pro-

gramming model for implementing various dataflow frame-
works in the era of full resource disaggregation.’

2 Vision
This section presents our envisioned programming model
and runtime system that would enable the writing of scalable
code that leverages modern hardware with disaggregated
compute and memory pools.

Job1

Job2

. . .

State

 Employees

 Patients

Preprocessing𝑇1

Face Recog.𝑇2

Track Hours𝑇3

Compute Util.𝑇4

Alert Caregivers𝑇5

� CCTV Video Stream

comp. device: GPU
confidential: true
persistent: false
mem. latency: low

comp. device: GPU
confidential: true
persistent: false
mem. latency: low

comp. device: CPU
confidential: true
persistent: false
mem. latency: low

comp. device: CPU
confidential: false
persistent: false
mem. latency: –

comp. device: CPU
confidential: true
persistent: true
mem. latency: low

a) Jobs b) Tasks c) Properties

Figure 2: Example dataflow system of a hospital. Jobs
consist of tasks that forma directed acyclic graph. Prop-
erties can be attached to tasks and dataflows.

2.1 Foundations
Data-intensive applications like database systems [42], ma-
chine learning frameworks [3, 4], or large-scale data analytics
platforms [1, 2] can often be generalized to dataflow systems.
To introduce the concepts of our approach, therefore, we
rely on their well-known architecture, where applications
launch jobs that consist of tasks. Tasks represent computa-
tional units, and connecting arrows between tasks represent
the dataflow and its direction. Connected tasks form a di-
rected acyclic graph.
Example. Figure 2 shows an example of such a job (2a)
consisting of 5 tasks (2b): A hospital might have a CCTV
camera recording entering and leaving persons (𝑇1) using
GPU-accelerated face recognition connected to an employee
and patient database (𝑇2). This information is then used to
track the working hours of the employees (𝑇3), feed a public
website displaying the utilization of the emergency ward (𝑇4),
and alert caregivers if a confused patient exits the hospital
and does not reappear after a grace period (𝑇5).
Declarative programming. As described in Section 1,
recently introduced hardware platforms (such as Sapphire
Rapids [7]) have built-in accelerators and support CXL1.1,
allowing to scale-up one node with more accelerators and
coherent memory expansion. From a programmer’s perspec-
tive, implementing and optimizing applications, such as the
hospital’s dataflow, for modern hardware becomes increas-
ingly complex and time-consuming. One viable option for
developing high-performance dataflow applications is to in-
troduce a new abstraction layer. This abstraction would hide
the details of compute and memory devices during the ap-
plication’s development and defer the compute and memory

189

Programming Fully Disaggregated Systems HOTOS ’23, June 22–24, 2023, Providence, RI, USA

placement decisions to runtime. Declarative programming
concepts could allow developers to focus on the application
logic (what) rather than how it is executed on a specific
platform.
Common patterns. Today’s dataflow applications share
common patterns and often have similar requirements. For
example, processing sensitive user data (i.e., 𝑇2) requires
them to implement security standards, including data encryp-
tion. Jobs and tasks could be either streamed or processed in
batches. Machine learning-related tasks benefit from hard-
ware acceleration. Implementing such requirements for each
dataflow system individually and optimizing it to run on
disaggregated systems is time-consuming and error-prone.
Properties for dataflow systems. Instead, a program-
ming model should enable developers to attach common
properties to their dataflow applications at different granu-
larities. In Figure 2c), each task has some properties: While
the video feed’s confidentiality might depend on the country,
the employee and patient database, and the tagged and cross-
referenced persons are confidential. Furthermore, the video
feed itself is not latency-sensitive, but since image recog-
nition is computationally intensive, it requires low-latency
memory (from the view of the GPU) to allow for real-time
face recognition. The alerting task (𝑇5) has to store miss-
ing patients persistently, as a system crash would otherwise
mean theymight be forgotten. Furthermore, by attaching the
property confidentiality to the tasks 𝑇1–𝑇3 and 𝑇5 in Figure 2,
the application developer can indicate that the processed
data is sensitive and must not be visible to other tasks or
jobs. Another recurring pattern is the materialization of out-
put data, as is the case for materialized views in database
systems or the neural network’s weights after training, mak-
ing it another good candidate for a property being attached
in dataflow systems.
Requesting properties. Current disaggregated systems
introduce various memory devices, each having different
properties regarding latency, bandwidth, persistency, and
others (cf. Table 1). Deploying dataflow systems that serve
thousands of jobs in parallel on such complex hardware
landscapes with multiple physical memory devices makes
efficient memory management more challenging, especially
when tasks are deployed on different compute devices and
the performance-critical inter-task communication is being
implemented via message-passing over shared memory [41].
Therefore, the physical memory devices should be made
transparent to applications that instead request memory
based on the required properties. For example, the applica-
tion could specify whether the allocated memory should be
persistent and what latencies or bandwidths are acceptable.
Ownership Chunks of memory requested in such a way
would then have a clear owner (i.e., a task, a job, or the
whole application) allowing us to reason about the lifetime of

DRAM

PMEM

GDDR

Pr. Scratch

Gl. State

Gl. Scratch

CPU

Pr. Scratch

Gl. State

Gl. Scratch

GPU

Runtime System

PhysicalLogical Logical

Figure 3: Mapping logical Memory Regions to physical
memory depends on the compute device.

chunks of memory and be aware of when we can re-assign it
to new tasks. We could, thus, implement a reusable optimizer
for various dataflow systems’ data placement.
Summary. Given the challenges listed above, we need a
programming model that enables application developers to
utilize modern, disaggregated hardware platforms more effi-
ciently. Such a model ideally enables the developer to attach
commonly seen properties to tasks and facilitates managing
disaggregated memory declaratively, which makes not only
the application development more efficient but also the ap-
plications themselves by automatically co-optimizing data
placement and the overall resource utilization.

2.2 Mapping to Disaggregated Systems
While the envisioned programming model abstracts from
specific memory devices and instead lets the application
specify what properties the requested memory must have,
we need a runtime system that maps logical requests to the
physical hardware in the background.
Memory devices. As shown in Table 1, various devices are
already contributing to the pool of disaggregated memory,
withmore being added in the future. Each device has different
properties concerning latency, bandwidth, coherency, and
persistency. The mapping from a task’s memory request and
its declared properties must therefore be matched to the
underlying hardware, which leads to three challenges:
(1) The ‘optimal’ memory device depends on the compute
device executing the task and the type of memory accesses
it performs (e.g., random vs. sequential, read- or write-
intensive accesses, or access granularity). Figure 3 visual-
izes this problem: ‘fast and local’ scratch memory might
preferably be DRAM when the task runs on a CPU. For tasks
running on a GPU, however, GDDR provides better latency
and bandwidth, although with less capacity.
(2) Tasks might share memory: The preceding task’s output
could become the succeeding task’s input. If both tasks run
on different compute devices, their shared memory must be
addressable by both (e.g., via CXL.mem) or copied after the
first task is done. Therefore, data placement depends not only
on one task but also on the interaction of multiple tasks.

190

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

Table 2: Common Memory Regions.

Name Properties Purpose

Global State {coherent, sync} Syncing tasks
Global Scratch {coherent, async} Data exchange
Private Scratch {noncoherent, sync} Thread-local data

(3) Depending on how far memory is physically away, we
want to expose different interfaces. In the case of near mem-
ory that provides low access latency, we would prefer syn-
chronous loads/stores to reduce the task’s execution time.
If memory is ‘far away’, we should switch to an asynchro-
nous interface that fetches memory in the background. For
example, accessing CXL-attached memory will result in high
latency comparable to accessing DRAM on a different NUMA
socket. Asynchronous accesses improve the accelerator’s uti-
lization and overall throughput.

We propose three concepts to mitigate these problems:
(1) Memory regions. Since the properties of a device
change depending on the task’s point of view (i.e., by which
compute device it is executed), we use the concept ofMemory
Regions to abstract from physical devices. A Memory Region
is a logical view on a physical device: It guarantees some
set of properties specified by a task (e.g., low latency, persis-
tency) relative to the executing compute device. At runtime,
the system maps the Memory Region to a physical device
satisfying its properties. Memory Regions are thus declared
and identified by their properties, not by their location, unlike
traditional approaches. We group properties that are often
used together and name the resulting Memory Region to ex-
press commonly used abstractions in programming – Table 2
describes three frequently used Memory Regions and Fig-
ure 4 shows how our dataflow system uses them: All threads
of a task have their Private Scratch and hold a reference
to a Global State and Global Scratch. Memory regions for
dataflow systems for a single device have already been used
in the past. Broom [25], for example, introduces memory
regions and ownership to track lifetimes and, therefore, to
remove the garbage collector. We build on this approach by
generalizing memory regions to multiple devices.
(2) Memory ownership. To facilitate inter-task communi-
cation, we introduce the concept of memory ownership: Each
chunk of allocated memory is either

• exclusively owned by a task. This applies if it is just task-
local scratch space or handed over to the next task after
completion. Here, consistency guarantees and memory
ordering can be relaxed.

• or it shares the ownership with other tasks that may
run concurrently. This puts additional requirements on
the Memory Region, i.e., being cache-coherent or having
strict memory ordering.

𝑇1𝑎 𝑇1𝑏 . . . 𝑇1𝑧

𝑃1𝑎 𝑃1𝑏 𝑃1𝑧
Private
Scratch

Input

Out Intransfer
ownership

𝑇2𝑎 𝑇2𝑏 . . . 𝑇2𝑧

𝑃2𝑎 𝑃2𝑏 𝑃2𝑧
Private
Scratch

Out Intransfer
ownership

Global
Memory

Global
State

Global
Scratch

𝑇1

𝑇2

sync

async

Figure 2b

Figure 4: Tasks and Typed Memory Regions.

Note that memory being owned exclusively by a task does
not mean it can only ever be owned by one thread of execu-
tion. As Figure 4 shows, ownership can be transferred, i.e., a
reference to the memory chunk can be passed to the next task
(the “out” becomes the “new in”), which is similar to C++’s
move semantics. This explicit ownership model enables us
to always allocate the most suitable memory per thread of
execution. In contrast, in a traditional disaggregated system,
users must choose placement, which increases complexity,
especially as more kinds of memory become available.
(3) Access interfaces. It is beneficial to address different
Memory Regions by different access modes to improve re-
source utilization. When accessing global memory, we might
benefit from an asynchronous model where we can inter-
leave computation with memory accesses. Memory Regions,
thus, should expose different interfaces to access data.

2.3 Programming Model
After introducing the abstractions of Memory Regions, own-
ership, and interfaces, we now switch back to the application
level and discuss integrating these concepts into the moti-
vating dataflow example.
Runtime system. To implement the envisioned program-
ming model, we need a runtime system that is responsible for
(1) determining at runtime which physical memory device
best fits each task’s declared requirements, (2) allocating the
Memory Regions that tasks have requested, (3) de-allocating
Memory Regions after the last owning task finishes, (4) and
resource-aware task scheduling.
Abstracting memory regions. As discussed in the previ-
ous section and Table 2, dataflow systems share common
memory usage and access patterns and have similar require-
ments. The followingMemory Regions should be pre-defined
by the programming model:
• Private Scratch is memory local to each thread of the
task. Since it is not shared, it may have relaxed coherence
guarantees. As demonstrated in Figure 4, each task’s thread
has its own private scratch space (𝑃1𝑎 . . .𝑃1𝑧), which is only

191

Programming Fully Disaggregated Systems HOTOS ’23, June 22–24, 2023, Providence, RI, USA

Table 3: How applications may use memory regions.

Priv. Scratch Glob. State Glob. Scratch

DBMS
operator state
(hashtables, . . .)

synchronization
(latches, . . .)

(temp) indexes,
caches

ML/AI
model training

state
metadata,

worker state
input data,

cached transf. data

HPC
node-local

working mem.
job metadata,
node states

object/blob
storage

Streaming
cache/buffer
(send, recv.)

cluster/worker
state

result/data
cache

alive during its execution. It stores intermediate results
not part of the task’s output. Private scratch is visible to
only one thread and not transferable.

• Global State is memory global to the application and
shared between tasks to synchronize tasks and threads.
It, thus, has to provide strict coherence guarantees and
strong memory ordering but is expected to be slow as it
has to be accessible from all compute devices.

• Global Scratch can pass data between tasks that are not
connected. Passing data in such a way is helpful when two
tasks do not depend on each other but may use an inter-
mediate result from another task (such as a bloom filter)
to speed up its processing. The Global Scratch exposes
an asynchronous interface as threads should not block on
load/store on slow memory.

Moving data. Data will be passed between tasks via Global
Scratch memory or to the next task in the dataflow. For the
second case, we need a concept of input and output as shown
in Figure 4. The input consists of the data set the current
task should operate on and is generated by the preceding
task. The output is the data the task produces, i.e., the next
task’s input. Input and output can be modeled as Memory
Regions, which the active task owns. Thanks to our concept
of memory ownership, the output memory of the preceding
task can directly become the input memory of the next task
if it is addressable by the compute devices of both tasks. The
runtime system allocates input and output memory so that
handover is just a memory ownership transfer, and physical
data movement is minimized.

2.4 Mapping Application Types
Different application types can be easily mapped to our pro-
posed architecture. We illustrate four types in Table 3 and
describe two in more detail.
Database systems internally represent queries as relational
operator trees where the output of one operator becomes
the input of the following operator, which nicely maps onto
dataflow systems. Each operator must keep track of its state
in private scratch (e.g., a group hash table for aggregation
operators) and synchronize with other concurrently running
operators via latches in the global state. Furthermore, some

operators can re-use (transient) results of earlier operators
stored in the global scratch space (e.g., a hash join might
re-use a hash index created by an aggregation operator).
AI/ML applications must first transform and preprocess
the input data (e.g., parsing, sampling, and feature extrac-
tion) before training a model on accelerators. This can
also be modeled as a dataflow system, as demonstrated by
Cachew [26]. Cachew stores the transformed data in a cache
(global scratch) and uses a dispatcher accessing worker states
(global state) to assign tasks running on accelerators (private
scratch).

3 Discussion
Our proposed memory-centric programming model radically
changes how applications and developers interact with mem-
ory in the disaggregated cloud. They should no longer have
to deal with the complexity of handling different memory de-
vices, which is further complicated by emerging technologies
like CXL. Instead, memory should be requested declaratively
based on desired properties like latency or bandwidth.
The way forward. Our programming model requires a
runtime system (RTS) that should abstract away hardware-
specific details of memory accesses and does the bookkeep-
ing regarding ownership and the lifetime of regions. Fur-
thermore, the RTS needs to make the deployment decisions
on mapping tasks and memory onto the disaggregated re-
sources. To make this come true, we need to address several
challenges for which we begin the discussion in this section:
(1) Who oversees the management and utilization of the
disaggregated resources?
(2) How do we make optimal deployment decisions?
(3) How to enforce deployment policies at runtime?
(4) Where should the RTS/control plane be placed?
(5) What support from the underlying system stack is needed
on the critical data path?
(6) How can we make our concept of memory regions easy
to use in general-purpose programming languages?
(7) How can we combine declarative and imperative princi-
ples in one programming model?
(8) What are the potential limitations of our approach?
Implementing the programming model and the runtime

system is a non-trivial endeavor that calls for a holistic ap-
proach, crossing multiple layers of the systems stack. In the
following paragraphs, we discuss how we can address these
challenges and use prior work from the systems, compiler,
and database communities to set the stage for our proposal.
Challenges 1-3: What is required from the RTS? Our
RTS needs to manage memory resources –typed with differ-
ent properties (cf. Figure 2)– of multiple machines or even
cluster wide. Jobs and tasks request memory regions from
the RTS that it then maps to physical memory (cf. Figure 3).

192

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

The allocation of memory regions goes beyond the capabili-
ties of already known single-host memory management [46]
and existing distributed managed runtimes [2]. With multi-
ple, coherently accessible memory tiers, the RTS must man-
age memory regions based on pages or objects and their
placement. Both approaches are actively researched by the
systems community and have different implications on per-
formance and scalability [48, 62]. To optimize the placement
of memory regions, we can build on recent work that used
pointer tagging to track the hotness of pages or objects and to
implement remotable pointers that either point to objects in
local or in remote memory (pointer swizzling) [37, 40, 48, 62].
Our RTS must also schedule and map tasks to different

types of devices using cost models that consider topology and
access paths [49] to optimize for concurrently running jobs.
Therefore, it must know or predict the resource utilization of
memory and compute devices. Scheduling also requires re-
using results to avoid unnecessary copying [60] and lowering
to different types of hardware. Thankfully, such cost models
for optimization and lowering tasks to multiple devices are
already well-known in the database and compiler communi-
ties [24, 35, 54]. Furthermore, new approaches using MLIR,
such as LingoDB [31], have shown that it is feasible to pro-
vide the compiler with various statistics to make cost-based
transformations and data and task placement decisions.
Challenges 4-5: What layer supports the RTS memory
deployment? The RTS provides memory regions, but with-
out some levels of abstraction, the complexity of handling
disaggregated memory is just moved to the application. In
our vision, the core responsibility of the operating system
(OS) is mapping RTS-requested memory into the address
space of our proposed tasks. The processor-centric design
could lead to host congestion [10] and become a bottleneck
in the future and the concept of memory ownership of to-
day’s OSes are not suitable anymore [53] because ownership
is now globally managed by the RTS [23]. Thus, in the dis-
aggregated cloud, OSes should be built memory-centric, like
our jobs and tasks. Of course, this is a simplification of OS
memory management, leaving out many aspects (e.g., the
memory the OS requires for managing devices). We are not
the first to propose such a shift in OS design and can rely on
previous research [23, 53].
Challenges 6-7: How to get the developer on board and
ease adoption? Until now, there is no consensus on han-
dling the ownership and lifetime of memory objects and
streams across different devices, and popular AI/ML frame-
works handle them differently [8]. Furthermore, developers
should not face the complexity of modern memory technol-
ogy [61] and instead should request memory declaratively.
This declarative approach is a paradigm shift for many pro-
gramming languages (PL), where memory is managed man-
ually or by a language runtime [46]. Consequently, the PL

should either (1) allow programmers to provide different ver-
sions of code targeting different memory types or (2) provide
a central compilation service that JIT compiles the program-
mer’s declarative description of memory accesses. The latter
–a mixture of declarative and imperative code– is actively
researched [44, 55] and could be adapted for our approach.
Challenge 8: What are the potential limitations? Rais-
ing the abstraction level leads to new questions our approach
does not yet solve: (1) How canwe debug, profile, and optimize
dataflow applications with multiple abstraction layers for
performance when the runtime system hides performance-
relevant details? Fortunately, the system community has
already shown that – despite intricacies and difficulties –
debugging [32] and profiling [16] across multiple abstrac-
tion layers is possible. (2) Legacy applications might not
adopt a new programmingmodel requiring significant source
code modifications. A similar approach has been recently
proposed by the Mojo programming language, which is a
superset of Python and uses declarative programming to
enable hardware acceleration with GPUs and FPGAs for AI
and ML workloads. (3) How to mitigate faults and report
them to the user? Network errors, corrupted memory, and
planned and unplanned node faults such as kernel updates
or power outages are common in data centers having thou-
sands of interconnected compute and memory devices. If not
handled properly, failures may lead to data loss and force
applications to stop and restart. Therefore, our programming
model and its runtime systemmust implement suitable mech-
anisms that guarantee fault tolerance and are compute- and
storage-efficient. Several ideas have been recently discussed
by the systems community, including replication-based ap-
proaches [12, 27, 53] and the striping of memory pages across
multiple memory nodes [36]. The runtime system could also
implement a combination of erasure-coding, one-sided re-
mote memory accesses and compaction, and off-loadable
parity calculations, as it is used by Carbink, a state-of-the-art
approach for fault-tolerant far memory [62].
Conclusion. With our envisioned programming model, ap-
plication developers can fully utilize emerging new hardware
more easily without being concerned about the specifics of
the underlying hardware or the complexity of memory co-
herency models. Building a distributed RTS is a complex
task requiring support from the systems, compiler, and lan-
guage community (cf. Legion [15]). However, the advantages
of our proposal in terms of complexity reduction, resource
utilization, and flexibility will make this effort worthwhile.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back. This work was funded by the German Research Founda-
tion (DFG) within the SPP2037 under grant no. Ke 401/22-2.

193

Programming Fully Disaggregated Systems HOTOS ’23, June 22–24, 2023, Providence, RI, USA

References
[1] 2013. PrestoDB. https://prestodb.io/ Last Accessed: 2023/05/17.
[2] 2014. Apache Spark. https://spark.apache.org/ Last Accessed:

2023/05/17.
[3] 2015. Tensorflow. https://www.tensorflow.org/ Last Accessed:

2023/05/17.
[4] 2016. PyTorch. https://pytorch.org/ Last Accessed: 2023/05/17.
[5] 2020. CXL and GEN-Z iron out a coherent interconnect strat-

egy. https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-
out-a-coherent-interconnect-strategy/ Last Accessed: 2023/05/17.

[6] 2020. Data Processing Units. https://www.nvidia.com/
en-us/networking/products/data-processing-unit/ Last Accessed:
2023/05/17.

[7] 2023. 4th Generation Intel® Xeon® Scalable Processors. https:
//ark.intel.com/content/www/us/en/ark/products/series/228622/4th-
generation-intel-xeon-scalable-processors.html Last Accessed:
2023/05/17.

[8] 2023. Apache Arrow. https://github.com/apache/arrow/pull/34972
Last Accessed: 2023/05/17.

[9] 2023. Compute Express Links. https://www.computeexpresslink.org/
download-the-specification Last Accessed: 2023/05/17.

[10] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud
Moshref, Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gau-
tam Kumar, Sylvia Ratnasamy, David E. Culler, and Amin Vahdat.
2022. Understanding host interconnect congestion. In HotNets. ACM,
198–204.

[11] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. 2018. Remote regions: a simple abstraction for remote
memory. In USENIX Annual Technical Conference. USENIX Association,
775–787.

[12] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In
EuroSys. ACM, 14:1–14:16.

[13] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai,
Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J
Green, Monish Gupta, Sebastian Hillig, et al. 2022. Amazon Redshift
re-invented. In Proceedings of the 2022 International Conference on
Management of Data. 2205–2217.

[14] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, István
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, and HughWilliams. 2020. Sirius: A Flat Datacenter Network
with Nanosecond Optical Switching. In SIGCOMM. ACM, 782–797.

[15] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012.
Legion: expressing locality and independence with logical regions. In
SC. IEEE/ACM, 66.

[16] Alexander Beischl, Timo Kersten, Maximilian Bandle, Jana Giceva,
and Thomas Neumann. 2021. Profiling dataflow systems on multiple
abstraction levels. In EuroSys. ACM, 474–489.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: programming protocol-
independent packet processors. Comput. Commun. Rev. 44, 3 (2014),
87–95.

[18] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu,
Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu,
Feng Zhu, and Tong Zhang. 2020. POLARDB Meets Computational
Storage: Efficiently Support Analytical Workloads in Cloud-Native
Relational Database. In FAST. USENIX Association, 29–41.

[19] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. 2016. A cloud-scale acceleration architecture.
In MICRO. IEEE Computer Society, 7:1–7:13.

[20] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Mae
Milano. 2021. New Directions in Cloud Programming. In CIDR.
www.cidrdb.org.

[21] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast Remote Memory. In NSDI. USENIX
Association, 401–414.

[22] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David E.
Culler, Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey,
Danijela Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang
Ren, Greg Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ran-
ganathan, and Amin Vahdat. 2023. Towards an Adaptable Systems
Architecture for Memory Tiering at Warehouse-Scale. In ASPLOS (3).
ACM, 727–741.

[23] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan S. Milo-
jicic. 2015. Beyond Processor-centric Operating Systems. In HotOS.
USENIX Association.

[24] Georges Gardarin, Fei Sha, and Zhao-Hui Tang. 1996. Calibrating the
Query Optimizer Cost Model of IRO-DB, an Object-Oriented Federated
Database System. In VLDB. Morgan Kaufmann, 378–389.

[25] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam,Manuel Costa, DerekGordonMurray,
Steven Hand, and Michael Isard. 2015. Broom: Sweeping Out Garbage
Collection from Big Data Systems. In HotOS. USENIX Association.

[26] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramo-
han A. Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning
Input Data Processing as a Service. In USENIX Annual Technical Con-
ference. USENIX Association, 689–706.

[27] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with Infin-
iswap. In NSDI. USENIX Association, 649–667.

[28] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: A hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems. 417–433.

[29] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[30] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan
Boden, et al. 2017. In-Datacenter Performance Analysis of a Tensor
Processing Unit. In ISCA. ACM, 1–12.

[31] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing
an Open Framework for Query Optimization and Compilation. Proc.
VLDB Endow. 15, 11 (2022), 2389–2401.

[32] Timo Kersten and Thomas Neumann. 2020. On another level: how to
debug compiling query engines. In DBTest@SIGMOD. ACM, 2:1–2:6.

[33] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kostic, Youngjin Kwon, Simon Peter, and Emmett Witchel. 2021.
LineFS: Efficient SmartNIC Offload of a Distributed File System with
Pipeline Parallelism. In SOSP. ACM, 756–771.

[34] Peter M. Kogge and John Shalf. 2013. Exascale Computing Trends:
Adjusting to the "New Normal"’ for Computer Architecture. Comput.
Sci. Eng. 15, 6 (2013), 16–26.

194

https://prestodb.io/
https://spark.apache.org/
https://www.tensorflow.org/
https://pytorch.org/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://github.com/apache/arrow/pull/34972
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Anneser et al.

[35] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastruc-
ture for the End of Moore’s Law. CoRR abs/2002.11054 (2020).

[36] Youngmoon Lee, Hassan Al Maruf, Mosharaf Chowdhury, and Kang G.
Shin. 2019. Mitigating the Performance-Efficiency Tradeoff in Resilient
Memory Disaggregation. CoRR abs/1910.09727 (2019).

[37] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neu-
mann. 2018. LeanStore: In-Memory Data Management beyond Main
Memory. In ICDE. IEEE Computer Society, 185–196.

[38] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar
Agarwal, et al. 2023. Pond: Cxl-based memory pooling systems for
cloud platforms. In ASPLOS.

[39] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and
Guy M. Lohman. 2013. NUMA-aware algorithms: the case of data
shuffling. In CIDR. www.cidrdb.org.

[40] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit O. Kanaujia, and Prakash Chauhan. 2023. TPP: Trans-
parent Page Placement for CXL-Enabled Tiered-Memory. In ASPLOS
(3). ACM, 742–755.

[41] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system.
In SOSP. ACM, 439–455.

[42] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with In-Memory Performance. In CIDR. www.cidrdb.org.

[43] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anas-
tasia Ailamaki. 2023. HetCache: Synergising NVMe Storage
and GPU-acceleration for Memory-Efficient Analytics. In CIDR.
www.cidrdb.org.

[44] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden,
and Matei Zaharia. 2018. Evaluating End-to-End Optimization for
Data Analytics Applications in Weld. Proc. VLDB Endow. 11, 9 (2018),
1002–1015.

[45] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muham-
mad Mukarram Bin Tariq, Rui Wang, Jianan Zhang, Virginia Beaure-
gard, Patrick Conner, Steve D. Gribble, Rishi Kapoor, Stephen Kratzer,
Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawh-
ney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang,
Junlan Zhou, and Amin Vahdat. 2022. Jupiter evolving: transforming
google’s datacenter network via optical circuit switches and software-
defined networking. In SIGCOMM. ACM, 66–85.

[46] Paula Pufek, H. Grgic, and Branko Mihaljevic. 2019. Analysis of
Garbage Collection Algorithms and Memory Management in Java.
In MIPRO. IEEE, 1677–1682.

[47] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,

Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. 2014. A reconfigurable fabric for accelerat-
ing large-scale datacenter services. In ISCA. IEEE Computer Society,
13–24.

[48] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In OSDI. USENIX Association, 315–332.

[49] Enrico Russo, Maurizio Palesi, Salvatore Monteleone, Davide Patti,
Giuseppe Ascia, and Vincenzo Catania. 2022. MEDEA: A Multi-
objective Evolutionary Approach to DNNHardwareMapping. InDATE.
IEEE, 226–231.

[50] David Reinsel-John Gantz-John Rydning, J Reinsel, and J Gantz. 2018.
The digitization of the world from edge to core. Framingham: Interna-
tional Data Corporation 16 (2018).

[51] Ian Schneider. 2022. Building low-carbon computer systems:
when does carbon diverge from cost? [Talk]. https://youtu.be/
W7uTbxCxmPg Last Accessed: 2023/05/17.

[52] Boris M Shabanov and Oleg I Samovarov. 2019. Building the software-
defined data center. Programming and Computer Software 45 (2019),
458–466.

[53] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2019.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In USENIX ATC. USENIX Association.

[54] Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying Zhang. 2022. Towards
a fully disaggregated and programmable data center. In APSys. ACM,
18–28.

[55] Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators:
Efficiently Integrating Custom Algorithms into Modern Databases.
Proc. VLDB Endow. 15, 5 (2022), 1119–1131.

[56] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the next generation. In EuroSys. ACM, 30:1–30:14.

[57] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2020. Building blocks for persistent memory.
VLDB J. 29, 6 (2020), 1223–1241.

[58] Lukas Vogel, Daniel Ritter, Danica Porobic, Pınar Tözün, Tianzheng
Wang, and Alberto Lerner. 2023. Data Pipes: Declarative Control over
Data Movement. In CIDR. www.cidrdb.org.

[59] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Viktor Leis,
Thomas Neumann, and Alfons Kemper. 2020. Mosaic: A Budget-
Conscious Storage Engine for Relational Database Systems. Proc.
VLDB Endow. 13, 11 (2020), 2662–2675.

[60] StephanieWang, Benjamin Hindman, and Ion Stoica. 2021. In reference
to RPC: it’s time to add distributed memory. In HotOS. ACM, 191–198.

[61] Yiying Zhang, Ardalan Amiri Sani, and Guoqing Harry Xu. 2021. User-
defined cloud. In HotOS. ACM, 33–40.

[62] Yang Zhou, Hassan M. G.Wassel, Sihang Liu, Jiaqi Gao, James Mickens,
Minlan Yu, Chris Kennelly, Paul Turner, David E. Culler, Henry M.
Levy, and Amin Vahdat. 2022. Carbink: Fault-Tolerant Far Memory. In
OSDI. USENIX Association, 55–71.

195

https://youtu.be/W7uTbxCxmPg
https://youtu.be/W7uTbxCxmPg

Bibliography

[1] Martıń Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
“TensorFlow: A System for Large-Scale Machine Learning”. In: OSDI.
USENIX Association, 2016, pp. 265–283.

[2] Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, and Vivek R.
Narasayya. “AutoAdmin: Self-Tuning Database Systems Technology”. In:
IEEE Data Eng. Bull. 29.3 (2006), pp. 7–15.

[3] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. “Automated
Selection of Materialized Views and Indexes in SQL Databases”. In: VLDB.
Morgan Kaufmann, 2000, pp. 496–505.

[4] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel
Gandhi, Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam,
Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei.
“Remote regions: a simple abstraction for remote memory”. In: USENIX
Annual Technical Conference. USENIX Association, 2018, pp. 775–787.

[5] Adnan Alhomssi and Viktor Leis. “Contention and Space Management
in B-Trees”. In: CIDR. 2021, pp. 26–37.

[6] AMD. 4th Generation AMD EPYC® Processors. 2023. url: https://www.
amd.com/en/products/processors/server/epyc/4th-generation-
9004-and-8004-series.html. Last accessed: 2023/12/05.

[7] Christoph Anneser, Andreas Kipf, Harald Lang, Thomas Neumann, and
Alfons Kemper. “The Case for Hybrid Succinct Data Structures”. In: EDBT.
2020, pp. 391–394.

[8] Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann,
and Alfons Kemper. “Adaptive Hybrid Indexes”. In: SIGMOD ’22: Interna-
tional Conference on Management of Data, Philadelphia, PA, USA, June 12
- 17, 2022. ACM, 2022, pp. 1626–1639.

[9] Christoph Anneser, Mario Petruccelli, Nesime Tatbul, David Cohen,
Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus, and
Alfons Kemper. “QO-Insight: Inspecting Steered Query Optimizers”. In:
PVLDB 16.12 (2023), pp. 3922–3925.

https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html
https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html

Bibliography

[10] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithvi-
raj Pandian, Nikolay Laptev, and Ryan Marcus. “AutoSteer: Learned
Query Optimization for Any SQL Database”. In: PVLDB 16.12 (2023),
pp. 3515–3527.

[11] Christoph Anneser, Lukas Vogel, Ferdinand Gruber, Maximilian Bandle,
and Jana Giceva. “Programming Fully Disaggregated Systems”. In: HotOS.
ACM, 2023, pp. 188–195.

[12] Applying Bao to Distributed Systems. 2021. url: https://rmarcus.info/
blog/2021/06/17/bao-distributed.html. Last accessed: 2023/08/02.

[13] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. “Spark SQL: Relational Data Processing
in Spark”. In: SIGMOD. ACM, 2015, pp. 1383–1394.

[14] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Mon-
ish Gupta, Sebastian Hillig, et al. “Amazon Redshift Re-invented”. In:
Proceedings of the 2022 International Conference on Management of Data.
2022, pp. 2205–2217.

[15] AutoSteer Prototype Implementation. 2022. url: https://github.com/
IntelLabs/Auto-Steer. Last accessed: 2023/12/14.

[16] Ron Avnur and Joseph M. Hellerstein. “Eddies: Continuously Adaptive
Query Processing”. In: SIGMOD. ACM, 2000, pp. 261–272.

[17] John Aycock. “A Brief History of Just-In-Time”. In: ACM Comput. Surv.
35.2 (2003), pp. 97–113.

[18] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, István
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, and Hugh Williams. “Sirius: A Flat Datacenter Network with
Nanosecond Optical Switching”. In: SIGCOMM. ACM, 2020, pp. 782–797.

[19] Bao for PostgreSQL. 2020. url: https://github.com/learnedsystems/
BaoForPostgreSQL. Last accessed: 2023/08/02.

[20] Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong Yuan,
Pierre Senellart, and Stéphane Bressan. “Cost-Model Oblivious Database
Tuning with Reinforcement Learning”. In: DEXA (1). Springer, 2015,
pp. 253–268.

[21] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. “Legion:
Expressing Locality and Independence with Logical Regions”. In: SC.
IEEE/ACM, 2012, p. 66.

91

https://rmarcus.info/blog/2021/06/17/bao-distributed.html
https://rmarcus.info/blog/2021/06/17/bao-distributed.html
https://github.com/IntelLabs/Auto-Steer
https://github.com/IntelLabs/Auto-Steer
https://github.com/learnedsystems/BaoForPostgreSQL
https://github.com/learnedsystems/BaoForPostgreSQL

Bibliography

[22] Rudolf Bayer. “The Universal B-Tree for Multidimensional Indexing:
general Concepts”. In: WWCA. Vol. 1274. Lecture Notes in Computer
Science. Springer, 1997, pp. 198–209.

[23] Rudolf Bayer and EdwardM. McCreight. “Organization andMaintenance
of Large Ordered Indices”. In: Acta Informatica 1 (1972), pp. 173–189.

[24] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior,
and Daniel Lemire. “Apache Calcite: A Foundational Framework for
Optimized Query Processing Over Heterogeneous Data Sources”. In:
SIGMOD. ACM, 2018, pp. 221–230.

[25] Philip A. Bernstein, Michael L. Brodie, Stefano Ceri, David J. DeWitt,
Michael J. Franklin, Hector Garcia-Molina, Jim Gray, Gerald Held, Joseph
M. Hellerstein, H. V. Jagadish, Michael Lesk, David Maier, Jeffrey F.
Naughton, Hamid Pirahesh, Michael Stonebraker, and Jeffrey D. Ullman.
“The Asilomar Report on Database Research”. In: SIGMOD Rec. 27.4
(1998), pp. 74–80.

[26] Timo Bingmann. STX B+-tree. 2007. url: http://panthema.net/2007/
stx-btree/. Last accessed: 2021/09/15.

[27] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allow-
able Errors”. In: Commun. ACM 13.7 (1970), pp. 422–426.

[28] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. “P4: Programming Protocol-Independent
Packet Processors”. In: Comput. Commun. Rev. 44.3 (2014), pp. 87–95.

[29] Sebastian Breß. “Why it is time for a HyPE: A Hybrid Query Processing
Engine for Efficient GPU Coprocessing in DBMS”. In: PVLDB 6.12 (2013),
pp. 1398–1403.

[30] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and
Gunter Saake. “GPU-Accelerated Database Systems: Survey and Open
Challenges”. In: Trans. Large Scale Data Knowl. Centered Syst. 15 (2014),
pp. 1–35.

[31] Matthew Butrovich, Wan Shen Lim, Lin Ma, John Rollinson, William
Zhang, Yu Xia, and Andrew Pavlo. “Tastes Great! Less Filling! High
Performance and Accurate Training Data Collection for Self-Driving
Database Management Systems”. In: SIGMOD. ACM, 2022, pp. 617–630.

[32] C++ Cuckoo Filter. url: https : / / github . com / efficient /
cuckoofilter. Last accessed: 2021/03/01.

[33] C++ HopscotchMap. url: https://github.com/Tessil/hopscotch-
map. Last accessed: 2021/03/01.

92

http://panthema.net/2007/stx-btree/
http://panthema.net/2007/stx-btree/
https://github.com/efficient/cuckoofilter
https://github.com/efficient/cuckoofilter
https://github.com/Tessil/hopscotch-map
https://github.com/Tessil/hopscotch-map

Bibliography

[34] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu,
Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu,
Feng Zhu, and Tong Zhang. “POLARDB Meets Computational Storage:
Efficiently Support Analytical Workloads in Cloud-Native Relational
Database”. In: FAST. USENIX Association, 2020, pp. 29–41.

[35] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. “Charac-
terizing, Modeling, and Benchmarking RocksDB Key-Value Workloads
at Facebook”. In: USENIX. 2020, pp. 209–223.

[36] Jared Casper and Kunle Olukotun. “Hardware Acceleration of Database
Operations”. In: FPGA. ACM, 2014, pp. 151–160.

[37] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. “A Cloud-Scale Acceleration Architecture”. In:
MICRO. IEEE Computer Society, 2016, 7:1–7:13.

[38] Hokeun Cha, Xiangpeng Hao, Tianzheng Wang, Huanchen Zhang,
Aditya Akella, and Xiangyao Yu. “Blink-hash: An Adaptive Hybrid Index
for In-Memory Time-Series Databases”. In: PVLDB 16.6 (2023), pp. 1235–
1248.

[39] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. “X10: An Object-Oriented Approach to Non-Uniform Cluster
Computing”. In: OOPSLA. ACM, 2005, pp. 519–538.

[40] Surajit Chaudhuri and Vivek R. Narasayya. “An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server”. In: VLDB. Morgan Kauf-
mann, 1997, pp. 146–155.

[41] Surajit Chaudhuri and Vivek R. Narasayya. “AutoAdmin “What-if” Index
Analysis Utility”. In: SIGMOD. ACM Press, 1998, pp. 367–378.

[42] Surajit Chaudhuri and Vivek R. Narasayya. “Self-Tuning Database Sys-
tems: A Decade of Progress”. In: VLDB. ACM, 2007, pp. 3–14.

[43] Surajit Chaudhuri and Gerhard Weikum. “Rethinking Database System
Architecture: Towards a Self-Tuning RISC-Style Database System”. In:
VLDB. Morgan Kaufmann, 2000, pp. 1–10.

[44] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika
Jimsheleishvilli, and Michael Andrews. “The MemSQL Query Optimizer:
A modern optimizer for real-time analytics in a distributed database”. In:
PVLDB 9.13 (2016), pp. 1401–1412.

93

Bibliography

[45] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun,
Huan Liu, and Feifei Li. “HotRing: A Hotspot-Aware In-Memory Key-
Value Store”. In: FAST. USENIX Association, 2020, pp. 239–252.

[46] Compute Express Link. url: https://www.computeexpresslink.org/
download-the-specification. Last accessed: 2023/12/02.

[47] Lixiao Cui, Kedi Yang, Yusen Li, Gang Wang, and Xiaoguang Liu. “Dif-
fLex: AHigh-Performance,Memory-Efficient andNUMA-Aware Learned
Index using Differentiated Management”. In: ICPP. ACM, 2023, pp. 62–71.

[48] CXL and GEN-Z Iron out a Coherent Interconnect Strategy. 2020. url:
https : / / www . nextplatform . com / 2020 / 04 / 03 / cxl - and - gen -
z-iron-out-a-coherent-interconnect-strategy/. Last accessed:
2023/05/17.

[49] Benoı̂t Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zaıẗ,
and Mohamed Ziauddin. “Automatic SQL Tuning in Oracle 10g”. In:
VLDB. Morgan Kaufmann, 2004, pp. 1098–1109.

[50] Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep
Kaushik. “Big data in healthcare: management, analysis and future
prospects”. In: J. Big Data 6 (2019), p. 54.

[51] Data Processing Units. 2020. url: https : / / www . nvidia . com / en -
us/networking/products/data-processing-unit/. Last accessed:
2023/05/17.

[52] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113.

[53] Amol Deshpande. “An Initial Study of Overheads of Eddies”. In: SIGMOD
Rec. 33.1 (2004), pp. 44–49.

[54] Amol Deshpande, Zachary G. Ives, and Vijayshankar Raman. “Adaptive
Query Processing”. In: Found. Trends Databases 1.1 (2007), pp. 1–140.

[55] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri,
and Vivek R. Narasayya. “AI Meets AI: Leveraging Query Executions to
Improve Index Recommendations”. In: SIGMOD. ACM, 2019, pp. 1241–
1258.

[56] Aleksandar Dragojevic, DushyanthNarayanan,Miguel Castro, andOrion
Hodson. “FaRM: Fast Remote Memory”. In: NSDI. USENIX Association,
2014, pp. 401–414.

[57] Explain Statements in Amazon Redshift. url: https : / / docs . aws .
amazon.com/redshift/latest/dg/r_EXPLAIN.html. Last accessed:
2023/11/30.

94

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://docs.aws.amazon.com/redshift/latest/dg/r_EXPLAIN.html
https://docs.aws.amazon.com/redshift/latest/dg/r_EXPLAIN.html

Bibliography

[58] Explain Statements in DuckDB. url: https : / / duckdb . org / docs /
guides/meta/explain.html. Last accessed: 2023/11/30.

[59] Explain Statements in Hyper. url: https : / / tableau . github . io /
hyper-db/docs/sql/command/explain/. Last accessed: 2023/11/30.

[60] Explain Statements in MySQL. url: https : / / dev . mysql . com / doc /
refman/8.0/en/using-explain.html. Last accessed: 2023/11/30.

[61] Explain Statements in PostgreSQL. url: https://www.postgresql.org/
docs/current/using-explain.html. Last accessed: 2023/11/30.

[62] Explain Statements in PrestoDB. url: https : / / prestodb . io / docs /
current/sql/explain.html. Last accessed: 2023/11/30.

[63] Explain Statements in Snowflake. url: https://docs.snowflake.com/
en/sql-reference/sql/explain. Last accessed: 2023/11/30.

[64] Explain Statements in SparkSQL. url: https://spark.apache.org/
docs/latest/sql-ref-syntax-qry-explain.html. Last accessed:
2023/11/30.

[65] Jian Fang, Yvo T. B. Mulder, Jan Hidders, Jinho Lee, and H. Peter Hofstee.
“In-memory database acceleration on FPGAs: a survey”. In: VLDB J. 29.1
(2020), pp. 33–59.

[66] Martin R. Frank, Edward Omiecinski, and Shamkant B. Navathe. “Adap-
tive and Automated Index Selection in RDBMS”. In: EDBT. Springer, 1992,
pp. 277–292.

[67] Florian Funke, Alfons Kemper, and Thomas Neumann. “Compacting
Transactional Data in Hybrid OLTP&OLAP Databases”. In: PVLDB 5.11
(2012). doi: 10.14778/2350229.2350258.

[68] David Gay and Alexander Aiken. “Memory Management with Explicit
Regions”. In: PLDI. ACM, 1998, pp. 313–323.

[69] Jiake Ge, Huanchen Zhang, Boyu Shi, Yuanhui Luo, Yunda Guo, Yunpeng
Chai, Yuxing Chen, and Anqun Pan. “SALI: A Scalable Adaptive Learned
Index Framework based on Probability Models”. In: CoRR abs/2308.15012
(2023).

[70] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek Gordon Mur-
ray, Steven Hand, and Michael Isard. “Broom: Sweeping Out Garbage
Collection from Big Data Systems”. In: HotOS. USENIX Association, 2015.

[71] Anastasios Gounaris, Norman W. Paton, Alvaro A. A. Fernandes, and
Rizos Sakellariou. “Adaptive Query Processing: A Survey”. In: BNCOD.
Vol. 2405. Lecture Notes in Computer Science. Springer, 2002, pp. 11–25.

95

https://duckdb.org/docs/guides/meta/explain.html
https://duckdb.org/docs/guides/meta/explain.html
https://tableau.github.io/hyper-db/docs/sql/command/explain/
https://tableau.github.io/hyper-db/docs/sql/command/explain/
https://dev.mysql.com/doc/refman/8.0/en/using-explain.html
https://dev.mysql.com/doc/refman/8.0/en/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html
https://prestodb.io/docs/current/sql/explain.html
https://prestodb.io/docs/current/sql/explain.html
https://docs.snowflake.com/en/sql-reference/sql/explain
https://docs.snowflake.com/en/sql-reference/sql/explain
https://spark.apache.org/docs/latest/sql-ref-syntax-qry-explain.html
https://spark.apache.org/docs/latest/sql-ref-syntax-qry-explain.html
https://doi.org/10.14778/2350229.2350258

Bibliography

[72] Goetz Graefe. “The Cascades Framework for Query Optimization”. In:
IEEE Data Eng. Bull. 18.3 (1995), pp. 19–29.

[73] Goetz Graefe and David J. DeWitt. “The EXODUS Optimizer Generator”.
In: SIGMOD. ACM Press, 1987, pp. 160–172.

[74] Goetz Graefe and William J. McKenna. “The Volcano Optimizer Genera-
tor: Extensibility and Efficient Search”. In: ICDE. IEEE Computer Society,
1993, pp. 209–218.

[75] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol
Deshpande, Kris Hildrum, Samuel Madden, Vijayshankar Raman, and
Mehul A. Shah. “Adaptive Query Processing: Technology in Evolution”.
In: IEEE Data Eng. Bull. 23.2 (2000), pp. 7–18.

[76] John Hennessy and David Patterson. ACM Turing Lecture. 2018. url:
https://www.acm.org/hennessy-patterson-turing-lecture. Last
accessed: 2023/12/14.

[77] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. “TCUDB: Accelerating
Database with Tensor Processors”. In: SIGMOD. ACM, 2022, pp. 1360–
1374.

[78] Nina C. Hubig, Linnea Passing, Maximilian E. Schüle, Dimitri Vorona,
Alfons Kemper, and Thomas Neumann. “HyPerInsight: Data Exploration
Deep Inside HyPer”. In: CIKM. ACM, 2017, pp. 2467–2470.

[79] Clive Humby. Data is the New Oil. 2006. url: https : / / ana . blogs .
com / maestros / 2006 / 11 / data _ is _ the _ new . html. Last accessed:
2023/12/01.

[80] Intel. 4th Generation Intel® Xeon® Scalable Processors. 2023. url: https:
/ / ark . intel . com / content / www / us / en / ark / products / series /
228622/4th-generation-intel-xeon-scalable-processors.html.
Last accessed: 2023/12/01.

[81] ISO/IEC 9075-2. Standard. June 2023.

[82] Guy Joseph Jacobson. “Succinct static data structures”. PhD thesis.
Carnegie Mellon University, 1988.

[83] Matthias Jarke and Jürgen Koch. “Query Optimization in Database Sys-
tems”. In: ACM Comput. Surv. 16.2 (1984), pp. 111–152.

[84] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, et al.
“In-Datacenter Performance Analysis of a Tensor Processing Unit”. In:
ISCA. ACM, 2017, pp. 1–12.

96

https://www.acm.org/hennessy-patterson-turing-lecture
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://ana.blogs.com/maestros/2006/11/data_is_the_new.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/228622/4th-generation-intel-xeon-scalable-processors.html

Bibliography

[85] Michael Jungmair, André Kohn, and Jana Giceva. “Designing an Open
Framework for Query Optimization and Compilation”. In: PVLDB 15.11
(2022), pp. 2389–2401.

[86] Kaan Kara, Jana Giceva, and Gustavo Alonso. “FPGA-based Data Parti-
tioning”. In: SIGMOD Conference. ACM, 2017, pp. 433–445.

[87] Alfons Kemper. Datenbanksysteme - Eine Einführung, 10. Auflage. De
Gruyter Studium. de Gruyter Oldenbourg, 2015.

[88] Alfons Kemper and Thomas Neumann. “HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots”.
In: ICDE. IEEE Computer Society, 2011, pp. 195–206.

[89] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini, De-
jan Kostic, Youngjin Kwon, Simon Peter, and Emmett Witchel. “LineFS:
Efficient SmartNIC Offload of a Distributed File System with Pipeline
Parallelism”. In: SOSP. ACM, 2021, pp. 756–771.

[90] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi,
and Jaehyok Chong. “Learned Cardinality Estimation: An In-depth
Study”. In: SIGMOD. ACM, 2022, pp. 1214–1227.

[91] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz,
and Alfons Kemper. “Learned Cardinalities: Estimating Correlated Joins
with Deep Learning”. In: CIDR. www.cidrdb.org, 2019.

[92] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa,
Christoph Anneser, Eleni Tzirita Zacharatou, Harish Doraiswamy, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper. “Adaptive Main-
Memory Indexing for High-Performance Point-Polygon Joins”. In: EDBT.
OpenProceedings.org, 2020, pp. 347–358.

[93] Peter M. Kogge and John Shalf. “Exascale Computing Trends: Adjusting
to the “New Normal” for Computer Architecture”. In: Comput. Sci. Eng.
15.6 (2013), pp. 16–26.

[94] Ron Kohavi, Neal J Rothleder, and Evangelos Simoudis. “Emerging
Trends in Business Analytics”. In: Communications of the ACM 45.8
(2002), pp. 45–48.

[95] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive Execution of
Compiled Queries”. In: ICDE. IEEE Computer Society, 2018, pp. 197–208.

[96] Artem Kroviakov, Petr Kurapov, Christoph Anneser, and Jana Giceva.
“Heterogeneous Intra-Pipeline Device-Parallel Aggregations”. In:DaMoN.
ACM, 2024, pp. 1–10.

97

Bibliography

[97] Philip Laird. “Dynamic Optimization”. In: ML. Morgan Kaufmann, 1992,
pp. 263–272.

[98] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandiver, Lyric Doshi, and Chuck Bear. “The Vertica Analytic Database:
C-Store 7 Years Later”. In: PVLDB 5.12 (2012), pp. 1790–1801.

[99] Viktor Leis, Alfons Kemper, and Thomas Neumann. “The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases”. In: ICDE. Vol. 13.
2013, pp. 38–49.

[100] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A.
Boncz, Alfons Kemper, and Thomas Neumann. “Query Optimization
Through the Looking Glass, andWhat We Found Running the Join Order
Benchmark”. In: VLDB J. 27.5 (2018), pp. 643–668.

[101] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann.
“The ART of Practical Synchronization”. In: DaMoN. 2016, pp. 1–8.

[102] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. “Identifying Hot
and Cold Data in Main-Memory Databases”. In: ICDE. IEEE. 2013, pp. 26–
37.

[103] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst,
Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agar-
wal, et al. “Pond: CXL-Based Memory Pooling Systems for Cloud Plat-
forms”. In: ASPLOS. 2023.

[104] Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S.
Colby, and Guy M. Lohman. “Adaptively Reordering Joins during Query
Execution”. In: ICDE. IEEE Computer Society, 2007, pp. 26–35.

[105] Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J Freed-
man. “Algorithmic Improvements for Fast Concurrent Cuckoo Hashing”.
In: EuroSys. 2014, pp. 1–14.

[106] Yongping Luo, Peiquan Jin, Zhaole Chu, Xiaoliang Wang, Yigui Yuan,
Zhou Zhang, Yun Luo, Xufei Wu, and Peng Zou. “Morphtree: a polymor-
phic main-memory learned index for dynamic workloads”. In: VLDB J.
(2023), pp. 1–20.

[107] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J. Gordon. “Query-based Workload Forecasting for
Self-Driving Database Management Systems”. In: SIGMOD. ACM, 2018,
pp. 631–645.

[108] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. “Active
Learning for ML Enhanced Database Systems”. In: SIGMOD. ACM, 2020,
pp. 175–191.

98

Bibliography

[109] Lin Ma, William Zhang, Jie Jiao, WuwenWang, Matthew Butrovich, Wan
Shen Lim, Prashanth Menon, and Andrew Pavlo. “MB2: Decomposed
Behavior Modeling for Self-Driving Database Management Systems”. In:
SIGMOD. ACM, 2021, pp. 1248–1261.

[110] Maria Malik and Houman Homayoun. “Big Data on Low Power Cores:
Are Low Power Embedded Processors a good fit for the Big Data Work-
loads?” In: 2015 33rd IEEE International Conference on Computer Design
(ICCD). 2015, pp. 379–382. doi: 10.1109/ICCD.2015.7357128.

[111] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad
Alizadeh, and Tim Kraska. “Bao: Making Learned Query Optimization
Practical”. In: SIGMOD. ACM, 2021, pp. 1275–1288.

[112] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad
Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. “Neo:
A Learned Query Optimizer”. In: CoRR abs/1904.03711 (2019).

[113] Ryan Marcus and Olga Papaemmanouil. “Deep Reinforcement Learning
for Join Order Enumeration”. In: aiDM@SIGMOD. ACM, 2018, 3:1–3:4.

[114] Hasan Al Maruf, HaoWang, Abhishek Dhanotia, JohannesWeiner, Niket
Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury,
Shobhit O. Kanaujia, and Prakash Chauhan. “TPP: Transparent Page
Placement for CXL-Enabled Tiered-Memory”. In: ASPLOS (3). ACM,
2023, pp. 742–755.

[115] Micron Memory Expansion Module. 2023. url: https : / / investors .
micron . com / news - releases / news - release - details / micron -
launches-memory-expansion-module-portfolio-accelerate-cxl.
Last accessed: 2023/12/08.

[116] Ralf Mikut and Markus Reischl. “Data mining tools”. In: Wiley interdisci-
plinary reviews: data mining and knowledge discovery 1.5 (2011), pp. 431–
443.

[117] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[118] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh,
Tim Kraska, Marc T. Friedman, and Alekh Jindal. “Steering Query Op-
timizers: A Practical Take on Big Data Workloads”. In: SIGMOD. ACM,
2021, pp. 2557–2569.

[119] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska,
and Mohammad Alizadeh. “Cost-Guided Cardinality Estimation: Focus
Where it Matters”. In: ICDE Workshops. IEEE, 2020, pp. 154–157.

99

https://doi.org/10.1109/ICCD.2015.7357128
https://investors.micron.com/news-releases/news-release-details/micron-launches-memory-expansion-module-portfolio-accelerate-cxl
https://investors.micron.com/news-releases/news-release-details/micron-launches-memory-expansion-module-portfolio-accelerate-cxl
https://investors.micron.com/news-releases/news-release-details/micron-launches-memory-expansion-module-portfolio-accelerate-cxl

Bibliography

[120] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime
Tatbul, Tim Kraska, and Mohammad Alizadeh. “Flow-Loss: Learning
Cardinality Estimates That Matter”. In: PVLDB 14.11 (2021), pp. 2019–
2032.

[121] Thomas Neumann and Michael J Freitag. “Umbra: A Disk-Based System
with In-Memory Performance”. In: CIDR. 2020.

[122] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet D. Tran, Álvaro
López Garcıá, Ignacio Heredia, Peter Malıḱ, and Ladislav Hluchý. “Ma-
chine Learning and Deep Learning frameworks and libraries for large-
scale data mining: a survey”. In: Artif. Intell. Rev. 52.1 (2019), pp. 77–
124.

[123] NoisePage: Self-Driving Database Management System. url: https://
noisepage.com/. Last accessed: 2023/12/12.

[124] oneAPI Unified Memory Framework. url: https://github.com/oneapi-
src/unified-memory-framework. Last accessed: 2023/12/14.

[125] Open Street Map Cells. url: http : / / www . opencellid . org. Last ac-
cessed: 2022/01/05.

[126] HweeHwa Pang, Michael J. Carey, and Miron Livny. “Memory-Adaptive
External Sorting”. In: VLDB. Morgan Kaufmann, 1993, pp. 618–629.

[127] HweeHwa Pang, Michael J. Carey, and Miron Livny. “Partially Preemp-
tive Hash Joins”. In: SIGMOD. ACM Press, 1993, pp. 59–68.

[128] Philippos Papaphilippou and Wayne Luk. “Accelerating Database Sys-
tems Using FPGAs: A Survey”. In: FPL. IEEE Computer Society, 2018,
pp. 125–130.

[129] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. “Automatic differentiation in PyTorch”. In: (2017).

[130] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah,
Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken,
Ziqi Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. “Self-Driving
Database Management Systems”. In: CIDR. www.cidrdb.org, 2017.

[131] Andy Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen
Lim, Dana Van Aken, and William Zhang. “Make Your Database System
Dream of Electric Sheep: Towards Self-Driving Operation”. In: PVLDB
14.12 (2021), pp. 3211–3221.

100

https://noisepage.com/
https://noisepage.com/
https://github.com/oneapi-src/unified-memory-framework
https://github.com/oneapi-src/unified-memory-framework
http://www.opencellid.org

Bibliography

[132] Christina Pavlopoulou, Michael J. Carey, and Vassilis J. Tsotras. “Re-
visiting Runtime Dynamic Optimization for Join Queries in Big Data
Management Systems”. In: SIGMOD Rec. 52.1 (June 2023), pp. 104–113.
issn: 0163-5808. doi: 10.1145/3604437.3604460. url: https://doi.
org/10.1145/3604437.3604460.

[133] Josep M. Pérez, Rosa M. Badia, and Jesús Labarta. “Handling Task De-
pendencies Under Strided and Aliased References”. In: ICS. ACM, 2010,
pp. 263–274.

[134] Andrea Pietracaprina, Matteo Riondato, Eli Upfal, and Fabio Vandin.
“Mining Top-K Frequent Itemsets Through Progressive Sampling”. In:
Data Mining and Knowledge Discovery 21.2 (2010), pp. 310–326.

[135] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muhammad
Mukarram Bin Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard,
Patrick Conner, Steve D. Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang
Li, Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei
Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou,
and Amin Vahdat. “Jupiter Evolving: Transforming Google’s Datacenter
Network via Optical Circuit Switches and Software-DefinedNetworking”.
In: SIGCOMM. ACM, 2022, pp. 66–85.

[136] PrestoDB on GitHub. 2023. url: https : / / github . com / prestodb /
presto. Last accessed: 2023/08/02.

[137] Magdalena Pröbstl, Philipp Fent, Maximilian E. Schüle, Moritz Sichert,
Thomas Neumann, and Alfons Kemper. “One Buffer Manager to Rule
Them All: Using Distributed Memory with Cache Coherence over
RDMA”. In: ADMS@VLDB. 2021, pp. 17–26.

[138] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip
Yi Xiao, and Doug Burger. “A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services”. In: ISCA. IEEE Computer Society, 2014,
pp. 13–24.

[139] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. “Us-
ing State Modules for Adaptive Query Processing”. In: ICDE. IEEE Com-
puter Society, 2003, pp. 353–364.

101

https://doi.org/10.1145/3604437.3604460
https://doi.org/10.1145/3604437.3604460
https://doi.org/10.1145/3604437.3604460
https://github.com/prestodb/presto
https://github.com/prestodb/presto

Bibliography

[140] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman. “Automat-
ing Physical Database Design in a Parallel Database”. In: SIGMOD. ACM,
2002, pp. 558–569.

[141] Alexander van Renen and Viktor Leis. “Cloud Analytics Benchmark”. In:
Proc. VLDB Endow. 16.6 (2023), pp. 1413–1425.

[142] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and
Alfons Kemper. “Building blocks for persistent memory”. In: VLDB J.
29.6 (2020), pp. 1223–1241.

[143] Wolf Rödiger, Tobias Mühlbauer, Philipp Unterbrunner, Angelika Reiser,
Alfons Kemper, and Thomas Neumann. “Locality-Sensitive Operators
for Parallel Main-Memory Database Clusters”. In: ICDE. IEEE Computer
Society, 2014, pp. 592–603.

[144] Thomas A. Runkler.Data Analytics - Models and Algorithms for Intelligent
Data Analysis, Third Edition. Springer, 2012. isbn: 978-3-658-14074-8. doi:
10.1007/978-3-658-14075-5.

[145] David Reinsel-John Gantz-John Rydning, J Reinsel, and J Gantz. “The Dig-
itization of the World From Edge to Core”. In: Framingham: International
Data Corporation 16 (2018).

[146] Samsung CXL Memory Module. 2023. url: https : / / news . samsung .
com/global/samsung-electronics-introduces-industrys-first-
512gb-cxl-memory-module. Last accessed: 2023/12/14.

[147] Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann,
and Alfons Kemper. “B2-Tree: Cache-Friendly String Indexing within
B-Trees”. In: BTW. Vol. P-311. LNI. Gesellschaft für Informatik, Bonn,
2021, pp. 39–58.

[148] Tobias Schmidt, Philipp Fent, and Thomas Neumann. “Efficiently Com-
piling Dynamic Code for Adaptive Query Processing”. In: ADMS@VLDB.
2022, pp. 11–22.

[149] Maximilian E. Schüle, Matthias Bungeroth, Dimitri Vorona, Alfons Kem-
per, Stephan Günnemann, and Thomas Neumann. “ML2SQL - Compiling
a Declarative Machine Learning Language to SQL and Python”. In: EDBT.
OpenProceedings.org, 2019, pp. 562–565.

[150] Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and Thomas Neu-
mann. “Freedom for the SQL-Lambda: Just-in-Time-Compiling User-
Injected Functions in PostgreSQL”. In: SSDBM. ACM, 2020, 6:1–6:12.

[151] Maximilian E. Schüle, Harald Lang, Maximilian Springer, Alfons Kemper,
Thomas Neumann, and Stephan Günnemann. “In-Database Machine
Learning with SQL on GPUs”. In: SSDBM. ACM, 2021, pp. 25–36.

102

https://doi.org/10.1007/978-3-658-14075-5
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module

Bibliography

[152] Maximilian E. Schüle, Frédéric Simonis, Thomas Heyenbrock, Alfons
Kemper, Stephan Günnemann, and Thomas Neumann. “In-Database Ma-
chine Learning: Gradient Descent and Tensor Algebra for Main Memory
Database Systems”. In: BTW. Vol. P-289. LNI. Gesellschaft für Informatik,
Bonn, 2019, pp. 247–266.

[153] Maximilian E. Schüle, Maximilian Springer, Alfons Kemper, and Thomas
Neumann. “LLVM code optimisation for automatic differentiation: when
forward and reverse mode lead in the same direction”. In: DEEM@SIG-
MOD. ACM, 2022, 5:1–5:4.

[154] Maximilian Emanuel Schüle. “Recursive SQL and GPU-Support for In-
Database Machine Learning”. In: BTW. Vol. P-331. LNI. Gesellschaft für
Informatik e.V., 2023, p. 931.

[155] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. “Access Path Selection in a Rela-
tional Database Management System”. In: SIGMOD. ACM, 1979, pp. 23–
34.

[156] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei
Xie, Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema
Shingte, and Christopher Berner. “Presto: SQL on Everything”. In: ICDE.
IEEE, 2019, pp. 1802–1813.

[157] Boris M Shabanov and Oleg I Samovarov. “Building the Software-Defined
Data Center”. In: Programming and Computer Software 45 (2019), pp. 458–
466.

[158] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis. “Optimizing ETL
Processes in Data Warehouses”. In: ICDE. IEEE Computer Society, 2005,
pp. 564–575.

[159] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr
El-Helw, Zhongxian Gu, Entong Shen, George C. Caragea, Carlos Garcia-
Alvarado, Foyzur Rahman, Michalis Petropoulos, Florian Waas, Sivara-
makrishnan Narayanan, Konstantinos Krikellas, and Rhonda Baldwin.
“Orca: A Modular Query Optimizer Architecture for Big Data”. In: SIG-
MOD. ACM, 2014, pp. 337–348.

[160] Stack Benchmark. 2022. url: https://rmarcus.info/stack.html. Last
accessed: 2022/11/27.

[161] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held. “The
Design and Implementation of INGRES”. In: ACM Trans. Database Syst.
1.3 (1976), pp. 189–222.

103

https://rmarcus.info/stack.html

Bibliography

[162] Storage Performance Development Kit (SPDK). 2023. url: https://spdk.
io/. Last accessed: 2023/12/12.

[163] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. “Learned
Cardinality Estimation: A Design Space Exploration and A Comparative
Evaluation”. In: PVLDB 15.1 (2021), pp. 85–97.

[164] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing
Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. “Borg:
the Next Generation”. In: EuroSys. ACM, 2020, 30:1–30:14.

[165] Mads Tofte and Jean-Pierre Talpin. “Region-based Memory Manage-
ment”. In: Inf. Comput. 132.2 (1997), pp. 109–176.

[166] TPC-DS Benchmark. 2022. url: https://www.tpc.org/tpcds. [Last
accessed: 2022/11/27].

[167] TPC-H Benchmark. 2023. url: https : / / www . tpc . org / tpch. [Last
accessed: 2023/10/03].

[168] Immanuel Trummer and Christoph Koch. “Parallelizing Query Optimiza-
tion on Shared-Nothing Architectures”. In: PVLDB 9.9 (2016), pp. 660–
671.

[169] Sandeep Tyagi. “Using Data Analytics for Greater Profits”. In: Journal of
Business Strategy 24.3 (2003), pp. 12–14.

[170] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and
Alan Skelley. “DB2 Advisor: An Optimizer Smart Enough to Recommend
Its Own Indexes”. In: ICDE. IEEE Computer Society, 2000, pp. 101–110.

[171] Jeffrey S Vitter. “Random Sampling with a Reservoir”. In: ACM Transac-
tions on Mathematical Software (TOMS) 11.1 (1985), pp. 37–57.

[172] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Viktor Leis,
Thomas Neumann, and Alfons Kemper. “Mosaic: A Budget-Conscious
Storage Engine for Relational Database Systems”. In: PVLDB 13.11 (2020),
pp. 2662–2675.

[173] Lukas Vogel, Daniel Ritter, Danica Porobic, Pınar Tözün, Tianzheng
Wang, and Alberto Lerner. “Data Pipes: Declarative Control over Data
Movement”. In: CIDR. www.cidrdb.org, 2023.

[174] XiaoyingWang, ChangboQu,WeiyuanWu, JiannanWang, andQingqing
Zhou. “Are We Ready For Learned Cardinality Estimation?” In: PVLDB
14.9 (2021), pp. 1640–1654.

104

https://spdk.io/
https://spdk.io/
https://www.tpc.org/tpcds
https://www.tpc.org/tpch

Bibliography

[175] Gerhard Weikum, Axel Mönkeberg, Christof Hasse, and Peter Zabback.
“Self-tuning Database Technology and Information Services: from Wish-
ful Thinking to Viable Engineering”. In: VLDB. Morgan Kaufmann, 2002,
pp. 20–31.

[176] Leon Windheuser, Christoph Anneser, Huanchen Zhang, Thomas Neu-
mann, and Alfons Kemper. “Adaptive Compression for Databases”. In:
EDBT. OpenProceedings.org, 2024, pp. 143–149.

[177] Christian Winter, Andreas Kipf, Christoph Anneser, Eleni Tzirita
Zacharatou, Thomas Neumann, and Alfons Kemper. “GeoBlocks: A
Query-Cache Accelerated Data Structure for Spatial Aggregation over
Polygons”. In: EDBT. OpenProceedings.org, 2021, pp. 169–180.

[178] Lucas Woltmann, Jerome Thiessat, Claudio Hartmann, Dirk Habich, and
Wolfgang Lehner. “FASTgres: Making Learned Query Optimizer Hinting
Effective”. In: PVLDB 16.11 (2023), pp. 3310–3322.

[179] Jinsong Wu, Song Guo, Jie Li, and Deze Zeng. “Big Data Meet Green
Challenges: Greening Big Data”. In: IEEE Syst. J. 10.3 (2016), pp. 873–887.

[180] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A large scale analysis of
hundreds of in-memory cache clusters at Twitter”. In: OSDI. USENIX
Association, 2020, pp. 191–208.

[181] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael
Luo, and Ion Stoica. “Balsa: Learning a Query Optimizer Without Expert
Demonstrations”. In: SIGMOD. ACM, 2022, pp. 931–944.

[182] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi
Chen, and Ion Stoica. “NeuroCard: One Cardinality Estimator for All
Tables”. In: PVLDB 14.1 (2020), pp. 61–73.

[183] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. “Reinforcement
Learning with Tree-LSTM for Join Order Selection”. In: ICDE. IEEE, 2020,
pp. 1297–1308.

[184] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. “Spark: Cluster Computing with Working Sets”. In: Hot-
Cloud. USENIX Association, 2010.

[185] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui
Zhang. “In-Memory Big Data Management and Processing: A Survey”.
In: TKDE 27.7 (2015), pp. 1920–1948.

[186] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kamin-
sky, Lin Ma, and Rui Shen. “Reducing the Storage Overhead of Main-
Memory OLTP Databases with Hybrid Indexes”. In: SIGMOD. ACM. 2016,
pp. 1567–1581.

105

Bibliography

[187] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen,
Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo. “SuRF: Practi-
cal Range Query Filtering with Fast Succinct Tries”. In: SIGMOD. 2018,
pp. 323–336.

[188] Wangda Zhang, Matteo Interlandi, Paul Mineiro, Shi Qiao, Nasim Ghaz-
anfari, Karlen Lie, Marc T. Friedman, Rafah Hosn, Hiren Patel, and Alekh
Jindal. “Deploying a Steered Query Optimizer in Production atMicrosoft”.
In: SIGMOD. ACM, 2022, pp. 2299–2311.

[189] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie
Chaiken, and Darren Shakib. “SCOPE: parallel databases meet MapRe-
duce”. In: VLDB J. 21.5 (2012), pp. 611–636.

[190] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. “Spitfire: A
Three-Tier Buffer Manager for Volatile and Non-Volatile Memory”. In:
SIGMOD. 2021, pp. 2195–2207.

[191] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker.
“Two is Better Than One: The Case for 2-Tree for Skewed Data Sets”. In:
CIDR. www.cidrdb.org, 2023.

[192] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. “A
Learned Query Rewrite System using Monte Carlo Tree Search”. In:
PVLDB 15.1 (2021), pp. 46–58.

[193] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler,
Ziniu Wu, and Jingren Zhou. “Lero: A Learning-to-Rank Query Opti-
mizer”. In: PVLDB 16.6 (2023), pp. 1466–1479.

[194] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J.
Storm, Christian Garcia-Arellano, and Scott Fadden. “DB2 Design Advi-
sor: Integrated Automatic Physical Database Design”. In: VLDB. Morgan
Kaufmann, 2004, pp. 1087–1097.

106

	Acknowledgments
	Preface
	Introduction
	Increasing Demand for Data Analytics
	Adaptive Optimizations for Databases
	Index Structures
	Query Optimization
	Fully Disaggregated Systems

	Outline

	Research Methodology
	Adaptive Hybrid Indexes
	Scientific Method
	Implementation Overview
	Evaluation

	Steering Query Optimizers
	Scientific Method
	Implementation Overview
	Evaluation

	Programming Fully Disaggregated Systems
	Key Trends in Large-Scale Data-Center Computing
	Programming Model Design
	Conclusions

	Related Work
	Adaptive Hybrid Indexes
	Learned Query Optimization
	Programming Fully Disaggregated Systems
	Adaptive Query Optimization and Execution
	Self-Driving Database System

	Conclusions
	Adaptive Hybrid Indexes
	Synopsis
	Contributions and Publication Details

	AutoSteer: Learned Query Optimization for Any SQL Database
	Synopsis
	Contributions and Publication Details

	Programming Fully Disaggregated Systems
	Synopsis
	Contributions and Publication Details

	Bibliography

