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Abstract

Recently, we have witnessed advanced artificial intelligence (AI) models used in many
domains, such as medicine, finance, and education. However, there have been concerns
raised that AI systems could become so advanced that they might replace people in
many jobs and make decisions over human control. To address these concerns, many
prominent institutes propose the strategy of Human-centered AI (HAI) to ensure that
the next generation of AI will technically reflect human behaviors, focus on the impact
of AI on humans, and augment humans’ capabilities rather than replace them.
This dissertation focuses on building HAI models that can capture the complexity

of human intelligence, understand human needs, and provide human-understandable
explanations to build trustworthy and reliable AI systems. Concretely, this dissertation
studies three inseparable research challenges to promote HAI:
(1) Human attention: incorporating human expertise in visual perception into the

decision-making to enhance the model capability. In particular, this part proposes to
use human gaze-based attention data to enhance the model attention module, which
improves model performance in challenging visual tasks such as exploring fine-grained
distinct features.

(2) Human intentions: designing models that can better foresee a human’s reaction,
i.e., intentions, within specific contexts for achieving effective human-AI collaboration.
This part uses high-level autonomous driving applications as an illustrative case, where
AI models are integrated within the driving cabin to facilitate seamless human-AI inter-
action.

(3) Human comprehension: ensuring solutions provided by models are explainable
and user-friendly. This research proposes to integrate the human factor of reasoning
into procedures for evaluating various explanation methodologies and for novel model
explanation design to enhance human comprehension of AI.
This dissertation delves into the practical implications of integrating artificial intelli-

gence in critical domains like autonomous driving and medical diagnostic support sys-
tems. It proposes novel perspectives to improve model capabilities through the incorpo-
ration of human expertise, to infer human intentions from actions using AI algorithms,
and to provide tailored model explanations to enhance human comprehension. These
contributions are beneficial in fostering an effective and reliable collaboration between
humans and AI models.
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Zusammenfassung

Heutzutage werden immer mehr Fortschrittliche künstliche Intelligenz (KI)-Modelle in
vielen Bereichen wie Medizin, Finanzen und Bildung routinemäßig eingesetzt. Damit
einhergehend wächst die Sorge, dass solche KI-Systeme Menschen in vielen Jobs ersetzen
und Entscheidungen fernab menschlicher Kontrolle treffen könnten. Um diese Bedenken
anzugehen, schlagen viele prominente Institute eine Strategie der Human-centered AI
(HAI) vor, um sicherzustellen, dass die nächste KI-Generation technisch menschliche
Intelligenz widerspiegelt, sich auf die Auswirkungen der KI auf Menschen konzentriert
und Menschen eher verbessert als ersetzt.
Meine Dissertation befasst sich mit dem Aufbau von humanzentrierten KI-Modellen,

die die Komplexität menschlicher Intelligenz erfassen, menschliche Bedürfnisse verstehen
und menschlich nachvollziebare Erklärungen liefern können, um vertrauenswürdige und
zuverlässige KI-Systeme zu entwickeln.
Konkret untersuche ich drei untrennbare Forschungsherausforderungen zur Förderung

von HAI:
(1) Menschliche Aufmerksamkeit: Integration von menschlichem Fachwissen in

die Entscheidungsfindung zur Verbesserung der Modellfähigkeit. Insbesondere schlage
ich vor,
zusätzlich zu gängigen Dateneingaben Aufmerksamkeitsdaten, die auf Blickerfassung von
Menschen basieren, in das Modell einzupflegen. Dies verbessert nachweislich die Mod-
ellleistung bei anspruchsvollen visuellen Aufgaben wie der Erkundung von feinkörnigen
Unterscheidungsmerkmalen.
(2) Menschliche Bedürfnisse: Entwicklung von Modellen, die menschliche Ab-

sichten in spezifischen Kontexten besser verstehen können, um eine effektive Zusamme-
narbeit zwischen Mensch und KI zu erreichen. Ich verwende Anwendungen im Bereich
des autonomen Fahrens als Beispiele, in denen KI-Modelle in die Fahrerkabine integriert
sind, um eine nahtlose Interaktion zwischen Mensch und KI herzustellen.
(3) Menschliches Verständnis: Gewährleistung, dass von KI-Modellen bereit-

gestellte Lösungsvorschläge erklärbar und benutzerfreundlich sind. Diese Forschung in-
tegriert den menschlichen Faktor logisches Denken in Anwendungen zur Verbesserung
des menschlichen Verständnisses von KI und in die empirische Bewertung verschiedener
Erklärungsmethoden.
Meine Forschung hat bedeutende Auswirkungen auf eine Vielzahl praktischer Anwen-

dungen, beispielsweise autonomes Fahren und medizinische Diagnoseunterstützungs-
systeme und liefert potenzielle Lösungen, die eine effiziente und sichere Zusammenar-
beit zwischen Menschen und KI erleichtern und so eine Synergie erreichen, bei der das
Ergebnis die Summe der Einzelbeiträge übertrifft.

vii





Contents

Acknowledgements iii

Abstract v

Zusammenfassung vii

Contents ix

List of Figures xiii

List of Tables xxi

Acronyms xxv

1 Introduction 1
1.1 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Human Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Human Intention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Human Comprehension . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Exploration using Eye Tracking . . . . . . . . . . . . . . . . . . . . 8

1.3.2 XAI Evaluation Guidelines . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Deployment in Practical Applications . . . . . . . . . . . . . . . . 10

1.3.4 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 13
2.1 Human Attention in AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Gaze-based Attention in AI . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Attention in Neural Networks . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Comparison Between Human and Model Attention. . . . . . . . . . 14

2.2 Driver Intention Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Maneuver Behavior Prediction. . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Gaze-Object Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Gaze-based Attention Prediction . . . . . . . . . . . . . . . . . . . 16

2.3 Human factors in Explainable AI . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Functional-grounded Evaluation . . . . . . . . . . . . . . . . . . . 17

ix



CONTENTS

2.3.2 Human-grounded Evaluation . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 User-centric XAI design . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Current Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I Incorporating Human Attention 21

3 Human Gaze-based Attention in Classification 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 CUB-GHA Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Gaze Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Human Attention Saliency Map Generation . . . . . . . . . . . . . 28

3.3 Comparison between Human and Post-hoc Model Attention . . . . . . . . 29

3.4 Human Attention Integration Strategy . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Gaze Augmentation Training . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Knowledge Fusion Network . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Evaluation on CUB-GHA . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.3 Evaluation on CXR-Eye . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II Predicting Human Intention 39

4 Driver Intention Prediction 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Driver Intention Prediction based on Videos . . . . . . . . . . . . . . . . . 46

4.2.1 Driver Maneuver Prediction Framework . . . . . . . . . . . . . . . 47

4.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Driver Attention-based Object Detection . . . . . . . . . . . . . . . . . . . 55

4.3.1 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Evaluation on BDD-A . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.5 Evaluation on DR(eye)VE . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

III Enhancing Human Comprehension 71

5 Evaluating Model Explanations 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

x



CONTENTS

5.2 Bias in Automatic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Retraining Evaluation Strategies . . . . . . . . . . . . . . . . . . . 79

5.2.2 Bias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.3 Debiasing Evaluation Strategy . . . . . . . . . . . . . . . . . . . . 83

5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.5 Discussion: GAN Imputation . . . . . . . . . . . . . . . . . . . . . 87

5.3 Guidelines for Human-grounded Evaluation . . . . . . . . . . . . . . . . . 91

5.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2.1 Before User Study . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2.2 During User Study . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2.3 After User Study . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Tailoring Explanations to User Expertise 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 I-CEE: Image Classification Explanations tailored to User Expertise . . . 103

6.3.1 User Expertise Estimation . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.2 Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Experimental with Simulated Users . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Implementation of I-CEE . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.3 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.4 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Experiments with Human Users . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 User Study Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusions and Future Work 119

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 125

A Human Attention in Fine-grained Classification 151

A.1 Gaze Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Additional Comparison between ME and HA . . . . . . . . . . . . . . . . 153

xi



CONTENTS

B Driver Intention Anticipation 155
B.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2 Additional Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 156

C Driver Attention-based Object Detection 159
C.1 Results of Our YOLOv3- and CenterTrack-based Models . . . . . . . . . . 159
C.2 Results of Different Input Sequence Lengths of LSTM . . . . . . . . . . . 159
C.3 More Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.3.1 BDD-A Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
C.3.2 DR(eye)VE Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D A Consistent and Efficient Evaluation Strategy for Attribution Methods 163
D.1 Additional Experiments on Food-101 . . . . . . . . . . . . . . . . . . . . . 163

D.1.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 163
D.1.2 Consistency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.2 Additional Results on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . 165
D.2.1 Extended Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
D.2.2 Consistency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 165

E Towards Human-centered XAI 171
E.1 Data-driven Bibliometric Analysis . . . . . . . . . . . . . . . . . . . . . . 171
E.2 Foundation of XAI User Studies . . . . . . . . . . . . . . . . . . . . . . . 171

F I-CEE: Tailoring Explanations of Image Classifications Models to User Ex-
pertise 175
F.1 Addtional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
F.2 Target Models and Explanations . . . . . . . . . . . . . . . . . . . . . . . 175

F.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
F.3 Hyper-parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
F.4 Details of Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

F.4.1 Bayesian Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
F.4.2 Active Learning Baselines . . . . . . . . . . . . . . . . . . . . . . . 178

F.5 Computational Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 179

xii



List of Figures

1.1 Illustration of three research challenges for addressing Human-centered
AI in this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Human gaze-based attention examples on two datasets: Left: CUB-200-
2011 [1] for fine-grained bird species classification; Right: Chest X-Ray [2]
for diagnostic classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Illustration of driver intention prediction. In this video, the car slows
down at a cross and turns right. The prediction is made after every second.
If the prediction is correct, there is a ✓. (Frames from Brain4cars [3].) . . 4

1.4 Driver attentive object detection: Left: This frame, sourced from the
BDD-A dataset [4], depicts a vehicle approaching a crossroad and over-
taking stationary vehicles in the right lane. Middle: Objects detected
using YOLOv5 [5]. Right: Objects of the driver’s intention, suggesting
the driver intends to cautiously pass the cars on the right lane. . . . . . . 6

1.5 I-CEE tailors the explanation process to each user by considering their
expertise. By selecting the most informative explanations based on esti-
mated user expertise, I-CEE can improve the user’s understanding of the
ML model’s decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 CUB-GHA (Gaze-based Human Attention) dataset. Left: a static ag-
gregated heatmap; Right: a sequence of fixation heatmaps for human
attention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Methodology overview highlights two primary processes. Firstly, the HA
saliency map is employed to pinpoint areas of focus, which are then in-
corporated to improve the training dataset in the Gaze Augmentation
Training (Left). Secondly, this HA saliency map serves as an additional
information channel, which is integrated with the existing image data in
the Knowledge Fusion Network (Right). . . . . . . . . . . . . . . . . . . . 26

3.2 (a) Eye Tracker Configuration: A Tobii Spectrum eye-tracker is utilized,
capable of recording gaze patterns at a swift 1200 Hz frequency. (b)
Data Collection: The first step provides a diagrammatic representation
of the task where participants view images of two distinct species. In the
second step, an image of one randomly chosen species is displayed for gaze
tracking. To make the process engaging for participants, they are asked
to identify the species in the third step. (c) Data Preparation: Gaussian-
based techniques are utilized to visually depict human attention through
saliency maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xiii



LIST OF FIGURES

3.3 Illustration of a person viewing an image on an eye-tracking monitor. . . . 28

3.4 Comparison between HA and ME in identifying distinct features. Top:
It shows the test accuracy on altered datasets utilizing various saliency
maps. The horizontal axis represents the percentage of insertion, while
the vertical axis indicates the accuracy on the test set. The Area Under
the Curve (AUC) for each line is detailed in the enlarged image. Middle:
This part presents images modified with Grad-CAM as a representative
example. Bottom: This section visually represents HA and the four
different MEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Illustration of cropped images used in the GAT. Left and Right: Saliency
maps from HA applied for augmentation on CUB-GHA and CXR-Eye.
Middle: Images cropped at three different scales (large, medium, and
small). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Illustration of model explanations using HA. Two improved examples and
one failure example of our model are shown. For each of these cases, we
present the input alongside the misclassified categories: HA saliency map,
the explanation of our model, and the explanation of the baseline model. . 36

3.7 Illustration of the influence of using HA in model explanation. Left to
Right: the original Chest X-ray image; HA saliency map; Model expla-
nation of the Image Branch (w/o HA knowledge) and Model explanation
of the HA Branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 The overview of our framework. The upper branch depicts the feature
extraction from out-cabin videos: FlowNet 2.0 [6] extracts the optical
flow from the consecutive frames; then the traffic motion is captured by
a ConvLSTM-based encoder. The bottom branch represents the feature
extraction from in-cabin videos based on the 3D ResNet-50 network. The
red frame at the end refers to the classifier, where a decoder (marked as
“Conv Layers”) for outside features is integrated. This novel classifier
architecture allows features from inside and outside of the cabin to be
considered jointly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Architecture of the proposed future motion prediction module. . . . . . . 48

4.3 The architecture inside the Conv-Block. . . . . . . . . . . . . . . . . . . . 49

4.4 MSE for different interval values. . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 The comparison of target and the predicted image. . . . . . . . . . . . . . 52

4.6 Overview of our proposed critical object detection framework. The fea-
ture encoder extracts features from the input image. The gaze pre-
diction module predicts driver attention in a grid-based saliency map
and the object detection module detects all the objects in the traf-
fic using extracted features. The attention-based objects are detected
and returned to users based on the predicted saliency map and detected
objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Overview of our proposed driver attention-based object detection frame-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiv



LIST OF FIGURES

4.8 Illustration of transforming a saliency map into a grid-vector. The used
grid here is 4×4. Grid cells 5, 9, and 10 reach the threshold, therefore the
grid-vector y for the saliency map M is [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]. 58

4.9 ROC curves and computed thresholds on the BDD-A. On the right, the
curves are zoomed in and the points that belong to the computed thresh-
olds are marked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Comparison of predicted driver attention saliency maps using different
models. (a) Ground-truth driver attention map; (b) The baseline saliency
map (center-bias); (c-f) Predictions using models [7, 8, 9, 10]; (g-i) Pre-
dictions using our framework with different backbones. . . . . . . . . . . . 64

4.11 Comparison of attention-based object detection using different models.
(a) Ground-truth attention; (b-d) Predictions using our framework with
different backbones; (e-h) Predictions using models [7, 8, 9, 10]; (i) Object
detection without driver attention. . . . . . . . . . . . . . . . . . . . . . 65

4.12 Comparison of our prediction, ground-truth in attention-based object de-
tection and not using attention-based object detection on BDD-A test set.
(Failed cases.) Left: Our prediction; Middle: Ground-truth; Right:
Object detection without driver attention. Better view in colors. . . . . . 66

4.13 ROC curves and computed thresholds on the DR(eye)VE. On the right,
the curves are zoomed in and the points that belong to the computed
thresholds are marked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Comparison of our prediction, ground-truth in attention-based object de-
tection and not using attention-based object detection on the DR(eye)VE
test set (Th = 0.4 to better illustrate the wrongly predicted attention
region in the failed case). (The second line is a failed case.) Left: Our
prediction; Middle: Ground-truth; Right: Object detection without
driver attention. Better view in colors. . . . . . . . . . . . . . . . . . . . . 68

4.15 Comparison of predicted gaze maps without and with LSTM and ground-
truth Left: Our prediction without LSTM; Middle: Our prediction with
LSTM; Right: Ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Comparison between previous removal and retraining evaluation strategies
(Top) and ours (Bottom). Previously, rankings of different attribution
methods, Integrated Gradients (IG) [11] and its two variants SmoothGrad
(IG-SG) [12], SmoothGrad2 (IG-SQ) [13], are highly inconsistent with re-
spect to hyperparameters such as the removal orders Most Relevant First
(MoRF) and Least Relevant First (LeRF). Our ROAD strategy achieves
a consistent ranking using only 1% of the previously required resources. . 78

xv



LIST OF FIGURES

5.2 Accuracy of a trained classifier only using the binary masks M without
feature values as input on the CIFAR-10 data set. Binary masks M were
computed for different variants of IG and GB. Only the masks contain
enough information to reach an accuracy of almost up to 80% (compared
to 85% with full images) highlighting that the feature values do not play
an important role in the evaluation. This underlines the necessity to
compensate for this confounder. . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 The considered imputation operators. When 50% of the original image
(a) are removed, they can either be imputed by a fixed value (b) or by our
proposed Noisy Linear strategy (c,d). Training of an imputation predictor
(e) shows that it is much harder to tell which pixels are original and which
were imputed when using our proposed imputation model. This is closer
to the optimal, minimally revealing imputation (black). Hence, by using
imputed samples of this kind, Class Information Leakage is reduced. . . . 82

5.4 Illustration of modified data set in MoRF/LeRF and fixed value impu-
tation settings. Left: Modifications in the MoRF framework. Right:
Modifications in the LeRF framework. Top to Bottom: Modifications
using Integrated Gradient (IG) [11] and three ensemble variants of IG:
SmoothGrad (SG-IG) [12], SmoothGrad2 (SG-SQ-IG) [13], and VarGrad
(Var-IG) [14]. The percentage of pixels that are removed or kept is given
at the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Consistency comparison using fixed value vs. Noisy Linear Imputation.
The higher accuracy is better in LeRF, while the lower is better in MoRF.
Comparing (a) and (c), fixed value imputation gives different rankings in
MoRF and LeRF orders: IG-SG is the best in LeRF but the worst in
MoRF. Comparing (b) and (d), Noisy Linear Imputation changes the
outcome considerably and yields a consistent ranking in MoRF and LeRF. 86

5.6 Evaluation results in MoRF (a) and LeRF (b) using our ROAD frame-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 The considered imputation operators. When 30% of the original image
(a) are removed, they can either be completed by a fixed value (b) or
by our proposed Noisy Linear imputation (c) or GAN imputation (d).
Training of an imputation predictor (e). . . . . . . . . . . . . . . . . . . . 89

5.8 Sample images from CIFAR-10 and Food-101 imputed with the three
methods considered in this work for different percentages. . . . . . . . . . 89

5.9 Roadmap of our literature analysis. We find out the foundational works
of core papers and their application domains using a data-driven method
introduced in Appendix E.1. Three main research questions in user studies
are distilled from core papers. We distill important messages in this figure
for each category: methods related to measures, findings of the research
questions are summarized, and future directions based on the findings. . . 90

5.10 Distribution of participant numbers in the surveyed user studies by design
and participant type (each bar represents one study). Per-design means
are indicated in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xvi



LIST OF FIGURES

5.11 Summary cards of the guidelines extracted from past XAI user studies . . 98

6.1 Overview of I-CEE. Left: The target model is first projected into a con-
cept space, which is then used to estimate user expertise. Two users are
illustrated. User 1 uses the concept c1 in the reasoning process and can
differentiate only two classes (highlighted in blue). Likewise, User 2 is
able to distinguish two classes based on c2 (in orange). Right: Based
on user models, explanations with images (x, e) in the training set that
maximize Hypercorrection Effect are selected and delivered to the users. . 103

6.2 User Modeling: Square nodes are deterministic, while diamond nodes are
trainable. Loss back-propagated for concept discovery (Eq. 6.3) is marked
in blue, while that for expertise estimation (Eq. 6.4) is in red. . . . . . . . 105

6.3 (a): Overview of four classes in the synthetic dataset. (b): User sim-
ulatability accuracy when trained with examples that match/mismatch
with the user expertise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Illustration of annotation given by the simulated user on the (a) synthetic,
(b) CIFAR-100, (c) CUB-200-2011 and (d) GTSRB dataset. Original
label is in black, and the label given by the simulated user is in blue. . . . 107

6.5 Comparison with baseline algorithms using simulated users across three
datasets. On the x-axis, the percentage of utilized examples (denoted as
p) is depicted, while the y-axis represents the accuracy of simulatability.
(Averaged results from 5 runs.) . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Question on objective understanding: participants are asked to predict
the model’s prediction given selected model explanations. . . . . . . . . . 113

6.7 Results of experiments with human users (N = 100) comparing I-CEE
with the baseline Bayesian Teaching (BT). (a) Simulatability accuracy
on all predictions, (b) Simulatability accuracy on images where the tar-
get model made inaccurate predictions in the CUB-200-2011 dataset, (c)
User’s subjective perception of model explanations. . . . . . . . . . . . . . 115

6.8 Illustration of features used by human users for distinguishing each class
on CUB-200-2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1 Histogram of the number of focused bird body parts in CUB-GHA. Y-
axis refers to the amount of images with the certain number of parts
(X-axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.1 Effect of using thresholds. Two-stream input with different video lengths
(from 1 to 5 seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.2 The confusion matrix of using different video streams. The prediction is
made at the last second before the occurrence of a maneuver. . . . . . . . 157

xvii



LIST OF FIGURES

C.1 Comparison of our prediction, ground-truth in attention-based object de-
tection (Th = 0.5) and not using attention-based object detection on
BDD-A test set. (The Second row is a failed case.) Left: Our predic-
tion; Middle: Ground-truth; Right: Object detection without driver
attention. Better view in colors. . . . . . . . . . . . . . . . . . . . . . . . . 160

C.2 Comparison of our prediction, ground-truth in attention-based object de-
tection (Th = 0.4) and not using attention-based object detection on
DR(eye)VE test set. The first row contains the predicted attention map
(Left), ground-truth attention map (Middle) and original frame (Right).
The second row contains our object detection (Left), ground-truth (Mid-
dle), and object detection without driver attention (Right). Better view
in colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.3 Comparison of our prediction, ground-truth in attention-based object de-
tection (Th = 0.4) and not using attention-based object detection on
DR(eye)VE test set. (Failed case.) The first row contains the pre-
dicted attention map (Left), ground-truth attention map (Middle) and
original frame (Right). The second row contains our object detection
(Left), ground-truth (Middle), and object detection without driver atten-
tion (Right). Better view in colors. . . . . . . . . . . . . . . . . . . . . . . 161

D.1 Consistency comparison using Fixed Value imputation on IG-based
methods on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.2 Consistency comparison using Noisy Linear imputation on IG-based
methods on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.3 Consistency comparison using GAN imputation on IG-based methods
on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D.4 Consistency comparison using Fixed Value imputation on GB-based
methods on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D.5 Consistency comparison using Noisy Linear imputation on GB-based
methods on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.6 Consistency comparison using GAN imputation on GB-based methods
on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.1 Illustration of the foundational research domains (Left): Each dot rep-
resents a referenced paper, whose size reflects the number of studied
core papers referring to it. Illustration of influenced research domains
(Right): Each dot represents a research topic, whose size refers to the
number of papers on the same topic. For a clear depiction, only several
important research domains are labeled with text. Lines are used to de-
pict reference links, with thicker lines representing a greater number of
links. Core paper categories are in blue (Middle). Circles are used to
indicate a hierarchical structure of keywords. . . . . . . . . . . . . . . . . 173

xviii



LIST OF FIGURES

F.1 Illustration of model explanations on each dataset. The saliency map
highlights the important area (feature) that is important for the model
decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xix





List of Tables

1.1 Publications used in each chapter of this dissertation. . . . . . . . . . . . 2

3.1 Similarity comparison between MEs and HA saliency map. (↓: the lower
the better; ↑: the higher the better.) . . . . . . . . . . . . . . . . . . . . 31

3.2 Sliding window size used in GAT. . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Accuracy (%) of applying various window size configurations on CUB-
GHA and CXR-Eye. The left side displays the count of windows utilized
in large, medium, and small sizes. . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Ablations study of GAT and KFN on CUB. “Acc.” denotes the accuracy
in %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Comparison with the state-of-the-art methods on CUB. Top: Compari-
son of GAT with data augmentation methods. Bottom: Comparison of
GAT+KFN with attention-based models. . . . . . . . . . . . . . . . . . . 35

3.6 Combining our GAT model with the state-of-the-art methods on CUB. . . 36

4.1 The convolution information about the future motion prediction module. 49

4.2 The architecture of the proposed classifier, which considers joint features
from in- and outside videos. The first column indicates the feature source,
the second column shows the name of the layer, and the third column is
the output size after the layer. The features are combined in the “Con-
catenate” layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 The number of the valid samples relatively to the video length. . . . . . . 50

4.4 Results of future motion prediction. . . . . . . . . . . . . . . . . . . . . . 52

4.5 The results of using the proposed framework with different input data
sources. The results of five folds are shown in the form: “Avg ± SE”. . . 54

4.6 Comparison of our proposed framework with other method. The results
of five folds are shown in the form: “Avg ± SE”. In order to show a
clear difference, we use “m” to represent the number of parameters in
FlowNet2.0, which is a common module in both methods. . . . . . . . . . 55

4.7 Network architecture details when using different object detectors. Col-
umn “Feature Encoder” shows the used backbone for extracting feature
v and the dimension of v. Column “Gaze Prediction” demonstrates the
dimension of output after each layer. . . . . . . . . . . . . . . . . . . . . . 59

xxi



LIST OF TABLES

4.8 Traffic-related class analysis on BDD-A test set: The values in the table
show the average number of objects in one video frame. “Total” means
detected objects while “focused” means attended objects by the human
driver. “-” refers to a number smaller than 0.001. “Sum” includes also
non-traffic objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Traffic-related class analysis on DR(eye)VE dataset (test set): The value
is the average number of objects in each video frame. “Total” means
detected objects while “focused” means attended objects by the human
driver. “-” refers to the number smaller than 0.001. “Sum” also includes
non-traffic objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Comparison of using different grid settings on object- and pixel-level per-
formance (Th=0.5). For all metrics except DKL, a higher value indicates
better performance. The best result is marked in bold. . . . . . . . . . . . 61

4.11 Comparison of different Th using 16×16 grids on attention-based object
detection. Results are shown in % and for all metrics, a higher value
indicates better performance. The best result is marked in bold. . . . . . 62

4.12 Comparison with other gaze models on the BDD-A dataset. On object-
level, all models are evaluated with detected objects of YOLOv5. Our
three models use 16×16 grids. Pixel-level values in brackets are the results
reported from the original work [7, 15]. * indicates that the backbone is
pretrained on COCO [16], † on ImageNet [17] and ‡ on UCF101 [18]. The
resource required for the gaze prediction is listed in the last column. . . . 63

4.13 Comparison with other gaze models on DR(eye)VE dataset. On object-
level, all models are evaluated with detected objects of YOLOv5. Our
models uses 16×16 grids. * indicates that the backbone is pretrained on
COCO [16], † on ImageNet [17] and ‡ on UCF101 [18]. . . . . . . . . . . . 67

4.14 Comparison of different input sequence lengths when using one LSTM
layer. Our model uses the 16 × 16 grids. For all metrics except DKL, a
higher value indicates better performance. (Th = 0.5) . . . . . . . . . . . 68

5.1 Notation used in this section. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Spearman rank correlation between evaluation strategies on CIFAR-10.
There is almost no agreement between MoRF and LeRF when using fixed
imputation (as in previous works). When using our imputation (“lin”),
consistency across MoRF and LeRF orders increases drastically. . . . . . . 85

5.3 Spearman rank correlation between evaluation with and without retrain-
ing. Our Noisy Linear Imputation (“lin”) also results only in marginal
differences between “Retrain” and “No-Retrain”. We conclude that the
retraining step is no longer necessary. . . . . . . . . . . . . . . . . . . . . 87

5.4 Mean runtime (5 runs) for evaluating a single explanation method (IG).
† refers to ROAR, and ⋆ to our ROAD. . . . . . . . . . . . . . . . . . . . 88

5.5 Mean-Squared-Errors for GAIN on CIFAR-10 using different hyperparam-
eter choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xxii



LIST OF TABLES

5.6 Mean runtime (5 runs) for evaluating a single explanation method (IG)
on three imputation operators. † refers to ROAR, and ⋆ to our ROAD. . . 88

5.7 Keywords for our paper search query. Paper must contain at least one
keyword from each group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1 Hit rate of the most discriminative body part. Top-k refers to the k
longest focused body parts by humans in CUB-GHA. . . . . . . . . . . . . 152

A.2 Similarity comparison between MEs and HA saliency map. (↓: the lower
the better; ↑: the higher the better.) . . . . . . . . . . . . . . . . . . . . 153

C.1 Comparison of different models on BDD-A dataset with own detected
objects (Th = 0.5). For all metrics a higher value indicates better perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.2 Comparison of different input sequence lengths when using one LSTM
layer. Our model uses the 16 × 16 grids. For all metrics except DKL, a
higher value indicates the better performance. (Th = 0.5) . . . . . . . . . 160

D.1 Food-10: Rank Correlations between all evaluation strategies used with
standard deviations computed by considering the rankings obtained through
five consecutive runs as independent. The ROAR benchmark is marked
by † and our ROAD by ∗. Bold results highlight the consistency between
Retrain and No-Retrain (still very high) as well as MoRF and LeRF eval-
uation strategies using different imputation operators (fair increase when
using Noisy Linear and GAN imputations instead of fixed imputation in
“Retrain”, decrease in “No-Retrain”). . . . . . . . . . . . . . . . . . . . . 164

D.2 CIFAR-10: Rank Correlations between all evaluation strategies used
with standard deviations computed by considering the rankings obtained
through five consecutive runs as independent. Results indicated in bold
correspond to those reported in Section 5.2. The ROAR benchmark is
marked by † and our ROAD by ∗. . . . . . . . . . . . . . . . . . . . . . . 166

E.1 Fundamental works of the core papers (categorized according to topics). . 172

F.1 Accuracy of target models. The first row indicates the accuracy of all
test classes. The second row contains the accuracy for classes selected for
training simulated user models. . . . . . . . . . . . . . . . . . . . . . . . . 176

F.2 Effect of m on the user model performance. . . . . . . . . . . . . . . . . . 178
F.3 Computational infrastructure details. . . . . . . . . . . . . . . . . . . . . . 179

xxiii





Acronyms

AI Artificial Intelligence.
AIMDSS AI-based Medical Diagnosis Support System.
AUC Area Under Curve.

CNN Convolutional Neural Network.
ConvLSTM Convolutional-LSTM.
CUB Caltech-UCSD Birds.

FC Fully-Connected.
FLOPs Floating point operations per second.

HA Human Attention.
HAI Human-centered Artificial Intelligence.
HCI Human-Computer Interaction.
HXAI Human-centered Explainable Artificial Intelligence.

LLM Large Language Model.
LSTM Long Short-Term Memory.

ML Machine Learning.

PLDA Probabilistic Linear Discriminant Analysis.

SGD Stochastic Gradient Descent.
SOTA State-Of-The-Art.

XAI Explainable Artificial Intelligence.

xxv





1 Introduction

1.1 Research Goal

HAI

Human 
Attention

Human 
Intention

Human 
Comprehension

Figure 1.1: Illustration of three re-
search challenges for ad-
dressing Human-centered
AI in this dissertation.

Artificial intelligence (AI) models have recently
made significant strides toward human-like behav-
iors. We have witnessed advanced models such
as GPT offering conversational experiences closely
resembling human interactions, or robots from
Boston Dynamics exhibiting human-like behaviors
in their ability to interact and navigate in real-
world environments. Some concerns have been
raised that AI systems would become so advanced
that they might replace people in many jobs and
make decisions over human control [19]. To allevi-
ate these concerns and position AI as a support for
enhancing human performance instead of replacing
humans, Human-centered AI (HAI) has been
proposed [19, 20]. More specifically, [19] summa-
rizes strategies of HAI from multiple prestigious in-
stitutes: HAI research should focus on developing
AI technologies that can technically reflect human
intelligence, studying the impact of AI on humans,
and designing AI applications that augment human
capabilities [21, 19]. Together, these technological innovations in the mission of HAI are
redefining the boundaries of human-AI interaction and fostering new collaborative pat-
terns.
In this dissertation, the focus is on developing AI-driven systems and exploring their

interaction with human cognitive abilities. This area of study squarely aligns with the
field of Cognitive Ergonomics. Often synonymous with “human factors engineering,”
cognitive ergonomics delves into understanding mental processes such as perception,
memory, reasoning, and motor response, and their modulation during interactions with
the various elements of the system under observation [22]. The research presented here
aims to examine three fundamental human factors that reflect the processes of per-
ception, reasoning, and response: human attention, related to the process of perception;
human comprehension, aligning with the reasoning process; and human intentions, as-
sociated with the response mechanism.
More specifically, as shown in Figure 1.1, this dissertation incorporates human factors

in the model decision-making across various stages organized as follows: (1) Human

1
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Part I. Incorporating Human Attention
Chapter 3. Human Gaze-based Attention in Classification

(1) Human Attention in Fine-grained Classification
Y Rong, W Xu, Z Akata, E Kasneci
British Machine Vision Conference, 2021

Part II. Predicting Human Intention
Chapter 4. Driver Intention Prediction

(2) Driver Intention Anticipation based on In-cabin and Driving Scene Monitoring
Y Rong, Z Akata, E Kasneci
IEEE 23rd International Conference on Intelligent Transportation Systems, 2020

(3) Where and What: Driver Attention-based Object Detection
Y Rong, NR Kassautzki, W Fuhl, E Kasneci
Proceedings of the ACM on Human-Computer Interaction, 2022

Part III. Enhancing Human Comprehension
Chapter 5. Evaluating Model Explanations

(4) A Consistent and Efficient Evaluation Strategy for Attribution Methods
Y Rong, T Leemann, V Borisov, G Kasneci, E Kasneci
The 39th International Conference on Machine Learning, 2022

(5) Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations
Y Rong, T Leemann, T Nguyen, L Fiedler, P Qian, V Unhelkar, T Seidel, G Kasneci, E Kasneci
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023

Chapter 6. Tailoring Explanations to User Expertise
(6) I-CEE: Tailoring Explanations of Image Classifications Models to User Expertise

Y Rong, P Qian, V Unhelkar, E Kasneci
The 38th Annual AAAI Conference on Artificial Intelligence, 2024

Table 1.1: Publications used in each chapter of this dissertation.

Attention - It can be benificial to incorporate human attention into model training
and architecture design, allowing models to process inputs more effectively. (2) Human
Intentions - It is essential for models to comprehend and predict human intentions in
their outputs, facilitating a more efficient collaboration. (3) Human Comprehension
- In the post-decision phase, models should offer explanations to enhance user under-
standing, thereby optimizing the user experience of model utilization. This dissertation
explores innovative approaches to integrating human factors at each of the three stages.

More specifically, through multiple projects on human behaviors across various stages
of interaction with models, it is observed that humans and AI models often utilize dif-
ferent attentional or reasoning mechanisms when making decisions. As a result, each
possesses distinct advantages. Recognizing this, it is crucial to integrate their comple-
mentary strengths to cultivate synergistic collaboration between the two entities.

1.2 Thesis Overview

This dissertation discusses the three types of human factors in the model design based
on several publications that are organized in the following three parts. Table 1.1 lists the
publications relevant to each chapter. In Part I, regarding human attention, human gaze-
based attention is studied - an important asset of human knowledge that humans acquire

2



1.2 Thesis Overview

Figure 1.2: Human gaze-based attention examples on two datasets: Left: CUB-200-2011 [1]
for fine-grained bird species classification; Right: Chest X-Ray [2] for diagnostic
classification.

through life-long learning. To gain insight into human intentions, Part II introduces a
model specifically aimed at predicting human intended objects within driving videos.
Explainable AI (XAI) is widely used in improving human comprehension in AI models.
Part III concentrates on developing efficient methods to evaluate model explanations,
including automatic and human-grounded evaluations on XAI techniques. Furthermore,
it contains a case study in the medical field for examining human feedback on model
explanations, with the goal of refining these explanations through user feedback.

1.2.1 Human Attention

The Human factor perception is a crucial aspect of how we interact with our environment
and the tools we use. Specifically, human visual perception plays an important role in
solving different tasks. Human attention acts as a filter for the vast amount of visual
information our eyes perceive, allowing us to focus on what is most relevant in our
surroundings.

Part I explores human attention, aiming at improving AI models in their processing
inputs. Human visual attention has been the subject of extensive study for many years,
including fields such as cognitive psychology and neuroscience [23]. When encounter-
ing many objects at once, humans focus on task-relevant objects. The essential role of
human attention mechanisms in efficiently selecting relevant objects for tasks in a con-
trolled, top-down approach is well acknowledged [24, 25, 26]. The pivotal and unique
contribution of human attention in resolving visual tasks has sparked interest in its study
within artificial intelligence research, for example, as noted in [27]. This is evident in
numerous computer vision applications that incorporate human gaze data. Such appli-
cations include classification tasks [28, 29], systems aiding in medical diagnosis [2, 30],
and the selection or cropping of significant objects in images and videos [31, 32, 33, 34].

These mechanisms are visualized generally through the application of a Gaussian filter
on fixation points, creating a saliency map [35]. Figure 1.2 illustrates human gaze-based
attention in two complex classification tasks. In these saliency maps, regions highlighted
in red denote areas of concentrated human attention. Such a visualization highlights how
human attention is directed towards important features in decision-making processes,
such as identifying bird species or diagnosing diseases. By utilizing human attention
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Figure 1.3: Illustration of driver intention prediction. In this video, the car slows down at a
cross and turns right. The prediction is made after every second. If the prediction
is correct, there is a ✓. (Frames from Brain4cars [3].)

saliency maps, Part I demonstrates the power of human attention in processing and
classifying images, which can enhance the capability of deep learning models.

Our work addresses this research gap and the hypotheses that (1) human attention
focuses on essential features for solving the task (e.g. fine-grained classification); (2)
using human attention also allows improving model performance in accomplishing the
task. To validate the first hypothesis, we first capture and present human attention
in the style of a saliency map. We compare the regions that human attention covers
with the ones that are discovered by the model (model explanation), and show that
human attention hints on the regions that are more discriminative in the classification.
We propose two modules which make use of the essential features revealed by human
gaze to validate the second hypothesis: we use Gaze Augmentation Training (GAT) to
train a better classifier and a Knowledge Fusion Network (KFN) to integrate the human
attention knowledge into models.

Our contributions are as follows: (1) We collect human gaze data for the fine-grained
data set CUB, enhance it by incorporating human attention and coin this new dataset as
CUB-GHA (Gazed-based Human Attention). For this novel dataset, we also validate the
efficiency of human gaze data in discovering discriminative features. (2) We propose two
novel modules to incorporate human attention knowledge in classification tasks: Gaze
Augmentation Training (GAT) and Knowledge Fusion Network (KFN). (3) To showcase
the relevance of our work for highly relevant applications, we evaluate our methods
not only on our novel CUB-GHA dataset, but also on chest radiograph images from a
recently released dataset CXR-Eye (which contains also gaze data). Our work shows
that human attention knowledge can be successfully integrated in classification models
and help improve the model performance with regard to the state-of-the-art in different
classification tasks.
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1.2 Thesis Overview

1.2.2 Human Intention

The second human factor studied in this dissertation is reaction, which refers to the way
humans respond to various stimuli in their environment. The studied human reactions in
this work are physical behaviors. In the context of advanced human-AI collaboration,
understanding these human behaviors can better assist humans in solving a task together,
i.e., the AI system is able to predict human intentions.

By analyzing data from various sources such as past human actions, AI models are
designed to anticipate human needs and intentions. This predictive capability is partic-
ularly important in areas like autonomous driving, where each individual driver’s needs
should be considered. Part II presents models designed to understand human actions
and then predict human intentions. Figure 1.3 illustrates the intention prediction in
the context of autonomous driving, concretely, the prediction is made based on in-cabin
and outside videos. It predicts human maneuver intention at each second based on
videos before that second. Intuitively, the outside video, i.e., the scene perspective,
should be very informative and provide information that the inside video does not con-
vey. Therefore, our work aims (1) to extract the vehicle motion information from the
traffic videos effectively and improve the results that only used one video stream; (2) to
propose an end-to-end method without using manual encoding information, and (3) to
keep the model as light-weighted (less parameters) as possible to offer applicability to
resource-limited mobile platforms.

To approach these aims, we propose a deep learning framework, which combines the
information from the driver monitoring videos with the outside view. In our framework,
a ConvLSTM [36] based encoder (shown in the upper branch) extracts the motion in-
formation, which is interpreted in optical flow images. Meanwhile, the 3D ResNet-50
(shown in the bottom branch) acquires features from the driver video. The motion de-
coder for outside motion features is integrated into the classifier. This novel classifier
leverages features from both sides, i.e., driver and scene, jointly to produce a maneuver
anticipation.

To gain a deeper insight into human intentions beyond human actions, it is impor-
tant to identify not just where a person focuses, but also which object is in the area
of attention, a concept known as gaze-object mapping [37]. This understanding is vi-
tal in numerous research endeavors, particularly in studying the learning processes of
students [38] and examining human cognitive functions [39]. In the context of driving,
human drivers utilize their gaze-based attention to identify crucial objects and take in-
formed actions while driving. Human intention prediction by detecting the objects of
the human’s intention is also studied in Chapter 4. As demonstrated in Figure 1.4, a
model predicts the objects the driver focuses on. This offers a clear insight into driver
intentions, i.e., the driver cautiously passes the cars in the right lane. This intention
cannot be easily observed if all objects are detected using a standard object detector.
To bridge the research gap between driver gaze prediction and semantic object detection
in the current research landscape of autonomous driving applications, we propose (1) to
predict where and what the drivers look at. Furthermore, we aim (2) at a model that
is efficient in computation, since resources on self-driving cars are limited. Specifically,
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Figure 1.4: Driver attentive object detection: Left: This frame, sourced from the BDD-A
dataset [4], depicts a vehicle approaching a crossroad and overtaking stationary
vehicles in the right lane. Middle: Objects detected using YOLOv5 [5]. Right:
Objects of the driver’s intention, suggesting the driver intends to cautiously pass
the cars on the right lane.

we designed a novel framework for efficient attention-based object detection based on
human driver gaze. Our approach provides not only pixel-level attention saliency maps,
but also the information of objects appearing in attention areas. A feature encoder is
first used in our framework to encode the information in the input image. Then, the
extracted features are used to predict gaze and detect objects in the image at the same
time. Since obtaining accurate high-level (object) information is our final goal, instead
of low-level (pixel) accuracy in saliency map prediction, we predict salient areas in a
grid-based style to save computational costs while still maintaining high performance in
the critical object detection task.

1.2.3 Human Comprehension

The third studied human factor in this dissertation is reasoning. The reasoning pro-
cess in AI model design corresponds to generating model explanations, which can be
addressed by using Explainable AI (XAI) methods. XAI is increasingly recognized as an
indispensable component in the field of AI research. It plays a crucial role in enhancing
human understanding of AI models, which is essential for their acceptance, especially in
high-stakes applications.

Creating XAI applications is a complex task because the quality of an explanation
does not only depend on the AI model itself, but largely on how the person receiving
it perceives and understands it. One primary research challenge existing in XAI is the
misalignment between the technical methods in XAI and the actual goals of users in
practical applications [40]. Multiple studies have been unable to demonstrate that in-
corporating XAI elements always enhances user performance in real-world tasks that
involve AI assistance (refer to Table 5 in [41]). Moreover, the effectiveness of an expla-
nation relies on the human’s background knowledge and their purpose for seeking the
explanation, as well as various other human factors. Much of current XAI research does
not focus adequately on the user receiving the explanation, often producing one-size-
fits-all explanations that may not suit each individual user’s needs. In summary, the
development of XAI should adopt a human-centric approach. This approach emphasizes
meeting the individual needs for explanation of people and measuring success through
user interaction experiences.
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To advocate human-centered XAI, this dissertation considers humans in both
model explanation evaluation and design, which are addressed in the two chapters in
Part III. This chapter first addresses the drawbacks of automatic evaluation. Evalua-
tion strategies proposed to compare different attribution methods commonly follow an
ablation approach by perturbing the input features, e.g., image pixels, deemed most
or least important. Specifically, perturbing pixels assigned high importance should de-
crease predictive quality whereas perturbing unimportant pixels, should hardly affect the
predictions. These measures aim to capture the fidelity of explanations [42], i.e., how
well the explanation genuinely reflects the prediction of the underlying model. Fidelity
based on a single data sample is known as local fidelity, while global fidelity is measured
on the whole data set [42]. The outcome of evaluation strategies is highly sensitive to
parameters such as the perturbation function and order. Such removal strategies often
lead to highly contradictory results depending on the order chosen, i.e., most relevant
pixels first or least relevant pixels first. For instance, local attribution methods that
seem to perform well in one order may perform rather poorly in the other [42, 43, 13].
This inconsistency makes it hard for researchers to impartially compare between differ-
ent attribution methods and it is not well understood where the inconsistencies stem
from. Moreover, for conducting the global fidelity check, a retraining step is required by
some methods [13], which is prohibitively expensive in practice [42].
Chapter 5 then addresses the human-grounded evaluation in XAI, highlighting the

importance of incorporating human feedback in the XAI development cycle. Many
functionally-grounded measures have been proposed to evaluate XAI algorithms (see
[44] for review), however, the difficult comparability between different automatic eval-
uation measures is a common problem [45]. Another drawback of automated measures
is that there is no guarantee that they truly reflect humans’ preferences [46, 47]. Con-
sequently, user studies in XAI, especially when moving towards real-world products,
are inevitable if one wishes to test more general beliefs of the quality of explanations
[48]. However, only a small portion (about 20%) of XAI evaluation projects consider
human subjects [44]. There exist efforts in developing taxonomies or introducing the
definitions or implications of different human-centric evaluations [49, 50, 51], but the re-
cent generation of user studies and their findings have not been systematically discussed
yet. Moreover, Yang et al. [52] point out that XAI is growing separately and treated
differently in different communities (e.g., machine learning and HCI). Hence, effective
guidance in XAI user study design is crucial to better let both XAI algorithm and appli-
cation designers recognize the users’ real needs. This work aims to bridge this research
gap in modern XAI user study design by distilling practical guidelines for user studies
through a comprehensive and structured literature review.
Chapter 6 presents an algorithm that improves human understanding of models by

providing explanations based on each user’s expertise. Specifically, Chapter 6 introduces
a novel framework named I-CEE, which provides Image Classification Explanations tai-
lored to User Expertise. Differing from previous approaches, I-CEE considers the user’s
expertise in reasoning when selecting example images, thus tailoring the examples for
each user, as illustrated in Figure 1.5. This chapter represents a significant advancement
towards personalized model explanations. We advocate that human modeling is critical
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Figure 1.5: I-CEE tailors the explanation process to each user by considering their expertise.
By selecting the most informative explanations based on estimated user expertise,
I-CEE can improve the user’s understanding of the ML model’s decision.

to XAI research because explainability is inherently centered around humans [40]. A
few works focusing on explaining reinforcement learning policies use cognitive science
theories to model the human user and generate explanations based on the human model
[53, 54, 55, 56]. Closer to our focus, the works of [57] and [58] utilize a Bayesian Teaching
framework to model human perception and then generate human-centered explanations.
One limitation of these works is that all human users are treated the same by the mod-
eling method, presuming that an identical set of explanations will work for all users. In
contrast, we attempt to generate tailored explanations for each user by modeling their
task-specific expertise. Our approach to modeling user expertise is informed by human
annotator models used in active and imitation learning [59, 60]. Similar to these works,
our user model aims to capture both the decisions and reasoning process (expertise
in concepts used for image classification) of the human user in the context of a given
classification task.

1.3 Research Contributions

This thesis presents significant research contributions across various key areas, as elab-
orated in each respective section.

1.3.1 Exploration using Eye Tracking

In my doctoral studies, I used eye tracking as a tool for exploring human attention
mechanisms in solving computer vision tasks. We deployed an image comparison game
to collect human gaze-based attention in fine-grained classification, in which participants
are prompted to focus on distinct features while comparing two similar images from dif-
ferent categories. This task is intentionally made difficult to yield more meaningful
insights, by selecting two very alike classes for each comparison pair. We gathered hu-
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Figure 1.6: CUB-GHA (Gaze-based Human Attention) dataset. Left: a static aggregated
heatmap; Right: a sequence of fixation heatmaps for human attention.

man gaze data on the CUB fine-grained classification dataset, creating the CUB-GHA
(Gaze-based Human Attention) dataset 1. With the help of such a dataset, we can
(1) analyze and contrast the critical features employed in decision-making processes by
both humans and models; and (2) study the efficacy of human attention in the context
of fine-grained classification. In CUB-GHA, the complete sequence of fixations from
each participant for an image is accessible. Users have the option to utilize either the
aggregated static attention maps for an image or a sequence of gazes to analyze scan
paths (exploration by each participant). An illustration of the two types of gaze data
offered in CUB-GHA is presented in Figure 1.6.

We have also supplied scripts for processing heatmaps, which are adaptable for use
with other data sources. Our dataset presents possibilities for exploring the integration
of eye tracking with existing comprehensive annotations, including textual explanations,
attributes, and bounding boxes. This enables researchers to evaluate various applications
where human gaze is essential in machine interaction.

1.3.2 XAI Evaluation Guidelines

In the context of the growing field of XAI, ensuring fair and effective evaluation of these
techniques is crucial. In my thesis, I explored two widely recognized types of evalu-
ation metrics: automatic and human-grounded evaluations. One of the most popular
automatic evaluation metrics is fidelity (or faithfulness). We studied the existing bi-
ases in one of the most popularly used evaluation frameworks called “ROAR” (RemOve
And Retrain) [13] using an information-theoretic analysis. Drawing on our theoreti-
cal understanding, we introduce a new evaluation framework named ROAD (Remove
and Debias). Our framework provides two key advantages compared to ROAR: (1) it
reduces the influence of confounders, leading to greater consistency across evaluation
methods, and (2) ROAD eliminates the need for resource-intensive retraining, thereby
cutting computational expenses by up to 99%. Our algorithm’s source code has been
made publicly available and is now integrated into “Quantus”, a toolkit to evaluate
neural network explanations 2. This demonstrates that our evaluation algorithm has ef-
fectively responded to the challenges faced by researchers and practitioners in assessing
XAI techniques.

1CUB-GHA can be found at https://github.com/yaorong0921/CUB-GHA.
2Quantas can be found at https://github.com/understandable-machine-intelligence-lab/

Quantus.
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In addition to conducting automated evaluations of XAI, I ventured into human-
grounded evaluation metrics and took the lead on projects aimed at emphasizing the
significance of incorporating human elements into the evaluation of XAI techniques.
After a comprehensive study of approximately one hundred state-of-the-art works fo-
cused on user studies for XAI, we distilled the best practices and formulated guidelines
for the design of user studies for XAI algorithms. Furthermore, we emphasized poten-
tial research directions for human-centered XAI and advocated for collaborative efforts
across different communities. Our guidelines have garnered recognition from numerous
researchers with diverse expertise backgrounds. As one researcher noted,“your paper
does a commendable job of triaging multiple threads of work.”

1.3.3 Deployment in Practical Applications

Throughout my doctoral research, I consistently prioritized practical applications and
emphasized its importance in assisting humans in completing various tasks. I mainly
studied two primary application domains: autonomous driving and healthcare.
Within driving applications, I collaborated with automotive companies, gaining valu-
able insights into the industry’s specific requirements and demands. Concretely, I worked
closely with Continental, a German multinational automotive parts manufacturing com-
pany, in AI-driven in-cabin applications. For instance, I designed an algorithm to predict
driver intentions by analyzing video footage from both inside the vehicle cabin and the
surrounding road traffic. Additionally, we conducted research on the trust and comfort
levels of drivers and passengers within the driving cabin, particularly in high-level au-
tonomous driving scenarios. This involved exploring methods to measure these factors
and enhancing them through the design of a co-drive assistant. During the collaboration
with Horizon Robotics, a Chinese company specializing in autonomous vehicle develop-
ment, we developed an effective feature fusion approach for LiDAR 3D object detection.
This project provided a valuable lesson in the importance of algorithmic efficiency in
real-world applications.

I collaborated closely with radiologists, gaining valuable insights from diverse areas of
expertise. Together, we worked on a project aimed at designing a medical diagnosis sup-
port system, which provided me with the opportunity to understand their perspectives
on working with AI. For example, while model explanation algorithms produced faithful
saliency maps that aligned with the model’s decisions, medical professionals still found
it challenging to comprehend the underlying reasoning of the model. Some radiologists
expressed a preference for a different form of explanations rather than saliency maps.
This project highlighted the significance of understanding the specific requirements of
experts from various domains and assisting them in effectively integrating AI models
into their workflows.
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1.3.4 Publication List

My doctoral studies resulted in several publications, listed below. The papers included
in this dissertation are highlighted in blue. The papers marked with underline are the
core publications (led by me) for this dissertation:

• Rong, Y., Qian, P., Unhelkar, V., & Kasneci, E. (2023)

I-CEE: Tailoring Explanations of Image Classifications Models to User Expertise

Pre-print. (To appear at the 38th Annual AAAI Conference on Artificial Intelli-
gence (AAAI)).

• Rong, Y., Leemann, T., Nguyen, T., Fiedler, L., Qian, P., Unhelkar, V., Seidel,
T., Kasneci, G., & Kasneci, E. (2023)

Towards Human-centered Explainable AI: User Studies for Model Explanations

IEEE Transaction on Pattern Analysis and Machine Intelligence (TPAMI)

• Leemann. T., Rong, Y., Nguyen, T., Kasneci, E., & Kasneci, G. (2023)

Caution to the Exemplars: On the Intriguing Effects of Example Choice on Human
Trust in XAI

XAI in Action: Past, Present, and Future Applications

• Rong, Y., Wei, X., Lin, T., Wang, Y., & Kasneci, E. (2023)

DynStatF: An Efficient Feature Fusion Strategy for LiDAR 3D Object Detection

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops

• Leemann, T., Kirchhof M., Rong, Y, Kasneci E., & Kasneci, G. (2023)

When are Post-hoc Conceptual Explanations Identifiable?

In Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence
(UAI)

• Rong, Y., Leemann, T., Borisov, V., Kaneci, G., & Kasneci, E. (2022)

A Consistent and Efficient Evaluation Strategy for Attribution Methods

In Proceedings of the 39th International Conference on Machine Learning (ICML)

• Rong, Y., Kassautzki, N.-R., Fuhl, W., & Kasneci, E. (2022)

Where and what: Driver attention-based object detection

In Proceedings of the ACM on Human-Computer Interaction (PACMHCI)

• Rong, Y., Castner, N., Bozkir, E., & Kasneci, E. (2022)

User Trust on an Explainable AI-based Medical Diagnosis Support System

TRAIT at Conference on Human Factors in Computing Systems (CHI-TRAIT)
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• Rong, Y., Xu, W., Akata, Z., & Kasneci, E. (2021)

Human attention in fine-grained classification

In 2021 British Machine Vision Conference (BMVC)

• Rong, Y., Han, C., Hellert, C., Loyal, A., & Kasneci, E. (2021)

Artificial intelligence methods in in-cabin use cases: A survey

IEEE Intelligent Transportation Systems Magazine

• Rong, Y., Akata, Z., & Kasneci, E. (2020)

Driver intention anticipation based on in-cabin and driving scene monitoring

In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC)
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This chapter reviews the state-of-the-art (SOTA) methods related to the proposed algo-
rithms for solving the three research challenges discussed in Table 1.1. In Section 2.1,
how human attention is used in AI models and is compared with model attention will
be discussed. In Section 2.2, human intention prediction in the context of driving will
be introduced. This section contains the methods used in driver maneuver prediction
using videos. Moreover, gaze-based prediction methods, for instance, gaze-based atten-
tion and gaze-object mapping, are introduced. Finally, in Section 2.3, recent research on
how humans understand black-box AI models via XAI is examined. More specially, this
section includes recent works regarding how to evaluate model explanations using human
feedback, and how human reasoning is addressed in model explanation generation.

2.1 Human Attention in AI

In this section, gaze-based human attention in AI-based applications will be first intro-
duced, followed by attention in neural networks which can be divided into two parts:
learnable and post-hoc attention [61]. Additionally, this section focuses on comparing
machine (post-hoc) attention to human attention.

2.1.1 Gaze-based Attention in AI

Gaze data can provide insights into human attention, and is frequently utilized for
analyzing attention patterns. It has emerged in many branches of AI because of its
effectiveness and irreplaceability in many tasks [27]. Recent advancements in hardware
technology have enabled precise tracking of eye movements across various activities.
This includes human-computer interactions [62, 63], as well as more dynamic tasks like
driving [64, 65] and robotics [66, 67, 68]. The processing of visual information can also
provide insights into a person’s cognitive strategies or skill levels [69]. In the medical
field, gaze data has shown potential in augmenting AI models for disease classification,
for example, recognizing Pneumonia and Congestive Heart Failure [2].

In computer vision, the application of gaze data is diverse and valuable [34, 31, 70,
61]. For instance, research in [70] gathers gaze data (like coordinates and duration) for
60 bird classes to assist in zero-shot learning. Another study, [61] demonstrates that
human attention data outperforms an attention module in generating attention maps.
Additionally, [34] introduces a system for photograph cropping using fixation data to
highlight key content areas. Eye tracking is also instrumental in identifying principal
objects in videos [31].
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2.1.2 Attention in Neural Networks

Learnable Attention. Many studies [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81] have
successfully incorporated attention mechanisms into neural networks. These mecha-
nisms are essential for identifying key areas in fine-grained classification tasks, thereby
enhancing model performance. A group of these works [75, 77, 73, 76, 78] utilize the
Recurrent Attention Model (RAM) [82]. In this RAM module, an attention agent pre-
dicts the locations of critical regions, and the classifier is trained based on these iden-
tified areas. This module employs reinforcement learning to train the attention agent,
addressing the non-differentiability issue caused by the cropping operation. However,
this approach is complex and computationally demanding. In contrast, other studies
[71, 72, 74, 79, 80, 81] have developed attention modules that leverage outputs from
intermediate network layers to enforce the model attending to significant features.

Post-hoc Attention. Post-hoc attention refers to the attention maps that are generated
using various strategies from neural networks that have been fully trained [83]. These
strategies are model explanation techniques. Recent work has looked at attribution-
based machine explanation methods that perform in the same way as the human gaze.
For example, in [84, 85], the impact of input image features was quantified by attaching
importance to pixels. Such a quantification was also performed at the level of super-
pixels in [86]. In addition to attribution-based methods, there are many other types
of model explanations. For example, gradient-based methods [85, 87, 88], on the other
hand, back-propagate the gradient for model prediction to the activation maps [88, 85],
input image features [11, 89], or the biases [87]. Perturbation-based methods determine
the importance of features by measuring the model prediction after perturbing these
features as in [86, 90]. In prototype-based explanations, image samples [91, 92] or local
image patches [84, 93] are treated as prototypes and attribute the model decision to
these previously learned prototypes. In another approach, concept-based explanations
identify higher-level, human-understandable concepts that are important to the model
prediction [94, 95].

2.1.3 Comparison Between Human and Model Attention.

There is, to date, little research investigating the relationship between human attention
and machine-generated attention [96, 97, 61]. More specifically, Das et al. [96] collect
human attention data by asking Amazon Mechanical Turk (AMT) annotators to mouse-
click the important regions in a blurry image in order to answer a visual question.
Researchers come to the conclusion that the VQA model attention [98, 99] does not focus
on the same regions as humans do. In a recent work by Sen et al. [97], the authors collect
binary human attention by asking annotators to click on important words for a review
(text) classification task and compare human attention with soft machine attention.
However, this human attention data is collected in an uncontrolled environment on
AMT, which may not be fully reliable [100]. Recently, [61] uses human gaze data as
human attention and compares it to learnable model attention. However, the human
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and model attention in [61] are also collected in different experimental settings. More
specifically, human attention is collected for a 2-way classification, while model attention
for a 60-way classification.

2.2 Driver Intention Prediction

This section discusses the prior works in human intention prediction. Given that the
case study centers around autonomous driving, the discussion will primarily concentrate
on intention prediction in driving contexts. Specifically, this section narrows down to
two primary types of intentions: driver maneuver behavior and gaze attention. This
section begins with exploring prior works in predicting driver intentions using machine
learning models based on driver monitoring videos. Then, it discusses gaze-object map-
ping within various applications, establishing the groundwork for the innovative aspects
of the proposed method in this thesis. In the end, current driver gaze-based attention
prediction models will be introduced.

2.2.1 Maneuver Behavior Prediction.

In progressing towards fully autonomous driving, it is crucial to enhance current Ad-
vanced Driver Assistance Systems (ADAS) for effective cooperation with human drivers.
Consequently, accurately predicting the driver’s intentions is essential to offer them op-
timal assistance. Driver maneuvers can be inferred from related behaviors like glancing
at mirrors or windows. As such, techniques from human action recognition have been
effectively employed in this area. A key focus of recent studies has been on predicting a
driver’s maneuver intentions prior to their execution. Notably, the Brain4cars [101] and
Honda Research Institute Driving Dataset (HDD) [102] datasets were created specifi-
cally for studying driver behavior. HDD, for instance, [102], utilizes three high-definition
cameras, GPS, LiDAR sensors, and vehicle CAN-Bus data to capture traffic scenarios.
Brain4cars [101] includes both internal and external car videos, GPS data, and vehicle
dynamics. These videos offer insights into various driver behaviors and traffic conditions.
The literature suggests that driver intentions can be predicted from video analysis, par-
ticularly noting how drivers check side mirrors. Studies using the Brain4cars dataset,
such as [101, 3, 103, 104, 105], have successfully predicted maneuvers. While these
results are promising, there are aspects that warrant further examination. Primarily,
previous research in driver maneuver prediction has largely relied on video observations
of the driver. Research indicates that driver behavior, particularly eye movement, is
not only useful for activity recognition [106, 107] but also vital for ensuring safe control
transitions in semi-autonomous driving [65]. The following paragraph will delve into
predictions based on driver gaze and attention.

2.2.2 Gaze-Object Mapping

Earlier research [108, 109] aims to release the burden of manual labeling by employing
gaze-object mapping. This technique labels objects at the fixation point, essentially
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marking the object being observed. A widely used method involves checking if a fixation
falls within the object’s bounding box as predicted by an object detector based on
deep neural networks [38, 37, 110], such as YOLOv4 [111]. Wolf and colleagues [108]
recommend using Mask-RCNN [112] for object segmentation to detect object areas.
These studies train their object detectors with a limited range of object data and classes
for annotation. Conversely, Panetta et al. [39] opt for a bag-of-visual-words classification
model [113] instead of deep neural networks, due to a lack of sufficient training data.

Barz et al. [114] introduce a “cropping-classification” approach where a small area
around the fixation is cropped and classified using a network pre-trained on ImageNet
[17]. This method from [114] is applicable in Augmented Reality for enhancing cognition-
aware mobile user interactions. In subsequent research [37], the authors evaluate map-
ping algorithms based on image cropping (IC) against those using object detectors (OD),
assessing metrics like precision and recall. Their findings indicate that while IC achieves
higher precision, it has a lower recall rate compared to OD.

There has been little effort in the previous works about gaze-object mapping for
autonomous driving applications, due to the need for a remote eye tracker to identify the
objects being focused on. However, this is a useful feature for semi-autonomous driving
cars, i.e., a model acts like a “second driver”, by providing safety alerts on critical traffic
objects that human drivers might miss. In the context of fully autonomous driving,
where human driver fixation data is unavailable, a model is required to replicate human
driver’s fixation patterns.

2.2.3 Gaze-based Attention Prediction

The surge in interest in (semi-)autonomous driving has led to a heightened focus on
understanding and predicting human drivers’ attention. Recent studies have shown ad-
vancements in simulated driving scenarios by employing driver gaze in training models
end-to-end, enabling models to perceive traffic similarly to human drivers [115, 116].
Leveraging created real-world datasets like DR(eye)VE [8] and BDD-A [7], several deep
neural networks have been developed to predict drivers’ gaze maps on a pixel-wise level,
such as those in [8, 7, 117, 118, 15]. For instance, the DR(eye)VE model [8] employs a
multi-branch architecture focusing on color, motion, and semantics, while the BDD-A
model [7] utilizes AlexNet [119] features processed through convolutional layers and a
convolutional LSTM to predict gaze maps. Attention models are also being used for
predicting driver saliency maps to aid braking decisions, as seen in [120]. Additionally,
networks like ML-Net [9] and PiCANet [10], known for general saliency prediction, are
well-performing. ML-Net combines features from various CNN levels for saliency predic-
tion, while PiCANet is a contextual attention network that selects informative context
locations pixel-wise for more accurate saliency maps.

Apart from these gaze map prediction networks, other models extend to foresee ad-
ditional driving-relevant areas. Deng et al. [121] utilize a convolutional-deconvolutional
neural network (CDNN) trained with eye tracker data from multiple individuals, whereas
Pal et al. [15] suggest incorporating distance-based and pedestrian intent-guided seman-
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tic information into the ground-truth gaze maps. This semantic enhancement is used to
train models, thereby augmenting them with semantic knowledge.

2.3 Human factors in Explainable AI

In this section, XAI works with a focus on human subjects in the cycle will be introduced.
Concretely, the first section discusses the importance and current methods of human-
grounded evaluation of XAI methods. Then, prior work considering human individual
needs (expertise) is discussed, aiming at human-centric XAI methods.

2.3.1 Functional-grounded Evaluation

With the growing number of attribution methods, various scholars have presented desider-
ata that explanations should fulfill. [122] consider two subcategories in this field, namely
human-grounded metrics relying on human judgment and functional-grounded metrics.
The latter do not require a human-generated ground truth that can be hard or even
impossible to obtain. Metrics of this type frequently rely on the idea that if the most
important part of the image is changed, the output probability of the given black-box
model should also change in return. Examples include the Sensitivity-n measure pro-
posed by [123] and the infidelity and max-sensitivity metrics by [124]. [125] and [126]
also propose to perturb the pixels in the input image according to the importance scores.
However, [13] show that the perturbation introduces artifacts and results in a distribu-
tion shift, putting these no-retraining approaches in question. They propose the Remove
and Retrain (ROAR) framework with an extensive model retraining step to adapt to the
distribution shift. Therefore, we distinguish between evaluation methods with retraining
and no-retraining approaches.

Only few papers have used and compared different evaluation strategies for attribution
methods and a sound theoretical explanation for the differences between them is still
missing. [127] assesses different baselines for feature attribution applying the Integrated
Gradient method [11]. They also observe that changing the hyperparameter settings
can lead to varying results. [43] draw the same conclusion for attributions on tabular
data. [42] compute the consistency among different, no-retraining evaluation strategies
and report an alarmingly low agreement. In this work, we conduct a rigorous analysis
of reasons for existing inconsistency and provide a solution to reduce it, which is not
studied in previous works. Moreover, our solution also reduces high computational costs
caused by retraining.

2.3.2 Human-grounded Evaluation

AI’s success story has not excluded high-stakes decision-making tasks like medical di-
agnosis [128, 129, 130, 131, 132], credit scoring [133, 134, 135, 136, 137], jurisprudence
[138, 139, 140, 141] or recruiting and hiring decisions [142, 143, 144, 145], influenced by
data-driven algorithms. Nonetheless, the operational mechanisms and decision-making
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methods of contemporary AI systems often remain opaque, leading to their characteri-
zation as a “black box”’. The utilization of such opaque models in critical safety areas,
like public health or finance, poses a significant challenge [146]. This stems from the im-
perative need for AI systems that are both transparent and trustworthy, catering to the
requirements of professionals (for enhanced understanding of the system’s operations)
and users (for dependable reliance on the model’s decisions).

While a huge number of model explanations are available, the question of how to
evaluate their quality is still an open research question, and, hence, has been extensively
studied in recent years. Evaluating and comparing different methods of explanation
in XAI research is challenging due to the multidisciplinary nature of interpretability
and explainability [44, 122, 147]. This evaluation is categorized into human-grounded
measures, involving human subjects and functionally-grounded metrics, which do not
require human involvement [122, 44]. There is a growing interest in developing automatic
evaluation methods for explanations, as detailed in a comprehensive review focused
on functionally-grounded evaluation methods [44]. The inherent human-centric nature
of explainability has led to a recognized need for human-centered evaluations in XAI
research [122, 40].

Various studies contribute to advocating the usage of human-grounded evaluation.
Chromik and Schuessler [50] propose a taxonomy for XAI evaluations that involve hu-
man subjects. Mohseni et al. [51] categorize human-related evaluation metrics into four
groups: mental model, user trust, human-AI task performance, and explanation useful-
ness and satisfaction. Hoffman [49] focuses on psychometric evaluations, proposing a
conceptual model for the XAI process and identifying key components for evaluation.
The broader application of XAI, aimed at supporting decision-making and benefiting
end-users, is discussed in [148], including studies on collaborative human-AI decision-
making. Ferreira and Monteiro [149] examine the user experience of XAI applications,
exploring who uses XAI and in what context. Liao et al. [40] focus on user studies in XAI
revealing the pitfalls of existing XAI methods, emphasizing the important role of humans
in XAI development. Doshi-Velez and Kim [122] highlight the need for sophisticatedly
designed human-subject experiments to reduce confounding factors, further underlining
the complexity of human involvement in XAI evaluation.

2.3.3 User-centric XAI design

XAI has acknowledged the importance of human involvement in understanding expla-
nations, which has led to more frequent use of human-centered approaches for evaluat-
ing explanation methods, as discussed in the last section. In addition to these assess-
ments, some methods have incorporated human elements into the creation of explana-
tions [150, 55, 54, 56, 57]. These studies aim to explain reinforcement learning policies
that employ theories from cognitive science for constructing models of the human user.
The most relevant user-centric XAI method among these approaches is the Bayesian
Teaching framework proposed in [58]. It is applied in image classification, which chooses
explanations by considering users as Bayesian agents. However, this approach does not
account for the variance in users’ thought processes or their prior knowledge.
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In contrast, the proposed method in Chapter 6 addresses the distinct explanatory
needs of various users. This design is mainly shaped by insights from active learning. The
concept of active learning focuses on optimizing model accuracy with minimal labeling
effort [151, 152]. This approach is particularly beneficial in situations where labeled
training data is scarce. Active learning has found applications beyond mere classification,
extending to areas like sequence labeling [153] and image semantic segmentation [154].
While the objective of active learning is to enhance model training, its methodologies
offer significant insights for XAI, which is geared towards teaching humans about AI
models.

2.4 Current Research Gap

After reviewing state-of-the-art works for each topic, this section summarizes the main
messages from previous works and the existing current research gaps, which will be
addressed in this dissertation.

Incorporating Human Attention. Previous works utilize attention modules that are
inspired by human attention mechanisms to improve the model performance. Many
works also compare human gaze-based attention with machine attention and conclude
that machine attention is different from human attention. However, the following two
research questions have not been fully addressed yet:

• Does human gaze-based attention discover more effective features for solving the
visual task than a model does?

• How can we incorporate human attention in the model training procedure to im-
prove model perception capability?

These research questions are studied in Chapter 3.

Predicting Human Intention. This part focuses on two applications in the autonomous
driving domain: to predict driver maneuvers and to predict objects that drivers intend
to interact with. For the former application, previous works utilize mainly videos of
drivers but only leverage manually encoded information from the video outside of the
cabin. These methods are not practical and can be improved by distilling more useful
information from the outside videos. Therefore, Chapter 4 (Section 4.2) aims to propose:

• A model that utilizes driver and driving scene monitoring videos to precisely an-
ticipate driver maneuver intentions.

For the latter challenge, current methods can only anticipate driver attention and the
computation costs are high. Therefore, Chapter 4 (Section 4.3) aims at:

• A model that can predict “where” and “what” the driver is focusing on in a
resource-efficient manner.
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Enhancing Human Comprehension. As introduced in the last section, human sub-
jects are considered in previous works when evaluating the effectiveness of different XAI
methods and including human reasoning factors to inform model explanation generation.
However, there is no consensus for evaluating XAI methods, as there is no ground truth
for model explanations. Chapter 5 therefore bridges the current research gap to a fair
evaluation of XAI methods via:

• Theoretical analysis of the bias term in the automatic evaluation and corresponding
mitigation solution;

• Guidelines in conducting human-grounded evaluations to avoid pitfalls.

Effort has been made to generate model explanations based on human reasoning. How-
ever, the state-of-the-art XAI methods do not consider different user needs. Chapter 6
aims to highlight the importance of considering individual human expertise by:

• Developing a novel framework for tailored explanations for explaining decisions
made by image classification models.
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Part I

Incorporating Human Attention
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AI models process input data to extract important features, similar to human percep-
tual abilities. This dissertation begins by exploring the initial step in decision-making,
focusing on the design of AI models that are inspired by human attention mechanisms.

This part is adapted from the work that was published in BMVC 2021 [28]:

• Rong, Y., Xu, W., Akata, Z., & Kasneci, E. (2021)

Human Attention in Fine-grained Classification

In 2021 British Machine Vision Conference (BMVC)

Motivation. As discussed in Section 1.2.1, humans utilize a top-down attention mech-
anism during problem-solving, i.e. when operating in a goal-driven manner. Inspired by
this, [155] designs a top-down attention module for models and shows its effectiveness
in automated image caption generation and visual question answering. However, it is
not clear whether humans are able to discover more efficient features for solving these
tasks than models. The motivation of this work is to study the features discovered by
human attention in challenging classification tasks. Moreover, integrating human atten-
tion knowledge into models is a non-trivial problem. This work also aims at designing
a novel algorithm to effectively integrate this knowledge into models and thus improve
the model performance.

Principal Methodology. To capture human attention, an eye-tracker is used to record
eye movements, which are then used to serve as a basis to discover important features
through an image comparison game on a fine-grained classification task. The collected
human gaze data is processed and transformed into saliency maps. To verify the effec-
tiveness of human saliency maps, an insertion evaluation framework is used. Moreover,
human saliency maps are also compared to model post-hoc attention saliency maps in
this experiment. To effectively incorporate human attention knowledge into classifica-
tion models, two novel approaches are introduced in this work: Gaze Augmentation
Training (GAT) and Knowledge Fusion Network (KFN). GAT uses human-focused ar-
eas to augment the data and guides the model to focus more on these effective features.
KFN uses an architecture that integrates the feature embeddings learned from human
saliency maps to the original features, which combines the features from both branches
to inform final decisions.

Main Findings. Experimental results highlight the efficacy of human attention in iden-
tifying features that are essential for classification: using just 5% of the image where
humans focused on and masking the rest yielded model performance with an accuracy of
81%, while using the entire image achieves an accuracy of 85%. These features are also
more effective than the ones discovered by the model post-hoc attention. For instance,
the model trained with model attention-modified images only reaches an accuracy of
around 70%.

Using the proposed approach, GAT and KFN, the model performance is improved
significantly on two datasets. For instance, when applying GAT and KFN on vanilla
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ResNet-50 on the bird fine-grained classification dataset, the performance is improved
from 85.6% to 88.7%. Remarkably, GAT is a data augmentation strategy and it can
easily plug into any other complex model architectures, further improving the model
performance. On the chest X-ray diagnosis task, using the proposed approach, the model
performance is improved by 4.38%, compared to the state-of-the-art method. These
results show that, by leveraging human attention, model performance can be improved
as it is able to find critical features for making accurate decisions. This research not only
sheds light on the effective role of human attention in challenging classification tasks,
but also paves the way for future studies on integrating human perception knowledge
into computer vision models.

My contributions. I led this project by introducing an innovative research concept that
integrates human attention into a computer vision model. My leadership extended to
lead the data collection, programming the model framework, and conducting a compre-
hensive analysis of the results derived from the implemented model. Additionally, I took
charge of authoring the manuscript.
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3 Human Gaze-based Attention in
Classification

3.1 Introduction

Human attention (HA), which can be represented by human gaze, offers insights into
our actions and choices [156]. Similarly, many computer vision systems utilize human
gaze data to identify key objects for task completion [31, 34, 70]. A common practice
in visually representing human attention in these systems is to apply a Gaussian blur
to focal points, creating a feature map, often referred to as a saliency map [157], [35]
(refer to Figure 3.1). In parallel, post-hoc attention of a network, or model explanation,
attempts to pinpoint critical areas that influence neural network decisions [90, 88, 85,
158, 89, 159]. Saliency maps are a common tool for visualizing both human and model
attention, facilitating the examination of their similarities and differences. Previous
studies have indicated that humans and models often focus on different areas when
executing the same task [96, 97]. However, it remains uncertain whether a feature
identified by human attention is more effective in task resolution. Our research aims
to bridge this gap, hypothesizing that (1) human attention zeroes in on crucial features
for task completion, such as fine-grained classification, and (2) incorporating human
attention can enhance model performance in these tasks.
To test the first hypothesis, we represent human attention through saliency maps and

compare the focus areas of human and model attention (model explanation), demonstrat-
ing that human attention often highlights more discriminative regions for classification.
To validate the second hypothesis, we introduce two methods that leverage key features
identified by human gaze: Gaze Augmentation Training for refining classifiers and a
Knowledge Fusion Network for integrating human attention insights into models.
This study presents the contributions as follows:

• We have gathered human gaze data for the CUB-200-2011 (CUB) dataset and
enriched it with human attention insights. This enhanced dataset is named CUB-
GHA (Gaze-based Human Attention). We further establish the effectiveness of
human gaze data in identifying discriminative features within this unique dataset.

• We introduce two novel approaches to integrate human attention into classifica-
tion tasks: Gaze Augmentation Training (GAT) and Knowledge Fusion Network
(KFN). These methods are designed to leverage human attention knowledge for
enhanced classification accuracy.

• Our methods are thoroughly evaluated on two challenging datasets: the CUB-
GHA dataset for fine-grained bird species classification, and the CXR-Eye dataset
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HA saliency map

Gaze Augmentation Training 
(GAT)

ResNet-50

ResNet-18
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Figure 3.1: Methodology overview highlights two primary processes. Firstly, the HA saliency
map is employed to pinpoint areas of focus, which are then incorporated to improve
the training dataset in the Gaze Augmentation Training (Left). Secondly, this HA
saliency map serves as an additional information channel, which is integrated with
the existing image data in the Knowledge Fusion Network (Right).

which includes chest radiography images and radiologist gaze data. Our research
demonstrates that incorporating human attention into classification models can
significantly improve their performance, setting new benchmarks in various classi-
fication tasks.

3.2 CUB-GHA Dataset

This section outlines the methodology for gathering gaze data and subsequently exam-
ines the impact of machine explanations and human focus on the detailed classification
model. We utilize the CUB-200-2011 dataset [160], containing 11,788 images across 200
bird species, to acquire gaze data. This dataset includes diverse annotations such as
image attributes, body part locations, and bird descriptions. Our process results in a
modified version with enhanced human gaze data, referred to as CUB-GHA. The choice
of the CUB dataset is driven by two reasons: First, the subtle distinctions between
similar bird species are primarily in their localized and compositional features, which
human gaze can accurately capture. For example, differentiating between species based
on minor variations like throat color is a more specific task compared to contrasting
broadly dissimilar animals like a bear and a horse (illustrated in Figure 3.2). Second,
the CUB dataset’s extensive use in various computer vision applications, including de-
tailed classification [78, 79, 161], zero-shot learning [162, 163, 164, 84], and explainable
AI [165, 93, 166], makes CUB-GHA a potentially valuable asset for investigating the
influence of human attention in these areas.

3.2.1 Gaze Data Collection

As shown in [70], when viewing two closely related classes, humans tend to focus on
features that distinguish one class from the other. In our research, we implement an
image comparison game, similar to [70], where participants are motivated to concentrate
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Eye Tracker

Chin Rest

    Display

Keyboard

(a) Data collection setup

Step 1: 
Compare two classes

Step 2: 
View for 3 seconds

Class 1 Class 2

1 2Step 3:
Give the class number

(b) Data collection (c) Data preparation

Use the I-VT fixation classification 
algorithm to get the fixation points

HA saliency map

Figure 3.2: (a) Eye Tracker Configuration: A Tobii Spectrum eye-tracker is utilized, capable of
recording gaze patterns at a swift 1200 Hz frequency. (b) Data Collection: The first
step provides a diagrammatic representation of the task where participants view
images of two distinct species. In the second step, an image of one randomly chosen
species is displayed for gaze tracking. To make the process engaging for participants,
they are asked to identify the species in the third step. (c) Data Preparation:
Gaussian-based techniques are utilized to visually depict human attention through
saliency maps.

on these distinguishing features while comparing two similar images from distinct cate-
gories. The task is intentionally made difficult by selecting two very similar classes for
each comparison pair, aiming to yield more powerful insights.

Figure 3.2 provides an overview of our data collection process. Part (a) of the figure
illustrates the experimental setup, which includes an image of the eye-tracking device
(Tobii Spectrum Eye Tracker) operating at 1200 Hz, with the chin rest and the display
screen. The display has a resolution of 1920 × 1080. The chin rest plays a crucial
role in ensuring accurate tracking of eye movements. Each image displayed during the
experiment is resized to fit the screen and is centrally positioned. The typical distance
maintained between the participant’s nose and the screen is around 60cm. The compar-
ison task, divided into three steps, is depicted in part (b) in Figure 3.2. In step 1, two
images are simultaneously presented to the participants, each representing a different
bird class from the CUB dataset; for example, images might be of the Barn Swallow
and Tree Swallow. These pairs are carefully chosen from the same sub-classes, and their
visual similarity is manually verified by different individuals to ensure the comparison
task is not overly simple. Participants are given the flexibility to view these images for an
unrestricted duration. In step 2 of the experiment, when participants indicate readiness
to proceed with the classification task, they are shown an image from one of the two
bird classes featured in the CUB dataset. The task for the participant is to identify the
class to which the displayed image belongs. To focus the participant’s attention directly
on the classification task and minimize unrelated exploratory gaze behavior, each image
is presented for only three seconds.

Each data collection session consists of presenting one image from each of the 200
classes in the dataset, resulting in a total of 200 images reviewed per session. To en-
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sure a comprehensive evaluation, every image in the CUB dataset is examined by five
different participants. The study involves 25 subjects, comprising 19 males and 6 fe-
males, with an average age of 27.64 years (standard deviation of 4.15 years). Although
not all participants engage in an equal number of sessions or view the same instances,
the experiment is structured to ensure that each participant is exposed to all classes
within each session they attend. Notably, all the participants are novices in the domain,
possessing no specialized knowledge about bird species.

3.2.2 Human Attention Saliency Map Generation

The collected gaze data undergoes preprocessing to pinpoint fixation locations, achieved
through the use of the Velocity-Threshold Identification (I-VT) algorithm [167]. The
fixations identified in the dataset provide not only coordinate information but also the
duration of each fixation. Utilizing these details, we create saliency maps that represent
human gaze, as depicted in Figure 3.2 (c).

θ

d
l

Human
Eye

Eye-tracker
Display

Figure 3.3: Illustration of a person viewing an image on an eye-tracking monitor.

Concretely, Figure 3.3 depicts a person observing an image through an eye-tracker
display. As described in the paper, each fixation point is converted into a Gaussian
distribution N(µ, , σ2) on the HA saliency map, with σ being 75 pixels, corresponding
to the display’s resolution. We determine the standard deviation σ using the following
method. In our experimental setup, the observer’s eye is 60 cm away from the eye-
tracker display, and the visual angle θ is fixed at 2◦, in line with [168]. Consequently,
l = tan 2◦ · d = 21 mm. Given the display’s dimensions (530 mm in width) and its
resolution (1920 pixels), we deduce that an extent of 21 mm on the display translates
to roughly 75 pixels. This value (75 pixels) is adopted as the standard deviation, with
the image being adjusted to the display’s resolution (1920 × 1080). Post-processing, the
saliency map is resized back to its original dimensions. The duration of each fixation
is then used to weight its corresponding Gaussian distribution. The generated saliency
map is depicted as a grayscale image.
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3.3 Comparison between Human and Post-hoc Model
Attention

In this section, we test the theory that HA identifies key areas for detailed classification.
Post-hoc model attention can be extracted with model explanation (ME) techniques, as
discussed in Section 2.1. Using the same image and task, both HA and ME pinpoint
essential regions for decision-making in humans and models respectively. Therefore, we
compare HA against four MEs from a trained classifier (vanilla ResNet-50 [169]) which
achieves a classification accuracy of 85.58% on CUB. This comparison confirms that HA
successfully highlights characteristics that more effectively distinguish one bird species
from another. The four ME used are Class Activations Maps (CAM) [88], Gradient-based
CAM (Grad-CAM) [85], InputXGradient (IxG) [89], and IntegratedGradients (IG) [158].
To quantitatively assess HA and ME, we employ the keep and retrain (KAR) method

(proposed in [159]) to determine whether the significant areas identified by HA and ME
contribute to the model’s decision-making process. The specific method is outlined as
follows: we start with an input image I that exists within the space RH×W×3, alongside
an importance estimation map A, which exists in the space RH×W×1. Here, H and W
denote the height and width of the input image, respectively. The map A might be
either the HA or ME saliency map. A maskM is created in the space RH×W×1 to select
specific pixels from I. Initially, we rearrange A into AR in descending order based on
the attention values. Following this, we convert A into a binary format by designating
the top p percent of pixels in AR as one, while the rest are set to zero:

M(x, y) =

{
1.0, if (x, y) ∈ P

0.0, otherwise
,

where P are the indices of top ranked p percent pixels. The mask M is applied to the
image I in both training and testing phases, resulting in a modified image I ′ = M ⊙ I.
This process ensures that only the top p percent of key features are visible to the net-
work. Then, a new model is trained with this modified dataset, and its test accuracy
is evaluated. The objective is to determine the significance of the features identified
by A (a model explanation or human attention saliency map) in the classification pro-
cess. An effective estimation by A would represent vital features using a minimal pixel
count. Hence, achieving higher accuracy with fewer pixels implies greater importance of
these features. The underlying reasoning is that highly important pixels should contain
class-specific details; thus, adding more pixels of lesser importance will not significantly
enhance model performance. When a saliency map effectively identifies informative fea-
tures as crucial for classification, there will be a swift increase in accuracy at the onset of
pixel insertion. In other words, a greater Area Under the Curve (AUC) reflects a more
accurate estimation of feature significance. The new dataset is created with an insertion
percentage p = [5,10,15,20,15,30,50,70,90].
Figure 3.4 (top) displays both the KAR curves and the AUC scores for each method,

while the bottom part of the figure presents qualitative saliency maps for HA and the
four MEs for a specific image. It is observed that HA and MEs highlight different areas
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Figure 3.4: Comparison between HA and ME in identifying distinct features. Top: It shows the
test accuracy on altered datasets utilizing various saliency maps. The horizontal
axis represents the percentage of insertion, while the vertical axis indicates the
accuracy on the test set. The Area Under the Curve (AUC) for each line is detailed
in the enlarged image. Middle: This part presents images modified with Grad-
CAM as a representative example. Bottom: This section visually represents HA
and the four different MEs.

of the image: humans prioritize the white feathers on the black wing, whereas the model
deems the yellow head as the most crucial feature (refer to the original image in Figure
3.1). HA is more effective in identifying relevant and significant features for the fine-
grained classification model than MEs. For instance, HA achieves an AUC score of 0.716,
surpassing Grad-CAM (0.706) and IG (0.702). When only 5% of the important pixels
are revealed, the model using HA-modified images attains an 81% accuracy, significantly
higher than the approximately 70% accuracy achieved by the model using ME-modified
images.

Furthermore, we perform a quantitative analysis to compare the similarities between
HA and MEs, utilizing a range of metrics in Table 3.1. These include Kullback-Leibler
divergence (KL-D), correlation coefficient (CC), and similarity (SIM) - commonly em-
ployed in image comparison studies [170]; rank-correlation (Rank-Co) as proposed in
[96]; the shuffled AUC metric (sAUC) for evaluating individual pixels in saliency maps;
and information gain (IG), which assesses performance against a standard [170, 61]. The
comparison shows that CAM and Grad-CAM are similar, with Grad-CAM scoring 0.565
on CC and 1.242 on KL-D, compared to CAM’s 0.563 and 1.248. Moreover, IG and IxG
show comparable results, with IG scoring 0.699 versus IxG’s 0.694 on CC, and 1.318
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versus 1.310 on KL-D. These findings are supported by qualitative data as well. Across
these metrics, Grad-CAM consistently appears most akin to HA, leading in all six met-
rics. This aligns with KAR findings that place Grad-CAM at the forefront regarding
performance among all MEs.

KL-D ↓ CC ↑ SIM ↑ Rank-Co ↑ sAUC ↑ IG ↑
CAM 1.248 0.563 0.399 0.761 0.460 0.938

Grad-CAM 1.242 0.565 0.415 0.761 0.508 1.376

IG 1.318 0.546 0.361 0.699 0.436 0.921

IxG 1.310 0.543 0.375 0.694 0.461 1.001

Table 3.1: Similarity comparison between MEs and HA saliency map. (↓: the lower the better;
↑: the higher the better.)

3.4 Human Attention Integration Strategy

This section outlines our method of integrating gaze data to enhance classification results.
This is achieved either by enriching the training data with gaze (GAT) or by utilizing it
as an additional source of information (KFN). A depiction of this framework is presented
in Figure 3.1.

3.4.1 Gaze Augmentation Training

Driven by the belief that our model should focus on key areas of an image, as indicated by
human attention (HA), we improved the model’s response to these areas by incorporating
them into our training, as shown in Figure 3.1 (left). To create k augmented images from
the original image I ∈ RH×W×3 (with H and W denoting the image’s width and height),
we use a sliding window technique to identify regions of human attention. This involves
a window of size (w, h) moving across the HA map A ∈ RH×W×1 from the top-left to
the bottom-right corner, advancing by stride size s in both directions. The areas under
the window are ranked based on average pixel values, and the top k areas are selected
to create cropped images. These images are then resized to half the width and height

of I, resulting in I ′ ∈ RH
2
×W

2
×3, following the approach in [77, 78, 71] where the focus

areas are reduced in size. I ′ retains the same label y as I. To capture diverse regions,
we vary the window sizes and apply non-maximum suppression. The training set is thus
expanded to include both I and I ′. The model is trained on this augmented dataset
using cross-entropy loss. Note, however, that the Gaze Attention Transformer (GAT)
only requires human gaze data during training, as it processes only original images during
testing.
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3.4.2 Knowledge Fusion Network

Illustrated in Figure 3.1 (right), our KFN model consists of a dual-branch network
combining the insights from HA and the native image characteristics. The first branch,
designated as the image knowledge branch, processes the original images Io ∈ RH×W×3,
with H and W denoting the image’s height and width respectively. A CNN backbone
fo(·) is employed to derive the image feature fo(Io) ∈ RDo from Io, where Do indicates
the feature channel’s dimension. The second branch, termed the HA knowledge branch,
integrates the gaze attributes of the image. Here, the HA is combined with the original
image, denoted by Ig = Io ⊙ A, where A ∈ RH×W×1 represents the HA saliency map.
This process assigns weights to image pixels based on HA saliency maps, highlighting
areas of human attention more prominently. Ig encodes crucial visual elements for
classification purposes. An additional CNN backbone fg(·) extracts the gaze feature
as fg(Ig) ∈ RDg . Then, these gaze and original image features are merged to create the
combined feature f(Io, Ig) ∈ R(Do+Dg). This fusion of HA in a multiclass classification
context explores HA’s capacity to enhance image classifier efficacy. The training of the
network employs the cross-entropy loss.

3.5 Experiment

This part begins with an overview of the datasets and the specifics of the implementation.
Following that, the outcomes of our GAT and KFN are presented. Our methods are
tested for their broad applicability on two datasets, namely CUB-GHA and CXR-Eye,
which stands for Eye Gaze Data for Chest X-rays [2].

3.5.1 Implementation details

The CUB-GHA dataset contains a total of 11788 images, split into 5994 for training and
5794 for validation, as detailed in [160]. In every image, eye gaze data from 5 individuals
is featured. The CXR-Eye dataset, on the other hand, consists of 1083 chest X-ray
images, each accompanied by gaze data from a radiologist during standard radiology
reviews [2]. This dataset’s primary objective is to determine, based on the chest X-ray
image, whether the individual has pneumonia, congestive heart failure (CHF), or is in
normal health. Additionally, the eye gaze information is presented in a saliency map
format, and each image is tagged with one of three possible labels. The choice of this
dataset is driven by its uniqueness as a human gaze dataset in the medical field. We
assert that integrating human attention in critical applications, e.g., computer-aided
diagnosis can enhance user acceptance and trust.

In our study conducted on the CUB dataset, we first adjust the dimensions of the
input images to 448×448 (by cropping after resizing the smaller edge to 448) and apply
a random horizontal flip during training. The SGD optimizer is utilized [171], starting
with a learning rate of 0.001. For the CXR dataset, we resize the input images to
224 × 224 and also incorporate a random horizontal flip in the training phase. Here,
the Adam optimizer is employed [172], with an initial learning rate set at 0.0005. The
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Small Medium Large

CUB-GHA (123,134) (134,123) (123,123) (134,134) (174,190) (190,174) (174,174) (190,190) (246,264) (269,246)

CXR-Eye (87,95) (95,87) (95,95) (87,87) (123,135) (135,123) (123,123) (135,135) (180,190) (190,180)

Table 3.2: Sliding window size used in GAT.

CXR-Eye dataset, being comparatively smaller, is subjected to 5-fold cross-validation,
and the mean accuracy across the five validation sets is presented as the ultimate score.
All tests are conducted over 100 epochs, using a single NVIDIA GeForce RTX 3090. The
learning rate is reduced by a factor of 0.1 every 50 epochs.

In the experiments, we use ResNet-50 [169] and EffiecientNet-b5 [173] pretrained on
ImageNet as backbones on CUB and CXR, respectively. In the GAT approach, the
original image is segmented using three different groups of window dimensions: large,
medium, and small. Within each group, a sliding window technique generates k aug-
mented images per training set image. Specifically, for large-scale windows, k is set to 2
for large, 3 for medium, and 4 for small scale, resulting in a total of 9 augmented images.
Furthermore, when integrating GAT with KFN, the GAT-trained classifier serves as the
backbone of the KFN, which is then fine-tuned over only 20 epochs.

3.5.2 Evaluation on CUB-GHA

Window sizes in GAT. Table 3.2 lists the dimensions of concrete sliding windows
(w, h) applied in the GAT experiments for each dataset. The sliding window sizes for
the CUB-GHA dataset are derived from the average dimensions of bird bounding boxes
when images are resized to 448× 448: a width of 246 and a height of 269. These dimen-
sions are used for the large scale windows. The medium scale windows are determined

by multiplying these dimensions by
√
2
2 , resulting in window sizes of 174 by 190, which

halves the area of the bounding box. The small scale uses a factor of 0.5. For the CXR-
Eye dataset, factors of 0.8 and 0.85 are applied to the resized image size of 224 × 224
to obtain large window sizes of 180 and 190. The medium window sizes employ factors
of 0.55 and 0.6, while the small window sizes are scaled from the medium sizes using a

factor of
√
2
2 . The purpose behind varying sliding window sizes is to capture different

discriminative regions for classification. An intersection over union (IoU) threshold of
0.25 is set in non-maximum suppression to ensure diversity in the cropped areas. Ta-
ble 3.3 presents an ablation study on the impact of different numbers of cropped areas
(k) in augmentation training, as shown in two datasets. The notation (2,2,2) implies
that two cropped areas from each window scale contribute to the augmentation training
set. The chosen configuration of (2,3,4) demonstrates relatively superior results on both
datasets, as depicted in Figure 3.5, which illustrates the augmentation images using this
setting across the three window scales.

Ablation studies. In our study, we assess the impact of GAT and KFN on classification
by conducting an ablation study using the CUB dataset. A ResNet-50 model trained
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CUB-200-2011 CXR-EyeLarge

Medium

Small

Augmentation

Figure 3.5: Illustration of cropped images used in the GAT. Left and Right: Saliency maps
from HA applied for augmentation on CUB-GHA and CXR-Eye. Middle: Images
cropped at three different scales (large, medium, and small).

(L,M,S) CUB (%) CXR (%)

(2,2,2) 87.50 71.03

(2,3,2) 88.06 71.58

(2,3,3) 88.00 71.86

(2,3,4) 88.00 72.21

Table 3.3: Accuracy (%) of applying various window size configurations on CUB-GHA and
CXR-Eye. The left side displays the count of windows utilized in large, medium,
and small sizes.

with cross-entropy loss serves as the baseline, while its variations include incorporating
GAT and KFN modules. The data in Table 3.4 reveals significant enhancements in
classification precision due to both GAT and KFN. Specifically, GAT, when combined
with Human Attention (HA), boosts the base model’s accuracy from 85.58% to 88%,
highlighting the importance of human gaze in identifying key features for classification.
Similarly, employing HA with KFN increases accuracy from 85.58% to 86.99%, confirm-
ing KFN’s effective integration of human attention knowledge. To further validate the
effectiveness of, we replace it with model-generated saliency maps using Grad-CAM [85]
and IG [158] in both GAT and KFN. Here, HA outperforms these alternatives, with
KFN (HA) reaching an accuracy of 86.99%, compared to 85.66% with KFN (IG), under-
scoring the unique insights offered by human gaze that the model alone cannot replicate.
Additionally, combining GAT and KFN yields better results than using either indepen-
dently.

Comparison with state-of-the-art. In our study, we compare our proposed modules
with other SOTA baselines. To ensure a fair comparison, we use the ResNet-50 as the
baseline and set the input resolution at 448 × 448 for all methods. First, we evaluate
our GAT against other data augmentation techniques such as MixUp [174], CutMix
[175], and SnapMix [176], as shown in Table 3.5 (top). Unlike these methods, our GAT
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Method Acc.

ResNet-50 [169] 85.58

GAT

Grad-CAM [85] 87.68

IG [158] 87.73

HA 88.00

KFN

Grad-CAM [85] 85.04

IG [158] 85.66

HA 86.99

GAT+KFN HA 88.66

Table 3.4: Ablations study of GAT and KFN on CUB. “Acc.” denotes the accuracy in %.

does not create synthetic images. MixUp linearly blends two images and their labels,
while the others swap sections of one image with parts from another. Conversely, GAT
merely enlarges the dataset using cropped images, thus adding minimal computational
load to the training of the classifier. Among these approaches, training a ResNet-50
with GAT surpasses other advanced augmentation methods, reaching an accuracy of
88%. Furthermore, this enhanced training base can be seamlessly integrated with other
frameworks for improved results; for example, when we combined it with our KFN, it
yielded superior outcomes.

Method Acc.

MixUp [174] 86.23

CutMix [175] 86.15

SnapMix [176] 87.75

Ours (GAT) 88.00

OSME+MAMC[72] 86.30

TASN [79] 87.90

API [80] 87.70

ACNet [81] 88.10

Ours (KFN+GAT) 88.66

Table 3.5: Comparison with the state-of-the-art methods on CUB. Top: Comparison of GAT
with data augmentation methods. Bottom: Comparison of GAT+KFN with
attention-based models.

In Table 3.5 (bottom), our KFN+GAT network is compared with attention-based
techniques on CUB. Selected for their efficiency and significance in attention modules,
these methods include OSME+MAMC [72], TASN [79], API [80], and ACNet [81]. These
approaches use attention modules to extract key features from the network’s intermediate
results, whereas our method incorporates HA directly. For example, [72, 81] employ
multiple layers on top of the residual block output for region feature extraction; API
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Input
Orange Crowned Warbler

✓ (Ours) 
HA Branch ME

HA Saliency Map ✘ Baseline ME 

Misclassified to
Nashville Warbler

Misclassified to
Long Tailed Jaeger

Input
Pomarine Jaeger

✓ (Ours) 
HA Branch ME

✘ Baseline MEHA Saliency Map

Input Misclassification

Ours ✓ Baseline ✘

Input Misclassification Misclassification MisclassificationInput MisclassificationInput

Ours ✓ Ours ✓Baseline ✘ Baseline ✘ Baseline ✘Ours ✘

Misclassified to
Elegant Tern

Input
Caspian Tern

HA Saliency Map ✘ (Ours) 
HA Branch ME

✓ Baseline ME

Figure 3.6: Illustration of model explanations using HA. Two improved examples and one fail-
ure example of our model are shown. For each of these cases, we present the input
alongside the misclassified categories: HA saliency map, the explanation of our
model, and the explanation of the baseline model.

[80] emulates human comparison processes, similar to our data collection approach, for
learning distinct feature representations. Surpassing all SOTA models, our full network
achieves an 88.66% in accuracy, higher than the attention networks API (87.70%) and
ACNet (88.10%). This underscores the efficacy of our KFN and GAT, demonstrating
that incorporating human gaze can enhance model performance in classification tasks.

Method S3N [177] S3N + GAT (Ours) CrossX [178] CrossX + GAT (Ours) MMAL [74] MMAL + GAT (Ours)

Accuracy 87.95% 88.91% 87.70% 88.51% 89.25% 89.53%

Table 3.6: Combining our GAT model with the state-of-the-art methods on CUB.

Qualitative results. Figure 3.6 illustrates two instances where our model shows im-
provement compared to a vanilla ResNet-50, and one instance where it incorrectly clas-
sifies. In the first example, the baseline model mistakenly identifies an Orange Crowned
Warbler as a Nashville Warbler due to the focus on the yellow belly, a common feature.
However, our model distinguishes the species by the throat color: The Orange Crowned
Warbler has a purely yellow throat, in contrast to the Nashville Warbler’s throat, which
blends gray and yellow. The second case highlights the tail as the key feature. Here,
our model accurately identifies the tail, unlike the baseline model, which confuses the
background for the tail. Additionally, our model’s explanation is more concise and re-
flects human saliency maps more closely. The third case demonstrates a limitation of
our model, where it mistakenly classifies a Caspian Tern as an Elegant Tern, focusing
on the feet rather than the beak. This error arises despite our model’s alignment with
the human focus, as it overemphasizes the foot color, a crucial feature in differentiating
a Caspian Tern from either a Common or an Arctic Tern.
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Chest X-Ray HA Saliency Map Image Branch ME HA Branch ME

Figure 3.7: Illustration of the influence of using HA in model explanation. Left to Right:
the original Chest X-ray image; HA saliency map; Model explanation of the Image
Branch (w/o HA knowledge) and Model explanation of the HA Branch.

3.5.3 Evaluation on CXR-Eye

Comparison with state-of-the-art. In the paper on CXR-Eye [2], the authors employ
the Efficient-b5 [173] for classification purposes. They utilize randomly generated splits
for training, validation, and testing datasets. To ensure a fair evaluation, we re-evaluate
their model using the same 5-fold cross-validation approach and average the accuracies
from five validations to determine the evaluation outcome. This baseline approach yields
a 70.97% accuracy rate. Incorporating our GAT leads to a slight increase in performance,
achieving 71.86%, while the addition of the KFN further enhances accuracy by 3.45%,
reaching 74.42%. Combining both GAT and KFN in the full model results in a notable
improvement, with an accuracy of 75.35%, surpassing the vanilla Efficient-b5 by 4.38%.
Among the enhancements, KFN had a more significant impact on the CUB model than
GAT. The potential reason for this difference is how the gaze data is collected.

In the CXR-Eye, the eye movement data of the radiologist is gathered during their
analysis process. Observing Figure 3.7 (second column), it is obvious that the radiol-
ogist’s gaze is dispersed across numerous points (indicated by the light blue region).
While these points might be crucial for diagnostic purposes, GAT specifically identifies
the zones where the radiologist’s attention is more prolonged. Moreover, KFN enhances
overall effectiveness by incorporating information from all these relevant areas, thus
resulting in a more substantial improvement.

Qualitative results. To assess the impact of HA integration in the network, we exam-
ine the model explanations (using Grad-CAM [85]) for each component of KFN, with
qualitative outcomes presented in Figure 3.7. The HA branch appears to align closely
with human focus, unlike the image branch, which targets different areas. For instance,
in the upper example, the human gaze focuses on the left, reflected by the HA branch,
while the image branch favors the right side. The image branch in the second example
fixates on an incorrect region, but the HA branch adjusts the focus correctly. Thus,
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KFN outperforms models relying solely on images. More importantly, the incorpora-
tion of gaze data enhances model trustworthiness and acceptance, especially in fields
like medical diagnostics, by ensuring model decisions are consistent with human gaze
behaviors.

3.6 Conclusion

In this study, we explored the role of human gaze in classification tasks using the CUB
and CXR datasets. We introduced a new gaze dataset, CUB-GHA, to demonstrate
that human attention is directed toward key areas in detailed classification tasks. Our
research proposed the Gaze Augmentation Training and Knowledge Fusion Network,
incorporating human gaze insights into the network, significantly enhancing classification
accuracy on both datasets. This finding supported the hypothesis that human attention
can guide models in identifying unique features for different classification tasks.

Additionally, this research provided a valuable resource for the community: the CUB-
GHA dataset enriched with human gaze data. This dataset complements existing
datasets with detailed annotations (like textual explanations, attributes, and bound-
ing boxes) and can be used in various applications where human-AI interaction involves
the human gaze.
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Part II

Predicting Human Intention
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The previous part of the dissertation delves into the incorporation of human attention
knowledge into models to enhance their performance, underscoring the efficacy of AI
model design informed by human factors. This part considers another human factor,
namely human intention, and explores the potential of AI in assisting humans, specifi-
cally through predicting human intentions.

This part is adapted from two works that appeared in ITSC 2020 [179] and PACMHCI
2022 [45], respectively:

• Rong, Y., Akata, Z., & Kasneci, E. (2020)

Driver intention anticipation based on in-cabin and driving scene mon-
itoring

In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC)

• Rong, Y., Kassautzki, N.-R., Fuhl, W., & Kasneci, E. (2022)

Where and what: Driver attention-based object detection

In Proceedings of the ACM on Human-Computer Interaction (PACMHCI)

In the following section, I will summarize the motivation, principal methodology, main
findings, and my contributions to each of the two papers.

Driver intention anticipation based on in-cabin and driving scene monitoring

Motivation. As discussed in Section 1.2.2, more efficient human-AI collaboration can
be fostered if AI models can foresee human intentions. A very good application use case
for this is in the area of high-level autonomous driving, where there is a growing need for
an AI model to serve as a co-pilot [180]. To address these important practical use-cases,
this part employs driver intention prediction as the case study.

Driver intention can be inferred from their actions and the surrounding traffic infor-
mation recorded in monitoring videos. Section 4.2 is motivated to predict human ma-
neuver intention based on videos of in-cabin and driving scene monitoring, while prior
works mainly focus on using driver monitoring videos. This work aims at improving
driver intention prediction using dynamic traffic information. For this task, the dataset
Brain4cars [3] is used, which contains in-cabin and outside videos.

Principal methodology. To effectively predict driver intentions based on videos, Sec-
tion 4.2 proposes a novel method to use outside videos to inform driver intention predic-
tion, because traffic scenes can offer insights into the motion of the car. More specifically,
it proposes a Convolutional-LSTM (ConvLSTM)-based auto-encoder to extract motion
features from the out-cabin videos. Another branch is trained to extract driver behavior
features from videos. Then, a classifier is trained on features from both in- and outside
of the cabin jointly for maneuver intention anticipation.
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Main findings. Evaluation results (Section 4.2) show that the inside and outside mon-
itoring videos have complementary information. Therefore, the proposed framework is
able to achieve more precise prediction than using any of the video sources only. More
specifically, using inside video only achieves an accuracy of 77.4% and F1-score of 75.5%,
and using outside video only reaches 60.9% and 66.4% in accuracy and F1-score, respec-
tively. The proposed method achieves state-of-the-art performance with an accuracy of
84.0% and F1-score of 84.3%. These findings demonstrate the effectiveness of the pro-
posed algorithms in predicting driver intention: the proposed method leverages motion
features derived from the optical flow, and human action feature embeddings extracted
by a 3D CNN.

My contributions. This paper was a project under my leadership. Specifically, in the
ITSC 2020 paper [179], I identified the prevailing research gap and introduced the use
of ConvLSTM architecture for extracting features from external video data. This effort
involved developing the code and conducting analyses of the experimental results.

Where and what: Driver attention-based object detection

Motivation. This work is beyond driver actions in Section 4.2. In Section 4.3, this
work detects the objects of the driver’s intention, i.e., the objects that the driver focuses
on and plans to interact with. Human drivers utilize their gaze-based attention to
identify crucial objects and to make further reactions. The analysis of gaze data has
become increasingly relevant in enhancing autonomous driving systems. Prior studies
have mainly focused on determining “where” drivers look, neglecting “what” specific
objects capture their attention. Conversely, while standard object detectors can identify
all objects in a driving scene, they do not provide insights into the driver’s intentions.
This work is motivated to bridge this research gap by the precise detection of critical
objects within the driver’s focus.

Principal methodology. To predict objects of the driver’s intentions, Section 4.3 com-
bines a gaze prediction module with an object detection module, allowing for the precise
detection of critical objects within the driver’s focus. Concretely, the gaze prediction
module estimates where the driver is looking by predicting saliency maps, while the
object detection module identifies all objects within the traffic. Attention-based objects
are then recognized and presented to users, guided by the combination of the saliency
map and the objects detected. Another novelty is that the predicted saliency map is
grid-based rather than pixel-based. In this way, predicted saliency maps can be used
to precisely detect the objects, without adding too much computational burden to the
whole framework.

Main findings. Section 4.3 presents the evaluation results of the proposed driver-
attention-based object detection framework. The results address the advantage of the
proposed attention prediction module compared to other driver attention prediction
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methods in object detection precision and computation costs. For instance, the SOTA
model achieves 0.86 in AUC and 73.8% in F1-score, but the model needs 47.2M param-
eters and 92.30 GFLOPs to compute the attention saliency map. However, our method
achieves competitive results in object detection with 0.85 in AUC and 72.8% in F1-score
with much less computational resources, i.e., 7.5M parameters in the network and 17.0
GFLOPs. Similar to the first work, these findings demonstrate the effectiveness of the
proposed algorithms. It introduces an effective attention module to predict the objects
within human attention. These methods can be further adapted in a wide range of
applications that utilize video input.

My contributions. In this PACMHCI paper [45], I originated the research idea and
developed the methodology to address the problem. I personally coded the framework,
led the collection and analysis of the main results, and was responsible for writing both
manuscripts.
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4.1 Introduction

On the halfway to autonomous driving vehicles, it is therefore necessary to provide
already existing Advanced Driver Assistance Systems (ADAS) the functionality for col-
laboration with the human driver in the most efficient way, for example, to alert the
driver in case of a dangerous maneuver. To achieve such an effective collaboration, many
researchers focused on detecting the maneuver intention of the driver before execution.
Recently, multiple research has concentrated on identifying a driver’s intent to maneu-

ver prior to their execution. Datasets such as Brain4cars [101] and the Honda Research
Institute Driving Dataset (HDD) [102] have been specifically developed to study and
understand driving behaviors. The HDD system, as detailed in [102], employs high-
resolution video cameras, together with GPS, LiDAR sensor signals, and vehicle CAN-
Bus data to capture detailed traffic scenes. Brain4cars [101] collects videos both from
within and outside a vehicle, incorporating GPS and vehicle dynamics information with
the video data. These videos offer insights into various patterns of driver maneuvers and
overall road traffic behavior. The significant amount of information conveyed through
these frames has been extensively explored in research, particularly in the context of
predicting driver intentions based on video analysis of drivers glancing towards side mir-
rors. Studies utilizing the Brain4cars dataset, including [101, 3, 103, 104, 105], have
successfully demonstrated maneuver prediction.
Much of the prior research in predicting driver maneuvers is mainly based on video

data obtained from monitoring the driver. Studies have consistently demonstrated that
observing a driver’s behavior, particularly their eye movement, is not just useful for
recognizing activities [106, 107], but also plays an important role in ensuring safe tran-
sition behaviors in partially automated vehicles [65]. In addition, video clips capturing
the driver are employed to derive various features, such as the positioning of the head
[101, 3, 103, 105]. However, these studies typically involve a manual process of converting
traffic information into a four-element vector. This vector includes two Boolean indica-
tors to show the presence of lanes on either side of the car, a Boolean value indicating the
proximity of an intersection or turn within 15 meters, and a final element representing
the vehicle’s current speed. Consequently, the external information captured in videos
is not further analyzed.
The outside video from the road scene ought to be highly revealing, offering insights

that the internal video fails to deliver. Therefore, Section 4.2 focuses on (1) efficiently
garnering vehicular movement data from traffic videos, thereby enhancing outcomes
that were previously reliant on a singular video stream; (2) introducing a comprehensive
approach that forgoes the need for manual coding data; and (3) maintaining a minimal-
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ist model design (fewer parameters) to ensure its suitability for mobile platforms with
limited resources.

Beyond intention predictions based on human actions, objects of the driver’s atten-
tion can also indicate the driver’s intentions, as demonstrated in Figure 1.4. To detect
these objects, effective models should be able to perform “gaze-object mapping,” which
involves two tasks: predicting where the driver is looking and associating that gaze with
specific objects. Predicting a driver’s gaze is feasible, especially when an eye tracker
is not available, or the vehicle operates at a higher autonomy level without a human
driver. For example, research by Pomarjanschi et al. [181] demonstrates that highlight-
ing critical objects like pedestrians on a head-up display can decrease collision incidents.
In this scenario, a model that identifies these important objects acts as a “co-driver,”
providing alerts to assist the actual driver. For completely self-driving vehicles, it is
crucial to quickly and accurately identify relevant objects for decision-making and ex-
planation purposes [182]. There is increasing interest in research on predicting where
human drivers focus their gaze [8, 7, 121]. These studies generate pixel-level attention
maps, but they don’t convey the semantic significance of the observed attention; that is,
the models indicate where drivers look, but not what objects are in those areas.

To address the existing gap in research between predicting driver gaze and detecting
semantic objects in autonomous driving, this work in Section 4.3 introduces a dual-
focused approach: (1) predicting both the location and the nature of objects drivers
observe, and (2) developing a model that is computationally efficient due to the limited
resources available in self-driving vehicles. We have developed an innovative framework
centered on efficient, attention-based object detection aligned with human driver gaze.
This framework not only generates attention saliency maps at the pixel level but also
identifies objects within these attention zones, as depicted in Figure 4.6. Initially, a
feature encoder processes the input image’s information. Subsequently, these features
are utilized for simultaneous gaze prediction and object detection. Our primary ob-
jective is to accurately identify high-level (object) information rather than achieving
pixel-level precision in saliency map predictions. Therefore, we employ a grid-based ap-
proach to identify salient areas, reducing computational demands while ensuring robust
performance in crucial object detection tasks.

In the following sections, details of each proposed method will be introduced.

4.2 Driver Intention Prediction based on Videos

As highlighted in the last section, various works have focused on predicting driver ma-
neuvers [101, 3, 103, 104, 105]. Yet, none have successfully predicted driver intentions
by integrating data from both inside and outside vehicle video feeds, given the intricate
nature of road traffic, which complicates the creation of explicit features. Consequently,
several research efforts, including [101, 3, 103, 105], have resorted to using manually en-
coded feature vectors. Alternatively, attempts at training CNNs with external video data
in an end-to-end manner have been less than optimal [104], attributed to the insufficient
availability of on-road video data pertinent to maneuver anticipation for training such
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Figure 4.1: The overview of our framework. The upper branch depicts the feature extraction
from out-cabin videos: FlowNet 2.0 [6] extracts the optical flow from the consecutive
frames; then the traffic motion is captured by a ConvLSTM-based encoder. The
bottom branch represents the feature extraction from in-cabin videos based on the
3D ResNet-50 network. The red frame at the end refers to the classifier, where a
decoder (marked as “Conv Layers”) for outside features is integrated. This novel
classifier architecture allows features from inside and outside of the cabin to be
considered jointly.

deep networks. This section introduces an approach that combines outside video with
in-cabin driver video features for enhanced prediction of driving intentions. Figure 4.1
illustrates the framework architecture.

4.2.1 Driver Maneuver Prediction Framework

Future Frame Prediction. Utilizing the ConvLSTM framework [183], we develop a
network structured for encoder-decoder-based training, focusing on motion prediction
and feature extraction. Thanks to its convolutional nature, this framework effectively
addresses issues in forecasting spatio-temporal sequences [36]. An illustration of this
architecture is presented in Figure 4.2. In this structure, hi,j represents the hidden state
and ci,j the cell state, where i corresponds to the specific time step and j to the layer
level. It is important to note that all states at i = 0 are initially set by the network.

The input comprises a set of five optical flow images, denoted as Xi where i is less than
5 and belongs to the set of integers Z. We selected the number five for the input size
to ensure a consistent sampling across a duration ranging from one second (30 frames)
to five seconds (150 frames). In this context, “consistent” implies that the spacing L
between each input image is the same. The decoder’s output is the anticipated frame for
a future point in time, specifically L frames ahead. Unique to our design, the decoder
uses a point-wise convolutional layer, distinguishing our model from prior approaches
in [36, 184]. This configuration enables the encoder to efficiently compress motion data
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Figure 4.2: Architecture of the proposed future motion prediction module.

from the five-frame input, which is crucial for predicting future movements. Hence,
the encoder functions primarily as a motion feature extractor, which leads to a reduced
emphasis on the decoder’s role.

The network architecture details are presented in Table 4.1. The third column lists
the output size for each layer, which is a four-dimensional measurement: time step as the
first dimension, followed by the number of channels, and finally the input image’s height
and width. Each ConvLSTM cell processes a single frame at each time step, resulting
in the first dimension being reduced to one post the input layer. It is also important to
note that the encoder’s output yields the necessary feature for predicting maneuvers.

Feature Fusion. The method presented utilizes two input sources: inside and outside
videos, as depicted in Figure 4.1. In processing traffic videos, FlowNet 2.0 first con-
verts raw video frames into optical flow images. Then, these images are given into the
ConvLSTM encoder. This encoder generates a 3D feature (32×112×176) that under-
goes further processing through several convolutional blocks (Conv-Block) before fusion.
Another pathway employs a 3D ResNet-50 for processing driver videos, maintaining the
core structure of the original network mentioned in [185]. To enhance model performance
and avoid overfitting, a dropout layer follows the average pooling layer at the end. The
feature extracted here is the input to the final fully-connected (FC) layer of ResNet-50,
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Layer Kernel Size / Stride Output size

Input 5×3×h×w

Layer 0 (3,3)/(1,1) 1×128×h×w

Layer 1 (3,3)/(1,1) 1×64×h×w

Layer 2 (3,3)/(1,1) 1×64×h×w

Layer 3 (3,3)/(1,1) 1×32×h×w

Conv (1,1)/(1,1) 1×3×h×w

Table 4.1: The convolution information about the future motion prediction module.

32     Conv
Stride = 1

ReLU

22  MaxPool
Stride = 2

BN

Input

Output

Figure 4.3: The architecture inside the Conv-Block.

represented as a 2048-dimensional vector. The ResNet-50 receives a 16-frame video clip
as input.

The novel aspect of the classifier presented is its decoder that processes outside fea-
tures, which is trained jointly with the features from inside videos. This is detailed
in Table 4.2. For interpreting outside motion, a Conv-Block is utilized. The internal
configuration of a Conv-Block is depicted in Figure 4.3. Here, “ReLU” denotes the ac-
tivation function, while “BN” stands for Batch Normalization layer. Between the final
two FC layers, both a ReLU and a BN layer are incorporated. The output dimension
following each layer is indicated in the table’s third column. Finally, Ncls signifies the
total number of classes, which amounts to five in this specific instance.

4.2.2 Experimental Results

Dataset. The Brain4Cars dataset [101] comprises videos that capture driver actions
(resolution of 1088px × 1920px at 25 frames per second) and external environmental
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Feature Layer Output size

Conv-Block 0 64×37×59

Conv-Block 1 128×12×20

Outside Conv-Block 2 256×4×7

Conv-Block 3 512×1×2

Concatenate 3072×1

Both FC 0 3072×2048

Both FC 1 2048× Ncls

Both Softmax Ncls

Table 4.2: The architecture of the proposed classifier, which considers joint features from in-
and outside videos. The first column indicates the feature source, the second column
shows the name of the layer, and the third column is the output size after the layer.
The features are combined in the “Concatenate” layer.

video length [s] > 4 > 3 > 2 > 1 > 0

samples 490 542 563 573 585

Table 4.3: The number of the valid samples relatively to the video length.

footage (resolution of 480px × 720px at 30 frames per second), both recorded concur-
rently. This dataset categorizes five types of driving maneuvers: proceeding straight,
shifting to the left lane, turning left, moving to the right lane, and turning right.

This dataset specifically focuses on the driver’s behavior before a maneuver, meaning
that the actual maneuver does not take place within the video duration. In our research,
we emphasize the early detection abilities of our models. For this purpose, we consider
each second as a critical juncture. During model assessment, we utilize video frames
leading up to a specific time step T , where T belongs to the set (-5, -4, -3, -2, -1),
indicating the seconds before the maneuver occurs. The “−” symbol denotes the time
in seconds preceding the maneuver. Shorter videos correspondingly depict a briefer
period prior to the start of a maneuver. Owing to varying video lengths, the amount of
data available for early prediction analysis differs. Additionally, any instances lacking
simultaneous internal and external footage are deemed invalid and excluded from our
analysis. Table 4.3 details the number of valid video samples available for training our
comprehensive framework, with respect to the duration (s) before a maneuver begins.

Out-cabin Motion Extraction. To ensure the generalization, the training incorporated
temporal augmentation. This involved randomly selecting and trimming a 5-frame se-
quence as input for the network, with the desired output being the L-th frame following
the sequence’s final frame. Spatially, the frames are downscaled to 112 × 176 dimensions,
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Figure 4.4: MSE for different interval values.

maintaining the original aspect ratio. For optimization, we utilized Mean Square Error
(MSE) as the loss function and Stochastic Gradient Descent (SGD) as the optimizer,
setting the weight decay at 0.001 and momentum at 0.9. The training regimen spanned
60 epochs, employing a learning rate of 0.1.

In the evaluation, we focus on determining the model’s capacity for future prediction.
Specifically, our assessment involves using our model for time frames ranging from L ∈
(5, 10, 15, 20, 25, 30) frames. In this context, the model’s decoder generates predictions
for the motion in the L-th frame following the final input frame. Consequently, a greater
L value indicates a longer prediction into the future, with the upper limit set at 30 frames
(equivalent to 150 frames or a 5-second video, which is the maximum duration in our
dataset). Intervals shorter than 5 frames (less than 0.33 seconds) are not considered due
to their brevity. The primary frame of interest for evaluation is the video final frame, and
the Mean Squared Error (MSE) serves as the benchmark for assessment. The Figure 4.4
illustrates the average MSE across various intervals.

Note that we amplify the MSE value by a factor of 1000 for clarity in demonstrating
differences. The findings indicate a challenge for the model in accurately forecasting
frames that are significantly ahead of time. Specifically, the model learning efficacy
diminishes when tasked with predicting beyond a 20-frame interval, equivalent to 0.67
seconds. To ensure more accurate motion feature representation, we select a model
configuration with an L value of 5.

Upon fixing the interval L at 5, we assess our model over various durations within the
video. In detail, the frames fed into the model all fall within the timeframe preceding T
(with T taking values from the set -4, -3, -2, -1, 0), and the target frame is identified as
the final frame in each one-second segment. For a comprehensive evaluation, we employ
three evaluation metrics: Mean Squared Error (MSE), Structural Similarity (SSIM)
index, and Peak Signal-to-Noise Ratio (PSNR). The predictive performance is detailed
in Table 4.4. Notably, for PSNR and SSIM, higher values indicate superior performance.
The results across five different folds are presented as “Average (Avg) ± Standard Error
(SE)”.

The findings indicate that optimal prediction of maneuvers is attained using video
data captured 4 to 5 seconds prior to the maneuver itself. Thus, motion changes are
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prediction at [s] MSE (·10−3) SSIM PSNR

-4 9.13± 0.42 0.909± 0.001 21.77± 0.16

-3 9.42± 0.40 0.906± 0.002 21.49± 0.10

-2 10.75± 0.61 0.904± 0.002 21.35± 0.18

-1 9.97± 0.22 0.900± 0.001 21.27± 0.05

0 10.73± 0.46 0.898± 0.002 21.08± 0.10

Table 4.4: Results of future motion prediction.

not massive earlier on before −3s. In scenarios with considerable motion variations,
such as during a car turn, the encoder struggles to fully capture the extent of these
changes. Notably, in the final three seconds leading up to a maneuver, external motion
changes become increasingly evident. Although motion continues to evolve between 2s
and 1s before the maneuver, the changes are less pronounced compared to adjacent time
intervals. Overall, critical traffic motion changes are detectable within a three-second
window preceding the maneuver. Using the features extracted from the outside videos
by the ConvLSTM-encoder alone can also produce a prediction among five classes. The
results are presented in Table 4.5, whereas a comparison to related approaches is provided
in Table 4.6.

(a) Target image. (b) Predicted image.

Figure 4.5: The comparison of target and the predicted image.

In-cabin Action Recognition. The 3D ResNet-50 is utilized for inside feature extraction
due to its proven effectiveness in recognizing human actions, as detailed by Hara et
al. [185]. Although end-to-end training typically necessitates a substantial dataset, which
Brain4cars lacks, we adapt by employing a Kinetics-pretrained 3D ResNet-50 model [185]
and subsequently fine-tuning it using the Brain4cars internal video dataset.
To mitigate overfitting, spatial and temporal data augmentation techniques were im-

plemented. Spatially, we use random cropping (primarily focusing on the driver’s side),
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4.2 Driver Intention Prediction based on Videos

scaling, and horizontal flipping. It is important to note that when the augmentation
affects directionality (left/right), the corresponding labels are adjusted. Temporally, we
uniformly extract short segments from each second. These segments form a 16-frame se-
quence serving as the input for the 3D ResNet-50, with an input resolution of 112×112.
Additionally, an extra dropout layer is incorporated before the final FC layer during
the training phase. We set a dropout rate to 0.5 and utilize cross-entropy loss as our
loss function. The training spans 60 epochs, starting with a learning rate of 0.1 and
decreasing by a factor of 0.1 after the 30th and 50th epochs. The chosen optimizer is
SGD with a momentum of 0.9 and a weight decay of 0.001. For evaluation purposes, we
use frames captured at the end of each second up to time T (T ∈ (−4,−3,−2,−1, 0))
to compile the 16-frame input required by the 3D ResNet.
The primary component of the 3D ResNet-50, trained for this purpose, serves as

the feature extraction mechanism. Features extracted just before the ultimate fully
connected (FC) layer are inputted into the final classification system. The outcomes
using only this module (the inside video) for classification are detailed in Table 4.5, and
a comparative analysis with the SOTA method is presented in Table 4.6.

Feature Fusion. The ConvLSTM model and the 3D ResNet-50 model are trained in-
dependently, leading to the extraction of features from both inside and outside the video
through these two distinct modules. The feature derived from the outside of the video
forms a volume with dimensions of 32 × 112 × 176, while the feature from inside the
video is represented as a vector of 2048 elements. The evaluation process takes various
time periods into account, similar to the approach used in both modules.
The metrics used to evaluate performance are accuracy and the F1-score. This F1-

score incorporates both the precision (Pr) and recall (Re) metrics of a classifier, as
delineated in Equation (4.1). The term n denotes the total number of classes, while
Ω represents the entire set of classes identifiable by our model. This set includes four
specific maneuvers plus an additional category for “no maneuver.” The variable TPi

signifies the count of correctly identified instances for class i. Furthermore, Pi and Ni

refer to the quantities of samples predicted as class i and those actually labeled as class
i, respectively.

Pr =
1

n

∑
i∈Ω

TPi

Pi

Re =
1

n

∑
i∈Ω

TPi

Ni

F1 =
2 · Pr ·Re
Pr +Re

(4.1)

Table 4.5 presents the precision and F1 scores in percentages, for various intervals
leading up to a maneuver, utilizing diverse data inputs. The proximity to the initiation
of the maneuver enhances both the accuracy and F1 scores, regardless of the data source
variance. Commonly, the initial phase of any maneuver (or the absence thereof) is
characterized by linear progression. Consequently, the longer the observation duration
by the model, the more precise its judgments become. These outcomes suggest that early
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Inside video Time period Acc (%) F1 (%)

[-5,-4] 56.49± 0.02 48.19± 0.03

[-5,-3] 63.63± 0.02 58.46± 0.02

[-5,-2] 70.48± 0.02 68.63± 0.03

[-5,-1] 75.73± 0.01 73.09± 0.01

[-5,0] 77.40± 0.02 75.49± 0.02

Outside video Time period Acc (%) F1 (%)

[-5,-4] 44.08± 0.01 38.91± 0.03

[-5,-3] 44.22± 0.01 38.75± 0.01

[-5,-2] 50.43± 0.01 46.98± 0.01

[-5,-1] 59.53± 0.01 62.37± 0.01

[-5,0] 60.87± 0.01 66.38± 0.03

In- & outside Time period Acc (%) F1 (%)

[-5,-4] 59.13± 0.02 53.35± 0.02

[-5,-3] 64.93± 0.02 60.33± 0.01

[-5,-2] 72.07± 0.02 70.56± 0.02

[-5,-1] 79.92± 0.02 78.90± 0.01

[-5,0] 83.98± 0.01 84.30± 0.01

Table 4.5: The results of using the proposed framework with different input data sources. The
results of five folds are shown in the form: “Avg ± SE”.

detection of maneuvers is feasible. For instance, when employing dual video inputs, the
model accurately forecasts 71.72% of maneuvers two seconds before they begin..

Utilizing both video sources across various time periods yields the most effective out-
comes. Relying solely on external videos leads to inferior results compared to using the
other two sources. The subpar performance of external data can be attributed to the
auto-encoder’s limitation of offering only the motion feature of a forthcoming frame. In
contrast, the internal feature encapsulates data over an extended duration. Further-
more, it is observed that significant motion typically happens within the three seconds
preceding maneuvers. This is particularly evident in the period from −4 to −2, where
there is a notable enhancement in both accuracy and F1.

In Table 4.6, we compare our findings with those presented in [104], as both studies
employ end-to-end training and explore effectiveness using three distinct data sources.
Our comparison includes model accuracy, F1 scores, and the parameter count. All
reported results are based on a zero time-to-maneuver scenario and are validated through
a 5-fold cross-validation process.

Our method surpasses the approach in [104], except using inside video only. It is be-
cause that we choose the 3D ResNet-50 over the 3D ResNet-101 utilized in [104]. The 3D
ResNet-101 contains about double the parameters compared to our chosen 3D ResNet-
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Method Data Source Acc (%) F1 (%) Param.(M)

inside only 83.1± 2.5 81.7± 2.6 85.26+m

[104] outside only 53.2± 0.5 43.4± 0.9 85.26+m

in-&out-side 75.5± 2.4 73.2± 2.2 170.52+m

inside only 77.40± 0.02 75.49± 0.02 46.22

our outside only 60.87± 0.01 66.38± 0.03 5.41+m

in-&outside 83.98± 0.01 84.30± 0.01 57.92+m

Table 4.6: Comparison of our proposed framework with other method. The results of five folds
are shown in the form: “Avg ± SE”. In order to show a clear difference, we use “m”
to represent the number of parameters in FlowNet2.0, which is a common module
in both methods.

50. Our decision to opt for a smaller ResNet model was driven by the need to prevent
overfitting issues when tuning a significantly large network with a limited dataset. Addi-
tionally, we require a model with lower resource consumption, considering its suitability
for automotive applications. Our methodology demonstrates superior performance over
the prior model, with considerably fewer parameters, through a dual-stream input ap-
proach. It attains an average accuracy of 83.98% and an average F1 score of 84.30%
across five folds, exceeding the previous model by 8.48 percentage points in accuracy
and 11.1 percentage points in F1. Focusing exclusively on exterior videos, our model
outperforms the earlier one by 7.67 percentage points in accuracy and 22.98 percentage
points in F1. Our model is efficient in extracting valuable features from outside videos
using fewer parameters. More importantly, unlike the previous model, ours does not
encounter performance deterioration due to external videos. This suggests that inside
and outside videos have complementary information.

4.3 Driver Attention-based Object Detection

Existing driver gaze prediction models utilize features derived from deep neural net-
works, typically employed in image classification or object recognition tasks, such as
AlexNet [119] or VGG [186]. These features are then processed through decoding mod-
ules to generate detailed, pixel-specific saliency maps. Our proposed method, illustrated
in Figure 4.7, aims to determine the objects that capture a driver’s attention, utilizing a
grid-based approach for saliency map prediction. This technique involves the concurrent
operation of an object detector and an attention predictor, both utilizing the same image
features in a manner that conserves computational resources. This section will intro-
duce the attention-based object detection framework, as detailed in Section 4.3.1, which
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Feature Encoder
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Object 
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ModuleAttention-based Object Detection

Figure 4.6: Overview of our proposed critical object detection framework. The feature en-
coder extracts features from the input image. The gaze prediction module
predicts driver attention in a grid-based saliency map and the object detec-
tion module detects all the objects in the traffic using extracted features. The
attention-based objects are detected and returned to users based on the pre-
dicted saliency map and detected objects.

contains the gaze prediction module and the object detection algorithm, among other
components. In Section 4.3.2, the specific architecture of the model will be discussed.

Contributions in this section can be summarized as follows: (1) We propose a frame-
work to predict objects that human drivers pay attention to while driving. (2) Our pro-
posed grid-based attention prediction module is very flexible and can be incorporated
with different object detection models. (3) We evaluate our model on two datasets,
BDD-A and DR(eye)VE, showing that our model is computationally more efficient and
achieves comparable performance compared to other state-of-the-art driver attention
prediction models.

4.3.1 Algorithm Details

The described framework is structured in the following manner: An RGB image from
driving scenes, denoted as X, belongs to the space R3×H×W , with H andW representing
the image height and width, respectively. An image feature encoder, E(·), processes X
to produce a feature v. This feature, v, exists in the space Rcv×hv×wv , where hv, wv, and
cv refer to the height, width, and channel count of the feature map. The gaze prediction
module, G(·), takes v as input and outputs a grid-vector ŷ = G(v). Following this, ŷ
is transformed by T (·), resulting in a 2D saliency map M̂ in the space RH×W . The
object detection module D(·) identifies a series of objects within the image, represented
as O = o1,o2, ...,on, where each oi contains data on the bounding box and class of the
object, and n is the count of detected objects. The framework employs an attention-
based object detection operation

⊗
, which, utilizing both M̂ and O, identifies a subset

of focused objects Of , expressed as M̂
⊗

O = Of , where the size of Of is at most n.
Figure 4.7 illustrates the various components of this framework.

Gaze prediction module. To minimize computational demands, we suggest predicting
the gaze saliency map using a grid-based approach, effectively transforming the saliency
map creation into a multi-label prediction task. Specifically, we convert the original
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Figure 4.7: Overview of our proposed driver attention-based object detection framework.

saliency map M ∈ RH×W into a grid-vector y ∈ Rn·m, with n and m representing the
number of grid cells vertically and horizontally. Each element in the grid-vector y holds
a binary value, indicating whether a specific region in the gaze map is focused (1) or
not (0). To derive the grid-vector y from the saliency map M , we follow these steps:
(1) Transform M into M ′ by binarizing it at 15% of the maximum pixel value (values
above this threshold become 1, others 0). (2) Calculate the probability of focus for each

grid cell in y as p =
∑

M ′
j∑

M ′ , where
∑
M ′

j is the total pixel values in the j-th grid cell,

and
∑
M ′ is the total of all pixels. (3) Set the region’s entry to 1 if its focus probability

exceeds the threshold 1
n·m , or to 0 otherwise. Figure 4.8 illustrates this process.

In the context of a grid configuration with dimensions n and m, we utilize the encoded
representation v = E(X) alongside the grid-vector y, which is derived from the actual
saliency mapM . For training the gaze prediction component G(·), the method of binary
cross-entropy loss is employed:

L(ŷ, y) = − 1

K

K∑
i=1

yi · log(ŷi) + (1− yi) · (1− log(ŷi)) (4.2)

where ŷ = G(v), with the variable K signifying the product of n and m, which denotes
the total count of grid cells.
To create a 2D saliency map, the process involves generating M̂ = T (ŷ). In detail,

each element of ŷ corresponds to a specific cell in the 2D grid (refer to Figure 4.8). These
cells are populated with their respective values from ŷ. The dimensions of each cell are
given by H

n × W
m , resulting in the formation of an n ×m 2D matrix. Following this, a

Gaussian blur and softmax operation are employed to refine the 2D matrix, which serves
as the estimated saliency map M̂ . The top section of Figure 4.7 illustrates the method
used for generating a grid-based saliency map.

Attention-based object detection. The object detector D(·) processes the input v and
identifies all object informationO, which includes their classes and bounding boxes. This
detector works in tandem with our feature encoder E(·), together constituting a complete
object detection network. For effective training of this object detector, it is essential to
have a comprehensive image dataset, richly annotated with both bounding boxes and
class information. We leverage the pre-trained parameters of existing, well-established
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Figure 4.8: Illustration of transforming a saliency map into a grid-vector. The used grid here
is 4× 4. Grid cells 5, 9, and 10 reach the threshold, therefore the grid-vector y for
the saliency map M is [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0].

object detection models like YOLOv5 [187] for our E(·) and D(·). The architectural
design specifics will be elaborated in the subsequent section. It is important to note that
our approach does not necessitate additional training for E(·) or D(·), which significantly
accelerates the training process of our framework. Regarding the attention-based object
detection operation

⊗
, it functions as follows: for each detected object oi in O, the

maximum pixel value within its bounding box on the saliency map M̂ is used as the
likelihood of the object oi being the focus. We can set a threshold Th to ascertain if oi
is focused on by drivers. This threshold Th is adjustable based on user requirements for
various metrics, such as precision or recall.

4.3.2 Model Details

In this framework, we employ three pretrained object detection frameworks as our feature
encoder E(·): YOLOv5 [187], Gaussian YOLOv3 [188], and CenterTrack [189]. This
approach assesses the effectiveness and versatility of our gaze prediction method. In
detail, we incorporate certain layers from YOLOv5 (specifically the small-sized version,
release v5.0) up to but not including the final CSP-Bottleneck (Cross Stage Partial [190])
layer in the neck structure (PANet [191]). The rest of the YOLOv5 model (namely, the
detector layer) serves as our object detector D(·). Likewise, a portion of the YOLOv3
network (the first 81 layers) is used as E(·), and we utilize the “keypoint heatmaps” from
each category in CenterTrack [189]. The specific dimensions of the extracted feature v
and the output dimensions after each layer in the gaze prediction module are detailed
in Table 4.7. When using YOLO architectures, the convolutional layer with a 1 × 1
kernel size reduces the input channels to 16, whereas it narrows them down to a single
channel with CenterTrack features. An average pooling layer is applied to lessen the
computational load on the dense layer by diminishing the width and height of the feature
maps. Before entering the dense layer, all features are converted into vector forms. The
dense layer concludes with a sigmoid activation function, producing an output ŷ ∈ Rn·m.
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Feature Encoder E(·) Gaze Prediction G(·)
Backbone v Conv Avg Pooling Dense Layer

YOLOv5 [187] 512× 12× 20 16× 12× 20 16× 6× 10 number of grid cells

Gaussian YOLOv3 [188] 1024× 13× 13 16× 13× 13 16× 7× 7 number of grid cells

CenterTrack [189] 80× 72× 128 1× 72× 128 1× 18× 32 number of grid cells

Table 4.7: Network architecture details when using different object detectors. Column “Feature
Encoder” shows the used backbone for extracting feature v and the dimension of v.
Column “Gaze Prediction” demonstrates the dimension of output after each layer.

4.3.3 Implementation Details

Datasets. Experiments are conducted on two datasets, BDD-A and DR(eye)VE. The
BDD-A dataset, as detailed in [7], comprises 1426 ten-second videos recorded in busy
areas with many objects on the roads. The dataset contains 926 training videos, 200
for validation, and 300 for testing. From these, three frames per second are extracted,
and after discarding invalid gaze maps, the training set contains 30158 frames, with
6695 and 9831 frames in the validation and test sets, respectively. Table 4.8 presents
the data for the objects that garnered the most attention in the test set. Per frame, an
average of 7.99 cars are present (“Total”), but only 3.39 typically catch the driver’s gaze
(“Focused”). While each frame typically includes 0.94 traffic lights, drivers generally
notice just 0.18, focusing mainly on those relevant to their driving direction. Overall,
each frame contains about 10.53 objects, with roughly 40% (4.21 objects) capturing the
driver’s focus, making the accurate detection of these objects a challenging task.

Object Person Bicycle Car Motorcycle Bus Truck

Total 0.78 0.03 7.99 0.03 0.18 0.48

Focused 0.24 0.02 3.39 0.01 0.11 0.25

Object Traffic light Fire Hydrant Stop Sign Parking Meter Bench Sum

Total 0.94 0.02 0.05 0.004 0.002 10.53

Focused 0.18 0.002 0.008 - - 4.21

Table 4.8: Traffic-related class analysis on BDD-A test set: The values in the table show the
average number of objects in one video frame. “Total” means detected objects while
“focused” means attended objects by the human driver. “-” refers to a number
smaller than 0.001. “Sum” includes also non-traffic objects.

The DR(eye)VE dataset, as detailed in [192], comprises 74 videos. From its test set, we
select five videos (specifically numbers 66, 67, 68, 70, and 72) for analysis. These videos
are chosen for their diversity in aspects such as time, driver, landscape, and weather
conditions. Each of the videos has a duration of 5 minutes, with a frame rate of 25 FPS,
leading to a total of 7500 frames per video. After discarding frames with invalid gaze map
data, the resulting test set consisted of 37,270 frames. We use a pretrained YOLOv5
network to these videos, and the findings are presented in Table 4.9. In comparison
with the BDD-A dataset (Table 4.8), the DR(eye)VE dataset features a more uniform
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environment with less variety of objects on the roads. The average count of objects
per frame is 3.24, with 39% of these objects being the focus of drivers’ attention, a
percentage comparable to that in the BDD-A dataset.

Object Person Bicycle Car Motorcycle Bus Truck

Total 0.07 0.009 2.35 0.003 0.026 0.09

Focused 0.02 0.004 1.06 - 0.01 0.04

Object Traffic light Fire Hydrant Stop Sign Parking Meter Bench Sum

Total 0.46 - 0.02 0.005 0.003 3.24

Focused 0.07 - 0.002 0.003 - 1.26

Table 4.9: Traffic-related class analysis on DR(eye)VE dataset (test set): The value is the
average number of objects in each video frame. “Total” means detected objects
while “focused” means attended objects by the human driver. “-” refers to the
number smaller than 0.001. “Sum” also includes non-traffic objects.

Evaluation metrics. Our evaluation of the models is conducted across three dimensions:
object detection (at the object level), saliency map creation (at the pixel level), and the
consumption of computational resources. For the appraisal of the gaze map quality, we
use Kullback–Leibler divergence (DKL) and Pearson’s Correlation Coefficient (CC), in
line with prior studies [7, 8, 15]. The saliency maps, both predicted and ground truth,
are resized to 36 × 64, maintaining the original aspect ratio, following the approach in
[7]. To ensure a fair comparison, we normalize the size of saliency maps from various
models to 36× 64, as recommended by Xia et al. [7].

In our object detection assessment, the ground-truth “focused” objects are identi-
fied by applying our attention-based object detection to all objects detected using the
YOLOv5 model and the ground-truth gaze saliency maps, M

⊗
O. Here, the highest

value within the object’s bounding area is taken as the probability. An object is deemed
“focused on” if this probability exceeds 15%, a threshold set to exclude objects less
likely than a random choice (typically ten objects per frame, as detailed in table 4.8).
For evaluation purposes, each object is treated as a binary classification task: whether it
is the driver’s focus or not. The metrics utilized for this evaluation are Area Under the
ROC Curve (AUC), precision, recall, F1 score, and accuracy. Lastly, to quantitatively
assess and compare the computational demands of our models, we take into account the
number of trainable parameters and the floating-point operation per second (GFLOPs)
required by the networks.

Training details. This work utilizes a single NVIDIA CUDA RTX A4000 GPU to
perform all experiments. Our gaze prediction module underwent training on the BDD-A
training set for 40 epochs, employing the Adam optimizer [193], and underwent validation
on the corresponding validation set. We initiate the learning rate at 0.01, reducing it
by a factor of 0.1 after each set of 10 epochs. Both the feature encoder and the object
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Object-level Pixel-level

AUC Prec (%) Recall (%) F1 (%) Acc (%) DKL CC

2×2 0.58 43.86 88.97 58.75 50.05 2.35 0.18

4×4 0.76 52.43 91.50 66.66 63.40 1.61 0.41

8×8 0.84 57.87 89.16 70.18 69.71 1.27 0.55

16×16 0.85 71.98 73.31 72.64 77.92 1.15 0.60

32×32 0.85 75.47 68.79 71.97 78.58 1.13 0.62

Table 4.10: Comparison of using different grid settings on object- and pixel-level performance
(Th=0.5). For all metrics except DKL, a higher value indicates better performance.
The best result is marked in bold.

detector are pretrained1, and no additional fine-tuning in the object detection phase is
conducted.

4.3.4 Evaluation on BDD-A

Different Grids. In our gaze prediction module, we experiment with various grid con-
figurations, ranging from a 2×2 arrangement (n = m = 2) to a more complex 32×32
grid (n = m = 32), with each step doubling in size. The backbone for these experiments
is consistently YOLOv5. A comparative analysis of these different grid sizes is detailed
in Table 4.10. The term “Pixel-level” denotes the assessment of the saliency map using
DKL and CC metrics, while “Object-level” refers to the effectiveness of attention-based
object detection. To ensure a fair comparison across different settings, we maintain a
detection threshold Th of 0.5 for identifying attended areas. This comparative study
indicates that finer grids tend to yield better performance. However, it is noteworthy
that the improvement when upgrading from 16×16 to 32×32 grids is marginal, with
the AUC values being nearly identical. Consequently, for the sake of computational
efficiency, the 16×16 grid configuration is selected for all subsequent experiments.

Different thresholds. The influence of varying Th on attention-based object detection
is summarized in Table 4.11. Our findings indicate that a reduced Th enhances the recall
score, whereas an increased Th elevates the precision score. Optimal F1 score is obtained
at a Th value of 0.4, and the highest accuracy is achieved with Th at 0.6. Adjusting
Th to 0.5 results in commendable performance, registering an F1 score of 72.64% and
accuracy of 77.92%. Th serves as a configurable hyperparameter, allowing users to tailor
it based on the specific needs of their applications. For instance, setting a higher Th is
advisable for applications where high precision is crucial.

1Links for pretrained parameters are available for YOLOv5 at https://github.com/ultralytics/

yolov5, YOLOv3 at https://github.com/motokimura/PyTorch_Gaussian_YOLOv3, and CenterTrack
at https://github.com/xingyizhou/CenterTrack.
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4 Driver Intention Prediction

Prec Recall F1 Acc

0.3 63.76 83.33 72.24 74.39

0.4 68.11 78.36 72.88 76.68

0.5 71.98 73.31 72.64 77.92

0.6 75.81 68.09 71.74 78.55

0.7 79.61 62.04 69.73 78.47

Table 4.11: Comparison of different Th using 16×16 grids on attention-based object detection.
Results are shown in % and for all metrics, a higher value indicates better perfor-
mance. The best result is marked in bold.

Comparison with the state-of-the-art. We compare our algorithm with three newly
proposed models, namely YOLOv5, Gaussian YOLOv3, and CenterTrack, and four es-
tablished saliency models: BDD-A [7], DR(eye)VE [8], ML-Net [9], and PiCANet [10]2.

Our evaluation covers three metrics: object detection, the creation of gaze saliency
maps, and the cost in terms of resources. We employ the YOLOv5 object detector for
identifying objects in images, followed by the application of our attention-focused object
detection method

⊗
, which utilizes saliency maps produced by each model. The term

“Baseline” denotes the mean saliency map from the BDD-A training set, as depicted in
Figure 4.10 (b). To impartially assess object-level scores like precision, recall, F1, and
accuracy, dependent on the threshold Th, we determine for each model the optimal Th
that maximizes the true positive rate (TPR) and minimizes the false positive rate (FPR).
This involves generating a ROC curve (Receiver Operating Characteristic) for each model
using the BDD-A test set and identifying the Th corresponding to the closest point to
(0,1) on the curve, calculated as argmax(

√
TPR · (1− FPR)). The ROC curves and

specific Th values for each model are presented in Figure 4.9. The outcomes of these
comparisons across various models are detailed in Table 4.12.

Figure 4.9: ROC curves and computed thresholds on the BDD-A. On the right, the curves are
zoomed in and the points that belong to the computed thresholds are marked.

2Each model received training using the BDD-A dataset. We accessed the BDD-A model’s trained
parameters from https://github.com/pascalxia/driver_attention_prediction, while the others
were obtained from https://sites.google.com/eng.ucsd.edu/sage-net.
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4.3 Driver Attention-based Object Detection

Object-level Pixel-level Resource

AUC Prec. (%) Recall (%) F1 (%) Acc (%) DKL CC Param.(M) GFLOPs

Baseline 0.82 66.10 74.22 69.92 74.47 1.51 0.47 0.0 0.0

BDD-A [7] † 0.82 66.00 74.33 69.92 74.43 1.52 (1.24) 0.57 (0.59) 3.75 21.18

DR(eye)VE [8] ‡ 0.85 70.04 74.94 72.41 77.16 1.82 (1.28) 0.57 (0.58) 13.52 92.30

ML-Net [9]† 0.84 70.48 73.75 72.08 77.15 1.47 (1.10) 0.60 (0.64) 15.45 630.38

PiCANet [10]† 0.86 70.23 77.67 73.76 77.91 1.69 (1.11) 0.50 (0.64) 47.22 108.08

Ours (CenterTrack)* 0.83 68.93 72.83 70.83 76.01 1.32 0.56 19.97 28.57

Ours (YOLOv3)* 0.85 70.25 74.72 72.41 77.24 1.20 0.59 62.18 33.06

Ours (YOLOv5)* 0.85 70.54 75.30 72.84 77.55 1.15 0.60 7.52 17.0

Table 4.12: Comparison with other gaze models on the BDD-A dataset. On object-level, all
models are evaluated with detected objects of YOLOv5. Our three models use
16×16 grids. Pixel-level values in brackets are the results reported from the original
work [7, 15]. * indicates that the backbone is pretrained on COCO [16], † on
ImageNet [17] and ‡ on UCF101 [18]. The resource required for the gaze prediction
is listed in the last column.

The AUC scores indicate that our dual YOLO models are on par with other models
at an object level, with PiCANet being marginally superior. Despite not being de-
signed for creating pixel-level saliency maps, the metrics of DKL and CC reveal that our
YOLOv5-based model, having a DKL value of 1.15 and CC of 0.60, is comparable to its
counterparts at the pixel level under our test conditions. Regarding object detection,
our YOLO-based pair achieves an AUC of 0.85, which is slightly below PiCANet’s 0.86.
However, they outperform other models in F1 scores and accuracy.

Additionally, our gaze prediction model utilizes the same backbone (feature encoder)
as the object detection network, requiring only an additional dense layer, thus reducing
computational demands. For example, our YOLOv5-based model needs a total of 7.52M
parameters, with merely 0.25M being extra for gaze prediction. This leads to the same
computational load as a standard YOLOv5 network (17.0 GFLOPs). Overall, the merit
of our system lies in its ability to perform gaze prediction with minimal additional com-
putational resources or parameters compared to those required for object detection. In
contrast, other models require a separate object detection network to identify attention-
centric objects within their existing architectures. For a fair evaluation, we only list
the resource requirements for each model saliency prediction in Table 4.12. To match
a similar level of object detection performance, for instance, DR(eye)VE necessitates
13.52M parameters and 92.30 GFLOPs just for saliency mapping, which exceeds the
requirements of our YOLOv5 framework for both object detection and saliency map
computation.

Qualitative results. The qualitative outcomes of saliency map predictions using vari-
ous models are illustrated in Figure 4.10. In our approach, we employ the architectures
of YOLOv5, YOLOv3, and CenterTrack. It is observed that models such as BDD-A,
DR(eye)VE, and ML-Net offer more accurate and focused attention predictions. Nev-
ertheless, BDD-A and ML-Net incorrectly emphasize a minor region on the right side
instead of the left side. Conversely, our predictions (g) and (h) concentrate on both the
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4 Driver Intention Prediction

(a) Ground-truth (b) Baseline (c) BDD-A (d) DR(eye)VE (e) ML-Net

(f) PiCANet (g) Ours (YOLOv5) (h) Ours (YOLOv3) (i) Ours (CenterTr.)

Figure 4.10: Comparison of predicted driver attention saliency maps using different models. (a)
Ground-truth driver attention map; (b) The baseline saliency map (center-bias);
(c-f) Predictions using models [7, 8, 9, 10]; (g-i) Predictions using our framework
with different backbones.

center and the right side. Despite our predictions being grid-based, they exhibit finer
detail compared to those produced by PiCANet.

Figure 4.11 illustrates an example of attention-based object detection using various
models, where objects are enclosed in bounding boxes. This framework is from a video
depicting a vehicle approaching and overtaking other vehicles waiting in the right lane
at a crossroad. A comparison between (i) and (a) reveals that while the human driver
notices several objects, they do not focus on all. Our models, incorporating features from
YOLOv5 and CenterTrack, identify all waiting vehicles as objects of driver focus (shown
in (b) and (d)), aligning with the actual situation depicted in (a). The BDD-A model,
however, highlights a car in the opposite lane and a church clock, overlooking a distant
waiting car. Additionally, the consistent prediction of gaze towards the vanishing point
is a notable issue in driving saliency models. This case demonstrates that our model
does not habitually predict the vanishing point on the road, in contrast to DR(eye)VE,
ML-Net, and PiCANet, which often identify the object near the central point as critical.

We include an analysis of two instances where our YOLOv5-based model does not
perform as expected in Figure 4.12. The first scenario involves a vehicle overtaking two
cyclists by moving from the left to the middle lane. The model accurately identifies
the vehicles ahead and the cyclists. However, it mistakenly flags cars parked beyond
the cyclists as critical, diverging from the actual situation. This case highlights the
impact of attention-based object detection: important elements like the approaching
vehicles and cyclists are recognized, but cars parked further away in a different lane are
not. In the second example, a vehicle approaches a crossroad with a changing traffic
light. The model detects the vehicle ahead slowing down and a car parked to the right.
Additionally, it marks a cyclist on the right as critical. This error also indicates that
shows that the predictions of our model are not limited to the center part of an image.
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4.3 Driver Attention-based Object Detection

(a) Ground-truth driver atten-
tion

(b) Ours (YOLOv5) (c) Ours (YOLOv3)

(d) Ours (CenterTrack) (e) BDD-A (f) DR(eye)VE

(g) ML-Net (h) PiCANet (i) All objects

Figure 4.11: Comparison of attention-based object detection using different models. (a)
Ground-truth attention; (b-d) Predictions using our framework with different
backbones; (e-h) Predictions using models [7, 8, 9, 10]; (i) Object detection with-
out driver attention.

4.3.5 Evaluation on DR(eye)VE

Comparison with the state-of-the-art. We conduct an evaluation using the DR(eye)VE
dataset to validate the generalization ability of our model, without any additional train-
ing. The evaluation involves running the YOLOv5 model on 16×16 grids, benchmarking
it against the performance metrics of DR(eye)VE, BDD-A, ML-Net, and PiCANet. Sim-
ilar to the approach in the BDD-A experiments, we derive the threshold values from the
ROC curves as detailed in Figure 4.13. We conduct an object-level assessment using
metrics such as AUC, precision, recall, F1, and accuracy, as well as a pixel-level evalu-
ation using DKL and CC. The findings are detailed in Table 4.13. In our experimental
framework, the bottom-up models, ML-Net and PiCANet, outperformed the top-down
networks, namely DR(eye)VE and BDD-A. Notably, our model and PiCANet achieve
the highest scores at the object level (AUC = 0.88) and surpass all other models at
the pixel level (DKL = 1.78, CC = 0.51). Achieving good performance on DR(eye)VE
shows that our model is not limited to the BDD-A dataset.
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4 Driver Intention Prediction

Figure 4.12: Comparison of our prediction, ground-truth in attention-based object detection
and not using attention-based object detection on BDD-A test set. (Failed cases.)
Left: Our prediction; Middle: Ground-truth; Right: Object detection without
driver attention. Better view in colors.

Figure 4.13: ROC curves and computed thresholds on the DR(eye)VE. On the right, the curves
are zoomed in and the points that belong to the computed thresholds are marked.

Qualitative Results. Figure 4.14 presents two illustrative cases from the DR(eye)VE
dataset, demonstrating the functionality of our attention-centric object prediction model.
The top row demonstrates frames from a video where the driver navigates a leftward
bend. Here, our model (on the left) successfully identifies a cyclist ahead of the car and
another vehicle poised to enter traffic from the right. It omits distant cars from its focus
area, aligning well with the actual ground-truth data (shown in the middle). The lower
row features a scenario where the driver intends to make a left turn. In this instance, our
model (on the left) anticipates the presence of vehicles and traffic signals straight ahead,
while the ground-truth (in the middle) also acknowledges a car making a left turn. This
scenario emphasizes the complexities of accurately predicting driver focus, particularly
when influenced by varying driving objectives [194].
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4.3 Driver Attention-based Object Detection

Object-level Pixel-level

AUC Prec. (%) Recall (%) F1 (%) Acc (%) KL CC

Baseline 0.86 65.18 77.79 70.93 77.94 2.00 0.40

BDD-A [7] † 0.84 71.63 73.34 72.48 78.38 2.07 0.46

DR(eye)VE [8] ‡ 0.86 68.90 79.39 73.77 78.09 2.79 0.47

ML-Net [9]† 0.87 69.74 79.73 74.40 78.71 2.17 0.45

PiCANet [10]† 0.88 73.90 81.48 77.50 81.64 2.36 0.41

Ours (YOLOv5)* 0.88 75.33 78.73 76.99 81.74 1.78 0.51

Table 4.13: Comparison with other gaze models on DR(eye)VE dataset. On object-level, all
models are evaluated with detected objects of YOLOv5. Our models uses 16×16
grids. * indicates that the backbone is pretrained on COCO [16], † on ImageNet
[17] and ‡ on UCF101 [18].

4.3.6 Discussion

Modelling with LSTM-Layer. In expanding our model for video-based forecasting, we
incorporate an LSTM-layer (Long Short-Term Memory [195]) with a hidden state size of
256 ahead of the dense layer within the gaze prediction network. This network processes
eight-frame video clips as input. Employing the same setup as outlined in the previous
section (namely, 16×16 grids with a threshold Th of 0.5), we evaluate our modified
architecture and obtain specific outcomes on the BDD-A dataset:
Object Detection: AUC = 0.85, Precision = 73.13%, Recall = 70.44%,

F1 score = 71.76%, Accuracy = 77.83%
Saliency Prediction: DKL = 1.17, CC = 0.60

The outcomes presented above are comparable to those of our model that lacks the
LSTM-layer, with both registering an AUC = 0.85 and CC = 0.60. Variations in the
sequence length, ranging from 2 to 16, do not significantly impact the model performance,
as demonstrated in Table 4.14 when adding one LSTM layer with the hidden size 256
before the dense layer of our YOLOv5-based 16× 16 grids model. All sequence lengths
achieve very similar results. In a similar manner, [7] found that the inclusion of LSTM
layers did not enhance performance in driver gaze prediction and instead led to central
biases in the predictions.

Figure 4.15 presents a comparative analysis of two sets of predicted gaze maps: those
utilizing an LSTM module (displayed in the middle) versus those without it (shown
on the left), alongside the ground-truth maps (on the right). This LSTM module is
composed of a single layer with a hidden size of 256 and processes input sequences
of length 8. Observations indicate that incorporating the LSTM module improves the
accuracy in predicting the central region of the gaze maps. However, this enhancement
presents both benefits and drawbacks, resulting in an unchanged AUC value of 0.85.

To summarize, increasing the number of frames does not increase the information gain.
A potential explanation for the observed bias is that using an LSTM layer ignores the
spatial information, since the extracted features given to the LSTM layer are reshaped
to vectors. In future research, we aim to examine the incorporation of modules that con-

67



4 Driver Intention Prediction

Figure 4.14: Comparison of our prediction, ground-truth in attention-based object detection
and not using attention-based object detection on the DR(eye)VE test set (Th =
0.4 to better illustrate the wrongly predicted attention region in the failed case).
(The second line is a failed case.) Left: Our prediction; Middle: Ground-truth;
Right: Object detection without driver attention. Better view in colors.

Object-level Pixel-level

AUC Prec. (%) Recall (%) F1 (%) Acc (%) KL CC

2 0.85 72.40 72.68 72.54 78.00 1.16 0.60

4 0.85 72.58 73.02 72.80 78.18 1.16 0.60

6 0.85 72.52 73.04 72.78 78.16 1.18 0.60

8 0.85 73.13 70.44 71.76 77.83 1.17 0.60

16 0.85 71.84 73.39 72.61 77.86 1.18 0.60

Table 4.14: Comparison of different input sequence lengths when using one LSTM layer. Our
model uses the 16× 16 grids. For all metrics except DKL, a higher value indicates
better performance. (Th = 0.5)

tain temporal aspects, like the convolutional LSTM (convLSTM) [36]. The convLSTM
is proficient in assimilating the temporal data from each spatial area and forecasting
new attributes for these areas, drawing on historical motion data within them. For in-
stance, studies [7, 179] have shown that convLSTM effectively gathers spatial-temporal
data, which is crucial for predicting driver attention and actions. Additionally, we are
considering the application of 3D CNN to extract spatial-temporal features. An exam-
ple of this is [8], which utilizes 3D convolutional layers to process a series of frames for
anticipating the focus of a driver.

Limitations and future work. A current constraint in ongoing projects is the inherent
central bias present in all existing model predictions. As noted, this bias originates
from the nature of the ground-truth data. Given that human drivers predominantly
focus on the center of the street, this results in significantly skewed data: for instance,
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4.3 Driver Attention-based Object Detection

Figure 4.15: Comparison of predicted gaze maps without and with LSTM and ground-truth
Left: Our prediction without LSTM; Middle: Our prediction with LSTM;
Right: Ground-truth.

74.2% of all objects of interest in BDD-A are located within the central bias zone, as
illustrated in the baseline of Figure 4.10. Such central bias is a reflection of typical human
behavior and is further accentuated in the saliency models developed by Kümmerer et
al. [196, 35]. While our model does recognize objects in the peripheral areas of the scene,
as our qualitative examples demonstrate, there is a noticeable bias for the center. The
model F1 score is 81.7% in the central region, contrasting with a mere 34.8% F1 score in
the peripheral areas. PiCANet, outperforming all other models, shows better F1 scores
both outside (44.0%) and inside (82.7%) the central area. However, its performance is
better in the central region. Our goal is to enhance the model’s predictive accuracy in
the peripheral areas while maintaining its strong performance in the central region. In
autonomous driving scenarios, it is also crucial to evaluate the model’s generalization
capabilities using varied datasets, not just limited to gaze map data. Considering drivers
use peripheral vision and do not always concentrate on every important object around
them, incorporating datasets that also emphasize objects based on semantic relevance
(e.g., [15]) could broaden the model’s utility for identifying task-specific objects.

In the conducted experiments, models are developed using saliency maps created from
the gaze of drivers. These maps highlight salient elements corresponding to areas where
objects of interest for the task are likely to be found, indicating top-down features [197].
These elements are identified through visual data from camera imagery. The aspect of
driving tasks could be further enriched by integrating additional input data, as human
mechanisms for choosing top-down features necessitate a comprehensive grasp of the
task beyond mere visual cues. Specifically, factors like road conditions (external) and
the driver’s own goals (internal), such as their destination, influence the driver’s focus
and gaze patterns, along with traffic information. Regrettably, the existing dataset for
training our model lacks this extra input. Future research aims to include GPS and
Lidar sensor data, offering deeper task-related insights for more accurately predicting
where drivers direct their attention.
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4 Driver Intention Prediction

4.4 Conclusion

In this chapter, we introduce two novel models that address different types of driver
intentions. The first study in Section 4.2 targets driver maneuver prediction. In this
study, we proposed a method that integrates both inside and outside cabin motion
features to predict driver maneuver intentions. We employed a ConvLSTM-based auto-
encoder to capture the motion of traffic videos. The motion details captured were then
processed through a classifier fusing inside and outside movement features. Our ap-
proach was trained in an end-to-end manner, avoiding reliance on manually encoded or
hand-crafted features. The results demonstrated that our dual-input system significantly
outperformed existing methods that utilize a single data source. Furthermore, our vali-
dation confirmed that videos from both inside and outside the cabin provide important
and complementary insights.

Section 4.3 presents an innovative approach for identifying objects that human intends
to interact with within driving contexts. The approach involved predicting saliency maps
that indicate driver attention and identifying objects within these maps. Both saliency
map prediction and object detection utilized the same underlying structure (feature
encoder), with the saliency maps being generated in a grid format. This method ensured
considerable computational efficiency. Extensive testing on two datasets related to driver
attention, namely BDD-A and DR(eye)VE, demonstrated that our approach surpassed
other baselines in attention saliency map prediction and object detection with reduced
computational demand.
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Part III

Enhancing Human Comprehension
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The previous two parts of this dissertation delve into AI models that take into account
human attention and intentions, aligning with the human factors of perception and
response procedures. This section shifts focus to another human factor: reasoning. In
designing AI models, the integration of XAI technologies is commonly employed to reflect
the reasoning process.
This part is adapted from two papers that were published in ICML 2022 [198] and

TPAMI 2023 [41], respectively, and a third work that will be published in AAAI 2024 [199]:

• Rong, Y., Leemann, T., Borisov, V., Kaneci, G., & Kasneci, E. (2022)

A Consistent and Efficient Evaluation Strategy for Attribution Methods

In Proceedings of the 39th International Conference on Machine Learning (ICML)

• Rong, Y., Leemann, T., Nguyen, T., Fiedler, L., Qian, P., Unhelkar, V., Seidel,
T., Kasneci, G., & Kasneci, E. (2023)

Towards Human-centered Explainable AI: User Studies for Model Ex-
planations

IEEE Transaction on Pattern Analysis and Machine Intelligence (TPAMI)

• Rong, Y., Qian, P., Unhelkar, V., & Kasneci, E. (2023)

I-CEE: Tailoring Explanations of Image Classifications Models to User
Expertise

Pre-print. (To appear at the 38th Annual AAAI Conference on Artificial Intelli-
gence (AAAI)).

In the following section, I will summarize the motivation, principal methodology, main
findings, and my contributions to each of the three papers.

A Consistent and Efficient Evaluation Strategy for Attribution Methods

Motivation. The decision-making mechanisms of current AI systems are complex and
thus opaque, leading to their characterization as “black boxes.” XAI is the key to
unboxing these models, as discussed in Section 1.2.3. This work (in Chapter 5) studies
the popularly used automated evaluation metrics, as they often yield inconsistent results,
thereby complicating the benchmarking process for model explanations. Therefore, it is
important to thoroughly analyze the biases existing in the current benchmarking and to
mitigate the bias to provide a fair evaluation.

Principle methodology. This work studies the bias in mechanisms underlying evalu-
ation strategies based on perturbation by conducting a rigorous information-theoretic
analysis, which is explained in Section 5.2. It formally reveals that results can be sig-
nificantly confounded. Concretely, the bias term originates from a masking operation
in the evaluation process. Beyond discovering the bias term, a mitigation solution is
proposed and thus contributes to a novel evaluation strategy. The mitigation solution
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utilizes linear imputation in the masking operation and alleviates information leakage
through masking.

Main findings. Section 5.2 presents both theoretical and experimental analyses of the
bias term, referred to as Class Information Leakage. The mitigation solution named
Noisy Linear Imputation is able to significantly decrease the inconsistency in the eval-
uation results, which occurs due to a different feature removal order. For instance, the
common imputation method of using a “fixed value” results in a Spearman Rank cor-
relation of −0.01 among different orders. Our proposed solution significantly improves
the correlation score to 0.61. Moreover, the mitigation is further generalized to a novel
evaluation strategy, which can efficiently evaluate model explanations. Compared to
the previous evaluation strategies requiring retraining, our strategy saves 99% of the
computational costs.

My contributions. I led the development and research efforts for this work. My role
contains identifying research gaps within the existing literature and devising innovative
solutions to address these gaps. Specifically, I introduced the application of mutual
information theory in our ICML 2022 work [198]. My responsibilities extended to im-
plementing the methodologies, which included coding the frameworks and establishing
baselines, as well as conducting experiments to compare our methods against other state-
of-the-art approaches. Moreover, I also undertook the tasks of manuscript writing and
creation of illustrations.

Towards Human-centered Explainable AI: User Studies for Model Explana-
tions

Motivation. This work highlights the role of XAI technologies in enhancing human
comprehension of opaque AI models. While the aim of model explanations is to facilitate
human understanding, there are not that many XAI studies that adequately consider
human subjects in their studies [44]. As user studies are gaining attention in the XAI
research community, there is no consensus in conducting these user studies. Therefore,
in this work, our goal is to provide practical guidelines to benefit practitioners and
researchers in XAI.

Principle methodology. This work (explained in Section 5.3) performs an extensive
literature review to provide the guidelines for user study design in XAI. The analysis
method first classifies research papers based on the measured factors, such as user un-
derstanding or user trust. Then, papers within each category are concisely summarized
to extract key insights, which are instrumental in developing the guidelines.

Main findings. According to 97 studied papers, user study design is generally divided
into three main steps: before, during, and after user study. At every stage, a summary
card presents considerations for researchers to be mindful of and aim to avoid common
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pitfalls as well as guarantee potentially unbiased assessment outcomes. Details of the
guidelines can be found in Figure 5.11.

My contributions. I led the development for this work appeared in TPAMI 2023 [41].
My role included identifying research gaps within the existing literature and conducted
the literature review. Concretely, I proposed a data-driven literature analysis for this
work, and I coded the framework for the analysis. Beyond leading the literature review,
I was responsible for the manuscript writing, and the creation of illustrative plots to
effectively communicate our findings.

I-CEE: Tailoring Explanations of Image Classifications Models to User Exper-
tise

Motivation. This work addresses the importance of considering a human factor – rea-
soning – in designing model explanations. More specifically, current SOTA model expla-
nations are one-size-fits-all solutions and some explanations may not be useful for users.
Therefore, this work is motivated to consider human reasoning for making decisions and
to include it in generating model explanations. In this manner, the model explanation is
tailored to the individual user’s needs, which can better help each user in understanding
the AI model.

Principle methodology. To consider the human factor in designing model explanations,
this work (detailed in Chapter 6) proposes a framework named I-CEE that provides
image classification explanations tailored to user expertise, i.e., I-CEE models the infor-
mativeness of the example images to depend on user expertise. Concretely, there are
two main components in I-CEE: User Expertise Estimation and Selection Strategy. As
humans often use “concept-based thinking” in classifying images, the User Expertise
Estimation is designed based on a concept discovery algorithm and trained following the
annotator model in active learning. In this manner, a user’s expertise in applying task-
relevant concepts can be simulated. Selection Strategy is informed by the educational
psychology concept “Hypercorrection Effect”, aiming at selecting the most informative
examples based on the estimated user expertise.

Main findings. Evaluation results in Chapter 6 show that the proposed framework I-
CEE is able to achieve the SOTA performance in simulatability, i.e., users’ ability to
predict the model’s decisions, indicating the power of generated explanations in improv-
ing human comprehension. Concretely, evaluations with the simulated users show that
I-CEE outperforms other baseline models, especially on two realistic datasets, as illus-
trated in Figure 6.5(b,c). A user study with N = 100 human subjects is conducted to
address the effectiveness of I-CEE in practice. For instance, I-CEE significantly improves
the simulatability score by 11.5% with p = 0.007 compared to the baseline. These results
highlight the importance of considering personalization via user expertise in XAI.
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My contributions. I am the leading author of the paper appeared at AAAI 2024 [199].
I discovered the research gaps and initialized the innovative solutions to address these
gaps. Moreover, I developed the simulated user diagram for this work and I implemented
the methodologies in scripts, which included establishing baselines, as well as conducting
experiments to compare our methods against other state-of-the-art approaches. Last but
not least, I wrote the majority of the manuscript and created illustrations and figures
to facilitate efficient scientific communication.
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5 Evaluating Model Explanations

5.1 Introduction

XAI focuses on enhancing the interpretability and transparency of AI systems. This
approach emphasizes the significance of human stakeholders in AI development, as un-
derscored in key studies [200, 201]. Despite the availability of numerous model expla-
nations, the challenge of evaluating their quality transparently remains unresolved, at-
tracting considerable research attention in recent years. A well-recognized classification
of XAI evaluation strategies categorizes them into three distinct types: functionally-
grounded, application-grounded, and human-grounded evaluation [122]. Functionally-
grounded evaluations, which can be conducted in an automated way and do not ne-
cessitate human involvement, contrast with the latter two types that involve human
participants and are more resource-intensive to implement.

Many functionally-grounded metrics (automatic metrics) have been developed to as-
sess XAI algorithms, as reviewed in [44]. However, a notable challenge is the difficulty
in comparing these diverse automatic evaluation measures, as there is no ground-truth
in explanation in real-world applications. Common methods for evaluating and compar-
ing various attribution techniques typically involve an ablation strategy. This involves
altering the input features, such as image pixels, which are identified as either the most
or least significant. In this context, altering pixels deemed highly significant should lead
to a reduction in the accuracy of predictions, whereas modifying those considered in-
significant should not significantly impact the predicted outcomes. These techniques are
designed to gauge the fidelity of explanations [42], that is, the extent to which the ex-
planations accurately represent the predictions made by the underlying model. Fidelity
assessed using a single data instance is referred to as local fidelity, whereas global fidelity
is evaluated across the entire dataset [42].

The sensitivity of evaluation outcomes to parameters such as the perturbation function
and sequence is significant. The choice of sequence, either most relevant pixels first or
least relevant pixels first, can lead to starkly divergent results in removal strategies. Local
attribution methods, for example, seem to perform well in one order but may perform
poorly in the other[42, 43, 13]. This inconsistency presents a challenge for researchers
attempting to objectively compare different attribution methods, with the sources of such
inconsistencies remaining unclear. Additionally, some methods necessitate a retraining
step for the global fidelity assessment, a process often deemed impractically costly [13,
42]. Section 5.2 first provides a thorough analysis of the bias existing in the current
evaluation strategy and then proposes a solution to overcome these problems. These
two drawbacks and our improvements are illustrated in Figure 5.1.

77



5 Evaluating Model Explanations

Rank 1 2 3

MoRF IG IG-Var IG-SG

LeRF IG-SG IG IG-Var

Removal evaluation
strategy (e.g., ROAR)

• Consistency: Low
• Computation : ∼60 min

Rank 1 2 3

MoRF IG-SG IG IG-Var

LeRF IG-SG IG IG-Var

Debiased removal
evaluation strategy

• Consistency: High
• Computation : ∼60 min

debiasing

Rank 1 2 3

MoRF IG-SG IG IG-Var

LeRF IG-SG IG IG-Var

agrees with

ROAD (ours)

• No retraining
• Consistency: High
• Computation : 33 sec

Figure 5.1: Comparison between previous removal and retraining evaluation strategies (Top)
and ours (Bottom). Previously, rankings of different attribution methods, In-
tegrated Gradients (IG) [11] and its two variants SmoothGrad (IG-SG) [12],
SmoothGrad2 (IG-SQ) [13], are highly inconsistent with respect to hyperparam-
eters such as the removal orders Most Relevant First (MoRF) and Least Relevant
First (LeRF). Our ROAD strategy achieves a consistent ranking using only 1% of
the previously required resources.

One limitation of automated metrics is their lack of certainty in accurately reflecting
human preferences [46, 47]. Therefore, in the context of XAI, particularly when transi-
tioning to real-world applications, conducting user studies becomes essential to validate
broader assumptions about the effectiveness of explanations [48]. Regrettably, a mere
fraction (approximately 20%) of XAI evaluation studies incorporate human participants
[44]. While there are initiatives to create taxonomies and define or understand the various
aspects of human-centric evaluations [49, 50, 51], a systematic discussion on the recent
user studies and their outcomes is still pending. Additionally, Yang et al. [52] observe
that the field of XAI is developing in isolation, with distinct treatments across various
disciplines (such as machine learning and HCI). Therefore, providing effective guidance
for XAI user study design is critical to ensuring that both algorithm and application
developers in XAI adequately address the genuine requirements of users. The objective
of Section 5.3 is to bridge this research gap in current XAI user study methodology by
offering practical guidelines for user studies, derived from a thorough and methodical
review of the literature.
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5.2 Bias in Automatic Evaluation

C Class label random variable

I Mutual information

I Imputation operator

M Binary mask in {0, 1}d
M Mask selection operator (takes out relevant features)

x Input features in Rd

xl Low importance features only in Rd−k

x′
l Imputed low importance features in Rd

Table 5.1: Notation used in this section.

5.2 Bias in Automatic Evaluation

The objective of this section is to address the shortcomings of the existing evaluation
strategy thereby enhancing the consistency of the evaluation. We introduce an inno-
vative strategy to counteract the biases arising from confounders, which contribute to
inconsistencies. Moreover, our findings indicate that in a debiased environment, omitting
retraining does not notably alter the outcomes. Figure 5.1 illustrates our robust evalua-
tion strategy ROAD (RemOve And Debias) compared to the previous work ROAR (Re-
mOve And Retrain) [13], which are not limited by computational resource constraints,
is important for the community.

5.2.1 Retraining Evaluation Strategies

Our approach considers a pixel removal strategy, where pixels are successively replaced
by imputed values. In line with existing research [42, 125], we explore two different
orders of removal: MoRF (Most Relevant First) and LeRF (Least Relevant First).
The former starts with the most important pixels, while the latter begins with the less
significant ones. We introduce a detailed definition of MoRF with retraining, known as
the ROAR benchmark [13], which will be the focus of our study. In this section, we
exclusively discuss the MoRF for our analysis. Nevertheless, a similar examination of
LeRF can be conducted without much additional effort.

For simplifying our derivations, we outline the process through a sequence of inde-
pendently analyzable operations. A classifier f : Rd → {1, . . . , c} maps inputs x ∈ Rd

to labels C ∈ {1, . . . , c}, where c is the number of classes. The purpose of a feature
attribution explanation for the prediction is to allocate an importance value to each
input dimension. In the MoRF scenario, the features are ranked based on their im-
portance in descending order. Following this, the top k most significant features for
each instance are identified for removal, where k is incrementally increased from 0 to d
during the benchmark. However, for the moment we consider only one fixed value of k.
Therefore, we can model the explanation ek as a choice of features via a binary mask
M = ek (f,x) ∈ {0, 1}d, where the value is set to one if the feature is in the top-k and
zero otherwise. In addition, we consider Ml : {0, 1}d × Rd → Rd−k as the operation for
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5 Evaluating Model Explanations

selecting the least important dimensions as indicated by the mask, and xl = Ml (M ,x)
as the vector comprising only the unselected features. We assume that in xl, the features
maintain their original input order, meaning they are arranged ascendingly by their ini-
tial input indices. This setup enables us to examine the information flow in the feature
mask M and the feature values xl separately.
The ROAR strategy evaluates the performance of a retrained classifier f ′ on per-

turbed samples x′
l := Il (M ,xl), where Il : {0, 1}d × Rd−k → Rd acts as an imputa-

tion operator that redistributes all inputs in the vector xl to their original positions
and sets the rest with a certain value. Specifically, in the context of zero imputation
x′
l = Il (M ,Ml (M ,x)) = (1−M)⊙x, meaning that top-k features are discarded. For

a better evaluation result, a rapid drop in accuracy with an increase in k is desirable, as
this indicates the effective removal of the most important features.

Analysis with Mutual Information. In retraining-based pixel removal strategies, we
use Mutual Information (MI) as an indicator for potential accuracy, since a higher MI
typically correlates with increased accuracy. [45] (Appendix A.2) provides proof of the
relation between classification accuracy and mutual information. During MoRF retrain-
ing, the metric I(x′

l;C) becomes crucial as it measures the remaining information in less
significant features, thereby influencing the achievable accuracy, which is the focus of
our evaluation. A reduction in mutual information I(x′

l;C) often leads to a significant
decrease in accuracy, yielding impressive MoRF benchmark results:

↓ I(x′
l;C) ⇒ ↑ MoRF benchmark.

Hence, in the MoRF framework, lower mutual information between x′
l and C is prefer-

able. Conversely, in LeRF, a higher accuracy, hence higher I(x′
l;C), is desired.

5.2.2 Bias Analysis

Bias: Class Information Leakage. This section aims to demonstrate that leaking class
information solely through the mask’s shape is readily achievable, and this can signifi-
cantly alter the evaluation score. To do this, we first distinguish the impact of the mask
from the feature values. Our analysis is based on the multi-information I(C;x′

l;M), as
defined by [202]:

I(C;x′
l;M) = I(C;x′

l|M)− I(C;x′
l) (5.1)

I(C;x′
l;M) = I(C;M |x′

l)− I(C;M). (5.2)

Setting eq. (5.1) and eq. (5.2) equal, we arrive at the identity:

I(x′
l;C)︸ ︷︷ ︸

Eval. Outcome

= I(C;x′
l|M)︸ ︷︷ ︸

Feature Info.

+ I(C;M)︸ ︷︷ ︸
Mask Info.

− I(C;M |x′
l)︸ ︷︷ ︸

Mitigator

. (5.3)

The first term denoted as “Feature Information” represents the information about the
class embedded within the features (excluding the mask), which we aim to measure. Con-
versely, the “Mask Information” term illustrates the significant influence class-specific
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Figure 5.2: Accuracy of a trained classifier only using the binary masks M without feature
values as input on the CIFAR-10 data set. Binary masks M were computed for
different variants of IG and GB. Only the masks contain enough information to
reach an accuracy of almost up to 80% (compared to 85% with full images) high-
lighting that the feature values do not play an important role in the evaluation.
This underlines the necessity to compensate for this confounder.

information within the mask can exert on the outcome. However, this effect can be offset
by the “Mitigator” term. The Mitigator becomes entirely indiscernible when the mask
can be flawlessly deduced from the imputed image x′

l. This leads to an uncompensated
outcome known as Class Information Leakage.

Extent of Class Information Leakage. To validate the bias term in practice, we con-
ducted experiments on the CIFAR-10 dataset [203]. We employed the same attribution
techniques as described in [13]: Integrated Gradients (IG) [11] and Guided Backpropaga-
tion (GB) [204] were used as foundational explanations. Additionally, we applied three
ensemble approaches for each method: SmoothGrad (SG) [12], SmoothGrad2 (SQ) [13],
and VarGrad (Var) [14].

Our experimental findings indicate that when employing fixed value imputation using
the global mean, the explanatory masks inadvertently disclose class information. This
conclusion is reached through a two-step process: Firstly, we demonstrate that the Mask
Information I(C;M) exhibits an exceptionally high value. Secondly, we confirm that the
Mitigator is small, suggesting that class information infiltrates the evaluation outcome
via I(C;M).

To evaluate the class-related information in the mask, we train a ResNet-18 [169] that
exclusively uses binary masks M (excluding pixel values xl) for class prediction. As
previously discussed, the accuracy of a classifier can serve as a substitute for measuring
Mutual Information (MI), which is impractically costly for high-dimensional data. The
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5 Evaluating Model Explanations

curves1 are depicted in Figure 5.2. Remarkably, using only the mask leads to high-
accuracy curves, peaking at nearly 80% for IG-SG, just slightly lower than the accuracy
achieved with the full inputs. This suggests that the Mask Information I (C;M) is
nearly as substantial as the Evaluation Outcome I (C;x′

l).

To demonstrate that the Mitigator is nearly non-existent, leading to leakage of class
information, we test whether it is easy to infer M from x′

l. In the case of fixed value
imputation, the inverse is feasible: Assign a value of 0 to every pixel within the mask if
its corresponding image pixel matches the filling value (which must be deduced from the
distribution). For more robust validation, we utilize a three-layer convolutional network
to predict whether each pixel is original or imputed. As illustrated by Figure 5.3(e)
(blue curve), the error rate with fixed value imputation is nearly zero, indicating the
network’s high accuracy in identifying imputed pixels. Our analysis suggests that using
fixed value imputation, the impact of the Mitigator is negligibly small.

(a) Original (b) Fixed Imp. (c) Noisy Lin. Imp.

image pixel

direct neighbor
indirect neigh-
bor

(d) Graphical model used to
derive our imputation

0.0 0.2 0.4
share of pixels imputed

0.0

0.2

0.4

m
is

sc
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n
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te min. revealing
fixed imputation
linear imputation

(e) Misclassification rate of the imputation
predictor for different shares of randomly
imputed pixels (CIFAR-10)

Figure 5.3: The considered imputation operators. When 50% of the original image (a) are
removed, they can either be imputed by a fixed value (b) or by our proposed
Noisy Linear strategy (c,d). Training of an imputation predictor (e) shows that
it is much harder to tell which pixels are original and which were imputed when
using our proposed imputation model. This is closer to the optimal, minimally
revealing imputation (black). Hence, by using imputed samples of this kind, Class
Information Leakage is reduced.

1Standard Errors are denoted by shaded areas in all figures, but they are typically barely noticeable
due to their small size.
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5.2.3 Debiasing Evaluation Strategy

Reduction of Class Information Leakage. To mitigate the bias, we follow an intuitive
approach: In cases where we cannot ensure the absence of class data within the mask
itself, our objective is to prevent this class data from being transmitted into the imputed
images. Thus, we ensure that the mask employed is not easily recognized from the im-
puted image. Our goal is to achieve I(x′

l;M) = 0, meaning the mask is unrelated to
the imputed vector, enabling us to disentangle the influences. Unfortunately, this is not
always feasible: If both are influenced by the class label, they must inevitably share some
information about the class. Therefore, we demand I (x′

l;M) ≈ 0, and I (x′
l;M |C) = 0.

I.e., I (x′
l;M)− I (x′

l;M |C) ≈ 0. As I(C;M)− I (C;M |x′
l) = I (x′

l;M)− I (x′
l;M |C),

I(C;M) ≈ I (C;M |x′
l), suggesting Mitigator successfully compensate the Mask Infor-

mation term.

Debiasing with Noisy Linear Imputation. In an effort to mitigate Class Information
Leakage, we propose an improved imputation operation, which does not reveal M from
the imputed image, i.e., I (x′

l;M) ≈ 0. Beyond this requirement, we encounter other
challenges in practice: (1) The imputation approach must be exceptionally efficient,
considering the necessity to apply it to every image in the dataset. (2) It is desirable to
have few hyper-parameters to avoid introducing other confounding factors.
We propose a novel approach named Noisy Linear Imputation, achieving objectives

mentioned above. Our method tackles key challenges inherent in current approaches.
Essentially, our aim is to develop subtler imputations that are less detectable and yield
a reduced I (x′

l;M). Toward this goal, we posit that each pixel’s value can be effectively
estimated using a weighted average of its neighboring pixels (see Figure 5.3(d)), given
the strong correlation among image pixels2:

xi,j = wd (xi,j+1 + xi,j−1 + xi+1,j + xi−1,j)

+ wi (xi+1,j+1 + xi−1,j+1 + xi+1,j−1 + xi−1,j−1) ,

where wd, wi represent constant coefficients for direct and indirect diagonal neighbors,
respectively, an equation system emerges from formulating a single equation for each
removed pixel. We incorporate the values of known pixels directly into this system,
treating only the removed pixels as unknown variables. This interconnects the equations
when neighboring pixels are removed, preventing them from being solved independently.
Despite this, the system remains sparse and is thus solvable efficiently, even with a sub-
stantial number of missing pixels. In determining the weights for the linear interpola-
tion’s neighbor weights, we take cues from the graph’s structure (refer to Figure 5.3(d)):
Indirect neighbors are twice as far from the original node in the graph compared to
direct neighbors. Therefore, direct neighbors are assigned a weight double that of diag-
onal neighbors. To maintain a weighted interpolation where weights sum up to 1, we
set wd=

1
6 and wi=

1
12 . Additionally, a slight random noise (σ = 0.1) is added to the

solution, preventing the model from learning the linear dependency.

2Specifically, the correlation coefficients are ρ=0.89 for direct neighbors and ρ=0.82 for indirect neigh-
bors in CIFAR-10
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IG

Var-IG

Modified CIFAR-10 Dataset
MoRF

0% 10% 20% 30% 40% 50% 70% 90%

Modified CIFAR-10 Dataset
LeRF

100% 90% 80% 70% 60% 50% 30% 10%

SG-SQ-IG

SG-IG

Figure 5.4: Illustration of modified data set in MoRF/LeRF and fixed value imputation set-
tings. Left: Modifications in the MoRF framework. Right: Modifications in the
LeRF framework. Top to Bottom: Modifications using Integrated Gradient (IG)
[11] and three ensemble variants of IG: SmoothGrad (SG-IG) [12], SmoothGrad2

(SG-SQ-IG) [13], and VarGrad (Var-IG) [14]. The percentage of pixels that are
removed or kept is given at the bottom.

Figure 5.3 (top) illustrates an exemplar of an imputed sample. The imputed version
shown in Figure 5.3(c) makes inferring the mask much more challenging than the version
with fixed-value imputation in Figure 5.3(b). For validation, we train the imputation
predictor anew and present the outcomes in Figure 5.3(e). Our method is verified to
approximate the ideal, Minimally Revealing Imputation, more closely. There are more
advanced imputation methods available, such as those based on Generative Adversarial
Networks (GANs), including the Generative Adversarial Imputation Nets (GAIN) intro-
duced by [205]. Nonetheless, our approach marks a significant advancement in efficiency
and effectiveness, especially as it circumvents the necessity of training a GAN model.
For thoroughness, we also conduct further experiments with GAN-based imputation,
detailed in Section 5.2.5.

5.2.4 Experiments

Having established the effectiveness of our Noisy Linear Imputation, this section demon-
strates additional practical benefits. This approach is termed ROAD (RemOve And
Debias). The experiments in this section were performed using CIFAR-10 and the eight
specified attribution techniques. Moreover, the Food-101 dataset [206], comprising high-
resolution images, was employed to test the generalizability of our method, which can be
found in Appendix D.1. Over 1000 models were trained from the ground up on imputed
data utilizing the outlined strategies, explanations, and removal percentages.

Implementation details. A vanilla ResNet-18 model [169] is utilized for training on the
CIFAR-10 dataset, and various explanations are derived from this model. This model
undergoes training with an initial learning rate of 0.01, employing the SGD optimizer
[207]. The learning rate is reduced by 0.1 following 25 epochs, and the training continues

84



5.2 Bias in Automatic Evaluation

Retrain No-Retrain

MoRF vs. LeRF MoRF vs. LeRF

fixed lin fixed lin

-0.01±0.01 0.61±0.01 0.01±0.00 0.58±0.01

Table 5.2: Spearman rank correlation between evaluation strategies on CIFAR-10. There is
almost no agreement between MoRF and LeRF when using fixed imputation (as in
previous works). When using our imputation (“lin”), consistency across MoRF and
LeRF orders increases drastically.

for a total of 40 epochs on a single GPU. This training results in the model attaining a
test accuracy of 84.5% (which aligns with the results reported in [42]). For attribution,
we adhere to the settings described in [13]. The baseline explanations include Integrated
Gradient (IG) [11] and Guided Backprop (GB) [204]. We further incorporate three
ensemble methods: SmoothGrad (SG) [12], SmoothGrad2 (SG-SQ) [13], and VarGrad
(Var) [14]. Each explanation technique is applied to the dataset, modifying it with pixel
fractions η = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9]. Figure 5.4 displays the altered images,
showcasing four distinct explanations from the GB family in both MoRF and LeRF
sequences, with a fixed mean value imputation approach.

Consistency under Removal Orders. For evaluation methodologies less susceptible to
hyperparameter configurations and conducive to stable ranking, our focus is on the
uniformity of evaluation outcomes across varied deletion sequences such as MoRF and
LeRF. Illustrated in Figure 5.5 are the curves derived from the “Retrain” approach. For
enhanced clarity, only a subset of four curves is presented, specifically those representing
attribution methods using IG with retraining, where up to 50% of pixels are eliminated.
The comprehensive set of curves for IG and its variants, along with GB and its variants,
is included in Appendix D.2.

The outcomes applying the standard fixed value imputation are depicted in Fig-
ure 5.5(a) and Figure 5.5(c), while the Noisy Linear Imputation results are shown in
Figure 5.5(b) and Figure 5.5(d). In the context of MoRF, an initial steep decline signi-
fies a more effective attribution method, whereas a gradual decline is preferable in LeRF.
Therefore, under fixed imputation, MoRF’s variants are IG, IG-Var, IG-SQ, IG-SG, and
for LeRF, it is IG-SG, IG, IG-SQ, IG-Var. For example, IG-SG ranks lowest in MoRF
but highest in LeRF. The use of Noisy Linear Imputation eliminates this disparity. In
MoRF, the ranking is IG-SG, IG, IG-SQ, IG-Var, identical to LeRF.

We perform a quantitative analysis of the uniformity across all eight attribution tech-
niques, both with and without retraining. Specifically, we rank our explanation methods
(1=best, 8=worst) based on the proportion of perturbed pixels. Subsequently, we deter-
mine the Spearman Rank correlation among different evaluation methods. As illustrated
in Table 5.2, the correlation score for fixed value imputation is −0.01 with retraining
and 0.01 without it, suggesting a lack of consistency in the rankings. However, with the
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Figure 5.5: Consistency comparison using fixed value vs. Noisy Linear Imputation. The higher
accuracy is better in LeRF, while the lower is better in MoRF. Comparing (a)
and (c), fixed value imputation gives different rankings in MoRF and LeRF orders:
IG-SG is the best in LeRF but the worst in MoRF. Comparing (b) and (d), Noisy
Linear Imputation changes the outcome considerably and yields a consistent ranking
in MoRF and LeRF.

introduction of our Noisy Linear Imputation, there is a significant shift: The correlation
scores rise to 0.61 and 0.58 with and without retraining, respectively. This suggests that
information leakage might play a significant role in the observed inconsistencies.

Efficiency. Employing Noisy Linear Imputation effectively narrows the gap observed
in evaluations conducted with and without retraining. This improvement is mainly due
to the decrease in distribution shift, thanks to the utilization of an approach akin to
Minimally Revealing Imputation. If the imputation of all pixels were ideal, the images
produced would not deviate from the expected distribution. Our focus is on comparing
different attribution methods. Hence, we calculate the Spearman correlation for rankings
derived with and without retraining, as presented in Table 5.3. The consistency in
order between the “Retrain” and “No-Retrain” scenarios, both employing Noisy Linear
Imputation, is evident. The rank correlation is 0.84 for MoRF and 0.94 for LeRF. This
uniformity in ranking leads to the insight that the disparity between “No-Retrain” and
“Retrain” scenarios is minimal when using Noisy Linear Imputation. Consequently, we
infer that omitting the retraining phase does not significantly alter the outcomes. For a
complete evaluation result, please refer to Appendix D.2.
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MoRF LeRF

Retain vs. No-Retr. Retain vs. No-Retr.

fixed lin fixed lin

0.15±0.01 0.84±0.01 0.09±0.01 0.94±0.01

Table 5.3: Spearman rank correlation between evaluation with and without retraining. Our
Noisy Linear Imputation (“lin”) also results only in marginal differences between
“Retrain” and “No-Retrain”. We conclude that the retraining step is no longer
necessary.
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Figure 5.6: Evaluation results in MoRF (a) and LeRF (b) using our ROAD framework.

5.2.5 Discussion: GAN Imputation

We use Generative Adversarial Imputation Nets (GAIN) proposed by Yoon et al. [205]
as an imputation operator. We first trained a GAIN model on the CIFAR-10 dataset.
During this process, we conduct a hyperparameter tuning specifically for the GAIN
model, maintaining the default parameters as suggested in [208]. We concentrate on
optimizing two parameters: alpha (denoted as α), a factor influencing the reconstruction
loss of non-imputed pixels in the GAN, and hint rate (abbreviated as hr), which aids
the Discriminator by providing hints to balance task difficulty. The training spans
100 epochs, leading to stabilized Mean Squared Errors (MSEs) and Frechet Inception
Distances (FIDs). We employ MSE against the original pixels as a metric to evaluate the
generative capabilities of the model. While Kachuee et al. note the effectiveness of lower
values for both parameters, they do not specify exact figures. We broaden the range for
α up to 100 and conduct a thorough search. The performance outcomes of the GAIN
models on CIFAR-10 are detailed in Table 5.5. For our experiments, we select the most
effective setup with α = 100 and hr = 0.01. In Figure 5.7, the imputation outcomes for a
CIFAR-10 image (a) using three distinct methods are presented. The GAN imputation
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Strategy
Retrain No-Retrain

fixed† lin fixed lin⋆

Time 3903±117 s 4686±2 s 18.0±0.1 s 33.3±0.1 s

Relative 100% 120% 0.5% 0.9%

Table 5.4: Mean runtime (5 runs) for evaluating a single explanation method (IG). † refers to
ROAR, and ⋆ to our ROAD.

α=0.1 α=1 α=10 α=100

hr=0.01 0.0131 0.0164 0.0090 0.0085

hr=0.1 0.0113 0.0133 0.0131 0.0101

hr=0.3 0.0172 0.0183 0.0151 0.0127

hr=0.9 0.0303 0.0484 0.0379 0.0088

Table 5.5: Mean-Squared-Errors for GAIN on CIFAR-10 using different hyperparameter
choices.

approach (d) appears to produce the most realistic imputed image, surpassing both
the fixed value (b) and noisy linear (c) imputations. Despite its inability to flawlessly
replicate the original, such as the noisy background and altered body color, discerning
the masked area in (d) remains challenging. An expertly trained imputation predictor
confirms that the GAN method is the most aligned with the ideal, Minimally Revealing
Imputation.
Nonetheless, GAN imputation has its limitations. It might add extraneous elements

absent in the original, like the new patterns on the dog’s body in (d). Its effectiveness
dwindles significantly when many pixels are missing (see Figure 5.8). Furthermore,
fine-tuning its hyperparameters is both time-consuming and costly, detracting from the
model’s efficiency and simplicity. In contrast, our Noisy Linear imputation avoids these
issues and is more efficient in implementation as shown in Table 5.6. Therefore, given
these considerations, Noisy Linear Imputation is recommended for use in our evaluation
framework.

Strategy
Retrain No-Retrain

fixed† lin gan fixed lin⋆ gan

Time 3903±117 s 4686±2 s 6421±74 s 18.0±0.1 s 33.3±0.1 s 35.0±0.1 s

Relative 100% 120% 164% 0.5% 0.9% 0.9%

Table 5.6: Mean runtime (5 runs) for evaluating a single explanation method (IG) on three
imputation operators. † refers to ROAR, and ⋆ to our ROAD.
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Figure 5.7: The considered imputation operators. When 30% of the original image (a) are
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Figure 5.8: Sample images from CIFAR-10 and Food-101 imputed with the three methods
considered in this work for different percentages.
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5.3 Guidelines for Human-grounded Evaluation

As highlighted in the previous section, automated evaluation yields inconsistent out-
comes and may not fully reflect the human perspective on model explanations. There-
fore, conducting user studies becomes essential in XAI to more comprehensively gauge
the efficacy of explanations, particularly for applications in real-world scenarios [48].
Yet, only a minor fraction (approximately 20%) of XAI evaluation studies incorporate
human subjects [44]. While there have been efforts to develop taxonomies and define
the nuances and impacts of various human-centric evaluations [49, 50, 51], a systematic
discussion on the recent advancements in user studies and their outcomes is still lack-
ing. Furthermore, Yang et al. [52] observe that the field of XAI is evolving disparately
across different communities, such as machine learning and human-computer interaction
(HCI). This observation underscores the need for effective guidance in designing XAI
user studies, which is essential for aligning the objectives of the XAI algorithm and ap-
plication designers with the actual needs of users. Section 5.3 aims to address this gap
in contemporary XAI user study methodology by offering practical guidelines derived
from a thorough and structured review of the relevant literature.

Drawing upon the messages from prior research, we present useful guidelines for con-
ducting XAI user studies, serving as a comprehensive checklist for those in the field.
Specifically, we examine publications from the past five years in prominent conferences
such as CHI, IUI, UIST, CSCW, FA(cc)T, ICML, ICRL, NeurIPS, and AAAI, focusing
on the intersection of “explainable AI” and “user study”. Our initial collection com-
prised over one hundred papers. After a detailed review, we narrow down our selection
to 97 core papers that meet our specific requirements: (1) the implementation of explain-
able models or methods, and (2) the involvement of human participants in evaluations.
Keywords used can be found in Table 5.7.

Explainable AI User Study

Keywords

XAI, explainable AI,

explanation, explainable,

explanatory, interpretable,

intelligible, black-box,

machine learning,

explainability, interpretability,

intelligibility, explain

attribution, feature

user study, participant ,

human subject,

empirical study,

lab study,

user evaluation,

human evaluation

Table 5.7: Keywords for our paper search query. Paper must contain at least one keyword from
each group.
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5.3.1 Analysis

To conduct an analysis of the papers gathered on user studies in XAI, we first sort
them into four distinct groups, each defined by its specific objective. From these papers,
we extract three key research questions that focus on how the explanations provided
by models impact these objectives. Our analysis includes a summary of the methods
employed in these studies for measuring the objectives. We discuss notable conclusions
drawn from these papers and suggest potential future research directions based on these
insights. Moreover, we explore both previous works that these user studies reference
(i.e., their foundational literature) and follow-up papers that cite these studies. This
exploration provides insights into the key works and the evolving trends in human-
centric XAI research. Figure 5.9 illustrates a comprehensive overview of our analytical
process. This section outlines the criteria applied for their categorization. Then, we
introduce the foundational and application in these documents, offering a broader view
of XAI user studies.

Categorization of User-Study Objectives. In light of the comprehensive nature of core
papers addressing various aspects of model explanations, we organize them into clusters
to better study their commonalities and differences. [122] defines interpretability within
machine learning systems as the ability to explain or present model predictions in under-
standable terms to a human. The authors contend that beyond aiding understanding,
interpretability plays a crucial role in qualitatively determining the fulfillment of other
essential criteria such as usability and trust. During a profound study of the relevant liter-
ature that was previously selected, we identified four sensible categories, that are derived
from the considered dependent variables in user studies (desiderata of interpretability).
These four categories are trust, understanding, usability, and human-AI collabo-
ration performance. We observe from these papers that typically, each measure aligns
with only one of these categories, making this method of classification both intuitive and
practical.

These categories represent various functions (goals) of XAI. Since interpretability is
described as “the ability to explain or to present in understandable terms to a human,”
the primary aim of XAI is to foster human comprehension. Specifically, comprehension
in the realm of interacting with an ML model means a user’s understanding or “men-
tal model” of the model’s workings. This understanding is enhanced through system
interaction and straightforward explanations [40]. The term “Usability” is extensively
explored in the field of HCI [209] and is considered a crucial requirement for XAI [122].
As defined by [210], usability refers to the degree to which a product enables users to
perform their intended tasks successfully, efficiently, and satisfactorily. Therefore, this
category includes user studies that leverage model explanations to aid users in com-
pleting specific tasks. In evaluating usability, various factors are assessed, such as the
system’s ease of use and the cognitive load it demands. The concept of “detection of
undesired behavior” pertains to scenarios where explorations reveal discriminatory ten-
dencies in a model, like the employment of features that are not desired. “Trust” in
AI is summarized as the user’s confidence in a model’s accuracy, a personal comfort
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level with understanding and using it, and the willingness to let the model make de-
cisions [147]. It contains more requirements. Performance in human-AI collaboration
involves situations where the AI system offers predictions, while humans maintain ulti-
mate decision-making authority. In such contexts, the utilization of model explanations
contributes to achieving performance that surpasses the capabilities of either the AI sys-
tem or the human decision-maker when acting independently. The reviewed user studies
contain various categories focusing on dependent variables, specifically concerning the
operation of XAI methods. These operations are connected to the models’ reasoning and
knowledge representation. Exploring XAI from a broader viewpoint, particularly regard-
ing generalization and robustness, continues to be a vital area for further investigation
via user studies.

Foundations of User Studies. Our data-driven bibliometric analysis of references in key
papers, presented in Figure 5.9, underscores prominent research themes in the “Founda-
tional Domain”. Model explanations and interpretability emerge as core elements. This
includes studies introducing explanation techniques such as LIME [86], SHAP [211],
and diverse attribution methods. These techniques are regularly explored in research
focusing on understanding and usability. Moreover, convolutional networks, frequently
used in experiments, leverage tools like GradCAM [212] and assorted saliency maps
for crafting model explanations. Significantly, a substantial portion of research within
recommender systems includes studies on Explainable Artificial Intelligence (XAI), par-
ticularly those focusing on recommendation solutions. The European Union’s General
Data Protection Regulation (GDPR) [213] often features in key discussions, especially
related to the “right to explanation” debate [214], a topic that has greatly impacted
the progression towards more explainable AI systems. Although these explanations are
ultimately aimed at human users, there is a lack of emphasis on human comprehension.
For example, references to studies in “Cognition” are relatively sparse, especially when
compared to algorithmic subjects. Millecamp et al.[215] advocate for the incorpora-
tion of social sciences, like cognitive science and psychology, into XAI theory. However,
references to psychology are minimal, indicating that few XAI user studies investigate
the psychological aspects of XAI. We point out an emerging field in XAI frameworks
that are grounded in theories of human cognition and behavior [40], which can provide
valuable theoretical underpinnings and conceptual tools for a better assessment of XAI
from user perspectives. Further information on these common references is available in
Appendix E.2.

Impact of User Studies. Figure 5.9 illustrates various applications that rely on in-
sights from core research papers. We observe a broad spectrum of applications in terms
of user comprehension and trust. Trust, for instance, is a recurring theme in areas such
as medical diagnosis and transportation, underscoring its importance in high-stakes sit-
uations. In subsequent studies, recommendation systems have emerged as a key area
of focus. Research on user-friendliness significantly influences domains like data visu-
alization, software engineering, and educational technology, where models often act as

93



5 Evaluating Model Explanations

facilitators for end users. Human-computer interaction enhancements are especially vi-
tal for advancing robotics and natural language processing. The notable presence of
recommendation systems in both foundational research and their influential outcomes
suggests that XAI is a fundamental element in modern recommendation systems. For a
detailed survey of these essential studies and their application areas, refer to Figure E.1.

5.3.2 Guidelines

The guidelines, as demonstrated in Figure 5.11, offer advice to avoid common pitfalls
that researchers could easily overlook. Our guidelines are structured sequentially to align
with the phases of user studies: before, during, and after user study, each corresponding
to study design, execution, and analysis, respectively.

5.3.2.1 Before User Study

In initiating a user study, the main task involves selecting objectives to be measured. One
can choose between two types of measurements: a general measurement or one tailored to
the specific application in question. The general measurement is adapted from existing,
established research, such as adopting measures like “trust in automation” [216, 217, 218]
or “general trust in technology” [219, 220]. In order to quantify “trust” effectively, it is
necessary to review how it has been previously defined and measured in the realms of
social sciences, XAI, and technical fields [221]. On the other hand, an application-based
measurement is chosen based on the specific objectives of the application, like in a chess
game [222], where the metric is the proportion of games won by humans aided by model
explanations (Human-AI collaboration).

Examined literature suggests that past research often faces challenges in demonstrat-
ing the superiority of XAI, especially against a baseline group lacking explanations.
In scenarios where only varying explanation methods are evaluated, one technique in-
evitably emerges as superior, yet the overall advantage of XAI remains undisclosed from
the studied papers. Hence, to truly ascertain the efficacy of XAI, it is crucial to contrast
it with a baseline that lacks any explanations. For studies aiming for a comparative
approach, employing baselines like random explanations is advisable [223, 94, 224]).

When deploying a proxy task, its difficulty should be gauged and monitored carefully.
In the past, the forward simulation task has been criticized as being unrealistically
complex for domains such as computer vision [225]. Therefore, alternatives like feature
importance queries [226] and manipulatability checks [227, 228] have been suggested.
It is also important to select a proxy task that, while being more straightforward, still
retains numerous aspects of the intended application [122]. Notably, the proxy task
should be designed close to the final anticipated application, as even slight differences in
the tasks may void the validity of the findings on the proxy tasks in the real world [229].

The reliance on measurements on how the measured entity is defined is a common
theme. As an example, the study in [230] quantifies objective understanding through
the metric of failure prediction, which assesses the accuracy of a user’s prediction when
the model’s prediction is incorrect. When it comes to subjective metrics such as subjec-
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tive understanding or trust, one-dimensional approaches (for example, asking a single
question like “Do you trust the model explanation?”) are limited in their ability to
capture the various aspects of the measured entities [231]. Additionally, there is often
a weak correlation between subjective queries and behavioral metrics. This is evident
when users express trust in a model, yet their actions do not align with the model’s rec-
ommendations [232]. This disparity is also observed between objective and subjective
understanding, as highlighted in studies like [233, 46, 234]. To address these limitations,
it is advisable to employ both self-reported and observed methods concurrently.

Various psychological concepts can be deployed to assess the diverse aspects of human
interaction with XAI. For example, within the expectancy-value framework, the subjec-
tive task value is commonly employed to examine the individual motivation for specific
actions [235], an area yet to be extensively explored in XAI encounters. This subjective
task value is composed of intrinsic value (pleasure), attainment value (personal signif-
icance), utility value (practicality), and cost (required effort or time) [235, 236]. An
effective explanation interface is expected to have a positive correlation with the sub-
jective task value, thereby enhancing an individual’s interest and willingness to engage
with model explanations. Concerning the cost aspect, particularly the cognitive load
in utilizing model explanations, it is generally assessed in contemporary research using
standard Likert scales [237, 238]. Scholars in cognitive load are examining the efficacy of
various visual representations in assessment scales, beyond traditional numerical Likert
scales, such as pictorial scales including emoticons (faces showing different emotions),
or images depicting varying weights [239]. Their findings indicate that while numerical
scales are better suited for complex tasks, pictorial scales are more effective for simpler
tasks.

The adoption of online platforms for pre-registration, such as AsPredicted3, has be-
come popular [240]. This procedure involves researchers uploading a detailed plan of
their intended study on the Internet prior to the commencement of data collection. This
pre-registration document typically contains various aspects, including the variables to
be measured, the hypotheses, the criteria for data exclusion, and the predetermined sam-
ple size. Thorough pre-registration is instrumental in countering concerns of selective
reporting or p-hacking [241], thereby enhancing the research’s trustworthiness. Further-
more, conducting expert interviews and preliminary studies using a think-aloud method
[242], as exemplified in references [228, 243], are frequently cited as valuable techniques.
These methods aid in refining the explanation system and the design of the study, and
in acquiring initial qualitative insights or augmenting the qualitative analysis [229, 244].

In preparation for a user study, careful planning of distinct steps and having explicit
plans for various scenarios are crucial. Informing participants beforehand about the
meeting location with researchers, necessary items to bring, and ways to prepare for the
study is beneficial. Should the study be in-person, it is advisable to remind participants
a day in advance and provide contact details for assistance with locating the site or if
cancellation is needed. Upon their arrival, researchers should be equipped with a com-
prehensive plan including all phases of the study. The protocol needs to include minute

3https://aspredicted.org
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(a) No. of lay participants
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(b) No. of expert participants

between-subj. within-subj. mixed

Figure 5.10: Distribution of participant numbers in the surveyed user studies by design and
participant type (each bar represents one study). Per-design means are indicated
in bold.

details, such as where to store backpacks, water bottles, and lunch boxes, and strate-
gies for handling unforeseen events like uncooperative participants and multifunctional
systems. A critical element of the study is ensuring participant consent, with special
attention needed when involving vulnerable groups like children and pregnant women,
necessitating potentially different consent methods. Preplanning the experiment script
offers the advantage of refining language to eliminate unintentional cues. Researchers
can inadvertently influence participants with their verbal and nonverbal actions, poten-
tially biasing results towards their expectations [221]. To maintain the experiment’s
validity and safeguard data integrity, investing effort in creating a thorough experiment
script is highly valuable.

5.3.2.2 During User Study

Ensuring an adequate number of participants is essential for robust user study analysis.
For a general idea of typical sample sizes, see the participant data in Figure 5.10, which
examines the number of subjects in various experimental setups. Typically, around 350
individuals with no special skills are recruited for between-subject experiments. How-
ever, it is important to emphasize that the number of participants needed varies greatly
depending on the design of the study and should be assessed on a case-by-case basis,
such as through a statistical power analysis [245]. IAdditionally, recruited participants
should have the same knowledge background as the end users that applications are de-
signed for. For instance, when evaluating an interface explaining loan approval decisions
to bank customers, including only computer science students who might already un-
derstand model explanations, is inappropriate. Since AI applications are intended for
diverse audiences throughout their development cycle, the nature of model explanations
must adapt accordingly [246].

Maintaining the integrity of collected data requires implementing checks to ensure
attention and prevent manipulation, particularly in extensive or web-based surveys in-
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volving non-expert participants. Kung et al.[247] advocate for these measures, ensuring
they do not affect the reliability of the scales used. In experiments where subjects are
exposed to multiple conditions, randomizing the sequence of these conditions is crucial
to eliminate the influence of sequence order, as discussed by Panigutti et al.[248]. This
is important because participants might acquire knowledge from earlier conditions. To
address this issue of learning bias, Tsai et al. [249] employ a Latin square design.

5.3.2.3 After User Study

Following the gathering of data, statistical evaluations are conducted to identify signifi-
cant impacts. The selection of appropriate tests is influenced by the experimental setup
and the characteristics and distribution of the collected data. Commonly, ANOVA tests
and T-tests are employed for comparing distributions across various conditions. For
mediation analysis, Structural Equation Models (SEM) or multi-level models are typi-
cally utilized. It is essential to perform checks for distributional assumptions. In cases
where Likert-type data is gathered, as is often the case in questionnaires, non-parametric
tests like the paired Wilcoxon signed-rank test or the Kruskal-Wallis H test for multiple
groups are advisable to circumvent the need for normality assumptions.

When aggregating various measures into a single tool, evaluating the legitimacy of
this combination using reliability assessments like tau-equivalent reliability (commonly
referred to as Cronbach’s α) is crucial. For instance, when integrating objective and
subjective measures of a concept like understanding, it is vital to ensure adequate con-
cordance. In situations where multiple elements (such as data points or visual represen-
tations) are evaluated by numerous assessors, statistical tools like Cohan’s κ and Fleiß’s
κ for more than two evaluators [250] are useful for determining the level of agreement
among these assessors that exceeds random chance, providing a gauge for the depend-
ability of these evaluations.

In the concluding stage of manuscript preparation, it is important to include compre-
hensive details to enable the audience to gauge the study’s explanatory strength. At the
participant level, this entails providing the total count of participants, the distribution of
participants across different treatment groups, details of their recruitment, the process
of obtaining consent, the incentives offered, and the specific treatment conditions they
underwent. Additionally, presenting some descriptive statistics of the gathered data aids
in evaluating the suitability of the statistical methods employed. In terms of analysis, it
is important to outline the process for verifying the assumptions underpinning the sta-
tistical tests applied and to specify the precise version of the test utilized (for instance,
specifying the use of “a two-way ANOVA with independent variables X and Y” rather
than a general reference to an ANOVA test).

5.3.3 Discussion

Automatic vs. human evaluations. Automatic evaluations align with functionally-
grounded metrics as elaborated in [122, 44]. Such metrics are designed to rigorously
assess key aspects like the “faithfulness” “fidelity,” or “truthfulness” of model explana-
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5.3 Guidelines for Human-grounded Evaluation

tions, as detailed in sources [44, 42, 251]. The concept of faithfulness in explanations
is articulated as the degree to which explanations signify genuinely significant features
within the input, as delineated in [251]. Automatic evaluations are tailored to gauge
general objectives, independent of specific downstream tasks, contrasting with human
evaluations, which are contextualized to particular use cases. While automatic evalu-
ations objectively scrutinize the accuracy of explanations in mirroring models, human
evaluations focus on assessing the interpretability of models through explanations from a
human perspective. It is worth noting that there are algorithms designed for automated
evaluation that endeavor to align with human assessments, a topic we will explore later.

For human-subject experiments, it is imperative that all utilized explanations pass
through rigorous automatic evaluations, ensuring they genuinely represent the model’s
workings. This preliminary verification step is crucial to affirm the empirical study’s
validity and to prevent misleading users with unfaithful explanations. However, it is
observed that many current human-subject experiments lack thorough pre-verification
of explanation’s functional faithfulness. Relying on unfaithful explanations risks mea-
suring merely the placebo effect rather than genuine understanding. Ideally, an effective
explanation should not only be faithful to the model but also comprehensible to users.

Identifying and handling confounders. The current research highlights the suscepti-
bility of model explanation studies to considerable confounding factors. Papenmeier et
al.[252] have shown that user trust is more strongly impacted by the accuracy of the
model than by the fidelity of its explanation. In a similar manner, Yin et al.[253] have
established that both the accuracy score perceived by users and the one presented to
them play a significant role in the formation of trust. [254] discovers another confounder,
namely the ambiguity of input samples. If the class of input sample is intuitive for users
to recognize, the users tend to trust model explanations, even the model explanations
are in low quality (low faithfulness).

Effective explanations should also expose the model’s limitations. When users en-
counter unexpected explanations, they might react with negative feedback, affecting the
evaluations of the explanations. Thus, it is crucial for explanations to aid users in cali-
brating their trust [255, 256], that is, to trust the model’s decisions when accurate but
to be skeptical otherwise. Regarding this, there is a debate on how to approach such
scenarios: In assessing model fairness, numerous studies [257, 258, 259, 216, 260] view
an increase in perceived fairness positively. In contrast, Dodge et al.[261] consider a
decrease in fairness as a positive outcome. Additionally, other variables play a role, such
as the timing of model errors (Nourani et al.[262]), and the specific characteristics of the
models (Ross et al.[228], Poursabzi et al.[263]).

Mitigating personal biases for XAI. Most existing XAI techniques and their associated
user studies offer one-size-fits-all solutions, overlooking the individual biases ingrained
in users’ mental frameworks. These biases significantly shape how users perceive AI
models, a factor that must be integrated into XAI’s design, development, and eval-
uation processes. To address this, several studies aiming to elucidate reinforcement
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5 Evaluating Model Explanations

learning policies have applied cognitive science theories. They formulate a human user
model [53, 54, 55, 56], based on which tailored explanations are generated and assessed
for their effectiveness in catering to individual user models. In XAI, references [57, 58]
adopt a Bayesian Teaching framework to accurately gauge human perceptions of model
explanations. It is important to note that in user studies, participant feedback can vary
significantly due to differences in cultural and educational backgrounds [264]. This type
of personal bias can be mitigated by involving a diverse and large sample of partici-
pants, representative of the intended audience. Therefore, we strongly advocate for the
consideration of personal biases in the development of XAI to ensure more effective and
personalized user interactions.

Simulated evaluation as a cost-efficient solution. Given the high costs associated with
conducting experiments involving human subjects, Chen et al. [265] introduced a simu-
lated evaluation framework (SimEvals) designed to pre-select potential explanations for
user studies. This is achieved by evaluating the explanatory power of these explanations.
Specifically, they explore three scenarios where model explanations are applied: forward
simulation, counterfactual reasoning, and data debugging. The effectiveness of different
explanations is assessed based on human performance across these tasks. A significant
disparity in effectiveness between the two explanation types indicates a need for further
investigation. In parallel, early experiments using large language models to simulate
human-like textual responses in specific contexts have yielded unexpectedly human-like
results [266]. However, as affirmed by Chen et al. [265], substituting human evaluation
with this simulated approach is currently impractical due to factors such as cognitive
biases impacting human decisions. Enhancing the simulation of human evaluations re-
quires more focus on emulating human cognitive processes. Simultaneously, researchers
in XAI should employ existing models that approximate human cognition to enable rapid
prototyping and assessment of explanations.

5.4 Conclusion

This chapter discussed the use of both automatic and human-grounded evaluation met-
rics in XAI. It began with addressing a significant bias known as Class Information
Leakage through masks, which is prevalent in automatic evaluation metrics. This was
explored through both theoretical and experimental analyses. To counteract this bias,
the chapter introduced a novel imputation technique termed Noisy Linear Imputation.
Building on this, a new evaluation strategy, ROAD, was presented. ROAD not only ef-
fectively mitigated the identified bias but also demonstrated remarkable efficiency when
compared to ROAR, achieving up to a 99% reduction in runtime. The accessibility of
our method is a key advantage, due to its minimal resource demands, making it highly
suitable for practical applications. Beyond automatic evaluation metrics, the chapter of-
fered comprehensive guidelines for conducting human user studies in XAI, drawing upon
an extensive review of 97 SOTA works in the field. Overall, this chapter contributed
valuable perspectives for future developments in XAI evaluation methodology.
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6 Tailoring Explanations to User Expertise

6.1 Introduction

As the significance of AI systems in our daily lives grows, it becomes a challenge for hu-
man users to understand the decisions these systems make. Experts from various fields,
including AI research, legal frameworks, and design, have identified the importance of
making AI systems transparent. This is crucial because many AI models function as
a “black box,” meaning their decision-making processes are not easily interpretable or
comprehensible to humans. Therefore, developing solutions for AI transparency, such as
techniques for XAI, is vital for ensuring users’ safe use and proper understanding of these
systems. In the various contexts of XAI, this study primarily addresses the explanation
of tasks related to image classification [267]. Attribution explanations, exemplified by
methods like GradCAM [212], SHAP [211], and LIME [86], are extensively employed in
current XAI approaches for image classification. Although these methods contribute to
the foundation of our research, they consistently overlook a critical aspect: the consid-
eration of human factors, which may be attributed to the challenges in incorporating
models of human users.
We advocate that modeling human aspects is pivotal in XAI research, given that the

concept of explainability is fundamentally oriented towards human understanding [40].
Several studies in the realm of explaining reinforcement learning strategies employ the-
ories from cognitive science for creating models of human users, which then serve as the
basis for crafting explanations [53, 54, 55, 56]. Aligning more closely with our area of in-
terest, the research conducted by [57] and [58] adopts the Bayesian Teaching approach to
conceptualize human perception, subsequently leading to the generation of explanations
that are centered around human cognition.
A disadvantage of previous studies is their uniform approach to all users, assuming

a single explanation set is effective for every user. On the contrary, our method seeks
to create customized explanations for individual users, focusing on their specific task
expertise. This strategy is influenced by human annotator models in active and imitation
learning, as seen in [59, 60]. Similar to these works, our user model aims to capture both
the decisions and reasoning process (expertise in concepts used for image classification)
of the human user in the context of a given classification task.
To address the void in research where personalization lacks in the explanation process,

we introduce the framework that provides Image Classification Explanations tailored to
User Expertise (I-CEE). Drawing inspiration from prevalent XAI methods in image clas-
sification, our framework adopts the explanation-by-examples strategy, offering attribu-
tion explanations (local explanations) for selected training data instances. The novelty of
I-CEE lies in its user-specific approach to choosing example explanations. When dealing
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with an image classification task, I-CEE identifies a group of m task-relevant concepts.
It then characterizes the user’s task-specific expertise as an m-dimensional vector, each
element ranging from [0, 1], indicating their expertise level in each concept. Utilizing
this user model, I-CEE subsequently opts for the local explanations most suitable to
bridge the gaps in the user’s knowledge.

I-CEE is designed to accelerate user understanding of the decision-making process of
machine learning models by selecting the set of local explanations that can best increase
the user’s task-specific expertise. This approach contrasts most existing XAI work, which
often relies on random or one-size-fits-all local explanations. Previous methods miss the
chance to accelerate understanding of models by offering explanations customized to the
user’s needs.
The contributions of this study are outlined as follows:

• This research identifies the potential for creating tailored explanations for the
decisions of image classification models and introduces a new framework named
I-CEE. This framework marks a step forward in the direction of human-centered
explanations.

• The effectiveness of I-CEE is evaluated by assessing the simulatability of the ex-
planations it produces across four datasets. The findings show that our method
surpasses state-of-the-art XAI frameworks in simulatability, enhancing users’ abil-
ity to predict the model’s labels.

• We conduct comprehensive human-subject studies (N = 100) to evaluate our
framework. The experimental outcomes reveal that our framework is more suc-
cessful in aiding users to comprehend the decision-making process of the ML model
compared to the leading method, Bayesian Teaching [58]. Moreover, it is subjec-
tively more preferred by the participants.

6.2 Problem Statement

Consider a machine learning classifier denoted as f or the target model, which is trained
on a dataset D consisting of image-label pairs (x, y). This classifier, defined as f : Rd →
1 : K, assigns to each input image x ∈ Rd a label y ∈ 1 : K, meaning f(x) = y, with
K representing the total number of classes. In some cases, the label y predicted by the
classifier might not correspond to the actual label y∗. To provide clarity on how these
target models function, various feature attribution techniques have been introduced,
offering local explanations [86, 211]. These techniques allocate an importance value
to each input pixel, represented as e ∈ Rd, often illustrated through a saliency map.
Within the explanation-by-example approach, users are presented with a selection of
training data images, along with their local explanations and predictions, denoted as
(x, e, y). Given the limited time users have to understand the model, choosing the most
informative examples is important.
In learning through examples, we address the challenge of identifying the most enlight-

ening set of example images (along with their respective explanations). To define this
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Selected

Figure 6.1: Overview of I-CEE. Left: The target model is first projected into a concept space,
which is then used to estimate user expertise. Two users are illustrated. User 1
uses the concept c1 in the reasoning process and can differentiate only two classes
(highlighted in blue). Likewise, User 2 is able to distinguish two classes based on
c2 (in orange). Right: Based on user models, explanations with images (x, e) in
the training set that maximize Hypercorrection Effect are selected and delivered to
the users.

issue, we start with three fundamental elements: the target model denoted as f , a data
collection symbolized by D (with the total number of data points being N , represented
as |D| = N), and a method for attributing features to produce local explanations. With
these components in place, our goal is to select a smaller subset S ⊂ D from the training
dataset, containingM ≪ N images, which are most effective in enhancing simulatability.
This means they are instrumental in aiding users to anticipate the outcomes predicted
by the machine learning model. As the problem objective hinges on a human-centered
metric, its successful resolution warrants a human-centered approach.

6.3 I-CEE: Image Classification Explanations tailored to User
Expertise

This section introduces our methodology I-CEE, containing two stages (Figure 6.1).
First, the system constructs a model of the user, focusing on assessing their expertise
related to the task at hand (refer to lines 3-4 in Algorithm 1). Subsequently, I-CEE
employs this user model alongside a query strategy to choose example images and ex-
planations that provide valuable insights (see lines 5-8).

6.3.1 User Expertise Estimation

The practice of predicting the labeling outcomes of an ML model by a user can be seen as
a form of image annotation. In this scenario, the annotators may have varying levels of
expertise or strengths, influencing their labeling decisions [59]. For example, while some
users are better at recognizing textual patterns, others may find understanding shapes
more natural. During this annotation activity, humans often engage in “concept-based
thinking” for reasoning and decision-making. This involves identifying commonalities
among different examples and categorizing them in an organized manner based on their
similarities [268, 269, 270]. In acknowledging these elements of human cognition, and
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6 Tailoring Explanations to User Expertise

Algorithm 1 I-CEE

1: Input: Target model f(·), data D, user annotation yu.
2: Output: A set of example images and explanations S.
3: Discover concepts by solving Eq. 6.3.
4: Estimate user expertise by solving Eq. 6.4.
5: for x ∈ D do
6: Calculate Hypercorrection Effect for x using Eq. 6.5.
7: end for
8: Return top-K image samples.

drawing inspiration from annotator models in active learning, we devise a model to
estimate a user’s proficiency in applying different relevant concepts for the task.

We first discover the underlying concepts in the feature space of the target model.
Using the discovered concepts, we model a user with a vector representing their ability
to utilize each concept when annotating images. Figure 6.2 provides an overview of the
user model. To arrive at the model, I-CEE begins with applying the concept discovery
algorithm on the target model [268] that aims to recover m concept [c1, · · · cm], such
that

f(x) = h(Ψ(x)) = h(Ξθ(sc(x))), (6.1)

where Ψ(x) ≡ [ψ(x1), . . . , ψ(xT )] denotes T activation vectors. The function h(·) sym-
bolizes the transformation process that converts the intermediate outputs of these acti-
vation vectors into image labels.1

The concept score sc(·)

sc(x) = ⟨ψ(xi), cj⟩|mj=1|Ti=1 ∈ Rm·T (6.2)

is designed to measure how well each pair of concepts and activation vector aligns.
Similarly, Ξθ : RT ·m → RT ·n represents a trainable transformation that reinterprets
concept scores within the activation space. All concept vectors and their corresponding
scores are normalized to unit length.
To discover concepts (namely, determining c, θ), the objective is to minimize the

ensuing cross-entropy loss:

L(c,θ) = −
N∑
i=1

yi log(h(Ξθ(sc(xi)))), (6.3)

in which y denotes the prediction derived from the target model f(·).
After completing concept discovery (a one-time process), the expertise estimation for

each user takes place within the concept space. To achieve this, we freeze all model
parameters (Ψ(·), sc(·), Ξθ(·), and h(·)), which are trained according to Eq. 6.3. This

1It is pertinent to note that Ψ and h can be interpreted as the intermediate and final layers of an image
classification neural network. Since h and Ψ are not a part of the training process for the user model,
we refrain from specifically indicating their parameters, such as weights and biases, in our notation.
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Figure 6.2: User Modeling: Square nodes are deterministic, while diamond nodes are trainable.
Loss back-propagated for concept discovery (Eq. 6.3) is marked in blue, while that
for expertise estimation (Eq. 6.4) is in red.

allows us to learn an expertise vector ω ∈ Rm for every user. The individual expertise of
users is reflected in the distinct values of ω, influenced by their unique domain knowledge
and the manner in which they apply concepts to generate predictions. Specifically, users
are tasked with annotating images, and their predicted annotations are replicated using
ω. The expertise vector ω for each user is derived by minimizing the subsequent cross-
entropy loss:

Lω = −
N∑
i=1

yui log(h(Ξθ(ω · sc(xi))), (6.4)

where yu denotes annotated labels collected from the user.

After learning ω, a user model can be represented by gω(·) = h(Ξθ(ω · sc(·)). When
ω1 ≈ ω2, it suggests that Users 1 and 2 share a closely related “reasoning process” due
to the resemblance in their concept usage. Similarly, if ω ≈ 1m, it indicates that the
reasoning approach of this user closely mirrors that of the target model f .

6.3.2 Selection Strategy

Our objective is to choose a collection of instructive examples that can significantly
enhance the user’s ability to simulate scenarios. To assess the value of examples, we
utilize the hypercorrection effect from educational psychology. As the human needs to
learn how the model makes the decision, the model’s prediction is viewed as the “correct”
answer, whereas the human’s disagreed initial belief is the “error”. Providing feedback
on the correct answer, especially when accompanied by explanations, is essential for
effective learning, as indicated by previous studies [271]. The effectiveness of learning
from an error example is enhanced when there’s higher confidence in the error, meaning
lower confidence in the correct answer [272, 273]. In implementing the hypercorrection
effect in I-CEE, we select images where, after understanding the model’s rationale, the
user’s confidence in the model’s prediction diminishes. We propose that this selection
method will foster greater learning achievements. In practical terms, I-CEE is designed
to select a subset S ⊆ D, comprising instances that exhibit the highest Hypercorrection
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Figure 6.3: (a): Overview of four classes in the synthetic dataset. (b): User simulatability
accuracy when trained with examples that match/mismatch with the user expertise.

Effect:

x = argmax
x∈D

(gω(y|x)− gω(y|x, e))︸ ︷︷ ︸
Hypercorrection Effect of e

, (6.5)

gω(·) symbolizes the user model, while D signifies the training dataset. Additionally, e
and y represent the local explanation and machine prediction respectively, corresponding
to the image x.

6.4 Experimental with Simulated Users

Prior to implementing a user study, we first assess our method by carrying out com-
prehensive experiments including simulated users for one synthetic and three authentic
image classification tasks. Appendix F provides additional information on the experi-
mental implementation.

6.4.1 Dataset

Synthetic Dataset. To assess the effectiveness of our proposed approach in a simulated
environment, we develop a synthetic dataset2. This dataset comprises four categories,
each characterized by two attributes: color and shape, as depicted in Figure 6.3(a).
For example, a user proficient in discerning colors (more so than shapes) would group
red cylinders and red cubes under the same category, distinguishing them from orange
objects. Conversely, a user adept at recognizing shapes would differentiate between
cylinders and cubes, irrespective of color. Other visual elements like angles or back-
ground hues are randomly assigned, being non-critical for this classification task. We
produce 300 images for each category, allocating 80% for training and 20% for testing
purposes.

2This dataset is inspired by 3d-shapes [274].
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Figure 6.4: Illustration of annotation given by the simulated user on the (a) synthetic, (b)
CIFAR-100, (c) CUB-200-2011 and (d) GTSRB dataset. Original label is in black,
and the label given by the simulated user is in blue.

Our classification model employs a ResNet-18 [169], and for the generation of expla-
nations, we utilize GradCAM [212]. In terms of annotation behavior, we simulate this
using Eqs. 6.3-6.4, following the same modeling methodology as I-CEE.

Realistic Datasets. Our evaluation of I-CEE extends to three real-world datasets:
CIFAR-100 [203], CUB-200-2011 [1], and the German Traffic Sign Recognition Bench-
mark (GTSRB)[275]. We simulate a user with predefined annotations for each dataset,
whose behavior deviates from the target model. Specifically, this simulated user in
each dataset can only differentiate between two out of four closely related classes. This
user’s perspective is used as the basis for all method assessments. For example, in the
CUB-200-2011 dataset, the simulated user categorizes both Crested and Least Auklet
as Crested Auklet, and Parakeet and Rhinoceros Auklet as Parakeet Auklet. We adhere
to the original training-test divisions of these datasets and employ the same approach
as in the synthetic dataset, using ResNet-50[169] for classifier training and GradCAM
to generate explanations.
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6.4.2 Implementation of I-CEE

This section provides an overview of the implementation details of our proposed method.
This encompasses the training procedure for our simulated user model, as well as an
explanation of the selection strategy we employ.

We choose four visually similar classes in each dataset for training simulated user
models. This restriction to a limited number of classes is intentional, as our goal is to
employ these classes in examining the comprehension of actual human users through
the chosen examples. To simulate a user, we first learn a concept within the latent
space through the application of Equation (6.2) and Equation (6.3). In the case of
the synthetic dataset, we employ a dimensionality of m = 8, where this setting yields
a test accuracy close to 100%, eliminating the necessity for a larger dimension. For
realistic datasets, users can determine the number of concepts, denoted as m. This
decision pertains to the dimension of the expertise vector, ω ∈ Rm, as outlined in
Equation (6.4). To ascertain an appropriate dimension for ω, we experiment with various
concept spaces, each characterized by a different value of m, across realistic datasets.
Extensive information on this process is provided in the subsequent section. Ultimately,
for each realistic dataset, we establish the value of m as 64.

The user model, denoted as gω(·), undergoes training with user-provided annotations
as per Equation (4). During this process, all parameters within the network remain
static, except for ω. To create simulated users with varying levels of expertise, we
generate simulated user-annotated labels by classifying two similar but different classes
into one class. This setup necessitates that the user’s expertise differs from that of
the target model, as it is unable to differentiate between all four classes. The four
chosen classes, along with the user annotations for each class in the realistic datasets, are
depicted in Figure 6.4. The training of gω(·) is carried out using the Adam Optimizer, set
at a learning rate of 1e−2, and spans over 40 epochs. Note that this training configuration
is also applied in the experiments showcased in Figure 6.5.

We employ Equation (6.5) to select images that enhance users’ understanding and
insight into the model’s reasoning processes through specific examples. Utilizing the
trained user model, we compute the likelihood that the input image belongs to class
y, as determined by the target model, denoted as gω(y|x). When the input is given as
(x, e), we apply the explanation e as a weighted overlay (the saliency map), which is
derived by normalizing the original saliency map, onto the input image. This method is
frequently adopted to assess the impact of explanatory techniques [126, 42].

6.4.3 Baseline Methods

We evaluate I-CEE in comparison to a recent approach in human-centric XAI, specifically
Bayesian Teaching (BT) [58]. In BT, the emulation of a user’s prediction behavior for an
image class is accomplished using a ResNet-50-PLDA (probabilistic linear discriminate
analysis [276]) framework. This method operates on the premise that users engage in
Bayesian reasoning, choosing images and explanations that more closely align the user’s
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understanding with that of the desired model. There are distinct differences in user
modeling and example selection between I-CEE and BT.

In evaluating the selection of examples independently, we conduct comparisons with
query approaches originating from active learning (AL). In our unique implementation
of AL query methodologies for Explainable Artificial Intelligence (XAI), the learner is
represented by a simulated user, while the target model assumes the role of the an-
notator. Our benchmarks include the use of Expected Gradient Length (EGL) [277],
Density-Weighted Method (DWM) [278], and a random sampling approach as founda-
tional comparisons. In this study, EGL is utilized to select sample pairs (x, e) which,
upon acquiring their annotated labels, induce the most significant alteration in the cur-
rent model. This alteration is quantified by observing the gradient of the objective
function relative to the model’s parameters. Nevertheless, EGL’s selection may include
atypical samples that cause pronounced gradient shifts. Addressing this concern, [278]
suggests combining a density-weighting approach with EGL’s querying methodology.
Here, each sample’s weight is determined based on its mean resemblance to other sam-
ples in the dataset. Our contribution in this research involves augmenting EGL with an
adjustment for the belief change in EGL calculations when e is part of the input, termed
as EGL-Shift. Precisely, we calculate the variation between the EGL values of (x, e) and
just x. Through EGL-Shift, our goal is to mitigate the influence of the image itself on
the training gradient, instead accentuating the effect of explanations.

6.4.4 Evaluation Metric

In assessing our approach, we employ the concept of simulatability, a frequently utilized
surrogate for evaluating how well a user grasps the decision-making process of the model,
as referenced in [46, 279]. Simulatability is quantified by the degree to which a user
is able to accurately foresee a model’s prediction. This measure is applicable in both
simulated experiments and studies involving human participants.

Our approach adheres to the experimental framework suggested in [91, 92] to examine
the impact of chosen examples. In particular, each technique yields a prioritized collec-
tion of sample images S, with the order determined by the informativeness as specified
in each method. We express the proportion of the number of sample images |S| to the
volume of training data D as p = |S|/|D|. The hypothetical user is then retrained utilizing
these sample images x along with their respective labels y = f(x), where it is important
to remember that f represents the target model.

Using the updated user model g′ω, we calculate the accuracy with which the user
predicts the model’s forecasts on the test set, i.e., the user’s simulatability:

Acc =
1

Nt

Nt∑
i=1

1(yi = g′ω(xi)), (6.6)

where Nt is the number of samples in the test set.
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Figure 6.5: Comparison with baseline algorithms using simulated users across three datasets.
On the x-axis, the percentage of utilized examples (denoted as p) is depicted, while
the y-axis represents the accuracy of simulatability. (Averaged results from 5 runs.)

6.4.5 Experimental Results

Ablation Study. To assess the effectiveness of our model for g(·), we examine (1) the
accuracy of ω in representing user expertise, and (2) the benefits of customized expla-
nations adapted to user expertise levels. Our evaluation involves simulating two users
on a synthetic dataset: User 1, who relies solely on color for classification, and User 2,
who depends exclusively on shape. We infer annotations for each user according to the
attributes associated with each class (Figure 6.3(a)).

Upon evaluating each user, we examine their proficiency vectors: ω1 and ω2 (where
ωi ∈ R8). Each element within ωi signifies the user’s proficiency in a distinct concept.
The four highest values in both ω1 and ω2 are inversely related, reflecting that each user
possesses expertise in contrasting areas (meaning, each user relies on different concepts
during decision-making processes). To assess the effectiveness of our user model in
terms of expertise, we conduct a study in which User 1 is trained using a selection
of examples tailored to the User 1 model (“Matched”), as opposed to a selection of
examples suited for User 2 (“Mismatched”). In Figure 6.3(b), it is evident that the
simulated user exhibits high simulatability accuracy when presented with examples that
align with their expertise (denoted as “Ours Matched”). In contrast, when examples
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are chosen that do not optimally suit the Hypercorrection Effectspecific to the user
(referred to as “Ours Mismatched”), the simulatability accuracy significantly drops. This
suggests that these examples are inadequate in offering meaningful insights about the
target model. Furthermore, our user simulation model is juxtaposed with the Bayesian
Teaching approach. Notably, there are negligible differences in simulatability accuracy
in both matched and mismatched scenarios under the Bayesian Teaching framework.
This implies that Bayesian Teaching may not effectively replicate the diverse behaviors
of different users and, as a result, is less proficient in providing examples that enhance
user simulatability (showing less improvement in performance compared to our method).

Comparison. We conduct a comparison of I-CEE against various baselines using three
distinct real-world datasets, as detailed in Figure 6.5. The evaluation focuses on user
prediction accuracy, measured at p = [10, 15, 20, 25, 30]%. On CIFAR-100, our approach
consistently surpasses BT and EGL-Shift, although it falls short when compared to EGL
and DWM. This outcome may stem from the ambiguous nature of CIFAR-100’s explana-
tions, a consequence of the images’ low resolution. Consequently, Hypercorrection Effect
struggles to be effectively captured, as the explanations are marred by noise. Conversely,
on the datasets CUB-200-2011 and GTSRB, our method generally exceeds the perfor-
mance of other baselines at the majority of these percentages. For example, on the CUB
dataset, our method begins to lead in performance beyond the 20% mark. It is worth
noting that 20% of the training data equates to 24 images, a count feasibly manageable
for human examination, which will be elaborated on in the subsequent section. In the
GTSRB case, there’s a noticeable performance disparity between our method and the
close competitor BT. This could be attributed to differences in user model architecture.
Our model mimics user behavior through learning ω in concept space, maintaining the
final classifier’s effectiveness. In contrast, BT employs a PLDA layer for image classifica-
tion, potentially leading to inferior results when dealing with images with highly similar
latent features, like traffic signs. This is suboptimal since humans excel at identifying
key concepts and disregarding visually similar but irrelevant features. Through more ac-
curate user modeling, our method provides valuable learning samples in most scenarios
during these simulation experiments.

6.5 Experiments with Human Users

We conducted a study involving human participants with the CUB-200-2011 and GTSRB
datasets, adhering to the same parameters used in our simulation tests. These particular
datasets are selected due to their increased difficulty and the higher resolution of the
images. As a benchmark, we employ Bayesian Teaching [58], which stands as the most
advanced and relevant to our area of interest.

In this user study, we aim to study the following research questions:

• R1: Our framework selects informative samples that can increase human under-
standing of the model.
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• R2: Human understanding of the model is affected by task domains.

6.5.1 User Study Details

We present the procedure and some essential details of our human user study in this
section.

Procedure. First, participants were instructed to analyze two categories (out of four)
and record the characteristics that help differentiate these categories. The purpose of this
exercise was to encourage participants to adopt the mindset of a hypothetical, pre-defined
user for whom the model explanations are customized. Subsequently, participants were
presented with 20 model explanations, either generated through our approach (experi-
mental group) or via Bayesian Teaching (control group). They were asked to note the
features they consider when deducing the model’s predictions.
In the evaluation phase, the participants first complete a quiz comprising 15 questions,

where they predict the labels assigned by the model (the images for this quiz are evenly
drawn from all four categories within the test set). This part is termed “objective under-
standing”. Following this, they assess their perceived comprehension via seven questions,
rated on a 7-point Likert scale, a process we describe as “subjective understanding”.
The concrete procedure of our user study is as follows:

1. Participants complete a demographic survey, such as their experience with AI
models.

2. Participants complete the warmup task. By doing this, participants adapt their
reasoning to the simulated model, for which the examples on the following page
are selected.

3. Participants complete the experimental task. They are asked to the model’s clas-
sification for 15 images.

4. Participants complete a questionnaire to rate their subjective understanding of
model explanations.

5. Repeat Steps 2-4 on another dataset.

Prior to commencing Step 3, which is the experimental phase, participants are prompted
to select their preferred task. The options presented are: “I will select the label I believe
is accurate for the image” and “I will select the label I presume the model will predict”.
This single-choice question also serves as an attention check. By doing this, we can
control whether all participants fully understand the task. All participants in our user
study made the correct choice, i.e., “choose the label that the model would predict”.

Objective Understanding Questions. Figure 6.6 presents a sample question from our
user study, aimed at assessing objective comprehension (simulatability). The study com-
prises 15 questions, broadly distributed across four distinct categories. On the left, the
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Figure 6.6: Question on objective understanding: participants are asked to predict the model’s
prediction given selected model explanations.

test image is displayed, while the right side features model explanations, specifically the
top 20 as ranked by the chosen selection strategy. For both the control and experimental
groups, different algorithms select the examples on the right, yet the test images on the
left remain identical for both groups.

Subjective Understanding Questions The question utilized for gauging subjective
comprehension is adapted from references [280, 281]. Responses are recorded using a
7-point Likert scale, where 1 signifies “Strongly Disagree” and 7 indicates “Strongly
Agree2.

• I understood the explanations within the context of this study.

• The explanations provided enough information for me to understand how the Ma-
chine Learning model arrived at its label. (Alternative: I would need more infor-
mation to understand the explanations.)
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• I think that most people would learn to understand the explanations very quickly.

• I would like to have more examples to understand the machine’s reasoning and
how the machine arrived at its labeling.

• The explanations were useful and helped me understand the machine’s reasoning.

• I believe that I could provide an explanation similar to the machine’s explanation
for a new image.

Participants. We recruit N = 100 individuals (mean age 28.8 ± 8.6, comprising 49
females, 50 males, and 1 person of undefined gender) via the research platform Prolific3,
and systematically distributed them across two experimental conditions (each with 50
participants). Among these participants, 51 had previous AI exposure through usage
of Alexa, Siri, ChatGPT, or ML-related academic courses. All participants success-
fully completed an attention check during the study. The research protocol received
approval from the Technical University of Munich Institutional Review Board (IRB).
At the start of the experimental session, informed consent was obtained from each par-
ticipant through Prolific. For their involvement in this half-hour study, participants
received a compensation of £4.50.

6.5.2 Results

Analysis on R1. The outcomes of the accuracy of simulatability under each condition
for each dataset are presented in Figure 6.7(a). Regarding GTSRB, a notable enhance-
ment in user simulatability accuracy of 11.5% (p = 0.007) is noted when applying our
framework. In contrast, on the CUB dataset, the user prediction accuracy in two con-
ditions is comparable, showing no substantial impact.
Upon examining the test samples where the target model’s predictions are incorrect

(with 6 out of 15 images being misclassified), our approach shows enhanced effectiveness
compared to BT. In the experimental condition, users attained an accuracy of 46.3%,
contrasting with 40.3% in the control condition, as depicted in Figure 6.7(b). This
suggests that users are more adept at predicting the target model’s errors using our
method, which represents a more complex task. Further proof of our model’s efficacy
is presented in Figure 6.8. We analyzed the number of words users use to identify
the model’s distinguishing features across four classes. With our method, there is a
consensus among users about specific features (bird body parts) for each class. For
instance, approximately 68% of users chose “Head” for differentiating Rhinoceros, while
about 20% preferred “Belly” for Least Auklet. In contrast, agreement among users in
Bayesian Teaching is less common; for instance, only about 10% agreed on “Body” for
Least Auklet, with others providing varied descriptions. These findings underscore our
method’s effectiveness in enhancing user comprehension of the target model.

As illustrated in Figure 6.7(c), the enhancement in subjective comprehension (as mea-
sured by rating scores) shows no substantial difference on CUB, where the average rating

3https://www.prolific.co/
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Figure 6.7: Results of experiments with human users (N = 100) comparing I-CEE with the
baseline Bayesian Teaching (BT). (a) Simulatability accuracy on all predictions,
(b) Simulatability accuracy on images where the target model made inaccurate
predictions in the CUB-200-2011 dataset, (c) User’s subjective perception of model
explanations.

score is 5.14 for our approach and 5.02 for BT. However, on GTSRB, our method out-
performs BT with a significant p = 0.037. This considerable advancement in GTSRB
can be attributed to our method’s selection of explanations that impart new insights
for differentiating four classes. Conversely, Bayesian Teaching opts for examples that
only underscore key features for two classes, thereby limiting users’ ability to grasp the
model’s decision-making process for the remaining classes.

Analysis on R2. The data demonstrates that the task domain (dataset) influences
the users’ objective comprehension. However, the impact on subjective understanding
varies less across different tasks, such as no notable distinction between two datasets
when applying our method, as depicted in Figure 6.7(c). Following the user study,
participants provided feedback on the comparative usefulness of model explanations
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Figure 6.8: Illustration of features used by human users for distinguishing each class on CUB-
200-2011.

across two datasets. Most users in both groups found the explanations beneficial, but in
the experimental group, seven users, and in the control group, fourteen users, reported
that explanations about bird species were more helpful than those about road signs. The
ambiguity in the road sign images might be due to the salient area always being a circle
covering the road sign, which appears to be “the only one distinguishing feature” among
various classes.

6.6 Discussion

Limitations and Future Work. Future research on our framework may explore these
directions. First, it is important to delve into more sophisticated models for assessing
expertise. Our current methodology simulates user expertise by using a concept-based
reasoning strategy for categorizing images, as outlined in [268]. An alternative method
could be the application of Large Language Models to mimic the input of multiple indi-
viduals in a textual format, as discussed in [282, 283]. Moreover, our existing framework
does not address the sample complexity related to estimating user expertise. Therefore,
forthcoming studies should focus on techniques that can gauge user expertise efficiently
using a limited amount of annotations from actual users. Future research should as-
sess datasets that incorporate a broader range of instances, as recommended by certain
participants.

Implications for XAI Systems. We contend that incorporating user modeling is crucial
for delivering explanations that specifically address user-specific misunderstandings or
confusion. Future XAI systems should harness and address the unique preferences and
sources of confusion of individual users. This necessitates the creation of human-in-the-
loop systems, enabling users to actively engage in the explanation generation process.
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6.7 Conclusion

This chapter introduced a human-centric XAI framework, I-CEE, designed to provide
tailored explanations for image classification ML models based on user expertise. Our
framework identified task-relevant concepts in image classification and utilized these
concepts to create user models that consider human expertise. Then, it selected examples
and explanations to assist users in grasping the missing concepts necessary for accurate
predictions of model decisions. We assessed our approach through simulated experiments
on four datasets and presented findings from a comprehensive human-subject study (N =
100). In these experiments, it was observed that I-CEE surpassed previous methods,
highlighting the potential of human-centered XAI and suggesting avenues for future
research in XAI system design.

117





7 Conclusions and Future Work

In summary, this cumulative dissertation addresses current challenges existing in HAI
for the development of advanced AI models that aim to better assist humans. More
specifically, it proposes novel methods for the incorporation of three essential human
factors—perception, response, and reasoning—into AI models. These factors are linked
to various stages of model decision-making processes. Specifically, the dissertation ex-
plores the integration of human attention into models to enhance perception. This
approach improves the model’s ability to process inputs effectively, which is shown for
an example application on the context of medical diagnosis. Additionally, it introduces
a model designed to predict human intentions, focusing on the realm of advanced
autonomous driving. Lastly, the dissertation highlights the importance of improving
human comprehension of these opaque models by providing post-decision explana-
tions. This part first presents guidelines for the design of user studies aimed at assessing
the effectiveness of XAI in facilitating end users’ comprehension and trust in AI models.
Beyond including human participants into the evaluation of XAI, a novel framework is
introduced, offering personalized model explanations. Through this framework, individ-
uals can gain improved insights into black-box models, as the explanations are tailored
to their specific reasoning needs.

This dissertation further introduces innovative methodologies for designing models,
providing thus novel insights into the realization of HAI. It marks a substantial progres-
sion towards the principles of HAI models: the development of AI systems that not only
technically reflect human intelligence, but also emphasize the impact of AI on humans,
and enhance human abilities rather than replacing them.

7.1 Conclusions

This dissertation highlights the efficacy of the proposed methods in integrating human
factors, specifically, human attention, intention, and comprehension, into the design of
AI models.

Part I addresses the power of human visual perception, i.e., human attention, in the
context of challenging classification tasks. This part also explores how to integrate
human attention into model design. Since gaze data can serve as a proxy for human
attention, eye-tracking tools were employed to explore the intricacies of human atten-
tion. An image comparison task was used to guide participants to focus on discriminative
features while comparing two visually similar images from distinct fine-grained classes.
Remarkably, by training a model using only 5% of an image—the areas where human at-
tention was focused—and masking out the remainder, the model’s performance matched
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that achieved based on the full image. This highlights the effectiveness of human atten-
tion in classification tasks. To harness human attention, two strategies were introduced
in this dissertation: 1) data augmentation using these attention regions, and 2) inte-
gration of human-derived saliency features into a vanilla network using a dual-branch
network. The proposed knowledge fusion techniques were evaluated on two tasks: a
fine-grained classification of bird species and a disease diagnosis task using chest X-
ray images. The findings show that integrating human gaze-based attention efficiently
improves the model performance.
To harvest an efficient human-AI collaboration, the model understanding humans’

intentions is essential. Part II targets at proposing advanced AI models for human in-
tention predictions. This part opts for the utilization of advanced autonomous driving
as a use case, where there is a rising demand for an AI model to function as a “co-pilot”.
More specifically, this part first introduced a novel framework for driver maneuver inten-
tion prediction. The novelty of this model is that it combines the features from driving
scenes, i.e., videos of road traffic, with the features of human drivers’ actions. Both fea-
tures were extracted from monitoring videos. Motion features from outside videos were
obtained from optical flow images using ConvLSTM layers, while human action features
were extracted by a 3D CNN. The proposed method surpassed the SOTA model sig-
nificantly in driver maneuver prediction accuracy. Another framework was designed to
predict the objects a driver focuses on while driving, which can indicate driver intentions.
It offered an understanding of human intentions and the capability to make decisions
based on these identified objects. The efficacy of this model was demonstrated through
experiments on two public datasets featuring driver gaze. Results show that our model
not only achieved state-of-the-art performance in attention prediction, surpassing pre-
vious works, but also did so with significantly reduced computational resources. More
importantly, this model was integrated with YOLOv5, enabling it to provide detailed
object information. This integration was beneficial in complex and crowded traffic sce-
narios, enhancing hence the model’s ability to inform further decision-making processes.
Addressing the third human factor, namely reasoning, within AI models is explored

in Part III. In this section, Explainable Artificial Intelligence (XAI) serves as a valuable
tool to elucidate the reasoning processes of opaque models. Specifically, Part III initiates
the discussion by highlighting the existing gap between XAI algorithms and their utility
for end users in XAI applications. To enhance human comprehension of these models,
this part focuses on two research challenges elaborated upon in Chapter 5 and Chapter 6,
respectively: (1) XAI application design should consider user experiences, and (2) XAI
algorithm design should consider user backgrounds.
Chapter 5 examined the limitations in automatic metrics like fidelity. For example,

these metrics yielded inconsistent evaluation outcomes as demonstrated in various in-
stances due to the bias term. This chapter also demonstrated the source of the bias term
in automatic evaluation metrics, which was defined as “Class Information Leakage”. To
mitigate the bias, a novel evaluation strategy “Noisy Linear Imputation” was introduced.
Experimental results on various datasets show that the proposed method was able to
effectively mitigate the influence of the bias caused by conventional imputation methods.
This chapter also addressed the importance of human-grounded evaluation in measuring
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user perception of XAI methods, which cannot be evaluated through automatic metrics.
However, human-grounded evaluation posed other challenges, such as selected examples
in user studies containing biases that can easily trick users into trusting models with
non-meaningful explanations, as studied in [254]. Therefore, a detailed user-centered
evaluation guideline is proposed to help design human-grounded assessments.

Human reasoning should be integrated into XAI algorithms to provide more effective
model explanations. This integration aids users in better comprehending the workings
of AI models. Chapter 6 proposed a novel XAI framework coined as I-CEE, aiming at
estimating user expertise in reasoning image classification tasks (“concept-based think-
ing”) and providing informative explanation examples. Informativeness was calculated
based on the Hypercorrection Effect, inspired by educational psychology. This enabled
I-CEE to select examples that could better inform users of the reasoning mechanism
of the model. Results on simulated users and real human users indicated that I-CEE
could estimate individual users’ reasoning, and select explanations tailored to their ex-
pertise, effectively improving user understanding of the model. This work highlighted
the importance of considering human factors in generating model explanations.

7.2 Future Work

While the results in promoting HAI through the methods proposed in this dissertation
are promising, there remains room for further development in AI to better support
humans. This section first discusses limitations discovered from the current works as
follows. (1) Gathering human expertise and knowledge can be very costly, such as human
gaze data from radiologists during the examination of X-ray images. To enable future
integration with human expert knowledge, an algorithm that is efficient in learning
is therefore essential. (2) In the current work, XAI frameworks provide static local
explanations and do not support interactions. In cases of large datasets or models with a
vast number of features, creating comprehensive and understandable static explanations
over all different cases becomes impossible and potentially overwhelming for the user.
(3) HAI also aims to emphasize its societal impacts, a topic that goes beyond the scope
of this dissertation. In the upcoming section, three prospective research directions aimed
at overcoming the existing limitations are explained.

Human knowledge integration via efficient learning algorithms. In future work, it
is important to research how learning human knowledge could be enabled from small
data samples, especially when considering the costs of collecting human expert data. In
contrast to AI models, in fact, humans are good at learning new knowledge with very few
samples. For instance, from a very young age, children engage in a form of contrastive
learning when they differentiate between categories. The power of human contrastive
learning can be observed in Chapter 3, where human subjects are asked to compare two
visually similar images from distinct fine-grained bird species. Although none of the
participants were ornithologists, they could identify distinct visual features for a given
bird species after a few seconds of comparison, whereas models require a large corpus of
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data samples for training within the learning scheme. To address this research challenge,
in future work, I plan to introduce an active learning scheme [151] in contrastive learning
for an efficient learning process, thus harnessing human intelligence in contrasting. Given
a pretrained model, we can then use the active contrastive learning framework to further
improve the capability of the model for a specific task, which boosts efficient fine-tuning.
The model first identifies similar pairs and then asks human annotators for precise labels.
Besides labels, comparison cues such as distinct areas in images or important words in
sentences should also be considered. The human annotation is further used to retrain
the model. For a traditional deep learning model, a contrastive loss or a supervised loss
can be used depending on the human-annotated cues.

Human comprehension of complex models via interactions. XAI methods considered
in this work provide local explanations. As AI models become deeper and more com-
plex, explaining black-box models based on parameters and several explanation examples
using traditional XAI becomes less efficient. To better explain the decision-making pro-
cesses of these complex models, my future research will focus on designing interactive
explanation frameworks that allow dynamic explanations based on user feedback, mov-
ing hence beyond conventional post-hoc explanatory approaches.To enable interactivity,
interpretable models, for instance the concept bottleneck architecture, can be deployed,
which provides explanations of important features for the decision in the network for-
ward pass. Using these frameworks, users can view explanations and modify features
that are used in making the final decision. In this approach, users gain insights into
the model’s functionality through personalized queries. In addition to interactive expla-
nation design, assessing the efficacy of these explanations extends beyond solely human
understanding. It is important to evaluate user experience with a specific emphasis on
cognitive load. Future work should consider physiological measures such as heart rate
along with eye-tracking metrics like pupil dilation.

Enhancing impact on humans and society. Emphasizing the social impact of AI mod-
els and ensuring their alignment with human values in addressing critical societal issues
is another key objective of HAI. Going beyond individual use cases, it is worth consider-
ing applications that can benefit a large public, such as the prediction of urban planning
challenges, public health crises, or educational disparities, all of which have the potential
to positively impact society at large. To address the social impact of AI, future work
considers formulating complex problems in social-impact situations. It involves working
closely with experts in the field and a thoughtful assessment of various decision-making
options. To solve these problems, novel multi-modal fusion techniques should be studied
in developing AI-based solutions. For instance, combining different types of data, such as
text and images from social media, with specialized data, like public health, educational,
or environmental statistics, can benefit the prediction of AI models. These approaches
must take into account the broader societal impact. Furthermore, it is important to
focus on the ethical impact, ensuring that these technologies are accessible to diverse
communities and do not cause unfairness in the decisions, which involves continuously
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monitoring and adjusting AI algorithms to prevent biases that could negatively affect
certain groups.
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and E. Kasneci. Deep semantic gaze embedding and scanpath comparison for
expertise classification during opt viewing. In ETRA, 2020.

[70] N. Karessli, Z. Akata, B. Schiele, and A. Bulling. Gaze embeddings for zero-shot
image classification. In CVPR, July 2017.

[71] H. Zheng, J. Fu, T. Mei, and J. Luo. Learning multi-attention convolutional neural
network for fine-grained image recognition. In ICCV, 2017.

[72] M. Sun, Y. Yuan, F. Zhou, and E. Ding. Multi-attention multi-class constraint for
fine-grained image recognition. In ECCV, 2018.

[73] X. Liu, T. Xia, J. Wang, Y. Yang, F. Zhou, and Y. Lin. Fully convolutional
attention networks for fine-grained recognition. arXiv preprint arXiv:1603.06765,
2016.

[74] F. Zhang, M. Li, G. Zhai, and Y. Liu. Multi-branch and multi-scale attention
learning for fine-grained visual categorization. In MMM. Springer, 2021.

[75] X. Liu, J. Wang, S. Wen, E. Ding, and Y. Lin. Localizing by describing: Attribute-
guided attention localization for fine-grained recognition. In AAAI, 2017.

[76] Z. Li, Y. Yang, X. Liu, F. Zhou, S. Wen, and W. Xu. Dynamic computational
time for visual attention. In ICCV, 2017.

[77] P. Sermanet, A. Frome, and E. Real. Attention for fine-grained categorization. In
ICLRW, 2015.

[78] J. Fu, H. Zheng, and T. Mei. Look closer to see better: Recurrent attention
convolutional neural network for fine-grained image recognition. In CVPR, 2017.

[79] H. Zheng, J. Fu, Z.-J. Zha, and J. Luo. Looking for the devil in the details:
Learning trilinear attention sampling network for fine-grained image recognition.
In CVPR, 2019.

[80] P. Zhuang, Y. Wang, and Y. Qiao. Learning attentive pairwise interaction for
fine-grained classification. In AAAI, 2020.

130



BIBLIOGRAPHY

[81] R. Ji, L. Wen, L. Zhang, D. Du, Y. Wu, C. Zhao, X. Liu, and F. Huang. Attention
convolutional binary neural tree for fine-grained visual categorization. In CVPR,
2020.

[82] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual
attention. In NeuIPs, 2014.

[83] Q. Lai, S. Khan, Y. Nie, H. Sun, J. Shen, and L. Shao. Understanding more about
human and machine attention in deep neural networks. IEEE Transactions on
Multimedia, 23:2086–2099, 2020.

[84] W. Xu, Y. Xian, J. Wang, B. Schiele, and Z. Akata. Attribute prototype network
for zero-shot learning. arXiv preprint arXiv:2008.08290, 2020.

[85] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
Grad-cam: Visual explanations from deep networks via gradient-based localization.
In ICCV, 2017.

[86] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining
the predictions of any classifier. In KDD, 2016.

[87] S. Wang, T. Zhou, and J. Bilmes. Bias also matters: Bias attribution for deep
neural network explanation. In ICML, 2019.

[88] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep
features for discriminative localization. In CVPR, 2016.

[89] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black box:
Learning important features through propagating activation differences. arXiv
preprint arXiv:1605.01713, 2016.

[90] V. Petsiuk, A. Das, and K. Saenko. RISE: Randomized input sampling for expla-
nation of black-box models. In BMVC, 2018.

[91] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar. Representer point selection
for explaining deep neural networks. In NeuIPs, 2018.

[92] P. W. Koh and P. Liang. Understanding black-box predictions via influence func-
tions. arXiv preprint arXiv:1703.04730, 2017.

[93] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This looks like that:
deep learning for interpretable image recognition. In NeuIPs, 2019.

[94] A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim. Towards automatic concept-based
explanations. In NeurIPs, 2019.

[95] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and
P. Liang. Concept bottleneck models. In International conference on machine
learning, pages 5338–5348. PMLR, 2020.

131



BIBLIOGRAPHY

[96] A. Das, H. Agrawal, L. Zitnick, D. Parikh, and D. Batra. Human attention in
visual question answering: Do humans and deep networks look at the same regions?
Computer Vision and Image Understanding, 163:90–100, 2017.

[97] C. Sen, T. Hartvigsen, B. Yin, X. Kong, and E. Rundensteiner. Human attention
maps for text classification: Do humans and neural networks focus on the same
words? In ACL, 2020.

[98] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical co-attention for visual
question answering, 2016.

[99] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention networks for
image question answering. In CVPR, 2016.

[100] Z. Bylinskii, A. Recasens, A. Borji, A. Oliva, A. Torralba, and F. Durand. Where
should saliency models look next? In ECCV, 2016.

[101] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena. Car that knows before
you do: Anticipating maneuvers via learning temporal driving models. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 3182–3190,
2015.

[102] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko. Toward driving scene
understanding: A dataset for learning driver behavior and causal reasoning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7699–7707, 2018.

[103] D. Zhou, H. Ma, and Y. Dong. Driving maneuvers prediction based on cognition-
driven and data-driven method. In 2018 IEEE Visual Communications and Image
Processing (VCIP), pages 1–4. IEEE, 2018.

[104] P. Gebert, A. Roitberg, M. Haurilet, and R. Stiefelhagen. End-to-end prediction of
driver intention using 3d convolutional neural networks. In 2019 IEEE Intelligent
vehicles symposium (IV), pages 969–974. IEEE, 2019.

[105] M. Tonutti, E. Ruffaldi, A. Cattaneo, and C. A. Avizzano. Robust and subject-
independent driving manoeuvre anticipation through domain-adversarial recurrent
neural networks. Robotics and Autonomous Systems, 115:162–173, 2019.

[106] C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. Driver-activity recog-
nition in the context of conditionally autonomous driving. In 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pages 1652–1657.
IEEE, 2015.

[107] C. Braunagel, D. Geisler, W. Rosenstiel, and E. Kasneci. Online recognition of
driver-activity based on visual scanpath classification. IEEE Intelligent Trans-
portation Systems Magazine, 9(4):23–36, 2017.

132



BIBLIOGRAPHY

[108] J. Wolf, S. Hess, D. Bachmann, Q. Lohmeyer, and M. Meboldt. Automating areas
of interest analysis in mobile eye tracking experiments based on machine learning.
Journal of Eye Movement Research, 11(6), 2018.

[109] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier. Learning-based approach for
online lane change intention prediction. In IV, pages 797–802. IEEE, 2013.

[110] E. M. S. Machado, I. Carrillo, M. Collado, and L. Chen. Visual attention-
based object detection in cluttered environments. In SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI, pages 133–139. IEEE, 2019.

[111] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[112] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV, pages
2961–2969, 2017.

[113] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization
with bags of keypoints. In ECCVW, volume 1, pages 1–2. Prague, 2004.

[114] M. Barz, S. Kapp, J. Kuhn, and D. Sonntag. Automatic recognition and aug-
mentation of attended objects in real-time using eye tracking and a head-mounted
display. In ACM ETRA, pages 1–4, 2021.

[115] C. Liu, Y. Chen, L. Tai, H. Ye, M. Liu, and B. E. Shi. A gaze model improves
autonomous driving. In ACM ETRA, pages 1–5, 2019.

[116] A. Makrigiorgos, A. Shafti, A. Harston, J. Gerard, and A. A. Faisal. Human visual
attention prediction boosts learning & performance of autonomous driving agents.
arXiv preprint arXiv:1909.05003, 2019.

[117] l. Kai, H. Sheng, Z. Xiong, W. Li, and L. Zheng. Improving driver gaze prediction
with reinforced attention. IEEE Transactions on Multimedia, 2020.

[118] M. Shirpour, S. S. Beauchemin, and M. A. Bauer. Driver’s eye fixation prediction
by deep neural network. In VISIGRAPP, 2021.

[119] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NeurIPS, volume 25, 2012.

[120] E. Aksoy, A. Yazıcı, and M. Kasap. See, attend and brake: An attention-
based saliency map prediction model for end-to-end driving. arXiv preprint
arXiv:2002.11020, 2020.

[121] T. Deng, H. Yan, L. Qin, T. Ngo, and B. Manjunath. How do drivers allocate their
potential attention? driving fixation prediction via convolutional neural networks.
T-ITS, 2019.

133



BIBLIOGRAPHY

[122] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.
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A Human Attention in Fine-grained
Classification

This chapter provides additional results for the work discussed in Chapter 3. The content
is adapted from the work that was published in BMVC 2021 [28].

A.1 Gaze Data Analysis

This section demonstrates the distinctiveness of feature attributes identified through
our analysis of human gaze data for detailed species classification. The CUB dataset
provides inherent attributes for each picture as 312-dimensional binary vectors. These
vectors are utilized to pinpoint the most distinctive attributes for each bird category
within the dataset. Our data collection experiments encompass 100 comparison pairings.
In these experiments, every image from one class is compared against every image from
another class. For example, if there are M images in the first class and N images in
the second, the total number of possible pairings between the two classes is M ·N . For
each pairing, we generate a comparison attribute vector. In this vector, a value of 1
indicates identical attributes in both images, while 0 denotes differing attributes. Thus,
like the ground-truth vectors, these comparison vectors are also 312-dimensional binary
arrays. We aggregate these M · N vectors into a singular 312-dimensional vector that
encapsulates the distinctive attributes of the two compared classes. For instance, if
the entry for the attribute has-wing-color::brown in this aggregated vector is 354, it
suggests that in 354 of the image pairs, the has-wing-color::brown attribute varies.
Finally, we categorize these attributes into seven anatomical sections: head, beak, breast,
belly, back, wing, and leg. By summing the values of attributes corresponding to each
body part in the comparison vector, we can assess the variation in that part between the
two classes. The body part with the highest total is identified as the most distinctive
feature differentiating the two classes.
In our study, when participants viewed an image, their attention was consistently

drawn to specific parts of a bird’s body that are distinctive. The area where a viewer’s
gaze lands typically exhibits a high variety of differing characteristics when comparing
two distinct bird species. By utilizing the coordinates of each body part’s center in an
image, we are able to link each participant’s eye fixation (gathered from five individuals
for that image) to the closest body part. This linkage is based on the proximity between
the fixation point and the body part’s central coordinate. As depicted in Figure A.1, the
histogram outlines the frequency of particular bird body parts capturing attention across
the entire CUB-GHA dataset. Our observations reveal that in 3855 images, humans
generally focus on three specific body parts. A significant majority of the images (92.5%)
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Figure A.1: Histogram of the number of focused bird body parts in CUB-GHA. Y-axis refers
to the amount of images with the certain number of parts (X-axis).

show attention to fewer than five parts. Only a small number of images display attention
to all seven bird body parts. For each image, we aggregate the total duration of fixations
on each body part, which serves as a measure of the amount of attention it receives from
the participants. A higher cumulative duration signifies greater attention. We then
order the seven body parts in each image based on these duration totals and assess how
frequently the top-k most focused body parts correspond to the most distinctive one,
as determined by pre-established ground-truth attributes. This correspondence rate is
detailed in Table A.1.

Our findings indicate that in 84.4% of the images, participants accurately identified the
most distinctive body part. Moreover, in instances where participants deemed up to four
parts as essential for classification, the ground-truth distinct body part was identified
in 98.3% of the images. These results suggest that human gaze data in the CUB-GHA
dataset effectively points to the discriminative body parts or attributes important for
classifying bird species.

Top-k 1 2 3 4

Hit rate (%) 84.40 93.60 97.18 98.31

Table A.1: Hit rate of the most discriminative body part. Top-k refers to the k longest focused
body parts by humans in CUB-GHA.
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A.2 Additional Comparison between ME and HA

A.2 Additional Comparison between ME and HA

We conduct a quantitative analysis to compare the similarity between HA and MEs.
This evaluation uses various metrics: Kullback-Leibler divergence (KL-D), correlation
coefficient (CC), and similarity (SIM), commonly applied in image similarity assessments
[170]; rank-correlation (Rank-Co) as presented in [96]; the shuffled AUC metric (sAUC)
for evaluating each pixel in saliency maps as part of a classification task; and information
gain (IG), which measures performance relative to a baseline [170, 61]. CAM and Grad-
CAM exhibit close similarities, for instance, Grad-CAM scores 0.565 on CC and 1.242
on KL-D, whereas CAM shows 0.563 and 1.248 respectively. Furthermore, IG and IxG
display comparable results on these metrics, with IG scoring 0.699 versus 0.694 for IxG
on CC, and 1.318 for IG against 1.310 for IxG on KL-D. These parallels are also evident
in the qualitative data. Across all metrics, Grad-CAM appears most similar to HA,
achieving the highest ratings in all six metrics. This aligns with findings from the KAR,
indicating that among all MEs, Grad-CAM has superior performance.

KL-D ↓ CC ↑ SIM ↑ Rank-Co ↑ sAUC ↑ IG ↑
CAM 1.248 0.563 0.399 0.761 0.460 0.938

Grad-CAM 1.242 0.565 0.415 0.761 0.508 1.376

IG 1.318 0.546 0.361 0.699 0.436 0.921

IxG 1.310 0.543 0.375 0.694 0.461 1.001

Table A.2: Similarity comparison between MEs and HA saliency map. (↓: the lower the better;
↑: the higher the better.)

153





B Driver Intention Anticipation

This chapter provides additional related work and results for Section 4.2. The content
is adapted from the work that was published in ITSC 2020 [28].

B.1 Related Work

The intention to maneuver can be identified through drivers’ actions, like glancing at
external mirrors or peering through windows. Consequently, methodologies from human
action recognition have been effectively utilized in this context. An action embodies
both spatial and temporal elements. It is a common understanding that deep CNNs
excel in capturing spatial domain features, whereas RNN frameworks and LSTM units
are renowned for their proficiency in decoding temporal series patterns.

LSTM and RNN techniques are therefore often combined with 2D CNNs in video
processing applications to deal with both spatial and temporal information, for example
as in [36]. The formulation from [36] is shown in Eq. B.1 with a minor modification
since it contains no bias component.

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci · ct−1)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 +Wcf · ct−1)

gt = tanh(Wxc ∗ xt +Whc ∗ ht−1)

ct = ft · ct−1 + it · gt
ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco · ct)
ht = ot · tanh(ct)

(B.1)

In Equation B.1, the subscript t denotes the time step in the sequence. The term xt
represents the input at time t. The symbols it, gt, ft, and ot signify the gates within the
LSTM cell. The variable ct stands for the cell state, and ht indicates the hidden state at
time t. The variousW symbols correspond to the weight matrices involved in convolution
operations. The symbol ∗ is used to denote convolution, whereas · signifies element-wise
multiplication. The functions σ and tanh represent the sigmoid and hyperbolic tangent
functions, respectively, and are applied on an element-wise basis. The ConvLSTM, as
detailed by the authors in [36], is adept at learning features useful for either regression or
classification tasks. An application includes the development of an encoding-forecasting
architecture, utilizing ConvLSTM cells to predict subsequent frames in a sequence.

One essential element of video analysis is motion features. Motion describes changes in
both temporal and spatial spaces and is often estimated on an image plane based on the
optical flow, a method with several decades of research history. This method has been
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B Driver Intention Anticipation

studied since Horn and Schunck’s work in 1981 [284]. Optical flow involves calculating the
movement of individual pixels between successive frames, aiding in understanding object
motion. Its applications are broad, notably in automotive technology, as highlighted by
Menze and Geiger [285], due to its additional feature provision. Historically, optical flow
extraction was seen as an optimization challenge, tackled by various methodologies like
the energy-based approach [286] and region-based matching [287]. However, the advent
of deep learning has revolutionized this field. CNNs have delivered remarkable outcomes.
FlowNet [288] and FlowNet 2.0 [6] are two exemplary end-to-end network models in this
domain. These networks process a pair of consecutive frames to directly compute the
optical flow.

B.2 Additional Experimental Results

We implement a testing procedure using a threshold policy analogous to the one de-
scribed in [101, 3], applied to our two-stream video model. The model predicts “go
straight” if the calculated probability does not exceed the threshold. Figure B.1 illus-
trates that the effectiveness diminishes when the threshold exceeds 0.4 across various
video input lengths. This is attributed to the model being developed with a balanced
loss function, enabling it to discern motion characteristics associated with all five ma-
neuvers. Typically, the model issues predictions with probabilities above 0.4, indicating
a high level of confidence. Consequently, our model operates efficiently without the need
for a threshold policy.
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Figure B.1: Effect of using thresholds. Two-stream input with different video lengths (from 1
to 5 seconds).

Additionally, Fig. B.2 shows the confusion matrix of three models using different data
sources. Prediction is made based on time period [-5,0]. From this, an improvement in
all classes can be observed when using two video streams.
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(a) Inside videos (b) Outside videos

(c) In and outside videos

Figure B.2: The confusion matrix of using different video streams. The prediction is made at
the last second before the occurrence of a maneuver.
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C Driver Attention-based Object Detection

This chapter provides additional results for Section 4.3. The content is adapted from
the work that was published in PACMHCI 2022 [45].

C.1 Results of Our YOLOv3- and CenterTrack-based Models

For a fair comparison, we evaluated object-level metrics using the objects detected by
YOLOv5 across all models as detailed in Section 4.3. Additionally, in table C.1, the
object-level outcomes for our models based on YOLOv3 and CenterTrack, which utilize
16 × 16 grids, are presented, highlighting their performance based on the objects they
detected.

AUC Prec (%) Recall (%) F1 (%) Acc (%)

CenterTrack 0.83 69.80 74.62 72.13 75.33

YOLOv3 0.84 70.23 73.42 71.79 76.22

Table C.1: Comparison of different models on BDD-A dataset with own detected objects (Th
= 0.5). For all metrics a higher value indicates better performance.

C.2 Results of Different Input Sequence Lengths of LSTM

In Table C.2, the results for varying input sequence lengths are presented. This is in the
context of incorporating an LSTM layer with a hidden size of 256 before the dense layer
in our YOLOv5-based model with 16× 16 grids. The results across all sequence lengths
are similar.

C.3 More Qualitative Results

C.3.1 BDD-A Dataset

In Figure C.1, additional examples of our YOLOv5-based model applied to the BDD-A
dataset are presented. The first row demonstrates the model’s accurate detection of
a vehicle in the two straight-ahead lanes, while disregarding parked vehicles two lanes
over and a car in a turning lane. The second row highlights the model’s identification
of a central traffic light and two parked vehicles, which are pivotal if the driver were
to continue straight. However, as the driver is making a left turn, the ground truth
annotations focus on items on the road being turned onto.
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Object-level Pixel-level

AUC Prec. (%) Recall (%) F1 (%) Acc (%) KL CC

2 0.85 72.40 72.68 72.54 78.00 1.16 0.60

4 0.85 72.58 73.02 72.80 78.18 1.16 0.60

6 0.85 72.52 73.04 72.78 78.16 1.18 0.60

8 0.85 73.13 70.44 71.76 77.83 1.17 0.60

16 0.85 71.84 73.39 72.61 77.86 1.18 0.60

Table C.2: Comparison of different input sequence lengths when using one LSTM layer. Our
model uses the 16× 16 grids. For all metrics except DKL, a higher value indicates
the better performance. (Th = 0.5)

Figure C.1: Comparison of our prediction, ground-truth in attention-based object detection
(Th = 0.5) and not using attention-based object detection on BDD-A test set.
(The Second row is a failed case.) Left: Our prediction; Middle: Ground-truth;
Right: Object detection without driver attention. Better view in colors.

C.3.2 DR(eye)VE Dataset

Figure C.2 and Figure C.3 present additional instances of object detection using our
YOLOv5-based model on the DR(eye)VE dataset. In Figure C.2, the model accurately
identifies vehicles on the road, while disregarding cars parked further away in two lanes.
Conversely, Figure C.3 showcases the model’s detection of a cyclist adjacent to a vehicle
and a car positioned to the right. This differs from the ground-truth, which highlights
objects that the driver will encounter later. This discrepancy might be attributed to the
driver perceiving nearby objects through peripheral vision.
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C.3 More Qualitative Results

Figure C.2: Comparison of our prediction, ground-truth in attention-based object detection
(Th = 0.4) and not using attention-based object detection on DR(eye)VE test set.
The first row contains the predicted attention map (Left), ground-truth attention
map (Middle) and original frame (Right). The second row contains our object
detection (Left), ground-truth (Middle), and object detection without driver at-
tention (Right). Better view in colors.

Figure C.3: Comparison of our prediction, ground-truth in attention-based object detection
(Th = 0.4) and not using attention-based object detection on DR(eye)VE test set.
(Failed case.) The first row contains the predicted attention map (Left), ground-
truth attention map (Middle) and original frame (Right). The second row contains
our object detection (Left), ground-truth (Middle), and object detection without
driver attention (Right). Better view in colors.
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D A Consistent and Efficient Evaluation
Strategy for Attribution Methods

This chapter provides additional results for the work discussed in Chapter 5. The content
is adapted from the work that was published in ICML 2022 [45].

D.1 Additional Experiments on Food-101

D.1.1 Implementation Details

A vanilla ResNet-50 model [169] was trained on the Food-101 dataset [206]. Specifically,
the training was conducted using the SGD optimizer with an initial learning rate of
0.01. This rate was subsequently decreased by a factor of 0.1 every 10 epochs. The
training spanned 40 epochs, utilizing a batch size of 32, and resulted in the model
attaining an accuracy of 81.67% on the test set. For the implementation of the GAN
imputation operator, a GAIN model was first trained on the Food-101 dataset as outlined
in section 5.2.5. This training employed hyper-parameters of α = 100 and hr = 0.1, with
the model being trained for 100 epochs at a batch size of 32. Eight explanations were
computed, and both ROAD and ROAR evaluations were conducted, using the same
parameters specified in experiments for CIFAR-10.

D.1.2 Consistency Analysis

In Table D.1, a comprehensive analysis of the Spearman Correlation across rankings
from eight evaluation strategies (“Retrain”/“No-Retrain”, MoRF/LeRF, along with
fixed/Noisy Linear/GAN imputation) for the Food-101 dataset is presented. Bold results
in the table highlight the uniformity achieved by employing three different imputation
mechanisms. High consistency is noted between the corresponding Retrain and No-
Retrain methods, underscoring that the efficiency enhancements discussed in the main
text are achievable in larger datasets. The consistency between MoRF and LeRF shows
improvement with the retraining process as compared to fixed imputation, although a
minor decline is observed with the No-Retain approach. Due to the proximity of the
curves on this dataset, particularly in the No-Retrain scenario, even marginal differences
might lead to ranking shifts, making the results generally more variable than those ob-
served on CIFAR-10. In summary, while similar trends are noted, the consistency boost
between MoRF and LeRF in the No-Retrain case is less significant. It is also worth
noting that perfect alignment between MoRF and LeRF may not always be preferable.
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Retrain No-Retrain Retrain No-Retrain

MoRF MoRF LeRF LeRF

fixed† lin gan fixed lin∗ gan fixed lin gan fixed lin gan

Retrain

MoRF

fixed†
1.00
±0.00

lin
0.48
±0.03

1.00
±0.00

gan
0.50
±0.04

0.79
±0.03

1.00
±0.00

No-Retrain

MoRF

fixed
0.12
±0.01

0.57
±0.02

0.50
±0.01

1.00
±0.00

lin∗
0.61
±0.01

0.81
±0.02

0.67
±0.04

0.31
±0.01

1.00
±0.00

gan
0.74
±0.01

0.79
±0.02

0.67
±0.04

0.35
±0.01

0.86
±0.00

1.00
±0.00

Retrain

LeRF

fixed
-0.26
±0.02

0.41
±0.02

0.30
±0.02

0.53
±0.01

0.10
±0.01

0.11
±0.01

1.00
±0.00

lin
-0.40
±0.02

0.26
±0.04

0.19
±0.04

0.30
±0.03

-0.05
±0.01

0.09
±0.01

0.83
±0.01

1.00
±0.00

gan
-0.18
±0.01

0.46
±0.04

0.32
±0.04

0.50
±0.03

0.13
±0.02

0.14
±0.03

0.89
±0.02

0.83
±0.01

1.00
±0.00

No-Retrain

LeRF

fixed
0.79
±0.02

0.79
±0.03

0.63
±0.05

0.32
±0.01

0.85
±0.00

0.89
±0.00

0.02
±0.01

-0.15
±0.02

0.10
±0.03

1.00
±0.00

lin
-0.28
±0.02

0.35
±0.02

0.28
±0.04

0.46
±0.00

-0.03
±0.00

-0.06
±0.00

0.89
±0.01

0.81
±0.02

0.87
±0.01

-0.11
±0.00

1.00
±0.00

gan
-0.45
±0.02

-0.08
±0.03

-0.04
±0.04

0.23
±0.00

-0.37
±0.00

-0.44
±0.00

0.58
±0.01

0.61
±0.01

0.54
±0.00

-0.41
±0.00

0.70
±0.00

1.00
±0.00

Table D.1: Food-10: Rank Correlations between all evaluation strategies used with standard
deviations computed by considering the rankings obtained through five consecutive
runs as independent. The ROAR benchmark is marked by † and our ROAD by ∗.
Bold results highlight the consistency between Retrain and No-Retrain (still very
high) as well as MoRF and LeRF evaluation strategies using different imputation
operators (fair increase when using Noisy Linear and GAN imputations instead of
fixed imputation in “Retrain”, decrease in “No-Retrain”).
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D.2 Additional Results on CIFAR-10

D.2.1 Extended Figures

This section presents comprehensive qualitative findings from the application of four dif-
ferent evaluation strategies (namely “Retrain”/“No-Retrain”, and MoRF/LeRF) across
three distinct imputation methods (fixed value, Noisy Linear, and GAN imputation).
The complete set of results for IG-family attribution methods using fixed value imputa-
tion can be found in Figure D.1. Similarly, Figure D.4 provides a detailed view of the
GB-based attribution methods. The outcomes of employing our Noisy Linear Imputa-
tion for both IG- and GB-family attribution methods are depicted in Figure D.2 and
Figure D.5, respectively. Notably, the adoption of our Noisy Linear Imputation enhances
the alignment between evaluation rankings in both MoRF and LeRF frameworks, with
or without retraining. This improvement is particularly evident when comparing the
results in Figure D.2 against those in Figure D.1.

D.2.2 Consistency Analysis

In Table D.2, we present a comprehensive overview of the Spearman Correlation across
all twelve evaluation approaches employed in our study, encompassing variations like
“Retrain”/“No-Retrain”, MoRF/LeRF, and methods involving fixed value, Noisy Lin-
ear, and GAN imputation. Our primary emphasis in this research was on evaluating
the consistency between the Retrain and No-Retrain methods, as well as between MoRF
and LeRF. The findings that are central to our main paper are highlighted in bold.
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Retrain No-Retrain Retrain No-Retrain

MoRF MoRF LeRF LeRF

fixed† lin gan fixed lin∗ gan fixed lin gan fixed lin gan

Retrain

MoRF

fixed†
1.00
±0.00

lin
0.68
±0.02

1.00
±0.00

gan
0.76
±0.01

0.82
±0.01

1.00
±0.00

No-Retrain

MoRF

fixed
0.15
±0.01

0.38
±0.02

0.23
±0.01

1.00
±0.00

lin∗
0.66
±0.01

0.84
±0.01

0.86
±0.01

0.43
±0.01

1.00
±0.00

gan
0.65
±0.01

0.62
±0.01

0.84
±0.01

0.14
±0.01

0.78
±0.01

1.00
±0.00

Retrain

LeRF

fixed
-0.01
±0.01

0.48
±0.02

0.28
±0.02

0.66
±0.00

0.47
±0.02

0.13
±0.01

1.00
±0.00

lin
0.16
±0.01

0.61
±0.01

0.34
±0.01

0.78
±0.01

0.50
±0.01

0.10
±0.01

0.87
±0.01

1.00
±0.01

gan
0.15
±0.01

0.59
±0.01

0.32
±0.01

0.74
±0.00

0.50
±0.01

0.10
±0.01

0.90
±0.01

0.96
±0.01

1.00
±0.00

No-Retrain

LeRF

fixed
0.49
±0.01

0.44
±0.01

0.69
±0.01

0.01
±0.00

0.60
±0.00

0.77
±0.00

0.09
±0.01

0.03
±0.01

-0.03
±0.00

1.00
±0.00

lin
0.21
±0.01

0.60
±0.01

0.38
±0.01

0.81
±0.00

0.58
±0.01

0.22
±0.01

0.85
±0.00

0.94
±0.01

0.91
±0.00

0.10
±0.00

1.00
±0.00

gan
0.05
±0.01

0.47
±0.01

0.17
±0.01

0.69
±0.00

0.36
±0.00

-0.07
±0.01

0.85
±0.00

0.86
±0.01

0.90
±0.01

-0.14
±0.00

0.79
±0.00

1.00
±0.00

Table D.2: CIFAR-10: Rank Correlations between all evaluation strategies used with standard
deviations computed by considering the rankings obtained through five consecutive
runs as independent. Results indicated in bold correspond to those reported in
Section 5.2. The ROAR benchmark is marked by † and our ROAD by ∗.
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E Towards Human-centered XAI

This chapter provides additional analysis details for the guidelines discussed in Chap-
ter 5. The content is adapted from the work that was published in TPAMI 2023 [41].

E.1 Data-driven Bibliometric Analysis

To conduct a bibliometric analysis driven by data, focusing on the references and cita-
tions of all key papers1, we initially gathered prevalent references from each category.
Facing a substantial volume of papers, each was tagged with a keyword indicative of its
research theme, facilitating categorization based on content. Specifically, references were
obtained directly from the papers in pdf format. Works citing these core papers were
identified using the Google Scholar platform, utilizing the Python API, “Scholarly” [289].
This API also served to procure abstracts from Google Scholar for all references and ci-
tations. In our study, we employed GPT-4 [290] to assign keywords to the papers based
on their titles and abstracts. This process was followed by a manual examination to
ensure the relevance of these keywords. For visualization, we mapped the papers onto
a two-dimensional semantic space, using the keyword embeddings and t-SNE [291] for
this purpose.

The key research areas fundamental to user studies in XAI are depicted in Figure E.1
(Left). For the sake of visual clarity, this illustration includes only those works refer-
enced in at least five of the main papers. In a similar vein, understanding the beneficiaries
of XAI user study findings is crucial. Figure E.1 (Right) showcases the “consumers”
of these human-centered XAI core papers, meaning the research domains that are influ-
enced by these papers. Here, each dot symbolizes a distinct research topic, with the dot
size reflecting the frequency of citations from this topic in our collection of core papers.

By examining the foundational elements and impact of XAI user studies, we gain
comprehensive insights into significant topics within this research domain. This ap-
proach enables us to identify emerging and significant areas for forthcoming research,
like cognition-based analytical tools in XAI. The raw data and code for these analyses
are available at https://github.com/yaorong0921/hxai-survey.

E.2 Foundation of XAI User Studies

In our analysis of core papers, we have identified a multitude of essential literary sources
for XAI researchers, which are instrumental in guiding their project development. We

1Here, “references” means sources listed in the references of a core paper, while “citations” are followed-
up works citing a core paper
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Topic Fundamental works

Surveys of XAI [122], [147], [297], [298], [299], [49], [300]

Theories for XAI
[292]: social sciences, [293]: theory for XAI design,

[281]: a question bank for XAI design

XAI Methods

[301]: a survey, [86]: LIME, [302]: Anchors, [211]: SHAP,

[303]: TCAV, [304]: explaining recommendation systems, [305]: intelligible models,

[92]: influence function, [306]: counterfactual explanations, [11]: Integrated Gradient (IG),

[307]: saliency maps for images, [212]: GradCAM

Principles of Explanations
[294, 295]: completeness and soundness,

[296]: helping users build mental models

User studies for ML [308]: image retrieval algorithm for medical uses, [309]: interactive model

User studies for XAI
[310]: justice perceptions, [261]: fairness [311]: human-AI team, [312]: usability,

[259, 313, 263, 314, 315]: understanding, [316, 218, 229, 317]: trust and understanding

Trust
[255]: trust (calibration), [318]: trust in automation, [253]: impact of model accuracy on trust,

[319, 320]: impact of system transparency on trust,

Table E.1: Fundamental works of the core papers (categorized according to topics).

meticulously examined over 3000 references across these pivotal papers, focusing par-
ticularly on those referenced by at least ten of them (approximately 50 papers). These
significant papers are organized by topic in Table E.1.
The first category of papers contains comprehensive surveys on XAI. Miller et al. [292]

suggest grounding XAI in social sciences, such as cognitive science and psychology.
Meanwhile, Wang et al. [293] and Liao et al. [281] offer theoretical frameworks for crafting
XAI systems. Another critical category is XAI methods, with the most widely utilized
ones detailed in “XAI Methods”. According to [294, 295], XAI explanations should be
both sound and complete to positively influence users. Additionally, XAI aims to aid
users in forming accurate mental representations of AI systems, as indicated by in [296].
We also reference previous user studies on ML systems and explainable interfaces, which
are used for comparison or as blueprints for user study design. Lastly, we include various
general works on user trust that extend beyond the conventional boundaries of XAI.
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E.2 Foundation of XAI User Studies
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F I-CEE: Tailoring Explanations of Image
Classifications Models to User Expertise

This chapter provides additional details for the work discussed in Chapter 6. The content
is adapted from the work that will be published in AAAI 24.

F.1 Addtional Related Work

Pedagogical Theories on Learning from Errors. XAI has been viewed as an educa-
tional interaction, with the XAI method acting as the instructor and the user as the
learner [56]. Effective teaching, as supported by pedagogical studies, requires a teacher
to evaluate a learner’s existing knowledge and tailor their teaching methods accordingly
[321, 322]. A key sign of misunderstanding is mistakes, typically arising from wrong
associations or comprehension. Addressing these mistakes effectively demands provid-
ing correct answers along with clarifying explanations, which have been proven to be
significantly beneficial [271]. These insights from educational research form the basis of
our XAI framework, particularly influencing our approach to selecting examples. Specif-
ically, I-CEE focuses on explaining those images where it predicts the user will err.
Moreover, the greater the certainty of an error, the more potent the learning from it
[272, 273]. This phenomenon is known as the hypercorrection effect. In line with the
hypercorrection effect, our framework targets images where the user is less confident
about the correct label (i.e., more confident about an incorrect label). We argue that
utilizing such examples will lead to more effective learning outcomes.

F.2 Target Models and Explanations

F.2.1 Datasets

Our evaluation of the proposed method involves four distinct datasets. The synthetic
dataset consists of 960 images for training purposes and 240 images for testing, catego-
rized into four classes: Red-Cylinder, Orange-Cylinder, Red-Cube, and Orange-Cube.
The CIFAR-100 dataset [203] includes a total of 60,000 images, where 50,000 are used
for training and 10,000 for testing. This dataset covers 100 varied classes, each with
600 images. The CUB-200-2011 dataset, which is specifically designed for fine-grained
analysis of different bird species, contains 11,788 images in total. Of these, 5,994 are
allocated for training and 5,794 for testing, containing 200 bird species. On average,
each species has about 30 images in the training set and another 30 in the testing set.
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F I-CEE: Tailoring Explanations of Image Classifications Models to User Expertise

We apply fine-tuning to the ResNet-18 model, originally pre-trained on ImageNet, for
our desired datasets [169]. For the synthetic dataset, these models undergo training using
the Stochastic Gradient Descent (SGD) Optimizer. The learning rate is established at
1e−4, and the training spans 10 epochs. In the case of realistic datasets, we adjust the
learning rate to 1e−3 and extend the training duration to 50 epochs. We resize the input
images to 224 × 224 for all datasets, except for the CUB-200-2011 dataset, where the
resizing dimension is 448 × 448. The training process includes a technique of random
horizontal flipping as a form of data augmentation. The initial row of Table F.1 presents
the test accuracy figures for the target model across each dataset, encompassing all test
classes.

Synthetic CIFAR-100 CUB-200-2011 GTSRB

Test (all) 1.00 0.73 0.78 0.99

Test (subset) 1.00 0.82 0.81 0.99

Table F.1: Accuracy of target models. The first row indicates the accuracy of all test classes.
The second row contains the accuracy for classes selected for training simulated user
models.

Our approach utilizes GradCAM, as described in [212], applying it post the final con-
volutional layer in the designated model to produce explanations. We favor GradCAM
for its alignment with human gaze-based attention in pinpointing key visual features, as
noted in [28], enhancing interpretability over other explanatory techniques.

The saliency maps are adjusted to match the size of the original input, denoted as
x ∈ Rd and e ∈ Rd. Figure F.1 presents examples of these explanations across various
datasets. Notably, in the CIFAR-100 dataset, the model emphasizes the train’s loco-
motive, a critical characteristic. Similarly, in the GTSRB dataset, the model distinctly
highlights the “left turn” symbol on traffic signs.

F.3 Hyper-parameter Settings

This section illustrates the impact of selecting m, the number of concepts, across var-
ious realistic datasets. Table F.2 presents the accuracy of the simulated user trained
(evaluated with user annotations) alongside the count of trainable parameters in the
concept vector c and the mapping function Ξ(·). The optimal value of m is highlighted
in bold, balancing accuracy against the parameter count. In scenarios where user mod-
els must be deployed in resource-constrained real-world environments, minimizing the
number of trainable parameters is preferable. The data indicates that an m value of 64
on three datasets already results in high test accuracy. Adding more concepts, although
it might seem beneficial, doesn’t significantly enhance performance and instead increases
computational demands.
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F.4 Details of Baselines

(a) Synthetic dataset (b) CIFAR-100 (c) CUB-200-2011 (d) GTSRB

Figure F.1: Illustration of model explanations on each dataset. The saliency map highlights
the important area (feature) that is important for the model decision.

F.4 Details of Baselines

F.4.1 Bayesian Teaching

Our approach adopts the Bayesian Teaching framework, as outlined in [58]. However,
we modify the image selection process due to the absence of two specific classes in our
query set. Specifically, [58] employs a binary choice task, utilizing Bayesian Teaching
probabilities to select two samples from both the predicted class of the target model
and a pre-defined alternative class. These images are intended to guide the explainee
model fL(·) to classify a target image with the label assigned by the target model.
In our adaptation, we omit the selection from the alternative class. More precisely,
we focus on the probability that a given image x is part of class y, from which we
sample another image τy. This probability is expressed as f(x|τy), a concept borrowed
from [58]). Under the PLDA model [276], this probability can be expressed in the form
of the normal distribution as follows:

f(x | τy) = N (u | Ψ

2Ψ+ I
uy,

Ψ

2Ψ+ I
+ I), (F.1)

where u is the image x transformed by the shift vector m and rotation and scaling
matrix A in the PLDA layer. Likewise, the image τy is transformed to uy. Ψ is another
parameter in the learned PLDA layer. To integrate the PLDA layer into the user model
(also known as the explainee model), we train a ResNet-18 network, replacing its final
layer with the PLDA layer. This training uses user annotations as labels. With the
trained user model, we are able to calculate f(x|τy), which facilitates the selection of
images by ranking according to this term.
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F I-CEE: Tailoring Explanations of Image Classifications Models to User Expertise

(a) CIFAR-100

m 16 32 64 128

Acc 85.00 ± 0.50 89.25 ± 0.34 93.50 ± 0.70 96.5± 0.23

# Param. (M) 0.94 0.97 1.05 1.19

(b) CUB-200-2011

m 16 32 64 128

Acc 25.75 ± 0.78 27.27 ± 0.89 63.35 ± 0.45 65.15 ± 0.60

# Param. (M) 3.67 3.73 3.85 4.08

(c) GTSRB

m 8 16 32 64

Acc 89.17± 0.34 85.83 ± 0.35 98.33 ± 0.23 100.0 ± 0.10

# Param. (M) 0.92 0.94 0.97 1.05

Table F.2: Effect of m on the user model performance.

F.4.2 Active Learning Baselines

Our study integrates foundational benchmarks from the field of active learning. These
benchmarks offer a variety of selection methodologies, underscoring the efficiency of our
introduced Hypercorrection Effect. The formula for Expected Gradient Length [277]
(EGL) is presented as follows:

xEGL = argmax
x

K∑
i

fθ(yi | x, e) ∥∇ lθ(L ∪ ⟨x, e, yi⟩)∥, (F.2)

where fθ(·) denotes the trained user model in our case with parameters θ. To integrate
e into the input, we utilize the explanation e as a weighted mask, following the method
outlined in the ”Selection Strategy” section. The model’s training is guided by the
objective function L, represented by the cross-entropy loss. Consider ∇ lθ(L) as the
gradient of this objective function in relation to θ. Given that the model has reached
convergence in the final training phase, the Euclidean norm of the objective function,
denoted as ∥∇ lθ(L)∥, is expected to approach zero, as discussed in [277]. Consequently,
xEGL can be expressed in a simplified form:

xEGL = argmax
x

K∑
i

fθ(yi | x, e) ∥∇ lθ(⟨x, e, yi⟩)∥. (F.3)

We expand Expected Gradient Length (EGL) by incorporating the concept of EGL-
Shift, which focuses exclusively on the variable x in the input. The goal of EGL-Shift is
to diminish the effect of the image on the training gradient while accentuating the role
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of explanations. Specifically, the calculation of EGL-Shift is executed as follows:

xEGL-Shift = argmax
x

(
K∑
i

fθ(yi | x, e) ∥∇ lθ(⟨x, e, yi⟩)∥ (F.4)

−
K∑
i

fθ(yi | x) ∥∇ lθ(⟨x, yi⟩)∥).

The Density-Weighted Method (DWM) [153] is effectively integrated with a funda-
mental selection approach like EGL. This method focuses on selecting data points that
not only exhibit uncertainty but are also indicative of the overall distribution present in
the input data. It estimates the distribution for a given data point by assessing the de-
gree of similarity it shares with other points in the dataset. The process of implementing
DWM is detailed as follows:

xDWM = argmax
x

ϕA(x) · (
1

U

U∑
u=1

sim(x,x(u)))β, (F.5)

where ϕA(x) represents the computation of EGL for x. The entire input dataset is
denoted by U . As per the approach outlined in [153], we assign the value of 1 to β;
The degree of resemblance between two images is determined by measuring the cosine
similarity of their feature vectors within the latent space.

F.5 Computational Infrastructure

All experiments in the project “I-CEE” were conducted on the device as listed below:

Device Attribute Value

Computing infrastructure GPU

GPU model NVIDIA GeForce RTX 2080 Ti

GPU number 1

CUDA version 11.3

Table F.3: Computational infrastructure details.
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Abstract

The way humans attend to, process and classify a given image has the potential to
vastly benefit the performance of deep learning models. Exploiting where humans are
focusing can rectify models when they are deviating from essential features for correct
decisions. To validate that human attention contains valuable information for decision-
making processes such as fine-grained classification, we compare human attention and
model explanations in discovering important features. Towards this goal, we collect hu-
man gaze data for the fine-grained classification dataset CUB and build a dataset named
CUB-GHA (Gaze-based Human Attention). Furthermore, we propose the Gaze Aug-
mentation Training (GAT) and Knowledge Fusion Network (KFN) to integrate human
gaze knowledge into classification models. We implement our proposals in CUB-GHA
and the recently released medical dataset CXR-Eye of chest X-ray images, which in-
cludes gaze data collected from a radiologist. Our result reveals that integrating human
attention knowledge benefits classification effectively, e.g. improving the baseline by
4.38% on CXR. Hence, our work provides not only valuable insights into understanding
human attention in fine-grained classification, but also contributes to future research in
integrating human gaze with computer vision tasks. CUB-GHA and code are available
at https://github.com/yaorong0921/CUB-GHA.

1 Introduction
Through a lifelong learning process, humans have developed a selective attentional mecha-
nism, which has received attention in many areas of artificial intelligence [54]. As human
attention can be revealed from gaze data, it bears the potential to explain our behavior and
decisions [31]. Many computer vision applications embrace human gaze information to de-
tect salient objects for solving tasks [19, 34, 39]. To visually illustrate human attention in
these tasks, it is common to add a Gaussian filter on fixation points to form a feature map
[15], which is also called saliency map [21] (see Figure 1). Similar to how gaze explains

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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HA saliency map

Gaze Augmentation Training 
(GAT)

ResNet-50

ResNet-18

Eye Tracker

Features
Legend

Knowledge Fusion Network 
(KFN)

Image Branch

Attention Area New Knowledge

Figure 1: Overview of our proposed methodology. HA salicency map is used to obtain attention area
which is used to enhance the training dataset in Gaze Augmentation Training (Left), while it is used
as extra knowledge and fused together with the image knowledge in the Knowledge Fusion Network
(Right).

human decisions, the post-hoc attention of a network, i.e. model explanation, tries to reveal
important regions for neural network decision-making [12, 30, 35, 40, 42, 57]. Both can be
visualized by means of saliency maps, thus allowing the study of similarities and differences
between them. In this context, several previous works show that humans and models are
looking at different regions when performing the same task [7, 36]. However, it is not clear
whether a feature discovered by a human is more efficient for solving a given task or not.
Our work addresses this research gap and the hypotheses that (1) human attention focuses
on essential features for solving the task (e.g. fine-grained classification); (2) using human
attention also allows improving model performance in accomplishing the task. To validate
the first hypothesis, we first capture and present human attention in the style of a saliency
map. We compare the regions that human attention covers with the ones that are discovered
by the model (model explanation), and show that human attention hints on the regions that
are more discriminative in the classification. We propose two modules which make use of
the essential features revealed by human gaze to validate the second hypothesis: we use Gaze
Augmentation Training (GAT) to train a better classifier and a Knowledge Fusion Network
(KFN) to integrate the human attention knowledge into models.

Our contributions are as follows: (1) We collect human gaze data for the fine-grained
data set CUB, enhance it by incorporating human attention and coin this new dataset as
CUB-GHA (Gazed-based Human Attention). For this novel dataset, we also validate the ef-
ficiency of human gaze data in discovering discriminative features. (2) We propose two novel
modules to incorporate human attention knowledge in classification tasks: Gaze Augmenta-
tion Training (GAT) and Knowledge Fusion Network (KFN). (3) To showcase the relevance
of our work for highly relevant applications, we evaluate our methods not only on our novel
CUB-GHA dataset, but also on chest radiograph images from a recently released dataset
CXR-Eye (which contains also gaze data). Our work shows that human attention knowledge
can be successfully integrated in classification models and help improve the model perfor-
mance with regard to the state-of-the-art in different classification tasks.

2 Related Work

Human Gaze in Machine Learning. Recent developments in hardware devices allow for
the precise recording of eye movements in different activities, ranging from human-computer
interaction [26, 27] to complex and dynamic real-world tasks, such as driving [4, 47] and
robotics [3, 38, 45]. Furthermore, the way that visual information is processed can reveal
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information about a person’s strategy or level of expertise [5]. In the medical domain, re-
searchers have validated that gaze data reveals patterns which can benefit AI models, as for
disease (Pneumonia and Congestive Heart Failure) classification [18]. In computer vision,
gaze data has proven its usefulness in various applications [19, 32, 34, 39]. E.g., [19] col-
lects gaze (coordinates, duration, etc.) vectors for 60 bird classes in dataset [46] to form
embeddings for zero-shot learning. [32] compares the attention map generated by an atten-
tion module (two convolutional layers) with human attention maps generated by the data
from [19] and shows that human attention surpasses the attention module. [34] proposes a
photograph cropping system using the collected fixation data to identify important content
and compute the best crop. Eye tracking data is also used to extract dominant objects in
videos [39]. Different from previous works which use gaze for specific tasks [19, 34, 39],
our proposal GAT leverages human attention to train a better backbone which can be used
in many different tasks and frameworks. Moreover, we evaluate GAT and KFN for two
different classification tasks and thus show the general validity of our methods.
Attention Module in Fine-grained Classification. Many previous works [10, 14, 22, 23,
24, 37, 41, 51, 55, 56, 58] integrate attention modules in networks to localize the parts which
are important for fine-grained classifications and make use of the information of the discrim-
inative parts to improve the models’ performance. [10, 22, 23, 24, 37] adopt the Recurrent
Attention Model (RAM) [28], where an attention agent is deployed to predict locations of the
discriminative regions, and train the classifier based on these cropped regions. The attention
agent is trained with a reinforcement learning algorithm to address the non-differentiability
due to the cropping operation. However, the architecture of this attention model is cum-
bersome with high computational cost. [14, 41, 51, 55, 56, 58], on the other hand, design
attention modules using the output from intermediate layers in networks and enforce it to
capture discriminative features. Compared to previous works, we do not use the intermedi-
ate outputs from networks to generate model attention but use human attention maps. Our
method augments the training set with regions cropped according to human attention and
thus accomplishes training a better classifier. We compare our method with previous works
and demonstrate the profit of exploiting human attention in Section 5.

3 CUB-GHA Dataset
In this section, we first provide the details of our gaze data collection paradigm and then
analyze the effect of machine explanation and human attention to the fine-grained classi-
fication model. To collect gaze data, we employ the CUB-200-2011 (CUB) [44] dataset
with 11,788 images from 200 bird classes incorporating various annotations: image-level
attributes, body part locations, and text descriptions of the bird. Our annotation leads to a
human-gaze enhanced version, i.e. CUB-GHA.

We choose the fine-grained CUB dataset for two reasons: 1) The difference between two
similar classes lies in local and compositional attributes, which can be precisely captured by
human gaze. For instance, it is challenging to achieve a measure for unified human attention
when comparing a bear and a horse as there are many differences between them. In contrast,
distinguishing between two similar birds with different throat colors presents a more unified
problem (as shown in Figure 2). 2) The CUB dataset is widely used for various computer
vision tasks, such as fine-grained classification [9, 10, 56], zero-shot learning [1, 48, 49,
53], explainable artificial intelligence [2, 6, 16], etc. Thus, our CUB-GHA may serve as a
valuable foundation for exploring the effect of human attention on those tasks.
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Eye Tracker

Chin Rest

    Display

Keyboard

(a) Data collection setup

Step 1: 
Compare two classes

Step 2: 
View for 3 seconds

Class 1 Class 2

1 2Step 3:
Give the class number

(b) Data collection (c) Data preparation

Use the I-VT fixation classification 
algorithm to get the fixation points

HA saliency map

Figure 2: (a) Eye tracker set-up: We use a Tobii Spectrum eye-tracker to capture gaze information
at a high frequency of 1200 Hz. (b) Data collection: Step 1 represents a schematic overview of the
image comparison task where two images of different species are freely viewed. In Step 2, a randomly
selected example of one of the species is shown to the user for which gaze data is then collected. To
gamify this setting, the user is asked to choose the correct class in Step 3. (c) Preparing human attention
data: we visualize human attention in Gaussian-based saliency maps.

3.1 Gaze Data Collection

Collection Framework. As illustrated in [19], humans fixate on class-discriminative fea-
tures when they observe two very similar classes. In this paper, we adopt an image compari-
son game [19], where we encourage participants to look at the discriminative features when
comparing two similar images from different categories. The comparison task is designed
to be challenging to provide more powerful insights, i.e. two classes in one comparison pair
are chosen to be very similar.

A schematic overview of our data collection is presented in Figure 2. Figure 2 (a) shows
the experimental setup including a picture of the eye-tracker (Tobii Spectrum Eye Tracker,
sampling at 1200 Hz) and the chin rest as well as the display (1920 × 1080 resolution). The
chin rest is used to ensure precise recordings of the eye movements. Each image is re-scaled
to fit to the screen and placed at the center. The average distance between the participant’s
nose and the screen is approximately 60 cm. The comparison task consists of three steps
shown in Figure 2 (b). In step 1, we present two representative images at the same time,
each from one bird class of the CUB dataset, e.g. representative images of Barn Swallow
and Tree Swallow. We choose the comparison pairs under the same sub-classes, and then
different persons manually check the visual similarity to make sure that the comparison is
not too simple. The participants are allowed to observe the images for as long as they want.
When the participant is ready for the classification task, in step 2, an image from one of
the two classes of the CUB dataset is shown. The participant has to choose which category
the image belongs to by viewing the image. Note that the image shown for classification is
displayed for only 3 seconds to avoid explorative gaze behavior unrelated to the task. One
collection session includes one image from each class, meaning that there are 200 images
reviewed per session. Every image in CUB is reviewed by five different participants. 25
subjects (19 males and 6 females with mean age 27.64± 4.15) participate in the experiment.
Although the participants do not take part in the same number of sessions and instances, we
make sure that every participant views all classes in every session. It is worth noting that all
participants are domain novices with no specific knowledge about birds.

Gaze Data Preparation. The raw gaze data is preprocessed to extract fixation locations
using the Velocity-Threshold Identification (I-VT) algorithm [29]. The resulting fixation
points offered in the dataset include coordinates and duration information. Based on this
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information, we generate saliency maps for human gaze as shown in Figure 2 (c). Every
fixation location is modelled as a Gaussian distribution G(µ, σ2), where σ is 75 pixels (in the
displace resolution), according to the ratio of the distance to the screen and the approximate
foveal area of 2◦. The duration of the fixation is then used as a weight for its Gaussian
distribution. Finally, the saliency map is presented in grayscale image form. From here on,
we note the human attention saliency map generated from gaze data as HA.

3.2 Gaze Data Analysis
In this section, we validate the hypothesis that HA covers discriminative regions for the fine-
grained classification. Given the same image and the same (visual) task, HA and model
explanation (ME) reveal regions which are important in making decisions for humans and
models, respectively. Thus, we compare HA with four MEs provided by a trained classifier
(vanilla ResNet-50 [11]) with a classification score of 85.58% on CUB , and validate that HA
is able to discover features that better differentiate the bird from other bird classes. The four
ME used are Class Activations Maps (CAM) [57], Gradient-based CAM (Grad-CAM) [35],
InputXGradient (IxG) [40], and IntegratedGradients (IG) [42].

ME

HA
Reveal Test Training 

Acceleration

Accuracy 
Increase

Input 
Ablation

Using HA to 
improve 

classification

HA Saliency Map    GC    IG    IxG    CAM
Model Explanation

Modified 
Image

Figure 3: Comparison of HA and ME in discrim-
inative feature discovery. Top: Test accuracy on
modified datasets using different saliency maps.
The x-axis is the insertion percentage and the y-axis
is the accuracy on test set. The AUC of each curve
is reported in zoom-in image. Middle: modified
images (using Grad-CAM as an example). Bot-
tom: Illustration of HA and four MEs.

For quantitative comparison, we com-
pare HA and ME using the keep and re-
train (KAR) procedure (proposed in the
appendix to [12]) to validate if the im-
portant regions highlighted by HA and
ME help the model to make decisions.
Concretely, we gradually insert impor-
tant pixels to a blank image according
to their values in HA or ME saliency
maps. The modified percentage of pixels
is [5,10,15,20,25,30,50,70,90]. After a cer-
tain amount of pixels are inserted, we re-
train a new model using the modified train
images and report the accuracy on modified
test sets. Modified images at 5%, 20% and
70% of pixels inserted using Grad-CAM are
shown in Figure. 3 (middle). The intuition
behind this is that the class-discriminative
information should be included in the pixels
that are evaluated as very important; with
more pixels inserted which are relatively
less important, the model performance will
not improve much. If a saliency map selects
the informative features as being the impor-
tant ones for classification, the increase of accuracy at the beginning of insertion is rapid,
i.e. the resulting higher Area Under the Curve (AUC) indicates a better feature importance
estimate.

The keep and retrain curves and the AUC scores for each method are shown in Figure. 3
(top), and the qualitative saliency maps for HA and four MEs for one image are shown in the
bottom. We see that HA and MEs do not focus on the same image regions: humans consider
the white feathers on the black wing as a more important feature, while the model uses the
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yellow head as the most important feature (see the original image in Figure 1). HA discovers
more informative and important features for the fine-grained classification model than the
MEs do, e.g. HA obtains an AUC score of 0.716 compared to Grad-CAM (0.706) and
IG (0.702). With only 5% important pixels revealed, the model trained with HA modified
images can reach an accuracy of 81% while the model trained with ME modified images
only reaches an accuracy of around 70%. More details of the analyses can be found in the
supplementary material.

4 Methodology
In this section, we introduce how we incorporate the gaze information to improve the classifi-
cation performance, i.e. using gaze to augment training data (GAT) or as an extra information
source (KFN). The illustration of the architecture is shown in Figure 1.

4.1 Gaze Augmentation Training
Motivated by the assumption that the model should pay attention to the discriminative image
regions (highlighted by HA), we enhance our model’s reaction to those regions by adding
them as augmentation in training as illustrated in Figure 1 (left).

To get the k augmentation images for the input image I ∈ RH×W×3 (where H and W
represent the width and height of the input image), we implement a sliding window algorithm
to find areas which contain human attention. A window with the size of (w,h) slides on the
HA map A ∈ RH×W×1 from the upper left to the right bottom corner (with stride size s
in both dimensions). We rank all the window areas according to the averaged pixel values
inside windows and get k cropped images according to top-k highest scores. We resize the
cropped images to the half of the width and height of the I, i.e. I′ ∈RH

2 ×
W
2 ×3, as suggested

in [10, 37, 55] where the attended regions are resized into smaller sizes. I′ has the same label
y as I does. To get various regions, we use various window sizes and the non-maximum
suppression. The training set is extended to I∪ I′. We train the model on the enlarged dataset
with cross-entropy loss. Note that GAT just needs human gaze information in training and
the model takes only original images as inputs in the test phase.

4.2 Knowledge Fusion Network
As shown in Fig. 1 (right), our KFN is a two-branch network that fuses the knowledge
from HA and the original image features together. The first branch is the image knowledge
branch. This branch takes the original images Io ∈ RH×W×3 as the input, where H andW
represent the width and height of the input image, respectively. We use a CNN backbone
fo(·) to extract image feature fo(Io) ∈ RDo from Io, where Do denotes the dimension of the
feature channel. Another branch, the HA knowledge branch, incorporates the gaze features
of this image. We multiply the gaze information (HA) with the input image by Ig = Io�A,
where A ∈ RH×W×1 is the HA saliency map. Through this operation, pixels in the image
get different weights from the gaze: the area where humans pay attention to is brighter than
the rest. Ig contains visual features which are important for the classification. Another CNN
backbone fg(·) is utilized to extract the gaze feature as fg(Ig) ∈ RDg . Then the gaze feature
and original image feature are concatenated together to form the fused feature f (Io, Ig) ∈
R(Do+Dg). It this way, we integrate HA into a multiclass classification task to study the
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potential of HA to improve the performance of the image classifier. The whole network is
trained with cross-entropy loss.

5 Experiment
In this section, we first introduce datasets and implementation details. Then we show the
results of our proposed GAT and KFN. To show the general validity of our methods, We test
on two datasets: CUB-GHA and Eye Gaze Data for Chest X-rays (CXR-Eye) [17].

5.1 Datasets and implementation details
CUB-GHA includes 11788 images in total, with 5994 images for training and 5794 for val-
idation [44]. Each image contains eye gaze data from 5 participants. CXR-Eye includes
1083 chest X-ray images with gaze data from a radiologist while performing routine radiol-
ogy readings [17]. The goal of this dataset is to make a prediction based on the chest X-ray
image, whether the subject has one of two clinically prevalent diseases (pneumonia or con-
gestive heart failure (CHF)), or the subject is healthy (normal). The human gaze data is also
visualized in the saliency map style. Each image is annotated with one label out of three
classes. We choose this dataset because it is a unique human gaze dataset in the medical
domain. For such safety-critical applications (e.g. computer-aided diagnosis), we believe
the integration of human attention can increase the acceptance and trust of these applications
among users.

In our experiments on the CUB dataset, the input images are resized to 448× 448 (the
images are cropped to this size with the smaller edge first resized to 448) and then randomly
flipped horizontally in training. We use the SGD optimizer [33] with an initial learning rate
of 0.001. In the experiments on the CXR dataset, the input images are resized to 224×224
and a random horizontal flip is used in training. We use the Adam optimizer [20] with an
initial learning rate of 0.0005. Since the CXR-Eye dataset is relatively small, we run 5-fold
cross validation and report the average accuracy of the five validation sets as the final score.
All experiments are run for totally 100 epochs training on a single NVIDIA GeForce RTX
3090 and the learning rate decreases after every 50 epochs by a factor of 0.1.

For GAT and KFN, we use ResNet-50 [11] and EffiecientNet-b5 [43] pretrained on Im-
ageNet as backbones on CUB and CXR, respectively. In GAT, we crop the original image
using three sets (large, medium and small) of window sizes (more details can be found in the
supplementary material). Inside each set of window sizes, we run a sliding window algo-
rithm and get k augmentation images for each image in the training set. Concretely, k is set
to 2 for large, 3 for medium and 4 for small scale, which results in 9 augmentation images
in total. When combining GAT and KFN, we use the GAT trained classifier as backbone in
our KFN and fine-tune the KFN for only 20 epochs.

5.2 Evaluation on CUB-GHA

Ablation study. To measure the influence of GAT and KFN on the fine-grained classifi-
cation, we design an ablation study on the CUB dataset where we train a ResNet-50 with
cross-entropy loss as the baseline, and several variants by adding GAT and KFN training
modules to the baseline. From the results shown in Table 1, we observe that both GAT and
KFN can improve the fine-grained classification accuracy by a large margin. GAT (with
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HA) improves the baseline model by 2.42% to 88%, which indicates that human gaze falls
on areas containing discriminative features for classification. When using HA in KFN, the
accuracy score is increased from 85.58% to 86.99%, which demonstrates that KFN integrates
the knowledge of human attention successfully. To show the effectiveness and uniqueness of
HA knowledge, we use two machine explanation methods Grad-CAM [35] and IG [42] as
the saliency maps, replacing HA in GAT and KFN. HA surpasses both methods in the GAT
and KFN modules, e.g. KFN (HA) gains 86.99% while KFN (IG) gains 85.66%. It indicates
that human gaze contains unique knowledge that can not be acquired by the model itself.
From the result of GAT+KFN, we observe that the combination of both exceeds using any
of them alone.

Method Acc.
ResNet-50 [11] 85.58

GAT
Grad-CAM [35] 87.68

IG [42] 87.73
HA 88.00

KFN
Grad-CAM [35] 85.04

IG [42] 85.66
HA 86.99

GAT+KFN HA 88.66
Table 1: Ablations study of GAT and
KFN on CUB. “Acc." denotes the accu-
racy in %.

Method Acc.
MixUp [52] 86.23
CutMix [50] 86.15

SnapMix [13] 87.75
Ours (GAT) 88.00

OSME+MAMC[41] 86.30
TASN [56] 87.90
API [58] 87.70

ACNet [14] 88.10
Ours (KFN+GAT) 88.66

Table 2: Comparison with the state-of-the-art
methods on CUB. Top: Comparison of GAT
with data augmentation methods. Bottom:
Comparison of GAT+KFN with attention-
based models.

Comparison with state-of-the-art. We compare our proposed modules with several state-
of-the-art methods. Note that for a fair comparison, we compare with the results of using
ResNet-50 as the backbone and the input resolution of 448×448. First, we compare our GAT
with other data augmentation methods, i.e., MixUp [52], CutMix [50] and SnapMix [13] in
Table 2 (top). The difference between our GAT and other data augmentation methods is that
we do not generate synthetic images. MixUp combines two images and their labels linearly,
while the rest replace one part of the image with one part from other images. Our GAT simply
extends the dataset with the cropped images, which introduces very low computation cost to
train the classifier. Among all these works, training a ResNet-50 with GAT outperforms with
other state-of-the-art augmentation methods and achieves an accuracy of 88%. Moreover,
this better trained backbone can be combined easily with other framework to further improve
the performance, for instance we combine it with our KFN and thus get better results.

We compare our full network with the attention-based methods on CUB in Table 2 (bot-
tom). We choose these methods (OSME+MAMC [41], TASN [56], API [58] and ACNet
[14]) due to their high performance and relevance in simulating human attention by attention
modules. They apply attention modules to capture discriminative features from the inter-
mediate output in the network, while we use and integrate the HA directly. For instance,
[14, 41] applies several layers on the top of the output of the residual block to obtain the re-
gion features; API [58] simulates the comparison behavior of humans as our participants do
in the data collection in order to learn discriminative representations. Our full network out-

Method S3N [8] S3N + GAT (Ours) CrossX [25] CrossX + GAT (Ours) MMAL [51] MMAL + GAT (Ours)
Accuracy 87.95% 88.91% 87.70% 88.51% 89.25% 89.53%

Table 3: Combining our GAT model with the state-of-the-art methods on CUB.
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Input

Orange Crowned Warbler

✓ (Ours) 
HA Branch ME

HA Saliency Map ✘ Baseline ME 

Misclassified to
Nashville Warbler

Misclassified to
Long Tailed Jaeger

Input
Pomarine Jaeger

✓ (Ours) 
HA Branch ME

✘ Baseline MEHA Saliency Map

Input Misclassification

Ours ✓ Baseline ✘

Input Misclassification Misclassification MisclassificationInput MisclassificationInput

Ours ✓ Ours ✓Baseline ✘ Baseline ✘ Baseline ✘Ours ✘

Misclassified to
Elegant Tern

Input
Caspian Tern

HA Saliency Map ✘ (Ours) 
HA Branch ME

✓ Baseline ME

Figure 4: Illustration of model explanations using HA. Two improved examples and one failure exam-
ple of our model are shown. For each example, we show the input and misclassification classes; HA
saliency map, model explanation of our model, and the baseline model.

performs all state-of-the-art models, achieving 88.66% compared to the attention networks
API (87.70%) and ACNet (88.10%). The high performance of our KFN and GAT validates
that human gaze can benefit a model’s performance in the task.

We combine our module with other state-of-the-art models flexibly and thus improve
the performance. In Table 3, we show our re-implementations with official code and our
improvement by combining our GAT in S3N [8], CrossX [25] and MMAL [51] models.
Please note that no HA information is needed in the inference phase. Our combination of
MMAL and GAT improves MMAL from 89.25% to 89.53%. We improve CrossX from
87.70% to 88.51% and S3N from 87.95% to 88.91%, which also surpass the best results
given in [8, 25].
Qualitative results. We show two examples from two classes whose accuracy is improved
the most compared to the baseline model (vanilla ResNet-50), and one example of a class
where our model fails to classify correctly in Figure 4. In the first example, the baseline
model looks at the belly of an Orange Crowned Warbler and misclassifies it as a Nashville
Warbler who also has a yellow fluffy belly. Our model instead focuses on the throat, which
is discriminative between the two classes: an Orange Crowned Warbler has a yellow throat,
while a Nashville Warbler has a clear mixture of gray and yellow colors on its throat. In
the second example, the discriminative feature is the tail. The baseline model mistakes
the background as the tail, while our model localizes the tail successfully. Moreover, our
model explanation is also more compact and similar to the human saliency map. In the third
example, we show a failure of our model: Our model attends to the feet instead of beak which
causes the misclassification of a Caspian Tern as an Elegant Tern. Although our model aligns
with the human attention, it puts more weight on the feet of birds, since the color of feet is
an important feature for distinguishing between a Caspian Tern and a Common Tern (or an
Artic Tern).

5.3 Evaluation on CXR-Eye

Comparison with state-of-the-art. The state-of-the-art work on CXR-Eye [18] uses the
Efficient-b5 [43] as the classifier, however, it deploys random splits to create training, val-
idation and test sets. For a fair comparison, we re-run its network using our 5-fold cross
validation setting and report the average of five validation accuracies as the score for this
method. The result of this baseline is 70.97%. When implementing GAT, the result is im-
proved to 71.86%; when implementing KFN, the accuracy is improved by 3.45% to 74.42%.
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The full model (GAT+KFN) achieves 75.35% exceeding Efficient-b5 [18] by 4.38%. When
comparing the performance boost from GAT and KFN, the KFN improves the model on
CUB more than GAT. The reason for the difference is how the gaze data is collected.

In CXR-Eye, the gaze data of the radiologist is collected in an interpretation routine.
From the examples shown in Figure 5 (sec. column), we see that fixations spread over many
locations (light blue area). These locations may play an important role in diagnoses, but GAT
localizes the area that the radiologist fixates for relatively longer time. KFN can integrate the
knowledge of all potential locations therefore improves the performance by a larger margin.

Qualitative results. To study the influence of integrating HA into the network, we compare
the model explanation (Grad-CAM [35]) of each branch in KFN and the qualitative results
are shown in Figure 5. From the figure, we see that the HA branch follows more the human
attention while the image branch is focusing different areas.

Chest X-Ray HA Saliency Map Image Branch ME HA Branch ME

Figure 5: Illustration of the influence of using
HA in model explanation. Left to Right: the
original Chest X-ray image; HA saliency map;
Model explanation of the Image Branch (w/o
HA knowledge) and Model explanation of the
HA Branch.

In the first example (top), human attention
focuses more on the left side than the right
and the HA branch also does, while the image
branch looks more on the right side. The im-
age branch in the second example concentrates
on a wrong area, but the HA branch corrects
the attentive area to the right. Therefore, KFN
improves the performance compared to a model
only using images. Most importantly, incorpo-
rating gaze knowledge helps to increase the trust
and acceptance of the model-based decision in
applications such as medical diagnostics, since
the model aligns with human behavior.

6 Conclusion

In this work, we investigate human attention in classification tasks on the CUB and CXR
datasets. In particular, we collect a new gaze dataset, CUB-GHA, and show that human at-
tention focuses on the discriminative regions for a fine-grained classification task. To study
the hypothesis that human attention helps a model in the decision-making, we propose the
Gaze Augmentation Training and Knowledge Fusion Network which integrate human at-
tention knowledge into the network. Our proposed method improves the accuracy in clas-
sification by a large margin on both datasets, showing the general validity of our methods.
Thus, our work indicates that human attention provides hints on distinct features in different
classification tasks.

The aim of our work is to demonstrate the potential benefit of human gaze data in
classification. As a by-product of this work, we provide the research community with a
gaze-enriched dataset CUB-GHA, which can be incorporated with other existing compre-
hensive annotations (textual explanations, attributes and bounding boxes, etc.). Researchers
can therefore validate multiple applications, where human gaze is required in the interaction
with a machine.
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Abstract— Numerous car accidents are caused by improper
driving maneuvers. Serious injuries are however avoidable,
if such driving maneuvers are detected beforehand and the
driver is assisted accordingly. In fact, various recent research
has focused on the automated prediction of driving maneuver
based on hand-crafted features extracted mainly from in-cabin
driver videos. Since the outside view from the traffic scene
may also contain informative features for driving maneuver
prediction, we present a framework for the detection of the
drivers’ intention based on both in-cabin and traffic scene
videos. More specifically, we (1) propose a Convolutional-LSTM
(ConvLSTM)-based auto-encoder to extract motion features
from the out-cabin traffic, (2) train a classifier which considers
motions from both in- and outside of the cabin jointly for
maneuver intention anticipation, (3) experimentally prove that
the in- and outside image features have complementary infor-
mation. Our evaluation based on the publicly available dataset
Brain4cars shows that our framework achieves a prediction
with the accuracy of 83.98% and F1-score of 84.3%.

I. INTRODUCTION

According to the World Health Organization [2], about
1.35 million people die in car accidents every year world-
wide. These statistics, however, do not include non-fatal
injuries from traffic accidents. Most of these accidents are
caused by improper driver behavior: Based on the statistics
from the Department for Transport (DfT) in Great Britain, a
survey [6] revealed that there were 15,560 accidents reported
due to poor turn or maneuver, which ranked top 5 in causes
of road accidents in 2017. As automated vehicle technology
emerges, it promised to be safer than human driving [3], [4],
[5]. However, there is still much research to be conducted in
order to reach to the fully automated level working at any
possible traffic situation and weather conditions. On the half
way to autonomous driving vehicles, it is therefore necessary
to provide already existing Advanced Driver Assistance
Systems (ADAS) the functionality for collaboration with the
human driver in the most efficient way, for example to alert
the driver in case of a dangerous maneuver.

Recently, many researchers focused on detecting maneu-
ver intention of the driver before execution. For example,
Brain4cars [1] and Honda Research Institute Driving Dataset
(HDD) [7] are two datasets specifically designed for learning
driver behaviors. HDD for example [7] uses three high-
resolution video cameras, GPS, signals from LiDAR sensor
and vehicle CAN-Bus to record the traffic scenes. Brain4cars
[1] provides videos from inside and outside of the car. GPS

and vehicle dynamics are also recorded with the videos.
These videos show different behavior patterns of maneuvers
from driver side and road traffic. Images convey massive
information, and much of the literature shows the possibility
to predict driver intention according to the drivers’ videos,
since the drivers turn their heads to glance in the side mirrors.
Previous work based on the Brain4cars dataset, such as [1],
[9], [10], [11], [12], have all achieved maneuver prediction.
Although the reported results are quite impressive, there are
still some issues that deserve scrutiny.

More specifically, most of the previous works in the driver
maneuver prediction domain mainly use videos from driver
observation. Various research has shown that driver behavior,
and especially eye movements of the driver, can not only be
used for activity recognition [27], [28] but also to ensure
safe take-over behavior in conditionally autonomous driving
[29]. Additionally, video frames of driver observations are
used to extract features e.g. head postures [1], [9], [10], [12].
However, in these works, the traffic information is manually
encoded into a vector with four elements, where the first two
Boolean values indicate whether a lane exists on the right or
left side of the vehicle, the third bit (also Boolean) implies
if an intersection or turn exists in 15 meters, and the last
value represents the current speed of the car. Therefore, video
information of the outside view is not further processed.
In addition, manual encoding as employed so far is not
applicable to practical use-cases. (2) [11] proposes using two
3D ResNet-101 models for two streams separately. However,
it shows that using only driver videos works better than using
both video streams. The reason behind this poor performance
of outside videos is that there is no large dataset for on-road
traffic training, which makes training with the Brain4cars
dataset from scratch very difficult. In contrast, for driver
observation videos, there is large human activity dataset
available such as Kinetics [14].

Intuitively, the outside video, i.e., the scene perspective,
should be very informative and provide information that the
inside video does not convey. Therefore, our work aims (1)
extracting the vehicle motion information from the traffic
videos effectively and improving the results which only
used one video stream; (2) proposing an end-to-end method
without using manual encoding information, and (3) keeping
the model as light-weighted (less parameters) as possible to
offer applicability to resource-limited mobile platforms.
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Fig. 1: The overview of our framework. The upper branch depicts the feature extraction from out-cabin videos: FlowNet 2.0 extracts the
optical flow from the consecutive frames; then the traffic motion is captured by a ConvLSTM-based encoder. The bottom branch represents
the feature extraction from in-cabin videos based on the 3D ResNet-50 network. The red frame in the end refers to the classifier, where
a decoder (marked as “Conv Layers”) for outside features is integrated. This novel classifier architecture allows features from in- and
outside of the cabin to be considered jointly.

To approach these aims, we propose a deep learning
framework, which combines the information from the driver
monitoring videos with the outside view. This framework
is shown in Fig. 1. In our framework, a ConvLSTM [8]
based encoder (shown in upper branch) extracts the motion
information, which is interpreted in optical flow images.
Meanwhile, the 3D ResNet-50 (shown in bottom branch)
acquires features from the driver video. The motion decoder
for outside motion features is integrated in the classifier. This
novel classifier leverages features from both sides, i.e., driver
and scene, jointly to produce a maneuver anticipation.

The contribution of our work is manifold: (1) we encode
the traffic scene motion using a ConvLSTM-based auto-
encoder, (2) propose a deep net framework investigating
features from two incoming streams (in- and outsides) jointly,
without using any manual-encoded or hand-crafted infor-
mation, (3) achieve a state-of-the-art maneuver anticipation
performance with less parameters compared to the previous
work [11], and (4) experimentally validate that the in- and
outside videos contain complementary information.

The remaining of this paper is organized as follows: In
Section II, we first discuss related works. Our proposed
methods and modules mentioned in Fig. 1 are explained
in detail in Section III. In Section IV, we introduce the
dataset used for training and evaluation of our method and
discuss our evaluation results. Finally, we summarize our
main findings and conclude this paper.

II. RELATED WORK

Maneuver intention can be detected from drivers’ be-
haviors, such as looking at the outside mirrors or out of
the windows. Therefore, popular methods from the domain
of human action recognition are suitable and have been
applied to tackle this challenge. An action consists of spatial

and temporal information. As widely known, features in
the spatial domain can be captured by Deep Convolutional
Neural Networks (CNNs), while Recurrent Neural Network
(RNN) architectures and Long Short-Term Memory (LSTM)
cells are well-known for comprehending the logic hidden in
time series. LSTM and RNN techniques are therefore often
combined with 2D CNNs in video processing applications to
deal with both spatial and temporal information, for example
as in [8].The formulation from [8] is shown in Eq. 1 with a
minor modification, since it contains no bias component.

it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci · ct−1)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 +Wcf · ct−1)

gt = tanh(Wxc ∗ xt +Whc ∗ ht−1)

ct = ft · ct−1 + it · gt
ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco · ct)
ht = ot · tanh(ct)

(1)

In the above Eq. 1, subscript t implies the time sequence.
xt is the input. it, gt, ft and ot are the gates in the cell.
ct is the cell state and ht is the hidden state. All the
W s refer to the weights in a convolutional operation. ∗
denotes the convolution operation, while · refers to the
element-wise multiplication. σ and tanh are sigmoid and
hyperbolic tangent functions, respectively, which are also
applied element-wise. The features learned by ConvLSTM
can be used for regression or classification problems. For
instance, the authors from [8] built an encoding-forecasting
structure to predict the future frame using ConvLSTM cells.

One essential element of video analyzing is motion un-
derstanding. Motion describes changes in both temporal and
spatial spaces and is often estimated on an image plane based
on the optical flow. This technique has been researched for
decades since [16]. It calculates the motion of individual
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pixels in consecutive frames, which can be then aggregated
to interpret the motion of objects. Optical flow is for example
widely used in automobile applications [13], since it serves
as an extra feature. The extraction of optical flow has been
regarded as an optimization problem in the past with various
approaches for optical flow estimation such as energy-based
method [17], or region-based matching [18]. However, with
the rapid development of deep learning, CNN-based net-
works achieved very impressive results. [19], [20] are only
two representative networks for this problem performing in
an end-to-end style, where the networks take two consecutive
frames as input and output the optical flow.

As previously mentioned, there are multiple works aiming
at the driver maneuver anticipation [1], [9], [10], [11], [12].
However, none of the previous work solved driver intention
prediction with information from both video (in and out of
the car) streams, since the traffic on road is too complex
for hand-crafting explicit features. Therefore, several works,
such as [1], [9], [10], [12], use manual-encoded feature
vectors. On the other hand, training CNNs with outside
videos in an end-to-end fashion did not show satisfactory
results [11], since there was not enough on-road video data
related to maneuver anticipation for training a CNN-based
deep network.

In contrast to the above mentioned approaches, we propose
to use the outside video stream and the driver observation
data jointly for intention anticipation. In the following sec-
tions, we introduce our method that leverages information
from both videos towards an accurate intention anticipation.

III. METHODOLOGY

A. Future Frame Prediction

Based on ConvLSTM, we propose a network trained in an
encoder-decoder manner for motion prediction and feature
extraction. Due to its inherent convolutional capability, this
structure is able to tackle the spatio-temporal sequence
forecasting problem [8]. The details of this architecture are
shown in Fig. 2. hi,j is the hidden state and ci,j is the cell
state. The subscript i denotes the time step and j indicates
the layer number. All the states with i = 0 are initialized by
the network at the beginning.

The input is a clip of five optical flow images Xi (i < 5,
i ∈ Z). The rationale for choosing five as the input length
is to gain an uniformly sampled clip for one second (30
frames) up to five second (150 frames). More specifically,
“uniformly” means that the interval L between each input
is equal. The output of the decoder is the predicted frame
in the L-frame future. The decoder is in fact a point-
wise convolutional layer here, which differs our architecture
from other previous work [8], [26]. In this way, motion
information of the five-frame input, which can be used for
future motion prediction, is compacted by the encoder. The
encoder is regarded as the motion feature extractor, thus, the
role of the decoder should be weakened.

The convolution information of the network is shown as
in Table. I. In the third column, the size of the output of
every layer is shown. The size has four dimensions: the first

TABLE I: The convolution information about the future motion
prediction module

Layer Kernel Size / Stride Output size

Input 5×3×h×w
Layer 0 (3,3)/(1,1) 1×128×h×w
Layer 1 (3,3)/(1,1) 1×64×h×w
Layer 2 (3,3)/(1,1) 1×64×h×w
Layer 3 (3,3)/(1,1) 1×32×h×w
Conv (1,1)/(1,1) 1×3×h×w

dimension is the time step; the second one is the channel
number, and the last two refer to the height and width of
the input image, respectively. Every ConvLSTM cell takes
one frame at one time step, so the first dimension changes to
one after the input layer. Additionally, it is worth mentioning
that the output from the encoder is the feature needed for
maneuver anticipation.

B. Maneuver Anticipation Framework

The proposed method makes use of two input sources:
inside and outside videos, as shown in Fig. 1. For the traffic
videos, the FlowNet 2.0 first takes original frames to produce
optical flow images. Then, the optical flow images are fed
into the ConvLSTM encoder described in the last section.
The output from the encoder is then the 3D dimension
feature (32×112×176), which will be processed by multiple
convolutional blocks (Conv-Block) before fusion. At the
same time, the other branch, a 3D ResNet-50, deals with the

Fig. 2: Architecture of the proposed future motion prediction
module.
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TABLE II: The architecture of the proposed classifier, which
considers joint features from in- and outside videos. The first
column indicates the feature source, the second column shows the
name of the layer, and the third column is the output size after the
layer. The features are combined in the “Concatenate” layer.

Feature Layer Output size

Conv-Block 0 64×37×59
Conv-Block 1 128×12×20

Outside Conv-Block 2 256×4×7
Conv-Block 3 512×1×2
Concatenate 3072×1

Both FC 0 3072×2048
Both FC 1 2048× Ncls

Both Softmax Ncls

driver videos. The main body is consistent with the original
network in [15]. Additionally, we added a dropout layer after
the average pooling layer in the end to prevent overfitting.
The feature we extracted is the input of the last FC layer in
ResNet-50, which is a 2048-dimension vector. The input of
the ResNet-50 is a 16-frame clip.

The novelty of the proposed classifier is that the decoder
for outside features is trained jointly with features of inside
videos. Its explicit structure is listed in Table. II. The Conv-
Block is for decoding the outside motion. The structure
inside one Conv-Block is shown in Fig. 3, where “ReLU”
refers to the activation function and “BN” represents the
Batch Normalization (BN) layer. There is also a ReLU and
a BN between the last two FC layers. The output size after
every layer is shown in the third column. In the end, Ncls

represents the number of classes, which is five in our case.

32     Conv
Stride = 1

ReLU

22  MaxPool
Stride = 2

BN

Input

Output

Fig. 3: The architecture inside “Conv-Block”

IV. RESULTS AND DISCUSSIONS

A. Dataset

The Brain4Cars [1] dataset includes driver observation
videos (1088px × 1920px, 25 fps) and videos of the outside
scenes (480px × 720px, 30 fps) recorded simultaneously.
There are five classes of maneuvers in the dataset: go
straight, left lane change, left turn, right lane change, right
turn.

According to the Brain4cars dataset, the video covers
the behavior before the actual maneuver occurs, i.e., no
maneuver is performed during the video. In this work, we
also study the early detection capability of our models.

Therefore, we take every second as a dividing line. In the
model evaluation, we give the frames before time step T ,
here T ∈ (−5,−4,−3,−2,−1). The − represents the time
(in second) before the maneuver happens. The shorter videos
cover a shorter time period before the maneuver starts. Since
the videos have different lengths, we have different amount
of input material when we study early prediction. Moreover,
samples with no simultaneous recordings of the inside and
outside view are considered as invalid and not further used
in our study. The number of valid video samples for training
the whole framework relatively to the covered time period
before a maneuver is shown in Table III.

TABLE III: The number of the valid samples relatively to the
video length

video length [s] > 4 > 3 > 2 > 1 > 0
samples 490 542 563 573 585

We use a 5-fold cross-validation for all the experiments
in this work, which also aligns with other previous works
using the Brain4cars dataset [1], [9], [10], [11], [12].

B. Out-cabin Motion Extraction

For the outside motion feature extraction, we trained the
encoder/decoder module presented in III-A. To achieve a
generalized solution, we added a temporal augmentation in
training: a 5-frame clip is randomly and uniformly cut and
given as the input to the network. The target is the L-th frame
after the last one in the clip. In the spatial domain, they are
first resized to a smaller size (112×176), yet keeping the
original scale. Additionally, we employ the Mean Square
Error (MSE) as the loss function and Stochastic Gradient
Descent (SGD) as the optimizer. The weight decay is set to
0.001 and momentum to 0.9. The whole training takes 60
epochs with the learning rate of 0.1.

For evaluation, we first studied how far into the fu-
ture the model is able to predict. More specifically, we
evaluated our model with respect to the interval of L ∈
(5, 10, 15, 20, 25, 30) frames. As the output of the decoder
is the predicted motion in the L-th frame after the last input,
a larger interval represents a further future. The maximal
interval value is 30 (requiring thus 150 frames), which
reaches the maximal video length (5s) in the dataset. On
the other hand, an interval less than 5 frames (0.33s) is too
short, and thus not considered here. The target frame is the
last frame in the video, whereas the metric for comparison is
the MSE. The average MSE with respect to different intervals
is shown in the Fig. 4.

Please note that the MSE value is multiplied by 1000 to
make the differences more clear. Our results show that it
is difficult for the model to predict a far future frame: The
model does not learn properly when the interval is larger than
20 frames (0.67s). In order to have relatively precise motion
features, we choose the model with L of 5. After setting
the interval L to 5, we evaluated our model with regard
to different time periods of the video. More specifically,
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the input frames are all included in the time period before
T (T ∈ (−4,−3,−2,−1, 0)), and the last frame of every
second is the target frame. To quantify the comparison
between the target and predicted image, we employed three
metrics: MSE, Structural Similarity (SSIM) index, and Peak
Signal-to-Noise Ratio (PSNR). The results of prediction are
shown in Table IV. For the PSNR and SSIM, higher values
are better. The results of five folds are shown in the form:
“Average (Avg) ± Standard Error (SE)”.

Our results show that the best maneuver prediction is
achieved from video information 4 to 5 seconds before
the actual maneuver occurs. Thus, motion changes are not
massive earlier on before −3 second. In case of large motion
changes (e.g., when the car is turning), it is hard for the
encoder to catch the whole change. Accordingly, in the third
and the last second before a maneuver, the outside motion
changes noticeably. However, from −2s to −1s, motion
keeps changing but not as distinct as its contiguous time
steps. In general, the important traffic motion changes can
be observed within three seconds before the maneuver, which
also corresponds to the early detection results in the Section
IV-D, where the encoder was emplyed to extract the outside
motion features.

TABLE IV: Results of future motion prediction.

prediction at [s] MSE (·10−3) SSIM PSNR

-4 9.13± 0.42 0.909± 0.001 21.77± 0.16

-3 9.42± 0.40 0.906± 0.002 21.49± 0.10

-2 10.75± 0.61 0.904± 0.002 21.35± 0.18

-1 9.97± 0.22 0.900± 0.001 21.27± 0.05

0 10.73± 0.46 0.898± 0.002 21.08± 0.10

Fig. 5b shows an example of the predicted frame using
the proposed encoder/decoder module compared to the target
image in 5a. From the visual image results, it is apparent that
the major problem is the color disorder. The area in light
yellow and the green color is mistaken by light blue in the
output. According to the optical flow color coding [21], the
direction changes 90 degree (from bottom side to right side)
from the light yellow to blue, and the green is in between.

This detailed motion is difficult for the encoder to catch.
Using the features extracted from the outside videos by

the ConvLSTM-encoder alone can also produce a prediction
among five classes. The results are presented in Table V,
whereas a comparison to related approaches is provided in
Table VI.

(a) Target image

(b) Predicted image

Fig. 5: The comparison of target and the predicted image

C. In-cabin Action Recognition
We employ the 3D ResNet-50 for the inside feature

extraction, since the 3D ResNet has shown high performance
in human action recognition tasks [15]. However, end-to-
end training requires a large amount of the dataset, which
is not the case for Brain4cars. Hence, we use the Kinetics-
pretrained 3D ResNet-50 [15] and fine-tune the model with
Brain4cars inside videos.

To prevent overfitting, we added spatial and temporal data
augmentation. With regard to spatial augmentation, we added
a random crop (but with the focus on the driver side), a
random scale and a horizontal flip. It is worth noticing that
the label also needs to change accordingly when it is related
to the direction (left/right). For temporal augmentation, we
randomly but uniformly cut a short clip from every second.
The short clips constitutes a 16-frame clip as the input to
the 3D ResNet-50, and the input size is 112×112. One
extra dropout layer is added before the last FC layer when
training. We use a dropout rate of 0.5 an cross entropy loss
as out loss function. The model is trained for 60 epochs, with
learning rate starting with 0.1 and a decay rate of 0.1 after
the 30th and 50th epoch. The optimizer is the SGD with the
momentum and weight decay of 0.9 and 0.001, respectively.
In out evaluation, we use the frames from the end of every
second before T (T ∈ (−4,−3,−2,−1, 0)) to compose the
16-frame input for the 3D ResNet.
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The main body of trained 3D ResNet-50 is used as the
feature extractor. The feature before the last FC layer is
fed into the final classifier. The results of using only this
module (inside video) for classification are shown in Table
V, whereas the comparison to related approaches is given in
Table VI.

D. Feature Fusion

After training the ConvLSTM model and 3D ResNet-
50 model separately, the features from inside and outside
video are extracted by the two trained modules. The obtained
outside feature is a volume with the shape of 32×112×176,
and the inside feature is a 2048-size vector. They are fed into
the classifier introduced in the section III-B. We conducted
the evaluation procedure with regard to different time periods
as in both modules.

The performance indicators are accuracy and the F1-score.
The F1-score takes both precision (Pr) and recall (Re) of a
classifier into consideration (Eq. 2). n refers to the number
of classes, and Ω is the set of all the classes that our
model can recognize, which includes four maneuvers plus
“no maneuver” class. TPi indicates the amount of correctly
recognized samples of class i. Pi and Ni are the number of
samples that are predicted as class i and that are labeled as
class i, separately.

Pr =
1

n

∑
i∈Ω

TPi

Pi

Re =
1

n

∑
i∈Ω

TPi

Ni

F1 =
2 · Pr ·Re
Pr +Re

(2)

Table V shows the results of accuracy and F1 in % for
different times before the occurrence of a maneuver using
different data sources. Both accuracy and F1 increase as
the time approaches the beginning of maneuver, despite of
different data sources. Intuitively, the early stage of all the
maneuvers (or no maneuver) is similar, which is “going
straight”. In this case, the longer period the model observes,
the more accurate the decision it can make. According
to these results, early detection is possible. For example,
71.72% of the maneuvers are correctly predicted two seconds
before the maneuver happens when using both video streams.

The best results are achieved by using both video sources
in all different time periods. Only using outside videos
gives the worst results when compared to other two data
sources. The reason for the poor performance of outside data
is that the auto-encoder only provides the motion feature
of one future frame. However, the inside feature contains
the information over a long time period. Moreover, we
can see the decisive motion occurs ordinarily within three
seconds before maneuvers. Especially from −4 to −2, the
improvement of accuracy and F1 are substantial.

The inside videos always provide good results, but it
is still slightly inferior to the joint two-stream input. It is

TABLE V: The results of using proposed framework with different
input data sources. The results of five folds are shown in the form:
“Avg ± SE”.

Inside video Time period Acc (%) F1 (%)

[-5,-4] 56.49 ±0.02 48.19 ±0.03

[-5,-3] 63.63 ±0.02 58.46 ±0.02

[-5,-2] 70.48 ±0.02 68.63 ±0.03

[-5,-1] 75.73 ±0.01 73.09 ±0.01

[-5,0] 77.40 ±0.02 75.49 ±0.02

Outside video Time period Acc (%) F1 (%)

[-5,-4] 44.08 ±0.01 38.91 ±0.03

[-5,-3] 44.22 ±0.01 38.75 ±0.01

[-5,-2] 50.43 ±0.01 46.98 ±0.01

[-5,-1] 59.53 ±0.01 62.37 ±0.01

[-5,0] 60.87 ±0.01 66.38 ±0.03

In- & outside Time period Acc (%) F1 (%)

[-5,-4] 59.13 ±0.02 53.35 ±0.02

[-5,-3] 64.93 ±0.02 60.33 ±0.01

[-5,-2] 72.07 ±0.02 70.56 ±0.02

[-5,-1] 79.92 ±0.02 78.90 ±0.01

[-5,0] 83.98 ±0.01 84.30 ±0.01

important to see that outside video feature does not depress
the performance of the inside video feature, but improves
it. Therefore, the information from both inside and outside
videos are complementary. Besides, as the outside video
become more informative, its effect is more apparent. The
differences of accuracy and F1 between inside only and both
sides increase steadily after −3 seconds. Fig. 7 and Fig. 8
illustrate the differences among using different data sources
in relation to various time periods more clearly. Additionally,
Fig. 6 shows the confusion matrix of three models using
different data sources. Prediction is made based on time
period [-5,0]. From this, an improvement of all classes can
be observed when using two video streams.

We compare our results with the ones from work [11]
in Table. VI, since we all use the end-to-end training and
investigate the performance with three different data sources.
We compare the accuracy, F1 and the number of parameters
of our models. The results listed here are all from zero time-
to-maneuver and in 5-fold cross-validation.

Our model surpasses the model in [11] except using only
inside view. It is because the 3D ResNet-101 is used in
[11], which has almost two times more parameters than 3D
ResNet-50 in our work. We choose to use a smaller ResNet
in order to avoid outfitting problems when fine tuning a very
large network with a small dataset. Moreover, a low resource-
cost model is preferable for automobile applications. Our
framework outperforms the previous work with much less
parameters in using two-stream input: It achieves 83.98%
of accuracy and 84.30% of F1 averagely within five folds,
surpassing the previous work by 8.48 percentage points in
accuracy and 11.1 percentage points in F1. When only con-
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(a) Inside videos (b) Outside videos (c) In and outside videos

Fig. 6: The confusion matrix of using different video streams. The prediction is made at the last second before the occurrence of a
maneuvers.
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Fig. 7: Accuracy: comparison using different data sources.
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Fig. 8: F1-score: comparison using different data sources.

sidering outside videos, our models surpasses theirs by 7.67
percentage points and 22.98 percentage points in accuracy
and F1, respectively. It achieves to extract useful features
from outside with much less parameters. More importantly,
our model does not confront the same problem that the
outside videos weaken the classifier performance. In other
words, our results show that the information from outside
videos are also valuable.

We also conduct an experiment using similar threshold
policy as in [1], [9] on our model which uses two-stream
video: If the probability is NOT greater than the threshold,
then “go straight” is predicted. As shown in Fig. 9, the
performance gets worse when this threshold is larger than

TABLE VI: Comparison of our proposed framework with other
method. The results of five folds are shown in the form: “Avg ±
SE”. In order to show a clear difference, we use “m” to represent the
number of parameters in FlowNet2.0, which is a common module
in both methods.

Method Data Source Acc (%) F1 (%) Param.(M)

inside only 83.1 ±2.5 81.7 ±2.6 85.26+m

[11] outside only 53.2 ±0.5 43.4 ±0.9 85.26+m

in-&out-side 75.5 ±2.4 73.2 ±2.2 170.52+m

inside only 77.40 ±0.02 75.49 ±0.02 46.22

our outside only 60.87 ±0.01 66.38 ±0.03 5.41+m

in-&outside 83.98 ±0.01 84.30 ±0.01 57.92+m

0.4 in all lengths of input videos, since the model is trained
on a balanced loss function and learns motion features of
all five maneuvers. It always gives a relatively confident
prediction with a probability over 0.4. For our model, no
threshold policy is necessary.
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Fig. 9: Effect of using thresholds. Two-stream input with different
video lengths (from 1 to 5 seconds).

V. CONCLUSION AND FUTURE WORK

In this work, we propose a framework that considers both
inside and outside cabin motion features to anticipate the
driver maneuver intention. We propose to extract the outside
traffic motion using a ConvLSTM-based auto-encoder. These
motion features are decoded by a novel classifier architec-
ture, which considers the in- and outside motions jointly.
Our model is trained in end-to-end style, without using
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any manual-encoded or hand-crafted features. Our results
show that dual input (driver observation and driving scene
videos) surpasses by far related approaches based on sin-
gle input analyses. Additionally, we validate experimentally
that both inside and outside videos convey valuable and
complementary information. This conclusion suggests that
both traffic scenes and driver behaviors should be taken into
consideration when anticipating maneuver intention.

For our future work, we plan to improve the performance
of the outside motion decoder in the classifier by training
a more delicate decoder which can interpret the motion
covering a longer time period. In this way, the module would
gain a perspective of the entire outside motion. Moreover,
accurately predicting the motion of the further future is
another aim for our future work.

ACKNOWLEDGMENT

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excel-
lence Strategy – EXC-Number 2064/1 – Project number
390727645.

REFERENCES

[1] Jain, Ashesh and Koppula, Hema S and Raghavan, Bharad and Soh,
Shane and Saxena, Ashutosh, Car that knows before you do: Anticipating
maneuvers via learning temporal driving models, Proceedings of the
IEEE International Conference on Computer Vision, pages 3182–3190,
2015

[2] Road traffic injuries, February 7. 2020. Accessed on: Feb. 9, 2020. [On-
line]. Available: https://www.who.int/news-room/fact-sheets/detail/road-
traffic-injuries

[3] Morando, Mark Mario and Tian, Qingyun and Truong, Long T and
Vu, Hai L, Studying the safety impact of autonomous vehicles using
simulation-based surrogate safety measures, Journal of advanced trans-
portation, vol.2018, 2018, Hindawi

[4] Fox, M, Self-driving cars safer than those driven by humans: Bob Lutz,
CNBC, [Online]. Available: www. cnbc. com, 2014

[5] Teoh, Eric R and Kidd, David G, Rage against the machine? Google’s
self-driving cars versus human drivers, Journal of safety research, vol.63,
page 57–60, 2017, Elsevier

[6] Most Common Causes for Road Accidents in Britain Revealed,
July 2. 2018. Accessed on: Feb.9,2020. [Online]. Available:
https://www.regtransfers.co.uk/content/common-causes-for-road-
accidents-in-britain/

[7] Ramanishka, Vasili and Chen, Yi-Ting and Misu, Teruhisa and Saenko,
Kate, Toward driving scene understanding: A dataset for learning driver
behavior and causal reasoning, Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, page 7699–7707, 2018

[8] Xingjian, SHI and Chen, Zhourong and Wang, Hao and Yeung, Dit-Yan
and Wong, Wai-Kin and Woo, Wang-chun, Convolutional LSTM network:
A machine learning approach for precipitation nowcasting, Advances in
neural information processing systems, page 802–810, 2015

[9] Jain, Ashesh and Soh, Shane and Raghavan, Bharad and Singh, Avi and
Koppula, Hema S and Saxena, Ashutosh, Brain4Cars: Sensory-Fusion
Recurrent Neural Models for Driver Activity Anticipation

[10] Zhou, Dong and Ma, Huimin and Dong, Yuhan, Driving maneuvers
prediction based on cognition-driven and data-driven method, 2018
IEEE Visual Communications and Image Processing (VCIP), page 1–
4, 2018, IEEE

[11] Gebert, Patrick and Roitberg, Alina and Haurilet, Monica and Stiefel-
hagen, Rainer, End-to-end Prediction of Driver Intention using 3D Con-
volutional Neural Networks, 2019 IEEE Intelligent Vehicles Symposium
(IV), page 969–974, 2019, IEEE

[12] Tonutti, Michele and Ruffaldi, Emanuele and Cattaneo, Alessandro
and Avizzano, Carlo Alberto, Robust and subject-independent driving
manoeuvre anticipation through Domain-Adversarial Recurrent Neural
Networks, Robotics and Autonomous Systems, vol.115, page 162–173,
2019, Elsevier

[13] Menze, Moritz and Geiger, Andreas, Object scene flow for autonomous
vehicles, Proceedings of the IEEE conference on computer vision and
pattern recognition, page 3061–3070, 2015

[14] Carreira, Joao and Zisserman, Andrew, Quo vadis, action recognition?
a new model and the kinetics dataset, proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, page 6299–6308,
2017

[15] Hara, Kensho and Kataoka, Hirokatsu and Satoh, Yutaka, Can spa-
tiotemporal 3d cnns retrace the history of 2d cnns and imagenet?,
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, page 6546–6555, 2018

[16] Horn, Berthold KP and Schunck, Brian G, Determining optical flow,
Techniques and Applications of Image Understanding, vol.281, page
319–331, 1981, International Society for Optics and Photonics

[17] Adelson, Edward H and Bergen, James R, Spatiotemporal energy
models for the perception of motion, Josa a, vol.2, page 284–299, 1985,
Optical Society of America

[18] Anandan, Padmanabhan, A computational framework and an algo-
rithm for the measurement of visual motion, International Journal of
Computer Vision, vol.2, page 283–310, 1989, Springer

[19] Dosovitskiy, Alexey and Fischer, Philipp and Ilg, Eddy and Hausser,
Philip and Hazirbas, Caner and Golkov, Vladimir and Van Der Smagt,
Patrick and Cremers, Daniel and Brox, Thomas, Flownet: Learning
optical flow with convolutional networks, Proceedings of the IEEE
international conference on computer vision, page 2758–2766, 2015

[20] Ilg, Eddy and Mayer, Nikolaus and Saikia, Tonmoy and Keuper,
Margret and Dosovitskiy, Alexey and Brox, Thomas, Flownet 2.0:
Evolution of optical flow estimation with deep networks, Proceedings of
the IEEE conference on computer vision and pattern recognition, page
2462–2470, 2017

[21] Baker, Simon and Scharstein, Daniel and Lewis, JP and Roth, Stefan
and Black, Michael J and Szeliski, Richard, A database and evaluation
methodology for optical flow, International journal of computer vision,
vol.92, page 1–31, 2011, Springer

[22] Zhou, Bolei and Khosla, Aditya and Lapedriza, Agata and Oliva,
Aude and Torralba, Antonio, Learning deep features for discriminative
localization, Proceedings of the IEEE conference on computer vision
and pattern recognition, page 2921–2929, 2016
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Where and What: Driver Attention-based Object Detection
YAO RONG, University of Tübingen, Germany
NAEMI-REBECCA KASSAUTZKI, University of Tübingen, Germany
WOLFGANG FUHL, University of Tübingen, Germany
ENKELEJDA KASNECI, University of Tübingen, Germany

Human drivers use their attentional mechanisms to focus on critical objects and make decisions while driving.
As human attention can be revealed from gaze data, capturing and analyzing gaze information has emerged in
recent years to benefit autonomous driving technology. Previous works in this context have primarily aimed
at predicting “where” human drivers look at and lack knowledge of “what” objects drivers focus on. Our work
bridges the gap between pixel-level and object-level attention prediction. Specifically, we propose to integrate
an attention prediction module into a pretrained object detection framework and predict the attention in a
grid-based style. Furthermore, critical objects are recognized based on predicted attended-to areas. We evaluate
our proposed method on two driver attention datasets, BDD-A and DR(eye)VE. Our framework achieves
competitive state-of-the-art performance in the attention prediction on both pixel-level and object-level but is
far more efficient (75.3 GFLOPs less) in computation.
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1 INTRODUCTION
Human attentional mechanisms play an important role in selecting task-relevant objects effectively
in a top-down manner, which can solve the task efficiently [36, 39, 49]. To visualize human attention
for these tasks in a general way, a Gaussian filter is applied on fixation points to form a saliency
map [23], thus highlighting the visual attention area. Due to the effectiveness and irreplaceability of
human attention in solving visual tasks, visual attention is also being studied in artificial intelligence
research (e.g., [57]). Many computer vision applications embrace human gaze information, for
instance in classification tasks [28, 41], computer-aided medical diagnosis systems [16, 42], or
important objects selection/cropping in images and videos [43, 44, 50, 52]. To better understand
how the human brain processes visual stimuli, knowing not only where humans are looking at, but
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Module

Object 
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Fig. 1. Overview of our proposed critical object detection framework. The feature encoder extracts features
from the input image. The gaze prediction module predicts driver attention in a grid-based saliency map
and the object detectionmodule detects all the objects in the traffic using extracted features. The attention-
based objects are detected and returned to users based on the predicted saliency map and detected objects.

also what object is essential, i.e., gaze-object mapping [4]. This mapping is needed in many research
projects, especially in analytics of student learning process [21] or human cognitive functions [35].
In autonomous driving applications, successful models should be able to mimic “gaze-object

mapping" of humans, which includes two challenges: Driver gaze prediction and linking the gaze to
objects. It is practical to predict driver gaze since sometimes no eye tracker is available or no human
driver is required in the higher level of autonomous vehicles. For instance, Pomarjanschi et al. [37]
validates that highlighting potentially critical objects such as a pedestrian on a head-up display
helps to reduce the number of collisions. In this case, a model capable of predicting these critical
objects can be used as a “second driver" and give warnings that assist the real driver. For fully
autonomous cars, it is essential to identify these task-relevant objects efficiently to make further
decisions and also explain them [17]. Recently, there is a growing research interest in predicting
human drivers’ gaze-based attention [11, 34, 54]. These existing works predict pixel-level saliency
maps, however, they lack semantic meaning of the predicted attention, i.e., the model only predicts
where drivers pay attention, without knowing what objects are inside those areas.
To bridge the research gap between driver gaze prediction and semantic object detection ex-

isting in the current research landscape of autonomous driving applications, we propose (1) to
predict where and what the drivers look at. Furthermore, we aim (2) at a model that is efficient
in computation, since resources on self-driving cars are limited. Specifically, we designed a novel
framework for efficient attention-based object detection based on human driver gaze. Our approach
provides not only pixel-level attention saliency maps, but also the information of objects appearing
in attention areas, as illustrated in Fig. 1. A feature encoder is first used in our framework to encode
the information in the input image. Then, the extracted features are used to predict gaze and detect
objects in the image at the same time. Since obtaining accurate high-level (object) information is
our final goal, instead of low-level (pixel) accuracy in saliency map prediction, we predict salient
areas in a grid-based style to save computational costs while still maintaining high performance in
the critical object detection task.

Our contributions can be summarized as follows: (1) We propose a framework to predict objects
that human drivers pay attention to while driving. (2) Our proposed grid-based attention prediction
module is very flexible and can be incorporated with different object detection models. (3) We
evaluate our model on two datasets, BDD-A and DR(eye)VE, showing that our model is computa-
tionally more efficient and achieves comparable performance in pixel- and object-level prediction
compared to other state-of-the-art driver attention models. For the sake of reproducibility, our code
is available at https://github.com/yaorong0921/driver-gaze-yolov5.
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2 RELATEDWORK
In the following, we first discuss previous works of gaze-object mapping used in applications other
than driving scenarios and we discuss the novelty of our proposed method for solving this task.
Then, we introduce the related work with a special focus on the driver attention prediction in the
context of saliency prediction for human attention, followed by the introduction of several object
detectors our framework is based on. Thanks to deep learning techniques, there exists a plethora of
works in the past decades for visual saliency models and object detectors (see [6, 58] for review). It
is impracticable to thoroughly discuss these works in the two branches, therefore we only present
the works which are closely related to our work.

Gaze-Object Mapping. Previous works [20, 53] set out to reduce tedious labelling by using gaze-
object mapping, which annotates objects at the fixation level, i.e., the object being looked at. One
popular algorithm checks whether a fixation lies in the object bounding box predicted by deep
neural network-based object detector [4, 21, 29] such as YOLOv4 [5]. Wolf et al. [53] suggest to
use object segmentation using Mask-RCNN [12] as object area detection. These works train their
object detectors with limited object data and classes to be annotated. Panetta et al. [35], however,
choose to utilize a bag-of-visual-words classification model [9] over deep neural networks for
object detection due to insufficient training data. Barz et al. [3] propose a “cropping-classification”
procedure, where a small area centered at the fixation is cropped and then classified by a network
pretrained on ImageNet [10]. This algorithm from [3] can be used in Augmented Reality settings
for cognition-aware mobile user interaction. In the follow-up work [4], the authors compare the
mapping algorithms based on image cropping (IC) with object detectors (OD) in metrics such as
precision and recall, and the results show that IC achieves higher precision but lower recall scores
compared to OD.
However, these previous works are often limited in object classes and cannot be used to detect

objects in autonomous driving applications, since a remote eye tracker providing precious fixation
estimation is required for detecting attended objects. Unlike previous gaze-object mapping methods,
a model in semi-autonomous driving applications should be able to predict fixation by itself,
for instance, giving safety hints at critical traffic objects as a “second driver" in case human
drivers oversee them. In fully autonomous driving, where no human driver fixation is available, a
model should mimic human drivers’ fixation. Therefore, our framework aims to showcase a driver
attention model achieving predicting gaze and mapping gaze to objects simultaneously, which is
more practical in autonomous driving applications.

Gaze-based Driver Attention Prediction. With the fast-growing interest in (semi-)autonomous
driving, studying and predicting human drivers’ attention is of growing interest. There are now
studies showing improvement in simulated driving scenarios by training models in an end-to-end
manner using driver gaze, so that models can observe the traffic as human drivers [25, 30]. Based
on new created real-world datasets, such as DR(eye)VE [34] and BDD-A [54], a variety of deep
neural networks are proposed to predict pixel-wise gaze maps of drivers (e.g., [15, 33, 34, 45, 54]).
The DR(eye)VE model [34] uses a multi-branch deep architecture with three different pathways for
color, motion and semantics. The BDD-A model [54] deploys the features extracted from AlexNet
[19] and inputs them to several convolutional layers followed by a convolutional LSTM model to
predict the gaze maps. An attention model is utilized to predict driver saliency maps for making
braking decisions in the context of end-to-end driving in [1]. Two other well-performing networks
for general saliency prediction are ML-Net [8] and PiCANet [26]. ML-Net extracts features from
different levels of a CNN and combines the information obtained in the saliency prediction. PiCANet
is a pixel-wise contextual attention network that learns to select informative context locations for
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each pixel to produce more accurate saliency maps. In this work, we will also include these two
models trained on driver gaze data in comparison to our proposed model. Besides these networks,
which are focused on predicting the driver gaze map, other models are extended to predict additional
driving-relevant areas. While Deng et al. [11] use a convolutional-deconvolutional neural network
(CDNN) and train it on eye tracker data of multiple test person, Pal et al. [33] propose to include
distance-based and pedestrian intent-guided semantic information in the ground-truth gaze maps
and train models using this ground-truth to enhance the models with semantic knowledge.
Nevertheless, these models cannot provide the information of objects that are inside drivers’

attention. It is possible to use the existing networks for detecting attended-to objects, but this
would have the disadvantage that predicting gaze maps on pixel-level introduces unnecessary
computational overhead if we are just interested in the objects. Hence, going beyond the state of
the art, we propose a framework combining gaze prediction and object detection into one network
to predict visual saliency in the grid style. Based on a careful experimental evaluation, we illustrate
the advantages of our model in having high performance (saliency prediction and object detection)
and saving computational resources.

Object Detection. In our framework, we use existing object detection models for detecting objects
in driving scenes and providing feature maps for our gaze prediction module. In the context of
object detection, the You only look once (YOLO) architecture has played a dominant role in object
detection since its first version [38]. Due to its speed, robustness and high accuracy, it is also applied
frequently in autonomous driving [31, 46]. YOLOv5 [14] is one of the newest YOLO networks that
performs very well. Since YOLOv5 differs from traditional YOLO networks and it does not use
Darknet anymore, we also consider Gaussian YOLOv3 [7]. Gaussian YOLOv3 is a variant of YOLOv3
that uses Gaussian parameters for modeling bounding boxes and showed good results on driving
datasets. For comparison, we also tried an anchor free object detection network CenterTrack [59],
which regards objects as points. By using the feature maps of the object detection network such as
YOLOv5 to predict gaze regions, we save the resources of an additional feature extraction module.

3 METHODOLOGY

                           Gaze Prediction Module 

Feature 
Encoder

Conv2D
(1×1)

Avg
Pool

Dense
Layer

Gaussian
Blur Softmax

Grid-based
Saliency Map

Image 
Input

Detected
Objects

Extracted
Features

Object 
Detector

Attention-based Object Detection Algorithm

  

Fig. 2. Overview of our proposed driver attention-based object detection framework.

State-of-the-art driver gaze prediction models extract features from deep neural networks used
in image classification or object recognition, e.g., AlexNet [19] or VGG [47], and use decoding
modules to predict precise pixel-level saliency maps. We propose a new approach as shown in
Fig. 2 to predict what objects drivers attend to based on a grid-based saliency map prediction. The
object detector and attention predictor share the same image features and run simultaneously in a
resource-efficient manner. In this section, we first introduce our attention-based object detection
framework in Sec. 3.1, including the gaze prediction module and object detection algorithm, etc.
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Implementation details of our model, such as the specific network architecture of network layers
are discussed in Sec. 3.2.

3.1 Attention-based Object Detection
The framework is formalized as follows: Given an RGB image input from driving scenarios 𝑋 ∈
R3×𝐻×𝑊 where 𝐻 and𝑊 refer to the height and width, an image feature encoder E(·) encodes the
input image 𝑋 into feature 𝑣 . This feature can be a feature map 𝑣 ∈ R𝑐𝑣×ℎ𝑣×𝑤𝑣 where ℎ𝑣 ,𝑤𝑣 and
𝑐𝑣 represent the height, width and number of channels of the feature map. 𝑣 is the input of the
gaze prediction module G(·), which first predicts a grid-vector 𝑦 = G(𝑣). Then, a transformation
operation T (·) is applied on 𝑦 to turn it into a 2-dimensional saliency map �̂� ∈ R𝐻×𝑊 . Similarly,
the object detection moduleD(·) predicts a set of objects appearing in the imageO = {o1, o2, ..., on},
where each oi contains the bounding box/class information for that object and 𝑛 is the total number
of objects. Based on �̂� and O, we run our attention-based object detection operation

⊗
to get the

set of focused objects Of , which can be denoted as �̂�
⊗

O = Of and |Of | ≤ 𝑛. Fig. 2 demonstrates
different modules in our framework.

Gaze Prediction Module. To reduce the computational cost, we propose to predict the gaze saliency
map in grids, i.e., we alter the saliencymap generation problem into a multi-label prediction problem.
Concretely, we transform the target saliency map𝑀 ∈ R𝐻×𝑊 into a grid-vector 𝑦 ∈ R𝑛 ·𝑚 , where
𝑛 and𝑚 are the numbers of grid cells in height and width dimension, respectively. Each entry of
the grid-vector 𝑦 is a binary value. The index of entry corresponds to the index of a region in the
gaze map. 1 means that the region is focused by the driver, while 0 means not. Here, we obtain a
grid-vector 𝑦 from a saliency map𝑀 using the following procedure: (1) We binarize the𝑀 to𝑀 ′

with a value of 15% of the maximal pixel value (values larger than it will be set to 1, otherwise to 0).
(2) For each grid cell ( 𝑗-th entry in the 𝑦), we assign a “probability” of being focused as 𝑝 =

∑
𝑀′

𝑗∑
𝑀′ ,

where
∑
𝑀 ′
𝑗 is the summation of all pixel values in the 𝑗-th grid cell while

∑
𝑀 ′ is the sum of all

pixels. (3) If the probability of being focused is larger than the threshold 1
𝑛 ·𝑚 , the entry of this

region will be set to 1, otherwise to 0. Fig. 3 shows an example of this procedure.
Given the grid setting 𝑛 and𝑚, the encoded feature 𝑣 = E(𝑋 ) and the grid-vector 𝑦 transformed

from the ground-truth saliency map𝑀 , we train the gaze prediction module G(·) using the binary
cross-entropy loss:

𝐿(𝑦,𝑦) = − 1
𝐾

𝐾∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝑦𝑖 ) + (1 − 𝑦𝑖 ) · (1 − 𝑙𝑜𝑔(𝑦𝑖 )) (1)

where 𝑦 = G(𝑣) and 𝐾 = 𝑛 ·𝑚 represents the number of grid cells.
To get a 2D saliency map, we conduct �̂� = T (𝑦). More specifically, each entry in 𝑦 represents a

grid cell in the 2D map (see Fig. 3) and we fill each grid with its entry value. The size of each grid
cell is 𝐻

𝑛
× 𝑊

𝑚
, therefore a 2D matrix in the size of 𝑛 ×𝑚 is constructed. Then we apply a Gaussian

blur and softmax to smooth the 2D matrix and use it as the predicted saliency map �̂� . The upper
branch in Fig. 2 shows the procedure of predicting a grid-based saliency map.

Attention-based Object Detection Algorithm. An object detectorD(·) takes 𝑣 as input and predicts
all objects’ information O: the classes and bounding box. Our feature encoder E(·) together with
D(·) form an entire object detection network. To train a good object detector, a large image dataset
with densely annotated (bounding boxes and classes) information is required. Since there are some
well-trained publicly available object detection models, e.g., YOLOv5 [14], we use their pretrained
parameters in our E(·) and D(·). More details about the architecture design will be discussed in
the next section. Please note that we do not require extra training on E(·) or D(·), which makes
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Fig. 3. Illustration of transforming a saliency map into a grid-vector. The used grid here is 4 × 4.
Grid cells 5, 9 and 10 reach the threshold, therefore the grid-vector 𝑦 for the saliency map 𝑀 is
[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0].

our whole framework fast to train. Given all objects’ information O and a saliency map �̂� , the
attention-based object detection operation

⊗
works as follows: for each object oi ∈ O, we use the

maximum pixel value inside its bounding box area on �̂� as the probability of being focused for oi.
A threshold 𝑇ℎ for the probability can be set to detect whether oi is focused on by drivers. 𝑇ℎ can
be chosen by users according to their requirements for different metrics, such as precision or recall.
A separate discussion regarding the effect of 𝑇ℎ can be found in Sec. 4.

3.2 Model Details
We use three pretrained object detection networks as our feature encoder E(·), i.e., YOLOv5 [14],
Gaussian YOLOv3 [7] and CenterTrack [59], to validate the efficiency and adaptability of our
gaze prediction. Specifically, we deploy the layers in the YOLOv5 framework (size small, release
v5.0) before the last CSP-Bottleneck (Cross Stage Partial [51]) layer within the neck (PANet [27]).
Meanwhile, we use the remaining part of the model (i.e., the detector layer) as the object detector
D(·). Similarly, we use the partial network of YOLOv3 (first 81 layers) as E(·), and use the “keypoint
heatmaps” for every class of CenterTrack [59]. Tab. 1 lists the concrete dimension of extracted
𝑣 . Furthermore, this table also presents the dimension of the output after each layer in the gaze
prediction module. The convolutional layer with the kernel size 1 × 1 shrinks the input channels to
16 when using YOLO backbones, while to one channel when the CenterTrack features are used. To
reduce the computational burden for the dense layer, an average pooling layer is deployed to reduce
the width and height of the feature maps. Before being put into the dense layer, all the features
are reshaped to vectors. The dense layer followed by the sigmoid activation function outputs the
𝑦 ∈ R𝑛 ·𝑚 .

Table 1. Network architecture details when using different object detectors. Column “Feature Encoder” shows
the used backbone for extracting feature 𝑣 and the dimension of 𝑣 . Column “Gaze Prediction” demonstrates
the dimension of output after each layer.

Feature Encoder E(·) Gaze Prediction G(·)
Backbone 𝑣 Conv Avg Pooling Dense Layer

YOLOv5 [14] 512 × 12 × 20 16 × 12 × 20 16 × 6 × 10 number of grid cells
Gaussian YOLOv3 [7] 1024 × 13 × 13 16 × 13 × 13 16 × 7 × 7 number of grid cells
CenterTrack [59] 80 × 72 × 128 1 × 72 × 128 1 × 18 × 32 number of grid cells
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4 EXPERIMENTAL RESULTS
In this section, we first introduce experimental implementation including analysis of the datasets
BDD-A and DR(eye)VE, evaluation metrics and the details of how we train our proposed gaze
prediction module on the BDD-A dataset. After the implementation details, we show and discuss
the evaluation results of our whole framework on attention prediction as well as attention-based
object detection compared to other state-of-the-art driver attention prediction networks. To further
validate the effectiveness of our network, we tested and evaluated our framework on several videos
from the DR(eye)VE dataset [2].

4.1 Implementation Details
4.1.1 Datasets.

BDD-A. The BDD-A dataset [54] includes a total of 1426 videos, each is about ten seconds in
length. Videos were recorded in busy areas with many objects on the roads. There are 926 videos
in the training set, 200 in the validation set and 300 in the test set. We extracted three frames per
second and after excluding invalid gaze maps, the training set included 30158 frames, the validation
set included 6695 frames and the test set 9831. Tab. 2 shows the statistics of the ground-truth
“focused on” objects on the test set. In each image frame, there are on average 7.99 cars detected
(denoted as “Total”), whereas 3.39 cars of those attract the driver’s attention (denoted as “Focused”).
0.94 traffic lights can be detected in each frame, but only 0.18 traffic lights are noticed by the driver.
This is due to the fact that drivers mainly attend to traffic lights that are relative to their driving
direction. In total, there are 10.53 objects and approximately 40% (4.21 objects) fall within the
driver’s focus. Therefore, to accurately detect these focused objects is challenging.

Table 2. Traffic-related class analysis on BDD-A test set: The values in the table show the average number of
objects in one video frame. “Total” means detected objects while “focused” means attended objects by the
human driver. “-” refers to a number smaller than 0.001. “Sum” includes also non-traffic objects.

Object Person Bicycle Car Motorcycle Bus Truck
Total 0.78 0.03 7.99 0.03 0.18 0.48
Focused 0.24 0.02 3.39 0.01 0.11 0.25
Object Traffic light Fire Hydrant Stop Sign Parking Meter Bench Sum
Total 0.94 0.02 0.05 0.004 0.002 10.53
Focused 0.18 0.002 0.008 - - 4.21

DR(eye)VE. The DR(eye)VE dataset [2] contains 74 videos. We used five videos (randomly chosen)
from the test set (video 66, 67, 68, 70 and 72), which cover different times, drivers, landscapes and
weather conditions. Each video is 5 minutes long and the FPS (frames per second) is 25, resulting
in 7500 frames for each video. After removing frames with invalid gaze map records, our test set
includes 37270 frames in total. We run a pretrained YOLOv5 network on all five videos and obtained
the results shown in Table 3. Compared to the BDD-A dataset in Table 2, DR(eye)VE incorporates
a relatively monotonous environment with fewer objects on the road. On average, there are 3.24
objects in every frame image. 39% of the objects are attended by drivers, which is similar to the
BDD-A dataset.

4.1.2 Evaluation Metrics.
We evaluated the models from three perspectives: object detection (object-level), saliency map
generation (pixel-level) and resource costs. To compare the quality of generated gaze maps, we
used the Kullback–Leibler divergence (𝐷𝐾𝐿) and Pearson’s Correlation Coefficient (𝐶𝐶) metrics as
in previous works [33, 34, 54]. We resized the predicted and ground-truth saliency maps to 36 × 64
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Table 3. Traffic-related class analysis on DR(eye)VE dataset (test set): The value is the average number of
objects in each video frame. “Total” means detected objects while “focused” means attended objects by the
human driver. “-” refers to the number smaller than 0.001. “Sum” includes also non-traffic objects.

Object Person Bicycle Car Motorcycle Bus Truck
Total 0.07 0.009 2.35 0.003 0.026 0.09
Focused 0.02 0.004 1.06 - 0.01 0.04
Object Traffic light Fire Hydrant Stop Sign Parking Meter Bench Sum
Total 0.46 - 0.02 0.005 0.003 3.24
Focused 0.07 - 0.002 0.003 - 1.26

keeping the original width and height ratio following the setting of Xia et al. [54]. Since saliency
maps predicted by different models were in different sizes, we scaled them to the same size (36× 64)
as suggested by Xia et al. [54] to fairly compare them. For the object detection evaluation, we first
decided the ground-truth “focused” objects by running our attention-based object detection on all
the objects (detected by the YOLOv5 model) and the ground-truth gaze saliency maps, 𝑀

⊗
O,

i.e., used the maximal value inside the object (bounding) area as the probability. If that probability
was larger than 15%, this object was recognized as the “focused on” object. The 15% was chosen
empirically to filter out the objects that were less possible than a random selection (averagely ten
objects in one frame shown in Tab. 2). For the evaluation, we regarded each object as a binary
classification task: the object was focused by the driver or not. The evaluation metrics used here
were Area Under ROC Curve (𝐴𝑈𝐶), precision, recall, 𝐹1 score and accuracy. Except for 𝐴𝑈𝐶 , all
the metrics require a threshold 𝑇ℎ, which will be discussed in Sec. 4.2. Finally, to quantitatively
measure and compare the computational costs of our models, we considered the number of trainable
parameters and the number of floating point operations (GFLOPs) of the networks.

4.1.3 Training Details.
All experiments were conducted on one NVIDIA CUDA RTX A4000 GPU. The proposed gaze
prediction module was trained for 40 epochs on the BDD-A training set using the Adam optimizer
[18] and validated on the validation set. The learning rate started from 0.01 and decayed with a
factor of 0.1 after every 10 epochs. The feature encoder and the object detector were pretrained1
and we did not require further fine-tuning for the object detection.

4.2 Results on BDD-A
4.2.1 Quantitative Results.

Different Grids. We first conducted experiments on different grid settings in the gaze prediction
module: from 2×2 (𝑛 =𝑚 = 2) to 32×32 (𝑛 =𝑚 = 32) increasing by a factor of 2. We used YOLOv5
as our backbone for all grid settings here. The evaluation between different grids is shown in Tab. 4.
“Pixel-level” refers to the evaluation of the saliency map using 𝐷𝐾𝐿 and 𝐶𝐶 metrics. “Object-level”
refers to results of attention-based object detection. We set the threshold 𝑇ℎ for detecting attended
regions to 0.5 to compare the performance between different settings fairly. This evaluation shows
that the performance increases when the grids become finer. Nevertheless, we can see that the
advantage of 32×32 grids over 16×16 grids is not significant and the 𝐴𝑈𝐶 is almost equal. To save
computational costs, we chose the 16×16 grids as our model setting for all further experiments.

1Pretrained parameters for YOLOv5 can be found at https://github.com/ultralytics/yolov5; for YOLOv3 at https://github.
com/motokimura/PyTorch_Gaussian_YOLOv3 and for CenterTrack at https://github.com/xingyizhou/CenterTrack.
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Table 4. Comparison of using different grid settings on object-
and pixel-level performance (𝑇ℎ=0.5). For all metrics except 𝐷𝐾𝐿 ,
a higher value indicates the better performance. The best result is
marked in bold.

Object-level Pixel-level
AUC Prec (%) Recall (%) 𝐹1 (%) Acc (%) 𝐷𝐾𝐿 CC

2×2 0.58 43.86 88.97 58.75 50.05 2.35 0.18
4×4 0.76 52.43 91.50 66.66 63.40 1.61 0.41
8×8 0.84 57.87 89.16 70.18 69.71 1.27 0.55

16×16 0.85 71.98 73.31 72.64 77.92 1.15 0.60
32×32 0.85 75.47 68.79 71.97 78.58 1.13 0.62

Table 5. Comparison of different 𝑇ℎ
using 16×16 grids on attention-based
object detection. Results are shown in
% and for all metrics, a higher value
indicates better performance. The best
result is marked in bold.

Prec Recall F1 Acc
0.3 63.76 83.33 72.24 74.39
0.4 68.11 78.36 72.88 76.68
0.5 71.98 73.31 72.64 77.92
0.6 75.81 68.09 71.74 78.55
0.7 79.61 62.04 69.73 78.47

Different Thresholds. The effect of different 𝑇ℎ on attention-based object detection is listed in
Tab. 5. Our results show that a lower 𝑇ℎ yields better performance on the recall score, while a
higher 𝑇ℎ improves the precision score. The best 𝐹1 score is achieved when 𝑇ℎ is equal to 0.4, and
for the best accuracy𝑇ℎ is set to 0.6. When setting𝑇ℎ to 0.5, we obtain relatively good performance
in 𝐹1 (72.64%) and in the accuracy (77.92%). 𝑇ℎ is a hyperparameter that users can decide according
to their requirements for the applications. For example, if high precision is preferred, 𝑇ℎ can be set
to a higher value.

Comparison with other Models. We compared our three proposed models based on YOLOv5,
Gaussian YOLOv3 and CenterTrack with four existing saliency models: BDD-A [54], DR(eye)VE
[34], ML-Net [8] and PiCANet [26]2. We examined the performance from three perspectives: object
detection, gaze saliency map generation and resource cost. For the object detection, we used the
same object detector (YOLOv5) to detect all objects in images, then run our attention-based object
detection algorithm

⊗
based on generated saliency maps from each model. The “Baseline” refers

to the average BDD-A training set saliency map as illustrated in Fig. 4 (b). For a fair comparison
of the 𝑇ℎ-dependent object-level scores precision, recall, 𝐹1 and accuracy, we computed for each
model the threshold 𝑇ℎ, which gives the best ratio of the true positive rate (TPR) and the false
positive rate (FPR). Specifically, we created for each model the ROC curve (Receiver Operating
Characteristic) on the BDD-A test set and determined the 𝑇ℎ, which corresponds to the point on
the curve with the smallest distance to (0,1): 𝑎𝑟𝑔𝑚𝑎𝑥 (

√︁
𝑇𝑃𝑅 · (1 − 𝐹𝑃𝑅)). The ROC curves and the

values of𝑇ℎ for each model can be found in appendix A. Tab. 6 shows the results of our comparison
with the different models. (More results of using other 𝑇ℎ can be found in appendix B.1.)

The AUC scores show that our two YOLO models can compete on object level with the other
models, even though PiCANet performs slightly better. Although our models were not trained for
pixel-level saliency map generation, the 𝐷𝐾𝐿 and 𝐶𝐶 values show that our YOLOv5 based model
with 𝐷𝐾𝐿 of 1.15 and 𝐶𝐶 of 0.60 is even on pixel-level comparable to the other models (under our
experiment settings). In object detection, our two YOLO-based models achieve 0.85 in the 𝐴𝑈𝐶 ,
which is slightly inferior to PiCANet of 0.86. Nevertheless, they have better performance in 𝐹1 and
accuracy scores than other models.
Moreover, our gaze prediction model shares the backbone (feature encoder) with the object

detection network and requires mainly one extra dense layer, which results in less computational
costs. For instance, our YOLOv5 based model requires 7.52M parameters in total and only 0.25M
from them are extra parameters for the gaze prediction, which results in the same computational

2All models were trained on the BDD-A training set. Trained parameters of the BDD-A model were downloaded from https:
//github.com/pascalxia/driver_attention_prediction and the rest were from https://sites.google.com/eng.ucsd.edu/sage-net.
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Table 6. Comparison with other gaze models on the BDD-A dataset. On object-level, all models are evaluated
with detected objects of YOLOv5. Our three models use 16×16 grids. Pixel-level values in brackets are the
results reported from the original work [33, 54]. * indicates that the backbone is pretrained on COCO [24], †
on ImageNet [10] and ‡ on UCF101 [48]. The resource required for the gaze prediction is listed in the last
column.

Object-level Pixel-level Resource
AUC Prec. (%) Recall (%) 𝐹1 (%) Acc (%) 𝐷𝐾𝐿 CC Param.(M) GFLOPs

Baseline 0.82 66.10 74.22 69.92 74.47 1.51 0.47 0.0 0.0
BDD-A [54] † 0.82 66.00 74.33 69.92 74.43 1.52 (1.24) 0.57 (0.59) 3.75 21.18

DR(eye)VE [34] ‡ 0.85 70.04 74.94 72.41 77.16 1.82 (1.28) 0.57 (0.58) 13.52 92.30
ML-Net [8]† 0.84 70.48 73.75 72.08 77.15 1.47 (1.10) 0.60 (0.64) 15.45 630.38

PiCANet [26]† 0.86 70.23 77.67 73.76 77.91 1.69 (1.11) 0.50 (0.64) 47.22 108.08
Ours (CenterTrack)* 0.83 68.93 72.83 70.83 76.01 1.32 0.56 19.97 28.57
Ours (YOLOv3)* 0.85 70.25 74.72 72.41 77.24 1.20 0.59 62.18 33.06
Ours (YOLOv5)* 0.85 70.54 75.30 72.84 77.55 1.15 0.60 7.52 17.0

(a) Ground-truth (b) Baseline (c) BDD-A (d) DR(eye)VE (e) ML-Net

(f) PiCANet (g) Ours (YOLOv5) (h) Ours (YOLOv3) (i) Ours (CenterTr.)

Fig. 4. Comparison of predicted driver attention saliency maps using different models. (a) Ground-truth
driver attention map; (b) The baseline saliency map (center-bias); (c-f) Predictions using models [8, 26, 34, 54];
(g-i) Predictions using our framework with different backbones.

cost as a YOLOv5 network (17.0 GFLOPs). In general, the advantage of our framework is that the
gaze prediction almost does not need any extra computational costs or parameters than the object
detection needs. Other models need an extra object detection network to get the attention-based
objects in their current model architectures. Nevertheless, we list the needed resources of each
model only for the saliency prediction in Tab. 6 for a fair comparison. To achieve a similar object
detection performance, for example, DR(eye)VE needs 13.52M parameters and 92.30 GFLOPs to
compute only saliency maps, which are more than our YOLOv5 framework requires for the object
detection task and saliency map prediction together.

4.2.2 Qualitative Results.
We demonstrate the qualitative results of the saliency map prediction using different models in
Fig. 4. Our framework uses the backbones from YOLOv5, YOLOv3 and CenterTrack. We see that
BDD-A, DR(eye)VE and ML-Net provide a more precise and concentrated attention prediction.
However, BDD-A and ML-Net highlight a small area at the right side wrongly instead of an area
at the left side, while our predictions (g) and (h) focus on the center part as well as the right side.
Although our predictions are based on grids, they are less coarse than the ones of PiCANet.

Fig. 5 shows one example of attention-based predicted objects using different models. The
predicted objects are framed with bounding boxes. The frame is taken from a video, where a
vehicle drives towards a crossroad and passes waiting vehicles that are on the right lane of the
road. Comparing (i) and (a), we see that the human driver pays attention to several objects but not
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(a) Ground-truth driver attention (b) Ours (YOLOv5) (c) Ours (YOLOv3)

(d) Ours (CenterTrack) (e) BDD-A (f) DR(eye)VE

(g) ML-Net (h) PiCANet (i) All objects

Fig. 5. Comparison of attention-based object detection using different models. (a) Ground-truth attention;
(b-d) Predictions using our framework with different backbones; (e-h) Predictions using models [8, 26, 34, 54];
(i) Object detection without driver attention.

most of the objects. Our models based on features from YOLOv5 as well as CenterTrack backbones
predict all waiting vehicles as focused by drivers (in (b) and (d)), matching with the ground-truth
(in (a)). BDD-A prediction focuses on a car on the oncoming lane and a church clock, missing a
waiting car in the distance. Moreover, always predicting gaze at the vanishing point is a significant
problem for driving saliency models. From this example, we can deduce that our model does not
constantly predict the vanishing point in the street, whereas DR(eye)VE, ML-Net and PiCANet
predict the object around the center point as critical.
We also present two failed predictions of our YOLOv5 based model in Fig. 6. In the first row,

the vehicle is changing lanes from the left to the middle to pass two cyclists. Our model correctly
notices the cars in front of the vehicle as well as the cyclists. Directly in front of the cyclists, our
model predicts wrongly parked cars to be critical compared to the ground-truth. Nevertheless, this
is a good example for the effect of attention-based object detection. The vehicles in front and the
cyclists, which might make it necessary to react, are detected, while the cars parked two lanes
away are not detected. In the second row, a vehicle drives towards a crossroad with a traffic light
turning red. Our model correctly predicts the vehicle braking in front on the same lane and a car
parked on the right. But additionally, our model considers a cyclist on the right of the scene as
critical. Although the cyclist is wrongly predicted, it shows that the predictions of our model are
not limited to the center part of an image.

4.3 Results on DR(eye)VE
4.3.1 Quantitative Results.
We tested our model on the DR(eye)VE dataset without further training to validate its generalization
ability. We ran our YOLOv5 model in 16×16 grids and compared it with DR(eye)VE, BDD-A, ML-Net
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Fig. 6. Comparison of our prediction, ground-truth in attention-based object detection and not using attention-
based object detection on BDD-A test set. (Failed cases.) Left: Our prediction; Middle: Ground-truth; Right:
Object detection without driver attention. Better view in colors.

Table 7. Comparison with other gaze models on DR(eye)VE dataset. On object-level, all models are evaluated
with detected objects of YOLOv5. Our models uses 16×16 grids. * indicates that the backbone is pretrained
on COCO [24], † on ImageNet [10] and ‡ on UCF101 [48].

Object-level Pixel-level
AUC Prec. (%) Recall (%) 𝐹1 (%) Acc (%) KL CC

Baseline 0.86 65.18 77.79 70.93 77.94 2.00 0.40
BDD-A [54] † 0.84 71.63 73.34 72.48 78.38 2.07 0.46

DR(eye)VE [34] ‡ 0.86 68.90 79.39 73.77 78.09 2.79 0.47
ML-Net [8]† 0.87 69.74 79.73 74.40 78.71 2.17 0.45

PiCANet [26]† 0.88 73.90 81.48 77.50 81.64 2.36 0.41
Ours (YOLOv5)* 0.88 75.33 78.73 76.99 81.74 1.78 0.51

and PiCANet. As in the experiments on BDD-A, we computed the threshold individually with the
ROC curves shown in appendix A and evaluated the models on object-level with metrics 𝐴𝑈𝐶 ,
precision, recall, 𝐹1 and accuracy and on pixel-level with 𝐷𝐾𝐿 and 𝐶𝐶 . The results are shown in
Tab. 7. The bottom-up models ML-Net and PiCANet achieved in our experimental setting better
results than the top-down networks DR(eye)VE and BDD-A. Our model and PiCANet achieved
the best results on object-level (𝐴𝑈𝐶 = 0.88) and outperformed all other models on pixel-level
(𝐷𝐾𝐿 = 1.78, 𝐶𝐶 = 0.51). Achieving good performance on DR(eye)VE shows that our model is not
limited to the BDD-A dataset.

4.3.2 Qualitative Results.
Fig. 7 shows two examples of our attention-based object prediction model on the DR(eye)VE dataset.
The frames in the first row belong to a video sequence where the driver follows the road in a
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Fig. 7. Comparison of our prediction, ground-truth in attention-based object detection and not using attention-
based object detection on the DR(eye)VE testset (𝑇ℎ = 0.4 to better illustrate the wrongly predicted attention
region in the failed case). (Second line is failed case.) Left: Our prediction; Middle: Ground-truth; Right:
Object detection without driver attention. Better view in colors.

left curve. Our model (left) detects the cyclist driving in front of the car and a vehicle waiting
on the right to merge. Other cars further away were not predicted as focused, thus it matches
the ground-truth (middle). In the second row, we can see a frame where the driver wants to turn
left. Our model (left) predicts the cars and traffic lights on the road straight ahead, whereas the
ground-truth (middle) covers a car turning left. This example underlines the difficulty of predicting
drivers’ attention when it depends on different driving goals [56].

5 DISCUSSION
In this section, we first show our LSTM-variant architecture and discuss the results to address the
challenges of using temporal information in this task. Then, we deliberate other limitations of the
current project.

5.1 Modelling with LSTM-Layer
To extend our framework into a video-based prediction, we added one LSTM-layer (Long Short-
Term Memory [13]) with 256 as the size of the hidden state before the dense layer in the gaze
prediction network. The input for this network is an eight-frame video clip. We tested our extended
architecture using the same configuration described in the last section (i.e., 16×16 grids with 𝑇ℎ of
0.5) and achieved the following results on the BDD-A dataset:

Object Detection: 𝐴𝑈𝐶 = 0.85, Precision = 73.13%, Recall = 70.44%,
𝐹1 score = 71.76%, Accuracy = 77.83%

Saliency Prediction: 𝐷𝐾𝐿 = 1.17, 𝐶𝐶 = 0.60
The above results are similar to our model without the LSTM-layer, both achieved 𝐴𝑈𝐶 = 0.85

and 𝐶𝐶 = 0.60. It is worth mentioning that the sequence length (from 2 to 16) had no significant
influence on the performance. (See appendix B.4 for more results.) Similarly, [54] also observes that
using LSTM-layers cannot improve the performance in driver gaze prediction but rather introduces
center biases into the prediction. In summary, more frames do not increase the information gain.
One possible reason behind this bias is that using an LSTM-layer ignores the spatial information,
since the extracted features given to the LSTM-layer are reshaped to vectors. Therefore, in the
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context of our future work, we would like to analyze the integration of other modules that include
temporal information, such as the convolutional LSTM (convLSTM) [55]. Using convLSTM can
capture the temporal information of each spatial region and predict the new features for it based on
the past motion information inside the region. For example, [40, 54] validate that convLSTM helps
capture the spatial-temporal information for driver attention/action predictions. Another proposal
is to use 3D CNN to get the spatial-temporal features. For instance, [34] deploys 3D convolutional
layers that takes a sequence of frames as input in predicting the driver’s attention.

5.2 Limitations and Future Work
One limitation of current projects is that all current models have a central bias in their prediction.
This effect stems from the ground-truth data because human drivers naturally look at the center
part of the street, creating very unbalanced data: 74.2% of all focused objects on BDD-A come
from the central bias area as shown in the baseline in Figure 4. The central bias reflects natural
human behavior and is even enhanced in the saliency models proposed by Kümmerer et al. [22, 23].
Although our model predicts objects in the margin area of the scene as shown in our qualitative
examples, the center is often prioritized. Our model has an 𝐹1 score of 81.7% inside of the center area,
while it only reaches 34.8% in 𝐹1 outside of the center area. PiCANet, which achieves the best result
among all models, has better 𝐹1 scores outside (44.0%) and inside of the center (82.7%), however,
its performance inside of the center is dominant. We intend to improve the model prediction
outside of the center but still keep the good performance in the center area in the future. In the
context of autonomous driving, it would be also essential to test the generalization ability on other
datasets, which are not limited to just the gaze map data. Since drivers also rely on peripheral vision,
they do not focus on every relevant object around them. Using other datasets that additionally
highlight objects based on semantic information (e.g., [33]) could increase the applicability for
finding task-relevant objects.
All models in the experiments are trained on saliency maps derived from driver gaze. These

salient features are related to regions of interest where a task-relevant object should be located,
thus reflecting top-down features [32]. However, these features are currently extracted from the
visual information given by camera images. The context of driving tasks can still be enhanced
by adding more input information, since human top-down feature selection mechanisms require
comprehensive understanding of the task that is outside the realm of visual perception. Concretely,
the driver’s attention can be affected by extrinsic factors such as road conditions, or intrinsic
factors such as driver intentions based on driving destinations. These factors, along with traffic
information, form the driver attention as well as gaze patterns. Unfortunately, the current dataset
used for our model training does not provide this additional input. For the future work, we will
consider incorporating GPS and Lidar sensor information, which can provide more insights of tasks
to better predict driver attention.

6 CONCLUSION
In this paper, we propose a novel framework to detect human attention-based objects in driving
scenarios. Our framework predicts driver attention saliency maps and detects objects inside the
predicted area. This detection is achieved by using the same backbone (feature encoder) for both
tasks, and the saliency map is predicted in grids. In doing so, our framework is highly computation-
efficient. Comprehensive experiments on two driver attention datasets, BDD-A and DR(eye)VE,
show that our framework achieves competitive results in the saliency map prediction and object
detection compared to other state-of-the-art models while reducing computational costs.
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A VISUALIZATION OF THE ROC CURVES
In Fig. 8 and Fig. 9 we show the ROC curves and computed thresholds for all models on the BDD-A
and DR(eye)VE test sets.

Fig. 8. ROC curves and computed thresholds on the BDD-A test set. On the right, the curves are zoomed in
and the points that belong to the computed thresholds are marked.

Fig. 9. ROC curves and computed thresholds on the DR(eye)VE test set. On the right, the curves are zoomed
in and the points that belong to the computed thresholds are marked.

B MORE QUANTITATIVE RESULTS
B.1 Results of Other Thresholds on BDD-A
Our models always achieve high 𝐹1 scores in different𝑇ℎ, indicating that our models have relatively
good performance in precision and recall scores at the same time. PiCANet is more unbalanced
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in recall and precision compared to other models. The accuracy scores are influenced by the 𝑇ℎ
values, however, the highest accuracy 78.55% is achieved by our YOLOv5-based model when 𝑇ℎ is
set to 0.6.

Table 8. Comparison of different models with Th
= 0.3 on BDD-A dataset. Results are shown in %
and for all metrics, a higher value indicates better
performance.

Prec Recall F1 Acc
BDD-A 68.88 69.43 69.16 75.24

DR(eye)VE 75.32 66.42 70.59 77.87
ML-Net 72.84 70.43 71.61 77.68
PiCANet 43.61 99.36 60.61 48.36

Ours (CenterTrack) 61.19 83.11 70.49 72.17
Ours (YOLOv3) 63.97 82.15 71.93 74.36
Ours (YOLOv5) 63.76 83.33 72.24 74.39

Table 9. Comparison of different models with Th
= 0.4 on BDD-A dataset. Results are shown in %
and for all metrics, a higher value indicates better
performance.

Prec Recall F1 Acc
BDD-A 72.68 63.44 67.75 75.85

DR(eye)VE 78.99 59.95 68.16 77.61
ML-Net 77.50 62.79 69.37 77.83
PiCANet 47.15 98.26 63.72 55.27

Ours (CenterTrack) 65.52 77.86 71.15 74.76
Ours (YOLOv3) 68.16 77.02 72.32 76.43
Ours (YOLOv5) 68.11 78.36 72.88 76.68

Table 10. Comparison of different models on
BDD-A dataset with Th = 0.5. Results are shown
in % and for all metrics, a higher value indicates
better performance.

Prec Recall F1 Acc
BDD-A 75.84 57.44 65.37 75.67

DR(eye)VE 81.84 54.38 65.35 76.94
ML-Net 80.96 55.75 66.03 77.07
PiCANet 51.26 95.98 66.83 61.90

Ours (CenterTrack) 69.29 72.19 70.71 76.09
Ours (YOLOv3) 72.14 72.23 72.18 77.74
Ours (YOLOv5) 71.98 73.31 72.64 77.92

Table 11. Comparison of different models on
BDD-A dataset with Th = 0.6. Results are shown
in % and for all metrics, a higher value indicates
better performance.

Prec Recall F1 Acc
BDD-A 78.84 51.41 62.23 75.05

DR(eye)VE 84.13 49.57 62.39 76.10
ML-Net 83.53 48.80 61.61 75.68
PiCANet 56.31 92.30 69.95 68.29

Ours (CenterTrack) 73.13 66.12 69.45 76.74
Ours (YOLOv3) 75.71 66.68 70.91 78.12
Ours (YOLOv5) 75.81 68.09 71.74 78.55

Table 12. Comparison of different models on
BDD-A dataset with Th = 0.7. Results are shown
in % and for all metrics, a higher value indicates
better performance.

Prec Recall F1 Acc
BDD-A 81.90 45.57 58.56 74.21

DR(eye)VE 86.14 44.34 58.55 74.89
ML-Net 85.85 42.31 56.69 74.15
PiCANet 63.10 85.88 72.75 74.28

Ours (CenterTrack) 76.91 59.52 67.11 76.67
Ours (YOLOv3) 79.39 60.44 68.63 77.91
Ours (YOLOv5) 79.61 62.04 69.73 78.47

B.2 Results of Other Thresholds on DR(eye)VE
Our model achieves the best 𝐹1 socre of 76.94% and accuracy of 81.9%, while the best 𝐹1 score and
accuracy scores among other models are 74.24% and 79.68% respectively, which validates the good
performance of our model in the attention-based object detection task.
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Table 13. Comparison of different models on
DR(eye)VE dataset with Th = 0.3. Results are
shown in % and for all metrics, a higher value
indicates better performance.

Prec Recall F1 Acc
BDD-A 65.94 78.83 71.81 75.98

DR(eye)VE 70.34 76.95 73.50 78.46
ML-Net 67.98 81.77 74.24 77.98
PiCANet 42.34 98.98 59.31 47.31

Ours (YOLOv5) 58.08 91.25 70.98 71.04

Table 14. Comparison of different models on
DR(eye)VE dataset with Th = 0.4. Results are
shown in % and for all metrics, a higher value
indicates better performance.

Prec Recall F1 Acc
BDD-A 70.82 74.16 72.45 78.12

DR(eye)VE 73.57 71.54 72.54 78.98
ML-Net 71.85 76.23 73.97 79.19
PiCANet 46.83 95.81 62.91 56.16

Ours (YOLOv5) 62.81 89.19 73.71 75.31

Table 15. (ADDED) Comparison of different mod-
els on DR(eye)VE dataset with Th = 0.5. Results
are shown in % and for all metrics, a higher value
indicates better performance.

Prec Recall F1 Acc
BDD-A 74.58 69.53 71.97 78.98

DR(eye)VE 76.21 66.46 71.01 78.94
ML-Net 75.48 71.02 73.19 79.80
PiCANet 51.30 93.92 66.36 63.05

Ours (YOLOv5) 68.33 85.83 76.08 79.06

Table 16. Comparison of different models on
DR(eye)VE dataset with Th = 0.6. Results are
shown in % and for all metrics, a higher value
indicates better performance.

Prec Recall F1 Acc
BDD-A 77.34 65.54 70.95 79.17

DR(eye)VE 79.25 61.67 69.37 78.86
ML-Net 78.43 66.84 72.17 80.00
PiCANet 56.95 92.19 70.40 69.92

Ours (YOLOv5) 71.90 82.26 76.73 80.64

Table 17. Comparison of different models on
DR(eye)VE dataset with Th = 0.7. Results are
shown in % and for all metrics, a higher value
indicates better performance.

Prec Recall F1 Acc
BDD-A 79.74 61.61 69.51 79.03

DR(eye)VE 81.88 57.21 67.35 78.48
ML-Net 80.70 62.61 70.51 79.68
PiCANet 62.88 89.49 73.86 75.42

Ours (YOLOv5) 76.09 77.80 76.94 81.90

B.3 Results of Our YOLOv3- and CenterTrack-based Models
For a fair comparison, we computed object-level metrics with the detected objects of YOLOv5 for
all models in Sec. 4. In Tab. 18, we show the object-level results for our 16 × 16 grids YOLOv3 and
CenterTrack based models using their detected objects.

Table 18. Comparison of different models on BDD-A dataset with own detected objects (Th = 0.5). For all
metrics a higher value indicates better performance.

AUC Prec (%) Recall (%) F1 (%) Acc (%)
CenterTrack 0.83 69.80 74.62 72.13 75.33

YOLOv3 0.84 70.23 73.42 71.79 76.22
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B.4 Results of Different Input Sequence Lengths of LSTM
In Tab. 19 the results for different input sequence lengths are shown, when adding one LSTM layer
with hidden size 256 before the dense layer of our YOLOv5 based 16 × 16 grids model. All sequence
length achieve very similar results.

Table 19. Comparison of different input sequence lengths when using one LSTM layer. Our model uses the
16 × 16 grids. For all metrics except 𝐷𝐾𝐿 , a higher value indicates the better performance. (𝑇ℎ = 0.5)

Object-level Pixel-level
AUC Prec. (%) Recall (%) 𝐹1 (%) Acc (%) KL CC

2 0.85 72.40 72.68 72.54 78.00 1.16 0.60
4 0.85 72.58 73.02 72.80 78.18 1.16 0.60
6 0.85 72.52 73.04 72.78 78.16 1.18 0.60
8 0.85 73.13 70.44 71.76 77.83 1.17 0.60
16 0.85 71.84 73.39 72.61 77.86 1.18 0.60

C MORE QUALITATIVE RESULTS
C.1 LSTM
In Fig. 10 there are two examples of predicted gaze maps with LSTMmodule (middle) in comparison
with predicted gaze maps without LSTM module (left) and ground-truth (right). The LSTM module
contains one layer with hidden size 256 and the input sequence length is 8. We see that the results
with LSTM module enhance the prediction of the center area, which has sometimes advantages
and sometimes disadvantages, thus the 𝐴𝑈𝐶 is the same (0.85).

Fig. 10. Comparison of predicted gaze maps without and with LSTM and ground-truth Left: Our prediction
without LSTM; Middle: Our prediction with LSTM; Right: Ground-truth.

C.2 BDD-A Dataset
In Fig. 11 there are two more examples of our YOLOv5 based model on BDD-A dataset. In the first
row, our model predicts correctly the car on the two lanes leading straight ahead and ignoring
parked cars two lanes away and another car on a turn lane. In the second row, our model predicts a
traffic light in the middle of the scene, and two parked cars which could be critical if the driver
would drive straight ahead. Since the driver turns left, the ground-truth covers objects on the
turning road.
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Fig. 11. Comparison of our prediction, ground-truth in attention-based object detection (Th = 0.5) and not
using attention-based object detection on BDD-A test set. (Second line is failed case.) Left: Our prediction;
Middle: Ground-truth; Right: Object detection without driver attention. Better view in colors.

C.3 DR(eye)VE Dataset
Fig. 12 and Fig. 13 are two more examples of predicted objects with our YOLOv5 based model on
DR(eye)VE dataset. In Fig. 12 we see that our model predicts correctly the cars on the road and
ignores the parked cars two lanes away. In Fig. 13 our model predicts the cyclist next to the vehicle
and a car waiting to the right, while the ground-truth focuses objects which the driver will pass
later. One reason could be that the driver sees the objects next to him with peripheral view.

Fig. 12. Comparison of our prediction, ground-truth in attention-based object detection (Th = 0.4) and not
using attention-based object detection on DR(eye)VE test set. Left: Our prediction;Middle: Ground-truth;
Right: Object detection without driver attention. Better view in colors.
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Fig. 13. Comparison of our prediction, ground-truth in attention-based object detection (Th = 0.4) and not
using attention-based object detection on DR(eye)VE test set. (Failed case.) Left: Our prediction;Middle:
Ground-truth; Right: Object detection without driver attention. Better view in colors.
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not. If not, they will be given the option to pay an Article Proceeding Charge
(APC). This option is the default when the Corresponding Author is affiliated
with an ACM Open participating institution. Authors selecting this option will
retain all rights to their Work and agree to grant ACM a non-exclusive
permission to publish their Work in the ACM Digital Library and have the
additional option of displaying a Creative Commons license on the published
version of their Work in the ACM Digital Library. 

Closed Access / Exclusive License to Publish - This is the Closed Access
option. Authors selecting this option will retain all rights to their Work and
grant ACM an exclusive license to publish their Work in the ACM Digital
Library. 

Creative Commons Licensing Options

If the Corresponding Author of a Work accepted into an ACM Publication is either
affiliated with an ACM Open participating institution  or has decided to pay
the Open Access Article Processing Charge  (APC), the Corresponding
Author will be given the additional option of applying a Creative Common license
to govern how their Work may be shared and reused. Most US and
European funding agencies prefer the use of the CC-BY 4.0 License, although



authors should check with their specific funder to learn if their funder has any
firm requirements on the version of Creative Commons license they must use as
part of the publishing process.

The current ACM Policy is to allow authors the option of selecting their preferred
version.  ACM currently offers 6 Creative Commons license options, including:

CC-BY 4.0 License - This license allows reusers to distribute, remix, adapt,
and build upon the material in any medium or format, so long as attribution is
given to the creator. The license allows for commercial use.

CC-BY 4.0-SA - This license allows reusers to distribute, remix, adapt, and
build upon the material in any medium or format, so long as attribution is
given to the creator. The license allows for commercial use. If you remix,
adapt, or build upon the material, you must license the modified material
under identical terms.

CC-BY 4.0-NC - This license allows reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial purposes
only, and only so long as attribution is given to the creator. 

CC-BY 4.0-NC-SA - This license allows reusers to distribute, remix, adapt,
and build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution is given to the creator. If you
remix, adapt, or build upon the material, you must license the modified
material under identical terms. 

CC-BY 4.0-ND - This license allows reusers to copy and distribute the
material in any medium or format in unadapted form only, and only so long as
attribution is given to the creator. The license allows for commercial use. 

CC-BY 4.0-NC-ND - This license allows reusers to copy and distribute the
material in any medium or format in unadapted form only, for noncommercial
purposes only, and only so long as attribution is given to the creator. 

Creative Common Zero (CC-0) License

There is one additional CC License that ACM Authors may apply to their research
artifacts (i.e. - data, code, etc.) called CC-0 . CC-O allows creators to give up
their copyright and put their Works in the worldwide public domain. CC-0 is no
longer offered in the ACM Rights system for ACM Publications, because it places
the Work in the public domain and is irreversible, which could create problems
for the author and ACM as the Publisher in the future. However, when ACM
Authors are depositing their research artifacts either in the ACM DL or a third-
party site such as GITHUB, some authors may wish to assign a CC-0 license to
those research artifacts. ACM cautions the use of CC-0 unless the author has
given significant consideration to this and would like to give away their copyright
and allow unrestricted use of their research artifacts to the public. When ACM
Authors choose to apply a CC-0 license to their research artifacts, they should
indicate this alongside the artifact(s) wherever that artifact is hosted inside or
outside the ACM Digital Library.

Defending Authors Against Misconduct

One of the major changes with the removal of the copyright transfer option is
that regardless of which option the Author selects, ACM commits to defending
their published Work in the ACM Digital Library against infringement and
misconduct without the requirement to hold copyright on the published Work. In



practice, ACM has been doing this for years, but is formalizing this commitment
in this new Policy. When an ACM Author agrees to have ACM serve as the
Publisher of Record for their accepted Work, protecting that Work against various
forms of infringement and misconduct by third parties is one of the services ACM
commits to provide to the Author. In return, ACM Authors agree to abide by all
of ACMs Publications Policies and cooperate with ACM staff, volunteers, and
advisers in their investigations and process to adjudicate allegations of
infringement and misconduct.

Requirement to Grant ACM Exclusive or Non-
Exclusive Publication Rights (applies to Journal,
Conference, and Magazine articles)

ACM requires that authors have the authority to grant publication rights to
ACM or that they obtain the necessary authorization to execute the grant of
publication rights and that they complete ACM's Rights Management Process as a
pre-condition for publishing their Work with ACM. Such grant applies to any
medium used by ACM for publication (i.e.- print, online, etc.). If Authors are
uncertain about their having the authority to grant these rights as a result of
their employer's intellectual property rights requirements or working for a
government employer with specific requirements, they should always check with
their employer before completing ACM's Rights Assignment process. Authors
should also take note of the following:

Authors should incorporate the appropriate Copyright or License notice and
ACM citation of the publication into copies they personally maintain on non-
ACM servers.

The author's grant of publication rights applies only to the Work as a whole,
and not to any embedded objects owned by third parties. An author who
embeds an object, such as an art image that is copyrighted by a third party,
must obtain that party's permission to include the object, with the
understanding that the entire work may be distributed as a unit in any
medium.

The requirement to obtain third-party permission does not apply if the author
embeds only a link to the copyright holder's object. Other requirements for
third-party permissions can be found below under the section called 3rd Party
Permissions. 

Authors who wish to embed a component of another ACM-copyrighted or
licensed work, e.g., an excerpt, a table, or a figure, must obtain an explicit
permission (there is no fee) from ACM.

Self-Archiving and Posting Rights

All ACM published authors of magazine ar�cles, journal ar�cles, and conference papers retain
the right to post the pre-submi�ed (also known as "pre-prints"), submi�ed, accepted, and peer-
reviewed versions of their work in any and all of the following sites:



Author's Homepage

Author's Ins�tu�onal Repository

Any Repository legally mandated by the agency or funder funding the research on which the
work is based

Any Non-Commercial Repository or Aggrega�on that does not duplicate ACM tables of
contents. Non-Commercial Repositories are defined as Repositories owned by non-profit
organiza�ons that do not charge a fee to access deposited ar�cles and that do not sell
adver�sing or otherwise profit from serving scholarly ar�cles.

Authors should include an appropriate citation and attribution statement on all
Submitted or Accepted versions of the Work similar to the following:

"© {Owner/Author | ACM} {Year}. This is the author's version of the
work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in
{SourcePublication}, http://dx.doi.org/10.1145/{number}."

For the avoidance of doubt, an example of a site ACM authors may post all versions of their work
to, with the excep�on of the final published "Version of Record", is arXiv. ACM does request
authors, who post to ArXiv or other permi�ed sites, to also post the published version's Digital
Object Iden�fier (DOI) alongside the pre-published version on these sites, so that easy access
may be facilitated to the published "Version of Record" upon publica�on in the ACM Digital
Library.

Examples of sites ACM authors may not post their work to are ResearchGate, Academia.edu,
Mendeley, or Sci-Hub, as these sites are all either commercial or in some instances u�lize
predatory prac�ces that violate copyright, which nega�vely impacts both ACM and ACM authors.

Current ACM Publica�ons Policy is that ACM sponsored and ICPS conferences may not impose
embargoes on authors pos�ng pre-prints of submissions on arXiv or disqualify such submissions
that have already been posted on arXiv at the �me of submission or during the peer review
process. This policy was most recently reaffirmed by the ACM Publica�ons Board in 2019. This
Policy is currently under reconsidera�on by the ACM Publica�ons Board and it is expected that
this policy will either be reaffirmed or updated by December 31, 2022.

Requirements for ACM Books Authors

Unlike other types of ACM Publications listed above, ACM Books authors shall
continue to be given the option of signing either a Copyright Transfer &
Publishing Agreement or Exclusive License to Publish Agreement. The reason for
this is that there are fundamental differences in how books are published,
marketed, sold, and distributed via the ACM Digital Library, 3rd party channels,
and in print that relate primarily to commercial considerations, financial
remuneration for ACM Books authors, and posting or self-archiving policies for
ACM Books, which differs from ACM's general posting and self-archiving policy for
journal, conference, and magazine authors. For more information, please see
the Publishing Policies related to ACM Books authors .



Definitive Versions of Record, Official Publication
Dates, and Corrections to the Version of Record

Preserving the scholarly record "as published" is a critical component of
maintaining the community and public's trust in scientific publications in general
and trust in ACM specifically. As a result, ACM is committed to the publication
and long term digital preservation of published works in the ACM Digital Library
and via several third-party digital preservations initiatives, including CLOCKS 
and Portico . ACM will create and maintain a definitive Version of Record (VoR)
of all ACM published works and share these with our digital preservation
providers. There are instances where VoRs are hidden in the ACM Digital Library
for legal or public safety reasons, to comply with other ACM Publications
Policies, such as in connection with the implementation of ACMs Name Change
Policy, when Retractions are made, or when Corrected Versions of Record
(CVoR) are added to ACM Digital Library citation pages when errata or corrigenda
are created in connection with a published work. ACM will provide the reason for
the Correction on the article's Digital Library citation page. ACM does not alter
works once published. There are times, however, when it is appropriate to
publish a revised or corrected version of a work; doing so requires the approval
of the responsible editor. Please see ACM's Publications Policy on the
Withdrawal, Correction, Retraction, and Removal of Works from ACM
Publications and ACM DL

Persistent Unique Identifiers for Every ACM Article

The DOI (Digital Object Identifier)  is the scholarly publishing standard (ISO
26324) identifier for articles published by ACM in the ACM Digital Library. Every
article in the ACM Digital Library shall have one and only one DOI.

The official publication date of an ACM published article will be considered the
date on which the article’s official Version of Record (VoR) is published online in
the ACM Digital Library, and the official VoR of an ACM article shall be the final
peer reviewed, accepted, edited, tagged, and identified (using a DOI or other
standardized identifier) definitive version that appears in ACM Publications (i.e. -
journals, magazines, conference proceedings, newsletters, books, etc.) inside the
ACM Digital Library.

For the avoidance of doubt, only the official VoR or in CVoR shall be considered
the “Published” version of the Work for purposes of attribution, rights &
permissions, prior art, investigations into potential ethics & plagiarism violations
or other forms of infringement, and relevant open access embargo periods. If a
new Work is substantially developed, i.e., it contains at least 25% new
substantive material, it is considered a new Derivative Work or Major Revision. It
is important to note that word counts are not an absolute measure, but rather a
useful guid, and in general the author must use their discretion when
determining if a new article is to be considered a new Derivative Work, a Minor
Revision, or a Major Revision. The owner/author controls all rights in the new
Work and may do as they wish with it. That said, it is commonly accepted
practice that for new Derivative or Major Revision Works, the author should
incorporate a citation to the previous work.

For example:



"This work is based on an earlier work: TITLE, in PUBLICATION, {VOL#,
ISS#, (DATE)} © Author, {YEAR}.
http://dx.doi.org/10.1145/{number}"

If the work is a *Minor Revision, the copyright or exclusive publishing license
remains with ACM and the Owner should use best efforts to display the ACM
citation, 

"© {Owner/Author {YEAR}. This is a minor revision of the work
published in PUBLICATION, {VOL#, ISS#, (DATE)}
http://dx.doi.org/10.1145/{number}"

The appropriate notice should appear both within the document and in the
metadata associated with the document. Instructions for how to do this will be
found in the instructions for authors in ACM's various publications.

Solicited Works

From time to time, ACM solicits works for publication. Examples are columns,
invited works, award lectures, and keynote speeches. ACM asks authors of such
works not to distribute copies or post these works on their Home Pages until
ACM has published them. Authors who wish to circulate before publication should
get permission from ACM. ACM considers lectures and speeches to be published
at the time they are given.

PERMISSIONS

ACM grants gratis permission for individual digital or hard copies made without
fee for use in academic classrooms and for use by individuals in personal
research and study. Further reproduction or distribution requires explicit
permission and possibly a fee.

ACM is now a signatory of the STM Permission Guidelines Initiative ,
which supports an approach to research based on common decency, respect,
fairness and mutual trust. These Guidelines are built to allow Signatory STM
Publishers to use limited amounts of material in other original published works
without charge, and with a minimum of effort needed for permissions clearance.
ACM joined the initiative in 2022 to lower the burden on authors to obtain third
party permissions when authoring works for ACM and third party publishers.

All copies should carry the original citation, the appropriate copyright and notice
of permission on the first page or initial screen of the document. (See §2.2
Copyright Notice .)

Most permission requests should go through ACM's automated rights system
available in the ACM Digital Library and pointed to by permissions@acm.org.
Requests that cannot be handled through the online system will take longer to
resolve: requestors may expect a response to their inquiry within seven business
days. 



Fair Use for Educational Purposes

Definition of classroom use: Copying and distributing single works by a
university/college instructor, where no fee is charged to the students, and the
distribution is limited to students enrolled in a university/college course and their
instructors.

Course Material - Permission granted without fee if the course material is
produced without charge to the student. (See Commercially produced Course
Packs below.)

Electronic Reserves - Permission granted without fee provided the library or
institution has an authentication mechanism for controlled access to the server
and a license to the ACM-published work. A college, university or other
accredited institution may place a copy of a definitive Version of Record of the
work in its library's electronic reserves for the duration of its educational
needs for that work, provided that access is limited to its enrolled students
(including those in its distance learning programs), faculty, and staff. Those
institutions without a current license to the work should
contact permissions@acm.org.

Distance Learning - Permission granted without fee for distance learning
students enrolled at the institution. They have the same access rights to those
ACM copyrighted materials licensed by their institution as any other student.
Since institutional access is authenticated by IP address, it is up to the
institution to provide a proxy server for its remote users, and to register the IP
address of that proxy with ACM.

Interlibrary Loan (ILL) - Permission granted without fee for an institution
with an ACM Digital Library license to download and print works for
Interlibrary Loan. The Digital Library may be used as the source for the
printed copy. The loan of the work is limited to printed copies, as part of
normal library functions.

Walk-Ins - Permission granted without fee for access to all ACM publications,
print or electronic, by all members of the community which a subscribing
library is charted to serve.

Open Access / Creative Commons Material - Permission is granted
without fee, provided proper attribution is given to the Author(s) and
Publisher at the time of use.

Commercial Republication

Definition of commercial republication: Any use that is not personal or non-profit
educational use. Includes reprinting by trade and scholarly publishers, and use in
corporate settings and their web sites, both internal and external. No direct
profit need be realized from the publication or sale of ACM material.

Commercial use normally requires a license and payment of release fees. All
reproductions other than those listed in this document require specific
permission and a fee payable to ACM. This includes republishing in textbooks,
commercially-produced course packs sold to students, anthologies, and other
edited publications, and posting or other electronic distributions, unless use is
done in connection with the STM Permission Guidelines Initiative . 



Commercially Produced Course Packs - Use of copyrighted or licensed
material in course packs sold to students requires an appropriate license. Send
requests to permissions@acm.org or go to http://www.copyright.com .

Print permission - A grant of permission involves consultation with the lead
author of the work, the publisher's agreement to pay the required fees, and
prominent display of the proper credit acknowledgment.

Electronic permission - Rules for commercial distribution will apply unless
the request falls under educational use as defined above. Fees for internal and
external commercial posting of ACM published material are tied to the term of
the license. All postings must include pointers to the correct Citation Page in
the ACM Digital Library.

Multiple copies - Producing multiple copies of ACM copyrighted or licensed
works for distribution to more than ten peers, co-workers, clients, etc.
requires a transactional license from the CCC and payment of the required per
copy fee Send requests to permissions@acm.org or go
tohttp://www.copyright.com .

Software - Owners/Authors of software grant ACM a non-exclusive
permission to publish and manage all rights and permissions themselves.

3rd Party Permissions

Lastly, another major change relating to how ACM handles rights and
permissions is that ACM has adopted STM Permissions Guidelines , which
simplifies the process for third parties (including researchers) to reuse ACM
published content in new works under development. This is a broad-based
publisher initiative that includes the vast majority of publishers in computing
literature. Other signatories of these guidelines are listed here . It is our goal
to simplify the process of publishing with ACM, and we welcome your feedback
after the above steps have been implemented.

ACM publications staff will monitor requests for permission not handled by ACM's
automated permissions system which is accessed via the ACM Digital Library.
Persons granted permission to copy an ACM published work should display the
appropriate Publication Notice followed by: "Included here by permission."

Edited Collections

Edited collections such as conference proceedings and newsletters are
copyrighted as a whole by ACM. Going forward after January 1, 2023, authors
will retain the copyright of individual components of those Works, such as
articles, letters-to-the-editor, abbreviated works, etc. For these individual
components, ACM will obtain either an exclusive or non-exclusive permission to
publish (conveyed tacitly or by the ACM Permission Form) that permits
publication in both print and online forms, and also grants ACM the right to
transform the work into any formats as necessary for use within the ACM Digital
Library or other media.

No ACM-copyrighted or exclusively licensed collection may be posted for open
distribution without prior permission from ACM and before it has been included in
the ACM Digital Library. Approved distributions must include a notice of this
permission along with the copyright notice for the Work. 



Links

ACM treats links as citations (references to objects) rather than as incorporations
(embedding of objects). Permission is not needed to create links to citations in
The ACM Digital Library or Online Guide to Computing Literature. ACM
encourages the widespread distribution of links to the definitive Version of
Records of its copyrighted works in the ACM Digital Library and does not require
that authors obtain prior permission to include such links in their new works.

However, someone who creates a work or a service whose pattern of links
substantially duplicates an ACM-copyrighted volume or issue should get prior
permission from ACM. One example: the creator of "A Table of Contents for the
Current Issue of TODS" -- consisting of citations and active links to author-
versions of the works in the latest issue of TODS -- needs ACM permission
because that creator is reproducing an ACM-copyrighted work. If all the links in
the "Table of Contents" pointed to the ACM-held definitive Version of Records,
ACM would normally give permission because then the new work advertises an
ACM work. To avoid misunderstandings, consult with ACM before duplicating an
ACM work via links.

If an author wishes to embed a copyrighted object---rather than a link---in a
new work, that author needs to obtain the copyright holder's permission.

Distributions From non-ACM Servers

Service providers do not need to obtain prior permission from ACM to locate and
dispense links to the ACM-held definitive Version of Records of works, but they
do need permission if they are making, collecting, or distributing copies of ACM-
copyrighted or licensed works.

Other Related Policies

Conference Publication Policy

Please see the Conference Publication Policy for additional expectations
related spcifically to ACM Conference Publications.

Inappropriate Content Policy

Please see ACM's Inappropriate Content Policy

Submitting and Investigating Potential Violations of this
Policy
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See Confidentiality Policy
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A Consistent and Efficient Evaluation Strategy
for Attribution Methods
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Abstract

With a variety of local feature attribution methods
being proposed in recent years, follow-up work
suggested several evaluation strategies. To
assess the attribution quality across different
attribution techniques, the most popular among
these evaluation strategies in the image domain
use pixel perturbations. However, recent advances
discovered that different evaluation strategies
produce conflicting rankings of attribution
methods and can be prohibitively expensive to
compute. In this work, we present an information-
theoretic analysis of evaluation strategies based
on pixel perturbations. Our findings reveal that
the results are strongly affected by information
leakage through the shape of the removed pixels
as opposed to their actual values. Using
our theoretical insights, we propose a novel
evaluation framework termed Remove and Debias
(ROAD) which offers two contributions: First, it
mitigates the impact of the confounders, which
entails higher consistency among evaluation
strategies. Second, ROAD does not require
the computationally expensive retraining step
and saves up to 99 % in computational costs
compared to the state-of-the-art. We release
our source code at https://github.com/
tleemann/road_evaluation.

1. Introduction
Explainable Artificial Intelligence (XAI) has become a
widely discussed research topic (Adadi & Berrada, 2018).
Specifically, feature attribution methods (Springenberg
et al., 2015; Ribeiro et al., 2016; Lundberg & Lee, 2017;
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Rank 1 2 3

MoRF IG IG-Var IG-SG

LeRF IG-SG IG IG-Var

Removal evaluation
strategy (e.g., ROAR)

• Consistency: Low
• Computation : ∼60 min

Rank 1 2 3

MoRF IG-SG IG IG-Var

LeRF IG-SG IG IG-Var

Debiased removal
evaluation strategy

• Consistency: High
• Computation : ∼60 min

debiasing

Rank 1 2 3

MoRF IG-SG IG IG-Var

LeRF IG-SG IG IG-Var

agrees with

ROAD (ours)

• No retraining
• Consistency: High
• Computation : 33 sec

Figure 1. Comparison between previous removal and retraining
evaluation strategies (Top) and ours (Bottom). Previously,
rankings of different attribution methods, Integrated Gradients (IG)
(Sundararajan et al., 2017) and its two variants SmoothGrad (IG-
SG) (Smilkov et al., 2017), SmoothGrad2 (IG-SQ) (Hooker et al.,
2019), are highly inconsistent with respect to hyperparameters
such as the removal orders Most Relevant First (MoRF) and Least
Relevant First (LeRF). Our ROAD strategy achieves a consistent
ranking using only 1% of the previously required resources.

Sundararajan et al., 2017; Selvaraju et al., 2017) that
quantify the importance of input features to a model’s
decision are widely used. Such local explanations can
help to analyze and debug predictive models (Bhatt et al.,
2020b; Adebayo et al., 2020), e.g., in the medical domain
(Eitel et al., 2019), in recommender systems (Afchar &
Hennequin, 2020), and many other applications. With an
increasing number of feature attribution methods proposed
in the literature, the need for sound strategies to evaluate
these methods is also increasing (Nguyen & Martı́nez, 2020;
Hase & Bansal, 2020; Yeh et al., 2019; Hooker et al., 2019).

Evaluation strategies, proposed to compare different
attribution methods, commonly follow an ablation approach
by perturbing the input features, e.g., image pixels, deemed
most or least important. Specifically, perturbing pixels
assigned high importance should decrease predictive quality
whereas perturbing unimportant pixels, should hardly affect
the predictions. These measures aim to capture the fidelity
of explanations (Tomsett et al., 2020), i.e., how well
the explanation genuinely reflects the prediction of the
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underlying model. Fidelity based on a single data sample is
known as local fidelity, while global fidelity is measured on
the whole data set (Tomsett et al., 2020).

The outcome of evaluation strategies is highly sensitive
to parameters such as the perturbation function and order.
Depending on the order chosen, i.e., most relevant pixels
first or least relevant pixels first, such removal strategies
often lead to highly contradictory results. For instance,
local attribution methods that seem to perform well in
one order may perform rather poorly in the other (Tomsett
et al., 2020; Haug et al., 2021; Hooker et al., 2019). This
inconsistency makes it hard for researchers to impartially
compare between different attribution methods and it is
not well understood where the inconsistencies stem from.
Moreover, for conducting the global fidelity check, a
retraining step is required by some methods (Hooker et al.,
2019), which is prohibitively expensive in practice (Tomsett
et al., 2020). These two drawbacks and our improvements
are illustrated in Figure 1.

In this paper, we aim to overcome these shortcomings and
make the evaluation more consistent and efficient. To this
end, we propose a new debiased strategy that compensates
for confounders causing inconsistencies. Furthermore, we
show that in the debiased setting, we can skip the retraining
without significant changes in the results. This results
in drastic efficiency gains as shown in the lower part of
Figure 1. We argue that it is crucial for the community to
have sound evaluation strategies that do not suffer from
limited accessibility due the required compute capacity.
Specifically, we make the following contributions:

• We examine the mechanisms underlying the evaluation
strategies based on perturbation by conducting a
rigorous information-theoretic analysis, and formally
reveal that results can be significantly confounded.

• To compensate for this confounder, we propose the
Noisy Linear Imputation strategy and empirically
prove its efficiency and effectiveness. The proposed
strategy significantly decreases the sensitivity to
hyperparameters such as the removal order.

• We generalize our findings to a novel evaluation
strategy, ROAD (RemOve And Debias), which can
be used to objectively and efficiently evaluate several
attribution methods. Compared to previous evaluation
strategies requiring retraining, e.g., Remove and
Retrain (ROAR) (Hooker et al., 2019), ROAD saves
99 % of the computational costs.

2. Related Work
There is a plethora of works on different explanation
techniques (Tjoa & Guan, 2020), especially attribution

methods that assign importance scores to each input features.
Popular approaches have been proposed by Springenberg
et al. (2015); Lapuschkin et al. (2015); Ribeiro et al. (2016);
Kasneci & Gottron (2016); Sundararajan et al. (2017); Fong
& Vedaldi (2017); Shrikumar et al. (2017); Smilkov et al.
(2017); Petsiuk et al. (2018); Adebayo et al. (2018); Chen
et al. (2018); Xu et al. (2020); Covert et al. (2021), and
many more.

With the growing number of attribution methods, various
scholars have presented desiderata that explanations should
fulfill (Bhatt et al., 2020a; Nguyen & Martı́nez, 2020;
Fel et al., 2021; Afchar et al., 2021; Nauta et al., 2022).
Doshi-Velez & Kim (2017) consider two subcategories
in this field, namely human-grounded metrics relying on
human judgment and functional-grounded metrics. The
latter do not require a human-generated ground truth that
can be hard or even impossible to obtain. Metrics of this
type frequently rely on the idea that if the most important
part of the image is changed, the output probability of
the given black-box model should also change in return.
Examples include the Sensitivity-n measure proposed by
Ancona et al. (2017) and the infidelity and max-sensitivity
metrics by Yeh et al. (2019). Samek et al. (2016) and
Petsiuk et al. (2018) also propose to perturb the pixels in the
input image according to the importance scores. However,
Hooker et al. (2019) show that the perturbation introduces
artifacts and results in a distribution shift, putting these
no-retraining approaches in question. They propose the
Remove and Retrain (ROAR) framework with an extensive
model retraining step to adapt to the distribution shift.
Therefore, we distinguish between evaluation methods with
retraining and no-retraining approaches. ROAR has been
adopted in several recent studies (Hartley et al., 2020; Izzo
et al., 2020; Meng et al., 2021; Schramowski et al., 2020;
Srinivas & Fleuret, 2019) and variations are being proposed
in concurrent work (Shah et al., 2021).

Only few papers have used and compared different
evaluation strategies for attribution methods and a sound
theoretical explanation for the differences between them
is still missing. Sturmfels et al. (2020) assess different
baselines for feature attribution applying the Integrated
Gradient method (Sundararajan et al., 2017). They also
observe that changing the hyperparameter settings can
lead to varying results. Haug et al. (2021) draw the
same conclusion for attributions on tabular data. Tomsett
et al. (2020) compute the consistency among different, no-
retraining evaluation strategies and report an alarmingly low
agreement. In this work, we conduct a rigorous analysis of
reasons for existing inconsistency and provide a solution to
reduce it, which is not studied in previous works. Moreover,
our solution also reduces high computational costs caused
by retraining.
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Figure 2. Our analytical model of feature removal evaluation
(MoRF order shown): The input image x (9 pixels a–i) is explained
by an explanation method that returns a mask M indicating
important pixels (black). The remaining, less important pixel
values xl can be extracted from the image using the masking
operatorMl and transformed via the imputation operator Il to an
imputed variant of the input x′l, which determines the evaluation
outcome. This model allows to separate the information in the
feature values from that contained in the binary mask M .

3. Preliminaries
In this section, we formally define the pixel-perturbation
strategies considered by the following analysis.

3.1. Retraining Evaluation Strategies

We consider a pixel removal strategy, where pixels are
successively replaced by imputed values. Consistent with
the literature (Tomsett et al., 2020; Samek et al., 2016),
we consider two removal orders: MoRF (Most Relevant
First) or LeRF (Least Relevant First), where the subsequent
removal starts with the most important pixels for the former
and the least important ones for the latter. We now provide
a formal definition of MoRF with retraining, i.e., the ROAR
benchmark, that will be used throughout our analysis. We
always use the MoRF order in the analysis presented in this
paper. However, an analogous analysis of its counterpart
LeRF is possible without much additional effort and can be
found in the appendix.

To ease our derivations, we describe the procedure by a
series of operations that can be analyzed independently. A
classifier f : Rd → {1, . . . , c} maps inputs x ∈ Rd to
labels C ∈ {1, . . . , c}, where c is the number of classes.
A feature attribution explanation for the prediction assigns
each input dimension an importance value. In the MoRF
setting, the features are ordered in a descending order of
importance. Subsequently, the k most important features
per instance are selected for removal, where 0 ≤ k ≤ d is
successively increased during the benchmark. However, for
the moment we consider only one fixed value of k. Thus,

C Class label random variable
I Mutual information
I Imputation operator

M Binary mask in {0, 1}d
M Mask selection operator (takes out relevant features)
x Input features in Rd

xl Low importance features only in Rd−k

x′l Imputed low importance features in Rd

Table 1. Overview of the notation used in this work.

we can model the explanation ek as a choice of features
via a binary mask M = ek (f,x) ∈ {0, 1}d, with the
corresponding value set to one, if the corresponding feature
is among the top-k, and to zero otherwise. Furthermore,
supposeMl : {0, 1}d × Rd → Rd−k to be the selection
operator for the least important dimensions indicated in
the mask and xl = Ml (M ,x) to be a vector containing
only the remaining features as shown in Figure 2. We
suppose that the features preserve their internal order in
xl, i.e., features are ordered ascendingly by their original
input indices. This definition allows to separately consider
the information flow in the feature mask M and that in the
feature values xl.

The ROAR approach measures the accuracy of a newly
trained classifier f ′ on modified samples x′l := Il (M ,xl),
where Il : {0, 1}d × Rd−k → Rd is an imputation
operator that redistributes all inputs in the vector xl to
their original positions and sets the remainder to some
filling value. In the special case of zero imputation, x′l =
Il (M ,Ml (M ,x)) = (1−M)� x. This means the top-
k features are discarded. For a better evaluation result, the
accuracy should drop quickly with increasing k, indicating
that the most influential features were successfully removed.

3.2. Information Theory

We now briefly revisit the central concepts of information
theory that will be handy for our analysis and introduce the
notation. The fundamental quantity in information theory is
the entropy H of a discrete random variable X with support
supp {X},

H(X) := −
∑

x∈supp{X}

P (X = x) logP (X = x). (1)

The entropy corresponds to the information gained through
observation of a realization of this variable. If the random
variable considered can be easily inferred, we use p(x) as a
shorthand for P (X = x). Furthermore, we denote the joint
entropy between random variables X and Y by H(X,Y ),
which is equivalent to the entropy of their joint distribution.
In accordance with Cover & Thomas (2006), we always
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Figure 3. Relation between Mutual Information (MI) and
obtainable accuracy for the two-class problem with equal class
priors. The knowledge of the MI I(x;C) implies strong bounds
for the obtainable accuracy. This connection permits to use MI as
a surrogate for the obtainable accuracy in the perturbation strategy
in our analysis. Figure adapted from Meyen (2016).

separate random variables by comma to denote the joint
distribution of multiple of variables.

The conditional entropy H(X|Y ) is the expected amount
of information left in a variable, given the observation of a
condition Y . The most central concept in our analysis will
be mutual information (MI), i.e., the amount of information
in one random variable shared with another. For example, by
I(x;C) := H(C) −H (C|x), we denote the MI between
the complete feature vector and the class variable C. We
separate arguments by a semicolon and allow single random
variables or sets of random variables as arguments to all the
defined quantities. For sets, we always consider the joint
distribution of their member variables. Please confer Cover
& Thomas (2006) for a more profound introduction. We
provide a short overview of our notation in Table 1.

4. Analysis
In this section, we show that the pixel perturbation strategies
are susceptible to a previously unknown confounder: The
binary mask itself can leak class information that might
in not be present in the feature values. After making the
connection between the accuracy and mutual information
as a theoretical tool in Section 4.1, we formally derive
the confounder and identify this leakage on real data in
Section 4.2. We subsequently show how to mitigate it
through Minimally Revealing Imputation in Section 4.3.

4.1. On the Relation Between Accuracy and Mutual
Information

To begin our analysis of the presented strategies and their
underlying mechanisms, we first establish the relation
between classification accuracy and the mutual information.
It is well-known that the classification performance of an
optimal classifier in the Bayesian sense (assigning the class
with the highest posterior) is dependent on the MI between
features and labels (Hellman & Raviv, 1970; Vergara &

Estévez, 2014; Meyen, 2016). Nevertheless, the relationship
is not a function, but comes in form of upper and lower
bounds of the obtainable accuracy. For the simple two-
class problem, the bounds are shown in Figure 3 (cf.
Appendix A.1 for derivations). They impose strong limits
on the optimal classification performance, if the mutual
information I(x;C) is known.

For the pixel removal strategies that use retraining, this
allows us to analyze the frameworks using MI as a surrogate
for the attainable accuracy because higher MI almost
always leads to higher accuracy. In the MoRF setting
with retraining, I(x′l;C) will play a key role, because
it quantifies the information left in the least important
features and thus determines obtainable accuracy which is
the outcome of the evaluation. Low mutual information
I(x′l;C) results in a sharp drop in accuracy and good
benchmarking results:

↓ I(x′l;C) ⇒ ↑ MoRF benchmark.

Therefore, in the MoRF setting low mutual information of
x′l and C is desirable1.

4.2. Class Information Leakage through Masking

We demonstrate that it is easily possible to leak class
information only through the mask’s shape and to harshly
manipulate the evaluation score. Therefore, we start by
separating the influence of the mask from that of the feature
values. Our derivation relies on the multi-information
I(C;x′l;M), which is defined by Vergara & Estévez (2014)
as follows:

I(C;x′l;M) = I(C;x′l|M)− I(C;x′l) (2)
I(C;x′l;M) = I(C;M |x′l)− I(C;M). (3)

Setting Equation (2) and Equation (3) equal, we arrive at
the identity:

I(x′l;C)︸ ︷︷ ︸
Eval. Outcome

= I(C;x′l|M)︸ ︷︷ ︸
Feature Info.

+ I(C;M)︸ ︷︷ ︸
Mask Info.

− I(C;M |x′l)︸ ︷︷ ︸
Mitigator

.

(4)

The quantities involved are visualized in Figure 4a. The
first term “Feature Information” is the class information
contained in the features (and not in the mask) that we
wish to estimate. The second term “Mask Information”
shows that class-discriminative information in the mask can
have a high impact on the result. This influence can be
compensated by the “Mitigator” term.

Class Information Leakage If the Mask Information
term is superior to the Mitigator, I(C;M) > I(C;M |x′l),

1In LeRF, a higher accuracy and thus higher I(x′l;C) is
beneficial
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Figure 4. The Evaluation Outcome I(x′l;C) (red area), is confounded by the Mask Information I(C;M) (gray area) when there is
some overlap (a). Only the Feature Information I(x′l;C|M), the part of the Outcome not overlapping (light red area), should actually
be assessed. In the worst case (which we term Invertible Imputation), the Mask Information is entirely contained in the Outcome (b).
Separating the information in the imputed image x′l and the mask M allows to reduce the overlap and the influence (c).

the evaluation outcome is unfairly increased to a value not
justified by the selected features. We term this phenomenon
Class Information Leakage, as some discriminative
information is “leaked” through the used binary mask M .

The Mitigator can entirely vanish when the mask is perfectly
inferable from the imputed image x′l. This results in a
non-compensated effect of Class Information Leakage. We
define this imputation operation as follows:

Condition 4.1. Invertible Imputation. Let Il : {0, 1}d ×
Rd−k → Rd be the imputation operator that takes the least
important features as an input. We suppose that there are
inverse functions I−1

l,M and I−1
l,x , such that

x′l = Il (M ,xl)⇔M = I−1
l,M (x′l) ∧ xl = I−1

l,x (x′l).

If, for instance, the pixels removed are set to some reserved
value indicating their absence, the imputation operator is
invertible, as the mask can be reconstructed. Therefore,
H(M |x′l)=H

(
I−1
l,M (x′l)|x′l

)
=0. In this case, also the

Mitigator I (C;M |x′l) = 0, because it is bounded by
0 = H(M |x′l) ≥ I (C;M |x′l) ≥ 0. The Feature
Information term is constrained to be positive. Thus,
the Mask Information has a non-negligible impact on the
Evaluation Outcome because a higher Mask Information
term will always increase it. This case is depicted in
Figure 4b.

We can create a simple example that shows how evaluation
scores are influenced: Imagine a two-class problem that
consists of detecting whether an object is located on the
left or the right side of an image. A reasonable attribution
method masks out pixels on the left or the right depending
on the location of the object. In this case, the retraining
step can lead to a classifier that infers the class just from the
location of the masked out pixels and obtain high accuracy.

This explanation map will be rated far worse in MoRF (no
accuracy drop) than it might actually be. In the context of
amortized explanation methods, a similar finding has been
made by Jethani et al. (2021). We theoretically showed
that this problem also arises in evaluation strategies and
empirically demonstrate that the leakage is significant for
popular attribution methods on real data in Section 5.1.

4.3. Reduction of Information Leakage

To tackle this problem, we follow an intuitive approach:
If we cannot guarantee that there is no class information
contained in the mask itself, we have to stop it from
leaking the class information into the imputed images.
Therefore, we make sure that the mask used cannot be
easily inferred from the imputed image. We would like
to set I(x′l;M) = 0, i.e., the mask is independent of the
imputed vector allowing to separate the effects as shown
in Figure 4c. Unfortunately, this is not possible in general:
If both should be dependent on the class label, they will
also have to share a minimal amount of information (that
regarding the class). However, we can demand conditional
independence and make I(x′l;M) as small as possible.

Condition 4.2. Minimally Revealing Imputation. Let Il :
{0, 1}d×Rd−k → Rd be the infilling operator that takes the
least important features as an input. Suppose x′l and M are
independent given the class information I (x′l;M |C) = 0
and I (x′l;M) ≈ 0.

In this case, I(C;M) − I (C;M |x′l) = I (x′l;M) −
I (x′l;M |C) ≈ 0, which implies I(C;M) ≈ I (C;M |x′l)
(also cf. Figure 4c), indicating that the Mitigator effectively
compensates the Mask Information term.
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Figure 5. Accuracy of a trained classifier only using the binary
masks M without feature values as input on the CIFAR-10 data
set. Binary masks M were computed for different variants of IG
and GB. Only the masks contain enough information to reach an
accuracy of almost up to 80 % (compared to 85 % with full images)
highlighting that the feature values do not play an important role
in the evaluation. This underlines the necessity to compensate for
this confounder.

5. Debiasing Evaluation Strategies for Local
Attribution Methods

With the theoretical analysis in Section 4, we can better
understand where the biases come from, and thus mitigate
them. Building on the derivations, we now show the
strong impact of the Class Information Leakage introduced
in Section 4.2 on a real-world data set to highlight the
necessity to compensate for this confounder. We explain
how we reduce its influence by proposing a novel imputation
operator termed Noisy Linear Imputation.

5.1. Extent of Class Information Leakage

To empirically confirm our findings, we performed
experiments on CIFAR-10 (Krizhevsky et al., 2009). We
use the same attribution methods as in Hooker et al. (2019):
Integrated Gradients (IG) (Sundararajan et al., 2017) and
Guided Backprop (GB) (Springenberg et al., 2015) serve
as base explanations, and three ensembling strategies for
each are used in addition: SmoothGrad (SG) (Smilkov
et al., 2017), SmoothGrad2 (SQ) (Hooker et al., 2019) and
VarGrad (Var) (Adebayo et al., 2018). In total, we consider
eight attribution methods and provide details and parameters
in the supplementary material.

We empirically show that with fixed value imputation with
the global mean, the explanation masks are leaking class
information. This takes two steps: (1) We show that the
Mask Information I(C;M) is extremely high. (2) We
verify that the Mitigator is small by testing the Invertible
Imputation Condition, which implies that class information
is leaked into the evaluation outcome through I(C;M).

To assess the class information in the mask, we train a

ResNet-18 (He et al., 2016) that uses only binary masks M
(no pixel values xl) to predict the class. As we discussed
previously, the accuracy of a classifier can be used as a
surrogate for the calculation of MI, which is prohibitively
expensive for high-dimensional data. The curves2 are shown
in Figure 5. Stunningly, the mask alone results in high
accuracy curves that reach almost 80 % for IG-SG, only
some percent below the accuracy of the classifier on the full
inputs. This allows us to conclude that the Mask Information
I (C;M) is almost as high as our Evaluation Outcome
I (C;x′l).

To show that the Mitigator is almost zero which leads to
class information leakage, we test the Invertible Imputation
condition. Therefore, the inverse function I−1

l,M that predicts
the imputation mask from the imputed image is required
(having this function, finding I−1

l,x is trivial). For the
fixed value imputation, an approximate inverse is simple:
Setting all pixels in the mask to 0 if the corresponding
image pixel has the filling value (which has to be inferred
from the distribution). For a stronger verification, we
train an imputation predictor network consisting of three
convolutional layers, which predicts for each pixel if it was
imputed or original. As Figure 6e (blue curve) shows, the
miss-classification rate when using fixed value imputation
is almost zero, i.e., the network can easily recognize the
pixels that were imputed. According to our analysis, in this
setting close to Invertible Imputation, the Mitigator will be
negligibly small.

This leads us to the conclusion that the mask-related leakage
fundamentally influences many previous evaluations using
fixed value imputation (Shrikumar et al., 2017; Petsiuk et al.,
2018; Hooker et al., 2019) and it is essential to stop the
information leakage through the masks.

5.2. Debiasing with Noisy Linear Imputation

To reduce the Class Information Leakage, we propose a
better-suited imputation operator Il that adheres to the
Minimally Revealing Imputation condition we derived. The
remaining process is left unchanged and stays as depicted
in Figure 2. However, we face three requirements: (1) We
have to get closer to the theoretical condition of Minimally
Revealing Imputation. (2) The imputation strategy needs to
be highly efficient, since the imputation module has to be
run for each image in the data set. (3) We wish to have as
few hyper-parameters as possible (preferably none to rule
out another confounding factor).

We devise a new strategy called Noisy Linear Imputation,
which fulfills the above goals. In this way, our model
addresses some of the fundamental problems of existing

2Standard Errors are indicated by shaded areas in all figures.
However, they are often hardly visible due to their low magnitude.
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strategies. Intuitively, we search a way to make more subtle
imputations that cannot be easily recognized and result in
lower I (x′l;M). To this end, we suppose that each pixel
can be approximated by the weighted mean of its neighbors
(cf. Figure 6d) as image pixels are highly correlated3:

xi,j = wd (xi,j+1 + xi,j−1 + xi+1,j + xi−1,j)

+ wi (xi+1,j+1 + xi−1,j+1 + xi+1,j−1 + xi−1,j−1)

where wd, wi are constant coefficients for direct neighbors
and indirect, diagonal neighbors. When setting up a
single equation for each removed pixel we arrive at an
equation system. For known pixels, we directly plug in
their values and only consider each removed pixel as an
unknown variable. When neighboring pixels are removed,
the equations become connected and cannot be solved
independently. Nevertheless, the resulting system is sparse
and can be efficiently solved, even for a large number of
missing pixels. To choose the neighbor weights for the
linear interpolation, we draw inspiration from the graph
structure (see Figure 6d): Indirect neighbors have distance
2 from the original node in the graph and direct neighbors
have distance 1. Hence, we gave the direct neighbors twice
the weight of the diagonal ones. Because the weights need
to some up to 1 for a weighted interpolation, this leads to
wd= 1

6 and wi=
1
12 . We add a small random noise (σ = 0.1)

to the solution to ensure that the linear dependency cannot
be learned by the model.

Figure 6 (top) provides an example of an imputed sample.
From the imputed version in Figure 6c, inference on the
mask is significantly harder than the one imputed with
fixed values as in Figure 6b. We again train the imputation
predictor for verification and show the results in Figure 6e.
We confirm that our strategy lies significantly closer to
the optimal, Minimally Revealing Imputation. Admittedly,
there are even more sophisticated imputation strategies,
for example building on Generative Adversarial Networks
(GANs) such as Generative Adversarial Imputation Nets
(GAIN) proposed by Yoon et al. (2018). However, our
strategy already achieves considerable improvements and
is highly efficient, because it does not require training of
a GAN model. For completeness, we include additional
experiments with GAN imputation in Appendix B.

6. Experiments
Having established that our Noisy Linear Imputation fulfills
its purpose, in this section, we show that it entails even more
benefits in practice. We first highlight how it makes results
among different evaluation strategies more consistent in
Section 6.1. We then present another considerable advantage
in Section 6.2: its agreement with a no-retraining evaluation

3In fact, for direct and indirect neighbors, ρ=0.89 and ρ=0.82
respectively on CIFAR-10

(a) Original (b) Fixed Imp. (c) Noisy Lin. Imp.
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Figure 6. The considered imputation operators. When 50 % of the
original image (a) are removed, they can either be imputed by
a fixed value (b) or by our proposed Noisy Linear strategy (c,d).
Training of an imputation predictor (e) shows that it is much harder
to tell which pixels are original and which were imputed when
using our proposed imputation model. This is closer to the optimal,
minimally revealing imputation (black). Hence, by using imputed
samples of this kind, Class Information Leakage is reduced.

strategy is sufficiently high, so that the retraining step is no
longer required. We name this debiased and no-retraining
evaluation framework ROAD (RemOve And Debias). All
experiments in this section were conducted on CIFAR-10
using the eight attribution methods mentioned. We also use
Food-101 (Bossard et al., 2014), a large-scale dataset of
high-resolution images, to validate the generalizability of
our method. To this end, we train over 1000 models from
scratch on data imputed using the strategies, explanations
and removal percentages. Since the results on Food-101
also support the findings from CIFAR-10, we include them
in Appendix D.

6.1. Consistency under Removal Orders

As we aim for evaluation strategies that are less prone to the
hyperparameter setting and allow for a consistent ranking,
we study the consistency of evaluation results under the
different removal orders MoRF and LeRF. Figure 7 depicts
the obtained curves (using “Retrain”). For a clear view,
we only show four curves of attribution methods based on
IG with retraining and up to 50% pixels are removed. We
include the full curves for the IG with its derivatives as well
as GB with derivatives in Appendix C. The results using
the common fixed value imputation shown in Figure 7a and
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Figure 7. Consistency comparison using fixed value vs. Noisy
Linear Imputation. The higher accuracy is better in LeRF, while
the lower is better in MoRF. Comparing (a) and (c), fixed value
imputation gives different rankings in MoRF and LeRF orders: IG-
SG is the best in LeRF but the worst in MoRF. Comparing (b) and
(d), Noisy Linear Imputation changes the outcome considerably
and yields a consistent ranking in MoRF and LeRF.

Figure 7c. The results with our Noisy Linear Imputation
are shown in Figure 7b and Figure 7d. In MoRF, a sharp
drop in the beginning indicates a better attribution method,
while a slight drop is desirable in LeRF. Hence, using fixed
imputation, the ranking in MoRF is IG, IG-Var, IG-SQ, IG-
SG, whereas the ranking in LeRF is IG-SG, IG, IG-SQ, and
IG-Var. We see, for instance, that IG-SG is the worst in
MoRF and the best in LeRF. When using the Noisy Linear
Imputation, the inconsistency vanishes. The ranking in
MoRF is: IG-SG, IG, IG-SQ, and IG-Var, which is the same
as in LeRF.

We quantitatively compute the consistency among all eight
attribution methods with and without retraining. Concretely,
we compute the ranks (from 1=best to 8=worst) of our
explanation methods for each percentage of perturbed pixels.
We then calculate the Spearman Rank correlation between
different evaluation strategies. As shown in Table 2, the
correlation score of the fixed value imputation is −0.01
when using retraining and 0.01 when no retraining is applied.
This indicates no consistency in the rankings. When we
deploy our Noisy Linear Imputation, the results change
drastically: The correlation score is improved to 0.61 and
0.58 with and without retraining, respectively. This might
imply that the information leakage is responsible for a major
share of the inconsistency.

6.2. Efficiency

When we apply our Noisy Linear Imputation, we
additionally reduce the difference between evaluation with
and without retraining. This can be attributed to the reduced
distribution shift incurred when using an almost Minimally
Revealing Imputation. If all pixels were perfectly imputed,

Retrain No-Retrain
MoRF vs. LeRF MoRF vs. LeRF

fixed lin fixed lin

-0.01±0.01 0.61±0.01 0.01±0.00 0.58±0.01

Table 2. Spearman rank correlation between evaluation strategies.
There is almost no agreement between MoRF and LeRF when
using fixed imputation (as in previous works). When using our
imputation (“lin“), consistency across MoRF and LeRF orders
increases drastically.

MoRF LeRF
Retain vs. No-Retr. Retain vs. No-Retr.

fixed lin fixed lin

0.15±0.01 0.84±0.01 0.09±0.01 0.94±0.01

Table 3. Spearman rank correlation between evaluation with and
without retraining. Our Noisy Linear Imputation (“lin”) also results
only in marginal differences between “Retrain” and “No-Retrain”.
We conclude that the retraining step is no longer necessary.

the resulting image would not be out-of-distribution. Since
we are interested in the rankings of attribution methods,
we again compute Spearman correlation between the
rankings obtained with and without retraining and show it
in Table 3. The order remains almost always intact between
the “Retrain” with Noisy Linear Imputation and the “No-
Retrain” variant with Noisy Linear Imputation resulting
in a rank correlation of 0.84 in using MoRF and 0.94 in
LeRF. This leads us to the conclusion that “No-Retrain”
and “Retrain” end up with a highly similar ranking when
using Noisy Linear Imputation. Thus, we conclude that the
retraining step is not longer justified and can be skipped
without significant distortion of the results. Qualitative
results are shown in Appendix C.3, cf. Figure 17 (CIFAR-
10) and Figure 23 (Food-101).

These results allow us to introduce a novel evaluation
framework. We refer to the removal with Noisy Linear
Imputation and no retraining as ROAD – Remove and
Debias. We showed that ROAD is highly consistent with
the compensated results of the ROAR, but comes at an
enormous advantage: The retraining step is no longer
required. This permits to save a vast amount of computation
time. In our experiments, evaluation using the ROAD took
only 0.7 % of the resources required for ROAR, as given
by the runtimes in Table 4 obtained on the same hardware
(single Nvidia GTX 2080Ti and 8 Cores).

In the end, we illustrate the evaluation results using ROAD
among all eight attribution methods in MoRF and LeRF
in Figure 8. In MoRF, the best ones are IG-SG, GB-
SQ, GB-Var and IG, which have lower accuracies in the
beginning, whereas they have higher accuracies in LeRF.
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Strategy Retrain No-Retrain

fixed† lin fixed lin?

Time 3903±117 s 4686±2 s 18.0±0.1 s 33.3±0.1 s
Relative 100 % 120 % 0.5 % 0.9 %

Table 4. Mean runtime (5 runs) for evaluating a single explanation
method (IG). † refers to ROAR, and ? to our ROAD.
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Figure 8. Evaluation results in MoRF (a) and LeRF (b) using our
ROAD framework.

GB and GB-Var both perform badly in MoRF and LeRF.
We see that some inconsistencies still remain, which cannot
be compensated by the current imputation. However,
the evaluation strategies might also consider different
characteristics of an attribution method (e.g., one might
be particularly good at identifying irrelevant pixels), which
is why perfect agreement might not even be desirable.

7. Conclusion and Outlook
We introduced ROAD, an evaluation approach for measuring
global fidelity among attribution explanations. ROAD
comes with two key advantages over existing methods: (1) it
is highly efficient, e.g., permitting a 99% runtime reduction
w.r.t. ROAR, and (2) it circumvents the Class Information
Leakage issue, which was thoroughly analyzed in this work.
We believe the ROAD framework will be beneficial to the
research community because it unifies several methods and
is more consistent under varying removal orders. Moreover,
it is broadly accessible due to its low resource requirements.
ROAD is open-source4, and can be readily implemented in
practical use-cases. Going forward, we plan to investigate
more sophisticated imputation models in ROAD as well as
other evaluation metrics besides fidelity.
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A. Additional Theory
A.1. Formulation of the MI Bounds for the Binary Case

As we discussed in our main paper, the relationship between Mutual Information (MI) and accuracy is not a function, but
comes in form of upper and lower bounds of the obtainable accuracy. If, for example, the binary classification case with
equal class priors p(C = 0) = p(C = 1) = 1

2 is considered, the following bounds can be derived (Hellman & Raviv, 1970;
Meyen, 2016):

I(x;C) + 1

2
≤ Acc(C|x) ≤ H−1

2 (1− I(x;C)), (5)

where H−1
2 : [0, 1]→

[
1
2 , 1
]

is the inverse of the binary entropy with support
[

1
2 , 1
]
. For completeness, we restate the proof

of this upper bound in Appendix A.2.

A.2. Reproduction of the proof of the relation between mutual and accuracy in the binary case

In this section, we reproduce the proofs for the upper and lower bounds of bayesian classifier accuracy given a certain
amount of mutual information from the master’s thesis by (Meyen, 2016) for completeness. The upper bound given there is
tighter than the bounds present in the literature.
We consider the following setting (C, x are random variables):

• binary classification problem, C ∈ ΩC = {0, 1}

• equal class priors P (C = 0) = 1
2 , P (C = 1) = 1

2

• discrete features x (which can be the product of multiple random variables)

• support set Ωx = supp {x} of countable size

We first prove the following Lemma:

Lemma A.1. Let the assumptions stated above be true. Then, the mutual information is the weighted mean of a function of
the conditional accuracies Acc(C|s), where s ∈ Ωx:

I (C;x) =
∑
s∈ΩS

p(s) (1−H2 [Acc(C|s)])

In this formulation, p(s) is a shorthand for P (x = s) and H2(p) := −p log p − (1 − p) log(1 − p) is the entropy for a
binary random variable.
Proof.

I (C;x) = H(C)−H(C|x) (6)

=
∑
c∈ΩC

p(c) log
1

p(c)
−
∑
s∈ΩS

p(s)
∑
c∈ΩC

p(c|s) log
1

p(c|s) (7)

=
∑
s∈Ωx

p(s)

[∑
c∈ΩC

p(c) log
1

p(c)
−
∑
c∈ΩC

p(c|s) log
1

p(c|s)

]
(8)

=
∑
s∈Ωx

p(s) [H(C)−H(C|s)] (9)

In our consideration, ΩC = {0, 1} and P (C = 0) = 1
2 , P (C = 1) = 1

2 , so H(C) = 1. Additionally, the bayesian classifier
rule yields

acc(C|s) =

{
P (C = 0|s), for P (C = 1|s) ≤ 0.5
P (C = 1|s), for P (C = 1|s) > 0.5

(10)
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and

H(C|s) = −P (C = 0|s) logP (C = 0|s)− P (C = 1|s) logP (C = 1|s) (11)
= H2(P (C = 0|s)) = H2(P (C = 1|s)) (12)
= H2(acc(C|s)) (13)

Plugging in the results H(C) = 1 and H(C|s) = H2(Acc(C|s)), we obtain the proposed lemma. �

For the derivation of upper and lower bounds, Jenssen’s inequality is used. 1−H2(·) is a convex function and the {p(s)}s∈Ωx

are convex multipliers, i.e., they are non-negative and sum up to one. Then,

1−H2 (Acc(C|x)) = 1−H2

(∑
s∈Ωx

p(s) Acc(C|s)
)

(14)

≤
∑
s∈Ωx

p(s) [1−H2 (Acc(C|s))] = I(x;C) (15)

We can restate this equation in terms of accuracy.

H2 (Acc(C|x)) ≥ 1− I(C;x) (16)

Using that H2 (·) is decreasing monotonically on the interval
[

1
2 , 1
]
, so its inverse H−1

2 exists, and that Acc(C|s) ≥ 0.5:

Acc(C|x) ≤ H−1
2 (1− I(C;x)) . (17)

The inequality sign is flipped again, due to the inverse being monotonically decreasing. Note that the bounds derived for the
special case are much tighter than the general ones provided by Vergara & Estévez (2014) and Cover & Thomas (2006,
Chapter 2.10), that are not of any use, because they are even less strict than the trivial bound Acc(C|x) ≤ 1, for the simple
case considered here.

For the lower bound, we refer the reader to Hellman & Raviv (1970, eqn. 18), where the term I corresponds to H(C|x) =
H(C)− I(C;x) in our notation. Rewriting the result from Hellman & Raviv (1970) in our notation, we obtain

1−Acc(C|x) ≤ H(C)− I(C;x)

2
. (18)

Using H(C) = 1 and rearranging yields

1−Acc(C|x) ≤ 1− I(C;x)

2
(19)

and

Acc(C|x) ≥ I(C;x) + 1

2
. (20)

�

A.3. Analysis of the LeRF Ordering

In this section, we analyze the masking impact for the case of the Least Relevant First (LeRF) ordering. We first provide a
definition for the operators involved as we did for the Most Relevant First (MoRF) case. In the LeRF setting, the k least
important important features per instance are removed. We model the explanation as a choice of features via a binary mask
M = e (f,x) ∈ {0, 1}d, with the corresponding value set to one, if the corresponding feature is among the top-k, and
to zero otherwise. Furthermore, supposeMh : {0, 1}d × Rd → Rk to be the selection operator for the highly important
dimensions indicated in the mask and xh =Mh (M ,x) to be a vector containing only the remaining, highly important
features as shown in Figure 9. We suppose that the features preserve their internal order in xh, i.e., features are ordered
ascendingly by their original input indices.

The LeRF approach with retraining (also called “Keep and Retrain”, KAR, by Hooker et al. (2019)) measures the accuracy
of a newly trained classifier f ′ on modified samples x′h := Ih (M ,xh), where Ih : {0, 1}d × Rk → Rd is an imputation
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Figure 9. Analogous analytical model of feature removal in the opposite order (LeRF): The input image x is explained by an explanation
method that returns a mask M indicating important pixels. The remaining, highly important pixels can be extracted from the image using
the masking operatorMh and transformed to a modified variant of the input x′h via the imputation operator Ih.

operator that redistributes all inputs in the vector xh to their original positions and sets the remainder to some filling value.
This means only the top-k features are kept. For a better evaluation result, the accuracy should increase quickly with
increasing k, indicating the most influential features are present. Accuracy should not increase much for the high values of
k, because inserting the low importance features should not have a large effect (equivalently, this means it should not drop
much when the least important features are removed). Overall, higher accuracies indicate better attributions in the LeRF
setting.

For the LeRF benchmark, the quantity of interest in our analysis will be I(x′h;C), the class information contained in the
filled-in version of the selected high important features. We want to maximize I(x′h;C) to obtain a good score,

↑ I(x′h;C) ⇒ ↑ LeRF benchmark.

As before, we can apply the following, general identity:

I(x′h;C)︸ ︷︷ ︸
Evaluation Outcome

= I(C;x′h|M)︸ ︷︷ ︸
Feature Info.

+ I(C;M)︸ ︷︷ ︸
Mask Info.

− I(C;M |x′h)︸ ︷︷ ︸
Mitigator

. (21)

The interpretation of the terms is analogous to that in our main paper.

Class-Leaking Explanation Map For the case of the class-leaking map, we again require the imputation operator to be
invertible:

Example A.2. Invertible Imputation. Let Ih : {0, 1}d × Rk → Rd be the imputation operator that takes the highly
important features as an input. We suppose that there are inverse functions I−1

h,M and I−1
h,x, such that

x′h = Ih (M ,xh)⇔M = I−1
h,M (x′h) ∧ xh = I−1

h,x(x′h).

If, for instance, the pixels removed are set to some reserved value indicating their absence, the infilling operator is invertible.
In this case, also the Mitigator I (C;M |x′h) = 0 (see Section 4.3 for details). The “Feature Info” term is constrained to be
positive. Thus, the Mask Information has a non-negligible impact on the Evaluation Goal, because a higher Mask term will
always increase it.

We can create a another example of a spurious explanation map that shows how evaluation scores are influenced even worse
for LeRF: Suppose an explanation map that starts masking out pixels at the top for class zero and at the bottom for class
one. Thus, a retrained model will be able to infer the category just from the shape of the masked pixels and obtain the
best possible accuracy and thus score in the LeRF setting. However, it does not provide a reasonable attribution for the
importance of the features.
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B. GAN Imputation
We also use Generative Adversarial Imputation Nets (GAIN) proposed by Yoon et al. (2018) as an imputation operator. We
first train a GAIN model on CIFAR-10. To find the best-performing setup, we run a hyperparameter selection for the GAIN
model. We keep all the default parameters identified by Kachuee et al. (2020), but search for the value of alpha (α), which
can be seen as a weight factor for the reconstruction loss of the non-imputed pixels in the GAN, and the hint rate (hr)
parameter, which provides the Discriminator with hints to balance the difficulty of the tasks. We train the models for 100
epochs which resulted in converged MSEs and Frechet Inception Distances (FIDs). We use MSE to the original pixels to
assess the generative quality of the model. Kachuee et al. (2020) reported low values for both these parameters to perform
well, but did not provide the exact values. We extended their value ranges to α = 100 and performed and exhaustive search.
The results for the GAIN models on CIFAR-10 can be seen in Table 5. For the experiments we used the best setup with
α = 100 and hr = 0.01.

α=0.1 α=1 α=10 α=100
hr=0.01 0.0131 0.0164 0.0090 0.0085
hr=0.1 0.0113 0.0133 0.0131 0.0101
hr=0.3 0.0172 0.0183 0.0151 0.0127
hr=0.9 0.0303 0.0484 0.0379 0.0088

Table 5. Mean-Squared-Errors for GAIN on CIFAR-10 using different hyperparameter choices.

In Figure 10, we demonstrate imputation results using three operators for one image (a) from CIFAR-10. Compared to
the fixed value imputation (b) and noisy linear imputation (c), GAN imputation (d) yields most natural imputed image.
Although it cannot perfectly reconstruct the original image, for example the background is noisy and the body color is
different from the original one, it is not easy to deduce the mask from (d). A trained imputation predictor also verifies that
GAN imputation is closest to the optimal condition, Minimally Revealing Imputation.

However, there are drawbacks of the GAN imputation. It may introduce some new “features” that do not exist in the original
sample. For instance the dog in (d) has new patterns on its body. Moreover, it does not give very good results when too
many pixels are removed (cf. Figure 12). The GAIN training again requires tuning hyperparameter settings and is highly
expensive. Therefore, this model does not allow for the desired improvements (few hyperparameters, efficiency). Compared
to GAN, our Noisy Linear imputation does not have these drawbacks. Considering all these factors, we recommend to use
Noisy Linear Imputation in the evaluation framework.

(a) (b)

(c) (d)

0.0 0.2 0.4
share of pixels imputed
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Figure 10. The considered imputation operators. When 30 % of the original image (a) are removed, they can either be completed by a
fixed value (b) or by our proposed Noisy Linear imputation (c) or GAN imputation (d). Training of an imputation predictor (e) shows that
it is much harder to tell which pixels are original and which were imputed when using our proposed imputation models, which is closer to
the theoretical optimum (black). Hence, Class Information Leakage is reduced by our imputation methods.
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Modified CIFAR-10 Dataset
MoRF
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Figure 11. Illustration of modified data set in MoRF/LeRF and fixed value imputation settings. Left: Modifications in the MoRF
framework. Right: Modifications in the LeRF framework. Top to Bottom: Modifications using Integrated Gradient (IG) (Sundararajan
et al., 2017) and three ensemble variants of IG: SmoothGrad (SG-IG) (Smilkov et al., 2017), SmoothGrad2 (SG-SQ-IG) (Hooker et al.,
2019), and VarGrad (Var-IG) (Adebayo et al., 2018). The percentage of pixels that are removed or kept is given at the bottom.

C. Additional Experiments on CIFAR-10
C.1. Implementation Details

In this section, we report implementation details on CIFAR-10 as well as additional results for comparison between fixed
value imputation and our Noisy Linear Imputation. We also include GAN imputation results. In Figure 12, an overview of
using three different imputations with different perturbation percentages are illustrated.

We train a vanilla ResNet-18 (He et al., 2016) on CIFAR-10 and compute different explanations using the trained model.
The model is trained with the initial learning rate of 0.01 and the SGD optimizer (Sutskever et al., 2013). We decrease the
learning rate by factor 0.1 after 25 and train the model for 40 epochs on one GPU. The trained model achieves a test set
accuracy of 84.5 % (comparable to the model in (Tomsett et al., 2020)). For attributions, we use the same settings as in
(Hooker et al., 2019): As base explanations we implement Integrated Gradient (IG) (Sundararajan et al., 2017) and Guided
Backprop (GB) (Springenberg et al., 2015). Additionally, we use three ensembling strategies for each: SmoothGrad (SG)
(Smilkov et al., 2017), SmoothGrad2 (SG-SQ) (Hooker et al., 2019) and VarGrad (Var) (Adebayo et al., 2018). For each
explanation method, we modify the data set using the fraction of pixels η = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9]. Figure 11
illustrates the modified images by using four different explanations in the GB-family within MoRF and LeRF orders (fixed
mean value imputation is used).

We use N = 5 runs and report averaged results for all CIFAR-10 experiments in our paper and indicate the standard errors
(which are very small) as an area behind our plots. In Table 6 and Table 7, we show the mean accuracy and its standard
deviation at each the fraction of pixels η for IG-SG and GB-SG explanations. For other explanations we used, the standard
deviation at each η in the magnitude of below one percent as well. Mean runtimes (average over 5 runs) for evaluating one
explanation method (IG) using all three imputation methods are listed in Table 8.

C.2. Correlation Analysis

In Table 9, we show a full view of the Spearman Correlation of rankings between all twelve different evaluation strategies
(“Retrain”/“No-Retrain”, MoRF/LeRF, and fixed value/Noisy Linear/GAN imputation) used in this paper. In this work, our
primary focus was on consistency between the respective Retraining/No-Retraining Methods and the consistency between
MoRF/LeRF and we mark the results used in the main paper in bold.

C.3. Extended Figures

In this section, we include full qualitative results of using four variants in evaluation strategies (“Retrain”/“No-Retrain”,
MoRF/LeRF) for three different imputation operators (fixed value/Noisy Linear/GAN imputation). In Figure 13, the full
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Figure 12. Sample images from CIFAR-10 and Food-101 imputed with the three methods considered in this work for different percentages.
The missing pixels are determined by the IG attribution method (in MoRF order). While the GAN leads to sharper images for the early
percentage values, where the linearly imputed samples become more blurry. Artefacts are introduced for high missingness percentages
(0.9) in GAN imputation, which may distort the results of the evaluation once again. Therefore, we decide to stick to the Noisy Linear
Imputation that operates more stably.

plots of IG-family attribution methods using fixed value imputation are shown, while Figure 16 illustrates for the GB-based
attribution methods. Figure 14 and Figure 17 show the evaluation results when using our Noisy Linear Imputation for
IG- and GB-family attribution methods, respectively. From results, we see that using our Noisy Linear Imputation, the
consistency between the evaluation rankings conducted in MoRF and LeRF with and without retraining increases, for
instance in Figure 14 compared to Figure 13.

D. Additional Experiments on Food-101
D.1. Implementation Details

We trained a vanilla ResNet-50 (He et al., 2016) on Food-101 (Bossard et al., 2014). Concretely, we trained the model using
the SGD optimizer. Additionally the model was trained with the initial learning rate of 0.01. The learning rate was reduced
by factor of 0.1 after every 10 epochs. In total, we trained 40 epochs with a batch size of 32 and the model achieved the
accuracy of 81.67% on the test set. To run the GAN imputation operator, we first trained a GAIN model on Food-101 as
introduced in Appendix B. We used the hyper-parameters α = 100 and hr = 0.1 and trained the GAIN model with the
batch size of 32 for 100 epochs. We computed the eight explanations and run ROAD and ROAR evaluation using the same
settings as introduced in Appendix C.1 for CIFAR-10.

D.2. Correlation Analysis

In Table 10, we show a full view of Spearman Correlation of rankings given by eight different evaluation strategies
(“Retrain”/“No-Retrain”, MoRF/LeRF, and fixed/Noisy Linear/GAN imputation) on Food-101. In the table, results marked
in bold indicate the consistency of using three imputation operators. We observe that the consistency between the respective
Retrain and No-Retrain methods is still very high, which confirms that the efficiency gains reported in the main paper can be
realized for larger data sets. Consistency between MoRf/LeRF is improved (over fixed imputation) when using retraining,
but decreases slightly when the No-Retraining approach is used. Because the curves are often very close on this dataset
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10 20 30 40 50 70 90

Retrain
MoRF

fixed 74.94±0.57 75.42±0.45 75.62±0.24 75.16±0.50 74.95±0.45 73.73±0.48 65.18±0.85
lin 69.72±0.49 68.10±0.34 67.28±0.34 67.32±0.22 67.52±0.22 66.46±0.54 60.37±0.51
gan 74.78±0.31 73.16±0.22 72.02±0.03 71.40±0.23 70.72±0.30 68.44±0.43 59.37±0.44

No-Retrain
MoRF

fixed 44.06±0.04 29.81±0.03 21.99±0.03 17.35±0.02 14.67±0.01 11.50±0.04 10.90±0.03
lin 67.66±0.02 59.94±0.03 54.05±0.05 49.46±0.04 45.63±0.06 36.87±0.05 24.55±0.04
gan 74.53±0.04 71.41±0.04 69.10±0.06 67.55±0.09 66.55±0.07 60.73±0.12 25.46±0.10

Retrain
LeRF

fixed 80.88±0.14 81.34±0.15 81.41±0.01 81.36±0.14 81.34±0.11 80.95±0.01 76.86±0.34
lin 81.41±0.10 81.67±0.18 81.88±0.16 81.56±0.13 81.31±0.22 79.89±0.23 72.83±0.36
gan 81.05±0.22 80.99±0.15 80.14±0.16 79.25±0.18 78.24±0.22 74.92±0.15 68.69±0.21

No-Retrain
LeRF

fixed 74.34±0.02 69.04±0.03 64.06±0.04 59.86±0.03 57.59±0.03 53.81±0.06 46.74±0.02
lin 82.20±0.04 82.04±0.03 81.76±0.08 81.34±0.06 80.97±0.03 77.89±0.07 56.74±0.13
gan 80.80±0.02 80.38±0.03 79.90±0.02 78.85±0.07 77.47±0.08 71.14±0.10 32.96±0.17

Table 6. Mean accuracy at each η by using IG-SG in all methods with standard deviations of five individual runs. For LeRF, the accuracy
is at (1-η).

10 20 30 40 50 70 90

Retrain
MoRF

fixed 76.30±0.43 75.60±0.27 74.89±0.29 74.27±0.29 73.37±0.28 72.15±0.09 67.99±0.24
lin 72.83±0.37 71.87±0.41 71.58±0.19 70.98±0.15 70.47±0.20 67.81±0.45 59.38±0.46
gan 76.64±0.13 75.44±0.13 74.73±0.28 73.69±0.30 72.85±0.34 68.97±0.08 56.81±0.30

No-Retrain
MoRF

fix 73.03±0.03 66.72±0.03 58.72±0.07 52.51±0.04 48.52±0.08 48.79±0.06 44.43±0.06
lin 74.57±0.08 71.18±0.06 68.70±0.08 67.24±0.08 64.82±0.11 57.68±0.06 32.59±0.09
gan 76.57±0.03 74.70±0.04 72.51±0.09 71.19±0.07 69.64±0.08 60.89±0.15 21.11±0.16

Retrain
LeRF

fixed 72.39±0.39 71.76±0.41 71.21±0.30 70.26±0.50 69.83±0.22 68.32±0.45 63.29±0.56
lin 72.86±0.24 71.63±0.27 70.67±0.42 70.08±0.30 69.82±0.22 68.10±0.18 60.12±0.34
gan 75.97±0.27 74.73±0.27 73.41±0.24 72.74±0.34 72.20±0.28 69.89±0.26 57.57±0.24

No-Retrain
LeRF

fixed 69.61±0.04 64.90±0.02 57.88±0.05 51.67±0.09 46.93±0.06 42.40±0.09 37.10±0.03
lin 71.84±0.06 66.71±0.08 63.79±0.05 61.46±0.09 59.69±0.09 55.09±0.06 35.72±0.13
gan 75.13±0.02 72.13±0.05 70.25±0.05 68.56±0.08 67.35±0.08 62.32±0.13 24.61±0.19

Table 7. Mean accuracy at each η by using GB-SG in all methods with standard deviations of five individual runs. For LeRF, the accuracy
is at (1-η).

(in particular for the No-Retraining setup), small differences might already lead to a change in the ranking and the results
are in general noisier than on CIFAR-10. In summary, we observe similar trends, although the consistency gain between
MoRF/LeRF in No-Retrain is not as pronounced. Nevertheless, a perfect agreement between MoRF/LeRF might not be
desirable.

D.3. Extended Figures

Full qualitative results of using four variants in evaluation strategies (“Retrain”/“No-Retrain”, MoRF/LeRF) for three
different imputation operators (fixed value/Noisy Linear/GAN imputation) are listed from Figure 19 to Figure 24. Figure 20
and Figure 23 show the evaluation results when using our Noisy Linear Imputation for IG- and GB-family attribution
methods, respectively. From results, we see that using our Noisy Linear Imputation, the consistency between the evaluation
results using “Retrain” and “No-Retrain” are more consistent compared to using the fixed value imputation. Therefore,
retraining can be safely skipped by using our Noisy Linear Imputation.
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Strategy Retrain No-Retrain

fixed† lin gan fixed lin? gan

Time 3903±117 s 4686±2 s 6421±74 s 18.0±0.1 s 33.3±0.1 s 35.0±0.1 s
Relative 100 % 120 % 164 % 0.5 % 0.9 % 0.9 %

Table 8. Mean runtime (5 runs) for evaluating a single explanation method (IG) on three imputation operators. † refers to ROAR, and ? to
our ROAD.

Retrain No-Retrain Retrain No-Retrain
MoRF MoRF LeRF LeRF

fixed† lin gan fixed lin∗ gan fixed lin gan fixed lin gan

Retrain
MoRF

fixed†
1.00
±0.00

lin
0.68
±0.02

1.00
±0.00

gan
0.76
±0.01

0.82
±0.01

1.00
±0.00

No-Retrain
MoRF

fixed
0.15
±0.01

0.38
±0.02

0.23
±0.01

1.00
±0.00

lin∗
0.66
±0.01

0.84
±0.01

0.86
±0.01

0.43
±0.01

1.00
±0.00

gan
0.65
±0.01

0.62
±0.01

0.84
±0.01

0.14
±0.01

0.78
±0.01

1.00
±0.00

Retrain
LeRF

fixed
-0.01
±0.01

0.48
±0.02

0.28
±0.02

0.66
±0.00

0.47
±0.02

0.13
±0.01

1.00
±0.00

lin
0.16
±0.01

0.61
±0.01

0.34
±0.01

0.78
±0.01

0.50
±0.01

0.10
±0.01

0.87
±0.01

1.00
±0.01

gan
0.15
±0.01

0.59
±0.01

0.32
±0.01

0.74
±0.00

0.50
±0.01

0.10
±0.01

0.90
±0.01

0.96
±0.01

1.00
±0.00

No-Retrain
LeRF

fixed
0.49
±0.01

0.44
±0.01

0.69
±0.01

0.01
±0.00

0.60
±0.00

0.77
±0.00

0.09
±0.01

0.03
±0.01

-0.03
±0.00

1.00
±0.00

lin
0.21
±0.01

0.60
±0.01

0.38
±0.01

0.81
±0.00

0.58
±0.01

0.22
±0.01

0.85
±0.00

0.94
±0.01

0.91
±0.00

0.10
±0.00

1.00
±0.00

gan
0.05
±0.01

0.47
±0.01

0.17
±0.01

0.69
±0.00

0.36
±0.00

-0.07
±0.01

0.85
±0.00

0.86
±0.01

0.90
±0.01

-0.14
±0.00

0.79
±0.00

1.00
±0.00

Table 9. CIFAR-10: Rank Correlations between all evaluation strategies used with standard deviations computed by considering the
rankings obtained through five consecutive runs as independent. Results indicated in bold correspond to those reported in the main paper.
The ROAR benchmark is marked by † and our ROAD by ∗.
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Figure 13. Consistency comparison using Fixed Value imputation on IG-based methods on CIFAR-10
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Figure 14. Consistency comparison using Noisy Linear imputation on IG-based methods on CIFAR-10
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Figure 15. Consistency comparison using GAN imputation on IG-based methods on CIFAR-10
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Figure 16. Consistency comparison using Fixed Value imputation on GB-based methods on CIFAR-10
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Figure 17. Consistency comparison using Noisy Linear imputation on GB-based methods on CIFAR-10
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Figure 18. Consistency comparison using GAN imputation on GB-based methods on CIFAR-10
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Retrain No-Retrain Retrain No-Retrain
MoRF MoRF LeRF LeRF

fixed† lin gan fixed lin∗ gan fixed lin gan fixed lin gan

Retrain
MoRF

fixed†
1.00
±0.00

lin
0.48
±0.03

1.00
±0.00

gan
0.50
±0.04

0.79
±0.03

1.00
±0.00

No-Retrain
MoRF

fixed
0.12
±0.01

0.57
±0.02

0.50
±0.01

1.00
±0.00

lin∗
0.61
±0.01

0.81
±0.02

0.67
±0.04

0.31
±0.01

1.00
±0.00

gan
0.74
±0.01

0.79
±0.02

0.67
±0.04

0.35
±0.01

0.86
±0.00

1.00
±0.00

Retrain
LeRF

fixed
-0.26
±0.02

0.41
±0.02

0.30
±0.02

0.53
±0.01

0.10
±0.01

0.11
±0.01

1.00
±0.00

lin
-0.40
±0.02

0.26
±0.04

0.19
±0.04

0.30
±0.03

-0.05
±0.01

0.09
±0.01

0.83
±0.01

1.00
±0.00

gan
-0.18
±0.01

0.46
±0.04

0.32
±0.04

0.50
±0.03

0.13
±0.02

0.14
±0.03

0.89
±0.02

0.83
±0.01

1.00
±0.00

No-Retrain
LeRF

fixed
0.79
±0.02

0.79
±0.03

0.63
±0.05

0.32
±0.01

0.85
±0.00

0.89
±0.00

0.02
±0.01

-0.15
±0.02

0.10
±0.03

1.00
±0.00

lin
-0.28
±0.02

0.35
±0.02

0.28
±0.04

0.46
±0.00

-0.03
±0.00

-0.06
±0.00

0.89
±0.01

0.81
±0.02

0.87
±0.01

-0.11
±0.00

1.00
±0.00

gan
-0.45
±0.02

-0.08
±0.03

-0.04
±0.04

0.23
±0.00

-0.37
±0.00

-0.44
±0.00

0.58
±0.01

0.61
±0.01

0.54
±0.00

-0.41
±0.00

0.70
±0.00

1.00
±0.00

Table 10. Food-10: Rank Correlations between all evaluation strategies used with standard deviations computed by considering the
rankings obtained through five consecutive runs as independent. The ROAR benchmark is marked by † and our ROAD by ∗. Bold results
highlight the consistency between Retrain and No-Retrain (still very high) as well as MoRF and LeRF evaluation strategies using different
imputation operators (fair increase when using Noisy Linear and GAN imputations instead of fixed imputation in “Retrain”, decrease in
“No-Retrain”).

20 40 60
% removed (MoRF)

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

IG
IG-SG

IG-SQ
IG-Var

(a) MoRF, Retrain

20 40 60
% removed (LeRF)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

IG
IG-SG

IG-SQ
IG-Var

(b) LeRF, Retrain

20 40 60
% removed (MoRF)

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

IG
IG-SG

IG-SQ
IG-Var

(c) MoRF, No-Retrain

20 40 60
% removed (LeRF)

0.2

0.4

0.6

A
cc

ur
ac

y

IG
IG-SG

IG-SQ
IG-Var

(d) LeRF, No-Retrain

Figure 19. Consistency comparison using Fixed Value imputation on IG-based methods on Food-101.
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Figure 20. Consistency comparison using Noisy Linear imputation on IG-based methods on Food-101.
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Figure 21. Consistency comparison using GAN imputation on IG-based methods on Food-101.
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Figure 22. Consistency comparison using Fixed Value imputation on GB-based methods on Food-101.
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Figure 23. Consistency comparison using Noisy Linear imputation on GB-based methods on Food-101.
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Figure 24. Consistency comparison using GAN imputation on GB-based methods on Food-101.
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Towards Human-Centered Explainable AI: A Survey
of User Studies for Model Explanations

Yao Rong , Tobias Leemann , Thai-Trang Nguyen , Lisa Fiedler , Peizhu Qian , Vaibhav Unhelkar ,
Tina Seidel , Gjergji Kasneci , and Enkelejda Kasneci

(Survey Paper)

Abstract—Explainable AI (XAI) is widely viewed as a sine qua
non for ever-expanding AI research. A better understanding of
the needs of XAI users, as well as human-centered evaluations of
explainable models are both a necessity and a challenge. In this
paper, we explore how human-computer interaction (HCI) and
AI researchers conduct user studies in XAI applications based on
a systematic literature review. After identifying and thoroughly
analyzing 97 core papers with human-based XAI evaluations over
the past five years, we categorize them along the measured char-
acteristics of explanatory methods, namely trust, understanding,
usability, and human-AI collaboration performance. Our research
shows that XAI is spreading more rapidly in certain application
domains, such as recommender systems than in others, but that
user evaluations are still rather sparse and incorporate hardly any
insights from cognitive or social sciences. Based on a comprehensive
discussion of best practices, i.e., common models, design choices,
and measures in user studies, we propose practical guidelines on
designing and conducting user studies for XAI researchers and
practitioners. Lastly, this survey also highlights several open re-
search directions, particularly linking psychological science and
human-centered XAI.

Index Terms—Explainable AI (XAI), human-centered XAI,
explainable ML, user study, human-AI interaction.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) is driving digital transfor-
mation and is already an integral part of various every-

day technologies. Recent developments in AI are essential to
progress in fields such as recommendation systems [97], [98],
[99], autonomous driving [100], [101], [102] or robotics [103],
[104], [105]. Moreover, AI’s success story has not excluded
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high-stakes decision-making tasks like medical diagnosis [106],
[107], [108], credit scoring [109], [110], [111], jurispru-
dence [112], [113] or recruiting and hiring decisions [114],
[115], However, the behavior and decision-making processes
of modern AI systems are often not understandable, so they are
frequently considered black boxes. Deploying such black-box
models presents a serious dilemma in certain safety-critical do-
mains, for instance, public health or finance [116]. This is due to
the necessity for a transparent and trustworthy AI system, which
is required by both practitioners (to gain better insights into
system functioning) and end users (to rely on model decisions).

Methods to increase the interpretability and transparency of
an AI system are developed in the research area of Explainable
AI (XAI). Specifically, human-centered XAI, which addresses
the importance of human stack-holders to the AI systems, has
been proposed and discussed since [117], [118]. While a huge
number of model explanations are available, the question of how
to transparently evaluate their quality is still an open research
question, and hence, extensively studied in recent years. A popu-
lar taxonomy of evaluation strategies for XAI methods proposes
three categories: functionally-grounded evaluation, application-
grounded evaluation, and human-grounded evaluation [119].
While functionally-grounded measures do not require human
labor, the other two involve human subjects and are more costly
to conduct.

Many functionally-grounded measures have been proposed
to evaluate XAI algorithms (see [120] for review), however, the
difficult comparability between different automatic evaluation
measures is a common problem [121], [122]. Another drawback
of automated measures is that there is no guarantee that they
truly reflect humans’ preferences [40], [123]. Consequently,
user studies in XAI, especially when moving towards real-world
products, are inevitable if one wishes to test more general beliefs
of the quality of explanations [16]. However, only a small portion
(about 20%) of XAI evaluation projects consider human sub-
jects [120]. There exist efforts in developing taxonomies or intro-
ducing the definitions or implications of different human-centric
evaluations [124], [125], [126], but the recent generation of user
studies and their findings have not been systematically discussed
yet. Moreover, Yang et al. [127] point out that XAI is growing
separately and treated differently in different communities (e.g.,
machine learning and HCI). Hence, effective guidance in XAI
user study design is crucial to better let both XAI algorithm

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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TABLE I
OVERVIEW OF THE CORE PAPERS CONTAINING USER STUDIES IN XAI GROUPED BY CATEGORIES OF MEASUREMENTS AS SOME CORE PAPERS ASSESS

QUANTITIES BELONGING TO SEVERAL GROUPS, A SINGLE PAPER CAN ALSO BE LISTED AMONG MULTIPLE GROUPS

and application designers recognize the users’ real needs. This
work aims to bridge this research gap in modern XAI user study
design by distilling practical guidelines for user studies through
a comprehensive and structured literature review.

Therefore, we reviewed highly relevant papers that include
user studies from top-tier HCI and XAI venues. Specifically,
we included the recent five years of CHI, IUI, UIST, CSCW,
FA(cc)T, ICML, ICRL, NeurIPS, and AAAI. As we aim at ana-
lyzing human user evaluation of advanced model explanations,
we ran search queries involving keywords from the two groups
“explainable AI” and “user study”, as listed in the Table II.
We selected the papers containing at least one keyword from
each group, resulting in over one hundred papers. Then, we
thoroughly studied these papers and filtered out papers that
did not fulfill the criteria: (1) deploying explainable models
or techniques and (2) conducting an assessment with human
subjects. We identified a total of 97 core papers for this survey
(see Table I for an overview of core papers with respect to their
measured quantities in user studies). Based on these core papers,
we performed a comprehensive analysis to fill the research gap
by offering a systematic overview of user studies in XAI. We
highlight the main contributions:

1) To offer an overview of the foundational work of user stud-
ies in XAI, we investigated references of all 97 core papers
in a data-driven manner. Likewise, we analyzed follow-up
works building on these core papers (identified through
citations of core papers) to reveal the fields impacted by
XAI user evaluations (Section III).

2) We present a summary of the design details in XAI user
studies with particular focus on the deployed models
and explanation techniques, experimental design patterns,
participants as well as concrete measures, providing inspi-
ration of how to collect human assessment (Section IV).

3) We discuss the impact of using explanations on different
aspects of user experience (Section V), which can serve
as an overview of the effectiveness of the current XAI
technology and a summary of the state-of-the-art.

4) Based on the examined user study details and their best-
practice findings, we synthesize guidelines for designing
an effective user study for XAI (Section VI).

5) Beyond the user study design, we discuss potential
paradigms of AI systems understanding humans in the
context of e.g., theory of minds, as well as other future
research directions (Section VII).

Our study highlights under-investigated areas in the context
of current user-centered XAI research such as cognitive or psy-
chological sciences through data-driven bibliometric analysis.
Together with our proposed guidelines, we believe that this
work will benefit XAI practitioners and researchers from various
disciplines and will help to approach the overarching goal of
human-centered XAI.

II. RELATED WORK

As a vast amount of explanation methods have been pro-
posed, many researchers seek a systematic overview of the ever-
growing field of XAI. In [128], [129], [130], [131], [132], [133],
the authors aim to cover many facets of XAI technologies rang-
ing from problem definitions, goals, AI/ML model explanations
to evaluation measures, while in [134] the authors emphasize the
research trends and challenges in Human-Computer-Interaction
(HCI) applications. A large body of XAI surveys focuses
mainly on the interpretability of a particular family of models
and corresponding explanation techniques. For instance, [135],
[136], [137] investigate explanations for Deep Neural Networks
(DNNs), where models often take images as input [135], [136].
Joshi et al. [137], however, provide an extensive review for
DNNs with multimodal input for instance that of joint vision-
language tasks. Causal interpretable models are gaining more
attention recently and Moraffah et al. [138] provide a literature
review for causal explanations. A systematic literature review on
explanations for advice-giving systems is conducted in [139].
Among these surveys focusing on general XAI technologies,
evaluation measures are only briefly examined.

One challenge in XAI research is to evaluate and com-
pare different explanation methods, due to the multidisci-
plinary concepts in interpretability/explainability [119], [120],
[140]. Evaluation measures can be divided into two groups:
human-grounded measures that rely on human subjects and
functionally-grounded metrics that can be computed without
human subjects [119], [120]. Many researchers seek solutions to
evaluate explanations automatically. A comprehensive literature
review with a focus on these functionally-grounded evaluation
methods (without human subjects) can be found in [120]. Ex-
plainability is an inherently human-centric property, therefore,
the research community should and has started to recognize
the need for human-centered evaluations when working on
XAI [119], [141].
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Fig. 1. Roadmap of our literature analysis. We find out the foundational works of core papers and their application domains using a data-driven method introduced
in Section III. Three main research questions in user studies are distilled from core papers. Methods related to measures of each category are discussed in Section
IV, and findings of the research questions are summarized in Section V. Based on the findings, we propose future directions to further promote human-centered
XAI in Section VII. We distill important messages in this figure, but refer to the discussion in the corresponding sections for more details.

For instance, Chromik and Schuessler [125] propose a taxon-
omy on XAI evaluations involving humans. Mohseni et al. [126]
summarize four groups of human-related evaluation metrics:
mental model (e.g., user’s understanding of the model), user
trust, human-AI task performance and explanation usefulness
and satisfaction (i.e., user experience). Hoffman [124] places
more focus on psychometric evaluations by proposing a con-
ceptual model of the XAI process and specifying four key
components that should be evaluated: explanation goodness
and satisfaction, (user’s) mental models, curiosity, trust and
performance. Beyond assessing evaluation methods, XAI ap-
plications are designed to eventually support decision-making
and benefit end users. A recent review by Lai et al. [142]
considers studies on collaborative Human-AI decision-making,
which may include AI agents providing explanations. Success
in human-AI decision-making tasks can be seen as one amongst
many other ways to evaluate the effect of explanations. Ferreira
and Monteiro [143] present a review of the user experience of
XAI applications to answer who uses XAI, why, and in which
context (what + when) the explanation is presented.

Closer to our focus on user studies concerning XAI, Liao
et al. [141] study user experiences with XAI to reveal pitfalls
of existing XAI methods, underscoring the important role of
humans in XAI development. As suggested by Doshi-Velez and
Kim [119], a human-subject experiment needs to be designed
sophisticatedly to reduce confounding factors. In contrast to
previous surveys on XAI, we aim to provide XAI researchers
and practitioners with a comprehensive overview of the re-
search questions explored in user studies, along with thorough

information on experimental design. To this end, we present
a practical guideline in user study design, which can be used
as a starting point for future exploration of human-centric XAI
applications.

III. METHODOLOGY

To analyze the collected papers related to user studies on
XAI, we first categorize them into four groups based on their
objectives. From these studies, we distill three main research
questions concerning the effects of model explanations on each
objective. We then summarize the methods used in these studies
to quantify these objectives. Important findings from the pa-
pers are discussed, and we propose future directions based on
these findings. Additionally, we examine the foundational works
upon which these user studies are based (i.e., their references)
and the follow-up papers that cite them, shedding light on the
foundational works and emerging trends in human-centered XAI
studies. Fig. 1 presents a roadmap of our analysis.

In this section, we first describe the criteria used for their
categorization. We then discuss the foundational and application
domains of these papers, providing a broader view before diving
into their detailed analysis.

A. Categorization of User-Study Objectives

Since the core papers cover various factors of model explana-
tions, we decided to categorize the core papers into different
clusters to better study their commonalities and differences.
In [119], interpretability in the context of ML systems is defined
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as the ability to explain or present model predictions in under-
standable terms to a human. Beyond fostering comprehension,
the authors argue that interpretability can assist in qualitatively
ascertaining whether other desiderata, such as usability and trust
are met. During a profound study of the relevant literature that
was previously selected, we identified four sensible categories,
that are derived from the considered dependent variables in user
studies (desiderata of interpretability). These four categories
are trust, understanding, usability, and human-AI collaboration
performance. In Table I, the studied papers are categorized
according to the measured quantities. As each measure can
usually be assigned to only one of these categories, we found
this distinction to be intuitive.

These categories reflect different functionalities (goals) of
XAI. As interpretability is defined as “the ability to explain
or to present in understandable terms to a human.”, humans’
“understanding” is the direct goal of XAI. To be concrete,
understanding in the context of interacting with an ML model
refers to a user’s grasp or “mental model” of how the model
operates, and this knowledge grows from using the system and
from clear explanations about it [141]. “Usability” is commonly
studied in human-computer interaction [144], which is one of
the desiderata of XAI [119]. According to [145], usability is
the extent to which users can utilize a product to successfully,
efficiently, and satisfactorily accomplish their intended objec-
tives. Thus, this category encompasses user studies that employ
model explanations to support users in achieving specific tasks.
In usability, different aspects are measured, for instance, whether
the system is easy to use or how much cognitive load it requires.
The aspect “undesired behavior detection” relates to use cases
where explanations uncover model discriminatory behaviors,
such as the utilization of undesired features. “Trust” in AI is
summarized as a combination of the user’s confidence in a
model’s accuracy, a personal comfort level with understand-
ing and using it, and the willingness to let the model make
decisions [140]. It encompasses more requirements. Human-AI
collaboration performance is related to scenarios where the AI
system provides its predictions, but humans retain the final deci-
sions [89]. In this case, model explanations are deployed to reach
a performance superior to that of the AI system or the human
decision-maker alone. These categories cover different depen-
dent variables of interest in the reviewed user studies, primarily
related to how XAI methods function. These functions mainly tie
to the models’ reasoning and knowledge representation. A wider
perspective on XAI, which assesses generalization or robustness,
remains an important field for future exploration through user
studies.

B. Foundations of User Studies

Based on a data-driven bibliometric analysis of the refer-
ences in core papers, we highlight significant research topics
within the “Foundational Domain” in Fig. 1. It is evident that
model explanations and interpretability are pivotal components.
This includes papers that introduce explanation methods such
as LIME [146], SHAP [147], and other attribution methods.

These are a frequent subject of study in works measuring un-
derstanding and usability. Additionally, convolutional networks,
which are commonly employed in experiments, use tools like
GradCAM [148] and various saliency maps to generate model
explanations. Notably, many research papers appear within the
domain of recommender systems, because many XAI user stud-
ies are conducted in the context of recommendation solutions.
he EU’s General Data Protection Regulation (GDPR) [149] is
frequently mentioned in core papers due to the ongoing debate
on the right to explanation” [150]. This debate has significantly
influenced the shift in modern AI systems towards explainability.
While the ultimate consumers of model explanations are hu-
mans, well-established research domains that focus on human
understanding are underrepresented. For instance, only a few
papers related to “Cognition” are cited compared to those on
other algorithmic topics. Millecamp et al. [18] suggest enhanc-
ing XAI theory with insights from social sciences, including
cognitive science and psychology. Given the scant references to
psychology, it appears that only a handful of XAI user studies
delve into evaluating XAI from a psychological standpoint.
We highlight a nascent research domain of XAI frameworks
based on human cognition and behavior theories [141]. This
theoretical guidance can also offer conceptual tools for better
evaluating XAI from user perspectives. More details about
common references can be found in Appendix A.1, available
online.

C. Impact of User Studies

Fig. 1 presents applications that make use (and thus are the
consumers) of the findings from core papers. We noticed that
studies on user understanding and trust span a wide range of
applications. For example, trust is frequently addressed in the
contexts of medical diagnosis and transportation, indicating its
significance in high-risk scenarios. Recommendation systems
emerge as a primary focus in follow-up works. Papers on
usability have a significant impact on fields like data visual-
ization, software development, and education. In these areas,
models frequently serve as tools to ease the burden on end
users. Human-AI collaboration measures particularly promote
the further development of robotics and or natural language
processing. The prominence of recommendation systems in
both foundational works and their impact implies that XAI is
an integral component of contemporary recommendation sys-
tems. A comprehensive overview of the fundamental works and
application domains can be found in Appendix A.1, available
online.

IV. COMPREHENSIVE USER STUDY ANALYSIS

In this section, we present details of the covered XAI user
studies. We first introduce some commonly used AI models and
explanation techniques (Section IV-A), followed by a discus-
sion of application domains and measures with respect to the
four measured quantities. The experimental designs, as well as
analysis tools are presented in Section IV-C.
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TABLE II
KEYWORDS FOR OUR PAPER SEARCH QUERY

TABLE III
MODELS AND EXPLANATIONS IN CORE PAPERS

A. Models and Explanations

As our selected core papers comprise a large spectrum of
AI models, data modalities, and explanation approaches, we
initially list the models and explanation techniques deployed
along with the corresponding core paper references in Table III.
It presents the utilization of explanation types in columns and
model types in rows. The explanation methods used is organized
according the the taxonomy by Molnar [151]. First, there are
intrinsically interpretable models, also known as white-box mod-
els. For instance, white-box models include decision trees and
linear models. Second, there are black-box models that provide
no parameter access or are too complex to be explained in a
human-understandable way [152]. These include ensembling
techniques such as Random Forests or neural models.

As for explanation techniques, we identified five key types
in the scope of the surveyed papers (rows of Table III).
Most frequently used are feature-based (attribution) explana-
tions, for instance, SHAP (Shapley additive explanations [147])

and LIME (Local Interpretable Model-Agnostic Explana-
tions [146]). There is a clear differentiation between local,
instance-wise, explanations and global explanations that apply
to the model in its entirety. For instance, the weights of a linear
model have a global scope. This differentiation is common
among these feature-based explanations, where most of the
papers using local explanations. Other popular explanation types
are example-based explanations, counterfactual explanations,
which aim at providing actionable suggestions for attaining a
user-preferred prediction by changing certain input features, and
concept-based explanations, which use meaningful high-level
concepts such as objects or shapes to explain a prediction.

Besides these four main types of explanations, there are other
explanations such as rules [11], [88] or game strategies [7], [10]
when AI plays games. More details about concrete models and
explanations can be found in Appendix B, available online.

B. Measurements

The effectiveness of explanations can be characterized from
several angles. We specifically identified the categories of trust,
understanding, usability, and human-AI collaboration perfor-
mance. In this section, we give an overview of the contexts in
which each of these variables is studied and the measures used
to quantify them.

1) Trust: User trust is studied in decision-making applica-
tions such as image classification [13], [17], (review) deception
detection [25] or loan approval [27]. Besides decision mak-
ing, [5], [8], [16], [18], [19], [23] study user trust in the domain
of recommendation systems. Whether explainable ML models
can increase user trust in the medical domain is studied in [1],
[6], [9]. Moreover, Colley et al. [3] measure user trust in an
autonomous driving application with and without explanations.

Trust measures used in much of the existing research can be
divided into two groups: self-reported and observed trust [155].
Self-reported trust is commonly measured by asking users to
fill out questionnaires whereas observed trust is quantified by
humans’ agreement with the model’s decisions. In Table III in
Appendix, available online, trust measures in these two groups
are listed. The agreement rate of users with the model decisions
is commonly used [9], [11], [12], [25] as a measure of observed
trust. Parallel to observed trust measurement, van der Waa
et al. [156] ascribe the user’s alignment behaviors to the persua-
sive power of model explanations, i.e., the capacity to convince
users to follow model decisions despite the correctness. As an
extension, trust calibration is defined based on this measure.
For example, a high agreement rate to wrongly made decisions
represents overtrust, while a low agreement rate to correct
decisions means undertrust [12]. In self-reported measurements,
researchers either utilize well-developed questionnaires or self-
designed ones, with the exception of [4] which conducts a semi-
structured interview to explore user opinions. Several works [6],
[11], [13], [16], [17], [18], [19], [24], [27] propose their own
questionnaires. Among these, a subgroup [13], [16], [18], [19],
[24] simply asks users to rate a single statement such as “I
trust the system’s recommendation/decision”, which is named
as one-dimensional trust by [8]. When deploying previously
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proposed questionnaires [2], [3], [5], [7], [8], [10], [21], [22],
[23], [157], Trust in Automation [158] is the most commonly
used one, in which the underlying constructs of trust between
human and computerized systems are explored.

2) Understanding: An important goal of explanation tech-
niques is to foster users’ understanding of complex ML sys-
tems. An important separation has to be made between users’
perceived understanding and their actual comprehension of the
underlying model, as the two often do not agree [35], [40]. Cheng
et al. [22] explicitly differentiate between objective understand-
ing and self-reported understanding, which we term subjective
understanding in this work. While subjective understanding is
usually measured through questionnaires, measuring objective
understanding requires a proxy task where the users’ understand-
ing is put to a test. Additionally, user studies can be run to assess
how well users can understand the explanation itself (and not the
underlying model). This can be an important sanity check and is
particularly used in the domain of conceptual explanations [62],
[159], where the intelligibility of concepts needs to be verified.
We refer to the third category as understanding of explana-
tions but defer its detailed findings to Appendix C.3, available
online.

Objective Understanding: Works in the subdomain of objec-
tive understanding deploy proxy tasks to verify users’ under-
standing of a model’s inner workings. The most commonly con-
sidered domain in works on understanding is finance [35], [39],
[40], [47], [48], [49], [53] followed by image classification [13],
[21], [52]. One of the most critical design choices when assessing
objective understanding is the selection of a suitable proxy task.
Doshi-Velez and Kim [119] argue that the task should “maintain
the essence of the target application” that is anticipated. One of
the most prominent tasks is forward simulation [119], [140].
This task demands subjects that are given an input to simulate,
i.e., predict, the model’s output. The extent to which participants
can successfully provide the model’s output is also referred to
as simulatability [140]. However, scholars have designed many
more tasks to quantify understanding and applied them across
a variety of data modalities (cf. Table 2 in Appendix, available
online for an exhaustive listing).

We briefly describe other common tasks below. A special
variant of forward simulation is called relative simulation. In
this task, users predict which example out of a predefined choice
will have the highest prediction score (or class probability). A
manipulation or counterfactual simulation task [119] asks users
to manipulate the input features in such a way that a certain
model outcome (counterfactual) is reached. Users’ performance
on this task can be used as a proxy for their understanding. Lip-
ton [140] pointed out that simulatability can only be a reasonable
measure, if the model is simple enough to be captured by humans
and that simpler tasks are required otherwise. An example could
be a feature importance query, where users have to tell which
features are actually used by the model. A directed and more
local version of this task is marginal effects queries, where the
subjects predict how changes in a given input feature will affect
the prediction (e.g., “Does increasing featureX lead to a higher
prediction of Y being class 1?”). Because explanations should
allow the identification of weaknesses in models, the task of

failure prediction measures the accuracy of users’ prediction
when the model prediction is wrong.

Subjective Understanding: Besides the objective understand-
ing which is supported by performance indicators, understand-
ing of a model may be subjective, i.e., it may depend on a user’s
own perception. The most commonly used applications that
measure subjective understanding are various recommendation
system setups [16], [33], [34], [38].

Most of the works assess the subjective understanding of a
user with a post-task questionnaire. Guo et al. [7] adapted a
popular questionnaire designed for recommendation systems by
Knijnenburg et al. [160], while Bell et al. [39] accommodated
the questionnaire which originally intended to measure the in-
telligibility of differenet explanations by Lim and Dey [161].
On the other hand, agreement to simple subjective statements
such as “I understand this decision algorithm” [22], “I un-
derstand how the AI...” [13], [17] or “The explanation(s) help
me to understand...” [33] can be collected to assess subjective
understanding.

3) Usability: Usability is a key concern of every HCI system
and thus applies to almost all domains. This is reflected in the
surveyed papers, where usability is studied in a wide range
of setups and contexts. We also include application-specific
performance measures in this category.

Based on the measurements in the user studies, we refined us-
ability into measures of helpfulness, workload (cognitive load),
satisfaction, ease of use and detecting undesired behaviors of
the system, as shown in Table I. To assess workload (cognitive
load), NASA-TLX scale [162] is used in [3], [6], [16], [21], [66],
while Abdul et al. [48] measure cognitive load by capturing the
log-reading time of memorizing the explanation. Most of the
works use self-designed questionnaires or statements to measure
satisfaction [6], [16], [18], [19], [29], [30], [69], [70], however,
the Explanation Satisfaction Scale [163] can be deployed as an
established alternative [1], [47]. Helpfulness can be assessed
by simply asking for subjective ratings of the explanations for
accomplishing a specific task [13], [46], [56], [65], [67], [68].
Colley et al. [3] use an adapted version of the System Usability
Scale proposed in [164].

Using model explanations to audit models is one purpose
of explainability [129]. Some of the surveyed works study
how model explanations can assist users in detecting undesired
behaviors of models. These issues mainly include (perceived)
unfairness in the model decision-making [38], [74], [78], [79],
biases in models [72] or features [57], and wrong decisions
(failures) [24] in the studied papers. A detailed summary of types
of undesired behaviors is listed in Table VI. In the undesired
behavior detection, the effectiveness of explanations is evaluated
by objective performance measures, such as the number of bugs
identified [71], the share of participants that identify a certain
bias [57, First Experiment] or by the deviations between model
predictions and human predictions for unusual samples [53].
The perception of users regarding fair treatment by a system has
primarily been researched in high-stakes applications such as
granting loans [27] or granting bail for criminal offenders [73],
[74], [75]. For example, [73], [74], [75] investigate the fairness
of COMPAS, a commercial criminal risk estimation tool that was
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TABLE IV
EXPERIMENTAL DESIGNS IN CORE PAPERS

used in the US to help make judicial bail decisions. It is also con-
sidered in everyday use-cases such as news [38] and music [77]
recommendations, or possible career suggestions [76], where
a bias in the underlying system can be to the detriment of the
user. As the assessment of fairness is a very subjective matter,
questions regarding perceived fairness are prevalent, e.g., “how
the software made the prediction was fair” [74], which can be
answered on 5- or 7-point Likert scales [2], [27], [38], [73],
[74], [75]. Among these works, an effective explanation is the
one that can either increase or decrease the fairness perceptions,
since the aim of explanations is to show fairness or unfairness.
An exhaustive overview of measures for usability is given in
Table IV of the Appendix, available online.

4) Human-AI Collaboration Performance: The goal of
human-AI teaming is to improve the performance in AI-
supported decision-making above the bar set by humans or an
AI alone [89]. Improving human performance with the help of
AI has been considered in games [10], [88], question answering
tasks [89], [91], deception detection [25], [90] and topic model-
ing [29], [30].

The most common assessment is to rate AI-aided human
performance by the percentage of correctly predicted instances
in the decision-making process [25], [89], [90]. Paleja et al. [10],
however, define the performance as the time to complete the task.
In [88], performance is measured in a game-based application,
chess, using a winning percentage (which is commonly used in
sports) as well as a percentile rank of player moves.

C. Experimental Design and Analysis

There are three common experimental settings when conduct-
ing user evaluation: between-subjects (or between-groups) de-
signs, within-subjects designs, and mixed designs that combine
elements of both. An overview of the designs found in the core
papers and their participant numbers is presented in Table IV
and Fig. 2, respectively.

1) Between-Subjects: With slightly above 55% of the user
studies conducted in a between-subjects manner, i.e., one subject
is only exposed to one condition, this design choice is most
common in the XAI literature. The number of participants in
the between-subjects manner usually starts at around 30 partic-
ipants, while it may go up to 1070 in total for 3 conditions as
in [17] and to 1250 for 5 conditions in [53]. However, the number
of participants can be limited when the studied application is
designed for specific groups of lay persons, which cannot be
easily recruited from the Internet platforms such as Amazon

Fig. 2. Distribution of participant numbers in the surveyed user studies by
design and participant type (each bar represents one study). Per-design means
are indicated in bold.

Mechanical Turk. For instance, Ooge et al. [8] use 12 school
students per condition. Some authors place particular emphasis
on participants being similar to the average demographic [73],
[75].

The conditions usually include the different explanation tech-
niques in combination with other parameters such as the model,
data set, data modality, or a number of features used as in-
dependent variables. Note that a full grid design with many
independent variables may quickly result in a very high number
of conditions, which in turn requires many participants. The out-
come variable of interest is commonly measured on a numerical
or ordinal scale right away, however, in the fairness domain,
qualitative analyses are sometimes obtained through conducted
interviews or written responses [2], [27], [73].

The statistical analysis directly follows from this design. If
one is interested in identifying significant differences between
the groups, common statistical hypotheses tests are used. For
overall comparison, one or two-way ANOVA tests are the most
commonly used statistical tool. Interesting post-hoc compar-
isons between two groups can be made with a standard T-test,
if the data is normally distributed with equal variance, or by
using non-parametric tests such as the Wilcoxon rank-sum
test (also known as Mann-Whitney U-test) for comparison of
two populations (e.g, [57]) or the Tukey HSD test (e.g., [49])
for multiple populations. When running multiple post-hoc
tests, some works make use of the Bonferroni correction
(e.g, [57]).

2) Within-Subjects: Around 30% of the papers use the
within-subjects design, where each participant sequentially
passes through all conditions and provides feedback. Fewer
participants are recruited in within-subjects experiments com-
pared to the between-subjects ones. Hence, they are particularly
popular when participants with restrictive characteristics, such
as domain-specific professional expertise, are required. For ex-
ample, Suresh et al. [9] and Rong et al. [26] recruit fourteen
medical professionals and five radiologists in their user studies,
respectively. The small number of medical experts contributing
to the user study is a limitation [26], however, it is often the case
in expert user research. Gegenfurtner et al. [165] evaluate 73
sources and point out that the majority of these studies include
only five, maybe ten experts. Besides the medical domain,
other works [3], [4], [19], [21] also invite subjects with par-
ticular professions such as engineers in a technology company.
When no specific knowledge is required, however, participant
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TABLE V
USER STUDY FINDINGS WHEN USING MODEL EXPLANATIONS AS EVALUATION DIMENSIONS

numbers reach up to 740 also for within-subjects designs [93].
For within-groups designs, the Wilcoxon signed-rank test (e.g.,
used by [35], [52]) is the most common method to compare
paired samples for significant differences. Repeated-measures
ANOVA is a common analysis tool, when multiple comparisons
are required (see, e.g., [35]).

3) Mixed: The smallest group of studies, about 15%, use
a mixture of between- and within-subjects settings. In these
works, subjects are first assigned randomly to one group, where
they are exposed to multiple conditions. Anik and Bunt [2]
use knowledge background in machine learning as a between-
subjects factor to divide the participants into three groups
(expert, intermediate and beginner), while inside each group
participants interact with explanations in the context of four
different scenarios (e.g., facial expression recognition or au-
tomated speech recognition). Dominguez et al. [16] make
the presence of explanations a between-subjects condition and
different types of explanations a within-subjects factor in the
group with model explanations. A particular challenge for such
a study design is that statistical tools from both the independent-
samples and dependent-samples categories need to be
combined.

V. FINDINGS OF USER STUDIES

In this section, we summarize the primary findings from the
core papers. Table V lists findings with respect to four measured
quantities. To build an overview of the findings, we divide papers
according to their evaluation dimensions, i.e., the independent
variables in the user studies. When using the presence of expla-
nations as the evaluation aspect, the findings are summarized in
Table V. The listed impacts using explanations are to be seen in
comparison with a control group without explanations. Effects
are divided into two groups: (1) Positive effects, for example,
increasing user trust or understanding; (2) Non-positive effects:
the effect can be negative, or not significantly positive (neural),
or a mixture of different effects (e.g., feature-based explanations
have positive effects but counterfactual explanations do not).
Beyond the explanations themselves, other possible evaluation
dimensions such as that might have an impact on the perception
of XAI, for instance, AI technology literacy, model performance,
or the dimensionality of the data. Instead of using the mere pres-
ence of explanations, many works compare different explanation
techniques with each other (see Appendix D, available online for
more details).
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TABLE VI
OVERVIEW OF RESULTS FOR UNDESIRED BEHAVIOR DETECTION USING MODEL

EXPLANATIONS

As various research questions and findings are addressed
in 97 core papers, many papers compare explanation types in
order to choose a preferable one, it is not possible to cover all
results in one table. Based on them, we outline some interesting
trends in the effectiveness of explanations on user experience: (1)
Explanations are effective in improving users’ subjective under-
standing; (2) The effectiveness of explanations in increasing user
trust and usability of models is not clear; (3) Explanations are not
good at convincing users that models are fair; (4) Interactivity
of the model has positive impact on user trust, understanding
and model usability. The first three statements can validated
through the number of papers obtaining positive or non-positive
effects in each category, while the last finding is extracted from
Table V in the Appendix, available online, which details findings
with on other independent variables. We encourage the reader
to consider the short summary of primary findings in the tables
and check for further details according to their specific interests.
In the following section, we highlight some findings for each
category of measurement.

Trust: Among the papers comparing the effect of using expla-
nations to using no explanations, or placebo (randomly gener-
ated) explanations [8], [25], about half of the papers validate that
explanations have a positive impact on user trust [1], [8], [10],
[13], [16], [25], [27], [28], while the other half cannot verify this
hypothesis [3], [11], [12], [21], [22], [24]. For instance, Colley et
al. [3] investigated the explanations in an autonomous driving
task and discover that the trust is improved in simulation but
not with the real-world footage. Another example of the mixed
effect of using explanations is found in [12], where (minimal)
evidence is found that feature-based explanations help increase
appropriate trust, but counterfactual explanations do not.

Apart from using explanations as independent variables, the
user personalities or expertise may also affect their percep-
tions [2], [17], [18], [22], [23], [30]. Millecamp et al. [18] cap-
tured personal characteristics in the aspects such as the Locus of
Control defined by Fourier (“the extent to which people believe
they have power over events in their lives”), Need for Cognition
(“a measure of the tendency for an individual to engage in effort-
ful cognitive activities”) or Tech-Savviness (“the confidence in
trying out new technology”). However, no significant interaction
effect could be found between the personal characteristics and
the trust. Liao and Sundar [5] studied a recommendation system
asking users’ personal data with different explanations. They
hypothesized that explanations in a “help-seeker” style and using

the pronoun “I” would gain more trust of users than the ex-
planations formalized in a “help-provider” style. Nevertheless,
However, the opposite result is found and using self-referential
expression resulted in lower affective trust. Model performance
together with model explanation was studied in [17] for an
image recognition task. The authors found out when images were
recognized (high model performance), users feel the system
more capable (“capability” is defined as a belief of trust).

Understanding: The fundamental question in this subdomain
is to find out which explanation technique is most beneficial
for increasing the user’s understanding of a machine learning
model. As pointed out earlier, understanding can be measured
both in a subjective and objective manner.

We first discuss results on objective understanding. The goal
of increasing objective understanding was explicitly posed by
Alqaraawi et al. [54] who reported that saliency maps have
a positive effect on understanding. Wang and Yin [12] show
that counterfactual explanations and feature importance increase
users objective understanding. On the contrary, Sixt et al. [57]
find none of their examined explanation techniques (counterfac-
tuals, conceptual explanations) superior to a baseline technique
consisting of example images for each class and the work by
Hase and Bansal [40] reveals that many explanations (includ-
ing anchors, prototypes) have no effect in increasing objective
understanding, which LIME on tabular data being the only
exception. Apart from the explanation, several other factors have
been identified to have an effect on objective understanding.
Hase and Bansal [40] suggest that the data modality may have a
non-negligible impact on how different explanation techniques
increase understanding. Some results highlight that the choice
of proxy task is influential. Arora et al. [50] show that their
manipulatablity task revealed differences remained hidden when
forward simulation is used. In spite of these findings, Buçinca et
al. [13] underline that preferred explanations may be different
in a real-world application from a simulated one. Regarding
the type of model, there is disagreement on whether white or
black-box models can lead to increased objective understanding.
While black-box models without explanations resulted in higher
simulation performance than white-box models with SHAP
values in [39], Cheng et al. [22] observe that white-box models
increase simulatability and also conclude that interactivity is an
important factor when it comes to objective understanding.

In comparison with the objective understanding, the research
question in the subdomain subjective understanding is to find
out how explanations impact user’s perceived understanding [7],
[12], [17], [22], [32], [33], [34], [37], [56]. There exist a trend
of using model explanations to improve subjective understand-
ing [13], [16], [17], [28], [34], [38], [167]. However, Chromik et
al. [35] challenge the improvement in perceived understanding
with the cognitive bias named illusion of explanatory depth
(IOED) [168], which means that laypeople often have overcon-
fidence bias in their understanding of complex systems. Their
results confirm the IOED issue in XAI, i.e., questioning users’
understanding by asking them to apply their understanding
in practice consistently reduces their subjective understand-
ing. Explanations can have different impacts on subjective and
objective understandings [22], where white-box explanations
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increase objective understanding but do not have significant
impact on subjective understanding. Similar disagreements have
been observed in multiple other works [40], [167]. Radensky
et al. [33] examine the joint effects of local and global expla-
nations in a recommendation system and their results provide
evidence that both are better than either alone.

Usability: Similar to trust, it is not clear whether explanations
are effective in improving users’ perceptions of helpfulness, sat-
isfaction or other dimensions of usability. For instance, in [16],
[30], [47], the explanations have a positive effect on satisfaction,
while no significant effects on satisfaction are observed in [18],
[19], [29], [69]. Parallel to trust, Smith-Renner et al. [29]
provide evidence for the hypothesis that it is harmful to user
trust and satisfaction to show explanations by highlighting the
important words in a text classification task. A strong correlation
between self-reported trust and satisfaction can also be observed
in [3], where explanations have a positive impact in a simu-
lated driving environment, but no significant effects when using
real-world data. Beyond explanations, Nourani et al. [56] study
the order of observing system weakness and strengths, which
reveals that encountering weakness first results in a lower rate
of usage of system explanations than encountering strength first.
Schoeffer et al. [27] find out that showing feature importance
scores or counterfactual explanations (or a combination of both)
for explaining decisions helps increase the perceived fairness,
whereas highlighting important features without scores does not.
However, several studies don’t show a significant difference
between scenarios with and without explanations [27], [38],
[78]. Effects of explanations may be dependent on input samples,
as shown in [67]. The authors show that both Debiased-CAM and
Biased-CAM improve the helpfulness for a weakly blurred im-
age, however, there is no significant improvement for unblurred
or strongly blurred images. When used to assist users in detecting
undesired behaviors, model explanations are likely to identify
various types of problems that exist within models or data, as
demonstrated by [57], [71], [72]. However, successful detection
is not guaranteed. For example, Poursabzi-Sangdeh et al. [53]
show that users with model explanations are less able to identify
incorrect predictions. A limitation of current detection methods
is that users may have varying assessments, such as perceived
unfairness and irrelevance [53], [71], [73], regarding the features
used in models for decision-making. Due to this limitation, the
effectiveness of methods assessed through self-reported data
may face challenges in generalizability as discussed in [73].
Yet, these methods generally offer a one-size-fits-all solution,
failing to account for variations in individual assessments.

Human-AI Collaboration Performance: A strain of
works [25], [88], [90], [91], [95], [96], [96] show that
viewing explanations can improve human accuracy in making
decisions, especially with feature-based explanations taking
text data as input [25], [90], [91]. When using example-based
explanations in text classification, there is no improvement
in human performance [25]. Likewise, utilizing explanations
has no significant impact on human performance in [89],
[92], but simply showing model predictions has a positive
effect in [92]. Experts and novices perceive explanations
differently, for example, Feng and Boyd-Graber [91] conclude

that the performance gain of novices and experts comes from
different explanation sources. Paleja et al. [10] reveal that
explanations can improve novices’ performance but decrease
experts’ performance. Additionally, less complex models
with explanations can better convince humans in correct
decisions [90].

VI. A GUIDELINE FOR XAI USER STUDY DESIGN

Learning from the best practices of the previous works, we
summarize a handy guideline for XAI user study, which serves
as a checklist for XAI practitioners. This guideline contains sug-
gestions to avoid pitfalls that researchers could easily overlook.
We introduce our guidelines in the order of before, during and
after user studies, which reflects user study design, execution
and data analysis, respectively.

Before the User Study: When designing a user study, the
first step is to decide what to measure. To define the measured
quantities, one can consider two alternatives: using a general
definition or an application-based quantity that is specific to the
application at hand. The former one refers to a quantity that
is borrowed from previous well-established research, such as
using “trust in automation” [2], [3], [21] or “general trust in
technology” [7], [23]. To further construct “trust” as a quanti-
tative measurement, one needs to examine how existing work
has conceptualized “trust” in both social sciences context as
well as XAI and technical context [169]. The application-based
quantity depends on the application goal, for instance in a chess
game [88], the measurement is the human winning percentage
with the help of model explanations (Human-AI collaboration).

From Table V, we can see that previous works have frequently
struggled to prove the effectiveness of XAI even with respect to
a control group that is without explanation. When only different
explanation techniques are considered, there will always be
one winner explanation, but the overall benefit will remain
undisclosed (see examples in Appendix D, available online).
Therefore, it is important to compare with a baseline without
explanations to rigorously show the strength of XAI. When
a comparative design is explicitly desired, baselines such as
random explanations [28], [41], [62]).

When deploying a proxy task, its difficulty should be gauged
and monitored carefully. In the past, the forward simulation task
has been criticized as being unrealistically complex for domains
such as computer vision [54]. Thus, other proxy tasks such as
feature importance queries [57] or manipulatability checks [32],
[50] were proposed. Another important point is to choose a proxy
task that is simplified, but features many characteristics of the
application in mind [119]. Notably, the proxy task should be
designed close to the final anticipated application, as even slight
differences in the tasks may void the validity of the findings on
the proxy tasks in the real world [13].

The measurement is often dependent on the definition of
the measured quantity. For instance, in [58], the objective
understanding is measured as failure prediction (the accu-
racy of user prediction when the model prediction is wrong).
For subjective measurements such as subjective understand-
ing or trust, one-dimensional measures (i.e., simply rating one
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question such as “Do you trust the model explanation?”) have
the drawback that they cannot completely reflect different con-
structs of measured quantities [8]. Moreover, subjective ques-
tions and behavioral measurements often appear to be weakly
correlated. For example, the users state that they trust model but
they do not really follow the model suggestions [11]. Similar
findings have been made with respect to objective and subjective
understanding [12], [35], [40]. To overcome this limitation, both
self-reported and observed measures shall be used in parallel.

Besides the measures introduced in Section IV-B, there are
several psychological constructs that can be deployed to evaluate
multiple facets of the interaction between humans and XAI.
For instance, the subjective task value in the expectancy-value
framework is often used to analyze subjective motivation to take
any actions [170], which is not thoroughly studied in the XAI
experience yet. The subjective task value consists of intrinsic
value (enjoyment), attainment value (importance for one’s self),
utility value (usefulness), and cost (the amount of effort or time
needed) [170], [171]. A good explanation interface should be
positively correlated with the subjective task value, consequently
boosting one’s interest and motivation to use the model expla-
nation. With regard to the cost of using model explanations,
cognitive load is popularly measured in the current literature
with conventional Likert scales [162], [172]. Cognitive load
researchers study the validity of different visual appearances in
rating scales beyond numerical Likert scales, i.e., pictorial scales
such as emoticons (faces with different emotions), or embodied
pictures of different weights [173]. Their results demonstrate
that numerical scales are more proper in complex tasks while
pictorial scales are for simple ones.

Pre-registration using online platforms such as AsPredicted1

has become a common practice in recent years [174]. In this
process, researchers submit a document detailing their planned
study online before initiating the data collection. Among other
details, the pre-registration includes the measured variables and
hypotheses, data exclusion criteria, and the number of samples
that will be collected. An exhaustive pre-registration can provide
evidence against the findings being a result of selective reporting
or p-hacking [175] and thus strengthen the credibility of a study.
Expert interviews and pre-studies following a think-aloud proto-
col [176], e.g., in the references [32], [46], are often mentioned
as helpful tools to develop the explanation system and the study
design and gain first qualitative insights or complement the
qualitative analysis [13], [65].

When preparing for a user study, it is important to plan for
explicit steps and to have a backup plan for different situations.
Before participants arrive, it is helpful to provide them with
information such as where the researchers will meet with them,
what they need to bring, and how they can prepare for the
study. If conducting the experiment in person, send participants
a reminder the day before and provide them with your contact in
case they cannot find the experiment site or they need to cancel
the experiment session. Once participants arrive, make sure the
researchers have a plan that covers all stages of the experiment.
The protocol should cover small details (e.g., where participants

1[Online]. Available: https://aspredicted.org

should leave their backpacks, water bottles, and lunch boxes) and
plans for unexpected situations (e.g., uncooperative participants
and multifunctional systems). How to obtain participants’ con-
sent should be an important part of the procedure. Additional
procedure is required for obtaining consent when working with
vulnerable populations (e.g., children and pregnant women), in
which case alternative consent procedures might take place.
Another benefit of pre-designing the experiment script is to
fine-tune the language to avoid inadvertent cues. Researchers
can unintentionally pass on their expectations to participants
through verbal and nonverbal behavior, which might result
in participants’ skewed performance towards the researchers’
desire [169]. To ensure a sound experiment procedure and to
protect the integrity of the data, it is worthwhile to put in much
effort to design a detailed experiment script.

During the User Study: A sufficient number of participants
is the prerequisite of a solid user study analysis. To get a rough
estimate of common sample sizes, we refer the reader to the
participant statistics in Fig. 2 where we analyze the subject
numbers in different experimental designs. For instance, around
350 users without any specific expertise are averagely recruited
in between-subject experiments. However, we would like to
underline that the required number of participants is highly spe-
cific to the study design and should be determined individually,
for instance by conducting a statistical power analysis [177].
Additionally, recruited participants should have the same knowl-
edge background as the end users that applications are designed
for. For instance, when evaluating an interface explaining loan
approval decisions to bank customers, it is not proper to include
only students whose major is computer science, since they may
have prior knowledge of how model explanations work. Note
that the design of an AI application requires different audiences
across the project cycle, thus model explanations need to evolve
as well [178].

To uphold high-quality standards of the collected data, atten-
tion or manipulation checks are essential to filter out careless
feedback. This particularly applies to long surveys or online
surveys with lay users. Kung et al. [179] justify the use of these
checks without compromising scale validity. In within-subject
experiments, a random order of conditions is necessary to avoid
order effect [1]. Participants can learn knowledge of data or
examples shown in the previous conditions, and Tsai et al. [6]
choose to use a Latin square design to avoid the learning effect.

After the User Study: After the data collection, statistical
tests are run to find significant effects. The applicable tests
used are determined by experimental designs and the form and
distribution of the data. Generally, ANOVA tests and T-test are
usually used when comparing distributions between different
conditions. Structural Equation Models (SEM) or multi-level
models are used for mediation analysis. More details of statistic
tools can be found in Section IV-C. Distributional assumption
checks should be applied. When Likert-type data is collected
as in most of the questionnaires, non-parametric tests such as
paired Wilcoxon signed-rank test, or Kruskal-Wallis H test for
multiple groups can be used to avoid normality assumptions.

If multiple measures are aggregated into a single instrument,
it is important to assess the validity of this aggregation with
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Fig. 3. Summary cards of the guidelines extracted from past XAI user studies.

reliability measures such as the tau-equivalent reliability (also
known as Cronbach’s α). For example, if objective and subjec-
tive measures of a quantity, such as understanding are combined,
it is necessary to verify that there is sufficient agreement. If
multiple items (e.g., data samples or visualizations) are rated
by several subjects, statistics such as Cohan’s κ as Fleiß’s κ
for more than two raters [180] can be used to assess agreement
beyond chance between these raters and serve as an indication
for the reliability of the ratings.

In the final writing phase, it is essential to report sufficient
details that allow readers to estimate the explanatory power of
the study. On the level of participants, this should include the
total number of participants and how many are assigned to each
treatment group, their recruitment, consent and incentivization,
and the exact treatment conditions they are subjected to. Further-
more, some descriptive statistics of the collected data can help
readers assess the characteristics of the adequacy of the statistical
tools used. Regarding the analysis, we found it important to
mention how the underlying assumptions of the statistical tests
used were checked and to mention the exact variant of the test
used (e.g., stating “a two-way ANOVA with the independent
variables X and Y” is used instead of just mentioning that
ANOVA-test is used).

VII. FUTURE RESEARCH DIRECTIONS

Our survey of recent and ongoing XAI research also helps
us identify research gaps and distill a few directions for future
investigations. In this section, we highlight these directions and
summarize our findings.

A. Towards Increasingly User-Centered XAI

We advocate that user-centered methods should be used not
only to assess XAI solutions (e.g., through user studies) but also
to design them (e.g., through user-centered design). By explicitly

modeling and involving users in the design phase and not just
in a post-hoc manner during the evaluation phase, we expect the
development of XAI solutions that better respond to user needs.
As discussed in [117], there are two aspects of human-centered
AI: (1) AI systems that understand humans with a sociocultural
background and (2) AI systems that help humans understand
them. The former point can guide the design of AI systems. In
this section, we discuss XAI research that leverages this insight.

The process of explaining a machine’s decisions to human
users can be viewed as a teaching-learning process where the
XAI system is the teacher and the human users are the students.
From a user-centered perspective, the problem of designing
effective teaching methods to enhance the student’s (i.e., user’s)
learning outcomes is essential to human-centered XAI algo-
rithms. To leverage the ability of humans and address unique
user’s needs, it is important to review studies and findings
from psychology and education. These studies provide insights
into how humans perceive other intelligent agents (humans or
artificial agents) and how they utilize limited information to
infer and generalize. Understanding how humans think and learn
will help XAI developers build and design systems that are not
only informative but also user-friendly to people with differ-
ent backgrounds. In this section, we discuss three pedagogical
frameworks, namely (1) the expectancy-value motivation theory,
(2) the theory of mind, and (3) hybrid teaching, to shed light
on incorporating such methods in computational approaches.
Inspired by existing work in pedagogy and XAI, we provide
implications for designing future transparent AI systems and
human-centered evaluations.

Expectancy-Value Motivation Theory: Human interaction
with XAI interfaces can be viewed as an activity where humans
learn about the model’s inner workings through explanations
and then achieve an understanding of the models. The question
of how to enhance the efficiency and the outcome of this human
learning process is of high importance [181]. This research
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problem is widely considered in educational psychology through
the lens of expectancy-value motivation theory. For instance,
Hulleman et al. [171] propose to utilize interventions to increase
the perception of usefulness (utility value) to subsequently in-
crease motivation and final performance. Intervention here refers
to identifying the relevance of model explanations to the user’s
own situation, which can be a prompt question while working
with the interface. Moreover, when utilizing model explanations
in human-AI collaboration, explanations can be seen as a type of
“scaffolding” (prompt during a task) proposed in a conceptual
framework in education.

Theory of Mind: When interacting with XAI systems, humans
form mental models of the machine learning algorithms that
reflect their belief of how the algorithms work. The formation
of these mental models comes from observing explanations or
examples given to the human, who often subconsciously applies
the observations in a few examples to the broader understanding
of the whole machine learning system. This incredible ability
to infer, rationalize, and summarize other intelligent agent’s
decisions is known as the Theory of Mind (ToM) in psychology.
Based on this theory, the Bayesian Theory of Mind (BToM)
provides a probabilistic framework to predict inferences that
people make about mental states underlying other agents’ ac-
tions. Recent work, at the intersection of XAI and robotics,
indicates that humans also attribute ToM to artificial agents that
they observe or interact with. Guided by these user-centered
results, several works at the intersection of XAI and robotics
have utilized BToM to create a simulated user, and then use it to
generate helpful explanations.

Hybrid Teaching: Teaching strategies for the human-to-
human setting have been widely studied and many categoriza-
tions exist. One way of categorizing these strategies is through
the following three concepts: (1) direct teaching, (2) indirect
teaching, and (3) hybrid teaching. Direct teaching utilizes direct
instructions that are teacher-centered, involve clear teaching
objectives, and are consistent with classroom organizations. In
XAI applications, direct teaching methods generate explanations
by selecting representative examples of an agent’s decisions to
convey the patterns in its policy. In contrast, indirect teaching
is student-centered and encourages independent learning. In the
XAI perspective, methods utilizing indirect teaching provide
users with tools to actively and independently explore an AI sys-
tem. Technically, direct teaching focuses on providing guidance
(using a computational approach) to assist users in building an
understanding of a machine, whereas indirect teaching (often
through a user interface) enables users to address individual
learning preferences and mitigate individual confusion about the
AI. To leverage the advantages of the two teaching strategies, hy-
brid teaching has been widely used in human-to-human teaching
with an emphasis on interactivity. Recent work [182] indicates
that hybrid teaching reduces the amount of time for a user to
understand an agent’s policy compared to direct and indirect
teaching, and is more subjectively preferred by the participants.
Building on this, future XAI systems can consider using hybrid
teaching methods that (i) generate direct instructions to provide
guidance to user’s understanding of an AI system; and (ii)
provide methods to allow users to interact with the agent.

Explanations through Large Language Models (LLMs): The
recent rise of Large Language Models [183], [184] naturally
opens up new research directions. There is a growing interest
in leveraging their unprecedented capabilities [185] to offer
explanations for model decisions [186], [187]. Through their
natural language interface, LLMs offer the possibility to build
interactive explainers [188]. Intriguingly, textual explanations
can also be used as subsequent inputs to LLMs which may
help to solve subsequent problems and result in superior per-
formance [189]. This technique, referred to as chain-of-thought
reasoning [190], opens up an interesting research territory com-
bining interpretability and performance considerations.

B. Open Research Problems

1) Automatic versus Human-Subject Evaluations: With au-
tomatic evaluations, we refer to evaluation methods that do not
require human subjects, which corresponds to the functionally-
grounded metrics discussed in [119], [120]. These metrics aim
to test desiderata around the “faithfulness”/“fidelity”/ “truthful-
ness” of model explanations [120], [121], [191]. Faithfulness of
explanations is defined as that explanations are indicative of true
important features in the input [191]. The automatic evaluations
aim at capturing general objectivity which is independent from
downstream tasks, while human evaluations are contextualized
with specific use cases. Generally speaking, automatic evalu-
ations and human evaluations tackle different research chal-
lenges: the former objectively examines how truly explanations
reflect models and the latter one measures how humans perceive
models through explanations (although there existing algorithms
for automated evaluation designed to align with human evalu-
ations, which we will discuss later). All explanations used in
human-subject experiments should have satisfying performance
in automatic evaluations, i.e., the explanations should be able to
faithfully unbox the model. This verification step is essential to
guarantee the validity of the empirical user study and to ensure
that users are not tricked by unfaithful explanations. However, in
most current human-subject experiments, the functional faith-
fulness of explanations is not thoroughly verified beforehand.
Using unfaithful explanations could lead to the problem that
only the placebo effect of explanations is measured. Ideally,
a good explanation should be faithful to the model as well as
understandable by users.

2) Identifying and Handling Confounders: Existing research
underscores the vulnerability of model explanation studies to
significant confounding effects. For instance, Papenmeier et
al. [155] reveal that user trust can be more influenced by model
accuracy than the faithfulness of the explanation itself. Similarly,
Yin et al. [192] demonstrate that the accuracy score perceived
by users and the one shown to users contribute to trust formation.

A different problem is that good explanations also reveal
weaknesses of the model. However, when seeing unexpected
explanations, users may express their negative feelings about
the model through negative ratings of the explanations. There-
fore, good model explanations should help users calibrate their
trust [26], [193], i.e., trust the model’s decision when it is correct
but distrust it otherwise. There is a disagreement on how to
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handle such cases: When evaluating model fairness, several
works [2], [27], [38], [73], [75] reckon the increase in perceived
fairness as positive, while Dodge et al. [74] define the decrease
as positive. Other factors, such as the temporal occurrence of
model errors (Nourani et al. [56]), and the dimensions of models
(Ross et al. [32], Poursabzi et al. [53]), also come into play.

In summary, these confounding elements suggest that users
might be led to put more trust in oversimplified, deceptive,
or simply unfaithful explanations. To mitigate this, we rec-
ommend meticulous analysis, control and reporting of poten-
tial confounders, such as explanation faithfulness and model
accuracy, across various test conditions. More advanced mea-
sures have been suggested as well. For instance, Schoeffer and
Kuehl’s [79] propose appropriate fairness perceptions, which
measures whether people increase or decrease their fairness per-
ceptions depending on the algorithmic fairness of the underlying
model. Nevertheless, the thorough investigation of confounding
factors remains a challenge. Calibrated measures that are less
prone to confounding can be a valuable step forward.

3) Mitigating Personal Biases for XAI: Most XAI techniques
and corresponding designed user studies provide one-size-fits-
all solutions. Individual bias, rooted in a user’s mental frame-
work, influences the user’s perception of a model. It should be
considered in XAI design, development, and evaluation proce-
dures. Several studies that aim to explain reinforcement learning
policies utilize cognitive science theories to create a model of
the human user [181], [182], [194], [195]. They then generate
explanations based on this human model and verify the benefits
of tailoring explanations for individual user models. Within the
scope of XAI, [196], [197] utilize a Bayesian Teaching frame-
work to capture human perception of model explanations. In
user studies, depending on cultural and educational background,
participants may likely give different feedback [31]. This kind of
personal bias can be mitigated by deploying a large sample size
and recruiting participants who are representative of the target
audience. We advocate that personal biases should be taken into
account in the realm of XAI development.

4) Human-in-the-Loop and Sequential Explanations: In sev-
eral relevant cases, such as online recommendation systems,
users are not only confronted with an explanation once but
instead view decisions and potential explanations repeatedly.
Recent work in this domain [35] has shown that the order of
decisions and explanations may indeed have an effect on user
perception and understanding. The AI model may continue
to shape the user’s mental model over time. The differences
between the single-use and the sequential setting still remain to
be thoroughly investigated.

5) Proxy Tasks Should Be Close to Real-World Tasks: When
using proxy tasks to evaluate models, for instance, to measure
subjective understanding, there is a great choice of tasks present
in the literature. A good proxy task should have the following
features: (1) it has close real-world connections [119]; (2) users
or participants have some background knowledge of the task
but not too much to affect their judgment or performance during
the task; (3) the task is not too complicated to implement or
there exists an existing implementation but was used for different
purposes (i.e., not used for XAI); and (4) it has connections to

existing work. Yet, the link between evaluations through differ-
ent proxy tasks and real-world applications has not been made
very explicit to date. Buçinca et al. [13] show that the outcomes
of proxy evaluations can be different from a real-world task.
More specifically, the widely accepted proxy tasks, where users
are asked to build the mental models of the AI, may not predict
the performance in actual decision-making tasks, where users
make use of the explanations to assist in making decisions. The
results show that users trust different explanations in the proxy
task and the actual decision-making task. Therefore, we argue
that further research is required to uncover the links between
current proxy tasks and on-task performance or to devise new
proxy tasks with a verified connection to actual tasks.

6) Simulated Evaluation as a Cost-Efficient Solution: As
human-subject experiments are costly to conduct, Chen
et al. [198] propose a simulated evaluation framework
(SimEvals) to select potential explanations for user studies by
measuring the predictive information provided by explanations.
Concretely, the authors consider three use cases where model
explanations are deployed: forward simulation, counterfactual
reasoning, and data debugging. Human performance is measured
for these three tasks with different explanations. If there is a
significant gap in settings of using two types of explanations,
the simulated evaluation can also observe such a gap under the
same task settings as well. Meanwhile, first attempts to simulate
human textual responses in a given context using large language
models show that models can provide surprisingly anthropomor-
phic answers [199]. Undoubtedly and also affirmed by Chen et
al. [198], it is not yet realistic to replace human evaluation with
the simulated framework as other factors e.g., cognitive biases
can affect human decisions. To better simulate human evalua-
tions, more effort should be directed towards modeling human
cognitive processes. Concurrently and with appropriate caveats,
XAI researchers should also leverage existing and approximate
models of human cognition to enable rapid prototyping and
assessment of explanations. Section VII-A discusses several
candidate human cognition models and highlights recent XAI
works [181], [182] that utilize this “Oz-of-Wizard” paradigm.

VIII. CONCLUSION

In recent years, there has been a proliferation of XAI research
in both academia and industry. Explainability is a human-centric
property [141] and therefore XAI should be preferably studied
by taking humans’ feedback into account. In this work, we
investigated recent user studies for XAI techniques through a
principled literature review. Based on our review, we found
out that the effectiveness of XAI in users’ interaction with
ML models was not consistent across different applications,
thus suggesting that there is a strong need for more transparent
and comparable human-based evaluations in XAI. Furthermore,
relevant disciplines, such as cognitive psychology and social
sciences in general, should become an integral part of XAI
research.

We comprehensively analyzed the design patterns and find-
ings from previous works. Based on best-practice approaches
and measured quantities, we propose a general guideline for
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human-centered user studies and several future research direc-
tions for XAI researchers and practitioners. Thereby, this work
represents a starting point for more transparent and human-
centered XAI research.
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APPENDIX A
DATA-DRIVEN BIBLIOMETRIC ANALYSIS

To perform a data-driven bibliometric analysis of the ref-
erences and citations for all papers1, we first collected
common references from each category. As we had to deal
with a large number of papers, a keyword representing
the research topic was assigned to each paper. In this
way, we could group the papers according to their con-
tent. Concretely, the references were extracted directly from
the studied papers (in pdf format). The follow-up works
that cite each core paper were retrieved from the Google
Scholar platform using the Python API (“Scholarly” [1]).
The same API was used to extract abstracts from Google
Scholar for all references and citations. Based on the paper
titles and abstracts, we utilized GPT-4 [2] to tag the papers
with keywords and subsequently reviewed the sensibility
of these keywords manually. We visualized papers in a
2-dimensional semantic space according to their keyword
embeddings using t-SNE [3].

We illustrate the research domains that are fundamental
to XAI user studies in Figure 1 (Left). Note that for pre-
sentation clarity, we only visualized works that were used
as references in at least five of the core papers. Similarly
to foundations in XAI user studies, we are interested in
knowing who will eventually benefit from the findings
of XAI user studies. Figure 1 (Right) demonstrates the
“consumers” of the human-centered XAI core papers (i.e.,
research domains influenced by the core papers), with each
dot representing a research topic. The size of the dots is
determined by the number of citations in the set of core
papers obtained from this research area.

By studying these two aspects (i.e., foundations and
impact), we grasp a clear overview of relevant topics in
the research landscape of XAI user studies. More impor-
tantly, we can better spot the nascent but pertinent areas
for future work such as cognition-driven analysis tools
in XAI. We release raw data and code for analyses at
https://github.com/yaorong0921/hxai-survey.

A.1 Foundation of XAI User Studies

Through analyzing references in the core papers, we pro-
vide XAI researchers with several indispensable literature
sources in this field, which can inspire them when orga-
nizing their projects. In total, there are over 3000 references
from all the core papers, and we pay close attention to the
references which are cited at least by ten core papers (ca. 50
papers). In Table 1, we categorize these papers according to
their topics. The first group of papers is survey papers about
XAI, which are thoroughly discussed in Sec.2 Related Work.
For the theory of XAI, Miller et al. [4] propose to build XAI
on social sciences such as cognitive science and psychology,
while Wang et al. [5] and Liao et al. [6] provide theoretical
guidelines for designing XAI frameworks. An important
class of references are XAI methods and the most popularly
used ones are listed in “XAI Methods”. As suggested by
[7, 8], the explanations should be sound and complete and

1. In this section, the word “references” refers to sources contained
in the references of one of the core papers while “citations” refers to
follow-up works that reference one of the core papers

thus bring a positive impact on users. Another motivation
for XAI is that it should assist users in building mental
models of the AI systems [9]. Previous user studies for ML
systems or for explainable interfaces that are referenced for
comparisons or serve as templates of user study design. In
the end, we list several general works about user trust that
may go beyond the scope of XAI.

APPENDIX B
MODELS AND EXPLANATIONS IN XAI USER STUD-
IES

Black-box models are dominant in the current human-AI
interaction research area as we can see that more black-box
models are studied. Local feature explanations are popularly
used such as LIME [18] and SHAP [20]. Figure 2 demon-
strates the chronological overview of frequently adopted
XAI techniques for black-box models in user studies from
the surveyed papers. However, there are many specific
explanation types for certain applications. For recommen-
dation systems, content-based and hybrid explanations are
widely used explanations. A content-based explanation is a
single-style explanation coming from a content-based rec-
ommendation system, while a hybrid explanation contains
multiple explanation styles such as user-based or item-
based, which is provided by a hybrid recommendation
system [49, 50, 51]. For instance, Dominguez et al. [52]
provide a content-based explanation as “Painting A is 85%
similar to the Painting B that you like". Tsai et al. [53], however,
use hybrid explanations in textual and visual explanation
formats.

APPENDIX C
MEASUREMENT DETAILS

C.1 Trust

Table 3 lists the trust measurement. Most of the works
deploy questionnaires to measure user trust (self-reported),
where a 7-point or 5-point Likert scale is commonly used.
Many works design their own questionnaires [42, 43, 52,
85, 103, 104, 107, 108, 109]. To measure trust in an objective
manner, many works choose to use the agreement rate of
humans [33, 68, 84, 85].

C.2 Usability

Table 4 demonstrates the measures used for the usability of
explanations. We divide usability into five sub-categories:
workload (cognitive load), helpfulness, satisfaction, unde-
sired behavior detection and ease of use and others. User
perceptions of workload, helpfulness, satisfaction and ease
of use are subjective and often measured with question-
naires. However, for debugging tasks, it can be measured
objectively such as using the accuracy of the user confirm-
ing the correctness of answers from a question-answering
model and the time for solving this task [109].
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Fig. 1: Illustration of the foundational research domains (Left): Each dot represents a referenced paper, whose size reflects the
number of studied core papers referring to it. Illustration of influenced research domains (Right): Each dot represents a research
topic, whose size refers to the number of papers on the same topic. For a clear depiction, only several important research domains
are labeled with text. Lines are used to depict reference links, with thicker lines representing a greater number of links. Core paper
categories are in blue (Middle). Circles are used to indicate a hierarchical structure of keywords.

Topic Fundamental works
Surveys of XAI [10], [11], [12], [13], [14], [15], [16]

Theories for XAI [4]: social sciences, [5]: theory for XAI design,
[6]: a question bank for XAI design

XAI Methods

[17]: a survey, [18]: LIME, [19]: Anchors, [20]: SHAP,
[21]: TCAV, [22]: explaining recommendation systems, [23]: intelligible models,

[24]: influence function, [25]: counterfactual explanations, [26]: Integrated Gradient (IG),
[27]: saliency maps for images, [28]: GradCAM

Principles of Explanations [7, 8]: completeness and soundness,
[9]: helping users build mental models

User studies for ML [29]: image retrieval algorithm for medical uses, [30]: interactive model

User studies for XAI [31]: justice perceptions, [32]: fairness [33]: human-AI team, [34]: usability,
[35, 36, 37, 38, 39]: understanding, [40, 41, 42, 43]: trust and understanding

Trust [44]: trust (calibration), [45]: trust in automation, [46]: impact of model accuracy on trust,
[47, 48]: impact of system transparency on trust,

TABLE 1: Fundamental works of the core papers (categorized according to topics).

2015 2016 2017 2018 2019 2020 2021

LRP [54] LIME [18] SHAP [20]
GradCAM [28]

IG [26]
SmoothGrad [55]

INN [56]
TCAV [21]

ConceptSHAP [57]
ProtoNet [58]

MAME [59]
Dr.XAI [60]

SECA [61]
VIBI [62]

CLUE [63]

Fig. 2: Chronology of commonly used XAI methods from reviewed papers.

Tasks Tabular Image/Video Text Other

forward simulation
[37, 64, 65]
[19, 63, 66]
[40, 67, 68]

[42, 69, 70]
[71, 72, 73]

[74, 75][19, (VQA)]
[64, 76] [77]

(Audio)

marginal
feature effects

[64, 78, 79]
[40, 68] [64]

manipulation /
counterfactual sim. [40, 68, 80] [81] [76]

feature importance [67, 68, 79] [21, 82]
failure prediction [72]

relative simulation
(selection) [40, 66]

other
[78]

(mental model
faithfulness)

[69]
(class-wise

acc.)

TABLE 2: Works measuring objective understanding grouped
by proxy task/data modality

C.3 Understanding of Explanations

For novel or cognitively challenging types of explanations,
it makes sense to verify whether users can make use of

the information provided through the explanation. Usually
these types of tests are conducted in combination with
other measures to establish if the explanations are correctly
understood by users and can thus be processed as intended.

In the domain of conceptual explanations [21, 133], such
kind of understanding questions are common, to assess
semantic coherence of automatically discovered concepts
[57, 134, 135, 136]. Assignment tasks, where novel instances
should be assigned to existing clusters are commonly used
as a proxy to measure the intelligibility [57, 65, 134, 135].
Another option is to assess how well the cluster can be
described in natural language which is often referred to
as describability [134, 135, 136]. Apart from conceptual ex-
planations, Zhang et al. [77] ask multiple choice questions
to verify if users understand the differences between the
acoustical cues presented and evaluate which cue differ-
ences were most noticeable. Wang et al. [114] prompt users



3

Studied
Paper Metric Definition

Source Detail

Observed
[83] Weight of Advice (WOA) - Degree to which the algorithmic suggestion

influences the participant’s estimate.

[33, 68, 84, 85, 86, 87] Agreement rate -
Percentage of cases in which participants agree with the model.

[68] defines the appropriate trust, overtrust and undertrust.
[85] defines as adherence

Self-reported

[41, 88, 89] Trust in
Automation [90] On the 7-point Likert scale.

[88] adapts the questions.
[91, 92] General trust in technology [93] On the 5-point Likert scale.

[94] Human-Computer
Trust [95] On the 7-point Likert scale.

[94] adapts the questions.

[96] Trust-TAM (Technology
Acceptance Model) [97] On the 7-point Likert scale.

[96] includes other self-designed questions.
[40] Trust in human-machine systems [98] On the 7-point Likert scale.

[99] Unified Theory of Acceptance
and Use of Technology Model (UTAUT) [100] On the 5-point Likert scale.

[101] Human-Robot Collaborative
Fluency Assessment [15] On the 7-point Likert scale

[92] Trusting beliefs
and intentions [102] On the 7-point Likert scale.

[42, 85, 103, 104, 105, 106]
[43, 52, 87, 107, 108, 109]

Self-designed
questionnaire -

[43, 85, 103] are on the 7-point Likert scale.
[42, 104, 107, 108, 109] are on the 5-point Likert scale.

[52] rates from 0 to 100.
[42, 52, 105, 106, 107, 108, 109] measure one-dimensional trust.

[110] Semi-structured
interview -

TABLE 3: Measures of trust. The measurement is divided into two main groups: “Observed” and “self-reported” trust. The
studied core papers using the same measurement are grouped together. The name and the paper reference of the used metrics are
listed in the column "Metric" and "Definition Source", respectively. “-” in the column “Definition Source” means that the source is
the studied paper. More details about the metrics are given in the last column.

explicitly if the found the explanation easy to understand.

Research questions and Findings. Laina et al. [134] found
that feature vectors obtained by contrastive learning ap-
proaches such as MoCo [137] or SeLa [138] allow for clusters
that are almost as interpretable as human labels. Leemann
et al. [136] show the similarity of ResNet-50 embeddings
allows to predict how semantically coherent users find a
cluster of images. For the acoustical cue, Zhang et al. [77]
found that shrillness and speaking rate were most often
recognized. Wang et al. [68] found that users reported they
understood all types of explanations well without signifi-
cant differences.

APPENDIX D
FINDINGS

When using explanation types as the evaluation dimension,
many works compare their effects without comparing them
to a control group (baseline) without explanation methods.
Anik et al. [88] argue that many works have proven the
usefulness of explanations and therefore no need to include
such a control group. Table 6 summarizes the findings
of the comparison among different explanations. Table 5
lists results of using other evaluation dimensions beyond
explanations.

APPENDIX E
TOWARDS INCREASINGLY USER-CENTERED XAI

In this section, we provide a detailed literature review
regarding existing work in pedagogical frameworks, which
provides implications for designing future transparent AI
systems and human-centered evaluations in Sec. 7.1.

E.1 Expectancy-value Motivation Theory

Human interaction with XAI interfaces can be viewed as
an activity where humans learn about the model’s inner
workings through explanations and then achieve an under-
standing of the models. The question of how to enhance
the efficiency and the outcome of this human learning
process is of high importance [147]. This research question
is widely considered in educational psychology through the
lens of expectancy-value motivation theory [148, 149, 150].
For instance, Hulleman et al. [148] propose to utilize in-
terventions to increase the perception of usefulness (utility
value) to subsequently increase motivation and final per-
formance. Intervention here refers to identifying the rele-
vance of model explanations to the user’s own situation,
which can be a prompt question while working with the
interface. Moreover, when utilizing model explanations in
human-AI collaboration, explanations can be seen as a
type of “scaffolding” (prompt during a task) proposed in
a conceptual framework in education [151, 152]. Bisra et
al. [153] summarize guidelines for effective scaffolding. For
instance, different disciplinary descriptions can be used in
the scaffolding (explanation prompt) to enhance the user’s
intuition. Another important, yet often unconsidered point
is the role of personality traits in the perception of expla-
nations. For instance, Conati et al. [154] show that the need
for cognition characteristic, which indicates users’ openness
towards cognitively challenging tasks, is a determining fac-
tor for explanation effectiveness in an intelligent tutoring
system. Considering these findings, we see personalized
XAI as a relatively underexplored but yet sorely needed
research direction.

E.2 Theory of Mind

When interacting with XAI systems, humans form men-
tal models of the machine learning algorithms that reflect
their belief of how the algorithms work. The formation of
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Studied
Paper Metric Definition

Source Detail

Workload [41, 52, 89, 111, 112] NASA TLX [113]
[78] Memory Performance -

Helpfulness
[42, 69, 114]
[77, 78, 115]

Self-designed
questionnaire - [42, 69, 114] are on 5-point Likert scale

[77, 78, 115] are on 7-point Likert scale
[116] Rating - Rating from 1 to 5
[80] Comparison - Users select the most helpful method

Satisfaction

[52, 53, 103, 105, 106, 107, 108] Self-designed
questionnaire -

[53, 107, 108] are on 5-point Likert scale
[103, 105, 106] are on 7-point Likert scale

[52] rates from 0 to 100

[49, 91] User experience of
recommendation system [93] [91] adapts the questions on the 5-point Likert scale

[49] adapts the questions on the 7-point Likert scale

[79, 83] Explanation
Satisfaction Scale [117] [83] are on 5-point Likert scale

[79] are on 6-point Likert scale

Undesired
behavior
detection

[118] Number of
identified bugs - Questions about bug identification and solutions

[109] Accuracy (percentage of
correct answers) and time - Task is to determine the

correctness of model answers

[37] Deviation between human’s
and model’s predictions - Model’s predictions are buggy and

human’s predictions should be different.

[82] Accuracy (percentage of
correct answers) - Task is to identify

(ir)relevant features

[119] Accuracy of
answers - Task is to detect model biases

or discrimination

[31, 32, 35, 88, 104, 120] Rating -
[104]: to judge whether they receive enough information

to judge the model process is unfair or not;
The other judge the model is unfair or not.

[121] Rating - Rating on the unfairness of features

Ease of use
and others

[34, 78, 109, 111, 114] Self-designed
questionnaire - [109, 114] are on 5-point Likert scale

[34, 78] are on 7-point Likert scale

[122] AVAM and UEQ-S [123, 124]
Autonomous Vehicle Acceptance Model Questionnaire (AVAM) [123]

User Experience Questionnaire-Short (UEQ-S) [124]
Both on the 7-point Likert scale

[81] Single Ease
Question (SEQ) [125] On the 7-point Likert scale

[118] User Engagement
Scale (UES) [126] On the 7-point Likert scale

[127, 128] System Causability
Scale [129] On the 5-point Likert scale

[89] System Usability
Scale [130] On the 5-point Likert scale

[131, 132] semi-structured interview - -

TABLE 4: Measures of usability. The measurement is divided into five categories. The studied core papers using the same
measurement are grouped together. The name and the paper reference of the used metrics are listed in the column "Metric" and
"Definition Source", respectively. “-” in the column “Definition Source” means that the source is the studied paper. More details
about the metrics are given in the last column.

these mental models comes from observing explanations or
examples given to the human, who often subconsciously
applies the observations in a few examples to the broader
understanding of the whole machine learning system. This
incredible ability to infer, rationalize, and summarize other
intelligent agents’ decisions is known as the Theory of
Mind (ToM) [155, 156] in psychology. Based on this theory,
Bayesian Theory of Mind (BToM) [157] provides a proba-
bilistic framework to predict the inferences that people make
about the mental states underlying other agents’ actions
[158]. Recent work, at the intersection of XAI and robotics,
indicates that humans also attribute ToM to artificial agents
that they observe or interact with [159, 160]. Guided by these
user-centered results, several works at the intersection of
XAI and robotics have utilized BToM to create a simulated
user and then use the simulated user to generate helpful
explanations. Towards this goal, Huang et al. [161] provide
a greedy algorithm for selecting explanations that maximize
the simulated user’s knowledge of the agent’s (a self-driving
car in their domain) policy; and Lee et al. [162] provide a
related approach where the user is modeled as an inverse
reinforcement learner. In addition to selecting the most
informative explanations, Qian and Unhelkar [163] utilize a
variation of the Monte Carlo tree search to generate a com-
putationally tractable approach to identify the most infor-

mative sequence of the explanations, based on the assump-
tion that some explanations might be more effective initially.
Thus, while some existing works evaluate the effectiveness
of the selected explanations through experiments with hu-
man users, the community still lacks an understanding of
how robust or realistic BToM is compared to a human’s
cognitive process particularly for XAI. We also advocate
for more probabilistic and computational cognitive models
to be utilized in XAI designs. To achieve this, we need
experts from cross disciplines to address individual user’s
needs in an XAI system from cognitive, psychological, and
computational perspectives. Lastly, we also encourage XAI
researchers to develop solutions to explain AI-enabled sys-
tems – for instance, robots and autonomous vehicles – which
require grounded and user-centered solutions.

E.3 Hybrid Teaching
Teaching strategies for the human-to-human setting have
been widely studied and many categorizations exist [164,
165, 166]. One way of categorizing these strategies is
through the following three concepts: (1) direct teaching,
(2) indirect teaching, and (3) hybrid teaching. Direct teaching
utilizes direct instructions that are teacher-centered, involve
clear teaching objectives, and are consistent with classroom
organizations. In XAI applications, direct teaching methods
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Other Evaluation Dimensions
Positive Non-positive / Mixed

Trust

[88]: balanced training data,
[43]: high model performance

[92]: high quality of explanations
[104]: high AI literacy

[106]: interactivity
[86]: model confidence

[88]: user expertise, insignificant
[107]: personal characteristics, insignificant

[105]: different topic modeling approaches, insignificant
[94]: self-referential pronoun “I” in explanations, negative

[40]: user technical literacy, insignificant

Understanding Obj.
[81]: disentanglement of gen. model

[40]: interactivity
[80]: ExpO regularization of the model

[37, 81]: high dimensionality, negative
[79]: contextualization, insignificant

[42]: inductive vs. deductive explanations, insignificant
[76]: different ML models, insignificant

[70]: user expertise, insignificant
[72]: instant feedback, insignificant
[69]: timing of model errors, mixed

Sub.
[81]: disentanglement of gen. model

[40]: interactivity
[139]: user expertise

[64]: model correctness, insignificant
[140]: QuickSort, insignificant

[66]: test of understanding, negative

Usability

[81]: significant difference in self-reported
difficulty dependent on the generative model

[91, 106]: interactivity
[111]: Parallel Embeddings

[104]: high AI literacy
[121]: fair features are “current charges”

and “criminal history”

[105]: different topic modeling approaches, insignificant
[107]: personal characteristics, insignificant for satisfaction

[69]: early encounters of system weaknesses
lead to lower explanation usage

[37]: clear model is less useful in debugging
[121]: unfair features are “quality of school life”

and “education & school behavior”, etc.

Human-AI
Collaboration Performance

[141]: low model complexity
[42, 142]: showing model prediction

[101]: explanations are positive for novices’ performance
but negative for experts’

[74, 86] Showing predictions, insignificant [86]: model confidence

TABLE 5: User study findings when using other aspects (other than the presence of explanation) as evaluation dimensions. Effects
on measured quantities are divided into “Positive” where explanation information is given, and “Non-positive / Mixed” where
negative impact is marked with underlines.

generate explanations by selecting representative examples
of an agent’s decisions to convey the patterns in its policy
[162, 167, 168, 169, 170, 171]. In contrast, indirect teaching
is student-centered and encourages independent learning.
In the XAI perspective, methods utilizing indirect teaching
provide users with tools to actively and independently ex-
plore an AI system. Although the goal of direct and indirect
teaching methods is the same, namely explaining an AI
system to human users, the computational problems solved
by these methods are different. Direct teaching focuses on
providing guidance (using a computational approach) to
assist users in building an understanding of a machine,
whereas indirect teaching (often through a user interface)
enables users to address individual learning preferences and
mitigate individual confusion about the AI. To leverage the
advantages of the two teaching strategies, hybrid teaching
has been widely used in human-to-human teaching with
an emphasis on interactivity [172, 173, 174]. In XAI-related
work, Qian and Unhelkar [163] provide a hybrid teaching
framework by introducing an AI Teacher to enable guided
interactivity between RL-based AI agents and a user. Their
results indicate that hybrid teaching reduces the amount of
time for a user to understand an agent’s policy compared
to direct and indirect teaching, and is more subjectively
preferred by the participants. Building on this, future XAI
systems can consider using hybrid teaching methods that
(i) generate direct instructions to provide guidance to users’
understanding of an AI system and (ii) provide methods to
allow users to interact with the agent or model enabling
active learning.
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[6] Q. V. Liao, M. Pribić, J. Han, S. Miller, and D. Sow,
“Question-driven design process for explainable ai
user experiences,” arXiv preprint arXiv:2104.03483,
2021.

[7] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf,
“Principles of explanatory debugging to personalize
interactive machine learning,” in IUI, 2015.

[8] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan,
and W.-K. Wong, “Too much, too little, or just right?
ways explanations impact end users’ mental models,”
in VL/HCC, 2013.

[9] T. Kulesza, S. Stumpf, M. Burnett, and I. Kwan, “Tell
me more? the effects of mental model soundness on
personalizing an intelligent agent,” in CHI, 2012.

[10] F. Doshi-Velez and B. Kim, “Towards a rigorous sci-
ence of interpretable machine learning,” arXiv preprint
arXiv:1702.08608, 2017.

[11] Z. C. Lipton, “The mythos of model interpretability:
In machine learning, the concept of interpretability is
both important and slippery.” Queue, 2018.

[12] A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and
M. Kankanhalli, “Trends and trajectories for explain-
able, accountable and intelligible systems: An hci re-
search agenda,” in CHI, 2018.



6

Evaluation Dimension: Explanations
Effect comparison among different explanations

Trust

[84]: example-based explanations are positive in trust building
[42]: deductive (rule-based) explanations > inductive (example-based) explanations

in decision-making tasks, but contrary in proxy tasks
[43]: different explanations positively affect different beliefs of trust

[108]: proposed explanation interfaces (different visualizations),
SCATTER > RANK and SCATTER > TUNER but insignificant

[143] HEX-RL (theirs) > LSTM-attention (for RL agents)

Understanding Obj.

[77]: Cues and Counterfactuals > Saliency (audio data)
[78]: Sparse Lin. > COGAM > GAM

[65]: MAME > SP-LIME
[63]: CLUE > Sensitivity, Human CLUE, Random (for uncertainty)

[70]: Natural images > synthetic (activation prediction)
[82]: Counterfactuals (INN) = (proposed) Baseline Expl. > Concepts

[19] Anchors > LIME

Sub.

[144]: local+global explanation > local/global explanation
[43]: example-based explanations (normative/comparative) improve the subj. understanding

[64] LIME ≥ Composite, Prototypes and others
[127]: closest and plausible counterfactuals, difference insignificant

[144]: local+global explanation > local/global explanation
[143] HEX-RL (theirs) > LSTM-attention (for RL agents)

[139]: visual > textual explanations

Usability

[78]: sLM ≤ COGAM < GAM, insignificant for self-reported cognitive load
[79]: contextualizing/exploration improve user’s satisfaction,

but no significant impact when interacting both factors
[34]: diff. expl. (e.g. local expl., counterfactuals,...)

[41]: GAM vs. SHAP, pos. for cognitive load
[52]: diff. interfaces, pos. for cognitive load

[77]: counterfactual+cues > saliency, pos. for helpfulness
[116]: DEAML > EFM (feature-level expl.) > PAV (“people also viewed” expl.) for usefulness in RS

[69]: Salient video segments > Confidence scores,
Component combinations shown for helpfulness

[42]: deductive (rule-based) has higher cognitive load than inductive (example-based) in proxy tasks,
deductive (rule-based) > inductive (example-based) in helpfulness in decision-making task

[127]: closest and plausible counterfactuals, difference insignificant
[49]: text explanation > visual explanations in user experience (e.g., satisfaction)

[108]: proposed explanation interfaces (different visualizations),
SCATTER > RANK and TUNER > SCATTER in satisfaction,

RANK > SCATTER and TUNER > SCATTER in usefulness, but all insignificant
[82]: Counterfactuals (INN) = (proposed) Baseline Expl. > Concepts in bias detection

[119]: AReS (theirs) > AR-LIME
[32]: sensitivity- and case-based explanations are rated as least fair when they expose a bias of the model

[145]: acceptance of the gender-aware career recommender > gender-debiased
[146]: significant preference for equalizing false positives over equalizing accuracy

[104]: the amount of information positively relates with perceived fairness
[88]: data-centric explanations that indicate balanced training data raise the fairness rating

Human-AI
Collaboration Performance

[42]: both deductive (rule-based) explanations and inductive (example-based) explanations
are positive, no significant difference

TABLE 6: User study findings when using model explanations as evaluation dimensions and comparing different explanation
types on measured quantities.

[13] A. Adadi and M. Berrada, “Peeking inside the black-
box: a survey on explainable artificial intelligence
(xai),” IEEE access, 2018.

[14] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter,
and L. Kagal, “Explaining explanations: An overview
of interpretability of machine learning,” in DSAA,
2018.

[15] G. Hoffman, “Evaluating fluency in human–robot
collaboration,” IEEE Transactions on Human-Machine
Systems, 2019.

[16] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Ben-
netot, S. Tabik, A. Barbado, S. García, S. Gil-López,
D. Molina, R. Benjamins et al., “Explainable artificial
intelligence (xai): Concepts, taxonomies, opportuni-
ties and challenges toward responsible ai,” Information
fusion, 2020.

[17] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Gi-
annotti, and D. Pedreschi, “A survey of methods for
explaining black box models,” CSUR, 2018.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why

should i trust you?" explaining the predictions of any
classifier,” in KDD, 2016.

[19] ——, “Anchors: High-precision model-agnostic expla-
nations,” in AAAI, 2018.

[20] S. M. Lundberg and S.-I. Lee, “A unified approach to
interpreting model predictions,” NeurIPS, 2017.

[21] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler,
F. Viegas et al., “Interpretability beyond feature attri-
bution: Quantitative testing with concept activation
vectors (tcav),” in ICML, 2018.

[22] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining
collaborative filtering recommendations,” in CSCW,
2000.

[23] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm,
and N. Elhadad, “Intelligible models for healthcare:
Predicting pneumonia risk and hospital 30-day read-
mission,” in KDD, 2015.

[24] P. W. Koh and P. Liang, “Understanding black-box
predictions via influence functions,” in ICML, 2017.

[25] S. Wachter, B. Mittelstadt, and C. Russell, “Counter-



7

factual explanations without opening the black box:
Automated decisions and the gdpr,” Harv. JL & Tech.,
2017.

[26] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic
attribution for deep networks,” in ICML, 2017.

[27] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep
inside convolutional networks: Visualising image clas-
sification models and saliency maps,” arXiv preprint
arXiv:1312.6034, 2013.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra, “Grad-cam: Visual explana-
tions from deep networks via gradient-based localiza-
tion,” in ICCV, 2017.

[29] C. J. Cai, E. Reif, N. Hegde, J. Hipp, B. Kim,
D. Smilkov, M. Wattenberg, F. Viegas, G. S. Corrado,
M. C. Stumpe et al., “Human-centered tools for coping
with imperfect algorithms during medical decision-
making,” in CHI, 2019.

[30] J. Krause, A. Perer, and K. Ng, “Interacting with
predictions: Visual inspection of black-box machine
learning models,” in CHI, 2016.

[31] R. Binns, M. Van Kleek, M. Veale, U. Lyngs, J. Zhao,
and N. Shadbolt, “’it’s reducing a human being to
a percentage’ perceptions of justice in algorithmic
decisions,” in CHI, 2018.

[32] J. Dodge, Q. V. Liao, Y. Zhang, R. K. Bellamy, and
C. Dugan, “Explaining models: an empirical study of
how explanations impact fairness judgment,” in IUI,
2019.

[33] V. Lai and C. Tan, “On human predictions with expla-
nations and predictions of machine learning models:
A case study on deception detection,” in ACM FAccT,
2019.

[34] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M.
Drucker, “Gamut: A design probe to understand how
data scientists understand machine learning models,”
in CHI, 2019.

[35] E. Rader, K. Cotter, and J. Cho, “Explanations as mech-
anisms for supporting algorithmic transparency,” in
CHI, 2018.

[36] B. Kim, R. Khanna, and O. O. Koyejo, “Examples
are not enough, learn to criticize! criticism for inter-
pretability,” NeurIPS, 2016.

[37] F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman,
J. W. Wortman Vaughan, and H. Wallach, “Manipu-
lating and measuring model interpretability,” in CHI,
2021.

[38] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why
not explanations improve the intelligibility of context-
aware intelligent systems,” in CHI, 2009.

[39] M. Narayanan, E. Chen, J. He, B. Kim, S. Gershman,
and F. Doshi-Velez, “How do humans understand
explanations from machine learning systems? an eval-
uation of the human-interpretability of explanation,”
arXiv preprint arXiv:1802.00682, 2018.

[40] H.-F. Cheng, R. Wang, Z. Zhang, F. O’Connell, T. Gray,
F. M. Harper, and H. Zhu, “Explaining decision-
making algorithms through ui: Strategies to help non-
expert stakeholders,” in CHI, 2019.

[41] H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach,
and J. Wortman Vaughan, “Interpreting interpretabil-

ity: understanding data scientists’ use of interpretabil-
ity tools for machine learning,” in CHI, 2020.

[42] Z. Buçinca, P. Lin, K. Z. Gajos, and E. L. Glassman,
“Proxy tasks and subjective measures can be mislead-
ing in evaluating explainable ai systems,” in IUI, 2020.

[43] C. J. Cai, J. Jongejan, and J. Holbrook, “The effects
of example-based explanations in a machine learning
interface,” in IUI, 2019.

[44] A. Bussone, S. Stumpf, and D. O’Sullivan, “The role of
explanations on trust and reliance in clinical decision
support systems,” in ICHI, 2015.

[45] J. D. Lee and K. A. See, “Trust in automation: Design-
ing for appropriate reliance,” Human factors, 2004.

[46] M. Yin, J. Wortman Vaughan, and H. Wallach, “Un-
derstanding the effect of accuracy on trust in machine
learning models,” in CHI, 2019.

[47] R. F. Kizilcec, “How much information? effects of
transparency on trust in an algorithmic interface,” in
CHI, 2016.

[48] H. Cramer, V. Evers, S. Ramlal, M. Van Someren,
L. Rutledge, N. Stash, L. Aroyo, and B. Wielinga, “The
effects of transparency on trust in and acceptance of
a content-based art recommender,” User Modeling and
User-adapted interaction, 2008.

[49] P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, and
L. Getoor, “Personalized explanations for hybrid rec-
ommender systems,” in IUI, 2019.

[50] G. Friedrich and M. Zanker, “A taxonomy for gen-
erating explanations in recommender systems,” AI
Magazine, 2011.

[51] P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, and
L. Getoor, “User preferences for hybrid explanations,”
in RecSys, 2017.

[52] V. Dominguez, P. Messina, I. Donoso-Guzmán, and
D. Parra, “The effect of explanations and algorithmic
accuracy on visual recommender systems of artistic
images,” in IUI, 2019.

[53] C.-H. Tsai and P. Brusilovsky, “Explaining recommen-
dations in an interactive hybrid social recommender,”
in IUI, 2019.

[54] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R.
Müller, and W. Samek, “On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation,” PloS one, 2015.

[55] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wat-
tenberg, “Smoothgrad: removing noise by adding
noise,” arXiv preprint arXiv:1706.03825, 2017.

[56] J.-H. Jacobsen, A. W. Smeulders, and E. Oyallon, “i-
revnet: Deep invertible networks,” in ICLR, 2018.

[57] C.-K. Yeh, B. Kim, S. O. Arik, C.-L. Li, T. Pfister,
and P. Ravikumar, “On completeness-aware concept-
based explanations in deep neural networks,” in
NeurIPS, 2019.

[58] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and
J. K. Su, “This looks like that: deep learning for in-
terpretable image recognition,” NeurIPS, 2019.

[59] K. Natesan Ramamurthy, B. Vinzamuri, Y. Zhang,
and A. Dhurandhar, “Model agnostic multilevel ex-
planations,” Advances in neural information processing
systems, vol. 33, pp. 5968–5979, 2020.

[60] C. Panigutti, A. Perotti, and D. Pedreschi, “Doctor xai:



8

an ontology-based approach to black-box sequential
data classification explanations,” in ACM FAccT, 2020.

[61] A. Balayn, P. Soilis, C. Lofi, J. Yang, and A. Bozzon,
“What do you mean? interpreting image classification
with crowdsourced concept extraction and analysis,”
in WWW, 2021.

[62] S. Bang, P. Xie, H. Lee, W. Wu, and E. Xing, “Explain-
ing a black-box by using a deep variational informa-
tion bottleneck approach,” in AAAI, 2021.

[63] J. Antoran, U. Bhatt, T. Adel, A. Weller, and J. M.
Hernández-Lobato, “Getting a {clue}: A method for
explaining uncertainty estimates,” in ICLR, 2021.

[64] P. Hase and M. Bansal, “Evaluating explainable AI:
Which algorithmic explanations help users predict
model behavior?” in ACL, 2020.

[65] K. Natesan Ramamurthy, B. Vinzamuri, Y. Zhang, and
A. Dhurandhar, “Model agnostic multilevel explana-
tions,” NeurIPS, 2020.

[66] M. Chromik, M. Eiband, F. Buchner, A. Krüger, and
A. Butz, “I think i get your point, ai! the illusion of
explanatory depth in explainable ai,” in IUI, 2021.

[67] A. Bell, I. Solano-Kamaiko, O. Nov, and J. Stoy-
anovich, “It’s just not that simple: An empirical study
of the accuracy-explainability trade-off in machine
learning for public policy,” in ACM FAccT, 2022.

[68] X. Wang and M. Yin, “Are explanations helpful? a
comparative study of the effects of explanations in ai-
assisted decision-making,” in IUI, 2021.

[69] M. Nourani, C. Roy, J. E. Block, D. R. Honeycutt,
T. Rahman, E. Ragan, and V. Gogate, “Anchoring bias
affects mental model formation and user reliance in
explainable ai systems,” in IUI, 2021.

[70] J. Borowski, R. S. Zimmermann, J. Schepers,
R. Geirhos, T. S. A. Wallis, M. Bethge, and W. Brendel,
“Exemplary natural images explain {cnn} activations
better than state-of-the-art feature visualization,” in
ICLR, 2021.

[71] A. Alqaraawi, M. Schuessler, P. Weiß, E. Costanza, and
N. Berthouze, “Evaluating saliency map explanations
for convolutional neural networks: a user study,” in
IUI, 2020.

[72] A. Chandrasekaran, V. Prabhu, D. Yadav, P. Chat-
topadhyay, and D. Parikh, “Do explanations make vqa
models more predictable to a human?” in EMNLP,
2018.

[73] J. Colin, T. Fel, R. Cadene, and T. Serre, “What i can-
not predict, i do not understand: A human-centered
evaluation framework for explainability methods,” in
NeurIPS, 2022.

[74] S. S. Kim, N. Meister, V. V. Ramaswamy, R. Fong, and
O. Russakovsky, “Hive: Evaluating the human inter-
pretability of visual explanations,” in ECCV, 2022.

[75] H. Shen and T.-H. Huang, “How useful are the
machine-generated interpretations to general users?
a human evaluation on guessing the incorrectly pre-
dicted labels,” in Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing, vol. 8, no. 1,
2020, pp. 168–172.

[76] S. Arora, D. Pruthi, N. Sadeh, W. W. Cohen, Z. C. Lip-
ton, and G. Neubig, “Explain, edit, and understand:
Rethinking user study design for evaluating model

explanations,” in AAAI, 2022.
[77] W. Zhang and B. Y. Lim, “Towards relatable explain-

able ai with the perceptual process,” in CHI, 2022.
[78] A. Abdul, C. von der Weth, M. Kankanhalli, and B. Y.

Lim, “Cogam: measuring and moderating cognitive
load in machine learning model explanations,” in CHI,
2020.

[79] C. Bove, J. Aigrain, M.-J. Lesot, C. Tijus, and M. De-
tyniecki, “Contextualization and exploration of local
feature importance explanations to improve under-
standing and satisfaction of non-expert users,” in IUI,
2022.

[80] G. Plumb, M. Al-Shedivat, Á. A. Cabrera, A. Perer,
E. Xing, and A. Talwalkar, “Regularizing black-box
models for improved interpretability,” Advances in
Neural Information Processing Systems, vol. 33, pp.
10 526–10 536, 2020.

[81] A. Ross, N. Chen, E. Z. Hang, E. L. Glassman, and
F. Doshi-Velez, “Evaluating the interpretability of gen-
erative models by interactive reconstruction,” in CHI,
2021.

[82] L. Sixt, M. Schuessler, O.-I. Popescu, P. Weiß, and
T. Landgraf, “Do users benefit from interpretable vi-
sion? a user study, baseline, and dataset,” in ICLR,
2022.

[83] C. Panigutti, A. Beretta, F. Giannotti, and D. Pedreschi,
“Understanding the impact of explanations on advice-
taking: a user study for ai-based clinical decision
support systems,” in CHI, 2022.

[84] H. Suresh, K. M. Lewis, J. Guttag, and A. Satya-
narayan, “Intuitively assessing ml model reliabil-
ity through example-based explanations and editing
model inputs,” in IUI, 2022.

[85] J. Schaffer, J. O’Donovan, J. Michaelis, A. Raglin, and
T. Höllerer, “I can do better than your ai: expertise and
explanations,” in IUI, 2019.

[86] Y. Zhang, Q. V. Liao, and R. K. Bellamy, “Effect of
confidence and explanation on accuracy and trust cal-
ibration in ai-assisted decision making,” in Proceedings
of the 2020 conference on fairness, accountability, and
transparency, 2020, pp. 295–305.

[87] Y. Rong, N. Castner, E. Bozkir, and E. Kasneci, “User
trust on an explainable ai-based medical diagno-
sis support system,” arXiv preprint arXiv:2204.12230,
2022.

[88] A. I. Anik and A. Bunt, “Data-centric explanations:
explaining training data of machine learning systems
to promote transparency,” in CHI, 2021.

[89] M. Colley, B. Eder, J. O. Rixen, and E. Rukzio, “Ef-
fects of semantic segmentation visualization on trust,
situation awareness, and cognitive load in highly au-
tomated vehicles,” in CHI, 2021.

[90] J.-Y. Jian, A. M. Bisantz, and C. G. Drury, “Founda-
tions for an empirically determined scale of trust in
automated systems,” International journal of cognitive
ergonomics, 2000.

[91] L. Guo, E. M. Daly, O. Alkan, M. Mattetti, O. Cornec,
and B. Knijnenburg, “Building trust in interactive
machine learning via user contributed interpretable
rules,” in IUI, 2022.

[92] J. Kunkel, T. Donkers, L. Michael, C.-M. Barbu, and



9

J. Ziegler, “Let me explain: Impact of personal and
impersonal explanations on trust in recommender
systems,” in CHI, 2019.

[93] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner,
H. Soncu, and C. Newell, “Explaining the user expe-
rience of recommender systems,” User modeling and
user-adapted interaction, 2012.

[94] M. Liao and S. S. Sundar, “How should ai systems talk
to users when collecting their personal information?
effects of role framing and self-referencing on human-
ai interaction,” in CHI, 2021.

[95] M. Madsen and S. Gregor, “Measuring human-
computer trust,” in 11th australasian conference on in-
formation systems, 2000.

[96] J. Ooge, S. Kato, and K. Verbert, “Explaining rec-
ommendations in e-learning: Effects on adolescents’
trust,” in IUI, 2022.

[97] I. Benbasat and W. Wang, “Trust in and adoption of
online recommendation agents,” Journal of the associa-
tion for information systems, 2005.

[98] J. Lee and N. Moray, “Trust, control strategies and
allocation of function in human-machine systems,”
Ergonomics, 1992.

[99] U. Ehsan, P. Tambwekar, L. Chan, B. Harrison, and
M. O. Riedl, “Automated rationale generation: a tech-
nique for explainable ai and its effects on human
perceptions,” in IUI, 2019.

[100] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D.
Davis, “User acceptance of information technology:
Toward a unified view,” MIS quarterly, 2003.

[101] R. Paleja, M. Ghuy, N. Ranawaka Arachchige,
R. Jensen, and M. Gombolay, “The utility of explain-
able ai in ad hoc human-machine teaming,” NeurIPS,
2021.

[102] D. H. McKnight, V. Choudhury, and C. Kacmar,
“Developing and validating trust measures for e-
commerce: An integrative typology,” Information sys-
tems research, 2002.

[103] C.-H. Tsai, Y. You, X. Gui, Y. Kou, and J. M. Carroll,
“Exploring and promoting diagnostic transparency
and explainability in online symptom checkers,” in
CHI, 2021.

[104] J. Schoeffer, N. Kuehl, and Y. Machowski, “"there
is not enough information": On the effects of ex-
planations on perceptions of informational fairness
and trustworthiness in automated decision-making,”
arXiv preprint arXiv:2205.05758, 2022.

[105] A. Smith-Renner, V. Kumar, J. Boyd-Graber, K. Seppi,
and L. Findlater, “Digging into user control: per-
ceptions of adherence and instability in transparent
models,” in IUI, 2020.

[106] A. Smith-Renner, R. Fan, M. Birchfield, T. Wu, J. Boyd-
Graber, D. S. Weld, and L. Findlater, “No explain-
ability without accountability: An empirical study of
explanations and feedback in interactive ml,” in CHI,
2020.

[107] M. Millecamp, N. N. Htun, C. Conati, and K. Verbert,
“To explain or not to explain: the effects of personal
characteristics when explaining music recommenda-
tions,” in IUI, 2019.

[108] C.-H. Tsai and P. Brusilovsky, “Beyond the ranked list:

User-driven exploration and diversification of social
recommendation,” in IUI, 2018.

[109] D. H. Kim, E. Hoque, and M. Agrawala, “Answering
questions about charts and generating visual explana-
tions,” in CHI, 2020.

[110] U. Ehsan, Q. V. Liao, M. Muller, M. O. Riedl, and
J. D. Weisz, “Expanding explainability: Towards social
transparency in ai systems,” in CHI, 2021.

[111] D. L. Arendt, N. Nur, Z. Huang, G. Fair, and W. Dou,
“Parallel embeddings: a visualization technique for
contrasting learned representations,” in IUI, 2020.

[112] A. Springer and S. Whittaker, “Progressive disclosure:
empirically motivated approaches to designing effec-
tive transparency,” in IUI, 2019.

[113] S. G. Hart and L. E. Staveland, “Development of
nasa-tlx (task load index): Results of empirical and
theoretical research,” in Advances in psychology, 1988.

[114] Y. Wang, P. Venkatesh, and B. Y. Lim, “Interpretable
directed diversity: Leveraging model explanations for
iterative crowd ideation,” in CHI, 2022.

[115] W. Zhang, M. Dimiccoli, and B. Y. Lim, “Debiased-cam
to mitigate image perturbations with faithful visual
explanations of machine learning,” in CHI, 2022.

[116] J. Gao, X. Wang, Y. Wang, and X. Xie, “Explainable
recommendation through attentive multi-view learn-
ing,” in AAAI, 2019.

[117] R. R. Hoffman, S. T. Mueller, G. Klein, and J. Lit-
man, “Metrics for explainable ai: Challenges and
prospects,” arXiv preprint arXiv:1812.04608, 2018.

[118] A. Balayn, N. Rikalo, C. Lofi, J. Yang, and A. Bozzon,
“How can explainability methods be used to support
bug identification in computer vision models?” in
CHI, 2022.

[119] K. Rawal and H. Lakkaraju, “Beyond individualized
recourse: Interpretable and interactive summaries of
actionable recourses,” Advances in Neural Information
Processing Systems, vol. 33, pp. 12 187–12 198, 2020.

[120] J. Schoeffer and N. Kuehl, “Appropriate fairness per-
ceptions? on the effectiveness of explanations in en-
abling people to assess the fairness of automated
decision systems,” in CSCW, 2021.
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Abstract

Effectively explaining decisions of black-box machine learn-
ing models is critical to responsible deployment of AI sys-
tems that rely on them. Recognizing their importance, the
field of explainable AI (XAI) provides several techniques to
generate these explanations. Yet, there is relatively little em-
phasis on the user (the explainee) in this growing body of
work and most XAI techniques generate “one-size-fits-all”
explanations. To bridge this gap and achieve a step closer to-
wards human-centered XAI, we present I-CEE, a framework
that provides Image Classification Explanations tailored to
User Expertise. Informed by existing work, I-CEE explains
the decisions of image classification models by providing the
user with an informative subset of training data (i.e., example
images), corresponding local explanations, and model deci-
sions. However, unlike prior work, I-CEE models the infor-
mativeness of the example images to depend on user exper-
tise, resulting in different examples for different users. We
posit that by tailoring the example set to user expertise, I-
CEE can better facilitate users’ understanding and simulata-
bility of the model. To evaluate our approach, we conduct
detailed experiments in both simulation and with human par-
ticipants (N = 100) on multiple datasets. Experiments with
simulated users show that I-CEE improves users’ ability to
accurately predict the model’s decisions (simulatability) com-
pared to baselines, providing promising preliminary results.
Experiments with human participants demonstrate that our
method significantly improves user simulatability accuracy,
highlighting the importance of human-centered XAI.

Introduction
As AI systems receive increasingly important roles in our
life, human users are challenged to comprehend the deci-
sions made by these systems. To ensure user safety and
proper use of AI systems, experts across disciplines have
recognized the need for AI transparency (Yang et al. 2017;
Ehsan et al. 2021; Russell 2021). Solutions for AI trans-
parency – e.g., techniques for explainable AI (XAI) – are
essential as most AI models can be viewed as a “black box,”
whose decision-making process cannot be easily interpreted
or understood by human users. Among the different settings
of XAI, our work focuses on explaining image classification
tasks (Barredo Arrieta et al. 2020). Existing XAI techniques

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: I-CEE tailors the explanation process to each user
by considering their expertise. By selecting the most infor-
mative explanations based on user expertise, I-CEE can bet-
ter enhance user simulatability of ML model’s decisions.

for image classification widely use attribution explanations,
such as GradCAM (Selvaraju et al. 2017), SHAP (Lundberg
and Lee 2017) or LIME (Ribeiro, Singh, and Guestrin 2016).
While these techniques inform our work, they all miss one
key element: human factors, potentially due to the complex-
ity of modeling human users.

We advocate that human modeling is critical to XAI re-
search because explainability is inherently centered around
humans (Liao and Varshney 2021). A few works focus-
ing on explaining reinforcement learning policies use cog-
nitive science theories to model the human user and gen-
erate explanations based on the human model (Baker and
Saxe 2011; Huang et al. 2019; Lage et al. 2019b; Qian and
Unhelkar 2022). Closer to our focus, the works of Yang,
Folke, and Shafto (2022) and Yang et al. (2021) utilize a
Bayesian Teaching framework to model human perception
and then generate human-centered explanations. One limi-
tation of these works is that all human users are treated the
same by the modeling method, presuming that an identical
set of explanations will work for all users. In contrast, we
attempt to generate tailored explanations for each user by
modeling their task-specific expertise. Our approach to mod-
eling user expertise is informed by human annotator models
used in active and imitation learning (Welinder et al. 2010;
Beliaev et al. 2022). Similar to these works, our user model
aims to capture both the decisions and reasoning process



(expertise in concepts used for image classification) of the
human user in the context of a given classification task.

To bridge the research gap that personalization is missing
in the explanation process, we propose the framework Image
Classification Explanations tailored to User Expertise (I-
CEE). Informed by existing XAI methods for image classifi-
cation, our framework utilizes the explanation-by-examples
paradigm and provides attribution explanations (local expla-
nations) for a subset of training data. However, in I-CEE,
the approach of selecting the example explanations differs
and is user-specific. For a given image classification task, I-
CEE first discovers a set of m task-relevant concepts. It then
models the user’s task-specific expertise as am-dimensional
vector, where each entry lies between [0, 1] and represents
their expertise in the corresponding concept. Based on this
user model, I-CEE finally selects the set of local explana-
tions that can best fill user’s knowledge gaps.

As depicted in Figure 1, by selecting the set of local ex-
planations that can best increase the user’s task-specific ex-
pertise, I-CEE aims to accelerate user’s understanding of the
decision-making process of the machine learning model. In
contrast, most existing work in XAI either selects random
or one-size-fits-all local explanations, thereby foregoing the
opportunity to accelerate model understanding by providing
tailored explanations. The contributions of this work can be
summarized as follows:

• We identify the opportunity for tailored explanations for
explaining decisions made by image classification mod-
els and develop a novel framework named I-CEE that re-
alize this opportunity. This work represents an advance-
ment towards human-centered explanations.

• To evaluate I-CEE, we test the simulatability of expla-
nations generated by our framework on four datasets.
Results demonstrate that our framework achieves better
simulatability (i.e., users’ ability to predict the model’s
decisions) relative to state-of-the-art XAI baselines1.

• We evaluate our framework through detailed human-
subject studies (N = 100). Experimental results indi-
cate that our framework can more effectively help users
understand the ML model’s decision-making than the
state-of-the-art technique Bayesian Teaching (Yang et al.
2021), and is subjectively more preferred by the partici-
pants, highlighting the advantages of our framework.

Related Work
Human-centered Explainable AI. Recent surveys indi-
cate a growing activity in XAI research (Doshi-Velez and
Kim 2017; Liao and Varshney 2021; Rong et al. 2023). The
field recognizes the central role of humans in their expla-
nations, leading to increasing adoption of human-centered
evaluations of explanation techniques (Lage et al. 2019a).
Besides evaluations, a few techniques have also considered
human factors in generating explanations (Lage and Doshi-
Velez 2020; Lage et al. 2019b; Huang et al. 2019; Qian
and Unhelkar 2022; Yang, Folke, and Shafto 2022). Among

1Code is available at https://github.com/yaorong0921/I-CEE.

these, the most related framework is that of Bayesian Teach-
ing, which focuses on image classification and selects ex-
planations by modeling the users as a Bayesian agent (Yang
et al. 2021). However, this work does not model differences
between users’ reasoning or prior expertise. In contrast, we
consider personalized user models to better fit the specific
explanation needs of different users. Our design is informed
by research in pedagogy and active machine learning.

Pedagogical Theories on Learning from Errors. XAI
has been viewed as a teaching process, where the XAI tech-
nique serves the role of the teacher and the user that of the
student (Qian and Unhelkar 2022). To teach learners effec-
tively, pedagogical research confirms that a teacher needs
to assess a learner’s prior knowledge and design instruc-
tions accordingly (Owens and Tanner 2017; Ambrose et al.
2010). A common indicator of incorrect knowledge is er-
rors, caused by an incorrect association or understanding.
To correct the errors, feedback on the correct answers along
with explanations have been found to be crucial and most
helpful (Metcalfe 2017). These findings in learning sciences
have laid the groundwork for our XAI framework, moti-
vating our example selection approach; in particular, I-CEE
emphasizes explaining the images on which it estimates the
user will make errors. Additionally, as the confidence in an
error increases, learning from the error also increases (But-
terfield and Metcalfe 2001; Metcalfe and Finn 2011). This is
an effect known as the hypercorrection effect. To reflect the
hypercorrection effect in our framework, we choose images
where the user has low confidence in the correct label (i.e.,
high confidence in the incorrect label), and argue that using
these examples will result in better learning outcomes.

Active Learning. In the context of machine learning
(ML), techniques for active learning aim to achieve high
model accuracy while minimizing the required labeling ef-
fort (Settles 2009; Ren et al. 2021). Active learning is valu-
able in domains where a limited amount of training data is
labeled, and it has been used beyond classification tasks such
as in sequence labeling (Settles and Craven 2008) or image
semantic segmentation (Sinha, Ebrahimi, and Darrell 2019).
While active learning pertains to training machines, we ob-
serve that insights from the field are highly relevant for XAI
(which seeks to train humans about an AI model). By mak-
ing this novel connection, we leverage a central component
of active learning techniques – query strategies – to inform
the development and evaluation of I-CEE.

Problem Statement
Consider an ML classifier, denoted as f or the target model,
trained on dataset D of image-label pairs (x, y). The clas-
sifier f : Rd → {1 : K} maps an input image x ∈ Rd to
a label y ∈ {1 : K}, i.e., f(x) = y, where K is the num-
ber of classes. For a subset of images, the predicted label
y may not match the true label y∗. To explain such target
models, different feature attribution methods have been pro-
posed that generate local explanations (Ribeiro, Singh, and
Guestrin 2016; Lundberg and Lee 2017). These local expla-
nation assigns each input pixel an importance value, denoted
as e ∈ Rd, which is usually visualized as a saliency map. In
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the explanation-by-example paradigm, the user is shown a
set of images sampled from the training data, its local ex-
planation, and its prediction, i.e., (x, e, y). As the user has
limited time to understand the model, it is important to select
the set of most informative example images.

Within the explanation-by-example paradigm, we con-
sider the problem of selecting the set of most informative ex-
ample images (and corresponding explanations). Formally,
our problem assumes three inputs: the target model f , a data
set D (|D| = N ), and a feature attribution method to gener-
ate local explanations. Given these inputs, we seek to gener-
ate a subset S ⊂ D of training data composed of M ≪ N
images that best facilitate simulatability, i.e., help users pre-
dict the decisions of the ML model. As the problem objec-
tive hinges on a human-centered metric, its successful reso-
lution warrants a human-centered approach.

I-CEE: Image Classification Explanations
tailored to User Expertise

We now present our approach to solve this problem: I-CEE,
which is composed of two phases (Figure 2). First, our
framework models the user by estimating their task-specific
expertise (lines 3-4, Algorithm 1). Second, by simulating the
user using this model and a query strategy, I-CEE selects in-
formative example images and explanations (lines 5-8).

User Expertise Estimation
The process of a user predicting an ML model’s labeling de-
cisions can be viewed as one of image annotation, where the
annotators might possess distinct areas of strengths or ex-
pertise affecting their giving labels (Welinder et al. 2010).
For instance, some users find textual patterns to be more
recognizable than shapes while others find shapes to be
more intuitive. During the annotation process, humans fre-
quently use “concept-based thinking” in reasoning and de-
cision making: identifying similarities among various ex-
amples and organizing them systematically based on their
resemblances (Yeh et al. 2020; Armstrong, Gleitman, and
Gleitman 1983; Tenenbaum 1999). Recognizing these as-
pects of human reasoning and informed by annotator mod-
els proposed in active learning, we model a user by estimat-
ing their expertise in applying different task-relevant con-

x Ψ(·) Ξ(·)

ω

h(·)

c

L

y

yu
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Figure 3: User Modeling: Square nodes are deterministic,
while diamond nodes are trainable. Loss back-propagated
for concept discovery (Eq. 3) is marked in blue, while that
for expertise estimation (Eq. 4) is in red.

cepts. We first discover the underlying concepts in the fea-
ture space of the target model. Using the discovered con-
cepts, we model a user with a vector representing their abil-
ity to utilize each concept when annotating images.

Figure 3 provides an overview of the user model. To ar-
rive at the model, I-CEE begins with applying the concept
discovery algorithm on the target model (Yeh et al. 2020)
that aims to recover m concept [c1, · · · cm] , such that

f(x) = h(Ψ(x)) = h(Ξθ(sc(x))) (1)
where Ψ(x) ≡ [ψ(x1), . . . , ψ(xT )] are T activation vectors,
h(·) represents the mapping from the intermediate output of
activation vectors to image labels,2 sc(·) is the concept score

sc(x) = ⟨ψ(xi), cj⟩|mj=1|Ti=1 ∈ Rm·T (2)
that estimates the alignment between each concept and acti-
vation vector pair, and Ξθ : RT ·m → RT ·n is a trainable
mapping that converts concept scores back into the acti-
vation space. Both the concept vectors and concept scores
are unit normalized. For concept discovery (i.e., computing
c, θ), the following cross-entropy loss is minimized:

L(c,θ) = −
N∑
i=1

yi log(h(Ξθ(sc(xi)))), (3)

2Ψ and h can also be viewed as the intermediate and final layers
of the image classification neural network, respectively. As h and Ψ
are not trained as part of the user model, we do not explicitly denote
their parameters (such as weights and biases) in our notation.



Algorithm 1: I-CEE

1: Input: Target model f(·), data D, user annotation yu.
2: Output: A set of example images and explanations S.
3: Discover concepts by solving Eq. 3.
4: Estimate user expertise by solving Eq. 4.
5: for x ∈ D do
6: Calculate Hypercorrection Effect for x using Eq. 5.
7: end for
8: Return top-K image samples.

where y is the prediction from the target model f(·).
After completing concept discovery (which is a one-time

process), the expertise estimation for each user takes place
within the concept space. We freeze all model parameters
(Ψ(·), sc(·), Ξθ(·) and h(·)) trained using Eq. 3 to learn
an expertise vector ω ∈ Rm for each user. The variations
among users are manifested through different values of ω,
as their diverse domain knowledge influences the way they
utilize concepts to arrive at predictions. Concretely, we ask
users to annotate images and use ω to simulate their predic-
tions. The expertise vector ω for a user is learned by mini-
mizing the following cross-entropy loss:

Lω = −
N∑
i=1

yui log(h(Ξθ(ω · sc(xi))), (4)

where yu denotes annotated labels collected from the user.
Once ω is learned, we obtain a user model denoted as
gω(·) = h(Ξθ(ω · sc(·)). If ω1 ≈ ω2, it implies that these
two users (Users 1 and 2) have very similar “reasoning pro-
cess” as the utilization of concepts is very similar. Likewise,
if ω ≈ 1m, this user employs a very similar reasoning mech-
anism as the target model f .

Selection Strategy
Our goal is to select a set of informative examples that can
most improve the user’s simulatability. To estimate the in-
formativeness of the examples, we employ the concept of
the hypercorrection effect in educational psychology. As
the human needs to learn how the model makes the deci-
sion, the model’s prediction is viewed as the “correct” an-
swer whereas the human’s disagreed initial belief is the “er-
ror”. Feedback on the correct answer along with explana-
tions has been found to be crucial and most helpful in learn-
ing new knowledge (Metcalfe 2017). As the confidence in
an error increases, i.e., the confidence in the correct an-
swer decreases, learning from this error example is more ef-
fective (Butterfield and Metcalfe 2001; Metcalfe and Finn
2011). To reflect the hypercorrection effect in I-CEE, we
choose images where the user has lower confidence in the
model’s predicted label after knowing the model’s reason-
ing and argue that using these examples will lead to higher
learning outcomes. Concretely, I-CEE aims to identify a set
of examples S ⊆ D which consists of samples with the top
maximal Hypercorrection Effect:

x = argmax
x∈D

(gω(y|x)− gω(y|x, e))︸ ︷︷ ︸
Hypercorrection Effect of e

, (5)
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Figure 4: (a): Overview of four classes in the synthetic
dataset. (b): User simulatability accuracy when trained with
examples that match/mismatch with the user expertise.

where gω(·) represents the user model, D denotes the train-
ing dataset, and e and y are the local explanation and ma-
chine prediction corresponding to the image x.

Experiments with Simulated Users
Before conducting a user study, we first evaluate our ap-
proach through extensive experiments with simulated users
on one synthetic and three realistic image classification
tasks. To facilitate reproducibility, Appendix includes more
details about the experimental setup.

Synthetic Dataset. We construct a synthetic dataset3 to
validate the design of our proposed method in simulation.
This dataset contains four classes and each class is described
with two concepts, color and shape, illustrated in Figure 4a.
For instance, if a user uses colors to distinguish between dif-
ferent classes (i.e., they have more expertise in using “col-
ors” then “shapes”), then to this user, the red cylinders and
red cubes belong to the same class, which differs from the
orange ones. Likewise, for a user who has high expertise in
using shapes, the cylinders and the cubes are distinguish-
able for this user regardless of their colors. The other visual
features such as angles or background colors are randomly
sampled as they are not essential in this decision-making
process. For each class, we generate 300 images (80% for
training and 20% for testing). We use a ResNet-18 (He et al.
2016) as our classification model and use GradCAM (Sel-
varaju et al. 2017) for generating explanations. Given their
annotation behavior, a simulated behavior is modeled using
Eqs. 3-4, i.e., identical to the modeling approach of I-CEE.

Realistic Datasets. We also benchmark I-CEE on three
real-world datasets: CIFAR-100 (Krizhevsky, Hinton et al.
2009), CUB-200-2011 (Wah et al. 2011) and German Traf-
fic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.
2012). We construct a simulated user from pre-defined an-
notations on each dataset who behaves differently from the
target model. In particular, for each dataset, our simulated
user can distinguish only two classes out of four similar
classes. All methods are evaluated based on this user. For
instance, on CUB-200-2011, the simulated user labels both
Crested and Least Auklet as the same class (Crested Auk-
let), and Parakeet and Rhinoceros Auklet as the same class

3This dataset is based on 3d-shapes (Kim and Mnih 2018).
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Figure 5: Comparison with baseline algorithms with simulated users on three datasets. The ratio of used examples p (in per-
centage) is plotted on the x-axis and simulatability accuracy is on the y-axis. (Results averaged over 5 runs.)

(Parakeet Auklet). We use the original training-test splits on
these datasets and, similar to the procedure in the synthetic
dataset, we use ResNet-50 (He et al. 2016) for classification
training and GradCAM for computing explanations.

Baseline Methods
We evaluate I-CEE against a recent human-centered XAI
approach: Bayesian Teaching (BT) (Yang et al. 2021). BT
simulates a user’s behavior (i.e., their prediction of an image
class) by deploying a ResNet-50-PLDA (probabilistic lin-
ear discriminate analysis (Ioffe 2006)) model. By assuming
users perform Bayesian reasoning, it selects example images
and explanations to better align user’s beliefs to the target
model. I-CEE and BT differ in their approaches to both user
modeling and example selection.

To evaluate the example selection alone, we also bench-
mark against query strategies derived from active learning
(AL). Unlike traditional AL, in our application of AL query
strategies to XAI, the simulated user is the learner and the
target model is the annotator. We use Expected Gradient
Length (EGL) (Settles, Craven, and Ray 2007), Density-
Weighted Method (DWM) (Settles, Craven, and Friedland
2008) as well as a random sampling strategy as baselines.
EGL, in the context of this paper, selects samples (x, e) that
result in the greatest change to the current model if the an-
notated label is known. The “change” imparted to the model
from the queried samples is measured by the gradient of
the objective function with respect to the model parameters.
However, the instances chosen by EGL might be outliers that
cause significant gradient changes. To alleviate this issue,
Settles, Craven, and Friedland (2008) proposes to integrate
a density-weighting technique with the query strategy such
as EGL. Specifically, each sample is weighted with its aver-
age similarity to all other instances in the input dataset. In
this work, we extend EGL with the belief shift in the calcu-
lated EGL when considering e in the input (denoted as EGL-
Shift). Specifically, we compute the difference between EGL
of (x, e) and x. With EGL-Shift, we aim to alleviate the in-
fluence of an image itself on the training gradient but em-
phasize the impact of explanations.

Evaluation Metric
To evaluate our method, we use simulatability, which is
commonly used as a proxy for testing a user’s understanding

of the model’s decision-making process (Hase and Bansal
2020; Arora et al. 2022; Hase et al. 2020). Simulatability is
measured as “to what extent can a user successfully predict
a model’s prediction.” This metric can be used in both sim-
ulation experiments and human user studies.

We follow the experimental settings proposed in (Yeh
et al. 2018; Koh and Liang 2017) to study the influence of
selected examples. Specifically, each method provides an or-
dered set of example images S, where the ranking is decided
by the informativeness defined in the respective method. We
denote the ratio between number of example images |S| and
the size of training data D as p = |S|/|D|. The simulated user
is retrained using these example images x and their corre-
sponding labels y = f(x), where recall that f is the target
model. Given the retrained user model g′ω , we compute the
user’s accuracy of predicting the model’s predictions on the
test set, i.e., the simulatability of the user:

Acc =
1

Nt

Nt∑
i=1

1(yi = g′ω(xi)), (6)

where Nt is the number of samples in the test set.

Experimental Results
Ablation Study. To validate our model design of g(·), we
study (1) whether ω can faithfully reflect the user expertise
and (2) the advantages of tailored explanations according to
the user expertise. We simulate two users on the synthetic
dataset: User 1 only uses color in classification while User 2
only uses shape. We deduce annotations for each user based
on attributes for each class (Figure 4a).

After estimating each user, we investigate their expertise
vector: ω1 and ω2 (ωi ∈ R8). Each entry in ωi represents the
expertise of the user in one specific concept. The top four
largest entries in ω1 and ω2 are complementary, correspond-
ing to the fact that each user has the opposite expertise (i.e.,
each user uses different concepts in the decision-making).
To validate the efficacy of the user model via expertise, we
run an experiment where we train User 1 using a set of
examples specifically chosen based on the User 1 model
(“Matched”), against a set of examples chosen for User 2
(“Mismatched”). As demonstrated in Figure 4b, we observe
that the simulated user achieves high simulatability accuracy
when they receive examples selected according to their ex-
pertise (“Ours Matched”). However, if selecting examples
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Figure 6: Results of experiments with human users (N = 100) comparing I-CEE with the baseline Bayesian Teaching (BT).
(a) Simulatability accuracy on all predictions, (b) Simulatability accuracy on images where the target model made inaccurate
predictions in the CUB-200-2011 dataset, (c) User’s subjective perception of model explanations.

that do not maximize the Hypercorrection Effect tailored to
the particular user (“Ours Mismatched”), the simulatability
accuracy is low, indicating that such examples fail to pro-
vide substantial insights into the target model. Additionally,
we compare our user simulation model to that of Bayesian
Teaching. We observe little differences between the matched
and mismatched settings using the BT framework, suggest-
ing that BT might not be able to accurately simulate the dif-
ferent behaviors of various users. Consequently, it cannot
provide examples that effectively improve user simulatabil-
ity (less performance improvement compared to ours).

Comparison. We compare I-CEE with baselines on three
real-world datasets in Figure 5. Evaluation in user predic-
tion accuracy is conducted at p = [10, 15, 20, 25, 30]%. On
CIFAR-100, our method always outperforms BT and EGL-
Shift but is inferior to EGL and DWM. A potential reason
for this result is that the explanation of CIFAR-100 is vague
due to the low resolution of images. In this case, Hyper-
correction Effect cannot be well captured since explanations
are noisy. On CUB-200-2011 and GTSRB, our method out-
performs other baselines at most of the percentages. For in-
stance, on CUB our method achieves the best performance
after 20%. Note that 20% of the train data consists of 24
images. This is a reasonable number of samples that can be
efficiently studied by human users, which we will show in
the next section. On GTSRB, we observe an evident perfor-
mance gap between our method and the competitive baseline
BT. A possible explanation for this can be attributed to the
architecture of the user model: our model simulates the user
via learning ω in the concept space without weakening the
capability of the final classifier. On the contrary, BT relies
on a PLDA layer to classify images, which can result in sub-
optimal performance when the latent features of images are
highly similar, such as in traffic signs. This is not desirable
because humans are good at distilling critical concepts and
filtering out similar but irrelevant visual features. With more
precise user modeling, our method demonstrates the capa-
bility of offering informative learning samples in most of
the cases within the simulation experiments.

Experiments with Human Users
We conduct a human user study using the CUB-200-2011
and GTSRB datasets following the same settings as in the
simulation experiments. We choose these two datasets as
they are more challenging and the images are in higher res-
olution. We use Bayesian Teaching (Yang et al. 2021) as a
baseline since it is the most state-of-art and closest to our fo-
cus. Users are first asked to study two classes (among which
there are actually four classes) and write down the features
used to distinguish between these classes. This step is to let
the user think as the pre-defined simulated user, to whom
we have tailored model explanations. Then, 20 model ex-
planations selected by our method (experimental group) or
Bayesian Teaching (control group) for users are shown, and
we ask them to write down the features they use to deter-
mine the model prediction. During the evaluation section,
participants first receive a test with 15 questions to predict
the model’s label (images used here are sampled from the
test set and include all four classes evenly). We refer to this
section as “objective understanding”. Then, participants rate
their perceived understanding on seven questions on the 7-
Likert scale, which we refer to as “subjective understand-
ing”. In the user study, we aim to study the following re-
search questions:

• R1: Our framework selects informative samples that can
increase human understanding of the model.

• R2: Human understanding of the model is affected by
task domains.

Participants. We recruited 100 participants (average age
is 28.8 ± 8.6, 49 females, 50 males, and 1 undefined) using
a research platform Prolific4, and randomly assigned them
to one of the two conditions (50 participants/condition). 51
participants have prior experience with AI from using Alexa,
Siri, ChatGPT, or from ML-related courses. All participants
passed the attention check during the user study. The study
protocol has been approved by the Technical University of
Munich IRB. At the beginning of the experiment session,

4https://www.prolific.co/



Rhinoceros Least Parakeet Crested

Ours

0.0

10.0

20.0

30.0

40.0

50.0

60.0
F
e
a
tu

re
u
se
d

b
y
%

U
se
r

Rhinoceros Least Parakeet Crested

Bayesian Teaching

belly

beak

head

body

wing

breast

white

black

yellow

orange

grey

dark

bright

red
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distinguishing each class on CUB-200-2011.

we collected informed consent through Prolific. Each par-
ticipant was compensated with a payment of £4.50 for par-
ticipation in the user study (within 30 minutes).

Results
Analysis on R1. The results of the simulatability accuracy
in each condition on each dataset are shown in Figure 6a. On
GTSRB, we observe a statistically significant improvement
in using our framework on user simulatability accuracy by
11.5% (p = 0.007). On the CUB dataset, we see that users
from two conditions achieve similar user prediction accu-
racy and no significant effect is observed. However, if we
inspect the test samples where the target model makes in-
accurate predictions (wrong classification) (6 out of 15 im-
ages in the test are wrongly predicted), our method demon-
strates superior performance compared to BT. Users from
the experimental condition achieve an accuracy of 46.3%,
whereas users from the control condition achieve 40.3%, as
plotted in Figure 6b. These results indicate that users ex-
hibit improved capability in simulating inaccurate predic-
tions from the target model using our method, which is a
more challenging task. Additional evidence of the enhance-
ment achieved through our model can be found in Figure 7.
We count the words of the features that users think the model
uses to distinguish four different classes. When using our
framework, the users tend to agree on the same feature (body
part of the bird) for each class. For instance, about 68% of
the users use “Head” to distinguish Rhinoceros, and about
20% of the users think highly of “Belly” for Least Auk-
let. Nevertheless, it is more difficult for users in Bayesian
Teaching to come to an agreement, for example, for Least
Auklet, only around 10% of the participants use “Body” as
a feature while other users give diverse descriptions. These
results highlight the advantage of the method in improving
user understanding of the given target model.

As shown in Figure 6c, the improvement in subjective un-
derstanding (rating scores) is not significant on CUB (av-
erage rating score is 5.14 in our method and 5.02 in BT).
However, we observe that on GTSRB our method surpasses
BT significantly with p = 0.037. The reason for significant
improvement in GTSRB is that our method selects expla-
nations bringing knowledge for distinguishing four classes.
But BT chooses examples that reflect important features
only for two classes, which hinders users from understand-
ing how the model makes predictions for the other classes.

Analysis on R2. The quantitative result shows that the
task domain (dataset) affects the user’s objective understand-
ing. However, different tasks influence less subjective under-
standing, e.g., no significant difference between two datasets
when using our method as illustrated in Figure 6c. At the
end of the user study, we asked participants for feedback on
comparing the perceived helpfulness of model explanations
in two datasets. While most of the users in both conditions
find the explanations useful, seven users in the experimental
condition and fourteen users in the control condition find the
explanations on bird species are more helpful than the expla-
nations on road signs. One reason causing this uncertainty in
the road sign images is that the salient area is always a circle
that covers the road sign, which seems to “be the only one
characteristic” for different classes.

Conclusion
We present a human-centered XAI framework, I-CEE, that
provides explanations of image classification ML models
that are tailored to user expertise. Our framework first dis-
covers task-relevant concepts, uses these concepts to arrive
at expertise-based user models, and then selects examples
and explanations that help the users to learn the missing
concepts so they can accurately predict the machine’s image
classification decisions. We evaluate our approach through
simulation experiments on four datasets, and report on a
detailed human-subject study (N = 100). In these experi-
ments, we observe that I-CEE outperforms prior art, shows
the promise of human-centered XAI, and motivates future
research direction for the design of XAI systems.

Limitations and Future Work. Future investigation of
our framework can consider the following avenues. First,
more complex models of expertise estimation should be
studied. In this work, we simulate user expertise by employ-
ing the concept-based reasoning approach for image classifi-
cation proposed in (Yeh et al. 2020). An alternative approach
involves utilizing Large Language Models to simulate mul-
tiple humans in textual format (Argyle et al. 2023; Aher, Ar-
riaga, and Kalai 2023). Second, the current framework does
not consider the sample complexity associated with user ex-
pertise estimation. Future work should investigate methods
that estimate user expertise with a small number of real-user
annotations. Third, we encourage replication of our work to
be tested with different datasets, as the power of explana-
tions is dependent on the task domain. Future work should
evaluate on datasets that include a more diverse pool of ex-
amples, as suggested by some of the participants.

Implications for XAI Systems. This study highlights the
importance of personalized XAI, within the explanation-
by-example paradigm for image classification. Future work
should investigate the potential of personalized XAI in other
contexts. We argue that user modeling is essential to pro-
vide explanations that target user-specific misunderstanding
or confusion. Future XAI systems should leverage and ad-
dress individual users’ preferences and confusion. This in-
volves the development of human-in-the-loop systems, al-
lowing users to actively participate in the process of gener-
ating explanations.



Ethical Statement
In this work, we attempt to put human users at the center of
XAI design, with the aim of creating AI systems that can be
interpreted by non-expert end users. To safeguard user pri-
vacy and user rights, we have received approval from Uni-
versity IRB. We believe that only when AI becomes more
accessible, acceptable, and usable, can we realize its full po-
tential to empower the world around us.
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