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Abstract 

In recent decades, despite substantial advancements in science and technology, 
drug research and development efficiency has stagnated. Consequently, drug 
repurposing (DR) - seeking new applications for existing drugs - has gained 
prominence as an alternative strategy. DR offers key benefits, notably reduced 
time and costs, making it attractive especially in urgent situations like the COVID-
19 pandemic. Computational methods based on network medicine principles 
expedite DR by narrowing the search for therapeutics. 

Advancements in high-throughput omics technologies have empowered 
researchers to comprehensively study DNA, RNA, proteins, and molecules, leading 
to insights into genetic risk factors and disease mechanisms. Integrating data 
from different molecular levels offers opportunities for personalized treatments. 
However, the complexity of noisy molecular profiling data poses challenges in 
distinguishing causal relationships, motivating the incorporation of prior 
information, like protein-protein interaction networks, enabling integrative 
analyses to discover pathomechanisms. 

Network medicine, which models complex biological systems by incorporating 
diverse data types, helps identify disease modules—collections of molecular 
entities explaining disease phenotypes and pathomechanisms. These approaches 
can further aid DR by identifying already approved drugs targeting the discovered 
disease modules. However, this necessitates an integrated knowledge base 
consolidating scattered databases of drug- and disease-related data. 

In this cumulative thesis, I present the development of two unified systems 
medicine platforms for DR, by combining complex network-medicine algorithms 
with a harmonized knowledge base. 

The first publication introduces CoVex, a platform designed for COVID-19 DR. 
CoVex integrates virus-human interaction data, protein-protein interaction 
networks, and drug information, employing network medicine algorithms to 
predict novel drug targets and candidates. CoVex highlights the utility of expert 
knowledge integration, offering a user-friendly web tool to explore molecular 
mechanisms. 

The second publication introduces NeDRex, a generalized DR platform extending 
CoVex. NeDRex constructs heterogeneous biological networks enriched with 
disease and drug data, enabling the mining of candidate disease mechanisms while 
engaging expert knowledge. The platform prioritizes drugs targeting proteins 
involved in these mechanisms, providing a versatile tool applicable to practically 
any disease. 

The third publication offers a comprehensive review of computational approaches 
for COVID-19 DR, categorizing these approaches into virus-targeting and host-
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targeting strategies and offering insights into relevant data resources. It 
emphasizes the need for a unified DR strategy to enhance preparedness for future 
outbreaks. 

The fourth publication delves into the critical issue of inadequate disease 
definitions in network medicine studies, which can introduce bias and hinder 
progress. Through global- and local-scale similarity analyses of complex 
networks constructed from disease and drug association data, this study uncovers 
the risks associated with mechanistically inadequate disease definitions. It 
underscores the importance of complementing publicly available disease 
association data with well-characterized patient cohort data for more reliable 
network medicine analyses. 

In sum, this dissertation presents network medicine platforms for DR, 
underpinned by the integration of a multitude of databases, expert knowledge, and 
novel computational approaches. All platforms aim for high accessibility for 
biomedical researchers, facilitating analyses and interpretation of predictions. 
This dissertation explores challenges in the field, from pandemic responses to the 
refinement of disease definitions, ultimately contributing to the advancement of 
precision medicine and therapeutic discovery. 
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Kurzfassung 

In den letzten Jahrzehnten stagnierte die Effizienz der Arzneimittelforschung und 
-entwicklung trotz erheblicher Fortschritte in Wissenschaft und Technologie. 
Dadurch hat das so genannte „Drug Repurposing“ (DR), also die Suche nach neuen 
Behandlungsanwendungen für bestehende Wirkstoffe, als alternative Strategie 
zur Medikamententwicklung an Bedeutung gewonnen. DR bietet insbesondere 
durch einen geringeren Zeit- und Kostenaufwand entscheidende Vorteile und 
macht es gerade in dringenden Situationen wie der COVID-19-Pandemie 
besonders attraktiv. Aufbauend auf den Prinzipien der Netzwerkmedizin 
beschleunigen computergestützte Methoden das DR, da sie den Suchraum für neu 
Therapeutika stark einschränken.  

Fortschritte in der Hochdurchsatz-Omics-Technologie ermöglichen heutzutage 
die umfassende Untersuchung der DNA, RNA, Proteine und Moleküle und decken 
dadurch genetische Risikofaktoren und Krankheitsmechanismen auf. Die 
Integration von Daten aus verschiedenen molekularen Ebenen ermöglicht 
schließlich personalisierte Behandlungen. Nichtsdestotrotz stellt das 
Signalrauschen in den molekularen Profilen ein erhebliches Problem bei der 
Unterscheidung kausaler Zusammenhänge dar und begründet die Einbeziehung 
von Vorwissen in Form von beispielsweise Protein-Protein-
Interaktionsnetzwerke, was integrative Analysen zur Entdeckung von 
Pathomechanismen ermöglicht.  

Die Netzwerkmedizin modelliert diese komplexen biologische Systeme und hilft 
dadurch bei der Identifizierung von Krankheitsmodulen – eine Sammlung von 
molekularen Entitäten, die zusammen die Krankheitsphänotypen und 
Pathomechanismen erklären. Diese wiederum können das DR erheblich 
unterstützen, indem bereits zugelassene Medikamente, die auf entdeckte 
Krankheitsmodule abzielen, identifiziert werden. Dies erfordert jedoch eine 
integrierte Wissensbasis, die verschiedenste Datenbanken mit Arzneimittel- und 
Krankheitsbezogenen Daten konsolidiert.  

In dieser kumulativen Arbeit präsentiere ich die Entwicklung zweier 
ganzheitlicher systemmedizinischer Plattformen für das DR, die komplexe 
netzwerkmedizinische Algorithmen mit einer harmonisierten Wissensbasis 
kombinieren.  

Die erste Veröffentlichung behandelt CoVex, eine Plattform die speziell für das DR 
für COVID-19 entwickelt wurde. CoVex integriert Daten zur Virus-Mensch-
Interaktion, Protein-Protein-Interaktionsnetzwerke und 
Arzneimittelinformationen und verwendet Netzwerkmedizin-Algorithmen, um 
neue Medikamentenziele und Kandidaten vorherzusagen. CoVex unterstreicht den 
Nutzen der Integration von Expertenwissen und bietet ein benutzerfreundliches 
Web-Tool zur Erforschung molekularer Mechanismen.  



 

 vi 

Die zweite Veröffentlichung stellt mit NeDRex eine verallgemeinerte Version von 
CoVex für das DR vor. NeDRex verarbeitet heterogene biologische Netzwerke, 
angereichert mit Krankheits- und Arzneimitteldaten, und ermöglicht so die 
Entdeckung möglicher Krankheitsmechanismen unter Einbeziehung von 
Expertenwissen. Die Plattform priorisiert Medikamente, die auf an den 
Mechanismen beteiligten Proteine abzielen, und bietet so ein vielseitiges 
Werkzeug, das praktisch auf jede Krankheit anwendbar ist.  

Die dritte Veröffentlichung bietet einen umfassenden Überblick über 
computerunterstützte Ansätze für das COVID-19 DR und kategorisiert diese 
Ansätze in Viren-Targeting- und Host-Targeting-Strategien und bietet Einblicke 
in relevante Datenquellen. Die Arbeit betont die Notwendigkeit einer einheitlichen 
DR-Strategie, um besser auf künftige Ausbrüche vorbereitet zu sein.  

Die vierte Veröffentlichung befasst sich mit dem kritischen Problem 
unzureichender und ungenauer Krankheitsdefinitionen in 
Netzwerkmedizinstudien, die zu Verzerrungen führen und dadurch 
Fortschrittshemmend wirken. Durch globale und lokale Ähnlichkeitsanalysen 
komplexer Netzwerke, die aus Krankheits- und Arzneimittelassoziationsdaten 
erstellt wurden, deckt diese Studie die Risiken von mechanistisch unzureichenden 
Krankheitsdefinitionen auf. Die Arbeit unterstreicht die Bedeutung der Ergänzung 
öffentlich verfügbarer Krankheitsassoziationsdaten durch gut charakterisierte 
Patientenkohortendaten für zuverlässigere Netzwerkmedizin-Analysen. 

Insgesamt stellt diese Dissertation neue Plattformen für die Anwendung von 
Netzwerkmedizin für das DR vor, die auf der Integration einer Vielzahl von 
Datenbanken, Expertenwissen und neuartigen Algorithmen basieren. Alle 
Plattformen sind besonders benutzerfreundlich für biomedizinische Forscher 
gestaltet, um Analysen und Interpretation von Vorhersagen zu erleichtern. Diese 
Dissertation bearbeitet auf vielschichtige Art und Weise die Anwendung der 
Netzwerkmedizin, von der schnellen Reaktion auf eine Pandemielage bis hin zur 
Verfeinerung von Krankheitsdefinitionen, und trägt letztendlich zur 
Weiterentwicklung der Präzisionsmedizin und der Therapieentdeckung bei. 
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1. General Introduction  

1.1. Motivation and Objective 

Advances in high-throughput omics technologies have enabled researchers to 
simultaneously analyze thousands of Deoxyribonucleic acid (DNA), Ribonucleic 
acid (RNA), proteins, and other molecules to gain a comprehensive and systemic 
insight into the inner workings of cells. This has led to the identification of genetic 
risk factors and molecular mechanisms involved in diseases through large-scale 
whole-genome and whole-transcriptome association studies. The availability of 
data from different molecular levels, including genomics, transcriptomics, and 
proteomics, provides opportunities to improve human health by offering safer 
treatments and making medicine more precise and personalized [1]. However, 
molecular profiling data is complex and often contains noise, making it difficult to 
determine which molecular changes cause a disease and which are caused by it. 
Researchers have attempted to deal with this complexity by incorporating prior 
information relevant to the whole population, such as protein-protein 
interactions networks, biological pathways, and ontological information, into 
their analyses [2]. This has allowed for integrative analyses, such as de novo 
network enrichment, to be performed. While prior information can be accessed for 
free through publicly available databases, obtaining multi-omics data for the same 
group of patients can be costly, hence, not as common in practice. 

Systems medicine views the human body as a whole system rather than reducing 
it to the sum of its components. It uses the complex molecular interactions within 
the body to understand and explain diseases and their subtypes [3]. By focusing on 
the underlying mechanisms of disease, rather than just the symptoms, systems 
medicine can identify potential targets for treatment rather than just palliating 
symptoms. The identification of molecular entities that are connected in a way that 
helps to explain a disease phenotype is often called disease module identification. 
Many systems medicine approaches employ omics data together with the prior 
knowledge such as protein-protein interactions to derive disease modules. A 
disease module can include a variety of molecular entities, such as genes, proteins, 
and metabolites. The connectivity characteristic of a disease module implicates the 
molecular mechanism explaining the underlying pathological process [4]. 
Network medicine, a branch of systems medicine, employs network theory to 
represent biological systems as networks of interconnected nodes, where nodes 
symbolize biological elements and links represent their relationships [5]. This 
approach has multiple potential applications, including the identification of 
disease genes and pathways, which in turn may offer better targets for drug 
development and the development of better biomarkers. 
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A powerful strategy within drug development is drug repurposing, or drug 
repositioning, which involves identifying new applications for existing drugs 
beyond their primary medical indications. This approach offers several advantages 
over traditional de novo drug discovery, including a substantial reduction in 
development time and costs [6]. Repurposed drugs can typically reach the market 
in half the time and at a fraction of the cost compared to entirely new drug 
candidates [7]. Furthermore, the lower risk of failure due to safety concerns makes 
drug repurposing an attractive strategy. 

In pandemic cases, like the recent coronavirus disease 2019 (COVID-19) pandemic, 
where quick response to a new unknown pathogen is vital, de novo drug discovery, 
due to its very long development timeline, is out of the question. For such cases, 
the best possible course of action to find treatment is drug repurposing [8]. 
Computational methods for drug repurposing, particularly those based on 
network medicine principles, can dramatically expedite the drug discovery process 
by narrowing down the search space for potential therapeutics. 

Amongst diverse existing computational drug repurposing approaches, the 
network medicine approaches have gained high attention [9]. This is due to the 
fact that the nature of complex biological systems, associations between their 
constituent elements, as well as links between drugs and disease related 
components can be viewed in a holistic manner as networks by incorporating a 
variety of disease- and drug-related data types. By combining the principles of 
network medicine with large-scale biomedical data, such as disease-gene, drug-
indication, drug-target, and disease-symptom relationships, it is possible to build 
meaningful models and extract valuable insights about diseases and drugs at the 
network level [10]. Many scattered biomedical databases contain information 
applicable to drug repurposing and they use non-unified identifiers for drugs and 
different vocabularies for diseases. However, to fully exploit such wealth of 
biological and pharmacological information for drug repurposing, an integrated 
and harmonized knowledge base is needed. 

A large number of computational drug repurposing methods are developed based 
on machine learning principles to predict de novo drug-disease links. However, 
most of such methods work as a black box and their results are hardly 
interpretable. Understanding the rationale behind a model's predictions, is crucial 
for its clinical applicability. To address this limitation, a mechanism-based drug 
repurposing approach is emerging as a promising solution. This approach entails 
first identifying the disease mechanism through disease module mining and 
subsequently attempting to find drugs that target the mechanism. Such a 
mechanism-based drug repurposing approach returns interpretable results by 
design. Drugs targeting disease modules hold the potential to be disease modifying 
rather than just alleviating symptoms. Additionally, the valuable expert 
knowledge is often overlooked in computational drug repurposing methods. 
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Capitalizing on the idea of human-in-the-loop for drug repurposing enables us to 
evaluate the results of each step in a workflow by an expert leading to more 
promising predictions.  

Available drug repurposing studies are limited to either non-translational 
algorithmic approaches or predictions for specific diseases. There are a few drug 
repurposing platforms attempting to make their methods applicable to more than 
just a limited set of diseases. However, their applicability is necessarily confined 
to only those diseases with extensive curated knowledge in public databases and 
thus renders these platforms impractical for new emerging diseases like the recent 
COVID-19 pandemic. Even for diseases with available knowledge in the databases, 
the analysis can be biased due to the inadequate, mainly phenotype-based disease 
definitions and annotations. In other words, patients diagnosed with the same 
(symptom-based) disease, do not necessarily imply the same disease mechanism. 
Therefore, the drug repurposing field is in need of integrated and interactive tools 
employing mechanistic drug repurposing methods and allowing biomedical 
researchers to employ network-based drug repurposing approaches that are 
adaptable to their individual use cases while also exploiting their expert 
knowledge. The main objective of this dissertation is to address this need by 
developing integrative and interactive network medicine platforms for biomedical 
researchers. My secondary goal is to assess a less explored type of bias that 
disease-associated data introduces to network medicine approaches, originating 
from inadequate disease definitions.  

In the first publication [11], I developed CoVex (CoronaVirus Explorer), a systems 
and network medicine platform to facilitate the interactive integration of expert 
knowledge, such as knowledge about virus replication, immune-related biological 
processes, virus pathomechanism, or drug mechanisms, on top of the publicly 
available related data with the aim of drug repurposing for the COVID-19 disease 
[11]. The platform is accessible via a user-friendly web interface. CoVex integrates 
experimentally validated virus–human interaction data for SARS-CoV-2 and 
SARS-CoV-1, experimentally validated PPIs in humans, as well as drug 
information including drug-target and clinical trial data. It uses this wealth of data 
jointly with network medicine algorithms including my novel Multi-Steiner Tree 
(MuST) method to predict novel drug targets and drug candidates. Furthermore, it 
allows researchers to use their clinical data as a starting point and to test their 
hypothesis augmented by exploring the molecular mechanisms visually. 

In the second publication [12], I present the NeDRex platform which generalizes 
the approach implemented in CoVex beyond COVID-19 drug repurposing to be 
applicable for other diseases. It allows to construct heterogeneous biological 
networks enriched with disease and drug data, to mine the networks for candidate 
disease mechanisms while benefiting from the interactive engagement of expert 
knowledge, and finally, to prioritize drugs directly or indirectly targeting proteins 
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involved in the mechanisms. NeDRex is composed of three main components: a 
knowledge base (NeDRexDB, accessible via a RESTful API and a Neo4j endpoint), 
an API (NeDRexAPI), and a Cytoscape app (NeDRexApp) which is the main user 
interface of the platform. I developed a statistical method for the validation of 
predicted disease mechanisms and drug candidates as part of the platform. In this 
publication, I also demonstrated the utility of the platform by showcasing five 
different diseases including ovarian cancer, inflammatory bowel disease, 
pulmonary embolism, Huntington’s disease, and Alzheimer’s disease. 

My third publication [13] is a comprehensive review of computational approaches 
for drug repurposing in the context of COVID-19, divided into virus-targeting and 
host-targeting approaches, accompanied by the introduction of the most relevant 
data resources. This review also reflects on the knowledge gained from the studies 
analyzed and proposes a unified drug repurposing strategy to enhance 
preparedness for probable future outbreaks. This unified strategy is not exclusive 
to COVID-19 drug repurposing or urgent pandemic cases but also applicable to 
general drug repurposing. 

My fourth publication addresses an often ignored, nevertheless, important source 
of bias for any disease-involved analysis: the influence of ill-classified disease 
definitions. Lumping symptomatically similar, but mechanistically different 
diseases together under one disease name will blurr the signal and hinder 
meaningful discovery. This problem is prevalent in all domains of biomedical 
research and with this study we were finally able to quantify the bias arising 
through these fuzzy disease definitions, specifically within the domain of network 
medicine approaches that exploit large-scale disease-related data from public 
databases. 

I have published numerous other papers during my PhD study which are not fully 
discussed in the dissertation but nevertheless are relevant. I contributed to a 
publication where we used the hypothesis-driven method from the CoVex tool to 
explore potential repurposable drugs for COVID-19 (joint first-authorship) [14]. I 
also contributed to another publication where we improved our disease module 
identification method MuST, that was implemented for CoVex and NeDRex, to be 
more robust [15]. Finally, I contributed to a review work on network-based 
approaches for modeling disease regulation and progression (joint first-
authorship) [16]. The full list of published papers is given in the Publication Record 
section. 

1.2. Outline 

The Background chapter begins with elucidating fundamental concepts of 
molecular biology (2.1), followed by an introduction to the concept of drug 
repurposing (2.2). Subsequently, it provides an overview of different types of 
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computational approaches employed in drug repurposing (2.3). Delving into the 
network and systems medicine discipline (2.4), this section details various types 
of networks central to this dissertation (2.4.1), presents various types of disease 
module identification methods (2.4.2), and explains the foundation of how 
diseases are currently defined (2.4.3). Finally, it explains data integration for in 
silico and network-based drug repurposing together with its associated challenges 
(2.5). 

The General Methods chapter provides an overview of the drug repurposing 
platforms and their components, forming the foundation of this dissertation (3.1). 
Then the data integration and network construction tasks that underlie 
publications 1, 2 and 4 are touched upon (3.2). Afterwards network medicine 
algorithms that were adapted or de novo developed for the purpose of disease 
module identification and drug ranking as part of the CoVex and NeDRex platforms 
are briefly introduced (3.3). Lastly, the framework employed to test the bias 
introduced to network medicine studies by inadequate disease definitions is 
described (3.4). 

Chapter 4 provides the summaries of all four publications included in this 
dissertation, along with an explanation of my contribution. The complete versions 
of the papers are incorporated in the Appendix section. 

In the General Discussion and Outlook chapter (5), I address both the limitations 
of our work and the broader challenges faced by the field. I propose various 
strategies to address the outlined constraints. Finally, I explore the future 
prospects of the drug repurposing domain and draw conclusions regarding the 
conducted Ph.D. project. 



2. Background 

2.1. Central dogma of molecular biology 

The central dogma of molecular biology is the fundamental process in which 
genetic information flows from DNA to RNA (by transcription) and then becomes 
a functional protein product (by translation). This concept was originally proposed 
by Francis Crick in 1957 [17], who believed that genetic information could not be 
transferred back to DNA once it had been turned into protein. Although our 
understanding of genetic information has advanced significantly over the past 
decades, Crick's original idea has remained important and is commonly used to 
denote the general way in which sequence information is exchanged within cells. 

The connections between DNA, RNA and proteins are highly complex, and while 
the fundamental principles of the central dogma apply to both eukaryotes and 
prokaryotes, the details of these processes exhibit notable variations. Replication, 
transcription, and translation are the three fundamental systems that maintain 
the interchange of genetic information [18] (Fig. 2.1). The process by which DNA is 
duplicated during cell division is known as DNA replication. DNA helicase splits the 
two complementary DNA strands apart during replication, creating a replication 
fork. Each strand serves as a template for DNA polymerase proteins to construct a 
new two-stranded DNA molecule. A DNA transcription unit is copied into an RNA 
molecule during transcription. A coding sequence and several regulatory 
components, including promoters, make up a transcription unit. RNA polymerase 
and one or more transcription factors that have bound to the promoter initiate 
transcription. After creating a transcription bubble by separating the DNA strands, 
RNA polymerase adds RNA nucleotides to the template strand to produce an RNA 
complement. In eukaryotes, the generated pre-RNA goes through additional 
processing, such as splicing out introns, to create messenger RNA (mRNA). The 
mRNA serves as a template for the synthesis of a polypeptide during translation. As 
it travels along the mRNA strand, a ribosome reads nucleotide triplets. Beginning 
at the start codon and continuing until a stop codon is reached, a peptide chain is 
built from amino acids that match the triplet sequence. The protein (polypeptide) 
will fold into a three-dimensional (3D) structure during assembly, which will 
dictate its function.  
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Figure 2.1 - The central dogma of molecular biology. Genetic information flows from DNA to mRNA 
through transcription and then from mRNA to proteins through translation. Unusual flows of 
information marked in dashed lines. Created with BioRender.com 

As many additional processes participate in the regulation of genetic information, 
it is now clear that the central dogma offers an oversimplified understanding of 
gene expression. There are some cases of genetic information flow that are not in 
the original dogma, including reverse transcription, a mechanism by which 
genetic information is transferred from RNA to DNA (occuring in the case of 
retroviruses, as well as in eukaryotes, e.g., in the telomere synthesis) and RNA 
replication, the process of copying of one RNA to another. Gene expression can also 
be profoundly impacted by epigenetic modifications including DNA methylation 
and histone modifications [19]. Additionally, not every transcription unit codes for 
a protein; some instead produce regulatory non-coding RNAs like micro RNAs 
(miRNA) [20]. Regardless of this, the central dogma of molecular biology remains 
at the center of bioinformatics research. Understanding cells at the DNA, RNA, and 
protein levels has been essential to unraveling cellular function and has helped 
molecular biologists gain a deeper understanding of the inner workings of living 
organisms, specifically how changes at the molecular level can significantly 
impact the overall system and affect the phenotype. One example of this is 
mutations in DNA, which can disrupt the flow of information. Some mutations 
have no known impact on the protein sequence, although others have a significant 
impact on protein function by allowing proteins to lose or gain functionality [21]. 
Monogenic disorders are caused by mutation in a single gene and are mostly 
identified by their distinctive patterns of familial inheritance. Examples of this 
type of disorder include Huntington disease, sickle cell anemia, cystic fibrosis, and 
Duchenne muscular dystrophy. Dr. Victor A. McKusick founded the database 
Online Mendelian Inheritance in Man (OMIM) in 1997 with a focus on inherited 
genetic disorders in humans [22]. It is periodically updated and as of July 14, 2023, 
OMIM reported 4,813 genes with a phenotype-causing mutation, and 7,389 



Chapter 2 - Background 
 

 
 

 8 

phenotypes with a known molecular basis 
(http://omim.org/statistics/geneMap). 

However, most diseases are not caused by a single gene mutation but rather a 
combination of genetic variations occurring in several locations as well as 
environmental factors. Some examples of complex disorders include cancer, 
asthma, Alzheimer's disease, Parkinson's disease, multiple sclerosis, 
osteoporosis, kidney diseases, autoimmune diseases, and many more [23]. 

2.1.1. Molecular profiling 

2.1.1.1. Genomics 

Genomics is the study of an organism’s complete set of DNA – called the genome. 
Early genomics research focused on sequencing the complete genomes. The first 
comprehensive euchromatic human genome was published by the Human Genome 
Project in 2004 [24]. The genome of a person, consisting of 3.2 billion base pairs, 
is roughly 99.8% similar to the genomes of all other humans. The variations in the 
remaining 0.2% (4-5 million sites) are of paramount importance for 
understanding the differences between healthy and disease conditions allowing 
researchers to systematically investigate the causes of disease. Genomic variations 
can be grouped into two types: single-nucleotide variations (SNVs), including 
single-nucleotide polymorphisms (SNPs) and small indels (insertions and 
deletions), and structural variations (SVs), including but not limited to inversions 
and copy number variations (CNVs) [25]. Variations may happen in coding, non-
coding, or intergenic regions of the genome. SNPs in a coding region do not 
necessarily change the amino acid sequence of the protein that is produced 
(synonymous) but these SNPs still can affect the function of proteins in other 
ways. When a SNP affects the protein sequence (nonsynonymous), two scenarios 
can happen: missense point mutation where one amino acid in a protein changes; 
or nonsense mutation which results in a premature stop codon that could lead to a 
nonfunctional protein product. SNPs that are not in protein-coding regions can be 
consequential and still affect gene splicing, transcription factor binding, and 
mRNA degradation [26]. 

Rapid advances in high-throughput sequencing technology at the beginning of the 
21st century have rapidly reduced the cost and time of sequencing, making it 
possible to study the genomes of a large number of individuals. Even before high-
throughput sequencing, DNA microarray technology paved the way to the 
development of Genome-Wide Association Studies (GWAS), which seek to identify 
associations between particular traits or conditions and variations at a single 
position in DNA (SNPs). The goal of GWAS is to create a comprehensive list of SNP-
condition associations, making the relationship between genotype and phenotype 
relatively simple. However, GWAS has limitations, including difficulty in studying 

http://omim.org/statistics/geneMap
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rare variants and statistical issues when testing for millions of SNPs. With next-
generation sequencing (NGS), DNA sequencing has emerged as a promising 
alternative to array-based techniques. Whole-genome sequencing (WGS) avoids 
the bias from probe (used to selectively target and analyze specific regions of the 
genome) selection and is able to detect rare variants. Exome sequencing has also 
been developed as a more efficient and cheaper alternative to WGS by focusing 
specifically on protein-coding DNA [27]. CNVs are structural variations where a 
large segment (e.g., greater than 1 kilobases) of the genome is duplicated or deleted 
[28]. Although a typical genome contains relatively few CNVs, according to the 
CNV map, 4.8–9.7% of the human genome is involved with CNVs [29]. WGS-based 
methods are able to detect CNVs. They can differ greatly among individuals and 
can also play a role in many genetic disorders [30]. 

2.1.1.2. Transcriptomics 

The study of transcriptomes, or the complete set of RNA molecules present in a 
cell, is known as transcriptomics. Whereas genomics analysis looks at what the cell 
is able to do, gene expression analysis gives us information about what the cell is 
currently doing. Although measuring the actual abundance of proteins would give 
a more direct estimate of protein activity, proteomics analysis is complex, partly, 
because many different proteins can be produced from a single gene due to 
alternative splicing (AS), SNPs and post-translational modifications [31]. This 
makes gene expression a tempting proxy for protein activity. However, some 
studies have reported the correlation between mRNA and protein abundance to be 
rather modest, suggesting gene expression may be misleading for measuring 
protein activity under some conditions [32–34]. 

Similar to genomics, microarrays have been the dominant method for gene 
expression analysis until recently. However, in recent years, RNA-seq (or whole-
transcriptome shotgun sequencing) has emerged as the primary approach for 
analyzing the entire transcriptome. This shift is attributed to the significant 
reduction in sequencing costs and advancements in computational methods. [35]. 
Large amounts of gene expression data is already publicly available in data 
repositories, such as the Gene Expression Omnibus (GEO) [36], and through large-
scale research initiatives like the Genomic Data Commons [37]. 

One of the main applications of gene expression data is differential expression 
analysis, in which the expression level of each gene is tested for association with a 
phenotype (e.g., disease status) using an appropriate test statistic. While many 
early studies have used two-sample hypothesis tests, more modern gene 
expression analysis methods are based on linear models, like DESeq2 [38] and 
limma [39]. Gene expression data is also used in unsupervised analysis to discover 
genes that are functionally related [40], to separate patients into clinically 
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relevant subgroups [41–43], or to simultaneously identify molecular mechanisms 
responsible for the patient grouping [44]. 

AS, a process allowing a single gene to code for multiple proteins [45] happens in 
over 90% of human genes and is a major mechanism for the diversification of 
transcriptome and proteome [45]. In addition to playing an important role in 
normal cellular processes, a variety of pathogenic processes underlying many 
different diseases involve AS [46]. Due to the potential confounding effect of gene 
expression levels and the often-limited number of patients with relevant RNA-seq 
data, the robust identification of disease-associated splice events based on RNA-
seq data is challenging [46]. 

2.1.1.3. Proteomics 

Proteins are functional units of cells and essential for gene regulation and 
functioning of the entire body. During the translation process of mRNA to protein, 
the molecular complexity increases by several mechanisms. Alternative splicing of 
the transcriptome generates between 70K and 100K transcripts from the initial 
20K human genes [47]. These transcripts are translated into an even greater 
variety of unique protein sequences due to occurrence of sequence mutations [48] 
and alternative translation [49]. The expressed proteins assemble themselves into 
complexes [50,51], may carry post-translational modifications, have different 
subcellular localizations [52] and are differentially degraded [53,54]. This leads to 
a high complexity in the proteome, where individual proteins can be found in a 
range of abundances from a few hundred molecules for gene regulatory proteins 
to millions of molecules for structural proteins.  

A disease can be characterized as the result of imbalanced information flow in a 
biological system leading to an altered proteome [55]. The field of proteomics is 
formed to study the complete set of proteins (proteome) in an organism with the 
goal of linking changes in the proteome to various phenotypes and diseases.  

The lack of a method to amplify individual proteins before detection, unlike in 
genomics, requires protein analytics to have high sensitivity to be able to detect 
low abundances of individual analytes in complex protein mixtures and handle the 
variation in their abundance levels (dynamic range) within a sample. Mass 
spectrometry (MS) involves determining the mass-to-charge ratio of ions and 
presenting it as a graph of intensity, known as a mass spectrum. Current 
approaches developed based on MS allow for high-throughput proteome analysis. 
They manage the dynamic range of protein expression levels, quantify amounts of 
analytes from complex mixtures, and enable comparisons of numerous biological 
samples to identify variations in their protein profiles with high sensitivity [56].  

Other methods include chromatography-based (also in conjunction with MS), 
enzyme-linked immunosorbent assay (ELISA) for selective protein analysis, 
antibody-based affinity methods for tracking the expression of specific proteins 
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in tissues, protein microarrays or chips for high-throughput and quick expression 
analysis, and 2D-gel-based approaches for separating complex protein samples 
[56]. 

A wide range of scientific topics are addressed by proteomics analysis, including 
(i) determining the molecular function of a protein, (ii) finding links between 
disease and variations in protein structures, (iii) protein-protein interactions 
(PPIs), (iv) drug discovery, and many more.  

Protein Interactions - In addition to protein sequence and structure, expression 
profile, post-translational modifications, and intracellular localization, the 
function of a protein is influenced by interactions with other proteins [57]. Most 
cellular processes are not maintained by a single protein but rather by complexes 
of multiple proteins linked by PPIs. 

These interactions are established through highly specific physical contacts. Based 
on the type of interacting partners, stability of the PPI complexes, and nature of 
the interface between the proteins, the PPIs can be classified into two categories 
[58,59]. Stable interactions form stable protein complexes, whereas transient 
interactions play a role in cellular processes, such as protein modification, 
transportation, folding, signaling, and cell cycling [57]. 

A wide range of experimental and prediction-based methods have been developed 
for PPI detection. Tandem Affinity Purification-MS (TAP-MS) and Yeast Two-
Hybrid (Y2H) screening are two widely used in vitro methods for high-throughput 
PPI detection. TAP-MS is capable of identifying both individual protein 
interactions and multi-protein complexes with high accuracy, but it can only 
detect stable interactions and misses short-lived ones due to the tandem 
purification steps. On the other hand, Y2H screening is a simpler and cost-
effective method for detecting PPIs in vivo, including transient interactions, but 
has a high rate of false positives. The AP methods may overlook low-abundance 
proteins, while Y2H does not have this issue [60]. Co-immunoprecipitation is 
considered to be the best method for identifying PPIs, but it has limitations. It 
requires the selection of an antibody that specifically targets a protein believed to 
be involved in an interaction, making it unsuitable for large-scale screening. 
However, it is highly effective in verifying interactions that have been identified 
through high-throughput techniques [61]. PPIs have also been predicted in silico 
using various features of proteins, such as protein sequence, 3D structure, co-
expression, network topology and Gene Ontology (GO) annotations [62–64]. 

By investigating protein interactions within cells and biological systems, 
researchers gain valuable insights into disease mechanisms and potential 
therapeutic targets. A very good example of such studies is the study of Gordon et 
al. [65] that helped researchers early during the recent COVID-19 pandemic gain 
valuable knowledge about the Severe Acute Respiratory Syndrome CoronaVirus 2 
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(SARS-CoV-2) and its interaction with human proteome. Using affinity-
purification (AP) MS, they could identify 332 high-confidence PPIs between SARS-
CoV-2 and human proteins. The human-virus interactome from this study became 
the cornerstone of many subsequent studies for identifying drug targets. 

2.2. Drug repurposing 

Over the past couple of decades, there have been significant advances in the 
scientific and technological fields contributing to drug research and development 
(R&D). To name a few, there has been a great increase in the size of chemical 
libraries owing to combinatorial chemistry, which increased the number of drug-
like molecules that can be synthesized per chemist per year [66]. Faster DNA 
sequencing has led to the identification of new drug targets [67]. Faster 3D protein 
structure calculation via X-ray crystallography has facilitated the identification of 
improved lead compounds through structure-guided strategies [68]. High-
throughput screening (HTS) has resulted in a major reduction in the cost of testing 
compound libraries against protein targets [69]. Last but not least, computational 
drug design and screening have contributed to advances in scientific knowledge, 
including understanding of disease mechanisms, new drug targets, biomarkers 
and surrogate end points [66]. 

However, these advances have not led to an increase in the number of new 
approved drugs per R&D spendings in the drug industry and the efficiency of R&D 
of new drugs has decreased constantly (Fig. 2.2). This trend is called “Eroom's 
Law”, in contrast to the familiar Moore's Law ('Eroom's Law' is 'Moore's Law' in 
reverse). This dramatic decline is opposite to the IT industry, where Moore’s Law 
described the exponential increase in the number of transistors that can be placed 
at a reasonable cost onto an integrated circuit. This number doubled 
approximately every two years from the 1970s. While, the number of new drugs 
introduced per year has been broadly flat over the period 1950s-2010s, and costs 
have grown fairly steadily [66]. Although this trend has changed over the past ten 
years [70], the cost of development of a new pharmacologically active drug, 
including the whole process from traditional drug discovery to market 
introduction, is still estimated between two and three billion USD [71]. Moreover, 
total development time using the de novo drug discovery approach, i.e., entirely 
developing a new drug for a given indication, takes 12-16 years [7]. Further, de 
novo drug discovery suffers from a high attrition rate, i.e., only 10% Of the drugs 
entering phase 1 clinical trials are approved, the rest fail because of high toxicity 
or inefficacy [7,72]. Therefore, there is an increasing interest in discovering 
alternative approaches for finding therapeutics. 
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Figure 2.2 - Eroom’s Law. The rate at which new drugs are approved by the US Food and Drug 
Administration (FDA) for every billion US dollars (adjusted for inflation) invested in research and 
development (R&D) has decreased by approximately 50% every 9 years. The figure is taken from 
Scannel et al. [66]. Permission granted by Springer Nature. 

Drug repurposing (also known as drug repositioning) is the process of identifying 
alternative uses for approved or investigational drugs that are not in the scope of 
the primary medical indication [6]. The drug repurposing strategy tries to address 
the aforementioned challenges de novo drug discovery is facing. Since by 
employing repurposing strategies most of the preclinical testing, safety 
assessment, and formulation development will already have been completed, the 
drug development time frame and total necessary investment can be reduced [73]. 
Repurposed drugs are generally approved on average within 6 years, significantly 
shorter than de novo developed drugs [7]. There can be considerable savings in 
preclinical and phase I and II costs for a repurposed drug compared to a new drug. 
The total costs of introducing a repurposed drug to market have been estimated to 
be US$300 million on average [74] (Fig. 2.3). More importantly, drug repurposing 
benefits from a lower risk of failure from the safety aspect. Since the repurposed 
drug has already passed required safety by being tested in preclinical models and 
humans in early-stage trials, it is less likely to fail in subsequent efficacy trials due 
to safety reasons [73]. 

One of the oldest examples of drug repurposing is acetylsalicylic acid (Aspirin). It 
was first marketed in 1899 as an analgesic, and later in the 1980s repositioned as 
an anti-platelet aggregation drug [75]. Another example of successful repurposed 
drugs is Zidovudine, originally indicated and approved for cancer in 1987 and later 
was approved by FDA as the first anti-HIV drug [71,72]. 
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Figure 2.3 - Shorter timescale and reduced cost for repurposed drugs. Because most repurposed 
drugs have already passed the early phases of development and (pre-)clinical testing, they can 
potentially get approval in less time and at lower cost compared to de novo developed drugs. Figure 
modified from [74] and created with BioRender.com. 

While early examples of successfully repurposed drugs have been largely 
serendipitous and most successful repurposing examples so far have not involved 
a systematic approach [6], advances in omics technologies and the availability of 
massive amounts of omics data have provided opportunities for systematic in 
silico prediction of new drug-disease relationships. In the case of a pandemic 
which requires fast reaction, like the recent example of COVID-19, there is an 
urgent need for systematic approaches which could significantly speed up drug 
discovery. An effective strategy involves narrowing down the search to existing 
drugs by using drug repurposing methods, which has the potential to significantly 
expedite the typically lengthy approval process. [13].  

A standard drug repurposing pipeline consists of a three-step process before the 
candidate drug can enter the late phases of development pipeline: (1) identification 
of a candidate drug for a given indication (hypothesis generation); (2) mechanistic 
assessment of the drug effect in preclinical models; and (3) efficacy evaluation in 
phase II clinical trials. Systematic approaches for hypothesis generation could be 
most beneficial in the critical step of identification of the right drug for an 
indication of interest with a high level of confidence (step 1). These systematic 
approaches can be grouped into computational and experimental approaches (Fig. 
2.4), both being more and more used synergistically [71].  

The experimental approaches can be categorized into two groups: 1) Identifying 
relevant target interactions with binding assays 2) High throughput phenotypic 
screening of compounds using in vitro or in vivo disease models to indicate 
potential candidates [71]. Different categories of computational approaches are 
discussed more in detail in the subsequent section (2.3). 
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Figure 2.4 - Drug repurposing approaches. Different computational and experimental approaches 
can be used individually or jointly to systematically analyse different types of large-scale data to 
generate repurposing hypotheses and meaningfully interpret the repurposed candidates. Figure 
inspired by [71] featuring altered classifications and created with BioRender.com. 

2.3. Computational approaches for drug repurposing 

There are a variety of classifications for computational drug repurposing methods; 
each of which seeks to categorize the existing methods depending on some 
different important aspects. Here we consider the following adaptation of 
classification of computational drug repurposing methods mainly based on the 
work of Pushpakom et al. [71] and K. Park [72]: 

Signature matching - Signature matching involves comparing the distinct 
characteristics or "signature" of one drug with that of another drug or disease 
[76,77]. Drug signatures can be derived from two primary types of data: omics data 
including transcriptomic (RNA), proteomic, and metabolomic data, as well as 
chemical structures. Matching transcriptomic signatures can be used to evaluate 
drug-disease similarity [78] and drug-drug similarity [79].  
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The drug-disease similarity approach utilizes the degree of negative correlation 
between the gene expression signature of a drug and that of a disease. This 
correlation signifies the reversal of gene expression patterns, where genes 
upregulated in the disease are downregulated by the drug, and vice versa. Based on 
this principle, it becomes possible to infer whether the drug might have a potential 
impact on the disease. The principle of signature reversion underlies this 
approach, which assumes that if a drug has the ability to reverse the expression 
pattern of a specific gene set that characterizes a particular disease phenotype (i.e., 
a drug signature is closer to that of a healthy state), then the drug has the potential 
to revert the disease phenotype [71] (Fig. 2.5.A). The drug-drug similarity 
approaches try to discover common mechanisms of action among drugs that may 
appear dissimilar, such as drugs from different classes or with dissimilar chemical 
structures. This principle, known as 'guilt-by-association' serves to identify 
alternative targets of existing drugs and unveil potential off-target effects that can 
be further explored for clinical applications [80]. Therefore, if two drugs exhibit a 
shared transcriptomic signature, it suggests that they might also have a common 
therapeutic application, irrespective of the similarity or dissimilarity in their 
chemical structures [81] (Fig. 2.5.B). Both drug-drug and drug-disease similarity 
approaches rely on transcriptomic signature matching which requires publicly 
available gene expression data. One of the most comprehensive sources is the 
Connectivity Map (cMap) [82] the latest version consisting of over 1.5M gene 
expression profiles from ~5,000 small-molecule compounds, and ~3,000 genetic 
reagents, tested in multiple cell types. 

The second approach to signature matching involves examining chemical 
structures and their association with biological activity. By comparing the 
chemical signatures of different drugs, one can identify chemical similarities that 
may indicate shared biological activity [83]. 
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Figure 2.5 - Drug repurposing using signature matching. a) Drug-disease similarity approach. b) 
Drug-drug similarity approach. G = gene, GE = gene expression profile, has_exp_pr = has expression 
profile, has_indic = has indication, anti = anti-correlated expression profile, sim = similar expression 
profile. Blue dashed line represents an inferred indication. Created with BioRender.com 

Computational molecular docking - Due to similarities in protein binding sites, 
drugs often have the ability to bind to "off-target" proteins. If it is known that an 
off-target protein is implicated in another disease, the drug holds potential for 
treating the second disease [84]. Computational molecular docking is an approach 
that employs structural information to predict the compatibility of a ligand (e.g., 
on the drug side) with a therapeutic target (e.g., a receptor on the protein side) by 
assessing their binding site complementarity, i.e., it predicts how two molecules 
interact in 3D space. When there is existing knowledge about a target associated 
with a disease, conventional docking can be used to evaluate multiple drugs 
against that specific target (one target and multiple ligands). On the other hand, 
inverse docking allows the exploration of drug libraries against various target 
receptors (several targets and one ligand), aiming to uncover novel interactions 
that hold potential for further repurposing efforts [71]. Molecular docking for drug 
repurposing faces challenges including limited availability of 3D structures for 
certain protein targets (particularly membrane proteins), the lack of well-curated 
databases with accurate structural information, although improving, and 
questionable reliability of docking algorithms in predicting binding affinity. 
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Genetic associations - There has been a large increase in the number of GWAS 
conducted over the past 15 years following advances made in genotyping 
technology. GWAS seek to identify genetic variants associated with diseases and 
consequently shed light on the biology of diseases. These associated variants can 
aid in the identification of new therapeutic targets. Some of them could be shared 
between multiple diseases already treated by drugs. Integrating disease associated 
genes data from GWAS with drug targets data available from public databases 
makes it possible to link drugs to disease traits which are not the same as the 
original indication of drugs [85] (Fig. 2.6).  

 

Figure 2.6 - Drug repurposing using genetic associations. An abstract view on using GWAS data for 
the discovery of potential drug repurposing candidates. enc_by = encoded by, has_var = has variants, 
assoc_with = associates with,  has_indic = has indication, mismatch = not the same. Blue dashed line 
represents an inferred indication. Created with BioRender.com 

While certain targets identified through GWAS or alternative methods may have 
the potential to be directly targeted by drugs, frequently these genes may not be 
ideal druggable targets e.g., the variants in non-coding regions. In such cases, a 
pathway-based strategy could seek for genes that are either upstream or 
downstream of the GWAS-associated target and could be druggable [86]. In a 
generalized fashion, a network-based strategy may seek to target interacting 
partners which could be used for repurposing [87]. 

Network-based methods -Network-based approaches hold promise, but there is 
still substantial progress to be made. Network-centric methods are particularly 
beneficial due to their inherent capacity to represent complex biological 
associations and offer a structured framework for integrating various data types 
and biological concepts and their interactions. In the models used by network-
based approaches, network nodes represent drugs, proteins, or diseases, and 
edges indicate interactions or relationships between nodes, such as drug-drug 
similarities, drug-target interactions, gene-disease associations, and protein-
protein interactions [88]. Networks can be knowledge-based (derived from direct 
evidence) or computationally inferred from multiple data sources. Some network-
based methods use the ‘guilt-by-association’ principle in their heterogeneous 
molecular network to discover unknown drug-disease relationships [72]. Many 
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drug repurposing pipelines use a combination of computational approaches. For 
instance, some of the signature matching studies also employ the network analysis 
approach [81,89,90]. Many of the approaches described in this section, at some 
point in their workflow, use networks for the presentation of their underlying data 
and/or apply network-based algorithms to their data. The approach we used for 
developing the drug repurposing NeDRex platform (my second publication) can be 
considered a hybrid approach combining both genetic association and network 
analyses such that input seeds for the network-based disease module detection 
algorithms can be obtained from gene association studies [12]. 

Phenotype-based approaches - Phenotype-based strategies for drug repurposing 
focus on diseases or side-effects. These approaches involve connecting diseases 
based on shared characteristics, such as the underlying cause of the pathology or 
the observed biological dysfunction. Approaches that construct networks of 
diseases based on the similarity between them try to create a comprehensive 
"diseasome" perspective [91]. Section 2.4.1.4 elaborates more on the notion of 
diseasome. For instance, Li et al. [92] employed data pertaining to disease-
associated genes and diseases-associated pathways. They then established 
connections between diseases based on shared pathways, hypothesizing that 
diseases exhibiting common dysregulated pathways demonstrated similarity. 
Their objective was to uncover new relationships among diseases, with the aim of 
facilitating pathway-guided therapeutic interventions for various conditions. 
Such studies use network presentation of the data and can also be considered a 
hybrid approach combining both phenotype-based and network-based 
approaches. 

Side effects of drugs result from off-target activity of the drug, i.e., the biological 
activity of a drug which is different from its intended biological target. Studying 
side effects of drugs has the potential of discovering novel therapeutic uses for 
drugs. Some studies like Yang et al. [93] and Ye et al. [94] are grounded on the 
hypothesis that if two drugs induce similar side effects, they might be acting on a 
shared target, protein, or pathway [78]. In this context, side effects can serve as 
indicators of a shared underlying mechanism of action, and when two drugs have 
similar profiles of side effects, they can potentially be used in treating the same 
pathology (Fig. 2.7). Such studies use side effect information from databases like 
SIDER. Furthermore, it is plausible for the adverse effect phenotype of a specific 
drug to resemble that of a disease, implying shared pathways and physiological 
characteristics between the drug and the disease. 
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Figure 2.7 - Drug repurposing using side-effect similarity. An abstract view on using side-effect 
similarity profiles to infer potential drug repurposing candidates. SE = side-effect, S = set of side 
effects associated with drug, sim_se_pr = similar side-effect profiles, has_se = has side-effect, 
fun_sim = inferred functional similarity. Created with BioRender.com 

Machine & deep learning-based approaches - A typical deep learning-based drug 
repurposing pipeline includes four steps: (1) integrate data sources enriched with 
information on drugs, proteins, and diseases; (2) generate informative feature 
vectors using various representation approaches (such as graphs, sequences, and 
text); (3) build and evaluate a deep learning model; and (4) conduct drug 
repurposing tasks, including prediction of drug–target binding affinity, drug–
target interaction, compound–protein interaction, and drug–disease associations 
[95]. Aliper et al. showed that deep neural networks trained on large 
transcriptional response data sets from the LINCS Project could classify various 
drugs to therapeutic categories [96]. 

Computational prediction of binding affinity between compounds and targets 
greatly enhances the probability of finding lead compounds by reducing the 
number of wet-lab experiments used in experimental approaches. To improve 
drug-target interaction prediction in virtual screening, machine-learning 
techniques have been increasingly employed for predicting binding affinities 
using ligand-based and target-based approaches [97].  

2.4. Network and systems medicine  

Systems medicine represents an evolving field of study that perceives the human 
body as a whole system rather than reducing it to the sum of its components [3]. 
This interdisciplinary domain is characterized by its rapid evolution over time and 
focuses on understanding how cellular and tissue interactions give rise to 
physiological functions, shaping the behavior of these components in the human 
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body. Its conceptual framework lies in prioritizing tangible advancements in 
patient health through the application of system-based approaches [98]. 

Within systems medicine, two overarching methodologies emerge: bottom-up 
and top-down approaches. The former focuses on developing intricate, 
quantitative mathematical models for specific subsystems. These models aim to 
elucidate the dynamic and nonlinear interactions among known components, 
enabling a deeper understanding and prediction of their behavior when subjected 
to perturbations [98]. On the contrary, top-down approaches utilize omics data to 
gain a comprehensive understanding of the components of a biological system. 
They seek to find molecular interaction networks and regulatory mechanisms 
from big data like genome-wide molecular data [99]. In pursuit of this end, prior 
knowledge on molecular interactions can also come into play.  

A primary objective of top-down paradigm is the construction of system-wide, 
mainly static networks, such as gene co-expression networks and protein-protein 
interaction networks, offering a holistic perspective on functional and physical 
interactions within the biological system. The top-down approach proves 
invaluable for gaining a systematic understanding of diseases at the molecular 
level and, consequently, identifying potential treatments [99]. The more levels of 
biological information we include, the better systematic understanding of a 
disease on the molecular scale can be achieved. Integrating this multitude of 
biological knowledge is particularly a challenging task [100]. The computational 
methods used in the disease module identification and drug repurposing 
platforms presented in this dissertation follow the top-down systems medicine 
approach. 

Network medicine, an offshoot of systems medicine, explores complex biological 
systems by employing principles drawn from graph theory. This term was coined 
by Albert-László Barabási in 2007 in his seminal work, "Network Medicine – From 
Obesity to the Diseasome" [101]. Barabási posits that biological systems share 
similarities with social and technological systems, characterized by intricate 
interconnected components governed by simple principles. These organizational 
principles can be thoroughly examined by representing systems as intricate 
networks, where nodes represent various biological elements such as genes, 
diseases, and phenotypes. The edges connecting these nodes depict the 
relationships between them, including physical interactions, similarities, shared 
metabolic pathways, shared genes, comorbidities, and more. Network-based 
approaches contribute to understanding human diseases and offer diverse 
applications, including the identification of disease genes and pathways, 
mechanistic insight into diseases, drug repurposing, drug target identification, 
personalized medicine, biomarker discovery, disease subtyping and stratification. 
These methodologies, along with the associated tools, collectively constitute the 
emerging field of network medicine [5,102]. 
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2.4.1. Molecular and biomedical networks 

In computer science, social and technological network research, and particularly 
in bioinformatics, graph representations of complex systems are widely employed 
[103,104]. The characteristics of graphs make them highly suitable for data 
integration applications, as they facilitate the storage and interconnection of data 
from diverse sources. 

Our increasing knowledge of biological processes emphasize the intricate 
interplay among different components, including proteins, RNA, DNA, 
metabolites, and environmental factors, rather than relying on individual agents. 
Therefore, modeling cellular interactions or relationships as networks has 
emerged as a natural approach. Consequently, network biology has gained 
significant importance in bioinformatics research, focusing on the construction 
and analysis of networks that encompass diverse relationship types. These 
relationships, among others, include protein-protein interactions, transcriptional 
regulatory interactions, disease-gene associations, drug-target associations, and 
signaling pathways. In addition to molecular-based networks, networks based on 
biomedical knowledge, such as population-scale social and health interactions, 
can also shed light on disease biology and etiology. This type of data can be 
obtained, for example, from electronic health records, to indicate co-occurrences 
of diagnosed diseases (more accurately medical diagnostic codes) across patients 
[105].  

The growing interest in developing graph visualization and analysis tools for 
biological networks underscores the benefit and power of using networks in 
computational biology. One of the widely used tools is Cytoscape [106], an open-
source software platform for visualizing and analysis of molecular interaction 
networks and biological pathways. Cytoscape enables users to load pre-
constructed interaction networks and perform straightforward analyses with its 
integrated functionalities, or delve into more advanced, specialized analyses using 
the apps developed for this versatile software platform. Certain Cytoscape apps are 
tailored to provide data querying functionalities by connecting to the existing 
widely used databases, such as DisGeNET [107], STRING [108], REACTOME [109], 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) [110], allowing users to 
load and explore data in network formats. 

In the following, I first present some graph terminology and then introduce 
important examples of molecular and biomedical networks underlying this 
dissertation. 

2.4.1.1. Network modeling and terminology 

As described earlier biological networks are modeled as graphs. A graph is a 
mathematical structure to describe pairwise relationships between objects. These 
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two terms are used interchangeably in this thesis. Graphs are defined in various 
ways depending on their application context (Fig. 2.8). 

A graph is an ordered pair ! = ($, &) comprised of a set $(!) of vertices or nodes and 
a set &(!) of edges or links. Every edge is composed of a pair ((, )) of two endpoints 
in the set of vertices. If the graph is directed, the order of the pair indicates the 
direction (( being the source node and ) being the target), while in an undirected 
graph the edges are not directed. Where the direction of the effect is unknown or 
nonexistent, undirected graphs are widely employed, e.g., to model protein-
protein interaction networks. To represent relationships with an inherent 
directionality, such as metabolic and signaling pathways, directed graphs are used. 
A directed acyclic graph (DAG) is a graph with no directed cycles. A directed graph is 
a DAG if and only if it has a topological ordering (a linear ordering of vertices such 
that, for every directed edge (u, v), vertex u comes before vertex v in the ordering). 
Due to their hierarchical structure, biological ontologies such as the Gene Ontology 
(GO) [111], and those disease terminology systems using ontologies (conceptual 
domain models) such as Mondo Disease Ontology (MONDO) [112] are modeled as 
DAGs. 

A bipartite graph is a triplet ! = (*, $, &) where * and $ are disjoint sets of vertices 
and & is a set of edges linking a vertex in * to a vertex in $. Bipartite graphs are 
employed for modeling networks where relationships map from one class of 
entities to another, such as disease-gene associations and drug-target 
interactions.  

A weighted graph is a graph where each edge is given a numerical weight. It is 
common to model networks with pairwise similarities using weighted graphs, 
such as drug similarity, gene co-expression, and disease comorbidity networks. 
Edge weights may also be used to include confidence scores of interactions to take 
into account uncertainty in the detection or prediction method, e.g., gene-disease 
association (GDA) scores from DisGeNET database which are determined based on 
the level of evidence for associations and PPI scores from STRING database which 
serve as measures for confidence level of an interaction. 

 
Figure 2.8 - Overview of different graph types. 
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A heterogeneous graph has nodes of different types, i.e., the set of nodes can be 
partitioned into disjoint sets $	 = 	$1 ∪	$2 ∪	. . .∪ 	$! 	where $" ∩	$# =⊘	, ∀1 ≠ 3. Edges in 
heterogeneous graphs generally satisfy constraints according to the node types. 
One of the most common constraints is that certain edges only connect nodes of 
certain types. For example, in a heterogeneous graph of biomedical entities, there 
might be three different node types representing diseases, proteins, and drugs. 
Edges of type “has_target” are defined between drug nodes and protein nodes and 
can only occur between these two types of nodes. Similarly, edges representing 
“indicated_for” would only occur between nodes of type drug and those of type 
disease. 

A knowledge graph is a structured representation of knowledge that utilizes a 
knowledge model consisting of interconnected descriptions of concepts, entities, 
relationships, and events while also encoding the semantics underlying the used 
terminology [113]. In other words, the entities in a knowledge graph are 
semantically enriched, which means they are associated with meanings and 
aligned with ontologies. This enables a computer to understand the context of an 
entity in the knowledge graph, its relationships to other entities, and its type (e.g., 
disease, gene, drug, or person) via the edges that connect the nodes. Also, in 
semantic graphs both vertices and edges can be attributed, i.e., they are annotated 
with attributes. A metagraph, or graph of types, can be defined as the grammar 
underlying a knowledge graph, i.e., representation of different relationship types 
between different entity types [114]. 

2.4.1.2. PPI networks 

For over 20 years, information on interactions between proteins in humans has 
been collected and made accessible to the public through large databases. 
Databases like BioGRID [115], IntAct [116], HPRD [117], and STRING [118] contain 
hundreds of thousands of interactions across various species, curated from 
published research and derived from computational predictions. These databases 
allow for the creation of a network, known as an interactome, that includes all of 
these interactions as edges and proteins or genes as nodes. Since they lack 
direction and edge weight, PPI networks are typically represented as simple 
graphs. However, some protein interaction databases do include an interaction 
score [119]. STRING computes confidence scores for interactions based on the type 
of evidence contributing to the prediction. Such scores are not an indicator of the 
strength of the interaction but how likely STRING evaluates them to be true, given 
the available evidence. STRING considers interactions based on direct (physical) 
and indirect (functional) associations. Evidence types used include high-
throughput lab experiments, automated text mining, genomic context prediction, 
amongst others [118]. 
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Delivering an organized overview of which genes/proteins are interacting and/or 
functionally linked, interactomes have emerged as a key resource in 
bioinformatics. For instance, interactomes are used to find disease-associated 
mechanisms and biomarkers as well as to predict potential drug targets. 

It is commonly claimed that biological networks, including PPI networks, 
resemble scale-free networks characterized by a power law degree distribution 
[120–122]. However, this assertion is a controversial one and some researchers 
argue that the scale-free nature of these networks is due to research bias or that 
other graph models are more fitting [123–126]. Initially, it was believed that high-
degree proteins in PPI networks were crucial for cell survival [122,127]. However, 
this idea was later challenged by further studies. The affinity purification methods 
can also contribute to bias by favoring essential proteins that are more abundant 
[60]. There is also a correlation between node degree and the number of published 
papers about a protein, indicating that the importance of essential proteins as 
hubs may be partially due to their high level of research attention [50]. 

2.4.1.3. SARS-CoV-2 Virus-host interactome 

Complementary to the human PPI network, maps of host–pathogen interacting 
proteins advances our knowledge about the molecular mechanism underlying viral 
and infectious diseases [65]. As described under the proteomics section, protein-
protein interactions between SARS-CoV-2 and human proteins are identified 
using AP-MS technique. Integrating interactions between either host or virus 
proteins and other host proteins into one network, such as SARS-CoV-2 virus-
host interactome integrated in the CoVex web tool (my first publication), enables 
researchers to investigate downstream host proteins that could play important 
role in the viral replication cycle and could be potential drug targets [11].  Other 
efforts like IMEx-wide initiative [128], compile molecular interaction data related 
to SARS-CoV-2 and other viruses in the Coronaviridae family, along with human 
protein interactions that may be pertinent to the etiology of the disease. The IMEx 
coronavirus interactome is available as part of IntAct molecular interaction 
database and has been evolving as more studies on interactions evidence have been 
published since the outbreak of the COVID-19 pandemic [129]. This ongoing work 
also incorporates novel interactions and details of known interactions such as the 
effects of variants. 

2.4.1.4. Diseasomes 

Earlier studies aimed at compiling disease-gene associations primarily focused on 
individual diseases, exploring the relationships among genes implicated in 
specific disorders [130]. In this context, Goh et al. [91] tried to improve the single 
gene-single disorder traditional approach by developing a conceptual framework 
that systematically links all genetic disorders with the full list of disease genes. 
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Their effort led to the construction of the so-called “diseasome” network, which 
gives a global view on the combined set of all known diseases and their associated 
genes [91]. More formally, diseasome is a bipartite graph that comprises two 
distinct sets of nodes, one of gene node type and one of disease node type. The 
disease set represents all identified genetic disorders, while the other set 
represents all known disease genes within the human genome. Connections or 
links between a disorder and a gene are established when mutations in that gene 
are associated with the corresponding disorder [91]. From diseasome, a disease-
disease network projection is inferred, where nodes represent diseases, and there 
is an edge between two diseases if they have at least one associated gene in 
common. In this dissertation, we refer to this disease-disease network as 
diseasome.  

The initial diseasome used the data from OMIM database [22]. The gene-based 
diseasome generated for the last publication presented in this dissertation [131] 
builds upon Goh et al.’s work [91], incorporating additional disease-gene data 
from other resources. In some other studies, the idea of global view on disease 
relationships was also applied to other types of disease-associated data such as 
pathways. Li et al. [92] studied connections between diseases and built a pathway-
based diseasome by associating diseases to biological pathways through disease 
genes. In my last publication, where we investigated the bias in some network 
medicine studies which is the result of using inadequate disease definitions in 
current medicine discipline, we additionally generated various types of 
diseasomes based on a variety of disease association data types, such as disease-
symptom, disease-variant, drug-indication, and comorbidity relationships 
between diseases. 

Disease-gene associations 

OMIM provides a catalog of human genes, genetic disorders and traits and was the 
only source of disease-gene associations used for the construction of the original 
diseasome introduced by Goh et al. [91]. OMIM particularly focuses on the 
molecular relationship between genetic variation and phenotypic expression and 
is based on manually curated data. The gene-based diseasome presented in my last 
publication [131] is an expanded version of the original diseasome, enriched with 
disease-gene data sourced from DisGeNET [107]. This comprehensive database 
aggregates disease-gene associations from a multitude of databases, including 
UniProt [132], CTD [133], Orphanet, ClinGen [134], Genomics England [135], CGI 
[136], and PsyGeNET [137]. Unlike OMIM, DisGeNET offers a broader spectrum of 
disease-gene associations, encompassing genetic variation, causal mutations 
(mutations known to cause the disease), modifying mutations (mutations known 
to modify the clinical presentation of the disease), statistical associations (without 
evidence of causality), and chromosomal rearrangement [138]. 
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2.4.1.5. Comorbiditome 

Although significant advancements have been made in molecular profiling and 
high-throughput omics technologies, many available resources fail to consider 
the vast and regularly updated phenotypic information we have for humans, 
specifically in the form of patient clinical histories [139]. Notably, hospitals and 
insurance companies gather comprehensive records for millions of patients, 
which include details on disease associations and progression as well as prescribed 
medications. These population-based data hold valuable information that, when 
combined with molecular and genetic data, can aid in unraveling the molecular 
causes of diseases [140]. Some countries like the United Kingdom and Denmark 
have central and long-established electronic health record (EHR) systems 
[141,142], while others like Germany are still at the beginning of the road [143]. Due 
to lack of extensive medical records accessibility, there are not many population-
based disease association databases, from which comorbidity associations among 
diseases could be inferred [139]. A comorbidity relationship arises when two 
diseases co-occur to the same individual significantly to a greater extent than 
what would be expected by chance. Disease comorbidity networks, so-called  
“comorbiditomes”, can be constructed based on the disease diagnoses data. 
Different studies defined different metrics to quantify comorbidity relationships 
[144], some even analyzed temporal comorbidities and created disease trajectories 
based on longitudinal patient data [145,146]. 

2.4.1.6. Drugome 

As described previously, some computational drug repurposing approaches utilize 
the knowledge from the relationship between drugs. This connection between 
drugs can be, for example, inferred from shared indication, shared target protein, 
and similarity based on chemical structure. As a result, global views on drug 
relationships can be achieved by constructing different drug-drug networks based 
on the aforementioned shared data. We refer to such drug-drug networks as 
“drugomes”.  

2.4.2. De novo vs. traditional enrichment methods 

Integrating prior knowledge can be advantageous for the computational analysis 
of omics data in systems medicine approaches. Over the past decades, extensive 
research in molecular biology has yielded a wealth of knowledge on molecular 
interactions, functions, and pathways. Leveraging this knowledge can 
significantly improve computational methods and particularly enhance 
interpretability. The databases providing this prior knowledge are often publicly 
accessible which facilitates the integration of this type of data to the 
computational analyses. They include but are not limited to the pathway databases 
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like KEGG and Gene Ontology (GO) [147], as well as protein-protein interaction 
databases, such as BioGRID, IntAct, STRING, and the Integrated Interactions 
Database (IID) [148]. In the following, two general types of analysis methods using 
prior knowledge are described. 

Gene set and pathway enrichment analysis methods 

These methods aim to find known pathways that are significantly dysregulated 
between two clinical conditions. To this end, gene set over-representation 
analysis (GSORA) methods and gene set enrichment analysis (GSEA) methods are 
applied [149]. The former is a statistical method determining if genes from a pre-
defined set (e.g., those belonging to a specific GO term or KEGG pathway) are over-
represented, i.e., present more than expected by chance, in a set of under or over 
expressed genes. GSEA is one of the functional scoring methods where the entire 
set of gene-level statistics is used to identify enriched gene sets. GSEA employs a 
statistic similar to Kolmogorov-Smirnov test to quantify the degree to which 
genes in a gene set are overrepresented at the extremes of the entire ranked list, 
indicating over- or under-expression [150]. 

De novo network enrichment methods 

Disease module identification methods (DMI), also known as de novo network 
enrichment (DNE) or active module identification methods, aim to detect a disease 
module - a connected subnetwork within the human interactome that associates 
with a particular disease and either exhibits statistically significant enrichment or 
fulfills specific connectivity criteria [16]. The disease module concept arises from 
the observations established from different studies that disease genes are not 
distributed randomly, but rather exhibit a tendency to be closely interconnected or 
reside in close proximity within the interactome [91,151]. 

Unlike traditional enrichment analysis, as previously discussed, DMI adopts a 
more data-driven approach to extract condition-specific subnetworks. The 
traditional enrichment methods are dependent on pre-defined and curated 
pathways or gene sets [152], limiting their ability to uncover novel disease 
mechanisms. DMI methods, on the other hand, first build “active” subnetworks 
through the projection of experimental data, mainly transcriptomic or genomic 
profiles, onto a global molecular interaction network like PPI networks. 
Subsequently, an objective function is applied to evaluate candidate subnetworks, 
employing efficient heuristics to find locally optimal solutions [16]. In their study, 
Batra et al. [152] compared various state-of-the-art DNE methods and reached the 
conclusion that the most suitable strategy for identifying optimal subnetworks 
depends on the specific application at hand. 

In our review paper “Network-based approaches for modeling disease regulation 
and progression” [16], we presented an overview of recent network-based 
methodologies and their main concepts aiming to identify disease modules or 
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potential mechanisms, allowing for a deeper understanding of diseases which 
potentially leads to better drug discovery and precision medicine. In the following, 
I provide a summary of different types of the DNE methods discussed in this review 
paper. We can classify DMI methods roughly into four categories: 

Aggregate score methods (ASM) - These methods first assign some scores to each 
gene, typically derived from a case-control experiment, such as differential 
expression analyses, and can be a test statistic, P value or fold-change.  ASM 
methods aim to find a connected subnetwork with maximum aggregated score.  

This type of analysis was first introduced by Ideker et al. in 2002 [153], where a 
simulated annealing algorithm was utilized to identify a subnetwork with the 
maximum aggregated z-score. In some studies, scores are assigned to edges 
instead, e.g., based on co-expression [154]. In this dissertation, I developed a 
disease module identifying algorithm based on the Steiner tree (ST) concept. ST 
problem seeks to find a tree of minimum cost connecting a given set of terminal 
nodes [155]. STs can be considered as extensions of shortest paths in scenarios 
involving more than two endpoints. In the context of network enrichment these 
points correspond to the disease genes known a priori. 

Score propagation methods (SPM) - Similar to ASM, these methods also first 
assign a score (or “heat”) to each node in the network and then simulate the 
propagation of the score throughout the network over time, leading to the 
accumulation of the signal in signal-rich subnetworks. The majority of SPM 
methods are based on either heat diffusion [156,157], random walks [158,159], or 
network expansion starting from seed genes [160,161]. In contrast to ASM 
methods, SPM does not extract a connected subnetwork. Instead, by simulating 
network flow, it reassigns priority to genes using the network information such as 
network topology which is beyond just connectivity. 

Module cover (MC) - These methods follow a two-step process: Firstly, a set of 
key genes is chosen, usually genes that exhibit significant differential expression 
or known disease genes. Next, a connected subnetwork with a high density of key 
genes is extracted, typically with certain constraints such as limiting the total 
number of genes or the inclusion of non-key genes [162]. 

Some methods, like KeyPathwayMiner [163], evaluate differential expression on a 
per-patient basis and permit exceptions at both the gene and patient levels. By 
dissociating the selection of key genes from subnetwork extraction, these methods 
avoid presumptions about the underlying data, enabling the choice of an 
appropriate statistic depending on the dataset. However, the selection of 
significance cutoff for genes, the desired module size or number of exceptions, has 
a substantial impact on the results, making the application and interpretation of 
MC methods more challenging [152]. 
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Machine learning-based approaches - These approaches mainly employ 
clustering methods, an unsupervised approach, to identify clusters of 
differentially expressed genes that exhibit strong connectivity and co-expression. 
Methods can adopt one of two approaches: traditional network clustering, where 
the edge weight signifies the similarity among genes in the molecular profile 
[164], or network clustering strategies that directly cluster differentially active 
genes in the network [165]. 

The majority of current DMI methods heavily depend on case-versus-control 
annotations. However, unsupervised approaches offer the advantage of not only 
identifying disease modules but also simultaneously clustering patients into 
subgroups, providing additional insights [16]. Biclustering Constrained by 
Networks (BiCoN) is an unsupervised approach based on the Ant colony 
optimization algorithm [44]. The approach utilizes a heterogeneous network 
comprising patients and genes. In this network, genes are connected to patients 
through expression data, while they are linked to each other through PPIs. 

Network pharmacology and disease modules 

The current “one disease-one target-one drug” dogma in drug discovery impedes 
effective treatments for complex diseases [166]. Due to intricate molecular and 
environmental interactions, many diseases are influenced by complex factors. 
Consequently, merely treating a single component, target, or pathway may not be 
sufficient to disrupt the underlying mechanisms responsible for the disease [167]. 
Network pharmacology as a new therapeutic branch of systems and networks 
medicine considers that mechanisms underlying complex diseases involve a 
subnetwork of interconnected genes rather than just one gene or protein [168]. 
Targeting this subnetwork, so-called disease module, instead of only one protein 
has shown the potential to be a more effective therapeutic intervention [169]. This 
can be achieved by either one drug targeting multiple proteins in the module or 
multiple drugs targeting different proteins and acting synergistically. This method 
can also lead to reduced individual drug dosage and possible side effects due to 
mechanism-based synergy [166].  Therefore, drug repurposing approaches which 
include steps in their pipeline to identify drugs targeting multiple proteins within 
disease modules rather than single protein are promising to achieve more effective 
and precise treatments. 

2.4.3. Disease ontologies and vocabularies 

A disease ontology is a formal representation of knowledge about diseases and 
disorders in a structured and hierarchical fashion, i.e., higher level terms have 
more general meanings than their lower lever counterparts. It typically includes a 
set of concepts, objects, and other entities that represent various aspects of 
diseases, such as their etiology, pathogenesis, symptoms, and treatments, as well 
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as the relationships and dependencies among them. The ontology may also 
categorize diseases based on their characteristics, such as their anatomical 
locations, genetic basis, or clinical manifestations. Different disease ontologies 
may have different design principles, coverage, and levels of granularity, 
depending on their intended use cases and the expertise of their developers. Some 
examples of disease ontologies include Human Disease Ontology (DO) [170,171], 
MONDO [112], and Orphanet Rare Disease Ontology (http://www.orpha.net). 
The term “disease vocabulary” used in this dissertation encompasses disease 
ontology as well as other disease terminology systems which do not have an 
ontology-based structure, such as International Classification of Diseases (ICD) 
codes [172], Medical Subject Headings (MeSH) terms [173], Unified Medical 
Language System Concept Unique Identifiers (UMLS CUIs) [174], Systematized 
Nomenclature of Medicine Clinical Terms (SNOMED CT) [175], and OMIM [176].  
Although in the design of some disease vocabularies interoperability for the 
purpose of data integration was taken into consideration, among the numerous 
existing disease vocabularies, there is not a conclusive standard for encoding 
diseases while addressing requirements of information exchange. Each of these 
vocabularies is designed for a particular purpose, hence, they only partially overlap 
and often disagree in the mapping approach. This makes it difficult to align them 
with each other and/or with other knowledge sources.  

Endotypes 

The foundation of how diseases are currently defined, independent of the disease 
ontology of choice, is mainly based on symptoms (phenotypes) and/or involved 
organs. Examples of symptom-based disease definitions: hypertension, defined 
by elevation in the blood pressure [177] or hyperlipidemia, defined by abnormally 
elevated levels of any lipids in blood. Examples of organ-based disease definitions: 
Kidney failure, defined as an acute or chronic condition that is characterized by the 
incapability of the kidneys to effectively filter the blood.  
One of the goals of the network medicine field is to uncover pathomechanisms 
driving diseases and consequently replace the currently ill-defined disease 
classifications and definitions by a mechanistically grounded disease vocabulary 
[168,178,179]. The distinct molecular mechanisms underlying the disease 
phenotypes are called endotypes [168,180,181]. Replacing phenotype-based disease 
definitions by endotypes is a significant step towards disease-modifying 
treatments rather than symptom-alleviating treatments. This newly proposed 
endotype-based disease vocabulary does not require redefining semantic 
relationships between existing disease terms, in other words, the aim is not to 
build yet another disease ontology, but discovering currently unknown molecular 
disease mechanisms and breaking down fuzzy and umbrella disease terms such as 
coronary artery disease into endotypes which are characterized at a molecular 
level [131]. 

http://www.orpha.net/
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DMI methods explained earlier in this chapter aim to uncover previously 
uncharacterized molecular mechanisms which potentially assist in defining 
diseases based on endotypes. 

2.4.4. Bird’s-eye-view vs. close-up network medicine 

At one end of the spectrum of network medicine approaches, we have close-up 
methods employing molecular data for well-characterized patient cohorts to 
study a specific disease that can lead to discovering novel mechanistic insights. At 
the other end of the spectrum, we have bird’s-eye-view (BEV) network medicine 
approaches using large-scale disease association data combined from several data 
sources to infer knowledge about diseases by investigating their relationship at 
network levels [131]. In spite of the promising and translational findings of close-
up approaches, many studies showed biases in the data used by BEV approaches. 
These studied biases are mainly related to proteins and genes in the context of 
networks (as one end of an edge or association in a network) and less attention has 
been paid to biases that are caused by diseases (as another end of an association). 
As mentioned earlier, network medicine aims at finding underlying disease 
mechanisms and replacing disease definitions by their mechanisms, at the same 
time, it uses ill-defined disease definitions to achieve this goal. We postulated that 
using the data which is based on fuzzy disease definitions can introduce bias and 
formulated two testable hypotheses, in global- and local-scale, that I investigated 
in the fourth publication. I tested the hypotheses by quantifying the pairwise 
similarity of several diseasomes and drugomes constructed from different types of 
association data (details can be found in the General Methods chapter). 

2.5. Data integration for in silico and network-based 
drug repurposing 

2.5.1. Challenges 

Data integration in life sciences can be particularly challenging due to the 
increasingly large and complex nature of data sets, commonly referred to as "Big 
Data". These data sets are often too massive to be processed by a single machine 
and require specialized tools and distributed computing resources. Moreover, the 
data is spread across various databases, each following its own conventions, using 
its own vocabularies and is available in different data formats, which adds to the 
complexity of integrating and analyzing the data. In the following, I present a non-
comprehensive overview of the challenges with data integration. 

Data heterogeneity, semantics and syntax 
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As the level of data integration increases, the main challenge is the heterogeneity 
of data, which refers to the differences in data types. The more diverse the data 
types are, the higher the chances of encountering mismatches when trying to 
integrate them. When mixing data from various sources, issues arise not only with 
the format or syntax of the data but also with its underlying meaning or semantics 
[182]. 

Inference of equivalence and mapping 

Coalescing data from different sources entails identifying the various data ‘types’, 
e.g,. drugs, genes, or diseases, and establishing equivalence or mappings between 
corresponding entries in each source. This can be a relatively easy task if there are 
standardized accessions and unique simple keys, such as HUGO Gene 
Nomenclature Committee (HGNC) symbols and entrez IDs for genes, but it is more 
difficult for complex entities like diseases, which often lack such clear and 
standardized identifiers [182]. The need for integrating disease-related 
information from different resources has resulted in a large number of mapping 
systems between different disease vocabularies. As elaborated in the disease 
ontology section, these mappings lack completeness, accuracy, and precision. 

Integrating cases for which mapping from one vocabulary to another is one-to-
one is a straightforward process. For instance, consider achondroplasia, the most 
prevalent form of chondrodysplasia. In the Orphanet Rare Disease Ontology 
(ORDO), it is assigned the disease ID Orphanet_15, while in the MeSH hierarchy, it 
has the disease ID D000130 and in the MONDO system has the ID 0007037. All three 
of these entries refer to the same disease within different terminology systems. In 
a graph-based data integration exercise, this disease could be represented as a 
single node encompassing all three labels, Orphanet_15, D000130, and 0007037. 
In some instances, a single disease ID from one vocabulary may be mapped to 
multiple disease IDs in another vocabulary. This non-unique one-to-many (1-to-
n) mapping complicates the integration process, necessitating the selection of a 
single, definitive vocabulary system to map all diverse disease vocabularies to. For 
example, OMIM defines Choroid plexus papilloma with ID 260500 as choroid 
plexus tumors with neuroectodermal origin, ranging from benign choroid plexus 
papillomas to malignant choroid carcinomas. However, there are two distinct 
disease IDs for the benign and malignant form in ICD-10 (D33.1 and C71.7, 
respectively) and MONDO vocabularies (0009837 and 0016718, respectively). 

Updating and Metadata management  

The datasets or databases are subject to frequent updates, and the changes 
between each release can be significant, either in terms of the data format or the 
data content. In case of data format or data structure change, before updating the 
integrated database, these changes need to be captured to adapt parsers and 
methods previously used for the integration. In order to effectively handle 



Chapter 2 - Background 
 

 
 

 34 

differences in data sources during database integration, it is essential for the 
integrated data source to include metadata, which refers to information that 
describes the data, such as data provenance (i.e., origin and timestamp of data). In 
projects where integrated datasets get continuously updated, to be able to 
reproduce the results derived from the database, or compare results from different 
versions of a database, the need for provenance becomes even more critical. 

Data access and representation 

When it comes to data integration, it is important to think beforehand about the 
method of access, and the way in which the data will be queried or visualized, as 
this may require different types of data representation. There are various ways to 
access biological databases, such as through Representational State Transfer 
(REST) services, SQL databases, flat files via File Transfer Protocol (FTP), and 
many others. It is often essential to have multiple access points to fulfill different 
purposes [182]. 

After identifying and evaluating the challenges associated with the data 
integration as one of the initial steps in the drug repurposing project, it is crucial 
to choose a data integration platform that can help achieve all the project’s 
objectives. 

2.5.2. Database models 

Amongst many database models used for data storage and data mining in 
computational tasks, there are three models used more commonly in 
computational biology: in-memory, relational and schema-less databases [183].  
When exploited to their full potential, in-memory formats, like those used by 
Cytoscape, Ondex [184], and Gephi [185], are quick. However, they are optimized 
for analyzing small data sets that can fit in a single machine’s memory. Therefore, 
in-memory approaches are constrained by the availability of memory rendering 
them infeasible to store graphs which are the preferred representation of 
integrated data sets in bioinformatics. Graphs frequently comprise a vast number 
of nodes and edges, making it impossible to represent them in RAM, resulting in 
their storage in databases [186]. 

Most relational databases use the structured query language (SQL) for managing 
the data. Traditionally, MySQL and PostgreSQL have been the go-to options for 
storing data. These relational databases operate by organizing data into tables, 
which are composed of rows and columns. Each row can be viewed as an object that 
possesses specific attributes or properties, represented by the columns [187]. With 
a history dating back to the late 1960s, relational databases have been heavily 
researched and optimized for efficient querying [186]. While the strengths and 
weaknesses of relational databases are well understood, their shortcoming in 
capturing necessary semantics constrains their applicability. Schema-based data 
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models impose constraints on how data can be stored, necessitating manual 
redesigns to accommodate new relationships. Relational databases excel in 
handling complex queries and set operations aggregating data. In contrast, graph 
databases are optimized for highly interconnected data [186]. 

The term ‘NoSQL’ is used to describe databases that lack a fixed schema (schema-
less), including key/value stores (e.g., Apache Cassandra 
www.cassandra.apache.org), document stores (e.g., MongoDB 
www.mongodb.com), and graph databases (e.g., Neo4j www.neo4j.com). These 
databases are gaining popularity due to their scalability and flexibility, in contrast 
to the more traditional relational approach. In graph databases, edges are 
represented as directed pointers between nodes that can be traversed in constant 
time, depending on the implementation. When analyzing data interconnectivity or 
topology, graph databases become especially relevant, and they are optimized for 
graph traversals, such as algorithms for finding the shortest path [186]. 

Most graph databases do not possess a declarative query language. Neo4j is an 
exception with its query language, Cypher [188], inspired by SQL and allowing 
users to construct expressive and efficient graph queries. One of the distinctive 
features of Cypher is its ability to match patterns and relationships using a visual 
approach. This approach was inspired by an ASCII-art type of syntax that involves 
using rounded brackets to denote circular (nodes) and -[:ARROWS]-> to represent 
relationships in the form of (nodes)-[:ARE_CONNECTED_TO]->(otherNodes). 

Knowledge graphs bring together elements from multiple data management 
approaches. They incorporate aspects of databases, allowing for exploration 
through structured queries. Additionally, they exhibit characteristics of graphs, 
enabling analysis similar to other network data structures. Moreover, knowledge 
graphs possess qualities of knowledge bases, as they incorporate formal semantics 
that facilitate data interpretation and the inference of new information [189]. A 
knowledge graph can be modeled with different database models, such as Neo4j, 
MongoDB, graphml format and SQL. The database models and data sources used 
for constructing the knowledge graphs underlying this dissertation are introduced 
in the General Methods chapter. 

http://www.cassandra.apache.org/
http://www.mongodb.com/
http://www.neo4j.com/


3. General Methods 

This chapter gives a brief summary of the methodologies applied in the 
publications forming this dissertation. 

The overview includes: 3.1) different components of drug repurposing platforms; 
3.2) data integration and network construction from public databases and the 
Estonian biobank; 3.3) network medicine algorithms used in the CoVex and 
NeDRex platforms that were adapted or de novo developed (like MuST) for the 
purpose of disease module identification and drug ranking; as well as 3.4) the 
network metrics employed for the similarity analyses of diseasomes and drugomes 
(the fourth publication) to test the bias introduced to network medicine studies by 
inadequate disease definitions. The complete description and details can be found 
in the Methods section and Supplementary Information of the publications 
[11,12,131] (Appendices A.1, A.2, and A.4). 

3.1. Overview of the drug repurposing platforms 

The network medicine platform, NeDRex, presented in the second publication [12] 
has four main components including NeDRexDB, NeDRexApp, NeDRexAPI, and 
network medicine algorithms. NeDRexDB, integrates data from various 
biomedical databases relevant to the task of drug repurposing into a unified 
knowledge graph. To make our disease module identification and drug 
repurposing methods more accessible for biomedical researchers, we opted for 
implementing the user interface part of the platform as a Cytoscape 3 App, called 
NeDRexApp.  

Cytoscape 3 is built on the Open Service Gateway Initiative (OSGi) framework, and 
its inherent modularity, enforced by OSGi, enhances extensibility. This quality 
aligns well with the design goals of the NeDRex platform, where a modular 
structure facilitates incorporating new algorithms and exploration functions. 
NeDRexApp provides implementations of network-based algorithms in the back-
end via NeDRexAPI. The app functions as a user-friendly front-end interface, 
providing access to NeDRexDB. It enables users to build customized heterogeneous 
networks, execute network medicine algorithms, and visually explore the 
resulting data. The NeDRexDB knowledge base can be accessed via Neo4j endpoint 
as well (Fig. 3.1).  
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Figure 3.1 - The NeDRex framework, its main components and the connections between them. 

The CoVex web platform, presented in the first publication, is composed of four 
main components: the SQL database, the backend to build the web API, the 
network medicine algorithms, and the frontend for network visualization. The 
implementation details can be found in the original publication [11] (Appendix A.1). 

3.2. Data integration and network construction 

One of the primary steps in developing network-based drug repurposing 
platforms of CoVex and NeDRex was to integrate relevant databases into a 
knowledge graph. For CoVex, we utilized a relational database implemented in 
PostgreSQL. NeDRexDB is a knowledge graph modeled as Neo4j and MongoDB 
with the possibility to export to any graph format such as graphml. There were two 
main factors behind the selection of MongoDB as the database model. Firstly, 
MongoDB's flexible schema allows for easy addition of new attributes to database 
documents while also providing the option to selectively enforce specific 
guarantees [190]. Secondly, MongoDB offers a wide range of operations for 
querying and updating data, thus greatly supporting data integration efforts [191]. 

A comprehensive list of data sources and the types of integrated data for the CoVex 
and NeDRex platforms [11,12] can be found in the respective publications 
(Appendices A.1 and A.2). For the fourth publication where we evaluated the bias 
introduced by disease definitions in network medicine studies, we created a more 
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complete version of the disease-disease (diseasome) network initially introduced 
by Goh et al. [91], by including disease-gene data from additional data sources. In 
a similar fashion, we defined and generated other types of diseasomes based on 
different types of disease association data, such as disease-symptom (also 
referred to as phenotype), disease-variant, drug-indication, and comorbidity 
relationships between diseases. Inspired by the notion of the diseasome utilizing 
bipartite graphs of drug-target and drug-indication, we constructed drug-drug 
(drugome) networks. The construction of different types of diseasomes and 
drugomes is illustrated in Fig. 3.2. 

 

Figure 3.2 - Construction of diseasomes and drugomes based on different data types. Figure 
adapted from Sadegh et al. [131]. Permission granted by the authors. 

Most of the networks were constructed based on the data from publicly available 
databases. Only for the comorbiditome, the disease-disease network based on 
comorbidity data, we used the ICD-10 diagnoses stored in the health records 
available from the Estonian population-based biobank. 

The full metagraph of the NeDRRexDB knowledge base together with additional 
data used for the analyses in the fourth publication is illustrated in Fig. 3.3.  
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Figure 3.3 - The NeDRexDB metagraph appended with data types used for network similarity 
analyses in the fourth publication. Figure modified from Sadegh et al. [12] and created with 
BioRender.com. Permission granted by the authors. 

A significant challenge we faced during the data integration process was the 
discordant use of various disease vocabularies (identifiers) across databases 
containing disease association data. For instance, both DrugCentral [192] and CTD 
databases contain drug indication data, but while DrugCentral uses SNOMED CT to 
denote the indications (diseases), CTD uses MeSH terms.  In the context of network 
medicine applications and to investigate underlying mechanisms of diseases, we 
need to map data to a common target vocabulary if we want to jointly leverage the 
disease related data from various data sources. This often leads to information loss 
due to unmappable terms [131]. MONDO is the result of a big community of experts 
working together to unify multiple disease resources by providing a logic-based 
structure [112]. Based on our assessment, it showed the highest mappability to 
other disease vocabularies among the available options [131]. Consequently, it was 
chosen as the target vocabulary for the integration of the databases within the 
NeDRex platform. In the fourth publication, we also assessed the impact of 
annotating the data with disease vocabularies of varying levels of granularity on 
the results. We conducted the analyses using MONDO IDs and UMLS CUIs for finer 
granularity, and ICD-10 three-character codes for coarser granularity, as node IDs 
in the generated networks. This task required the construction of the networks in 
different disease vocabulary systems [131]. 

3.3. Network medicine algorithms 

For the first publication, CoVex, we have adapted several already established 
algorithms and integrated them into the web tool, each based on distinct 
paradigms. This selection of algorithms aims to offer targeted exploration options 
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for diverse research inquiries and hypotheses related to the COVID-19 disease and 
therapeutic drugs.  

These algorithms include: modified versions of closeness and betweenness node 
centrality measures [193], network proximity [87] based on the distance between 
drug targets and disease related genes, KeyPathwayMiner [194] a de novo network 
enrichment method to identify condition-specific key pathways, and TrustRank 
[195] a variation of Google's PageRank algorithm that involves the iterative 
propagation of "trust" from seed nodes to adjacent nodes by utilizing the 
underlying network structure. We also developed a new algorithm based on the 
Steiner tree concept, called MuST, to identify drug targets for COVID-19, described 
more in detail later in this section. All the algorithms require hypothesis-driven 
starting points, so-called seeds, that can be either viral proteins, human proteins 
or drugs. Based on the initial hypothesis and selected seeds, integrated systems 
medicine algorithms find connecting paths from viral proteins to drugs using host 
proteins from the human PPI interactome as proxies. The algorithms are grouped 
into two categories of drug target and drug candidate discovery. 

Regardless of the network analysis method used, high-degree nodes, i.e., hub 
proteins having a large number of interactions in the PPI network, appear in the 
obtained results with a higher likelihood. Since hub proteins are also more likely 
to be part of multitude mechanisms and are not particular to the mechanisms of 
the studied disease, we introduced hub penalty to the algorithms to mitigate this 
bias. By this means, we penalize high-degree nodes by incorporating the degree of 
neighboring nodes as edge weights in the optimization step. 

For the second publication, NeDRex, we built on the methodology of CoVex and 
integrated disease module identifying methods benefitting from the integration of 
prior knowledge, like PPI networks, and overlay molecular profiles on these 
networks to derive new candidate disease mechanisms. We integrated BiCoN [44] 
which is an unsupervised method and performs simultaneous patient clustering 
and protein module extraction to obtain a potential mechanistic explanation of a 
studied condition. We integrated DIAMOnD [196], an established method designed 
based on the systematic analysis of connectivity patterns of disease-associated 
proteins within the human interactome. Additionally, we improved the previous 
implementation of the MuST algorithm in CoVex for disease module identification 
in the NeDRex platform to obtain more robust results.  

In the NeDRex workflow, the next step after identifying disease related modules, 
is to prioritize drugs targeting proteins in the derived modules or in the vicinity of 
them. Two algorithms from our experience with CoVex showed to be more 
beneficial for drug ranking, namely TrustRank and Closeness centrality. These 
algorithms need initial seeds as input. These can be all proteins returned as result 
in the previous step (disease module identifying) or a selection of them reliant on 
the expert knowledge of users. This is where the human-in-the-loop concept can 
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come into play, enhancing predictions. Many effective drugs function by targeting 
multiple proteins rather than a single target. Both implemented drug ranking 
algorithms in NeDRex incorporate this principle. Drugs having more connections 
to the disease module proteins, i.e., targeting a higher number of proteins in the 
disease module, are scored higher. This strategy aligns with the concept of 
network pharmacology, discussed in the Background chapter, suggesting that 
therapeutic interventions can be more effective when targeting a subnetwork of 
proteins (disease module) rather than individual proteins. 

A detailed description of all the network medicine algorithms implemented for 
CoVex and NeDRex platforms can be found in the original publications [11,12] 
(Appendices A.1 and A.2). 

Multi-Steiner Tree (MuST) algorithm 

The Steiner tree (ST) problem is a combinatorial optimization problem seeking a 
tree of minimum cost connecting a given set of terminal nodes. This problem in 
graphs can be viewed as an extension of two more well-known combinatorial 
optimization problems: the (non-negative) shortest path problem and the 
minimum spanning tree problem.  

There is a tendency for functionally related genes to exhibit proximity within the 
PPI networks. Furthermore, it has been observed that the distribution of pairwise 
shortest paths among known disease genes has a significant leftward shift 
compared to what would be expected randomly [151]. Therefore, a rational 
hypothesis suggests that the shortest paths connecting these disease genes 
coincide with underlying molecular pathways of diseases [102].  

Considering that STs can be seen as extensions of shortest paths in scenarios 
involving more than two terminals (equivalent to seeds in our methodology), it is 
reasonable to anticipate that a disease module constructed using STs would 
encompass a substantial portion of the molecular pathways relevant to the disease 
[15]. Exactly solving the ST problem is NP-hard, but several efficient 
approximation algorithms exist, such as the 2-approximation by Kou et al. [197].  

Since PPI networks used in our settings are rather dense (have high edge-to-
vertex ratio), solutions to the Steiner tree problem are usually non-unique. 
Therefore, we return the final module as the union of multiple solutions to ST 
problem, hence the name ‘Multi-Steiner tree’. I also co-authored another 
publication, where we further improved the implementation of MuST presented in 
this dissertation to be more robust by enumerating maximally diverse prize-
collecting Steiner trees [15]. 

Statistical validation 

In order to evaluate the statistical significance of both types of the results, i.e., 
identified disease modules and predicted drugs, generated by various algorithms 
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within NeDRex, we have incorporated three validation strategies that rely on 
empirical P-values. A list of reference drugs, that is the drugs indicated for the 
disease under study and/or drugs undergoing clinical trials for the treatment of 
disease, is needed for all three validation methods. The quality of this list with 
regards to completeness and false positives affects the P-value results. 

The first method is the validation of predicted final drugs without taking into 
account the previous disease module identification step. We generate a high 
number of random ranked lists of drugs with the matched list’s size to that of the 
reference drug list. We then compute the discounted cumulative gain (DCG) [198], 
reflecting to what extent a ranked list is in accordance with a reference list, for the 
predicted list of drugs and all random counterpart lists. The empirical P-value is 
then computed by counting the number of random drug lists whose DCGs exceed 
the DCG of the drug list predicted by NeDRex divided by the total number of 
considered random lists. The second method is designed to validate the predicted 
disease module in terms of druggability. For this method, we generate a high 
number of random mock disease modules of matching size and topology to the 
disease module identified by NeDRex. The precision of a module is defined by the 
number of reference drugs targeting the module divided by the overall number of 
drugs targeting the module. Similar to the first method, the empirical P-value is 
computed by counting the number of mock modules with higher precision values 
than the predicted disease module divided by the total number of simulated 
random mock modules. The third method is a joint validation method and takes 
into account both steps of the NeDRex workflow. This method is computationally 
similar to the second method with the difference in computation of precision of 
the predicted result. Here, we calculate the precision by counting the overlap 
between the reference drugs and the predicted drug list divided by the overall 
number of drugs in the list. A more formal description of the validation method 
can be found in the Methods section of the publication [12] (Appendix A.2). 

3.4. Testing the bias introduced to network medicine 
studies due to inadequate disease definitions 

The present large-scale disease databases use phenotype- or organ-based 
definitions for diseases. At the same time network medicine seeks to improve these 
ill-defined classifications and find underlying mechanisms for diseases to be the 
new definition system for diseases. However, many network medicine studies 
which are based on BEV approaches (defined in the Background chapter) and use 
such large-scale disease data runs the risk of replicating the biases inherent in 
these inadequate disease definitions. Therefore, these approaches assume that the 
biases originating from inadequate disease definitions balance out, and despite 
these biases, the disease association data still hold valuable insights into the 
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underlying pathomechanisms. In the fourth publication, we assessed the degree to 
which extent this implicit assumption is substantiated by data. 

Assume d1 and d2 are two diseases sharing an unknown molecular mechanism M. If 
BEV network medicine uses data type D1 containing information about d1 and d2, 
for example disease-gene association data, M should result in significant 
similarities between d1 and d2 considering data D1. This translates to having an edge 
in the network G1 that is constructed based on D1, where di’s are nodes. These 
networks are diseasomes introduced earlier in this chapter.  Similarly, for any 
other data types Di used as input for the BEV approach, we expect to see similarity 
in the corresponding network Gi. Therefore, in the diseasomes G1 and G2 generated 
based on similarities in D1 and D2, the edge distribution should show a higher 
correlation than expected by chance in two random networks constructed under 
similar conditions. 

Based on the BEV implicit assumption, we formulated two hypotheses to be tested: 

1. The global-scale hypothesis suggests that networks formed from two 
distinct types of disease association data, both carrying valuable 
information about molecular mechanisms, should exhibit a higher level of 
pairwise similarity than what would be expected by chance. 

2. The local-scale hypothesis proposes that this principle should apply not only 
on a global level but also within the specific neighborhoods of individual 
diseases represented as nodes in the diseasomes. 

To perform pairwise similarity analyses on diseasome and drugome networks and 
their counterpart randomized networks, we used customized versions of graph 
edit distance (GED). GED is a measure used to quantify the dissimilarity between 
two graphs [199]. It is calculated as the minimum cost required to transform the 
source graph into the target graph using elementary edit operations, such as 
deleting, inserting, and substituting nodes and edges. To test the local-scale 
hypothesis, we defined a local version of GED (local node distances) which is 
calculated based on only the neighborhood of a node. GED is the only available 
graphs distance measure we are aware of that meets the criteria essential for our 
analyses. These requirements include: 1) a graph distance measure which is 
decomposable into local node distances, 2) the local node distances should depend 
on the node's local neighborhoods in the compared networks and not on the 
overall networks topologies, 3) due to node alignment between the compared 
networks, both the global network distance and the local distances should be 
node-identity-aware rather than permutation-invariant, i.e., node labels are 
important; and 4) for our large-scale permutation tests to be feasible, the 
distances must be computable in linear time relative to the size of the networks.   

To test the global-scale hypothesis, we computed one-sided empirical P-values 
based on the comparison between randomized networks. For the local-scale 
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hypothesis, i.e., to test whether the local distances in the original networks are 
significantly smaller than the local distances in the randomized ones, we 
computed the one-sided Mann-Whitney U (MWU) test as well as node-specific 
local empirical P-values. Detailed explanation of the methods and rationale behind 
selecting GED as a network similarity measure for this study can be found in the 
original publication [131] (Appendix A.4). 



4. Publications 

4.1. Publication 1: Exploring the SARS-CoV-2 virus-
host-drug interactome for drug repurposing 

Citation 

The following article titled “Exploring the SARS-CoV-2 virus-host-drug 
interactome for drug repurposing” has been published in Nature Communications 
on July 14, 2020. 

Full citation: 
Sepideh Sadegh†, Julian Matschinske†, David B. Blumenthal, Gihanna Galindez, 
Tim Kacprowski, Markus List, Reza Nasirigerdeh, Mhaned Oubounyt, Andreas 
Pichlmair, Tim Daniel Rose, Marisol Salgado-Albarrán, Julian Späth, Alexey 
Stukalov, Nina K. Wenke, Kevin Yuan, Josch K. Pauling & Jan Baumbach (2020). 
“Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing.” 
Nature communications, 11(1), 3518;  https://doi.org/10.1038/s41467-020-
17189-2 

† These authors contributed equally. 

Summary 

De novo drug development takes years to result in treatment for a disease. Through 
the identification of additional applications for already approved drugs, drug 
repurposing is a better alternative approach, particularly in the case of a new 
rapidly spreading pandemic, such as the recent COVID-19 outbreak. In the initial 
months after identifying SARS-CoV-2 virus in January 2020, there were numerous 
studies conducted with the aim of shedding light on the molecular mechanism 
underlying SARS-CoV-2 viral infection and consequently finding a treatment. One 
of the earliest and most important studies was done by Gordon et al. [65] where 
they could identify 332 high-confidence protein–protein interactions between the 
virus proteins and the human proteins. Additionally, there existed other valuable 
sources of molecular and drug data, along with various network medicine 
algorithms developed previously, that could be exploited for the task of COVID-19 
drug repurposing. However, such information and algorithms were scattered 
across multiple publications and not available in an integrative fashion to facilitate 
drug repurposing studies. 

We developed CoVex, an online platform available at 
https://exbio.wzw.tum.de/covex/, that aims to address this issue by providing 
an interactive resource for exploring the SARS-CoV-2 virus-host interactome and 
identifying potential drug targets. CoVex integrates information on virus-human 

https://doi.org/10.1038/s41467-020-17189-2
https://doi.org/10.1038/s41467-020-17189-2
https://exbio.wzw.tum.de/covex/
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protein interactions, human protein-protein interactions, and drug-target 
interactions. It allows users to explore the virus-host interactome and use 
network-based algorithms to find potential drug targets and repurposable drug 
candidates. The inclusion of median gene expression levels, specific to each tissue 
from the GTEx data portal, facilitates the application of tissue-specific filtering to 
the results. The idea behind CoVex is to identify and target host proteins which are 
key modulators and necessary for the virus’ life cycle, instead of targeting virus 
protein. These host key proteins are not necessarily the first interactors of virus 
proteins but downstream proteins in the human interactome indirectly affected by 
the virus proteins and can be identified by the network medicine algorithms 
integrated into the CoVex tool. 

Presenting four different scenarios, we demonstrated the utility of CoVex. Users 
can guide the analysis by selecting (usually) hypothesis-driven starting points 
(viral proteins, human proteins or drugs), so-called seeds, and further leverage 
their expert knowledge in the subsequent steps. Based on the initial hypothesis and 
selected seeds, intended systems medicine algorithms find connecting paths from 
viral proteins to drugs using host proteins as proxies. The integrative and 
interactive online platform CoVex is intended to make COVID-19 drug research 
more accessible by helping researchers understand the molecular mechanisms of 
COVID-19, test their hypotheses, and prioritize candidate therapeutics. 

Contribution 

As stated in the publication: “S.S., J.M., J.B., M.L., T.K., J.K.P., A.P., and A.S. 
conceived and designed the study. S.S. and J.M. were in charge of overall direction, 
planning, and supervision. S.S., G.G., T.D.R., M.S.-A., and N.K.W. performed the 
acquisition, integration, and interpretation of data. S.S., D.B.B., M.L., and K.Y. 
developed and adapted the algorithms for network-based drug repurposing. J.M., 
R.N., M.O., and J.S. implemented the web platform. All authors provided critical 
feedback and helped in the interpretation of data, manuscript writing, and the 
improvement of the platform.” 

In detail: I contributed to conceptualizing and designing the study. I had the 
leading role in systems and network medicine algorithms adaptation, integration 
and development of the new algorithm MuST, for network exploration, prediction 
of drug target and drug candidates. I had the main role in integration of data in the 
platform. I contributed to the writing, creation of figures, and revision of the 
manuscript and supplementary information.  

Rights and permissions 

The publication is available in Appendix A.1. "© The Author(s) 2020. Published by 
Springer Nature. This is an open access article under the Creative Commons CC BY 
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license (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited" [11]. 

Additional supplementary material 

Supplementary data are available online at Nature Communications: 
https://doi.org/10.1038/s41467-020-17189-2  

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41467-020-17189-2
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4.2. Publication 2: Network medicine for disease 
module identification and drug repurposing with 
the NeDRex platform 

Citation          

The following article titled “Network medicine for disease module identification 
and drug repurposing with the NeDRex platform” has been published in Nature 
Communications on November 25, 2021. 

Full citation: 

Sepideh Sadegh†, James Skelton†, Elisa Anastasi, Judith Bernett, David B. 
Blumenthal, Gihanna Galindez, Marisol Salgado-Albarrán, Olga Lazareva, Keith 
Flanagan, Simon Cockell, Cristian Nogales, Ana I. Casas, Harald H. H. W. Schmidt, 
Jan Baumbach, Anil Wipat & Tim Kacprowski (2021). “Network medicine for 
disease module identification and drug repurposing with the NeDRex platform.” 
Nature communications, 12(1), 6848;  https://doi.org/10.1038/s41467-021-
27138-2. 

† These authors contributed equally. 

Summary 

There is currently a significant challenge in traditional drug discovery due to a lack 
of effectiveness. Repurposing existing drugs for treatment of diseases other than 
their original indications can be a cost-effective and faster alternative. Among the 
variety of in silico methods, mechanistic drug repurposing approaches, i.e., 
targeting the mechanism underlying disease, have been advantageous due to the 
interpretability of their results leading to making informed decisions about 
potential candidates rather than dealing with predictions coming out of a black box 
that cannot be interpreted. 

Previous research suggests that genes associated with diseases are not randomly 
distributed within biological networks; instead, they exhibit a tendency to cluster 
together in what are referred to as disease modules – small interconnected 
subnetworks representing mechanisms that can be related to the phenotype. One 
of the fundamental principles of network medicine is the notion that diseases can 
be perceived as disruptions to these modules. Accordingly, in silico drug 
repurposing can be done by, firstly, discovering such disease modules and 
subsequently finding drugs targeting genes or proteins within these modules. In 
order to do so, we need to build heterogeneous biological networks from pertinent 
data. However, this data is scattered across a multitude of databases, each using 
their own vocabulary for diseases.  

https://doi.org/10.1038/s41467-021-27138-2
https://doi.org/10.1038/s41467-021-27138-2
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Furthermore, the existing drug repurposing studies are either restricted to 
predicting treatments for particular diseases (of the interest of study) or 
developing non-translational algorithmic approaches. Computational drug 
repurposing methods often neglect valuable expert knowledge. By incorporating 
the concept of human-in-the-loop into drug repurposing, we can leverage the 
expertise of researchers in the field of pharmacology and biomedicine to assess the 
results at each stage of the workflow, resulting in more promising predictions. 

NeDRex is a platform that aims to address the need for adaptable drug repurposing 
tools by providing an interactive and integrative tool, enabling biomedical 
researchers to employ network-based approaches for drug repurposing and 
disease module discovery of their individual use cases while benefiting from the 
notion of human-in-the-loop. NeDRex integrates data from different sources, 
including genes, drugs, drug targets, and disease annotations. It allows users to 
construct biological networks, mine them for disease modules, prioritize drugs 
targeting disease mechanisms, and perform statistical validation. 

The NeDRex platform is built of three main components: NeDRexDB knowledge 
base (available at http://neo4j.nedrex.net/ and https://api.nedrex.net/), 
NeDRexApp (a Cytoscape app as the user interface of the platform to run the 
algorithms implemented in the backend, available at 
https://apps.cytoscape.org/apps/nedrex), and NeDRexAPI (the RESTful API, 
to give access to the knowledge base available at  https://api.nedrex.net/). 

The utility of NeDRex is showcased through five distinct use cases, with results 
assessed using implemented statistical methods. These use cases include: 1) 
identification of disease pathways for ovarian cancer; 2) identification of 
therapeutic drugs for inflammatory bowel disease; 3) drug and drug target 
identification for pulmonary embolism; 4) identification of disease module and 
drug candidate for Huntington’s disease; and 5) hypothesis-driven drug 
repurposing for Alzheimer’s disease. 

Contribution 

As stated in the publication: “S.S., J.S., D.B.B., J.Ba., A.W., and T.K. conceived the 
idea and designed the platform. S.S., J.S., J.Be., E.A., G.G., K.F., S.C., T.K. performed 
the acquisition, harmonization and integration of databases. S.S. and D.B.B. 
developed and adapted the network-based algorithms for drug repurposing. S.S., 
E.A., G.G., M.S.-A., O.L., C.N., and A.I.C. discovered and approved the use cases. J.S. 
implemented the API. S.S. and J.Be. implemented the Cytoscape app. All authors 
provided critical feedback and discussion, assisted in the interpretation of data and 
use cases, writing the manuscript, and the improvement of the platform.” 

In detail: I significantly contributed to conceptualizing the idea and designing the 
platform. J.S. and I conducted the data acquisition, harmonization and integration 

http://neo4j.nedrex.net/
http://neo4j.nedrex.net/
https://api.nedrex.net/
https://apps.cytoscape.org/apps/nedrex
https://api.nedrex.net/
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into the platform. I implemented all the network medicine algorithms for disease 
module identification, drug prioritization, and statistical validations and further 
developed my previous version of MuST (from CoVex) for the NeDRex platform. I 
implemented the front-end of the platform as a Cytoscape App. I discovered and 
validated most of the use cases. I greatly contributed to the writing and revision of 
the manuscript and supplementary information. I generated all the figures. 

Rights and permissions 

The publication is available in Appendix A.2. "© The Author(s) 2021. Published by 
Springer Nature. This is an open access article under the Creative Commons CC BY 
license (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited" [12]. 

Additional supplementary material 

Supplementary data are available online at Nature Communications: 
https://doi.org/10.1038/s41467-021-27138-2  
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4.3. Publication 3: Lessons from the COVID-19 
pandemic for advancing computational drug 
repurposing strategies 

Citation          

The following article titled “Lessons from the COVID-19 pandemic for advancing 
computational drug repurposing strategies” has been published in Nature 
Computational Science on January 14, 2021. 

Full citation: 

Gihanna Galindez†, Julian Matschinske†, Tim Daniel Rose†, Sepideh Sadegh†, 
Marisol Salgado-Albarrán†, Julian Späth†, Jan Baumbach & Josch Konstantin 
Pauling (2021). “Lessons from the COVID-19 pandemic for advancing 
computational drug repurposing strategies.” Nature Computational Science, 1(1), 
33-41; https://doi.org/10.1038/s43588-020-00007-6. 

† These authors contributed equally. 

Summary 

In contrast to traditional drug discovery, repurposing approved drugs offers a 
swift and efficient method to discover alternative treatments by identifying new 
applications for medications with established safety and pharmacological profiles. 
Particularly in the context of the COVID-19 pandemic that rapid and cost-effective 
approaches are essential, in silico drug repurposing is the method of choice to 
identify novel treatments. Therefore, there were many efforts during the COVID-
19 pandemic on drug repurposing.  

In this review, we summarized the methodology used in COVID-19 drug 
repurposing research, discussed the challenges encountered and lessons we 
learned from them. First, we gathered and reviewed the data sources used in 
COVID-19 drug repurposing studies, including molecular data resources, networks 
and interaction resources, drug databases, and clinical trial resources. In the next 
step, we grouped computational methods into two general virus-targeting and 
host-targeting approaches. 

To find potential inhibitors for viral proteins, most virus-targeting strategies 
utilized structure-based drug screening techniques by using docking simulations. 
Unlike conventional docking protocols that are constrained to analyzing millions 
of chemical compounds, deep learning approaches, such as neural networks, have 
the capacity to analyze billions of compounds and have been increasingly used for 
COVID-19 drug screening.  

https://doi.org/10.1038/s43588-020-00007-6


Chapter 4 - Publications 
 

 
 

 52 

Host-targeting strategies entail the identification of potential drugs that disrupt 
host mechanisms involved in viral pathogenesis, therefore, advantageous as they 
are less susceptible to drug resistance. These approaches involve integration and 
analysis of multiple omic data types and either use data-driven network-based 
methods or signature-based methods. The latter involve the discovery of drug-
induced expression profiles that demonstrate contrasting patterns to the 
signature observed in COVID-19. 

In this review work, we also compared the predictions of the computational 
methods to the drugs undergoing clinical trials available at the time of the 
publication. Finally, we highlighted the lessons learned from the reviewed drug 
repurposing efforts, and proposed a unified drug repurposing strategy to improve 
readiness in the event of future outbreaks. The unified strategy included 
standardizing molecular databases, combining host- and virus-targeting 
approaches, synergistic drug combination, combining computational and 
experimental research, inclusion of expert-guided analyses, and validation of 
candidates. 

Contribution 

As stated in the publication: “G.G., J.M., T.D.R., S.S., M.S.A., J.S., J.B. and J.K.P. 
contributed equally to the manuscript writing. J.B. and J.K.P. were in charge of 
overall direction, planning and supervision. All authors provided critical feedback 
and helped to improve the manuscript.”      

In detail: I focused, with G.G., on collecting and reviewing COVID-19 drug 
repurposing studies using host-targeting approaches and comparison of their 
predictions to clinical trials. I contributed with J.M. and J.S. to the collection of 
“Data resources” used in COVID-19 studies. Together with all other co-authors, I 
equally contributed to the “Lessons learned” section, generation of figures, 
writing and revision of the manuscript and supplementary information. 

Rights and permissions 

The publication is available in Appendix A.3 with permission of Springer Nature. 
"© Springer Nature America, Inc. 2021. Ownership of copyright in this original 
research article remains with the Author, and provided that, when reproducing the 
contribution or extracts from it or from the Supplementary Information, the 
Author acknowledges first and reference publication in the Journal, the Author 
retains the right to reproduce the contribution in whole or in part in any printed 
volume (book or thesis) of which they are the author(s)" [13]. 
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Additional supplementary material 

Supplementary data are available online at Nature Computational Science: 
https://doi.org/10.1038/s43588-020-00007-6  
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4.4. Publication 4: Lacking mechanistic disease 
definitions and corresponding association data 
hamper progress in network medicine and beyond 

Citation          

The following article titled “Lacking mechanistic disease definitions and 
corresponding association data hamper progress in network medicine and 
beyond” has been published in Nature Communications on March 25, 2023. 

Full citation: 

Sepideh Sadegh, James Skelton, Elisa Anastasi, Andreas Maier, Klaudia 
Adamowicz, Anna Möller, Nils M. Kriege, Jaanika Kronberg, Toomas Haller, Tim 
Kacprowski, Anil Wipat, Jan Baumbach, David B. Blumenthal (2023). “Lacking 
mechanistic disease definitions and corresponding association data hamper 
progress in network medicine and beyond.” Nature Communications, 14(1), 1662; 
https://doi.org/10.1038/s41467-023-37349-4.  

Summary 

One of the network medicine’s goals is to find better treatment for diseases that 
are not only palliating symptoms. To achieve this, a shift in disease definition from 
organ- and phenotype-based to mechanism-based is essential. Targeting distinct 
molecular mechanisms underlying the disease, so-called endotypes, can actualize 
disease-modifying treatments. 

Close-up network medicine studies focus on a specific disease and conduct their 
analyses with molecular data obtained from well-characterized patient cohorts, 
while bird’s-eye-view (BEV) network medicine approaches use large-scale 
disease association data often gathered from a multitude of data sources. The BEV 
approaches look at diseases and the relationships between them in a more global 
view and are not intended to focus only on a specific disease. 

Some sources of bias in the data used by BEV approaches have been studied before. 
They include but are not limited to the effect of incompleteness of disease-gene 
association and protein-protein interaction (PPI) data, as well as potential bias 
originating from highly studied proteins and genes. While biases from the non-
disease side (like genes) in disease association data are well-explored, potential 
biases from the disease side itself are often overlooked. One of these biases is how 
in large-scale disease association databases, diseases are currently annotated with 
the very phenotype-based disease definitions that the network medicine field 
aims to transition from. Therefore, BEV approaches that rely on such disease 
association data run the risk of systematically replicating the biases introduced by 
these disease definitions. As a result, BEV approaches operate under the implicit 
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assumption that the biases arising from phenotype-based disease definitions 
balance out, and despite these biases, the disease association data obtained using 
such definitions still hold valuable insights into the underlying pathomechanisms 
yet to be discovered. 

To assess to what degree the aforementioned underlying assumption is supported 
by data, we first constructed disease-disease networks based on different types of 
disease association data (such as gene, comorbidity, symptom, and drug) as well 
as drug-drug network based on indication and drug target data. Then, we 
performed two types of similarity analysis in global- and local-scale to compare 
the constructed networks and tested the hypotheses arising from the implicit 
assumption of BEV network medicine. We implemented the similarity analyses in 
the Python package graph similarity quantification tool (GraphSimQT), enabling 
users to quantify biases originating from other disease association data types 
other than the ones covered in our study. The GraphSimQT package is available at: 
https://github.com/repotrial/graphsimqt.  The results are explorable via the 
web interface graph similarity visualizer (GraphSimViz) 
https://graphsimviz.net. 

The results indicate strong evidence in favor of the global-scale hypothesis. 
However, they only offer limited support for the local-scale hypothesis. The 
interpretation of results is that BEV network medicine offers only a distant 
perspective on the yet-to-be-uncovered endotypes. When we closely examine 
individual diseases, the clarity of the picture diminishes that can be due to the 
fuzzy disease definitions. These findings imply that network medicine approaches 
should not blindly rely only on general publicly available disease association data, 
which uses ill-defined disease classifications, and need to be complemented with 
additional layers of molecular data for well-characterized patient cohorts to be 
used for close-up analyses. 

Contribution 

As stated in the publication: “D.B.B. and S.S. conceived and designed this study and 
implemented the GraphSimQT Python package to compare the different networks. 
S.S. carried out the analyses. J.S., S.S. and K.A. integrated the data and constructed 
the networks. A.Ma. implemented the GraphSimViz web tool. D.B.B., S.S., E.A., 
N.M.K., and A.Mö. drafted the manuscript. J.K., T.H., and the Estonian Biobank 
Research Team provided the comorbidity data. D.B.B., J.B., and A.W. supervised the 
project. All authors provided critical feedback and discussion and assisted in 
interpreting the results and writing the manuscript.” 

In detail: I, together with D.B.B conceptualized the idea and designed the study. I 
had the main role in data acquisition, integration, and network generation. J.S. and 
I conducted the mapping between disease vocabularies and other necessary data 

https://github.com/repotrial/graphsimqt
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harmonization steps. I constructed the comorbidity network based on the data 
acquired from the Estonian Biobank. I, together with D.B.B implemented the 
network comparison algorithms as a Python package (GraphSimQT: graph 
similarity quantification tool). I performed all the analyses and plotted the results. 
I contributed to the writing and revision of the manuscript and supplementary 
information. I generated all the figures. 

Rights and permissions 

The publication is available in Appendix A.4. "© The Author(s) 2023. Published by 
Springer Nature. This is an open access article under the Creative Commons CC BY 
license (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited" [131]. 

Additional supplementary material 

Supplementary data are available online at Nature Communications: 
https://doi.org/10.1038/s41467-023-37349-4  
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5. General Discussion and Outlook 

Systems medicine is an interdisciplinary and integrative approach that extends the 
concept of systems biology by applying computational methods with the aim of 
deciphering complex biological systems. This, in turn, leads to novel clinically 
relevant applications, contributing to the development of more effective 
prognostic, diagnostic, and therapeutic strategies [200]. As our knowledge of 
biological processes expanded, we learned that various components- such as 
proteins, RNA, DNA, metabolites, and environmental factors- engage in intricate 
interplay with one another. Therefore, modeling cellular interactions as networks 
has emerged as a natural approach, leading to the growing importance of network 
biology in bioinformatics research. Furthermore, other types of networks from 
non-molecular origin, e.g., from population-based patient clinical histories, 
which investigate diseases from another perspective, can build on the knowledge 
gained from molecular-based networks. By constructing diverse networks 
presenting different relationship types and applying principles of graph theory to 
analyze them, network medicine, as an offshoot of systems medicine, uncovers 
complex disease mechanisms and identifies potential therapeutic targets that may 
be missed by traditional approaches. 

In the course of my PhD, I developed two integrative and interactive drug 
repurposing platforms, one specifically for COVID-19 and the other for general 
medical conditions, employing network medicine methods. The aim was to 
leverage network medicine algorithms in combination with a comprehensive and 
harmonized knowledge base enriched with relevant disease and drug data, to 
develop interactive platforms that are adaptable to biomedical researchers’ 
individual use cases. Such a platform enables the researchers to study mechanisms 
underlying diseases and consequently to find potential repurposable drugs.  

In this dissertation, I also presented a review on the methodologies used in COVID-
19 drug repurposing research, discussing the existing challenges, highlighting the 
lessons learned from them, and proposing a unified drug repurposing strategy to 
improve readiness for future outbreaks. 

During the writing of one of the review works for my PhD [16], I learned that in the 
broad domain of systems medicine, various studies use diverse types of data, many 
integrated from large-scale disease related data. However, how the diseases are 
defined varies a lot across different data sources. This together with the challenges 
we faced to build a harmonized knowledge base brought me to the idea of exploring 
disease definitions further. Therefore, as the second main goal of this dissertation 
I assessed a less explored type of bias that disease-associated data introduces to 
network medicine approaches, that is how we currently define diseases.  

In the subsequent discussion, while briefly going through all presented 
publications in this dissertation, I will discuss the limitations of our work and the 
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challenges that in general the field encounters. Lastly, I will explore the outlook 
for the drug repurposing domain. 

5.1. COVID-19 drug repurposing with CoVex 

With CoVex, we aimed to develop a web tool during the first months of the Covid-
19 pandemic when there were no harmonized data resources that coalesced 
different types of useful information for the purpose of finding a treatment. We 
integrated SARS-CoV-2 virus–human interactions derived from the early AP-MS 
study of Gorden et al. together with publicly available human interactome (PPI 
networks) and drug-target information in a unified network with the focus on 
unfolding novel drug targets downstream in the human interactome instead of 
finding drugs targeting directly viral proteins. I adapted a selection of established 
network-based analysis methods and implemented a new one based on the Steiner 
tree concept to be employed in the network medicine context for drug target 
identification and drug prediction. These algorithms enable biomedical 
researchers to explore SARS-CoV-2 virus–host–drug interactome and test their 
hypotheses while allowing them to capitalize on their knowledge to guide the 
analysis. We presented a range of application scenarios based on the type of 
starting points of analysis like viral protein, human protein, drugs, or combination 
of them and showed how using different network-based algorithms implemented 
in the tool can provide insights into the molecular mechanisms of SARS-CoV-2 
pathogenicity and predict potential repurposable drugs which were at the time of 
study undergoing clinical trials. For instance, we could identify proteins, which 
play a role in virus host cell entry and can be targeted by ACE inhibitors that were 
widely used in clinical trials to treat COVID-19. We could extract a potential 
immune-related mechanism triggered by the virus, and could consequently 
predict drugs targeting the mechanism which were being assessed in clinical trials. 
The network medicine approach used in CoVex for SARS-CoV-1 and SARS-CoV-2 
is easily extendable to other viruses by integrating the corresponding virus-
human interaction data. 

Similar to other in silico methods, CoVex can merely suggest putative drug 
candidates for further investigation. Although the proposed drugs aim at proteins 
involved in a supposedly important mechanism for the virus, their actual impact 
needs confirmation through subsequent investigations. Inhibiting a cofactor that 
normally prevents the virus from manipulation of host proteins could potentially 
serve in favor of the virus. One of the limitations of CoVex is that selecting the 
algorithm and its associated parameters is not a simple task which can lead to 
lengthy explorative analyses. We tried to mitigate this to some extent by enabling 
parallel execution of multiple analyses. Another limitation is that different sources 
of drug–target interactions were treated similarly in the constructed network, 
while the strength of experimental evidence may vary depending on the utilized 
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experimental assay. Given that the integration of virus-human interaction data 
relied on hastily conducted research, enhancing the quality of the data could be 
achieved through subsequent updates, revisits, and manual curation. While data 
on gene expression levels per tissue type was included for post-filtering the 
results, it could be more advantageous to develop and integrate algorithms into 
the platform that utilize this information for predicting drug targets. 

5.2. Interactive and integrative drug repurposing with 
NeDRex 

To our knowledge, research in the domain of in silico drug repurposing has been 
limited to either non-translational algorithms or disease-specific predictions. 
Consequently, there exists an ongoing demand for comprehensive tools that 
enable non-computer scientists and biomedical researchers to easily employ 
computational drug repurposing methods and tailor them to their unique use 
cases. Among the variety of in silico drug repurposing methods, those designed to 
target the underlying mechanisms of diseases appear promising.This is because 
clinicians can interpret the results, as opposed to merely evaluating predictions 
derived from methods that function as black boxes. 

As mentioned earlier in this dissertation, networks provide an effective method for 
representing biological data and elucidating the connections among diverse 
molecular entities. Our NeDRex platform employs a systems medicine approach 
which uses networks as a presentation model for data and graph-based methods 
to mine these networks in order to firstly uncover disease-related mechanisms, 
i.e., disease module identification (DMI) step, and subsequently find drugs 
targeting those mechanisms, i.e., drug prioritization step. The first challenge in 
developing this platform was to build a harmonized knowledge base from the 
plethora of databases which were relevant for the purpose of drug repurposing. 
Building such a unified knowledge base requires mapping different systems of 
identifiers into one system. This is an easier task for entities like drugs and genes 
where identifiers are well defined. The mapping task becomes particularly difficult 
when dealing with databases containing disease-related information since each 
uses a different disease vocabulary system. After investigating available disease 
vocabulary options, we opted for MONDO as the target vocabulary which has the 
highest mappability for disease vocabularies used in the databases we had aimed 
to integrate into the NeDRex knowledge base. Moreover, it benefits from a 
hierarchical structure capturing both disease umbrella terms and more specific 
sub-types. The second challenge was the selection of the best performing 
network-based method for the task of DMI. Since there is not a single method 
outperforming the others and the most suitable strategy for DMI also depends on 
the specific application at hand [152], we integrated several algorithms in the 
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platform with different underlying paradigms to provide specific exploration 
options for various particular research questions and hypotheses. All these 
algorithms use prior knowledge on PPIs in the form of a network and range from 
an unsupervised method using ant colony optimization for data-driven patient 
subgrouping [44] to a proximity-based method using Steiner trees for detecting 
molecular pathways underlying diseases [11]. We developed three statistical 
validation methods to evaluate the outcome of DMI and drug ranking analyses, 
individually and combined, which give users a measure for comparison of the 
outcome of different algorithms applied to their specific use case. Five use cases 
have been showcased, illustrating NeDRex's capacity to extract biologically 
relevant candidate disease modules and potentially repurposable drugs. 
Specifically, we demonstrated how NeDRex could identify promising drugs worthy 
of further exploration for the treatment of inflammatory bowel disease, 
pulmonary embolism, Huntington's disease, and Alzheimer's disease. 

Although the expert-in-the-loop paradigm is a significant advantage of the 
NeDRex platform, it also represents its primary limitation. When utilizing 
NeDRex, investing domain knowledge is not merely an option but a necessity. 
Without leveraging this expertise, the likelihood of obtaining biologically 
meaningful disease modules or promising drug repurposing candidates is 
diminished. Crucially, even the devised statistical evaluation methods based on 
empirical P-values cannot substitute for the expert user, as they, too, rely on 
existing knowledge and drugs undergoing clinical trials. Ultimately, the NeDrex 
platform is not exempt from the limitations present in the integrated databases. 
These constraints encompass incompleteness of available PPI data, false positive 
PPIs, literature bias arising from over- and under-studied genes, and the lack of 
discrimination between activation and inhibition in the drug-protein associations 
available in the integrated databases. A corrective measure to mitigate literature 
bias will be introduced later in the Limitations and challenges section. 

5.3. Lessons from COVID-19 to improve computational 
drug repurposing strategies 

Our review on the methods used in COVID-19 drug repurposing research showed 
that most of the studies did not perform experimental evaluation. Therefore, to 
assess the quality of computational predictions, we checked the intersection 
between the final predicted drug lists of the individual studies and the drugs 
undergoing clinical trials. Additionally, for the virus-targeting approaches, we 
collected in vitro screening data, including IC50 values for viral targets and 
inhibition indices from cell culture studies for SARS-CoV-2. Even though some 
predicted drugs were already used for the treatment of clinically ill COVID-19 
patients, in the course of this review work, we noticed that drugs that advanced to 
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later stages in clinical trials were not chosen through in silico predictions but 
rather repurposed based on the clinical experience gained from previous outbreaks 
such as SARS or MERS. Their selection was primarily influenced by their known 
effects in palliating disease symptoms. Additionally, the majority of the reviewed 
studies did not proceed to experimental validation of the predictions. This 
translational disconnect between computational efforts for drug repurposing and 
their practical application in clinical settings represents a significant and 
universally recognized impediment in both drug repurposing and the field of 
medicine. The outcomes of systematic validation efforts will play a crucial role in 
identifying algorithms and datasets particularly suitable for drug repurposing in 
the context of COVID-19. The close collaboration among clinicians, experimental 
biologists, and computational biologists is needed to bridge this gap effectively. 
Since we are in need of computational tools that are able to deliver promising 
repurposable candidates, which in return could be validated in clinical trials, we 
proposed a unified strategy which is necessary for a more effective computational 
drug repurposing pipeline. Most parts of this unified strategy is not limited to the 
viral pandemic cases and can be slightly adapted to be applicable for a general 
disease condition. Our suggested strategy that also improves our readiness for 
future outbreaks has the following six main components: 

1. Standardized databases: Building such a database is the key initial step of the 
pipeline. Some part of the required data containing general information, for 
example about drugs, proteins, and other diseases, is common in drug 
repurposing for any viral disease. Newly developed computational methods 
often use the same existing types of data. Therefore, establishing standardized 
databases which can be just upgraded with new virus data is of paramount 
importance. In the context of improving research quality, it is noteworthy that 
experimental replication of datasets obtained from different laboratories is an 
important step to enhance robustness. Existing drug clinical trial sources were 
employed in the development of some drug repurposing pipelines. 
Nevertheless, the clinical trial resources lacked standardization, posing 
challenges in analyzing trials for specific drugs due to variations in names, 
spellings, or typographical errors which could be avoided by using 
standardized drug IDs. 

2. Tool accessibility: Method accessibility in the form of user-friendly tools 
allows researchers to run custom analyses using the developed algorithms, for 
example, on newly obtained experimental data. This makes it more likely that 
non-computer scientists and clinicians use these tools and continue with 
validation routines, leading to accelerating research. Despite the diverse 
methodological studies for COVID-19 drug repurposing, the availability of the 
interactive tools that clinicians can use was very limited. 

3. Consolidation of predictions (ensemble methods): There were a few studies 
that combined outputs of different drug repurposing models or aggregated 
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results from different algorithms. These studies exhibited the highest 
proportion of overlaps with drugs that underwent clinical trials. This indicates 
that by consolidating various approaches, there is potential to substantially 
enhance confidence in repurposed candidates and offer valuable guidance to 
clinical researchers during the drug selection process. To this end a streamlined 
solution is necessary that encompasses tool accessibility and standardization, 
such as a centralized database storing drug candidate predictions, facilitating 
meta-analyses. 

4. Development of combinatorial treatment: The computational identification of 
synergistic drug combinations is a relatively unexplored area that holds 
immense potential to enhance clinical decision-making. This approach has 
shown to be more effective than discovering individual monotherapies 
[201,202]. Methods that try to identify complementary drug groups and 
simultaneously take into account side effects are currently lacking. In the 
context of viral disease, combining drugs targeting the virus with the ones 
targeting the host is a promising strategy because of the simultaneous blocking 
of viral entry into cells and disrupting disease progression by inhibiting viral 
replication and host pathways. In vitro evaluation of thousands of compounds 
is manageable, but validating combinations is more challenging. Predicted 
combinatorial treatments could significantly narrow down the search space for 
later in vitro validation. The potential of existing screening databases, like the 
NIH OpenData portal [203] and the ReFRAME library [204], remains 
underutilized, but by integrating them with computational predictions, they 
could bridge the gap between in silico and in vitro research, facilitating the 
identification of promising combinatorial treatments. 

5. Expert-guided analysis: Due to the limited understanding of the complex 
biological mechanisms behind COVID-19, expert knowledge or manual 
curation has been necessary at various pipeline steps, such as protein or 
pathway selection and drug prediction filtering. Expert screening aims to 
uncover inconsistencies or contradictions while enabling the discovery of new 
predictions, playing a vital role in filtering candidate drugs to identify potential 
adverse side effects. Hence, close collaboration between computational and 
clinical researchers becomes crucial, given the current limitations of 
computational approaches in terms of information on side effects and drug 
inhibitory or activatory actions on the targets. 

6. Candidate validation strategies: Typically, drug repurposing studies validate 
their computational models by establishing their own "ground truth", which 
may comprise in vitro screening of predicted drugs, in vivo tests with animal 
models, ongoing clinical trials, literature mining, or expert knowledge [205]. 
As a result, there is significant diversity in the origins of these standards. There 
have been some endeavors to resolve this issue, such as databases like the 
NIH's OpenData portal, which aggregates and continually updates in vitro 
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screening data for thousands of compounds and other SARS-CoV-2-related 
assays. Such resources can be utilized for further validation or filtering of in 
silico predictions. In the course of our review, we found with the exception of 
one study [206], there has been no direct follow-up experimental validation in 
the drug repurposing endeavors for COVID-19. In the other reviewed studies, a 
variety of above-mentioned ground truths were used for the validation of 
predictions. Since it is impracticable to systematically validate all candidate 
drugs, leveraging the expert knowledge for assessing the predictions becomes 
more crucial. From the recent list of FDA approved drugs for COVID-19 
treatment as of May 25, 2023, Ritonavir and Remdesivir were among the 
predictions returned by virus-targeting approaches. This shows the potential 
of computational drug repurposing methods to predict effective therapeutics, 
hence the importance of follow-up validations. 

5.4. The bias introduced to network medicine by 
inadequate disease definitions 

In many network medicine studies, data from public databases are used to infer 
relationships between diseases based on different types of commonality, such as 
shared symptoms, shared involved genes, and comorbidity. Public databases can 
also be utilized to link drugs to each other based on molecular similarity, 
functional similarity, and common targets. A multitude of network medicine 
studies have the bird’s eye perspective towards the tasks of drug repurposing and 
uncovering mechanisms driving diseases (we call this type of approach BEV 
methods). Subsequently they use relationships between diseases, drugs, as well as 
diseases and drugs derived from large-scale databases. In contrast, some network 
medicine studies have a close-up and per-disease perspective and use mainly 
patient cohorts’ molecular data rather than focusing on the relationships between 
diseases. The studies adopting the latter type of approach have led to higher 
translational findings [207,208]. 

We postulated that the translational underperformance of BEV methods might be 
due to the bias introduced by using large-scale disease association data, where 
diseases are annotated with the current inadequate disease definitions that are 
mainly organ- and phenotype-based. Given that molecular mechanisms driving 
diseases are often still not known, the majority of disease names do not denote 
such mechanisms but are after the doctor’s name who coined the disease term, 
affected organs or locations in the body, or symptoms of the disease. ICD-10 codes 
that is the standard vocabulary to use in clinical settings have overly inclusive 
designations, ranging from symptoms, to syndromes, to definable molecular 
causes. 
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This disease naming principle results in data that is fuzzy, as it does not 
distinguish between “true” diseases with separate pathomechanisms, but it 
combines them to one disease due to shared symptoms or affected organs. This 
blurriness also brings about significant clinical implications, such as patients with 
mechanistically different true diseases receiving the same broad treatment and 
not a targeted treatment because diagnosed with one fuzzy disease. 

The network medicine field aims to transition from these fuzzy disease definitions 
by discovering molecular mechanisms underlying the disease phenotypes, so-
called endotype. This implies that BEV approaches, that still use the data based on 
fuzzy definitions, assume that the biases arising from inadequate disease 
definitions balance each other out, and despite these biases, the disease 
association data still hold valuable insights into the underlying pathomechanisms. 
The secondary goal of my dissertation was to quantify to which extent this implicit 
assumption is actually supported by data. For this purpose, we formulated two 
testable hypotheses, in global- and local-scale based on GED (explained in detail 
in the General Methods chapter), that I investigated in the fourth publication. To 
test the hypotheses, I quantified the pairwise similarity of several diseasomes and 
drugomes constructed from different types of disease and drug association data. 

The results of pairwise similarity analysis of diseasomes indicates that the global-
scale hypothesis holds. In other words, the results provide substantial proof 
supporting the general legitimacy of the BEV network medicine framework. 
Nonetheless, the findings also suggest that the reliability of outcomes produced 
through the BEV network medicine methods diminishes when focusing closely on 
specific diseases, i.e., local-scale analyses indicate that the majority of 
comparisons of local distances for the original networks are not significantly 
smaller than the local distances for the permuted counterparts. The exception is 
the case where a very coarse disease vocabulary, closer to disease clusters than 
actual specific disease, is used in the networks’ construction. Consequently, our 
results affirm the issue of solely depending on data labeled with phenotype-based 
descriptions when aiming to reveal molecular pathomechanisms. 

Databases containing disease-related data use different disease vocabularies. For 
example, OMIM uses OMIM terms, DisGeNET uses UMLS CUIs, and national health 
record databases containing diagnoses for patients normally use some version of 
ICD codes. These vocabularies vary in their levels of granularity and are created 
using diverse methods and for distinct intentions. For network medicine to 
collectively utilize disease associations from multiple data sources, it's necessary 
to map the data to a shared target vocabulary. During this mapping process, 
because of unmappable terms, some data is inevitably lost. Our analyses 
performed in three different target vocabularies with different levels of 
granularity, including MONDO IDs, UMLS CUIs, and ICD-10 3-character codes, 
show that the selection of disease vocabulary impacts the final results 
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considerably. With the higher analysis resolution, the significance of the obtained 
P-values decreases. MONDO and UMLS CUI have similar granularity levels and 
show similar results. When using ICD-10 3-character codes, which is coarser than 
former disease vocabularies and can be regarded as disease clusters or umbrella 
terms rather than individual disease subtypes, around half of all computed MWU 
P-values for local GEDs are significant at 0.001 level. When comparing the 
diseasomes as a whole using global GEDs, all empirical P-values are significant. 
Moreover, drugome comparisons have led to more significant results on a local 
level than diseasome comparisons. This finding confirms that in case of using 
well-defined underlying annotations, like drug vocabularies, the network-based 
analyses return more reliable results.  

Our effort to detect discernible patterns among diseases, based on their small or 
large empirical P-values calculated using local GEDs, was not successful. This 
might stem from certain existing disease definitions aligning with true endotypes. 
We conjecture that in cases where our current definitions directly match 
endotypes, the hypothesis at the local scale remains valid. However, this cannot be 
evaluated since the neighborhood of a disease in a diseasome contributes to the 
GED values. Therefore, it is not possible to deconvolute the results based on single 
nodes. 

Both gene-based and variant-based diseasomes were included in our comparison 
analyses. Disease-gene association data is mainly derived from disease variant 
information and we expect to see similar results for the networks constructed on 
the two association data types. However, local-similarity analyses indicate higher 
similarities between variant-based diseasome and other diseasomes than between 
gene-based diseasome and others. Despite the fact that different mutations in one 
gene can cause different disease phenotypes, this level of information cannot be 
conserved at the disease-gene level and is lost in the process of mapping variants 
to genes which is necessary to generate disease-gene association.  

In sum, firstly, our results suggest that utilizing large-scale databases, which 
contain disease-related information, without careful consideration, as they 
depend on phenotype-based disease definitions, can be risky. Rather, we 
underscore that in network medicine, the preferred approach should be to focus 
on close-up approaches, wherein data scientists collaborate with biomedical 
researchers to collectively analyze both molecular and comprehensive phenotype 
data for the same individuals. Within this cooperative framework, a constructive 
feedback cycle can arise. Initial conjectures about disease subtypes and their 
underlying molecular mechanisms are shaped by analyzing molecular data. This 
understanding is then honed by incorporating extensive phenotyping (such as 
histological images and blood-derived biomarkers) and the expertise of clinicians. 
In the last step, the hypotheses find validation through preclinical investigations 
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like gain- or loss-of-function studies. Many studies following these strategies 
have yielded noteworthy insights into distinct disease mechanisms [4,209–212]. 

Secondly, a good way forward is unsupervised network medicine techniques that 
can not only identify potential pathomechanisms but also simultaneously 
categorize patients into distinct mechanistic subgroups without depending on 
potentially unreliable predefined phenotype-based subtype labels. Despite a 
limited number of such methods being available [44,213,214], the majority of 
current pathomechanism discovery approaches still hinge on contrasts between 
phenotypic cases and controls or gene lists linked to a (perhaps ambiguously 
defined) disease term [15,196,215]. 

Lastly, it's essential to highlight that the absence of well-defined mechanistic 
disease classifications not only impedes advancements in network medicine but 
also adversely impacts nearly all data-driven methods such as treatment 
formulation and diagnosis. These methods heavily depend on disease association 
data linked to phenotype-based disease descriptions. For example, an AI model 
designed to assist in diagnosis, trained using genetic disease signatures, will 
generate inaccurate outcomes if the disease labels employed during training do 
not accurately match the authentic endotypes. 

Our method has the limitation that our findings cannot definitively eliminate the 
possibility that factors beyond inadequate disease definitions could contribute to 
the observed blurriness in the BEV network medicine at a local level. One of the 
potential factors introducing bias might be off-target effects of drugs that could 
impact the drugomes’ analysis. Another potential source of bias is any gene-
related data (explained in detail in the Limitations and challenges section) which 
can affect the analyses of the gene-based diseasome. It is important to emphasize 
that the distributions of the derived local empirical P-values show the outcomes 
we obtained from all the analyses exhibit remarkable consistency across all 
utilized data modalities. Given that disease definitions are the sole confounders 
impacting all data categories, this provides substantial (albeit not definitively 
conclusive) indication that the observed blurriness in the local context can 
predominantly be linked to these definitions. 

5.5. Limitations and challenges 

Some of the limitations of the presented works in this dissertation are already 
discussed in the corresponding discussion section of each publication. Here, I 
mainly discuss the general limitations and challenges computational network-
based drug repurposing approaches face. 

Important biases in the data that network medicine approaches use have been 
reported and their effects have been studied. These biases include incompleteness 
of disease-gene association and PPI data [151], as well as study bias. Cancer-
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associated proteins have higher degree in PPI networks due to being more 
investigated in multitude of studies, this can be one of the sources of study bias 
[216–219]. Patterns of publications on human genes are highly skewed [220]. It is 
estimated that a relatively small proportion of human genes receive a significant 
amount of research attention. This variation in publication numbers per gene may 
arise from the influence of past research priorities, which continue to shape 
present endeavors [221]. In other words, it is the consequence of the positive 
feedback loop or “the rich become richer”. Study bias goes beyond this and affects 
functional gene annotation resources [222] such as the Gene Ontology (GO) as well. 
These biases have several adverse consequences. It has been found that many DMI 
methods using PPI networks suffer from hub node bias and their models 
predominantly learn from node degrees rather than capitalizing on the biological 
information embedded within the network edges [223].  

To mitigate literature bias, although we have introduced the hub penalty to our 
MuST algorithm as a degree correction measure to account for hub nodes in PPI 
networks (proteins with high degree in networks), the selection of the extent of 
penalizing depends on the user and not based on any prior information.  This can 
be further improved by including the knowledge from databases such as IntAct 
where the numbers of times proteins have been used as bait and prey in AP-MS 
and Y2H studies are provided. This information can then be used to incorporate 
bias-aware edge costs in the PPI networks by making edges towards highly studied 
proteins more expensive. For other DMI methods, similar degree-correction 
solutions can be integrated into the method. 

The current, constrained information on PPIs obtained through experimental 
approaches can be enhanced by modern deep learning algorithms' capable of 
predicting protein structures and PPIs. For example, protein 3D structure 
predicted by AlphaFold [224], based solely on its amino acid sequence, could be 
leveraged for predicting PPIs, reducing study biases, and supplementing the 
existing PPI networks. However, prediction methods have their own caveats. 
Predicted structures may not account for post-translational modifications (e.g., 
phosphorylation, glycosylation) that can significantly impact PPIs. Predicting 
interactions in protein complexes or multimeric proteins is more challenging than 
predicting interactions between individual proteins. Some PPIs are transient, 
while others are stable. Some involve weak, non-specific binding, while others are 
highly specific. Predicting the full spectrum of interactions accurately is a 
significant challenge. To predict PPIs, it's not enough to consider proteins as static 
structures. Their dynamic behavior, including conformational changes, flexibility, 
and the kinetics of interactions, must be taken into account. Computational 
methods that aim to predict PPIs need to incorporate dynamic modeling 
techniques to capture these aspects accurately. Failure to do so can lead to 
inaccurate predictions of how and when proteins interact in biological systems. 
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Using PPI networks, even the ones built based on experimental validation, as prior 
knowledge for the DMI task, comes with some inherent simplifications. These 
simplifications arise from several factors [2]: 

- Temporal abstraction: PPI networks typically represent binary interactions, 
omitting precise timing and kinetics of signaling events that occur over 
various timescales. 

- Spatial oversimplification: While signaling is spatially dependent, i.e., post-
translational modifications and interactions depend on physical proximity 
between proteins, PPI networks lack explicit spatial information, failing to 
capture physical proximity's impact on interactions and subcellular 
compartmentalization. 

One limitation of methods using gene expression as a proxy for protein activity is 
that it has been shown in some studies that gene expression can be misleading for 
measuring protein activity under some conditions [32–34]. 

Ideally, the evaluation of DMI and drug repurposing methods like any other 
computational approach would need gold standard datasets. However, for 
biomedical problems defining or generating gold standards is not feasible since 
our knowledge is not complete about any diseases. This makes the evaluation of 
drug repurposing very challenging. One workaround is to use proxies to establish 
indirect metrics for evaluation of methods. However, proxies cannot reflect the 
complexity of the real-world biomedical problems in its whole. Different 
validation strategies for computational drug repurposing have been used. The 
predominantly used ones in studies are: 1) case studies, 2) overlap of predictions 
with known drug indications and 3) sensitivity- and specificity-based methods 
[225]. The latter validation strategy, also the most rigorous type, requires using 
true negatives (failed drugs) and false positives. True negative set contains the 
drugs which have been tested for the treatment of a disease and did not pass the 
approval requirements. Although there have been some efforts like repoDB [226] 
to compile a list of unsuccessful indications from clinical trial databases, this list 
is based on only tested drug-indication pairs and far from being thorough enough 
to be used in a reliable validation approach. Current studies using sensitivity- and 
specificity-based validation methods consider all unannotated drug–indication 
pairs, i.e., the pairs that do not exist in publicly available databases, to be false 
positives. Labeling unannotated pairs as false implies that all emerging 
repurposing ideas are considered false positives. This contradicts the purpose, as 
computational repurposing methods aim to propose new indications, where no 
annotated connection exists based on the current data [225]. 

For our NeDRex platform, we implemented a validation method using empirically 
computed P-values based on the overlap of the predictions with a reference list, 
which consists of known drug indications and the ones undergoing clinical trials. 
We stress that if the list of reference drugs is not exhaustive or includes numerous 
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false positives, the P-values could lead to deceptive conclusions. As a result, the P-
values are reliant on existing knowledge and, therefore, cannot replace but rather 
aid the expert in the loop. 

Another challenge that network medicine faces is the incomplete mapping 
between different disease vocabularies. To make the best use of disease 
associations across diverse data sources, while each utilizing different disease 
terminologies as identifiers, it's necessary to map the data to a shared target 
vocabulary. The comorbidity data (population-based data) is reliant on ICD-10 
codes, which have a very non-homogenous designation, and often not enough 
fine-grained. Therefore, mapping from ICD codes to other finer-grained disease 
vocabularies will introduce a lot of noise to the data. On the other hand, mapping 
other disease-associated data with finer-grained terminologies to ICD-10 codes 
reduces the specificity. This is a known and big challenge if we want to integrate 
epidemiological data with other disease-related data. 

One of the challenges encountered during the data integration is that many 
databases, despite being publicly accessible, are either wholly or partially not open 
data. In other words, we are unable to publicly distribute them through a unified 
knowledge base, and the platform utilizing this data cannot have an open license. 
This limitation hinders both the reproducibility of results and the ability to 
contribute effectively to the advancement of science. 

5.6. Conclusion and outlook 

The NeDRex platform is under constant development and improvements both in 
terms of data and algorithms. Therefore, its current status differs from the version 
presented in this dissertation. GO terms as annotations are added to protein data 
as well as types of tissue that proteins are expressed in. Moreover, drug side effects 
information is integrated into the knowledge base allowing drug repurposing 
investigation based on disease symptoms versus drug side effects, which are 
basically the same. An improved and more robust version of MuST is also 
implemented in the updated platform. Inclusion of databases like repoDB which 
contain previous failed repurposing attempts will be a good addition assisting to 
filter the list of predicted drugs. Databases providing drug clinical trials could be 
as well a valuable addition for the evaluation of predictions. However, such 
databases normally do not use any conventional disease vocabularies in their 
system, hence, are very difficult to integrate in the knowledge base systematically. 

As discussed earlier, it is tricky to choose which network-based DMI method to 
apply to the problem at hand. Some studies have shown meta or ensemble analysis 
using multiple methods increase the accuracy of drug predictions [206]. Such a 
method, for instance, either combines results from different algorithms into 
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concatenated modules, returns the consensus of different methods’ outputs, or 
aggregates ranks of different methods’ predictions. 

We opted for implementing the front-end user interface of our drug repurposing 
platform as a Cytoscape app since it is a powerful tool to visualize biological 
networks and very popular among biomedical researchers with limited 
computational expertise. The NeDRexApp has been downloaded more than two 
thousand times as of May 2023. However, web tools running in browsers have 
advantages over stand-alone apps, namely, cross-platform compatibility, self-
updating, less memory and computation load on system, no need to download and 
local installation. Therefore, we decided to extend the NeDRexApp to a web tool 
and later even went further to develop a web-based plugin enabling standardizing 
and simplifying network analysis as well as facilitating visual exploration of 
networks for any biomedical web tools. This idea led to Drugst.One [227] (under 
development), a plug-and-play solution for online network medicine drug 
repurposing which is also coupled with an updated and extended version of the 
NeDRexDB knowledge base. By using this customizable plugin, any web tools’ 
results can be visualized in the standardized format. It also enables users to run 
further analyses using integrated network medicine algorithms or explore their 
results while adding information from the knowledge base. 

The four publications included in this thesis are part of the large EU-funded 
project REPO-TRIAL and are a subset of all activities that were carried out in that 
context. Since the onset of REPO-TRIAL, the computational biology team of the 
consortium sought to 1) integrate relevant databases to construct heterogeneous 
networks to mine for disease module identification and drug repurposing and 2) 
develop computational tools that contribute to a deeper understanding of the 
molecular mechanisms underlying diseases. As one of the outcomes of these 
efforts, drugs repurposed in silico for specific diseases (selected within the 
framework of the REPO-TRIAL project) are undergoing validation in clinical 
studies. The continuation of REPO-TRIAL emerged as another EU-funded project, 
called REPO4EU, the overarching objective of which is to establish and expand an 
online platform, providing validated precision drug repurposing on a global scale. 
In future, more endeavors like REPO-TRIAL and REPO4EU are needed to make 
drug repurposing as the new gold standard in drug development. To this end, not 
only research but also regulatory measures come into play. This work is only a 
stepping stone and with improved data availability, collaboration, applied clinical 
trials, platforms like NeDRex and similar will further improve in quality and 
impact of results. 
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A. Appendix 

A.1. Exploring the SARS-CoV-2 virus-host-drug 
interactome for drug repurposing 
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Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2

virus. Various studies exist about the molecular mechanisms of viral infection. However, such

information is spread across many publications and it is very time-consuming to integrate,

and exploit. We develop CoVex, an interactive online platform for SARS-CoV-2 host inter-

actome exploration and drug (target) identification. CoVex integrates virus-human protein

interactions, human protein-protein interactions, and drug-target interactions. It allows visual

exploration of the virus-host interactome and implements systems medicine algorithms for

network-based prediction of drug candidates. Thus, CoVex is a resource to understand

molecular mechanisms of pathogenicity and to prioritize candidate therapeutics. We inves-

tigate recent hypotheses on a systems biology level to explore mechanistic virus life cycle

drivers, and to extract drug repurposing candidates. CoVex renders COVID-19 drug research

systems-medicine-ready by giving the scientific community direct access to network medi-

cine algorithms. It is available at https://exbio.wzw.tum.de/covex/.
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Coronavirus Disease-2019 (COVID-19) is an infectious
disease caused by SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2). It was first identified in Wuhan,

China and has spread causing an ongoing pandemic1 with
globally 2.4 million confirmed cases and 167 thousand deaths as
of April 20, 2020.

Our insights into SARS-CoV-2 infection mechanisms are
limited and clinical therapy has largely focused on treating critical
symptoms. Therefore, the current pandemic requires fast and
freely accessible knowledge to accelerate the development of
vaccines, treatments, and diagnostic tests. Research data have
been collected in several online platforms, such as the COVID-19
Open Research Dataset and the Dimensions COVID-19
collection2,3. In addition, existing databases that collect virus
information have responded by integrating new SARS-CoV-2
research4,5.

As vaccine and drug development may take years, drug
repurposing is a potent approach that offers new therapeutic
options through the identification of alternative uses of already
approved drugs6. These drugs have previously undergone clinical
and safety trials and, hence, accelerate drug development time-
lines from a decade to a few years or months. Due to the COVID-
19 pandemic, numerous research groups around the world have
been joining their efforts to identify drugs that can be repurposed
to effectively treat COVID-19. Numerous drugs are already part
of clinical trials, including Remdesivir (a less effective ebola drug),
Chloroquine, Hydroxychloroquine (antimalarial drugs), Tocili-
zumab (rheumatoid arthritis drug), Favipiravir (influenza drug),
and Kaletra (a combination of Lopinavir and Ritonavir for
treating human immunodeficiency virus HIV-1)7.

Computational systems and network medicine approaches
offer a methodological toolbox required to understand molecular
virus–host–drug mechanisms and to predict novel drug targets to
attack them8,9. Few studies on these mechanisms in SARS-CoV-2
exist. Gordon et al.10 applied affinity purification-mass spectro-
metry (AP-MS) to reconstruct the SARS-CoV-2-human
protein–protein interaction (PPI) network and subsequently
employed a chemoinformatics approach to identify potential
drugs for repurposing. The data generated from that study is a
major advancement in understanding SARS-CoV-2 infection.
However, to identify drug candidates, the study mainly con-
sidered the direct interactors of the human proteins as putative
targets and thus did not take into account the network context of
the human interactome. However, viral interactions with human
proteins have cascading effects in the human interactome, where
key proteins necessary for the viral replication cycle are only
indirectly affected. Therefore, downstream host proteins may be
additional promising targets for therapeutic intervention, but
require thorough data integration and mining to be identified (see
Supplementary Methods for details). Figure 1 illustrates the
concept of systems medicine-based drug repurposing specifically
for SARS-CoV-2.

Gysi et al.11 integrated the experimentally validated SARS-
CoV-2 virus–host interactions with the human interactome and
investigated comorbidity and differences of virus–host interac-
tions across 56 tissues. Furthermore, network medicine analysis
was applied to compile a list of drug repurposing candidates that
target also indirectly affected proteins in the human interactome.
However, the combined number of virus–host, host–host, and
drug–target interactions goes into the millions such that purely
algorithmic approaches to discovering new drug targets and drug
repurposing candidates produces a large number of results, many
of which lack mechanistic specificity and, hence, are not useful.
Thus, to make their results accessible, Gysi et al.11 worked closely
together with clinical experts to narrow down the number of
predicted repurposable drugs.

In order to allow for the interactive integration of expert
knowledge about virus replication, immune-related biological
processes, or drug mechanisms, we developed the interactive
systems and network medicine platform CoVex (CoronaVirus
Explorer). It integrates experimental virus–human interaction
data for SARS-CoV-2 and SARS-CoV-1 with the human inter-
actome as well as drug information to predict novel drug (target)
candidates, and it offers biomedical and clinical researchers’
interactive and user-friendly access to network medicine algo-
rithms for advanced data mining and hypothesis testing. CoVex
follows a human-in-the-loop paradigm and provides an intuitive
visualization of virus–host interactions, drug targets, and drugs to
enable researchers to examine molecular mechanisms that can be
targeted using repurposed drugs. CoVex offers two main actions
for which several network medicine algorithms are available:
Given a list of user-selected human host proteins, viral proteins,
or drugs (referred to as seeds), users can (1) search the human
interactome for viable drug targets and (2) identify repurposable
drug candidates. In a typical workflow, these two actions are
combined, that is, starting from a selection of virus or virus-
interacting proteins, users mine the interactome for suitable drug
targets for which, in turn, suitable drugs are identified. Addi-
tionally, users can leverage expert knowledge by uploading a list
of proteins or drugs of interest as seeds to guide the analysis. Such
seeds could, for instance, be a list of differentially expressed genes
(DEGs), a list of proteins related to a molecular mechanism of
interest, or a set of drugs known to be effective.

The remainder of this paper is structured as follows: In the
“Methods” section, we first describe the datasets and integration
strategy used in CoVex. Next, we introduce the rationales of the
systems and network medicine algorithms implemented in
CoVex, and briefly describe the overall architecture of the plat-
form. In the “Results” section, we show several application
examples to illustrate the flexibility and typical use cases of
CoVex. Finally, we will discuss opportunities and limitations in
using CoVex for COVID-19 research.

CoVex opens up the systems medicine toolbox for the entire
infectious disease research community by providing an easy-to-
use web tool enriched with data mining algorithms for drug
repurposing. This allows specialists from different fields to bring
in expert knowledge to identify the most promising drug targets
and drug repurposing candidates for developing effective thera-
pies. We would like to stress that the CoVex platform can
and will be adopted and extended to allow exploring other
viral–host–drug interactomes, for example, with MERS (Middle
East respiratory syndrome), Zika, dengue, and influenza viruses,
thereby increasing preparedness for similar future events.

Results
The CoVex platform. The main result is the CoVex platform
itself, which renders drug repurposing research systems-
medicine-ready. In the following, we first describe how the
platform’s user interface (Fig. 2) provides the full feature spec-
trum of CoVex to clinicians and scientists. Afterwards, we
demonstrate the use of CoVex in four different application sce-
narios starting with four hypotheses and ending with different
drug repurposing candidates, as well as a short discussion on how
to prioritize them (Fig. 3).

Figure 2 shows the CoVex web interface. To find potential
drugs, the “Quick Start” analysis will produce a multi-Steiner tree,
which considers all viral proteins as seeds and adds a small
number of host proteins to connect them. Subsequently, drugs
directly targeting these proteins are selected via closeness
centrality. After the computation has finished, a click on the
corresponding task opens the analysis results, consisting of a table
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view of drugs and proteins, a visualization of the protein–protein
and drug–protein interactions, and a list of parameters used for
the analysis. In the “Simple Analysis” panel, users can select seed
proteins manually and search for drugs targeting them. In the
“Advanced Analysis” panel, users can choose from a list of
network medicine algorithms (see “Methods” and Supplementary
Methods for details) to discover drug targets or drug repurposing
candidates. Users can either select proteins from the view, upload
a custom list of proteins or drugbank ids, or select proteins
expressed in a given tissue. An enrichment analysis of the
identified drug target proteins may be performed with g:
Profiler12.

Application scenarios. The utility of CoVex and its integrated
systems medicine approaches is outlined in the following four
scenarios. More details on each can be found in the Supplemen-
tary Notes.

Scenario a: Starting from a selection of viral proteins, we use
the PPI network to identify the biological mechanism or pathway
utilized by the virus. As an example, we consider the viral

proteins E, M, and Spike, which constitute the external structure
of the virus and thus mediate entry into the host cells during the
infection process13,14. We select the interactors of these viral
proteins reported for SARS-CoV-2 and use the multi-Steiner tree
algorithm to uncover the biological pathway involved. The
resulting network (Fig. 4) yields 26 new potential drug targets,
including the bradykinin receptor B1 (BDKRB1). Subsequently,
we use closeness centrality to find drugs affecting this pathway.
Notably, we identify six relevant drugs that target BDKRB1:
Ramipril, Captopril, Perindopril, and Enalaprilat (approved),
which belong to the angiotensin-converting enzyme (ACE)
inhibitor class15; Icatibant, an antagonist of the bradykinin
receptor B216; and bradykinin, a non-approved drug that is
degraded by the ACE17. Furthermore, to understand the
relationship between BDKRB1 and two proteins known to
participate in the entry of the virus (angiotensin-converting
enzyme 2 (ACE2) and transmembrane protease serine 2)18, we
use the “custom proteins” option available in CoVex. We found
that kininogen 1 and angiotensin proteins connect BDKRB1 with
ACE2. These four proteins are functionally related through the

1. Binding &
entry

3. Replication &
translation

2. RNA release

5. Release

4. Assembly

Host proteins

Viral proteins

Virus–host protein
interactions

Host protein
interactions

Drug–protein
interactions

Host-targeting drugs

Virus-targeting drugs

Fig. 1 The SARS-CoV-2 life cycle and the CoVex systems medicine approach of drug repurposing. Most antiviral drugs (gray drugs) target the virus
proteins or their direct host interactor proteins to inhibit different stages of the viral life cycle. Our rationale, however, is that viral interactions with human
host proteins have a cascading effect to hijack and control key proteins necessary for the virus’ life cycle. We aim to identify repurposable drug candidates
(green drugs) targeting these key host modulators to interfere with virus replication and disease progression following infection. Besides an increased
antiviral drug repertoire, targeting host proteins would make it more difficult for the virus (population) to develop resistance mutations.
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renin–angiotensin system, which is targeted by ACE inhibitors
(www.wikipathways.org/instance/WP554). In summary, CoVex
identifies the protein BDKRB1, which appears to play a role in
SARS-CoV-2 host cell entry and can be targeted by several ACE
inhibitors widely used in clinical trials to treat COVID-19. It
should be noted that the ACE2 protein is not present in the set of
seeds used to start the analysis. Nevertheless, CoVex is capable of
identifying the pathway and new protein targets functionally
related to ACE2 (Fig. 4).

Scenario b: Starting from both viral proteins and a list of
proteins of interest, we can use CoVex to identify a connecting
pathway or biological mechanisms that can be targeted by drugs.
In this scenario, we are specifically interested in viral proteins that
suppress host immunity and the corresponding host immune
response pathways. First, we select the viral proteins ORF7a and
ORF3a, which are potentially involved in innate immune
response and apoptosis as discussed by Gordon et al.10. Next,
we compile a list of proteins of interest based on the DEGs from
the study by Blanco-Melo et al.19 lung epithelial cells were
infected with the SARS-CoV-2 virus, leading to altered expression
of immunity-related genes to combat the viral infection. We
consider DEGs known to be associated with the host pathway
involving infection with the herpes simplex virus, another viral
pathogen. These genes include IFIH1, OAS1, STAT1, DDX58,
OAS2, OAS3, IRF7, EIF2AK2, IFIT1, and IRF9. The selected viral
proteins and DEGs (converted to Uniprot ids) were used as seeds
for the multi-Steiner tree algorithm to extract a potential
immune-related mechanism. As expected, the resulting

subnetwork reveals that the viral proteins are close to the DEGs
in the host PPI network. Closeness centrality analysis assigned a
high rank to Tofacitinib and Ruxolitinib, which are currently
being assessed in clinical trials. Tofacitinib and Ruxolitinib exert
immunomodulatory effects as Janus kinase inhibitors20,21. Thus,
administration with these drugs may mitigate immune-mediated
lung injury and reduce functional deterioration caused by an
overamplified host inflammatory response. This could be
especially important in later stages of the disease to prevent an
overreaction of the body’s immune system and, hence, may
further prevent the need for mechanical ventilation in patients
suffering from severe COVID-19. Other drugs that target this
subnetwork include Masitinib, Erlotinib, and Sorafenib, which
could be further examined in downstream analyses. In a similar
manner, users may provide a custom list of proteins as seeds to
hunt for drugs that can target a putative mechanism of interest.

Scenario c: Starting with a set of drugs of interest, we can follow
a top-down approach to extract potential host mechanisms and
additional drugs targeting the proteins participating in these
mechanisms. As an example, we identify 69 drugs currently in
clinical trials for COVID-19 and group them based on their
Anatomical Therapeutic Chemical classification (Supplementary
Table 5)22. We focus on drugs from the immunostimulants class
(L03) and their target proteins as starting seeds. We further select
the interactors of the immune-related viral proteins ORF9B,
ORF6, ORF3B, and ORF3A10 as end-point seeds. By applying the
multi-Steiner tree algorithm, we discover pathways of interacting
proteins that connect the selected drugs (and their target

Selected
dataset

Information
about the data

Search for
proteins/genes

Select viral
proteins

Information about a
selected protein

Simple analysis: Directly search
for potential drugs using must
and closeness centrality

Advanced analysis: Utilize all
implemented algorithms and
parameters

Information about running
task and access to results

List of selected proteins.
The selection will be used
for finding drugs and drug
targets

Fig. 2 The CoVex online platform. The network view (middle) shows drug candidates (green nodes) that were found using closeness centrality on a set of
proteins (blue nodes), which resulted from a multi-Steiner tree computation with all viral proteins as seeds (not shown here). Therefore, drugs targeting
these seeds might be able to interrupt the viral life cycle progression. Here we colored nodes based on lung-tissue-specific median gene expression
according to GTEx.
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proteins) with the selected viral proteins. Among these connector
proteins, we find five genes associated with cytokine signaling in
the immune system according to Reactome Pathways (CSF2,
NRG1, NUP188, PTPN18, SOCS1)23. Notably, CSF2 is enriched in
lung, pancreas, and immune cells (www.proteinatlas.org/
ENSG00000164400-CSF2)24 and can be inhibited by KB002
(DB05194), which is an investigational drug and an engineered
human monoclonal antibody treatment for inflammatory and
autoimmune processes25. In summary, with CoVex, we found a
new drug target that may play a key role in the host immune
response during viral infection. We also identified a new drug
candidate for COVID-19, as it targets the proteins involved in the
pathogenic mechanisms triggered by ORF3A, ORF3B, ORF6, and
ORF9B viral proteins.

Scenario d: Starting from a hypothesis-driven mixed selection of
viral and host proteins, as well as drugs, we seek to utilize PPIs to
identify a full mechanism or pathway and to suggest additional drug
candidates. As an application case, we follow-up on a recently
published hypothesis by Liu and Abrahams concerning the putative
interference of SARS-CoV-2 with the formation of hemoglobin in
erythrocytes26,27. Essentially, the virus is believed to interfere with
heme formation causing symptoms of hypoxia. Liu and Abrahams
hypothesize that this would also explain why Chloroquine and
Favipiravir are effective drugs, as they may prevent the viral
proteins from competing with iron for the porphyrin in hemoglobin
(NSP1-16, ORF3a, ORF10, and ORF8 targeted by Chloroquine as
well as ORF7a targeted by Favipiravir)26,27. Based on this
hypothesis (discussed in more detail in the Supplementary Notes),

Virus–host protein
interactions

Host protein
interactions

Drug–protein
interactions

a

b

c

d

Fig. 3 CoVex application scenarios. Depending on the starting hypothesis, dedicated systems medicine algorithms will propagate from selected seeds to
connect drugs with viral proteins using host proteins as proxies. Essentially, four different strategies apply: a Starting with viral proteins, one can identify
drugs targeting host proteins that connect the viral seeds. b Starting with a set of proteins of interest as proxies, we identify pathways connecting them to
(selected or all) viral proteins. Subsequently, we identify drugs targeting this mechanism. c Starting with a set of drugs of interest, one may find pathways
to (selected or all) viral proteins extracting a potentially druggable host mechanism. d Hypothesis-driven, hybrid approach with seeds in different levels to
be connected for druggable mechanism extraction. Boxes with light blue background indicate the typical starting points in the respective application
scenario.

Fig. 4 CoVex result network for application scenario a. Drug–protein–protein interaction network obtained using the viral proteins E, M, and Spike with
multi-Steiner tree followed by closeness centrality. Blue nodes are protein targets. Green nodes are approved drugs and orange nodes are non-approved
drugs. Lines represent the interactions between proteins and drugs. Note that some ACE inhibitor drugs have been identified, such as Ramipril, Captopril,
Perindopril, and Enalaprilat targeting the BDKRB1 protein, which are currently being evaluated in clinical trials.
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we investigate the pathways connecting these viral proteins with
the two effective drugs Chloroquine and Favipiravir. To this end, we
select two known heme binding host proteins as seeds: cytochrome
b5 reductase, which interacts with the viral protein NSP7, and
the viral ORF3a, which binds to heme oxygenase 1. Using
KeyPathwayMiner for drug target discovery followed by closeness
centrality for drug discovery, we identify methylene blue in addition
to Chloroquine and Deferoxamine, which are both in COVID-19
clinical trials28,29. Notably, methylene blue is approved by the Food
and Drug Administration for the treatment of methemoglobinemia,
which fits the investigated hypothesis (reduced oxygen-carrying
capacity). Also, Deferoxamine is widely used therapeutically as a
chelator of ferric ions in disorders of iron overload30. However, note
that the available scientific evidence for a methemoglobinemia or
ferric ion imbalance caused by SARS-CoV-2 is very limited
(see Supplementary Notes) and that we use this hypothesis solely
to illustrate the potential of CoVex’ network medicine investigation
and hypothesis testing capabilities.

Discussion
COVID-19 is a threat to our health and our social life, as well as
to our healthcare and economic systems around the globe. Since
the development of safe and effective vaccines is a time-
consuming process, the only alternative to mitigate the damage
by the SARS-CoV-2 pandemic is to quickly identify agents for the
treatment and control of COVID-19 symptoms. Much attention
in biomedical and clinical research is, thus, given to the task of
identifying therapeutically exploitable drugs. A particular interest
lies in drug repurposing, since already approved drugs can go
through shortened clinical trials within months rather than years.
While a number of promising drug repurposing candidates are
currently being tested, the discovery of such candidates is still
unstandardized and mostly unstructured. Systems and network
medicine offer alternative approaches, where the process of drug
target discovery is driven by computational data mining methods
utilizing molecular interaction networks. As recently demon-
strated by Gysi et al.11 for SARS-CoV-2, this data-driven process
can produce a list of promising drug candidates targeting host
proteins in close proximity and mechanistically related to virus-
interacting proteins11. Here, we seek to make this network
medicine approach widely available to the community.

With CoVex, we present an interactive and user-friendly web
platform that integrates published data of SARS-CoV-1 as well as
recent data about virus–host interactions in SARS-CoV-210 with
the human interactome and several drug–target interaction
databases. CoVex allows users to mine the integrated
virus–host–drug interactome for putative drug targets and drug
repurposing candidates with only a few mouse clicks. Through
features such as interactive seed protein selection, filtering, and
upload of own lists of proteins or drugs of interest, CoVex covers
diverse application scenarios ranging from data-driven,
hypothesis-free drug target discovery to expert-guided analyses
with a clear underlying hypothesis about virus biology. To
address the diversity of research questions adequately, CoVex
implements several state-of-the-art graph analysis methods.
These were specifically tailored to be employed in a network
medicine context and include a weighted version of TrustRank as
well as a multi-Steiner tree method (Supplementary Material).

While CoVex is a powerful tool for SARS-CoV-1 and -2
research, results uncovered with our platform have to be con-
sidered with caution. We stress that CoVex can only suggest
putative drug candidates for further investigation and that those
candidates are not guaranteed to have an antiviral effect. While
the suggested drugs target proteins involved in a putatively
important mechanism for the virus, the actual effect of the drug

has to be verified through follow-up investigations. The inhibition
of a cofactor that prevents the virus from manipulating host
proteins, for example, could even have a proviral effect. After
validating the target for the suggested drug through appropriate
genetic or chemical approaches, the drug candidate, hence, still
needs to be properly vetted by clinical experts and tested fol-
lowing established procedures and clinical trials. Current data
about virus–host interactions in SARS-CoV-2 is still preliminary
and incomplete. For instance, important proteins such as the
ACE2 receptor, a known entrypoint for the virus18, is missing in
the SARS-CoV-2 dataset by Gordon et al.10. Moreover, we
included only drugs that are reported in databases about clinical
trials or in the literature if they have a valid entry in DrugBank,
possibly excluding some of the drugs currently being investigated.
Further, we do not differentiate between different sources of
drug–target interactions. The strength of experimental evidence
may vary depending on the experimental assay that was used or
the type of annotation from the source database, for example,
clinical and variant annotations from PharmGKB, which can be
interpreted as indirect drug–protein associations. It should also be
noted that we do not list drugs that target viral proteins directly,
as the goal of CoVex is to unravel novel drug targets further
downstream in the human interactome.

We acknowledge that the choice of algorithm and its associated
parameters is nontrivial, forcing users to engage in time-
consuming explorative analysis. To make this easier, we allow
users to queue multiple tasks, which are executed in parallel. As
our experience with this platform grows, we also plan to develop
guidelines that allow users to choose an appropriate method for a
particular research question. We further plan to integrate new
data about virus–host interactions and ongoing clinical trials in
corona viruses as it becomes available.

In summary, we have presented CoVex, a web-based platform
for the interactive exploration and network-based analysis of
virus–host interactions, aimed towards drug repurposing for the
treatment of COVID-19. CoVex can be easily updated to
accommodate the fast-paced data generation in the battle against
the global pandemic. CoVex is expected to speed up the discovery
of potential therapeutics for COVID-19. For the future, we also
plan to extend the CoVex network medicine platform to other
viruses in which new drug targets and drug repurposing candi-
dates are urgently sought, including MERS, Zika, influenza, and
dengue. We will also add features for the integration of additional
molecular data, such as gene expression. Until then users can
work with the “add custom protein” functionality of CoVex,
allowing them to utilize and filter by any set of genes, including
those derived by gene expression pattern analyses.

Methods
Data integration. We integrated virus–host interaction data from several sources.
We obtained SARS-CoV-2 AP-MS data reported by Gordon et al.10, containing
332 high-confidence virus–host interactions for 27 SARS-CoV-2 proteins10, as well
as SARS-CoV-1 interactions from VirHostNet4 (24 interactions), and Pfefferle
et al.31 (113 interactions existing in our interactome). Human PPIs were obtained
from the integrated interactions database32 filtered based on experimental valida-
tion. The resulting interactome consists of 17,666 proteins connected via 329,215
interactions. Drug–target associations were obtained from ChEMBL (2020-03)33,
DrugBank (v. 5.1.5)25, DrugCentral (2018-08-26)34, Target Therapeutic Database
(2019-07-14)35, Guide To Pharmacology (2020-01; only approved drugs)36,
PharmGKB (downloaded 2020-04)37, and BindingDB (2019-08-12)38. Where
applicable, we considered drugs that have binding affinity values (EC50, IC50, Kd,
and Ki) <10 μM39,40. Only drugs that were mappable to DrugBank IDs and tar-
geting host proteins were included in the network. Drugs currently undergoing
clinical trials and mappable to DrugBank IDs (as of April 4, 2020) for the treatment
of COVID-19 were collected from ClinicalTrials.gov (www.ClinicalTrials.gov)41,
the EU Clinical Trials Register (www.clinicaltrialsregister.eu), and the International
Clinical Trials Registry Platform (www.who.int/ictrp/). In total, we have 6861 drugs
(67 in clinical trials) and 52,860 drug–target associations integrated in our network.
We further downloaded per-tissue median gene expression levels from the GTEx
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data portal (Release V8, dbGaP Accession phs000424.v8.p2, downloaded 2020-05-
30) to allow for tissue-specific filtering and visualization of gene expression values.
Note that we rely on integrating published data and, thus, on their corresponding
quality.

Systems medicine algorithms for drug repurposing prediction. The general
idea of CoVex is to provide researchers and clinicians with a tool to visually explore
druggable molecular mechanisms that drive the interactions between virus and
host. To this end, the integrated virus–human–drug interactions form molecular
networks that are modeled as graphs with nodes as proteins or drugs, and edges
referring to interactions between them. The goal of CoVex is to explore this net-
work while allowing for the exploitation of expert knowledge. Starting with a
selected set of (usually) hypothesis-driven seeds (virus proteins, human proteins, or
drugs), the goal is to first identify subnetworks connecting these seeds and, sub-
sequently, to identify drug repurposing candidates associated with these mechan-
isms. A vast number of methods have been reported in the literature for identifying
subnetworks42. In CoVex, we have integrated several algorithms (including a
dedicated multi-Steiner tree algorithm) with different underlying paradigms to
provide specific exploration options to various particular medical, therapeutic, and
research questions and hypotheses. CoVex, thus, allows users to choose among the
following approaches in the “advanced analysis” procedures.

Degree centrality is the simplest conceivable centrality measure and ranks
proteins or drugs interacting with the seeds by their node degree, that is, the
number of interactions. Thus, this algorithm yields subnetworks in which seed-
connected proteins and/or drugs are preferentially selected if they interact with
many other proteins in the network. The only user-selected parameter is the result
size, that is, how many of the top-ranked proteins or drugs are included. Notably,
centrality measures in CoVex can be used for detecting drug targets and for
identifying promising drugs.

Closeness centrality is a node centrality measure that ranks the nodes in a
network based on the lengths of their shortest paths to all other nodes in the
network. The rationale behind this algorithm is to preferentially select proteins
and/or drugs that are a short distance from all other proteins in the network and
are thus of central importance. In CoVex, we use a modified version suggested by
Kacprowski et al.43, where only the shortest paths to a set of selected seed nodes are
considered. The only algorithm-specific, user-selected parameter is the result size.

Betweenness centrality is another node centrality measure that ranks the nodes
in a network based on how many shortest paths pass through them. In CoVex, we
use a modified version suggested by Kacprowski et al.43, which only considers
shortest paths between pairs of seed nodes. Hence, nodes receive a high score if
they are on many shortest paths between the seeds. Since drugs are not contained
in any shortest paths in our integrated interactome (see Fig. 1), betweenness
centrality can be used only to find drug targets. The only algorithm-specific, user-
selected parameter is the result size.

Guney et al.44 introduced the network proximity between a drug and a set of
seed nodes as the average minimum distance from the drug’s targets to all of the
seeds. The algorithm computes empirical z-scores by comparing the obtained
proximity score to a background distribution obtained by randomly sampling sets
of seed nodes and drug targets. In CoVex, network proximity can be employed to
find drugs, given a set of host proteins of interest. The user can specify the result
size, as well as the number of randomly sampled instances used for computing the
background distribution.

TrustRank is conceptually similar to closeness centrality but additionally
considers the importance of the seed nodes themselves. In other words, TrustRank
ranks nodes in a network based on how well they are connected to a (trusted) set of
seed nodes45. It is a variant of Google’s PageRank algorithm, where “trust” is
iteratively propagated from seed nodes to neighboring nodes using the network
structure. The node centralities are initialized by assigning uniform probabilities to
all seeds and zero probabilities to all non-seed nodes. In CoVex, the TrustRank
algorithm can be run starting from a user-defined set of (trusted) seed proteins to
obtain a ranked list of proteins in the PPI network that could be prioritized as
putative drug targets. Similarly, TrustRank can be executed on the joint
protein–drug interactome to identify drug repurposing candidates. User-selected
parameters include the result size and the damping factor (range 0–1), which
controls how fast “trust” is propagated through the network. A small damping
factor results in a conservative behavior of the algorithm (nodes close to the seeds
receive much higher scores than distant ones), while a large damping factor makes
its behavior more explorative.

The Steiner tree problem is a classical combinatorial optimization problem. It
aims at finding a subgraph of minimum cost connecting a given set of seed nodes.
For CoVex, we have developed a weighted multi-Steiner tree method that
computes approximate weighted multiple Steiner trees and connects them to one
subnetwork. The user can select the set of proteins of interest and extract
subnetwork(s) that connect the selected seed proteins as candidate mechanism(s)
involved in COVID-19 progression. In this mechanistic subnetwork(s), we can
then extract essential proteins and, thus, the most promising drug targets and
repurposable drugs for COVID-19. User-selected parameters include the number
of Steiner trees to be merged as well as the tolerance towards accepting more
expensive subnetworks (for speeding up the approximation algorithm; for details
see Supplementary Methods).

KeyPathwayMiner is a network enrichment tool that identifies condition-
specific subnetworks (key pathways)46. In CoVex, we utilize the KeyPathwayMiner
web service to extract a maximally connected subnetwork starting from a user-
defined set of proteins of interest (seeds). The only user-selected parameter is K,
which represents the number of permitted exception nodes, that is, proteins that
were not part of the seed proteins but serve to connect them. Since these proteins
act as bridges, these may represent key proteins participating in the dysregulated
subnetwork even though they are not directly targeted by the virus and are
therefore promising candidates for intervention. In its current implementation,
exception nodes will only be added if they indeed possess a bridging characteristic
and will not be shown otherwise.

Irrespective of the network analysis method used, the extracted solutions
have a higher intrinsic probability to contain high-degree nodes (hubs), that is,
proteins that have a large number of interactions. While these proteins are key
players in the human interactome, they are not necessarily suitable drug targets
as perturbing them might lead to severe unintended side effects. Since it is more
likely that hub proteins are involved in several mechanisms and are not specific
to the mechanism of the disease under study, users can also perform the analysis
with the hub penalty, which can potentially favor more specific mechanisms
related to COVID-19. To mitigate this bias, users can either select an upper
bound to filter out high-degree nodes or, alternatively, penalize high-degree
nodes by incorporating the degree of neighboring nodes as edge weights in the
optimization. For the latter, values between 0 and 1 can be selected, where higher
values correspond to a higher penalty. Both options are available in advanced
analyses for all methods except for degree centrality, because its rationale is to
identify hubs, and KeyPathwayMiner, which conceptually does not allow for
weighted subnetwork extraction.

All network algorithms except multi-Steiner tree and KeyPathwayMiner yield
scores for the nodes contained in the returned subnetwork. In the case of degree
centrality, closeness centrality, betweenness centrality, and TrustRank, these scores
correspond to, respectively, the number of direct interactions with the seeds, the
inverse of the mean distance to the seeds, the fraction of shortest paths between the
seeds passing through the node, and the “trust” on the node at termination. In all
four cases, high scores indicate that the nodes are central with respect to the seeds,
but the scores do not carry any intrinsic statistical semantics. In CoVex, we hence
display normalized scores for degree centrality, closeness centrality, betweenness
centrality, and TrustRank, which we compute by dividing by the obtained
maximum. In contrast to that, network proximity yields empirical z-scores, which
are smaller the more promising the drugs are for the selected set of seed proteins.
Since these z-scores directly translate into empirical p values, we do not
normalize them.

Implementation. CoVex consists of five components: (i) Data are stored in a
PostgreSQL database (v. 12.2). (ii) The backend is implemented using the
Django web framework (v. 3.0.5) with Python (v. 3.6) and the Django REST
framework (v. 3.11.0) to build the web API. (iii) The network algorithms (except
KeyPathwayMiner) are implemented with graph-tool (v. 2.3.1)47. (iv) Back-
ground task processing is implemented using Redis Queue (RQ, v. 1.3.0) and the
in-memory database Redis (v. 3.4.1). Django enqueues the jobs and RQ pro-
cesses them in the background while Redis functions as a broker between Django
and RQ. (v) The frontend is implemented in Angular (v. 9.0.2) and utilizes the
JavaScript libraries vis-data (v. 6.5.1) and vis-network (v. 7.4.2) for network
visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available
publicly and their integration is described accordingly within the paper and its
supplementary information files. Human protein–protein interactions were obtained
from the Integrated Interactions Database (http://iid.ophid.utoronto.ca/). Virus–host
interactions were downloaded from VirHostNet (http://virhostnet.prabi.fr/). Drug–target
associations were integrated from the following databases: ChEMBL (https://www.ebi.ac.
uk/chembl/), DrugBank (https://www.drugbank.ca/), DrugCentral (http://drugcentral.
org/), Target Therapeutic Database (http://bidd.nus.edu.sg/group/cjttd/), Guide To
Pharmacology (https://www.guidetopharmacology.org/), PharmGKB (https://www.
pharmgkb.org/), and BindingDB (https://www.bindingdb.org/bind/index.jsp). Drugs
undergoing clinical trials for COVID-19 were collected from ClinicalTrials.gov (https://
clinicaltrials.gov/), the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/),
and the International Clinical Trials Registry Platform (https://www.who.int/ictrp/en/).
Tissue-specific gene expression levels were obtained from the GTEx data portal (https://
www.gtexportal.org/home/, dbGaP Accession phs000424.v8.p2).

Code availability
CoVex is a public online platform software running on a web server. The CoVex code is
available from the corresponding author upon reasonable request. The online tool is
available at https://exbio.wzw.tum.de/covex/.
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Traditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs

provides an alternative with lower costs and faster drug development timelines. However, the

data necessary for the identification of disease modules, i.e. pathways and sub-networks

describing the mechanisms of complex diseases which contain potential drug targets, are

scattered across independent databases. Moreover, existing studies are limited to predictions

for specific diseases or non-translational algorithmic approaches. There is an unmet need for

adaptable tools allowing biomedical researchers to employ network-based drug repurposing

approaches for their individual use cases. We close this gap with NeDRex, an integrative and

interactive platform for network-based drug repurposing and disease module discovery.

NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease

annotations, and their relationships. NeDRex allows for constructing heterogeneous biological

networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms,

and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases.
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Between 1950 and 2010, the productivity of drug develop-
ment halved approximately every 9 years1. Although this
trend has changed over the past ten years2, the cost of

bringing a new molecular entity to market is still estimated to be
between two and three billion USD3. Contributing factors to these
high costs include a plethora of already effective treatments,
irreproducibility of pre-clinical research and an increase of cau-
tion amongst drug regulatory agencies1. Consequently, there is
interest in alternative approaches to finding therapeutics.

Drug repurposing, also known as drug repositioning, is the
process of identifying alternative uses for existing drugs. In
comparison to traditional drug development, drug repurposing
offers significant advantages such as low cost, reduced risk, and
faster drug development timelines. While early examples of suc-
cessfully repurposed drugs have been identified through seren-
dipitous discoveries, advances in omics technologies and the
availability of massive amounts of omics data have provided
opportunities for systematic in silico inference of new drug-
disease relationships.

Various in silico drug repurposing strategies have been pro-
posed, including signature-, knowledge-, network-, and machine
learning-based approaches4. Network-based approaches are par-
ticularly attractive, because networks offer a natural representa-
tion of complex biological associations and provide a framework
for incorporating multiple data types. In such networks, nodes
can represent drugs, proteins, or diseases, and edges indicate
drug-drug similarities, drug-target interactions, gene-disease
associations, and gene-gene interactions (e.g., protein-protein
interaction (PPI) networks, gene regulatory networks, signaling
networks, and metabolic networks)5.

Moreover, previous studies have indicated that disease-
associated genes are not randomly scattered throughout biologi-
cal networks. Instead, they tend to be located in so-called disease
modules, i.e., small subnetworks representing interconnected
mechanisms that can be linked to the phenotype6–8. One of the
guiding paradigms of network-based drug repurposing is that
diseases can be viewed as perturbations of these modules8.
Consequently, potentially repurposable drugs can be identified in
silico by carrying out the following three steps:

1. Construct a heterogeneous biological network by integrat-
ing data from multiple biomedical databases which are
relevant for the given task.

2. Mine the constructed biological network to derive disease
modules associated with the disease of interest.

3. Extract prioritized list of drugs whose known targets are
contained in or situated in close vicinity of the extracted
disease modules.

Network-based drug repurposing is a highly active field of
research, which has been boosted even further with the advent of
the COVID-19 pandemic. However, studies have so far been
limited to presenting either non-translational algorithmic results
or specific predictions limited to certain diseases. There is still an
urgent need for integrated tools which allow experts from phar-
macology or biomedical research fields to easily carry out all three
steps of network-based drug repurposing and adapt them to the
needs of their individual use cases. To the best of our knowledge,
the only available tools that begin to address this need are
Hetionet5 and CoVex9. However, Hetionet is static and only
allows the user to browse for pre-computed results related to a
fixed set of 136 diseases (algorithms are provided only as separate
Python packages and are not integrated into the platform).
CoVex does allow the user to interact with the system, but it is
limited to COVID-19 drug repurposing.

We present the NeDRex (Network-based Drug Repurposing
and exploration) platform—a generically applicable integrated

platform for network-based disease module discovery and drug
repurposing. Figure 1 illustrates the overview of the platform.
NeDRex is built of three main components: a knowledgebase
(NeDRexDB, available at http://neo4j.nedrex.net/ and https://
api.nedrex.net/), a Cytoscape app (NeDRexApp, available at
https://apps.cytoscape.org/apps/nedrex), and an API (NeDRex-
API, available at https://api.nedrex.net/).

NeDRexDB integrates data from various biomedical databases
such as OMIM10, DisGeNET11, UniProt12, NCBI gene info13,
IID14, MONDO15, DrugBank16, Reactome17, and DrugCentral18.
Integration of multiple databases enables us to construct het-
erogeneous networks representing distinct types of biomedical
entities (e.g., diseases, genes, drugs) and the associations between
them. These networks can be accessed and explored via
NeDRexApp, NeDRexAPI, and the Neo4j endpoint to
NeDRexDB. For more details on the different types of integrated
data in NeDRexDB, see Supplementary Table 1, 2 and Supple-
mentary Fig. 1.

NeDRexApp is a Cytoscape app19 that provides implementa-
tions of state-of-the-art network algorithms, such as Multi-Steiner
Trees (MuST)9, TrustRank20, Biclustering Constrained by Net-
works (BiCoN)21, and Disease Module Detection (DIAMOnD)8.
These functionalities are made available to the user via the
RESTful API and the easy-to-use NeDRexApp. All algorithms
require a list of user-selected genes (referred to as seeds) as the
starting point, except for BiCoN, which uses gene expression data.
Seeds can be all or a subset of the genes associated with the
disease, so-called disease genes, or genes contained in disease
modules. Moreover, expert knowledge can be employed for seed
selection, and the results can be statistically validated by calcu-
lating the empirical P values (Fig. 1). NeDRex, hence, allows
researchers from pharmacology and biomedicine to leverage their
expert knowledge for discovering drug repurposing candidates via
state-of-the-art network medicine methods. In particular, our
platform can also be used to identify disease modules and pos-
sibly repurposable drugs for any newly discovered disease such as
COVID-19.

The remainder of the paper is organized as follows: In the
Results section, we first provide an overview of the NeDRex
platform. Subsequently, we present several use cases which
exemplify how to use NeDRex for disease module identification
and drug repurposing. In the Discussion section, we discuss
prospects and limitations of using NeDRex for drug repurposing.
In the Methods section, we describe the datasets and the inte-
gration scheme used in NeDRexDB. We also introduce the logic
behind the network medicine algorithms implemented in
NeDRex, and briefly describe the general architecture of the
platform.

Results
The NeDRex platform. The main result is the NeDRex platform
itself, which provides a broad spectrum of systems medicine
methods together with integrative networks of different biological
entities. The platform is modular and new algorithms and data-
bases can be easily incorporated. In addition, the NeDRexDB
knowledgebase, which is accessible via the RESTful API and
Neo4j endpoint, serves as a useful resource for scientists to
explore the relationships between different biological entities,
such as drugs, diseases, genes, proteins, and pathways. Moreover,
by using NeDRexApp, users can build custom networks from the
NeDRexDB knowledgebase according to their needs and further
explore them via the various network medicine functionalities
(the complete list of functionalities is available in the tutorial
document of the app: https://nedrex.net/tutorial). Finally, users
can also download the data from NeDRexDB and employ it for
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their own drug repurposing methods. Table 1 provides an over-
view of the main functionalities provided by NeDRex.

The typical steps users should take in NeDRexApp to
derive disease modules and pinpoint drug candidates starting
with the disease(s) under study are illustrated in Fig. 2. For more
information about seed selection, see Supplementary Information.

For more details on the algorithms, the selected seeds, the
parameters applied for each use case and their statistical
validation, see Methods and Supplementary Information (Result
section), respectively. In the following, we demonstrate the
applicability of NeDRex in five different use cases employing a
variety of available functionalities. Detailed tutorials to reproduce

Fig. 1 Overview of the NeDRex platform. a Integration of various biomedical databases. b Construction of heterogeneous networks. c Disease module
identification using network-based algorithms (MuST, DIAMOnD, BiCoN). d Ranking of drugs using network-based algorithms (TrustRank, closeness
centrality). Benefiting from the expert-in-the-loop paradigm, expert knowledge can be engaged at two points: (1) before the disease module identification
step through selecting seeds; (2) before the drug ranking step through selecting seeds for ranking algorithms. e Statistical validation of the obtained
disease modules and ranked lists of drugs via empirical P values. X-axis: Concordance of contained drugs (for drug list validation) or targeting drugs (for
disease module validation) with list of reference (e.g., indicated) drugs. Created with BioRender.com.
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the use cases with NeDRexApp are available at https://nedrex.net/
tutorial. Note that the results obtained for the use cases constitute
hypotheses which have not been further experimentally validated.
The main purpose of the use cases is to exemplify how to use the
rich functionality available in NeDRex.

Use case 1: identification of disease pathways for ovarian
cancer, using MuST. To exemplify the power of NeDRex to
extract biologically meaningful pathways from starting seeds, we
used the ovarian cancer (OC) associated genes from NeDRexDB
(AKT1, ALPK2, CDH1, CTNNB1, EPHB1, OPCML, PIK3CA,
PRKN) and constructed disease module using the MuST algo-
rithm (Fig. 3.a). The obtained disease module contains newly
identified connector genes (ATXN1, HTT, HSP90AA1, PDGFRB,
NCK1, OLA1 and DKK3) which, together with the seed nodes,
participate in relevant OC pathways that could not be retrieved
using the seed genes alone. In particular, genes involved in ovary-
specific, hormone-related and cancer pathways are found
(Fig. 3b). For instance, using the g:Profiler enrichment tool and
the KEGG pathway database22,23, we find that the OC module is
enriched in the progesterone-mediated oocyte maturation and the
Estrogen signaling pathway, which are both involved in oocyte
maturation24. Furthermore, we find that the ErbB signaling
pathway, which is involved in cancer cell growth, proliferation,
motility, and survival25 is associated with the disease module. We
also identified further cancer-related pathways, namely, choline

metabolism in cancer, central carbon metabolism in cancer, and
EGFR tyrosine kinase inhibitor resistance26–28. Finally, the
examination of the connector genes identified by MuST reveals
the PDGFRB gene, which has been reported to be deregulated in
40–80% of ovarian tumors29,30 and has been proposed as a
therapeutic target in OC31.

Together, these results show that, using MuST, NeDRex was
capable of identifying a disease module containing genes
associated with meaningful biological pathways. Notably,
although the number of seeds and the size of the disease module
is small, we found ovary-specific and cancer-associated pathways,
as well as genes involved in OC.

Use case 2: identification of therapeutic drugs for inflamma-
tory bowel disease, using MuST and drug ranking algorithms.
To demonstrate the utility of the NeDRex platform to recover
known and potential therapeutic drugs, we selected inflammatory
bowel disease (IBD). Using the Get Disease Genes function, all
the known genes associated with IBD are obtained from
NeDRexDB. Running the MuST algorithm starting with this set
of genes as seeds outputs a disease module containing 87 genes,
which are targeted by a total of 235 drugs (empirical precision-
based P value: 0.036). Considering the high number of drugs
targeting this module, the user can prioritize the most promising
candidates by using one of the drug ranking functionalities. After
running the closeness centrality algorithm, three small molecules

Table 1 Overview of the main functionalities of the NeDRex platform.

Functionality Description

Integrating data from multiple biomedical
databases

NeDRexDB is an integrated knowledgebase which is accessible via NeDRexAPI as well as a Neo4j
endpoint.

Constructing heterogeneous biological networks
from NeDRexDB

Based on users’ needs, different heterogeneous networks can be constructed using NeDRexAPI or
NeDRexApp.

Disease module mining Various disease module identification algorithms can be run on NeDRexDB using NeDRexApp or
NeDRexAPI, based on users’ inputs.

Drug prioritization Various drug prioritization algorithms can be run on NeDRexDB using NeDRexApp or NeDRexAPI,
based on users’ inputs and the results of disease module mining.

Statistical validation of results The results of disease module identification and drug prioritization analyses can be validated with
different statistical methods.

Visualization of results Using NeDRexApp, all the obtained results are shown in network format, which can be explored
further.

Fig. 2 Typical steps in NeDRexApp to identify disease modules and drug candidates. (Step 1) The workflow can start either with selecting the disease(s)
under study and subsequently obtaining genes associated with them or uploading a custom set of genes, e.g., DEGs. (Step 2) Disease modules are derived
using seeds selected in the previous step as input and employing the MuST or DIAMOnD algorithm. Alternatively, the BiCoN algorithm can be employed to
return disease modules. In this case, step 1 is skipped and gene expression data should be used as input for this step. (Step 3) Drugs targeting directly or
the vicinity of the seeds selected in the previous step are ranked. Step 3 can also be performed directly after step 1. Expert knowledge can be involved at
seed selection points 1.2 and 2.2. Created with BioRender.com.
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among the top-ranked drugs, namely, Fostamatinib (1), Rux-
olitinib (5), and Imatinib (12) are identified, whose relevance to
IBD is supported by literature evidence32–35. The IBD disease
module together with the 25 top-ranked drugs targeting the
module is shown in Supplementary Fig. 2. Imatinib therapy has
been reported to induce remission in IBD patients32. Fostamati-
nib was reported to alleviate IBD-induced inflammatory damage
in rats33. The JAK inhibitor Ruxolitinib has been reported to
ameliorate ulcerative colitis in a mouse model35.

The DCG-based empirical P value of the ranked list of drugs
computed via closeness centrality is <0.001. The joint validation
of the obtained disease module and drug list yielded a precision-
based empirical P value of <0.001. Overall, these results provide
further motivation to explore the potential of other top-ranked
drugs in the treatment of IBD derived by the two algorithms
using NeDRex.

Use case 3: drug target and drug identification for pulmonary
embolism, using combination of DIAMOnD and TrustRank.
Next, we demonstrate how NeDRex can uncover a pulmonary
embolism (PE) disease module using the DIAMOnD algorithm
and subsequently recover drugs indicated for treatment of PE.
Using data from NeDRexDB, twelve genes are found to be
associated with PE. When selecting all of these genes as starting
seeds, the DIAMOnD algorithm returns a subnetwork of 32 genes
representing the underlying mechanistic pathways for PE (pre-
cision-based empirical P value: 0.012). A total of 283 drugs target
this module. By employing the TrustRank algorithm to prioritize
the drugs associated with the disease module (excluding the initial
seeds), we find Bemiparin, Edoxaban, Apixaban, Dabigatran
etexilate, Heparin, Rivaroxaban, Streptokinase, and Urokinase
among the 50 top-ranked drugs. All of these drugs are indicated
to reduce the risk of stroke and systemic embolism and are
known to be used to treat PE. Furthermore, five drugs registered
in ClinicalTrials.org for evaluation in treatment of PE, namely,
Alteplase, Enoxaparin, Fondaparinux, Tenecteplase and Tra-
nexamic acid are found on the top of the ranked list.

The PE disease module (excluding the initial seeds) combined
with its targeting top-ranked drugs is shown in Fig. 4. Apixaban,
Bemiparin, Dabigatran etexilate, Edoxaban, Enoxaparin, Fonda-
parinux, Heparin, and Rivaroxaban target the coagulation factor
X (F10), which is not among the initial set of PE-associated genes
but is found in the PE module. F10 is a key enzyme in the
coagulation cascade36. Alteplase, Dabigatran etexilate, Streptoki-
nase, Tenecteplase, Tranexamic acid, and Urokinase target
plasminogen (PLG), another member of the PE disease module
that helps dissolving the fibrin of blood clots and behaves as a
proteolytic factor36. Another gene found in the PE disease module
is SERPINE1, whose product (plasminogen activator inhibitor 1)
is a protease inhibitor that is targeted by Alteplase, Tenecteplase,
and Urokinase from the list of predicted drugs. This protein is
essential for inhibiting fibrinolysis and is in charge of the
controlled degradation of blood clots37,38.

The DCG-based empirical P value of the ranked list of drugs
computed using TrustRank is <0.001 (precision-based P value
obtained by joint validation of module and drug list: 0.018). This
use case indicates, firstly, that NeDRex is capable of extracting
disease-related mechanistic pathways, which can contain possible
targets for candidate drugs. Secondly, drugs which in practice are
prescribed for treatment of PE or are under evaluation in clinical
trials are among the top-ranked drugs obtained by the drug
ranking algorithms.

Use case 4: disease module and drug identification for Hun-
tington’s disease, using BiCoN and TrustRank. BiCoN is an
unsupervised approach that simultaneously performs patient and
gene clustering such that the genes that provide the best possible
clustering are also connected in a PPI network. We use BiCoN on
Huntington’s disease (HD) gene expression data from GEO
(accession number GSE379039,40), which contain patients with
Vonsattel grades 2–4 and healthy controls (precision-based
empirical P value of the obtained HD disease module: 0.180).
Patient clusters reported by BiCoN show strong correlation with
the known phenotype (average Jaccard index 0.76), providing

Connector gene

Seed gene

a b

intersection size

-log2(adjusted P-value)

Fig. 3 Ovarian cancer disease pathway identification by MuST. a The OC disease module derived by MuST using NeDRexDB OC-associated genes
(seeds). b Comparison of KEGG enriched pathways obtained with seed and connector genes vs. obtained using seed genes alone. Pathways which could
only be retrieved after adding connector genes are marked in purple.
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strong evidence to assume that the reported subnetwork (23 genes
in total) is also closely related to the disease mechanism.

We ran TrustRank on the subnetwork returned by BiCoN, and
among the 50 top-ranked drugs we find three drugs that are
prescribed to alleviate the symptoms of HD, namely, Thorazine
(Chlorpromazine), Memantine, and Lamotrigine (Fig. 5). Thor-
azine is prescribed to help manage movement disorders, such as
chorea in people with HD41. According to Beister et al.42,
memantine can slow down the progression of HD. Lamotrigine
significantly improves depression, severe mood swings, and
choreoathetoidic movements in HD patients43.

Among other high scoring drugs that target the derived
subnetwork and have a strong connection to HD are Donepezil44,

Decamethonium45, Betahistine46 (used to treat dizziness),
Fluoxetine47 (recommended for HD patients to treat aggressive-
ness and agitation), Pitolisant48 (treats narcolepsy), and other
drugs that are used for treating HD patients and management of
HD symptoms. DCG-based empirical P value of the ranked list of
drugs computed usingTrustRank is 0.011 (the precision-based
P value obtained by joint validation of module and drug list:
0.048).

Use case 5: hypothesis-driven drug repurposing for Alzhei-
mer’s disease. In our last use case, we show how NeDRex can be
used to extract possibly repurposable drugs which are indicated
for diseases that are known to be associated with the disease of

Gene

Drug

Drug indicated for PE treatment

Drug-target interaction

Indicated drug-target interaction

Fig. 4 The pulmonary embolism disease module and its targeting top-ranked drugs. The PE disease module (excluding the initial seeds) derived by
DIAMOnD, combined with its targeting 50 top-ranked drugs.
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Drug candidate for HD treatment

Drug-target interaction
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Fig. 5 The Huntington’s disease module and its targeting top-ranked drugs. The HD disease module derived by BiCoN using gene expression data,
together with its targeting 50 top-ranked drugs.
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interest. More specifically, using Alzheimer’s disease (AD) as an
example, we show that we can retrieve potential treatments with
an original indication for hypertension, diabetes mellitus (DM)
and hyperlipidemia49.

Hypertension as original indication - Here, we demonstrate
how our platform can identify repurposable drugs directly from
the genes associated with the new indication (AD) as a starting
point. First, we obtain the genes associated with AD (40 genes).
Then, we rank all the 240 drugs targeting this set of genes using
the closeness centrality algorithm (DCG-based empirical P value:
<0.001). Interestingly, this returns Telmisartan (ranked 26th).
Telmisartan is a known angiotensin II receptor blocker (ARB)
originally indicated to treat high blood pressure and has been
tested in clinical trials to assess its efficacy for the treatment of
AD50. Studies show that drugs used to treat hypertension,
including ARBs, decrease the risk and slow the progression of
AD51,52 by reducing the amyloid-β deposition in senile plaques,
the main pathological hallmark of AD. ARBs are thought to
improve amyloid-β deposition through the modulation of
cerebral blood flow and superoxide production53. This example,
hence, shows that it is possible to retrieve potentially repurpo-
sable drugs directly from the associated genes of the new
indication.

Diabetes as original indication—Medications indicated for
diabetes mellitus (DM) are potential treatments of AD since the
glucose metabolism plays a key role in neural function54,55.
Several drugs have been tested in vitro, in vivo and in clinical
trials, where Insulin (DB00030), Insulin Detemir, Insulin
Glulisine (insulin analogs) stand out56–58. These drugs interact
with the insulin receptor (INSR) and are considered disease
modifying drugs. Hence, we demonstrate that our platform is
capable of retrieving this shared molecular mechanism and
these drugs.

First, we obtain the DM-associated genes (88 genes), as well as
the AD-associated genes (40 genes). The intersection of these sets
consists of 2 genes: INS (whose encoded peptide, insulin, is a
repurposed drug in AD) and INSR (P value = 0.017071,
hypergeometric test for overlap of two disease gene sets).
NeDRexDB contains 32 drugs targeting the products of these 2
genes (overlap-based empirical P value: 0.002). Notably, 27 of
these drugs target INSR including repurposed drugs; such as
Insulin Detemir and Insulin Glulisine. Note that, in this use case,
we did not use any network algorithms to extract the drug
repurposing candidates but only leveraged the data integration
functionalities provided by NeDRex.

Hyperlipidemia as original indication—With this example, we
show how to search for potentially repurposable drugs by
retrieving drugs that indirectly target the intersection of disease
modules for two diseases, namely, hyperlipidemia and AD. We
use the hyperlipidemia-associated genes, since the lipid and
cholesterol metabolism has been linked with progression of AD59.

First, by using NeDRexDB, we extract the hyperlipidemia-
associated genes (19 genes) and derive the disease module using
DIAMOnD. Similarly, we derive the AD module starting with its
associated genes (40 genes). By obtaining the intersection of the
two modules, we find 7 genes in common (P value of
hypergeometric test = 0.023827): A2M, APOE, APP, CLU,
IGF2, NOS3, and PLAU (precision-based empirical P value of
intersection: 0.079). Notably, all of them are AD-associated genes
and some are well-characterized drivers of this disease; for
instance, APP encodes the amyloid-β peptides60, A2M is a marker
of neural damage61, and APOE, CLU and NOS3 polymorphisms
are risk markers of AD62. Importantly, A2M, APP, CLU, IGF2
and PLAU are not among the hyperlipidemia associated genes,
they are retrieved only after obtaining the disease module with
DIAMOND. This demonstrates that in some cases, using only the

disease associated genes is not enough to uncover the molecular
mechanisms shared between diseases and using the disease
module provides a more complete landscape of the disease.

Next, to retrieve the drugs directly targeting the overlapping
genes (direct drugs) or their vicinity (indirect drugs), we use
closeness centrality with the option of including indirect drugs
(DCG-based empirical P value of obtained ranked list of drugs:
<0.001). We find Gemfibrozil among the top-ranked drugs
(rank 6), which is originally indicated for the treatment of
hyperlipidemia. Gemfibrozil is being tested in clinical trials
(NCT02045056) and preclinical studies63 give evidence of
potential effectiveness of this drug for the treatment of AD.
Remarkably, this drug does not directly target any of the gene
products of the 7 overlapping genes, and can only be retrieved by
using the indirect mode. The indirect drugs can be interpreted as
drugs whose targets are closely related to the seeds; in this case,
Gemfibrozil targets TTR, CYP2C8 and LPL, which interact with
APOE, A2M, CLU and APP (Fig. 6), suggesting that this drug
could have a positive effect by affecting several targets which
altogether affect the key disease components of AD and
hyperlipidemia.

Discussion
Studies in the field of drug repurposing have so far been restricted
to present either non-translational algorithms or specific predic-
tions for certain diseases. Therefore, there is an ongoing need for
integrated tools which allow experts from pharmacology or bio-
medical research fields to easily utilize network-based drug
repurposing methods and adapt them to their individual
use cases.

With NeDRex, we introduce an integrated, user-friendly plat-
form, which allows non-computer scientists and clinicians to
mine different layers of a large heterogeneous biological network
—the NeDRexDB knowledgebase. NeDRex provides users with a
variety of network-based methods (available via NeDRexApp) to
derive disease modules associated with diseases under study and
prioritize drugs directly or indirectly targeting the disease mod-
ules. NeDRex also has the feature to provide prioritization for
only approved drugs, which accelerates the drug development
process by skipping the pre-clinical research phase and going
directly into clinical trials. Benefiting from the expert-in-the-loop
paradigm, researchers from biomedical sciences can leverage their
domain knowledge at different points of the workflow, e.g., by
filtering disease genes already provided by the platform or by
using their own sets of genes as starting points for the algorithms.
NeDRex hence enables researchers and clinicians to derive
disease modules, explore disease-associated mechanisms, and
identify drug repurposing candidates associated with these
mechanisms.

We have presented five use cases which demonstrate that
NeDRex can be used to mine biologically meaningful candidate
disease modules as well as potentially repurposable drugs. In
particular, we have shown that by using the functionalities
available in NeDRex, we can identify candidate drugs that can be
further explored for the treatment of inflammatory bowel disease,
pulmonary embolism, Huntington’s disease, and Alzheimer’s
disease. All results were statistically validated by empirical
P values. Employing different validation methods for the use cases
presented in the Results section, we computed 33 P values, 29 of
which were statistically significant with significance level 0.05
(lists of all computed P values can be found in the Supplementary
Information).

While the expert-in-the-loop paradigm is one of the main
advantages of the NeDRex platform, it is also its most important
limitation. When using NeDRex, investing domain knowledge is
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not an option but a requirement. If used blindly, obtaining bio-
logically meaningful disease modules or promising drug repur-
posing candidates is unlikely. Importantly, also the empirical
P values cannot replace the expert user, because they, too, are
conditional on current knowledge (see “Methods” for details).

As stated above, NeDRex can only deliver putative drug can-
didates for further evaluation. Whereas the proposed drugs target
proteins involved in potentially important disease mechanisms,
the efficacy of the drug candidates needs to be verified by follow-
up investigations and tested according to established rules and
guidelines for clinical trials.

Finally, the integrated databases have their inherent limita-
tions, which are reflected in our platform as well. Such limitations
include false positive PPIs64, literature bias due to under- and
over-studied genes65, and the fact that drug-protein associations
available in the integrated databases do not distinguish between
activation and inhibition.

For future versions of the database, we are planning to inte-
grate disease symptoms and drug side effects data, which will
allow investigation into different disease similarity and drug
repositioning approaches. Regarding drug indications, previous
studies (e.g., RepoDB66) include instances of failed drugs which
act as false negatives for drug indications. This has a number of
advantages, such as not requiring closed-world assumptions to be
made, and NeDRexDB could benefit from including similar data
(e.g., from ClinicalTrials.gov). Finally, we are planning to inte-
grate further drug repurposing databases that include tissue-level
gene expression information which could help to understand why
specific molecular mechanisms only lead to diseases in specific
tissues.

Methods
Data integration and construction of NeDRexDB. NeDRexDB is a graph data-
base that was constructed by integrating 10 source databases using a crowdsourcing
framework. These 10 databases with their corresponding versions are shown in
Supplementary Table 1. For all 10 databases, we wrote parsers to extract entities
(nodes) and the relationships between entities (edges), and store them in a Mon-
goDB instance. MongoDB was chosen as the database for two primary reasons;
firstly, MongoDB has a flexible schema, which provides the freedom to readily add
new characteristics to documents in the database, whilst simultaneously allowing
selective enforcement of certain guarantees. Secondly, MongoDB provides a rich set
of operations for querying and updating, which facilitates data integration. For
more details about the data integration see Supplementary Information.

To facilitate integration, each entity in NeDRexDB was given a
primaryDomainId of the form {database}.{identifier} (e.g.,
uniprot.P51587 for the Homo sapiens BRCA2 protein). In the cases of Proteins,
Genes, and Pathways, all of the databases integrated here use UniProt, Entrez, and
Reactome respectively, and so integration can be done simply on identifiers. For
Drugs, DrugBank identifiers were chosen as the primary ID because DrugCentral
tends to cross reference drugs to DrugBank identifiers.

Integration of diseases was more challenging, as there are no consistent
identifiers used between different databases. Furthermore, mappings between
disease identifiers in different databases are not complete, and many datasets do
not have a hierarchy in disease concepts. Capturing a disease hierarchy in the
NeDRexDB was important, as many diseases have very precise sub-typing which,
for some analyses, may be too specific. We decided to use the Monarch Disease
Ontology (MONDO) as the primary identifier for diseases, as the mapping between
MONDO and other identifiers (e.g., the Unified Medical Language Systems
(UMLS), used by DisGeNET) is more complete than others [https://
www.disgenet.org/downloads], and includes a hierarchy.

Accessing NeDRexDB. The NeDRexDB can be accessed in two ways. The first is
through a RESTful API, available at https://api.nedrex.net/, and the second is
through a Neo4j endpoint, available at http://neo4j.nedrex.net/.

The routes from the API make a range of services available, including obtaining
nodes and edges from NeDRexDB, ID mapping, and traversing the MONDO
disease hierarchy. In addition, the API makes routes available for constructing

AD disease module Hyperlipidemia disease module

Employing closeness centrality 
using the indirect feature

DIAMOnD gene

Seed gene

Drug candidate target
(intermediate interactor)
Drug candidate for AD

Fig. 6 Gemfibrozil indirectly targets the intersection of disease modules. The AD and hyperlipidemia disease modules (top left and top right,
respectively) derived by DIAMOnD using the corresponding disease-associated genes (orange nodes). The intersection of the disease modules is shown in
the middle. Gemfibrozil indirectly targets the intersection through TTR, CYP2C8, and LPL (bottom). To allow better visualisation, subsets of actual
networks corresponding to the disease modules are shown here.
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networks in graphml format based on users selected specifications. Graph
construction is highly configurable, with options allowing filtering based on
attributes (such as drug groups, IID evidence types, thresholds of gene-disease
associations from DisGeNET). The documentation for the routes can be found at
https://api.nedrex.net/. An overview of all the node and edge types available in the
NeDRexDB metagraph is illustrated in Supplementary Fig. 1 and also given in
Supplementary Table 2 with their corresponding numbers.

The MongoDB representation of the data was imported into a Neo4j instance,
allowing users to run Cypher queries, and thus have even finer control over queries
than the API allows. One major difference between the Neo4j endpoint and the
API is that drugs obtained via the API are collapsed into a single Drug type by
default, whereas the Neo4j instance divides these into two types, BiotechDrugs and
SmallMoleculeDrugs–the abstraction used by DrugBank where drugs are
sourced from.

Network-based algorithms for disease module identification and drug
repurposing. In NeDRex, we have implemented several well-established network
medicine algorithms to provide various investigation options for numerous par-
ticular medical, therapeutic, and research questions. The available algorithms are
detailed below. NeDRexApp allows users to select among these algorithms. Note
that, although the NeDRexDB contains also predicted PPIs, only experimentally
validated PPIs are considered for the networks on which the algorithms are run.

MuST—The Steiner tree problem is an optimization problem whose objective is
to find a tree of minimum cost connecting the set of seeds (terminals)67. For
NeDRex we established a multi-Steiner trees method that aggregates several
approximates of Steiner trees into a single subnetwork. By selecting genes
associated with a disease under study as seeds, MuST extracts a connected
subnetwork which potentially incorporates the genes involved in the disease
pathways and mechanism. The motivation behind returning multiple trees instead
of one is that the solutions to the Steiner tree problem are usually non-unique and
computing several Steiner trees increases the stability of the extracted mechanism.
Hub nodes, i.e., proteins having high number of interactions in the interactome,
inherently have a higher chance of appearing in the extracted trees. In order to
penalize the hubs and consequently extract mechanisms more specific to the
disease of interest, users can conduct the MuST algorithm with the hub penalty
parameter. This parameter incorporates the degree of neighboring nodes as edge
weights in the optimization. In NeDRex, the MuST algorithm is implemented on
the protein-protein layer of the heterogeneous network to obtain disease modules
which could contain targets of putative drug repurposing candidates.

DIAMOnD—DIAMOnD8 identifies a candidate disease module around a set of
known disease genes (seeds) by greedily adding nodes with a high connectivity
significance to the module, i.e., nodes in whose neighborhoods nodes already
contained in the module are significantly overrepresented. In the iterative
algorithm of DIAMOnD, the connectivity significance of all direct neighbors of
seeds is computed. Then, the most significantly connected node is integrated into
the module, leading to expansion of the module by one node per iteration.
Subsequently, the connectivity significance is recomputed w.r.t. the updated
module and the process iterates until the desired module size has been reached. In
contrast to MuST, DIAMOnD does not necessarily return a connected subnetwork
as the disease module. In our platform, the DIAMOnD algorithm is applied to the
protein-protein layer of the integrated network to derive disease modules which
could incorporate targets of potential drug repurposing candidates.

BiCoN—BiCoN is a network-constrained biclustering method that is used for
integrative analysis of gene expression and PPI networks21. BiCoN simultaneously
clusters patients and genes such that genes also form a connected subnetwork in
the PPI network. As an unsupervised method, BiCoN does not need a known
phenotype for patients, which allows it to find entirely data-driven patients
subgroups.

Closeness centrality—Closeness centrality is a node centrality measure that
prioritizes the nodes in a network based on the lengths of their shortest paths to all
other nodes in the network. In NeDRex, we implemented a modified version,
where closeness is calculated with respect to only the selected seeds. The motivation
behind this modification is to favorably select drugs that are at a close distance to
the nodes in the disease module and are hence good candidates as repurposable
drugs. Our implementation focuses on the combination of protein-protein and
protein-drug layers of the heterogeneous network which result in a ranked list
of drugs.

TrustRank—TrustRank is a modification of Google’s PageRank algorithm,
where the initial trust score is iteratively propagated from seed nodes to adjacent
nodes using the network topology. It prioritizes nodes in a network based on how
well they are connected to a (trusted) set of seed nodes20. In NeDRex, it is executed
on the combination of protein-protein and protein-drug layers of the
heterogeneous network to obtain a ranked list of drugs that could be putative drug
repurposing candidates. The damping factor parameter (range 0–1) controls the
rate of trust propagation across the network. A higher damping factor returns
results in a more explorative fashion.

Statistical validation. To validate the statistical significance of the lists of drugs
and disease mechanisms returned by NeDRex, we have implemented three vali-
dation methods, each with two variations, based on empirical P values. These

validation methods allow the user to assess the statistical significance of the results
obtained via different algorithms available in NeDRex, and hence make the algo-
rithms and their results assessable and comparable w.r.t. validity and relevance. As
reference, all three validation methods require a list of drugs indicated for the
treatment of the disease under scrutiny. This list can either be provided by the user
or be obtained directly from NeDRexDB. All empirical P values depend on the
quality of the list of reference drugs. If this list is incomplete or contains many false
positives, the P values might be misleading. Consequently, also the P values are
conditional on current knowledge and therefore cannot substitute, but merely
assist, the expert in the loop. The reported P values in the Results section and
Supplementary Information are rounded to three significant digits and values
smaller than 0.001 were indicated correspondingly.

a) Validation of drug lists computed by NeDRex—First, a big number of, e.g.,
1000 (user parameter) ranked lists of randomly selected drugs, matching the size of
the drug list predicted by NeDRex, are generated. For the predicted and each of the
randomly selected drug lists, we compute the discounted cumulative gain (DCG)68

defined as DCG ¼ ∑n
i¼1

di
log2ðiþ1Þ, where n is the length of the ranked list of drugs,

di ¼ 1 if the ith drug from the sorted list of drugs is indicated for the disease of
interest and di ¼ 0 otherwise. Subsequently, an empirical P value is computed by
counting the number of random drug lists whose DCGs exceed the DCG of the
drug list predicted by NeDRex. We also implemented a simplified version (overlap-
based) where, instead of the DCG, the overlap∑n

i¼1di with the reference list is used.
However, unlike the DCG-based P values, this approach ignores whether the
reference drugs are found early or late in the lists of drugs. Hence, it is
recommended to be used if the user wishes to ignore the drug ranks for the
statistical validation.

b) Validation of disease modules computed by NeDRex—This method takes
into account the role of the disease module identification step in the NeDRex drug
repurposing pipeline. We generate a number of, e.g., 1000 mock modules matching
the size and the number of connected components of a disease module returned by
NeDRex. We set the latter constraint to keep the topology of random modules
similar to the result disease module. For the disease module computed by NeDRex
as well as each mock module, we define its precision as the number of reference
drugs targeting the module divided by the overall number of drugs targeting the
module. We then compute an empirical P value by counting the number of mock
modules with higher precision values than the disease module computed by
NeDRex. We have also implemented a simplified approach where we do not
normalize by the overall number of targeting drugs, i.e., compare intersection sizes
with the reference drugs instead of precision values as defined above. If users are
more interested in inspecting the number of drugs targeting a disease module, they
can use the simpler version.

c) Joint validation of disease modules and drug lists computed by NeDRex—In
this approach, both steps of the drug repurposing pipeline, i.e., disease module
identification and drug ranking, are taken into account for the final in silico
validation of drugs. Computationally, this approach is similar to the validation
method for disease modules described previously. The only difference is that we
now calculate the precision for the NeDRex result as the number of reference drugs
contained in the drug list computed by NeDRex divided by the overall number of
drugs in the list. Analogously, we use the drug lists returned by NeDRex to
calculate the intersection size for the disease module computed by NeDRex.
Precision values and intersection sizes for the mock modules are determined as
before.

Implementation. Four modules compose the NeDRex platform: (i) NeDRexDB
and its constituent metagraph. Two implementations of the NeDRexDB are used:
one in Neo4j and one in MongoDB. The MongoDB version of the database is
populated first, as described in the data integration section, and the MongoDB
version is then exported to Neo4j. Both versions of the database are used in the API
implementation, leveraging the query system advantages of both platforms. (ii) The
Backend including some network-based algorithms (such as DIAMOnD, BiCoN,
TrustRank and closeness centrality) is implemented with Python (v. 3.7.6). DIA-
MOnD was obtained from https://github.com/dinaghiassian/DIAMOnD, using the
22nd Sept 2020 commit (hash beginning 2437974). BiCoN was obtained from the
Python Package Index (version 1.2.11). The ranking algorithms are implemented
using the graph-tool library (v. 2.35). (iii) NeDRexAPI was constructed in
Python 3 using the fastapi library (v. 0.61.0). (iv) NeDRexApp for Cytoscape 3
is written in Java (JDK 8). NeDRexApp serves as the primary frontend for the
NeDRex platform. In addition, NeDRexApp can be used as a stand-alone app
which provides access to some functions outside of the NeDRex ecosystem. For
example, the MuST algorithm is implemented in both the backend as a Java
command line tool and also in NeDRexApp (JDK 8) - the latter allows users to run
MuST on any custom PPI network loaded into Cytoscape.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the NeDRexDB knowledgebase supporting the findings of this
study are available via https://api.nedrex.net/. The construction of NeDRexDB is
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described accordingly within the paper and its Supplementary Information files. The
NeDRexDB knowledgebase contains information obtained from the Online Mendelian
Inheritance in Man® (OMIM®) database, which has been obtained through a license
from the Johns Hopkins University, which owns the copyright thereto. Use of the
NeDRex dataset is governed by an End User License Agreement (available at https://
nedrex.net/about.html), due to requirements of including OMIM as a source database.
The following databases are used in this study: IID (http://iid.ophid.utoronto.ca/),

DrugBank (https://go.drugbank.com/), DrugCentral (https://drugcentral.org/),
DisGeNET (https://www.disgenet.org/), OMIM (https://omim.org/), NCBI gene info
(https://www.ncbi.nlm.nih.gov/gene), UniProt (https://www.uniprot.org/), MONDO
(https://mondo.monarchinitiative.org/) and Reactome (https://reactome.org/).

Code availability
NeDRex is a public platform built of three main components: a knowledgebase
(NeDRexDB, available at http://neo4j.nedrex.net/ and https://api.nedrex.net/), a
Cytoscape app (NeDRexApp, available at https://apps.cytoscape.org/apps/nedrex/), and
an API (NeDRexAPI, available at https://api.nedrex.net/). The NeDRexDB, NeDRexAPI,
and NeDRexApp code is openly available on GitHub repositories (https://github.com/
repotrial/nedrex and https://github.com/repotrial/NeDRexApp) under the terms of the
GNU General Public License, Version 3.
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The novel SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2) pathogen has infected around 60 million peo-
ple and caused more than a million deaths worldwide (https://

covid19.who.int/; as of November 2020). As a result, there is a need 
to find treatments that can be applied immediately to reduce mor-
tality or morbidity.

Repurposing existing drugs is a rapid and effective way to pro-
vide such treatments by identifying new uses for drugs that have 
well-established pharmacological and safety profiles1. Many drugs 
used to treat different diseases have already been successfully repur-
posed and approved for new indications2. While repurposing can be 
conducted at any point in drug development, its greatest potential 
can be applied to drugs that are already approved3. In the case of 
the COVID-19 pandemic, it is a fast and cost-efficient approach to 
identify novel treatments4.

Recent studies have increasingly employed computational meth-
ods to systematically predict new drug targets or drug repurposing 
candidates. In contrast to experimental high-throughput screening, 
in silico approaches are faster, lower-cost, and can serve as an initial 
filtering step for evaluating thousands of compounds. Thus, they 
are useful for prioritizing drugs that warrant further evaluation and 
experimental validation. This requires the application of suitable 
algorithmic approaches to identify mechanisms relevant or specific 
to the disease4.

This Review discusses current in silico drug repurposing efforts 
for COVID-19, followed by a discussion of the lessons learned from 
different perspectives (from data resources to the quality of predic-
tions) and a proposed unified strategy to improve the response in 

potential future outbreaks. The covered studies employed standard 
drug repurposing workflows and data-driven algorithms.

As new studies are published almost every day, it is not possible 
to provide a broad and comprehensive overview of all repurposing 
studies. Hence, this Review focuses on the computational methods 
for drug repurposing, their application, availability and feasibil-
ity in a selection of studies (peer-reviewed and preprint) that were 
selected to cover a wide variety of different methods. It is worth 
noting that most of these studies are not considered successful clini-
cally. Nevertheless, it is important to properly evaluate and improve 
the predictive power of in silico approaches that are capable of uti-
lizing information from existing drugs as well as host and virus biol-
ogy, even with limited availability of data on the novel emerging 
pathogen. This promotes a rapid and practical response to infection 
and therefore improves success in future pandemics, particularly in 
tackling the rise in infection cases at the early stages of the pan-
demic or ahead of vaccine development.

Data resources
Besides experimental datasets, the rapid availability of resources 
that integrate different data types is crucial in a pandemic. Sharing 
data accelerates research, as computational methods depend on 
high-quality datasets, and experimental labs do not need to col-
lect the information on their own. The large number of resources 
used in COVID-19 drug repurposing studies have shown that data 
can be quickly generated and gathered through strong community 
efforts. This section presents a selection of data resources used in 
the reviewed studies to describe the resource types that accelerated 
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Responding quickly to unknown pathogens is crucial to stop uncontrolled spread of diseases that lead to epidemics,  
such as the novel coronavirus, and to keep protective measures at a level that causes as little social and economic  
harm as possible. This can be achieved through computational approaches that significantly speed up drug discovery.  
A powerful approach is to restrict the search to existing drugs through drug repurposing, which can vastly accelerate  
the usually long approval process. In this Review, we examine a representative set of currently used computational 
approaches to identify repurposable drugs for COVID-19, as well as their underlying data resources. Furthermore,  
we compare drug candidates predicted by computational methods to drugs being assessed by clinical trials. Finally,  
we discuss lessons learned from the reviewed research efforts, including how to successfully connect computational 
approaches with experimental studies, and propose a unified drug repurposing strategy for better preparedness in the case 
of future outbreaks.
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computational drug repurposing approaches: most of them are 
general data resources that were already established before the pan-
demic but that have been extended with COVID-19 or SARS-CoV-
2-specific data. The resources used in the reviewed studies are 
listed in Supplementary Table 1. A list of COVID-19 specific data 
resources that were not used in the reviewed studies but may 
become relevant in the future is given in Supplementary Table 2.

Molecular data resources. All molecular data used in the reviewed 
publications were extracted from already established, general data 
resources that were quickly extended with SARS-CoV-2-specific 
data. Resources such as GenBank5, the GISAID initiative6, or 
UniProt7 provide genomic/proteomic sequence information about 
hosts and SARS-CoV-2. Structural resources collecting informa-
tion about proteins, such as the Protein Data Bank (PDB)8, were 
extended by various SARS-CoV-2-specific proteins. Finally, tran-
scriptome resources that collect gene expression data were used in 
several COVID-19 drug repurposing approaches. For instance, the 
Genotype-Tissue Expression (GTEx)9 program offers insights into 
tissue-specific gene expression. Expression in lung tissues is of high 
interest in COVID-19 drug repurposing research and was often 
integrated in computational models or studies. Other resources, 
such as the LINCS L1000 database10, profile gene expression changes 
under certain drug treatment conditions and were used to identify 
drugs with reverse expression profiles to the samples infected with 
SARS-CoV-2.

Network and interaction resources. Protein–protein interaction 
(PPI) networks enable visualization and analyses of the interac-
tions between either host or virus proteins and other host proteins. 
Furthermore, PPI networks allow for particular adaptation and search 
strategies (for example, edge filtering) and can be connected to drug 
resources. Gordon et al.11 identified 332 high-confidence virus–host 
interactions between SARS-CoV-2 and human proteins. It was the 
only newly created and exclusively SARS-CoV-2-related resource used 
in the reviewed publications of this work. VirHostNet12,13, a virus–host 
PPI resource that already existed before the 2019/2020 SARS out-
break, was expanded with 167 new SARS-CoV-2 interactions. In con-
trast to virus–host PPIs, host PPIs are not virus specific. All resources 
that were used in the reviewed studies were already available before 
the pandemic but have since been widely used in COVID-19 drug 
repurposing approaches14,15. Besides molecular networks, knowledge 
graphs, such as the Global Network of Biomedical Relationships 
(GNBR)16, have demonstrated their utility for drug repurposing. 
These networks comprise various types of biological relationships 
assembled from literature and were integrated into COVID-19 drug 
repurposing approaches17.

Drug and trial resources. Drug databases that already existed 
before the pandemic and that are continuously extended with 
newly developed drugs were used to connect the results of differ-
ent approaches to potential drugs. A widely used drug database is 
DrugBank18, with more than 13,000 drug entries of approved and 
in-trial drugs, including drug targets. On the other hand, ChEMBL19 
and ZINC1520 contain millions of compounds that exhibit drug- 
like properties.

Drug repurposing approaches also benefited from trial databases 
as they can be used to validate whether the predicted drugs are already 
in trial or have not yet been evaluated. Examples of such resources are 
the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/) 
and ClinicalTrials.gov (https://clinicaltrials.gov/). The latter contains 
more than 350,000 research studies from 219 countries.

Drug repurposing studies
Various clinical, experimental and computational drug repurpos-
ing efforts have been rapidly mobilized prioritizing compounds to 

identify promising drug candidates for the SARS-CoV-2 pandemic. 
In this section, we examine a selection of studies representing the 
different computational approaches to identify potential new tar-
gets and repurposable drugs for COVID-19.

Virus-targeting approaches. Virus-targeting approaches mostly 
rely on structure-based drug screening methods, which take the 
three-dimensional structures of target proteins to predict affinities 
or interaction energies of known chemical compounds to the pro-
teins (Fig. 1). These methods were mainly used to identify candidate 
drugs that target viral proteins, so we refer to them as virus-targeting 
approaches, although they can also be applied to host proteins. 
Two main methodological workflows were applied, namely, 
structure-based21 and deep-learning (DL)-based drug screening. 
Here, we describe these methods and compare 23 COVID-19 drug 
repurposing studies22–44.

Structure-based drug screening. The first step for structure-based 
screening is the selection of the drug library and the target pro-
tein. For COVID-19, the intuitive candidate for targeting virus 
proteins were antivirals. Thus, many studies limited their search 
to these. The number of screened drugs ranged from 3 (ref. 37) 
to 123 antiviral drugs33. Broader studies, such as that by Chen et 
al.26, combined compounds from the KEGG (Kyoto Encyclopedia 
of Genes and Genomes) and DrugBank databases to screen  
7,173 drugs.

The other crucial step is the selection of the target protein and 
its corresponding three-dimensional structure (experimental or 
predicted). Wu et al.40 performed screening on 19 encoded pro-
teins of the virus. By comparison, most other studies focused on the 
3CLpro, envelope (E), spike, RNA polymerase and methyltransfer-
ase proteins.

Virtual screening of the drug libraries utilized established 
software, such as Autodock45 and Glide46. Candidate drugs were 
selected using respective scoring methods, followed by validations 
with molecular dynamics simulations30,37.

Most drugs were predicted for 3CLpro (Supplementary Table 3), 
which was also the focus of most studies (17 studies), followed by 
RdRp and PLPro. For 3CLpro, the predictions ranged from 2 (ref. 29) 
to 27 (ref. 40) drugs per study. The 5 most frequently predicted 
drugs were ritonavir (8 studies), lopinavir (6 studies), nelfinavir, 
remdesivir and saquinavir (5 studies each). However, 99 of the can-
didate drugs were only predicted in 1 study, showing a high vari-
ability in the resulting candidate sets. Interestingly, the studies that 
screened full databases also predicted antiviral drugs as top scorers 
(Supplementary Table 4). Of the 23 studies, 10 have not yet been 
peer-reviewed, which we discuss in the section on ‘A unified drug 
repurposing strategy’.

DL-based repurposing strategies. DL models can predict binding 
affinities or docking scores and have shown advantages over con-
ventional docking protocols. While standard docking protocols are 
limited to millions47, DL approaches can analyze billions of chemi-
cal compounds. This allows them to be applied to whole databases, 
which increases the diversity of the tested compounds and the like-
lihood of finding unconventional compounds47. Furthermore, they 
are capable of processing more (physico-)chemical features48 and 
can find features related to a non-favorable docking47. However, 
most of these methods require datasets for training, which often 
come from real docking simulations; thus, the performance of many 
DL-based approaches still rely on the accuracy of the docking soft-
ware used for training.

Ton et al.42 developed DeepDocking47, which utilizes quantitative 
structure–activity relationship models trained to predict docking 
scores of compounds targeting the SARS-CoV-2 3CLpro protein. 
It requires fewer docking pipelines, since it performs docking only 
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on subsets of compounds and can produce a reduced list of com-
pounds, which is also enriched in potential top hits.

Nguyen et al.49 developed the method MathDL, which utilizes 
low-dimensional mathematical representations of the drug–target 
protein complex structures, which are then fed to DL algorithms 
to predict binding energies of drug–protein complexes. For 
SARS-CoV-2, the authors used experimental binding affinity data 
from SARS-CoV ligand–3CLpro complexes from PDBbind and 
SARS-CoV protease inhibitors as training data to predict binding 
energies on DrugBank compounds for SARS-CoV-2 3CLpro (ref. 50) 
and does not depend on docking software.

Beck et al.44 developed a DL-based drug-target interaction predic-
tion model, named Molecule Transformer-Drug Target Interaction. 
It utilizes simplified molecular-input line-entry system (SMILES)51 
representations for drugs and protein sequences as input for train-
ing and predicts affinities. For SARS-CoV-2, the model was trained 
on commercially available antiviral drugs and viral target proteins. 
Antiviral drugs already used against SARS-CoV-2 were found 
among the candidate drugs identified.

Host-targeting approaches. Host-targeting approaches involve iden-
tifying potential drugs that interfere with host mechanisms that con-
tribute to viral pathogenesis, which also makes them less prone to 
drug resistance52,53. In addition, SARS-CoV-2 infections can trigger a 
hyper-reactive immune response characterized by the excessive release 
of pro-inflammatory cytokines and chemokines54. Thus, drugs that 
modulate the host immune response can benefit critically ill patients 
with COVID-19 by targeting specific dysregulated pathways54–56.

Signature-based approaches. Signature-based approaches primar-
ily utilize transcriptome datasets from samples infected with 
SARS-CoV-2 or closely related human coronaviruses to identify  

candidate drugs through connectivity mapping (Fig. 2), a 
well-established approach that relies on finding drug-induced 
expression signatures exhibiting reverse profiles to a disease 
signature57,58. Several studies adopted this as a primary method 
for identifying new therapeutics for COVID-19. Loganathan et 
al.59 performed differential expression analysis of virus-infected 
cells and extracted consistently dysregulated genes in infected 
conditions. They were used to query the Connectivity Map data-
base58 for drug perturbation profiles exhibiting anti-correlated 
expression signatures. A modified approach was implemented by  
Jia et al.60, wherein expression data from infected and healthy 
individuals were used as input to a pathway-guided drug  
repurposing framework. They identified disease co-expression 
clusters and performed enrichment analyses prior to reverse  
signature matching60.

Network-based approaches. The general network-based approach 
applied in drug repurposing studies on COVID-19 integrates 
multiple data sources, including virus–host interactions, PPIs, 
co-expression networks, functional associations or drug–target 
interactions (Fig. 2). Network-based algorithms or topology mea-
sures are applied to the assembled networks to identify relevant 
host protein targets or regions of the host interactome that can  
be targeted.

Multiple studies implement random-walk-based algorithms 
as the primary method to identify new putative drug targets. Law 
et al.61 implemented several algorithms on a virus–host interactome 
to identify additional SARS-CoV-2 interactors. The coronavirus 
spike protein primarily has been established to mediate viral entry 
into host cells62. Similarly, but focusing on a specific context, Messina 
et al.63 explored the pathogenic mechanisms triggered by the spike 
protein using data from three closely related coronaviruses. They 
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implemented a random walk algorithm on assembled molecular 
networks using the spike protein as seed to identify relevant targets 
for COVID-1963. In addition, CoVex64 implemented TrustRank65, 
a variant of the PageRank66 algorithm, to propagate scores  
from user-defined seeds to the other host proteins and rank host 
drug targets.

Network proximity relies on the principle that a drug can 
be effective if it targets proteins within the neighborhood of 
disease-associated proteins in the interactome67. Zhou et al.68 uti-
lized this concept to compute the network proximity measure 
between drug targets and coronavirus-associated proteins in the 
human interactome. They also used the ‘complementary exposure’ 
pattern, which is based on the shortest distance between targets of 
two drugs predicted by network proximity, to identify potential 
drug combinations to treat COVID-19 patients68.

Several studies combined multiple network-based strategies to 
predict drug candidates. Gysi et al.69 characterized and extracted 
a COVID-19 disease module using experimentally determined 
SARS-CoV-2 interactors. They performed network-based analyses 
accounting for tissue specificity and potential disease comorbidities. 
They employed a multi-modal approach to the virus–host interac-
tome integrating network proximity, diffusion state distance and 
graph convolutional networks (GCNs) to identify drugs that can 
perturb the activity of host proteins associated with the COVID-19 
disease module. The final drug list was obtained by rank aggrega-
tion from the different pipelines69.

CoVex64 is a web platform for exploring SARS-CoV and SARS- 
CoV-2 virus–host–drug interactomes64. Users can predict drug 
targets and drug candidates using several graph analysis meth-
ods that allow custom seed proteins as input. For instance, 

KeyPathwayMiner70 is a network enrichment tool that identifies 
condition-specific subnetworks by extracting a maximally con-
nected subnetwork from the host interactome starting from the 
seeds. CoVex also implements a weighted multi-Steiner tree method 
that aggregates several non-unique approximations of Steiner trees, 
which are subnetworks of minimum cost connecting the set of 
seeds, into a single subnetwork.

Other studies additionally utilize machine learning to predict 
drug candidates against SARS-CoV-2. Belyaeva et al.71 implemented 
a hybrid approach between signature matching and network-based 
methods. Using autoencoders, they learned feature embeddings 
for drugs using drug-induced expression profiles to identify drugs 
exhibiting reverse profiles to the SARS-CoV-2 infection signature. 
Steiner tree and causal network discovery algorithms were then 
used to extract the mechanisms mediated by both SARS-CoV-2 and 
aging71. Ge et al.72 constructed a virus-related knowledge graph and 
employed a GCN algorithm. The list of drug candidates was further 
filtered for existing evidence of antiviral activities through text min-
ing72. Similarly, Zeng et al.17 assembled a large-scale knowledge graph 
derived from PubMed articles. A GCN model was then applied to 
learn low-dimensional embeddings of the nodes and edges17.

Lessons learned
In the following, we examine the quality and potential of the 
reviewed data resources and computational methods in order to 
improve the response in future pandemics.

Data resources. The availability of molecular datasets is a  
precondition to develop drug repurposing methods quickly. 
Besides that, network-based resources were a large driver in 
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drug repurposing. However, a large portion of the publications 
are based on only a few primary resources, which always induces 
the risk of bias or measurement errors. In addition, the only type 
of molecular interaction network used was PPI. Still, high confi-
dence PPIs are needed since, for instance, none of the approaches 
included structure data. In the future, other network types, such 
as gene regulatory networks, should be considered. Other data 
resources, such as off-label data for drugs, should also be inte-
grated in drug repurposing studies.

Finally, existing drug and trial resources were widely used for 
developing the drug repurposing pipelines. However, we observed 
no standardization in trial resources, making it hard to analyze 
trials for certain drugs due to different names, different spellings, 
or typing errors. Standardization is usually implemented for drug 
resources (for example, DrugBank), but some drugs undergoing 
trials could not be found in the databases. Keeping the resources 
up to date and interconnected should be a focus and will enhance 
accessibility.

Computational predictions. Assessing the quality of predictions 
is challenging, since many studies are not peer-reviewed, do not 
perform experimental evaluation, or rely on clinical trial databases. 
We examined the quality of predictions by determining the over-
lap between the final candidate drug lists from the individual stud-
ies and the drugs undergoing clinical trials from ClinicalTrials.gov 
(https://clinicaltrials.gov/) and Biorender (https://biorender.com/
covid-vaccine-tracker) databases. In addition, we provide supple-
mentary in vitro screening data, such as IC50 values for viral targets 
and inhibition indices from cell culture studies for SARS-CoV-2 
(Supplementary Data 1). Our effort to compile these data shows 
that a substantial number of predictions have not been experimen-
tally tested.

Evaluating virus-targeting approaches. We identified 53 drugs 
predicted with docking simulations that are undergoing current 
trials (Supplementary Table 5). Wu et al.40 identified most of the 
drugs (36 drugs); however, these drugs were predicted for mul-
tiple viral proteins (for example, chlorhexidine for 11 and meth-
otrexate for 6 different viral proteins). This indicates that their 
approach did not yield specific and feasible candidates. After 
excluding this study, the remaining drugs were only predicted for 
one specific protein each, except for chloroquine (3CLpro and 
PLpro) and remdesivir (3CLpro and RdRp). The top five drugs in 
clinical trials, which were predicted by docking simulations using 
the 3CLpro main protease, were predicted by 14.3% (darunavir), 
19.0% (remdesivir), and 23.8% (lopinavir, nelfinavir, ritonavir) 
of the total number of included docking studies (Supplementary 
Table 6), showing that for each drug, the majority of studies were 
not able to predict them. Similar drugs were identified by the 
DL approach of Beck et al.44, who identified ritonavir, lopinavir 
and remdesivir, which are being tested in multiple clinical trials. 
However, these antiviral drugs have not yet shown well-defined 
results in patients. For ritonavir/lopinavir, only four trials are 
completed73–76 and preliminary results suggest no difference in the 
outcome after treatment77–79. Further investigation is required80. 
For remdesivir, some trials have been completed and the prelimi-
nary results in patients81–83 and human cell lines84 showed that it 
could be effective in treating SARS-CoV-2 infection.

Antiviral drugs are always the top hits among a large selection 
of drugs from databases, indicating high accuracy of the methods. 
These drugs are good candidates for experimental screening or 
clinical trials, independently of how reliable the computational pre-
dictions are. More interesting candidates are the additional drugs 
identified by these approaches; however, little experimental valida-
tion is available for these drugs and the majority of them do not 
enter clinical trials. A similar situation is observed in the emerging 

field of DL approaches, where most studies focused on demonstrat-
ing the accuracy of their predictions and developing benchmark-
ing datasets85,86. DL and docking simulation-based approaches are 
promising tools to identify repurposable drugs given their capac-
ity to deliver results in a short time. While a standard workflow is 
already established for docking simulations, DL-based approaches 
might robustly deliver testable candidate drugs. However, docking 
studies in particular were rarely peer reviewed, found very different 
candidate sets and partially used different scores for evaluation and 
ranking. This makes it necessary to validate these results by system-
atic comparisons of experiments.

Evaluating host-targeting approaches. Host-targeting approaches 
typically involve integration and analysis of multiple omics types 
and employ data-driven network-based methods; thus, a major lim-
itation is the lack of gold-standard datasets and the scarcity of data 
from the MERS-CoV (Middle East respiratory syndrome coronavi-
rus) and SARS-CoV outbreaks. Prior to the availability of sufficient 
SARS-CoV-2-specific data, earlier studies utilized preliminary data 
or augmented the analyses using data from closely related viruses. 
While the quality of the predictions is highly data-dependent, con-
tinued generation of SARS-CoV-2-specific omics data and pending 
results on clinical studies are expected to improve the predictions. 
Clinical expert knowledge remains crucial for filtering the drug 
predictions based on criteria such as toxicity and pharmacological 
properties. However, the efficacy of these candidate drugs in trial 
remains to be established and firm conclusions cannot be made 
because of the limited data availability.

The degree of overlap with drugs in clinical trials was generally 
low (Supplementary Tables 7 and 8), but more than half of the 
drugs (26 out of 41) predicted by an ensemble method primarily 
based on knowledge graphs17 are also undergoing clinical trials. 
While it should be noted that the drugs registered for clinical tri-
als were also used as their validation set at the time of writing, 
more of their predicted drugs were registered for clinical trials 
later on. We also noted several drugs that were predicted by both 
signature-based and network-based approaches and thus war-
ranted further examination (Supplementary Table 9). Ribavirin 
was predicted by four out of six studies17,60,69,71, thereby provid-
ing a mechanistic basis for its predicted efficacy. Methotrexate,  
which is indicated for rheumatoid arthritis, was also predicted by 
three studies17,68,69.

It is worth noting that several predicted compounds are cur-
rently used to treat critically ill COVID-19 patients. An example 
is dexamethasone (predicted by one signature-based60 and two 
network-based studies17,69), which was supported by the RECOVERY 
trial87. Hydrocortisone (predicted by three studies17,68,69) has also 
demonstrated efficacy for critically ill patients88. Dexamethasone 
and hydrocortisone are corticosteroids that act by modulating an 
overactive immune response, which is typically observed in severely 
ill COVID-19 patients.

Notably, drugs reaching advanced phases in clinical trials were 
not selected based on in silico predictions, but were repurposed 
based on clinical experience with the previous SARS or MERS out-
breaks89 and selected based on known effects in alleviating disease 
symptoms. Furthermore, the predictions were not followed-up by 
experimental validation in the majority of the studies reviewed. This 
translational gap between computational efforts for drug repurpos-
ing and clinical application is a major and widely recognized bottle-
neck in drug repurposing and medicine in general. Results from 
systematic validation efforts will also be important for identifying 
the algorithms and datasets that are specifically suitable for drug 
repurposing in the COVID-19 context. Given the urgency of identi-
fying effective therapies in a pandemic, close collaboration between 
clinicians, experimental biologists and computational biologists is 
expected to address this gap.
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A unified drug repurposing strategy. Although overlaps between 
computationally predicted drug repurposing and clinical trials exist, 
there are no indications that clinical trials were conducted based on 
computational predictions, despite their promising potential. For 
future pandemics, computational tools should be able to deliver 
promising sets of candidates, which could then be validated in trials 
or screenings. Therefore, a unified strategy is necessary. In the fol-
lowing, we identify important issues and discuss potential solutions 
to make computational drug repurposing more effective.

Availability of standardized data. Newly developed methods often 
rely on the same data types (Fig. 3a). The fast generation of differ-
ent kinds of data in future disease outbreaks is a key initial step. 
Notable examples are the interaction data from Gordon et al.11 and 
the publication of the 3CLpro90 structure, which were both used 
by many subsequent studies. However, experimental replication 
of datasets obtained from different laboratories and the integra-
tion of different data types are crucial to increase robustness and 
require improvement.

Tool accessibility. Despite the large variety of computational tools and 
software, it has so far been of limited practical use to clinical research-
ers during the COVID-19 pandemic (Fig. 3b). For virus-targeting 
therapies, docking pipelines remain stable and a large amount of 
software has been developed; however, their corresponding outputs 
showed wide variability depending on the algorithm used, lower-
ing comparability (standardization problem). For host-targeting 
therapies, the in silico pipelines are more methodologically diverse 
and several strategies were developed to target specific biological 
contexts. However, the general availability of computational tools 
and software in the context of the COVID-19 pandemic has been 
highly limited. Tool accessibility allows researchers to run custom 
analyses using the developed algorithms (for example, on newly  
available data). This will help non-computational scientists to use 
these tools and continue with validation routines, avoiding many 

preprint manuscripts that are never validated and consequently 
accelerating research.

Consolidation of predictions. Results from different approaches were 
not entirely integrated. In structure-based repurposing approaches, 
candidate drugs obtained from different docking tools or homology 
modeling methods could be consolidated to provide an ensemble 
of repurposable drugs (Fig. 3b). For host-targeting therapies, one 
study used rank aggregation to integrate results from different algo-
rithms69. Another study derived the final predictions by combin-
ing the output of their model with results from gene set enrichment 
and expert knowledge68. While it should be noted that the drugs in 
clinical trials were used to develop the methods, these two stud-
ies predicted the highest proportion of overlaps with drugs being 
tested in clinical trials. The latter shows the potential of ensemble 
approaches, which are well known to output more robust results91,92. 
Consolidation of multiple approaches could significantly increase 
confidence for repurposing candidates and guide clinical research-
ers through the drug selection process. This requires a streamlined 
solution, considering tool accessibility and standardization, as 
in a standardized database that stores drug candidate predictions 
enabling meta-analyses.

Combinatorial treatment development. Computationally identifying 
synergistic drug combinations is an underexplored domain which 
could provide highly valuable information to augment clinical 
decision-making, since they have been demonstrated to be more 
effective than finding monotherapies91,92 (Fig. 3c). So far, target-
ing of viral and host proteins has been performed independently. 
There is a lack of methods aiming to find complementary drug 
groups while considering side effects. Combining drugs from both 
virus- and host-targeting categories is a promising strategy that 
acts by blocking the viral and host molecular machinery required 
for SARS-CoV-2 entry into cells and disrupting the host pathways 
involved in disease progression in combination with inhibitors for 
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viral replication. While thousands of compounds can be evaluated 
in vitro90, combinatorial validations are considerably more challeng-
ing. Predicted combinatorial treatments could drastically reduce the 
search space for subsequent in vitro validation. Existing screening 
databases such as the NIH OpenData portal93 or the ReFRAME 
library94 have been sparsely used, but their potential has not been 
exhausted. By extending them with in silico predictions, they 
could link in silico and in vitro research, and help identify promis-
ing combinatorial treatments. Furthermore, screening results help 
verify computational predictions. Especially for docking simula-
tions, model predictions and parameters can be easily released in 
a standardized format, which can be evaluated by experimental 
researchers. For host-targeting therapies, the study of Zhou et al.68 
is an example of a combinatorial approach. Furthermore, several 
trials are registered for combination therapy that include candidate 
drugs from both categories; of these, ten drugs were included in the 
predictions from the reviewed studies (Supplementary Table 10). 
However, these drugs are either in the recruitment phase or limited 
results were reported; thus, data regarding their effectiveness has 
been inconclusive.

Expert knowledge. Limited understanding of the complex biologi-
cal mechanisms underlying COVID-19 has required expert knowl-
edge or manual curation in certain stages of the workflow, either 
at protein or pathway selection or at filtering of drug predictions 
(Fig. 3d). Expert vetting is mainly intended to uncover inconsistent 
or contradictory results while still allowing the identification of 
new predictions and can be crucial for filtering candidate drug lists 
for possible adverse side effects. To illustrate this, the antimalarial 
drug (hydroxy)chloroquine raised concerns regarding its potential 
toxicity. Chlorhexidine was found by a docking-based study40 as a 
potential drug targeting SARS-CoV-2 proteins; however, chlorhexi-
dine is a widely used disinfectant whose mechanism of action is not 
SARS-CoV-2-specific and it is approved for topical or dental appli-
cation only95. Consequently, the use of expert knowledge for careful 
evaluation of potential repurposable drugs would have been helpful 
to allocate limited experimental and computational resources on 
safe and effective drugs that have greater potential for widespread 
application. Close collaboration between computational and clinical 
researchers is therefore crucial, because computational approaches 
are still limited in side effect data and annotations for drug actions 
on the targets.

Validation strategies. Drug repurposing studies usually validate the 
computational models by constructing their own ‘ground truth’; 
these can include data from in vitro screening of predicted com-
pounds, in vivo experiments using animal models, ongoing clinical 
trials, electronic health records, literature mining or expert knowl-
edge96 (Fig. 3e). Thus, there is considerable heterogeneity in the 
sources of these standards, but efforts are ongoing to address this. 
For instance, newly released databases, such as the NIH’s OpenData 
portal93, collect and continuously update SARS-CoV-2 in vitro 
screening data for thousands of compounds and other SARS-CoV-
2-related assays. We encourage future studies to utilize such 
resources for further validation or filtering of in silico predictions. 
However, except for one study,69 no direct follow-up experimental 
validation has been performed in the drug repurposing efforts for 
COVID-19. In the reviewed studies, validation was implemented 
through several strategies. Some studies performed signature 
matching of drug profiles or gene set enrichment analysis17 to pro-
vide evidence of the potential effectiveness69,72. Others evaluated the 
performance of their pipelines using the drugs undergoing clinical 
trials for COVID-1917,69 or experimental results from in vitro drug 
screening69. However, an extensive list of candidate drugs remains 
experimentally invalidated; thus, systematic validation of candidate 
drugs would be required to provide a landscape of the accuracy of 

methods. Since this is infeasible in practice, combining the predic-
tions with expert knowledge becomes even more important.

The proposed strategy in this work has the potential to address 
the gaps of previous studies and is intended to serve as a guideline 
on computational drug repurposing to accelerate research, promote 
standardization, and react faster and more precisely in the case of 
future pandemics.
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Lacking mechanistic disease definitions and
corresponding association data hamper
progress in network medicine and beyond

Sepideh Sadegh 1,2, James Skelton3, Elisa Anastasi3, Andreas Maier 2,
Klaudia Adamowicz2, Anna Möller 4, Nils M. Kriege 5,6, Jaanika Kronberg 7,
Toomas Haller7, Tim Kacprowski 8,9, Anil Wipat3,11, Jan Baumbach 2,10,11 &
David B. Blumenthal 4,11

A long-term objective of network medicine is to replace our current, mainly
phenotype-based disease definitions by subtypes of health conditions corre-
sponding to distinct pathomechanisms. For this,molecular and healthdata are
modeled as networks and are mined for pathomechanisms. However, many
such studies rely on large-scale disease association data where diseases are
annotated using the very phenotype-based disease definitions the network
medicine field aims to overcome. This raises the question to which extent the
biases mechanistically inadequate disease annotations introduce in disease
association data distort the results of studies which use such data for patho-
mechanism mining. We address this question using global- and local-scale
analyses of networks constructed from disease association data of various
types. Our results indicate that large-scale disease association data should be
used with care for pathomechanism mining and that analyses of such data
should be accompanied by close-up analyses of molecular data for well-
characterized patient cohorts.

Since the seminal articles by Goh et al. 1 and Barabási et al. 2, network
medicine has developed into an increasingly mature and diverse
research field with its own dedicated journals3, associations4, and
subfields. One of the network medicine field’s long-term objectives is
to replace our current mainly phenotype-based disease classification
systems by amechanistically grounded disease vocabulary5–7. In such a
vocabulary, phenotype-based disease definitions are replaced by so-
called endotypes, i.e., distinct molecular mechanisms underlying the
disease phenotypes. Once properly disentangled into disjoint,

individually targetable endotypes5, disease-modifying treatment stra-
tegies might become available for diseases which, at the moment, can
be treated only symptomatically.

Two clarifications are required to define the scope of this paper:
Firstly, we use the term “endotype” to denote molecular endotypes as
explained by Anderson8, Lötvall et al. 9, and Nogales et al. 5 – i.e., the
underlying molecular mechanisms driving disease phenotypes. There
are other works where the term “endo(patho)phenotype” denotes
common intermediate phenotypes6 such as inflammation, fibrosis, or
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thrombosis which drive phenotypic disease manifestations10,11. Sec-
ondly, wewould like to stress that compiling a endotype-based disease
vocabulary is a genuinely biomedical rather than a semantic endeavor:
It does not consist in redefining semantic relationships between
existing disease terms but in uncovering currently unknownmolecular
disease mechanisms and dissecting umbrella diseases such as Alzhei-
mer’s disease or coronary artery disease into endotypes which are
clearly characterized at a molecular level5.

In order to reach the objective of an endotype-based disease
vocabulary, network medicine approaches aim at uncovering patho-
mechanisms driving diseases. Here, we broadly distinguish between
close-up and bird’s-eye-view (BEV) network medicine approaches,
depending on the data used as primary input towards this task (this
distinction is of course an idealized binarization of a continuous
spectrum, but serves as a conceptual framework for this article). Close-
up networkmedicine studies focus on a specific disease and start their
analyses with molecular data for well-characterized patient cohorts.
Such studies are typically carried out as close collaborations between
bioinformaticians and domain experts from the biomedical sciences.
They tend to be time- and labor-intensive and often involve the
development or customization of data analysis methods for specific
datasets. The most impressive translational results of the network
medicine field have been reached via such close-up studies. For
instance, close-up studies have led to novel mechanistic insights into
type 2 diabetes12, liver fibrosis13, pulmonary arterial hypertension14,
asthma15, hypertrophic cardiomyopathy16, pre-eclampsia17, chronic
obstructive pulmonary disease, and idiopathic pulmonary fibrosis18.

In contrast to that, BEV approaches use large-scale disease asso-
ciation data that are typically gathered from several data sources.
Various studies have generated evidence for the validity of this overall
approach: For instance, Menche et al. 19 demonstrated that disease-
associated genes form so-called disease modules, i.e., highly con-
nected subnetworks within protein-protein interaction (PPI) networks,
and that biological and clinical similarity of two diseases results in
significant topological proximity of these modules. In a similar vein,
Iida et al. 20 showed that shared therapeutic targets or shared drug
indications are correlated with high topological module proximity.
Guney et al. 21 and Cheng et al. 22 showed that the network-based
separation between drug targets and disease modules is indicative of
drug efficacy. Cheng et al. 23 and Zhou et al. 24 found that FDA-
approved drug combinations are proximal to each other and to the
modules of the targeted diseases in the interactome.

Despite thepromisingfindings summarized above, several studies
have pointedout important biases in the data usedby BEV approaches.
Menche et al. 19 have studied the effect of incompleteness of disease-
gene association and protein-protein interaction (PPI) data on network
medicine. Schaefer et al. 25 have shown that the previously
observed26–28 high node degree of cancer-associated proteins in PPI
networks can largely be explained by the fact that cancer-associated
proteins are tested more often for interaction than others. Lazareva
et al. 29 found that widely used methods to mine PPI networks for
pathomechanisms inherit this bias in that they mainly learn from the
node degrees instead of exploiting the biological knowledge encoded
in the edges of the PPI networks. Haynes et al. 30 showed that study bias
also distorts functional gene annotation resources such as the Gene
Ontology (GO)31. Kustatcher et al. 32 made a similar point for functional
protein annotations and sketched a roadmap for systematically
exploring the understudied part of the proteome. Stoeger et al. 33 and
Rodriguez-Esteban34 looked into reasons that might lead to the
emergence of gene study bias and identified, respectively, a limited
number of biological characteristics33 and speed of information pro-
pagation between scientific communities as potential drivers34.

While the aforementioned studies have analyzed the impact of
various types of data biases related to genes and proteins (and, to a
lesser extent, also variants), the disease part of disease-gene and other

disease association data introduces another, so far unstudied type of
data bias: In currently available large-scale disease association data,
diseases are annotated with the very phenotype-based disease defini-
tions the network medicine field aims to overcome. BEV approaches
hence risk to systematically reproduce the biases introduced by these
disease definitions. Consequently, BEV approaches make the implicit
assumption that the biases introduced by phenotype-based disease
definitions even out and that, despite those biases, disease association
data using these definitions still contain useful information about the
pathomechanism that are to be uncovered.

In this work, we quantify to which extent this implicit assumption
is indeed backed by data. Towards this end, we construct disease-
disease networks (called “diseasomes” in the remainder of this article)
basedon (1) disease-gene associations, (2) disease-variant associations,
(3) comorbidity data, (4) symptom data, and (5) drug-indication data,
as well as drug-disease and drug-drug networks (called “drugomes”)
based on drug-indication and drug-target data.We then formulate two
testable hypotheses that follow from the implicit assumption of BEV
network medicine: The global-scale hypothesis states that, globally,
networks constructed from twodifferent types of associationdata that
both contain useful information about endotypes should be pairwise
more similar than expected by chance. The local-scale hypothesis
states that this should hold not only globally but also for the neigh-
borhoods of the individual diseases and drugs represented by nodes in
the constructed networks.

In line with the findings of prior studies20–24, our analyses provide
solid evidence for the global-scale hypothesis. However, they only
partially support the local-scale hypothesis. Figuratively speaking, BEV
networkmedicine henceonly allows a distal view at the endotypes that
are to be discovered. When zooming in on individual diseases, the
picture becomes blurred and less reliable (see Fig. 1 for a conceptual
visualization and Fig. 2 for a concrete exemplification of this phe-
nomenon in the context of neurodegenerative diseases). This implies
that, in order to yield translational results, BEV approaches need to be
supplemented with additional layers of molecular data for well-
characterized patient cohorts and a dedicated focus on the specific
diseases which are being investigated. In particular, fine-grained
molecular patient data are crucial for implementing network medi-
cine’s long-term objective to replace current phenotype- or organ-
based disease definitions bymechanistically grounded endotypes. The
main finding of this study is hence that the biases current disease
definitions introduce in large-scale disease association databases such
as OMIM and DisGeNET do not even out and that such databases
should be used with care in all fields of data-centric biomedicine:
Instead of blindly using public disease association data out of con-
venience for pathomechanism mining, we strongly recommend bio-
medical researchers to always consciously ponder to which extent
biases in these data introduced by phenotype-based disease terms
threaten to distort their potential findings.

Results
Neurodegenerative diseases as case example
Before presenting the comprehensive results of our analyses, we
visualize the phenomenon of local blurriness in BEV networkmedicine
with a small example. We compiled a list of diseases that fall under the
parent term “neurodegenerative disease” in the MONDO disease
hierarchy. Fromthose,wekept diseases forwhichwehave nodes in the
alignedgene- anddrug-baseddiseasomes. This led to a cluster of seven
neurodegenerative diseases which are highly connected in both dis-
easomes. Figure 2 shows this cluster, together with the contained
diseases’ local empirical P-values obtained from the comparison of
gene- and drug-based diseasomes in MONDO space, the global
empiricalP-value, aswell as the cluster-level empiricalP-value (see next
subsection and Methods for explanations on how we obtained the
P-values).While only two local empirical P-values are significant at 0.05
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level, the cluster-level and global empirical P-values are significant at
levels 0.01 and 0.001, respectively.

Overview of analyses
Let D be disease association data of some data type T commonly used
by BEV approaches (e.g., disease-gene associations). Further assume
that D contains entries Dðd1Þ and Dðd2Þ for two diseases d1 and d2 that

share an unknown molecular disease mechanism. Then this shared
mechanism should lead to similarities between Dðd1Þ and Dðd2Þ, given
that D indeed contains useful information about disease
mechanisms35. For instance, we would expect that the diseases d1 and
d2 have similar profiles of disease-associated genes, that they exhibit
high comorbidity, that they lead to similar symptoms, and that they
can be treated by similar drugs. We can capture such similarities in

Fig. 2 | Locally blurred results for neurodegenerative diseases. The color gra-
dient visualizes local-, global-, and cluster-level empirical P-values (one-sided,
unadjusted) obtained from the comparison of gene- and drug-based diseasomes in
MONDOvocabulary. The gene-based diseasomewas constructed based ondisease-
gene association data integrated from DisGeNET36 and OMIM43 and two diseases

were connected by an edge if they share at least one disease associated gene. The
drug-based diseasome was constructed based on drug-indication data integrated
from CTD48 and DrugCentral37 and two diseases were connected by an edge if they
share at least one indicated drug.

Fig. 1 | BEV vs. close-up network medicine. a BEV network medicine mainly uti-
lizes large-scale disease association data where diseases are annotated with
phenotype-based disease definitions (b, bottom). BEV network medicine inherits
the bias introducedby these definitions, which leads to a blurred view on individual

pathomechanisms (b, top). c Close-up network medicine uses patient-level mole-
cular data and is hence less dependent on the phenotype-based disease definitions
that network medicine aims to replace by mechanism-based endotypes.

Article https://doi.org/10.1038/s41467-023-37349-4

Nature Communications | ��������(2023)�14:1662� 3



diseasomes,wherediseasesd1 andd2 are connectedby anedge ifDðd1Þ
and Dðd2Þ are sufficiently similar. In order to assess the implicit
assumption of BEV network medicine approaches with quantitative
means, we hence formulate the following testable hypotheses (see
Methods for an argument to support these hypotheses):

• Global-scale hypothesis: For all disease association data D1 and
D2 that are assumed to contain useful information about
endotypes (e.g., disease-gene association and drug-indication
data from databases such as DisGeNET36 and DrugCentral37),
diseasomesG1 andG2 constructed based onD1 andD2 should be
pairwise more similar than expected by chance.

• Local-scale hypothesis: For all disease association dataD1 andD2
that are assumed to contain useful information about endotypes
and any disease term d that appear in D1 and D2, the direct
neighborhood of d in the diseasomes G1 and G2 constructed
based on D1 and D2 should be pairwise more similar than
expected by chance. For example, under the assumption that
disease-gene and drug-indication databases such as DisGeNET
and DrugCentral contain useful information about Alzheimer’s
disease (AD) mechanisms, there should be a significant overlap
between the set of diseaseswhose associated genes overlapwith
AD-associatedgenes and the set ofdiseaseswhichcanbe treated
with drugs also indicated for AD.

To test these two hypotheses, we constructed various disea-
somes, drugomes, and drug-disease networks based on different data
types. An overview of the used data types and derived networks is
shown in Fig. 3a. Using customized versions of the graph edit distance
(GED)38,39, we then compared these networks in a pairwise manner
both on a local scale, i.e. zoomed-in on individual disease or drug
nodes, and on a global scale. More precisely, we generated 1000 per-
muted networks as randomized counterparts for each network. Sub-
sequently, we compared the distributions of local and global GEDs
obtained for the original networks to GED distributions obtained for
randomized counterparts. Network randomization and computation
of local and global GED are illustrated in Fig. 3b, c. While local GED
measures the dissimilarity between the individual nodes’ neighbor-
hoods in the compared networks, global GED is a measure for the
overall dissimilarity of the networks.

We also evaluated how annotating the data using disease voca-
bularies of different granularity affect the results, by carrying out the

analyses using MONDO IDs40 and UMLS CUIs41 (finer granularity) and
ICD-1042 three-character codes (coarser granularity) as node IDs in the
constructed networks, respectively. To this end, where possible, we
constructed the networks in MONDO, UMLS CUI, and in ICD-10 voca-
bulary (using three-character level codes). Note that analyses involving
comorbidity data were carried out only in ICD-10 and the comparison
between target- and indication-based drugomes only in MONDO
vocabulary (see Methods for an explanation). Moreover, neither the
semantic layers of the MONDO disease ontology nor the hierarchy of
the UMLSCUI and ICD-10 classification systemwere used to add edges
to our diseasomes. MONDO, UMLS CUI, and ICD-10 were only used as
vocabularies, i.e., to provide the node IDs in our networks. Whether
two disease nodes are connected by an edge exclusively depends on
the primary databases containing the association data (uponmapping
to MONDO, UMLS CUI, or ICD-10). For instance, two diseases are
connected in the gene-based diseasome in MONDO vocabulary if the
intersection of the sets of genes associated with their MONDO IDs is
non-empty, where disease-gene associations were obtained from
OMIM43 and DisGeNET36.

GED quantifies the dissimilarity between two networks as the
minimumcost of an edit path transforming onenetwork into the other.
Edit paths are sequences of elementary edit operations (node and edge
insertions, substitutions, and deletions), all of which come with asso-
ciated edit costs. Hence, the GED is a distance measure between two
networks.We computed three different versions ofGEDusing uniform,
weight-based, and rank-based edge editing costs, respectively.Uniform
edit costs discard the association strengths of the edges in the com-
parednetworks;weight- and rank-based edit costs incorporate themby
making it more expensive to delete or insert edges with strong asso-
ciations or to substitute them by edges with weak associations. Cor-
roborating the robustness of our analysis method, we obtained similar
results for all three versions of GED. In the following, only the results of
uniformedit costs are reported. Results for rank- andweight-based edit
costs can be found in Supplementary Figs. 1–4 and 9–12, respectively.
More details on disease vocabulary mapping, network construction,
and GED computation can be found in Methods.

Results of global-scale analyses
To test the global-scale hypothesis, we computed empirical P-values
for each pair of networks based on global GEDs (Fig. 4a, left panel). For
all evaluated pairs of networks (in MONDO, UMLS CUI, and ICD-10

Fig. 3 | Overview of compared networks and graph edit distance computation.
aWe compared five different types of disease-disease networks (diseasomes), two
different types of drug-drug networks (drugomes), and two different types of drug-
disease networks. Pairwise comparisons between those networks were carried out
using local and global graph edit distance (GED). b Local GED was used to quantify

the dissimilarities of the individual nodes’ neighborhoods across different net-
works in comparison to pairs of randomly rewired networks. c Global network
dissimilarities were computed using global GED, obtained by summing up the local
GEDs of the individual nodes.
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vocabularies), we obtained smaller global GEDs for the original dis-
easeomes, drugomes, or drug-disease networks than for randomized
counterparts, leading to empirical P-values which are significant at
0.001 level. Differences between GEDs obtained for permuted and a
selection of original networks are shown in Fig. 4b. For the full results
of our global-scale analyses, see Supplementary Fig. 5.

Moreover, we performed analyses based on shortest path dis-
tances between disease-disease, drug-drug, and drug-disease pairs in
disease-gene-gene-disease, drug-protein-protein-drug, and disease-
protein-protein-drug networks, where protein-protein and gene-gene
links were obtained from PPIs. We then compared shortest path dis-
tances for node pairs which do and node pairswhich do not have a link
in different reference networks, using theMann-WhitneyU (MWU) test
(Fig. 4a, right panel).

For all shortest path analyses, we observed that shortest path
distances are significantly shorter for node pairs that are connected by
a link in the reference networks (see Fig. 4c for a selection of the
results). In particular, the results show (1) that distances between dis-
eases that are connectedby edges in diseasomes constructedbasedon

comorbidities, shared drugs, shared symptoms, or shared genetic
variants are significantly shorter than distances between diseases
without such edges (Supplementary Fig. 6a–d); (2) that distances of
disease-drug pairs with shared indication edges are significantly
shorter than distances of disease-drug pairs without such edges
(Supplementary Fig. 6e); and (3) that distances between drug pairs
with shared indication are significantly shorter than distances for drug
pairs without shared indications (Supplementary Fig. 6f). In sum, our
global analyses hence provide solid evidence for the global validity of
the BEV network medicine paradigm and hence further corroborate
the findings of previous studies19–24.

Results of local-scale analyses
To test the local-scale hypothesis, we computed P-values using the
one-sidedMWU test based on local GEDs to evaluate whether the local
distances for the original networks are significantly smaller than the
local distances for the permuted counterparts (Fig. 5a, left panel).
Local GEDs of nodes obtained for the permuted and a selection of
original networks and the corresponding MWU P-values are shown in

Fig. 4 | Global-scale analyses. a Illustration of global-scale analysis methods. Left
panel: Statistical analyses based on global GED via empirical P-values. Right panel:
Statistical analyses based on shortest path distances via MWU test. bDifferences of
global GEDs (based on uniform edge edit costs) between a selection of original
networks and their counterpart permuted networks, and corresponding global
empirical P-values (one-sided, unadjusted) in MONDO, UMLS, and ICD-10 voca-
bularies. All obtained global empirical P-values are at the lower resolution limit of
our permutation tests with 1000 randomized network pairs. c Selected results of

shortest path analyses and the corresponding MWU P-values (one-sided, unad-
justed). Left: Disease distances in gene-based disease-disease network vs.
comorbidity-based diseasome as the reference network. Middle: Drug-disease
distances in protein-based drug-disease network vs. drug-indication network as the
reference network. Right: Drug distances in protein-based drug-drug network vs.
indication-based drugome as the reference network. All networks underlying the
results shown in (c) are constructed in the MONDO vocabulary.
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Fig. 5b (for the full results of the local-scale analyses, see Supplemen-
tary Fig. 7). The overview of the results of the local GED analyses in
different vocabularies shows that the comparisons performed in ICD-
10 vocabulary (at three-character level) led to more significant simi-
larities than the ones performed in MONDO or UMLS CUI vocabulary
(Fig. 6a and Supplementary Fig. 4a). As an example, the P-value com-
puted from the local GEDs of drug-based vs. gene-based diseasomes in
ICD-10 vocabulary is significant at 0.0001 level (P≈7:1× 10#7), while it
is not significant in the MONDO and UMLS CUI vocabularies (P≈0:071
for MONDO, P≈0:079 for UMLS CUI).

The results of the MWU test for local GED analyses point out that
wehavemore significant similarities in ICD-10 (8 out of 10 significant at
0.05 level) than in MONDO vocabulary (2 out of 6 significant at 0.05
level) or UMLS CUI vocabulary (1 out of 6 significant at 0.05 level). The
results also suggest that variant-based diseasomes have higher simi-
larities with other diseasomes (7 out of 10 comparisons significant at
0.05 level) than gene-based diseasomes (5 out of 10 comparisons
significant at 0.05 level), considering all three vocabularies. By
inspecting the P-values of drug nodes (3 out of 3 comparisons sig-
nificant at 0.05 level) against disease nodes (0 out of 3 comparisons
significant at 0.05 level) obtained from local-similarity analyses of
indication- versus protein-based drug-disease network as well as
P-values obtained from target- and indication-based drugome (sig-
nificant at 0.001 level), we discovered that, in general, drug neigh-
borhoods are better preserved across the compared networks than
disease neighborhoods (Fig. 6a, bottom right panel).

Furthermore, we computed local empirical P-values individually
for nodes based on local GEDs (Fig. 5a, right panel). The local empirical
P-values for all network comparisons are shown in Supplementary
Fig. 8. The fractions of significant local empirical P-values at 0.05 level
are shown in Fig. 6b and Supplementary Figs. 4b and 12b. Our results
show that, for a substantial fraction of disease nodes, local neighbor-
hoods are preserved not only not significantly better but worse than
expected by chance across the different diseasomes (compare sig-
moidal shape of curves in Supplementary Fig. 8). The local-scale
hypothesis hence seems to hold for some diseases, but does not hold
at all for others.

In follow-up analyses, we tried to identify patterns explaining
these results, e.g., by assessing whether there are certain chapters of
the ICD-10 disease vocabulary which are enriched with diseases with
very small or very large empirical P-values. However, no clear patterns
could be discovered, indicating that it is very hard to predict for which
concrete diseases BEV network medicine approaches can be expected
to yield robust and reliable results. Our local analyses hence only
provide weak evidence for the local-scale hypothesis, indicating the
BEV network medicine tends to produce locally blurred results.

Web tool for interactive exploration of results
In order to make our results explorable and actionable, we developed
the GraphSimViz (graph similarity visualizer) web interface, which is
freely available at https://graphsimviz.net. GraphSimViz allows bio-
medical researchers to query and visualize our findings for user-
selected drugs, diseases, network types, and disease vocabularies.
UsingGraphSimViz, biomedical researchers can assess if a specific type
of disease association data is likely to contain reliable information
about pathomechanisms underlying their diseases of interest. Below,
we illustrate how GraphSimViz can be employed for interactive
exploration of our results, using neurodegenerative diseases as a case
example. To enable quantification of the effect of biases introduced by
mechanistically ungrounded disease definitions in data sources not
covered by our study, we provide the GraphSimQT (graph similarity
quantification tool) Python package, which is freely available on
GitHub (https://github.com/repotrial/graphsimqt).

Discussion
Our results strongly support the global-scale hypothesis and, in line
with previous studies19–24, provide solid evidence for the overall
validity of the BEV network medicine paradigm. However, they also
indicate that results generated via BEV network medicine approa-
ches become less reliable when zooming-in on individual diseases.
Our results hence confirm that it is problematic to exclusively rely
on data annotated with phenotype-based definitions if the objective
is to uncover molecular pathomechanisms. As long as phenotype-
based disease definitions have not been replaced by endotypes,

Fig. 5 | Local-scale analyses:methods and local GEDs. a Illustration of local-scale
analysis methods. Left panel: Statistical analyses based on local GED viaMWU test.
Right panel: Computation of empirical P-values (one-sided, unadjusted) of each
node based on local GEDs. b Local GEDs (of all nodes) between a selection of
original networks vs. their permuted counterpart networks and corresponding

MWU P-values. Left: Similarities betweengene- and drug-based diseasome.Middle:
Similarities between indication- and protein-based drug-disease network (for
drugs). Right: Similarities between indication- and protein-based drug-disease
network (for diseases). Results shown in (b) are based on uniform edge edit cost.
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large-scale disease association databases should therefore be used
with care in network medicine and should be combined with addi-
tional layers of disease-specific omics data. In the following, we
further speculate on issues that might play a role in the local

blurriness of BEV network medicine and sketch a roadmap to
overcome this problem.

While there are vast amounts of datasets online that contain
useful information about diseases such as genetic associations,

Fig. 6 | Local-scale analyses: MWU P-values and local empirical P-values.
a Overview of MWU P-values (one-sided, unadjusted) computed from local GEDs
with levels of significance. b Fraction of significant local empirical P-values (one-

sided, unadjusted) at0.05 level computed from localGEDsonapair of networks for
the original vs. permuted network. All results are based on uniform edge edit cost.
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comorbidities, and symptoms, each of these datasets may use differ-
ent disease vocabularies to describe their associations. The vocabul-
aries have different degrees of granularity and are generated in
different ways and for different purposes. However, for downstream
(BEV) network medicine analyses, in order to jointly leverage the dis-
ease association fromvarious data sources that use disease terms from
different vocabularies as disease identifiers, we have to map data to a
joint target vocabulary. This is amammoth task that inevitably involves
losing some data due to unmappable terms (see Fig. 7 for the levels of
completeness of disease vocabulary mappings underlying this study).

The choice of the disease vocabulary has the potential to dra-
matically affect the results of downstream analyses (see discordant
results of local-scale analyses carried out using ICD-10 three-character
codes, on the one hand, and UMLS CUIs or MONDO IDs, on the other
hand, shown in Fig. 6a and Supplementary Fig. 4a). At the same time,
formost analysis tasks, the choice of the disease vocabulary is dictated
by the formatof thedata and, thus, often impossible to changewithout
losing information at the time of analysis. The vocabularies used to
annotate disease-associated data must hence be viewed as con-
founders which are very difficult if not impossible to control for.

Currently used disease vocabularies are not only used dis-
cordantly, but alsomechanistically inadequate: Since causalmolecular
disease mechanisms are often unknown, disease names often do not

denote suchmechanisms but rather reflect the person who coined the
disease term (e.g., “Alzheimer’s disease”), areas in the body that are
affected (e.g., “kidney stones”) or symptoms of the disease (e.g., “irri-
table bowel syndrome”). ICD-10 codes are considered inadequate due
to their overly inclusive designations, ranging from symptoms (e.g.,
cough) over syndromes (e.g., cachexia) to true endotypes with defin-
able molecular determinants (e.g., Mendelian disorders). This leads to
data that is blurred, as diseases with distinct pathomechanisms are
being aggregated together, e.g., due to symptom or organ common-
ality. This blurriness not only has severe clinical consequences
(patients with mechanistically distinct diseases receive the same
untargeted treatment), but also makes it very challenging to mine
disease-associated data for pathomechanisms via BEV network medi-
cine approaches44. Since such analyses often require case-versus-
control or subtype annotations as input, it is very difficult to obtain
meaningful results if the employed disease definitions are too
unspecific.

The results presented in this study, where drugome comparisons
have led to more significant results on a local level than diseasome
comparisons, are evidence that network-based analyses yield more
targeted and reliable results when the underlying annotations arewell-
defined (such as in drug vocabularies). Comparing the results of the
GED-based analyses for full diseasomes (global analyses) with those
obtained for analyses based on local GEDs in diseasomes with ICD-10
three-character codes, UMLS CUIs, and MONDO terms as nodes,
respectively, further highlights the detrimental effect of local blurri-
ness in currently used disease definitions: The higher the resolution of
the analysis, the less significant theobtainedP-values (see Fig. 8).When
using MONDO or UMLS CUI terms (fine granularity) as nodes in the
diseasomes, only the comparisons between gene- and variant-based
diseasomes consistently (with respect to uniform, weight-based, and
rank-based edit costs) led to smaller local distances in the original
networks than in their randomized counterparts. No other network
comparisons in the MONDO or UMLS vocabularies yielded significant
P-values for all three types of edit costs. When using ICD-10 three-
character codes (which denote disease clusters rather than individual
diseases), around 50% of all computedMWU P-values are significant at
0.001 level.When comparing the entirediseasomes via globalGEDs, all
empirical P-values are significant.

The fact that we could not identify any clear patterns among dis-
eases with small or large empirical P-values computed based on local
GEDs may be a consequence of some of the current phenotype-based
disease entities already corresponding to true endotypes.We speculate
that, for diseases where our current definitions already have a one-to-
one mapping to true endotypes, the local-scale hypothesis holds.

Fig. 7 | Levels of completeness of disease vocabularymappings underlying this
article. For each source-target vocabulary pair, mappability is computed as the
percentage of terms in the source vocabulary used in this study that could be
mapped to a term in the target vocabulary.

Fig. 8 | Effect of disease term granularity on results of GED-based analyses. For the individual P-values summarized in this figure, see Fig. 6a, as well as Supplementary
Figs. 1, 4a, 5, 9, and 12a.
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Even though we expected to obtain similar results for variant-
based and gene-based diseasomes, the local-similarity analyses show
that variant-based diseasomes have higher similarities with other dis-
easomes compared to gene-based diseasomes. This indicates that the
disease-gene associations underlying the gene-based diseasomes
contain less targeted information than the disease-variant associations
underlying the variant-based diseasomes. Hence, using disease-variant
data might yield more reliable results in the context of BEV network
medicine applications.

To seek a possible explanation for this difference, we had a closer
look at the associations underlying these two types of diseasomes. In
our study, as well as in many other network medicine studies1,2,22,45,46,
disease-gene associations were taken from OMIM and DisGeNET
curated databases. The latter collates disease-gene associations from
different databases: UniProt47, CTD48, Orphanet49, ClinGen50, Genomics
England51, CGI52, and PsyGeNET53. These constituent databases com-
prise multiple types of disease-gene associations such as causal
mutations (mutations known to cause the disease), modifying muta-
tions (mutations known to modify the clinical presentation of the
disease), or merely statistical associations without evidence of caus-
ality. Disease-variant associations used in our study were extracted
from DisGeNET, which itself integrates various databases: GWASdb54,
ClinVar55, GWAS Catalog56, UniProt, and BeFree57. Like for disease-gene
associations, there are different types of disease-variant associations,
ranging from known causal variants to variants with merely statistical
evidence. However, the heterogeneity of the association types is
higher for disease-gene associations than for disease-variant associa-
tions. Moreover, the genetic variation data from the constituent
disease-variant databases of DisGeNET is mainly taken from genome-
wide association studies (GWAS), which identify associations between
common genetic variants and phenotypic traits via hypothesis-free,
genome-wide scans. In contrast, in the disease-gene databases used by
DisGeNET, parts of the data are curated from studies where evidence
for disease-gene associations stems from a very limited number of
patients or where hypothesis-driven approaches were used (i.e. the
analyzed genetic variants were limited to those contained in candidate
genes selected a priori).

Another reason for the difference in results between gene-based
and variant-baseddiseasomesmay consist in the loss ofdetail resulting
from mapping variants to genes. Distinct mutations in one gene may
cause different phenotypes, but this information cannot be captured
at the level of disease-gene associations and is better conserved at
disease-variant level. A very good example is the LMNA gene, where
different mutations can cause 13 different diseases such as
Hutchinson-Gilfordprogeria syndrome and theDunnigan-type familial
partial lipodystrophy58. Finally, the difference in results between gene-
and variant-based diseasomes may also partly be due to loss of infor-
mation introduced when aggregating P-values for disease-variant
associations at gene level59.

A limitation of our study is that our results do not rule out the
possibility that confounders other than mechanistically inadequate
disease definitions lead to the observed local blurriness of BEV net-
work medicine. For instance, off-target effects might introduce biases
in our analyses using drug association data, while the known biases in
gene association data discussed above might explain the results
obtained for analyses involving gene association data. However, we
would like to stress that the obtained results are remarkably stable
across all employed data modalities (see distributions of the obtained
local empirical P-values in Supplementary Figs. 3, 8, and 11). Since
phenotype-based disease definitions are the only confounders that
affect all data types, this is strong (but of course not conclusive) evi-
dence that the observed local blurriness can indeed mainly be attrib-
uted to them.

We started our investigation with the question of whether biases
introduced by phenotype- and organ-based disease mechanisms even

out when mining large-scale disease association data for disease
mechanisms – an assumption implicitlymade by BEVmedical research
approaches. Our results indicate that this question has to be answered
negatively, which has several consequences for the network medicine
field and beyond.

Firstly, our findings imply that uncritical use of databases such as
DisGeNET orOMIMwhich rely onphenotype-based disease definitions
is problematic. Instead, we emphasize that close-up approaches
remain the gold standard in network medicine, where data scientists
collaborate with researchers from the biomedical sciences and jointly
analyze molecular as well as deep phenotype data for the same
patients. In such a collaborative setup, a positive feedback loop can
emerge, where initial hypotheses about disease subtypes and their
underlying pathomechanisms are formulated based on the analysis of
molecular data, further refined using deep phenotyping (e.g., histo-
logical images, blood-derived biomarkers, etc.) and expert knowledge
of the clinicians, and finally validated in preclinical studies (e.g., gain-
or loss-of-function studies). As mentioned above, such approaches
have already led to various important insights into specific disease
mechanisms.

Secondly, unsupervised network medicine methods are needed,
which not only return candidate pathomechanisms but at the same
time de novo stratify patients into mechanistically distinct subgroups
and hence do not rely on potentially misleading priorly available
phenotypically defined subtype annotations. While few such approa-
ches exist60–62, most existing pathomechanism mining methods still
rely onphenotypic case-versus-control annotations63,64 or lists of genes
associated with a (potentially ill-defined) disease term65–67.

Finally, we would like to point out that the current lack of
mechanistic disease definitions not only hampers progress in (BEV)
network medicine, but also has a detrimental effect on virtually all
other data-centric approaches to, e.g., treatment design or diagnosis
which rely on disease association data that utilize phenotype-based
disease definitions. For instance, an artificial intelligence model for
diagnosis assistance trained on genetic disease signatures will sys-
tematically produce unreliable results if the disease annotations used
for training do not correspond to true endotypes. While we here
quantified the effect of this problem in the context of BEV medicine,
overcoming it would hence be beneficial for a large fraction of the
biomedical research community.

Methods
Compliance with ethical regulations
Our research complies with all relevant ethical regulations. The only
non-public dataused for this study is the comorbidity dataweobtained
fromthe EstonianBiobank. TheEstonianBiobank is a population-based
biobank managed by the Institute of Genomics at the University of
Tartu. All participants have signed a broad consent upon joining the
biobank, allowing their sample and data to be used for further
research. ICD-10 diagnoses are obtained from epicrises, prescriptions
and bills to the Health Insurance Fund. The work in this article was
covered by the ethics approval “234T-12 Omics for Health” (March 19,
2014) by the Estonian Committee of Bioethics and Human Research.
Data was released by the Estonian Biobank (releaseM11, July 24, 2019).

Data integration
As shown in Table 1, the data sources used to create the different
networks use a range of competing disease vocabularies to refer to
diseases. We hence had to map these vocabularies to a common
vocabulary to be able to investigate network (dis-)similarities. The
similarity analyses were performed in MONDO (Monarch Disease
Ontology), UMLS CUI, and ICD-10 vocabularies. Disease IDmapping to
MONDO and ICD-10 was carried out via the two-step approach
implemented in the NeDRex platform68: First, MONDO contains map-
pings between its own disease vocabulary and various other
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vocabularies, including OMIM, MeSH69, and ICD-10. Then, mappings
between several vocabularies and ICD-10 could be achieved by map-
ping disease terms to MONDO, followed by mapping MONDO to ICD-
10. Mapping to UMLS CUI was carried out using the mappings
provided in the UMLS Metathesaurus 2022AA full release. For all
pairwise analyses, the two compared networks were aligned before
computing GEDs, i.e., only the nodes contained in both of them were
taken into account.

The comorbidity data was obtained from the Estonian Biobank,
which uses originally ICD-10 codes. In order to carry out analyses
involving comorbidity data in MONDO or UMLS CUI vocabulary, the
comorbidity data needed to be mapped from a coarser-grained (ICD-
10) to a finer-grained disease vocabulary (MONDO and UMLS CUI).
Although this is possible from a technical point of view, it would have
introduced a lot of noise in the obtained comorbidity networks. To
avoid overshadowing all other effects by the introduced noise, we
decided to carry out analyses involving comorbidity data only in ICD-
10 vocabulary. Consequently, all analyses involving comorbidity data
were carried out only in ICD-10 vocabulary. On the other hand, the
comparison between the target- and the indication-based drugomes
was carried out only in MONDO vocabulary. In these networks,
nodes are drugs and not diseases and using different disease voca-
bularies leaves the nodes of thenetworks unchanged. In the indication-
based drogomes, the choice of the disease vocabulary can change the
edges of the networks, but, in practice, we observed that the differ-
ences are small. Target-based drugomes are not affected at all by the
choice of the disease ontology. Therefore, we only useMONDO for the
comparison of drugomes.

Additionally, further data harmonization steps were carried out:
Since HPO contains both general and specific terms, we pruned the
data by removing very general symptom terms, using the existing
hierarchy in HPO. More specifically, we decomposed the generated
hierarchical phenotype network into its levels and removed the terms
from the top three levels.

The diagnoses in around 140K patients records available in the
Estonian Biobank (April 2020 version used for this study) are encoded
in ICD-10 vocabulary, and the records contain both three- and four-
character ICD-10 codes. In order to generate uniform data, we there-
fore truncated all four-character codes to three-character level.
Moreover, we removed diseases with incidence below five from the
data, as well as the codes from the ICD-10 chapters XV (“Pregnancy,
childbirth and the puerperium”), XVI (“Certain conditions originating
in theperinatal period”), XVIII (“Symptoms, signs and abnormal clinical
and laboratory findings, not elsewhere classified”), XIX (“Injury,

poisoning and certain other consequences of external causes”), XX
(“External causes of morbidity and mortality”), XXI (“Factors influen-
cing health status and contact with health services”), and XXII (“Codes
for special purposes”).

Network construction
For network construction, some part of the data such as disease-gene,
drug-indication, drug-target, gene-encoding-protein, and PPI data
were obtained from the databases shown in Table 1, using the data
access and mapping provided by the NeDRex platform68. Disease-
variant and disease-symptomassociationswere directly obtained from
DisGeNET and HPO, respectively.

Supplementary Table 1 shows themost important properties of all
constructed networks. The comorbidity-based diseasome was con-
structed via ϕ-correlation. Let Ii denote the incidence of disease i and
Cij be the number of patients whowere simultaneously diagnosedwith
diseases i and j. The comorbidity between the two diseases can be
measured by

ϕij =
CijN # IiIjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IiIjðN # IiÞðN # IjÞ
q , ð1Þ

where N is the total number of patient records (N = 139,065 for the
Estonian Biobank data). When two diseases co-occur more frequently
than expected by chance, we have ϕij>0. We used one-tailed Fisher’s
exact test followed by Benjamini-Hochberg correction for multiple
testing to determine the significance of comorbidity associations and
connected two diseases by an edge if adjusted P ≤0:05. Edge weights
were definedusing theϕ-correlation, i.e., we setwij =ϕij for all diseases
i and j with significant comorbidity association.

The indication- and target-based drugomes as well as the gene-,
variant-, symptom-, and indication-based diseasomes were con-
structed based on the Jaccard index of the respective annotations. Ai
denotes the set of annotations for a disease or drug i used as node in
the network under construction (e.g., when constructing the gene-
baseddiseasome,Ai is the set of all genes associatedwith disease i).We
connected diseases i and j by an edge if ∣Ai \ Aj ∣≥ 1 and defined the
edgeweights aswij = ∣Ai \ Aj ∣=∣Ai ∪Aj ∣. Disease nodeswith ∣Ai∣=0 were
removed from the networks, i.e., empty annotation sets were treated
as missing data.

The bipartite indication-based drug-disease network was directly
constructed from the data source, i.e., we connected a disease i with a
drug j if i is an indication for j. For the bipartite target-based drug-

Table 1 | Data sources used for network construction

Data source Used disease vocabularies Data type Networks constructed from data source

HPO86 OMIM, Orphanet (ORPHA) Disease-symptom Symptom-based diseasome

DisGeNET Concept Unique Identifiers of Unified
Medical Language System (UMLS CUI)

Disease-gene, disease-
variant

Gene-based diseasome, variant-based diseasome, disease-gene-
gene-disease network, drug-protein-protein-drug network, drug-
protein-protein-disease network

OMIM OMIM Disease-gene Gene-based diseasome, disease-gene-gene-disease network, drug-
protein-protein-disease network

DrugCentral37 SNOMED Clinical Terms87 (SNOMEDCT) Drug-target, drug-
indication

Target-baseddrugome, indication-baseddrugomeanddrug-disease
network, drug-protein-protein-drug network, drug-protein-protein-
disease network

DrugBank88 – Drug-target Target-based drugome, drug-protein-protein-drug network, drug-
protein-protein-disease network

CTD48 MeSH Drug-indication Drug-disease network, indication-based drugome

IID89 – Protein-protein interaction Disease-gene-gene-disease network, drug-protein-protein-drug
network, drug-protein-protein-disease network

UniProt – Gene-protein Drug-protein-protein-disease network

Estonian Biobank90 ICD-10 (mixed three- and four-
character codes)

Comorbidity data Comorbidity-based diseasome
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disease network, we connected a disease i with a drug j if j targets a
protein encoded by a gene associated to i. In both drug-disease net-
works, edges are unweighted. Finally, we constructed drug-protein-
protein-disease networks where drugs are connected to their targets,
experimentally validated PPIs from IID are used to connect proteins,
and diseases are connected to proteins encoded by disease-
associated genes.

Graph edit distance
GED is a widely used and generically applicable distance measure for
attributed graphs38,39,70. It is defined as the minimum cost of trans-
forming a source graph G1 = ðV 1,E1Þ into a target graph G2 = ðV2,E2Þ via
elementary edit operations, i.e., by deleting, inserting, and substituting
nodes and edges. Equivalently, GED can be defined as the minimum
edit cost induced by a node map π from G1 to G2, where nodes maps
π $ ðV 1 ∪ fϵ1gÞ× ðV2 ∪ fϵ2gÞ are relations that cover all nodes u 2 V 1
and v 2 V 2 exactly once (ϵ1 and ϵ2 are dummy nodes that may be
covered multiple times or left uncovered)71.

We used a customized version of GED to compare the different
diseasomes, drugomes, and drug-disease networks constructed as
detailed in the previous section as well as their randomized counter-
parts. Since the networks were aligned before all pairwise compar-
isons, we hadV 1 =V2 =V (node sets are identical)whenever comparing
two networks. Consequently, we fixed π as the identity and computed
GED as the sum of edge edit costs induced by the identity (the edge
edit cost functions sub, del, and ins are explained below):

GED G1,G2
" #

=
X

uv2E1\E2
sub uvð Þ+

X
uv2E1nE2

delðuvÞ +
X

uv2E2nE1
insðuvÞ ð2Þ

GEDðG1,G2Þ quantifies the global distance between the graphs G1
andG2. Since the node sets ofG1 andG2 are identical in our analyses, it
can be decomposed as

GEDðG1,G2Þ=
X

u2V
GEDðG1,G2,uÞ=2, ð3Þ

where GEDðG1,G2,uÞ is the local distance between the neighborhood
N1ðuÞ of node u in G1 and its neighborhood N2ðuÞ in G2. The local
distances are defined as follows:

GEDðG1,G2,uÞ=
X

v2N1ðuÞ\N2ðuÞ
subðuvÞ+

X
v2N1ðuÞN2ðuÞ

delðuvÞ+
X

v2N2ðuÞN1ðuÞ
insðuvÞ

ð4Þ

Based on the local distances, we also computed cluster-level dis-
tances for a cluster of nodes C $ V as follows:

GEDðG1,G2,CÞ=
X

u2C
GEDðG1,G2,uÞ=2 ð5Þ

We used three types of edge edit cost functions, namely, uniform
costs and costs based on normalized edge ranks or normalized edge
weights. The uniform costs are defined by simply setting subðuvÞ=0
and delðuvÞ= insðuvÞ= 1 for all edges uv. GED with uniform costs
quantifies topological (dis-)similarity between twographs but does not
consider edge weights. Since edges are weighted in all compared dis-
easomes, we additionally defined edge edit costs based on normalized
weights and normalized ranks. For the normalized weights, we scaled
all edge weights to the interval ½0,1& via division by the maximum. For
the normalized ranks, we sorted the diseasomes’ edges in increasing
order with respect to their weights and then again normalized the
obtained ranks to ½0, 1& via division by the maximum rank. Let x1ðuvÞ
be the normalized weight/rank of edge uv in diseasome G1 and x2ðuvÞ
be its normalizedweight/rank inG2. Thenwe defined theweight-/rank-
based edit costs as subðuvÞ= ∣x1ðuvÞ # x2ðuvÞ∣, delðuvÞ= x1ðuvÞ, and
insðuvÞ= x2ðuvÞ. That is, substitutions are expensive if the involved
edge’s normalized weight/rank differs a lot in the two graphs
and deletions and insertions are more expensive for high-weighed/

high-ranked than for low-weighed/low-ranked edges. Since uniform,
weight-based and rank-based edit costs led to similar results, we only
present the results for uniform costs in the main article. Results for
weight- and rank-based edit costs are shown in the supplement.

Statistical analyses based on graph edit distances
Using GED, we tested the local- and the global-scale hypotheses as
follows: For each pair G1, G2 of compared networks, we generated
1,000 randomized counterparts G1

1, . . . ,G
1000
1 and G1

2, . . . ,G
1000
2 . For

this, we used a random network generator which repeatedly swaps
edges and non-edges to obtain randomized counterparts which
exactly preserve the node degrees of the original networks72,73. For
eachnodeu, we then computedGEDðG1,G2,uÞ aswell as GEDðGi

1,G
i
2,uÞ

for each i= 1, . . . ,1000 and also computed the global distances
GEDðG1,G2Þ and GEDðGi

1,G
i
2Þ.

To test the global-scale hypothesis, we computed one-sided
empirical P-values as

P = 1 +
X1000

i= 1
GED G1,G2

" #
≥GED Gi

1,G
i
2

$ %h i$ %
=ð1 + 1000Þ, ð6Þ

where ½true&= 1 and ½false&=0. To test the local-scale hypothesis, we
used the one-sided MWU test to assess whether the local distances
fGEDðG1,G2,uÞ∣u 2 V g for the original networks are significantly
smaller than the local distances fGEDðGi

1,G
i
2,uÞ∣u 2 V ,i= 1, . . . ,1000g

for the randomized counterparts. Moreover, we computed node-
specific local empirical P-values as

PðuÞ= 1 +
X1000

i = 1
GED G1,G2,u

" #
≥GED Gi

1,G
i
2,u

$ %h i$ %
= 1 + 1000ð Þ ð7Þ

and cluster-level empirical P-values as

PðCÞ= 1 +
X1000

i= 1
GED G1,G2,C

" #
≥GED Gi

1,G
i
2,C

$ %h i$ %
= 1 + 1000ð Þ ð8Þ

where C $ V is a cluster of nodes.
Note that we consciously refrained from adjusting P-values for

multiple testing. The reason for this choice is that the relevance of our
results stems from the non-significance of a large fraction of the
obtained P-values. If we had corrected for multiple testing, we would
have inflated this fraction.

Rationale for using the graph edit distance as a measure of
network dissimilarity
In addition to our version of GED, there are various other network
dissimilarity measures–most notably, embedding-based74,75, kernel-
based76, and message-passing-based77,78 approaches. We decided to
use GED because, to the best of our knowledge, it is the only distance
measure satisfying the following requirements necessary for our
analyses:
1. To allow testing both the global- and the local-scale hypothesis,

we need a graph distance measure dðG1,G2Þ which is decom-
posable into local node distances dðG1,G2,uÞ.

2. The local node distances dðG1,G2,uÞ should depend on u’s local
neighborhoods in G1 and G2 but not on the overall network
topologies (otherwise, we would not be testing the local-scale
hypothesis when comparing local node distances).

3. Since a node alignment between the compared networks is given
(disease and drug terms are aligned between the networks), both
the global network distance dðG1,G2Þ and the local distances
dðG1,G2,uÞ should be node-identity-aware rather than
permutation-invariant.

4. Thedistancesneed tobecomputable in linear timew.r.t. the sizeof
the networks in order to enable our large-scale permutation tests.

While most of the kernel-based methods already fall short of
requirement 1, popular node-embedding-based approaches (e.g.,
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node2vec74 with subsequent distance computation in embedding
space) typically do not satisfy requirements 2 through 4. Exceptions
we are aware of are DeltaCon79 (which satisfies requirements 1, 3, and 4
but not requirement 2) and the graphlet degree signature80 (which
satisfies requirements 1 and 2 but not requirements 3 and 4). Highly
successful techniques in graph learning follow a message passing
concept77,78. When restricted to a single hop (as needed to satisfy
requirement 2), these methods define node u’s embedding in the
graph G1 as x1ðuÞ= gðflðvÞ∣v 2 N1ðuÞgÞ, where lðvÞ is the label of node v
(its disease or drug term) and g is a permutation-invariant function77

mapping sets to vectors (e.g., indicator function). Here, using unique
node labels renders the method node-identity-aware and allows to
drop lð'Þ as a parameter of g. Such approaches fulfill all four require-
ments, but are essentially equivalent to GED with uniform edge costs:
By comparing u’s embeddings x1ðuÞ and x2ðuÞ, we compare the node
labels of its neighboring nodes in G1 and G2, which is exactly what we
do with uniform GED.

Statistical analyses based on shortest path distances
We carried out analyses based on shortest path distances between (1)
all disease-disease pairs in a disease-gene-gene-disease network, (2) all
drug-drug pairs in a drug-protein-protein-drug network, and (3) all
disease-drug pairs in a disease-protein-protein-drug network. For each
network, we split themulti-set of obtained distances intomulti-sets X0
and X 1, where X 1 contains the shortest path distances for all nodes
pairs contained as edge in a reference network and X0 contains all
other shortest path distances. As reference networks,weused (1) drug-
, symptom-, comorbidity-, and variant-based diseasomes, (2) a bipar-
tite drug-indication network, and (3) an indication-based drug-drug
network. We then used the one-sided MWU test to assess whether the
shortest path distances contained in X 1 are significantly smaller than
those contained in X0.

BEV networkmedicine is committed to the local- and the global-
scale hypotheses
Recall that we have introduced BEV network medicine as the subfield
of networkmedicinewhich aims at uncovering diseasemechanisms by
mining large-scale disease-association data. Let D1 be data used
towards this end by BEV network medicine approaches and let d1 and
d2 be two diseases sharing an (unknown) molecular mechanisms M
such that D1 contains entries D1ðd1Þ and D1ðd2Þ. If D1 contains any
useful information about disease mechanisms as assumed by BEV
network medicine, M should lead to significant similarities between
D1ðd1Þ and D1ðd2Þ. The same holds for any other data D2 used as input
by BEV network medicine. BEV network medicine is hence implicitly
committed to the claim that the edge distributions of diseasomes G1
and G2 constructed based on similarities in D1 and D2 exhibit a higher
correlation than expected by chance. This, in turn, implies both the
global- and the local-scale hypothesis.

Implementation
We have implemented all network analysis approaches underlying this
article in a Python package called GraphSimQT. GraphSimQT uses
graph-tool81 for network handling and Scipy82 for carrying out statis-
tical tests and comes with all networks and scripts to reproduce the
results reported in this paper. Moreover, GraphSimQT can be used to
compare user-provided networks, using the techniques presented in
this paper. Significance of comorbidity associations was evaluated
using the Scipy implementation of Fisher’s exact test and the
statsmodels83 implementation of Benjamini-Hochbergmultiple testing
correction. The GraphSimViz web tool (https://graphsimviz.net) was
implemented using Vue.js as a frontend framework, the Drugst.One
(https://drugst.one) plugin as network explorer and a Django backend
with a PostgreSQL database.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All networks underlying the findings of this study are available at
https://doi.org/10.5281/zenodo.7498864. The following public data-
bases were used to generate the networks: IID (http://iid.ophid.
utoronto.ca/), DrugBank (https://go.drugbank.com/), DrugCentral
(https://drugcentral.org/), CTD (http://ctdbase.org/), DisGeNET
(https://www.disgenet.org/), OMIM (https://omim.org/), UniProt
(https://www.uniprot.org/), MONDO (https://MONDO.
monarchinitiative.org/), NeDRex (https://nedrex.net/), and HPO
(https://hpo.jax.org/app/). Version numbers of all used databases can
be found in an AIMe report84 for our study (https://aime.report/
6bdnlg). The comorbidity-based diseasome was constructed based on
data provided by the Estonian Biobank (https://genomics.ut.ee/en/
content/estonian-biobank, available from the Estonian Biobank upon
request). The constructionof thenetworks is described in theMethods
sectionof this paper.Our study isbasedonpublic databases (including
DisGeNET, OMIM, DrugBank, HPO, and more) which do not contain
sex-specific information. Therefore, no sex-specific analyses could be
carried out. Source data are provided in this paper. They can also be
downloaded from https://api.graphsimviz.net/download_
results. Source data are provided with this paper.

Code availability
The GraphSimQT tool is available at https://github.com/repotrial/
graphsimqt, together with scripts to reproduce all results reported in
this article. A stable version is available fromZenodo85 (https://doi.org/
10.5281/zenodo.7498864). The source code of the frontend and the
backend of GraphSimViz is available at https://github.com/repotrial/
GraphSimViz-frontend and https://github.com/repotrial/
GraphSimViz-backend, respectively.
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COVID-19     coronavirus disease 2019 

CoVex     CoronaVirus Explorer 
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3D     three-dimensional 

miRNA     Micro ribonucleic acid 

OMIM     Online Mendelian Inheritance in Man 

SNV     Single-Nucleotide Variation 
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MS     Mass Spectrometry 
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GO     Gene Ontology 

SARS-CoV-2     Severe Acute Respiratory Syndrome Coronavirus 2 

AP     Affinity-Purification 

R&D     Research and Development 

HTS     High-Throughput Screening 

KEGG     Kyoto Encyclopedia of Genes and Genomes 

DAG     Directed Acyclic Graph 
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