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Abstract: Due to the remote location and the extreme climate, monitoring stations in Arctic rivers
such as Lena in Siberia have been decreasing through time. Every year, after a long harsh winter,
the accumulated snow on the Lena watershed melts, leading to the major annual spring flood event
causing heavy transport of sediments, organic carbon, and trace metals, both into as well as within
the delta. This study aims to analyze the hydrodynamic processes of the spring flood taking place
every year in the Lena Delta. Thus, a combination of remote sensing techniques and hydrodynamic
modeling methodologies is used to overcome limitations caused by missing ground-truth data.
As a test site for this feasibility study, the outlet of the Lena River to its delta was selected. Lena
Delta is an extensive wetland spanning from northeast Siberia into the Arctic Ocean. Spaceborne
Synthetic Aperture Radar (SAR) data of the TerraSAR-X/TanDEM-X satellite mission served as input
for the hydrodynamic modeling software HEC-RAS. The model resulted in inundation areas, flood
depths, and flow velocities. The model accuracy assessed by comparing the multi-temporal modeled
inundation areas with the satellite-derived inundation areas ranged between 65 and 95%, with kappa
coefficients ranging between 0.78 and 0.97, showing moderate to almost perfect levels of agreement
between the two inundation boundaries. Modeling results of high flow discharges show a better
agreement with the satellite-derived inundation areas compared to that of lower flow discharges.
Overall, the remote-sensing-based hydrodynamic modeling succeeded in indicating the increase and
decrease in the inundation areas, flood depths, and flow velocities during the annual flood events.

Keywords: TerraSAR-X; TanDEM-X; hydrodynamic modeling; spring flood; Arctic watershed;
remote sensing of rivers; HEC-RAS

1. Introduction

The Lena is one of the four largest Arctic watersheds, the others being Mackenzie, Ob,
and Yenisei [1]. These Arctic watersheds drain into the Arctic Ocean, influencing the sea
ice cover and the ocean conveyor belt [2], which significantly affects the Earth’s radiation
budget. Among its impacts is the 7% rise of the recorded average annual freshwater
discharge from the six largest Eurasian rivers to the Arctic Ocean in the last century [3].
This direct impact makes Arctic surface water crucial for environment- and climate-related
studies. However, despite the importance, field data measurements on these remote areas
are challenging and costly.

Over the past few decades, the number of hydrological monitoring stations in Arctic
regions decreased dramatically [4,5]. Due to this, various studies related to the Arctic
hydrological cycle were hindered and this resulted in large error margins [6]. The limited
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number of openly available datasets was not sufficient to derive important information,
especially compared to the vast extent and the complexity of the prospective area. Remote
sensing technologies can be utilized to address this issue.

Data acquired by remote sensing platforms can be used as alternatives to gauged
data where field measurements are difficult to perform. A large variety of remote sensing
platforms are available in various ranges of temporal and spatial coverage. Previous studies
have utilized satellite imageries to measure the river hydrological and hydrodynamic
components such as inundation areas, flow velocities, soil moisture, land cover, and
surface roughness. Smith and Pavelsky [7] derived rating curves of a braided river from
inundation area and the reach length using MODIS imageries; the time lag between the
upstream and downstream stations was used to approximate the average propagation
speed. Kääb et al. [8], on the other hand, tracked river ice debris with ASTER imageries over
a time period of about one minute to measure the ice and water velocity field. Baghdadi
et al. [9] used the radar satellite TerraSAR-X imageries and the optical satellite Kompsat-2
images to retrieve soil moistures. Bachofer et al. [10] performed topsoil classification
using the imageries of Worldview-2, ASTER, TerraSAR-X, and ENVISAT ASAR with the
DEM derived from SRTM-X. Aubert et al. [11] derived soil parameters—moisture content,
surface roughness, soil composition, and slaking crust—from TerraSAR-X imageries. Sadeh
et al. [12] derived Manning’s roughness coefficient from (COSMO)-SkyMed SAR imageries.

This study aims to integrate information derived from datasets of the twin radar
satellite TerraSAR-X and TanDEM-X (hereafter TSX/TDX) into a hydrodynamic model
to monitor the spring flood in a subset of the Lena Delta, an extensive wetland spanning
from northeast Siberia into the Arctic Ocean. The hydrodynamic model was set up by
using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) developed
by the US Army Corps of Engineers. It is an open-source software package that is widely
used in many studies and research that incorporate geospatial datasets [13–15]. Previously,
TSX/TDX datasets have been used for studies of the wetland environment [16]. TSX
datasets have been previously used to detect the major seasonal land surface changes [17]
and observe the cliff-top erosion on the Lena Delta riverbanks [18] in the Lena Delta. These
studies show that the X-band signal can provide detailed insights into the permafrost
environmental conditions, albeit the retrieval can be heavily affected by vegetation lay-
ers. The integration of remote sensing and flood modeling has been emerging in river
sciences [19]. Heimhuber [13], Krötzinger [14], and Hong Quang et al. [15] have performed
hydrodynamic modeling with HEC-RAS using input data derived from the twin radar
satellite TSX/TDX datasets. They derived inundation boundaries from TSX/TDX Stripmap
products and used the global Digital Elevation Model (DEM) from TanDEM-X (hereafter
TDX-DEM) to derive the surface terrain elevation (i.e., topography). As the radar signal
does not penetrate water, TDX-DEM does not show the elevations of the riverbed terrain
(i.e., bathymetry), which is an important input in hydrodynamic modeling. Heimhuber [13]
and Krötzinger [14] incorporate supplemental information on river bathymetry from field
acquisition and LiDAR.

In this study, we assessed the feasibility of monitoring and observing the hydrody-
namic processes of the spring flood event in the Lena Delta with mainly remotely sensed
data and limited field data. In contrast to the aforementioned previous studies, this study
site represents a complex geomorphology of a braided river system and bathymetry data
are not available, hence they were to be estimated iteratively according to the model results.
The HEC-RAS one-dimensional (1D) modeling module was selected due to the lack of
in situ data. Two- and three-dimensional models of such a vast area would require more
detailed inputs and show computational drawbacks, which is especially of importance in
large study areas. Although the TSX/TDX-DEM is of high spatial resolution and is able to
provide detailed floodplain terrain, the river bathymetry was completely unknown; hence
it had to be estimated. The estimated bathymetry lacks the complexity and heterogeneity
of the real riverbed. Therefore, we chose to use a simpler 1D approach. In 1D modeling, the
river channels and floodplains are considered to be a continuous series of cross-sectional
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profiles and water flows only on the x-axis. HEC-RAS 1D modeling module was found
to perform well even when compared to more sophisticated modeling approaches [20,21].
Moreover, considering the large size of the Lena Delta, the 1D module enables modeling of
the whole extent. A study by Caruso et al. [22] has successfully performed HEC-RAS 1D
modeling on a complex braided river system comparable to the characteristics of the Lena
Delta. The expected results of the hydrodynamic modeling are multi-temporal inundation
areas, flood depths, and flow velocities of the annual spring flood events occurring between
2013 and 2019. During this time span, the most severe flood occurred in 2014 and the
discharge of the flood events kept declining towards 2019.

2. Materials and Methods
2.1. Study Site

The Lena River is the 10th longest natural river in the world [5] located in eastern
Siberia. The river basin is 2.4 × 106 km2 in size and 4500 km [23] in length. This river
basin releases an annual average water discharge of more than 500 km3 [24]. The Lena
River generally remains frozen from early December to late April and then thaws into
a vast wetland on the river delta. The ice thawing coincides with the annual peak flow
in June [24]. The spring flood that occurs from May to June [25,26] affects the floodplain
ecology due to the heavy transport of trace metals, organic carbon, and sediment that
occurs [4]. The permafrost ecology and the water volume released to the sea are important
as they are strong indicators of climate change in the Arctic.

Our aim is to monitor the spring flood in Lena Delta; however, performing hydro-
dynamic modeling for the entire delta (32,000 km2 [23] in size) requires extremely heavy
computational work. Therefore, in this study, as a test site, we focus on a subset of Lena
Delta where the river branches off to four major tributaries as seen in the inset map in
Figure 1. The study site consists of a braided river system—a common river system on
wetlands—flowing northwards that includes the Lena Reach, the Bulkurskaya Reach, and
the Bykovskaya Reach, enclaved by cliffs on its east and west side. The area in red lines in
Figure 1 indicates the selected area for the hydrodynamic modeling, which is 1561 km2

in size and 93 km in length. The green dot shows the gauging station in Kyusyur that
recorded the water discharge 124.65 km upstream of the modeled area. Another gauging
station located on Bykovskaya Reach (marked with the blue dot) recorded the surface
water level. The area in orange lines downstream of the simulated area is the location
where a river morphology study was conducted—between Sardakh and Trofimovskaya
Islands—by Fedorova et al. [27], which was used as the base of our bathymetry estimation.
The Lena Delta riverbank sediments mainly consist of yedoma—fine-grained materials rich
in organics and ice—which are common in Siberia [18]. The surrounding land surfaces con-
sist of tundra and non-vegetated plains (sand and rock) [28,29]. The spring flood inundates
the low floodplains and the shallow gullies that are usually dry in the other months.
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Figure 1. The Lena Delta study site depicted in the map inset with Landsat 8 composite, consisting of the modeled area in 
the red polygon; the green dot shows the upstream gauging station at Kyusyur; the blue dot shows the gauging station at 
Khabarova; the orange polygon shows a focused area of the reach between Sardakh and Trofimovskaya Islands. Country 
boundary shapefiles displayed in the map were downloaded from GADM [30]. 
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The global coverage and the high resolution of the radar twin satellites TSX/TDX 
make it possible for users to retrieve relatively dense information for the surface of remote 
areas such as the Lena River Delta. In this study, data from the optical satellite missions 
RapidEye (hereafter RE) by Planet and Landsat 8 (hereafter LS8) by USGS were utilized 
as supplementary datasets where the information from the TSX/TDX in our library was 
not sufficient. Table 1 shows the specifications of the remotely sensed datasets used as 
well as the derived hydrodynamic parameters. Radar satellites TSX/TDX transmit pulses 
and receive the backscatter, whereas optical satellites RE and LS8 capture surface reflec-
tance. These four satellites differ in area coverage (swath width), spatial resolution, and 
temporal resolution (revisit cycle) as well. 

TSX/TDX are twin satellites operated by the German Aerospace Center (DLR), for 
which commercial exploitation rights are exclusively granted to Airbus Defense and 
Space [31]. The satellites are equipped with Synthetic Aperture Radar (SAR) sensors op-
erating in the X band (9.65 GHz). Although this platform has a revisit cycle of 11 days, the 
study area Lena Delta is covered by numerous TSX/TDX Stripmap tiles of various orbits, 
making it possible to have coverage almost on a daily basis with the gap of 2–5 days. From 
a collection of the available TSX/TDX Stripmap acquisitions between 2013 and 2019, 38 

Figure 1. The Lena Delta study site depicted in the map inset with Landsat 8 composite, consisting of the modeled area in
the red polygon; the green dot shows the upstream gauging station at Kyusyur; the blue dot shows the gauging station at
Khabarova; the orange polygon shows a focused area of the reach between Sardakh and Trofimovskaya Islands. Country
boundary shapefiles displayed in the map were downloaded from GADM [30].

2.2. Data
2.2.1. Remotely Sensed Datasets

The global coverage and the high resolution of the radar twin satellites TSX/TDX
make it possible for users to retrieve relatively dense information for the surface of remote
areas such as the Lena River Delta. In this study, data from the optical satellite missions
RapidEye (hereafter RE) by Planet and Landsat 8 (hereafter LS8) by USGS were utilized as
supplementary datasets where the information from the TSX/TDX in our library was not
sufficient. Table 1 shows the specifications of the remotely sensed datasets used as well
as the derived hydrodynamic parameters. Radar satellites TSX/TDX transmit pulses and
receive the backscatter, whereas optical satellites RE and LS8 capture surface reflectance.
These four satellites differ in area coverage (swath width), spatial resolution, and temporal
resolution (revisit cycle) as well.
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Table 1. The specifications of the remotely sensed datasets.

Satellite Mission Product Name
Derived

Hydrodynamic
Parameter(s)

Swath Width Spatial
Resolution Revisit Cycle Number of

Scenes

TerraSAR-
X/TanDEM-X

(TSX/TDX)
Stripmap

- Inundation
boundary

- Land cover
for surface
roughness
estimation

17 km 5 m 11 days 38

TerraSAR-
X/TanDEM-X

(TSX/TDX)

Digital Elevation
Model (DEM) Topography - 5 m (resampled

from 12.5 m) - 1

RapidEye (RE) Ortho—Level 3A
Land cover for

surface roughness
estimation

77 km 5 m 5.5 days 1

Landsat 8 (LS8) Level 2 Surface
Reflectance

Land cover for
surface roughness

estimation
185 km 30 m 16 days 1

TSX/TDX are twin satellites operated by the German Aerospace Center (DLR), for
which commercial exploitation rights are exclusively granted to Airbus Defense and
Space [31]. The satellites are equipped with Synthetic Aperture Radar (SAR) sensors
operating in the X band (9.65 GHz). Although this platform has a revisit cycle of 11 days,
the study area Lena Delta is covered by numerous TSX/TDX Stripmap tiles of various
orbits, making it possible to have coverage almost on a daily basis with the gap of 2–5 days.
From a collection of the available TSX/TDX Stripmap acquisitions between 2013 and 2019,
38 Stripmap products were used for multi-temporal analysis and the model input. These
products consist of varying polarizations (dual-co HHVV or dual-cross HHHV), incidence
angles, and pass directions (ascending or descending); therefore, different scenes covered
the study site on different acquisition days. On specific days, multiple scenes were needed
to cover the study sites. The TDX-DEM product over the study area was generated from
three TSX/TDX acquisitions in 2011 when the surface water level was at the lowest; on
29 January, 28 September, and 31 October. The TDX-DEM was oversampled from its
original spacing of 12.5 m to 5 m spacing of the TSX/TDX Stripmap imagery to enable a
one-to-one comparison. This step comprised an edge preserving filtering as described in
Huber et al. [32]. TDX global DEM has relative and absolute vertical accuracies of 2 m and
10 m, respectively. This DEM product represents the cover on top of the earth’s surface
including water bodies, vegetation, and manmade objects and is therefore a digital surface
model [33].

RE is a constellation of five optical satellites with a spatial resolution of 5 m [34].
Available RE Ortho—Level 3A images were provided by Alfred Wegener Institute. The
image acquired on 9 July 2014 was selected due to the least cloud cover percentage among
the available images. LS8 is an optical satellite that utilizes Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) with a spatial resolution of 30 m [35]. LS8 7-band
Level-2 Surface Reflectance datasets were available for free by request through the USGS
Earth Explorer [36]. An LS8 image acquired on 9 July 2014 was selected for its low land
cloud cover percentage. These RE and LS8 imageries were used to derive information on
the area that was not covered by the available TSX/TDX and RE imageries.

2.2.2. Field Datasets

The field datasets consist of in situ upstream river discharge and surface water level
elevation datasets. Average daily water discharge datasets were acquired through the
Arctic Great Rivers Observatory (ArcticGRO)’s website [37], recorded at a gauging station
in Kyusyur (70.68◦ N, 127.39◦ E) (location in Figure 1). The water level datasets were avail-
able through the Russian Ministry of Natural Resources and Environment’s website [26],
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recorded at a gauging station in Khabarova, located on Bykovskaya Reach (Figure 1 How-
ever, the exact coordinate information of Khabarova station was not given. Khabarova and
Kyusyur stations are located roughly 200 km away from each other. Therefore, the flood
peaked at different times at these two stations, with an average discrepancy of two days.
Figure 2a,b show the time-series plot of the in situ upstream river discharge and surface
water level elevation.
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2.3. Methodology

This subsection explains the steps of remote sensing and the hydrodynamic model-
ing methodologies (Figure 3). The remote sensing methodology consists of image pre-
processing, inundation boundary mapping, land cover classification, bathymetry estima-
tion, and geospatial data conversion to HEC-RAS model input format. The hydrodynamic
modeling methodology comprises the flow data (river discharge) preparation, simulation
setup, model stabilization, and model accuracy assessments. The flood events were mod-
eled in three different stages each year: (1) before the flood; (2) the flood peak; and (3) after
the flood. Therefore, in total, we have 21 model cases spanning from 2013 to 2019.
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Important hydrodynamic input data such as river bathymetry, river flow direction,
and weather information were not openly available for this site. Additionally, input data
needed to calibrate the model results such as the flow velocity were also not available.
Therefore, these information gaps were filled with assumptions. In order to estimate
the bathymetry, the river channels were assumed to be trapezoidal and the depths were
determined through an iterative process with rough initial values taken from a study on
the Lena Delta sedimentation by Fedorova et al. [27]. Through this study, we found out that
the river depths between these two islands range between −10 and −30 m and are very
dynamic due to the heavy sediment transport. Weather effects on the watershed—which
might strongly influence the flow in such a large watershed—as well as floating ice and
frozen channels were neglected. The river flow was assumed to be one-dimensional (1D)
from the south to the north with the selected 1D modeling module.

One image of each of the TSX/TDX, RE, and LS8 datasets was used to map land cover
of the study site, through which the Manning’s surface roughness coefficient values of the
floodplain were derived. Additionally, the inundation areas were mapped using the multi-
temporal TSX/TDX imagery which has high revisit frequency as well as high resolution.
The derived Manning’s surface roughness coefficients, the in situ river discharge recorded
at Kyusyur station, and the estimated bathymetry were fed into the model which was built
with the open-source hydrodynamic modeling software, HEC-RAS version 5.0.7 by the US
Army Corps of Engineers. The model accuracies were assessed by comparing the modeled
inundation areas with the remotely sensed inundation areas.

2.3.1. Remote Sensing Methods
Image Pre-Processing

The remote sensing part of the methodology started with SAR satellite imagery
pre-processing to correct and calibrate the TSX/TDX datasets prior to the analysis. We
processed 38 TSX/TDX single look complex datasets for visual multi-temporal analysis and
flood mapping. These files were converted into geocoded and radiometrically calibrated
Kennaugh element multiband raster layers using the DLR Multi-SAR processor. Kennaugh
elements describe the polarimetric information of the physical scattering mechanism of
SAR images, consisting of 10 elements [38]. This process comprises radiometric calibration,
polarimetric decomposition, multi-looking, Range-Doppler ortho-rectification, reducing
multiplicative noise, and Multi-scale Multilooking and Schmittlet image enhancement.
Dual-co-polarized HHVV imageries were converted into raster files with the total intensity
of HH and VV (K0), ratio between the HH and VV phase, i.e., double bounce and surface
scattering (K3), ratio between HH and VV intensity (K4), and the phase shift between the
HH and VV phase centers (K7) bands [38]. Dual-cross-polarized HHHV imageries were
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converted into raster files with the total intensity of HH and VV (K0) and the difference of
the HH and HV intensities [38].

Furthermore, mean-shift image segmentation was applied to the TSX/TDX Stripmap
products (from the previous step), RE Ortho—Level 3, and LS8 L2 Surface Reflectance
imageries. Amongst other segmentation methods, mean-shift was selected because it
considers the neighboring cells, which works better in reducing heterogeneity in mixed
pixel values of high spatial imageries. Mean-shift image segmentation was performed
with spatial detail of five and spectral detail of 20, resulting in images with high spectral
detail and low spatial detail. The segmented images then were to be utilized for inundation
boundary generation, land cover classification, and bathymetry estimation.

Inundation Boundary Mapping

The TDX-DEM and 38 pre-processed and segmented multi-temporal TSX/TDX Stripmap
products were used as the input for the estimation of inundation areas of the 21 model cases.
Previous studies [19,39,40] recommend HH polarization for flooded area discrimination
due to the lower sensitivity to wind-induced surface roughness as VV. Nevertheless, water
and land areas were not always easily numerically distinguishable due to the existence
of floating ice covers, still noticeable wind effects at steep incidence angles, and limited
discrimination of calm water and flat, muddy river banks soaked with water at low
incidence angles, as seen in Figure 4a–c. Therefore, instead of using classification methods,
the inundation boundaries were generated by image-fitting and visual interpretation. The
DEM was flooded starting from the elevation of −6 m to 6 m with the increment of 25 cm.
After a collection of inundation boundaries with varying thresholds was produced, these
inundation boundaries were overlaid onto the TSX/TDX images. The inundation boundary
which visually fitted the water body in a TSX/TDX image was selected as the inundation
boundary of the corresponding day. This process resulted in 21 inundation boundary raster
files—of three cases each year spanning from 2013 to 2019 which were used to validate
the HEC-RAS hydrodynamic model accuracy; thus, they are referred to as the reference
inundation boundaries from here on.
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Land Cover Classification and Manning’s Surface Roughness Coefficient Estimation

The Manning’s surface roughness coefficient values were estimated based on the
type of the surface cover [10]. Land cover classification was performed on the segmented
TSX/TDX and RE, and imageries were classified to derive the surface roughness coefficient.
The TSX/TDX and RE datasets were stacked together into an image composite due to
the same spatial resolution, while LS8 composite was classified separately. The selected
classification methods were unsupervised machine learning method Iso-clustering [39] and
supervised machine learning method Random Forest [40]. Iso-clustering was performed to
separate the classes as well as to create the training input for the Random Forest classifier.
The resulting classes then were labeled based on a previous study by Schneider et al. [28]
and field information from Heim [29]. Random Forest feature importance (Variable Impor-
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tance Measure, VIM) was analyzed to narrow the input to the relevant bands; bands with
low feature importance were omitted. In order to assess the classifier accuracy, generated
stratified sample points were split into training sample points (70%) and test sample points
(30%). Manning’s surface roughness coefficient values based on Chow [41] were assigned
to each land cover class. From our analysis, we derived six land cover classes as discussed
in the Results and Discussions sections (Table 2).

Table 2. Manning’s roughness coefficient of each land cover class following the averaged values on
Chow [41].

No Land Cover Class Manning’s Roughness Coefficient

1 Sandy floodplain 0.048
2 Grass- and moss-dominated tundra 0.060
3 Dwarf-shrub-dominated tundra 0.070
4 Sedge- and moss-dominated tundra 0.150
5 Sandy riverbed 0.030
6 Rock 0.040

Bathymetry Estimation

Due to the missing bathymetry data, the approach to gain the whole riverbed elevation
for model input was based on approximations. Well-known methods for bathymetry
estimation such as empirical expressions [42–44] or regression-based satellite-derived
bathymetry (SDB) methods [45,46] require in situ bathymetric points for calibration and
validation. Moreover, SDB approaches using optical satellite imageries require information
on the benthic reflectance which is only retrievable through clear water [46]. We performed
Stumpf log-linear regression SDB method [45] using RE imagery in our study site. This
attempt resulted in noisy surface elevation due to the high turbidity on the river reaches, as
the suspended sediments in the water hindered the light attenuation to the riverbed. The
channel bathymetry was therefore approximated and interpolated under the assumption
that these channels have a trapezoidal shape. The slopes of these trapezoidal channels
were manually drawn along the main river channels as contour lines that are gradually
changing from the river banks onto the deepest part of each channel and interpolated with
the Inverse Distance Weighing (IDW) method. The smaller and shallower channels were
not estimated with this approach because during lower river discharge, these channels
were dried, hence the riverbed profiles were obtained through the TDX DEM acquisitions.
These procedures were performed five times, each with different maximum depth: −30 m,
−25 m, −20 m, −15 m, and −10 m (based on the range of channel depth in a study by
Fedorova et al. [27] on a cross-section between the Sardakh and Trofimovskaya Islands,
location shown in Figure 1) for the whole cross-sectional profile of the river, resulting in
five bathymetry maps. The selected bathymetry map was selected through an iterative
process. Each of these estimated bathymetry sets was fed as input of preliminary HEC-
RAS hydrodynamic models. The bathymetry map that resulted in best-fitting modeled
inundation areas was selected as the final bathymetry input.

The Geospatial Dataset Conversion

RiverGIS QGIS extension was utilized to extract the geospatial data values from
inundation boundary mapping, land cover classification, and bathymetry information and
convert them into HEC-RAS geometry input. Four geometry lines were digitized along the
channels: stream centerlines, cross-sectional cutlines, bank lines, and flow paths. Then, the
geospatial data values were extracted onto these lines, each with different IDs. At the end
of the process, the collected database was converted into SDF, a geometry file format that is
recognizable by HEC-RAS.
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2.3.2. Hydrodynamic Modeling

This study implemented the HEC-RAS one-dimensional (1D) unsteady flow routing
for the hydrodynamic computations. During low discharge, some parts of the Lena Delta
reaches were dried. Dry channels would cause an unstable model; therefore, the braided
river system with the same flow direction was regarded as a single streamline, following
the concept of a study by Caruso et al. [22]. Three main reaches—the upstream Lena,
downstream Lena, and Bykovskaya—were digitized, connected with a junction.

The 1D unsteady flow (dynamic wave) in open channels was originally mathematically
expressed by Barre de Saint-Venant in 1871 [47]. The mathematical expressions were thus
acknowledged as the Saint-Venant equation [48]. This equation is based on the two
conservation equations, i.e., mass and momentum [48]. The conservation of mass is based
on a control volume and is expressed as follows:

∂(AV)

∂x
+

∂A
∂t

− q = 0 (1)

The conservation of momentum is expressed as follows:

∂Q
∂t

+
∂QV

∂x
+ gA

(
∂h
∂x

+ S f

)
= 0 (2)

where A is the cross-sectional flow area, V is the flow velocity, q is the lateral in-/outflow
per unit length, Q(x, t) is the flow at the center of the control volume, ∆x is the distance
between cross sections, g is the gravity force term that is proportional to the bed slope
(S0), h is the surface water level, and S f is the friction slope term. The friction slope S f is
calculated as follows:

S f =
n2V2

R4/3
h

(3)

where n is the Manning’s roughness value and Rh is the hydraulic radius of the channel. The
conservation of momentum consists of three different terms: local acceleration, convective
acceleration, and pressure force. ∂Q

∂t , the local acceleration term, is the change in momentum
due to the change in flow velocity over time. ∂QV

∂x , the convective acceleration term, is
the change in momentum due to the change in flow velocity along the channel. ∂h

∂x , the
pressure force term, is proportional to the change of depth along the channel.

The flow velocity and the surface water level are two dependent parameters varying in
space and time, which are computed with simplified assumptions as the analytical solution
for these equations is not available [22]. With these simplifications, the flow is regarded
as one-dimensional, the water level across a single cross-sectional area is horizontal, and
the channel slope is small (<0.1). Finite difference with the implicit solution scheme is
used by HEC-RAS to approximate the solutions. The flow equations are expressed in
finite difference form for all computational reaches with the length of ∆x between the first
and the last cross-section for the unknown Q and V (or h) for each time step (∆t). The
information from the entire reach can influence the solution at any point.

Flow Data

The in situ discharge data served as the boundary condition in the form of a hydro-
graph. The input hydrograph was a constant discharge value for five days in an hourly
interval to fill the channel and stabilize the model. The annual spring flood events were
modeled in three different stages: before the flood (low upstream discharge), the flood
peak (the highest upstream discharge), and after the flood (upstream discharge values
between the low and the highest ones). The discharge values before the flood range from
2720 m3/s to 5366 m3/s between 4 and 19 May each year. The discharge values of the flood
peak range from 83,000 m3/s to 173,000 m3/s between 31 May and 6 June each year. The
discharge values after the flood range from 46,200 m3/s to 70,900 m3/s when the flood
recedes between 11 June and 29 June each year. These three stages were selected as they
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specifically represent three different conditions: (1) when the thawing process had not fully
started and the upstream discharge was low; (2) when the water thawed completely and
filled the basin; and (3) after the flood receded and the channels were still filled with water.
The complete flow data—including the upstream and two downstream discharges—are
presented in the Supplementary Materials—Table S1.

Model Setup

The model setup consisted of geometry import, adjusting the geometry, and flow
data input. The imported geometry was adjusted to HEC-RAS computing capacity. The
flow data were fed as an input for both steady and unsteady simulations. The steady
simulation was performed prior to the unsteady simulation to obtain the parameters
needed to stabilize the unsteady model. A model is stable when the temporal and spatial
changes of the parameters are gradual. In this study, the main parameters tuned to stabilize
the model are the cross-sectional line spacing and computational time-step. Cross-sectional
line spacing (∆x) was adjusted according to the Samuel equation [49], by implementing
the ratio of the channel bankfull depth (D) and the overall slope (S), as follows:

∆x ≤ 0.15 D
S

(4)

Model Accuracy Assessments

The 21 reference inundation boundary maps previously derived from the TSX/TDX
Stripmap products were used to validate the model results. Accuracy scores of each model
were quantified with the percentage ratio of the modeled flooded pixels and the reference
flooded pixels (i.e., the true positive (hit) rate from the error matrices). Kappa coefficients
were also calculated to estimate the level of agreement between the modeled and reference
flooded pixels of all study cases.

3. Results
3.1. Pre-Modeling Results

This section describes and displays the results of bathymetry estimation and land
cover mapping and Manning’s surface roughness coefficient estimation. These two results
were fed into HEC-RAS as model inputs. The estimated bathymetry was merged into the
TDX DEM and served as the geometry input. The Manning’s surface roughness coefficients
are required for the computation based on the Saint-Venant equation.

3.1.1. Estimated Bathymetry

The hydrodynamic model with the input of the bathymetry map with the −10 m
maximum depth resulted in inundation areas that fitted closest to the reference inundation
boundaries. Therefore, we selected this map for the final model input. The modeled inun-
dation boundary maps from the preliminary hydrodynamic models using the bathymetry
maps with the maximum depths of −30 m, −25 m, −20 m, and −15 m were underesti-
mated, which means that only the Lena Reach was filled with water whereas the other
tributaries, gullies, and low floodplains were completely dry even during the peak of
the flood, showing that the depths were overestimated. The selected bathymetry map is
illustrated in Figure 5a.
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Figure 5. (a) The estimated bathymetry, trapezoidal channels with maximum depth of 10 m—terrains higher than 10 m are
irrelevant to the simulation, therefore not shown; (b) land cover map of the Lena Delta study area (mosaicked from the
TSX/TDX-RE and LS8 classification results).

3.1.2. Land Cover Map and Manning’s Surface Roughness Coefficient

Figure 5b shows the land cover map of six land cover classes; sand, grass- and moss-
dominated tundra, dwarf-shrub-dominated tundra, sedge- and moss-dominated tundra,
water body, and rock [28,29]. The overall accuracy score of the land cover classification
with the TSX/TDX-RE image composite was 94%. The overall accuracy of the land cover
classification using the LS8 imagery was 75%. Compared to the LS8 land cover map, the
TSX/TDX-RE land cover map provided far better details especially on the floodplains and
river banks. Therefore, when these two maps were merged together to form the final land
cover map, on the area where the TSX/TDX-RE map intersected with the LS8 map, the
TSX/TDX-RE pixels were selected. In order to merge these two maps, the LS8 land cover
map was resampled from 30 m to 5 m resolution in order to match the TSX/TDX-RE’s
spatial resolution. Manning’s roughness coefficient (n) values were assigned to each land
cover class. These coefficients were the averaged coefficient values according to Chow [41],
presented in Table 2. The Lena Delta riverbed was mostly made of sand [27]. Therefore,
the water body class was considered to be sandy riverbed.

3.2. Model Accuracy Assessments with Inundation Boundaries

Figure 6a–c show only the inundation areas of the 2014 flood event, which was the most
severe flood in our observation period of 2013–2019. All modeled and reference inundation
areas are illustrated in the Supplementary Material—Figures S1 and S2. Figures S3 and S4
show the floodplain extents that were inundated during the flood peak. Figures S3 and S4
show smaller inundation areas in 2017 and 2019 compared to the other years, which happens
to be in accordance with the decline of the discharge values through the years. The inundation
areas before the flood range from 300.71 to 333.86 km2. The inundation areas during the flood
peak range from 866.80 to 1118.71 km2. The inundation areas after the flood range from 604.94
to 785.40 km2. Table S2 shows the inundation areas of all the modeled events.
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Figure 6. (a–c) Modeled inundation boundaries (in light blue) and TSX/TDX-derived reference inundation areas (red
borders), (d–f) modeled flow velocities, and (g–i) modeled depths before the flood (early May, left column, upstream
discharge 2280 m3/s, inundation area 300.71 km2), during the flood peak (late May, middle column, upstream discharge
173,000 m3/s, inundation area 1118.71 km2), and after the flood (mid-June, right column, upstream discharge 62,400 m3/s,
inundation area 726.73 km2) of the 2014 spring flood event.
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The accuracy scores range from 65.97 to 95.65%. The bar plot of the model accuracy
scores and the model upstream discharges (Figure 7) shows that the accuracy scores of the
peak flood are higher than those of the two other stages. The model accuracy scores range
between 65 and 92% before the flood, 77 and 95% during the flood peak, and 67 and 87%
after the flood. The same trends can be seen in the kappa coefficients (in Table S5). The
kappa coefficients range from 0.78 to 0.97; between 0.78 and 0.95 before the flood (moderate
to almost perfect level of agreement), 0.86 and 0.97 during the flood peak (strong to almost
perfect level of agreement), and 0.76 and 0.91 after the flood (moderate to almost perfect
agreement).
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3.3. Modeling Results
3.3.1. Flood Depth

Figure 6g–i show the simulated water depth before the flood (early May), during
the flood peak (late May), and after the flood (mid-June) in 2014. The flood depth on the
floodplains of all flood events is illustrated in Figures S5 and S6. The ranges of flood depth
on the floodplains are presented in Table S3. During the peak of the 2014 flood event, the
floodplains with relatively lower elevations were submerged up to 5.12 m.

3.3.2. Flow Velocity

The HEC-RAS 1D unsteady flow module computes the flow velocity on the main, left
overbank, and right overbank channel separately in one dimension: flow is only modeled
from the upstream to the downstream in one direction. Figure 6d–f showcase the modeled
flow velocity on the 2014 flood event before the flood, during the peak of the flood, and
after the flood, respectively. Through the illustration, we observe that the flow velocity
rose at some parts of the channel during the flood peak and then decreased again when
the flood was receding. In the 2014 flood event, the modeled flow velocity prior to the
flood event was up to 1.34 m/s; then the velocity built up to 6.13 m/s on some parts of the
channel during the peak of the flood. The modeled flow velocities of all the flood events
are depicted in Figures S7 and S8 and the ranges of the values are presented in Table S4.

4. Discussions

By combining the TDX-DEM and estimated bathymetry as the HEC-RAS geometry
input together with the approximated Manning’s n values, the inundation boundaries were
closely modeled, with better accuracies during the flood event when the upstream dis-
charge values were higher. With our bathymetry estimation approach, the heterogeneities
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of the riverbed were neglected due to the unavailability of the channel data for calibra-
tion. Through Figures 6a–c, S1 and S2, we can observe that the inundation areas were
underpredicted as some of the small reaches were not filled by water.

Previous studies have reported flow velocities estimated around our study sites.
Pavelsky and Smith [7], whose study site was located far south from our study site,
reported the average propagation speed of 1.01 m/s, which was close to the data recorded
at a station in Tabaga (0.97 m/s). Kääb [8] tracked ice movement on the south of our
study site, resulting in the speed ranging from 0 to 2.5 m/s. However, they stated that the
speed profile they derived does not necessarily represent a profile of mean water velocity
because it includes the velocity only where ice debris was present and not all sections of ice
velocities are considered to indicate water velocity [8]. A rough estimate of the flow velocity
was performed by Fedorova [50] based on river discharge recorded in the reach 4.7 km
upstream of Stolb Island (downstream of our study site) and at the Khabarova station
divided by their respective cross-sectional areas, which resulted in the maximum velocity
values of 3.49 m/s and 3.10 m/s for each river reach. Based on this comparison, our model
might have overestimated the flow velocities at some parts of the Lena River Reach. The
lack of recorded flow velocity data hindered us from performing model calibration for the
flow velocity estimation.

The huge range of model accuracies and the overestimated flow velocities are at-
tributable to the lack of riverbed complexity in the estimated bathymetry and estimated
Manning’s n values. HEC-RAS flow computation is highly sensitive to topography and
channel roughness [51–53]. The estimated bathymetry might have lost the riverbed relief
in details that prevented the model from filling in the small channels with water. The river
bathymetry was assumed to be flat along the channels from the upstream to the down-
stream with a similar trapezoidal shape. Due to the unavailability of the river bathymetry
data, adding more details to the river bed was impossible and changes in river geomor-
phology over time were also neglected in the models. The models were calibrated on
different sets of estimated bathymetry maps, and the assigned Manning’s n values were
fixed, which, as a result, neglected the changes in Manning’s n value over time. Information
about changes in river morphology and surface roughness over time would be useful to
improve the model accuracies. Bias in visual interpretation on the reference inundation
area mapping could have also affected the model accuracies. Moreover, neglected weather
effects could have also contributed to the underprediction of the inundation areas. The
deposited ice and snow that melts over time might have released a great amount of water
to the river basin due to the vast extent of the study area.

Land cover classification was performed with two separate composites: TSX/TDX-RE
stacked composite and LS8 imagery. Adding RE bands helped improve land cover classifi-
cation with TSX/TDX imagery. These products are also of the same high spatial resolution,
5 m. Adding a separate LS8-based land cover mapping was necessary on the study areas
which were not covered by the intersection of the RE imagery and available TSX/TDX
Stripmap images. On the TSX/TDX-RE composite classification, misclassifications often oc-
curred for the vegetated floodplain and densely vegetated floodplain classes due to mixed
pixel values between these two classes. Additionally, multiple vegetation variants in one
pixel were possible. The grass- and moss-dominated tundra, dwarf-shrub-dominated tun-
dra, and sedge- and moss-dominated tundra pixels are often misclassified. Random Forest
VIM scores of RE bands (blue, green, red, red edge, and near-infrared) were much higher
than those of the TSX/TDX bands (K0, K3, and K4) (Supplementary Materials Figure S9a).
RE infrared band was the band with the highest VIM score, whereas TSX/TDX K3 band
was the lowest. The near-infrared spectrum consists of a large set of overtones and combi-
nation bands, making it more varied according to the surface covers. On the other hand,
K3, the absorption band, does not distinguish different surface covers that well. Similar
to the TSX/TDX-RE composite classification, the variable with the highest importance is
the near-infrared band (Figure S9b). The least important band for this classification is the
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coastal aerosol band. The coastal aerosol band is useful for coastal and aerosol studies but
does not represent different surface covers clearly.

Data acquisition of river bathymetry, surface roughness, and weather would help
improve this study. Previous studies utilizing TDX-DEM have incorporated LIDAR-sensed
river bathymetry [13,14]. Sediment grain size data can be a good approach for estimating
Manning’s n values [54]. Another alternative to this approach to taking sediment grain
samples is to acquire in situ soil moisture data to be used as limiting parameters for
TSX/TDX-derived roughness height following a previous study [11].

5. Conclusions

This study implemented hydrodynamic modeling and remote sensing methodologies
by means of using the twin satellite TSX/TDX and TDX-DEM products to monitor the
annual spring floods in Lena Delta taking place from 2013 to 2019. The flood events
were modeled in three different stages each year: (1) before the flood—in early May;
(2) the flood peak—in late May to early June; and (3) after the flood—in mid to late June.
Approximations were made for the model inputs where the in situ data were not openly
available, such as the river bathymetry and surface roughness of the riverbed and the
floodplains. Uncertainties in the approximation came at the expense of varying model
accuracy, ranging from 65 to 95%, as the model is highly reliant on the estimated bathymetry
and surface roughness coefficients to perform the computation. Kappa coefficients range
between 0.78 and 0.97. These values show moderate to almost perfect levels of agreement
between the two inundation boundaries. The modeled results show higher agreement
with the satellite-derived inundation areas during the flood peak compared to those from
before and after the flood when the discharge values were lower. The decline of inundation
areas throughout the years coincides with the decline of the discharge recorded at Kyusyur
gauging station.

The combination of remote sensing and hydrodynamic modeling approaches is appli-
cable for studies where in situ datasets are scarce. This method can be used in monitoring
the hydrodynamic processes of a flood event in a vast remote area with limited gauged data.
This is supported by the high spatial resolution of TSX/TDX and TDX-DEM. The model
could be further improved if important input parameters such as river bathymetry, surface
roughness, and weather data were available. Having flow data for model calibration prior
to the model validation would allow a better input parameter adaption process. For future
studies, this approach can be improved by coupling the hydrodynamic modeling with the
hydrological modeling and performing 2D/3D simulation. Combining our simulations
with sediment transport, water quality, freshwater–seawater interaction, and ecological
modeling could also be an important contribution to climate-related research, given the
large impacts the Arctic rivers impose on the ocean conveyor belt.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13224695/s1, Figure S1: “The reference and modeled inundation area of the 2013, 2014,
2015, and 2016 flood events”, Figure S2: “The reference and modeled inundation area of the 2017,
2018, and 2019 flood events”, Figure S3: “The modeled inundation area on the Lena delta floodplain
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