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Abstract 
Single-cell genomics approaches, including low throughput plate-based and high throughput droplet-

based approaches, have revealed a wealth of knowledge on cellular heterogeneity in a plethora of 

tissues and organs, among them the brain and the liver. Low throughput methodologies such as the 

recently developed snRNA-seq2 methodology allow the capture of rare, sorted cell populations. Here, 

snRNA-seq2 was successfully applied to explore the transcriptome of sparse oxytocin-expressing 

hypothalamic neurons of the mouse brain, revealing exclusive gene expression patterns that are 

mutually exclusive in neuronal subtypes. However, the methodologies to explore the heterogeneity in 

the regulatory chromatin epigenetic landscape of these sparse populations and their specific 

characteristics are limited. This thesis presents the initial steps for the development of a plate-based 

methodology to explore chromatin accessibility in polyploid hepatocytes.  

In the liver, further cellular heterogeneity has been described, for instance, regarding the metabolism 

of endo- and xenobiotic substances within the tissue. This heterogeneity is affected by intrinsic and 

extrinsic factors, including hepatic steatosis, occurring in chronic non-alcoholic fatty liver disease 

(NAFLD) or in healthy aging, or the presence of single-nucleotide polymorphisms. How these factors 

impact the individual hepatocyte functional specialization and their responses toward exposure to a 

cocktail of drugs is here explored. The assessment of drug efficacy, safety, and toxicity in preclinical 

early phases of drug development is classically performed in bulk analyses on primary human 

hepatocytes (PHHs), the gold standard liver in vitro model. This thesis aims for the dissection of the 

metabolic capacity of individual PHHs in vitro, and to assess the impact of aging and chronic 

intracellular fat accumulation on cellular heterogeneity and drug-related metabolism. Here, the 

phenotyping cocktail approach was applied, and the individual transcriptomic responses were used as 

a readout of the metabolic capability using a high throughput droplet-based scRNA-seq approach. Four 

different subgroups of hepatocytes were identified across the four biological replicates and across 

treatment conditions. These PHH subgroups showed divergent transcriptional responses and metabolic 

profiles upon incubation with a drug cocktail, intracellular fat accumulation, and both concomitantly.  

At the epigenetic level, studies on the upstream molecular machinery governing the transcriptional 

responses of mammalian hepatocytes at single-cell resolution under fat accumulation and drug 

exposure are scarce. Herein, this thesis contains an optimization of the experimental conditions for the 

assessment of the genome-wide chromatin accessibility patterns of PHHs in vitro at single-cell 

resolution using scATAC-seq. Hereby, different chromatin accessibility configurations were found 

upon treatment conditions such as drug cocktail exposure, intracellular fatty acid accumulation, or both 
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simultaneously. These different conditions were found to impact the regulatory landscape of individual 

human hepatocytes, reflecting the observed distinct patterns observed at the transcriptomic level.  

 

Zusammenfassung 
Single-cell genomics, einschließlich plattenbasierter Ansätze mit geringem Durchsatz und 

tropfenbasierter Ansätze mit hohem Durchsatz, haben eine Fülle von Erkenntnissen über die zelluläre 

Heterogenität in einer Vielzahl von Geweben und Organen, darunter das Gehirn und die Leber, zutage 

gefördert. Methoden mit geringem Durchsatz, wie die kürzlich entwickelte snRNA-seq2-Methode, 

ermöglichen die Erfassung seltener, sortierter Zellpopulationen. Hier wurde die snRNA-seq2-Methode 

erfolgreich eingesetzt, um das Transkriptom von spärlichen Oxytocin-exprimierenden 

hypothalamischen Neuronen des Mäusegehirns zu erforschen. Es wurden dabei exklusive 

Genexpressionsmuster aufgedeckt, die sich in neuronalen Subtypen gegenseitig ausschließen. Die 

Methoden zur Erforschung der Heterogenität in der epigenetischen Chromatinlandschaft dieser 

spärlichen Populationen und ihrer spezifischen Merkmale sind jedoch begrenzt. In dieser Arbeit 

werden die ersten Schritte zur Entwicklung einer plattenbasierten Methodik zur Erforschung der 

Chromatinzugänglichkeit in polyploiden Hepatozyten vorgestellt.  

In der Leber wurde eine weitere zelluläre Heterogenität, beispielsweise in Bezug auf den Stoffwechsel 

von endo- und xenobiotischen Substanzen innerhalb des Gewebes beschrieben. Diese Heterogenität 

wird durch intrinsische und extrinsische Faktoren beeinflusst. Darunter, die Präsenz von 

Einzelnukleotid-Polymorphismen oder, die hepatische Steatose, die bei chronischer nichtalkoholischer 

Fettlebererkrankung (NAFLD) oder beim gesunden Alterungsprozess auftritt. Es wird untersucht, wie 

sich diese Faktoren auf die funktionelle Spezialisierung der einzelnen Hepatozyten und ihre Reaktion 

auf die Einwirkung eines Medikamentencocktails auswirken. Die Bewertung der Wirksamkeit, 

Sicherheit und Toxizität von Arzneimitteln in den frühen präklinischen Phasen der 

Arzneimittelentwicklung erfolgt klassischerweise in Massenanalysen an primären menschlichen 

Hepatozyten (PHHs), dem Goldstandard unter den In-vitro-Modellen. Ziel dieser Arbeit ist es, die 

Stoffwechselkapazität einzelner PHHs in vitro zu untersuchen und die Auswirkungen von Alterung 

und chronischer intrazellulärer Fettansammlung auf die zelluläre Heterogenität und den 

arzneimittelbezogenen Stoffwechsel zu bewerten. Hier wurde der Ansatz des 

Phänotypisierungscocktails angewandt. Die individuellen transkriptomischen Reaktionen wurden als 

Indikator für die Stoffwechselfähigkeit mit Hilfe eines auf Tröpfchen basierenden 

scRNA-seq-Ansatzes mit hohem Durchsatz verwendet. Vier verschiedene Untergruppen von 

Hepatozyten wurden in den vier biologischen Replikaten und unter den verschiedenen 
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Behandlungsbedingungen identifiziert. Diese PHH-Untergruppen zeigten unterschiedliche 

Transkriptionsreaktionen und Stoffwechselprofile bei der Inkubation mit einem 

Medikamentencocktail, bei intrazellulärer Fettakkumulation oder bei gleichzeitiger Verabreichung 

beider Substanzen.  

Auf epigenetischer Ebene gibt es nur wenige Studien über die vorgelagerte molekulare Maschinerie, 

die die Transkriptionsreaktionen von Säugetierhepatozyten bei Einzelzellauflösung unter 

Fettakkumulation und Arzneimittelexposition steuert. Diese Arbeit beinhaltet eine Optimierung der 

experimentellen Bedingungen für die Bewertung der genomweiten Chromatin-Accessibility-Muster 

von PHHs in vitro bei Einzelzellauflösung mittels scATAC-seq. Dabei wurden unterschiedliche 

Konfigurationen der Chromatinzugänglichkeit in Abhängigkeit von den Behandlungsbedingungen wie 

der Exposition gegenüber einem Medikamentencocktail, der intrazellulären Fettsäureanreicherung 

oder beidem gleichzeitig festgestellt. Es wurde festgestellt, dass sich diese unterschiedlichen 

Bedingungen auf die regulatorische Landschaft einzelner menschlicher Hepatozyten auswirken, was 

die beobachteten unterschiedlichen Muster auf transkriptomischer Ebene widerspiegeln. 
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1. Introduction 
 
In the present thesis, two different single-cell genomics approaches are used to explore the 

heterogeneity within complex tissues like the brain and the liver. The heterogeneity among hepatocytes 

in the liver is dissected by single-cell genomics approaches at the transcriptomic level using single-cell 

RNA sequencing (scRNA-seq), and at the epigenomic level applying single-cell Assay for 

Transposase-Accessible Chromatin (scATAC-seq). Thereby, the transcriptomic and epigenomic 

profile of a seemingly homogeneous population of primary human hepatocytes (PHHs) in vitro is 

interrogated. Moreover, the capacity to metabolize a cocktail of drugs by individual hepatocytes is 

investigated to deeply characterize their transcriptomic responses. In addition, the impact of 

intracellular fat accumulation in PHHs in vitro on the individual hepatocyte metabolism, and on their 

capacity to metabolize a cocktail of drugs is evaluated at single-cell resolution. The aims for this thesis 

are described in section 1.8 “Hypotheses and aims of this thesis” at the end of the Introduction section. 

 
 
1.1 Single-cell genomics technological approaches: comparison of strategies 

and relevance of its application to dissect cellular heterogeneity 
 

1.1.1 Single-cell RNA sequencing (scRNA-seq) 
 
 
Two different scRNA-seq approaches are applied in each of the chapters in this thesis depending on 

the research question, the sample origin and conservation method, and the throughput– such as the 

exploration of i) the transcriptomic profile of rare cellular subpopulations; or ii) the characterization 

of responses within a cell population. First, the exploration of a rare population in the murine brain 

such as oxytocin-positive hypothalamic neurons in response to control or high-fat/high-sugar diet 

using flash-frozen tissue samples is performed employing a low-throughput plate-based approach. 

Second, the characterization of the transcriptional profile among a seemingly homogeneous population 

of PHHs in vitro in response to intracellular fat accumulation, exposure to several drugs 

simultaneously, or both concomitantly is performed using a high-throughput droplet-based approach 

(10X Genomics).  

 

In the past years, advances in single-cell genomics technologies have unraveled a wealth of knowledge 

obtained from analyzing the gene expression profile of single cells in healthy vs. diseased statuses of 

several organs and systems [2-9]. Cell atlases of different organs and tissues have been developed to 

gain a comprehensive view of mouse [10] and human, culminating in the Tabula muris atlas of mice 
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tissues, the Human cell atlas [11, 12] and the Tabula sapiens [13]. Naturally, a plethora of scRNA-

sequencing methods and approaches have emerged fashioned to accommodate the quickly growing 

research questions and experimental designs. This technology has enabled the interrogation of complex 

tissues, and cell types and the identification of groups of cells with similar transcriptomic profiles and 

dynamic states, which are generally associated with similar functional processes [14-17].  

Firstly, the isolation of viable single cells can be achieved through different experimental 

methodologies, depending on the starting material, namely tissue biopsies, primary cells, or cell lines 

and their preservation: fresh, fixed, or flash-frozen [18-20]. In order to singly dissociate cells, the main 

commonly used strategies are fluorescent-activated cell sorting (FACS), magnetic-activated cell 

sorting (MACS), laser capture microdissection (LCM), and microfluidics [21-24]. Alternatively, the 

isolation of single nuclei can prove beneficial when interested in previously flash-frozen and archived 

samples, such as those in biobanks [19]; or when the tissue’s anatomical complexity hinders the readily 

isolation of intact cells, for instance from adult brain tissue [25]. The harsh enzymatic dissociation 

damages RNA integrity, biases recovered cell type proportions and is successful only for young tissues 

[26, 27]. 

Two main strategies stemmed for scRNA-seq, diverging in the means whereby transcripts are captured, 

the number of cells or nuclei analyzed in one run or throughput, the barcoding technique and the 

sequencing method (Figure 1) [28, 29]. Based on their captured transcript coverage, the current single-

cell approaches can be divided into full-length transcript capture and tag-based methods capturing 

polyadenylated mRNA molecules on the 3’ or 5’-end transcripts [30, 31]. Isoforms or gene fusions 

can be studied using full-length transcript methods, many based on the SMART-seq2 [31] technology 

[30], whereas 3’-end-based methods can provide an aggregate view of the transcriptional heterogeneity 

of the same cell population, such as 10X Genomics Chromium [28]. Classical droplet-based 

approaches such as Drop-seq [32], Seq-Well [33], 10X Genomics Chromium [34], inDrop [35], and 

DroNC-seq [26] are restricted to the capture of one end of the transcript, reducing the ability to 

unambiguously align reads to a transcript, and detect different gene isoforms, easily performed 

applying full-length transcript methods such as SMART-seq2 [36]. 

Another key difference between methodologies relies on the throughput, whereby plate-based methods 

yield a comparatively low throughput, while droplet-base approaches provide higher output at a 

generally relatively lower cost per cell, trading off sensitivity [28]. Therefore, plate-based 

methodologies are more suitable for studies of rare cell types or subpopulations that are scarce in the 

tissue of origin, for instance, hypothalamic neurons in murine brain tissue [37]. Additionally, plate-

based methods are performed on cells sorted into microtiter plates, where the conversion to cDNA 

occurs per cell with the aid of microfluidic robots [38]. Recently, the snRNA-seq2 method based on 



10 
 

the SMARTer chemistry from Takara was developed in the Martinez-Jimenez lab to explore a starred 

feature of the liver, polyploidization [19, 39].  

 

 
Figure 1. Schematic representation of the workflow for single-cell genomics using plate-based (top) or droplet-based (bottom) 
approaches. Plate-based methods rely on the deposition of single cells isolated typically by FACS sorting into each well of a PCR 
microtiter plate filled with lysis buffer. On the other hand, droplet-based methodologies use oligo-barcoded coated beads encapsulated 
with cells in emulsion droplets of oil.  

 

Conversely, droplet-based approaches such as 10X Genomics, encapsulate cells in oil or gel droplets 

together with the cell barcode and the unique molecular identifier (UMI), followed by droplet lysis 

and cDNA synthesis [40]. The usage of random nucleotide sequences (UMIs) associated to a unique 

single molecule can be used for the quantification of gene expression levels and to correct for 

amplification bias, helping accurate quantification of transcripts [30, 41]. 

 

1.1.2 Single-cell ATAC-sequencing (scATAC-seq) 
 
In the present thesis, the preliminary assessment of the impact of these factors on PHHs’ chromatin 

landscape was performed. Scarce single-cell transcriptomic analyses of liver polyploidization have 

been done [19, 42], yet the epigenetic landscape characterizing polyploid cells in the liver has not been 

explored [43]. Therefore, in the present thesis, the development of a plate-based methodology for the 

analysis of the chromatin state of polyploid hepatocytes is one of the objectives.  
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Gene expression is tightly regulated by genomic and epigenomic molecular events that define the 

downstream transcriptomic signature of cell types, subtypes, and states. Single-cell studies of the 

genome-wide chromatin architecture and accessibility landscape have revealed differences in cell 

types that differ in healthy and diseased statuses [44-50]. The upstream molecular events governing 

gene expression can be explored in order to gain a broader understanding of the underpinnings 

regulating processes and functional outcomes, cell identities, and cell types or cell subpopulations [51, 

52].  

The most widely used strategy to measure the level to which specific regions of chromatin are 

accessible to regulatory factors is the genome-wide chromatin accessibility landscape assessment 

through the Accessible Transposase Chromatin Accessibly assay (ATAC-seq), initially developed by 

Buenrostro et al. in 2013 [53]. However, the chromatin state is specifically and dynamically regulated 

per cell-type [54, 55], hence the methodology was optimized to dissect this heterogeneity at single-

cell resolution in 2015 [44, 56]. This methodology relies on the Tn5 hyperactive transposase enzyme 

[57, 58] entering the permeabilized nuclei to fragment and tag open chromatin regions inserting 

sequencing adaptors in a process named tagmentation. Open regions are defined by the nucleosome 

and transcription factor-free areas [53]. ATAC-seq libraries sequenced in paired-end reads provide 

information about nucleosome positioning and packing, since the insert size distribution of sequenced 

fragments from human chromatin show a clear periodicity of approximately 150 to 200 bp, with 147 

bp empirically tested to be the length of DNA wrapped around one nucleosome [53, 59].  

As occurring with scRNA-seq, plate-based [60], nano well-based [61], microfluidics devices (ICELL8 

from Takara) [44] and droplet-based methodologies [47, 62], as for instance the 10X Genomics 

platform [50] have emerged to shelter both research and biological demands. The latter methodology 

has become the most broadly used method due to its high throughput, the low cost per cell, the capture 

efficiency and the flexibility it offers [63]. Common to all is the need for the isolation of intact, singly 

dissociated nuclei. This is the initial and crucial step in the workflow, and the optimization of the lysis 

conditions and incubation time is key for successful high-quality dataset obtention. To achieve that, 

mechanical dissociation using douncer homogenizers and lysis buffers are combined in order to obtain 

a clean single-nuclei suspension, as in the improved Omni-ATAC protocol by Corces et al. [64, 65]. 

The composition of the lysis buffer is conventionally made of nonionic detergents and different 

concentrations of salts with the purpose of lysing the cellular membrane and permeabilizing the intact 

nuclear membrane, and needs to be optimized for the tissue or sample of interest [48, 66-68]. 

Subsequently, the transposition reaction can be performed in bulk, prior to the obtention of single 

nuclei, as in the pipeline published by Chen et al. [60]. Alternatively, the tagmentation can be 
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performed individually per nuclei after single nuclei are separated into single wells [44]. The selection 

of the tagmentation strategy and the general methodology relies on the research question.  

 

 
1.2 Liver and brain connection 

 
The liver is the largest solid organ in the body responsible for vital functions such as the metabolism 

of endogenous substances (endobiotic) and exogenous substances (xenobiotics) [69, 70], energy 

homeostasis maintenance, detoxification, coagulation, nutrient transport, or immune response [71, 72]. 

The neural connection between the liver and the paraventricular nucleus (PVN) of the brain is the 

backbone machinery to maintain systemic glucose homeostasis [73]. Oxytocin-expressing 

paraventricular hypothalamic neurons (PVNOT neurons) project directly to the liver and adipose tissue 

[73, 74], and respond to afferent signals from the gut, one of them being the release of the peptide 

cholecystokinin (CCK), being major regulators of whole-body energy homeostasis [75]. Nonetheless, 

the molecular mechanisms by which PVNOT neurons orchestrate gut-to-brain feeding control remain 

unclear. Recently, scRNA-seq enabled the identification of 62 neuronal and 11 non-neuronal 

subclasses showing distinct transcriptional signatures in the adult mouse hypothalamus, and up to 24 

distinct neuronal types in the median eminence of the arcuate nucleus (ARH-ME) [76-79] as well as 

the importance of neuronal subtypes of Pro-opiomelanocortin (POMC) anorexigenic neurons in the 

ARH that signal to the PVN in response to leptin to control feeding and satiety homeostatic signals 

[80, 81]. Moreover, it is known that chronic exposure to different hypercaloric diets leading to obesity 

in individuals causes defects in the gut-brain communication. Especially, the suppression of food 

intake that CCK has is diminished upon high-fat feeding and is associated with attenuated neuronal 

activation in the PVN [82].  

 

 

1.3 Liver structure, metabolic function, and drug metabolism 
 

In the liver, the different functions are coordinated and performed by the different hepatic cell types. 

Among those, constituting the non-parenchymal cell compartment are hepatic stellate cells (HSCs), 

Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), lymphocytes and biliary cells [83]. Up 

to twenty different cell types have been described in the human liver, among which hepatocytes, 

endothelial cells, cholangiocytes, HSCs, B-cells, conventional and non-conventional T cells, NK-like 

cells, and distinct intrahepatic monocyte/macrophage populations were defined by MacParland et al. 
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in 2018 [84]. The main metabolic functions are predominantly performed by hepatocytes, the major 

cell type of the liver, making up the parenchyma comprising nearly 70% of the liver mass and total 

cell population in humans, and 50-60% in mice [69, 85-87]. A particularity that hepatocytes have is 

polyploidy [43, 88-90]. Polyploidy or whole-genome duplication is the inheritable condition to possess 

more than two complete sets of chromosomes [91]. After birth, all hepatocytes are diploid (2n), and 

the polyploidization (4n, 8n, 16n) process occurs gradually with postnatal development [92, 93]. In 

adulthood, up to 90% of hepatocytes are polyploid in rodents [92, 94, 95], and approximately 30 - 40% 

in humans [89, 96-98].   

 

Spatially, the liver is made up of smaller organizational units named lobules, composed in their 

structure by a hexagonal shape of around 15 concentric layers of cells [99]. Nutrients, oxygen, 

hormones, and xenobiotic substances proceed from the intestine and enter the lobule at the peripheral 

area, flowing towards the center of the hexagon, where the draining central vein (CV) is located. On 

the contrary, bile flows from the center of the lobule, draining into the peripheral portal bile duct [100-

103]. This particular spatial structure prompts a gradient in the concentration of the affluent nutrients 

and hormones [103], resulting in cellular specialization, known as metabolic zonation [104]. This 

entails differential gene expression, division of labor, and functional heterogeneity within the liver 

lobule [2, 5, 6, 17, 84, 105, 106]. Recently, single-cell RNA sequencing, immunohistochemical 

techniques and spatial reconstruction have revealed the heterogeneity hidden in liver tissue among 

different cell types and within the same one in health and diseased statuses. A comprehensive 

characterization of the human and murine liver cell type composition and their communication healthy 

tissue has been done [2, 5, 6, 8, 17, 84, 105, 107, 108]. In the murine liver, Halpern et al. were the first 

ones to describe liver heterogeneity across the lobule and functionality among cell types [5, 6]. In 

human tissue, Aizarani et al. constructed a liver cell atlas from nine liver donors, describing the 

heterogeneity hidden in the different cell type populations and proposing an epithelial progenitor in 

liver development [2]. 

This has not only been demonstrated at the transcriptomic level but also at the gene regulatory level 

by characterizing the epigenetic landscape of single cells. For instance, a study by Brosch et al. 

demonstrated that hepatocytes located in different zones carry different epigenetic marks such as DNA 

methylation patterns [109]. Nevertheless, the chromatin accessibility landscape of individual cells in 

the liver has not been extensively studied yet. Cusanovich et al. made a comprehensive scATAC-seq 

atlas of 13 tissues, where hepatocytes clustered separately based on their chromatin pattern [45]. 

Thereafter, Chen et al. published in 2020 the first study from fresh murine hepatocytes at single-cell 

resolution using 10X Genomics applications, where they identified functional diversification of 
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hepatocytes during liver regeneration based on their differential chromatin accessibility configurations 

[48]. Also, single-cell bisulfite sequencing has revealed heterogeneous DNA-modification states 

among single hepatocytes [110]. Most recently, a study using nuclei from mouse livers showed 

differential chromatin accessibility in young vs. old livers, and while chromatin accessibility patterns 

were able to separate cells by age, this was not possible from the transcriptomic data, and also the 

correlation between the epigenomic and the transcriptomic level was generally not optimal [111]. Yet, 

they report that age is a relevant factor for explaining transcriptional cell-to-cell variation. However, a 

deep characterization of the metabolism of human hepatocytes at the transcriptomic and epigenomic 

level has not yet been deeply performed. Also, not in response to exposure to several drug treatments 

or xenobiotic metabolism, or in response to intracellular fat accumulation.  

 

The metabolism of endobiotic substances in the liver comprises carbohydrates, lipids, bile acids and 

sterols, protein synthesis, and urea metabolism. Included among xenobiotics are drugs, toxicants, 

environmental toxicants and pollutants but also flavorings, cosmetics or food additives [112, 113]. 

Three main phases compose the metabolism of xenobiotics in vivo: Phase I solubilization reactions, 

phase II conjugation reactions and phase III or transmembrane transport [114]. In vivo, the 

biotransformation of a xenobiotic substance (pharmacokinetics) in an organism goes through four 

different phases: Absorption, Distribution, Metabolism and Excretion (ADME) [115]. However, in 

vitro, the absorption and metabolism phases are not considerable, and the clearance of administered 

drugs occurs in three main phases: Phase I, II and III metabolism (Figure 2).  

 

 
1.3.1 Phase I drug metabolism 

 
Phase I metabolism consists of reduction, oxidation or hydrolysis reactions, which convert lipophilic 

drugs into polar compounds by adding or exposing moieties like -NH2 or OH to increase their 

solubilization [114]. Their reactions also produce active metabolites of the drug, resulting in the 

activation of prodrugs into their active compound, with therapeutic effect [114]. The cytochrome P450 

(CYP450) superfamily of monooxygenase enzymes catalyze these biotransformation reactions of 

drugs and other lipophilic compounds [116-118]. They are expressed as membrane-bound proteins 

mostly found in the endoplasmic reticulum of hepatocytes [119]. The subfamilies 1, 2, and 3 are the 

most highly expressed and are responsible for the metabolism of most of the drugs and other xenobiotic 

chemicals. Precisely, the isoforms CYP1A2, 2C9, 2D6, 2C19 and 3A4 are responsible for the 

metabolism of approximately 70 to 80% of the drugs currently in the market [117, 120, 121]. The most 
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abundantly expressed in the healthy human liver are CYPs 3A4, 2C9, 2C8, 2E1 and 1A2, whereas 

2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant [117, 122, 123]. This superfamily of enzymes is 

encoded by 57 genes in humans [124]. These are inducible, meaning their expression is stimulated in 

the presence of their substrate [117, 119, 125-127].  

There is certain overlapping functionality and substrate specificity among them, but many drugs are 

metabolized at clinically relevant concentrations by only one isoform of the enzyme [128]. For 

instance, the main route for the metabolism of caffeine transforming N-3-demethylation to 

paraxanthine (1,7-dimethylxanthine or 17X), accounting for approximately 80%, is carried out by the 

CYP1A2 isoform [129]. Though, a minor percentage of it is metabolized by other enzyme isoforms 

such as CYP2C8/9 and CYP3A4. Similarly, the metabolism of the widely used proton pump inhibitor 

drugs such as omeprazole, pantoprazole, or lasoprazole is mainly performed by the CYP2C19 isoform. 

The main route for the metabolism of omeprazole is converting the substance to hydroxyl and 5-O-

demethyl metabolites by CYP2C19 isoform, and further to 5-hydroxyomeprazole sulfone by 

CYP3A4[130, 131]. However, omeprazole can also be converted by CYP3A4 to omeprazole sulfone 

and then to 5-hydroxyomeprazole sulfone by CYP2C9[132, 133]. The biotransformation of blood 

thinner drugs like S-warfarin is performed by the isoform CYP2C9 to 7-hydroxywarfarin [134, 135]. 

On the other hand, its enantiomer R-warfarin is metabolized mainly by CYP1A2 to 6-and 8-

hydroxywarfarin and by CYP3A4 to 10-hydroxywarfarin, and by carbonyl reductases to 

diastereoisomeric alcohols [136]. The biotransformation reactions of ß-blocker drugs like bufuralol or 

metoprolol are catalyzed in the liver by CYP2D6 isoforms in their majority [137]. Concretely, 

metoprolol is transformed to α-hydroxymetoprolol and O-demethylmetoprolol primarily, and minorly 

by CYP3A4 to O-demethylmetoprolol [138]. The most abundantly expressed CYP in liver is the 

CYP3A4 isoform, and the CYP3A subfamily metabolizes nearly 30% of all the used drugs from all 

therapeutic categories [139-141]. For instance, the benzodiazepine drug midazolam is transformed to 

1-OH-midazolam and 1-OH-midazolam-glucuronide by CYP3A4 and to a minor extent by CYP3A5 

[142]. These two isoforms share 85% amino acid sequence similarity, therefore sharing high substrate 

selectivity [143]. 

The substrates of the different isoform of the CYP450 enzymes are extensively used to phenotype the 

metabolic capacity of the liver in both in vivo and in vitro studies [123, 144], which will be further 

elaborated later in the introduction of this thesis.   
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Inter-individual variations in CYP450 enzymes: Single-nucleotide polymorphisms (SNPs) 
 
The human interindividual variability described regarding the drug metabolism and response presents 

a challenge in clinical practice because it affects the biotransformation efficiency and rate and the 

response toward pharmacological treatments and therapeutic effects [145-147]. Overlapping substrate 

specificity, the presence of genetic single nucleotide polymorphisms (SNPs) [148] , and variations in 

the distribution among different ethnicities [149, 150] are responsible for this divergence [151]. High 

polymorphism rates have been found among the CYP450 genes, especially CYP2B6, CYP2C9, 

CYP2C19, and CYP2D6 with at least 70 different allelic variants described [152] and for CYP2C19, 

which have been discovered by the phenotypic pharmacokinetic and pharmacodynamic differences 

they elicit in drug-treated individuals [148]. These influence the individual capacity to perform 

biotransformation reactions of certain compounds, dividing the population into: i) “poor metabolizers” 

(PM), carriers of null alleles with complete lack of function; ii) “extensive metabolizers” (EM) which 

refers to the most commonly found phenotype among the population; iii) “intermediate metabolizers” 

(IM), who carry one functionally deficient allele and one functional, leading to impaired drug oxidation 

capacity; and iv) “ultrarapid metabolizers” (UM) originating from variants leading to gain of function 

[117, 152-155].  

 

 
1.3.2 Phase II biotransformation reactions 

 
 
Hepatic phase II metabolism of xenobiotics comprises conjugation reactions catalyzed by transferase 

enzymes that serve for the solubilization and excretion facilitation of the products from phase I 

metabolism [114]. These reactions include glucuronidation, sulfation, methylation, acetylation, 

glutathione conjugation, and aminoacidic conjugation [156, 157]. Families of transferase enzymes 

carrying out phase II metabolism are UDP-glucuronidases (UGTs), sulfotransferases (SULTs), 

N-acetyltransferases (NATs), and glutathione S-transferases (GSTs), amino acid conjugation enzymes 

and various methyltransferases (thiopurine S-methyltransferase and catechol O-methyltransferases 

[156, 158, 159]. Some of the phase II metabolizing enzymes have also been shown to be related to the 

stress response upon drug treatment. 
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Figure 2. Schematic representation of the xenobiotic metabolism in hepatocytes. Xenobiotics are transported into the cells through 
organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs) and sodium taurocholate co-transporting 
polypeptide (NTCP). During phase I, CYP450s enzymes catalyze biotransformation reactions such as hydroxylation as exemplified here, 
in the presence of oxygen. Phase II metabolism is carried out by transferases including glutathione S-transferases (GST), 
methyltransferases, glycine N-acyltransferase (GLYAT), N-acetyltransferases (NAT), sulfotransferases (SULT), UDP-
glucuronosyltransferases (UGT) by incorporating uridine diphosphate-glucuronic acid (UDPGA) and using glutathione (GSH). Phase 
III refers to the conjugate excretion through ATP binding cassette (ABCs) (e.g., multidrug resistance protein family)) and solute carrier 
transporters (SCLCs) transporters. GA: glucuronic acid; GSH: glutathione; OH: hydroxyl; PAPS: phosphoadenosine-phosphosulfate. 
Image adapted from Esteves et al. 2021[160]. 

 

 

1.3.3 Phase III drug metabolism 
 

During this phase, the conjugated xenobiotics are transported out of the cell across the cellular 

membrane in an ATP-consuming protein [114]. Four different classes of membrane-bound protein 

transporters exist: ion channels; transporters; aquaporins; and ATP-dependent pumps. ATP-binding 

cassette (ABC) transporters are an example of ATP-dependent pumps. The major proteins exporting 

drugs outside of the cell are ABC transporters that are located in the canalicular membrane of the liver. 

For instance, MRP2 and BCRP, export conjugated compounds into the bile. The main members of the 

ABC family are ABCA, ABCB and ABCC, and their inhibition leads to an increase in the 

concentration of their substrates in the bloodstream and decreases their biliary excretion, prolonging 

their stay in the body [161].  
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1.4 The aging liver and the aging liver in disease  

 
The coadministration of drugs is highly common in the geriatric clinical practice in order to treat age-

related comorbidities such as hypertension, cardiovascular disease, dyslipidemia [162], type 2 

diabetes, or vascular diseases [163, 164]. Hence, the elderly population is in a more susceptible 

position to developing ADRs, subsequent hospitalization, and acute liver failure [165, 166]. In fact, an 

incidence of ADRs in the elderly twice as high as in younger patients has been registered [167]. In 

addition, polypharmacy in generally associated with adverse drug outcomes, including DILI and DDIs 

[168].  

In general, aging is marked by a decline in the function of organs and organisms. Among the described 

hallmarks of aging, there have been stem cell exhaustion, cellular senescence, mitochondrial 

dysfunction, deregulated nutrient sensing, loss of proteostasis, genomic instability, telomere attrition 

and epigenetic alterations [169]. The aging process in the liver is governed by transcriptomic and 

epigenomic alterations that contribute to the dysregulation of mitochondrial function and nutrient 

sensing pathways and energy homeostasis, resulting in cellular senescence and low-grade 

inflammation [170]. In addition, aging is associated with the metabolic syndrome, defined by the 

World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, 

hypertension, insulin resistance and hyperlipidemia, as well as to increased chronic inflammation [170-

172]. In fact, cellular senescence has been suggested to drive age-dependent hepatic steatosis [173, 

174]. A general decline in tissue functionality and performance capacity has been described, such as a 

lower blood flow with age [175]. Alongside the increase in age, there is an increase in hepatic lipid 

accumulation and lipid metabolism in adipose tissue dysfunction [176], leading to impaired 

physiological defense against injuries the development of the metabolic syndrome and enhanced 

pathological pathways such as lipid accumulation [177, 178], developing into the phenotypic 

characteristics of NAFLD in the elderly population, among which a higher incidence has been 

registered [179, 180]. Furthermore, the inflammation and ER stress related to fat accumulation and to 

aging promotes the expression of heat shock proteins, and their accumulation triggers the unfolded 

protein response (UPR) proteins [170, 181, 182]. The accumulation of misfolded proteins and increase 

in lipogenesis and lipotoxicity results in higher ROS levels, triggering oxidative stress and anti-

inflammatory stress response [183], leading to an overall higher age-related liver diseases 

predisposition, such as steatosis and NAFLD [170].  
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1.4.1 Aging and variability 
 
Aging has been associated with an increase in transcriptional cellular variability in several tissues and 

organs [184]. Martinez-Jimenez et al. demonstrated that aging increased the cell-to-cell transcriptional 

variability and uncoordinated responses in CD4T+ immune T cells [185]. This has also been described 

in lung [16], heart [186], and human pancreas [187]. An extensive atlas of the mouse tissues during 

aging (Tabula muris senis or ‘Mouse Aging Cell Atlas’) has been established by the Tabula Muris 

Consortium, where the authors described a decrease in the number of genes per cell detected in older 

animals across most murine tissues, including liver [188]. Furthermore, changes in the cellular 

composition during aging have been described in the liver, resulting in an increase in the 

inflammation-related macrophages that drive cellular senescence [188, 189].  

In addition, evidence indicates that age-related changes in the liver play a key role in the susceptibility 

to develop NAFLD [173]. In fact, a higher incidence of NAFLD in the elderly has been reported 

repeatedly in the literature [179, 190]. Changes observed at the transcriptomics level and functional 

responses are modulated by the chromatin configuration at the epigenomic level. Moreover, increased 

chromatin accessibility and lower polymerase pausing activity were described as associated to aging 

[191]. It has been postulated that cell-to-cell epigenomic variability or noise is one of the mechanisms 

that might lead to higher transcriptional noise with age [184, 192]. For instance, a recent multiomics 

study of the liver by Nikopolou et al. demonstrated that hepatocytes showed a clear separation between 

young and old cells driven by their chromatin accessibility profile assessed through scATAC-seq, 

however not in their transcriptomic profile. Nevertheless, they appointed that age still represents a 

relevant factor for explaining transcriptional variability between cells [193].  

The impact of aging on the changes in transcriptional responses to exposure to several drugs 

simultaneously causing a drug-related metabolic challenge has not been explored in individual PHHs.  

 
 

1.5 Liver in disease: fat accumulation and NAFLD 
 
The intracellular accumulation of fat in the hepatocytes is known as hepatic steatosis, when 5% or 

more of the hepatocytes present triglyceride accumulation exceeding 5% by weight without an 

excessive alcohol consumption (maximum of <20 g/day for females and <30 g/day for males) [194-

196]. Steatosis is a hallmark of NAFLD, the most common liver disease, affecting around 25% of the 

population worldwide [197]. In approximately 10 to 20% of the patients, it can develop into 
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non-alcoholic-Steatohepatitis (NASH), which can progress to cirrhosis and eventually resulting in 

hepatocellular carcinoma (HCC) [198].  

The occurrence of NAFLD is tightly associated to insulin resistance and glucose intolerance, which in 

general constitute the characteristics of the metabolic syndrome and Diabetes Mellitus, as well as 

cardiovascular-related diseases like coronary heart disease (CHD) [199]. In addition, this prevalence 

increases to 90% in obese patients [200] and is also correlated with severe comorbidities like 

dyslipidemia (high plasma TG and/or low plasma HDL-cholesterol concentrations), and hypertension 

[201].  

Fat accumulation is triggered in the liver by a decompensation in the lipid metabolism, such as 

increased uptake of circulating fatty acids, increased de novo lipogenesis, decreased hepatic 

β-oxidation and decreased lipid export [202] (Figure 3). This occurs with a concomitant increase in 

short-chain and monounsaturated fatty acids [203] and decreased levels of triglycerides containing 

polyunsaturated fatty acids (PUFAs) such as ω-3 and ω-6 fatty acids [203]. The phenotype in NAFLD 

is reversible through lifestyle and dietary intervention, including weight loss and exercise, to manage 

associated conditions such as obesity, diabetes, and hyperlipidemia [201]. However, there are currently 

no approved pharmacotherapies nor known biomarkers to assess the progression of the disease or the 

regression of more severe disease statuses, such as NASH [204]. Furthermore, the accumulation of fat 

in the liver is associated with lipotoxicity, endoplasmic reticulum (ER) stress, inflammation and 

chemokine production, which are determinants for the progression of NAFLD into NASH [205]. ER 

stress also acts promoting hepatocyte cell death, systemic inflammation and insulin resistance by 

activating Nrf2, JNK and NF-κB, CREBH, and CHOP, which actively contribute to inflammatory 

processes and cell death, promoting disease progression [205]. This leads to the increase in oxidative 

stress and reactive oxygen species (ROS) production, contributing to the NAFLD inflammatory 

phenotype and to the progression to NASH [206](Figure 2). For instance, an increase in the 

transcription of CYP2E1 has been recognized as a marker of the disease, as it leads to an increase of 

ROS and superoxide anion radicals’ production, promoting the progression of NAFLD to NASH [207-

209].  

To date, studies at single-cell resolution of the effect of fat accumulation as occurring in chronic 

diseases such as NAFLD on the transcriptional responses of individual hepatocytes are scarce. These 

have been shown to increase the cellular heterogeneity in the liver, demonstrated in both mouse [106, 

210] and human [2, 211, 212] liver. A study published by Su et al. in murine liver revealed 

heterogeneous transcriptional profiles among liver macrophages and seven subpopulations of 

hepatocytes along NAFLD progression upon high-fat diet feeding [210]. They also identified a subset 

of zone-specific genes activated upon high fat diet feeding. In humans, Xiong et al. identified a 
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NASH-associated type of macrophages (NAMs) in mouse and human chronic disease [211]. 

Addressing the progression of NAFLD, Wang et al. identified fibrosis-associated genes that may serve 

as druggable targets against NASH [213]. Ramachandran et al. resolved the human cirrhotic liver 

niche, focusing on the non-parenchymal cell compartment [8], and Aizarani et al. discovered perturbed 

cellular phenotypes and gene signatures in HCC [2]. At the epigenetic level, DNA methylation patterns 

as well as histone modifications and microRNA expression have been associated to the development 

of metabolic-induced fatty liver and other metabolic diseases such as obesity or diabetes [214]. 

Moreover, at the epigenomic level, using a rat model, distinct in vivo transcription factor modulation 

and core genes for NAFLD have been recently discovered [215, 216]. In humans, scATAC-seq 

analysis of healthy, steatotic or fibrosis NASH livers revealed differentially accessible regions profiles 

with stage-specific DNA regulatory elements allowing NAFLD subtypes [217].  

 

All in all, heterogeneity in the intracellular lipid accumulation pattern has been histologically described 

in terms of the number and size of the lipid droplets in hepatocytes [218], but whether chronic lipid 

accumulation triggers harmonized and coordinated transcriptional responses, or increases cellular 

variability among human hepatocytes remains thus far unclear.  

In this thesis, scRNA-seq is used to assess the metabolic profile of individual PHHs in vitro upon 

chronic lipid accumulation, their transcriptional responses to a drug cocktail, and the exposure to these 

two metabolic challenges simultaneously. Moreover, scATAC-seq is applied to address how chronic 

lipid accumulation impacts the genome-wide chromatin accessibility configuration, which is largely 

unexplored at single-cell resolution.  
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Figure 3. Graphical summary of the intracellular lipid metabolism in hepatocytes contributing to the development of the phenotype 
observed in hepatic steatosis, NAFLD and NASH. Fatty acids play a key role in the pathogenesis. Free fatty acids originate from 
lipolysis of triglycerides in adipose tissue and transported in blood. De novo lipogenesis is a major contributor to the generation of free 
fatty acids since excess carbohydrates are converted to fatty acids. Fatty acids can then be oxidated in mitochondria and re-esterified 
to form triglycerides. These can be exported to the blood stream as VLDL or stored in lipid droplets intracellularly. The triglycerides 
stored in lipid droplets can then undergo regulated lipolysis to release free fatty acids again. If the B-oxidation of fatty acids is saturated, 
these can contribute to the formation of lipotoxic species that lead to ER stress, oxidative stress and inflammasome activation. These 
processes are responsible for the NASH phenotype, occurring with inflammation and wound repair responses activation, stellate cell 
activation and resulting in fibrosis. Image adapted from Freidman et al. 2018 [219]. 

 
 

1.5.1 Drug metabolism alterations in NAFLD  
 

Hepatic steatosis alters the physiological drug-related metabolic capacity of the liver [220]. The drug-

related metabolic capacity of the liver has been reported to be diminished in obese and NAFLD patients 

and in animal models. This reduced capacity for drug metabolism leads to a higher concentration of 

the compounds in the bloodstream and leads to a higher risk of acute toxicity and worsening symptoms 

induced by commonly taken drugs, such as acetaminophen, losartan and anesthetics [220, 221]. 

Significant dysregulations in gene expression, protein levels, and enzymatic activity of multiple 

CYP450 enzymes have been described in several studies in liver microsomes and other in vitro models 

of NAFLD [207, 222, 223]. For instance, the gene expression, enzymatic activity, and protein levels 

of the major enzyme CYP3A4 have been shown to be impaired and significantly reduced in human 

livers [207 , 224-226]. Phase II enzymes have also been shown to be impaired in fatty livers, for 

instance showing a reduced enzymatic activity of SULT1A2 [227] and GST [223]. However, there is 

to date an overall lack of knowledge on the inducibility of these enzymes by drugs in the NAFLD liver 
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at single-cell resolution [228]. The dissection of the transcriptional responses of individual hepatocytes 

in response to the exposure to several drugs at the same time when the cells are loaded with intracellular 

lipids as in chronic diseases such as NAFLD has to date not been performed.  

The present thesis aims for the study of the metabolic capacity of individual primary human 

hepatocytes exposed to chronic fat accumulation, and to the simultaneous challenge of a drug cocktail 

and chronic intracellular lipid accumulation. In addition, the chromatin accessibility landscape 

governing gene expression upon fat accumulation, a drug-related challenge by exposure to several 

drugs simultaneously, or both concomitantly is assessed in individual PHHs in vitro. The exploration 

of the gene regulatory landscape allows for the identification of differential chromatin openness 

patterns in response to intrinsic factors affecting cellular heterogeneity, such as chronic intracellular 

lipid accumulation, extrinsic factors such as exposure to a drug cocktail or both simultaneously. These 

open chromatin configurations determine the gene expression profiles observed downstream in 

transcriptomic analyses. In order to analyze chromatin accessibility, the nuclei isolation procedure for 

scATAC-seq on PHHs in vitro cultured is optimized for the application of high throughput, 

droplet-based approach (10X Genomics).  

 

 

1.6 In vitro models of liver and steatosis  
 

1.6.1 Hepatic immortalized cell lines 
 

Several human hepatoma cell lines have been carefully studied and analyzed in order to serve as 

models of liver cultured in monolayer, among which HepG2 or HepaRG are the most commonly used 

[229-233]. The HepG2 cell line presents several limitations, such as the lack of nuclear receptors such 

as the nuclear receptors governing of drug-metabolizing enzyme’s activity, namely CAR or PXR [234-

236]. In addition, they lack the expression and induction capacity of phase I metabolizing enzymes. 

Their genome dysregulation leads to genotype instability with increased passaging, making them an 

unsuitable model for induction studies to predict drug metabolism [237-242]. A possible solution is a 

transduction with adenoviral vectors encoding CYP450 genes, however, its inconsistent efficacy and 

technically demanding experimental conditions make this a difficult strategy for simultaneous 

CYP450 assessment or drug-metabolism-related assessments [243]. HepG2 cells still present a suitable 

model for chronic intracellular lipid accumulation studies, since they express the necessary enzymes 

involved in lipid metabolic pathways [244]. 

HepaRG cells have been established as the closest model to primary human hepatocytes (PHH), since 

they maintain expression levels of CYPs and hepatic key nuclear receptors, as well as membrane 
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transporters and phase II enzymes [231, 233, 238]. Induction studies using probe substrates of the main 

drug-metabolizing phase I enzymes CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 

and CYP3A4 showed induction of their mRNA level upon exposure, making them a valuable in vitro 

model for human drug metabolism studies [245-248]. An added advantage without presenting the 

inter-donor variability and functional instability of PHHs [240]. In addition, they resemble the 

morphology of primary hepatic cells by maintaining the trabecular structure. However, these cells, as 

occurring also with HepG2 cells, were not as indicative as PHH when predicting drug-induced 

hepatotoxicity [242]. Therefore, they also do not constitute a complete model for the investigation of 

hepatotoxic responses. 

 
 
 

1.6.2 Primary Human Hepatocytes (PHHs) 
 

 
Liver biopsies can be used as a source to obtain primary cells, in particular, PHHs are considered the 

gold standard model for in vitro drug testing and cytotoxicity studies [238]. Primary hepatocytes are 

classically isolated from fresh liver tissue through the two-step collagenase perfusion method [249, 

250]. They are considered the gold standard because they retain the characteristics and functionality 

of liver tissue, and importantly, high phase I and phase II enzyme expression levels, representing the 

closest model to in vivo and a suitable model to be used for enzyme induction and inhibition studies 

[251, 252]. However, the inter-donor variability and their scarce availability together with the 

difficulties they present for long-term culture maintenance make them challenging to work with [240]. 

Another of their limitations is that along the incubation time, in both 2D monolayer culture, 3D or 

sandwich culture modalities, the hepatocytes undergo a de-differentiation process whereby they lose 

their hepatic phenotypic characteristics including morphology, structure, polarity and gene expression 

profile [242, 253-255]. As the isolated cells have lost their microenvironment structure, cell 

interactions, membrane structures, and cell functionality are decreased over time [237, 252]. In 

addition, metabolic zonation patterns are lost due to the limitations of conventional culture conditions, 

which do not provide the gradient of nutrients needed to maintain zonation-like phenotypes [256]. For 

instance, the key hepatocyte marker protein albumin production, or CYP450 expression quickly 

decline in the first 24 to 48 hours of incubation, leading to the cells losing their differentiated and 

mature hepatocyte signature [257]. Nevertheless, in the liver and in PHHs, the mRNA and protein 

levels of CYPs show a highly significant correlation for CYP1A1, CYP1A2, CYP3A4, CYP2D6 and 



25 
 

CYP2B6 [123, 258], indicating that their mRNA levels can be used as an accurate estimate of their 

activity [259].  

Hepatic steatosis in cultured human cells can be mimicked and induced in vitro to recapitulate and 

closely model the intracellular lipid accumulation phenotype occurring in human NAFLD [260, 261]. 

The induction of steatosis can be achieved by incubating the cells with free fatty acids (FFA) in the 

culture media, which is the most extensively studied and practiced strategy [260, 262-266]. In vitro, 

cells incubated with free fatty acids store triglycerides in organelles named lipid droplets [267, 268]. 

The incubation of cells with different ratios of the mixture of saturated and unsaturated FFAs triggers 

different responses in the cells. Additionally, there is heterogeneity among the way cells accumulate 

lipids in regards of the number and size of lipid droplets [218]. Whether all cells respond to lipid 

accumulation in a coordinated fashion still remains unclear. For instance, a high concentration of 

saturated fatty acids exerts cellular lipotoxicity [269]. The cytotoxic effects of saturated fatty acids can 

be buffered by adding unsaturated fatty acids in the culture media, therefore the ratio of the mixture of 

these two determines the effect of lipid accumulation in the cells. Excessive intracellular lipid 

accumulation can lead to lipotoxicity, mediated by increased ER stress, and oxidative stress and 

culminating in apoptosis [270].  

 

 

1.7 Drug-induced liver injury and toxicity – bulk vs. single-cell approaches 
 

1.7.1 Drug-drug interactions and phenotyping cocktails 
 

Classically, in preclinical early phases of drug discovery and development PHHs are used as the gold 

standard model for the assessment of drug efficacy and safety [238]. Since multiple drug therapies are 

common in clinical practice, the assessment of the treatment’s safety is crucial. During these phases, 

the assessment of drug efficacy, potential drug-drug interactions (DDIs), hepatotoxicity and 

pharmacokinetic and -dynamics are performed in bulk analyses and measurements, considering that 

hepatocytes are a seemingly homogeneous population of cells [237, 271]. However, whether the 

molecular phenotype and functional responses are shared among all hepatocytes in vitro is yet to be 

elucidated.  

Drug phenotyping cocktails have been developed and applied for the assessment of the metabolic 

capacity of the liver, appointing for the known as the “cocktail approach” [272-274]. This strategy was 

adopted to overcome the disadvantages that assessing each CYP450 isoform individually poses, such 

as the elevated number of samples, time and labor consuming and cost infectivity [275]. The 
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concomitant administration of several probe substrates provides the advantage of assessing the drug 

interactions and CYP450 activity more efficiently [276, 277].  

In vitro, changes in the mRNA levels upon incubation with the substrates can be used to phenotype 

and measure the metabolic functionality of the liver. Cytochrome induction and inhibition determine 

the safety and further development of drug candidates [278]. A myriad of phenotyping drug cocktails 

has become available, composed of different CYP inducers in a variety of doses and concentrations. 

Some examples are the firstly developed Pittsburg cocktail, followed by the Cooperstown cocktail 

[279, 280], the Karolinska cocktail [281], and the Inje cocktail [282]. Others such as the Geneva 

cocktail [283], the Basel cocktail [284], and the Sanofi-Aventis cocktail [285] have also been 

developed targeting other CYP isoforms and tackling the limitations of previously published ones. The 

latter, the Sanofi-Aventis cocktail, is composed of five probes that are inducer substrates of the main 

CYP450 enzyme isoforms, responsible for the metabolism of 70-80% of the clinically used drugs in 

the market: caffeine (CYP1A2), omeprazole (CYP2C19), S-warfarin (CYP2C9), metoprolol (CYP2D6) 

and midazolam (CYP3A4) [125, 285-287].  

In humans, the isoform CYP1A2 is responsible for 90% of the caffeine metabolism, catalyzing the N-

3 demethylation of caffeine to paraxanthine. theophylline (12%) and theobromine (4%) [288-290]. In 

addition, CYP2E1 contributes in a lesser extent to the formation of theophylline and theobromine [290, 

291]. It has also been reported that caffeine has binding sites in recombinant CYP3A4, modulating its 

enzymatic activity [292]. 

The proton pump inhibitor drug omeprazole is primarily metabolized by CYP2C19 generating 

5-hydroxiomeprazole and secondarily by CYP3A4, producing omeprazole sulfone [293]. It is known 

that omeprazole, which is mainly metabolized by CYP2C19, and its metabolites are time-dependent 

inhibitors of CYP2C19 and CYP3A4 in a reversible manner [294]. This means that omeprazole inhibits 

its own metabolism, leading to non-linear pharmacokinetics [153]. Moreover, omeprazole has been 

reported to induce CYP1A2 in a time-dependent manner, depending on its clearance rate by CYP2C19 

[295]. 

The anticoagulant drug warfarin is composed of a racemic mixture of R- and S-warfarin. These two 

are metabolized differentially by human CYP450 enzymes. The racemic isomer S-warfarin, is 

efficiently metabolized by the isoform CYP2C9, leading to the formation of 7-hydroxywarfarin [296], 

whereas CYP2C19 and CYP3A contribute in a minor manner to other metabolic pathways [134, 297, 

298]. 

The isoform CYP2D6 catalyzes the metabolism of beta-blocker drug metoprolol (70-80%) [299] to 

produce O-demethylmetoprolol and a-hydroxymetoprolol, to which CYP3A4, CYP2B6, and CYP2C9 
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contribute to a lesser extent in vivo [300]. Further oxidation of O-demethylmetoprolol forms 
metoprolol phenylacetate	[300]. Metoprolol and its metabolites have been reported to inhibit CYP2D6 

and CYP3A4, without affecting the CYP2D6-mediated metabolism of midazolam [301].  

The benzodiazepine drug midazolam is metabolized in its majority by CYP3A4 to form the principal 

metabolites 1’-OH and 4-OH midazolam [302]. This drug is considered to have high specificity as no 

other CYP450 isoforms have been described to intervene significantly in the metabolism of midazolam 

[302, 303]. 

Taken together, the use of substrates of different CYP450 isoforms entails the possible inhibition of 

other CYPs, leading to potential undesirable drug-drug interactions when administering several drugs 

simultaneously. Therefore, the selectivity and the specificity of the cocktail components and the doses 

or concentration are of crucial importance to avoid drug interactions and biased readouts [277]. The 

Sanofi-Aventis cocktail has been demonstrated in vivo to not interfere with the clearance of the other 

probe drugs [285] and to show high safety and specificity in both in vitro [304] and in vivo [285, 287, 

305] experiments. In this thesis, the Sanofi-Aventis cocktail is used to phenotype the drug-related 

metabolic ability of individual primary human hepatocytes in vitro, exposing them to a metabolic 

challenge. 

 

 

1.8 Hypotheses and aims of this thesis 
 

The hypotheses stated for the research projects constituting the main focus of this thesis are that 

intrinsic and extrinsic factors may alter the gene expression profile and the chromatin accessibility 

landscape of single primary human hepatocytes in vitro. These factors include chronic intracellular 

lipid accumulation, aging, exposure to drugs or both simultaneously in vitro (Figure 4). Thereby, 

individual hepatocytes may show differential transcriptomic responses toward a metabolic challenge 

such as exposure to a five-drug cocktail. Moreover, intracellular fat accumulation as occurring in 

NAFLD may impact the metabolic profile of single hepatocytes, and their capacity to metabolize a 

cocktail of drugs simultaneously. Presumably, changes at the transcriptomic level might be reflected 

at the epigenomic level, leading to heterogeneous transcriptomic responses and epigenomic changes 

upon exposure to these factors.  
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Figure 4. Main hypothesis stated in the present thesis. Chronic intracellular lipid accumulation may impact the xenobiotic-related 
metabolic capacity of single human hepatocytes. Single-cell genomics technologies are applied to study the gene expression profile 
(transcriptomics) and the chromatin accessibility landscape (epigenomics) of individual hepatocytes in vitro. Presumably, heterogeneity 
in the functional drug-related metabolic profile of single cells can be found in healthy liver and perturbed in NAFLD. 

 
The development of single-cell technologies has revealed previously concealed characteristics of 

tissues and individual cells. In this thesis, the aims are: 

a) To characterize rare hypothalamic oxytocin-expressing neurons in the mouse brain at the 

cellular level. The snRNA-seq2 methodology is applied to characterize the nuclear 

transcriptome and identify the transcriptomic responses associated with an obesogenic 

high-fat/high-sugar diet (Chapter I). 

b) The development of a plate-based methodology for the assessment of the epigenetic landscape 

of complex tissue features such as liver polyploidy (Chapter II). 

c) The optimization of a high-throughput droplet-based protocol for the exploration of the 

chromatin accessibility at single-cell resolution (scATAC-seq) of primary human hepatocytes 

in vitro, in four experimental conditions (Chapter III). 

d) The deep characterization of the transcriptional response of individual primary human 

hepatocytes in vitro in response to exposure to a drug cocktail, chronic intracellular lipid 

accumulation, or exposure to drugs to lipid-laden hepatocytes using a high throughput 

scRNA-seq approach (Chapter IV). 
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2. Material and Methods 
 
This section includes the methodology used to address the questions and hypotheses stated for this 

project. The outline of the procedures and methods used for this thesis are divided into the two 

single-cell genomics approaches used: plate- and droplet-based approaches. Firstly, I proceed to 

explain the methodology used for the single-nucleus RNA-sequencing of hypothalamic neurons. 

Secondly, I detail the protocol followed for single-nucleus ATAC-seq in plates.  

 

 

2.1 Low throughput plate-based methodologies on mouse tissue: snRNA-seq 
and scATAC-seq 

 
2.1.1 Single-nucleus RNA-seq2 applied to mouse hypothalamic neurons 
 

This project was a collaboration with Dr. Tim Gruber and the Dr. García-Cáceres lab, the Astrocyte-

Neuron Networks group at the Institute for Diabetes and Obesity at the Helmholtz Zentrum München, 

published in Gruber et al. 2023 [306]. 

 

The overview of the experimental methodology to assess the cellular heterogeneity among murine 

hypothalamic neurons is depicted in Figure 5. Nuclei from flash-frozen hypothalamic tissue from mice 

fed either a chow or an obesogenic high-fat/high-sugar (HFHS) diet were isolated. Next, oxytocin and 

GFP-positive neurons were FACS sorted into 384-well plates, half a plate per treatment. Subsequently, 

with the aid of a liquid handling robot, the snRNA-seq2 methodology was minutely followed. 

 

 
Figure 5. Schematic illustration of the experimental design for the analysis of hypothalamic Oxytocin-positive, GFP-positive 
neurons using the snRNA-seq2 method. 

 
Nuclei Isolation 

The nuclei isolation was performed by Dr. Raian E. Contreras (Institute for Diabetes and Obesity, 

Helmholtz Zentrum München) [37].  



31 
 

 
Figure 6. Schematic representation of the anatomical location of the hypothalamus in mouse brain. Nuclei were isolated from 
flash-frozen hypothalamic tissue of genetically engineered (INTACT) mice.  

 

In brief, CAG-Sun1-sfGFP mice (INTACT mice) were crossed with OT-ires-Cre mice to generate 

heterozygous mice in Dr. García Cáceres lab [307]. Whole hypothalami (Figure 6) were individually 

processed to obtain single nuclei following a previously described protocol by Krishnaswami et al. 

2016 [64] with minor modifications. In brief, frozen hypothalamic were transferred to a Dounce 

homogenizer containing 1 mL of freshly prepared ice-cold nuclei isolation buffer (0.25 M sucrose, 5 

mM MgCl2, 25 mM KCl,20 mM Tris pH 8.0, 0.4% IGEPAL 630, 1 mM DTT, 0.15 mM spermine, 

0.5mM spermidine, 1x phosphatase and protease inhibitors, 0.4 units RNasin Plus RNase Inhibitor and 

0.2 units SUPERase In RNase inhibitor (Life Technologies, AM2696)). To homogenize the tissue, 10 

strokes with the loose pestle (“A”) were performed, followed by 5 min incubation on ice and 15 more 

strokes with the tight pestle (“B”). The homogenate was filtered through a 20 µm cell strainer, and 

centrifuged at 1000 rcf for 10 min at 4°C. The resulting nuclei pellet was resuspended in 450 µL of 

Staining Buffer containing PBS, 0.15mM spermine, 0.5mM spermidine, 0.4 units RNasin Plus RNase 

Inhibitor, 0.4% IGEPAL-630, 0.5% BSA supplemented with DAPI 1µg/µL, and incubated for 15 min 

on ice. Nuclei integrity was assessed in the DAPI channel under a Zeiss microscope (Axio Scope, 

Zeiss, Germany). Doublet discrimination and DAPI staining were used for appropriate gating of single 

nuclei and the signal on the 488 (FITC) channel of the IgG-isotype control determined the adequate 

gating of GFP- and GFP+ nuclei.  
 

Flow cytometry – Sorting of single nuclei into 384-well plates 

GFP+ nuclei were sorted with a 85 μm nozzle into 384-well PCR plates (thin-walled, BioRad, 

HSP3901) prepared freshly with 940 nL of Lysis Buffer 1 (1 μL of 10X reaction buffer is diluted in 

2,75 μL of water) (Takara kit SMART-Seq v4 Ultra Low input RNA) per well, aliquoted with the 

Mosquito HV (STP Labtech) liquid handling robot. The Reaction buffer was prepared following the 

manufacturer’s instruction adding 1 μL of RNAse Inhibitor in 19 μL of 10X Lysis Buffer. A detailed 

description of the gating strategy defined to sort GFP+ nuclei can be found in Dr. Raian E. Contreras’ 

doctoral dissertation [37]. 
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Maximum sorting accuracy was ensured by a colorimetric assay with tetramethylbenzidine substrate 

(TMB, BioLegend, Ref. 421501) and 50 μg/mL of Horseradish Peroxidase (HRP, Life Technologies, 

Ref. 31490) [308]. 

In the plate layout, we sorted nuclei from Chow diet-fed animals in half of the 384 well plate and 

nuclei from HFD-fed animals in the remaining half. After sorting, every plate was firmly sealed 

(MicroAmp Thermo Seal lid, #AB0558), shortly vortexed for 10 s, centrifuged (4 °C, 2000 x g for 

1 min), frozen on dry ice, and stored at −80 °C, until cDNA synthesis. A total of four 384-well plates 

were sorted for this study. 

Single-nucleus RNA-seq2 (snRNA-seq2) 

The single-nucleus-RNA-seq2 methodology was used to capture a high number of transcripts from 

frozen tissues, allowing for the generation of double-stranded full-length cDNA as described and 

detailed by Richter*, Deligiannis*, et al. 2021 [19]. In brief, the reaction volumes were miniaturized 

with the aid of the Mosquito HV robot. Per well, 2190 nL of Lysis Buffer 2 (LB2) were dispensed. 

The final volume of the mixture of Lysis Buffer (LB1 and LB2) was 3.125 μL, containing NP40 2% 

(Life Technologies 85124), Triton-X100 1%, 1/300,000 diluted ERCC RNA Spike-In-Mix (Life 

Technologies, 4456740), 3′ SMART-seq CDS Primer II A and RNAse-free water.  

Every flash-frozen sorted plate was thawed directly on a – 20 °C chilled metallic holder while LB2 

was added by the Mosquito HV robot. The plate was immediately sealed, vortexed for 20 s at 2000 

rpm, centrifuged at 2000 x g for 30 s at 4 ºC and placed in a 72 °C for 6 min. ERCC spike-ins (Thermo 

Fischer Scientific, Ref. 4456740; Lot num 00892098) were 1:10 diluted, with RNAse-free water with 

0.4 U/μL Recombinant RNase Inhibitor (Takara Clontech, Ref. 2313A) and a fresh dilution of 1 in 

300,000 was prepared before the first strand synthesis. 

Reverse transcription and Pre-PCR amplification steps were followed as described by the manufacturer 

with four times reduced volumes for all steps. The PCR program for the cDNA amplification was 

performed in a total of 21 cycles: 1 min at 95 °C, [20 s at 95 °C, 4 min at 58 °C, 6 min at 68 °C] × 5, 

[20 s at 95 °C, 30 s at 64 °C, 6 min at 68 °C] × 9, [30 s at 95 °C, 30 s at 64 °C, 7 min at 68 °C] × 7, 

10 min at 72 °C. After cDNA synthesis, the yield was assessed in an Agilent Bioanalyzer with a High 

Sensitivity DNA kit. 

 

Library preparation and sequencing 

Sequencing libraries were prepared using the Illumina Nextera XT DNA Sample Preparation kit 

(Illumina, Ref. FC-131-1096) and the combination of 384 Combinatorial Dual Indexes (Illumina- Set 

A to D, Ref. FC-131-2001 to FC-131-2004). Using the Mosquito HV robot, the reaction volumes of 



33 
 

the Nextera XT chemistry were miniaturized, and the steps followed minutely as described by Richter 

et al. 2021 [19, 309]. 

In brief, 500 nL of the undiluted cDNA were transferred to a new 384 well-plate containing 1500 nL 

of Tagmentation Mix (TD and ATM reagents). All Nextera XT reagents (NT, NPM and i5/i7 indexes) 

were added stepwise to a final library volume of 5 μL per well. The final PCR amplification was 

performed through 12 cycles. Once the libraries were prepared, 500 nL from each well were pooled 

together into a tube (total volume of ~192 μL) to perform a final AMPure XP bead (Beckman Coulter, 

Ref. A63882) clean-up step. Two consecutive clean-ups with a ratio of sample to bead 0.9X led to 

library sizes between 200 and 1000 bp. The final libraries were assessed using a Bioanalyzer High 

Sensitivity DNA Analysis assay (Agilent). Prior to sequencing, the libraries were quantified using a 

Collibri library quantification kit (Thermo Fischer Scientific, Ref. A38524100) in a QuantStudio 6 

Flex (Life Technologies) to ensure accuracy. 

Each plate, with a total of 384 libraries, was pooled together in one final library. In total, 4 final libraries 

were sequenced using an Illumina NovaSeq 6000 NGS sequencer in an SP XP flowcell, in a paired-

end 150 bases. 

 
Read alignment, counting and filtering of the combined batches  

The alignment of reads, filtering and normalization of the mouse hypothalamic neurons snRNA-seq2 

data was performed by Dr. Viktorian Miok (Molecular Pharmacology laboratory at the Institute for 

Diabetes and Obesity in Helmholtz Zentrum München) and the produced figures specified in the 

Results section. The raw count matrix consisted of 1,536 single nuclei and 55,579 genes. Nuclei with 

>1000 and <4500 genes detected were kept whereas genes sequenced in less than 25 cells and with a 

read count below 250 were filtered out. After filtering, the final matrix was composed by 1,202 single 

nuclei and 13,867 genes, provided for the downstream analysis in the present thesis performed by 

myself. Marker gene identification was performed using the PanglaoDB list of marker genes from 

brain tissue [310], performed by myself. 

 
 
2.1.3 Low throughput scATAC-seq using a plate-based approach 
 
In order to complete the second aim of this thesis, I aimed to optimize the protocol for single-cell 

ATAC-seq using a plate-based approach.  
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Lysis plate preparation 

One day prior to performing the experiment, lysis plates were prepared by aliquoting 2 µL 2X Lysis 

Buffer (100 mM Tris-HCl pH 7.4, pH 8.0, 100 mM NaCl (Sigma Aldrich, 59222C), 40 pg/mL 

Proteinase K (Ambion, AM2546) and 0.4% SDS (Life technologies, 15553027)) and 2 µL of 10 µM 

S5xx/N7xx Nextera Index Primer Mix (5 μM each) per well. The plates were then sealed and stored 

at -80ºC [60]. 

 
Nuclei isolation 

Nuclei from frozen liver biopsies from wild-type C57BL/6 mice were isolated following minutely the 

snRNA-seq2 method [19]. The tissue was minced on a cold petri dish on ice in 1 mL of homogenization 

buffer containing 250 mM Sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris buffer pH 8.0, 1% DTT, 

one tablet protease-inhibitor (cOmplete EDTA-free, Life Technologies, 1187358001), 0.1 % Triton-X 

and 0.2 % NP-40. Minced tissue suspension was transferred to a pre-chilled 2 mL douncer 

homogeneizer using wide orifice pipette tips and 5 strokes were performed with the loose pestle 

followed by 15 strokes with the tight pestle. Cells were filtered through a sterile 50 µM cell strainer 

(CellTrics, Symtex, #04-004-2327), using an additional mL of HB buffer to rinse and wash the douncer 

and passed through the filter. Cells were distributed into clean 1,5 mL Eppendorf tubes and centrifuged 

down for 8 min at 1000 rcf at 4ºC. After centrifugation, the cells were centrifuged in a iodixanol 

gradient to remove tissue debris. The cells were resuspended in 250 µL of HB buffer and 250 µL of 

50% iodixanol (Optiprep, D1556, Sigma Aldrich Chemie) added and pipette-mixed carefully. The 

mixture was poured onto 500 µL of 29% Optiprep that were previously placed in an empty 1.5 mL 

Eppendorf tube. To obtain clean a nuclei pellet, the cells were centrifuged at 13,500 rcf for 20 min at 

4 ºC.  

 

Transposition and tagmentation reaction 

The pellet was then resuspended in 50 µL of tagmentation mix containing 12.5 µL 4X THS-seq TB 

buffer (Illumina), 5 µL digitonin (Life Technologies, BN2006), 27.5 µL nuclease-free water and 5 µL 

Tn5 transposase (Illumina, Nextera kit, Illumina Cat No. FC-121-1030). Nuclei integrity was inspected 

under the microscope using trypan blue. 

The reaction was then placed in the thermomixer at 37ºC, shaking at 8000 rpm for 30 min. 

To stop the transposition reaction, 50 µL of TSB buffer (10 mM Tris-HCl, pH 8.0 and 20 mM EDTA, 

pH 8.0) were added and incubated on ice for 10 min. Thereafter, 200 µL of Nuclei Storage Buffer 

(166.5 mM sucrose, 5 mM MgCl2 (Gibco Life Technologies, AM9530G), 10 mM Tris buffer pH 8.0 
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(Invitrogen 15568025) with Hoechst 33342 at a concentration of 10 µg/mL (Thermo Fischer 

Scientific) were added to the 100 µL mixture and transferred to a FACS sorting tube.  

 

FACS Sorting into 384-well plates 

Tagmented nuclei were sorted into 384-well plates using a 100 µm nozzle in a FACSAria™ II sorter 

(Becton Dickison) (Software version: FACSDiva Version 6.1.3). Firstly, the population containing all 

cells was selected, a subpopulation excluding doublets was selected. After sorting, the plates were 

centrifuged briefly and incubated at 65ºC for 30 min to release the tagmentase. Then, 4 µL of 10% 

Tween-20 (Sigma Aldrich, 11332465001), 2 µL RNAse-free water and 10 µL NEBNext High-

Feidelity 2X PCR MasterMix (New England Biolabs, M0544L) were added per well. Library 

amplification was immediately performed in a thermocycler following: 72ºC for 5 min, 98ºC for 5 

min, [98ºC 10 s, 63ºC 30 s, 72ºC 20s] X 18. All wells were then pooled together with other wells 

containing the same number of nuclei sorted in them. DNA was purified with a ZYMO DNA clean 

and concentrator kit (ZYMO RESEARCH, D4014) following the procedure minutely, and eluted in 

10 µL of Elution Buffer (Qiagen, 19086). Library quality control for integrity, complexity and size 

distribution was performed in a Bioanalyzer High Sensitivity DNA Analysis assay (Agilent). 

 
 
2.2 High throughput single-cell genomics using a droplet-based approach: 

scRNA-seq and scATAC-seq. 
 
 
To explore the metabolic capacity of single hepatocytes, a droplet-based approach was used providing 

advantages such as a higher throughput, or the ability to distinguish subpopulations within the same 

cell type over plate-based methods [28]. The conditions for the methodology and procedures utilized 

on PHHs for single-cell experiments were at first empirically optimized in two human hepatic cell 

lines: HepG2 and HepaRG cells. Once optimized, single-cell experiments on PHHs were performed 

using the 10X Genomics Chromium platform. 

 

 

2.2.1 Optimization of free fatty acid incubation and the cocktail approach in 
hepatoma cell lines 

 
 

a) Bulk experiments on HepG2 cells 
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HepG2 cells were used to optimize the free fatty acid media. The concentration of the fatty acid mixture 

as well as the time of incubation were assessed. 

 

Cell culture 

HepG2 cells were kindly provided by the Molecular Pharmacology laboratory at the Institute for 

Diabetes and Obesity in Helmholtz Zentrum München, initially purchased from ATCC (Manassas, 

VA, USA). The cells were incubated with DMEM medium with 4.5% glucose (Life technologies, 

41965062), supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, 10500064), 1% L-Glutamine 

(Gibco, 25030024) and 1% Penicillin-Streptomycin (Gibco, 15070063). The maintenance culture was 

incubated in T-75 vent-capped flasks (Corning, 354485) and passaged every 2 days or at 65-70% 

confluency, determined under brightfield microscopical observation.  

 

Free fatty acid incubation 

HepG2 cells were incubated with a mixture of the unsaturated oleic acid to the saturated palmitic acid 

in a 2:1 ratio at a concentration of either 100 µM, 150 µM or 200 µM for 72 h (Table 1). Both palmitic 

and oleic acid were purchased in powder from Sigma Aldrich (P0500 and O1008, respectively) and 

dissolved in ethanol to prepare a 50 mM stock solution [262]. In order to facilitate FFA uptake, 

pre-bounding of free fatty acids to 1% bovine serum albumin (BSA) (Sigma Aldrich, 10735078001) 

in a 1:5 molar ratio was performed by heating the mixture at 40ºC for 2 hours [262].  

 
Table 1. Summary of the volumes and components of the free fatty acid incubation media. 

Concentration 
of the 2:1 FFA 

mixture 

Palmitic acid 
(µL) 

Oleic acid 
(µL) 

10% BSA 
(µL) 

Maintenance 
med (µL) 

Total 
volume 

(µL) 

100 µM 16.5 33 500 49,451.5 50,000 
150 µM 25 50 500 49,425 50,000 
200 µM 66.5 133.5 500 49,300 50,000 

 

Staining of intracellular lipids 

Oil Red O staining of fatty acids was used to assess the intracellular accumulation of lipids in HepG2 

cells, testing three different concentrations of the 2:1 ratio mixture of the unsaturated oleic acid to the 

saturated palmitic acid in a 2:1 ratio, mimicking plasma levels of FFA in human steatosis [260].  

A sterile Oil Red O Stock Solution was prepared by dissolving 0.7 g of Oil Red O powder (Sigma 

Aldrich, O-O625) in 200 mL of 100% isopropanol (Sigma Aldrich, 59300-2.5L-M) by stirring 

overnight on a rocker and subsequently filtering it through a 0.2 µm filter (Millipore, SLGVV255F). 
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To prepare the Oil Red O Working Solution, 4 parts of water were mixed with 6 parts of Oil Red O 

Stock Solution, vortexed for 1 min and let sit for 20 min at room temperature. 

HepG2 cells were seeded in collagen I-coated 6-well plates (Corning, 356400) and incubated for 24 h 

to allow the cells to attach to the plate surface. FFA were then added to the culture media in a 

concentration of either 100 µM, 150 µM, and 200 µM the cells were incubated for 72 h. After 

incubation, the culture media was aspirated, and wells were washed three times with 1 mL of sterile 

PBS. Cells were fixed by adding 2 mL of 4% PFA, immediately removing it adding another 2 mL, and 

incubating it for 1 h at room temperature on a rocker. After discarding the PFA, 1 mL of 60% 

isopropanol was added per well and left to evaporate and dry completely. Once dry, 2 mL of Oil Red 

O Working Solution were added without touching the walls of the well, the Oil Red O solution was 

removed carefully, and the wells were washed with 2 mL of room tempered water four times.  

 
 

b) Bulk experiments on HepaRG cells  
 

Fully differentiated NoSpinÔ HepaRGÔ cells were purchased from Biopredic International (Lonza) 

(Catalog number “NSHPRG”), thawed, and plated following the manufacturer’s recommendations. In 

brief, cells were thawed and counted to plate approximately 800,000 cells per well in a collagen I-

coated 12-well plate (WVR, 734-0166) in MHTAP medium. After 24 h, the medium was changed to 

Maintenance/Metabolism Medium (421). After 96 h, the cells were incubated with either DMSO, 

Cocktail, FFA+DMSO, or FFA+Cocktail for 48 additional hours. 

 

RNA extraction 

HepaRG and PHHs were pelleted at 500 rcf for 5 min and flash-frozen in liquid nitrogen for further 

RNA extraction. Thereafter they were stored at -80ºC for later processing. The cells were thawed in 

500 µL of Tryzol™	slowly	pipett-mixing.	Then,	100	µL of Chloroform-Phenol-Isoamilic (Thermo 

Fischer Scientific) were added, the tubes shaken by hand for 15 sec and incubated 2 – 3 min at RT. 

Samples were then centrifuged at 12,000 rcf for 15 min at 4ºC. After that, a clear transparent phase of 

approximately 250 µL appeared in the upper part of the tube, which was collected and transferred to a 

clean tube and placed on ice. Then, an equal volume as the collected phase of 2-propanol (Sigma-

Aldrich) was added, followed by flicking the tube and centrifuging down at 12,000 rcf for 20 min at 

4ºC. The resulting supernatant was aspirated carefully and 500 µL of pre-chilled pure 80% Ethanol 

(Sigma) was added, and the samples were centrifuged at 12,000 rcf for 20 min for 4ºC. The supernatant 

was aspirated carefully, and the open tubes left to air dry under the fume hood for 10 – 20 min (do not 
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place on ice). Once dry, the pellet was resuspended in 15 µL of RNAse-free water. The RNA integrity 

and concentration were measured using a Nanodrop spectrophotometer (Thermo Fischer Scientific). 	

 

cDNA synthesis  

Isolated RNA was used to generate complementary DNA (cDNA) by using Superscript II transcriptase 

enzyme (Thermo Fischer Scientific). The master mix was composed of the reagents and volumes 

shown in Table 2. 

 
Table 2. Master mix for the reverse transcription reaction of 1 µg of total RNA to cDNA. 

Volume (µL) Reagent Final concentration 
3 DTT 0.1 M 18.4 mM 

3.75 dNTPs 500 µM 
6 5X PCR buffer (Promega) 1X 
1 Superscript II (200 U/µL) (Promega) 200 U 

0.625 RNAse inhibitor (40 U/µL) (Takara) 25 U 
0.75 Primer oligo dT14 (A/G/C) 30VN 120 µM 3 µM 
1.1  Rnase-free H2O - 

	

A volume containing 1 µg of total extracted RNA was calculated per sample and the master mix added. 

Thereafter, the reaction was incubated for 90 min at 42ºC degrees. To stop the reaction, incubate 5 min 

at 95ºC. Thereafter, the cDNA was stored at -20ºC or used directly for RT-PCR.  

	

qPCR 

Quantitative real-time PCR was performed using the cDNA synthesized from isolated RNA. A 1:20 

dilution of the obtained cDNA was used as input for the RT-PCR. For normalization, a commercially 

available 5 donor RNA pool was purchased and added as an extra sample in the RT-PCR reaction. The 

master mix was composed of 1 µL RNAse-free water, 5 µL SYBR green (Life technologies, 4364344), 

0.5 µL of 20 µM forward primer and 0.5 µL 20 µM reverse primer for one sample. A total of 7 µL of 

master mix and 3 µL of 1:20 diluted cDNA were loaded per well of a 384-well microtiter plate in 

duplicates. The PCR program for the RT-PCR was performed as follows: 10 min at 95 °C, [15 s at 

95 °C, 1 min at 60 °C, 20 s at 68 °C] × 42, [15 s at 95 °C, 1 min at 60 °C, 15 s at 95 °C]. The reaction 

was performed in a QuantStudio™ 6 Flex Real-Time PCR System (Thermo Fisher Scientific). The 

RT-PCR primer sequences used in the reactions are shown in Table 3. 
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Table 3. Forward and reverse primer sequences used in the qPCR performed on HepaRG cells. 

Gene 
target 

Forward primer Reverse primer 

PGBD CGGAAGAAAACAGCCCAAAGA TGAAGCCAGGAGGAAGCACAG 
CYP2C9 TGTGGTCCTTGTGCTCTGTC CAGAGTGAACACAGGGCCAT 
CYP2C19 ACGGATTTGTGTGGGAGAGG TGATAGAAGGGCGGGACAGA 
CYP3A4 AAGTGGACCCAGAAACTGCA ACTTACGGTGCCATCCCTTG 

 

Primer efficiency calculations 

The expression level was calculated using the fluorescence data (Ct values) measured in the qPCR 

using the methodology published by Ramarkes et al. 2003 [311]. Three values after the threshold value 

were taken for calculation of the correlation (R2), the slope, and the intercept per replicate. Thereafter, 

all the resulting intercept values per replicate were averaged. The averaged value was then used to 

calculate the efficiency (E = 10slope) and No (10intercept). The formula applied to calculate the efficiency 

of the primers used to perform qPCR  

 

N = N0 x ECt 

 

where N0 = 10intercept and E = 10slope. To normalize each value by the housekeeping gene (PGBD), the 

averaged efficiency of all samples (10slope) was raised to the power of the threshold cycle (Ct) of the 

reference gene – the threshold cycle (Ct) of the gene being calculated, which would be: 

E(CtReference – CtTarget).  

The melting curves for the four targets are shown in Figure 7: 

 

 
Figure 7. Melting curves of the four primers used for the qPCR using cDNA of HepaRG cells as template. PGBD was used as 
housekeeping gene to normalize the Ct values measured for the other three targets: CYP2C9, CYP2C19, and CYP3A4. 
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2.3 Single-cell RNA-seq experiments with primary human hepatocytes (PHHs) 
 

Single-cell RNA-sequencing experiments with PHHs were performed following the illustrated 

experimental design below (Figure 8). The experiments explained here generated the data for the work 

that culminated in a co-first authored manuscript that can be found in Genome Biology [1]. Dr. Ioannis 

Deligiannis (Helmholtz Pioneed Campus, HMGU) participated in the experimental plan, 

experimentally co-executed, and designed the sequencing strategy of the first batch comprised of two 

donors with Lot Number HUM180812 and HUM4152. 

 

 
Figure 8. Schematic illustration of the experimental design followed to perform scRNA-seq experiments using commercially available 
cryopreserved PHH. 

 
In brief, primary human hepatocytes from four donors were purchased in cryopreservation from Lonza. 

They were plated, preloaded with FFA for 6 h and incubated with either Vehicle (DMSO) or a 5-drug 

cocktail [285] for subsequent 66 h. After a total incubation time of 72 h, cells were collected, magnetic 

live cell enrichment was performed using a column and scRNA-seq was performed using the 10X 

Genomics Chromium. 

 

 

Human liver donors 

Commercially available Primary Human Hepatocytes (PHH) were purchased in cryopreserved vials 

from Lonza (Lonza, Walkersville, MD, USA) from four different donors (Table 4): HUM180812 

(male, 57 years old, Hispanic) and HUM4152 (male, 18 years old, Caucasian), HUM181641 (male, 56 

years old, Caucasian) and HUM4190 (male, 26 years old, Caucasian). All donors had a Body Mass 

Index in the normal range and were not diabetic.  
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Table 4. Summary of the four Primary human hepatocytes donor information obtained from Lonza. 

Batch Lot Number Age Ethnicity Gender BMI Drug/Tobacco/Alcohol 
use 

Diabetes Thaw 
viability 

(%) 

Thaw 
yield 
(Mio) 

1 HUM180812 57 Hispanic Male 21,1 No/No/Social No 90,5 2,7 
1 HUM4152 18 Caucasian Male 24,3 Yes/No/No No 82 6,9 
2 HUM181641 56 Caucasian Male 27 Yes/No/Social No 88,6 88,6 
2 HUM4190 26 Caucasian Male 22 No/Yes/No No 81 81 

The PHHs used were cryopreserved, plateable, and interaction-qualified certified by Lonza with the 

catalog number #HUCPI. Lonza’s internal quality control consists of the characterization of the 

hepatocytes regarding the three major drug-drug interactions, such as the enzymatic activity, 

transporter activity, and enzyme gene induction potential for CYP3A4, CYP2B6 and CYP1A2 

(mRNA induction fold) [312]. These analyses are summarized in the Certificate of Analysis report 

provided with each vial. Therefore, these hepatocytes are considered metabolically competent 

concerning phase I and phase II metabolism, and suitable for their use in drug-related induction 

studies.  

Each cryovial of PHH was thawed and plated according to Lonza’s “Suspension and plateable 

cryopreserved hepatocytes: technical information and instructions.”. The protocol was followed 

stepwise minutely, using the recommended thawing and plating media (Lonza, MCHT50 and MP250, 

respectively). The cells were dispensed and mixed using only wide orifice tips (Rainin, Ref. 

17014297). For efficient cell seeding densities and attachment, cells were counted using Trypan Blue 

Exclusion Method and seeded into Collagen-I coated plates at a density of approximately 100,000 

cells/cm2 following the instructions provided by Lonza (Lonza, “Suspension and Plateable 

Cryopreserved Hepatocytes Technical Information and Instructions”). Six hours post-seeding, cells 

were washed with 1 mL of pre-warmed Maintenance Medium (Lonza, MCHT50) before the addition 

of treatment media. The treatment medium was renewed every 24h for a total incubation period of 72h 

post-seeding.  

 

Free fatty acid incubation 

Primary human hepatocytes were incubated with a mixture of the unsaturated oleic acid to the saturated 

palmitic acid in a 2:1 ratio at a concentration of 200 µM for 66 h, and a total of 72 h.  

 
Free fatty acid medium preparation 

Both palmitic and oleic acid were purchased in powder from Sigma Aldrich (P0500-10G and O1008-

1G, respectively) and dissolved in ethanol to prepare a 50 mM stock solution [262]. In order to 

facilitate FFA uptake, pre-bounding of free fatty acids to 1% bovine serum albumin (BSA) 
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(10735078001, Sigma Aldrich) in a 1:5 molar ratio was performed by heating the mixture at 40ºC for 

2 hours [262]. The FFA culture medium for cell incubation was prepared in a 50 mL Falcon tube 

containing 66,5 µL of palmitic acid, 133,5 µL of oleic acid, 500 µL of 10% BSA stock and 49,300 µL 

of pre-warmed PHH maintenance medium. Thereafter, the falcon tube was left open for 3 minutes 

under the laminar flow hood to evaporate the ethanol. Hence, a 200 µM mixture of a 2:1 ratio of the 

two free fatty acids was added to the cells in order to mimic the circulating levels in human steatosis 

[260]. 

 
Drug cocktail preparation and storage  

The individual components of the 5-drug cocktail [285] were dissolved in sterile DMSO, filtered 

through a 0.2 µM syringe filter (Merck, SLGVV255F) and stored at -80ºC for a maximum of six 

months (“compound stock concentration”). The individual drugs were mixed at 200x concentration 

(“working concentration”) and added to the cells to a final concentration of 80µM Caffeine 

(Sigma-Aldrich, Ref. 56396-100MG), 5µM Midazolam (LGC Chemicals, Ref. LGCFOR1106.00), 

17µM Omeprazole (TRC Chemicals, Ref. 0635000), 20µM S-Warfarin (Sigma Aldrich, Ref. 

UC214-5MG) and 23µM Metoprolol (TRC Chemicals, Ref. M338815). The final DMSO 

concentration used on the cells was 0.5% (v/v) in all conditions. 

 
Single-cell RNA-seq sample preparation 

After a 72-hour incubation in treatment culture medium, cells were detached with prewarmed 0.25% 

Trypsin-EDTA (Gibco Life Technologies, 25200056) for 7 minutes, followed by the addition of an 

equal volume of pre-warmed maintenance medium to inactivate trypsin. The dissociated cells were 

then collected to pellet by centrifugation at 100 rcf for 5 min at room temperature (RT). Cells were 

washed twice with 1 mL of pre-warmed 1xPBS pH 7.4 (Gibco Life Technologies 10010023), followed 

by cells pelleting at 100 rcf for 5 min at RT. Live-cell enrichment was performed using the Dead-cell 

removal kit from MACS (Miltenyi Biotec) as follows: cells were pelleted at 100 g for 5 min at RT, 

resuspended in 100 µL of dead-cell removal microbeads and incubated for 15 min at RT. Dead cells 

were positively selected by passing the cell suspension through a MS column and performing a wash 

with a total of 2 ml of Binding buffer. Living cells were eluted from the column and collected in 2 mL 

Eppendorf tubes. After pelleting by centrifugation at 100 g for 5 min at RT, cells were resuspended in 

1xPBS pH 7.4 supplemented with 0.04% BSA, stained with trypan blue to assess viability, and counted 

in a hemocytometer. 

A single-cell suspension was obtained by dissociating cells with wide orifice pipette tips and preparing 

the target cell stock concentration for loading the 10X chip. Single-cell RNA-seq libraries were 
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prepared from each sample following the 10X Genomics Single Cell 3’ Reagent Kit User Guide (v3 

or v3.1, manual CG000183 and CG000204, respectively) in the Chromium Controller (10X 

Genomics). The quality control of cDNA and obtained final libraries was performed using a 

Bioanalyzer High Sensitivity DNA Analysis assay (Agilent). Library quantification was performed 

using the Collibri™ Library Quantification Kit (Thermo Fischer Scientific, A38524500) in a 

QuantStudio™ 6 Flex Real-Time PCR System (Thermo Fisher Scientific).  

 
Single-cell RNA-seq library preparation and sequencing 

Single-cell RNA-seq libraries were prepared from each sample following the 10X Genomics Single 

Cell 3’ Reagent Kit User Guide (v3 for the first batch or v3.1 for the second, manual CG000183 and 

CG000204, respectively) in the Chromium Controller (10X Genomics). The first batch was prepared 

with Dr. Deligiannis. cDNA and obtained final libraries underwent quality control using a Bioanalyzer 

High Sensitivity DNA Analysis assay (Agilent). The quantification of the final libraries was performed 

using the Collibri™ Library Quantification Kit (Thermo Fischer Scientific, A38524500) in a 

QuantStudio™ 6 Flex Real-Time PCR System (Thermo Fisher Scientific) by Dr. Ioannis Deligiannis. 

Both batches were sequenced in a NovaSeq6000 sequencer (Illumina) (HMGU Core Facility for NGS 

Sequencing). The first batch (HUM180812 and HUM4152) performed by Dr. Ioannis Deligiannis was 

sequenced in an S2 flowcell at a depth of 250,000 reads per cell. The second batch (HUM181641 and 

HUM4190) performed by me was sequenced in an SP flowcell at a sequencing depth of 20,000 reads 

per cell. The sequencing length was set as indicated by 10X Genomics: 28/8/0/91.  

 
Read alignment, counting, and filtering of the combined batches 

The initial and exploratory analysis of the scRNA-seq data was performed by Xavier Pastor (Core 

Facility Genomics, Helmholtz Zentrum München) and myself. Thereafter, the follow-up 

computational analysis was performed by Ms. Maria Richter (Molecular ageing lab, Helmholtz 

Pioneer Campus, Helmholtz Zentrum München). When specified in the corresponding figure (Results, 

Chapter III), the results were computed by Ms. Maria Richter, otherwise, analysis and figures were 

performed by myself. 

Reads were aligned to GRCh38 and counted using 10X Genomics Cellranger 4.0.0 with standard 

parameters set individually for each batch due to their different sequencing depths. The individual 

count matrices were combined into a common count matrix consisting of 63,527 cells and 19,971 

genes. Cells with at least 1,000 counts and 500 genes were kept. Genes present in at least 5 cells and 

had fewer than 5 million reads were kept. The package Scrublet [313] was used to identify doublets. 

Due to different ploidy statuses among hepatocytes, a lenient cutoff of 0.15 was set to avoid unintended 
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removal of tetraploid cells, leading to 1.7 % doublets removed. Cells with mitochondrial reads over 1 

%were removed, which resulted in a filtered matrix of 49,378 cells times 16,256 genes. 

 

Transcriptional variability calculation through the coefficient of variation 

Lowly expressed genes have generally higher transcriptional variability, and they were filtered out. 

Genes with a mean normalized log-transformed expression greater than 0.25 were kept and the 

coefficient of variation per condition in each of the subgroups was calculated on 3,434 genes. The 

coefficient of variation on normalized and log-transformed counts was calculated using the formula 

described by Canchola, 2017 [314], where σ² is the variation of gene j in the group of interest. 

 
𝐶𝑉 = $𝑒!! − 1, 

 
In every subgroup, a MannWhitneyU test was performed to validate if the coefficient of variation 

differed significantly between treatment conditions or ages. 

 

Single-nucleotide polymorphisms (SNPs) identification 

The data for the SNPs detection was obtained from the FASTQ files of the four sequenced scRNA-seq 

(10X Genomics) samples from each of the two donors. These samples corresponded to cells treated 

with DMSO, Cocktail, FFA+DMSO, or FFA+Cocktail per donor.  

Long Ranger (10X Genomics) was used to call SNPs from each of the four samples comprised per 

donor. For that, the function “longranger wgs” was used, aligning reads to the GRCh38-2.1.0 

reference human genome. Longranger wgs uses the Genome Analysis Toolkit (GATK) [315] tool to 

phase and call SNPs. In this case, “gatk” version 4.0.3.0 was used. An illustrative example of the 

settings used running "longranger wgs” on one of the eight samples (Donor 1, SampleMUC14324) is 

shown here:  

 
/home/esanchez/gatk-4.0.3.0/longranger-2.2.2/longranger wgs --id=SampleMUC14324 
--sex=male --
fastqs=/home/hpc/martinez/00_projects/human/precision_toxicology/rep1/fastq/2001
14_A00623_0079_BHMK2NDMXX_lanes1_2/Project_all/ --indices=SI-GA-E1 --
reference=/home/esanchez/gatk-4.0.3.0/refdata-GRCh38-2.1.0 --sample=MUC14324 --
vcmode=gatk:/home/esanchez/gatk-4.0.3.0/gatk-package-4.0.3.0-local.jar --
uiport=3600 
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Only SNPs detected in all four samples of one donor were kept to ensure they were consistently 

detected in all cells analyzed from that specific donor.  

The resulting “.vcf” files were converted into a dataframe using the scanpy function 

“allel.vcf_to_dataframe”.  The SNPs called in the chromosomes where the gene of interest is located 

were displayed using the function “df_phased.loc” and saved in a “.csv” file per each of the four 

samples. Then, the four .csv files were combined into a single one, and the SNPs detected four times 

samples were kept by using the command line function gawk. The resulting SNPs were contrasted in 

the PharmVar [316], ClinVar [317, 318] and NCBI databases (dbSNP) [319] to examine their 

incidence in the population and clinical relevance. Table 5 summarizes the donor, ethnicity, the 

cytochrome of interest, the chromosome where the cytochrome gene is located, the position, the variant 

detected, the potential alleles, the SNP ID named rsID, the type of variant, and the NCBI link to the 

corresponding SNP information.  

 
Table 5. Summary of detected SNPs in the two human donors.  Link to the NCBI database dbSNP for the orresponding SNP can be 
found in the last column.  

Donor Ethnicity CYP Chromosome Position Varian
t 

Alleles rsID Type Information 

1 Caucasian CYP2C9 chr10 94942290 T C>T CYP2C9*2 - 
rs1799853 

Missense 
variant 

https://www.ncbi.nlm.
nih.gov/clinvar/RCV0

00008920.2/ 

1 Caucasian CYP2C9 chr10 94942538 A G>A Rs2860905 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs286090

5  

1 Caucasian CYP2C9 chr10 94947445 T C>T rs4086116 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs408611

6#publications 

1 Caucasian CYP2C9 chr10 94950236 C T>A or 
T>C or 

T>G 

rs2984310 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs298431

0  

1 Caucasian CYP2C9 chr10 94952643 G A>G rs2475376 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs247537

6#publications 

1 Caucasian CYP2C9 chr10 94972974 G T>A or 
T>G 

rs1856908 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs185690

8  

1 Caucasian CYP2C9 chr10 94982060 G A>C or 
A>G 

rs1934968 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs193496

8#publications 

1 Caucasian CYP2C1
9 

chr10 94804000 A G>A rs4494250 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs449425

0  

1 Caucasian CYP2C1
9 

chr10 94821337 G A>C or 
A>G 

rs10786172 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs107861

72#publications 

1 Caucasian CYP2C1
9 

chr10 94842866 G A>C or 
A>G 

Rs3758581 Missense 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs375858

1  

2 Hispanic CYP1A2 chr15 74755085 C T>C rs2470890 Intronic 
mutation 

https://www.ncbi.nlm.
nih.gov/snp/rs247089

0#publications 

2 Hispanic CYP2C9 chr10 94952643 G A>G Rs2475376 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs247537

6#publications 

2 Hispanic CYP2C9 chr10 94981151 C T>C rs9332197 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/CBBresearch/
Lu/Demo/LitVar/#!?q

uery=rs9332197  

https://www.ncbi.nlm.nih.gov/clinvar/RCV000008920.2/
https://www.ncbi.nlm.nih.gov/clinvar/RCV000008920.2/
https://www.ncbi.nlm.nih.gov/clinvar/RCV000008920.2/
https://www.ncbi.nlm.nih.gov/snp/rs2860905
https://www.ncbi.nlm.nih.gov/snp/rs2860905
https://www.ncbi.nlm.nih.gov/snp/rs2860905
https://www.ncbi.nlm.nih.gov/snp/rs4086116#publications
https://www.ncbi.nlm.nih.gov/snp/rs4086116#publications
https://www.ncbi.nlm.nih.gov/snp/rs4086116#publications
https://www.ncbi.nlm.nih.gov/snp/rs2984310
https://www.ncbi.nlm.nih.gov/snp/rs2984310
https://www.ncbi.nlm.nih.gov/snp/rs2984310
https://www.ncbi.nlm.nih.gov/snp/rs2475376#publications
https://www.ncbi.nlm.nih.gov/snp/rs2475376#publications
https://www.ncbi.nlm.nih.gov/snp/rs2475376#publications
https://www.ncbi.nlm.nih.gov/snp/rs1856908
https://www.ncbi.nlm.nih.gov/snp/rs1856908
https://www.ncbi.nlm.nih.gov/snp/rs1856908
https://www.ncbi.nlm.nih.gov/snp/rs1934968#publications
https://www.ncbi.nlm.nih.gov/snp/rs1934968#publications
https://www.ncbi.nlm.nih.gov/snp/rs1934968#publications
https://www.ncbi.nlm.nih.gov/snp/rs4494250
https://www.ncbi.nlm.nih.gov/snp/rs4494250
https://www.ncbi.nlm.nih.gov/snp/rs4494250
https://www.ncbi.nlm.nih.gov/snp/rs10786172#publications
https://www.ncbi.nlm.nih.gov/snp/rs10786172#publications
https://www.ncbi.nlm.nih.gov/snp/rs10786172#publications
https://www.ncbi.nlm.nih.gov/snp/rs3758581
https://www.ncbi.nlm.nih.gov/snp/rs3758581
https://www.ncbi.nlm.nih.gov/snp/rs3758581
https://www.ncbi.nlm.nih.gov/snp/rs2470890#publications
https://www.ncbi.nlm.nih.gov/snp/rs2470890#publications
https://www.ncbi.nlm.nih.gov/snp/rs2470890#publications
https://www.ncbi.nlm.nih.gov/snp/rs2475376#publications
https://www.ncbi.nlm.nih.gov/snp/rs2475376#publications
https://www.ncbi.nlm.nih.gov/snp/rs2475376#publications
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#!?query=rs9332197
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#!?query=rs9332197
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#!?query=rs9332197
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#!?query=rs9332197
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2 Hispanic CYP2C9 chr10 94982060 G A>G 
or 

A>G 

rs1934968 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs193496

8#publications 

2 Hispanic CYP2C1
9 

chr10 94821337 G A>C or 
A>G 

rs10786172 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs107861

72#publications 

2 Hispanic CYP2C1
9 

chr10 94842866 G A>C or 
A>G 

Rs3758581 Missense 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs375858

1  

2 Hispanic CYP2C1
9 

chr10 94849811 C T>C rs4917623 Intronic 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs491762

3  

2 Hispanic CYP2D6 chr22 42126722 T G>T rs79392742 Missense 
variant 

https://www.ncbi.nlm.
nih.gov/snp/rs793927

42  

 

An example of the NCBI report generated regarding the SNP of interest with rsID rs1799853 is shown 

in Figure 9. 

 

 
Figure 9. NCBI report of the detected SNP with rsID rs1799853. Browser screen capture of the results after searching for rs1799853 
in the dbSNP database from the NCBI [319]. 

 

After finding the variant in the dbSNP database [319], the clinical significance of it was displayed and 

reported in ClinVar [317, 318] together with a link to the ClinVar website. By clicking on it, ClinVar 

the variation, the gene affected, the protein change, the condition, and the clinical significance are 

shown (Figure 10). 

 

https://www.ncbi.nlm.nih.gov/snp/rs1934968#publications
https://www.ncbi.nlm.nih.gov/snp/rs1934968#publications
https://www.ncbi.nlm.nih.gov/snp/rs1934968#publications
https://www.ncbi.nlm.nih.gov/snp/rs10786172#publications
https://www.ncbi.nlm.nih.gov/snp/rs10786172#publications
https://www.ncbi.nlm.nih.gov/snp/rs10786172#publications
https://www.ncbi.nlm.nih.gov/snp/rs3758581
https://www.ncbi.nlm.nih.gov/snp/rs3758581
https://www.ncbi.nlm.nih.gov/snp/rs3758581
https://www.ncbi.nlm.nih.gov/snp/rs4917623
https://www.ncbi.nlm.nih.gov/snp/rs4917623
https://www.ncbi.nlm.nih.gov/snp/rs4917623
https://www.ncbi.nlm.nih.gov/snp/rs79392742
https://www.ncbi.nlm.nih.gov/snp/rs79392742
https://www.ncbi.nlm.nih.gov/snp/rs79392742
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Figure 10. ClinVar database screen capture after clicking on the dbSNP link. The chromosome, position, protein change, condition, 
clinical significance, and gene regarding the SNP of interest (rsID 1799853) can be seen.  

 

According to the SNPs detected using Long Ranger, the variant fount was a thymidine (T) replacing a 

cytosine (C) nucleotide in position 94942290 of chromosome 10, corresponding to the CYP2C9 gene. 

Since the alignment was performed using the GRCh38 reference genome, the image below shows the 

exact variant that was detected (Figure 11).  

 

 
Figure 11. Variant detected using Long Ranger found in ClinVar, Screen capture of the corresponding detected variant in the CYP2C9 
gene, substituting a thymidine by a cytosine nucleotide. 

 

When clicking on the link, further information and details about the variant of interest were displayed 

on the ClinVar website, including literature reports associated to the information on this SNP (Figure 

12).  
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Figure 12. Further details and information about the SNP of interest are displayed in ClinVar. Screen capture showing the variant 
details including literature reports.  

 

The same procedure was performed to find SNPs present in the four samples from the same donor for 

each of the five targeted cytochromes (CYP1A2, CYP2C9, CYP2C9, CYP2D6 and CYP3A4).  

 

Marker gene list 

A curated list of 660 known human marker genes was curated by me performing thorough literature 

research on the genes composing the list and published as “Supplementary Table 2” in the manuscript 

Sanchez-Quant, Richter et al. 2023 [1]. The genes belonged to different biological categories: amino 

acid metabolism, aging, anti- and pro-apoptosis, autophagy, bile synthesis, carbohydrate metabolism, 

circadian rhythm, downregulated in PHHs after 48 h in culture, downregulated in PHHs after 72 h in 

culture, ER stress, lipid metabolism, NAFLD-related, G1 phase, G1-S phase, G2-M phase, S phase, 

hepatocellular carcinoma, hepatoblasts, hormone metabolism, inflammation, lipid droplet formation, 

maintained in expression in PHHs after 48 h in culture, mature hepatocyte, liver-enriched nuclear 

receptors, organoid differentiation, oxidative stress, phase I metabolism of eicosanoids, phase I 

metabolism of fatty acids, phase I metabolism of sterols, phase I metabolism of vitamins, phase I 

metabolism of xenobiotics, phase II metabolism enzymes, phase III metabolism transporters, retinoid 

metabolism, steroid hormone metabolism, stress, and toxicity.  
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Subgroups of hepatocytes were identified using this curated marker gene list (performed by Ms. Maria 

Richter). Thereafter, scanpy and episcanpy functions were used for further downstream analysis and 

figure generation.  

 
 
2.4 Experimental optimization of the scATAC-seq approach for the study of PHHs 
 
 
An aim of this thesis is to study upstream molecular events affecting gene expression in individual 

primary human hepatocytes by assessing chromatin accessibility across the genome. Hence, the Assay 

for Transposase-Accessible Chromatin with high-throughput sequencing at single-cell resolution 

(scATAC-seq) was applied. The stepwise protocol is depicted in the schematic representation in 

Figure 13, where the different steps were optimized for the nature of hepatic cells, which are 

voluminous cells and possess a stiff cytoplasmic membrane. 

 

 
 

Figure 13. Schematic representation of the stepwise procedure for scATAC-seq. 

 
Two great challenges presented in this pipeline are therefore a) the obtention of a clean suspension of 

singly dissociated nuclei, and b) the nuclear membrane permeabilization to open pores without 

completely disintegrating its integrity. Here, I will explain the optimization of specifically those two 

steps in fresh and frozen murine liver tissue and in primary human hepatocytes in bulk analyses. The 

optimized conditions were thereafter used on PHHs to perform scATAC-seq using the 10X Genomics 

Chromium platform. 

 
a) Bulk experiments. Optimization of nuclei isolation for further scATAC-seq on PHHs 

 

i) Flash-frozen and fresh mouse liver tissue – Swelling buffer nuclei isolation and nuclei lysis  
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The here used hypotonic swelling buffer was provided by the authors in the Chen et al. 2020 

publication, constituting the first scATAC-seq publication in fresh murine liver tissue [48]. For the 

optimization purposes, the buffer was tested in both snap-frozen and fresh tissue from wild-type 

C57BL/6 mice.  

A piece of flash-frozen liver tissue was chopped in a cold petri dish on ice in 2 mL of prechilled 

Swelling buffer (10 mM Tris-HCl pH7.5, 2 mM MgCl2, 3 mM CaCl2) and transferred into a pre-chilled 

douncer homogenizer. Subsequently, the suspension was dounced 10 times with the loose pestle (A), 

incubated 20 min on ice and dounced 20 times with the tight pestle (B). The suspension was filtered 

through a 40 µM CellTrics® cell strainer and centrifuged at 300 g for 5 min at 4 ºC in a swing bucket 

centrifuge. The pellet was resuspended in 1 mL of prechilled swelling buffer with 10% glycerol. 

Slowly and drop-wise, 500 µL of cold Swelling Lysis Buffer (swelling buffer + 10 % glycerol + 1 % 

NP-40) were added with occasional flicking. The suspension was incubated on ice for 5 min and then 

span down at 500 rcf for 5 min at 4ºC. The supernatant was discarded and the pellet obtained was 

slowly resuspended in 1 mL of Wash buffer from 10X Genomics nuclei isolation protocol composed 

of 10 mM Tris-HCl pH 7.4, 10 mM NaCl, MgCl2, 1% BSA, 0.1 % Tween-20 and nuclease-free water 

[68]. The cells were counted and 50,000-100,000 cells taken out for further processing. The nuclei 

were then incubated in Lysis Buffer from 10X Genomics [68] containing 10 mM Tris-HCl pH 7.4, 10 

mM NaCl, MgCl2, 1% BSA, 0.1 %Tween-20, 0.01 % Digitonin, 0.1% NP-40 and nuclease-free water 

for 10 min on ice. After 10 min, 1 mL of cold Wash Buffer was added and slowly pipette-mixed 5 

times, centrifuged down at 500 g for 5 min at 4 ºC in a swing bucket rotor. Then, the supernatant was 

carefully removed leaving 100 µL to be removed with a p20. 

 

Tagmentation (bulk experiments) and clean-up 

For the experiments performed as a bulk, the tagmentation mix was prepared as described by Corces 

et al. 2017 [320]. A total of 50 µL for one reaction were prepared composed of 2,5 µL of Tn5 

transposase (Illumina, Nextera kit, Illumina Cat No. FC-121-1030), 25 µL of 2X TD Buffer (Illumina, 

), 16.5 µL of PBS, 0,5 µL of Tween-20 (Sigma Aldrich 11332465001) and 0,5 µL of Digitonin 

(Promega, G9441). The reaction tube was placed in a thermomixer for 30 min at 1000 rpm mixing.  

Once finished, the tagmented DNA was cleaned up using a ZYMO DNA clean-up kit adding 250 µL 

of DNA Binding Buffer, a fixed angle rotor and 10,500 rcf for the centrifugation steps. The membrane 

was incubated with 20 µL Elution Buffer for 5 min and the DNA eluted at 13,500 rpm. The 

amplification PCR Master mix was prepared using Nextera Primer 1 (I5 index), Nextera primer 2 (I7 

index) and 2X NEB Next Master mix for one reaction. A total of 10 µL of tagmented and cleaned 

DNA were used together with 15 µL of master mix. The PCR was set for: 5 min at 72 °C, 30 sec at 98 
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ºC, [10 s at 98 °C, 30 s at 63 °C, 1 min at 72 °C] × 18 or 16X, 4 ºC infinite hold. The obtained libraries 

were assessed using a Bioanalyzer High Sensitivity DNA Analysis assay (Agilent) in a Bioanalyzer 

2100. 

 

 

ii) Cryopreserved primary human hepatocytes nuclei isolation – homogenization buffer, 
swelling buffer and mechanical dissociation 

 
Cryovials were thawed in the water bath at 37 ºC leaving the lid afloat for 2 min, then disinfected and 

poured into a 50 mL Falcon tube containing Thawing Medium (Lonza, MCHT50). To rinse the 

cryovial, 1 mL was used. Then, the falcon was rocked slowly and carefully and the cells pelleted at 

100 g for 8 min at room temperature. The supernatant was then discarded and the cells resuspended in 

1 mL of Maintenance Medium + supplement (Lonza, MM250-1 and -2). Then, 2 million cells were 

transferred to a clean Eppendorf tube and washed twice with 500 cold PBS.  

Cells were centrifuged down at 500 rcf for 5 min at 4 ºC and resuspended in 1 mL of homogenization 

buffer containing 250 mM Sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM Tris buffer pH 8.0, 1% DTT, 

one tablet protease-inhibitor (cOmplete EDTA-free, Life Technologies, 1187358001), 0.3 % Triton-X 

and 0.2 % NP-40. Using wide-bore pipette tips, cells were transferred to a 2 mL douncer homogenizer, 

5 strokes performed with the loose pestle (A), incubated on ice for 10 min and 25 strokes performed 

with the tight pestle (B). The nuclei were inspected under the microscope to validate that the cell 

membrane was disrupted and transferred to a 2 mL Eppendorf tube. The douncer was washed with 400 

µL of HB and all together centrifuged at 500 rcf for 5 min at 4 ºC. Thereafter, the supernatant was 

removed and the pellet was resuspended slowly in 1 mL of Swelling Buffer (10 mM Tris-HCl pH7.5, 

2 mM MgCl2, 3 mM CaCl2) and 1 mL of prechilled Swelling Buffer with 10% glycerol was added 

dropwise and then pipette-mixed 5 times. The mixture was incubated for 10 min on ice with occasional 

flicking. Then, 1 mL of 10X Genomics Wash Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, MgCl2, 

1% BSA, 0.1 % Tween-20 and nuclease-free water), incubated on ice for 10 min and 60,000 taken out 

for further steps. 

To lyse the nuclei, these were centrifuged at 500 rcf at 4 ºC for 5 min. Then, the supernatant was 

discarded, and nuclei resuspended in 200 µL of 10X Genomics Lysis Buffer with 0.2 % NP-40 instead 

of the original 0.1 % concentration (10 mM Tris-HCl pH 7.4, 10 mM NaCl, MgCl2, 1% BSA, 0.1 

%Tween-20, 0.01 % Digitonin, as a minor 0.2% NP-40 and nuclease-free water). Nuclei were lysed 

for 10 min on ice and then 1 mL of Wash Buffer was added followed by rocking the tube gently. Nuclei 

were pelleted at 500 rcf for 5 min at 4 ºC, then 500 µL of PBS added without resuspending and nuclei 

spun down at 500 rcf for 5 min at 4 ºC.  
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Tagmentation and clean-up 

For the experiments performed on PHHs, the tagmentation mix was prepared as per in the 10X 

Genomics demonstrated protocol [68]. Nuclei were resuspended in 500 µL of 1X Nuclei Storage 

Buffer, then centrifuged down at 500 rcf for 5 min at 4 ºC and the supernatant was discarded. Then, 

the transposition mix was prepared with 7 µL of ATAC Buffer and 3 µL of ATAC enzyme [321]. 

Then, using the Nuclei Concentration Guidelines, a total of 5 µL of the mixture of nuclei (2.9 µL) and 

diluted Nuclei Storage Buffer (2.1 µL) were incubated in a thermocycler for 60 min at 37 ºC with the 

lid temperature at 50 ºC. Thereafter, the libraries were assessed using a Bioanalyzer High Sensitivity 

DNA Analysis assay (Agilent) in a Bioanalyzer 2100. 

 
 

b) Single-cell ATAC-seq experiment on PHHs 
 
Nuclei isolation 

For the experiment on PHHs at single-cell resolution, nuclei were isolated as explained above in 

section 2.2.2, part A), paragraph ii).  

 
Human liver donors for single-cell ATAC-seq experiment 

Cryopreserved commercially available Primary Human Hepatocytes (PHHs) were purchased from 

Lonza from two different donors: HUM180812 (male, 57 years old, Hispanic) and HUM4152 (male, 

18 years old, Caucasian). These donors were as well used for scRNA-seq experiments. They had a 

BMI classified in the normal range and were not diabetic (Table 4, first two rows) Lifestyle-related 

habits such as tobacco, alcohol or drugs consumption were not present or was defined as social in the 

case of alcohol. 

 
Single-cell ATAC-seq library preparation and sequencing 

After GEM incubation the single-cell ATAC-seq libraries were prepared from each sample following 

the 10X Genomics Chromium Next GEM Reagents Kit Reagent Kit User Guide (v1, manual 

CG000209, RevD) in the Chromium Controller (10X Genomics). cDNA and obtained final libraries 

underwent quality control using a Bioanalyzer High Sensitivity DNA Analysis assay (Agilent). The 

quantification of the final libraries was performed using the Collibri™ Library Quantification Kit 

(Thermo Fischer Scientific, A38524500) in a QuantStudio™ 6 Flex Real-Time PCR System (Thermo 

Fisher Scientific). 
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The libraries were sequenced in an SP 100 flowcell in a NovaSeq 6000 sequencer (Illumina) (HMGU 

Core Facility for NGS Sequencing). The sequencing length was as indicated by 10X Genomics (50, 8, 

16, 50) for scATAC sequencing. These conditions yielded a depth of approximately 50,000 reads per 

nucleus. 

 
Read alignment, peak calling and count matrix generation, filtering and quality control 

Reads were aligned to GRCh38 by Mr. Patrick Hanel (Institute of Computational Biology, Helmholtz 

Zentrum München) and counted using 10X Genomics Cellranger ATAC 4.0.0. Signac was used for 

the QC of the samples, to plot the TSS enrichment and the nucleosome periodicity. Then, MACS2 

[322] was used to identify peaks within 5 kb upstream of the transcription start site (TSS) in each of 

the eight samples individually. Peak-based count matrices constructed per sample were converted into 

Seurat objects using SeuratDisk and a chromatin assay object created using the fragments file from 

Cell Ranger ATAC. G ranges were obtained from EnsDb.Hsapiens.v86 and subsequently, TSS 

enrichment and nucleosome signal calculated and plotted using Signac [376].  

To merge samples into the same feature space for further downstream analysis, the generated peaks 

were combined using Bedops [323] in a single peaks file. The merged peaks were used to build a count 

matrix per sample using the Episcanpy function “epi.ct.bld_mtx_bed” [324]. Subsequently, the eight 

count matrices were concatenated for further joint processing. For filtering, cells with a minimum of 

100 features and a minimum of 50,000 highly variable features were kept. Filtering resulted in a joined 

matrix consisting of 59,142 observations times 50,244 variables used for downstream analysis.  

 
Regression, clustering and doublet detection 

Due to the different coverage between samples, the number of features was a confounding variable 

and they were therefore regressed out using the Scanpy function “sc.pp.regress_out”. Using Episcanpy 

functions, PCA was calculated using the top 100 components and 15 neighbors, and embedding was 

performed using PCAs. Scrublet [313] was used to identify doublets, setting the expected doublet rate 

to 6.2%, as indicated by 10X Genomics when the targeted recovery is 5,000 cells [321]. Episcanpy 

functions (0.2.0) were applied for downstream analysis.  
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3. Results 
 

I. Block I (Chapters I and II): Single-cell omics for dissecting cellular 
heterogeneity in complex mouse tissues using plate-based 
approaches.  

 
Plate-based single-cell omics approaches are a low-throughput method offering an advantage in 

specific scenarios, for instance, when studying the transcriptome of rare cell subpopulations such as 

oxytocin-positive hypothalamic neurons obtained from flash-frozen mouse samples. In this first block 

of my dissertation, a plate-based single-cell transcriptomic approach such as snRNA-seq2 [19] 

methodology was applied to explore the transcriptomic responses of murine hypothalamic 

oxytocin-positive neurons. Specifically, their susceptibility to showing altered transcriptomic 

responses upon an obesogenic high-fat high-sugar diet. 

Plate-based approaches are not only suitable for transcriptome analysis but also for studies at the gene 

regulatory level. The sensitivity offered by a plate-based methodology can be of advantage to explore 

the differential chromatin accessibility across different conditions. Coupled with FACS sorting nuclei 

based on their genome content, the ploidy levels of hepatocytes can be studied. In this thesis, the initial 

steps for a plate-based approach to enable the analysis of the open chromatin landscape of murine 

diploid (2n) vs. tetraploid (4n) hepatocytes were developed. 

 

 

 

CHAPTER I: Investigating the heterogeneity among oxytocin-expressing 
neurons. The snRNA-seq2 methodology in brain vs. liver tissue. 
 
 
Small brain regions such as the hypothalamus yielding a low number of cells, hinder the application 

of high-throughput methodologies, especially when interested in deeply characterizing rare 

subpopulations [325]. These require millions of cells as input, making low-throughput methods 

combined with FACS purification an ideal choice to enable the recovery and analysis of all available 

cells. In addition, the study of cells of the Central Nervous System (CNS) at single-cell resolution is 

in general challenging, in part due to the difficulty of isolating intact whole cells [64]. Neurons are 

highly intertwined, making considerable damage necessary to dissociate them by physical means, such 

as laser capture microdissection [64]. 
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The recently developed single-nucleus RNA-seq2 methodology, (snRNA-seq2) based on the 

SMART-seq2 chemistry provides a robust pipeline for the analysis of full-length transcripts with an 

improved nuclei lysis achieved in two consecutive steps [19] (Methods). This medium-throughput 

method was developed using mouse flash-frozen liver as the model organ of study; however, its 

application potentially reaches a wide range of tissues, cells and experimental set-ups. To interrogate 

the role of oxytocin-producing hypothalamic neurons in feeding homeostasis and behavior, mice were 

fed ad libitum with chow standard (CS) diet or an obesogenic high-fat, high-sugar (HFHS) diet for 

more than 12 weeks, provided by Dr. Tim Gruber (Institute for Diabetes and Obesity, Helmholtz 

Zentrum München). Then, nuclei from the mouse hypothalamus were isolated by Dr. Raian Contreras 

(Institute for Diabetes and Obesity, Helmholtz Zentrum München) and nuclei of GFP+ neurons were 

FACS-purified [37, 306] to perform transcriptomic profiling using the newly emerged snRNA-seq2 

improved lysis buffer methodology (Methods). After sorting GFP+ nuclei, the library preparation and 

sequencing were performed and quality control of the libraries electropherograms performed using a 

Bioanalyzer 2100 system (Figure 14).  

 

 
Figure 14. Bioanalyzer electropherograms of the four libraries prepared. (A) Profile of plate 1. (B) Profile of plate 2. (C) Profile of 
plate 3. (D) Profile of plate 4. 

 

An initial count matrix of 1,536 single nuclei and 55,579 genes was generated by Dr. Viktorian Miok 

(Institute for Diabetes and Obesity, Helmholtz Zentrum München). Filtering and normalization 

resulted in a count matrix of 1,202 nuclei times 13,867 genes (Methods). A median number of 2,304 

genes were detected, with approximately 80,000 counts assigned to ERCCs (Figure 15).  
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Figure 15. Quality control was performed on the nuclei isolated from OXT+ neurons. (A) Number of genes, number of counts, number 
of counts assigned to ERCCs and number of counts assigned to transcripts prior to filtering and normalization; (B) Number of genes, 
number of counts, number of counts assigned to ERCCs and number of counts assigned to transcripts after to filtering and normalization. 
Graphs and QC computed by Dr. Viktorian Miok, HMGU.  

 
The snRNA-seq2 methodology was initially developed using mouse liver tissue. Here, this 

methodology was applied to nuclei from hypothalamic OXT+ neurons. The number of genes detected 

in both liver and brain were compared, to assess its sensitivity in different complex tissues and cell 

types. It is necessary nonetheless to consider that the liver 

physiology and physical characteristics differ largely from those of 

other tissues such as brain for several reasons, one of them being the 

larger size of the hepatocytes (parenchymal cells), ranging around 

40 µM diameter [326, 327]. In liver tissue, an average of 3,400 genes 

per nucleus was detected, whereas from flash-frozen mouse 

hypothalamus, the mean number of detected genes was lower, with 

2,304 genes per nucleus on average (Figure 16, Methods). An 

explanation for this could be that the cell size increases with the 

ploidy status and it has been shown in mouse and human liver that 

the nuclei volume of hepatocytes approximately doubles with doubling of the DNA content [95, 328, 

329]. Transcript abundance has been shown to correlate with cell volume at single-cell level due to an 

increase in overall transcription in larger cells [330, 331]. Therefore, a lower transcriptome could be 

expected from brain nuclei vs. liver nuclei [10].  

Moreover, in a study performed using a modified version of Smart-seq2 by Batiuk et al., an average 

of 2,100 genes per cell were detected [332]. In a study performed by Thrupp et al. [333], 1,791 genes 

Figure 16. Number of genes per 
nucleus detected on average.  
(A)  Comparison of liver tissue, where 
the snRNA-seq2 method was 
developed vs. brain hypothalamus. 
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per nuclei and 2,242 genes per cell were detected from human brain samples, which stay below the 

2,304 genes per nucleus captured in this study (Figure 16). Chen et al. reported more than 2,000 genes 

per cell detected in their murine hypothalamus scRNA-seq characterization study [79]. This highlights 

the superior sensitivity and capability of this approach to characterize the nuclear transcriptome of 

scarce neuronal subpopulations. 

 

Next, to visualize how similar the transcriptomic profile was among the nuclei in the study, Principal 

Component Analysis (PCA) was calculated after using scran [334] for normalization and ComBat 

[335, 336] for batch effect correction. The number of genes and counts detected were homogeneous 

throughout all cells. A separation between nuclei isolated from animals fed on a chow standard (CS) 

diet vs. HFHS-fed mice was not observable (Figure 16). 

 

 
Figure 17. Homogeneous number of genes and number of counts throughout experiments and treatment diets. (A) PCA showing the 
number of genes, number of counts, dietary conditions, batches and plates. (B) PCA plot depicting oxytocin expression across cells after 
normalization using scran and batch correction using combat. 

 
Purification of GFP-oxytocin-expressing neurons was performed by FACS-sorting nuclei into 

384-well plates, therefore Oxt expression was expected to show a high level across all nuclei in the 

study. This was confirmed by observing the expression of the oxytocin (Oxt) gene across all cells in 

the PCA representation (Figure 17). 
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Figure 18. Oxytocin-positive neurons show coexpression of marker genes for different neuronal types. (A) PCA plot depicting the 
expression of marker genes Snap25, Avp, Pomc, Gls, Ache, Gad1, Grin2 and Th across hypothalamic OXT+ neurons. 

 
Additionally, markers of different types of neurons were distinguished such as pan-neuronal markers 

like Snap25 [337]. Arginine vasopressin Avp, which is known to antagonize oxytocin-mediated 

functions [338] was detected in the nuclei that lowly expressed Oxt and vice versa, indicating that the 

expression of these two neuropeptides is complementary and specific to two different neuron subtypes. 

The prohormone proopiomelanocortin (Pomc), known to play a key role in feeding behavior and 

energy homeostasis [339] could only be identified in a small number of nuclei, indicating the 

expression of both Oxt and Pomc in those (Figure 18). A set of nuclei was expressing tyrosine 

hydroxylase (Th), and it has been shown that these neurons are glucose homeostasis modulators in 

mice [340]. Furthermore, markers for different types of excitatory neurons were detected, among 

which are glutamatergic neuron markers such as Slc17a6 [341], glutaminergic neurons such as Gls 

[342], cholinergic neurons Ache [343]. The inhibitory GABAergic neurons marker Gad1 [344], was 

detected solely in a minor fraction of cells (Figure 18), indicating a predominant excitatory activity in 

the nuclei of the neurons in the captured cells. This indicates that the Oxt is co-expressed with several 

neuronal subtype marker genes in the OXT+ sorted nuclei. 
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Figure 19. Gene expression of astrocyte marker genes and microglial activation-related genes. (A) PCA showing astrocyte marker 
genes Aldoc and S100b. (B) PCA depicting microglial activation-related genes Apoc1, Fth1, Rpl29, ApoE, Lepr and Cst3. 

 

Marker genes, such as Aldoc or S100b have been used as astrocyte markers [345, 346], and they were 

detected in a minor fraction of oxytocin-expressing neurons in this dataset (Figure 19). This suggests 

that there is heterogeneity in the gene expression patterns found within the OXT+ population of 

neurons, indicating that they may respond differently to external stimuli, such as exposure to a 

high-fat/high-sugar diet.  

Furthermore, the snRNA-seq2 method allowed for the detection of microglial activation-related genes 

such as ApoE, Fth1, Cst3, and Rpl29, Apoc1 and Lepr (Figure 19), which were found to be depleted 

in the nuclear vs. whole cell transcriptomics dataset generated using the droplet-based snRNA-seq 

from 10X Genomics Chromium published by Thrupp et al. [333]. This showcases the high sensitivity, 

adaptability, and reproducibility of the snRNA-seq2 method to be used in other tissues and 

experimental setups.  

Taken together, these results show that the snRNA-seq2 method allows for the exploration of complex 

tissues such as brain, as well as for the interrogation of the gene expression profiles of single 

hypothalamic nuclei from flash-frozen samples. Subtypes of oxytocin-expressing neurons were found, 

showing mutually exclusive marker gene expression that may lead to distinct responses toward stimuli 

such as an obesogenic diet. 
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CHAPTER II: Exploring the gene regulatory landscape of rare populations 
at single-cell level using a low to medium throughput approach. 
 
In this chapter, the initial steps for the development of a low-throughput plate-based scATAC-seq 

methodology to enable the exploration of open chromatin accessibility configurations in a specific 

hepatocyte characteristic such as liver polyploidy were established. Specifically, polyploid murine 

hepatocytes, namely diploid (2n) vs. tetraploid (4n) cells may show different gene regulatory 

configurations according to their ploidy status. 

 

The chromatin accessibility landscape can be assessed in single-cells by performing single-cell Assay 

for Transposase-Accessible Chromatin (ATAC) sequencing in individual cells (scATAC-seq) [44]. 

Several technical developments and methodologies have been recently established for performing 

scATAC-seq, among others, using microfluidics [44, 347] and liquid deposition systems [61]. Two 

published techniques provide distinct advantages, one being published by Buenrostro et al. in 2015[44] 

and one by Chen et al. in 2018 [60]. The pipeline developed by Buenrostro et al. 2015 consists of 

tagmentation per cell using the C1 Single-Cell Auto Prep System with its Open App™ program 

(Fluidigm, Inc.) and an improved transposase-based library preparation strategy to perform single-cell 

ATAC-seq [348]. This methodology relies on the distribution of the cells into microwells according to 

a Poisson distribution. Once distributed, a flow of buffers is created to wash and lyse the cells, 

transpose and tagment the DNA. Thereafter, EDTA-mediated MgCl2 quenching, PCR amplification, 

and finally, cell harvesting are performed. After cell barcoding, library preparation and sequencing are 

performed in bulk. On the other hand, the protocol developed by Chen et al. relies on an upfront nuclei 

tagmentation in bulk, followed by FACS sorting the nuclei into 384-well plates containing lysis buffer 

composed of SDS and proteinase K together with Illumina N5 and N7 indexes. Thereafter, the Tn5 

enzyme is released and the SDS is quenched with Tween-20 followed by library PCR amplification, 

pooling, and DNA clean-up before sequencing [60]. The two methodologies differ in several aspects, 

the main one being the tagmentation reaction in bulk or per single nuclei, yet the use of one or another 

relies on the accessibility to the necessary machinery, the affordable cost, and the needed throughput 

according to the research question needs and experimental approach. 

 

Polyploidization is a characteristic feature of hepatocytes in the liver but the epigenetic landscape of 

polyploid cells has to date not been well studied at the single-cell level. Several transcriptomic studies 

have emerged to interrogate the expression profiles of the various ploidy statuses comprised in the 

tissue, mainly 2n and 4n [19, 42]. In order to tackle this gap, here, the combination of the 
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aforementioned methodologies using a plate-based approach combined with single-well tagmentation 

adjusting the concentration of the transposase enzyme per cell was explored.  

After performing nuclei isolation from frozen mouse liver biopsies (Methods), the nuclei were FACS 

sorted individually into 384-well plates containing the lysis buffer composed of SDS and proteinase K 

together with Illumina N5 and N7 indexes [60] (Methods). The forward scatter-area (FSC-A) is used 

to discern the size of the nuclei, whereas the side scatter (SSC) refers to the internal complexity of 

cells, such as granularity. This first gating strategy was used to select all nuclei (Figure 20). The second 

plot represents the DNA content Hoechst (450/40-W vs 450/40-A), where the 2n, 4n, 8n, and 16n 

hepatocytes are observable (Figure 20B). The FSC-W vs. FSC-H as well as the SSC-W vs. SSC-H 

plots are used to discard doublets and purify single nuclei. 

The ploidy level of the nuclei was observable in the gating strategy when loading the nuclei for FACS 

sorting before undergoing tagmentation in all gating settings, especially in the histogram representing 

the genome content staining with Hoechst (450/40-A) (Figure 20). The population sorted into the 

384-well plates was P4 (Figure 20D), which comprises both 2n and 4n hepatocytes. In order to 

separate the different ploidy statuses, 2n and 4n nuclei were sorted according to their genome content 

using Hoechst. The peaks in the histogram (450-40/A vs. Counts) correspond to the DNA content of 

2n hepatocytes (first peak) vs. 4n hepatocytes (second peak) (Figure 20E). From the total of nuclei 

created after doublet removal, 17.8% of hepatocytes were diploid vs. 43.2% of nuclei were tetraploid. 
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Figure 20. Nuclei isolated from flash-frozen liver biopsies can be FACS sorted according to their DNA content. (A) Gating on forward 
scatter-area (FSC-A) vs. side scatter-area (SSC-A) defining P1. (B) Gating on 450/40 filter for violet laser width vs. area, defining P2. 
(C) Gating on forward scatter width vs. height to remove doublets and define P3. (D) Gating on side scatter width vs. side scatter height 
defining single 2n and 4n nuclei into P4. (E) Histogram created on the 450/40 filter vs. counts depicting peaks corresponding to the 
DNA content of the nuclei. (F) Summary table showing the number of events, the percentage of the nuclei from the parent population 
and the percentages of the total of nuclei. (G) Table showing the percentage of 2n and 4n nuclei. 

 

The gating strategy published in the methodology developed by Chen et al. [60] was recreated to sort 

already tagmented nuclei. However, when the tagmentation was performed upfront and then the nuclei 

were loaded in the sorter, the separation according to ploidy level was no longer observable along the 

DNA content histogram or any other lasers using P3 (450/40-A vs. FSC-H) as sorted population 

(Figure 21). This indicates that since transposition and tagmentation serve to fragment DNA in open 

chromatin regions, the composition of the gene dosage is no longer apparent when the DNA has been 

tagmented. The population sorted into 384-well plates was therefore P3, containing tagmented DNA 

(Figure 21). 

 

 
Figure 21. Nuclei isolated from flas-frozen liver biopsies can be FACS sorted according to their DNA content. (A) Gating on forward 
scatter-area (FSC-A) vs. side scatter-area (SSC-A) defining P1. (B) Gating on forward scatter-height (FSC-H) vs. side scatter-height 
(SSC-H) to define P2. (C) Gating on the 450/40 filter-area (450/40-A) vs. forward scatter-height (FSC-H) to define P3. (D) Gating on 
side scatter width (SSC-H) vs. side scatter height (SSC-W). (E) Histogram created on the 450/40 filter vs. counts depicting peaks 
corresponding to the DNA content of the nuclei. (F) Summary table showing the number of events, the percentage of the nuclei from the 
parent population and the percentages of the total of nuclei. (G) Table showing the percentage of 2n and 4n nuclei.  
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Following sorting, the wells containing tagged nuclei were pooled and library preparation was 

performed. The library assessment resulting in electropherograms showed the classical pattern of 

nucleosome signal periodicity of ATAC-seq libraries, with nucleosome signals peaking at around 

150-200 bp [53], also coinciding with helical pitch of the DNA molecule [58, 349] and with the 

experimentally determined length of DNA wrapped around one nucleosome (147 bp) (Figure 22). The 

electropherogram of the untagmented DNA control sample was characterized by the absence of 

observable peaks (Figure 22). Respectively, 50, 25 and 10 cells per well were processed in samples 

number 1, 2 and 3 (Figure 22).  

 

 
Figure 22. Representative nucleosome periodicity profiles can be detected in Bioanalyzer electropherograms of plate scATAC-seq 
libraries following the upfront tagmentation approach. (A) Sample 1 containing, 50 cells per well; (B) Sample 2 containing 25 cells 
per well; (C) Sample 3 containing 10 cells per well; (D) Negative control sample containing untagmented DNA. 

 
The expected DNA fragmentation pattern was obtained after the scATAC-seq experiment (Figure 22) 

with a resolution down to 10 nuclei simultaneously using the protocol published by Chen et al. using 

an upfront tagmentation strategy.  

Next, the combination of both strategies by sorting the untagmented nuclei to be able to study ploidy 

statuses and perform the nuclei tagmentation per well was performed. The electropherogram image 

shows the peaks for the ladder for each of the two samples (Figure 23A). Nevertheless, the 

electrophoresis profiles corresponding to 2 nuclei showed resemblance with the nucleosome 

periodicity, however lower fluorescent signal (Figure 23B). Sample 1 was obtained with the 

tagmentation mix published by Chen et al., including Digitonin in the buffer as well as a Tagmentation 

Stop Buffer. On the other hand, Sample 2 was obtained using the tagmentation mix published by 

Buenrostro et al. without digitonin nor tagmentation stop buffer (Methods, Figure 23B).  
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Figure 23. Representative nucleosome periodicity profiles can be detected in Bioanalyzer electropherograms of plate scATAC-seq 
libraries tagmented per well. (A) Electrophoresis representation including ladder, sample 1 and sample 2. (B) Electropherograms of 
sample 1, obtained using the tagmentation mix published by Chen et al. and (C) Applying the procedure published Buenrostro et al.  

 
The combination of these two methodologies provides the potential to overcome the need for special 

equipment, expensive supplies, and a large amount of Tn5 transposase enzyme by making the reaction 

more efficient. Furthermore, this facilitates and eases the exploration of the chromatin accessibility 

landscape in complex tissues with distinctive features that require specific experimental setups and 

experimental optimization. An example of this is the study of polyploidy, a defining feature of 

hepatocytes. The ploidy levels of hepatocytes could not be dissected when the DNA tagmentation was 

performed prior to nuclei sorting. Therefore, this combination of scATAC-seq methodologies provides 

an advantage to dissect differential chromatin openness in hepatocyte polyploidy. This is achieved by 

combining FACS sorting of the isolated nuclei according to their ploidy status, namely their DNA 

content, before performing the DNA tagging and tagmentation steps in each single well containing a 

nucleus.  

 

Among the characteristics of hepatocytes, polyploidy is a key feature of the liver parenchymal cells, 

which also perform a plethora of metabolic functions, such as the metabolism of endogenous and 

exogenous substances. In the next chapter of my dissertation, I will explore the metabolic function of 

individual hepatocytes at the epigenetic level using scATAC-seq applying a high-throughput 

droplet-based approach (10X Genomics). 
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II. Block II (Chapters III and IV): High-throughput single-cell multiomics for 

dissecting cellular heterogeneity in primary human hepatocytes using a 
droplet-based approach. 

 
 
In the second block of my dissertation, the heterogeneity intrinsic in a seemingly homogeneous 

population of cells such as primary human hepatocytes (PHHs) in vitro was investigated, employing 

complementary high-throughput single-cell genomic approaches at the transcriptomic (scRNA-seq) 

and epigenomic (scATAC-seq) levels. The rationale behind the research question stated for the 

projects presented here was to investigate the cellular heterogeneity among PHHs exposed to a 

drug-related metabolic challenge, such as the coadministration of a cocktail of five drugs. In addition 

to that, to interrogate how chronic intracellular fat accumulation occurring in chronic diseases such as 

non-alcoholic fatty liver disease (NAFLD) affects the metabolic capacity of individual cells. 

Moreover, the response at single-cell resolution of the impact of fat accumulation on the drug-related 

metabolic capacity of single hepatocytes was evaluated. 

 

Preamble: In vitro models of liver and their applicability to study liver physiology. 

 

Method optimization 
 
First, the experimental conditions and design selected for the single-cell experiments were previously 

empirically optimized and established in vitro using the immortalized HepG2 and HepaRG human 

hepatoma cell lines, which retain the main properties of primary hepatocytes [242].  

The Sanofi-Aventis phenotyping cocktail composed of five drugs was used to simultaneously monitor 

the expression levels and the chromatin accessibility of the main five cytochrome P450 enzyme 

(CYP450) genes as output of the metabolic capacity of HepaRG cells (in bulk analysis) and PHHs (at 

single-cell level) [285, 287].  

Therefore, a 66-hour incubation with this phenotyping cocktail, consisting of a mixture of individual 

selective substrates of CYP2D6 (metoprolol), CYP2C19 (omeprazole), CYP2C9 (S-warfarin), 

CYP3A4 (midazolam) and CYP1A2 (caffeine), was used to monitor changes in the CYP450 enzymes 

gene expression at mRNA level [125] (Methods). All these substrates for CYP-mediated metabolism 

are used in index clinical drug-drug interaction studies [125]. Of these, omeprazole has a time and 



67 
 

dose-dependent inhibitory effect on CYP2C19 and CYP3A4 [153, 294], as well as working as CYP1A2 

inducer [125, 350]. Metoprolol has been shown to inhibit CYP2D6 and CYP3A4, without interfering 

with the CYP2D6-mediated metabolism of midazolam [301]. On the other hand, caffeine, midazolam, 

and S-warfarin are inducers of the enzymes CYP1A2, CYP3A4, and CYP2C9, respectively [351-353]. 

Changes in CYP450 enzyme activity have been shown to be altered by lipid metabolism, showing a 

direct correlation [207, 225, 354]. Specifically at single-cell level, hepatic steatosis has been found to 

change the transcriptomic profile of parenchymal and non-parenchymal cells, as well as the cellular 

composition in the liver [106, 210, 211, 355].  

 

Particularly in hepatocytes, lipid metabolism has been found to be altered upon fat accumulation due 

to the alteration of key enzymes in the lipid synthesis, storage, and clearance pathways [106, 356, 357]. 

Moreover, increased chemokine production has been observed associated with the inflammation 

process happening in NAFLD [358, 359]. To mimic in vitro the hepatic steatosis occurring in NAFLD 

and study its effect on liver cells at single-cell resolution, the cells (either HepG2, HepaRG, or PHHs) 

were loaded with intracellular lipid droplets by incubating them in FFA medium for 66 h and their 

individual transcriptional profile analyzed (Methods).  

In vitro, benign chronic hepatic steatosis can be modeled by incubating the cells with free fatty acids 

(FFA) [236, 260, 360]. Diverse cellular phenotypes have been described when exposing cells to 

different fatty acid molecules, concentrations, combination ratios, or incubation times [260, 361, 362]. 

The most widely used is the combination of oleic acid (OA) and palmitic acid (PA), the two most 

abundant circulating fatty acids in the human body, which accumulate in plasma during human hepatic 

steatosis [263, 265, 363, 364]. Saturated fatty acids, such as PA, are known to produce cytotoxic effects 

when used alone, while unsaturated FFA like OA protects against it [365]. Intracellular lipid 

accumulation in human hepatocytes and hepatoma cell lines increases with increasing molar 

concentrations of FFA in media and incubation time [260]. It has been shown that up to a concentration 

of 0.25 nM of the 2:1 mixture (OA:PA) produced intracellular fat overloading after 36 h incubation, 

without impacting cell viability nor inducing early apoptosis [260]. To optimize the experimental 

conditions applied to the experiment at single-cell resolution using PHHs, the concentration and time 

of incubation to mimic benign hepatic steatosis in vitro were tested using the hepatoma cell lines 

HepG2 and HepaRG (Methods).  

 

To examine the effects of the incubation with FFAs on HepG2 cells, three different concentrations 

(100 µM, 150 µM, and 200 µM) were tested for 72 h, using proliferation medium (DMEM+4.5% 

glucose) as negative control (Methods). Thereafter, 4% paraformaldehyde fixation and Oil Red O 
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staining of intracellular lipids were performed and assessed under brightfield microscopical 

observation (Methods, Figure 24).  

 

 
Figure 24. Increasing concentration of oleic to palmitic fatty acids leads to increased intracellular fat accumulation in HepG2 cells. 
Microscopical images of Oil Red O stained HepG2 hepatoma cell line cells in three different concentrations of the FFA mixture 
composed of oleic acid (OA) and palmitic acid (PA) for 72 h. (A) Control sample in proliferation medium.; (B) Sample incubated in 100 
µM ratio OA:PA. (C) Sample incubated in 150 µM ratio of OA:PA. (D) Sample incubated in 200 µM ratio OA:PA.  

 
Cells incubated in 200 µM of a 2:1 ratio of OA to PA showed the highest accumulation of Oil-red-O 

stained intracellular lipids compared to the two other lower concentrations of the FFA mixture and to 

the negative control with no additional cell detachment, cell death, or clonal expansion arrest (Figure 

24). Therefore, this concentration and ratio of FFA were selected for the subsequent experiments in 

HepaRG cells (in bulk) and PHHs (at single-cell resolution). 

While HepG2 cells are a valuable tool for in vitro steatosis studies [260], they have poor 

drug-metabolizing competence, as they lack functional expression and inducibility of nearly all 

relevant cytochrome P450 enzymes [229, 366]. Therefore, other liver in vitro models such as the 

metabolically competent HepaRG cell line were developed [236, 367]. This hepatoma cell line 

conserves the expression of several P450 enzymes, phase II metabolism-related enzymes, and nuclear 

receptors such as CAR and PXR at levels comparable to those of PHHs [236]. Thus, they are more 

suitable and closer model to explore drug-related induction studies or enzymatic activity analysis to 

assess metabolic response to chemical stimulus or for the assessment of drug-induced liver injury 

(DILI) [229, 236, 368]. Morphologically, HepaRG cells resemble the in vitro structures found in 

PHHs, forming trabeculae on adherent culture surfaces after 72 h of incubation (Figure 25). 
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Figure 25. Microscopical observation in the brightfield of HepaRG cells in the four experimental conditions after 72 h incubation. 
(A) Vehicle (DMSO) treatment. (B) Five-drug cocktail (Cocktail) treatment. (C) Free Fatty Acids+Vehicle (FFA+DMSO) and (D) Free 
Fatty Acids+Five-drug cocktail (FFA+Cocktail) treatment.  

 
HepaRG cells represent a closer model to PHHs, and therefore the experimental conditions designed 

for the exploration of PHHs at single-cell resolution were first optimized in HepaRG cells in bulk 

(Methods). Hence, cryopreserved HepaRG cells were plated and incubated for a total of 72 h 

(Methods). Of those, a 66-h incubation with either vehicle (DMSO) or the Sanofi-Aventis phenotyping 

five-drug cocktail (metoprolol, omeprazole, S-warfarin, midazolam, and caffeine) was used to examine 

changes in the CYP450 enzymes expression in bulk by qPCR [125] (Methods). Hereby the 

functionality of the cocktail to induce the expression of the main five CYPs responsible for the 

metabolism of the drugs was tested. Chronic fat accumulation was achieved by incubating the cells 

with a 200 µM FFA mixture of a 2:1 ratio of oleic acid to palmitic acid for a total of 72 hours. Four 

conditions were studied: a) Vehicle (DMSO 0.5% v/v); b) Cocktail (66h incubation with a five-drug 

cocktail); c) FFA+DMSO (2:1 ratio oleic:palmitic free fatty acids) and d) FFA+Cocktail (FFA 

incubation + five-drug cocktail). 

 

After 72 h incubation, cells were collected, and total RNA was isolated, followed by cDNA synthesis 

and qPCR (in technical duplicates) (Methods). The expression level was calculated using the 

fluorescence data (Ct values), and the fold change over the housekeeping gene PGBD was calculated 

using the methodology published by Ramarkes et al. 2003 [311] taking into consideration the 

efficiency of each primer for its target (Methods). The efficiency calculated for the four targets was 

the following: 1.58 for PGBD, 2.34 for CYP2C9, 2.02 for CYP2C19, and 3.22 for CYP3A4. This is 

higher than 2, which can influence the fold change analysis and could be due to overconcentrated 

samples [369, 370]. Then, the obtained fold change (target vs. PGBD) values were log10-transformed, 

and the mean and standard deviation of the two technical replicates were calculated. The expression 

level under DMSO treatment was set to baseline and the log10-fold change per each target (CYP2C9, 
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CYP2C19, CYP3A4) per treatment condition (Cocktail, FFA+DMSO, FFA+Cocktail) was calculated 

(Figure 26). 

 

Incubation with the five-drug cocktail led to the 

induction of the mRNA levels of CYP2C9, 

CYP2C19, and CYP3A4 showing a 0.55-fold, 

0.48-fold, and 3.65-fold induction over DMSO 

baseline level, respectively (Figure 26). A 

downregulation in the mRNA levels of 

CYP2C9, CYP2C19, and CYP3A4 compared to 

DMSO baseline levels was observed upon free-

fatty acid (FFA+DMSO) treatment leading to 

intracellular lipid accumulation in HepaRG 

cells. The largest downregulation was observed 

for CYP3A4, showing a 0.62-fold.  

 

 

 

 

When cells were treated with both free fatty acids and the five-drug cocktail (FFA+Cocktail), an 

upregulation of the mRNA level of CYP3A4 was measured, compared to FFA+DMSO treatment 

(Figure 26), reaching a 0.32-fold upregulation above the DMSO baseline level. However, no 

upregulation was observed for the other two targeted CYPs (CYP2C9 and CYP2C19).  

 

This indicated that the treatment with a five-drug cocktail containing substrates of five targeted CYP50 

enzymes led to the upregulation of three targeted CYPs by the drugs. Furthermore, fat accumulation 

reduced the expression of the targeted CYP450 enzymes detected, reducing the capacity to metabolize 

the drugs in the five-drug cocktail of HepaRG cells. Upon the simultaneous incubation with FFA and 

the five-drug cocktail, only CYP3A4 was upregulated compared, indicating that intracellular fat 

accumulation in HepaRG cells in vitro impacts the capacity of the cells to metabolize several drugs 

simultaneously.  

 
  

Figure 26. (A) Cocktail treatment of HepaRG led to the induction 
of the three CYPs, whereas fat accumulation impaired the 
metabolism of the drugs. HepaRG cells treated with Vehicle 
(DMSO), Cocktail (five-drug Sanofi-Aventis cocktail), FFA+DMSO, 
or FFA+Cocktail. mRNA expression levels normalized to the 
housekeeping gene PGBD. DMSO expression levels were set to 
baseline. Error bars: Mean+SD.  
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CHAPTER III: Exploration of the chromatin accessibility using scATAC-seq 
reveals distinct chromatin accessibility configurations governing gene 
expression upon drug challenge. 
 
Using the drug cocktail and the FFA incubation conditions optimized on hepatoma cell lines in the 

preamble, in this chapter of my dissertation, the investigation of the chromatin accessibility landscape 

at single-cell resolution of PHHs in vitro incubated with four experimental conditions using a 

droplet-based approach (10X Genomics) was performed. At single-cell level, scATAC-seq allows the 

exploration of the heterogeneity in the chromatin accessibility arrangements orchestrating the distinct 

and gene expression profiles observed upon different conditions, health statuses [44-50, 371]. In 

human liver, scATAC-seq analysis of healthy, steatotic, or fibrosis NASH has shown differentially 

accessible region profiles with stage-specific DNA regulatory elements allowing NAFLD subtypes 

[217, 372]. 

 

Primary hepatocytes are the gold standard liver in vitro model for the investigation of drug-related 

metabolism and responses in humans, and they are considered a seemingly homogeneous population 

of cells [229, 238, 271, 373, 374]. However, it is known that cellular heterogeneity can be found in the 

responses of individual cells at the epigenomic level [215-217]. Commercially available cryopreserved 

PHHs from four donors were used as a liver in vitro model to investigate the chromatin openness 

landscape of individual cells to a drug-related metabolic challenge and chronic fat accumulation. The 

PHHs from those four donors were plated and incubated for a total of 72 h, of which 66 h with either 

vehicle (DMSO) or a five-drug cocktail. Chronic fat accumulation, as occurring in hepatic steatosis 

during NAFLD, was achieved by incubating PHHs with a 200 µM FFA mixture of a 2:1 ratio of oleic 

acid to palmitic acid for 72 hours. A total of four conditions were studied: a) Vehicle (DMSO 0.5% 

v/v); b) Cocktail (66h incubation with a five-drug cocktail); c) FFA+DMSO (2:1 ratio oleic:palmitic 

free fatty acids), and d) FFA+Cocktail (FFA incubation plus five-drug cocktail).  

 

After a total of 72 h incubation, 66 of them in DMSO or Cocktail, brightfield microscopical 

observation revealed all the conditions were phenotypically apparently homogeneous (Figure 27). 

Intracellular lipid accumulation was observable in the samples incubated with FFA, namely FFA and 

FFA+Cocktail samples. 
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Figure 27. Brightfield microscopical images of PHH cells in the four experimental conditions after 72 h incubation. (A) Vehicle 
(DMSO) treatment. (B) Five-drug cocktail (Cocktail) treatment. (C) Free Fatty Acid+Vehicle (FFA+DMSO) and (D) Free Fatty 
Acid+Five-drug cocktail (FFA+Cocktail) treatment.  

 

Next, to explore the heterogeneity among PHHs regarding their chromatin accessibility configuration 

upon cocktail treatment, intracellular fat accumulation, or both simultaneously, scATAC-seq was 

performed using the 10X Genomics Chromium platform (Methods).  

The experimental approach for performing scATAC-seq includes a nuclei isolation step followed by 

nuclei lysis, tagmentation and transposition, library preparation, and sequencing (Methods) [53, 348]. 

Among these, nuclei isolation and lysis are essential steps subject to optimization in order to obtain a 

clean single-nuclei suspension, an efficient nuclei lysis and tagmentation reaction. Therefore, the 

nuclei isolation methodology published by 10X Genomics recommended optimizing the lysis time to 

the tissue or cell type of interest [68]. Due to known physical properties of PHHs such as a stiff cellular 

membrane and large cellular size, the lysis time was set for a short lysis of 10 min and a longer lysis 

time of 30 min. The quality control of the libraries obtained after bulk nuclei lysis, the Bioanalyzer 

2100 electropherograms, and tagmentation are shown in Figure 28: 

 

 
Figure 28. Comparable nucleosome periodicity profiles are obtained from two PHH samples processed for bulk ATAC-seq incubated 
in Lysis Buffer for 10 and 30 min, respectively. Bioanalyzer electropherogram traces of (A) Sample ATT1, incubated 10 min in Lysis 
Buffer. (B) Sample ATT2, incubated 30 min in Lysis Buffer. 

 
The nucleosome periodicity profile obtained in both samples was comparable, with the classical profile 

expected from a scATAC-seq library (Figure 28). After sequencing, 2,945 cells were recovered for 

sample ATT1 vs. 7,899 cells from sample ATT2. However, the loaded number of cells was to recover 
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5,000 cells, hence concluding that the number of cells recovered from sample 2 was overestimated. To 

overcome this, the number of recovered cells was forced to 2,453 based on the barcodes in fragments 

overlapping peaks plot (Web summary output from 10X Genomics). 

The TSS enrichment and fragment length distribution calculated showed less noise vs. signal ratio in 

the sample lysed for 10 minutes (Figure 29). Based on the QC results, the sample lysed for 10 min 

yielded a better quality overall, and hence, 10 min incubation in lysis buffer was selected for the 

experimental design.  

 

 
Figure 29. Comparable TSS enrichment and fragment length distribution was achieved in PHH samples incubated for 10 vs. 30 
minutes in lysis buffer.  (A) TSS enrichment and fragment length distribution plots from PHHs tagmented for 10 minutes in the Lysis 
Buffer from 10X Genomics nuclei isolation protocol. (B) TSS enrichment and fragment length distribution plots from PHHs tagmented 
for 30 minutes in the Lysis Buffer from 10X Genomics nuclei isolation protocol. Figure computed by Mr. Patrick Hanel using Cell 
Ranger-called peaks. 

 

Microscopical inspection of the single nuclei suspension revealed that the cell lysis and isolation of 

nuclei was not totally efficient. Efficient cell lysis for tagmentation involves the disruption of the 

cellular membrane without disturbing the nuclear membrane. Since some cells showed nuclei could 

be observed, I sought to further optimize the cell lysis and nuclei isolation procedure for PHHs in vitro 

(Figure 30).  
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Figure 30. Microscopical image of nuclei isolated from PHHs and stained with trypan blue. (A) Single nuclei in suspension dissociated 
and released from the cell membrane. (B) Nuclei contained in the cell membrane of PHHs indicate that the lysis was not 100% efficient.  

 

While the cell lysis, nuclei isolation and tagmentation optimization experiments were performed for 

PHHs, the first work on scATAC-seq from mouse frozen liver using a droplet-based approach provided 

by 10X Genomics was published by Chen et al. 2020 [48]. In their protocol, incubation of the cells in 

a hypotonic swelling buffer was used to enlarge the hepatocyte nuclei and facilitate the membrane 

disruption. Therefore, to test the effectivity of this swelling buffer on PHHs cultured in vitro, PHHs 

were isolated in homogenization buffer in combination with swelling buffer (Methods).  

At first, the methodology was validated using murine frozen liver as the same starting material. Nuclei 

were isolated following the procedure by Chen et al. 2020 [48] minutely and lysing the nuclei for 10 

min using the 10X Genomics lysis buffer. Initially, 50,000 nuclei were counted and used for 

tagmentation for 60 min at 1000 rpm. After library preparation, the profile obtained in the 

electropherogram in the Bioanalyzer traces showed the expected nucleosome periodicity (Figure 

31A). The same experimental conditions used for mouse frozen tissue were applied to mouse fresh 

liver in a new experiment. The electropherogram showed nucleosome periodicity similar to the one 

obtained from frozen mouse liver (Figure 31B). In contrast, the physical characteristics of PHHs, such 

as a robust cellular membrane hamper the lysis of the nuclear membrane and DNA tagmentation. 

Therefore, when isolating nuclei from primary hepatocytes, both swelling buffer and homogenization 

buffer with 0.3% Triton X and 0.2% NP-40 were used (Methods). The Bioanalyzer traces showed the 

expected nucleosome periodicity of an ATAC-seq library and a similar profile to that obtained using 

frozen mouse liver (Figure 31C). 

 

 
Figure 31. Similar nucleosome periodicity profiles were obtained using different sample origins. Bioanalyzer electropherograms of 
bulk ATAC-seq experiments performed from (A) a frozen mouse liver biopsy. (B) a fresh mouse liver biopsy; and (C) primary human 
hepatocytes. 

 

To explore the chromatin accessibility configuration of PHHs in response to a metabolic challenge 

consisting of the exposure to a cocktail of five drugs, upon chronic fat accumulation or both of these 

conditions simultaneously, PHHs from two donors were incubated for a total of 72 h, 66 of them in 
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DMSO or Cocktail, resulting in a total of four experimental conditions: DMSO, Cocktail, FFA, and 

FFA+Cocktail. A total of eight samples were used to perform high-throughput single-cell ATAC-seq 

using a droplet-based approach (10X Genomics) (Methods) [375].  

After plating, cells were microscopically inspected and differences in cellular adherence and viability 

as well as survival were observed between donors, affecting the subsequent total number of cells 

detached after incubation time (72 h). Thereafter, cells were collected to perform nuclei isolation, 

nucleic acid transposition, and loading in the 10X Genomics Chip (Methods). Differences in the 

number of cells recovered were observed due to the uneven concentration of the eight samples and the 

loaded number of cells into the 10X Genomics chip (Table 6).  

 
Table 6. Summary of donors, samples, number of cells collected, and cells recovered in the scATAC-seq experiment (10X Genomics 
Chromium). 

Donor Sample Experimental 
condition 

No. of cells  Targeted no. 
of recovered 

cells 

No. of cells 
recovered 

after 
Chromium 

1 1 DMSO 1,000,000 1000 1,602 
1 2 Cocktail 2,075,000 1000 1,088 
1 3 FFA 1,100,000 1000 6,111 
1 4 FFA+Cocktail 900,000 1000 1,841 
2 5 DMSO 1,285,000 1000 3,441 
2 6 Cocktail 1,050,000 1000 666 
2 7 FFA 950,000 1000 243 
2 8 FFA+Cocktail 790,000 1000 502 

 

Nevertheless, after GEM recovery, no wetting failures were observed across the eight samples. The 

generated libraries were assessed in the Bioanalyzer 2100, however, the profiles obtained did not 

accurately resemble the representative traces provided by 10X Genomics for scATAC-seq libraries, in 

samples 1, 2, 3 and 8 (Figure 32). The nucleosome periodicity pattern is visible in the nucleosome-

free and one nucleosome peaks, no longer observable for higher sizes corresponding to multiple 

nucleosomes, except for samples 4 and 6 where they are noticeable (Figure 32). 
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Figure 32. Nucleosome periodicity patterns show noticeable differences in the eight samples in the scATAC-seq experiment. 
Bioanalyzer electropherogram traces of the libraries obtained after the scATAC-seq experiment. Libraries from the eight samples in the 
four treatment conditions (DMSO, Cocktail, FFA, and FFA+Cocktail) from (A) donor 1 and (B) donor 2.  

 
The concentration of sample 6, corresponding to Cocktail-treated cells from Donor 2, was the lowest 

across all samples with 4,388 pg/µL, corresponding to 666 cells recovered. However, sample 7, 

corresponding to FFA-treated cells was the sample with the least number of cells recovered (243) 

(Table 6). At least three times higher concentrations were obtained, being the highest for sample 1 

with 13,251.95 pg/µL. The nucleosome-free signal was high in all samples, which could be an 

indicator of DNA tagmentation excess. Nevertheless, sample 6 showed the clearest peaks in the 

nucleosome distribution profile. After sequencing, the Cell Ranger-atac fragments file output was used 

to call peaks using MACS2 [322]. Peaks within 5 kb upstream of a gene body were kept to account 

for potential enhancers or promoters upstream of the TSS in the analysis [375].  
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Figure 33. Different TSS enrichment and fragment length distribution was achieved for the eight samples in the scATAC-seq 
experiment using PHH. TSS enrichment and fragment size distribution histograms calculated per sample using MACS2-called peaks 
using Signac. (A) Four samples corresponding to the four treatment conditions from donor 1.  (B) Four samples corresponding to the 
four treatment conditions from donor 2. 

 

 

The peaks called individually per sample were used to calculate the TSS enrichment and the fragment 

length distribution for quality control using Signac [376] (Figure 33).  

 

Thereafter, the generated peaks were combined using Bedops [323] and a count matrix built based on 

peaks using EpiScanpy [324](Methods). Cells with less than 100 peaks were filtered out and a 

minimum of peaks present in at least 10 cells were kept. Filtering thresholds were set by observing the 

histograms showing the number of open features per cell and number of common features among cells 

(Figure 34). 

 



78 
 

 
Figure 34. Filtering criteria applied to the scATAC-seq dataset. (A) Histogram showing the number of open features per cell (log10). 
(B) Histogram depicting the number of cells sharing a feature (log10). (C) Density plot showing the cells sharing a feature. (D) Density 
plot showing the variability score of all cells. 

 
Differences in coverage and feature recovery were detected due to the uneven cell recovery of the 

loaded cells in the chip across the eight samples. After filtering, the 50,000 highly variable peaks were 

selected, resulting in the removal of the first sample of eight from the analysis (Figure 35A). This 

sample corresponded to DMSO-treated cells from donor 1, which had a total of 1,601 recovered cells, 

however only a total of 2,633 peaks were detected in this sample (Table 2, Figure 35A), representing 

the least covered sample.  

 

 
Figure 35. Differences in the number of features and coverage were identified among the eight samples. (A) Violin plot depicting the 
number of features per nucleus in each of the eight samples; (B) PCA showing the number of features along PC1 before and after 
regressing the number of counts. Color scale corresponds to the number of features. K=1,000. (C) Correlation between the number of 
features and principal component 1. Correlation=0.99; p value=0.0. 

 
 

Additionally, the number of features detected per nucleus was highest for the sample corresponding to 

the Cocktail treatment sample from donor 2 (Figure 35A). This sample had a low number of cells 
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recovered (666, Table 6), and the highest coverage across all samples with a total of 11,849,497 

features detected.  

The number of features in differently covered samples can be a confounding factor for differential 

chromatin openness analysis. To validate whether the coverage was a confounding factor, PCA was 

calculated on the number of features before and after regressing the number of counts, showing that 

they spread along PC1 and hence indicating that indeed they were driving variation (Figure 35B). In 

order to validate this, the correlation of those with PC1 was calculated, resulting in R2=0.99 (p 

value=0.0) (Figure 35C). Based on that, the number of counts was regressed out as a normalization 

strategy “epi.sc.regress_out” function of episcanpy (Methods). The UMAP representation of the 

clustering of the cells per sample, Louvain cluster, number of features, donor and treatment are shown 

in Figure 36. The overall data structure appeared clearer after regressing out the number of features, 

yet a severe change was not observable. 

  

 
Figure 36. Homogeneous distribution of cells across donors and treatment was identified, although a higher number of features were 
detected in one of the eight samples. (A) UMAP colored by the clustering per sample, Louvain clusters (resolution = 0.4), number of 
features, donor, and treatment (DMSO, Cocktail, FFA, and FFA+Cocktail) before number of counts regression. 

 

Doublet scoring was performed by using Scrublet, defining the expected overall doublet rate at 6.2%, 

as described by 10X Genomics in the scATAC-seq v1.1 User Guide [321], and no doublets were 

detected in the dataset. 

Thereafter, to characterize the groups by ranking differentially open peaks between the four conditions 

in the study (DMSO, Cocktail, FFA, and FFA+Cocktail), the scanpy function 

“sc.tl.rank_genes_groups” was used (Figure 37). Genes 5 kb downstream of open peaks were 

investigated. The peaks were annotated by genes located 5 kb downstream of the peak to study gene 
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regulation. This assumes that chromatin accessibility at gene regulatory regions across the genome is 

an indicator of gene expression and affects the transcriptional outcome [377, 378]. 

 

Upon Cocktail treatment, the differentially open peaks corresponded mostly to intergenic regions. 

These constitute the majority of the genome and are non-protein-coding, typically enhancers and 

promoters [379, 380], known to regulate the expression of adjacent genes. Among the top 20 peaks in 

FFA+Cocktail-treated cells, a peak upstream of CEACAM1 was detected, which is a transmembrane 

glycoprotein involved in differentiation and polarity maintenance and is expressed during hepatocyte 

differentiation and liver regeneration [381]. Additionally, oxidative stress-related genes such as SOD2 

and LIMD1/LARS2 were also detected downstream of differentially open peaks (Figure 37).  

 

 
Figure 37. Ranking of genes in the four experimental conditions. (A) Gene ranking defining the differentially accessible regions in 
the four treatment conditions compared to the other three (DMSO, Cocktail, FFA, FFA+Cocktail). 

 
 

Next, to assess the chromatin accessibility configurations under the four treatments, differential peak 

accessibility analysis was performed (Figure 38). Upon DMSO treatment, peaks in proximity to 

cellular maintenance-related genes were detected, such as the cell trafficking protein NAPA also known 

as α-SNAP [382], the adaptive response gene ATF3 [383, 384], and the serum protein albumin (ALB), 

the most abundantly secreted protein by hepatocytes [72].  

 

Upon Cocktail treatment, peaks upstream of the phase I metabolism genes such as the cytochromes 

were accessible for transcription. For instance, CYP2C9, CYP3A5, CYP2B6, or CYP1A2, were not 

detected in DMSO-treated cells (Figure 38). Hence, exposure to a five-drug cocktail induces a 
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chromatin accessibility change that is specific to exposure to a cocktail of drugs in PHHs in vitro 

compared to vehicle treatment. 

 

  
Figure 38. Differential peak accessibility of endo- and exogenous genes was detected between treatment conditions. (A) Matrix plot 
depicting the accessibility of genes belonging to the 200 most highly variable features in DMSO, Cocktail, FFA and FFA+Cocktail-
treated cells. Color scale represents the mean expression. 

 
Upon FFA treatment, regions upstream of specific lipid metabolism-related genes were differentially 

open. For instance, the multidrug resistance protein and phase III transporter ABCC3 [385], the 

apolipoprotein transporter APOH associated with diabetes and metabolic syndrome [386], and the lipid 

metabolism-related cytochrome CYP2E1 associated with the development of NAFLD and NASH 

progression [387] (Figure 38). It has been reported that deletion of HNF1A in mouse hepatocytes 

leads to fatty liver-related hepatocellular carcinoma [388] and in humans, that it can ameliorate 

NAFLD and NASH [389]. This hints that fat accumulation leads to a distinct chromatin openness 

configuration involving genes related to lipid metabolism and accumulation in hepatocytes.  

 

Lastly, in primary hepatocytes treated with FFA+Cocktail, regions upstream of CYP450 enzyme genes 

related to the metabolism of sterols such as CYP2J2 and eicosanoids CYP4F11, which plays a crucial 

role in inflammatory processes [390] were differentially accessible. In addition, regions in proximity 

to solute carriers were identified as differentially accessible in FFA+Cocktail-treated cells. For 

instance, the folate transporter SLC19A1 [391, 392] which has been reported to be involved in lipid 

droplet accumulation in hepatocytes [393]; and the amino acid transporter SLC7A2, which has been 

previously related to inflammation and immunity diseases such as HCC [394, 395] (Figure 38). The 

transcription factor ONECUT2 has been reported to have reduced motif activity in advanced NASH 

disease [396]. This indicates that, upon exposure to both intracellular fat accumulation and a five-drug 

cocktail, the chromatin accessibility arrangement of PHHs changes to open regions in proximity to 

genes related to inflammation and cellular transmembrane transport.  
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Taken together, this suggested that the experimental methodology here developed and used in PHHs 

in vitro for chromatin accessibility assessment allows the preliminary identification of differential open 

regions in response to a metabolic challenge such as exposure to a cocktail of drugs, chronic 

intracellular lipid accumulation, or both conditions simultaneously.  
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CHAPTER IV: Transcriptomics analysis of primary human hepatocytes 

shows differential metabolic responses. 
 
 
Analysis of factors affecting inter-donor variability and liver drug-related metabolic 

capacity. 
 

 
In the previous chapter (Chapter III), a genomic feature such as chromatin accessibility differences in 

primary human hepatocytes in response to a five-drug cocktail treatment, intracellular fat 

accumulation, or both simultaneously were interrogated. Therefore, four experimental conditions were 

analyzed: Vehicle (DMSO), five-drug cocktail (Cocktail), free-fatty acids (FFA), and the combination 

of free fatty acids + five-drug cocktail (FFA+Cocktail) (Methods).  

As previously mentioned, the current gold standard liver in vitro model for the investigation of drug-

related metabolism and responses are PHHs, which are considered a homogeneous cell population 

[229, 237, 238, 271, 373, 374]. Assuming homogeneity in the cellular responses towards treatment, 

the assessment of efficacy, safety, and toxicity is performed in bulk analyses in the early phases of 

drug discovery and development using PHHs. However, scRNA-seq has revealed the presence of 

cellular heterogeneity in the liver in both healthy and diseased statuses [2, 5, 6, 84, 210, 397-401]. 

Cellular heterogeneity in the liver is affected and driven by several factors, among which is the 

presence of fat accumulation in the form of triglycerides in hepatocytes [106, 210], known as steatosis, 

directly related to the development of NAFLD and associated with metabolic dysfunction, 

inflammation, and increased risk for the development of fibrosis [402-405]. Other factors impacting 

the heterogeneity found in the transcriptomic level is aging, which has been shown to increase 

transcriptional noise in several tissues and organisms [185, 186, 188, 406]. In addition to these, the 

presence of Single-nucleotide polymorphisms (SNPs) increases the inter-individual variability that has 

been observed in the metabolism of CYP substrates in vivo [407, 408]. Across the genome, the 

presence of mutations in the nucleotide sequence in gene bodies (coding sequences) can lead to an 

alteration in the amino acid sequence configuring protein after translation and modification of the 

protein activity (known as non-synonymous SNP or mutation) [409, 410]. In the case of the CYP450 

superfamily of enzymes, it is known that the presence of SNPs in the gene bodies can affect the 

metabolic capacity of the individuals, conferring different phenotypes among the population based on 

their capability to metabolize substances [117, 411]. 
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Single-nucleotide polymorphisms introduce interindividual heterogeneity in the metabolic 
function. 
 

To investigate the potentially differential enzymatic activities among individuals affecting their 

drug-related metabolic capacity, the inference of genetic variants from transcriptomics data was 

performed using Long Ranger (10X Genomics). This set of pipelines processes 10X Chromium 

sequencing output to align reads and call and phase SNPs, indels and structural variants [412]. To 

obtain single-cell transcriptomics data, PHHs from two donors (previously used for scATAC-seq 

analysis) were incubated in the four experimental conditions (DMSO, Cocktail, FFA or FFA+Cocktail) 

and scRNA-seq performed using the 10X Genomics platform (Methods). Thereafter, the four libraries 

per donor were prepared and quality control was performed in a Bioanalyzer 2100 (Figure 39). This 

batch was performed with Dr. Ioannis Deligiannis (Helmholtz Pioneer Campus, Helmholtz Zentrum 

München). Long Ranger (10X Genomics) was then used to infer SNPs from each of the eight samples 

(Methods).  

 

 
Figure 39. Bioanalyzer electropherograms of the eight PHHs samples, four per donor corresponding to the four treatments, processed 
for scRNA-seq. Quality control of the libraries shows the expected traces in bioanalyzer. 

 

The phased variants outcome file was used to select the chromosome portion where the gene of interest 

is found, for instance the main five CYP450 enzymes, per each of the four samples belonging to one 

donor (Methods). Thereafter, the variants detected across all four samples were selected and their 

biological relevance was verified in the databases: NCBI dbSNP, ClinVar and PharmVar and 

summarized in Figure 12. 
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A total of eight intron variants were found in donor 1 (Caucasian), in addition to two missense variants, 

whereas in the case of donor 2 (Hispanic), 5 intron variants were detected. Two missense variants were 

found in each of the donors, one of them being shared among them (Table 7). 

Donor 1 (Caucasian) is a carrier of a polymorphism in the CYP2C9 gene (CYP2C9*2, rs1799853), 

which is located in chromosome 10, position 94942290, where a single base of thymine (T) substitutes 

a cytosine (C) nucleotide, representing a missense variant, leading to a change of arginine to cysteine 

amino acids at codon 144 [319, 413, 414]. Lower functional CYP2C9 enzymatic activity has been 

reported in the presence of this mutation [415], resulting in reduced drug clearance, showing the 

importance of the detection of these mutations and their high clinical impact. Interestingly, the allele 

frequency of this variant in the Hispanic population has been shown to be higher than that found in 

Caucasian, Asian, African-American, and Jewish- ethnicities [416]. In this dataset, the Caucasian 

donor showed a lower CYP2C9 gene expression compared to the Hispanic donor not carrying this 

missense variant (Figure 40). However, a lower overall expression of the five CYP450 enzymes in 

the Caucasian donor was observed.  

 
Table 7. Summary of present SNPs in the two human donors. (Source: dbSNP database from NCBI, ClinVar and PharmVar). 

 

Donor Ethnicity Cytochrome Chromosome Position Variant Alleles rsID Type 
1 Caucasian 

 
CYP2C9 chr10 94942290 T C>T CYP2C9*2, 

rs1799853 
Missense variant 

1 Caucasian CYP2C9 chr10 94942538 A G>A rs2860905 Intron variant 
1 Caucasian CYP2C9 chr10 94947445 T C>T rs4086116 Intron variant 
1 Caucasian CYP2C9 chr10 94950236 C T>A or T>C 

or T>G 
rs2984310 Intron variant 

1 Caucasian CYP2C9 chr10 94952643 G A>G rs2475376 Intron variant 
1 Caucasian CYP2C9 chr10 94972974 G T>A or T>G rs1856908 Intron variant 
1 Caucasian CYP2C9 chr10 94982060 G A>C or A>G rs1934968 Intron variant 
1 Caucasian CYP2C19 chr10 94804000 A G>A rs4494250 Intron variant 
1 Caucasian CYP2C19 chr10 94821337 G A>C or A>G rs10786172 Intron variant 
1 Caucasian CYP2C19 chr10 94842866 G A>C or A>G CYP2C19*4, 

rs3758581 
Missense variant 

2 Hispanic CYP1A2 chr15 74755085 C T>C rs2470890 Intron mutation 
2 Hispanic CYP2C9 chr10 94952643 G A>G rs2475376 Intron variant 
2 Hispanic CYP2C9 chr10 94981151 C T>C rs9332197 Intron variant 
2 Hispanic CYP2C9 chr10 94982060 G A>G or 

A>G 
rs1934968 Intron variant 

2 Hispanic CYP2C19 chr10 94821337 G A>C or A>G rs10786172 Intron variant 
2 Hispanic CYP2C19 chr10 94842866 G A>C or A>G CYP2C19*4, 

rs3758581 
Missense variant 

2 Hispanic CYP2C19 chr10 94849811 C T>C rs4917623 Intron variant 
2 Hispanic CYP2D6 chr22 42126722 T G>T rs79392742 Missense variant 
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Another example is the mutation found in donor 1, in the CYP2C19 gene (CYP2C19*4, rs3758581, 

I331V) [319], in chromosome 10, position 94842866 (Table 7) alternative allele is a guanine (G) 

replacing an adenine (A) nucleotide, entailing a missense mutation changing isoleucine by a valine 

amino acid in codon 331 resulting in loss of function of the protein [413, 414, 417]. Therefore, clinical 

CYP2C19 testing should take the potential presence of relevant SNPs into consideration, as the allele 

contains both gain-of-function [c.−806C>T (*17)] and loss-of-function [c.1A>G (*4)] (associated with 

poor metabolizers) variants on the same haplotype [418].  

This CYP2C19 mutation (CYP2C19*4, rs3758581, I331V) was as well present in donor 2 (Table 7) 

The alternative allele frequency among different ethnicities such as African, American, Hispanic, East 

and South Asian, and European range between 89% (South Asian) and 100% (African) [419]. 

Therefore, finding a variant in the two donors could be 

expected. 

A second missense mutation in was inferred in donor 2 

(Hispanic), in the CYP2D6 gene (rs79392742, A449D) in 

chromosome 22. Precisely located in position 42126722, 

where a thymine (T) base substitutes guanine (G) resulting in 

the exchange of alanine by aspartic acid amino acids (Table 

7) [316, 319, 413, 414]. This rare variant has been recently 

reported to display decreased enzymatic activity 

(44.4 ± 6.9% vs. 100%) of the CYP2D6 protein due to heme 

binding perturbation [420]. In another study, this variant was 

identified in one patient medicated with metoclopramide, 

resulting in decreased drug clearance and subsequent 

increased risk for the development of toxic or adverse 

reactions [421]. This showcases the clinical relevance of the presence of many mutations in drug-

metabolizing enzyme genes, not only in in vivo studies but also in in vitro drug development using 

PHHs from a single donor. 

 

Taken together, these results showed that the presence of SNPs caused mutations leading to missense 

variants that affect the enzymatic activity of the genes affected, thus impacting the xenobiotic-related 

metabolic capacity of the individuals carrying them. Furthermore, these results also show that 

scRNA-seq performed with the 10X Genomics platform allows for the identification of relevant SNPs, 

although it being a method that captures the 3´ end of transcripts and not its full length [422]. Therefore, 

Figure 40. The presence of SNPs might impact 
the inter-donor CYP2C9 variability. (A) Bar plot 
depicting the mean expression of the main five 
CYP450 enzymes in the Caucasian and the 
Hispanic donors. 
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the analysis of the metabolism of drugs that are metabolized by these CYP isoforms should be taken 

into consideration in pharmacogenomics and in vitro studies using PHHs isolated from single human 

donors.  

 

 

Exploration of factors affecting the drug-related metabolic capacity of primary 
human hepatocytes in vitro at the transcriptomic level  

 

In order to explore other factors that impact the heterogeneous responses of PHHs at the transcriptomic 

level towards a drug cocktail, chronic fat accumulation or both simultaneously, PHHs from four donors 

were used for scRNA-seq using a high-throughput droplet-based approach (10X Genomics). Thereby, 

four experimental conditions optimized in hepatoma cell lines HepG2 and HepaRG were used: Vehicle 

(DMSO), five-drug cocktail (Cocktail), free-fatty acids (FFA), and the combination of free fatty acids 

+ five-drug cocktail (FFA+Cocktail) (Methods). Two of the donors were previously used in the 

scATAC-seq (Chapter III) and the SNPs analysis (previous section 4.1). In total, two batches of the 

same experiment were performed including two donors per batch, and the first batch was performed 

with Dr. Ioannis Deligiannis (HMGU). The donors were males aged between 18 and 57 years, without 

liver diseases and a normal Body Mass Index (BMI), non-diabetic, and representing the most common 

age range commercially available PHHs (Methods). 

 

After a total of 72 h of incubation, 66 of which were exposed (DMSO) or five-drug cocktail, the cells 

were collected, magnetic cell separation (MACS) for gentle live cell selection was performed, 

scRNA-seq using 10X Chromium immediately performed (Methods). The application of the 10X 

Chromium droplet-based approach enabled the analysis of thousands of cells simultaneously, allowing 

the dissection of cellular characteristics individually, to find subgroups or subtypes of cells in a 

seemingly homogeneous population. However, the encapsulation of cells larger than 30 µM is 

challenging due to the risk of clogging the microfluidic channels of the chip [423]. In the second batch, 

the encapsulation failed for samples 6 and 7, corresponding to the Cocktail-treated cells and the FFA-

treated cells from one of the donors, respectively. This limitation is to take into consideration when 

working with hepatocytes, which range around 30-40 µM in diameter [326, 327], hindering 

encapsulation effectivity and efficiency.  
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Figure 41. Bioanalyzer electropherograms of the libraries generated in the two experimental batches composing scRNA-seq 
experiments using PHHs. Hepatocytes proceeding from each of the donors were incubated in the four treatment conditions in the 
experiment: DMSO, Cocktail, FFA, FFA+Cocktail. (A) Libraries profiles of the first eight samples comprising batch 1. (B) Libraries 
profiles of the second eight samples comprising batch 2.    

 
The electropherogram profiles obtained in the Bioanalyzer 2100 after library preparation and quality 

control represented the classical Gaussian distribution characteristic of scRNA-seq libraries (Figure 

41). After assessing the quality of the libraries, these were quantified and sequenced (Methods). The 

libraries from the first batch were performed with Dr. Ioannis Deligiannis (Helmholtz Pioneer Campus, 

Helmholtz Zentrum München), and the computational analysis for sections 3.1.1 and 3.1.4 was 

performed by Ms. Maria Richter (Helmholtz Pioneer Campus, Helmholtz Zentrum München). 

 

 
Four subgroups of hepatocytes were identified independently of donor and treatment 
 

In vitro cultured PHHs from four donors in four experimental conditions (DMSO, Cocktail, 

FFA+DMSO or FFA+Cocktail) were assessed for their heterogeneity in the transcriptional responses 

towards a drug-related challenge such as exposure to a cocktail of five drugs; a metabolic challenge 

such as intracellular fat accumulation, or both challenges simultaneously by exposing lipid-loaded 
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cells to a cocktail of five drugs. Four different subgroups of primary hepatocytes were identified, 

independently of the donor and treatment condition (Figure 42A). 

 

  
Figure 42. Four distinct subgroups of hepatocytes can be identified independently of donor or treatment. UMAP colored by (A) 
Subgroups, treatment, and donor. (B) Marker genes for mature hepatocytes, bile acid metabolism, carbohydrate and phase II 
metabolism, and lipids and phase III metabolism. Subgroup marker gene expression was grouped by aggregated Louvain clusters. 
Figure computed by Maria Richter, adapted from Sanchez-Quant & Richter et al. 2023 [1]. 

 
 
After using Harmony [424] for batch correction, the treatment conditions and the donors did not drive 

the clustering. Markers of differentiated mature hepatocytes (Figure 42B), such as albumin (ALB), 

SERPINA1, and TTR were highly expressed across all cells confirming the enrichment in PHHs in the 

analyzed dataset.  

Among the subgroups, three of them were related to different metabolic 

pathways in the liver: i) lipids and phase I metabolism; 

ii) carbohydrates and phase II metabolism and iii) lipids and phase III 

metabolism (Figure 42A). A fourth subgroup was found to be 

characterized by the downregulation in the expression of key marker 

genes defining the mature hepatic signature, named losing expression 

cells (Figure 42A and Figure 43). It is known that PHHs in vitro are 

phenotypically unstable and undergo a dedifferentiation process after 

three days in culture [253, 425-431]. Concordantly, in this data, a 

subgroup of hepatocytes showing loss of hepatic phenotype was 

detected, compared to the other 3 metabolically active subgroups 

(Figure 43).  

 

 

Figure 43. One of the four 
subgroups was composed of cells 
characterized by loss in gene 
expression. (A) Box plot showing 
the percentage of cells expressing a 
gene per subgroup. 
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Next, to investigate the relevance of these subgroups in vivo, a comparison of the gene expression of 

our three metabolically active subgroups with an in vivo dataset generated by Aizarani et al. in 2019 

[2] was performed (Figure 44).  

 

 
Figure 44. The three metabolically active subgroups identified in vivo could be also observed in the in vivo dataset from Aizarani et 
al. 2019 [2]. (A) Dot plot depicting marker gene expression of hepatocyte subgroups identified in vitro (top) and in vivo (bottom). Dot 
size: fraction of cells in the group; color scale: mean expression in the group. 

 
In this study, nine human samples from patients without chronic liver disease (defined as liver damage 

lasting at least six months) were characterized. When comparing the analysis of these 5 donors with 

our in vitro dataset, we could observe that subgroups I, II, and III could be found in vivo, preserving 

functional specialization in the absence of zonation (Figure 44).  

 

 
Hepatocyte subgroups show diverse transcriptional responses to a phenotyping drug 
cocktail 

 

To explore the cellular heterogeneity in the drug-related responses among the identified PHHs 

subgroups, the metabolic profile of the different hepatocyte subgroups was assessed by evaluating their 

response to the exposure to several drugs. For that, incubation with the phenotyping five-drug cocktail 

(Sanofi-Aventis cocktail) (“Method optimization” section in Chapter III) [285, 287] was performed 

for 66 hours (Methods).  

 

Upon Cocktail incubation, the induction of the mRNA of the five CYPs responsible for the metabolism 

of the five-drug cocktail was monitored showing their upregulation in pseudobulk. A significant 

upregulation of CYP2C9 and CYP3A4 levels upon Cocktail treatment vs. DMSO level was observed 

(Figure 45A). Remarkably, differences in the upregulation levels were observed between hepatocyte 

subgroups, which were concealed in pseudobulk analyses (Figure 45A). For instance, in pseudobulk, 
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CYP2C9 was upregulated 1.7-fold in Cocktail, while in subgroup III only a 1.1-fold change was 

detected. Similarly, a 4-fold increase was detected for CYP3A4 in subgroup I; however, it was not 

significantly upregulated in subgroup III (Figure 45A). A down-regulation of the five targeted 

cytochrome enzymes was not detected in pseudobulk, nor per subgroup. This indicated that the probe 

drugs in the cocktail did not have an inhibitory effect on any of the cytochromes at the concentration 

used in the cocktail. This could have been the case, given that metoprolol has been reported to inhibit 

CYP2D6 and CYP3A4 expression, however without affecting CYP2D6-mediated midazolam 

metabolism [301]. In addition, omeprazole has been shown to inhibit CYP2C19 and CYP3A4 

expression in a time-dependent manner [153, 294]. 
 

Additionally, differentially expressed genes (DEGs) upregulated specifically per subgroup were also 

identified. These were not detected as significantly upregulated in the pseudobulk analysis (Figure 

45B). A similar number of genes were specifically upregulated in every metabolically active 

hepatocyte subgroup: 122 genes in subgroup I, 102 genes in subgroup II, and 126 genes in subgroup 

III. This indicates that the three metabolically active subgroups that conserve their mature hepatocyte 

phenotype possess a distinct transcriptomic signature, with a comparable number of specific 

differentially expressed genes (DEGs). On the other hand, only 64 genes were specifically upregulated 

in subgroup IV (Figure 45B). This subgroup corresponds to cells identified as losing their 

characteristic hepatocyte-like gene expression and undergoing a decay in global gene expression along 

the time in culture (Figure 43). 
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Figure 45. Five-drug cocktail incubation triggers a differential transcriptomic response in the PHH subgroups. (A) Violin plot 
showing the expression levels of the five targeted CYP450 enzymes by the drug cocktail comparing DMSO vs. Cocktail treatment, in 
pseudobulk and at single-cell resolution per subgroup (*=p-value<0.05 and |log2-fold change|>1, t-test); (B) Venn diagram depicting 
the overlap of significantly upregulated genes in each subgroup and shared among al subgroups upon Cocktail treatment; (C) Scatter 
plot showing the enrichment of the genes specifically upregulated per subgroup in pathways known to be involved in the metabolism of 
the chemical compound specified in the X axis (Drug.CTD database). Dot size represents the number of overlapping genes in a given 
pathway. Figure computed by Maria Richter, from Sanchez-Quant & Richter et al. 2023 [1]. 

 
 
In order to explore toxicological interactions specific to each of the subgroups, Gene Ontology (GO) 

analysis of subgroup-specific DEGs was performed using a database suited for drug-disease or drug-

phenotype interactions exploration (Comparative Toxicogenomics Database) [125, 432, 433]. This 

comparison showed that based on their differential transcriptomic profile, each hepatocyte subgroup 

is specialized in the metabolism of certain xenobiotics (Figure 45C). For instance, some compounds 

such as the antitumorigenic drug sunitinib [434, 435] were only enriched in two subgroups (I and IV). 

Only the metabolic pathway for abrine was upregulated in all of the metabolically active subgroups (I, 

II and III). Finally, the pathways for the metabolism of other compounds were only enriched in one 

subgroup, such as quercetin and gefitinib were enriched in subgroups I and II, respectively.  
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In brief, these results indicate that hepatocyte subgroups showed differential transcriptional responses 

upon a metabolic challenge such as the exposure to a five-drug cocktail. These were characterized by 

both subgroup-specific transcriptional profiles as well as shared metabolic pathways. Additionally, a 

different potential for metabolizing chemical substances such as endobiotic (endogenous) and 

xenobiotic (exogenous) could be identified among the four subgroups. 

 
 

Intracellular lipid storage alters the transcriptional variability of hepatocyte subgroups 
 

It is known that changes in CYP450 activity correlate with altered lipid metabolism [207, 225, 354]. 

At the single-cell level, the effect of hepatic steatosis has been found to change the transcriptomic 

profile of parenchymal and non-parenchymal cells, as well as the cellular composition of the liver 

[106, 210, 211, 355]. Specifically in hepatocytes, lipid metabolism is disrupted upon fat accumulation 

due to the alteration of key enzymes in the lipid synthesis, storage, and clearance pathways [106, 356, 

357]. Moreover, increased chemokine production has been observed associated with the inflammation 

process happening in NAFLD [358, 359].  

To explore the effect of lipid accumulation on the metabolic capacity of metabolically functional 

subgroups of PHHs, hepatic steatosis in vitro was modeled by incubating the cells with oleic and 

palmitic acid (200 µM mixture in a 2:1 ratio) [260], recreating benign chronic steatosis with minimized 

lipotoxicity and apoptotic effects [262, 436] (Methods). The PHHs were loaded with FFA for 72 h and 

their individual transcriptional profile was analyzed (Methods).  

 

In order to characterize the identified subgroups when exposed to intracellular lipid accumulation, 

differential gene expression analysis was performed. Among the top five DEGs upon chronic 

accumulation of lipids per metabolically active subgroups (I, II and III), lipid metabolism and 

storage-related genes were detected (Figure 46A). 
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Figure 46. Hepatocyte subgroup-specific metabolic signatures are present in responses to intracellular lipid accumulation. (A) 
Stacked violin plot depicting the top 5 DEGs upon fat accumulation in subgroups I, II and III in DMSO and FFA treatments (*=p-
value<0.05 and |log2-fold change|>0.75, t-test); (B) Heatmap showing the log mean expression of genes related to lipid metabolism, 
storage and NAFLD-related in DMSO and FFA-treated cells per subgroup. The arrows indicate either up or downregulation, t-tested). 
Color scale: Mean expression.; (C) Scatter plot depicting the top 7 GO terms of the genes upregulated in each of the metabolically 
active subgroups upon fat accumulation. Figure computed by Maria Richter, from Sanchez-Quant & Richter et al. 2023 [1]. 

 
 
For example, the lipid droplet-associated protein PLIN2 was significantly upregulated in all three 

metabolically active subgroups, and it has been shown to be related to diet-induced NAFLD [437-

439]. In addition, the inflammation marker TNFAIP3 has also been reported to ameliorate NAFLD and 

play a protective role against its progression [440, 441], was found to be upregulated in subgroup I (Figure 

46B).  
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Further analysis of the lipid metabolism in the three metabolically active subgroups upon fat 

accumulation was performed, interrogating the expression of representative genes (Figure 46B). For 

instance, PLIN2 and CIDEC, triglyceride accumulation in lipid droplet-related genes, were 

significantly upregulated upon fat accumulation in the three metabolically active subgroups. Similarly, 

CYP4A11 involved in NAFLD progression by inducing ROS-related lipid peroxidation and 

inflammation, was upregulated in subgroups I and III upon fat accumulation.  

 

For the identification of the effect of fat accumulation on the main biological processes associated to 

each metabolically active subgroup, gene ontology (GO) analyses using ShinyGO [442] were 

performed using the significantly upregulated genes per metabolically active subgroup. Subgroup I 

showed gene overlaps in pathways related to cellular response to lipids, together with 

lipopolysaccharide and chemokine metabolism [443] (Figure 46C). Subgroup II, exhibited a high 

overlap of genes involved in the regulation of triglyceride metabolic processes, as well as in the 

acylglycerol catabolic process, indicating that these cells were involved in the clearance of neutral 

lipids [444, 445]. PHHs in subgroup III showed enrichment in lipid, monocarboxylic acid, and fatty 

acid-related metabolic processes and lower transcriptional variability, most likely due to their more 

coordinated response to fat accumulation. 

 

Next, to investigate how chronic fat accumulation affects the expression of the main cytochromes involved 

in the xenobiotic metabolism, their expression per subgroup was depicted (Figure 47). Upon FFA 

incubation, the expression of CYP450 cytochrome 

enzymes involved in drug and endobiotic substance 

metabolism was affected differently across the four 

subgroups. For instance, the expression level of 

CYP2D6 and CYP1A1 was significantly upregulated 

in subgroup III upon FFA treatment. The expression 

of CYP2C9 and CYP3A5 was increased in subgroups 

I and III upon fat accumulation compared to DMSO 

level and decreased in subgroups II and IV (Figure 

47). Lastly, the expression of CYP1A2 was increased in 

subgroups I, III, and IV, however decreased in subgroup 

II. This indicates that chronic intracellular lipid 

accumulation might lead to distinct transcriptional effects in different hepatocyte subpopulations, hence 

Figure 47. Fat accumulation affects the expression of 
endo- and xenobiotic metabolizing enzymes. (A) Dot plot 
depicting the expression of the main CYP450 enzymes per 
each of the four subgroups. Dot size: fraction of cells in 
the group; color scale: mean expression in the group. 
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impacting the expression of CYP450 enzymes and thereby the drug-related metabolism capacity in a 

different manner in each subgroup. 

 

Since hepatic lipid accumulation 

and NAFLD have been associated 

to oxidative stress, endoplasmic 

reticulum (ER) stress, and 

inflammation processes [359, 446-

448], the expression of key marker 

genes in these pathways was 

investigated (Figure 48). The ER 

stress-responsive transcription 

factors ATF4 and ATF6, as well as 

GDF15 and PPP1R15A showed a 

higher mean expression in subgroup I compared to the other two subgroups upon intracellular fat 

accumulation. The master regulator of oxidative stress NFE2L2 was also showing a higher mean expression 

in subgroup I upon fat accumulation (Figure 48). The peptide hormone FGF21 showed a significant 

upregulation in Subgroup III upon FFA treatment compared to DMSO treatment. This hormone has been 

reported to increase its level upon hepatic lipid accumulation, obesity, and NASH; and to be protective 

against hepatic lipotoxicity [449]. In addition, TNFAIP3 which has been reported to have a protective 

role against NAFLD and its progression [440, 441]was significantly upregulated upon fat accumulation 

in subgroups I and III, corresponding to sterols and phase I metabolism, and lipids and phase III 

metabolism, respectively.  

This indicated that fat accumulation affected the phase I metabolic capacity of primary hepatocyte 

subgroups differently. Moreover, it increased the ER- and oxidative stress-related response in a different 

manner between subgroups, affecting mostly subgroup I. Specifically in subgroup III, this response was 

attenuated, and protective genes against lipid accumulation were significantly upregulated upon FFA 

treatment.  

Figure 48. Endoplasmic reticulum-related stress and inflammation pathways were 
activated by fat accumulation in subgroup I of hepatocytes. (A) Matrix plot depicting 
ER stress, oxidative stress, and inflammation-related genes in the three metabolically 
active subgroups in DMSO vs. FFA treated cells. Color scale: Mean expression. 
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Furthermore, the coefficient of variation for 

DMSO- and FFA-treated cells was calculated to 

measure transcriptional variability. Thereby the 

coordinated transcriptional response triggered by 

fat accumulation on PHHs in each subgroup can 

be assessed. The cells losing expression (subgroup 

IV) showed the highest transcriptional variability 

(Figure 49). In functional subgroups I and II, lipid 

accumulation significantly increased the 

variability, but it was found to be significantly 

diminished in subgroup III (Figure 49). This 

indicates that the latter responded more 

coordinately towards the accumulation of lipids 

[16, 22, 185, 187, 450]. 

 

Taken together, chronic intracellular lipid accumulation increased transcriptional variability in 

metabolically active hepatocyte subgroups I and II, potentially affecting the fine-tuned regulation of 

lipid metabolism. Moreover, ER stress-related genes were more highly expressed in subgroup I, 

responsible for the metabolism of sterols and phase I, upon fat accumulation. Importantly, in subgroup 

III, specialized in the metabolism of lipids, transcriptional variability was reduced upon fat 

accumulation suggesting a robust and tight coordinated response to chronic accumulation of lipids, 

together with a significant upregulation of NAFLD-ameliorating genes.  

 

 
Aging increases cell-to-cell variability among PHHs and induces stress and 
inflammation  
 

Aging has been shown to increase the transcriptional variability among a seemingly homogeneous 

population of cells, and this increase in heterogeneity prompts the discoordination that occurs in the 

aging phenotype across tissues and organisms [16, 185-187, 406, 451]. Using the approximately 30-

year age difference between young and old individuals, the effect of aging at the transcriptomic level 

in single PHHs was investigated. The donors in this study belonged to two different age groups: two 

of them were young at 18 and 26 years of age, whereas the other two were older, being 56 and 57 years 

of age (Methods). In total, 11,279 young and 26,953 old cells were studied, and their transcriptome 

was compared to perform preliminary analyses. 

Figure 49. Intracellular fat accumulation significantly 
increases transcriptional variability in subgroups I and II 
and decreases it in subgroup III. (A) Box plot showing the 
coefficient of variation per gene calculated per subgroup 
upon DMSO or FFA treatment (*=p-value<0.05, 
MannWhitneyU). Figure computed by Maria Richter, from 
Sanchez-Quant & Richter et al. 2023 [1]. 
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To explore the effect of aging on the coordinated 

transcriptional response of PHHs and on cell-to-cell 

variability, the coefficient of variation of young vs. old cells 

was calculated (Methods, Figure 50). A 1.13-fold increase in 

the value was observed in older cells, suggesting that aging 

could increase the variability intrinsic in a population of PHHs. 

In concordance with a body of literature showing that increases 

the transcriptional noise and cell-to-cell variability, leading to 

less coordinated transcriptional responses [111, 184-186, 452, 

453].  

 

 

 

 

Additionally, a decrease in the number of genes detected per cell has been recently reported in mouse 

liver and in other tissues associated to aging [188]. Therefore, the impact of the donor age on the 

number of genes detected in old vs. young cells, as well as the number of counts per cell per age was 

investigated (Figure 51). The mean number of genes was decreased from 2,998 to 2,363 in young vs. 

old cells, respectively (Figure 51A). The mean number of counts per age was also reduced from 16,918 

to 10,678 in young vs. old cells (Figure 51B, C). This indicates that the number of transcripts 

expressed is decreased in aging hepatocytes, in concordance with previous literature [188]. 

 

 
Figure 51. A decreased number of genes and counts was detected in old vs. young cells. (A) Number of counts per cell; (B) Number 
of genes per cell; (C) Number of counts per cell, per young and old donors. 

 
Batch correction for the integration of the two batches with two donors each was performed using 

Harmony [424]. Cell clustering was not driven by donor age nor by treatment (Figure 52). The two 

Figure 50. Aged cells show increased 
transcriptional variability compared to 
young cells. (A) Box plot showing the 
calculated coefficient of variation for young 
vs. old cells with an age difference of 30 
years. (*=p-value<0.05, MannWhitneyU).  
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batches performed merged into the UMAP space, and the mitochondrial fraction was low across all 

cells in the study. 

 

 
Figure 52. Age, treatment condition or batch did not drive cell clustering. (A) UMAPs colored by clustering of young and old cells; 
treatment, batches processed in the experiments and the mitochondrial fraction across cells. 

 
Next, the contribution to each of the four subgroups by young or old cells was explored (Figure 53). 

In each of the three metabolically active subgroups (I, II and 

III), the percentage of young cells was lower than the old cells. 

Young cells represented 60.3% in subgroup I; 43.3% in 

subgroup II and 70.9% in subgroup III. The cells losing 

expression (subgroup IV) showed less than 30% of young cells 

(Figure 53). The presence of a lower number of young cells in 

the dataset can be explained as a technical artifact by the failure 

in encapsulation in the Chromium chip, leading to samples 6 

and 7, corresponding to two of the young samples being 

barcoded together instead of in single cells. The highest 

percentage of old cells was captured in subgroup IV, which 

corresponded to losing expression cells (Figure 53).  

It is known that aging works to the detriment of the metabolic 

capacity of the liver. A decrease in the blood volume and flow in the organ and in the lipid and 

xenobiotic metabolism has been described [305]. Aging affects hepatocyte function [454] and CYP 

enzyme activity [208, 408, 455-457]. The metabolism of drugs in the study was assessed using the 

Figure 53. The age composition of the four 
subgroups shows the lowest number of young 
cells in the subgroup of cells losing 
expression. (A) Bar plot depicting the 
percentage of young and old cells per 
subgroup. 
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well-characterized cocktail approach 

(Sanofi-Aventis) and then comparing 

young vs. old cells (Methods, Figure 

54). Therefore, the expression of the 

inducible CYP450 isoforms that 

metabolize the five probes 

composing the drug cocktail, in 

pseudobulk analysis and at 

single-cell resolution was 

investigated. In pseudobulk, a 

significant upregulation of CYP2C9 

and CYP3A4 expression levels was 

detected (Figure 54). However, at single-cell resolution, subtle changes in the proportion of cells 

expressing the marker genes and the mean expression level could be identified, which were otherwise 

concealed in the averaged measurements displayed in pseudobulk analyses (Figure 54). In 

FFA+Cocktail treatment, the expression of the five CYP450 enzymes targeted by the drug cocktail is 

higher in old hepatocytes compared to young, particularly for CYP2C9, CYP1A2 and CYP3A4, where 

a 1.74-fold, a 1.88-fold, and a 3.74-fold increase were detected, respectively (Figure 54). When 

comparing the expression levels upon Cocktail treatment vs. FFA+Cocktail treatment within cells of 

the same age, fat accumulation in older cells caused a milder downregulation of the CYP expression 

levels, compared to that within young cells. While the sample size in terms of the number of donors, 

but not in the number of cells per age, prompts caution when interpreting these results, the data 

suggests that aging induces a less coordinated transcriptomic response in aged PHHs vs. young cells. 

Furthermore, changes in gene expression can be observed when comparing young vs. old cells at the 

transcriptomic level upon five-drug cocktail treatment.  

 

Additionally, the activation of inflammatory and stress responses has been described to be a mark in 

the aging phenotype as a natural response related to the function decay of the different organs and 

tissues [458-460]. Furthermore, hepatic steatosis has been shown to be a phenotypic trait of the healthy 

aging liver [173], due to the lipid metabolism impairment and the phenotype of an aged liver resembles 

that of a liver suffering NAFLD in mammals [356, 461]. This indicates that the fat accumulation 

occurring in aged livers promotes the inflammatory and stress pathways upregulation.  

 

Figure 54. Aging affects the drug-related metabolic capacity of hepatocytes in 
pseudobulk and per subgroup. (A) Dot plot showing the expression of the main five 
CYP450 isoforms in young vs. old cells in the four treatment conditions. The dot size 
represents the percentage of cells expressing that gene, and the color scale the mean 
expression level.  
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At single-cell resolution, the expression of stress markers such as GSTA1, or LGALS1 was increased 

in old vs. young cells (Figure 55), whereas the expression of the marker GCLM, which is a subunit of 

the GSH synthase responsible for glutathione synthesis, protecting against oxidative stress [462] 

showed a decrease in old vs. young cells. Similarly, the expression of the known senescence and 

oxidative stress regulator TP53 [463, 464] was downregulated in old vs. young hepatocytes.  

Furthermore, in old hepatocytes, the expression of the anti-inflammatory marker TNFAIP3 or the 

pro-apoptotic marker TRAF2 was slightly upregulated (Figure 55). Interestingly, TNFAIP3 which had 

been described to ameliorate NAFLD and to be protective against disease progression [440, 441] was 

found among the five top-upregulated genes in subgroup I of PHHs upon FFA treatment when age 

separation was not performed for analysis (Figure 46). Moreover, the lipopolysaccharide binding 

protein (LBP) was significantly upregulated in young vs. aged cells. It has recently been reported that 

a significant downregulation of liver LBP levels promotes oxidative stress and inflammation, leading 

to the aggravation of NASH progression [465].  

 

 
Figure 55. Aging affects the stress, apoptosis, and inflammation transcriptomic response in young vs. old cells. (A) Dot plot displaying 
the expression of stress, inflammation, and apoptosis-related marker genes in young vs. old cells. Dot size corresponds to the percentage 
of cells. The color scheme corresponds to the mean expression level. 

 

Altogether, these results indicate that aging impacts the transcriptomic response of PHHs in vitro and 

alters the cellular drug-related metabolic capacity. Stress, apoptosis, and inflammation markers were 

activated in aged compared to young cells at single-cell resolution. Furthermore, aging increased the 

transcriptional noise compared to young cells, leading to less coordinated transcriptional responses in 

PHHs.  

 

 
Fat accumulation diminishes the drug-related metabolic capacity of hepatocyte 
subgroups 

 
The simultaneous administration of five or more drugs, known as polypharmacy, is highly common in 

clinical practice [168, 466]. The intake of several drugs increases the risk of developing hepatotoxicity and 
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Adverse Drug Reactions (ADRs) such as Drug-Induced Liver Injury (DILI) [467-469]. A factor increasing 

the risk of DILI is NAFLD, and a higher incidence of DILI has been found in patients suffering from this 

disease [198, 209 0]. Moreover, at single-cell level, specific transcriptomic response dysregulations 

have been recently described in NAFLD [470].  

Therefore, to assess the impact of fat accumulation on the phase I drug metabolism of PHHs, the 

previously characterized phenotyping cocktail (Sanofi-Aventis) was used [285]. Changes in the 

expression of the five CYPs targeted by the drug cocktail were analyzed by comparing Cocktail- vs. 

FFA+Cocktail-treated cells (Figure 56). Fat accumulation decreased the expression levels of the five 

targeted cytochromes in all subgroups (Figure 56). For instance, in subgroups I, II, and IV, CYP3A4 

was significantly upregulated upon cocktail treatment, but its induction was diminished upon chronic 

lipid exposure. The largest dynamic range of CYP expression was observed for subgroup III. Upon 

FFA+Cocktail treatment, the expression levels of all five CYPs except for CYP1A2 were significantly 

downregulated in comparison to baseline DMSO (Figure 56).  

 

 
Figure 56. The concomitant treatment of FFA and the five-drug cocktail impairs the drug-related metabolic capacity of the four 
hepatocyte subgroups. (A) Scatter plot depicting the log2 fold-change induction of the five CYP enzymes targeted by the drug cocktail 
setting DMSO as the baseline level. (*=p-value<0.05 and |log2-fold change|>1, t-test). Dot size indicates the number of cells in 
percentage in which the gene is expressed. Dot color indicates the treatment: green for Cocktail and red for FFA+Cocktail. Figure 
computed by Maria Richter, from Sanchez-Quant & Richter et al. 2023[1]. 

 

Pursuing a deeper analysis of the transcriptional changes between Cocktail and FFA+Cocktail 

conditions, differential expression analysis was performed in pseudobulk (Methods). After setting 

DMSO as a baseline level of expression, 264 genes were upregulated exclusively under Cocktail 

treatment; 234 genes were commonly upregulated in both Cocktail treatment and FFA+Cocktail; and 

602 genes were upregulated specifically in FFA+Cocktail, suggesting the association of a more 

complex network of biological processes to this condition, considering all cells and per subgroup 

(Figure 57A). The percentage of DEGs belonging to each of the three categories was similar in the 

four subgroups of hepatocytes, indicating that drug metabolism was affected in a similar manner by 
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intracellular fat accumulation (Figure 57B). To further investigate the affected pathways, GO analyses 

were performed on these genes (Figure 57C). 

 

 
Figure 57. Treatment with FFA+Cocktail activates a complex network of biological processes and stress-related pathways. (A) Venn 
diagram depicting the DEGs in Cocktail (green) vs. FFA+Cocktail-treated cells (red); (B) Bar plot showing for each subgroup the 
percentages of genes specific to a) Cocktail vs. DMSO (green); b) Genes up-regulated in both, Cocktail vs. DMSO and FFA+Cocktail 
vs. DMSO (beige); c) Specific to FFA+Cocktail vs. DMSO (magenta); (C) Scatter plot depicting the top five GO terms of the upregulated 
genes specifically per treatment. In all figures, upregulated genes in Cocktail are represented in green, shared genes in Cocktail and 
FFA+Cocktail are represented in beige and upregulated genes only in FFA+Cocktail-treated cells in magenta. Figure computed by 
Maria Richter, from Sanchez-Quant & Richter et al. 2023 [1]. 

 

For Cocktail-treated cells specifically, an enrichment in pathways responsible for the metabolism of 

xenobiotic compounds was observed (Figure 57C, top, green). Genes commonly upregulated upon 

Cocktail and FFA+Cocktail showed less specificity towards drug metabolism and showed enrichment 

in general stimulus-response pathways (Figure 57C, middle, beige). Finally, genes specifically 

upregulated in FFA+Cocktail were enriched in stress-related pathways (Figure 57C, bottom, 

magenta). However, in all subgroups the percentage of genes in each category was similar, suggesting 

that drug metabolism was comparably affected by lipid accumulation in the four hepatocyte subgroups.  

In summary, intracellular lipid accumulation in each subgroup led to a characteristic impairment of 

drug-related metabolism, with several metabolic pathways being simultaneously involved and 

affected. Therefore, the drug-related metabolic specificity is diminished in the presence of chronic fat 

accumulation in primary human hepatocytes in vitro. 

 

 

Biological relevance of the findings in PHHs at the epigenetic level and at the 
transcriptomic level 

 

In this last part, a comparison between the findings through scATAC-seq at the epigenetic level on 

primary human hepatocyte cells in vitro and the differential metabolic profiles characterized at the 
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transcriptomic level (scRNA-seq) is performed. Indeed, some of the characteristic and distinct changes 

observed in chromatin accessibility among the four experimental conditions could be detected at the 

transcriptomic level.  

Interestingly, ALB was found to be differentially accessible upon DMSO treatment, whereas, in the 

transcriptomics dataset, its expression was similar across all cells and treatment conditions (Figure 38, 

Figure 42). Upon Cocktail treatment, all the differentially accessible genes depicted in Figure 38 were 

identified as DEGs in the scRNA-seq dataset, including several CYP450 enzymes and the 

liver-enriched transcription factor HNF4A [1, 471]. The specific chromatin openness configuration 

changes observed in PHHs treated in vitro with a five-drug cocktail, where regions upstream CYP 

genes were accessible, modulate the downstream gene expression response into a characteristic 

metabolic profile, resulting in the upregulation of CYP expression. 

Free fatty acids treatment of PHHs causing intracellular fat accumulation triggered a distinct chromatin 

accessibility conformation, involving genes related to lipid metabolism and accumulation in 

hepatocytes in vitro. Regions upstream of specific lipid metabolism-related genes were differentially 

open upon FFA treatment. For instance, peaks upstream of the liver-enriched transcription factor 

HNF1A [472], ABCC3, and APOH were identified as differentially accessible and as DEGs in 

FFA-treated cells vs. DMSO-treated cells in the scRNA-seq data [1]. Therefore, this distinct epigenetic 

profile upon lipid accumulation can be also identified downstream, at the transcriptomic level, where 

a specific response by hepatocytes toward fat accumulation has also been identified.  

Lastly, when cells were concomitantly treated with free-fatty acids and a five-drug cocktail 

(FFA+Cocktail), regions upstream of CYP450 enzyme genes related to the metabolism of sterols and 

inflammatory processes were found differentially accessible. Moreover, regions in proximity to solute 

carriers such as SLC19A1 or SLC7A2, as well as the transcription factor ONECUT2 were identified as 

differentially accessible in FFA+Cocktail-treated cells. At the transcriptomic level, these three genes 

were identified among the DEGs upon FFA+Cocktail vs. DMSO treatment in the scRNA data[1, 375]. 

This indicates that, upon exposure to both intracellular fat accumulation and a five-drug cocktail, the 

chromatin accessibility arrangement of PHHs changes to open regions in proximity to genes related to 

inflammation and cellular transmembrane transport. In addition, the detected changes at the epigenetic 

level can also be found at the transcriptomic level upon intracellular fat accumulation and incubation 

with the five-drug cocktail.  

 

In summary, these results indicate a differential and specific chromatin accessibility landscape and 

configuration along the genome of PHHs upon a metabolic challenge such as the metabolism of a 

five-drug cocktail, intracellular lipid accumulation, or both simultaneously. Furthermore, these results 
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reflect the findings from the transcriptomics dataset analyzed in this thesis, where exposure to the 

different treatment conditions triggered a differential transcriptional metabolic profile in hepatocytes. 

The methodology here optimized for the nuclei isolation, lysis and tagmentation for scATAC-seq 

processing using a high-throughput approach allows for the investigation of open chromatin regions 

regulating the downstream gene expression. 
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4. Discussion 
 
In the present doctoral thesis: i) The single-nucleus RNA-seq2 (snRNA-seq2) methodology led to the 

detection of heterogeneity within oxytocin-positive neurons in the murine hypothalamus that are 

characterized by the distinct gene expression of key neuronal markers. ii) Assessment of the chromatin 

accessibility configuration (scATAC-seq) revealed changes in the gene expression regulation in 

primary human hepatocytes associated with treatment with a drug cocktail, fat accumulation, or both 

simultaneously. This methodology can be used to assess other characteristics of the liver such as 

polyploidization. iii) Single-cell RNA-seq on PHHs in vitro unraveled the existence of hepatocyte 

subgroups showing heterogeneous transcriptional responses towards a drug cocktail, intracellular fat 

accumulation, or both concomitantly. In addition, a preliminary assessment of the effect of aging on 

primary human hepatocytes showed increased transcriptional variability in older cells.  
 

 

4.1 Single-cell genomics using plate vs. droplet-based approaches and their 
application to complex tissues like brain 

 
 

In this chapter of the dissertation, the aim was exploration of the heterogeneity of hypothalamic 

oxytocin-positive neurons and their role in feeding homeostasis by applying the recently developed 

snRNA-seq2 methodology. This method relies on the SMART-Seq2 chemistry from a commercially 

available kit (SMART-Seq v4 Ultra Low input RNA, Takara), with an additional lysis buffer resulting 

in a two-step lysis of the nuclear membrane [19]. The single-nucleus RNA-seq methodology has been 

applied in complex tissues such as brain [25-27, 64, 473-476], lung [477], kidney [478-481], heart 

[482, 483], pancreas [484] and liver [485]. A major advantage of single-nucleus sequencing is that it 

enables the exploration of samples where obtaining a single-cell suspension is not readily feasible, or 

from frozen samples. Furthermore, it minimizes the potential gene expression alteration occurring 

during single-cell dissociation [486, 487]. In general, plate-based methods offer higher flexibility 

regarding the used lysis buffers, full-length cDNA sequencing, and the addition of control RNA spike-

ins [External RNA Controls Consortium (ERCC)] [325, 488, 489]. Furthermore, plate-based methods 

provide more control and flexibility on the number of cells from different samples enabling more 

efficient experimental design [28]. As occurring in the experimental design in this thesis, hypothalamic 

samples obtained from mice fed chow or an obesogenic high-fat-high-sugar diet were sorted in the 

same 384-well plate, reducing batch effects by processing the different conditions in the same 
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experiment. Moreover, the inclusion of a quality control well containing a higher number of nuclei 

than one is possible when using plate-based approaches [490]. 

 

Another key difference between plate-based and droplet-based approaches is the manner the mRNA 

molecules are sequenced [422, 490, 491]. Full-length transcript sequencing strategies applied in plate-

based methodologies such as SMART-Seq2 and snRNA-seq2 rely on the use of a template-switching 

mechanism for reverse transcription [492] and a 25-nucleotide universal 5′ anchor to capture both ends 

of mRNA molecules [31]. Therefore, full-length transcript sequencing approaches such as 

SMART-seq2 [31], MATQ-seq [493] or SUPeR-seq provide the ability to interrogate alternative 

splicing isoforms, gene fusions and mutations. For instance, lowly-expressed transcripts, splicing 

variants detection, and higher sensitivity have been proven to be preferentially detected by full-length 

transcript approaches [28, 422]. In essence, both low-throughput, plate-based methods and 

high-throughput, droplet-based methods mold to address different research questions and experimental 

needs [494, 495].  The plate-based snRNA-seq2 method is the ideal alternative for the study of rare 

specific low-yielding tissues or cell types because of the overall lower throughput and higher 

sensitivity plate-based methods offer [325, 489] with the added value of a more efficient nuclei lysis. 

Precisely, the number of yielded cells per hypothalamus rounds 600 to 800 neurons, making the 

application of droplet-based methods not feasible and low-throughput methodologies more suitable. If 

the starting number of available cells is limited, the minimum number of cells that are required and the 

capture efficiency of the method are key factors to consider [28]. While droplet-based methods require 

thousands of cells as input and are suitable for higher-throughput studies, plate-based methods are of 

advantage when only a few cells are available [28]. As an example, among the high throughput 

methods, the most used ones are Drop-seq, inDrops, and 10x Genomics. These three methodologies 

show a recovery rate 2–4%, 75% and 50% of the loaded cells, respectively and they require >200,000, 

2,000–10,000 and >1,000 cells as input, respectively [28, 34, 496-498].  

The improved snRNA-seq2 methodology has been developed specifically for frozen mouse liver, 

albeit the results in this dissertation demonstrate its applicability to hypothalamic GFP-labeled 

oxytocin-expressing neurons from the brain of transgenic (INTACT) mice. It also allowed the study 

of flash-frozen archived samples that were collected at different time points and stored for later 

simultaneous processing. This often occurs when sample collection of several mice, and organs is 

performed simultaneously but cannot immediately be processed in parallel due to complicated logistics 

or manpower. An example of this scenario is the processing of samples from transgenic mouse lines 

that undergo FACS purification. 
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However, the physical and physiological differences between brain and liver tissues require protocol 

adaptations [499]. A crucial step is overcoming the technical barrier of efficient a) nuclei isolation and 

b) nuclei lysis. Nuclei isolation was achieved following the procedure published by Krishnaswami et 

al. 2016 [500], which was optimized to isolate nuclei from human brain neurons for FACS sorting. 

The number of strokes with the tight and the loose pestle and the buffer composition is crucial for the 

obtention of a single nuclei suspension where the cell membrane is disrupted but the nuclei membrane 

integrity is not affected. Thereafter, the nuclei are sorted into the microtiter plate containing lysis 

buffer, and the nuclei are lysed. For nuclei lysis, the snRNA-seq2 methodology entailed a key 

improvement in the pipeline: the inclusion of a two-step nuclear lysis, resulting in the improved yield 

of the number of transcripts detected per nuclei [19]. For transgenic murine hypothalamic samples, the 

snRNA-seq2 methodology was followed for nuclei lysis, leading to the generation of a high-quality 

dataset that enables the characterization at the transcriptomic level of oxytocin-positive neurons 

hypothalamic mouse neurons in a complex experimental design.  

 

The absolute number of transcripts has been shown to be proportional to the cellular size, with the 

mRNA concentration remaining relatively equal among cells despite the considerable variation in 

absolute mRNA numbers [330]. Cellular size modulates the rate of intracellular biochemical reactions 

[501, 502] and it has been reported that at single cell level, the number of transcripts has been shown 

to correlate with cell volume because of a higher overall transcription in larger cells [330, 331]. 

Although brain neurons possess a highly active transcriptome, the volume of their cellular bodies is 

reduced compared to that of hepatocytes, ranging from 10 to 15 µM in the case of paraventricular 

oxytocin-producing neurons [503]. Therefore, a lower number of detected transcripts and genes from 

brain nuclei could be expected compared to liver nuclei (Figure 16), because in the liver, cell size 

increases with the ploidy status and it has been shown in mouse and human liver that the nuclei volume 

of hepatocytes approximately doubles with the doubling of the DNA content [95, 328, 329]. 

In this study, a mean of 2,437 genes per nucleus was detected, positioning within the range of other 

snRNA-seq studies reported in brain tissue, such as the study published by Hu et al. using 

sNucDrop-seq in which they detect 1,662 genes per nucleus [473], the 1,791 genes per nucleus detected 

by Thrupp et al. [333], or the 2,419 transcripts per nucleus detected in Dowsett et al. [504]. Habib et 

al. using DroNc-seq detected a higher average of genes per nucleus with 2,731, however from human 

samples [26]. 

 

Importantly, the application of the snRNA-seq2 method allowed for the detection of the genes Aldoc, 

Apoc1, Fth1, Rpl29, S100b, ApoE, Lepr, and Cst3 that could not be detected in other nuclear datasets 
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from human hypothalamic samples (Figure 19) [333]. This is highly relevant since these genes are 

required for microglial activation and can be used to measure response to amyloid plaque accumulation 

in mice, as a signature feature of Alzheimer’s disease [505]. In addition, a small fraction of nuclei was 

characterized by the simultaneous expression of oxytocin (Oxt) and prohormone pro-opiomelanocortin 

(Pomc), as well as marker genes of other neuronal subtypes (Figure 18). These results highlight the 

superior sensitivity of this methodology for the interrogation of rare cell type populations from 

previously archived frozen samples of complex tissues beyond the liver, such as the murine brain. 

Therefore, the optimization of the nuclei isolation from the neurons and the subsequent nuclei lysis 

steps in the microtiter wells have been essential for the identification and characterization of the gene 

expression of murine oxytocin-positive hypothalamic neurons. This methodology allowed for the 

detection of a high number of transcripts per nuclei, identifying genes that were found depleted in other 

brain datasets from human samples, thereby highlighting the high sensitivity achieved with this 

method. 

 

 
4.2 Investigation of the heterogeneity in the liver using single-cell genomic 

approaches 
 
 

4.2.1 Low-throughput scATAC-seq plate-based approach to explore polyploidy at 
the epigenomic level 

 
In this chapter, the aim was to enable the assessment of the heterogeneity in the chromatin accessibility 

configurations in polyploid hepatocytes (2n and 4n) from murine liver at single-cell resolution by 

optimizing a low throughput, plate-based scATAC-seq approach. In the liver, the exploration of the 

epigenetic landscape in a complex starred feature of the tissue, such as liver polyploidy has to date not 

been addressed. Here, the initial steps for the development of a protocol that allows for the study of 

complex tissue characteristics requiring a specific experimental design such as liver polyploidization 

using a plate-based approach are laid.  

 

Due to the high throughput, cost, flexibility, and capture efficiency, the commercialized 

high-throughput droplet-based scATAC-seq kit from 10X Genomics has become the method of choice 

for studying genome-wide chromatin accessibility [63]. Nevertheless, as discussed in the previous 

section of this thesis, plate-based methodologies present advantages for certain applications. 

Plate-based methodologies for scATAC-seq mostly rely on the upfront tagmentation of nuclei in a 
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bulk reaction followed by FACS sorting the nuclei into 384-well plates [60, 65, 66]. However, sorting 

nuclei after tagmentation does not allow for the differentiation of different ploidy levels (2n and 4n) 

in nuclei (Figure 21). Therefore, the optimization of a scATAC-seq method on plates that allows for 

the deep characterization of ploidy levels is necessary.  

In order to achieve that, I combined the method published by Chen et al. in 2018, where 384-well 

microtiter plates and an upfront bulk tagmentation is used [60], and the method published by 

Buentrostro et al. using the ICELL8 microwell system from Takara [44]. The latter provides the 

advantage of a more efficient tagmentation reaction occurring per single well after cells have been 

distributed onto the microfluidics system [44]. However, it requires access to a specialized device and 

expensive consumables, as well as a laborious protocol. On the other hand, the protocol published by 

Chen et al. provides the advantage of using commonly obtainable 384-well microtiter plates and a 

FACS sorting system. Additionally, the use of digitonin in the tagmentation buffer provides stronger 

lysis of the cellular membrane. The addition of a Tagmentation Stop Buffer stops the tagmentation 

reaction, ensuring adequate tagmentation time per single well [60]. Combining the two protocols 

enabled the initial steps for the exploration of liver ploidy levels by sorting the nuclei before the 

tagmentation reaction.  

The combination of these two methodologies, namely the use of commercially available reagents and 

commonly used consumables and machinery allows to reduce the cost per run and the need for 

specialized equipment. This enables the reduction of experimental costs by prescinding from 

specialized machinery and improving the method further would facilitate the interrogation of 

convoluted biological questions tailored to specific tissue characteristics.  

In the liver, polyploidy is an example of a key feature that introduces heterogeneity among hepatocytes, 

however, the heterogeneity present in the liver is also impacted by other hepatic functions like the 

metabolism of carbohydrates, proteins, and fat, as well as xenobiotic substances such as drugs, playing 

an essential role in the general regulation of the energy homeostasis in the body and detoxification of 

xenobiotic substances [69-72].  

 
Overall, there are several factors that affect the heterogeneity within the liver tissue. Internal factors 

are comprised for instance, of the presence of polyploidy [506], but also fat accumulation in the tissue, 

as occurs in NAFLD [507]; the presence of SNPs affecting key metabolic enzymes [117]; or aging 

[170, 508]. The impact of these factors on the metabolic function of PHHs was explored in this thesis. 

The heterogeneity present in a population of PHHs in vitro was investigated using single-cell genomics 

approaches at the transcriptomic and epigenomic levels. Thereafter, the capacity of individual 

hepatocytes to metabolize a cocktail of drugs was assessed using a phenotyping drug cocktail. 
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Moreover, the study of the impact of intracellular fat accumulation as occurring in NAFLD on the 

metabolism of in vitro cultured PHHs was performed. In addition, how lipid accumulation impacted 

the drug-related metabolism of individual hepatocytes was explored at single-cell resolution. 

 
 

4.2.2 In vitro models for the study of hepatic drug and lipid metabolism 
 

 
Several in vitro systems have been developed for toxicological studies, disease or drug development, 

including PHHs, liver hepatoma cell lines and pluripotent stem cells [232, 238, 252, 509-511]. 

Immortalized hepatoma cell lines such as HepG2 or HepaRG provide the advantage of being 

sustainable in time due to clonal expansion yet retaining certain characteristics comparable to liver 

tissue or PHHs [512]. For intracellular fat accumulation studies, the HepG2 and HepaRG cell lines are 

a suitable model, reaching similar levels of lipid storage to those detected in FFA-overloaded PHHs 

[260, 367, 513-515]. A factor studied in this project was the chronic intracellular fat accumulation in 

PHHs in vitro, mimicking the phenotype observed in NAFLD. In vitro models of NAFLD have been 

developed to characterize the mechanisms of its development and progression [264, 270, 516], which 

hallmark is lipid accumulation, as a result of a dysregulated lipid metabolism, increased lipogenesis, 

and reduced lipolysis [517, 518]. Intracellular lipid accumulation in vitro can be induced by incubating 

the cells with FFA, the most extensively used being oleic and palmitic acid. The optimization of 

susceptible steps in vitro, such as the incubation time, the FFA ratio, and the concentration of FFA 

leads to different phenotypic lipid storage and lipotoxicity outcomes, triggering apoptosis and cell 

death depending on high concentrations or prolonged in vitro incubation times [260, 367, 513-515].  

Indeed, the incubation of HepG2 with a 2:1 ratio of oleic to palmitic FFAs in three different 

concentrations (100 µM, 150 µM and 200 µM), led to intracellular fat accumulation confirmed by Oil-

Red-O staining of lipids, without causing cell detachment or proliferation arrest (Figure 24). This 

concentration mimics dietary conditions observed in vivo inducing NAFLD [260]. Therefore, these 

conditions were selected for the experiments performed in HepaRG cells in bulk, and in PHHs at 

single-cell resolution. Optimization of susceptible steps in vitro, such as the incubation time, the FFA 

ratio and concentration or the obtention of a single-cell suspension, as well as a curated experimental 

design prior to the performance of technically and logistically demanding single-cell experiments, are 

key for yielding a successful experiment and a high-quality dataset. 

 

To assess the metabolic capacity of the cells, the strategy conventionally known as the “cocktail 

approach” [272, 281-285, 519] was used. However, this strategy has not been extensively used to 



113 
 

phenotype and monitor the metabolic capacity of the liver by assessing the enzymatic activity of the 

CYPs by observing changes in the induction of their mRNA level in bulk and the protein level. 

Typically, the use of phenotyping probe cocktails serves for the investigation of drug-drug interactions 

(DDIs) and the pharmacokinetic assessment of CYP450 enzymes focusing on the measurement of 

plasma or urine concentrations of metabolites or mass spectrometry or chromatography metabolite 

analysis [277, 285, 520, 521], and infrequently, measuring mRNA level changes upon cocktail 

incubation in vitro [287, 522, 523].  

The selection of the Sanofi-Aventis phenotyping probe cocktail among the several available ones was 

due to its successful usage with high specificity and safety in human studies [285, 524] and other 

primates [305, 525], mouse, dogs and minipigs [304, 526] in both in vitro [304] and in vivo [285, 287, 

305]. The five probes composing the five-drug cocktail are substrates for the main isoforms of the 

CYP450 monooxygenase enzymes: CYP1A2, CYP2C9, CYP2C19, CYP3A4, which are responsible for 

the metabolism of approximately 70-80% of the nowadays commercially available drugs [117, 123, 

527, 528]. In vitro, the drug catabolism is defined in three phases, and phase I refers to oxidation, 

hydrolysis, reduction, and cyclization reactions that are catabolized mainly by the CYPs. The 

expression of these CYPs is induced or inhibited by their substrate compounds, which are generally 

used as a measurement for the functional characterization of the liver metabolic phenotype. However, 

there are post-translational mechanisms involved in the correlation of gene expression level to the 

protein or enzymatic activity. A tight correlation between mRNA and protein levels of most of the 

CYP isoforms has been described in bulk and at subpopulation resolution [123, 259]. For instance, it 

has been reported that the expression of CYP1A1, CYP1A2, CYP3A4, CYP2D6, and CYP2B6 is mostly 

determined by pre-translational regulatory mechanisms, and estimating the CYP mRNA level seems 

appropriate to infer CYP protein activity [123]. 

 

Prior to its application on PHHs, the functionality of the drug cocktail on the CYP450s expression was 

assessed (Sanofi-Aventis) [285] in HepaRG cells by qPCR (Figure 26). A similar approach using 

different probes to assess CYP450 mRNA levels was used by applying the Basel cocktail by Berger et 

al. in HepG2 cells, HepaRG and cryopreserved PHHs in 2D and 3D culture[137]. This probe cocktail 

differs from the Sanofi Aventis cocktail in the use of losartan instead of S-warfarin as a substrate of 

CYP2C9 [137]. However, the broadly used fold change calculation using the 2-ΔΔCT method for qPCR 

measurements relies on the assumption that the efficiency of amplification is 100%, and the same in 

all samples and the amount of molecules doubles with each PCR cycle, obtaining an efficiency of 2. 

This has been empirically proven to not always be the case [529]. This improved method takes into 

consideration the PCR efficiency of each individual sample and removes the background fluorescence, 
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resulting in higher accuracy in the calculation of the relative gene expression [529]. Therefore, in this 

study, the improved 2-ΔΔCT method published by Rao et al. was used to calculate the precise 

amplification efficiency per sample and per target gene amplified in the qPCR performed on HepaRG 

(Figure 26). This resulted in a more accurate calculation of the amplification reaction efficiency for 

each of the targets in the qPCR, for instance, the efficiency calculated for the housekeeping gene PGBD 

was lower than 2, whereas that of CYP2C9 was higher than 2 and that of CYP2C19 was 2. An 

efficiency lower than two represents a PCR reaction efficiency lower than 100%, where the molecules 

of cDNA do not duplicate with each PCR cycle [530, 531]. However, a higher efficiency than 2 has 

been shown to be due to overconcentrated cDNA template, the presence of primer dimers, or PCR 

reaction inhibitors [370, 532]. The accurate calculation of the PCR reaction efficiency is of greater 

importance when using intercalating DNA dyes such as SYBR Green.  

In the in vitro model used here of differentiated HepaRG cells, an upregulation of the CYP2C9, 

CYP2C19, and CYP3A4 expression (mRNA level) upon Cocktail treatment was observed, detecting a 

0.55-fold, 0.48-fold, and 3.65-fold induction, respectively (Figure 26). This confirmed the 

competency of this cell line for the investigation of drug metabolism and CYP induction studies, as 

well as the probes in the cocktail being able to induce the gene expression of the CYP enzyme 

functionality [240, 287]. Moreover, it has been previously shown that in human livers, the correlation 

of the mRNA level measured by RT-PCR and the respective protein level hold a tight correlation for 

the CYP isoforms CYP1A1, CYP1A2, CYP3A4, and CYP2D6 [123]. Using the Basel cocktail and 

rifampicin incubation for CYP pre-induction, the mRNA level upregulation of CYP1A2 and CYP2D6 

using caffeine and metoprolol as probe substrates was not observable [137]. However, it was 

observable for CYP2C9, CYP2C19 and CYP3A4 [137]. 

Upon free-fatty acid incubation, a downregulation of the expression level of CYP2C9, CYP2C19, and 

CYP3A4 compared to DMSO level was measured, and the largest magnitude change was observed for 

CYP3A4, showing a 0.62-fold downregulation (Figure 26). This is in concordance with previous 

findings in lipid-loaded HepaRG cells, reporting a downregulation of CYP3A4 mRNA levels [533, 

534]. When lipid-loaded HepaRG cells were exposed to a five-drug cocktail incubation, intracellular 

fat accumulation hindered the upregulation of the CYP450 enzyme levels. Only CYP3A4 showed a 

0.32-fold upregulation over the DMSO baseline level. Controversial reports on the effect of hepatic 

fat accumulation on the CYP450 enzyme expression and activity have been published [535], and there 

is not a clear consensus on the effect of fat accumulation on drug metabolic capacity in HepaRG cells. 

Furthermore, known disadvantages of HepaRG cells are that this cell line is derived from a donor that 

had a poor metabolizer allele for CYP2D6, CYP3A5, and CYP2C9 [536]. This poses a disadvantage 

because CYP2D6 is, together with CYP3A4, a major CYP450 enzyme, metabolizing around 30% of 
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the drugs in the market. However, HepG2 cells do not retain a high expression of key liver transcription 

factors such as HNF4A, CAR or PXR regulating the activity of CYP450 xenobiotic-metabolizing 

enzymes [234-236, 537]. This deems them not suitable for CYP450 enzyme induction studies related 

to drug metabolism, disposition, and drug toxicity [240-242]. For this purpose, the hepatoma cell line 

HepaRG represents a closer model of PHHs physiology and metabolic capacity [231, 233, 238, 538].  

The investigation of toxicology, safety and efficacy, and drug-drug interactions during drug discovery 

and development occurs in in vitro models of the liver prior to in vivo phases [427, 539]. The gold 

standard in vitro model to study drug metabolism and toxicity are PHHs isolated from resected liver 

tissue because they provide a close representation of the metabolism and functionality of the liver in 

humans [229, 540, 541], sharing morphological, biochemical, and resemblance to in vivo 

hepatocytes[373, 541-543]. Moreover, they retain the natural capacity to induce CYP450 enzymes, 

but they also present limitations such as the inter-donor variability, the lack of proliferation capacity 

[544], and their dedifferentiation losing the hepatic phenotype and gene expression levels when 

cultured in monolayer for days [253, 545-547]. Despite these, cryopreserved PHHs present, they are 

an advantageous tool for the assessment of drug metabolism and hepatotoxicity of newly developed 

drugs [548-550].  

 

In this thesis, the capacity of individual PHHs to metabolize drugs, as well as the effect of intracellular 

lipid accumulation in their metabolic profile was evaluated. In addition, how intracellular lipid 

accumulation impacted the capacity of single PHHs to metabolize drugs was assessed both at the 

epigenomic and transcriptomic levels.  

 
 

4.2.3 Exploration of the chromatin accessibility configuration in primary human 
hepatocytes 

 
 
Different euchromatin configuration statuses dictate the downstream gene expression profile by 

regulating the access of transcription factors to binding sites in enhancers and promoters [551], which 

have been associated with different conditions and diseases in several tissues [45, 551, 552]. Single-

cell ATAC-seq is a widely used methodology to investigate the transposase-accessible chromatin 

heterogeneity comprised in tissues and cell populations [45, 56, 348]. In the liver, single-cell ATAC-

seq has recently revealed heterogeneity in the chromatin accessibility pattern and TF modulation 

configuration among the different hepatic cell types [45] during liver regeneration [48], aging [111] 

and in NAFLD and NASH disease progression [215-217].  
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Applying a droplet-based approach allows for the study of thousands of cells simultaneously in 

high-throughput [47, 553, 554], which is of advantage in the identification and characterization of 

unique cell states within the same cell type, and or individual cellular responses on a single-cell level 

[555]. 

However, the physical properties of the tissue or cell type of interest determine several steps in the 

protocol that need to be optimized and adjusted to obtain a successful experiment [68]. In the present 

thesis, the steps prior to the performance of scATAC-seq using 10X Genomics Chromium technology 

were optimized for its application on PHHs. At first, an experiment using 10 min or 30 min incubation 

in lysis buffer was designed, allowing for the selection of the 10 min lysis incubation time for 

subsequent experiments based on the quality control performed including TSS enrichment and 

fragment length distribution, although similar electropherogram profiles were obtained between 

samples (Figure 28 and Figure 29) [556]. Overall, this sample showed a higher quality and the TSS 

distribution calculated showed less noise vs. signal ratio. However, after microscopical inspection, the 

cellular membrane of some PHHs was not fully dissociated. Therefore, the combination of the 

methodology using a homogenization buffer supplemented with 0.3% Triton X and 0.2% NP-40 [19], 

a swelling buffer [48] and mechanical dissociation using a Dounce homogenizer proved to be 

successful in dissociating the robust cellular membrane composing PHHs after in vitro culture [375]. 

It is worth considering that sample handling becomes technically and logistically challenging when a 

higher number of samples are processed simultaneously, especially when the experimental protocol is 

laborious and is composed of several critical time-dependent incubation steps. On the other hand, 

performing the experiment in two different batches might introduce technical bias, which might 

increase the need for a stricter batch correction in the downstream computational analysis [557-560]. 

In the experiment performed on eight PHHs samples at single-cell resolution in the four experimental 

conditions (DMSO, Cocktail, FFA+DMSo and FFA+Ccocktail), tagmentation excess was observable 

in six out of eight samples in the experiment. Therefore, this could be taken into consideration for 

further replicates, drawing special attention to lysis buffer incubation time. Nevertheless, the 

experiment performed here yielded scATAC-seq data for preliminary downstream biological 

investigation. The preliminary scATAC-seq data presented in this thesis is constrained to two human 

liver donors (Methods). 

 

A challenge when analyzing and working with scATAC-seq datasets is the selection of the feature to 

build the count matrix [561]. In the present thesis, the count matrix was built on called peaks and 

embedded in the same feature space (Methods). Although normalization scales count data to render 
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peak counts comparable between cells, a count depth effect often remains in the data. In this study, the 

number of counts was identified as a confounding factor, leading to their regression as a normalization 

strategy (Figure 35 and Figure 36). Linear regression can be applied to subtract technical variation, 

and the most prominent technical covariates in single-cell data are count depth and batch [562]. This 

counts depth effect can be both a biological and a technical artifact, most likely the latter in this dataset. 

Therefore, linear regression was applied here as a normalization technique after confirming that the 

number of counts correlated to PC1 (R2=0.99) [376, 562]. Yet, technical count effects may remain 

after normalization as no scaling method can infer the expression values of genes that were not detected 

due to low-quality samples. 

 

To explore the heterogeneity in the chromatin accessibility configurations between the four 

experimental conditions used on PHHs in vitro (DMSO, Cocktail, FFA+DMSO and FFA+Cocktail), 

differentially accessible peaks were called and ranked using scanpy (Methods, Figure 37). Among 

these, the differentially accessible regions upon cocktail treatment correspond to intergenic regions. 

These regions in fact constitute the majority of the genome and are non-protein-coding, typically 

composed of enhancers and promoters [375, 379, 380], and these regions regulate gene expression 

[563]. Peaks were annotated by genes 5 kb downstream but the most differentially accessible in 

cocktail treatment were not found near a gene. These numerous intergenic regions were detected 

because they compose the majority of the genome, they are therefore mostly captured in the dataset, 

and they are regions differentially accessible between treatment conditions. 

Differentially accessible peaks were detected in each of the four conditions in the study (Figure 38). 

Upon vehicle (DMSO) treatment, peaks in proximity to genes responsible for cellular identity and 

essential cellular function maintenance were detected, for instance, ALB [564], NAPA, or ATF3 [565]. 

However, upon cocktail treatment, peaks in proximity to phase I enzymes were detected, such as 

CYP2C9, CYP3A5, and CYP2B6, or phase II enzymes such as GSTO1 (Figure 38). This suggests that 

exposure to a metabolic challenge such as a five-drug cocktail leads to a change in the chromatin 

accessibility pattern in primary hepatocytes, opening promoters of specific drug-metabolizing enzyme 

genes.  

Interestingly, a peak in proximity to the liver-enriched transcription factor HNF4A was differentially 

accessible in cocktail-treated cells (Figure 38). This indicates that hepatocytes treated with a five-drug 

cocktail, or free fatty acids could synthesize more HNF4A, which could then lead to increased 

drug- and fat-related metabolism if HNF4A itself binds to promoter regions of the genes it regulates. 

In the adult human liver, this transcription factor regulates key genes such as albumin and others 

involved in glucose, lipids, cholesterol, and drug-related metabolism [71, 566, 567].  
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When PHHs were presented with simultaneous lipid accumulation and a five-drug cocktail, peaks in 

the proximity of genes related to eicosanoid and drug metabolism such as CYP4F11 or CYP2J2 [568, 

569] were detected. Overexpression of CYP2J2 in mice has been found to attenuate high-fat diet-

induced NAFLD [570]. Upon FFA+Cocktail treatment, peaks upstream of genes involved in 

inflammatory processes such as CYP4F11 [390] and the amino acid transporter SLC7A2, which has 

been previously related to inflammation and immunity diseases such as hepatocellular carcinoma [394, 

395] were differentially accessible. This indicates that, upon exposure to both intracellular fat 

accumulation and a five-drug cocktail, the chromatin accessibility arrangement of PHHs changes to 

open regions in proximity to genes related to inflammation and cellular transmembrane transport.  

 

Taken together, these results indicate that environmental factors such as exposure to a metabolic 

challenge constituted by exposure to several drugs simultaneously or chronic intracellular lipid 

accumulation differentially alter the chromatin accessibility configuration of PHHs. Moreover, the 

concomitant occurrence of fat accumulation and exposure to a cocktail of drugs triggered a different 

chromatin openness response. Hence, it can be postulated that these epigenomic changes toward 

environmental conditions such as diet, disease, or drug exposure can modulate the downstream gene 

expression patterns observable at the transcriptomic level. 

 

 

4.2.4 Heterogeneous transcriptional responses among primary human 
hepatocytes and influencing factors 
 

 
During drug discovery and early drug development phases, safety, toxicity, and efficacy are generally 

tested on PHHs in bulk analyses, thereby assuming homogeneity among hepatocytes and obtaining an 

averaged readout that represents the traits of the most abundant cell subtype [239, 253, 260, 571, 572]. 

However, this approach hinders the assessment of cellular heterogeneity the identification and 

characterization of cellular subpopulations with differential phenotypes and transcriptional responses 

towards a stimulus [573]. In the present thesis, the heterogeneity among PHHs in vitro has been 

revealed using a high-throughput droplet-based approach (10X Genomics), leading to the 

identification of hepatocyte subgroups within a seemingly homogeneous cell population from a 

complex tissue like the liver. For this purpose, the application of a droplet-based method is 

advantageous, having a relatively low cost per cell, and maximizing the throughput of cells [28].  
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Here, four subgroups of hepatocytes were identified after 72 h of in vitro culture, independently of 

donor and treatment condition (Figure 42). In concordance with previous research on PHHs in vitro, 

a subgroup of cells (subgroup IV) losing their mature hepatocyte transcriptional signature was 

identified after 72 h in culture by calculating the percentage of cells in which a gene is expressed per 

subgroup. This subgroup showed the lowest overall gene expression, among which the CYPs were 

present (Figure 44) [239, 253, 425, 426, 574]. In this subgroup, a downregulation liver-enriched 

transcription factors that modulate the mature hepatocyte phenotype including MLXIPL (ChREBP), 

RXRA, NH1H4 (FXR), PPARA, HNF4A, and CEBPA was described [1, 575-577]. This is of relevance 

in preclinical phase pharmaco- and toxicological studies classically carried out in bulk analysis using 

PHHs in vitro. Bulk analyses represent an averaged readout of the cell population [571, 572], 

potentially leading to the underestimation of drug efficacy and safety caused by the results being 

masked by cells losing mature hepatocyte gene expression [278]. Furthermore, the main reason for 

drug attrition in the early phases of drug development and discovery in vitro processes is the absence 

of clinical efficiency [578] or low efficacy [579], and the absence of the desired drug effect and toxicity 

on the cells [580-583]. If a subgroup of cells in the culture does not behave anymore as mature 

hepatocytes due to in vitro phenotypic instability and shows a comparatively reduced metabolic 

capacity, the overall obtained readout assessment is biased by the influence of these cells.  

 

Once the presence of subgroups in the PHH in vitro population was unravelled, a metabolic challenge 

was posed by a cocktail of five drugs (Methods). Upon exposure to the Sanofi-Aventis five-drug 

cocktail for 66 hours, the four hepatocyte subgroups showed distinct transcriptional responses to this 

metabolic challenge, which were not distinguishable in pseudobulk analyses (Figure 45). A clear 

example is the 4-fold upregulation of CYP3A4 found in subgroup I under Cocktail treatment compared 

to DMSO level, whereas no significant upregulation was detected in subgroup III (Figure 45). This 

indicates that differences in the single-cell gene expression profiles of hepatocyte subgroups impact 

the mean and variance of bulk or pseudobulk gene expression readouts [584]. Moreover, these 

metabolic differences between subpopulations are concealed unless performing single-cell readouts.  

 

Furthermore, the subgroups showed specialization towards different metabolic pathways regarding 

both endo- and xenobiotic substances. This analysis was performed through GO analysis using a 

database suited for toxicogenomic comparisons (CTD). The results revealed a targeted functionality 

regarding the xenobiotics that the different subgroups can metabolize. For instance, subgroup I showed 

overlaps with the metabolic routes for the metabolism of crizotinib, which is a compound used for 

non-small cell lung cancer treatment [585]. This also shows the susceptibility of each subgroup to 
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develop toxic metabolites leading to adverse reactions when exposed to a certain compound (Figure 

45). It would therefore be crucial to consider that the here identified hepatocyte subgroups show 

distinct metabolic capacity and transcriptomic responses to exposure to different compounds, and 

especially toward a metabolic challenge like a drug cocktail. This is of importance when assessing 

drug safety, efficacy, and functionality using PHHs in culture in bulk analyses, due to the possibly 

confounded averaged readout. Especially because CYP induction and inhibition cause potential drug-

drug interactions, hepatotoxicity, and adverse drug reactions (ADRs) such as drug-induced liver injury 

(DILI), potentially leading to acute liver failure, and this effect cannot be anticipated [586, 587]. In 

addition, ADRs are the main cause of direct drug attrition during drug discovery and development and 

drug market withdrawal [278, 582, 588-592]. Hence, a detailed understanding of the heterogeneity 

among cellular responses to drug administration at the cellular level as shown here would be beneficial 

towards the prediction of liver damage at an early stage. The identification of hepatocyte subgroups 

and their proportions among the population of cells in culture before drug candidate testing, accounting 

for the presence of heterogeneity in the cellular metabolic responses towards a drug, would enable a 

more accurate test readout and the prediction of hepatotoxicity and liver damage at an early 

developmental stage. 

 
 

a) Pharmacogenomics: Genetic variation and single-nucleotide polymorphisms (SNPs) 
 

Another factor affecting the inter-individual drug-related metabolic capacity observed in vivo may 

have a genetic, epigenetic, or environmental cause. Among genetic variation, the presence of 

single-nucleotide polymorphisms (SNPs) has been described as a major factor responsible for the 

variation observed in different individuals and ethnicities [117]. Moreover, they constitute a known 

genetic source of increased risk for the development of ADRs, for instance when they affect xenobiotic 

clearance pathways, such as phase I enzymes (CYP450s) [117, 593, 594].  

 

The gap between the genome and gene expression is composed of a sequential chain of reactions at 

different levels. Namely, gene expression depends on the genetic information, the methylome, and in 

general, epigenetics and the chromatin architecture [595, 596]. To perform SNP detection at single-

cell resolution, it would be ideal to use scDNA-seq data, however, the scDNA-seq methodology is not 

extensively used and it is a laborious method, and easily applicable commercial kits and computational 

pipelines for analysis are scarce [597, 598]. When using scRNA-seq data to identify SNPs, full-length 

transcript data would be preferable [599]. However, 10X Genomics has developed the Long Ranger 
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tool to infer SNPs from 3’ captured mRNA data [412]. Long Ranger allows to infer single-nucleotide 

variations from transcriptomics data and the variants called here were searched for in the gene bodies, 

excluding those located in enhancers or promoters of the genes and transcription factor binding sites.  

 

The SNP in the CYP2C19 gene (CYP2C19*4, I331V) was detected in both analyzed donors (Caucasian 

and Hispanic). Recently, the CYP2C19*4B allele was discovered to have important implications for 

clinical CYP2C19 testing as the allele harbors both gain-of-function [c.−806C>T (*17)] and 

loss-of-function [c.1A>G (*4)] variants on the same haplotype [417, 418]. The CYP2C19*4B allele 

was identified in both Caucasian and Hispanic populations in a low frequency (≤1%)[319, 417, 418, 

600-602]. A lower expression of CYP2C19 was observed in the Hispanic donor compared to the 

Caucasian donor, but a generally lower expression of all CYPs was also detected (Figure 40). In the 

analysis of the dataset of two donors, the presence of missense variants in the gene body of the 

CYP2C19 enzyme could lead to lower enzymatic activity to clear the drug omeprazole, administered 

in the phenotyping five-drug cocktail as CYP2C19 substrate.  

Depending on the CYP-specific oxidation capacity, different terms are used to refer to the associated 

pharmacokinetic phenotypes. In the case of polymorphisms in the CYP2D6 and CYP2C19 isoforms, 

the population is divided into poor (PM), intermediate (IM), extensive (EM), and ultrarapid 

metabolizers (UM) [117, 152-155]. UMs possess gain-of-function variants; EMs are the most 

commonly found phenotype in the population; IMs carry one functional and one functionally deficient 

allele resulting in reduced drug oxidation capacity; and PMs are carriers of the null allele with complete 

lack of function. In vivo, this has major implications for the individuals carrying the missense variant 

(PMs or IMs), needing to receive an adjusted and appropriate dose of the drugs mostly cleared by the 

enzyme where the variant is detected [117, 417]. 

In addition, distinct frequencies in the SNPs can be found in different ethnicities [117]. The CYP2C19 

mutation (CYP2C19*4, rs3758581, I331V) was detected in both donors (Table 7). The alternative 

allele frequency among different ethnicities such as African, American, Hispanic, East and South 

Asian, and European range between 89% (South Asian) and 100% (African) [419]. Therefore, the 

likelihood of detecting this mutation in all backgrounds is rather high. However, for other variants, the 

distribution of the presence of the variant changes drastically in different ethnicities. This is a factor 

of major importance in vivo, but it also has implications to consider in drug testing studies in preclinical 

in vitro phases. Drug candidates are classically tested for hepatotoxicity in preclinical phases using 

PHHs cultured in a monolayer proceeding from a single donor [373, 541-543]. Therefore, depending 

on the presence of a SNP in a CYP450 isoform metabolizing the tested compound leading to a lower 

enzymatic activity, which is often associated with the ethnicity of the donor, could affect the drug 
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metabolism, can lead to toxicity and thereby to the incorrect assessment of the drug’s efficacy and 

safety.  

 

A second example is the polymorphism in the CYP2C9 gene (CYP2C9*2, rs1799853) detected in the 

Caucasian donor (Table 7) representing a missense variant [319, 413, 414]. The mRNA level of 

CYP2C9 detected in the Caucasian donor was higher compared to that observed in the Hispanic donor 

not carrying the missense variant (Figure 40). However, it is known that the posttranslational 

mechanisms dictating translation rate, protein half-life, and the presence of SNPs can perturb a 

correlation between mRNA level and enzyme activity [123]. In order to estimate an accurate readout 

on the phenotypic effect of the SNP, the enzymatic activity would need to be measured and compared 

to the mRNA level [603]. Dysfunctional CYP2C9 enzymatic activity has been linked to this mutation 

[415], resulting in diminished drug clearance by those individuals carrying the missense variant. 

Individuals possessing this mutation present, for instance, a higher risk of bleeding when administered 

anticoagulants like warfarin [604], phenprocoumon [605], or acenocoumarol [117, 606]. In addition, 

it entails lower drug metabolism capacity and higher risk for developing adverse events such as 

hypoglycemia when administered sulfonylureas hypoglycemic drugs [607], and non-steroid anti-

inflammatory drugs (NSAIDs) [608]. This highlights the importance of the detection of these 

mutations and their crucial high clinical impact. 

 

Pharmacogenomics, and particularly the presence of SNPs is a factor to consider in precision medicine 

to develop drug therapies tailored to the genetic and inter-individual variability intrinsic in the human 

populations. For instance, poor or intermediate metabolizers may need a lower dose of the same drug 

to achieve a certain therapeutic effect and avoid undesired toxic or off-target effects. On the other 

hand, ultrarapid metabolizers may need a higher dose to reach an equivalent therapeutic effect. Further 

developments in precision medicine and clinical trials are necessary to achieve tailored therapies that 

maximize therapeutical success and minimize toxic or adverse reactions. Moreover, it is crucial to take 

into consideration the presence of SNPs in key drug-metabolizing enzymes and their specific 

distribution among the population of determined ethnicities, especially those in which the frequency 

of a variant leading to impaired or lacking drug oxidation capacity is high. This has further implications 

in preclinical drug testing phases, specifically in assays performed using PHHs obtained from a single 

donor, who could be a carrier of a variant conferring poor drug-metabolizing capacity, leading to 

misleading drug efficacy or safety readouts.  
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b) Aging and drug metabolism 
 
A further factor affecting the inter-individual variation and CYP450 enzyme’s expression and activity 

impacting the drug oxidation in the liver is aging [609]. Specifically in the liver, aging distresses 

hepatocyte function [454, 609], causing dysregulation in some CYP450s enzyme activity and 

expression, perturbing the drug oxidation capacity [610, 611], and directly affecting therapeutic 

efficacy and safety in the older population [208, 408, 455-457].  

The literature on the effect of aging on phase I enzymes expression and activity remains thus far 

ambiguous, reporting controversial results regarding up or downregulation of CYP levels  [175, 408]. 

In the preliminary results shown in this thesis, old cells showed a decreased expression of the main 

five CYP450 enzymes, albeit retaining the subgroups’ differential expression profiles (Figure 54). 

Conversely, higher expression levels of CYP2C9, CYP1A2, and CYP3A4 in old compared to young 

cells were observed upon simultaneous fat accumulation and five-drug cocktail treatments, and to only 

Cocktail treatment within cells of the same the same age (Figure 54). Despite the donor sample size 

being too small for performing statistical tests, these preliminary results suggest that, presumably, aged 

PHHs in vivo could show distinct transcriptional responses compared to young towards xenobiotic 

oxidation, especially when exposed to fat accumulation, or when lipid-loaded cells are exposed to a 

five-drug cocktail. This is of major importance because the coadministration of drugs, also known as 

polypharmacy, in the elderly to treat age-related comorbidities in the elderly population is a common 

clinical practice [168, 612-614], leading to a higher risk for the development of drug-drug interactions 

(DDIs), ADRs and more specifically DILI in the elderly, and these cannot thus far be anticipated [457, 

615-617]. Therefore, considering the elderly population of donors in early in vitro phases of drug 

development and in vivo drug testing trials would be crucial, especially because the elderly are 

normally underrepresented [618, 619]. 

 

Lipid metabolism dysfunction has been demonstrated to be associated with aging [178], leading to 

hepatic steatosis and thereby increasing the NAFLD incidence in the elderly population [180]. 

Recently, cellular senescence has been postulated as the driver of age-dependent hepatic steatosis [173, 

174]. In general, cellular senescence plays a crucial role in age-related phenotypic changes [620], 

including the secretion of proinflammatory cytokines that are part of the senescence-associated 

secretory phenotype (SASP) [621, 622], and increased oxidative stress due to mitochondrial 

dysfunction [169]. In addition, aging has been linked to stress in the liver through tissue functionality 

deterioration and lipid accumulation, including the reduction in functional liver mass volume, blood 

flow, telomere attrition, genomic instability, inflammation, mitochondrial dysfunction, and increased 
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oxidative respiration with higher oxidative stress and ROS levels [169, 170, 623-626]. In both NAFLD 

and aging, due to fat accumulation and lipid metabolism impairment, there is increased oxidative 

stress, ROS production and inflammation [356, 461]. At single-cell resolution in this PHHs dataset, 

old hepatocytes showed an upregulation of key marker genes for inflammation and stress-related 

response such as GSTA1 or LGALS1 [627, 628]. Interestingly, LGALS1 was also detected as 

differentially upregulated in subgroups II and IV upon fat accumulation (Figure 55). In line with this, 

it has recently been reported that a significant downregulation of liver LBP levels promotes oxidative 

stress and inflammation, leading to the aggravation of NASH progression [465]. In this study, a lower 

expression of LBP was detected in aged vs. young PHHs. Moreover, it is known that the tripeptide 

glutathione (GSH) acts as a cellular protector of oxidative stress, and its synthesis is catalyzed by the 

glutathione synthetase enzyme (GS) [462, 629]. The expression of GCLM, coding for the modifier 

subunit of the GS responsible for the synthesis of GSH as downregulated in young vs. aged hepatocytes 

(Figure 55). Similarly, the expression of the known and oxidative stress regulator TP53 [463, 464], 

which is also involved in senescence regulation was downregulated in old vs. young hepatocytes.  

Taken together, these findings indicate that aging triggers the upregulation of oxidative stress and 

inflammation transcriptomic response in primary human hepatocytes in vitro, together with the 

downregulation of protective genes against fat accumulation-related stress. This has been previously 

reported in liver, [169, 170, 626], leading to the so-called “inflammageing” [571, 630-632].  

 

Aging has also been shown to increase cell-to-cell variability in gene expression [185, 633], with a 

tissue-specific pattern [184, 188, 634, 635]. Concordant with these reports, aging increased cellular 

variability and a decline in the number of genes detected per cell in this in vitro model of PHHs (Figure 

50). Therefore, an increment in transcriptional noise and hindered coordinated cellular transcriptional 

responses could be expected among PHHs upon aging [16, 185, 187, 188, 636, 637]. A recent study 

with mouse liver nuclei showed differential chromatin accessibility in young vs. aged cells, where cells 

clustered by age based on their chromatin accessibility patterns but not on their transcriptomic profile 

[111]. Yet, this study reports that age is a relevant factor for explaining transcriptional cell-to-cell 

variation. In this PHH dataset, the highest transcriptional variability detected among the four 

hepatocyte subgroups (Figure 49) was observed in subgroup IV, the subgroup of primary hepatocytes 

losing expression in vitro, composed of over 70% old cells (Figure 53). The subgroup of cells 

undergoing a dedifferentiation process in vitro was denominated as losing expression cells and showed 

an overall lower gene expression level. This was defined by calculating the number of cells in which 

a given gene is expressed (Figure 43) and showed downregulation of key liver transcription factors 

such as MLXIPL (ChREBP), RXRA, NH1H4 (FXR), PPARA, HNF4A, and CEBPA [1, 375, 575, 576]. 



125 
 

This indicates that aging might accelerate the loss of expression process in vitro model of primary 

hepatocytes, losing their mature hepatocyte transcriptional signature.  

 

For the results obtained in the exploration of aging, it is important to consider that due to the low 

sample size (n=2 per age), this analysis lacks the statistical power to gain deeper insights into the 

transcriptomics effects of aging in this experimental setup. The encapsulation of the cocktail-treated 

cells sample from the young donor partially failed on the 10X Genomics chip; therefore, the cocktail 

treatment condition corresponds to one donor only in the “young” age in the present analysis. However, 

taken together, these preliminary data comparing 11,279 young and 26,953 old PHHs in vitro suggests 

that aging could accelerate the phenotypic instability and loss of expression process of hepatocytes in 

vitro. In addition, transcriptional variability was found significantly higher in older hepatocytes 

compared to young, together with higher stress and inflammation responses, indicating that aging leads 

to uncoordinated transcriptional responses.  

 

An analysis of the transcriptomic profile per subgroup and per treatment could enable the identification 

of groups of cells showing a higher susceptibility to contribute to the development of toxic drug-related 

reactions in the elderly. Furthermore, a larger sample size in terms of the number of donors and cells 

per subgroup of hepatocytes to deeply characterize the transcriptional differences between subgroups 

of hepatocytes, to elucidate how aging affects the capacity of single hepatocytes and hepatocyte 

subgroups to oxidize drugs, leading to the development of ADRs and DILI in older people when 

exposed to the concomitant administration of several drugs. As mentioned above, the elderly are 

frequently excluded from clinical trials [618, 638-641].  

 

 
c) Chronic lipid accumulation and drug metabolism 

 
 
Chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD) have been identified as a 

source of significant interindividual variation in metabolism [220, 535, 642]. A dysregulation of the 

CYP450 enzyme expression and activity has been described in NAFLD but little is known about the 

precise molecular mechanisms leading to these alterations at single-cell resolution in humans [535]. A 

reason for this gap is the lack of accurate preclinical models recapitulating the disease stages and 

hallmarks [643]. Concurrent with this, a higher occurrence of ADRs, especially DILI, has been 

observed in NAFLD patients [198, 209, 220, 644].  
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To assess the impact of chronic liver disease on cellular heterogeneity and drug-related metabolic 

capacity, hepatic steatosis occurring in early stages of NAFLD was mimicked by loading the cells with 

intracellular lipids along incubation time (Methods, Figure 24 and Figure 27) [236, 260, 645]. The 

experimental conditions for the incubation with free-fatty acids were first established in HepaRG cells 

(“Method optimization” section in the Results).  

A significant increase in cellular variability in two of the four subgroups (subgroup I and II), in contrast 

to the significant decrease in subgroup III clearly showcased the differential responses toward 

intracellular lipid storage among seemingly homogeneous hepatocytes (Figure 49). Particularly, it can 

be inferred that subgroup III, in charge of the metabolism of lipids and phase III enzymes, responds 

more tightly coordinated to chronic intracellular fat accumulation [16, 185, 187, 636], whereas 

transcriptional noise was increased among the individual cells in the other subgroups [637]. This 

indicates that chronic steatosis in this liver in vitro model of PHHs increased transcriptional variability 

in particular subgroups of hepatocytes and diminished their drug oxidation capacity.  

 

Gene ontology (GO) analyses further confirmed that subgroup I upregulated lipopolysaccharide and 

chemokine metabolism-related pathways, as well as response to oxygen-containing compounds 

(Figure 46), indicating a possible increase in inflammatory processes upon fat accumulation 

exclusively in this subpopulation of hepatocytes. Hence, this specific subgroup of hepatocytes could 

be more involved in NAFLD development, driving stress responses. This is further confirmed by the 

overall higher expression of ER-stress and inflammation-related genes in this subgroup compared to 

the other two metabolically active subgroups (Figure 48). However, the pathways upregulated for 

subgroup II were rather related to the regulation of triglyceride metabolism and acylglycerol 

catabolism, and subgroup III pathways overlapped with lipid, monocarboxylic acid, and fatty 

acid-related metabolic processes (Figure 46). Certainly, GO analyses (ShinyGO) performed using the 

differentially upregulated genes upon FFA treatment revealed the three metabolically active subgroups 

(I, II and III) engage a different set of genes that are involved in distinct and specific biological 

pathways upon fat accumulation (Figure 46). This denotes that different subpopulation compositions 

in the liver in vivo could lead to diverse functional outputs and to the development of adverse events 

and environmental and dietary factors. In turn, this would lead to physiological conditions and 

diseases, in this case, chronic hepatic steatosis or NAFLD. 

 

Due to the fat accumulation and lipid metabolism impairment, it has been shown that there is an 

increase in oxidative stress, ROS production, and inflammation during NAFLD [356, 461]. Also, 

increased oxidative stress and damage have been reported in cases of DILI, owing to an increment in 
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the reactive oxygen species (ROS) production [645]. In the present data, the CYP4A11, a CYP450 

enzyme involved in NAFLD progression by inducing ROS-related lipid peroxidation and 

inflammation [646], was found up-regulated in subgroups I and III upon fat accumulation (Figure 46). 

The master regulator of oxidative stress NFE2L2 also showed a higher mean expression in subgroup I 

upon fat accumulation (Figure 48). However, FGF21 which has been reported to have a protective 

effect against hepatic lipotoxicity [449] was significantly upregulated in subgroup III upon FFA 

treatment. Additionally, increased chemokine production has been observed associated with the 

inflammation process occurring in NAFLD [359, 448]. Chemokines CXCL1, CXCL8, CXCL10, and 

CXCL11 were up-regulated in FFA treatment in subgroup I. Together with this, endoplasmic reticulum 

(ER) stress has been pointed out as a potential cause of NAFLD [446, 447]. ER stress response triggers 

the unfolded protein response (UPR), controlled by marker genes ATF6 [647], ERN1, and EIF2AK3 

[648]. These, together with GDF15 [649], PHLDA3 [650] , and PPP1R15A were found more highly 

upregulated in subgroup I compared to the other two metabolically active subgroups (Figure 48). 

Similarly, the anti-inflammatory deubiquitinase TNFAIP3 [651] recently shown to inactivate hepatic 

ASK1 ameliorating NAFLD and protecting against disease progression [440, 441] was detected among 

the five top DEG genes in subgroup I of PHHs and significantly upregulated in subgroups I and III 

upon fat accumulation (Figure 48). Additionally, ATF4, a stress-responsive transcription factor [652, 

653] found to ameliorate alcoholic liver steatosis in mice [654], was highly expressed in subgroup I 

compared to the other subgroups. However, subgroup I also showed a higher mean expression of 

GADD45A upon fat accumulation, which has been shown to have antioxidant properties in the liver 

[655], showing the activation of protective mechanisms against raised oxidative stress.  

In sum, the specific response of subgroup I toward fat accumulation could mean that this specific cell 

population is more susceptible to stress and inflammation, while concomitantly activating protective 

machinery against lipid-induced damage. This highlights that the proportion of the different subgroups 

may play a crucial role in the assessment of functional readouts in response to dietary or environmental 

factors.  

 

Regarding xenobiotic and endobiotic substance metabolism in the liver, it is known that hepatic 

steatosis affects the CYP450 enzyme expression and activity in hepatocytes. Studies using PHHs in 

bulk analyses have shown downregulation of the CYP450 mRNA levels in lipid-loaded vs. healthy 

cells, among them CYP1A1, CYP1A2, CYP3A4, CYP2C9 and CYP2D6 mRNA levels [225, 228]. For 

instance, the expression of CYP3A4, the major drug-metabolizing enzyme responsible for the 

metabolism of around 40% of the commercialized drugs, was increased in subgroups I and III upon 

fat accumulation vs. vehicle but maintained in the other two subgroups (II and IV) (Figure 47). This 
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indicates that there is heterogeneity in the changes in the CYP450 enzyme expression under chronic 

hepatic steatosis occurring in a different manner in subgroups of the same cell type. Moreover, it 

suggests that different hepatocyte subpopulations possess a distinct capability to handle chronic 

accumulation of lipids. As such, a closer look at single-cell resolution could help our understanding of 

the drug oxidation capacity of subgroups of cells and altered drug metabolism during NAFLD and its 

progression [228]. Such studies are thus far scarce, performed in mouse models, and generally focused 

on other aspects of the disease [106, 210], or other disease statuses such as NASH [212]. 

Taking these investigations further on lipid-loaded PHHs, the phenotyping Sanofi-Aventis cocktail 

was used to explore the effect of the exposure to a metabolic challenge such as a cocktail of drugs. 

(Methods).  

At single-cell resolution in the data from PHHs, Cocktail treatment induced the expression of CYP450 

enzymes in the hepatocyte subgroups (Figure 56), however, when the five-drug cocktail treatment was 

applied to cells with intracellular fat accumulation, a downregulation of the induction levels was 

observed for CYP2D6, CYP2C19, CYP2C9, and CYP3A4 in comparison to baseline DMSO level in 

the four hepatocyte subgroups (Figure 56). This effect was larger in subgroup III, and in general, it 

reveals that intracellular chronic lipid accumulation diminishes the drug-related metabolic capacity of 

PHHs. In this case, this reduced drug oxidation capacity increases the risk of the development of 

xenobiotic-induced toxic reactions.  

Moreover, Cocktail and FFA+Cocktail treatment only shared 234 commonly up-regulated genes, 

whereas 602 genes were upregulated upon FFA+Cocktail, indicating a higher involvement of 

biological pathways when cells were exposed to both intracellular fat accumulation and a five-drug 

cocktail (Figure 57). GO analyses revealed that these genes overlapped with stress-related pathways, 

indicating that the incubation with the five-drug cocktail on lipid-loaded cells showed an accentuation 

of the response to stress detected in FFA treatment only (without five-drug cocktail) (Figure 57).  

 

Therefore, it could be postulated that lipid-loaded primary hepatocytes show a decay in their capacity 

to oxidize drugs upon a drug-related metabolic challenge such as exposure to a five-drug cocktail in 

vitro, distinctive for each hepatocyte subgroup. It is relevant to mention that the metabolically active 

hepatocyte subgroups (I, II and III) were also detected in an in vivo dataset with nine human donors 

by Aizarani et al. [2], which could suggest that these two factors combined (fat accumulation and 

exposure to drugs) could act synergistically limiting the drug metabolic capacity of liver cells in a 

heterogeneous manner. Moreover, hepatic lipid accumulation and healthy aging are tightly associated, 

which indicates that lipid accumulation may accelerate the aging process by further increasing the 

transcriptional variability and the inflammation and stress responses. 
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4.3 Cellular heterogeneity in the liver is affected by several factors leading to 
phenotypic differences 

 

The work in this thesis shows that both intrinsic and external factors contribute to cellular 

heterogeneity and inter-donor variability in the liver. Intrinsic factors include the presence of SNPs, 

aging, or lipid accumulation, whereas diet and administration of drugs constitute environmental 

factors. For instance, inter-donor variability is represented by the presence of SNPs in key metabolic 

enzyme genes, affecting the capacity to metabolize drugs and the susceptibility to suffering drug-

related toxicity. In addition, aging and intracellular fat accumulation increase transcriptional 

variability, leading to uncoordinated transcriptional responses, and activating stress and inflammation 

pathways. Furthermore, both aging and lipid accumulation activate stress and inflammation-related 

responses, which both accelerate the overall loss of expression of individual primary human 

hepatocytes in vitro, reducing their ability to metabolize a cocktail of drugs. These findings suggest 

that in vivo both aging and fat accumulation are risk factors increasing cellular heterogeneity and 

variability in hepatocyte subpopulations. This thesis has also shown that different of these 

subpopulations may be more susceptible to having aberrant responses to drugs, increasing the 

possibility of developing adverse drug reactions. This is of crucial importance due to the commonly 

concurrent hepatic steatosis or NAFLD occurring with age, producing a synergistic effect that 

enhances the risk for drug-related hepatotoxic outcomes. 

In the comprehensive data here presented, the relevance of cellular heterogeneity in the liver can be 

appreciated from the transcriptomic and the epigenomic level by observing changes in the chromatin 

accessibility configuration that reflect the transcriptomic response toward intrinsic and extrinsic 

factors. These factors studied in the PHHs in vitro were fat accumulation, exposure to a drug cocktail, 

or both simultaneously. Differentially accessible regions were detected at the epigenomic level, for 

instance upstream of CYP450 genes and the liver-enriched transcription factor HNF4A upon cocktail 

treatment, which also showed upregulation at the transcriptomic level upon drug cocktail incubation. 

Intracellular fat accumulation led to differentially accessible regions upstream of specific genes related 

to lipid metabolism. For instance, HNF1A, ABCC3, or APOH, were also identified as differentially 

accessible and as DEGs in FFA-treated cells at the transcriptomic level, showing the modulation of 

the downstream gene expression by the euchromatin organization and accessibility pattern. Similarly, 

when lipid-loaded cells were exposed to a five-drug cocktail SLC19A1 or SLC7A2, as well as the 

ONECUT2 were differentially accessible, and detected as DEGs at the transcriptomic level under the 

same experimental condition. Therefore, a deeper characterization of the upstream molecular events 
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regulating downstream gene expression would shed light on the regulatory mechanisms of the 

functional outcomes in response to factors like fat accumulation or concomitant drug exposure.  

 

In the future, taking into consideration the existence of cellular heterogeneity and more specifically, 

cellular subgroups in a seemingly homogeneous population of PHHs in vitro and the tissue function is 

crucial for drug development. In addition, the impact of SNPs, aging, and fat accumulation on this 

heterogeneity in in vivo studies is of crucial importance. In in vitro phases, it will lead to a more 

accurate drug efficacy and safety readout, especially linked to age or fat accumulation pathologies like 

NAFLD. Moreover, aging and intracellular fat accumulation both lead to changes in the overall 

subgroup proportion composing the population, and to increased transcriptional variability, indicating 

that the functional outcome and coordinated response may be driven by the number of cells of a certain 

hepatocyte subgroup. Further studies characterizing the role of the different subgroups during aging 

after exposure to a drug cocktail, lipid accumulation or both could help anticipate the occurrence of 

hepatotoxic reactions, ADRs, and DILI, which currently cannot be anticipated. Especially, because the 

elderly are typically excluded from drug testing trials. 
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5. Conclusions 
In this dissertation, two different single-cell genomics approaches were used to investigate the 

heterogeneity intrinsic in complex tissues, specifically the brain and the liver. These two approaches 

diverge mainly in the throughput and sensitivity they provide, as well as in single-cell and molecular 

capture.  

Here, the plate-based low throughput snRNA-seq2 method was applied to explore a specific neuronal 

population of the murine hypothalamus, resulting in the identification of subtypes of oxytocin-positive 

neurons showing mutually exclusive gene expression. This is represented by the expression of the 

neuropeptide arginine vasopressin, in the nuclei that lowly expressed Oxt and vice versa. This 

neuropeptide is known to antagonize oxytocin functions, indicating that the expression of these two is 

complementary and mutually exclusive, being specific to two different neuron subtypes. Overall, these 

results also highlight the versatile usage of the snRNA-seq2 methodology to deeply characterize rare 

cell populations, allowing other researchers to adapt it and use it in their research field.  

 

The results presented in the main focus of this thesis showcase the key role of cellular heterogeneity 

in the comprehensive evaluation of liver functionality under different environmental factors or disease 

conditions. Factors affecting the heterogeneity in the liver include polyploidy, the presence of SNPs, 

aging, chronic lipid accumulation, or exposure to xenobiotics. Herein, the impact of these intrinsic and 

extrinsic factors including cellular heterogeneity was explored in this work. 

Using a plate-based approach, the initial steps for the development of a methodology that allows the 

exploration of the heterogeneity in the chromatin accessibility configurations using scATAC-seq in 

complex tissue characteristics such as liver polyploidy was established. Hereby, the combination of 

two methodologies resulted in the obtention of the nucleosome periodicity pattern expected from 

scATAC-seq experiments. In the future, the method here established will allow the exploration of the 

impact of polyploidy in the epigenetic landscape of hepatocytes.  

 

A high throughput, droplet-based approach was used to study the impact of the aforementioned factors 

on the heterogeneity present in PHHs, which are considered a homogeneous cell population. Thereby, 

cryopreserved PHHs from four donors were exposed to a cocktail of five drugs, loaded with 

intracellular lipids, or both simultaneously. Thereafter, to explore the metabolic profile of PHHs at 

single-cell resolution a droplet-based scRNA-seq approach was applied. At the transcriptomic level, 

four major subgroups of PHHs in vitro were identified across all four donors and independently of the 

treatment conditions. These subgroups showed differential metabolic profiles, specializing in the 



133 
 

metabolism of different endo- and xenobiotic substances. Namely, subgroup I specialized in sterol and 

bile acid metabolism; subgroup II in carbohydrate and phase II metabolism and subgroup III, in lipids 

and phase III metabolism. In concordance with previous literature, a fourth subgroup losing mature 

hepatocyte gene expression was identified in vitro. This indicates that there is cellular heterogeneity 

and specialization intrinsic in a seemingly homogeneous population of cells. 

 

To assess their metabolic capacity, PHHs were exposed to a five-drug phenotyping cocktail composed 

of probes that are substrates of the main five CYP450 enzymes responsible for the metabolism of 70 

to 80% of the commercialized drugs. The concomitant administration of drugs revealed that the 

hepatocyte subgroups possess different capacities to metabolize xenobiotic compounds, impacting the 

overall drug-related metabolic functionality of subgroups of hepatocytes in a different manner. This 

could be observed by the differential expression levels and cell proportions of the main five CYP 

between subgroups. This indicates that cellular subpopulations can have a higher susceptibility towards 

the development of adverse drug reactions and hepatotoxicity when exposed to a compound they 

cannot efficiently metabolize. Moreover, a differential chromatin accessibility configuration was 

observed upon cocktail exposure, where regions upstream of several CYP450 genes and the 

liver-enriched transcription factor HNF4A were accessible. Thereby, the cellular heterogeneity present 

among PHHs has an impact on the capacity of the liver to metabolize drugs. This is of high relevance 

because cellular heterogeneity might play a key role in the assessment of drug metabolic capacity, drug 

efficacy, and safety during early preclinical phases of drug discovery development. 

 

Regarding the functionality of the liver in drug metabolism, the presence of SNPs in the CYP450 

xenobiotic-metabolizing enzymes has been shown to introduce inter-individual variation and produce 

changes in the expression level and enzymatic activity [117, 148, 656]. From the transcriptomic data 

of two donors, the presence of SNPs in the main five CYP450 enzymes was inferred, and a common 

mutation in the CYP2C19 gene was detected, which translated into a missense variant. One of the 

donors showed a lower expression level of CYP2C19, but also of the other four CYPs. However, a 

lower gene expression does not always correlate with a lower enzymatic activity. In in vitro phases of 

drug development using PHHs and in the clinical phases, the functional readout of the metabolism 

(efficacy), and the drug safety might be impacted by the presence of SNPs affecting the gene 

expression and further the enzymatic activity of key enzymes responsible for drug metabolism. 

 

Another factor introducing variation in the metabolic profile of the liver is the presence of chronic fat 

accumulation or steatosis, as occurs in chronic liver diseases like NAFLD. In this in vitro model of 
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PHHs, intracellular fat accumulation was mimicked by loading the cells with free fatty acids. Lipid 

storage affected the gene expression in the four hepatocyte subgroups in a differential manner, showing 

functional specialization of the cells. Moreover, fatty acid accumulation triggered a significant increase 

in transcriptional variability in two subgroups of primary hepatocytes (I and II), indicating higher 

transcriptional noise and less coordinated transcriptional responses after exposure to fatty acids [16, 

22, 185, 187, 450]. The subgroup responsible for the metabolism of lipids (subgroup III), showed a 

significant decrease in transcriptional variability upon fat accumulation, suggesting that this subgroup 

engages a robust and coordinated response to chronic intracellular lipid storage.  

A further effect of fat accumulation was the increase in lipopolysaccharide and chemokine metabolism 

pathways specifically in subgroup I, together with increased ER-stress and inflammation markers. This 

indicates that chronic liver chronic disease or dietary factors associated with hepatic fat accumulation 

affect the proportional composition of hepatocyte subgroups and may impact the metabolic 

functionality of the liver. Differential chromatin accessibility regions upstream of genes related to drug 

metabolism were found open upon Cocktail treatment, concordant with the results observed at the 

transcriptomic level. Moreover, fat accumulation led to finding regions differentially open related to 

lipid metabolism genes. For instance, HNF1A, ABCC3, and APOH, which were also DEGs in 

lipid-loaded cells in the transcriptomics analysis. This indicated that a distinct chromatin configuration 

regulating gene expression impacts the downstream transcriptomics phenotypic response.  

 

Related to this is the hepatic accumulation of fat during healthy aging, and thereby a similar phenotype 

could be expected. The preliminary results on aging shown in this thesis showcase a higher 

transcriptional variability in aged vs. young PHHs, in concordance with previous literature reports in 

other tissues [185, 186, 452, 453] and in hepatocytes [111]. Moreover, similar to the observations in 

lipid-loaded hepatocytes, aging affected the proportions of subpopulations of hepatocytes in the PHH 

in vitro culture, and aged hepatocytes showed increased oxidative stress and inflammation compared 

to young hepatocytes. In addition, aging and fat accumulation accelerated the dedifferentiation and 

expression loss process that PHHs undergo in monolayer in vitro culture. This indicates that intrinsic 

factors, as well as dietary factors, impact the functionality of the liver and the associated phenotype.  

 

Taking the investigations further, the Sanofi-Aventis five-drug cocktail was administered to 

lipid-laden hepatocytes resembling the phenotype in NAFLD livers. In the four identified subgroups, 

fat accumulation decreased the capacity of single hepatocytes to metabolize drugs. When steatotic 

hepatocytes were exposed to a five-drug cocktail, regions upstream of CYP450 enzyme involved in 

sterols metabolism and inflammatory processes were identified as differentially accessible, together 
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with solute carriers such as SLC19A1 or SLC7A2. At the transcriptomic level, these genes were 

identified among the DEGs upon FFA+Cocktail vs. DMSO treatment at the transcriptomic level [375]. 

This indicates that exposure to a five-drug cocktail of cells containing fat accumulation leads to a 

rearrangement of the chromatin accessibility configuration of PHHs in vitro. Moreover, a significant 

downregulation of the main five CYPs was observed for subgroup III, which specialized in lipids and 

phase III metabolism compared to vehicle levels. This could play a major role in the development of 

adverse drug reactions and hepatotoxicity in especially susceptible population groups like patients with 

chronic liver diseases such as NAFLD, or the elderly. In the elderly population, coadministration of 

five or more drugs known as polypharmacy is a common clinical practice to treat age-related 

comorbidities. This highly increases the risk of the development of adverse drug reactions and drug-

induced liver injury. Further studies on aging and disease, taking into consideration changes in the 

proportion of subpopulations of hepatocytes upon exposure to several drugs or fat accumulation 

simultaneously would help anticipate such unwanted events in early phases of drug development. 

Taken together, the results presented show the plasticity and heterogeneity of the transcriptomic 

response of PHH in vitro toward intrinsic or extrinsic factors, which is regulated by the upstream 

chromatin configuration pattern under different environmental conditions.  
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