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Abstract

In this thesis, we propose an algorithm that approximates a conformal, i.e., an angle and
infinitesimal shape preserving map of a rectangular strip to a user-defined stroke domain.
The rectangular preimage domain consists of ornamental tiles. The stroke domain is
defined by a pressure-sensitive digital pen model based on a user-drawn path on a digital
drawing surface. We investigate the underlying continuous model in detail, which is
essential for comprehending the structure of the target domain of the conformal map. In
particular, we use techniques from differential geometry and catastrophe theory to identify
and classify singular points on the boundary of a stroke. One of the main contributions of
this thesis is the ability to handle constantly changing target domains of a conformal map:
our algorithm computes the conformal map of the preimage domain to the stroke in real
time during the drawing process. Due to the extensive study of a stroke’s boundary, our
algorithm also behaves well at the boundary of the map’s target domain. Furthermore,
we are capable of dealing with self-intersecting strokes. To ensure that our computations
are fast enough to keep up with the drawing process, we implement our algorithm for the
graphics processing unit (GPU). Computations on the GPU are executed on graphical
textures composed of pixels, on which highly parallel calculations are performed. We
ensure conformality of the map by iteratively applying pixel averaging to the preimage
coordinates for each pixel within the stroke. As the result of each iteration is displayed,
the artistic content of the preimage visually converges to its intended conformal position
as the stroke is drawn. We provide both local and global tests for the accuracy of our
algorithm by applying results from continuous and discrete theory about conformality.
Those tests indicate that the outcome of our map is nearly conformal. We extend our
algorithm to allow variable design based on rules acting on the conformally mapped
coordinate system in the stroke.
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Zusammenfassung

In dieser Arbeit stellen wir einen Algorithmus vor, der eine konforme, d.h. eine winkel-
treue und infinitesimale Formen erhaltende Abbildung eines rechteckigen Musters auf
einen benutzerdefinierten Stiftstrich näherungsweise berechnet. Dieser Strich wird durch
ein druckempfindliches digitales Stiftmodell definiert, das auf einer von Hand gezeich-
neten Kurve auf einer digitalen Zeichenoberfläche basiert. Wir erstellen eine detaillierte
Analyse des zugrundeliegenden kontinuierlichen Modells, was unerlässich dafür ist, die
Struktur des Bildbereichs der konformen Abbildung zu verstehen. Insbesondere ver-
wenden wir Techniken aus der Differentialgeometrie und der Katastrophentheorie, um
singuläre Punkte am Rande eines Strichs zu identifizieren und zu klassifizieren. Einer
der entscheidenden Beiträge dieser Arbeit ist die Fähigkeit, mit sich ständig ändernden
Bildbereichen einer konformen Abbildung umzugehen: unser Algorithmus berechnet die
annähernd konforme Abbildung des Musters auf den Strich in Echtzeit während des Zei-
chenvorgangs. Dank der umfassenden Betrachtung der Randkurven unseres Modells ist
die berechnete Abbildung auch am Rand eines Strichs näherungsweise konform. Darüber
hinaus kann unser Algorithmus auch mit sich selbst überschneidenden Strichen umgehen.
Um sicherzustellen, dass unsere Berechnungen schnell genug sind, um mit dem Zeichen-
prozess Schritt zu halten, implementieren wir unseren Algorithmus für die Grafikkarte
(GPU). Die Berechnungen auf der GPU werden auf grafischen Texturen ausgeführt, die
aus Pixeln bestehen, auf denen hochparallele Berechnungen durchgeführt werden. Wir
nutzen iterativ angewandte Durchschnittsberechnung auf den Koordinaten der einzelnen
Pixel im Stiftstrich, um die Abbildung zu berechnen. Da das Ergebnis jeder Iteration im
Muster des Strichs angezeigt wird, konvergiert der künstlerische Inhalt visuell sichtbar zu
seiner beabsichtigten konformen Position, während der Strich gezeichnet wird. Anhand
von Resultaten über kontinuierliche und diskrete konforme Abbildungen testen wir die
Konformität unseres Algorithmus sowohl lokal als auch global. Diese Tests zeigen, dass
die Ergebnisabbildung unseres Algorithmus nahezu konform ist. Wir erweitern unseren
Algorithmus, um variables Design zu ermöglichen, das auf Regeln basiert, die auf dem
konform abgebildeten Koordinatensystem im Strich agieren.
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1 | Introduction

Ornaments have been used for decoration throughout human history. Since the digital
age, there are several applications that help to create ornamental designs digitally. In this
thesis, we take a digitally created ornamental design as input, implement a stroke model
for an interactive digital calligraphic pen, and present an algorithm that computes a nearly
conformal map of the ornamental design to the stroke while it is drawn. This requires a
combination of different mathematical topics and the interplay of different disciplines, as
indicated below.

Figure 1.1 shows a visualization of the basic concept behind our algorithm. The
input domain consists of repeated ornamental units that are then mapped to a stroke.
The stroke model is based on a user’s drawing on a digital drawing surface, i.e., on the
path that is drawn with a cursor on a computer or with a digital pen or finger on a
tablet. The width of the stroke varies depending on the amount of pressure applied to
the pressure-sensitive pen. Our algorithm maps the ornamental design to the stroke in a
mathematically sound and aesthetically pleasing way while the stroke is drawn.

Figure 1.1: Mapping an ornamental strip to a simulated pen stroke.

One of the main challenges is the uncertainty about how the stroke will continue.
Therefore, a complete study of the stroke model from the mathematical side is necessary
to understand its structure and the cases that may occur. To comprehensively analyze the
stroke model, we use results from differential geometry, singularity theory, and catastrophe
theory.

Another challenge is to make the computations local and very fast, so that the al-
gorithm can compute the map to the ever-growing stroke simultaneously to the drawing
process. To meet the constraints of real-time and locality, our algorithm is written for the
graphics processing unit (GPU). Additionally, we make the computational process, i.e.,
the adjustments to the mapped ornamental design, visible by using the graphical textures
on which the GPU performs the calculations.

Furthermore, the algorithm maps the ornamental content of the rectangular input
domain to the stroke in such a way that the map is structurally correct, i.e., that the
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Chapter 1. Introduction

underlying mathematical properties of the model as well as conformality of the output
are met. To achieve this, we study the theory of discrete and continuous conformal maps.

The question of how to compute conformal maps has been studied since the early nine-
teenth century. Their history is formed by many mathematicians who developed different
approaches and answers to the question how to compute conformal maps between differ-
ent types of (non-)planar domains. Since this turns out to be a difficult task, researchers
started to approximate conformal maps and found discrete counterparts to the existing
continuous theory. Although conformality is a well-studied area, new results on conformal
maps and algorithms for their (approximate) computation are still being explored, as it
is the case in this thesis.

In the following, we first formalize the research question and state the contributions
of this thesis. Then we give an overview of existing results in related areas of digital pen
simulation and conformal mappings. The introduction concludes with an overview of the
contents of the individual chapters of this thesis structured as a “how to read” for readers
interested in specific aspects of our work.

1.1 Terminology, research question and contributions

The ornamental input to our algorithm consists of copies of a rectangular image T . Mul-
tiple copies of T aligned in one direction in the plane define a rectangular strip. If an
infinite number of copies of T are aligned, we get an infinite strip S. A finite strip Sn
for n > 0 contains bnc full copies of T and possibly a truncated last copy if n /∈ N. Thus,
the width of a finite strip Sn depends on the dimensions of T and the real number n > 0.
Figure 1.2 shows a strip Sn with n = 4.5.

We call the rectangular image T a tile, and since it usually contains some artistic motif,
we also call it an ornamental tile. In general, the tile T can contain any artistic content.
However, if the image is a generating tile of a frieze pattern, i.e., it has translational
symmetry in the directions the copies of T are placed side by side, as in Figure 1.2, the
resulting design within the strip may look more pleasing.

Figure 1.2: Finite strip consisting of n = 4.5 ornamental tiles T .

Definition 1.1.1 ((Infinite) strip)
Let T be a rectangular tile of height hT and width wT . Then the finite strip Sn consisting
of n > 0 copies of T is defined as

Sn := {(x, y) ∈ R2 | 0 ≤ x ≤ n · wT , 0 ≤ y ≤ hT}.

If an infinite number of copies of T are placed side by side, the result is an infinite strip

S := {(x, y) ∈ R2 | 0 ≤ y ≤ hT}.

2



1.1. Terminology, research question and contributions

The artistic contents of the rectangular strip are mapped to a calligraphic stroke that is
modeled in a way that adequately supports the conformal map. Let the curve γ : I → R2

for a closed interval I be drawn on a tablet using a pressure-sensitive pen. Then the
pressure applied is converted to a radius function r : I → R>0. This produces a family
of circles with centers at γ(t) and radii r(t) for all t ∈ I. The stroke is defined to be the
union of all these circles. Figure 1.3 on the left shows a stroke defined by circles along
the blue curve γ. Our stroke model is not intended to provide a realistic feeling brush
stroke. Instead, the objective is to provide a stroke that is fully mathematically modeled
in order to define a mapping algorithm that is adapted to this model.

Figure 1.3: A family of circles along a curve γ and the result of our algorithm.

Since our algorithm depends heavily on the model of the digital pen stroke based on
families of circles, we study families of circles with techniques from differential geome-
try and derive insightful results about their characteristics. In particular, we study the
properties of the envelopes of families of circles, which essentially are the boundary of a
stroke. Although envelopes of families of circles can be defined in three different ways,
our detailed analysis shows that they are essentially all the same in our use case. We
show that the boundary of a stroke for a regular curve γ is regular, except for sparsely
located singular points. Concrete criteria on the curvature of γ and the radius function r
are developed, which determine the position of singularities on the envelope of a family
of circles. We prove that these singular points are typically cusps, although in certain
situations they can be points of infinite curvature of the boundary. This follows from a
connection between envelopes and swallowtail surfaces from catastrophe theory.

The algorithm is supposed to calculate a conformal map of an artistic strip region to
a user-drawn stroke as above in real-time. Figure 1.3 on the right shows a result of our
algorithm. The rectangular ornamental strip has to be mapped to the stroke without
apparently deforming the artistic content or obviously piecing together several parts of
the strip. The goal of our map is to appear organic and preserve the artistic content
of the strip so that it is locally distorted as little as possible, while perfectly fitting the
simulated stroke along the user-drawn curve γ.

There are several metrics used to measure image distortion, including area preservation
and angle preservation, commonly known as conformality. Which metric property is best
for achieving the desired result always depends on the individual task or topic. A classic
example in this context is the mapping of the Earth to a flat map. Preservation of angles
is important for ship navigation, while area preservation is essential for land surveys.
However, it is impossible to combine both properties in one map. In this thesis, we
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Chapter 1. Introduction

choose angle preservation as the decisive metric and strive for a map that is as conformal
as possible.

In accordance with Penrose [Pen06, p.139], Needham [Nee23, p.193 ff.] and Stephenson
[Ste05, 3.4], a conformal map is defined to be angle and infinitesimal shape preserving.

Definition 1.1.2 (Conformal map)
A conformal map is a map between two regions in the plane or between two surfaces
in space that preserves oriented angles between curves and infinitesimal shapes. Hence,
locally a conformal map is a similarity transformation.

Penrose gives a good visual description of this definition: “We can think of this ap-
plying to small (infinitesimal) circles drawn on the plane. In a conformal map, these
little circles can be expanded or contracted, but they are not distorted into little ellipses.”
[Pen06, p.139]

Since conformal maps preserve angles, our algorithm generates a conformal image of
a strip in the stroke that deforms the ornament by only a small amount according to this
angle measure. Additionally, cutting and gluing together ornamental tiles would contra-
dict the preservation of angles and infinitesimal shapes. Furthermore, conformal maps are
explicitly defined between the surfaces or regions involved which ensures that the artistic
content of the strip is mapped inside the stroke.

Calculating a concrete conformal map between two domains can be a challenging task.
The famous Riemann mapping theorem [LV73, 2.1] states that a conformal map between
two simply connected regions of the plane always exists, which is a very powerful state-
ment. However, the proof is not constructive, i.e., it does not state how to find such a map.
There is extensive completed and ongoing research in the area of conformal maps, which
we partially review in Section 1.3. The majority of approaches find numerical solutions
to parameter problems, compute minima of energy functions, or examine very specific
domains. Despite some of the numerical methods are rather fast, they are not applicable
to our task since they are not constructed to work on constantly changing regions as re-
quired by our algorithm. Our algorithm is supposed to run on user-drawn strokes in real
time, while showing the ornament flow into its intended conformal position. Moreover,
we cannot expect to get a target domain that is in an analytically simple form, since
the stroke is drawn by a user and does not follow a known equation. Nevertheless, we
can generate a conformal map based on almost any user input, including self-intersecting
strokes that are not simply connected.

We require the algorithm to respond immediately to the user input. Consequently,
when the user draws a curve on the screen or tablet, the mapped ornamental design is
progressively shown during the simulation of the stroke. This raises the question of how
long the strip Sn must be to be conformally mapped to the stroke. This cannot be known
before the drawing is completed, because the final appearance of the stroke is unknown
until the user stops drawing. Therefore, our algorithm computes the conformal map of
the strip onto the stroke adaptive to the stroke’s appearance and acts locally to make
calculations parallel to the drawing process possible.

To ensure fast calculations that can keep up with the drawing of the stroke, the algo-
rithm is specifically designed for the graphics procesing unit (GPU) of modern computers.
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1.1. Terminology, research question and contributions

GPUs are built to work massively in parallel, which means that calculations are both fast
and local. A GPU algorithm operates on the pixels of a graphical texture, which is why
we store the stroke domain and rectangular ornamental tiles in graphical textures.

Figure 1.4: A coordinate system
within the stroke.

The algorithm computes the preimage coordi-
nates in the ornamental strip for each pixel within
the stroke using a method known as pixel averag-
ing. For initialization, each pixel in the stroke is as-
signed a reasonable preimage coordinate within the
strip. These coordinates are subsequently averaged
by calculating the arithmetic mean of the preimage
coordinates of neighbors for all pixels in the stroke.
Repeatedly applying this averaging step causes the
map to converge, which leads to a conformally
mapped coordinate system that is transferred from
the strip to the stroke. Figure 1.4 provides a visu-
alization of such a mapped coordinate system.

Such a pixel averaging algorithm has previously been presented by Swart [Swa11] where
maps are computed on the central processing unit (CPU) between predefined planar
regions. Kopczyński et al. [KCK19] used a similar algorithm to Swart [Swa11] to find
mappings from the hyperbolic plane to simply connected domains with long and narrow
regions. Montag and Richter-Gebert [MRG20] have developed a pixel averaging algorithm
that works on the GPU for planar regions bounded by line segments and arcs. To extend
the map along the boundary, they use the Schwarz reflection principle. Their algorithm
is applied, for example, to find seamless maps from ornamental tiles to a tiling of the
hyperbolic plane. Reinhardt has demonstrated in his thesis [Rei23] that the speed and
quality of the pixel averaging algorithm are influenced by the resolution of the region’s
underlying texture, as well as the number and selection of neighboring pixels for each
pixel.

The main contributions of this thesis to the pixel averaging algorithm are the follow-
ing: we have adapted the pixel averaging procedure to cope with constantly changing,
i.e., growing, regions as we have suggested in [Pol23a]. The algorithmic calculations are
applied to the strokes as they are drawn, so that the target region of the desired confor-
mal map is constantly changing. To obtain the desired artistic design in the stroke, it is
necessary to adapt the width of the preimage strip to the changing stroke. Moreover, the
user-drawn strokes are not only bounded by circular arcs or line segments. Therefore, we
have extend the pixel averaging algorithm using a generalization of the Schwarz reflection
principle for conformal maps. This generalization allows to compute a nearly conformal
map of the coordinate system and of the design in a tiled strip to the stroke. In particular,
we have modified the pixel averaging algorithm to ensure it can handle self-intersecting
strokes although they cover several parts of the drawing surface more than once.

To evaluate the resulting map from the tiled strip to the stroke in terms of conformality,
we have developed a visual and numeric test system that works in real time simultaneously
to all computations. For this, we have adapted the method used by Reinhardt [Rei23]
and test for local angle and infinitesimal shape preservation by comparing the angles and
length-cross-ratios of infinitesimal quadrilaterals in the preimage and target domain. The
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Chapter 1. Introduction

results for each pixel are visually indicated by a gradually changing color scheme that
overlays the mapped image. As an illustration, the green color shown on all pixels of
the stroke in the right picture of Figure 1.5 validates that our algorithm has successfully
approximated conformality for the stroke depicted on the left without superimposed color.

Figure 1.5: Testing the outcome of our algorithm for conformality.

In addition to the local and visual test, we have devised a method for computing
the mean deviation from exact angle and shape preservation for the entire stroke. This
method also serves as a stopping criterion, indicating when the pixel averaging algorithm
has reached a local minimum of conformal deviation and can be stopped.

Another achievement of our work is the adaptation of our own algorithm to compute
conformal maps beyond using tiled ornamental strips as preimages. We have developed
a framework that allows to establish rules which define adaptive design for the stroke
based solely on the computed conformal coordinate system. These rules can be based on
features such as the pressure sensitivity of the stroke simulation or the variable length of
the drawn stroke.

1.2 Related work on (decorative) pen simulation

In this section, we provide an overview of the existing literature regarding the simulation
of pens and brushes. Some of them may appear to satisfy the requirements on our stroke
model and the associated conformal map of an ornamental design to the stroke. However,
the subsequent analysis shows that the presented digital pens are not able to adequately
solve our task of conformally mapping the given ornament in real time to the constantly
changing user-drawn stroke. This collection is by no means complete. Further related
research may be found in the references of the cited sources.

Brush simulation

There is a vast field of research concerning the simulation of realistic brush pens. This
research includes the behavior of the brush hair, the distribution of ink or other paint,
and the artist’s brush guidance. The goal of our pen simulation is not to model a realistic
physical pen. We are aiming for hyper-realistic pens whose behavior is generally digi-
tal, but which still produce intuitively reasonable output. We give an overview of some
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1.2. Related work on (decorative) pen simulation

approaches to simulate realistic physical pens, although we actively decided against this
approach for our pen model. Nevertheless, it might be interesting in the future to combine
oriental brush modeling with our method of real-time conformal mappings.

A virtual Chinese calligraphy brush model has been developed by Wong and Ip [WI00].
It takes into account properties of real calligraphy styles, such as brush hair properties
and ink behavior on the path depending on, for example, drawing speed and amount of
ink on the brush. The physical 3D movement of the brush tip and stem is simulated,
and ellipses are drawn at the intersection of the brush and paper. The user can first
draw the stroke paths and then specify the pressure and orientation of the drawing. It
is also possible to change the stroke after setting all the parameters of the simulation by
stretching or rotating the stroke, creating even more variety in calligraphy style. The
model does not operate in real time.

A real-time model was introduced by Xu et al. [XLTP03]. They developed a virtual
brush for interactive digital painting with the support of offline components. The system is
based on the physical behavior of brush hair, which covers complex effects of real brushes
such as brush splitting. The behavior of the paint pigments is modeled with a diffusion
process of random molecules, using lookup tables to solve the diffusion equations as an
offline component. A unique feature of the model is a component that adapts to the user’s
painting habits. This makes the system attractive for beginners, since the user does not
need to practice much before being able to use the simulation accurately to paint to his
or her satisfaction. This is achieved by allowing the user to select from a set of stroke
patterns that are used to train the offline model. The real-time simulation then generates
output strokes that are similar to those that the user has put into the training.

Another real-time model was presented by Guo et al. [GHY+15]. Here, the relationship
between applied force and brush deformation is analyzed, where the force information is
sent back to the user to simulate the feeling of drawing with a Chinese brush via a
“phantom desktop haptic device”. A spring-mass model is used to model the behavior.
For this purpose, a spring is inserted into the model perpendicular to the drawing plane
at the transition between the brush handle and the hair. The deformation of the spring
along this normal is used to calculate the force and imprint of the brush on the paper
in real time. The imprints depend on the pressure applied, the simulation of flattening,
and the movement of the bristles when force is applied to the brush. These imprints are
superimposed to obtain the brush stroke along the sample points.

Gong et al. presented a Chinese brush simulation [GNH+17] that is not based on a
physical model, but on experience with brush models to achieve less computation time.
The model includes real-time stroke generation and ink dispersion. In addition to the
real-time property, the model has a second commonality with our stroke model: circles
are placed along the drawn path to get a stroke model. At low drawing speeds, a Kalman
filter algorithm handles non-smooth points; at high drawing speed, interpolation between
points is performed using arc and linear interpolation. A modified Lattice Boltzmann
equation algorithm, based on fluid mechanics and computed on the GPU, is used for the
ink dispersion of the initial brush stroke.

A model that differs from the others in its approach was presented by Wu et al.,
where a neural network is used for an oil painting simulation [WCW+18]. The goal is to
reproduce the details found in real painting with real brushes that artists are usually able
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to achieve when working with non-digital material. The model achieves results comparable
to accurate physical oil painting simulations, but it is faster and less expensive to compute.
To achieve these results, a generative adversarial network (GAN) is trained on a dataset
obtained from a high-quality oil painting simulation with an accurate fluid solver, many
brush bristles, and high canvas resolution. Images of real oil painting strokes are not
used as input because of the lack of sufficient real training data due to the difficulty of
capturing images of pressure and bristle movement. To add a new stroke, the GAN takes
as input the painted canvas with height map and color information, and the path of the
new stroke with its bristle pressure trajectory and color information. It returns the height
and color information of the new stroke. After training the model offline, the GAN works
fast enough to provide a real-time oil painting tool.

The last real-time brush model we want to mention is the Japanese calligraphy brush
model for ink painting by Shin et al. [SKR19]. Its main feature is the ability to model the
two different types of pressure that an oriental brush has: the pressure of the brush tip
and the pressure of the pen stem, which is different because the brush hairs of this type
of pen are very flexible and soft. The pressure of the brush base on the paper is measured
by the xy-coordinate, pressure, direction and altitude registered by the digital drawing
device. The pressure on the tip of the pen is measured by the z-coordinate, which is
recorded by a webcam. There is a droplet model for the brush simulation which places
ink droplets for each drawn point. The color and appearance of the droplets depend on
the different pressures: light ink is applied to the entire brush, and shading ink is applied
to the tip of the pen, creating interesting color effects depending on the proportion of the
brush tip and stem contributing to the drawn droplet according to the measured pressure.
Scratchiness, i.e., the loss of ink when drawing a stroke, and ink diffusion are influenced
by the amount of water and ink density, which are also captured by the model.

Decorative pens

Besides models that simulate the behavior of real brushes, taking into account the defor-
mation of the tip of the pen, the movement of the bristles and the distribution of ink on
the paper, there are also programs that create decorative pens. There are many forms
of decorative pens, such as the so-called skeletal strokes, the deco brush and the pattern
brush. Again, more related work on this topic can be found, for example, in the citations
of the discussed literature.

So-called skeletal strokes were introduced by Hsu, Lee and Wiseman [HLW93]. Their
model, like ours, is based on two main objects: a user-drawn path and a reference image.
In their model, however, the reference image has a reference line, the spine or backbone
of the image, which is mapped to the user-drawn path. The image around the spine is
supposed to be mapped around the user-drawn path “by bending, shearing, twisting, while
preserving the aspect ratio of selected features” [HLW93, Abstract] of the reference image.
This deformation of the image is not conformal and thus different from our approach.
There are two stroke styles to choose from: one keeps the shear angle of the image around
the path constant, while the other keeps the shear angle with respect to the path, which
makes the result look like it was drawn with a flat nibbed pen. The user can decide where
certain parts of the image are mapped by anchoring them. To stretch parts of the image

8
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by different amounts, the user can also set reference points on the backbone and the path,
respectively. This is another difference to our approach, since the user first draws a path
and selects the aforementioned anchor points or the like before the reference image is
mapped to the stroke. Thus, the image is not mapped in real time while the user draws
the path.

Hsu and Lee use this skeletal stroke model to generate cartoon drawings and animation
[HL94]. Different brush stroke images are used as reference images, creating the visual
impression that different pen types were used within a single artwork. The backbone of
the reference image and the selected stroke thickness provide a parameterization of the
coordinate system within the reference image. This coordinate system is deformed to
match the stroke, which corresponds to our goal of mapping the coordinate system of
the tiled strip to the stroke. However, the skeletal stroke method intentionally does not
operate in real-time since the authors “are usually more interested in the final appearance
of the stroke than the physical action of dragging a brush across paper” [HL94, 3.3].

Several years later, Asente studied the behavior of skeletal strokes in folding regions,
as presented in [Ase10]. Again, a reference image with a spine is specified and mapped
to a user-drawn path. The user defines the width of the target stroke, and so called ribs
are placed along the reference spine and the drawn path. These rips are perpendicular
line segments that tile the reference image into rectangular slices. The rips are mapped
to line segments that intersect the target path perpendicularly. Problems occur when the
radius of curvature of the target path is smaller than half the width of the rips, i.e., half
the width of the stroke, or where the path has a corner. In these cases, neighboring rips
intersect and the mapped image folds onto itself. We will address similar problems in
Chapters 2, 4 and 5. In his paper, Asente relocates rips within the problematic area of
the stroke (see Figure 1.6a) so that they all pass through the center of crossing, which is
where the stroke envelope intersects itself. As a result, the rips in the fold region may be
elongated and no longer perpendicular to the target path. See Figures 1.6b and 1.6c for
visualizations of relocated rips. However, the reference image is still mapped to the stroke
such that the spine is mapped to the path and the rips are mapped to the potentially
adjusted rips. As a result, the image becomes even more distorted and it is surely not
conformal.

(a) the problematic zone
[Ase10, Fig. 13 d)]

(b) one examplary relocated rip
[Ase10, Fig. 14]

(c) the adjusted skeleton
[Ase10, Fig. 15 top left]

Figure 1.6: Adjustment of folding regions in skeletal strokes [Ase10].
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Another difficulty mentioned by Asente is that the setting of a spine and sparsely
distributed rips does not uniquely define the stroke’s envelope when the path makes a
corner. In Figure 1.6, the rips on the top of the corner are connected by a rounded curve,
but the envelope could also be beveled by a line segment connecting the ends of the rips,
or it could make an angular corner itself. However, the method works with any convex
solution for this situation. In contrast to that, there is no need to guess the envelopes in
our model, since the stroke model of a family of circles naturally has a unique envelope,
which we study in detail in Chapter 2.

Another model, which also treats curves equipped with a ribbon of constant width
around them, is presented by Zhou et al. [ZLL13]. The ribbon is sliced along its medial
axis, and potentially tilted pieces from a sample pattern are placed on the ribbon slices.
The content of the sample pattern is not distorted. On the contrary, the synthesizer
copies these pieces of the sample pattern and creates a new pattern specifically for the
given curve, which is visually continuous. To achieve this continuity, a cost function
compares the neighboring pixels of a piece’s right edge to its neighbor’s left edge and
chooses an optimal deformation at the edge. The deformation is then propagated into
the interior of the pattern pieces, and finally the contents are interpolated along the
edges. Figure 1.7 shows some results. Except for the use of the GPU and the result
of a decorated stroke, this approach has little in common with our goal, since it alters
the sample pattern by cutting and gluing it together. Our model preserves the artistic
content of the ornamental design by deforming it as little as possible. However, the model
of Zhou et al. is able to handle closed curves, which our approach cannot handle so far.
This would be an interesting task for future research.

Figure 1.7: Examplary results of synthesized pattern from [ZLL13, Figure 7].

Another non-real-time model called DecoBrush was presented by Lu et al. [LBW+14].
In this model, the user selects a sample collection of decorated strokes from a library and
then sketches curves that indicate the approximate layout of the resulting strokes. Once
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the sketches are complete, they are subdivided into segments that correspond to similar
segments among the sample strokes. The sample strokes are equipped with a start and end
point and a curve connecting them, like the spines of skeletal strokes. The given points
and the curve are now adjusted to the segments of the user-drawn path to attain that
the deformation is as rigid as possible. This is accomplished by modifying the sketched
path to better fit the stroke samples, which is different from our approach where, the
user-drawn path remains as unmodified as possible in order to create the stroke model.
When different sample strokes are placed on one sketched path, the decorated pattern
may overlap at the junctions or fail to fit seamlessly. To address this issue, graph-cuts
and texture synthesis are used, and users have the option to modify the result if it is not
to their satisfaction. This also differs from our approach, where the ornamental strip is
seamless. The result of our algorithm is determined by the drawing process and cannot be
changed afterwards. Another aspect of DecoBrush is that it is able to merge the pattern
structure in the case of a self-intersecting sketched curve. This is not yet possible in our
approach. However, it would be highly desirable to address this aspect in future research.

The software Adobe Illustrator provides a collection of different brushes. The user
manual [Inc19, p.270 ff.] mentions a calligraphic brush that creates a monochrome stroke
resembling the stroke drawn with an angled tip of a calligraphic pen. The brush’s angle of
rotation, roundness, and diameter can be altered, possibly in response to the pressure, tilt,
bearing, and rotation of the pen device under the assumption that it can detect such data.
The other pens have comparable settings that may be modified by the same properties
of the digital pen. A bristle brush aims at the simulation of a realistic brush stroke with
real paint, e.g., watercolour. The user’s drawing pressure, tilt, and other factors affect
the length, rigidity, and density of the bristles, as well as the thickness and opacity of
the paint. This relates back to the brushes presented in the previous section. The art
brush stretches an artistic sample along the user-drawn path, resembling skeletal strokes.
The scatter brush places copies of selected objects side by side along the user-drawn path.
The following aspects can be modified: the size of the objects, the distance from each
other, how closely they follow the path, the angle of rotation of the individual objects and
whether the rotation is with respect to the path or the page. This pen does not meet our
goal as the objects are simply copied and pasted along the path without being adjusted
to follow the path’s course.

The pattern brush in Adobe Illustrator is of particular interest as it may appear to be
similar to our model. However, this is not the case. Adobe’s pattern brush utilizes tiles
as input, which are then repetitively applied along the path of the user’s drawn curve.
The curve is initially outlined as a dotted path, and the selected tiles are then adjusted
accordingly. Subsequently, control points can be dragged into place to modify the stroke.
The user may choose from a selection of up to five tiles, with one tile assigned to the
start and end of the stroke, one for an inner corner, one for an outer corner, and one for
the regular stroke segment. The mapping of these tiles to the corresponding segments of
the stroke involves simple stretching and shortening of the tile. Figure 1.8 shows several
strokes drawn in Adobe Illustrator, which demonstrate how different the pattern brush is
from the result of our algorithm. In the top left, a special corner tile is used that becomes
deformed when the corner is sharp. In both examples on the right side, a pattern tile is
shortened. On the top right, we can see a massive deformation of the tile on the inner
side of the narrow turn of the stroke (notice the small turquoise shape). In the bottom
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left example, there is inconsistent use of a corner tile and two deformed regular tiles for
a stroke that makes an approximately right angle. The example in the bottom right
illustrates a loop with a stitching pattern clearly distorted differently on the outer and
inner sides of the loop.

Figure 1.8: Pattern strokes drawn with Adobe Illustrator’s pattern brush.

Mech and Miller created another Deco framework [MM12], which Adobe integrated
into some versions of Flash Pro and Photoshop. The framework uses procedural mod-
elling with predefined rules to control the growth process of decorative structures from
underlying scriptals within a user-defined area. A scriptal is a fundamental module of
the structure which contains rules for its own growth and how it interacts with its envi-
ronment. The scriptals develop tree-like structures which contain non-colliding objects.
Figure 1.9 illustrates that the user may specify an approximate shape for the model to
fill with automatically growing structure (picture on the left). Alternatively, the user can
initiate growth by brushing the stems directly (middle example). This produces a deco-
rative brush stroke, filled with self-growing ornamentation (right example). In all cases,
however, it is hard to predict the precise contour of the resulting area since it depends on
the procedural growth and the chosen parameters.

The Deco framework is founded upon the work of Wong et al. [WZS98]. Wong presents
rules for creating ornamental pattern, which do not rely on Lindenmayer systems [PH13],
even though they may appear to be a natural choice for expressing growth rules. The
rules are specified as procedures with parental and child elements, and the system looks
for the largest empty space within the designated area and fills it with ornamental design.
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Figure 1.9: Decorative procedural growth from [MM12, Fig. 7].

1.3 Related work on conformal mappings

The history of conformal maps goes back to Gauss in the early nineteenth century
[DT02, p.4]. Since then, many mathematicians investigated between which regions con-
formal maps exist and how they can be computed. Riemann stated in his famous mapping
theorem that conformal maps exist between any two simply connected proper subsets of
the complex plane. His result is powerful, but not constructive. This section provides an
overview of various methods for approximating conformal maps. Additional literature can
be found, for example, in the references of the cited sources. All presented methods have
in common that they compute conformal maps for given source and target domains that
remain constant, unlike our strokes which are constantly changing. The majority of these
techniques are incapable of computing conformal approximations rapidly enough for real-
time computations. While some algorithms are fast, they do not satisfy the characteristic
feature of our approach, namely that the computational process and the convergence to
a conformal map are made visible.

One of the best-known techniques is the approach of Schwarz and Christoffel, the so-
called Schwarz-Christoffel mappings (SCmaps for short). Their book [DT02] provides a
dense introduction and overview of the potential of SCmaps, along with Matlab-packages
and libraries for calculating conformal maps between planar domains. The core concept
behind SCmaps is that the derivative of a conformal map f between two planar domains
is the product of other functions: f ′ =

∏
fk. Therefore, integration of the product results

in the conformal map f . Traditionally, an SCmap is computed between the upper half
plane H+ and the interior of a simply connected polygon P . The vertices w1, . . . , wn of
the polygon are ordered counterclockwise on the polygon’s boundary and their interior
angles are denoted by α1π, . . . , αnπ for αk ∈ (0, 2) with k ∈ {1, . . . , n}. For a closed
polygon, the sum of all exterior angles must be equal to 2π, which results in a constraint

on the parameters αk:
n∑
k=1

(1−αk) = 2. The preimages of the vertices wk of P on the real

axis of the upper half plane H+ are denoted by zk = f−1(wk). The conformal SCmap f
is then defined by

f(z) = A+ C

∫ z n−1∏
k=1

(ξ − zk)αk−1dξ (1.1)
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for complex constants A and C, and for f(∞) = wn where ∞ is the point at infinity on
the real axis. This formula can be adapted if the preimage domain is, for instance, the
unit disk rather than the upper half plane or if f maps to the exterior of P , to a circular
polygon, to a slit domain, or a doubly connected domain. The primary challenge lies in
calculating the unknown preimage vertices zk, since the choice of the preimage vertices
influences the side lengths of the resulting polygon. Nevertheless, any map (1.1) with
predefined interior angles αkπ maps the upper half plane to some polygon with those
interior angles. Therefore, in order to get the intended conformal map f , a parameter
problem needs to be solved to find the appropriate preimage vertices zk for a given wk.
After identifying the preimage vertices, the integral can be calculated for every z inside
the domain using Gauss-Jacobi quadrature to obtain the conformal map of the upper half
plane to the desired polygonal domain.

There are various methods for solving the parameter problem for preimage vertices zk.
Many of them run into the problem of crowding, which means that the preimage points zk
are so close to each other on the real axis or the unit circle that they can’t be distinguished
numerically. This problem occurs for elongated regions, for example. Driscoll and Vava-
sis introduce an algorithm that solves the parameter problem for a conformal map of
the unit disc to a polygon with n vertices and overcomes the crowing problem [DV98].
The algorithm is called CRDT which is an abbreviation for “cross-ratio of Delaunay tri-
angulation”. To determine real parameters that define the positions of the n preimage
vertices zk on the unit circle, a Delaunay triangulation of the target polygon is computed
and possibly additional vertices are introduced on the polygon edges so that the result-
ing Delaunay triangulation does not contain long and narrow triangles that would cause
crowding problems at the preimage vertices. The Delaunay triangulation of a polygon
with N vertices (N ≥ n after splitting edges) has N − 3 diagonals, i.e., edges that are
not edges of the original polygon. Along each of these N − 3 diagonals d, neighboring
triangles form a quadrilateral Q(d) with four vertices. The CRDT algorithm is based on
the fact that Möbius transformations are defined by three pairs of points, and that cross-
ratios of points on a circle are invariant under Möbius transformations. The preimage
vertices of all N vertices in the polygon are located on the unit circle, and their position
is unique up to a Möbius transformation. Hence, three preimage vertices can be chosen
freely, and all remaining N − 3 preimage vertices are determined uniquely if values of
the corresponding cross-ratios are given. The values of the cross-ratios are chosen as the
logarithms of the absolute values of the cross-ratios of the quadrilaterals Q(d). With these
values, the preimage vertices zk can be determined without crowding problems since for
each of the N − 3 values, the three preimage vertices used to determine a yet unknown
preimage vertex can be placed on the unit circle in a way that ensures that they are well
distinguishable. Using the preimage vertices as input, Driscoll and Vavasis calculate an
SCmap from the unit circle to a polygon. They then minimize the difference between
the logarithms of the absolute values of the cross-ratios of the quadrilaterals Q(d) in the
target polygon and the corresponding quadrilaterals in the result of the SCmap. The
result is a map that conformally maps the unit circle to the given target polygon.

Other methods for calculating conformal maps f utilize the characteristic that they
can be separated into two harmonic functions u and v: f = u + i · v. A real-valued
function u is harmonic if ∆u := ∂2u

∂x2 + ∂2u
∂y2 = 0. Harmonic functions are smooth and easy
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to compute compared to conformal maps.
Chen and Weber use harmonic functions to compute a map between two planar do-

mains with bounded conformal distortion [CW15]. The user can select a finite number
of points on the boundaries of or within the planar regions of the preimage and target
domains. Additionally, the user can choose three non-negative real constants that limit
the values of conformal distortion and the minimal and maximal local stretch. Confor-
mal distortion is measured by the ratio |fz̄ |

|fz | . The map f is conformal if and only if the
conformal distortion is zero. To find an optimal bounded distortion harmonic mapping
for the given input, a numerical optimization problem is solved. The map f is then given
as f = u + i · v for u and v being harmonic functions satisfying the Cauchy-Riemann
equations ux = vy and uy = −vx.

Another method involving harmonic functions for simply connected domains with
smooth boundaries is presented by Trefethen [Tre20]. For the simply connected domain W
bounded by a Jordan curve P , there exists a unique conformal map f from W to the unit
disk D such that f(0) = 0 and f ′(0) > 0. The map f can be expressed as f(z) =
z · e(u(z)+i·v(z)), where u is the unique harmonic solution of the so-called Dirichlet problem,
i.e., of ∆u = 0 with u(z) = − log(|z|), and v is the unique harmonic conjugate of u. To
find approximate solutions for the Dirichlet problem, Trefethen proposes several methods
that are based on the calculation of coefficients of analytic functions. If P is sufficiently
well-behaved, u can be approximated by a series of polynomials. However, if P is not
close to a circle around the origin, the problem may be ill-conditioned. In such cases, a
so-called Arnoldi factorization should be used instead of a least-squares method to find
the polynomial coefficients. In addition, the degrees of the polynomials needs to be in
the thousands to avoid crowding problems. Another approach is presented for simply
connected domains with corners z1, . . . , zK . The harmonic function u is approximated by

u(z) ≈ Re

[
n1∑
j=1

aj
z − zj

+

n2∑
j=0

bj · zj
]

with complex coefficients aj and bj. The rational functions in the first sum converge root-
exponentially in this case. For the rational approach, the conformal maps are usually
computed by rational functions of degree less than 100. However, it is possible that
the presented method fails if the sampling of the boundary P is not fine enough or if
the samples are not clustered as fine or finer than exponentially clustered poles near the
corners on the boundary P .

Hakula et al. compute a conformal map from a simply connected quadrilateral domain
Q, which is bounded by four Jordan arcs, to a rectangle using the harmonic function u
[HQR13]. The modulus M(Q) = h of Q defines the class of rectangles to which Q can be
conformally mapped as those rectangles with side-length-ratio h. In general, computing
the conformal modulus of a domain is challenging. However, the unique harmonic solution
u to the Dirichlet-Neumann problem on Q can be used to compute h from Q. For this, let
z1, z2, z3, z4 be the four corners of Q. If u equals zero on the arc between z2 and z3, equals
one on the opposite arc between z4 and z1, and has vanishing derivative with respect to
the normal on the other two Jordan arcs, then h is computed by integration over the
boundary of Q and u:

h = M(Q) =

∫ ∫
∂Q

|∇u|2dxdy.
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If ũ is the solution of the conjugate domain Q̃ with the same vertices but in a shifted
order z2, z3, z4, z1, then the conformal map f can be expressed as f = u+ i · h · ũ.

The conformal modulus is an important element of the domain decomposition method
(DDM for short) presented by Falcão et al. [FPS01]. The DDM approximates conformal
mappings of elongated quadrilaterals Q with vertices z1, . . . , z4 in counterclockwise order
to a rectangle that belongs to the same conformal class. The DDM initially decomposes
the quadrilateral Q into smaller quadrilaterals Qj. It approximates the conformal modu-
lus of the entire domain using the conformal moduli of the smaller quadrilaterals. Finally,
it determines the approximate conformal map f of Q to a rectangle using the conformal
maps of the Qj to their corresponding rectangles. This method was known to work for do-
mains bounded by two parallel straight lines and two Jordan arcs. However, Falcão et al.
extended the DDM to more general quadrilaterals, which include a domain Q that is
partitioned by a straight line ` into Q1 and Q2 such that the reflection of Q2 along ` is a
subdomain of Q1. In each of the presented cases, the deviation between the approximate
conformal map and the exact one is bounded from above.

Delillo approximates a conformal map f from the interior of the unit disk D to the
interior of a Jordan domain bounded by a Jordan curve g [Del94]. For z ∈ D, the
conformal map is given by

f(z) =
∞∑
k=0

ak · zk

where ak are the Taylor coefficients of f expanded about 0. An approximation of f is
provided by a truncated Taylor series FN of degree N . If the Jordan curve is interpolated
by a cubic spline, the approximation error is bounded by ‖f − FN‖∞ ≤ C · N− 5

2 for
the N -th Taylor series. To obtain a good approximation of f , N should be greater or
equal to 2π·‖f ′‖∞

L
where L is the arclength of the Jordan curve g. Hence, the accuracy

also depends on the shape of the Jordan domain since the error scales with the length of
the domain’s boundary. Furthermore, Delillo presents different approaches and options
of Jordan domains, analyzing their behavior with respect to the crowding problem.

Marshall and Rohde show the convergence of the so-called “zipper algorithm” [MR07].
This algorithm computes a precise conformal map f from the upper half plane to a Jor-
dan domain and its inverse f−1. To have f and f−1 available is advantageous for many
applications. The core part of the zipper algorithm consists in mapping two consecutive
vertices z0 and z1 of the Jordan domain to the real axis such that the image of the Jordan
domain is a subset of the upper half plane: z0 7→ ∞ and z1 7→ 0. Then the image of
the next vertex z2 is considered. Visually speaking, the edge between 0 and z2 is split in
two, the vertex z2 is mapped to the origin and the edge is unzipped to both sides of 0 on
the real axis. This process is then repeated until all vertices are mapped to the real line
and the Jordan domain is mapped onto the complete upper half plane. Disk chains on
the boundary of the Jordan domain are used to show convergence of the zipper algorithm.

Weber and Gotsman allow discontinuity at specified boundary points of their map-
ping between planar shapes [WG10]. For this, efficient algorithms are developed using
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barycentric coordinates. This is, the coordinates of z in the preimage region are expressed
as linear combinations of coordinates of vertices of the preimage region. Then, the co-
ordinates of the image point f(z) under the conformal map are represented as a linear
combination of the vertices of the target shape with the identical coefficients. Weber
and Gotsman use a generalization, namely Hilbert coordinates, which help to efficiently
compute the conformal map. One drawback is that image points may lie outside of the
target shape. To address this issue, it is useful to relax the requirement that boundaries
must be mapped to the given shapes and introduce specifications on the angle change.

The method outlined in [SBC16] directly maps between source domain S and target
domain T , without using the unit disc or the upper half plane as intermediate region. The
alternating minimization algorithm presented by Segall and Ben-Chen initially computes
a conformal map that maps S to a domain P with approximately the same boundary
as T . This map is refined until the boundary of P fits the boundary of T . To quan-
tify the refinement, an energy function is defined on the boundaries which measures the
distance between the boundary points on P , i.e., the image of the boundary of S under
the current map, to the boundary of T . Alternately, the algorithm minimizes the energy
with respect to the currently used conformal map and with respect to the correspondence
of the boundary points of T and the boundary points of the current image domain P .
It is possible to include a point-to-point or curve-to-curve requirement in the algorithm,
defining points or curves in the source and target domains that are to be mapped to one
another.

1.4 Overview of the chapters

In Chapter 5, we will present our algorithm which calculates a nearly conformal map be-
tween an ornamental rectangular strip and a user-drawn stroke. In Sections 5.1 and 5.2,
we will cover the algorithmic details for univalent strokes, i.e., strokes without self-
intersections or singular boundary points. The underlying continuous stroke model will
be examined in Chapter 2. Sections 2.1, 2.2 and 2.3 will provide the necessary foun-
dations for univalent strokes: the definition of a stroke as a family of circles along a
curve with an associated radius function, the definition of the boundary of a stroke, and
concrete equations for all points on this boundary. However, digital drawings are not
continuously registered by a computer but rather as a discrete set of data points. Hence,
Section 4.1 will use interpolation to convert the continuous stroke model into a discrete
model. The interpolation method examined in Section 4.1.2 and the algorithm presented
in Section 4.1.3 will be used in the implementation of our digital pen, while Section 4.1.1
will provide additional information about interpolation methods and why they are not
used in our model.

We will investigate the theory of continuous conformal maps in Chapter 3 in order
to define our conformal mapping algorithm mathematically correct at the boundary of
strokes. For this, Section 3.1 will state uniqueness results for simply connected bounded
planar domains and Section 3.3 will investigate important results concerning the extension
of conformal maps to the boundary of such domains. This knowledge will be implemented
in Section 5.2.2, which will discuss our algorithm along the boundary of univalent user-
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drawn stroke domains.
In Section 5.3, we will present our approach to testing our algorithm for conformality.

There will be three different levels of testing for conformality: a local test that is visual-
ized during the drawing process (Section 5.3.1), a global measure that serves as stopping
criterion for the pixel averaging algorithm (Section 5.3.2), and a comparative evaluation
where an exact conformal map is compared to a benchmark stroke (Section 5.3.3). The
fundamental principles for all tests will be outlined in Chapter 3 and in Section 4.2. In
Section 3.2, we will analyse the properties of the so-called conformal modulus, which par-
titions conformal mappings into equivalence classes. Section 3.2.2 will present the exact
conformal mapping of a half annulus to a rectangle, which will then be compared to a
stroke in the shape of a half annulus. Section 4.2.1 will introduce methods from discrete
conformality that will be applied to formulate both our local and global measures of con-
formality.

In Section 5.4, non-univalent strokes will be addressed, covering strokes with self-
intersections and singular boundary points. Regarding self-intersections, Section 5.4.1 will
extend the mapping algorithm for univalent strokes and the local and global conformality
test. The theoretical basis for detecting self-intersecting strokes will be established in
Section 4.3.1. The ideas for the concept originate from the discrete conformal theory of
circle packings, which will be presented in Section 4.2.2.

Strokes with singular boundary points will be examined in detail in Sections 2.3 to 2.6
for the continuous stroke model. Section 2.5 will state concrete criteria for identifying
singular points on a stroke’s boundary. These criteria are rooted in the theory of limiting
and discriminant envelopes, which will be studied in Sections 2.3 and 2.4. Notably, these
two types of envelopes are equivalent for our strokes, as will be proven in Section 2.4.1.
For strokes with a constant radius function, the singular boundary points are character-
ized by the properties of the limiting envelope (Section 2.3.1). The local structure of
the discriminant envelope gives important insights into singular boundary points for non-
constant radius functions. Sections 2.4.2 and 2.4.3 will provide a theoretical definition of
singular boundary points for discriminant envelopes. In addition, Section 2.6 will examine
the theory of so-called unfoldings and catastrophe theory, with the intention of classifying
the singular boundary points in detail. The results will be used in Section 4.3.2 to state
the approach for detecting singular boundary points in the discrete stroke model. Finally,
Section 5.4.2 will contain our ideas on how to include non-univalent strokes with singular
boundary points in the conformal mapping algorithm.

Chapter 6 will present an extension of our algorithm from Chapter 5 that enables
adaptive ornamental design, i.e., design with different levels of detail depending on the
appearance of the stroke. The adaptation of the algorithm will be detailed in Section 6.1,
with examples of floral and braid designs provided in Section 6.2.

All figures in this thesis were created with Cinderella [RGK23a], CindyJS [RGK23b]
or Mathematica [WR23] if not stated otherwise. The code for the proposed algorithms
was written in CindyJS. All code files can be found in [Pol23b].
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2 | Continuous Model

The continuous stroke model is essential to comprehend the structure and theory behind
the target domain of the conformal map we want to compute

In this chapter, we will first define the properties of the curve γ and the radius func-
tion r on which the definition of a stroke is based (Section 2.1). We will establish a
criterion for the derivative of the radius, which has to be fulfilled in order to guarantee
well-defined strokes by intersecting circles. As an interesting addition to the topic, we
will connect this characteristic to aerodynamics.

In Section 2.2, the stroke will be considered as a family of circles. We define the
boundary of a stroke as the two curves defining the envelope of the family, connected
by two arcs from the first and last circles. We will provide three distinct definitions for
the stroke envelope: the limiting envelope, the discriminant envelope, and the tangential
envelope. We will show in Section 2.4.1 that the first and the second definition of envelopes
are equivalent in our context and, furthermore, that the last one is equivalent for regular
points.

In Section 2.3, we will determine equations for all points in the limiting envelope and
study the properties of these point-sets separately for constant and non-constant radius
functions. For strokes with a constant radius function, the envelope consists of the two
parallels to the curve γ, which are regular as long as they do not have a common point
with the curve’s evolute, i.e., the locus of the centers of curvature of γ. For strokes
with non-constant radius function, we will specify a condition on the curvature of γ to
distinguish regular from non-regular envelope points.

In Section 2.4, we will deduce the definition of the discriminant envelope of a family
of circles. We will show that the discriminant and the limiting envelope coincide for
our strokes. To study singular boundary points from the perspective of the discriminant
envelope, we will consider a related manifold in R3, whose projection onto the plane is a
stroke. The envelope is a subset of the projection of the critical points of this manifold,
and we will derive that the envelope is regular if the second derivative of the circle function
with respect to the curve parameter t is non-zero.

Section 2.5 provides a criterion for the curvature of γ that determines singular envelope
points, taking into account that the discriminant and limiting envelopes are identical.

Finally, in Section 2.6, we will use the theory of so-called unfoldings and Ak singu-
larities to demonstrate that the discriminant envelopes of our strokes around non-regular
points are diffeomorphic to the discriminant set of the function g(t) = t3. However, this
only applies to strokes without self-intersections and to A2 singularities, for which it will
be shown that the boundary of the stroke has a cusp. Furthermore, we will study the
envelopes in connection with swallowtail surfaces from catastrophe theory.
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Chapter 2. Continuous Model

2.1 Definition of a stroke

In this section, we provide a formal definition for continuous strokes. The stroke model
relies on the curve drawn by the user. The continuously drawn curve

γ : I → R2

t 7→
(
γx(t)
γy(t)

)
for a closed interval I ⊂ R can be considered as the “backbone” of the stroke model. It
is continuously differentiable, regular, i.e., γ′(t) 6= 0, and not closed.

Additionally, the model includes a so-called radius function r : I → R\{0}. We restrict
the value of r(t) to be positive in this thesis, but it makes no difference as long as it is
non-zero, as we will see shortly. The radius function is constant rc ∈ R\{0} when the
user draws with a mouse on a computer or with a finger on a tablet. If a user draws on a
tablet using a digital pen capable of registering pressure and possibly also tilt, the radius
function is non-constant and continuous. Section 5.1 will define how the radius function
is derived from the pressure and tilt input. In this section, for simplicity, we will only
name pressure sensitivity as an influencing parameter of the radius function. However,
additional information can be gathered from modern digital pens that could be used to
derive a radius function, such as the speed of the drawing or the orientation of the pen
tip with respect to the drawing surface.

Together, the curve γ and the radius function r define the stroke as the union of the
circular disks positioned around the curve point γ(t) at each t ∈ I with radius r(t). The
domain covered by these circular disks defines the stroke.

Definition 2.1.1 (Stroke)
The stroke s based on the regular curve γ : I → R2 and a continuous radius function
r : I → R>0 is given by

s =
⋃
t∈I

D(t) with D(t) =
{

(x, y) ∈ R2 :
∥∥(x, y)T − γ(t)

∥∥2 ≤ r(t)2
}
.

The interior of the stroke s is defined as the set of all points located within the unbounded
disks D(t)\C(t) for the circles C(t) =

{
(x, y) ∈ R2 :

∥∥(x, y)T − γ(t)
∥∥2 − r(t)2 = 0

}
and for

all t ∈ I: ⋃
t∈I

{
(x, y) ∈ R2 : ‖(x, y)T − γ(t)‖2 < r(t)2

}
. (2.1)

The definition of the stroke’s boundary is crucial for understanding the stroke model and
for constructing conformal maps from a tiled strip to a stroke. However, the definition is
not that simple and will be discussed in detail in the next sections.

As previously stated, it is not important whether the radius values are negative or
positive. In either case, the same circle C or disk D is defined. However, if the radius were
zero, the circle would degenerate to a point, and the stroke would be reduced to the curve
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2.1. Definition of a stroke

point on γ. We exclude this degenerate case from the definition of the radius function
because, in the implementation of the stroke, the radius function is set to zero when the
user stops drawing (see Section 5.1). Since the continuous radius function r never equals
zero, it will either be positive everywhere or negative everywhere, but it will not change
its sign for any t ∈ I. Henceforth, we assume that the radius function is positive for
all t ∈ I. We will mention the negative case only if it is not obvious that it does not
change the given definition, result, or argumentation.

To keep our model under control, we need to exclude circular disks that are nested, or
large disks that cover the rest of the stroke. Figure 2.1 shows examples of circles around
curve points γ(t) that are positioned in a way that we want to exclude for our stroke
model. To simplify the illustrations, we will only show the circles bounding the disks that
define a stroke in the following.

(a) γ(t) = (t, 0)T and r(t) = 1− t for t ∈ (0, 1) (b) the third circle is contained in the second

Figure 2.1: Counterexamples of subsequent circles along a curve.

To prevent such cases, we need two infinitesimally close circles to intersect in two
different real intersection points.

Definition 2.1.2 (Infinitesimally close circles)
A circle C(t0) is considered infinitesimally close to another circle C(t) if the parameter t0
is within the ε-neighborhood of t. This means that for arbitrarily small, positive ε, it holds
that t0 is in the interval (t− ε, t+ ε).

Proposition 2.1.3 (Intersection of subsequent circles)
If the radius function r and the curve γ satisfy the condition

r′(t)2 < ‖γ′(t)‖2, (2.2)

then two infinitesimally close circles along the curve γ with radii given by r intersect in
two different real intersection points.

Proof: Let C(t0) be a circle with center γ(t0) = (γx(t0), γy(t0)) and radius r(t0). Let C(t1)
be a second circle defined analogously for t1 = t0 + ε?, where ε? > 0 is infinitesimally close
to zero. These two circles have two different real intersection points if and only if

(r(t1)− r(t0))2 < ‖γ(t1)− γ(t0)‖2 < (r(t1) + r(t0))
2 (2.3)
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Chapter 2. Continuous Model

[BGT20, Remark 2]. Since we consider the behavior of infinitesimally close circles, we
can neglect the right inequality, since this case only occurs for two circles with a distance
of at least |r(t1) + r(t0)| between the circle centers γ(t1) and γ(t0).

Hence, we show that (r(t1)− r(t0))2 < ‖γ(t1)− γ(t0)‖2 follows from r′(t)2 < ‖γ′(t)‖2
for infinitesimally close t0 and t1 = t0 + ε? [KS23].

r′(t)2 < ‖γ′(t)‖2 ⇔ 0 < ‖γ′(t)‖2 − r′(t)2

⇔ 0 <

∥∥∥∥lim
δ→0

γ(t+ δ)− γ(t)

δ

∥∥∥∥2 − (lim
δ→0

r(t+ δ)− r(t)
δ

)2

�
= lim

δ→0

(
‖γ(t+ δ)− γ(t)‖

δ

)2

− lim
δ→0

(
r(t+ δ)− r(t)

δ

)2

(2.4)

•
= lim

δ→0

((
‖γ(t+ δ)− γ(t)‖

δ

)2

−
(
r(t+ δ)− r(t)

δ

)2
)

(2.5)

Equality � holds true since the norm and the quadratic function are continuous. The
equality • holds true because both limits exist in (2.4). Therefore, the limit of the sub-
tracted sequence elements in (2.5) is equivalent to the difference of the individual limits.
Hence, we obtain a convergent sequence in (2.5) with limit a := (‖γ′(t)‖2 − r′(t)2) and

elements an :=
(
‖γ(t+δn)−γ(t)‖

δn

)2
−
(
r(t+δn)−r(t)

δn

)2
where δn

n→∞−→ 0. For this convergent

sequence, it holds

∀ε > 0 ∃N ∈ N such that ∀n > N : |an − a| < ε.

Since this holds for all ε > 0, we select 0 < ε < a. If an < 0, it holds for each n
that |an − a| = | − (|an|+ a)| = |an|+ a > ε, which contradicts the assumption. Thus, it
holds that an > 0 for all n > N . Hence, for a sufficiently small ε?, it holds

0 < an =

(
‖γ(t+ ε?)− γ(t)‖

ε?

)2

−
(
r(t+ ε?)− r(t)

ε?

)2

⇔
(
r(t+ ε?)− r(t)

ε?

)2

<

(
‖γ(t+ ε?)− γ(t)‖

ε?

)2

◦⇔
(
r(t1)− r(t0)
t1 − t0

)2

<

(
‖γ(t1)− γ(t0)‖

t1 − t0

)2

⇔ (r(t1)− r(t0))2 < ‖γ(t1)− γ(t0)‖2.

For the equivalence ◦, we substituted t with t0 = t and t1 = t + ε?. The last equivalence
applies since t1 − t0 = ε? > 0. This concludes the proof. �

If Condition (2.2) is not satisfied for a curve γ and a radius function r, it is possible for
subsequent circles to intersect in less than two real intersection points. Hence, to avoid
nested or tangential neighboring circles along the curve, Condition (2.2) has to hold for γ
and r of our strokes.
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2.1. Definition of a stroke

Note 2.1.4 (Pencils of circles)
No matter how two circles are positioned with respect to each other, there is a unique pencil
of circles containing them. Following Coxeter [Cox69, Chapter 6.5], two intersecting
circles span an elliptic pencil of coaxal circles (see Figure 2.2a), two circles that do not
intersect are contained in a hyperbolic pencil of coaxal circles (see Figure 2.2b), and two
tangent circles belong to a parabolic pencil of coaxal circles (see Figure 2.2c). The radical
axis is the line that connects the real intersection points in the elliptic pencil, the complex
intersection points in the hyperbolic pencil, and which is the tangent to the circles in the
parabolic case. It is depicted in red in all three cases. It would be interesting to study how
the model would behave and how the algorithms of this work would have to be adapted if
the Condition (2.2) did not guarantee two real intersection points between two consecutive
circles, but if complex intersection points had to be taken into account.

(a) elliptic (b) hyperbolic (c) parabolic

Figure 2.2: Pencils of circles defined by two circles.

Note 2.1.5 ((Super-)sonic flow)
The left example in Figure 2.1 reveals other related topics known in the context of air-
planes: shock waves, compressible flows, and (super-)sonic speed. As explained by Bölkow
[Böl13, Chapter 2], pressure waves expand uniformly in all directions from a station-
ary airplane at the speed of sound of 1236 km/h (see Figure 2.3a). When the airplane
is moving at subsonic speed, i.e., slower than 1236 km/h, the pressure waves still ex-
pand in all directions, but they are no longer uniformly distributed around the airplane
(see Figure 2.3b). If an airplane moves at the exact speed of sound, the waves move with
the same speed as the airplane, and the so-called sonic barrier occurs, as shown by the
blue line tangent to the wavefront in Figure 2.3c. Thus, the aircraft cannot be heard on
the other side of the sonic barrier in front of the airplane. If the airplane moves even
faster than the sound, it leaves its waves behind, as in Figure 2.3d. The cone in which the
waves expand is known as the Mach cone, named after physicist Ernst Mach (1838-1916).
We observe that the wave fronts intersect at two points when projected to the plane, and
the projected Mach cone is bordered by two blue lines. As the previous citation [Böl13] is
in German, we provide two alternative sources in English. For an overview of fluid dy-
namics, see [Per13], which includes a discussion of supersonic flow in Chapter 9. For an
introduction to the fundamentals of aerodynamics, see [And16], which shows the subsonic
and supersonic flow cases in Figure 9.4.
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Chapter 2. Continuous Model

(a) no speed (b) subsonic speed

(c) sonic speed (d) supersonic speed

Figure 2.3: The pressure waves of an airplane.

To connect the previous note about supersonic flow back to our strokes, we notice that
the chain of circles in Figure 2.3d is a valid chain for a stroke along a straight curve γ,
since two neighboring circles intersect. Equation (2.2) requires the pen to move faster
than the radius grows. So we have a “supersonic pen” with respect to the radius of the
circles. The two lines that border the circles in Figure 2.3d naturally appear as the lines
that are tangent to all of these circles. We will examine the boundaries of strokes in detail
in the next sections.

In summary, there are few ingredients for our stroke model. The stroke is defined as
the union of the circular disks with center γ(t) and radius r(t) for all t ∈ I. The curve γ
is regular and the radius function r must satisfy Equation (2.2).

We will now introduce some examples of strokes defined by explicit curves γ and radius
functions r, which we will refer to throughout this thesis. These examples provide useful
benchmarks, each one being a prototype of a specific aspect of our stroke model. They will
be used to perform reproducible tests of our algorithm presented in Chapter 5. Since the
provided examples are given by analytic functions, we are able to compute certain parts
of the strokes explicitly, which allows us to study the properties of their boundaries and
to compare the conformality of our calculations with existing conformal maps. We specify
the size of the drawing surface in order to have a reference for the parameterization of γ
and r: it covers the rectangular region of the xy-plane with 0 ≤ x ≤ 1024 and 0 ≤ y ≤ 512.

The file BenchmarkExamples OrnaStrokes LP.html available in [Pol23b] provides an
applet that applies our algorithm presented in Chapter 5 to the upcoming benchmark
strokes.
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2.1. Definition of a stroke

Example 2.1.6 (Typical stroke without exceptions)

For a standard stroke with no exceptional behavior, we
define the drawn curve to be

γ(t) =

(
100 · (t− 2)

10 · (t− 1)(t− 3)2

)
+

(
350
250

)
and use the radius function

r(t) = 40 ·
(

7

10
· cos

(
(t− 2)

2
− 1

4

)
+

1

10

)
for t ∈ [0, 5]. This example will serve as standard example.

Example 2.1.7 (Half annulus)

A stroke with the shape of a half annulus will be interesting to compare the conformal
modulus between a known exact conformal map and the result of our algorithm.

For this, the curve is defined by

γ(t) = 300 ·
(

1

2
·
(

1

ρ
+ ρ

))(
cos(π − t)
sin(π − t)

)
+

(
500
100

)
and the radius function is constant

r(t) ≡ 300 · 1

2

(
1

ρ
− ρ
)

for t ∈ [0, π] and ρ = 0.8.

The smaller parameter ρ ∈ (0, 1) is, the larger the radius and the wider the half annular
region covered by the stroke.

Example 2.1.8 (Self-intersecting stroke)

A self-intersecting, i.e., non-univalent stroke is ob-
tained by the curve

γ(t) = 40 ·
(

1− 3(t− 2)2

(t− 2)(3− (t− 2)2)

)
+

(
600
250

)
and the radius function

r(t) = 60 ·

(
1

5
· cos

(
− t

2

)4

+
1

2

)

for t ∈ [0, 4].
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Chapter 2. Continuous Model

Example 2.1.9 (Part of an ellipse)

To study the behavior of strokes with singular boundary points
folding over themselves, we analyze the part of an ellipse
given by

γ(t) = 300 ·
(
a cos

(
t+ π

2

)
b sin

(
t+ π

2

))+

(
500
250

)
for t ∈ [0, π], a = cosh(0.3), b = sinh(0.3) and with constant
radius function of for example r(t) ≡ 70.

Example 2.1.10 (Stroke with narrow turn)

Another example of a stroke that folds over itself
is provided by the curve

γ(t) = 100 ·
(

(t− 1)
3 · (t− 1)2

)
+

(
400
100

)
with non-constant radius function

r(t) = 140 · cos

(
t

4
− 1

)2

for t ∈ [0, 2].

2.2 Envelopes of a family of curves

To analyze the characteristics of the boundary of a stroke in our model, we need to study
the properties of the set of circles that define the stroke. For this, we give a general
definition of a family of curves in the plane. In this context, a curve is no longer given as
a parameterization, but as the solution of an equation.

Definition 2.2.1 (Family of curves)
A family of curves in R2 is a collection of curves F (t1, . . . , tm, x, y) = 0, depending on the
free parameters (t1, . . . , tm). For any parameter in the m-dimensional parameter space, the
equation F (t1, . . . , tm, x, y) = 0 represents a curve of the family, called a family member.

According to this definition and following Bickel et al. [BGT20, Section 4], a stroke is
defined by a family of circles which we call F . Each circle of the family is given as the
set of points (x, y) which satisfy

F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r(t)2 = 0 (2.6)

for curve points γ(t) = (γx(t), γy(t))
T with t ∈ I, and for a radius function r. We denote

a specific circle in the family associated with the parameter t ∈ I by

C(t) =
{

(x, y) ∈ R2
∣∣F (t, x, y) = 0

}
(2.7)
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2.2. Envelopes of a family of curves

which corresponds to the previous definition of the circles given after Definition 2.1.1.
Zero is a regular value of F (t, x, y) because

∂F

∂x
(t, x, y) = 2(x− γx(t)) = 0⇔ x = γx(t)

∂F

∂y
(t, x, y) = 2(y − γy(t)) = 0⇔ y = γy(t).

(2.8)

The partial derivatives in (2.8) are equal to zero if and only if (x, y) = γ(t). However,
this cannot happen for F (t, x, y) = 0, since the points (x, y) are defined to be located on
the circle C(t) with non-zero radius r(t) around γ(t).

A family of curves has a natural associated envelope. Loosely speaking, the envelope
of a family of curves consists of the curve(s) that surround the members of the family,
forming a touching envelope around them. Looking at Figure 2.4, one may easily guess
that the circle, the horizontal line, and the two intersecting lines each define the envelope
of the depicted families of curves. However, properly defining the envelope for a family
of curves is not as easy as it seems.

Figure 2.4: Examples for envelopes of families of different curves.

According to Bickel et al. [BGT20] and Bruce and Giblin [BG92], there exist three
different definitions of the envelope of a family of curves. Since our families of circles only
have one parameter, we will limit the dimension of the parameter space to m = 1 in the
subsequent definitions, but they also apply to t ∈ Rm for m > 1.

Definition 2.2.2 (Discriminant envelope)
The discriminant envelope of a family of curves is defined as the set of points Ed:

Ed =

{
(x, y) ∈ R2 : ∃t ∈ R with F (t, x, y) = 0 and

∂F

∂t
(t, x, y) = 0

}
.

The discriminant envelope is the largest set of envelope points. It provides an analytical
view on the family of curves.

Definition 2.2.3 (Limiting envelope)
The limiting envelope E` of a family of curves is defined as the set of limiting intersection
points of neighboring curves Ct and Ct+ε for ε→ 0.

27



Chapter 2. Continuous Model

Bruce and Giblin show that all points in the limiting envelope of a family of curves are
contained in the discriminant envelope of the same family of curves [BG92, 5.8]. For
our strokes, the limiting envelope and the discriminant envelope even contain exactly the
same points, which we will prove in Section 2.4.1.

Definition 2.2.4 (Tangential envelope)
The envelope Et of a family of curves is the union of smooth curves that are tangent to a
family member C(t) = {(x, y) ∈ R2 : F (t, x, y) = 0} for each t. So, for any tangent curve
ϕ : J ⊆ R→ R2, it holds for all t ∈ J and ϕ(t) = (ϕx(t), ϕy(t))

T that

i) the point ϕ(t) is located on C(t), i.e., F (t, ϕx(t), ϕy(t)) = 0,

ii) ϕ and C(t) share the same tangent at ϕ(t).

Also, Et is generally contained in but not equal to the discriminant envelope Ed. Overall,
we can conclude for all three envelopes that

Et ⊆ Ed and E` ⊆ Ed. (2.9)

We will see in Proposition 2.4.7 that the tangential envelope matches the discriminant
envelope for our strokes if the envelope has no singular point.

Depending on the context, it may be advantageous to use one of the three definitions.
For a geometric understanding of the envelope of a family of curves, it may be conve-
nient to think of the curve tangent to all family members. For example, the envelopes
in Figure 2.4 were immediately recognizable as tangents to all curves. For analytical
computations, the discriminant envelope may be the most appropriate choice. We will,
for example, determine interesting properties of the boundary of the strokes by analyzing
their discriminant envelopes. In some cases, however, the best way to handle the envelope
is to calculate the intersection points of neighboring curves of the family. We will see that
the set of points in E` can be explicitly parameterized, which makes it easy to draw the
envelope.

We will show in Section 2.4.1 that our families of circles have equal discriminant en-
velope Ed and limiting envelope E`. Thus, we study the properties of the envelope of a
stroke by analyzing both E` and Ed for families of circles.

Before we discuss the details, we define the boundary of a stroke as the union of its
two envelope curves and two circular arcs. These circular arcs are subsets of the first
and last circles C(0) and C(T ) of a stroke defined on the closed interval I = [0, T ]. The
two circles each contain two endpoints of the two envelope curves which will be shown in
Section 2.3. Hence, the circular arcs connect these two envelope points. Figure 2.5 shows
the boundary of the strokes of the Benchmark Examples 2.1.6 and 2.1.8. The envelope
curves are shown in red, the circular arcs in blue, and the displayed points are the end
points of the envelope curves that border the circular arcs. It is evident from the right
picture that the envelope curves together with the two circular arcs do not define the
metric boundary of the stroke. If the boundary of a stroke s was defined as its metric
boundary, i.e., as the closure of s =

⋃
t∈I D(t) minus its interior [Kai23, p.69] as defined

in Equation (2.1), then the parts of the envelope curves that border the parallelogram-
like shape in Figure 2.5 on the right would not be part of its boundary, since they are
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2.3. Limiting envelope of a family of circles

Figure 2.5: The boundary of a stroke consisting of the envelope curves and circular arcs.

contained in the stroke’s interior. However, the boundary of a stroke must contain the
complete envelope curves so that we can correctly map the ornamental strip to the stroke.

Definition 2.2.5 (Boundary of a stroke) [BGT20, Theorem 2]
Given a stroke s for the interval I = [0, T ], a regular curve γ : I → R2, and a continuous
radius function r : I → R>0, for which it holds that r′(t)2 < ‖γ′(t)‖2 as in Proposi-
tion 2.1.3. Then the boundary of s is denoted by ∂s. It is contained in the union of the
stroke’s envelope and the circles C0 and CT :

∂s ⊆ Ed ∪ C0 ∪ CT .

Furthermore, the discriminant envelope is entirely contained in the boundary: Ed ⊆ ∂s.

2.3 Limiting envelope of a family of circles

To study the structure of the boundary of a stroke, we first examine the points in the
limiting envelope E` of the corresponding family of circles. We partially follow the argu-
mentation of Bickel et al. [BGT20, Section 4].

According to the definition of E` that it consists of the intersection points of two
infinitesimally close circles, we consider two circles C(t) and C(t0) for t 6= t0 ∈ I with
t0 ∈ (t−ε, t+ε) for an arbitrary small ε > 0 as in Definition 2.1.2. The circles have centers
γ(t) = (γx(t), γy(t))

T and γ(t0) = (γx(t0), γy(t0))
T , as well as the radii r(t) and r(t0),

respectively.
As we already know from Equation (2.3), two circles have two real intersection points

if and only if

(r(t)− r(t0))2 ≤ ‖γ(t)− γ(t0)‖2 ≤ (r(t) + r(t0))
2 .

For two infinitesimally close circles such as C(t) and C(t0), the right inequality holds
because their centers are always closer together than |r(t) + r(t0)|. Since we excluded
in Proposition 2.1.3 that C(t) and C(t0) are internally tangent to each other, they will
intersect in two different real points p1 and p2. For the nomenclature used in the following
calculations of p1 and p2, see Figure 2.6.

To simplify calculations, we define d as the distance between the centers of the circles:

d = ||γ(t0)− γ(t)||.
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Chapter 2. Continuous Model

Figure 2.6: Two intersecting circles C(t) and C(t0).

The intersection points p1 and p2 are calculated by

p1/2 = γ(t) + w · γ(t0)− γ(t)

d
± z · (γ(t0)− γ(t))⊥

d
(2.10)

with v⊥ = (−vy, vx). For this, we solve the following system of equations for w and z:

(I) w2 + z2 = r(t)2 (II) v2 + z2 = r(t0)
2 (III) w + v = d.

We derive w as follows:

(III)’ v = d− w
(I)’ z2 = r(t)2 − w2

}
(II)’⇒ (d− w)2 + r(t)2 − w2 = r(t0)

2 ⇒ w =
r(t)2 − r(t0)2 + d2

2d
.

By equation (I) and w, we get z by

z =
√
r(t)2 − w2 =

√
r(t)2 − (r(t)2 − r(t0)2 + d2)2

4d2
=

1

2d

√
4d2r(t)2 − (r(t)2 − r(t0)2 + d2)2.

The intersection points p1 and p2 can be derived by inserting w and z into Equation (2.10)

p1/2(t) = γ(t) +
r(t)2 − r(t0)2 + d2

2d2
(γ(t0)− γ(t))

± 1

2d2

√
4d2r(t)2 − (r(t)2 − r(t0)2 + d2)2 (γ(t0)− γ(t))⊥ .

In the limiting envelope, the two circles are centered at infinitesimally close curve points,
so we take the limit of t0 → t and use that lim

t0→t
γ(t0)−γ(t)

t0−t = γ′(t):

lim
t0→t

p1/2(t) = lim
t0→t

1
(t0−t)2

1
(t0−t)2

p1/2(t) =

= γ(t) +

r(t)2−r(t0)2+||γ(t0)−γ(t)||2
(t0−t)

2‖γ′(t)‖2
γ′(t)± 1

2‖γ′(t)‖2

√
4d2r(t)2 − (r(t)2 − r(t0)2 + d2)2

(t0 − t)2
(γ′(t))

⊥

= γ(t)− r(t)r′(t)

‖γ′(t)‖2
γ′(t)± r(t)

‖γ′(t)‖2
√
‖γ′(t)‖2 − r′(t)2 (γ′(t))

⊥
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2.3. Limiting envelope of a family of circles

This results in the following set of points defining the limiting envelope of a stroke’s family
of circles:

E` =

{
P±(t) = γ(t)− r(t)r

′(t)

‖γ′(t)‖2
γ′(t)± r(t)

‖γ′(t)‖2
√
‖γ′(t)‖2 − r′(t)2 (γ′(t))

⊥
, t ∈ I

}
. (2.11)

If curve γ is arc-length parameterized, i.e., the norm of its derivative is one, ‖γ′(t)‖ = 1,
the limiting envelope is given by:

E` =

{
P±(t) = γ(t)− r(t)r′(t)T (t)± r(t)

√
1− r′(t)2N(t), t ∈ I

}
(2.12)

for the unit length tangent T (t) = γ′(t) and the unit length normal vector N(t) = (γ′(t))⊥

with the property that 〈T (t), N(t)〉 = 0. The set of points in Equation (2.11) is more
general, but E` in Equation (2.12) sometimes provides a better geometric insight.

All points P±(t) of the limiting envelope E` are reached from the curve point γ(t) by

moving by (−r(t)r′(t)) in the direction of the tangent of γ and by
(
±r(t)

√
‖γ′(t)‖2 − r′(t)2

)
along the perpendicular normal. If the radius increases in a subinterval of I, its derivative
is positive and the intersection points between a circle around γ(t) and its successor will
be “behind” γ(t), since the coefficient of T (t) is negative. If the radius decreases, the op-
posite is true and the intersection points between circles and their successors around γ(t)
lie “ahead of” the curve point γ(t). Both of these cases are illustrated in Figure 2.7. If
the radius remains constant, its derivative is zero and the intersection points have only
a distance in the direction of the normal to the curve. This case will be covered in the
following Section 2.3.1.

Figure 2.7: A change in the radius determines the direction of intersection.

Instead of treating E` as a set of points P±(t) for all t ∈ I, we can also consider it as a
the set of all points lying on two different curves w±. The curve w+ contains all points P+

and the curve w− contains all points P−:

w+(t) := γ(t)− r(t)r′(t)

‖γ′(t)‖2
γ′(t) +

r(t)

‖γ′(t)‖2
√
‖γ′(t)‖2 − r′(t)2 (γ′(t))

⊥

w−(t) := γ(t)− r(t)r′(t)

‖γ′(t)‖2
γ′(t)− r(t)

‖γ′(t)‖2
√
‖γ′(t)‖2 − r′(t)2 (γ′(t))

⊥
.

(2.13)

Note 2.3.1 Restricting the function r to positive radii does not affect the set E`. If r
were a negative function, it could be expressed as r(t) = −f(t), where f(t) = |r(t)| > 0
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Chapter 2. Continuous Model

for all values of t. The derivative can then be written as r′(t) = −f ′(t). The second
term in w± remains unchanged because the negative signs for r(t) and r′(t) cancel each
other out. There is no change under the square root in the third summand because the
derivative of the radius function is squared. The occurrence of r(t) in front of the square
root would actually change the sign of the summand if we used the negative instead of
the positive radius function. However, this would only swap the points P+ and P− and
thus the curves w+ and w−. The set of points in E` remains unchanged. Hence, it is not
problematic to restrict the radius function r to positive values.

2.3.1 E` for constant radius

In this section, we examine the case of a constant radius function: r(t) ≡ rc > 0 ∀t ∈ I.
Strokes have a constant radius function if they are drawn with a non-pressure-sensitive
device. It turns out that there is an interesting connection between envelopes and evolutes.

If the radius function is constant, its derivative is zero, and the limiting envelope
reduces to

Erc
` =

{
P±(t) = γ(t)± rc

‖γ′(t)‖
(γ′(t))

⊥
, t ∈ I

}
.

The corresponding two envelope curves are

w+(t) = γ(t) +
rc

‖γ′(t)‖
(γ′(t))

⊥
and w−(t) = γ(t)− rc

‖γ′(t)‖
(γ′(t))

⊥

for t ∈ I. These are the parallel curves to curve γ at a constant distance of rc and −rc in
the direction of the normal vector (γ′(t))⊥, i.e., the tangent γ′(t) rotated by +π

2
.

Definition 2.3.2 (Parallels to a regular curve)
Given the regular curve γ : I → R2, its parallel γ‖rc : I → R2 is defined as

γ‖rc(t) = γ(t) +
rc

‖γ′(t)‖
(γ′(t))

⊥

for t ∈ I and rc ∈ R\{0}.

To study the regularity of the parallel, we calculate its derivative:

γ′‖rc(t) = γ′(t) +
rc(γ

′′(t))⊥

‖γ′(t)‖
+
rcγ
′(t)(γ′x(t)γ

′′
x(t) + γ′y(t)γ

′′
y (t))

‖γ′(t)‖3
= γ′(t) (1− rc · κ(t))

for κ(t) =
γ′x(t)γ

′′
y (t)−γ′y(t)γ′′x (t)
‖γ′(t)‖3 the curvature of the curve γ(t) = (γx(t), γy(t))

T and t ∈ I.

In accordance with Rutter [Rut18, Corollary 12.4], it can be concluded that the parallel
of a regular curve is non-regular in t if and only if.

1− rc · κ(t) = 0 ⇔ 1

rc
= κ(t).

This relation between the curvature and the radius shows that the parallel at t is
non-regular if and only if it passes through the center of curvature of γ at t. The locus of
all centers of curvature of a curve γ is a curve called the evolute:
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2.3. Limiting envelope of a family of circles

Theorem 2.3.3 (and Definition of the evolute) [Rut18, Theorem 12.7]
Let t0 be a parameter value at which the smooth curve γ : I → R2 is regular. Then, its
parallel γ‖rc and its evolute

ν(t) := γ(t) +
1

κ(t)‖γ′(t)‖
(γ′(t))

⊥

meet at t0 if and only if the parallel is not regular at t0.

Thus, for a constant radius rc, singular points of the envelope occur for all parameters t
where the curvature of γ is equal to 1

rc
and, hence, the parallel and the evolute of γ

meet. If the radius is small, the curvature of γ must be correspondingly large for some
parameter t ∈ I such that singular points on the envelope can actually occur. If the radius
is large, a small curvature of curve γ is enough to create singular points on the boundary

of the stroke. As an example, Figure 2.8 shows the curve γ(t) =
(
t, t

2

4

)
, its evolute ν(t),

and its parallel for rc = 6. The parallel has singular points exactly where it meets the
evolute.

Figure 2.8: A curve γ, its parallel γ‖rc for rc = 6 and its evolute ν.

Note 2.3.4 According to Rutter [Rut18, Section 12.1.1], the parallel can also be defined
at a parameter t0 if the curve γ has a non-regular point. For this, the curve’s unit tangent
should approach some limit as the parameter approaches t0. The parallel might be a
differentiable curve at t0 if the singular point of γ is no cusp. If γ has a cusp at t0, two
separate parallels are needed for the parameters less than and greater than t0. However,
this detail is not relevant for further analysis because our definition of strokes assumes
that the curve γ is regular.

2.3.2 E` for non-constant radius

If the radius is not constant, the limiting envelope E` is not reduced to the parallels of
curve γ. To gain further understanding of the singular points of w+ and w− for non-
constant radius functions r, we take their derivatives and interpret the result. For this,
we assume that the curve γ is arc-length parameterized, which is why the envelope curves
w± are given by Equation (2.12) as

w±(t) = γ(t)− r(t)r′(t)T (t)± r(t)
√

1− r′(t)2N(t).
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Their derivative is given by

w′±(t) = γ′(t)− r′(t)2T (t)− r(t)r′′(t)T (t)− r(t)r′(t)T ′(t) (2.14)

± r′(t)
√

1− r′(t)2 ·N(t)± r(t)
√

1− r′(t)2 ·N ′(t)∓ r(t) r′(t)r′′(t)√
1− r′(t)2

N(t)

= T (t)− r′(t)2T (t)− r(t)r′′(t)T (t)∓ κ(t)r(t)
√

1− r′(t)2 · T (t)

− κ(t)r(t)r′(t)N(t)± r′(t)
√

1− r′(t)2 ·N(t)∓ r(t) r′(t)r′′(t)√
1− r′(t)2

N(t).

The second equivalence holds due to the rules of differential geometry for arc-length
parameterized γ, that the unit tangent is T (t) = γ′(t) and that for the curvature κ(t)
of γ, T ′(t) = κ(t)N(t) as well as N ′(t) = −κ(t)T (t).

The limiting envelope’s singular points are given for those t ∈ I where w′±(t) = 0.
Since the vectors T and N are perpendicular and span the plane, a linear combination
of T and N is zero if and only if both coefficients are zero:

w′±(t) = 0⇔


0 = 1− r′(t)2 − r(t)r′′(t)∓ κ(t)r(t)

√
1− r′(t)2

0 = −κ(t)r(t)r′(t)± r′(t)
√

1− r′(t)2 ∓ r(t) r′(t)r′′(t)√
1− r′(t)2

If the derivative of the radius function is non-zero, meaning r′(t) 6= 0, we can divide the
second equation by r′(t) and multiply it by

√
1− r′(t)2. Then, simple calculations show

that the two equations on the right are identical. If the derivative of r with respect to t
equals zero, the second equation is always satisfied, leaving only the first equation as a
condition.

All in all, the limiting envelope of the arc-length parameterized curve γ has singular
points if the curvature satisfies the following condition. We do not divide by zero in the
following because the “supersonic” Condition (2.2) guarantees that r′(t) < 1 = ‖γ′(t)‖
and r(t) > 0 for the entire stroke.

Proposition 2.3.5 (Singular points in E` for arc-length parameterized curves)

Let γ be an arc-length parameterized curve and let the radius function r be non-constant.
Then the limiting envelope of a family of circles F defined by

F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r(t)2 = 0

has a singular point at w±(t) if any only if

κ(t) = ±1− r′(t)2 − r(t)r′′(t)
r(t)

√
1− r′(t)2

(2.15)

for the curvature κ(t) at the point γ(t) for t ∈ I.

To further investigate the properties of singularities on a stroke’s boundary, we will ex-
amine the definition of the discriminant envelope for a family of circles in the subsequent
section. We will revisit Proposition 2.3.5 in Section 2.5.
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2.4. Discriminant envelope of a family of circles

2.4 Discriminant envelope of a family of circles

The definitions of tangential and limiting envelopes are quite visual: we imagine tangents
to a family of curves or intersections of neighboring family members easily. It is harder
to imagine the discriminant envelope, which is defined as a set of points (x, y) for which a
function F (t, x, y) and its derivative with respect to the parameter t vanish. To illustrate
this, we follow the argumentation of Fowler [Fow20, Chapter V §5.10] and deduce where
the definition of the discriminant envelope Ed comes from. The nomenclature for the
following is visualized in Figure 2.9.

Figure 2.9: Derivation of the definition of Ed.

The family of curves F defining a stroke consists of circles

C(t) =
{

(x, y) ∈ R2
∣∣ F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r(t)2 = 0

}
which have no singular points for all t ∈ [0, T ].

We choose a point M = (xM , yM) on circle C(a) for a fixed a ∈ I and define a
neighboring circle to C(a) within a distance of a small µ > 0, denoted by

C(a+ µ) =
{

(x, y) ∈ R2
∣∣ F (a+ µ, x, y) = 0

}
.

Since none of the members of F has singular points, both C(a) and C(a + µ) have no
singular points. By Taylor expansion in the first variable, the points on the neighboring
circle C(a+ µ) satisfy

F (a+ µ, x, y) = F (a, x, y) + µ
∂F

∂a
(a, x, y) +O(µ)2 = 0. (2.16)

We seek the minimum distance σ between the selected point M on C(a) and the neigh-
boring circle C(a+µ), because this gives insight into the change of F w.r.t. t, i.e., insight
into ∂F

∂t
, which is part of the discriminant envelope definition. In other words, the value

of σ indicates the effect a change in the parameter a has on the curve points of one family
member with respect to the neighboring one.

Following [Fow20, §4.10], we define N = (xN , yN) as the point on F (a + µ, x, y) = 0
that is closest to M = (xM , yM). The shortest distance from a point to a circle is found
at the point where the line connecting the point to the center of the circle intersects with
the circle. The intersection closest to the reference point defines the shortest distance.
Any other point on the circle has a greater distance due to the triangle inequality. As
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any line passing through the center of a circle is perpendicular to the circle, the vector
between points M and N is perpendicular to C(a+ µ) at point N .

We determine the distance σ by using the direction vector (v, w) ∈ R2 of unit length
from M to N . By N = (xN , yN) = (xM + σ · v, yM + σ ·w) with F (a+µ, xN , yN) = 0 and
by Taylor expansion of F (a+ µ, xN , yN) in xN and yN , we get

0 = F (a+ µ, xN , yN) = F (a+ µ, xM , yM) + σ

(
v
∂F

∂x
+ w

∂F

∂y

)
+O(σ2). (2.17)

We can give formulas for v and w because the vector (v, w) is parallel to the normal at N

to the curve F (a+µ, x, y) = 0. One normal vector is the gradient vector∇F =
(
∂F
∂x
, ∂F
∂y

)T
,

which is always normal to a level set [Rut18, Thm 4.24]. In our case, F (a+ µ, x, y) = 0
is a level set and, thus, we have

v =
1√

∂F
∂x

2
+ ∂F

∂y

2
· ∂F
∂x

(a+ µ, x, y), w =
1√

∂F
∂x

2
+ ∂F

∂y

2
· ∂F
∂y

(a+ µ, x, y).

Inserting v and w into Equation (2.17) yields

σ ∼
−F (a+ µ, xM , yM)√

∂F
∂x

2
+ ∂F

∂y

2
, (2.18)

ignoring the small term of O(σ2) [Fow20, Thm 4.12].
Returning to the first entry of F (a + µ, x, y) = 0, we are interested in what happens

when µ tends to zero, which provides knowledge about infinitesimal change between neigh-
boring members of the family of curves. We recall the Taylor expansion in Equation (2.16)
and get

σ ∼ −
F (a, xM , yM) + µ∂F

∂a
(a, xM , yM) +O(µ)2√

∂F
∂x

2
+ ∂F

∂y

2
.

Since M = (xM , yM) lies on F (a, x, y), it holds that F (a, xM , yM) = 0. Furthermore, all
family members are circles and thus have no singular points. Hence, we can rewrite σ for
some constant A 6= 0 as

σ ∼ −A
(
µ
∂F

∂a
(a, xM , yM) +O(µ)2

)
.

When µ tends to zero, the “distance will be of the second or higher order of smallness if
and only if ” [Fow20, p.59]

∂F

∂a
(a, xM , yM) = 0.

Those points that undergo minimal changes as they change from one circle to its neighbor
are the envelope points that define the discriminant envelope of the family of circles, as
in Definition 2.2.2:

Ed =

{
(x, y) ∈ R2 : ∃t ∈ R with F (t, x, y) = 0 and

∂F

∂t
(t, x, y) = 0

}
.

Thus, we can imagine the discriminant envelope as consisting of those points on the
individual circles that change their position only slightly when moving from one circle to
its neighbor.
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2.4.1 Equality of discriminant and limiting envelope

We have already stated in (2.9) that the limiting envelope E` is a subset of the discriminant
envelope Ed. Since we have given the points contained in E`, we can prove that they are
contained in Ed, and we will even deduce that for the family of circles of our strokes, both
envelopes are the same.

Proposition 2.4.1 (E` ⊆ Ed)
The points P+(t) and P−(t) belonging to the limiting envelope (2.11) are contained in the
discriminant envelope Ed: E` ⊆ Ed.

Proof: It has to be shown that F (t, x, y) = ∂F
∂t

(t, x, y) = 0 holds for (x, y) = P±(t).
Since P±(t) is located on C(t) by definition of the limiting envelope, F (t, x, y)|P±(t) = 0.
We also verify that the first derivative of F with respect to t is zero at the points of the
limiting envelope:

∂F

∂t
(t, x, y)

∣∣∣∣
P±(t)

=
(
− 2

〈
(x, y)T − γ(t), γ′(t)

〉
− 2r(t)r′(t)

)∣∣∣
P±(t)

=

= −2

〈
−r(t)r

′(t)

‖γ′(t)‖2
γ′(t)±

r(t)
√
‖γ′(t)‖2 − r′(t)2
‖γ′(t)‖2

γ′(t)⊥, γ′(t)

〉
− 2r(t)r′(t)

= 2

(
r(t)r′(t)‖γ′(t)‖2

‖γ′(t)‖2
− r(t)r′(t)

)
=

= 2 · r(t)r′(t)
(
‖γ′(t)‖2

‖γ′(t)‖2
− 1

)
= 0 �

The function F (t, x, y) is quadratic and ∂F
∂t

(t, x, y) is linear in x and y. Thus, for
a fixed t ∈ I, the functions F and ∂F

∂t
can have at most two common zeros according

to Bézout’s theorem [RG11, p.22 f.]. In the previous proposition, two distinct vanishing
points of the family of circles were specified, namely P+(t) and P−(t). Hence, these are
the only possible zeros of F (t, x, y) that are part of the discriminant envelope.

Theorem 2.4.2 (Equality of E` and Ed) [BG92, 5.7(6)]
For a family of circles F as defined in Equation (2.6), the discriminant envelope Ed as
defined in Definition 2.2.2 and the limiting envelope E` from Equation (2.11) are equal:

E` = Ed.

As a result, the properties of both sets can be examined equally to gain knowledge
about the boundary characteristics of a stroke.

37



Chapter 2. Continuous Model

2.4.2 Projection of a manifold

We analyze from the perspective of the discriminant envelope where the boundary has
singular points, since this is where our algorithm presented in Chapter 5 runs into special
cases. We will identify additional properties of a stroke’s boundary compared to previous
results from the perspective of the limiting envelope.

To examine singular points on the discriminant envelope, we follow the chapter Local
structure of envelopes in the book by Bruce and Giblin [BG92].

We have previously stated in Equation (2.8) that for all circles along the curve γ, the
value zero is regular for F (t, x, y), i.e., ∂F

∂x
and ∂F

∂y
are not simultaneously zero. Therefore,

without loss of generality, we assume regularity at zero for F (t, x, y) in further investiga-
tions.

First, we study the manifold of preimages (t, x, y) ∈ R3 of F (t, x, y) = 0 and denote
it by M = F−1(0). Figure 2.10 on the left shows M for the Benchmark Example 2.1.6.
In R × R2, M is a parameterized 2−manifold. This means that locally around each
point (t0, x0, y0) in M , there exists a homeomorphism ϕ of an open subset U ⊂ R2 to M
[VGdF07, Chapter 2]. This map ϕ is an immersion, i.e., its derivative has full rank.
Thus, M arises locally from an open set U ⊂ R2 by this map ϕ. Specifically, for the
map ϕ : R2 → R × R2, U 3 (x, y) 7→ (t, x, y) ∈ M , the derivative of ϕ has rank two
and F (ϕ(x, y)) = 0.

Projecting M ⊆ R× R2 onto R2 by π : R× R2 → R2, (t, x, y) 7→ (x, y), results in the
collection of circles that define the corresponding stroke. Figure 2.10 on the right shows
a visualization of π(M) for Benchmark Example 2.1.6.

Figure 2.10: Manifold M = F−1(0) and its projection π(M) ∈ R2.

The discriminant envelope of a stroke is a subset of the projection of M onto R2. To
investigate the characteristics of the envelopes, we analyze the map π ◦ ϕ : U → π(M).
The composition π ◦ ϕ is a diffeomorphism, i.e., it is continuously differentiable and
invertible with a continuously differentiable inverse if and only if its derivative with respect
to t is non-zero [BG92, Proposition 5.20].

Proposition 2.4.3 Given an open subset U of the real plane R2, a parameterized 2-
manifold M ⊆ R×R2, the map ϕ : U →M and the projection π : M → R2, (t, x, y) 7→ (x, y).
Then π ◦ϕ is a local diffeomorphism at point (x0, y0) ∈ U if and only if ∂F

∂t
(t0, x0, y0) 6= 0.
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Proof: The Jacobian of the projection π is Jπ =

(
0 1 0
0 0 1

)
. The Jacobian A at (x0, y0) of

the composition π ◦ϕ corresponds to the last two columns of the Jacobian of ϕ at (x0, y0)
by the chain rule:

A(x0, y0) = JπJϕ(x0, y0) =

(
0 1 0
0 0 1

)a b
c d
e f

 =

(
c d
e f

)
.

Hence, we need to show that A is invertible if and only if ∂F
∂t

(t0, x0, y0) 6= 0, which in
turn is equivalent to the condition that (1, 0, 0) is not in the kernel of the differential
of F (t0, x0, y0). Since F (ϕ(x0, y0)) = 0, the kernel of DF (t0, x0, y0) corresponds to the
image of Dϕ(x0, y0). There is a solution of

Jϕ(x0, y0)

(
λ1
λ2

)
=

(
a b
A

)(
λ1
λ2

)
=

1
0
0


if and only if A is singular based on arguments of linear independence and the fact that Dϕ
has rank two. This completes the proof since this implies that (1, 0, 0) is not in the image
of Dϕ(x0, y0) if and only if A is invertible. �

This proposition shows that points (x, y) in Ed never originate from preimage points
in U under the diffeomorphism π ◦ϕ as in Proposition 2.4.3, since for (x, y) ∈ Ed it must
hold that F (t, x, y) = ∂F

∂t
(t, x, y) = 0.

Following Bruce and Giblin [BG92, 5.21], we call (t, x, y) ∈ M a critical point of
π : M → R2 if the composition π ◦ ϕ is not a diffeomorphism for the preimage of (t, x, y)
in U . A critical value of the projection π is a point (x, y) ∈ R2 for which its preimage
π−1(x, y) = (t, x, y) is a critical point of π.

We define Σ as the set of all critical points (t, x, y) of π in M . This set Σ ⊂ R×R2 is
composed of points for which F (t, x, y) = ∂F

∂t
(t, x, y) = 0. The discriminant envelope Ed

is the projection of Σ onto the real plane R2 via π:

Ed = π(Σ).

For the manifold M shown in Figure 2.10, the critical points consist of those (t, x, y)

where M intersects the manifold ∂M =
(
∂F
∂t

)−1
(0) which is visualized in Figure 2.11. The

projection of these points with π gives the expected envelope of the family of circles.
Hence, the behavior of a stroke’s envelope can also be studied by looking at the

manifold M and the set Σ. For this, following [BG92, 5.21], let G be the map containing
information about whether a point (t, x, y) ∈M is critical and hence in Σ or not:

G : R× R2 → R2, (t, x, y) 7→
(
F (t, x, y),

∂F

∂t
(t, x, y)

)
.

It holds that Σ is the set of all preimage points of (0, 0) with respect to G:

Σ = G−1(0, 0).
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Chapter 2. Continuous Model

Figure 2.11: Orange manifold M = F−1(0) intersects blue ∂M =
(
∂F
∂t

)−1
(0) in red Σ.

Therefore, we can explore the characteristics of G to learn more about Σ. So we take
the derivative of G and get its Jacobian

JG =

(
∂F
∂t

∂F
∂x

∂F
∂y

∂2F
∂t2

∂2F
∂x∂t

∂2F
∂y∂t

)
at some point (t0, x0, y0). If (t0, x0, y0) ∈ Σ, the partial derivative of F w.r.t. t is zero.
Equation (2.8) shows that at least one partial derivative of F w.r.t. x and y is not equal
to zero. Hence, the Jacobian of G has full row rank if ∂2F

∂t2
(t, x, y) 6= 0, and it follows

that Σ = G−1(0, 0) has a non-zero derivative at points where the second partial derivative
of F with respect to t is non-zero [BG92, 5.22, 4.12, and 4.16]. This implies that Σ is
locally a smooth curve for ∂2F

∂t2
(t, x, y) 6= 0.

Lemma 2.4.4 If ∂2F
∂t2

(t, x, y) 6= 0, then Σ is locally a parameterized 1-manifold.

To determine if the smoothness result also applies to the projection Ed = π(Σ), we
examine the local structure of Σ more closely.

2.4.3 Local structure of Ed

We focus on analyzing the local structure of Σ ⊆M and its projection π(Σ) = Ed onto the
discriminant envelope of the family of curves F in the xy-plane. Globally, several values
of t may correspond to the same point (x, y), which has no effect on the smoothness
of Σ in space. But when Σ is projected onto the xy-plane, the point (x, y) becomes a
multiple point of the discriminant envelope. If F is the stroke-defining family of circles,
this is equivalent to a self-intersecting stroke. Self-intersecting strokes will be discussed in
Sections 4.3.1 and 5.4.1. Until then, we examine the properties of local smoothness and
local singularities of Σ and the corresponding discriminant envelope Ed = π(Σ). For this,
we follow Bruce and Giblin [BG92, Proposition 5.25].

Let (t0, x0, y0) ∈ Σ = G−1(0, 0) be a point where the second partial derivative of
curve F w.r.t. t is non-zero, i.e., ∂2F

∂t2
(t0, x0, y0) 6= 0. By definition of Σ, both F (t0, x0, y0)

and ∂F
∂t

(t0, x0, y0) vanish. Around point (t0, x0, y0), there is a neighborhood V ⊂ R× R2

such that the projection of this neighborhood intersected with Σ is a parameterized
1-manifold in R2, i.e., it is a smooth curve.
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2.4. Discriminant envelope of a family of circles

To show this, we recall that by Equation (2.8) either ∂F
∂x

or ∂F
∂y

is non-zero at (t0, x0, y0).
For more clarity in the argumentation, we temporarily change the order of variables
to (x0, y0, t0). Without loss of generality, let ∂F

∂y
(x0, y0, t0) 6= 0. Then the Jacobian of G

evaluated at (x0, y0, t0) is given by

JG(x0, y0, t0) =

(
∂F
∂x

∂F
∂y

∂F
∂t

∂2F
∂x∂t

∂2F
∂y∂t

∂2F
∂t2

)
(x0, y0, t0) =

(
• ? 0
• • ?

)
(2.19)

where • ∈ R and ? ∈ R\{0}. Thus, JG(x0, y0, t0) has full row rank, and G is a submersion,
i.e., it has a surjective differential.

Thus, the Implicit Function Theorem can be applied. Further information about the
theorem can, for example, be found in [KP02]. It states that given a continuously dif-
ferentiable function f : Rn+m → Rm where (x, y) = (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m, then
there exists a continuously differentiable function g : Rn → Rm such that f(x, g(x)) = 0.
To construct g, assume that f(a, b) = 0. If the Jacobian of f restricted to the derivatives
with respect to y

Jf |y(a, b) =


∂f1

∂y1
. . . ∂f1

∂ym
...

...
∂fm
∂y1

. . . ∂fm
∂ym

 (a, b)

is invertible, then there exists an open neighborhood V ⊂ Rn with a ∈ V such that
g : V → Rm with f(x, g(x)) = 0 is unique.

Applying this result to our G : (x, y, t) → R2 requires a = x0 and b = (y0, t0) with
G(a, b) = G(x0, y0, t0) = 0. The Jacobian restricted to y and t is given by Equation (2.19):

JG|y,t(b, a) =

(
∂F
∂y

∂F
∂t

∂2F
∂y∂t

∂2F
∂t2

)
(x0, y0, t0) =

(
? 0
• ?

)
.

Since this matrix is invertible, there is a neighborhood V of (x0, y0, t0) such that on Σ∩V ,
both y and t can be uniquely written in terms of x using the Implicit Function Theorem.
Since y can be expressed as the result of a continuously differentiable function in x, we
can define a local diffeomorphism φ : R×R→ R2 that maps (x, ỹ) to (x, ỹ+g(x)). Hence,
the diffeomorphism φ maps (x, 0) to (x, g(x)) = (x, y), and the projection π(Σ ∩ V ) is
locally homeomorphic to R, so it is a parameterized 1−manifold. We will now return to
the ordering of variables (t, x, y).

Proposition 2.4.5 (Regularity of the envelope)
For (t0, x0, y0) ∈ Σ, the projection π(Σ ∩ V ) of a neighborhood V of (t0, x0, y0) yields a
regular part of the discriminant envelope if ∂2F

∂t2
(t0, x0, y0) 6= 0.

This means that the discriminant envelope of a stroke is regular for points with
F = ∂F

∂t
= 0 and ∂2F

∂t2
6= 0. The points where the second derivative of F with respect

to t becomes zero define the non-regular points of the discriminant envelope. They are
called points of regression.

Definition 2.4.6 (Points of regression) [BG92, Definition 5.26]
The points (x0, y0) ∈ Ed for which there is a parameter t0 ∈ I with (t0, x0, y0) ∈ Σ
and ∂2F

∂t2
(t0, x0, y0) = 0 are called points of regression. The remaining points within the

discriminant envelope, where ∂2F
∂t2

(t0, x0, y0) 6= 0, are called regular.
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Chapter 2. Continuous Model

For a neighborhood of a regular point (x0, y0) of the discriminant envelope, i.e., for a
regular part of π(Σ ∩ V ) with V a neighborhood of (t0, x0, y0), we show that the tangent
space of π(Σ∩V ) at (x0, y0) is the same as the tangent space at (x0, y0) on the circle C(t0)
defined by F (t0, x, y) = 0. For this, we follow [BG92, Proposition 5.25]. Note that
the tangent space of π(Σ ∩ V ) in (x0, y0) is the same as the projected tangent space
of Σ ∩ V in (t0, x0, y0). The tangent space of Σ ∩ V in (t0, x0, y0) is characterized as
follows. We recall that Σ = G−1(0, 0), which is why Σ is a level surface of G. It is a
known fact from calculus that the gradient of G at a point (t0, x0, y0) ∈ Σ is perpendicular
to the tangent space TG of the level surface in (t0, x0, y0) [Kön13, Chapter 2.1,V.]. The
Jacobian JG of G is the transpose of its gradient ∇G. Thus, we can write

∇G(t0, x0, y0)
Tv = JG(t0, x0, y0) · v = (0, 0)T

for all tangent vectors v ∈ TG(t0, x0, y0). This implies that any vector v = (v1, v2, v3)
T

that is tangent to Σ at (t0, x0, y0) is contained in the kernel of the Jacobian ofG at (t0, x0, y0).
With Equation (2.19), it holds

=0︷ ︸︸ ︷
∂F

∂t
(t0, x0, y0) v1 +

∂F

∂x
(t0, x0, y0)v2 +

∂F

∂y
(t0, x0, y0)v3 = 0

∂2F

∂t2
(t0, x0, y0)v1 +

∂2F

∂x∂t
(t0, x0, y0)v2 +

∂2F

∂y∂t
(t0, x0, y0)v3 = 0.

The first partial derivative of F , ∂F
∂t

(t0, x0, y0), equals zero by definition of Σ. Therefore,
the first equation provides a condition on v2 and v3 only. The second partial derivative
of F , ∂2F

∂t2
(t0, x0, y0), is different from zero by assumption. Hence, the second equation

gives a condition for v1 in terms of v2 and v3. Thus, if the tangent space TG at (t0, x0, y0)
is projected to the xy-plane, i.e., (v1, v2, v3)

T π7→ (v2, v3), then the first equation determines
which vectors (v2, v3) are contained in the tangent space of π(Σ ∩ V ) at (x0, y0). More
precisely, it contains exactly those (v2, v3) with ∂F

∂x
v2 + ∂F

∂y
v3 = 0. The second equation

is no longer relevant because for any (v2, v3) we could compute a v1 such that the second
equation holds. Finally, this shows that the vectors (v2, v3) in the tangent space of π(Σ∩V )
at (x0, y0) are exactly those in the tangent space of C(t0) at (x0, y0), since by the same

argument from calculus these are the vectors (v2, v3) with
(
∂F
∂x
, ∂F
∂y

)(v2
v3

)
= 0.

Hence, for regular points in π(Σ) = Ed, the discriminant envelope coincides with the
tangent envelope Et.

Proposition 2.4.7 (Equality of Ed and Et for regular envelope points)
If (t0, x0, y0) is a regular point of the discriminant envelope, i.e., ∂2F

∂t2
(t0, x0, y0) 6= 0, then

the discriminant envelope at (x0, y0) is tangent to the circle C(t0). Hence, for regular parts
of the envelope, the discriminant envelope Ed coincides with the tangential envelope Et.

This implies that by Theorem 2.4.2 and Proposition 2.4.7, we know for regular points of
the envelopes of strokes that all three definitions of envelopes coincide:

E` = Ed = Et. (2.20)
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2.5 Criteria for singularities of the envelopes

For the further analysis of the envelopes of strokes, we again study the points of regres-
sions, i.e., the non-regular envelope points in detail. If a stroke has a constant radius
function r ≡ rc, we already know from Theorem 2.3.3 that the points of regression are
precisely those where the envelope curve coincides with the evolute of γ(t). The points
of regression calculated in Bruce and Giblin [BG92, Section 5.30] based on the discrim-
inant envelope Ed are consistent with our results from the perspective of the limiting
envelope E`. Since we have shown in Theorem 2.4.2 that both envelopes coincide for our
strokes, the equality of the sets of points of regression is a confirmation.

For a non-constant radius function, we found in Proposition 2.3.5 that the limiting en-
velope E` for an arc-length parameterized curve γ has singular points where the curvature
of γ satisfies a certain criterion. In view of the fact that E` = Ed has been shown, we want
to derive the same from the perspective of the discriminant envelope and, additionally,
study the singular points of non arc-length parameterized curves γ.

The family of circles F defining a stroke is given by Equation (2.6) as

F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r(t)2

for curve γ, radius function r and parameter t ∈ I.
From Theorem 2.4.2, it is known that the points in E`, as defined in Equation (2.11),

are exactly those in the set Ed, i.e., they satisfy the conditions F = ∂F
∂t

= 0. Hence,
to identify the points of regression in the discriminant envelope, we search for those
points (x`, y`) ∈ E` that satisfy ∂2F

∂t2
(t, x`, y`) = 0 for some t ∈ I. From the proof of

Proposition 2.4.1, we know that

∂F

∂t
(t, x, y) = −2

〈
(x, y)T − γ(t), γ′(t)

〉
− 2r(t)r′(t)

and it follows

∂2F

∂t2
(t, x, y) = 2‖γ′(t)‖2 − 2

〈
(x, y)T − γ(t), γ′′(t)

〉
− 2r′(t)2 − 2r(t)r′′(t).

We search for a point

(x`, y`) = γ(t)− r(t)r′(t)

‖γ′(t)‖2
γ′(t)± r(t)

‖γ′(t)‖2
√
‖γ′(t)‖2 − r′(t)2 (γ′(t))

⊥

for some t ∈ I where the second derivative of F with respect to t equals zero.
To simplify calculations, we temporarily assume that γ is arc-length parameterized:

‖γ′(t)‖ =
√
γ′x(t)

2 + γ′y(t)
2 = 1.

This reduces ∂2F
∂t2

and (x`, y`) to

∂2F

∂t2
(t, x, y) = 2

(
1− r′(t)2 − r(t)r′′(t)−

〈
(x, y)T − γ(t), γ′′(t)

〉)
(x`, y`) = γ(t)− r(t)r′(t)γ′(t)± r(t)

√
1− r′(t)2 (γ′(t))

⊥
.

(2.21)
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Chapter 2. Continuous Model

Plugging those points (x`, y`) into the second derivative of F w.r.t. t yields

0
!

=
∂2F

∂t2
(t, x`, y`) = 2 ·

[
1− r′(t)2 − r(t)r′′(t)

−
(
−r(t)r′(t)

〈
γ′(t), γ′′(t)

〉
±r(t)

√
1− r′(t)2

〈
γ′(t)⊥, γ′′(t)

〉) ]
.

This equation can be simplified using two principles from differential geometry for planar
curves. The curvature of γ is defined by

κ(t) =
det (γ′(t), γ′′(t))

‖γ′(t)‖3
‖γ′(t)‖=1

= det (γ′(t), γ′′(t)) =
〈
γ′(t)⊥, γ′′(t)

〉
. (2.22)

Furthermore, since γ is arc-length parameterized, it holds 〈γ′(t), γ′(t)〉 = ‖γ′(t)‖2 = 1,
and hence

1

2

∂

∂t
〈γ′(t), γ′(t)〉 = 〈γ′(t), γ′′(t)〉 = 0.

This gives

0 =
∂2F

∂t2
(t, x`, y`) = 2

(
1− r′(t)2 − r(t)r′′(t)∓ r(t)

√
1− r′(t)2κ(t)

)
⇔ κ(t) = ±1− r′(t)2 − r(t)r′′(t)

r(t)
√

1− r′(t)2

We are not dividing by zero because we restricted the radius function to be greater than
zero in Section 2.1, and by Proposition 2.1.3, we know that r′(t)2 < ‖γ′(t)‖2 = 1. In
summary, the above argumentation leads to the following result. This result corresponds
to Proposition 2.3.5 for the singular points in the limiting envelope of a stroke.

Proposition 2.5.1 (Points of regression for arc-length parameterized curve)
Let curve γ be arc-length parameterized, and let the radius function r satisfy the Condi-
tion (2.2): r′(t)2 < ‖γ′(t)‖2. Then the points of regression of the envelope of a fam-
ily of circles F defined by F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r(t)2 = 0 are exactly those
points (x, y) ∈ Ed = E` for t ∈ I for which the curvature of γ satisfies the equation

κ(t) = ±1− r′(t)2 − r(t)r′′(t)
r(t)

√
1− r′(t)2

. (2.23)

If the curve γ is not arc-length parameterized, the same calculations lead to a similar
condition on the curvature of γ that must be satisfied for points of regression:

Proposition 2.5.2 (Points of regression for general curves)
Given a family of circles F defined by F (t, x, y) and a radius function r as in Proposi-
tion 2.5.1, and given a curve γ that is not necessarily arc-length parameterized. Then the
points of regression of the envelope of F are defined as those (x, y) ∈ E` = Ed for t ∈ I
for which it holds

0 = 2
(
‖γ′(t)‖2−r′(t)2−r(t)r′′(t)∓‖γ′(t)‖·r(t)

√
‖γ′(t)‖2 − r′(t)2·κ(t)+

r(t)r′(t)

‖γ′(t)‖2
〈γ′(t), γ′′(t)〉

)
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⇔ κ(t) = ±
‖γ′(t)‖2 − r′(t)2 − r(t)r′′(t) + r(t)r′(t)

‖γ′(t)‖ 〈γ
′(t), γ′′(t)〉

‖γ′(t)‖ · r(t)
√
‖γ′(t)‖2 − r′(t)2

As in Chapters 2.3.1 and 2.3.2, these criteria relate points of regression to the curvature
of the curve γ. Equipped with the knowledge of the position of the point of regression,
we can now analyze the type of singularity that occurs at these points of regression for
both constant and non-constant radius functions.

2.6 Type of points of regression in the envelopes

To examine the analytic behavior of the points of regression in the envelopes of our families
of circles and thus of our strokes, we consider unfoldings.

Unfoldings exist for functions that depend on different parameters. As an introduc-
tory example, consider a quadratic function f : R → R with f(t) = t2 + c0 for some
constant c0 ∈ R. Then, the function F : R × R → R, F(t, c) = t2 + c for c ∈ R is a
1-parameter unfolding of f . This unfolding F includes all unit parabolas translated along
the y-axis, and function f is one specific function of this set. The general definition of an
unfolding is as follows:

Definition 2.6.1 (n-parameter unfolding) [BG92, p.116]
Let F : R× Rn → R with (t, x) ∈ R× Rn denote a smooth function. For a fixed x0 ∈ Rn,
we define f(t) := F(t, x0) : R→ R. Then F is called an n-parameter unfolding of f .

For us, it is interesting to work with unfoldings because there is a theory associated
with unfoldings that deals with singularities. We will apply this theory to categorize the
points of regression of the envelopes of our strokes in Sections 2.6.1 and 2.6.2. We will
introduce the necessary results under the assumption that the envelopes of our strokes
are parallels γ‖±rc to an arc-length parameterized curve γ, i.e., ‖γ′(t)‖ = 1, with constant
radius r(t) ≡ rc ∈ R>0. The results will be generalized to strokes with non-constant
radius function r in the second parts of 2.6.1 and 2.6.2.

Based on the research of Bruce and Giblin [BG92, 7.12], we examine a stroke defined
by the function

F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r2c =
〈
(x, y)T − γ(t), (x, y)T − γ(t)

〉
− r2c = 0 (2.24)

for an arc-length parameterized curve γ(t) : I → R2 and constant radius rc ∈ R>0. The
envelope of this stroke consists of the two parallels γ‖±rc(t) of γ at a distance of ±rc.
These parallels have a singular point if and only if this point also lies on the evolute of γ
according to Theorem 2.3.3, i.e., the envelopes have a point of regression at (t0, x0, y0) if
and only if

±rc =
1

κ(t0)
and (x0, y0) = γ(t0) +

N(t0)

κ(t0)
. (2.25)

Furthermore, as per Definition 2.4.6, when (t0, x0, y0) denotes a point of regression, F and
its first and second derivatives with respect to t are zero:

F (t0, x0, y0) =
∂F

∂t
(t0, x0, y0) =

∂2F

∂t2
(t0, x0, y0) = 0.
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Chapter 2. Continuous Model

We will show that F (t) := F (t, x0, y0) for fixed (x0, y0) and variable parameter t is com-
parable to the basic function g(t) = t3 and that their unfoldings have equal discriminant
envelopes up to a diffeomorphism. Hence, we investigate why these discriminant envelopes
are the same and what this fact implies for the type of singularities on the boundaries of
our strokes.

To define the type of singularity of an unfolding of a general smooth function f , we
use the concept of R-equivalence.

Definition 2.6.2 (R-equivalence) [BG92, 3.1]
Let f : R → R be a smooth function. Then f is called R-equivalent at tf ∈ R to an-
other function g : R → R at tg ∈ R if there are two open intervals tf ∈ Uf ⊂ R and
tg ∈ Ug ⊂ R within the domains of f and g, respectively, such that there is a diffeo-
morphism h : Uf → Ug with h(tf ) = tg and f(t) = g(h(t)) + c for t ∈ Uf and some
constant c ∈ R.

The function f is R-equivalent at t0 to g(t) = ±tk+1 at 0 for some k ≥ 0 if and only if
f (p)(t0) = 0 for all derivatives of order 1 ≤ p ≤ k and f (k+1)(t0) 6= 0 [BG92, 3.3]. The sign
of g is positive if f (k+1)(t0) > 0 and negative if f (k+1)(t0) < 0. This leads to the definition
of an Ak singularity of a smooth function f at parameter t0.

Definition 2.6.3 (Ak singularity) [BG92, 3.6]
Let f : R → R be R-equivalent at t0 to g(t) = ±tk+1 at 0 for some k ≥ 0. Then f has
an Ak singularity at t0. It is also said that f has type Ak. Furthermore, f has type A≥k
if f (p)(t0) = 0 for all 1 ≤ p ≤ k and f has an A` singularity for some ` ≥ k.

With this definition, we can determine two cases of points of regression of the envelopes
of our strokes. In the first case, F (t) = F (t, x0, y0), its derivative and also its second
derivative w.r.t. t vanish, i.e., F = ∂F

∂t
= ∂2F

∂t2
= 0, but the third derivative is non-zero.

This is the case of an A2 singularity. In the second case, also the third and probably also
higher derivatives of F w.r.t. t are zero. Then F has an A≥3 singularity. In the next two
sections, we will examine the properties of these two types of singularities. We will see
that the envelope of a stroke has a cusp if F has an A2 singularity. If F has type A≥3,
the singular point has infinite curvature.

2.6.1 A2 singularities of discriminant envelopes

Let the function F (t) = F (t, x0, y0) have an A2 singularity at t0 for fixed (x0, y0), where
(t0, x0, y0) is a point of regression. To establish a criterion on F for A2 singularity, we
investigate when the third derivative of F is non-zero:

∂3F

∂t3
(t0, x0, y0) 6= 0.
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2.6. Type of points of regression in the envelopes

Since γ is arc-length parameterized and the radius function is constant, we know that
T (t) = γ′(t), T ′(t) = γ′′(t) = κ(t)N(t), and we deduce from Equation (2.24) that

∂2F

∂t2
(t, x, y) = −2 ·

〈(
x
y

)
− γ(t), γ′′(t)

〉
⇔ 1

2

∂2F

∂t2
(t, x, y) = −

〈(
x
y

)
− γ(t), κ(t)N(t)

〉
.

Hence, the third derivative of F w.r.t. t at (t0, x0, y0) is given by

1

2

∂3F

∂t3
(t0, x0, y0) = κ(t0)

〈 T (t0)︷ ︸︸ ︷
γ′(t0), N(t0)

〉
−
〈(

x0
y0

)
− γ(t0), κ

′(t0)N(t0) + κ(t0)N
′(t0)

〉
.

The first summand is zero due to the perpendicularity of the tangent and normal vector:
〈T (t), N(t)〉 = 0. Furthermore, (t0, x0, y0) is a point of regression and thus it holds that

(x0, y0)
T = γ(t0) + N(t0)

κ(t0)
as well as κ(t0) 6= 0 by Equation (2.25). Also, N(t0) has unit

length, i.e., 〈N(t0), N(t0)〉 = 1, and it follows from the derivative of this scalar product
that 〈N(t0), N

′(t0)〉 = 0. Hence, the second summand reduces to

κ′(t0)

κ(t0)
〈N(t0), N(t0)〉+ 〈N(t0), N

′(t0)〉 =
κ′(t0)

κ(t0)
+ 0.

In total, it holds that the third derivative of F w.r.t. t is non-zero if and only if the
curvature κ has a non-zero derivative:

∂3F

∂t3
(t0, x0, y0) 6= 0⇔ κ′(t0)

κ(t0)
6= 0⇔ κ′(t0) 6= 0. (2.26)

According to Definition 2.6.3, the A2 singularity implies that F is diffeomorphic
to g(t) = ±t3 if and only if κ′(t0) 6= 0 for the curvature κ of the curve γ at a point
of regression (t0, x0, y0). Also, the unfoldings of F and g are related and behave similarly,
which will be examined in the following.

According to Bruce and Giblin [BG92, p.102 f.], there is more than one unfolding
for general smooth functions f(t). A function can be part of several unfoldings, e.g.,
f(t) = t4 is unfolded by F1(t, x, y) = t4 + x · t− y and by F2(t, x, y) = t4 + x · t2 + y · t.
An unfolding consisting of all other functions F close to f is called universal.

A universal unfolding for g(t) = ±tk+1 at t0 = 0 is given by [BG92, 6.6]

G : R× Rk → R
G(t, u) = ±tk+1 + u1 + u2t+ · · ·+ ukt

k−1. (2.27)

There is no term in tk due to the so-called Tschirnhausen transformation, which uses
substitution to bring polynomials of degree m to other polynomials of the same degree
and leading term but with otherwise fewer summands and a hopefully more accessible
or more suitable form for the respective purpose (see [Ser68, p.346 ff.] for more infor-
mation). For instance, if a cubic polynomial t3 + λt2 + µt + ν with degree 3 is given,
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the substitution t→ t− 1
3
λ yields t3 + u1 + u2t, where λ, µ, ν, u1, u2 are real coefficients

[BG92, 5.36].

Besides the universal unfolding G(t, x) of g(t) = ±tk+1, there is another unfolding of g
that can be induced from a general smooth function f(t) with an Ak singularity at t0, i.e.,
f(t) = g(h(t)) + c locally for h(t) and c as in Definition 2.6.2. Let F(t, x) : R×Rn → R be
an unfolding of f(t). Then, F can be reduced to an unfolding of g(t) = ±tk+1 by [BG92,
p.104]

F(t, x) = F(h−1(t), x)− c.

Hence, for values of t near t0 = 0 and x0 ∈ Rn, it follows that F(t, x0) = g(t).

The unfolding F(t, x) of g can be written in terms of the universal unfolding G(t, x)
of g by

F(t, x) = G(a(t, x), b(x)) (2.28)

for x ∈ Rn, a smooth function a(t, x) : R× Rn → R with a(t, x0) = t for t close to t0 = 0,
and a smooth function b(x) : Rn → Rk with b(x) := (b1(x), b2(x), . . . , bk(x)), where it
is bj(x) = uj in Equation (2.27) and bj(x0) = 0 for all j ∈ {1, . . . , k} [BG92, 6.3]. Hence,
F(t, x) is a universal unfolding for g induced from G.

Note 2.6.4 The universal unfoldings we consider here are called versal unfoldings in the
book by Bruce and Giblin [BG92]. They distinguish between versal unfoldings and (p)versal
unfoldings. The main difference is that (p)versal unfoldings G(t, x) have no constant term
x1 in Equation (2.27), and hence G : R× Rk−1 → R. The constant is added when F(t, x)
is induced from G(t, x) by F(t, x) = G(a(t, x), b(x)) + c(x), where a and b are smooth
functions as above, and c : Rk−1 → R [BG92, 6.3p]. However, since we are interested in
the behavior of our families of circles where F and the derivative of F equal zero, it is
not reasonable to add a constant, since the resulting unfoldings would no longer be equal
to zero. This is also noted in [BG92, 6.4].

Given that both F(t, x) = G(a(t, x), b(x)) and G(t, u) are universal unfoldings of g(t),
we deduce that there is not only one universal unfolding for a function. The following
matrix criterion gives a necessary and sufficient condition for an unfolding F of a general
smooth function f to be universal.

Theorem 2.6.5 (Matrix criterion for universality) [BG92, 6.10]
Let f(t) have an Ak singularity at t0 and let F(t, x) be an n-parameter unfolding of f
with f(t) = F(t, x0). Then F(t, x) is a universal unfolding of f(t) at t0 if and only if the
following k × n-matrix MF(t0, x0) has rank k:

MF(t0, x0) =


∂F
∂x1

(t0, x0)
∂F
∂x2

(t0, x0) . . . ∂F
∂xn

(t0, x0)

∂2F
∂x1∂t

(t0, x0)
∂2F
∂x2∂t

(t0, x0) . . . ∂2F
∂xn∂t

(t0, x0)
...

...
∂kF

∂x1∂tk−1 (t0, x0)
∂kF

∂x2∂tk−1 (t0, x0) . . . ∂kF
∂xn∂tk−1 (t0, x0)

 .

Note that this is only possible for n ≥ k.

48



2.6. Type of points of regression in the envelopes

Using this knowledge for our strokes, we investigate whether F (t, x, y) from Equa-
tion (2.24) is a universal unfolding of F (t) = F (t, x0, y0) at t0, where (t0, x0, y0) is a point
of regression. For this, we set up the matrix

MF (t0, x0, y0) =

(
∂F
∂x

(t0, x0, y0)
∂F
∂y

(t0, x0, y0)
∂2F
∂x∂t

(t0, x0, y0)
∂2F
∂y∂t

(t0, x0, y0)

)
=

(
2(x0 − γx(t0)) 2(y0 − γy(t0))
−2γ′x(t0) −2γ′y(t0)

)
.

Whether this has full rank can be determined by calculating the determinant:

det(MF (t0, x0, y0)) = −4 (x0 − γx(t0)) γ′y(t0) + 4 (y0 − γy(t0)) γ′x(t0)) =

= 4 ·
〈(

x0 − γx(t0)
y0 − γy(t0)

)
,

(
−γ′y(t0)
γ′x(t0)

)〉
=

= 4 · 〈x0 − γ(t0), N(t0)〉
(2.25)
= 4 ·

〈
N(t0)

κ(t0)
, N(t0)

〉
= 4

1

κ(t0)
.

The last equality holds due to the arc-length parameterization of γ. The determinant is
non-zero due to the criterion given in Equation (2.25) for t0 at the points of regression.
The non-zero radius rc is equal to the reciprocal of the curvature of γ at t0. Hence,
the function F that defines the stroke is indeed a universal unfolding for points of regres-
sion of the envelope. This is used to identify the type of singularity at points of regression.

We study the connection between the discriminant envelopes Ed of a family of curves
and the results of unfoldings. For F (t) = F (t, x0, y0), we previously stated that F has
an A2 singularity at a point of regression (t0, x0, y0) if and only if κ′(t0) 6= 0 (see Equa-
tion (2.26)). Hence there exists a diffeomorphism h(t) connecting F (t) at t0 to g(t) = ±t3
at 0 by the definition of R-equivalence in Definition 2.6.2. Let G be a universal unfolding
of g(t). It follows from Bruce and Giblin [BG92, 6.14], [BG92, 6.13p & 6.14p] and Sec-
tion 2.4.2 that the discriminant envelopes of F and G are diffeomorphic.

We will present this result for the general functions f , F, g, and G shortly. For this,
we define a set MF consisting of all vectors in Rn+1 where the unfolding F equals zero:

MF = {(t, x) ∈ R× Rn : F(t, x) = 0}.

The set MG is defined analogously.

For our strokes, i.e., for the function F , it holds that (t0, x0, y0) ∈ MF for points
of regression (t0, x0, y0). Furthermore, the points of regression (t0, x0, y0) are regular
points of F by Equation (2.8). Also, let (0, u0, v0) be the points of interest for G with
(0, u0, v0) ∈MG. Those points (0, u0, v0) are regular values of G since we defined G to be
a universal unfolding of g(t) = ±t3. Therefore, in order to satisfy the rank criterion of
the matrix in Theorem 2.6.5, the derivatives of G with respect to both u0 and v0 cannot
be zero at the same time. It follows from Section 2.4.2 that MF and MG are parame-
terized 2-manifolds of R3 in a neighborhood U of (t0, x0, y0) and V of (0, u0, v0), respec-
tively. Furthermore, the projections π(MF ) ∈ R2 and π(MG) ∈ R2 for π : R× R2 → R2

with π(t, x, y) = (x, y) have critical values exactly for those (x, y) ∈ R2 that are in the
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discriminant envelopes of F and G, respectively:

EF
d =

{
(x, y) ∈ R2 : ∃t ∈ R with F (t, x, y) =

∂F

∂t
(t, x, y) = 0

}
and EG

d accordingly.

For general unfoldings F of a smooth function f and a universal unfolding G of
g(t) = ±tk+1, the discriminant envelopes are defined by

EF
d =

{
(x, y) ∈ R2 : ∃t ∈ R with F(t, x, y) =

∂F
∂t

(t, x, y) = 0

}
and EG

d accordingly. The discriminant envelopes EF
d and EG

d are locally diffeomorphic to
each other [BG92, 6.14].

Theorem 2.6.6 (Uniqueness of the discriminant set of universal unfoldings)
Let F(t, x) and G(t, u) be universal unfoldings for t ∈ R, x ∈ Rn and u ∈ Rk of R-
equivalent functions f(t) = F(t, x0) and g(t) = G(t, u0) at t0 and t1, respectively, both
having an Ak singularity there. Then, for suitable neighborhoods U ⊂ R × Rn with
(t0, x0) ∈ U and V ⊂ R × Rk with (t1, u0) ∈ V , there is a diffeomorphism φ : U → V ,
φ(t, x) = (a(t, x), b(x)) which satisfies a(t0, x0) = t1 and b(x0) = u0. Furthermore, this
diffeomorphism locally projects the parameterized manifolds MF and MG to one another:

φ(MF ∩ U) = MG ∩ V.

Additionally, the function b : π(U)→ π(V ) is a diffeomorphism that maps the critical set
of the projected manifolds onto each other:

b(EF
d ∩ π(U)) = EG

d ∩ π(V ).

Hence, the discriminant envelopes EF
d and EG

d are locally diffeomorphic around (t0, x0)
and (t1, u0). So we can speak of the one discriminant envelope of an n-parameter unfolding
of a function with Ak singularity up to a diffeomorphism.

Proof: (adaption of the proof in [BG92, 6.14p])
Let f and g be R-equivalent, i.e., f(t) = g(h(t)) for a diffeomorphism h : R → R
with h(t0) = t1. Furthermore, let G1(t, u) = G(h(t), u). In the following, we identify
two diffeomorphisms φ1 and φ2 such that the theorem holds for F = G1 with n = k and G
together with φ1 as well as for F and G = G1 together with φ2. Combining both cases
results in the diffeomorphism φ = φ1 ◦ φ2 : (V1 → V ) ◦ (U → V1) : U → V .

For φ1 : V1 → V , we use φ(t, u) = (h(t), u), which yields the diffeomorphism a(t, u) = h(t)
and the identity diffeomorphism b(u) = u.

The other component φ2 : U → V1 is more challenging. It addresses the case in
which t0 = t1 and f = g, since we assumed that f(t) = g(h(t)) by R-equivalence. Since G
is the universal unfolding of g, there are smooth functions a(t, x) and b(x) as defined in
Equation (2.28) such that F(t, x) = G(a(t, x), b(x)) with a(t, x0) = t for t close to t0. We
need to show that φ2 consists of a and b: φ2(t, x) = (a(t, x), b(x)).
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2.6. Type of points of regression in the envelopes

For this, we calculate the derivative of F with respect to xi for all i ∈ {1, . . . , n}

∂F
∂xi

(t, x) =
∂G
∂t

(t, u)
∂a

∂xi
(t, x) +

k∑
`=1

∂G
∂u`

(t, u)
∂b`
∂xi

(x) (2.29)

where G(t, u) = ±a(t, x)k+1 + b1(x) + b2(x)t+ · · ·+ bk(x)tk−1. Since G(t, u0) has type Ak
at t0, it follows that ∂G

∂t
(t, u0) = 0. Thus, if we set x = x0 and u = u0 on both sides, the

first summand on the right in Equation (2.29) vanishes. By taking the derivative k − 1
times with respect to t on both sides of Equation (2.29) and summing over Equation (2.29)
and all of its derivatives, we obtain

∂F
∂xi

(t0, x0) +

(
k−1∑
j=1

tj
∂1+jF
∂xi∂tj

(t, x0)

)
(t0) =

k∑
`=1

∂G
∂u`

(t0, u0)
∂b`
∂xi

(x0)

+
k∑
`=1

(
k−1∑
j=1

tj
∂1+jG
∂u`∂tj

(t, u0)

)
(t0)

∂b`
∂xi

(x0).

This equation can be expressed using the matrices MF(t, x0) for F(t, x) and MG(t, u0)
for G(t, u) as presented in Theorem 2.6.5:


t0

t1

...
tk−1


T


∂F
∂x1

(t, x0) . . . ∂F
∂xn

(t, x0)

∂2F
∂x1∂t

(t, x0) . . . ∂2F
∂xn∂t

(t, x0)
...

...
∂kF

∂x1∂tk−1 (t, x0) . . . ∂kF
∂xn∂tk−1 (t, x0)

 (t0)

︸ ︷︷ ︸
MF(t0,x0)

=

=


t0

t1

...
tk−1


T


∂G
∂u1

(t, u0) . . . ∂G
∂uk

(t, u0)

∂2G
∂u1∂t

(t, u0) . . . ∂2G
∂uk∂t

(t, u0)
...

...
∂kG

∂u1∂tk−1 (t, u0) . . . ∂kG
∂uk∂tk−1 (t, u0)

 (t0)

︸ ︷︷ ︸
MG(t0,u0)


∂b1
∂x1

(x0) . . . ∂b1
∂xn

(x0)

∂b2
∂x1

(x0) . . . ∂b2
∂xn

(x0)
...

...
∂bk
∂x1

(x0) . . . ∂bk
∂xn

(x0)


︸ ︷︷ ︸

Jb(x0)

.

We will apply the Inverse Function Theorem, which states that a continuously differen-
tiable function is locally invertible with a continuously differentiable inverse if the Jacobian
has a non-zero determinant (see for example [KP02] as a reference). To apply it to b, we
assume n = k (which is sufficient for our case of application since we are considering
A2 singularities for n = 2). With this, the matrix criterion of Theorem 2.6.5 indicates
thatMF(t0, x0) andMG(t0, u0) have full rank since they are universal unfoldings. There-
fore, the Jacobi matrix of b(x) also has full rank at x0. By the Inverse Function Theorem,
it can be concluded that b is a diffeomorphism.
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We use the same approach again and test the Jacobian Jφ2 of φ2(t, x) to see if φ2 is a
local diffeomorphism. It holds that

Jφ2(t0, x0) =

(
∂a
∂t

(t0, x0) •
0 Jb(x0)

)
.

We already know that Jb(x0) has full rank. In addition, a(t, x0) = t by assumption and
hence ∂a

∂t
(t, x0) = 1 and Jφ2 has full rank at (t0, x0). This shows that φ2(t, x) = (a(t, x), b(x))

is a local diffeomorphism and φ = φ1 ◦ φ2 locally maps MF ∩ U to MG ∩ V .

It remains to show that b locally maps the discriminant envelopes of F and G onto each
other. For this, we apply that, locally, φ is a diffeomorphism. It follows that ∂a

∂t
(t, x) 6= 0

for all (t, x) ∈ U , since the Jacobian Jφ has full rank. Furthermore, it holds

∂F
∂t

(t, x) =
∂G
∂t

(a(t, x), b(x))
∂a

∂t
(t, x)

∂2F
∂t2

(t, x) =
∂2G
∂t2

(a(t, x), b(x))

(
∂a

∂t
(t, x)

)2

+
∂G
∂t

(a(t, x), b(x))
∂2a

∂t2
(t, x)

⇒ ∂F
∂t

(t, x) =
∂2F
∂t2

(t, x) = 0 ⇔ ∂G
∂t

(a(t, x), b(x)) =
∂2G
∂t2

(a(t, x), b(x)) = 0.

Hence, the image point b(x) is inside the discriminant envelope EG
d ∩ π(V ) if and only if

the preimage point x is inside the intersection set EF
d ∩ π(U). This concludes the proof of

Theorem 2.6.6. �

We apply the theorem to our strokes and find that, up to a diffeomorphism, we can
consider the points of regression of the envelope in the universal unfolding of g(t) = ±t3 in-
stead of the critical points in the envelope of a stroke with constant radius rc and arc-length
parameterized curve γ. Function g has the universal unfolding G(t, x, y) = t3 + x+ yt.
Hence, the discriminant set EG

d is given by [BG92, 6.17p]

EG
d = {(x, y) ∈ R2 : ∃t ∈ R with G(t, x, y) =

∂G

∂t
(t, x, y) = 0}

= {(x, y) ∈ R2 : ∃t ∈ R with t3 + x+ yt = 3t2 + y = 0}
= {(x, y) ∈ R2 : ∃t ∈ R with y = −3t2, x = −t3 − yt = 2t3}
= {(x, y) ∈ R2 : 4y3 + 27x2 = 0}.

The equation 4y3 + 27x2 = 0 has a critical point, i.e., a singularity, at zero, which is the
point of regression of G (see Figure 2.12). This singularity is called an ordinary cusp.

Hence, up to a diffeomorphism, the envelopes EG
d and EF

d for F (t, x, y) as in Equa-
tion (2.24) have an ordinary cusp at points of regressions (t0, x0, y0) with A2 singularity.

Corollary 2.6.7 Let γ : I → R2 be an arc-length parameterized curve, rc ∈ R>0 and
F (t, x, y) = ‖(x, y)T −γ(t)‖2−r2c . Then the discriminant envelope Ed of the family of cir-
cles F of F has an ordinary cusp at a point of regression (t0, x0, y0) with ∂3F

∂t3
(t0, x0, y0) 6= 0,

i.e., at an A2 singularity of the stroke’s boundary.
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2.6. Type of points of regression in the envelopes

Figure 2.12: The ordinary cusp at zero of 4y3 + 27x2 = 0.

So far, we have only applied the theory of unfoldings to strokes with a constant ra-
dius function r(t) ≡ rc ∈ R>0. Now, we apply the above results to general radius func-
tions r : I → R>0 and non arc-length parameterized curves γ in the definition of F (t, x, y).
The points on the envelope of a stroke are given as in Equation (2.11) for limiting en-
velopes by

P±(t) = γ(t)− r(t)r′(t)

‖γ′(t)‖2
γ′(t)± r(t)

‖γ′(t)‖2
√
‖γ′(t)‖2 − r′(t)2 (γ′(t))

⊥
.

Additionally, the points of regression on the envelope are exactly those where
F (t0, x0, y0) = ∂F

∂t
(t0, x0, y0) = ∂2F

∂t2
(t0, x0, y0) = 0.

We assume that ∂3F
∂t3

(t0, x0, y0) 6= 0 for (t0, x0, y0), i.e., that F has an A2 singularity
at (t0, x0, y0). To determine if F is a universal unfolding of F (t, x0, y0) and therefore
diffeomorphic to the universal unfolding G(t, x, y) = t3 + x+ yt of g(t) = ±t3, we employ
the matrix criterion from Theorem 2.6.5. Thus, we calculate

MF (t0, x0, y0) =

(
∂F
∂x1

(t0, x0, y0)
∂F
∂x2

(t0, x0, y0)
∂2F
∂x1∂t

(t0, x0, y0)
∂2F
∂x2∂t

(t0, x0, y0)

)
=

(
2(x0 − γx(t0)) 2(y0 − γy(t0))
−2γ′x(t0) −2γ′y(t0)

)
.

This matrix is equivalent to the one for a constant radius function rc. Therefore, com-
puting the determinant yields the same result:

det(MF (t0, x0, y0)) = 4 ·
〈(

x0
y0

)
− γ(t0), (γ

′(t0))
⊥
〉
.

We insert the coordinates

(
x0
y0

)
= P±(t0) of the points of regression (t0, x0, y0) and get

1

4
det(MF ) =

〈(
x0
y0

)
− γ(t0), (γ

′(t0))
⊥
〉

=

=

〈
−r(t0)r

′(t0)

‖γ′(t0)‖2
γ′(t0)±

r(t0)

‖γ′(t0)‖2
√
‖γ′(t0)‖2 − r′(t0)2(γ′(t0))⊥, (γ′(t0))⊥

〉
=

= −r(t0)r′(t0)
〈

γ′(t0)

‖γ′(t0)‖
,
γ′(t0)

⊥

‖γ′(t0)‖

〉
± r(t0)

√
‖γ′(t0)‖2 − r′(t0)2

〈
γ′(t0))

⊥

‖γ′(t0)‖
,
γ′(t0))

⊥

‖γ′(t0)‖

〉
= −r(t0)r′(t0)〈T (t0), N(t0)〉 ± r(t0)

√
‖γ′(t0)‖2 − r′(t0)2〈N(t0), N(t0)〉

= r(t0)
√
‖γ′(t0)‖2 − r′(t0)2.
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Chapter 2. Continuous Model

This value is non-zero because the radius is always greater than zero and because Equa-
tion (2.2) holds. Hence, F is a universal unfolding and the points of regression with
A2 singularity are diffeomorphic to ordinary cusps even in the case of a non-constant
radius function r and a non arc-length parameterized curve γ.

Proposition 2.6.8 (A2 singularities are cusps)
Let F be the family of curves containing all circles F (t, x, y) = ‖(x, y)T − γ(t)‖2 − r(t)2
for a curve γ : I → R2 and a radius function r : I → R defining a stroke. Then the
discriminant envelope Ed of F has an ordinary cusp at an A2 singularity.

2.6.2 A≥3 singularities and a connection to catastrophe theory

So far, we have shown that envelopes have cusps at points of regression with an A2 singu-
larity. Now, we study envelopes with an A≥3 singularity at a point of regression (t0, x0, y0).

For these points, it holds that in addition to F = ∂F
∂t

= ∂2F
∂t2

= 0, the third derivative of F

with respect to t is zero, i.e., ∂3F
∂t3

= 0.
The main results of this section will be a classification of A≥3 singularities and a

connection of strokes to swallowtail surfaces. The connection of strokes to swallowtail
surfaces will be essential for the development of algorithmic ideas on how to conformally
map a tiled strip to a stroke with A2 singularities on the boundary. We will conjecture,
however, that A≥3 singularities are negligible in the sense that our algorithm does not
need to treat them differently than regular envelope points (see Section 4.3.2).

As in the previous section, we start with a stroke s defined by a curve γ and a constant
radius rc. Then, the envelope curves of s consist of two parallel curves γ‖±rc defined in
Section 2.3.1 by

γ‖±rc(t) = γ(t)± rc
‖γ′(t)‖

γ′(t)⊥.

By Theorem 2.3.3, the parallel envelope has a point of regression (t0, x0, y0) if and only if
it has a common point with the evolute ν of γ,

ν(t) = γ(t) +
1

κ(t)‖γ′(t)‖
γ′(t)⊥.

Therefore, at points of regression, it holds ±rc = 1
κ(t)

, where κ is the curvature of γ.

For an A≥3 singularity (t0, x0, y0) of this kind, it holds by Equation (2.26) that the cur-

vature κ of γ has vanishing derivative at t0 since ∂3F
∂t3

(t0, x0, y0) = 0 if and only if κ′(t0) = 0.
If κ(t0) 6= 0, then γ(t0) is an extremum of curvature of γ. If κ′(t0) = κ(t0) = 0, then γ
is either a straight line, a circle, or has an inflection point at γ(t0). By Section 2.5,
strokes with a constant radius of rc have a boundary with no point of regression when
the curvature of γ is zero because the criterion ±rc = 1

κ(t)
is never satisfied for finite rc

and κ(t) = 0. Hence, A≥3 singularities only occur at points of extreme curvature of γ,
provided that the envelope curves are the parallels of γ.

Lemma 2.6.9 For a stroke defined by a curve γ and a constant radius rc, its envelope
curve γ‖±rc has an A≥3 singularity at parameter t only if γ has an extremum of curvature
there.
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2.6. Type of points of regression in the envelopes

In this case, the evolute ν itself has a singularity at (t0, x0, y0), since the tangent of
curve γ changes sign at points of extreme curvature. According to Bruce and Giblin
[BG92, p.34], the singular point of the evolute is a cusp. To visualize this, we consider
the example of a curve γ that is part of an ellipse, as in Benchmark Example 2.1.9.

Example 2.6.10 Let γ be a part of an ellipse with a, b > 0, defined by

γ(t) =

(
a cos(t)
b sin(t)

)
for t ∈

(
π

2
,
3π

2

)
.

For t ∈
(
π
2
, 3π

2

)
, the curvature κ(t) of the ellipse has a extremum at t = π given by

κ(t)

∣∣∣∣
t=π

=
det (γ′(t), γ′′(t))

‖γ′(t)‖3

∣∣∣∣
t=π

=
ab sin(t)2 + ab cos(t)2√
(b2 cos(t)2 + a2 sin(t)2)

3

∣∣∣∣
t=π

=
a

b2

The derivative of the curvature at t = π equals zero:

κ′(t)

∣∣∣∣
t=π

=
3ab(−a2 + b2) cos(t) sin(t)√

(b2 cos(t)2 + a2 sin(t)2)
5

∣∣∣∣
t=π

= 0.

Depending on the radius rc = 1
κ(t)

of the parallel to the curve γ, three distinct cases can
be distinguished:

1. For rc <
b2

a
= 1

κ(π)
, the parallel γ‖rc has no points of regression.

2. For rc >
b2

a
= 1

κ(π)
, γ‖rc has two A2 singularities being cusps (see Corollary 2.6.7).

3. For rc = b2

a
= 1

κ(π)
, the point of regression has type A≥3 since κ′(π) = 0, and the

ellipse has an extremum of curvature.

In case 3, the parallel γ‖rc for rc = b2

a
meets the evolute ν of γ precisely at a joint

singular point of both curves. All cases are displayed in Figure 2.13 for a = cosh(0.3)
and b = sinh(0.3).

Figure 2.13: A set of parallels γ‖rc of an ellipse γ.

55



Chapter 2. Continuous Model

To determine the properties of a point of regression with an A≥3 singularity on a
parallel envelope γ‖rc , we follow Bruce and Giblin [BG92, p.129, iii)] and compare the
curves and their parallels to sections with so-called swallowtail (or dovetail) surfaces.
Figure 2.14 shows a swallowtail surface as defined by Zeeman [Zee77] and Thom [Tho75]
from different perspectives. The surfaces themselves give an explanation for their name
[Zee77, p.25]: they look like the tails of a swallow (or dove).

Figure 2.14: A swallowtail surface from different perspectives.

Note 2.6.11 The notion of a swallowtail comes from catastrophe theory introduced by
Thom in the 1960s [Zee79]. Zeeman has further developed catastrophe theory, convinced
that it “will prove to be even more far-reaching” [Zee79, p.12]. Thom describes catastrophe
theory as the study of discontinuities of a model of a changing system [Tho75, 1.4.A.] A
manifold represents the space of observed states, and catastrophes occur when the state
changes and the system has a discontinuity. Thom [Tho75] and Zeeman [Zee77] give some
applications of catastrophe theory, for example, in the fields of biology, psychology, and
physics.

According to Zeeman [Zee77, p.23 ff.] and Thom [Tho75, p.64f.] a swallowtail surface
is the discriminant surface of a smooth 3-dimensional surface M in the 4-dimensional
space C×X, where C is a 3-dimensional parameter space, and X is a 1-dimensional state
space. The surface M is the set of singular values ∂f

∂x
(u, v, w, x) = 0 of a smooth function

f(u, v, w, x) =
1

5
x5 + ux2 + vx+ w.

This surface is the zero set of the 3-dimensional discriminant of ∂f
∂x

(u, v, w, x) = 0:

0 = 26u4w − 4u3v2 − 128u2w2 + 144uv2w − 27v4 + 256w3.

In our setting, a swallowtail surface results from the smooth function F defined as

above by F (t, x, y, r) =
∥∥(x, y)T − γ(t)

∥∥2 − r2. The 3-dimensional parameter space con-
sists of points (x, y, r) ∈ R3 while the state space consists of parameters t ∈ R. The swal-
lowtail surface is given by the singular values of ∂F

∂t
(t, x, y, r) for which also F (t, x, y, r) = 0.

This corresponds to the discriminant envelopes (see Definition 2.2.2) for all r ∈ R. We call
this swallowtail surface S. It can be deduced from Theorem 2.4.2 and Section 2.3.1 that S
consists of all parallels γ‖r(t) =

(
xr(t)
yr(t)

)
of curve γ for r ∈ R, lifted to (xr(t), yr(t), r)

T :

S :=

{
(x, y, r) ∈ R3

∣∣∣∣ (x, y) = (xr(t), yr(t)) for γ‖r(t) =

(
xr(t)
yr(t)

)
, t ∈ I

}
. (2.30)
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2.6. Type of points of regression in the envelopes

Figure 2.15 partially shows the surface S generated by the ellipse γ(t) =

(
a · cos(t)
b · sin(t)

)
from the previous Example 2.6.10, where a = cosh(0.3) and b = sinh(0.3). Curve γ is the
intersection of the swallowtail surface S with the xy-plane at rc = 0 and appears as a
dark blue curve in the left picture. Further marked curves are sections of S corresponding
to parallels γ‖rc with different kinds of singularities for some rc 6= 0. The color coding in
Figure 2.15 corresponds to the color coding in Figure 2.13 for the three types of parallels
distinguished in Example 2.6.10.

Figure 2.15: Sections of a swallowtail surface with planes for different values of rc.

By definition of S in Equation 2.30, the surface consists of all parallels γ‖rc of γ lifted
to the third dimension by the respective rc ∈ R. Hence, if we take the section of S
with the plane at z = rc parallel to the xy-plane, we obtain the parallel γ‖rc as curve of
intersection. As a consequence, the sections of S with two planes at z = rc and z = −rc
for some rc ∈ R\{0} are the lifted envelope curves of γ. If the sections are projected
onto the xy-plane, the parallels γ‖±rc are obtained, which are the envelope curves of the
stroke s defined by the curve γ and the constant radius rc.

There are sections of the surface without singularities corresponding to envelope curves
without points of regression for all parameters t ∈ I. This occurs if and only if γ‖rc has no
common point with the evolute ν of γ, i.e., for all t ∈ I it holds rc 6= 1

κ(t)
, or equivalently,

there is no t ∈ I such that γ‖rc(t) = ν(t). In Figure 2.15, the light blue sections correspond
to the parallels of the ellipse with rc <

1
κ(π)

.

Sections of S and the corresponding parallels γ‖rc have cusps if (t0, x0, y0) has an
A2 singularity and the parallel and the evolute of γ meet, i.e, there exists a value t ∈ I
such that γ‖rc(t) = ν(t) (see Theorem 2.3.3). In Figure 2.15, the purple curve represents
a section containing two cusps for rc >

1
κ(π)

. The cusps are located at the points where
the section plane intersects the cuspidal edges of the swallowtail surface. According to
Thom [Tho75, p.65], the cuspidal edges of the swallowtail surface are the points where
∂f
∂x

(a, b, c, x) = 0 has a triple root in x. In other words, they are the points where ∂f
∂x

=
∂2f
∂x2 = ∂3f

∂x3 = 0. This corresponds to the spatial curve (−3x4, 8x3,−6x2)T . The curve is
illustrated in green in Figure 2.16a, along with the swallowtail surface. Since all lifted
parallels with cusps are sections of a plane with the swallowtail surface S, where the cusps
are points on the cuspidal edges, the projection of the cuspidal edges onto the xy-plane is
the locus of the projected cusps of parallels of γ in the plane. By Theorem 2.3.3, the locus
of all cusps is the evolute ν of γ. Therefore, the evolute ν is the projection of the cuspidal
edges onto the xy-plane. Figure 2.16b displays the surface S for γ from Example 2.6.10
with its evolute.
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Chapter 2. Continuous Model

(a) Cuspidal edges (b) Evolute

Figure 2.16: Cuspidal edges of the swallowtail surface and the curve’s evolute.

Therefore, the point at which the two cuspidal edges intersect on surface S coincides
with the location of the cusp of the lifted evolute ν on the swallowtail surface. We call
this point z? ∈ R3. This point is derived from the singular point (t?, x?, y?) of type A≥3,
where ν(t?) has a cusp and γ(t?) has an extremum of curvature κ(t?). At this point z?,
the two singularities on the intersection curve coming from a cuspidal edge collapse to
one point. Furthermore, the section of S with the xy-plane for r? = 1

κ(t?)
marks the tran-

sition from the section curves with cusps to the regular section curves. In Figure 2.15,
the section curve corresponding to r? = 1

κ(π)
is highlighted in red.

According to Thom [Tho75, p.65], z? on S has infinite curvature, i.e., the parallel
envelope curve γ‖r?(t

?) has curvature κr?(t
?) =∞, where κr? is the curvature of γ‖r? .

This answers the question about the nature of a point on the parallel envelope with
an A≥3 singularity: the parallel has a point of infinite curvature there. From the nature
of a swallowtail surface, we deduce that an A≥3 singularity is locally the only point of
infinite curvature of a parallel.

Lemma 2.6.12 (Singular boundary points of strokes with constant radius rc)
For a stroke that is defined by the curve γ and has a constant radius rc, the A2 singularities
of the envelope of the stroke are cusps, whereas the A≥3 singularities are points on the
stroke’s envelope that have infinite curvature.

The evolute ν of γ is the locus of all singular points on the envelope and it is the
projection of the cuspidal edges of the swallowtail surface S corresponding to the stroke.
The cusp of the evolute ν corresponds to the A≥3 singularity, which is the projection of
the junction of the cuspidal edges on S.

We will conjecture in Section 4.3.2 that the algorithm that conformally maps a strip
to a stroke can neglect A≥3 singularities. However, the connection between the parallel
envelope curves and a swallowtail surface will be very useful if the boundary of a stroke
has cusps. It follows from the nature of a swallowtail surface that cusps always arise in
pairs, since they originate from a cut through the two cuspidal edges of S [Tho75, p.65].
Exceptions occur if the stroke begins or ends shortly before or after an extremum of cur-
vature of γ, such that the parallel meets only one of the two cusps. In Sections 4.3.2
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2.6. Type of points of regression in the envelopes

and 5.4.2, we will apply this knowledge to develop a scheme for mapping a strip to a
stroke when the stroke has cusps on the boundary. The scheme will be based on the
projection of the swallowtail surface onto the xy-plane.

So far, we have only analyzed strokes with a constant radius function, resulting in enve-
lope curves parallel to γ. Now we move on to strokes with non-constant radius functions r.
We already know that their points of regression of type A2 are also cusps. However, it is
not evident that a swallowtail surface related to γ exists, which would result in sections
projected to the xy-plane corresponding to the envelope curves w±(t) = (wx±(t), wy±(t))T .

Figure 2.17 indicates that the lifted envelope curves w`±(t) = (wx±(t), wy±(t),±r(t))T
for t ∈ I typically do not lie on the swallowtail surface S of γ defined in Equation (2.30)
for parallels. The figure displays the swallowtail surface S from different perspectives,

which consists of the blue curve γ(t) =

(
t− 1

3(t− 1)2

)
for t ∈ [0, 2] from Benchmark Exam-

ple 2.1.10 and of its parallels. The red envelope curve w`+(t) as defined in Equation (2.13)
for r(t) = 1.4 · cos( t

4
− 1)2 is not situated on S. A computational proof of this is given by

showing that there is no real parameter t for which the point w`+(1) lies on the section
at rc = r(1) with the surface S:

@t ∈ R : w`+(1) =

xr(1)(t)yr(1)(t)
r(1)

 for γ‖r(1) =

(
xr(1)(t)
yr(1)(t)

)
.

We use Mathematica [WR23] to search for real parameters t where (w+)x(1)
?
= xr(1)(t)

and (w+)y(1)
◦
= yr(1)(t). The Mathematica function Solve returns t = 0.950746 for the

equation ? and t ∈ {0.615878, 0.97107, 1.02893, 1.38412} for the equation ◦. Since there
is no common root, it follows that the point w`+(1) on the lifted envelope does not lie
on Sr(1).

Figure 2.17: The lifted red envelope curve for non-constant radius does not lie on S.

Thus, we need to define a surface Sr for a non-constant radius function r such that the
envelope curves w± are projected sections of Sr. We define it analogously to the definition
of S. For this, we reformulate the definition of S in (2.30) as a surface Src between two
lifted parallels γ‖rc and γ‖−rc for a constant radius rc 6= 0:

Src :=


xy
z

 ∈ R3

∣∣∣∣∣∣
(
x
y

)
= λγ‖rc(t) + (1− λ)γ‖−rc(t)

z = λrc + (1− λ)(−rc)
, λ ∈ [0, 1], t ∈ I

 . (2.31)
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Replacing λ ∈ [0, 1] with λ ∈ R restores the definition of S for an arbitrary rc 6= 0. The
surface Sr between the two envelope curves w+ and w− for the curve γ and a non-constant
radius function r is defined analogously to Src as

Sr :=


xy
z

 ∈ R3

∣∣∣∣∣∣
(
x
y

)
= λw+(t) + (1− λ)w−(t)

z = λr(t) + (1− λ)(−r(t))
, λ ∈ [0, 1], t ∈ I

 . (2.32)

Figure 2.18 shows the surface Sr from different perspectives for γ(t) = (t− 1, 3(t− 1)2)T

and r(t) = cos(t/4 − 1)2 as in Benchmark Example 2.1.10. The blue line represents γ,
while the two red lines correspond to w±. The picture in the middle shows that Sr has
no cuspidal edges, although the picture on the left shows that from a perspective parallel
to and above the xy-plane, the folds of the surface still appear to be cuspidal edges. We
showed in Section 2.6.1 that the singularities of the envelope are indeed cusps. Thus, the
two folds can be seen as two independent but merging cusp-catastrophes, which are defined
as the zero set of the derivative of f(a, b, x) = 1

4
x4 − ax − 1

2
bx2, i.e., by ∂f

∂x
(a, b, x) = 0

[Zee77, p.27, Tab.3], [Zee77, p.6, Fig.4].

Figure 2.18: Surface Sr for the stroke from Benchmark Example 2.1.10.

The right picture reveals that the curve γ itself does not lie entirely on the surface Sr.
But this is not problematic, because for our model of strokes only the projections of the
surfaces Sr and Src are important.

The characteristics of the projection of Sr and Src are related to the location of points
of regression on the stroke’s envelopes. For strokes with constant radius rc, cuspidal
edges and A≥3 singularities with infinite curvature only occur around points of extreme
curvature of γ, i.e., when κ(t) 6= 0 and κ′(t) = 0. For strokes with a non-constant radius
function r, singular boundary points are not restricted to occur around curve points of
extreme curvature as in Section 2.5. It is also possible that κ = 0, and thus γ is a straight
line, a circle, or has an inflection point.

To date, our research only covers the case of the A≥3 singularity in the Benchmark
Example 2.1.10, which is associated with an extremum of curvature of the curve γ and
which never has zero curvature in the considered parameter interval I. The entire range
of possibilities in which the envelopes of strokes of non-constant radius may encounter
cusps or A≥3 singularities is left to future research.
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2.6. Type of points of regression in the envelopes

The projection of a swallowtail surface around a curve point with extreme curvature
maps the cuspidal edges/folds to two- and threefold regions in the stroke. Both projections
of Examples 2.6.10 and 2.1.10 are shown in Figure 2.19.

Figure 2.19: Projection of the surfaces Src (Example 2.6.10) and Sr (Example 2.1.10).

Figure 2.20 shows an example of how these regions arise: a swallowtail surface folds
for the first time when the envelope curve meets its first cusp and changes direction.
When the curve of the envelope reaches the second cusp, it changes direction so that it
corresponds to the direction of the blue curve γ again, causing the surface to fold a second
time.

Figure 2.20: Surface Src evolving for γ from Example 2.6.10 and rc = 1
4

rotated by π
2
.

This results in three different regions in the projection of the swallowtail surface: a
twofold region, a threefold region, and a region without multiple layers. The projections
of Sr and Src in Figure 2.19 both show the envelope curves in red and the curve γ in
blue. By definition of Sr and Src in the respective Equations (2.32) and (2.31), the pro-
jected surfaces consist of all points that are a linear interpolation between two respective
boundary points w+(t) and w−(t) of the same parameter t ∈ I.

In Sections 4.3.2 and 5.4.2, we will revisit the projected swallowtail surfaces near points
of extreme curvature on γ. We will discuss how to detect the different regions of one, two,
or three layers when drawing a stroke, and how these regions can be used to find a map
from the ornamental strip to the stroke in the case of singular boundary points.
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The aim of our research is to compute a real-time conformal map from a tiled ornamental
strip to a stroke drawn by the user. In the previous chapter, we extensively discussed the
continuous stroke model, which provided us with a mathematical understanding of the
stroke region to which we want to conformally map the tiled strip. We already defined
conformal maps in Definition 1.1.2 as maps that preserve oriented angles between curves
and infinitesimal shapes, i.e., as local similarity transformations. But there are several
equivalent definitions of continuous conformal maps given by Crane [Cra19]: conformal
maps are angle preserving, they preserve infinitesimal circles, they are analytic maps,
they can be written as the sum of conjugate harmonic functions, and even more. These
different definitions of conformality will be important again in Chapter 4.

In this chapter, we will examine the strip and the stroke as simply connected planar
domains. We will study properties of existing results on conformal maps between them
and their relevance to our task. In Section 3.1, we will see that the Riemann mapping
theorem ensures the existence of a conformal map between the strip and the stroke. If
three points are specified on the boundary of the strip to map to three points on the
stroke’s boundary, a conformal map uniquely extends to the boundaries of the domains.
In the interior, the map is also unique.

In Section 3.2, we will investigate conformal maps between quadrilaterals with four
designated vertices and rectangles, where the vertices are mapped to the corners of the
rectangle. These conformal maps exist only if the rectangle has a certain side-length-
ratio, known as the conformal modulus. The conformal modulus characterizes conformal
equivalence classes of quadrilaterals whose respective conformal image rectangles are all
similar. We will examine the properties of the conformal modulus in order to determine
the length of the rectangular strip that can be conformally mapped to a stroke. We will
see that the conformal modulus must become larger as the stroke gets longer. Moreover,
we will investigate the exact conformal map of a half annulus to a rectangle. This map
will serve as an accuracy test for our algorithm in Chapter 5.

In Section 3.3, we will study a generalization of the Schwarz reflection principle ac-
cording to which a conformal map can be extended beyond the boundary of a domain. We
will see that, for a boundary consisting of analytic curves, points located infinitesimally
close to the boundary outside the domain can be reflected at the local tangent to the
curve. The reflected point is located inside the domain, and it is possible to compute
its conformal image. Afterwards, the resulting image is reflected again at the boundary
of the target region. The resulting point outside the target domain is defined to be the
conformal image of the point located outside the preimage domain. In Section 4, we will
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show that the envelopes of our strokes consist of analytic curves for at least C2-continuous
curve γ and radius function r. Hence, this method can be applied for our strokes.

3.1 Conformality of Jordan domains

The stroke and the strip are bounded regions. The strip’s boundary is a rectangle con-
sisting of two straight line segments parallel to the x-axis and the two perpendicular line
segments parallel to the y-axis that join the upper and lower line segments. This rectan-
gle is the topological image of a circle and, thus, a Jordan curve in accordance with the
definition by Lehto and Virtanen [LV73, Section 1.3].

The stroke’s boundary was discussed in Chapter 2. We saw that the theory about
envelopes of a family of circles allows us to characterize the boundary of a stroke in
detail. If the stroke is free of self-intersections and the envelopes have no singularities,
the stroke is also bounded by plane Jordan curves, namely by the envelope together with
the circular arc segments contained in C(0) and C(T ) at the beginning and end of the
stroke, as defined in Definition 2.2.5. For now, we assume that the stroke does not have
any self-intersections or singularities. The special cases will be covered in Sections 4.3
and 5.4.

Thus, the stroke and the strip are Jordan domains, i.e., they are simply connected
planar domains bounded by Jordan curves [LV73, 1.4].

From the Riemann mapping theorem it follows that all Jordan domains can be con-
formally mapped to each other:

Theorem 3.1.1 (Riemann mapping theorem) [LV73, 2.1]
Every open simply connected domain of the plane that is neither empty nor the entire
plane can be conformally mapped onto the open unit disc.

By taking a detour via the unit disk, all Jordan domains are conformally equivalent.
However, the very powerful Riemann mapping theorem is not constructive, and we have
to investigate further to find out more than existence.

Under the assumption that the preimage and image regions are both simply connected
Jordan domains, we can apply a theorem that has various names, for example Osgood-
Carathéodory theorem [GS16, Section 2], Carathéodory’s theorem [Car98, Section 137]
or Theorem on correspondence of boundaries [LV73, Section 2.2].

Theorem 3.1.2 (Carathéodory’s theorem)
Every conformal map between simply connected Jordan domains, which are bounded by
Jordan curves, can be extended to a homeomorphism of the boundaries, i.e., to a bijective
continuous map on the closed domains with continuous inverse.

If three specified points on the preimage and image boundary are mapped to each
other, this map is even unique if the triples of points are positively oriented on the Jordan
curves. Three points p1, p2, p3 are positively oriented on a Jordan curve if there is a
homeomorphism h of the Jordan curve to the unit circle for which the arguments of the
image points increase in a range of 2π. This means that for three points p1, p2, p3 on the
Jordan curve, the angles αi = arg(h(pi)) for i ∈ {1, 2, 3} satisfy α1 < α2 < α3 < α1 + 2π
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[LV73, Section 1.4]. The extended conformal map uniquely maps the designated oriented
points on the preimage Jordan curve to those on the boundary of the image domain.

Proposition 3.1.3 (Uniqueness of conformal extension) [LV73, 2.2]
Let D and D′ be two Jordan domains, and let p1, p2, p3 and q1, q2, q3 be positively oriented
on the bounding Jordan curves δD and δD′, respectively. Then there exists a uniquely
defined conformal map between the domains, which maps the boundary points pi to the
boundary points qi for i = 1, 2, 3.

Figure 3.1: Extended conformal map w determined by triples of boundary points.

We call the extended conformal map w : D → D′. Figure 3.1 gives a visualization of
map w. It conformally maps the open Jordan domain D to D′ while, on the boundaries,
it is a homeomorphism. It is unique due to two dedicated triples of positively oriented
points on the boundaries that are mapped to each other.

This means that the conformal map between the rectangular strip and the stroke can
be uniquely extended to the boundaries of three points on the rectangle’s and the stroke’s
boundaries are respectively selected to be mapped to each other. The question is how to
choose these points and what effect this choice has on the resulting map.

3.2 Quadrilaterals and conformal modulus

It is intuitive to choose three of the corner points of the rectangular strip as preimage
points. On the stroke’s boundary, it is reasonable to choose three of the four points where
the envelope curves meet the circular arcs of C(0) and C(T ), i.e., the first and last circles
of the stroke. See Figure 2.5 for a reminder.

From Proposition 3.1.3, we know that the mapping is unique as soon as three corners
and their respective image points are chosen. Hence, it is not possible to choose where the
fourth corner of the rectangle will be mapped to once the three image points are fixed.

So far, we did not specify the length of the tiled strip that is mapped to the stroke.
Figure 3.2 shows two versions of Benchmark Example 2.1.7, and it is evident that the
length of the strip has a significant impact on the result. The strip mapped to the stroke
in the left picture was half as long as the preimage strip in the right picture.

In conformal mapping theory, it is well known that every Jordan domain with four
specified vertices belongs to a specific conformal equivalence class. The length-ratio of
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Figure 3.2: Two ornamental strips with different lengths mapped to the same stroke.

the rectangle that the domain can be conformally mapped to in such a way that domain
vertices map to rectangle vertices defines this equivalence class. To examine the applica-
bility of this theory to our strokes and rectangular strips, we introduce quadrilaterals and
conformal moduli.

Definition 3.2.1 (Quadrilaterals) [LV73, 2.3]
Let W be a Jordan domain bounded by a Jordan curve ∂W , and let z1, z2, z3, z4 be four
positively-oriented points on ∂W . Then the point set Q(z1, z2, z3, z4), consisting of all
points within the closed Jordan domain W , is called a quadrilateral. The points z1, z2, z3, z4
are called vertices. They divide the quadrilateral’s boundary ∂W into four Jordan arcs
which are called the sides of Q(z1, z2, z3, z4). To distinguish pairs of “opposite” sides, the
arcs connecting z1 with z2 and z3 with z4 are called a-sides, and the arcs connecting z2
with z3 and z4 with z1 are called b-sides.

As we already know, it is not possible to map any two quadrilaterals conformally
to each other since the image of the fourth vertex is already determined by the first
three image-preimage pairs. For this reason, the quadrilaterals are divided into conformal
equivalence classes [LV73, 2.3].

Definition 3.2.2 (Conformal equivalence class)
A conformal equivalence class contains all quadrilaterals Q(z1, z2, z3, z4) that can be con-
formally mapped to each other.

To put a finger on which quadrilaterals are in one equivalence class, we investigate
the conformal map m of a quadrilateral Q(z1, z2, z3, z4) to a rectangle which maps the
vertices of Q to the corners of the rectangle. We follow some intermediate steps [LV73,
2.4], [Con19]. Figure 3.3 presents a visual overview of the entire map m.

First, the quadrilateral Q(z1, z2, z3, z4) is mapped onto the unit disk D. The Rie-
mann mapping theorem 3.1.1 states that there is a map F : Q(z1, z2, z3, z4)→ D that
conformally maps Q to D. By Proposition 3.1.3, this map F is even unique if we specify
that

F (z2) = −i, F (z3) = i, F (z4) = −1.

Then, z1 is mapped to some point w on the unit circle between −1 and −i because the
conformal mapping preserves the orientation of vertices on the boundaries.
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Figure 3.3: Unique conformal map m of a quadrilateral to a rectangle.

Second, we define an automorphism of the disk with fixed points i and−i that maps−1
and w to complex conjugate points w1 and w1, respectively. This is achieved by the Möbius
transformation

fa(z) =
z − ia
1 + iaz

where a ∈ (−1, 0). The transformation fa maps −1 to a point between −1 and i
on the unit circle ∂D. There exists a unique value of a for which fa(−1) = w1 and
fa(w) = w1, since Möbius transformations leave cross-ratios of four points on a circle in-
variant [RG11, p.316]. This value of a ∈ (−1, 0) depends on the location of F (z1) = w
on the boundary of D and, consequently, on the position of z1 in Q. Once w is known, it
holds

(i,−1;w,−i) !
= (i, w1;w1,−i)

where the left value is a known constant and the right cross-ratio has one unknown variable
ϕ ∈ (π/2, π), given w1 = eiϕ and w1 = ei(2π−ϕ). This equation can be uniquely solved for ϕ.

Next, we use a fractional linear map d to map the unit disk D to the upper half
plane H+:

d(z) = i · 1− z
1 + z

.

This map d maps 1 to 0 and ±i to ±1. Hence, the right part of the unit circle between −i
and i is mapped to the real line between −1 and 1, while the left part is symmetrically
mapped to the real intervals (−∞,−1) and (1,∞), respectively. The point −1 is mapped
to infinity. Hence, there is a real constant b > 1 for which

d(w1) = −b, d(−i) = −1, d(i) = 1, d(w1) = b.

As a last step, we replace b with 1
k

for consistency with the literature. To map the
upper half plane to a rectangle, we use elliptic functions. According to [LV73, 2.4] and
[Neh75, p.280 ff.], the appropriate conformal map is given by the inverse of the Jacobi
elliptic function sn(z, k) also written as snk(z):

sn−1k (z) = sn−1(z, k) :=

∫ z

0

ds√
(1− s2)(1− k2s2)

.

It conformally maps the upper half plane to a rectangle with corners −K, K, K + iK ′

and −K + iK ′ where

K =

∫ 1

0

ds√
(1− s2)(1− k2s2)

, K ′ =

∫ 1

0

ds√
(1− s2)(1− (1− k2)s2)

. (3.1)
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Thereby, it holds

sn−1(− 1/k, k) = −K + iK ′, sn−1(1/k, k) = K + iK ′,

sn−1(−1, k) = −K, sn−1(1, k) = K.

For further details on the Jacobi elliptic sine function sn and a specific conformal mapping
from an ellipse to an infinite strip, see Appendix A.

Combining the last four steps yields a conformal map from Q(z1, z2, z3, z4) to the
rectangle R, whose corners are −K+iK ′,−K, K and K+iK ′. As visualized in Figure 3.3,
this conformal map is given by

m = sn−1k ◦ d ◦ fa ◦ F : Q(z1, z2, z3, z4) → R (3.2)

with

m(z1) = −K + iK ′, m(z2) = −K, m(z3) = −K, m(z4) = K + iK ′. (3.3)

We can deduce that every equivalence class contains a rectangle [LV73, 2.4], since for
every quadrilateral there is a unique conformal map of the above form mapping it to a
rectangle. If two quadrilaterals Q1 and Q2 are mapped to the same rectangle R by the two
conformal maps m1 and m2, respectively, then they belong to the same equivalence class
since m−12 ◦m1 conformally maps Q1 to Q2 and m−11 ◦m2 does the same vice versa. Ad-
ditionally, if a conformal map exists between two rectangles R1 and R2, all quadrilaterals
that can be conformally mapped to one of them are in the same class.

According to [LV73, 2.4] and [RG11, p.225], similarity transformations preserve angles
and are therefore conformal maps. Consequently, similar rectangles are in the same equiv-
alence class. Moreover, no other conformal maps exist between rectangles, except for
similarity transformations. To prove this, we adopt the argument from [Dap18].

Let rectangles R1 and R2 have side lengths a1, b1 and a2, b2, respectively. Assume
that R1 and R2 are not similar, so a1/b1 6= a2/b2. Further assume that there is a conformal
map f : R1 → R2. We can then apply the Schwarz reflection principle, also known as the
symmetry principle, inversion principle, or reflection principle by Riemann and Schwarz.

Theorem 3.2.3 (Schwarz reflection principle) [Neh75, p.184]
Let Dz and Dw be two domains whose boundaries contain circular arcs or line segments αz
and αw, respectively. If f : Dz → Dw is conformal and maps αz to αw, then f can be
continued along αz and αw as follows. Let the domain D?

z emerge from Dz by (circle)
inversion with respect to the (circular arc or) line segment αz. If z ∈ Dz and z? ∈ D?

z

are inverse points with respect to the (circle) inversion across αz, then the image point
w? := f(z?) ∈ D?

w is defined to be the inverse of w = f(z) ∈ Dw with respect to the
corresponding (circle) inversion across αw and f : Dz ∪D?

z → Dw ∪D?
w is conformal.

We use the Schwarz reflection principle to mirror the two rectangles R1 and R2 along
corresponding sides. This results in a conformal map for larger rectangles, and we may
continue this process until the entire plane is covered by reflections of the rectangles R1

and R2, respectively. Hence, we have a conformal automorphism of the entire plane
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which is a Möbius transformation [Bea85]. Möbius transformations preserve cross-ratios
[Car98, Section 10], and therefore, the cross-ratios of the four corners of the rectangles
R1 and R2 must be the same. Without loss of generality, assume that R1 has vertices
0, a1, a1 + ib1, ib1 and R2 has vertices 0, a2, a2 + ib2, ib2, listed counterclockwise. If the
cross-ratios are equal, then it holds that

(0, a1; a1 + ib1, ib1) = (0, a2; a2 + ib2, ib2)

−(a1 + ib1)(a1 − ib1)
(−ib1)2

=
−(a2 + ib2)(a2 − ib2)

(−ib2)2(
a1
b1

)2

+ 1 =

(
a2
b2

)2

+ 1

which is not possible since a1/b1 6= a2/b2. Therefore, it follows that there are no conformal
mappings between rectangles that are not similar. Consequently, only similar rectangles
belong to the same equivalence class.

Proposition 3.2.4 A conformal equivalence class of quadrilaterals D(z1, z2, z3, z4) con-
tains only those quadrilaterals that can be conformally mapped to similar rectangles. In
other words, two quadrilaterals D1 and D2 are in a conformal equivalence class if and
only if the corresponding conformal map m in Equation (3.2) for D1 and D2 maps them
to similar rectangles R1 and R2, which are also part of the conformal equivalence class.

Therefore, all rectangles in a one conformal equivalence class have the same ratio of side
lengths [LV73, 2.4]. Hence, the ratio is uniquely determined for each conformal equivalence
class and is an important invariant called the conformal modulus.

Definition 3.2.5 (Conformal modulus) [LV73, 2.4]
The ratio of the side lengths a/b of rectangles in a conformal equivalence class is called
conformal modulus. It is denoted by M(Q), where Q is a quadrilateral in the conformal
equivalence class.

It follows that two quadrilaterals can be conformally mapped to each other if and only
if they have the same modulus. This provides us with a criterion for our map from a tiled
strip to a stroke. The ratio of the side lengths of the strip must be equal to the conformal
modulus of the stroke if we want the corners of the rectangular strip to be mapped onto
the four points in the stroke boundary where the envelope curves w± meet the circles C(0)
and C(T ). Therefore, in order to determine the appropriate length of the strip, it would
be necessary to know the modulus of the stroke.

Note 3.2.6 Sometimes in the literature, the conformal modulus is defined as the ratio b/a
[PS10, Chapter 2.1], [Hen93, Chapter 16.11]. This depends on the conformal mapping
used to map the quadrilateral to the upper half plane and further the half plane to the
rectangle. Nevertheless, it remains true that the same quadrilaterals are in the same
equivalence class, as long as one definition is used consistently.

To avoid confusion about which are the a- and b-sides of our quadrilateral stroke and
the ornamental strip, respectively, we fix the convention that the lower left corner of the
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Figure 3.4: Vertices of a rectangular ornamental strip.

strip is z1, the lower right corner is z2, the upper right corner is z3 and the upper left
corner z4 (see Figure 3.4). Hence, the conformal modulus of the ornamental rectangular

strip is given by M(s) = |z1−z2|
|z4−z1| , i.e., the width of the strip divided by its height.

While the conformal modulus of a rectangle is calculated by a simple length-ratio,
is not easy to derive the conformal modulus of a general quadrilateral. The conformal
modulus of a quadrilateral can be determined uniquely by applying the conformal map m
from Equation (3.2), which connects the quadrilateral to the corresponding rectangle in
the same conformal equivalence class. However, finding and calculating the conformal
map m can be challenging. Therefore, we investigate how to compute the modulus for a
given quadrilateral without finding the corresponding rectangle via m.

3.2.1 Properties and computation of the conformal modulus

The conformal modulus of quadrilaterals has several interesting properties, which give
insight into the connection between the rectangular strip and a stroke.

First, it is important in which order the vertices z1, z2, z3 and z4 of quadrilateral
Q(zi, zj, zk, z`) with i, j, k, ` ∈ {1, 2, 3, 4} are considered. According to Definition 3.2.1,
the arcs zizj and zkz` are called a-sides and the arcs zjzk and z`zi are called b-sides for
Q(zi, zj, zk, z`). This results in a conformal modulus of M(Q) = a

b
, where a and b are the

side lengths of the rectangle R to which Q(zi, zj, zk, z`) is conformally mapped so that
the a- and b-sides are mapped to the sides of the rectangle of length a and b, respectively
(see Figure 3.5).

Figure 3.5: The a- and b-sides of Q conformally mapped to R of side lengths a and b.

Hence, the quadrilaterals Q1 = Q(z1, z2, z3, z4) and Q3 = Q(z3, z4, z1, z2) have the
same modulus M = M(Q1) = M(Q3), whereas the quadrilaterals Q2 = Q(z2, z3, z4, z1)
and Q4 = Q(z4, z1, z2, z3) have interchanged a- and b-sides with respect to Q1 and Q3.
According to Papamichael et al. [PS10, Definition 2.1.4], we call the quadrilaterals Q2
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and Q4 reciprocal quadrilaterals of Q1 and Q3. Their conformal moduli are the reciprocal
of M , namely M ′ = 1

M
= M(Q2) = M(Q4) [PS10, Theorem 2.1.2].

Additional interesting properties of the conformal modulus of quadrilaterals are based
on comparisons of moduli. For instance, consider a quadrilateral Q(z1, z2, z3, z4) with an
additional vertex z̃1 on the Jordan curve between z4 and z1 (see Figure 3.6 on the left).
Then it holds that the modulus M(Q) of Q is smaller than the modulus M(Q̃) of the
quadrilateral Q̃(z̃1, z2, z3, z4) containing z̃1 as vertex instead of z1 [PS10, Thm 2.3.4]. This
also applies to a vertex z̃3 located on side z2z3.

For our purpose, this means that the closer z1 and z4 or z3 and z2 are, the larger
the conformal modulus of the quadrilateral. In other words, the smaller the b-sides are
compared to the a-sides of the quadrilateral, the larger the modulus. A third way to state
this is that the modulus increases as the stroke gets longer, if the vertices on the boundary
of the stroke are chosen to be the four intersections between C(0), C(T ), and the envelope
curves.

Figure 3.6: Modifications on quadrilaterals and their vertices.

Furthermore, we examine a quadrilateral Q(z1, z2, z3, z4) with modulus M(Q) and a

second quadrilateral Q̂(z1, z2, z3, z4) that has the same vertices but such that Q ⊂ Q̂. This
occurs, for example, when the side z2z3 is replaced by another Jordan curve outside Q,
as in Figure 3.6 in the middle. Then the modulus M(Q̂) is greater than the original
modulus M(Q) [Hen93, Thm 16.11i], [PS10, Thm 2.3.5]:

M(Q̂) > M(Q).

In our case, this means that if the stroke is drawn and the vertices are fixed, and then
the stroke is extended by the drawing user, the new stroke will have a larger conformal
modulus.

Another property of the conformal modulus is the result of its additivity. When
looking at a Jordan region with six distinguished vertices z1, . . . z6 as shown in Fig-
ure 3.6 on the right, we can define three quadrilaterals Q(z1, z3, z4, z6), Q1(z1, z2, z5, z6),
and Q2(z2, z3, z4, z5). According to Papamichael et al. [PS10, Thm 2.3.6] or Henrici
[Hen93, Thm 16.11j], it holds that the sum of the moduli M(Q1) and M(Q2) is less
than or equal to the modulus of the entire quadrilateral M(Q):

M(Q1) +M(Q2) ≤M(Q).

So when the stroke increases, it is not generally possible to add the moduli of the individual
parts, as this would not necessarily result in the correct modulus of the entire stroke.
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Overall, the modulus increases for a longer stroke. Therefore, when the stroke grows,
a longer rectangular strip must be used as preimage for the map.

Knowing some of the properties of the conformal modulus, we investigate how to
concretely calculate the modulus of a quadrilateral.

For this, we recall the conformal map m from Equation (3.2). This map is decomposed
into a conformal map F mapping Q(z1, z2, z3, z4) onto the unit disk, a Möbius transfor-
mation fa rearranging the image points of the vertices zi on the disk, a linear fractional
map d mapping the unit disk onto the upper half plane, and finally the inverse of the
Jacobi elliptic function sn(z, k) mapping the upper half plane onto a rectangle R. The
vertices of the quadrilateral are mapped by m as given in Equation (3.3):

m(z1) = −K + iK ′, m(z2) = −K, m(z3) = +K, m(z4) = K + iK ′.

Hence, the modulus is calculated in terms of the integral values K and K ′ by

M(Q) =
K ′

2K

(3.1)
=

∫ 1

0

ds√
(1− s2)(1− k2s2)∫ 1

0

ds√
(1− s2)(1− (1− k2)s2)

which is also stated by Papamichael et al. [PS10, Equation (2.4.9)].

The substeps of mapping the quadrilateral Q to the rectangle R by m lead to a
conformal image of the quadrilateral in the unit disk. To compute the modulus, it is
sufficient to know the images of the vertices of Q being mapped on the unit circle by F
and the cross-ratio of the image points F (zi) for all i ∈ {1, 2, 3, 4}.

In our case, F (z4) = −1, F (z1) = w = exp(iϕ) for ϕ ∈ (−π,−π
2
), F (z2) = −i,

and F (z3) = i. Hence, their cross-ratio c is given by

c = (F (z4), F (z1);F (z2), F (z3)) = (−1, eiϕ;−i, i) = − cos(ϕ)

sin(ϕ) + 1
∈ (1,∞).

The modulus of long thin quadrilaterals Q with large a-sides and small b-sides can be
approximated by the cross-ratio c by the formula [PS10, Remark 2.5.3]

M(Q) ≈ − 1

π
ln

(
c− 1

16

)
. (3.4)

If c < 17, then the modulus is in the interval [0,∞), but if c > 17, the modulus is
negative. To approximate the modulus, it is necessary to calculate the cross-ratio c in
every individual case. In our specific case of mapping a rectangular strip to a stroke, we
have to work with an elongated region where z4z1 and z2z3 are much shorter than z1z2
and z3z4. Thus, the image of z1 under F , i.e., F (z1) = w = exp(iϕ) as above, will be closer
to −1 = F (z4) than to −i = F (z2). The cross-ratio is thus close to 1 = (−1, e−iπ;−i, i),
which is less than 17, so the modulus is positive and quite large since

M(Q)
(3.4)
≈ − ln((c− 1)/16)

π

c→1−→ −−∞
π

=∞.
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However, computing F as a conformal map from the quadrilateral to the unit disk is
a challenging task. In general, only numerical approximations and similar methods are
available to compute this map. We reviewed several approaches to numerical approxima-
tion of conformal maps in Section 1.3. However, none of the existing techniques meet our
requirement to deal with constantly changing domains, i.e., the user-drawn strokes.

The following approach, which considers conformal maps using conformal moduli, is
stated by Palka [Pal75]. Two quadrilaterals can be conformally mapped to each other if
and only if they have the same conformal modulus. This means that a map f between two
domains D and D′ is conformal if and only if the modulus M(Q) of any quadrilateral Q
in D is equal to the modulus of its image f(Q) in D′ under f : M(Q) = M(f(Q)).
Therefore, it is necessary to verify for all quadrilaterals within a domain whether the
modulus is preserved under f to get a positive answer to the question whether f is
conformal. Since the number of verifications is very large, the goal of Palka is to reduce
the number of quadrilaterals that need to be considered in this verification.

Palka states [Pal75, Theorem 1] that a function f is conformal if the modulus M(f(Q))
is less than or equal to the modulus M(Q) of its preimage for each square Q in D with
M(Q) = 1 and for every rectangle Q with M(Q) > 1, having sides parallel to both
the x- and y-axis. Thus, if we could check the preservation of the moduli of all squares
and rectangles parallel to the coordinate axis, we could prove that the map at hand is
conformal. We will revisit this argument in Section 5.3.1 to demonstrate that our approach
results in a nearly conformal mapping from a rectangular strip to a stroke.

3.2.2 Conformal map of an upper half annulus to a rectangle

Up until now, we have only considered general results on the properties of rectangles,
quadrilaterals, conformal moduli, and conformal maps. Moving forward, our focus is on
examining the explicit conformal map between the upper half annulus A and a rectangleR,
as shown in in Figure 3.7. The half annulus is very similar to the stroke in Benchmark
Example 2.1.7. Hence, we will compare the moduli of the explicitly mapped half annulus A
with the length-ratio of the ornamental strip that is mapped to Benchmark Example 2.1.7
by our algorithm later in Section 5.3.3. This method of testing the accuracy of a conformal
approximation is also used in [NRR+22].

Figure 3.7: A rectangle and its conformal image under f(w) = iρe−iw: a half annulus.

According to Eskandari [Esk22, p.4], the function

f(w) = iρe−iw = z = x+ iy
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maps the rectangle R with vertices

w1 = −π
2
, w2 =

π

2
, w3 =

π

2
− i · 2 ln(ρ) and w4 = −π

2
− i · 2 ln(ρ)

to the open half annulus A with y > 0 and ρ < |z| < 1
ρ

for ρ ∈ (0, 1). The vertices wi
of R are mapped to the vertices zi of A as follows:

f(w1) = z1 = −ρ, f(w2) = z2 = ρ, f(w3) = z3 =
1

ρ
, f(w4) = z4 = −1

ρ
.

Since this conformal map f explicitly states that the half annulusA and the rectangleR
are conformally equivalent, they have the same conformal modulus. This modulus is
defined as the ratio of the side lengths of the rectangle R, namely as

M(A) := M(R) =
|w1 − w2|
|w2 − w3|

= − π

2 ln(ρ)
. (3.5)

Since the parameter ρ lies in the interval (0, 1), the logarithm gives a negative value and
the modulus is positive.

The half annulus A is bounded by the two half circles Hk = {rk · eiϕ, ϕ ∈ (0, π)} for
k ∈ {1, 2} on the upper half plane around the origin with radii r1 = ρ and r2 = 1

ρ
, re-

spectively. Hence, two points zk = rk · eiϕ on the two circles maintain constant distance
of r2 − r1 = 1

ρ
− ρ for every ϕ ∈ (0, π). Thus, the stroke sA that best approximates

the half annulus A is a stroke with a constant radius function rc = 1
2

(
1
ρ
− ρ
)

and curve

γ(t) = 1
2

(
1
ρ

+ ρ
)
·
(

cos(π − t)
sin(π − t)

)
. This stroke matches the stroke of Benchmark Exam-

ple 2.1.7 with t ∈ I = (0, π). The half annulus and the stroke are shown in Figure 3.8.

Figure 3.8: A stroke approximating a half annulus.

The stroke sA and the half annulus A are not exactly the same: the annulus closes the
boundary between the two half circles H1 and H2 with two line segments from −1

ρ
to −ρ as

well as from ρ to 1
ρ
. The stroke, however, connects the envelope curves H1 and H2 with two

lower half circles around γ(0) = ρ+ rc and γ(π) = −ρ− rc, respectively, both of radius rc
and with argument in (π, 2π). Nevertheless, we can compare the conformal modulus of
the half annulus A and of the rectangular strip being the preimage of the stroke sA in our
algorithm. If the moduli are approximately equivalent, we have an indicator that the map
is not too far away from a conformal map. In Section 5.3.3 we apply our algorithm to
calculate the conformal map for Benchmark Example 2.1.7 and test how well conformality
is approximated.
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3.3 Extension of conformal maps to the boundary

and beyond

In Chapter 2, we have extensively analyzed the boundary of a stroke. Now, we will
consider how to extend the conformal map from the rectangular strip to the stroke to the
boundaries. For this, it is important to understand how a conformal map extends beyond
the boundaries of its source and target domains.

We already introduced the theorem of Carathéodory in Theorem 3.1.2. This theo-
rem states that the conformal map between two Jordan domains can be extended to a
homeomorphism of the boundaries. Furthermore, Proposition 3.1.3 states that for three
specified pairs of preimage and image points that are mapped to each other, this extension
is unique. To extend the map beyond the boundaries, the Schwarz reflection principle 3.2.3
gives a procedure how to define the map outside the Jordan domains bounded by line seg-
ments and/or circular arcs. To obtain the image point w of a point z located outside the
preimage domain, the point z is inverted with respect to the line segment or circular arc
of the boundary. The inverted point z′ lies inside the preimage domain and is mapped
by f to w′ = f(z′). Finally, w is the reflection of w′ at the boundary of the target domain.
A visualization of this can be seen in Figure 3.9.

Figure 3.9: Conformal image of point z outside the domain by Schwarz reflection.

However, our stroke domain is not only bounded by line segments and circular arcs.
Thus, it is necessary to explore a generalization of the Schwarz reflection principle to a
domain bounded by general envelope curves and two circular arcs, as it is the case for our
strokes (see Definition 2.2.5).

Needham describes how to imitate reflection on any analytic curve [Nee23, Chap-
ter 5.XI.5, p.252 ff.]. An analytic curve δ : R → Rn, δ(t) = (x1(t), · · · , xn(t)) is a
function where each coordinate xi(t), i ∈ {1, . . . , n} can locally be written as a con-

vergent power series xi(t) =
∞∑
k=0

ak(t − c)k for a real constant c and coefficients ak ∈ R

[Lan13, p.68], [Nee23, p.228]. We will show in Section 4.1.2 that the envelope curves of
the strokes in our algorithm are analytic and that the result for a generalization of the
Schwarz reflection principle for analytic curves can be applied.

For an analytic curve δ in the complex plain C, we call the reflection on this curve
Rδ : C → C. To ensure that the reflection Rδ is a valid generalization of a reflection on
a line or circle, we require that Rδ(a) = a for all points a on the curve δ. For all other
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3.3. Extension of conformal maps to the boundary and beyond

points z 6= δ(t) for some t, the reflection Rδ is a composition of some analytic function Sδ
and complex conjugation:

Rδ(z) = Sδ(z).

The analytic function Sδ is called Schwarz function. For points a on δ it holds that
Rδ(a) = a = (a) = Sδ(a), which implies that the Schwarz function maps these points to
their complex conjugates. However, this is not the case for points z not on δ.

We assume that z lies on an infinitesimal circle around a = δ(t) for some t. The curve δ
is conjugated by Sδ as a whole. According to Needham [Nee23, p.255], the image of the
infinitesimal circle under Sδ is a composition of scaling (also called amplification) and
rotation (also called twist) of the original circle. It follows that the image w? of z under
the analytic function Sδ is situated on the unscaled infinitesimal circle around Sδ(a) = a
but it is rotated around a by −2α compared to z relative to a. Here, α is the angle
between the tangent to δ(t) at a and the x-axis. Finally, point w? is conjugated along the
x-axis and we conclude that Rδ(z) = w?. See Figure 3.10 for a visualization.

Proposition 3.3.1 The generalized reflection Rδ(z) = Sδ(z) on an analytic curve δ is
locally the reflection of z across the tangent at a curve point a.

Figure 3.10: Analytic reflection along curve δ: Rδ(z) = w.

This knowledge about the extension of a conformal map along analytic curves will be
important later in Chapter 5.2.2, where we actually compute the conformal approximation
of the preimage strip to the stroke.

It is also important to note that the local reflection at the tangent of the analytic
curve is unique only for points z in an infinitesimal neighborhood of curve points where
the tangent is uniquely defined. Therefore, if there is a non-regular point on the envelope,
this method cannot be applied within the infinitesimal neighborhood of the point of
regression.

Furthermore, we have assumed that the stroke is not self-intersecting. We will address
this case in Section 5.4.1.
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From Definition 2.2.5, we know that the boundary of the stroke also contains two
circular arcs from C(0) and C(T ). For points near these circular arcs, the classical Schwarz
reflection principle can be applied, and circular reflection at C(0) and C(T ) provides the
correct solution.

Additionally, we recall from Chapter 2 that strokes are defined as the union of all
circles C(t) along the curve γ with radius r(t) for t ∈ I = [0, T ]. For regular boundary
points, Equation (2.20) states that the limiting, discriminant, and tangential envelopes
coincide. Therefore, the boundary of the stroke is tangent to a circle C(t) at all regular
points a. The generalized reflection along the boundary is equal to the reflection at the
tangent at a. Locally, the tangent is a component of the envelope by the definition of
the tangential envelope Et, and it is tangent to C(t) for a = (a1, a2) and F (t, a1, a2) = 0.
Therefore, it is also possible to consider reflecting z on the circle C(t) for a point z
infinitesimally close to the regular boundary point a.

Note 3.3.2 Despite the relationship between tangents, circles, and regular curves, it is
important not to confuse the possible reflection along circles C(t) of the stroke with the
reflection at circles of curvature of the envelope curves. Even though the envelope curve δ
is tangent to both circles, namely the circle C(t) and the circle of curvature of δ, they
are generally not identical. Figure 3.11 shows an example. The simplest argument to see
that the circle of curvature and C(t) do not coincide in general is that for constant radius
function r(t) ≡ rc the boundary would have to be a circle of constant curvature κ = 1

rc
.

Figure 3.11: Circles of curvature for the inner envelope curve of an elliptic stroke.
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So far, Chapters 2 and 3 have focused on the stroke model and conformality within
continuous settings. We have defined the stroke by a continuous curve γ and a continuous
radius function r, and the strip and stroke domains as subsets of the complex plane. This,
however, is only an idealized setting.

As emphasized earlier, the stroke model is based on user-drawn input on digital devices.
The user-drawn input is discretely registered by the computer and used to generate a
radius function, based on the pressure applied by the user on the drawing surface. Thus,
a continuous model does not accurately represent the given circumstances. Additionally,
the tiled strip is composed of image textures T , and also the stroke is a subdomain of
an image texture. A texture is a digital image consisting of a set of discrete data points,
known as pixels. These pixels are arranged in a rectangular grid. The number of pixels
in a texture is a measure of the resolution of the grid. Thus, the preimage and target
domains of the conformal maps, namely the rectangular strip and the stroke, are subsets
of discrete pixel grids rather than subsets of the continuous complex plane.

This requires the investigation of appropriate discretizations of the continuous stroke
model and the notion of conformality. In this context, appropriate means that the char-
acteristic properties of the stroke have to be represented in the discrete setting and that
the discrete understanding of conformality serves the given conditions, e.g., the definition
of a texture as a discrete pixel grid.

In Section 4.1, we will examine the required modifications to the continuous stroke
model caused by discrete input data. In Sections 4.1.1 and 4.1.2, we will compare different
spline interpolation methods for curve γ and radius function r. We will decide for cubic B-
spline interpolation to model our strokes because it ensures that the interpolated curve γ
and radius function r are C2-continuous, and the envelope curves w± are C1-continuous.
For the discrete definition of the stroke on the basis of the interpolated curve γ and r we
will present an algorithm in Section 4.1.3 that selects equidistant points Ctd on γ, which
act as circle centers for the stroke defining circles C(t0) to C(tN).

Apart from discrete input data, we will also investigate discrete conformality. In
Section 4.2, we will examine two conceptions of discrete conformality that are capable of
reflecting relevant properties of continuous conformality when applied to discrete domains:
circle packings and discrete conformal equivalence. The theory of discrete conformal
equivalence, which is based on metric scaling and length-cross-ratios, will serve as the
basis for the evaluation of our algorithm for conformality in Section 5.3.1. The discrete
conformal theory of circle packings introduces the concept of local univalence, acting
as a model for our self-intersecting strokes. The notion of branch circles will serve as
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Chapter 4. Discrete Data and Conformality

an inspiration for the treatment of multiply covered regions of our strokes due to self-
intersection or singular boundary points (see Section 4.3).

In order to deal with self-intersecting strokes and regions with singular boundary points
in the algorithm described in Chapter 5, we will present techniques for detecting these
special cases in Section 4.3. We will provide a criterion for new circles of the stroke based
on their intersections with existing circles that indicates that the stroke is self-intersecting.
Additionally, we will introduce a discrete technique to identify singular boundary points
and other significant stroke points related to the swallowtail surface associated with the
stroke known from Section 2.6.2. In cases of singular boundary points, we will classify
several multiply covered regions of the stroke by explicitly determining their boundary
curves.

4.1 Interpolation of curve γ and radius function r

The objective of interpolation is to refine the set of discrete data points registered by
the computer or tablet on the curve drawn by the user. The registered data points Ptd
for td ∈ I can either be very close together or quite far apart, depending on the sampling
rate of the electronic device and the speed of the user’s drawing. In any case, they are
irregularly distributed over the interval I = [0, T ], which is equal to [t0, tN ] for N + 1
registered data points. By redistributing, removing, or adding data points, we aim to
achieve a sufficient number of data points and thus circles to define a stroke. Furthermore,
we attempt to accurately capture the user’s input by avoiding significant changes to the
drawn path and preserving the smoothness of the drawing.

There exist several methods for point interpolation. In the following, we will study
three different types of spline interpolation and examine the advantages and disadvantages
of these methods for our purpose.

Splines are piecewise polynomials that are used to interpolate data points locally. The
term “splines” originated from a mechanical tool that craftsmen utilized to interpolate
smooth curves through given points, such as design elements of ships or railroad tracks
[Far02, Chapter 14.1].

The spline polynomials have a specific degree n, and they are defined separately in
subintervals between discrete data points. In addition, splines have a certain degree of
smoothness, typically at least continuous, but may also be C1- or C2-continuous, which
ensures that the individual spline pieces not only meet, but also have the same tangent
or even the same curvature at the connecting data points [SM03, Chapter 11.1].

Note that the symbols γ and r will be used henceforth for the piecewise interpolated
curve or radius function composed of individual spline segments.

4.1.1 Linear interpolation and cubic Hermite splines

The linear spline is the simplest form of spline. It connects each data point Ptd to its
neighbor Ptd+1

with a line segment sd(t) = (1 − t)Ptd + tPtd+1
for t ∈ [0, 1]. This results

in a spline that is C0-continuous, meaning it is connected at the discrete data points,
but lacking higher degrees of smoothness. The benefits of linear interpolation include the
easy calculation of these splines and the fact that the resulting curve interpolates the data
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4.1. Interpolation of curve γ and radius function r

points. The individual line segments sd are computed locally, since each data point Ptd
only affects the two neighboring splines sd−1 and sd. A new line segment sd may be added
to the interpolated, piecewise linear curve γ without difficulty.

Linear interpolation can also be applied to radius values obtained from registered pres-
sure data. Consequently, the interpolated radius function r would consist of a piecewise
linear C0-continuous splines, i.e., of linear functions rd(t) = (1− t)rtd + t · rtd+1

.

As modern computers possess sufficient computing power, the discrete sample points
tend to be close together. This results in short linear segments and a reasonable ap-
proximation of the curve γ and radius function r. Nevertheless, if the computer lacks
computing power or the user draws very fast and the sample points are too far apart, the
linear segments are visible in the resulting stroke, as shown in Figure 4.1.

Figure 4.1: Linear spline interpolation: linear segments visible in the stroke.

When the curve γ and radius function r are provided via C0-continuous interpolation,
the envelope curves can be calculated explicitly by Equation (2.13). Since γ and r are
piecewise defined C0-continuous splines, the envelope is defined by sd and rd along with
their respective derivatives s′d and r′d on the corresponding intervals between data points:

wd±(t) = sd(t)−
rd(t)r

′
d(t)

‖s′d(t)‖2
s′d(t)±

rd(t)

‖s′d(t)‖2
√
‖s′d(t)‖2 − r′d(t)2 (s′d(t))

⊥
(4.1)

The disadvantage of linear interpolation is that the derivatives of the interpolated curve
and radius functions are constant on the intervals between the discrete data points,
namely s′d(t) = Ptd+1

− Ptd and r′d(t) = rtd+1
− rtd . This implies that the derivatives of sd

and rd do not coincide at the common endpoints, as C0-continuity already suggested. As
a consequence, the piecewise defined envelope curves as defined in Equation (4.1) are not
connected and, therefore, not even continuous.

This is why we examine other spline interpolation methods to make the interpolated
curve γ and radius function r smoother and the envelope curves at least continuous.

The cubic Hermite spline is another well-known type of spline. “Cubic” indicates
that each pair of consecutive data points Ptd and Ptd+1

is connected by a cubic func-
tion hd(t) = at3 + bt2 + ct+ d for real constants a, b, c, d ∈ R not all equal to zero. The
functions hd are defined by discrete data points Ptd and tangent vectors vtd which are
fixed at those data points. Thus, hd and hd+1 share the point Ptd+1

and the tangent vtd+1
.
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The explicit formula for hd between Ptd and Ptd+1
is given by [Far02, Chapter 14.4.1]

hd(t) =
(
1 t t2 t3

)
1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1



Ptd
vtd
Ptd+1

vtd+1

 . (4.2)

As we can see, the data point Ptd is met by hd(0) and the derivative of the spline at
zero gives h′d(0) = vtd . Moreover, it holds that hd(1) = Ptd+1

and h′d(1) = vtd+1
. This

ensures that the entire spline, which is piecewise given by Equation (4.2), is C1-continuous
and interpolates all of the given discrete data points. Furthermore, Hermite splines offer
potentially attractive interpolation for curve γ and radius function r as each individual
spline function only relies on the data point and tangent at its two end points. Hence,
interpolation is done locally. Additionally, the matrix format in Equation (4.2) allows for
quick and efficient computations.

However, it remains uncertain which tangents
should be used in our setting. When a new
point Ptd+1

is added to the set of registered dis-
crete data points, we don’t know in which direc-
tion the user will continue to draw the stroke.
We must therefore estimate the direction of tan-
gent vtd+1

at this new data point. We use the
vector vtd+1

= Ptd+1
− Ptd to represent the missing

tangent vector. The missing tangent at P0 is set
to v0 = P1 − P0.

The same Equation (4.2) is used to interpolate
the discrete data points for the radius function r. If both C1-continuous interpolated
splines hd and rd of curve γ and radius function r are given, the piecewise defined envelope
curves of the stroke can be calculated as in Equation (4.1) replacing sd by hd. Since the
interpolation properties ensure that hd(1) = hd+1(0), rd(1) = rd+1(0), h′d(1) = h′d+1(0),
and r′d(1) = r′d+1(0), the envelope curves satisfy wd(1) = wd+1(0). This is an improvement
over the envelope of the linearly interpolated curves. However, C0-continuity is the best
that can be achieved. Consequently, the envelope curves do not share the same tangents
at joint curve points, as illustrated by the red envelope of the stroke in Figure 4.2.

4.1.2 Cubic B-splines

To achieve smooth envelope curves, we examine cubic B-splines. B-splines have ad-
vantages over linear or Hermite splines, given that they are C2-continuous, resulting in
smoother envelope curves that are C1-continuous. However, B-splines have two critical
drawbacks: there is a partial loss of locality in the computations, and the given discrete
data points are not interpolated by the curve γ. Therefore, we will now analyze this
option in detail.

The “B” in B-splines stands for “basis” [Kno99, Section 3.3, p.151], indicating that
basis functions are combined to obtain the interpolated cubic curve. Cubic basis functions,
denoted as Bd, are defined for the given data points Ptd , where td ∈ [t0, . . . , tN ]. The basis
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4.1. Interpolation of curve γ and radius function r

Figure 4.2: Hermite spline interpolated stroke with C0-continuous envelope.

functions regulate the influence of each data point Ptd on the resulting spline over each
interval [td, td+1] [Far02, Chapter 15.3].

The basis functions Bd must satisfy specific criteria to ensure C2-continuity of the cubic
spline [Far02, p.354], [Kno99, p.153f.]. These criteria are the following: the basis functions
must be positive at all times and add up to one, ensuring that the interpolated curve lies
within the convex hull of the data points Ptd . Furthermore, each basis function Bd(t)
should have compact support and be equal to zero for t /∈ [td−1, td+2]. This results in
point Ptd influencing four consecutive spline pieces. Additionally, the basis functions
must be C2-continuous to ensure C2-continuity of the resulting spline.

According to Farouki [Far02, p.355], all basis functions are identical except for the
translation into the respective support interval. Thus, for t ∈ [ti, ti+1], Bi(t) equals Bi−1(t̃)
with t̃ ∈ [ti−1, ti]. As a result, we can examine the basis functions B0, B1, B2, and B3 for
the spline b1(t) in the interval t ∈ [t1, t2] defined by

b1(t) = B0(t) · P0 +B1(t) · P1 +B2(t) · P2 +B3(t) · P3

and apply the findings to all other basis functions.
We assume, without loss of generality, that all intervals are normalized to t ∈ [0, 1]. To

ensure C2-continuity of the cubic spline, the following equations must be satisfied. They
guarantee that the basis functions B0, B1, B2, and B3 satisfy the above requirements.

To get C2-continuity at the limits of the support of each basis function, it must hold
[Far02, p.356]

B0(1) = 0, B′0(1) = 0, B′′0 (1) = 0,

B3(0) = 0, B′3(0) = 0, B′′3 (0) = 0.
(4.3)

To ensure C2-continuity of the basis functions within the support, and taking into account
that the basis functions Bi are shifted copies of each other, it must also be satisfied that

for C0-continuity: B0(0) = B1(1) B1(0) = B2(1) B2(0) = B3(1)

for C1-continuity: B′0(0) = B′1(1) B′1(0) = B′2(1) B′2(0) = B′3(1)

for C2-continuity: B′′0 (0) = B′′1 (1) B′′1 (0) = B′′2 (1) B′′2 (0) = B′′3 (1)

(4.4)
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Also, it is required that the basis functions sum to one at all times:

B0(t) +B1(t) +B2(t) +B3(t) = 1. (4.5)

We aim to express the cubic B-spline b1 using P0, . . . , P3 in a manner similar to the
Hermite spline as in Equation (4.2) by

b1(t) =
(
1 t t2 t3

)
c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15


︸ ︷︷ ︸

=:C


P0

P1

P2

P3

 .

The 16 equations in (4.3), (4.4), and (4.5) uniquely define the 16 entries c0, . . . , c15 of the
matrix C because the following equations must be satisfied for t ∈ [0, 1]:

B0(t) = c0 + c4t+ c8t
2 + c12t

3

B1(t) = c1 + c5t+ c9t
2 + c13t

3

B2(t) = c2 + c6t+ c10t
2 + c14t

3

B3(t) = c3 + c7t+ c11t
2 + c15t

3

As derived by Holmér [Hol22, 51:52 – 53:36], this system of equations solves to

b1(t) =
(
1 t t2 t3

) 1

6


1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1



P0

P1

P2

P3

 . (4.6)

Using Formula (4.6), it is simple to input the provided data points Ptd−1
, Ptd , Ptd+1

,
and Ptd+2

in order to obtain the interpolating B-spline bd within the interval [td, td+1].
However, there are drawbacks to this C2-continuous interpolation. Primarily, the com-
putations are not entirely local, as the spline bd depends not only on the data points Ptd
and Ptd+1

, which bound the interval for which bd is defined, but also on the two data
points Ptd and Ptd+1

. Consequently, there is a lack of data points to calculate B-splines
for the initial and last interval between data points P0 and P1 as well as between PtN−1

and PtN if PtN is the last data point registered on the user-drawn curve.
We address this problem by artificially adding a point P−1 as the mirror image of P1

at P0: P−1 = P0 + (P0 − P1). However, we do not add a data point PN+1 for the last
interval in order to avoid inconsistencies in the continuity properties at the boundary
between the cubic spline pieces and to avoid having to change already calculated stroke
parts when the actual data point Ptd+1

is included in the model. If it is assumed that
modern computers possess fast enough data recognition so that the registered data points
are very close together, i.e., they only have a distance of very few pixels, it is no problem
to postpone the calculation of the spline for the last interval until a new point is given.
Consequently, the last spline for N registered data points is the one defined by PN−3,
PN−2, PN−1, and PtN (see Figure 4.3 at the right end of the stroke).

The second issue is that the splines bd do not interpolate the provided data points Ptd ,
but instead, they modify the trajectory of the user-drawn curve between the registered
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4.1. Interpolation of curve γ and radius function r

data points. However, the deviation is negligible given the large number of closely spaced
data points. Hence, modifying the originally drawn curve can be accepted, as it leads to
better boundary properties of the stroke. Figure 4.3 shows how close the red data points
are to the blue interpolated curve.

Figure 4.3: Issues of cubic B-spline interpolation.

To summarize: we have a piecewise defined curve γ, which is C2-continuous given by

γ(t) :=



b0

(
(t−t0)
(t1−t0)

)
= b0

(
t
t1

)
...

bd

(
(t−td)

(td+1−td)

)
...

bN−1

(
(t−tN−1)

(tN−tN−1)

)
= bN−1

(
(t−tN−1)

(T−tN−1)

)
for t ∈ [0, T ] = [t0, tN ] . (4.7)

The radius function r is defined piecewise by splines rd as in Equation (4.7) using the same
cubic B-spline interpolation. This allows us to examine the properties of the associated
envelope curves wd± as in Equation (4.1). The use of B-spline interpolation ensures C1-
continuity of the envelope curves since the splines bd and rd, along with their derivatives
and second derivatives, coincide for the transitions between intervals (see Equations (4.3)
and (4.4)). Figure 4.4 shows a stroke interpolated using cubic B-spline. Comparing
the C1-continuous envelope of this stroke with the C0-continuous envelope of the stroke
interpolated using Hermite spline in Figure 4.2 highlights the improvement.

Furthermore, the envelope curves wd± are analytic because both γ and r are cubic
polynomials, resulting in their derivatives also being polynomials and, therefore, analytic
[Nee23, p.226]. Condition (2.2) guarantees that ‖γ′(t)‖2 − r′(t)2 > 0, which means that
the real square root of this function is also analytic. Therefore, Equation (4.1) obtains
the envelope curves as a combination of analytic functions through addition, subtraction,
multiplication, and division which makes the envelope curves analytic [Nee23, p.228].
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Figure 4.4: Cubic B-spline interpolated stroke with C1-continuous envelope curves.

Proposition 4.1.1 (Analytic envelope curves)
If the curve γ and radius function r are interpolated using cubic B-splines from the regis-
tered data points and pressure input, the resulting envelope curves wd± are analytic.

This allows us to apply the results of Section 3.3 on the generalization of the Schwarz
reflection principle to the envelope curves interpolated in this way. Overall, the benefits
outweigh the drawbacks, which can be neglected for sufficiently fast computers. Therefore,
we will use cubic B-spline interpolation for our discrete stroke model.

4.1.3 Discrete equidistant points on the interpolated curve γ

From the discrete data points Ptd that are registered on the user-drawn path, a curve γ
and a radius function r, both C2-continuous, are piecewise interpolated using cubic B-
splines bd and rd, as it was examined in the last section (see Equations (4.6) and (4.7)).
When a curve γ and a function r are given, the stroke is uniquely defined by the associated
continuous family of circles. But this continuous definition is not used to actually draw
the stroke. Instead, a discrete set of closely spaced circles is drawn, similar to previous
figures depicting families of circles, such as those found in the Benchmark Examples 2.1.6
to 2.1.10. Therefore, it is essential to choose the centers for the discrete set of circles on
the interpolated curve γ appropriately. If the centers are not sufficiently close, the circles
can become disconnected and create a broken stroke or cause a visibly wavy envelope of
the circles (see Figure 4.5).

Figure 4.5: Placing circles too far apart causes disjoint or wavy strokes.
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If the centers of the circles are located too close together, the simulation may become
slow due to many calculation steps, or the circles may violate the “supersonic” Condi-
tion (2.2), which prevents circles from being nested. To exclude centers that are too close
or too far apart, a new circle is placed along the interpolated curve γ every few pixels,
depending on the resolution of the texture on which the stroke is drawn.

A new circle center on curve γ is chosen according to the following procedure. The
corresponding pseudocode is stated in Algorithm 1. Let 0 < ε < 1 and 0 < δ < 1 be
small constants, and let p denote the pixel distance between the centers of two consecutive
circles. The value of ε represents the permitted deviation from the pixel distance p between
circle centers. Constant δ is the step width of the search for new centers on γ. Let Ctd
be the previously selected circle center on γ at γ(td), and let r be the interpolated radius
function. If

∣∣ ‖γ(td + δ)−Ctd‖− p
∣∣ ≤ ε and if r′(td + δ)2 < ‖γ′(td + δ)‖2, then a new circle

is created around Ctd+1
= γ(td + δ) with radius rtd+1

= r(td + δ). Otherwise, the next
curve point γ(td + 2δ) is examined.

Algorithm 1 Finding an equidistant circle along the interpolated curve γ.

ε > 0, δ > 0
δ? ← δ
p← small amount of pixels
Ctd ← γ(td)
continue ←true
while continue do

if | ‖γ(td + δ?)− Ctd‖ − p| ≤ ε and r′(td + δ?)2 < ‖γ′(td + δ?)‖2 then
Ctd+1

← γ(td + δ?)
rtd+1

← r(td + δ?)
continue ←false

else
δ? ← δ? + δ

end if
end while

Our tests indicate that using a pixel distance of p ∈ (2, 5) and parameters ε ∈ (0.2, 0.5)
and δ = 0.01 is a suitable choice for a texture consisting of 1024× 512 pixels.

The so defined set of equally spaced curve points Ctd lies on the interpolated piecewise
cubic spline curve γ. The registered data points Ptd are not necessarily a subset of the
points Ctd . The resulting stroke consists of a discrete set of circles C(td) belonging to
the family of circles defined by γ and the likewise interpolated radius function r. A so
resulting stroke is, for example, depicted in Figure 4.3.
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4.2 Discrete conformality

It was noted in the literature review in Section 1.3 and in Chapter 3 that computing
conformal maps between simply connected planar domains is a challenging task, even
when their existence is guaranteed. Beyond using numerical methods to approximate
continuous maps, however, there are several options for discrete analogues. They can serve
as a starting point for refinement toward a continuous result, or as standalone methods
for discrete settings. In a discrete setting, the considered domains are polyhedral surfaces,
i.e., they consist of polygons glued edge-to-edge [BSS16, p.57], [BPS15, p.4]. Typically,
these polygons are triangles or quadrilaterals, and the resulting surfaces are referred to
as triangulations or quadrangulations.

Since a stroke is defined as a subset of a discrete texture consisting of a finite number
of pixels forming a rectangular grid, the stroke domain can be viewed as a polygonal
surface consisting of quadrilaterals or even triangles depending on the considered “edges”
between pixels (see Section 5.3.1). A pixel grid in the stroke of Benchmark Example 2.1.6
is illustrated in Figure 4.6 on the left. The texture resolution has a direct impact on the
grid, where higher resolutions lead to finer grids and lower resolutions result in coarser
grids. Figure 4.6 on the right shows the quadrangulation obtained from the pixel grid by
adding horizontal and vertical edges between adjacent pixels.

Figure 4.6: The pixel grid underlying the stroke and the related quadrangulation.

Taking into consideration that our strokes are discrete domains, we will investigate dif-
ferent definitions of discrete conformality and their characteristics. Also, we will explore
how to demonstrate the conformality of a computed map using discrete local charac-
teristics, without knowledge of the continuous counterpart of the map or the conformal
modulus of the rectangle in its conformal equivalence class.

To define discrete conformality, the question is which of the equivalent notions of con-
formality in the continuous case are appropriate for a discrete counterpart. Crane gives
a good overview [Cra19]:
Most of the continuous notions of conformal maps F lead to analogues of discrete confor-
mal maps f for triangulated surfaces, which are too rigid to be used. If the angles of a
triangulation are preserved, this restricts the discrete conformal map f to be a similarity
transformation with uniform scaling of the edge lengths. If the continuous conformal
map F is defined as F = u + iv for functions u, v satisfying the Cauchy-Riemann equa-
tions ux = vy and uy = −vx, this implies that the discrete analog f is a global isometry
up to uniform dilation. The discrete conformal map f can also be found as the critical
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point of a discrete analog of the Dirichlet energy, which, however, is related to the solution
of the discretized Cauchy-Riemann equations, and is thus subject to the same rigidity.
Another continuous concept that has been found to be too rigid is the Hodge star duality.

If the continuous map F is defined as the sum F = a+ib of a pair of conjugate harmonic
functions a and b, this provides a description of the discrete conformal function f , which
is more flexible. In this case, f is related to the discrete Dirichlet energy, and harmonic
functions are well understood in the discrete case. However, this particular approach is
one of the finite element methods that relate well to the smooth setting in their limit
of refinement. As standalone method for a fixed triangulation, the desired properties of
continuous conformality are usually not met. Additionally, since we compute our stroke
and corresponding map for a fixed texture resolution with a constant number of pixels,
the refinement arguments are interesting for choosing the texture resolution, but they are
not of much use once the textures are defined.

Chen and Gotsman compute a conformal map f from a regular polygonal mesh inside a
polygon P to a target polygon Q as a minimizer of a conformal energy function [CG17]. To
obtain f , barycentric coordinates for the points in the polygons are calculated. To achieve
this, basis functions Bj are defined for each preimage vertex zj on the boundary of P so
that every point z ∈ P can be expressed as z =

∑
j zj ·Bj(z). The image of z, w = f(z), is

then written as a linear combination with the same basis function coefficients Bj(z), but
based on the target vertices wj on the boundary of Q: w = f(z) =

∑
j wj · Bj(z). These

basis functions Bj are used to compute a conformal energy function for each polygon in
the domain. Minimization of this energy function produces a conformal map f if and only
if the conformal energy is zero. It is shown that harmonic functions give good solutions
to this minimization problem. The conformal energy is evaluated separately for each
polygon in the mesh and added up to determine the energy of the entire domain. It is
possible to weight individual energy summands in such a way that more important regions
of the polygonal domains have more influence on the conformal energy than others. By
prioritizing regions with higher weight, they can achieve better approximations of zero
conformal energy, while the other regions yield poorer results. This approach suggests
that an (approximately) conformal map is achieved when the energy function is (almost)
zero. Furthermore, the energy is calculated for each polygon in the polygonal domain
individually and then combined.

We will adapt this method in Sections 5.3.1 and 5.3.2, where we evaluate our algo-
rithm for computing a conformal map. Our procedure involves verifying that particular
constraints are met for every pixel within the stroke domain, calculating the sum of all
results, and minimizing the overall error.

This leads us to the question of how to calculate a discrete conformal map and what its
characteristics are. To address this, we examine the two remaining notions of conformality
mentioned by Crane [Cra19]: metric scaling and circle preservation. Both produce good
results for discrete conformal maps on polygonal surfaces, both in a discrete setting and
in the limit of mesh refinement, which relates them to the continuous case. These two
notions of circle preservation and metric scaling open up the research areas of circle
packings and discrete conformal equivalence, respectively, which we will discuss in the
next two sections.
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4.2.1 Discrete conformal equivalence of polyhedral surfaces

In the continuous context, two Riemann metrics, g and g̃ on a smooth manifold M are
called conformally equivalent if, for some conformal factor u ∈ C∞(M), they are related
by metric scaling:

g̃ = e2ug.

Thus, there exists an equivalence class of metrics on M that are connected by a conformal
factor and that are all conformally equivalent to each other. To discretize this concept
of conformality, the smooth manifold M is substituted with a piecewise Euclidean mani-
fold S, which is connected and triangulated by T = (V,E, F ) with a set of vertices i ∈ V ,
edges ij ∈ E and triangular faces ijk ∈ F . The Riemann metrics g and g̃ are substi-
tuted with the discrete edge length metrics `, ˜̀. The metric ` : E → R+ allocates positive
lengths `ij to the edges ij ∈ E, which satisfy the triangle inequalities for all faces ijk ∈ F :
`ij + `jk > `ki. [Cra19, BPS15, BSS16, SWGL15, GLSW18, LSW22]

There are two discrete settings that need to be distinguished. In one setting, discrete
conformality is defined on a manifold S between two triangulations T and T̃ that are
combinatorially equivalent. In the other setting, these two triangulations are combinato-
rially different.

If the triangulations of S are different, then the focus of the investigation shifts to
the manifold itself. Discrete conformality between two combinatorially different trian-
gulations of a surface S is defined on the basis of intrinsic Delaunay triangulations and
edge flips. In the work of Gu et al. [SWGL15, GLSW18], two combinatorially differ-
ent triangulations T and T̃ are said to be discretely conformally equivalent if there is
a sequence of triangulations T = T0, T1, T2, . . . , Tm = T̃ of S and a sequence of metrics
` = `0, `1, `2, . . . , `m = ˜̀ such that three conditions hold:

1) All triangulations Td are Delaunay with respect to the corresponding metric `d. This
means that for every pair of triangles ijk, jil ∈ F , the sum of opposite angles αijk
and αjil with respect to the common edge ij is less than π.

2) If the triangulations Td and Td+1 are equal in two consecutive steps, the metrics `d

and `d+1 differ and are related by metric scaling using a discrete conformal factor
w : V → R that assigns constant factors to all vertices of the triangulation:
`d+1
ij = e(wi+wj) · `dij.

3) If two consecutive metrics `d and `d+1 are equal, the tri-
angulations Td and Td+1 differ by a cocircular edge flip,
i.e., the common edge ij between two cocircular trian-
gles ijk and jil is replaced by the edge kl between the
former opposite vertices as shown in the inset.

Based on this definition of discrete conformality between combinatorially different tri-
angulations, a discrete uniformization theorem can be derived using the notion of cone
angles. For each vertex v ∈ V of a triangulation, the cone angle K(v) for interior vertices v
is defined as the difference between 2π and the sum of all angles around v. For boundary
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vertices v, K(v) equals the difference between π and the sum of all angles around v. The

total sum of all cone angles K(v) satisfies the Gauss-Bonnet condition
∑
v∈V

K(v) = 2π·χ(S)

where χ(S) = |V | − |E|+ |F | is the Euler characteristic of surface S.
The discrete uniformization theorem states that for a closed connected surface S with

a discrete metric ` and prescribed cone angles K, there exists a unique metric ˜̀ obtained
from ` via metric scaling that satisfies the prescribed cone anglesK [SWGL15, Theorem 1.2].
This theorem guarantees existence and uniqueness for discrete conformal equivalent met-
rics of a given surface with prescribed cone angles.

Also for the discrete case, existence and uniqueness statements are not sufficient to
find concrete discrete conformal equivalent metrics. However, the sequence of discrete
metrics `0, . . . , `m and Delaunay triangulations T0, . . . , Tm in the above notion of discrete
conformality is an evolution of conformal factors w over time. Considering this evolution
yields a convex energy function and since it is convex, a minimizing solution w? can be
found in a finite amount of time if it exists. For the specific case of a Jordan domain with
three boundary points, a convergence theorem to the continuous Riemann map can be
proven. [Cra19, LSW22]

Note that the sequences of triangulations and metrics that satisfy conditions 1 to 3
result in a flow from one triangulation to the next, ensuring discrete conformal equiva-
lence. As stated in the introduction, our algorithm aims to achieve visible convergence
towards a conformal solution. Hence, the technique of gradually altering local properties
of a polygonal grid will be revisited in Chapter 5 where our algorithm is presented.

Metric scaling `ij = e(wi+wj) · `ij with a discrete conformal factor w is also part of
the notion of discrete conformality between two combinatorially equivalent triangulations
T and T̃ of a surface S. This case has been widely studied by Bobenko et al. [BPS15,
BSS16]. There again, the discrete metrics ` and ˜̀ assign positive lengths to the edges
of the triangulations T and T̃ , respectively, satisfying the triangle inequalities. Discrete
conformal equivalence between T and T̃ is defined as follows.

Definition 4.2.1 (Discrete conformal equivalence) [BPS15, Def. 2.1.1]
Two combinatorially equivalent Euclidean triangulations (T, `) and (T̃ , ˜̀) are discretely
conformally equivalent if the discrete metrics ` and ˜̀ are related by

˜̀
ij = e

1
2
(wi+wj)`ij (4.8)

along every edge ij between two vertices i and j for some conformal factor w ∈ R|V |.

This defines an equivalence relation on the set of discrete metrics on combinatorially
equivalent triangulations of T . An equivalence class is called a discrete conformal class of
discrete metrics or a discrete conformal structure on T .

The task is to determine a conformal factor w that yields a discrete conformally
equivalent metric ˜̀ for a given triangulation T with known edge lengths `.

This could be solved by a convex energy function E which is defined on the trian-
gulation T , the edge length values ` or rather the logarithmic lengths λ = 2 log(`), and
the angle sum θi around each vertex i. The variational principles outlined in [BPS15,
Chapters 3&4] and [BSS16, Chapter 3] ensure that finding a critical point of the energy
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function E is equivalent to solving the discrete conformal mapping problem. As stated
before, we will use the technique of minimizing a global energy function in Section 5.3.2
to find a stopping criterion for our algorithm, but not to find the conformal map itself.
Instead, we consider an equivalent notion of discrete conformal equivalence for circular
polyhedral surfaces.

Given a discrete metric ` of a triangulation T = (V,E, F ).
Then, the length-cross-ratio based on ` for the interior
edge ij ∈ E between two triangles ijk and jil is defined by
Bobenko et al. [BPS15, Def. 2.3.1]

lcrij =
`il`jk
`jl`ik

. (4.9)

If the triangulation is embedded in the complex plane C, then the
length-cross-ratio lcrij equals the absolute value of the complex cross-ratio of the complex
vertex coordinates zi, zj, zk, zl:

lcrij =

∣∣∣∣ (zi − zl)(zj − zk)
(zl − zj)(zk − zif)

∣∣∣∣ .
The concept of length-cross-ratios provides an additional criterion for discrete confor-

mal equivalence among triangulations. This criterion is equivalent to Equation (4.8) in
Definition 4.2.1.

Proposition 4.2.2 [BPS15, Prop. 2.3.2], [BSS16, Prop. 2.6]
Two Euclidean triangulations (T, `) and (T̃ , ˜̀) are discretely conformally equivalent if and
only if the length-cross-ratios based on ` and ˜̀, respectively, are equal for each interior
edge ij ∈ E: lcrij = l̃crij.

Simply connected surfaces are bipartite if and only if their faces are even polygons,
such as a quadrangulation. A polygon is cyclic if it is inscribed in a circle with its vertices
on the circle. This results in the following statement:

Proposition 4.2.3 [BSS16, Corollary 2.10]
Two simply connected, combinatorially equivalent, Euclidean cyclic polyhedral surfaces
with even faces and equipped with discrete metrics ` and ˜̀ are discretely conformally
equivalent if and only if the length-multi-ratios for each face with vertices i1, i2, . . . i2n are
equal

`i1i2`i3i4 · · · `i2n−1i2n

`i2i3`i4i5 · · · `i2ni1
=

˜̀
i1i2

˜̀
i3i4 · · · ˜̀i2n−1i2n

˜̀
i2i3

˜̀
i4i5 · · · ˜̀i2ni1

. (4.10)

For quadrangulations, i.e., for polyhedral surfaces whose faces ijkl ∈ F are quadrilat-
erals, the equality of length-multi-ratios in Equation (4.10) guarantees that the complex
cross-ratios of the vertex positions of the faces ijkl ∈ F are equal because the absolute
values of the cross-ratios equal the length-multi-ratios and the orientation of both faces
is identical [BSS16, Prop. 2.12]:

(zi − zl)(zj − zk)
(zl − zj)(zk − zi)

=
(z̃i − z̃l)(z̃j − z̃k)
(z̃l − z̃j)(z̃k − z̃i)

.
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Interestingly, according to [BSS16, p.10], this theory of quadrangulations with length-
cross-ratios equal to 1 is connected to circle patterns which will be examined in the
following section. Also, to compare the cross-ratios, it is possible to connect the single
factors (zj − zi) for an edge ij ∈ E through factors wi and wj assigned to the ver-
tices i, j ∈ V of the quadrangulation by (z̃j − z̃i) = wiwj(zj − zi) as in Equation (4.8) if
and only if the two planar quadrangulations are discretely conformally equivalent.

This theory of discretely conformally equivalent triangulations and quadrangulations
will allow us to check the result of our algorithm presented in Chapter 5 for conformality.
The texture’s pixel grid naturally creates a polyhedral mesh within the stroke. The pixels
are evenly arranged in a rectangular grid of squares, resulting in a cyclic polyhedral
quadrangulation. However, it is possible to place diagonals inside the squares, resulting
in a triangulation. In Section 5.3.1, we will specify which length-cross-ratios will be used
to evaluate the outcome of our algorithm for conformality.

4.2.2 Circle packing

An alternative method for constructing discrete conformal maps based on circle preserva-
tion are the so-called circle packings. Thurston introduced the concept of circle packing
theory during a conference in 1985, where he proposed that circle packings provide an
approximation of continuous conformal maps [Ste99]. This conjecture was subsequently
proven in 1987 by Rodin and Sullivan [RS87]. Circle packings discretize the property of
conformal maps of preserving infinitesimal shapes (see Definition 1.1.2). They combine
the fields of combinatorics and geometry since they are configurations of mutually tan-
gent circles following the combinatorics of a simplicial 2-complex K. This complex K is
a triangulation (V,E, F ) of an oriented topological surface, which is either the complex
plane C, the unit sphere S, or the hyperbolic unit disk D.

A collection of circles P is a circle packing for K if the following holds: there is a
circle cv for each vertex v ∈ V of K; for each edge vw ∈ E of K, there are two circles cv
and cw that are tangent; and the orientation of triples of circles within P corresponds to
the orientation of their corresponding triangular face of K [Ste05, Def. 4.1 & 4.2]. The
discrete uniformization theorem [Ste05, Theorem 4.3], [Ste03] guarantees that for every
triangulation K, there is a locally finite circle packing P with the same combinatorial
structure as K and with nonoverlapping circles in one of the three surfaces C, S or D. It
is uniquely determined by K up to conformal equivalence.

Furthermore, the discrete mapping theorem for circle packings states that if K is a
simply connected surface, then there exists a locally finite maximal circle packing with
mutually disjoint circles in exactly one of the unit disk, the complex plane or the sphere.
Additionally, this packing is unique up to conformal automorphisms of the topological
surface [Ste03], [Ste05, p.52]. A packing is called maximal if it covers the entire sphere,
complex plane or unit circle. In the case of the unit circle, the boundary circles are
horocycles, i.e., they are internally tangent to the unit disk (see Figure 4.7 at the top for
an example).

Despite the uniqueness theorem, there are multiple circle packings that have the same
triangulation K as the underlying complex. In particular for circle packings of the unit
disk, mapping one circle packing to another results in various circle configurations [DS95].
Discrete analytic functions between circle packings map circles to circles and preserve
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Figure 4.7: Discrete analytic functions mapping a circle packing from the unit disk D
to circle packings with different combinatorics. [DS95, Figure 4]

tangency and orientation. Figure 4.7 shows some examples. The following nomenclature
can be found in all cited sources about circle packings.

A packing of tangent circles with mutually disjoint interiors, such as the one depicted
on the bottom left in Figure 4.7, is called univalent. However, the discrete analytic map
may fail to be injective, as illustrated in Figure 4.7 on the bottom in the middle. The
circles have disjoint interiors with respect to their neighbors, but the packing as a whole
folds over itself, causing certain parts of the region to be covered twice by the circle
packing. This type of packing is called locally univalent.

This property of local univalence closely resembles self-intersecting strokes. The or-
namental strip is meant to be mapped injectively to the stroke, but there are regions of
self-intersection, hence of local univalence. The bottom image in the middle of Figure 4.7
serves as a model of self-intersection, which is further discussed in Sections 4.3.1 and 5.4.1.

The third case, displayed in Figure 4.7 at the bottom right, shows a circle packing that
is not even locally univalent. There is a branching circle whose tangent neighbors, called
petals, wrap around it not just once, but twice or more. The angle sum around each
center zv of the circles in the packing is used to measure this property. For a circle cv,
consider zv to be its center and p1, . . . , pn to be its n petals. The angles at the circle
center zv are denoted as αd,d+1

v and measure the angle between the lines that connect zv
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and two subsequent centers pd and pd+1, where n + 1 ∼= 1. The angle sum around zv is
equal to 2π for a (locally) univalent packing, and it is an integer multiple of 2π, i.e., 2π ·N
for a branching circle aroung which the petals wrap N > 1 times.

Locating the branch circle in Figure 4.7 is challenging. Instead, it is more convenient
to consider the branching circle packing as a circle packing consisting of two sheets, as
shown in Figure 4.8. A branch cut of circles is introduced that connects both sheets.
Together, the projected sheets define the complete circle packing with branching circle.
We will adapt this idea of splitting the packing into two parts in our approach to self-
intersecting strokes in Sections 4.3.1 and 5.4.1. Moreover, in Sections 4.3.2 and 5.4.2, we
propose ideas on how to process strokes with singular points on their boundary, which
includes the concept of splitting the stroke into multiple sheets.

Figure 4.8: A branching circle packing with branch cut. [DS95, Figure 8]

See the work of Stephenson et al. [Ste99], [Ste05], [Ste03], [DS95] and the sources cited
therein for algorithms that compute circle packings from combinatorial information and
for results on the convergence of discrete circle packings to continuous conformal maps.
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4.3 Non-univalent discrete strokes

In the previous section on circle packing, we have demonstrated that self-intersecting
strokes possess comparable structures to locally (but not globally) univalent circle pack-
ings. For the continuous stroke model, we have examined in detail which singularities
occur at the boundary of a stroke and found that the structure of a stroke close to singu-
larities of its boundary is that of a projected swallowtail surface.

For both self-intersections and singular boundary points, the stroke folds over itself,
and univalence cannot be achieved, meaning that global injectivity of the expected map
from the ornamental strip to the stroke cannot be met. So we will provide algorithms for
detecting these two cases of self-intersection and singular boundary points in our discrete
model. Detecting these particular cases is the basis for the inclusion of certain procedures
(or for concepts thereof) in our algorithm presented in Chapter 5.

4.3.1 Detection of self-intersection

A discrete stroke is defined by an interpolated curve γ, a radius function r, and discrete
points Ctd = γ(td) on γ (see Section 4.1). The stroke is defined as the union of all circles
around γ(td) with radius r(td).

To determine whether the newly added data point γ(td) and its surrounding circle C(td)
cause the stroke to intersect itself, we apply the following procedure to the discrete set
of all circles {C(0), . . . , C(td)}. See Algorithm 2 for the pseudocode of the described
algorithm.

For each circle C(ti) with i ∈ {0, . . . , d − 1}, we calculate the distance between its
center γ(ti) and the center γ(td) of the recently added circle. This calculation is necessary
to identify circles that intersect the new circle C(td). The distance between the centers of
the circles, |γ(ti)− γ(td)|, and the index i are stored in an array.

An entry of the array is deleted if it contains a distance that is greater than the sum
of the two radii of the circles C(ti) and C(td). The remaining list only contains those
distances and indices i in which the centers of the circles are so close to each other that
the circles intersect:

‖γ(ti)− γ(td)‖ ≤ r(ti) + r(td).

Subsequently, it is necessary to differentiate between circles within the stroke that are
intended to intersect and those that indicate self-intersection of the stroke. All circles C(ti)
are intentionally constructed to intersect their neighbors because otherwise the “super-
sonic” Condition (2.2) is not met. To separate these from intersecting non-neighbors, we
sort the array by the indices i. If the indices are close to d, the corresponding circles are
expected to intersect. Those circles intersecting C(td) with an index i that is not part of a
chain of consecutive numbers descending from d indicate self-intersection of the stroke. For
instance, if the array still contained entries with indices d, d−1, d−2, d−25, d−26, d−27,
as shown in Figure 4.9 for a stroke created using the slightly modified Benchmark Exam-
ple 2.1.8, then the entries with indices d− 2 and d− 1 that are consecutive to d belong to
circles that are meant to intersect C(td), due to being close neighbors within the stroke.
The circles with indices d−25, . . . , d−27 indicate a self-intersection of the stroke. There-
fore, if any entries in the array contain such non-consecutive indices of d, the stroke will
intersect itself when the new circle C(td) is added to the stroke.
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Figure 4.9: Detection of self-intersetion of a stroke.

Algorithm 2 Detection of self-intersetion of a stroke.

array ← [ ]
for n = 0 . . . d do

index = d− n
distance = |γ(td)− γ(tindex)|
if r(td) + r(tindex) ≥ distance then

append [index,distance] to array
end if

end for
continue ← true
for n = 0 . . . length of array do

if continue then
if index in the first entry of array equals d− n then

remove first element of array
else

continue ← false
end if

end if
end for
if array contains some elements then

we have detected self-intersection
end if

If the stroke makes a narrow turn as in Benchmark Examples 2.1.9 of an ellipse
and 2.1.10 of another curve with singular boundary points and non-constant radius func-
tion, it also intersects itself because of the folding at those singularities. However, Algo-
rithm 2 will always omit these cases since the folding occurs for circles with consecutive
indices. Our observations and concepts concerning discrete strokes with singular boundary
points will be presented in the following section.

The effect of detecting a self-intersection on the calculation of the conformal mapping
from the strip to the stroke will be discussed in Section 5.4.1.
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4.3.2 Identification of singular envelope points

To identify singular points on the stroke boundary, i.e., on the envelope curves w±
calculated by the interpolated curve γ and function r, we derived a criterion on the
curvature of γ in Proposition 2.5.2:

κ?(t) = ±
‖γ′(t)‖2 − r′(t)2 − r(t)r′′(t) + r(t)r′(t)

‖γ′(t)‖

(
γ′x(t)γ

′′
x(t) + γ′y(t)γ

′′
y (t)

)
‖γ′(t)‖r(t)

√
‖γ′(t)‖2 − r′(t)2

. (4.11)

Curve γ and the radius function r are both defined as piecewise cubic B-splines, and
the stroke is considered not to be continuous, but to be discrete. As outlined in Sec-
tion 4.1.3, equidistant points Ctd on γ are selected to be centers for the stroke defining
circles C(t0), . . . , C(tN). In each iteration step of this procedure, Equation (4.11) can be
computed by inserting the current splines bd and rd for γ and r as well as their first and
second derivatives. The derivatives of cubic B-splines with respect to t as given in Equa-
tion (4.6) can be calculated by taking the derivative of the left component

(
1 t t2 t3

)
.

This is because matrix C and the data points Ptd−1
, Ptd , Ptd+1

and Ptd+2
are independent

of t. The curvature of the current spline of γ in the iteration corresponds to the curvature
of bd. The curvature is calculated by definition of the curvature of a general curve:

κ◦(t) =
det (γ′(t), γ′′(t))

‖γ′(t)‖3
=

det (b′d(t), b
′′
d(t))

‖b′d(t)‖3
. (4.12)

If the right hand sides of (4.11) and (4.12) coincide, the corresponding boundary point w±(t)
is a singular point. Due to numerical reasons, we cannot enforce equality, but instead re-
quire |κ? − κ◦| < ε for an appropriately chosen 0 < ε � 1. When choosing ε, we have
to take into account the step size δ of Algorithm 1. On one hand, ε should be chosen
sufficiently large to correctly detect each singular boundary point, while ensuring that ε is
chosen sufficiently small to avoid the identification of multiple “singularities” on w± that
actually correspond to a single singular boundary point.

Alternatively, we can directly use the facts from which the curvature condition was
derived, namely that the boundary and discriminant envelopes of our strokes are identical.
According to this, a point on w± is a singular point if and only if

F (t, x, y) =
∂F

∂t
(t, x, y) =

∂2F

∂t2
(t, x, y) = 0 for (x, y) = w±(t).

As shown in Proposition 2.4.1, the points on the envelope curves w± automatically satisfy
that both, F and its first derivative with respect to t, are equal to zero. Hence, we need
to test whether the second derivative at w±(t) is zero.

Figure 4.10 shows a stroke and its envelope curves w±. For both envelope curves, the
values of ∂2F

∂t2
(t, x, y) at (x, y) = w±(t) are plotted with respect to t on the right. The two

horizontal lines represent the t-axes where ∂2F
∂t2

(t, w±(t)) = 0. We observe that the second
derivative of F w.r.t. t of one envelope curve vanishes at the cusps of the boundary of the
stroke.
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4.3. Non-univalent discrete strokes

Figure 4.10: A stroke, its envelope curves and the second derivative of F .

Both techniques for identifying singular boundary points fail to differentiate between
the two types of singularities: those where the point of regression is a cusp of type A2

(see Proposition 2.6.8), and those where it is a point of infinite curvature with A≥3 singu-
larity. Until now, the positions of A≥3 singularities for strokes with a non-constant radius
function r have not been characterized. But from Lemma 2.6.12 we know that in the case
of a constant radius function rc all points of regression on the envelope curves correspond
to projections of sections through the cuspidal edges of the swallowtail surface Src . An
A≥3 singularity arises only when the section intersects the surface at the point where its
cuspidal edges merge [Tho75, p.65]. It is unlikely to encounter an A≥3 singularity when
drawing a stroke of constant radius by hand. We conjecture that a special treatment for
singularities of type A≥3 can be neglected in the construction of the algorithm.

Figure 4.11: Stroke with boundary
point of type A≥3.

To provide evidence to support the conjecture,
we compute the parameter t? that corresponds to
the curve point of extreme curvature for the ellipse
of Benchmark Example 2.1.9. The curvature κ(t?)
determines the constant radius r?c = 1

κ(t?)
which is

approximately 27 for the curve from Benchmark
Example 2.1.9. By construction, the stroke de-
fined by γ, constant radius r?c and with envelope
curves γ‖±r?c has infinite curvature at t?. We ap-
ply our algorithm, which will be introduced in
Chapter 5, to this stroke and compute the con-
formal map without any special handling at the
point of infinite curvature (see Sections 5.1 and 5.2
for details). Additionally, we evaluate how well
conformality is met; it will be discussed in Sec-
tion 5.3.1 how this is done. The result is shown
in Figure 4.11 for a checkerboard preimage tile.
The image is zoomed in to the relevant region of
the stroke around the singular boundary point of
type A≥3. The green color throughout the ellipse
indicates a good result close to conformality (see details in Section 5.3). In particular, also
at the singular boundary point with infinite curvature, where the envelope corresponds
to the ellipse’s evolute ν shown in orange, the color is green indicating conformality.
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For a stroke’s curve γ having an extremum of curvature, we have investigated the
structure of the corresponding swallowtail surface in Section 2.6.2 for both benchmark
examples with constant and non-constant radius function. For strokes with constant ra-
dius, cusps only arise on the boundary of a stroke if the curve γ has extreme curvature
(see Lemma 2.6.9). For strokes with non-constant radius function, there are more possi-
bilities than this. In both cases, to ensure a mathematically correct representation of the
stroke, the folding of the mapped strip should correspond to the structure of a projected
swallowtail surface. This is why we investigate this structure in more detail now.

If the stroke neither begins nor ends between two cusps, we know from Section 2.6.2
that they occur in pairs since the two cusps are projections from the two cuspidal edges of
a swallowtail surface S or the respective folds of the surface Sr for a non-constant radius
function.

A pair of cusps S1 and S2 is accompanied by two specific points on the projected
swallowtail surface: the point Si where the singular envelope curve intersects itself (the i
in Si stands for intersection), and the point Se where the projections of the cuspidal edges
or the folds of the swallowtail surface meet (the e stands for evolute, we will see the
connection in the following). These two additional points, together with the two cusp
points, define regions within the stroke that are covered once, twice, or even three times
by the projected swallowtail surface. Figure 4.12 depicts a projection of the swallowtail
surface that corresponds to the stroke from Benchmark Example 2.1.9 with a constant
radius of rc = 20. Figure 4.13 shows the projection of the surface Sr for curve γ and
non-constant radius function r from Benchmark Example 2.1.10.

Figure 4.12: Benchmark ellipse 2.1.9 with cusps and folded regions.

We have previously discussed how to identify the locations of the cusp points, S1

and S2, regardless of whether the radius function is constant or not. Likewise in both
cases, the doubly covered region of the stroke is the triangular region with vertices being
the two cusps S1 and S2 as well as the point of intersection Si of the envelope curve with
itself. The edges of the twofold covered triangular region are defined by the envelope
curve segments between Si and S1, S1 and S2, and S2 and Si, respectively.

To algorithmically determine the location of Si, we use that Si is located where the en-
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4.3. Non-univalent discrete strokes

Figure 4.13: Benchmark Example 2.1.10 with cusps and folded regions.

velope curve passes from an already covered region inside the stroke to its outside, crossing
itself at Si. It will be possible to determine the position of Si locally without comput-
ing the intersections of a new boundary spline segment bd with all previously calculated
spline pieces bj for j < d. The exact procedure will be explained in Section 5.4.2 once the
structure behind the algorithmic calculations presented in Chapter 5 has been established.

The second special point Se is the third vertex besides S1 and S2 of the threefold
covered region within the stroke. It is situated at the intersection of the projected cuspidal
edges or folds of the swallowtail surfaces, and hence is located inside the stroke. Se is
connected to the point of curve γ with extreme curvature which occurs between S1 and S2.
For this, it can be used as an indicator whether two successive singular points on an
envelope curve form a pair or not: if point Se lies between the two singular points S1

and S2, they form a pair.

If the function has a constant radius, then by Lemma 2.6.9 and Lemma 2.6.12, Se
is the unique point on the evolute ν of γ that corresponds to parameter t? where γ has
extreme curvature between S1 and S2: Se = ν(t?) where κ′(t?) = 0. This is precisely
the point at which the swallowtail surface shifts from being univalent to threefold (see
Section 2.6.2). To determine t? and thus Se, the derivative of the radius of curvature is
used:

∂

∂t

1

κ(t)
=
−κ′(t)
κ2(t)

.

It vanishes for parameters t where the curvature κ of curve γ has an extremum. As before,
we include a test to detect the value of t? in every iteration of Algorithm 1 by verifying

that
∣∣∣−κ′(t)κ2(t)

∣∣∣ ≤ ε for an appropriately chosen value 0 < ε� 1, followed by the computation

of Se = ν(t?) = bd(t
?) + 1

κ(t?)‖b′d(t?)‖
(b′d(t

?))⊥. The curvature and derivative are calculated

for the interpolated curve according to Equation (4.12). After identifying vertex Se, the
threefold covered triangular region is bounded by the envelope segment between S1 and S2

and two curve segments u1 between Se and S1 and u2 between Se and S2, respectively. By
Theorem 2.3.3, we know that for a constant radius function, the cusp points S1 and S2 also
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lie on γ’s evolute ν, since all cusps on the envelope curves of strokes with constant radii
do. As a result, the projection of the cuspidal edges of the swallowtail surface corresponds
to the evolute of γ (see Section 2.6.2). Hence, the curves u1 and u2 are segments of ν that
intersect at a vanishing angle, creating a cusp at Se. Thus, the threefold covered region
is entirely determined by S1, S2 and Se, in combination with the envelope curve and the
evolute ν.

Lemma 4.3.1 Given a stroke s defined by a curve γ and a constant radius rc. If the
boundary of s has a pair of singular points S1 and S2, then the vertex Se of the threefold
covered triangular region in s is the cusp of the evolute ν of γ. The two curve segments u1
between Se and S1 and u2 between Se and S2, which bound the threefold covered region,
are segments of the evolute ν.

If the radius function is not constant, Se does not generally lie on the evolute of γ,
as illustrated in Figure 4.13 for the stroke corresponding to Benchmark Example 2.1.10,
with the evolute depicted in orange. Nevertheless, when it comes to the surface Sr of the
stroke in Benchmark Example 2.1.10, we observe that Se is related to the curve point
of extreme curvature. The point Se is determined by finding the intersection point of
two line segments. The first line segment connects w+(t?) and w−(t?) while the second
connects w+(t? + ε′) and w−(t? + ε′), where ε′ is a positive value less than the step width
between two equidistant curve points. So far, it remains unclear whether this calculation
is generally applicable. We leave this as an interesting open question.

With this chapter, we completed the preliminary theoretical work for our algorithm.
Also, we are able to compute all relevant components of the strokes during the drawing
process, like the interpolated curve γ, the interpolated radius function r, the envelope
curves w± and the reference points for the exceptional cases of self-intersections and
singular boundary points. Hence, we are now ready to develop the algorithm in the next
chapter.
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5 | Implementation: Pixel Averag-
ing on the GPU

In this chapter, we will present and discuss our algorithm that computes the conformal
image of the artistic content from a strip consisting of multiple copies of an ornamental
tile onto a user-drawn stroke. The stroke is modeled by a family of circles defined by
discrete points on the user-drawn path and their associated radii. The ornamental strip
is mapped to the stroke by our algorithm in real-time during the drawing process.

Parts of this chapter may be found in our previously published paper [Pol23a].
The general workflow of the algorithm starts with the initialization of preimage coor-

dinates for all points in the stroke, which are provided by the preimages of the circles that
define the stroke. Then, by iteratively averaging the preimage coordinates simultaneously
to the drawing process, the ornamental image in the stroke converges to a nearly con-
formal result. The computational process is made visible in such a way that the artistic
content of the strip flows to its final position within the stroke as it is drawn.

This real-time requirement of our algorithm is an important difference to other algo-
rithms that calculate conformal maps and their approximations, as they usually display
the solution once all the calculation steps are complete. To fulfill this real-time constraint,
we have decided to implement our algorithm on the graphics processing unit (GPU), one
of the computational units of modern computers, which is able to perform fast computa-
tions on graphical output. The following statements concerning the nature of the GPU
follow arguments of Montag [Mon20] and Owens et al. [OLG+07].

The commonly used processor for computer programs is the central processing unit
(CPU), which is designed for object-based sequential computations, while the GPU works
massively in parallel. The difference can be described as follows: to draw all stroke defining
circles C(td) with centers γ(td) and radius r(td) for d ∈ {0, . . . , N} to the drawing surface,
the CPU takes a command like

draw the circle with radius r(td) and center γ(td) for d from 0 to N .

The GPU, however, is not object based but pixel based, i.e., it works locally on every pixel
of the texture underlying the drawing surface, which makes the code rather something
like

test for each pixel of the drawing surface whether it has a distance of r(td) to γ(td) for all
d ∈ {0, . . . , N}, and if this is the case, color this pixel in the desired color of the circle.

This closely connects the computations to the graphical textures, which serves our goal
of showing the computational steps of the algorithm. It is also consistent with our goal
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of computing a nearly conformal map, which is locally a similarity transformation, that
the computations are performed locally. Writing code for the GPU involves converting all
calculations into graphical terms, making it more than just learning a new programming
language. This code may appear less intuitive because the GPU processes the pixels of a
texture in parallel, without a predetermined order.

The speed of GPU computations depends on the available parallel units of the GPU,
i.e., how many pixels can be processed in parallel. Additionally, the speed of GPU com-
putations is influenced by the number of data transfers between the CPU and GPU, as
well as the amount of pixels in the considered texture. To minimize the number of re-
quired data transfers between the GPU and the CPU, we will focus on calculations based
on textures and the use of the GPU in the following. In this sense, all computational
steps will be stored in textures from which they can be retrieved and used for additional
computations.

A two-dimensional texture consists of a finite number of pixels arranged in a rectan-
gular grid. We will mainly use textures of 1024× 512 pixels, since our experiments have
shown that this is a reasonable number of pixels that does not make the calculations too
slow and also supplies us with a resulting image of decent resolution. We denote the co-
ordinates of a pixel by (x, y), where x ∈ [0, 1024] and y ∈ [0, 512], i.e., our main textures
covering the drawing surface have vertices (0, 0), (1024, 0), (0, 512) and (1024, 512). These
pixel coordinates may also take values that do not precisely coincide with the positions
of the pixels in the texture, which will be discussed in Section 5.1.3.

Every pixel p in a texture is assigned a 4-dimensional vector (r, g, b, a)p. The four en-
tries are called the red-, green-, blue- and alpha-channels, which intuitively makes sense for
the graphical output of a texture: (r, g, b) gives the color information for each pixel, and
the alpha channel contains the pixel’s opacity, i.e., a value that indicates how transparent
the color in the first three entries is displayed at the corresponding pixel. In our setup
using CindyJS, each of the entries is an 8-bit integer between 0 and 255, which is used for
color representation by default. If the pixels of a texture are intended to store intermedi-
ate steps for more complex computations, as it will be the case in our algorithm, the 8 bits
may not be enough. How to address this issue will be discussed in Sections 5.1.1 and 5.1.2.

In the following, we will present the algorithm that provides us with a nearly conformal
map from an ornamental tiled strip to a user-drawn stroke. For this, we will temporarily
restrict our strokes to be free of self-intersections and singular boundary points. These
special cases will be discussed at the end of this chapter in Section 5.4. For our imple-
mentation, we use the language CindyJS [RGK23b] together with the plugin CindyGL
[M+17]. CindyJS is a framework that enables the creation of interactive applets embed-
ded in HTML files for use in web browsers. The CindyGL plugin provides a higher level
interface to WebGL, an open web standard for rendering graphics in the browser without
additional plugins. CindyGL allows the user to write CindyJS code that is passed to
WebGL. All code snippets in the following are either given in pseudocode or in CindyJS
code. The entire code for the HTML applet, titled OrnaStrokes LP.html and written in
CindyJS, can be accessed through [Pol23b].

In Section 5.1, we will introduce the general implementation framework. We will
present how the initial preimage coordinates for all pixels in the stroke are computed from
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the registered input data (Section 5.1.1). Also, the color transfer from the ornamental
strip to the stroke via reverse pixel lookup will be discussed (Section 5.1.3). To enable
GPU computation, the required data for the algorithm is stored on textures, as will be
outlined in Section 5.1.2.

In Section 5.2, we will present the core algorithm of the conformal computations. For
each pixel p within the stroke, the algorithm calculates the average of the neighboring
pixel’s preimage coordinates to obtain preimage coordinates for the current pixel p (Sec-
tion 5.2.1). If any neighboring pixels necessary for the pixel averaging process are located
outside the stroke, p is said to be in the boundary area. These pixels are subsequently
processed using our results from Section 3.3, which covers the extension of conformal maps
to the boundary of the respective domains and beyond. The Schwarz reflection principle,
along with its generalization, is applied to our parallelized GPU computations to treat
pixels in the boundary area (Section 5.2.2).

In Section 5.3.1, we will demonstrate that the algorithm accurately computes an ap-
proximately conformal map. Based on the definitions of conformality presented in this
thesis, a local measure of the map’s deviation from conformality will be given. The rep-
resentation of deviations as color values in a texture supports the observation that our
algorithm closely approximates conformality (Section 5.3.1). A global measure will be de-
fined that is used as a stopping criterion for the averaging procedure. This global measure
computes the average of all deviations per pixel in the stroke (Section 5.3.2). To compare
our method with an exact conformal map, we will calculate the conformal modulus of a
half annulus and the rectangle to which it is conformally mapped. We will compare it
to the conformal modulus of the rectangular strip mapped to the stroke of Benchmark
Example 2.1.7 (Section 5.3.3).

Section 5.4.1 examines strokes with self-intersection. We will present the necessary
adaptations to the general algorithm, the pixel averaging, and the conformal test. Finally,
we will propose methods for integrating the case of singular boundary points into our
algorithm (Section 5.4.2).

5.1 General algorithm

In this section, we outline the general algorithm for mapping the tiled strip onto the
stroke, along with some interesting implementation details. The general algorithm will
be completed in the following sections by a pixel averaging algorithm, a method to verify
conformality, and techniques for self-intersecting strokes and singular boundary points.

The algorithm is initiated when the user places a mouse, finger or digital pen on the
drawing surface. From then on, the current stroke is drawn on the drawing surface. The
underlying texture that contains the corresponding color data for every pixel in the stroke
is called currentCanvas. Once the user stops drawing, i.e., the mouse, finger, or digital
pen is lifted from the drawing surface and no further data is registered, the appearance
of the stroke is fixed. This means that only the calculations concerning the displayed
colors continue. If a new stroke is initiated, the texture currentCanvas is cleared and the
previously drawn stroke is transferred to a texture called storeCanvas.

To model the stroke, we have already seen in Section 4.1.3, Algorithm 1, how the
centers of the circles C(td) are determined as equidistant points γ(td) on the interpolated
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user-drawn path. The radius r(td) of circle C(td) is determined depending on the registered
pressure of the pen on the drawing surface and probably other available data.

If the user draws with a mouse on a computer screen or
with a finger on a tablet, no pressure sensitivity influences
the stroke width. Instead, the user interface contains a slider
that allows the user to specify the constant radius for the
circles of the upcoming stroke. For our purposes, we limit the
radius value between a minimum of 10 and a maximum of 40. Based on our investigations,
decreasing the radius below 10 significantly reduces the recognition of the artistic content
from the input tile T .

If the user draws with a pressure-sensitive digital pen,
various data is registered as, for instance, the amount of pres-
sure applied or the angle at which the pen is tilted towards
the drawing surface, also known as the altitude angle. Two
additional sliders control the influence these two properties
have on the radius value. We calculate the radius value by
combining the information from all three sliders using the following formula:

r(td) = 40 ·
(

(1− p%) ∗
(
a% ∗ (1− αr · 2/π) + (1− a%) · rc/40

)
+ p% · pr

)
(5.1)

for rc ∈ [10, 40], p% ∈ [0, 1] the influence of the pressure information deduced from the
respective slider, pr ∈ [0, 1] the measured pressure, a% ∈ [0, 1] the influence of the pen’s
altitude angle and αr ∈ [0, π

2
] the measured tilt of the pen towards the drawing surface.

The slider value p% determines the percentage with which the value r(td) depends on
the applied pressure. In the case that a% 6= 0, which means that the stroke width also
depends on the tilt of the digital pen, the constant component (1− p%) · rc/40 is reduced.
If the value calculated by Equation (5.1) is less than 10, the resulting radius value r(td)
is again set to 10.

When the user starts drawing, the first registered position γ(t0) on the path together
with the determined radius value r(t0) defines the first circle C(t0) of the stroke. All subse-
quent circles are determined once the piecewise interpolated curve γ and radius function r
enable the calculation of equidistant circle centers (see Section 4.1). In Section 5.1.1, we
will specify the initial coordinates for the pixel averaging algorithm presented in Sec-
tion 5.2 from these equidistant curve points γ(td) and radii r(td). When the user stops
drawing, no more data is registered and the radius function r is set to zero to indicate
that the appearance of the stroke is fixed.

5.1.1 Initial coordinates for pixel averaging

Given a rectangular tile T with width wT and height hT , the goal is to compute a confor-
mal map f : Sn → s from the finite strip Sn defined by n copies of T to the stroke s. To
obtain this map f , we actually compute the inverse map f−1 : s→ Sn, i.e., we determine
the preimage coordinates in the tiled strip for each pixel within the stroke. In this sec-
tion, we present how to compute the initial coordinates, which are then used to iteratively
obtain the conformal map f from the strip to the stroke. We store the coordinates in
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textures (Section 5.1.2) and calculate the desired conformal map or rather its inverse f−1

using a pixel averaging algorithm (Section 5.2).

Initial preimage coordinates for all pixels inside the circles C(td) ∈ s are calcu-
lated once the circles are registered. For this purpose, we define similarity transfor-
mations τd : C(td)→ Sn, which consist of rotation, scaling, and translation. Hence, the
preimage coordinates in Sn also lie within circles, and the preimage region of the stroke
consists of a rectangle with two half circles on either side (see Figure 5.1 containing
additional information used in Section 5.3.3).

Figure 5.1: The preimage region of a stroke in the rectangular strip Sn.

Structurally, the aim is to map the boundaries of the preimage region in the strip and
the stroke to each other. Hence, the initial preimage coordinates are defined in such a way
that all circles C(td) are mapped to circles of diameter hT fitting the strip. This implies
that all centers of preimage circles will be situated on the horizontal line y = hT

2
in Sn.

All circle centers within the stroke lie on the interpolated curve γ, which parameterizes
this curve equidistantly. Thus, the maps τd for initial preimage coordinates map the
equidistant parametrization of curve γ to the horizontal line y = hT

2
. The initial circle C(t0)

is mapped onto the circle centered at τ0(γ(t0)) =
(
hT
2
, hT

2

)
with a radius of hT

2
. To

determine the location of τd(γ(td)) on the line y = hT
2

within the rectangular strip Sn, we
scale the distance between two consecutive points on the curve, γ(td) and γ(td−1), while
considering the diameters of both the target circle, which has a diamenter of hT , and the
circle C(td), which has a diameter of 2 · r(td):

τ0(γ(t0)) =

(
hT
2
,
hT
2

)
τd(γ(td)) =

(
xd,

hT
2

)
, xd = xd−1 +

hT · |γ(td)− γ(td−1)|
2 · r(td)

(5.2)

We aim for f−1 to map the envelope curves of the stroke to the upper and lower
horizontal lines bounding the tiled strip Sn. To achieve this, we define the preimages
under τd of these lines y = 0 and y = hT to be the parallels to the tangent at γ(td).
These tangents have a direction vector of γ′(td) and are positioned at a distance of ±r(td)
from γ(td):

γ(td)− r(td)
(γ′(td))

⊥

‖γ′(td)‖
+λ ·γ′(td) 7→ y = 0 γ(td)+ r(td)

(γ′(td))
⊥

‖γ′(td)‖
+λ ·γ′(td) 7→ y = hT .
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The map τd is defined by three vertices P1, P2, P3 of a square around C(td), which is
parallel to the tangent at the center γ(td), and by their three preimage vertices in the
strip as shown in Figure 5.2. All six vertices are given by

P1 = γ(td)−
r(td)

‖γ′(td)‖
(
γ′(td) + γ′(td)

⊥) 7→ τd(P1) = τd(γ(td)) +
hT
2

(−1,−1)

P2 = γ(td) +
r(td)

‖γ′(td)‖
(
γ′(td)− γ′(td)⊥

)
7→ τd(P2) = τd(γ(td)) +

hT
2
· (1,−1) (5.3)

P3 = γ(td)−
r(td)

‖γ′(td)‖
(
γ′(td)− γ′(td)⊥

)
7→ τd(P3) = τd(γ(td)) +

hT
2
· (−1, 1)

Figure 5.2: The local map τd as initial map from the stroke to the strip.

These three pairs of points uniquely define τd, and for each pixel p within C(td), its
preimage coordinates τd(p) in the ornamental strip can be calculated. Since the supersonic
Equation (2.2) defines subsequent circles to overlap, a pixel p within multiple circles C(td)
could potentially be mapped with different maps τd. To solve this, we only assign new
preimage coordinates to a pixel if it has not been assigned a preimage point before, i.e.,
if p lies within the crescent of the newly added circle that does not overlap with the rest
of the stroke. We will discuss this in more detail in Section 5.1.2.

As the number of circles C(td) increases, so does the number of preimage circles within
the strip Sn. The coordinates τd(p) progressively increase in their x-coordinates, as indi-
cated by the preimage coordinates of the circle center τd(γ(td)) in Equation (5.2). How-
ever, the tiled strip Sn is known to consist of equivalent tiles T concatenated with each
other. Hence, it is not necessary for the preimage coordinates to be located across the
entire strip. It is sufficient to take m ≤ n copies of T and calculate the coordinates of τd(p)
modulo m · hT within the shortened strip Sm.

We need to take enough copies of T so that two complete circles can be placed next
to each other on Sm. Since each preimage circle has a diameter of hT , which is the height
of T and therefore of Sn and Sm, let m be defined as

m =

{
2 · wT

hT
if wT

hT
≥ 1

2 · wT
hT
· d hT

wT
e if wT

hT
< 1

.

In either case, m is greater than or equal to 2, which makes Sm at least twice as wide
as it is high, so that two circles of diameter hT can be placed tangentially side by side
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in Sm. We identify the vertical segments on the left and right sides of strip Sm. In
other words, Sm topologically is a cylinder representing the modulo computations of the
preimage coordinates.

As a consequence, the maps τd must also be computed within this smaller preimage
strip using modulo calculations. If the x-coordinate of τd(P2) is smaller than that of τd(P1)
modulo m · hT , the map τd maps the square around the circle C(td) to a square inside Sm
of opposite orientation along the x-axis. To solve this, before defining and applying τd
to C(td), the coordinates of the preimage points τd(P1), τd(P1), and τd(P1) are adjusted
by a shift of −m · hT .

When the preimage coordinates will be used for further computations in Section 5.2,
it must be considered that these coordinates are given modulo m · hT .

5.1.2 Storing coordinate information on textures

As outlined earlier, we compute the preimage coordinates τd(p) for all pixels p contained
within the circles C(td) of the stroke. We use the GPU to ensure fast and local computation
of the conformal map f between the tiled strip Sn and the stroke s. Since transferring
memory between the GPU and the CPU is expensive and slows down calculations, we
store all the information needed for future calculations in GPU memory as textures. This
means that we define several textures covering the drawing surface and store different
pieces of information on these textures for each pixel in the stroke. All of the textures
listed below contain 1024 × 512 pixels and are placed at (0, 0) as the lower left corner,
parallel to the coordinate axes. All rgba-vectors are initially set to (0, 0, 0, 0), but for each
pixel p within the stroke, the textures will contain

• preimageCanvas: . . . the preimage τd(p) of the pixel within the tiled strip.

• centerCanvas: . . . the center τd(γ(td)) of the corresponding preimage circle of C(td).

• centerStrokeCanvas: . . . the center γ(td) of the circle C(td).

• radiusCanvas: . . . the radius r(td) of the circle C(td).

• equiCanvas: . . . the sequential number d of the discrete step pixel p belongs to.

As previously discussed, the circles C(td) intersect due to the supersonic Condition (2.2),
which makes the preimage coordinates non-univalent. Hence, it is necessary to decide
which data to store for each pixel p. For the first circle C(t0), all pixels with a distance of
at most r(t0) from γ(t0) on all textures are assigned the corresponding information. For
all further circles C(td) with d > 0, the pixels p within C(td) on each of the above textures
that do not contain any information so far, i.e., the pixels p ∈ C(td)\C(td−1), store the
information related to the circle C(td). Visually speaking, for every new circle C(td), the
previously uncovered circular crescent is added to the stroke (see Figure 5.3).

Note 5.1.1 It is possible to update stored information for all pixels in a recently added
circle. However, this results in constant redefinition of the preimage coordinates on the
last part of the stroke in drawing direction, which interrupts the ornamental flow to the
conformal solution.
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Figure 5.3: Circular crescents are iteratively added to the stroke.

The question arises of how to determine if a pixel already belongs to the stroke and
how the respective information is stored in each texture. For this, we recall that each
pixel p is assigned a 4-dimensional vector (r, g, b, a)p which has 8-bit entries, i.e., each of
the red-, green-, blue- and alpha-channel can store 256 different values, as determined by
our calculations with CindyGL.

However, storing precise coordinate information within each vector’s (r, g, b, a) entries
requires more than the 256 different numbers per channel. Our method of reducing
the size of the stored coordinate information by calculating all preimage coordinates
modulo m · hT is not yet sufficient to overcome this storage problem. This is why we divide
all information into separate vector entries. It is also possible to split the information into
multiple textures, but this would slow down the calculations.

For this, we use the function splitData given in Algorithm 3 [RG21]. The function
stores the preimage coordinate vector (x, y) = τd(p) for a pixel p in all four vector entries
of the rgba-vector of that pixel. Instead of storing 256 different integers in the 8 bits per
entry of the rgba-vector, we rescale the data to the interval [0, 1], which enables us to
store 256 equally spaced fractional numbers. To obtain an accurate fraction that can be
stored in an 8-bit entry with minimal information loss, the scaled values are multiplied
by the base value of 256, rounded to an integer, and divided by the base of 256. The
remainder is treated the same way and stored in the other two entries of the rgba-vector
at the corresponding pixel p of the preimageCanvas.

Algorithm 3 Function storing two coordinates in four rgba-entries for higher precision.

scvel ← m · hT
base ← 256
splitData ((x,y), scvel, base) :=

ux ← max
(
min

(
x

scvel
, 1
)
, 0
)

uy ← max
(
min

(
y

scvel
, 1
)
, 0
)

ux1 ← round(ux · base) · 1
base

uy1 ← round(uy · base) · 1
base

ux2 ← round((ux − ux1) · base2) · 1
base

uy2 ← round((uy − uy1) · base2) · 1
base

return (ux1 , uy1 , ux2 , uy2)

The code in CindyJS for writing on preimageCanvas is given in Algorithm 4. Here,
the new center γ(td) on the curve γ is designated as newcenter, while radval represents
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the value of the radius function at td. Additionally, mat denotes the transformation
matrix of the similarity τd that is defined by three preimage and image points as given by
Equations (5.3). Finally, scvel is equal to m · hT , while base is equal to 256, as previously
stated. The colorplot command runs the code in its fourth entry on the GPU and stores
the solution in the pixels of the given texture at the specified position. The command
imagergba reads the rgba-vector of the texture at the pixel in the fourth variable.

Algorithm 4 Writing to a texture using the colorplot command.

1: colorplot((0, 0), (1024, 0),“preimageCanvas”,
2: p=#.xy;
3: rgba =imagergba((0, 0), (1024, 0),“preimageCanvas”, p );
4: ref=imagergba((0, 0),(1024, 0),“centerCanvas”, p );
5: pixeldist= (newcenter 1−p 1,newcenter 2−p 2);
6: preimpt=(mat ·(p 1,p 2, 1)).xy;
7: if( | pixeldist | ≤ radval+0.5, // if pixel p is within the new circle
8: if(ref 4 < 1 , //if the pixel p is in the newly added circular crescent
9: rgba =splitData((preimpt 1,preimpt 2, 0, 1),scvel,base);

10: ););
11: rgba ); // the rgba-vector to the pixel p

The information saved in the other textures is handled by modified versions of the
function splitData. The preimage circle center τd(γ(td)) is stored in centerCanvas using
splitData reduced to only one coordinate since the y-coordinate within Sm is always hT

2
.

The circle center γ(td) is stored in centerStrokeCanvas by the original function splitData,
but for a scaling value of 1024, since the x-coordinate is at most 1024. The value of the ra-
dius function r(td) ∈ [10, 40] is stored in radiusCanvas. Although the value is small enough
to be directly stored, splitData is still applied to (r1, r2) = (br(td)c, (r(td)− r1) · 100) with
scvel=base= 256 to capture precise decimals. The number of equidistant circles d is stored
in equiCanvas dividing d into (d1, d2) =

(
d modulo 256,

⌊
d

256

⌋)
and applying splitData for

scvel=base= 256.
To use the stored coordinates for further computations, we need the inverse function

of splitData and of its modifications:

(x̃, ỹ) = restoreData ((ux1 , uy1 , ux2 , uy2)) = scvel ·
(
ux1 +

ux2

base
, uy1 +

uy2

base

)
. (5.4)

Due to the rounding and the limited number of fractions that can be stored by the 8-bit
channels, some information may be lost in (x̃, ỹ) compared to the original (x, y). However,
this loss of information is negligible and does not affect the process.

The texture centerCanvas is not only essential for storing the center of the preimage
circle. Also, we define that it contains the value 1 in its alpha-channel for all pixels inside
the stroke and a zero for all pixels outside the stroke. This is possible because only two
entries per rgba-vector are used to store the x-coordinate of τd(γ(td)). Therefore, the
rgba-vector of a pixel p in centerCanvas serves as an indicator for determining whether
the said pixel is inside or outside of the stroke. For this reason, the texture centerCanvas
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is always updated after all other textures, so that the fourth coordinate of a pixel p in the
new circular crescent C(td)\C(td−1) indicates that the other textures do not yet contain
the relevant information at pixel p.

5.1.3 Reverse pixel lookup

With the textures from the previous section, we can determine which pixels are inside the
stroke and which pixels are outside by checking the alpha-channel value in centerCanvas.
So we can draw the simulated stroke on currentCanvas by assigning a color vector (r, g, b, 1)
to all pixels p in stroke s. However, we are not interested in a monochrome stroke, but
in a stroke that displays the content of the repeatedly conformally mapped ornamental
tile T . Until now we have calculated the initial preimage coordinates for all pixels within
the stroke, i.e., we know for p in the stroke s that its preimage in the reduced tiled
strip Sm of the ornamental tiles T has the coordinates encoded at position p in the
texture preimageCanvas. Thus, we can use the function restoreData from Equation (5.4)
to access the preimage coordinates for all pixels in the stroke and look up the color that
this coordinate has in the ornamental tile T . This color is then passed to the texture
currentCanvas which displays the stroke on the drawing surface. This method is called
reverse pixel lookup. The corresponding CindyJS code is given in Algorithm 5 making use
of the texture tileCanvas, in which the m copies of the tile T are stored.

Algorithm 5 Reverse pixel lookup from the tile texture.

1: colorplot((0, 0), (1024, 0),“currentCanvas”,
2: p=#.xy;
3: preim=imagergba((0, 0), (1024, 0),“preimageCanvas”, p ,interpolate→ false);
4: coord=restoreData(preim,scvel,base);
5: ref=imagergba((0, 0), (1024, 0),“centerCanvas”, p ,interpolate→false);
6: if(ref 4 > 0 , //if the pixel p is in the stroke
7: col=imagergb((0, 0), (1024, 0),“tileCanvas”,(coord 1, coord 2));
8: , // else if pixel p is not in the stroke
9: col=(0, 0, 0, 0);// the pixel is drawn transparent

10: );
11: col ); // store the rgba-vector col to the pixel p

Algorithm 5 uses the modifier interpolate→ false in the function imagergba. If inter-
polate is true, the imagergba function called at p returns the linearly interpolated value
of the four neighboring pixels of p; if interpolate is false, imagergba returns the value of
the pixel closest to p [M+17]. In our setup, where the pixel vectors contain precise preim-
age coordinate information, we need to read the exact rgba-value that was stored at the
requested position p. Therefore, we have to set interpolate to false.

Figure 5.4 displays the result of the reverse pixel lookup at this point in the algorithm.
Clearly, this is not the result we are looking for. But we can imagine what a conformal
map of the tiled strip to the stroke might look like if the preimage coordinates are adapted
accordingly. This illustrates that the prior selection of preimage coordinates provides a
good starting point for our pixel averaging algorithm, which operates on the preimage
coordinates and is presented in the following section.
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Figure 5.4: The visual result of the initialization of preimage coordinates in a stroke.

Actually, when transferring the color from the ornamental tile T to the stroke based
on the preimage coordinates stored in preimageCanvas, we are performing a transfer of
the underlying coordinate system from the tile to the stroke. This will be relevant again
later.

5.2 Pixel averaging

In this section, we present the essential part of our real-time computations of the con-
formal map f from the tiled strip Sm to the stroke s. We have initial preimage coordi-
nates q = (x̃, ỹ) for all pixels p = f(q) in stroke s stored in the texture preimageCanvas.
Now, we apply the principle of pixel averaging to them. Often, pixel averaging is used for
blurring effects of images or for similar results. We perform the averaging at the level of
the preimage coordinates q, which will actually converge to an approximately conformal
map f (see Section 5.3). The averaging is applied simultaneously to all pixels of preim-
ageCanvas and it is repeated multiple times per drawing event. Since the reverse pixel
lookup displays the colors read from tile T to the stroke based on the current coordinates
stored in preimageCanvas, the coordinates visually flow into their intended position in real
time as the stroke is drawn.

A similar algorithm implemented on the CPU is presented by Swart [Swa11]. It takes
planar preimage and target domains as input and computes the average of the preimage
coordinates of four neighboring pixels for each pixel in the target domain. In each step,
a randomly selected pixel in the target mesh is treated. If a pixel has fewer than four
neighbors within the domain, it is considered to be on the boundary and an adapted
result of the averaging step is shifted to the closest position on the boundary. Kopczyński
et al. also use an averaging algorithm based on four neighbors to map a band model of
the hyperbolic plane to arbitrary simply connected domains with long, narrow regions
[KCK19]. They fix two positions on the boundary of the target domain, which then act
as the images of ±∞, i.e., the limits of the band model. This divides the target boundary
into two parts, to which the upper and lower bounding lines of the hyperbolic band model
are to be mapped. If pixels within the target domain have neighboring pixels on the
boundary, they are skipped in the averaging process proposed by Kopczyński et al.
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The fundamental GPU-based pixel averaging algorithm was developed by Montag and
Richter-Gebert [MRG20] specifically for planar regions bounded by line segments and cir-
cular arcs. Reinhardt discusses this algorithm under several aspects [Rei23]. Different
neighborhoods of a pixel are examined and compared. Reinhardt points out that a neigh-
borhood around a pixel consisting of pixels with initially large but decreasing distances
to the pixel leads to fewer iteration steps in the performed experiments. Furthermore,
the influence of different texture resolutions and computational precision on the result is
investigated. It is indicated that higher precision yields better results. Additionally, a
test for local discrete conformality is performed based on discrete conformality. We will
perform a similar test as will be presented in Section 5.3.

5.2.1 Pixels inside the stroke

The general concept behind the averaging of preimage pixel coordinates is derived from
the local property of conformal maps to be a similarity transformation, i.e., a combination
of a translation, a scaling and a rotation (see Definition 1.1.2). Hence, it is necessary that
every conformal map f locally satisfies the following: if q is the arithmetic mean of its
infinitesimal neighbors, i.e., for ε > 0 it holds

q =
1

4
((q + ε · (1, 0)) + (q + ε · (0, 1)) + (q + ε · (−1, 0)) + (q + ε · (0,−1))) ,

then its image f(q) is approximately given by

f(q) ≈ 1

4
(f(q + ε · (1, 0)) + f(q + ε · (0, 1)) + f(q + ε · (−1, 0)) + f(q + ε · (0,−1)))

with an error of o(ε) converging to zero if ε → 0 [Rei23, p.39]. If we visualize springs
or rubber bands stretched between f(q) and its neighbors, then iteratively calculating
the average of a pixel’s neighboring positions leads to a state where all springs are in
equilibrium. Hence, repeated calculation of the arithmetic mean for all points in the
target domain can be interpreted as the successive convergence to the force equilibrium
between all pixels f(q), if it exists. Figure 5.5 displays an instance where the position
of f(q) is updated due to the force equilibrium in which it is pulled by the attached springs
to its four neighbors.

Figure 5.5: Force equilibrium of four springs attached at f(q).

We modify this property and define an iterative algorithm that assigns the average
preimage value of its infinitesimal neighbors to all pixels p inside the stroke on the texture
preimageCanvas. This means that we apply the previous arguments in the inverse direc-
tion and search for approximations of the preimage coordinates q under the conformal
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inverse f−1 of the pixels p in the stroke domain. A reasonable scale for infinitesimal neigh-
borhood on a discrete pixel grid is a distance of at most one or two pixels. We consider
up to 16 neighbors of the point p, symmetrically located on two circles with distances of 1
or 2 pixels from p (see Figure 5.6).

Figure 5.6: The 16 neighbors of a pixel p with a distance of at most 2 pixels.

Pixel p and its 16 neighbors p1, . . . , p16 all lie within the stroke if each of them has a
value of 1 in the alpha-channel in texture centerCanvas. If this is the case, we can access
their currently stored preimage coordinate values in preimageCanvas and compute their
average coordinate value, which is then stored back in the rgba-value of pixel p. See
Algorithm 6 for the corresponding CindyJS code.

Algorithm 6 Pixel averaging algorithm for pixels with all 16 neighbors inside the stroke.

1: colorplot((0,0),(1024,0),“preimageCanvas”,
2: p=#.xy;
3: refVec=imagergba((0,0),(1024,0),“centerCanvas”, p, interpolate→false);
4: if(refVec 4 > 0 ,
5: averagepoint=(0,0); count=0;
6: repeat(16,i,
7: refpi=imagergba((0,0),(1024,0),“centerCanvas”, pi, interpolate→false);
8: if(refpi 4 > 0,
9: count=count+1;

10: preimVec=imagergba((0,0),(1024,0),“preimageCanvas”, pi, interpolate→false);
11: preimpt=restoreData(preimVec,scvel,base);
12: averagePoint=averagePoint+(preimpt 1,preimpt 2); ); //end if
13: if(count==16,
14: rgba=splitData(averagePoint/count,scvel,base);
15: , //some boundary handling, see Section 5.2.2 );//end if
16: ); //end repeat
17: ,//else if pixel p is outside the stroke
18: rgba=(0,0,0,0); ); //end if
19: rgba );

In Algorithm 6, two important details are missing. One is the calculation of the
rgba-vector in line 15 in the case that not all neighbors pi of p are situated inside the
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stroke. This is the subject of the following Section 5.2.2. The other missing detail is
about what happens between lines 11 and 12. In line 11, the preimage coordinates of the
neighboring point pi are obtained from the preimageCanvas with the restoreData function,
and in line 12, these coordinates are added to the sum of all coordinates used for the
averaging process. This is not directly applicable without considering that we computed
the x-coordinate of q = τd(p) modulo m · hT . It is essential to verify that the preimage
coordinates qi of the pixel pi for i ∈ {1, . . . , 16} are in their intended positions before
using them in the averaging step.

For example, a pixel may lie on the boundary between two consecutive circles, C(td)
and C(td+1). In such cases, neighboring points are located within both circles. It is
possible that C(td+1) is shifted to the beginning of Sm by m

2
· hT , while C(td) is located

at the end of Sm. Figure 5.7 illustrates this case where, for simplicity, we only consider
taking the average over four preimage coordinates of neighbors p1, p3, p5, p7 of p. We see
that only q7 was shifted and has preimage coordinates q′7 on the left side of the tile T ,
while q1, q3, q5 are located on its right side. Directly averaging the coordinates would
assign the potential new preimage coordinate 1

4
(q1 + q3 + q5 + q′7) to p where it obviously

does not belong (see Figure 5.7).

Figure 5.7: Error occuring when modulo calculations are neglected before averaging.

We solve this problem by using the preimage coordinates qi of neighbors pi that are
located within the same coordinate range in relation to wT as the current preimage co-
ordinates q of p. To be more precise, if the preimage coordinate q = τd(p) corresponds
to a circle with center cd = τd(γ(td)), then we test whether the preimage coordinates of
p’s neighbors pi for i ∈ {1, . . . , 16} lie within the same preimage circle around cd with
radius hT

2
. If this is not the case, they are moved to a position within the circle by a

suitable multiple of wT before the coordinates are used for the averaging. The pseudo
code for this adjustment is given in Algorithm 7.

5.2.2 Boundary handling

If fewer than all 16 neighbors of pixel p are contained within the stroke during the pixel
averaging Algorithm 6, we know that pixel p is very close to the boundary of the stroke.
We say that such a p is in the boundary area of stroke s. In this case, we first reduce
the number of neighbors considered for the averaging process to eight, i.e., the neighbors
p1, . . . , p8 with a distance of 1 pixel from p (see Figure 5.6). If all eight neighbors are within
the stroke, we perform the usual pixel averaging with a reduced number of neighbors.
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Algorithm 7 Adjustment of the preimage coordinates due to the modulo calculations.

for a neighbor pi of pixel p with i ∈ {1, . . . , 16}:
cd ← τd(γ(td)) for p ∈ C(td)
cd̃ ← τd̃(γ(td̃)) for pi ∈ C(td̃)
if |cd̃ − cd| >

hT
2

then
if the x-coordinate of cd̃ is bigger than the x-coordinate of cd then

the x-coordinate of pi is shifted by −wT
else

the x-coordinate of pi is shifted by +wT
end if

else
the x-coordinate of pi is not shifted

end if

If p is located in the boundary area of the stroke s and some of its eight neighbors are
outside the stroke, we distinguish two cases (see Definition 2.2.5):

- either p is located near C(t0) or C(tN), i.e., the first or last circle bounding the stroke,

- p is close to one of the envelope curves w±.

For both cases, we have previously encountered the theory of conformal extension. In the
first case involving the circular arcs of C(t0) and C(tN), the Schwarz reflection principle
from Theorem 3.2.3 can be applied. As for the envelope curves w±, we determined in
Proposition 4.1.1 that they are analytic. Thus, we can apply the generalization of the
Schwarz reflection principle from Section 3.3.

Schwarz reflection for C(t0) and C(tN)

The Schwarz reflection principle from Theorem 3.2.3 states that a conformal map f from
the ornamental strip Sn to the stroke s can be extended along circular arcs α0 and αN
which are part of the boundary of Sn with α0 ⊂ f−1(C(t0)) and αN ⊂ f−1(C(tN)). It
provides an explicit image point for a pixel q? that is outside the preimage domain (as
seen in Figure 5.1). If q is the inverse of q? with respect to α0 or αN , i.e., q is located
inside the preimage domain of the stroke, then

f(q?) = reflC(tx) (f(q)) = p?

where x ∈ {0, N} and reflC(tx) is the reflection at the respective circle C(tx) of stroke s.
Since we compute the function f−1 to find the preimage coordinates for all pixels p

within the stroke s, we proceed the other way around. The reverse Schwarz reflection
principle can be applied to pixels p in the first or last circle in stroke s that are recognized
by the stored number d in the texture equiCanvas at pixel p.

Let p? be one of the eight neighboring pixels p1, . . . , p8 of p and let x ∈ {0, N}. A
pixel p? is defined as outside of the stroke if the alpha-channel of the rgba-vector at p?

vanishes in the texture centerCanvas. In this case, the center γ(tx) of the circle C(tx) in s
is obtained from the texture centerStrokeCanvas at p and the corresponding radius r(tx)
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from the texture radiusCanvas. Then, pixel p? is reflected at C(tx), i.e., p′ = reflC(tx)(p
?).

The resulting pixel p′ is inside the stroke s having the preimage q′ assigned to it in
preimageCanvas, i.e., q′ = τd(p

′). The point q′ is reflected back outside the preimage
domain of the stroke s within Sm. For this, the center of the corresponding preimage
circle cx of C(tx) is read from the texture centerCanvas at p′. For x = 0, this center is
known to be

(
ht
2
, ht

2

)
, but only the y-coordinate is known for x = N . The radius of both

preimage circles is ht
2

. The preimage of p? is thus the reflection of q′ at the circle with
center cx and radius ht

2
. This point, q?, is then used in the averaging process for pixel p,

along with the regular preimage points for neighbors pi within stroke s, and possibly other
pixels treated by Schwarz reflection. See Algorithm 8 for the corresponding pseudocode
of this procedure.

Algorithm 8 Schwarz reflection applied to pixels close to C(t0) and C(tN).

1: if p? is not in stroke s then
2: reflect p? at C(tx) for x ∈ {0, N}: p′ ← reflC(tx)(p

?)
3: read the preimage of p′ from preimageCanvas: q′ ← τx(p

′)
4: reflect q′ at the preimage circle of C(tx): q? ← reflτx(C(tx))(q

′)
5: use q? for the averaging process of pixel p.
6: end if

Note 5.2.1 As before, we need to use the coordinate adjustment from Algorithm 7 when
dealing with coordinates computed modulo m · hT . This step is necessary before q′ is
reflected on the circle cx, i.e., between lines 3 and 4 in the Algorithm 8. To stabilize the
averaging process, another condition is introduced before q′ is reflected at the preimage
circle cx: q′ is reflected at cx only if, after the coordinate adjustment, the coordinates of q′

are inside cx. If q′ is located outside cx, the reflection would not result in the desired
position of q? outside the preimage domain. Instead, the averaging would distort the
preimage coordinates of p and deform the mapped tile T within the stroke.

Adapted generalization for analytic envelope curves w±

If the pixel p is not within the boundary area of the first or last circle of the stroke s, it is
on or very close to the envelope curves w±. As shown in Proposition 4.1.1, the envelope
curves are analytic functions that are C1-continuous due to the C2-continuous cubic B-
spline interpolation of the curve γ and the radius function r. We showed in Section 3.3
that the Schwarz reflection principle can be generalized for analytic curves. Rather than
reflecting at circular arcs or line segments, the reflection can be generalized at an analytic
curve to local reflection across the tangent at the closest curve point. Hence, the conformal
map f from the preimage domain in the tiled strip Sn to the stroke s can be extended to
include points q? outside the preimage domain by

f(q?) = reflw′±(tx) (f(q)) = p?

with q being the reflection of q? across the line y = hT or y = 0 depending on the position
of q?. The vector w′±(tx) is the directional vector of the tangent T±(λ) = w±(tx)+λw′±(tx)
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at the nearest boundary point w±(tx) to f(q) on the corresponding envelope curve. Specif-
ically, T+(λ) is used for reflecting q? at y = hT , and T−(λ) for a reflection at y = 0. Again,
our focus is on the inverse process of determining a preimage point q? for a given pixel p?

outside of stroke s. However, despite the knowledge about the generalized Schwarz reflec-
tion principle, this is not a straightforward task.

Let pixel p? outside stroke s be one of the eight neighboring pixels p1, . . . , p8 of pixel p
that are not in the boundary regions of the first or last circles C(t0) and C(tN). The first
step in the inverse procedure of the generalized Schwarz reflection principle would be to
reflect p? at T±(λ). It can be easily determined whether the correct tangent is T+(λ)
or T−(λ) by testing whether the preimage of p is close to y = 0 or to y = hT in Sm.
However, computing the nearest point on the corresponding envelope curve is challenging
despite having the concrete formulas for the piecewise defined envelope curves wd± as in
Equation (4.1). Besides, the equations of the envelope curves necessary for the calculation
of the tangent as well as the discrete data points Ptd−1

, Ptd , Ptd+1
, Ptd+2

or the derivatives
of the envelope curves w′± as given in Equation (2.14) are not stored. Especially if the
data is to be accurate enough to be used for exact calculations, it would be necessary to
create a large amount of additional textures to store all this information. Experiments
have shown that this would significantly slow down the calculations.

Instead of reflecting p? at the nearest tangent T±(λ) of the envelope curve, we use the
information already stored in the textures specified in Section 5.1.2. Nevertheless, we use
that the generalization of Schwarz’s reflection principle states that locally, the reflection
at the analytic curve w± is the same as the reflection at its tangent. Our analytic curve
is defined as the envelope curve of a family of circles. This means that the envelope
curves w± are tangent to the respective circles by definition. We already store the circle
center γ(td) of the circle C(td) to which the pixel p belongs in centerStrokeCanvas and the
corresponding radius r(td) in radiusCanvas. With the given information, we can reflect p?

directly at the circle C(td), since locally this reflection is the same as the reflection at the
circle’s tangent for a point very close to the circle, as it is the case for p?.

However, we are not dealing with a continuous stroke but with a discrete set of cir-
cles. This is why, depending on the distance between the selected curve points γ(td) in
Algorithm 1, the actual boundary of the registered stroke s on the textures has a slightly
wavy character, as shown in Figure 4.5 on the right, but which is not visible to the hu-
man eye. Since our algorithm assigns information from new circles to pixels within the
previously uncovered circular crescent of the continuously growing stroke, as outlined in
Section 5.1.2, there is a visible effect when p? is reflected at the assigned circle C(td). The
direction of reflection at circle C(td) usually is not perpendicular to the (piecewise) contin-
uously computed tangent to the envelope curves w±. This can be observed in Figure 5.8
on the right, where we closely examine the borders of a stroke and analyze three nearby
pixels (p?j for j ∈ {1, 2, 3}) outside the stroke. When the preimage of the reflected point is
itself reflected out of the strip to the preimage points q?j , as it is depicted on the left side
of Figure 5.8, the direction of the reflection at the circle in the stroke is not compensated.
As a result, the artistic content of the tiled strip seems to be pulled towards the opposite
direction. A static example is given in Figure 5.9, where the left picture was taken a few
seconds before the right one. The blue line through the stroke is a visual marker to better
see the difference between the ornaments in the two strokes.
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Figure 5.8: Reflection at circles instead of tangents to the envelope curve.

Figure 5.9: The ornament flowing to the right while averaging is active.

All in all, we adjust the generalized Schwarz reflection once more and modify the
reflection step at the stroke boundary. The following steps describe the procedure for
handling neighboring pixels pi for i ∈ {1, . . . , 8} of pixel p that are outside the stroke but
not in the boundary area close to the first or last circle of stroke s. Figure 5.10 gives a
visualization.

1) We determine whether the opposite neighbor p′i of pi, i.e., pi rotated around p
by 180◦, is inside the stroke. The pairs of opposite neighbors are p1p5, p2p6, p3p7,
and p4p8, as in Figure 5.6.

2) If p′i is located within the stroke, its corresponding preimage coordinate q′i is read
from the texture preimageCanvas. Otherwise, both adjacent pixels pi and p′i are not
included in the averaging process

3) The preimage coordinate q′i is reflected at the upper or lower boundary of the rect-
angular strip, i.e., at y = 0 or y = hT depending on the y-coordinate of q′i.

4) This reflected point qi is included in the averaging calculation of the preimage co-
ordinates for pixel p.

Figure 5.10: Adapted “reflection” for pixels outside the stroke near an envelope curve.

With this method to determine preimage points for pixels outside the stroke near w±,
we have completed the missing cases of the pixel averaging Algorithm 6 in line 15. Thus,
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we can proceed to the next questions: does pixel averaging yield a nearly conformal
solution? Moreover, does the averaging process converge? After how many iterations do
we stop the averaging process? So far, we have only specified that the computations are
performed in real time, simultaneously to the drawing process. However, if the averaging
stopped when the user stops drawing, the newer part of the stroke would have been
treated with fewer iterations of the averaging process than the older part. Figure 5.11
shows a stroke where the averaging was interrupted when the drawing stopped. The pixel
averaging algorithm did not (sufficiently) process the right end of the stroke. Therefore,
it is necessary to continue with the averaging process after the stroke is completed, and
we need to define some rules for when the averaging has to stop.

Figure 5.11: Interruption of pixel averaging when the drawing stops.

5.3 Test for conformality and stopping criterion

To validate the accuracy of our algorithm and establish a stopping criterion for the pixel
averaging algorithm outlined in the previous section, it is necessary to define a reference
measure of the distortion of the coordinate system in the stroke domain. For this, we
will propose a method based on the properties of discrete conformal maps discussed in
Section 4.2.1, which locally measures for each pixel in stroke s how close the map is
to being conformal. Additionally, we will introduce a global energy that will serve as
a stopping criterion for the averaging process once a local minimum of this energy is
reached. We will use these criteria to compare the energy values resulting from strokes
treated with our averaging process to those resulting from strokes treated without or
with limited averaging. Furthermore, we will compare our algorithm’s output for the
stroke of Benchmark Example 2.1.7 in the form of a half annulus with an exact and
continuous conformal map from a finite rectangular strip to a half annulus with the same
parameters. All measures of accuracy, both visual and numeric, indicate that our maps
are indeed nearly conformal.

5.3.1 Pixel based test for conformality

The stroke and its corresponding preimage domain in the tiled strip Sn are saved as
discrete textures consisting of a finite rectangular grid of pixels. Locally, around each
interior pixel p0, the grid looks like the one in Figure 5.12 on the left. The color coding
in both pictures in Figure 5.12 will be explained below.
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Figure 5.12: Rectangular grid of pixels around p0 in the stroke.

In Section 4.2.1, we have examined the criteria for discrete conformal equivalence of
two combinatorially equivalent polygonal surfaces. Proposition 4.2.3 states that two cyclic
quadrangulations are discretely conformally equivalent if and only if for each face the
length-multi-ratios are equal. The pixels of the stroke texture are arranged in squares,
so they are cyclic, and we can apply Proposition 4.2.3 to test whether the preimage
coordinates stored in texture preimageCanvas satisfy the same length-multi-ratios as the
squares in the stroke. Note that the quadrangulations are combinatorially equivalent by
definition, since the vertices in the preimage domain are defined as the preimages of the
pixels within the stroke.

For each pixel p0 within the stroke, we consider its neighbors p1 = p0 + (1, 0),
p2 = p0 + (1, 1) and p3 = p0 + (0, 1), forming a polygon within the grid (see the light
purple square in Figure 5.12 on the left). Their length-multi-ratio (lmr) is given by

lmrp0p1p2p3 =
`p0p1`p2p3

`p1p2`p3p0

=
|p0 − p1| · |p2 − p3|
|p1 − p2| · |p3 − p0|

=
1 · 1
1 · 1

= 1.

To determine whether the calculated map between the strip and the stroke is (approxi-
mately) discretely conformal, we compute the length-multi-ratio of the preimage coordi-
nates q0, q1, q2, q3 of the pixels p0, p1, p2, p3 read from preimageCanvas

lmrq0q1q2q3 =
`q0q1`q2q3
`q1q2`q3q0

and compare it to lmrp0p1p2p3 = 1. If it holds that |lmrq0q1q2q3 − 1| ≈ 0, then the two
quadrangulations of the stroke and its preimage domain are (approximately) discretely
conformally equivalent.

For two combinatorially equivalent triangulations, Proposition 4.2.2 states that they
are discretely conformally equivalent if and only if the length-cross-ratios along all interior
edges are equal. To apply this local criterion, it is necessary to extend the rectangular
pixel grid to a triangulation, which is achieved by adding one diagonal per pixel square.
We include the diagonals that link the bottom left and top right pixels in each pixel square
(see the diagonals in Figure 5.12 on the right).

Hence, we examine for each pixel p0 and all its outgoing edges ij whether the length-
cross-ratio of the adjacent triangles along ij is preserved by the computed map. More
precisely, we test four of the outgoing edges from p0, namely those to p1 (consider the
adjacent filled blue quadrilateral on the right in Figure 5.12), to p3 (see the adjacent
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purple bordered quadrilateral), to p5 (see the filled light purple quadrilateral), and to p7
(consider the blue bordered quadrilateral):

lcrp0p1 =
`p0p2`p1p7

`p0p7`p1p2

= 2
?
≈ lcrq0q1 lcrp0p3 =

`p0p2`p3p5

`p0p5`p2p3

= 2
?
≈ lcrq0q3 (5.5)

lcrp0p5 =
`p0p6`p3p5

`p0p3`p5p6

= 2
?
≈ lcrq0q5 lcrp0p7 =

`p0p6`p1p7

`p0p1`p6p7

= 2
?
≈ lcrq0q7

The other two edges connecting p0 and p2 as well as p0 and p6 are omitted here, since
their adjacent quadrilaterals were already covered by the previous length-multi-ratio test,
and since all our tests for local discrete conformality will be combined later.

To also include the property of conformality that angles are preserved locally, we exam-
ine whether right angles are preserved by considering the intersection of the straight line
segments p1p5 and p3p7 crossing at pixel p0. The two vectors v1 = p1−p5 and v2 = p3 − p5
are perpendicular to each other by construction, i.e., their scalar product vanishes:

〈v1, v2〉
|v1| · |v2|

= 0.

We examine whether the respective vectors for the preimage coordinates q1, q3, q5, q7 also
enclose a right angle in the strip:

〈q1 − q5, q3 − q7〉
|q1 − q5| · |q3 − q7|

?
≈ 0.

Moreover, we refer to the results of Palka [Pal75] discussed in Section 3.2.1, which state
that for two regions with the same conformal modulus, or for the image region having a
smaller modulus than the preimage region, a conformal map is given if all squares and all
rectangles with sides parallel to the coordinate axes preserve the conformal modulus. As
previously discussed, we will keep the computations local, which prevents us from checking
all moduli of squares and rectangles inside the stroke. But we have already considered
for each local square p0p1p2p3 whether its modulus 1 is also fulfilled by its preimage
quadrilateral q0q1q2q3. Additionally, we include two more squares with a length-cross-
ratio of 1 around pixel p0, namely p1p3p5p7 shown as the filled blue square in Figure 5.12
on the left and p2p4p6p8 which is the purple bordered square.

Note 5.3.1 Although we limit the result of Palka [Pal75] to local tests around p0, we
could include more rectangles with edges parallel to the coordinate axes to our test. For
example, we could include the four rectangles p1p2p4p5, p1p5p6p8, p2p3p7p8, and p3p4p6p7.
Interestingly, our experiments show that all the ratios and angle conditions considered so
far give very good results for our algorithm, while the test of the previous four rectangles
deviates from these good results. Since we have yet to determine the reason behind this,
we acknowledge the fact but we will not include these rectangles in our tests hereafter.

As mentioned before, we combine the above tests and calculate a deviation value for
each pixel p0 in stroke s that has eight neighbors inside the stroke. Again, it is necessary
to adjust the coordinates of the preimage due to modulo calculations before calculating
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the ratios and the angle. After calculating all test values, we equally weight the test for
angle preservation, the test for the length-cross-ratios of the quadrilaterals in Figure 5.12
to the right (i.e., Equations (5.5)), and the test for all squares around p0 (as shown in
Figure 5.12 to the left). The resulting total deviation δp0 is the value for each pixel p0
that we proceed with:

1

3

(∣∣∣∣ 〈q1 − q5, q3 − q7〉|q1 − q5| · |q3 − q7|

∣∣∣∣+
1

4

(
|lcrq0q1 − 2|+ |lcrq0q3 − 2|+ |lcrq0q5 − 2|+ |lcrq0q7 − 2|

)
+

1

3

(
|lmrq0q1q2q3 − 1|+ |lmrq1q3q5q7 − 1|+ |lmrq2q4q6q8 − 2|

))
= δp0 (5.6)

As previously mentioned, our pixel averaging method operates in real time during and
after the drawing process. The flow of coordinates to their positions is visible due to the
displayed texture currentCanvas, which reads the respective colors from the ornamental
tile at the current preimage points for all pixels throughout the averaging process. To
provide a visual indicator of the accuracy of the computed map, we introduce an additional
texture called conformalTestCanvas, on which the deviation values δp0 are stored for each
pixel inside the stroke. To be precise, the deviation value is converted into a color value
with the CindyJS command hue, which converts a value between zero and one into an rgb-
color-vector. Since the hue function produces a green color at hue(1/3), and since we want
the color to be green when the result of δp0 , i.e., the local deviation from conformality,
is close to zero, we add the value of 1/3 to δp0 . Overall, hue(1/3 + δp0) is stored in the
red-, green- and blue-channels of conformalTestCanvas at pixel p0. If a visual test for
conformality of the current averaging calculations is desired, the alpha-channel is set to
some value greater than zero and the texture conformalTestCanvas is drawn additionally
to currentCanvas, which contains the ornament colors.

Figure 5.13: Test for conformality while the stroke is drawn.

Figure 5.13 shows an example of how the color in the texture conformalTestCanvas
changes over time as a stroke is drawn and pixel averaging is applied. The green color
indicates that the locally calculated deviation from conformality is close to zero. While
drawing the stroke from left to right, certain areas of the stroke display red, yellow, or
blue colors (visible in the two stroke parts on the left and in the middle), which shows
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that the averaging algorithm seems to gradually converge to good result as it runs (see the
final stroke on the right). To validate this accuracy and to provide a stopping criterion
for the averaging procedure, we will use the given local deviation values δp0 to define a
global measure of the map’s deviation from conformality in the next section.

5.3.2 Local minimum of average error

With the local deviation measure δp0 for each pixel p0 in the stroke, we define a global
criterion besides the visual one to determine when a stroke is close to conformal and when
the pixel averaging needs to be stopped. The fundamental concept of this global criterion
is that the deviation δp of all pixels p in stroke s is summed and divided by the number
of pixels in s. This mean deviation is monitored in each averaging iteration after the
completion of the stroke. If the deviation decreases or remains stable in two consecutive
steps, the averaging continues. If the deviation increases, the process is stopped. If the
criteria did not terminate the averaging iterations within a specific time after complet-
ing the stroke, the algorithm automatically stops averaging. Otherwise it may continue
indefinitely if the algorithm finds a global minimum, for example.

Again, we calculate the global criterion for conformality by using the fast and local
computations on textures. For this, a new texture globalTestCanvas is created, which
has the same dimensions as the other textures, i.e., 1024 × 512 pixels. Initially, every
pixel within the stroke is assigned an rgba-vector of (δp, 0, 0, 1), representing the devia-
tion δp from Equation (5.6). Each pixel outside the stroke is assigned a zero rgba-vector
of (0, 0, 0, 0). Then Algorithm 9 is applied, which sums over all pixels in globalTestCanvas.
This algorithm was developed based on an algorithm by Werner [Wer23].

Algorithm 9 Calculation of the global average deviation from local conformality.

1: globalTestCanvas ← (δp, 0, 0, 1) at every pixel p inside the stroke
2: for n = 0 . . . 8 do
3: ∀ pixels p = (x, y) in globalTestCanvas:
4: (r, g, b, a)p ← (r, g, b, a)p+(r, g, b, a)(x+2n,y)+(r, g, b, a)(x,y+2n)+(r, g, b, a)(x+2n,y+2n)

5: end for
6: totalAmount ← (r, g, b, a)(0.5,0.5) + (r, g, b, a)(512.5,0.5)
7: averageGlobalError ← 1

totalAmounta
· totalAmountr

Proposition 5.3.2 After applying Algorithm 9, the variable averageGlobalError contains
the average deviation from local conformality over all pixels up to the uncertainty in which
order the GPU computes the rgba-vectors in line 4.

Proof: The texture globalTestCanvas contains 1024 × 512 pixels which are centered at
(a+ 0.5, b+ 0.5) for a, b ∈ N0 (see Section 5.1.3). Every pixel p contains either the vector
(0, 0, 0, 0) if it is outside the stroke s, or the vector (δp, 0, 0, 1) if p lies within the stroke s.

The loop iterates for n = 0 as long as n < 9. After the initial iteration with n = 0,
the vector (r, g, b, a)(0.5,0.5) contains the sum of all pixel values in the 2 × 2 square hav-
ing (0.5, 0.5) in the lower left corner, i.e., it contains the values of the pixels located at
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(0.5, 0.5), (1.5, 0.5), (0.5, 1.5), and (1.5, 1.5). This holds for every pixel, up to the un-
certainty of the order in which the GPU performs the computations. It also holds for
p ∈ {(0.5, 2.5), (2.5, 0.5), (2.5, 2.5)} = {(0.5, 0.5 + 21), (0.5 + 21, 0.5), (0.5 + 21, 0.5 + 21)}
that they contain the values of the 2 × 2 square to their top right. It may happen that
(r, g, b, a)p already contains the values of the 2 × 2 square of which it is the lower left
corner when it is added to the rgba-value of another pixel. Since this is not controllable
by the algorithm, we neglect this uncertainty in the following.

Assume that after the iteration step with n ∈ {1, . . . 7} the vectors (r, g, b, a)(0.5,0.5),
(r, g, b, a)(2n+1+0.5,0.5), (r, g, b, a)(0.5,2n+1+0.5), and (r, g, b, a)(2n+1+0.5,2n+1+0.5) contain the sum
of all pixel values within a 2n+1 × 2n+1 square with the corresponding pixel as the lower
left corner. Then, in the next step for n → n + 1 = n′, the sum over (r, g, b, a)(0.5,0.5),
(r, g, b, a)(2n′+0.5,0.5), (r, g, b, a)(0.5,0.5), (r, g, b, a)(0.5,2n′+0.5), and (r, g, b, a)(2n′+0.5,2n+0.5) is

stored to pixel (0.5, 0.5). This sum contains all values of the square of 2n+1 × 2n+1 pixels
with (0.5, 0.5) as its lower left corner. As a result, the pixel at (0.5, 0.5) contains the sum
over all pixel values within the left 512 × 512 = 29 × 29 square of globalTestCanvas in
the last iteration for n = 8. The same reasoning applies to the pixel (512.5, 0.5), which
contains the sum over all pixel values of the right square in the rectangular texture.

The two rgba-vectors (r, g, b, a)(0.5,0.5) and (r, g, b, a)(512.5,0.5) are added in line 6, result-
ing in the sum over all entries of the original texture globalTestCanvas:

totalAmount =

(∑
p∈s

δp, 0, 0,
∑
p∈s

1

)
.

The alpha-channel of totalAmount indicates the number of pixels p in stroke s since all
pixels outside the stroke in texture globalTestCanvas initially contained a zero in their
alpha-channel. The first entry contains the sum of all deviation values of pixels in the
stroke. The average global error is thus calculated as the sum of all deviation values
divided by the number of pixels that contributed to that deviation, as in line 7 of Algo-
rithm 9. �

If the algorithm counted the deviation value of some pixels in the red-channel of
totalAmount more than once due to the uncertainty in which order the GPU executes the
calculations, then the alpha-channel also increases by the amount of multiply counted
deviations. Hence, the uncertainty in which order the GPU computes the sums leads to
a situation where some pixels of the stroke affect the global deviation from conformality
more than others.

With the result from Proposition 5.3.2 and Algorithm 9, we have a global average
error that distinguishes a perfectly conformal map of the tiled strip Sn to the stroke from
the map computed by the pixel averaging procedure in Algorithm 6 together with the
boundary handling from Section 5.2.2. As already stated, we use this global average error
to validate our method and to define a stopping criterion for the pixel averaging. Once the
user stops drawing, the absolute value of the global average error over the entire stroke
domain is tested if it decreases or stays the same. In this case, further averaging is applied
to all pixels belonging to the stroke domain. If the global error increases, this indicates
that the averaging has found a local minimum of the global error and the averaging
procedure is stopped. Alternatively, the averaging process is stopped after some seconds,
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since it may happen that the algorithm has found a stable minimum of the global error. In
both cases, the result is an approximation of a conformal map of the tiled ornamental strip
to the stroke. Some examples are shown in Figure 5.14 along with the original ornamental
tiles. The second example demonstrates that the circles in the tile are preserved by the
algorithm, i.e., they are still circles after the application of our mapping algorithm.

Figure 5.14: Results of the pixel averaging algorithm.

The final value of averageGlobalError provides a numerical measure of the quality
of the approximation of a conformal map by our pixel averaging algorithm. Table 5.1
presents some values that classify the accuracy of our algorithm. It lists the values of
averageGlobalError for Benchmark Example 2.1.7 and a stroke drawn freely in the following
cases:

1) Only the initial coordinates for all pixels in stroke s are calculated and stored in
preimageCanvas, but no averaging is performed.

2) Pixel averaging is applied only to pixels located inside the stroke, while those in the
boundary area with less than 16 neighbors inside the stroke are not considered.

3) Full pixel averaging, including boundary handling as described in Section 5.2.2, is
employed until the user stops drawing.

4) The algorithm is fully applied until the stopping criterion terminates the averaging
process.
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Half annulus Stroke example

1) 0.2509 0.4871

2) 0.0614 0.1396

3) 0.1042 0.2033

4) 0.0514 0.0452

Table 5.1: Average global errors of the corresponding strokes.

As expected, the lowest total deviation is achieved by the strokes in case 4), where
neither the pixel averaging is stopped earlier nor the boundary handling of the pixel
averaging is omitted.
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5.3.3 Comparison of conformal moduli

As announced in Section 3.2.2, we will compare the modulus of the explicit conformal
map of a half annulus A with the modulus of the rectangular ornamental strip Sn, which
our algorithm mapped onto the half annulus stroke sA of the Benchmark Example 2.1.7.
If the conformal modulus of the annulus A is significantly different from the modulus of
the strip Sn, the exact calculations of the conformal map F : R→ A probably also differ
significantly from the result of our algorithm mapping Sn to sA.

As detailed in Section 3.2.2, the half annulus A consists of all points z ∈ C with
ρ < |z| < 1

ρ
and Im(z) > 0 for a parameter ρ ∈ (0, 1). The rectangle R consists of points

w = x+ iy with x ∈
(
−π

2
, π
2

)
and y ∈ (0, 2 ln(ρ)). It is mapped to A by f(w) = iρe−iw.

Therefore, the unique conformal modulus of the annulus A is given by the side-length-ratio
of the rectangle R as M(R) = M(A) = − π

2 ln(ρ)
according to Equation (3.5).

The stroke sA that most closely matchesA is given by γ(t) =
1
ρ
−ρ
2

(cos(π − t), sin(π − t))
for t ∈ [0, π] and with fixed radius rc =

1
ρ
−ρ
2

. Figure 3.8 shows a visualization of the half
annulus A and the stroke sA side by side. The side-length-ratio of the rectangular strip
that corresponds to sA provides an estimate of the conformal modulus of sA.

We use the preimage tile of height hT and width wT to determine the side lengths of the
rectangular preimage of stroke sA. In Equation (5.2), the location of the new preimage
point of the center τd(γ(td)) is calculated for each new circle C(td) on the horizontal
line y = hT

2
within the rectangular strip Sn. Since the preimage center of the first circle

is located at
(
hT
2
, hT

2

)
and since that of the last circle of the stroke C(tN) is located

at
(
xN ,

hT
2

)
, the total width of Sn equals xN + hT

2
when the first and last half circles are

included (see Figure 5.1). The length-ratio of the rectangular strip Sn which our algorithm
maps to the stroke sA is thus given by

M(Sn) =
1

hT

(
xN +

hT
2

)
.

To better compare stroke sA with half annulus A, it is necessary to exclude the first and
last half circles in sA. The value to which we compare the conformal modulus of the half
annulus A is thus given as

M(Sn)− 2 · hT
2

=
1

hT

(
xN −

hT
2

)
.

Since the half circles of C(t0) and C(tN), as well as their corresponding preimage half circles
around τ0(γ(t0)) and τN(γ(tN)), were not considered in the calculation of the approximate
conformal map between Sn and the stroke sA, any comparison is only an approximation.

Table 5.2 lists the modulus of the half annulus A and R for different parameters ρ,
as well as the corresponding length-ratio of the strip Sn associated with the stroke sA for
the same parameters. The results indicate that there is no significant difference in the
length-ratios between the rectangles R and the rectangular strips Sn. Hence, this again
serves as a confirmation that our pixel averaging algorithm does indeed compute valid
approximations of conformal maps.
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parameter ρ half annulus A rectangular preimage strip ≈ difference
0.97 51.5705 51.4727 0.1
0.95 30.6238 30.5831 0.04
0.9 14.9088 14.9309 −0.02
0.85 9.6653 9.7288 −0.06
0.8 7.0394 7.1401 −0.1

Table 5.2: Conformal modulus of several half annuli and the corresponding strokes.

5.4 Adaptions for non-univalent strokes

In previous sections, we have introduced our algorithm for computing conformal maps
between an ornamental strip and a user-drawn stroke. Up to now, we have only analyzed
univalent strokes without self-intersection and singular boundary points. In this section,
we will present adaptations made to the previously presented algorithm in case the stroke
splits into two parts due to self-intersection. Furthermore, we will provide a concept on
how to modify the algorithm for cases where the boundary of the stroke contains singular
points, i.e., cusps.

5.4.1 Extension of the algorithm for self-intersections

To incorporate the necessary changes required to cover self-intersecting strokes with our
algorithm, we recall that Algorithm 2 from Section 4.3.1 enables us to detect whether
a stroke is self-intersecting or not. This detection of self-intersection is integrated into
the global algorithm after the repeated calculation of equidistant circle centers γ(td) on
the interpolated curve γ. When the new circular crescent of circle C(td?) causes self-
intersection of the stroke, the algorithm must be adapted so that it is able

– to cover parts of the drawing surface more than once,

– to apply pixel averaging to the preimage coordinates, even in cases of self-intersection,

– to test the union of all stroke parts for conformality.

For this, we define new textures on which the stroke continues from the moment
of self-intersection, i.e., for all d ≥ d?. This is necessary because if the circular cres-
cent C(td?)\C(td?−1) intersects with the current stroke s, storing information for pixels
in that crescent would overwrite the rgba-vectors of pixels in s. Hence, for all textures
listed in Section 5.1.2, second versions are created which are used for the second part of
the stroke. Figure 5.15 gives a visualization of the two parts of a self-intersecting stroke:
the red circle on the left causes self-intersection with the exiting stroke, which is why
the second texture contains all new circular crescents filled in blue from that moment
on. Combining the two textures, the entire stroke is shown on the right. Besides the red
circle C(td?), the orange circle C(td?−1) will also become important in the following.

In addition to the textures listed in Section 5.1.2, a second texture currentCanvas2
is created to display the results of the reverse pixel lookup. The reverse pixel lookup
computes the preimage coordinates as before, the results are just stored on a different
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Figure 5.15: Textures containing the two parts of a self-intersecting stroke.

texture, and the color for pixel p on currentCanvas2 is still read from the same tiled
strip Sm.

So far, this has only been implemented for a single self-intersection. However, this
method can be applied as many times as necessary to allow for multiple self-intersections
of a single stroke. Note that the second part of a stroke may intersect the first part
multiple times, as the second textures contain no preimage coordinates or other stored
information for all pixels of the previous part of the stroke. A third version of all textures
is only required when the second part of the stroke intersects itself, and so on.

When pixel averaging is applied, it is necessary to allow interaction between the first
and second versions of the textures. Since the stroke is divided into two parts, it is impor-
tant to consider that the circle crescent C(td?) and the circle C(td?−1) contain neighboring
pixels. Hence, in order to see whether a neighboring pixel pi of a pixel p is part of the
stroke or not, it is not enough to check for a (non-)vanishing alpha-channel of this neigh-
boring pixel pi in the textures centerCanvas(2) to which the pixel p belongs. Additionally,
examining nearby pixels in the respective other texture would cause the circles of the
second part of the stroke that cover the first part of the stroke to be incorrectly adjacent
to the underlying circles of the first part.

To solve this issue, two auxiliary textures are defined, which we call auxiliaryCanvas(2).
In auxiliaryCanvas, all pixels located within the crescent C(td?)\C(td?−1) are assigned an
rgba-value of (1, 1, 1, 1), while all other rgba-vectors remain zero. In auxiliaryCanvas2, all
pixels in C(td?−1) are assigned an rgba-vector of (1, 1, 1, 1). If a pixel p in the first part of
the stroke has a neighbor pi without preimage coordinates in preimageCanvas, it is tested
whether pi has a value of 1 in its vector on auxiliaryCanvas. If this is the case, the preimage
coordinate for pi is stored in preimageCanvas2 because it belongs to the neighborhood of p
on the second part of a self-intersecting stroke. This preimage coordinate can be used in
the usual way for the pixel averaging procedure of the Algorithm 6 for pixel p. Likewise,
a pixel that has no preimage coordinates in preimageCanvas2, but has a non-vanishing
rgba-vector in auxiliaryCanvas2, has preimage coordinates stored in preimageCanvas.

Further adjustments are necessary in handling the boundaries in the pixel averaging
procedure from Section 5.2.2. The Schwarz reflection principle is still used for the first and
last circles C(t0) and C(tN), which are now stored on two different textures. At the seam
between the two parts of the stroke, the adapted generalization of the Schwarz reflection
principle has to be applied to pixels in the boundary area, i.e., for a neighboring pixel pi
outside the stroke. If a pixel is located within either circle C(td?) or C(td?−1) and any of its
neighbors pi has no preimage coordinate that is stored in preimageCanvas for d = d? − 1
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or in preimageCanvas2 for d = d?, then it is first tested if pi has a non-zero rgba-vector
on auxiliaryCanvas2 for d = d? − 1 or on auxiliaryCanvas for d = d?. If this is the case, the
preimage coordinates for pi stored on the respective other texture preimageCanvas(2) are
used for pixel averaging. If not, the opposite neighboring pixel p′i (see Figure 5.6) is also
examined for the same properties, i.e., whether it lies within the stroke part to which pixel
p also belongs. The usual procedure for pixels in the boundary of the stroke is applied
if this is true. Otherwise, we check the respective other texture auxiliaryCanvas(2) to see
if the opposite neighbor p′i has a preimage there and potentially use it for the boundary
handling procedure.

Two self-intersecting ornamental strokes generated from our algorithm are shown in
Figure 5.16.

Figure 5.16: Strokes with self-intersection.

Also, the pixel-based local conformality test and the calculation of the stopping cri-
terion need to be modified for the split stroke. A second texture conformalTestCanvas2
is created that stores the deviation values for all pixels within the second part of the
stroke. Since both methods rely on the neighbors of pixels, the same rules apply as for
pixel averaging. For neighboring pixels pi without preimage coordinates in one of the
textures preimageCanvas(2), the position on the respective other texture is checked. If the
rgba-vector at pi is non-zero there, the preimage coordinates are deduced from this other
texture. Several strokes with displayed colors from the conformal test textures conformal-
TestCanvas(2) are shown in Figure 5.17 together with the global average deviation from
local conformality according to our constraints.
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(a) 0.0514 (b) 0.0434 (c) 0.0455

Figure 5.17: Self-intersecting strokes with visual and numeric test for local conformality.

5.4.2 Extension ideas for singular boundary points

Strokes also deviate from the univalent case if their boundary has points of regression.
We have examined the continuous structure behind strokes with singular boundary points
in Section 2.6. Singular points of type A2 are known to be cusps by Proposition 2.6.8. A
stroke can be considered as the projection of a swallowtail surface for both constant and
non-constant radius functions in regions around points of γ with extreme curvature κ.
We have already examined this projection in Section 4.3.2 and have presented meth-
ods for determining the positions of the two cusps S1 and S2, as well as of the special
points Se and Si, which are vertices of the two- and threefold regions within the stroke
(see Figure 5.18).

Figure 5.18: Benchmark Examples 2.1.9 and 2.1.10 with cusps and special points.

It was left open in Section 4.3.2 how to exactly compute the self-intersection point Si of
the envelope curve with cusp singularities as we want to follow the now known structure of
the algorithm when doing so. For this, let w be the envelope curve containing the two cusp
singularities S1 and S2. The curve w changes direction when it meets S1 and subsequently
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only passes a region already covered by the stroke until it meets Si. We compute Si using
the property that it is the point where the envelope curve intersects itself and leaves
the already covered region of the drawing surface. As outlined in Section 5.1.2, each
pixel inside the stroke contains a non-zero alpha-channel in its corresponding rgba-vector
on the texture centerCanvas. Therefore, point Si is located at w(ti) for some ti ∈ I,
where w(ti) meets a pixel p on the drawing surface that has a non-zero alpha-channel
on centerCanvas, i.e., (r, g, b, a)p = (•, •, •, 1). Additionally, it has to hold that, for some
small constant 0 < µ� 1, the point w(ti +µ) corresponds to a pixel in centerCanvas that
has a zero alpha-channel since the envelope curve leaves the already covered stroke region
just after passing Si.

We include the search for Si, as we did for the cusps S1, S2 and the point Se, in the part
of the algorithm that defines equidistant curve points on the interpolated piecewise spline
curve γ (see Section 4.1.3). Hence, for parameters tδ with distance 0 < δ � 1 from each
other (the same δ as in Algorithm 1), we compute the boundary point w(tδ). For each
of these boundary points, we test if the alpha-channel of the rgba-vector in centerCanvas
at w(tδ) is equal to zero. In this case, the previous boundary point w(tδ − δ) is the point
on w which corresponds to the point Si.

If Si is located exactly on the border between two spline pieces defining w, it would
be necessary to use the previous spline piece to define Si = w(tδ− δ). But all calculations
throughout the algorithm are performed locally, meaning that only the current spline
piece for w is available in each iteration. However, because we have chosen δ to be smaller
than the width of a pixel, the positions of the two boundary points w(tδ) and w(tδ − δ)
cannot be distinguished on the texture underlying the stroke. Furthermore, it is possible
that w(tδ) is closer to the computational position of Si than w(tδ − δ), since both points
are only approximations of Si. Hence, we use w(tδ) instead of w(tδ − δ).

To save computing time, we search for the point Si only if Se has been detected. Fur-
thermore, the subsequently determined position of S2 is used as an indicator on which
envelope curve the intersection point Si lies.

Having identified the special points S1, S2, Se, and Si, we propose an approach to
extend our algorithm from the previous sections of this chapter to also being able to
handle strokes with singularities at the boundary. The concept is based on creating new
textures for each layer of the two- and threefold covered stroke parts. For this, the stroke
is split into several regions each of which is then stored on a separate texture. We propose
to split the stroke into three different regions R1, R2 and R3, assuming that the stroke has
no self-intersections or other singular boundary points except for the two cusps S1 and
S2. If the stroke contains additional cusps or self-intersections, the respective method
has to be used again for the corresponding non-univalent part of the stroke. Figure
5.19 illustrates our proposed approach for Benchmark Example 2.1.9. The four pictures
show the relevant details, while the beginning and end of the stroke are omitted. The
approach equally applies to strokes with a non-constant radius function r as in Benchmark
Example 2.1.10.

Without loss of generality, let the singular boundary points S1 and S2 be located
on w+. The first region R1 contains the first layer of the stroke, bounded on one side by
the envelope curve w+(t) for t ∈ [0, tS1 ], where tS1 ∈ I = [0, T ] such that w+(tS1) = S1; S1

is the first cusp on w+. On the other side, the region R1 is bounded by the envelope w−(t)
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Figure 5.19: Splitting a multiply folded stroke into three disjoint regions.

for t ∈ [0, t?], where t? ∈ I such that γ has extreme curvature at t?, i.e., κ′(t?) = 0. The
boundary of the region R1 between w+(tS1) and w−(t?) consists of two segments: a line
segment connecting Se and w−(t?), and a curve segment u1, which bounds the threefold
covered region between S1 and Se. For a stroke of constant radius rc, the curve u1 that
connects S1 and Se is the evolute ν of γ for the parameter t ∈ (tS1 , t

?) (see Lemma 4.3.1).
The second region R2 represents one layer of the threefold covered region of the stroke.

It is bounded by u1, the envelope curve w+ between the two cusps S1 and S2, i.e., w+(t)
where t ∈ (tS1 , tS2) for tS2 ∈ I with w+(tS2) = S2, and the curve segment u2 connecting S2

and Se. If the stroke has a constant radius rc, the curve u2 is the segment of the evolute ν(t)
of γ for the parameter t ∈ (t?, tS2) (see Lemma 4.3.1).

The third region R3 is bounded between S2 and w−(t?) by u2 and a line segment
connecting Se and w−(t?). It continues along the path of the stroke bounded by w−(t−)
for t− > t? and w+(t+) for t+ > tS2 .

Each of the three regions R1, R2 and R3 is stored using separate textures so that they
can be superimposed on the drawing surface to display the final result. Furthermore, it
is necessary to replicate all textures used to store the data required by the algorithm for
each region.

It is part of future work to integrate this approach into the existing algorithm and
to extend it for the cases not yet covered. There are some challenges that need to be
overcome before the implementation.

As stated in Section 4.3.2, it is still open how to identify the curves u1 and u2 that
connect Se to S1 and S2 for a stroke with non-constant radius function r.

Another challenge is that a user-drawn curve is usually drawn wobbly and with irreg-
ular pressure changes. Thus, unlike Benchmark Examples 2.1.9 and 2.1.10, the equation
of Proposition 2.5.2, which we use to detect singular boundary points, can be satisfied
for more than the obvious spots at narrow turns, i.e., around points of extreme curva-
ture of the stroke. This is visualized in Figure 5.20, which shows the family of circles
behind some hand-drawn strokes. The green points indicate registered cusps, while the
blue points represent determined points Se, and the pink points are intersections Si of the
envelope curves with themselves. The stroke on the left shows that the test for singular
boundary points found more green cusps than the two cusps related to the blue point Se
and the pink point Si. Furthermore, defining universal small constants, which serve as
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measures for detecting singular boundary points and Se or Si, continues to be a challeng-
ing task. We notice that the search for points Se and Si in the right stroke in Figure 5.20
did not find all of them.

Figure 5.20: Erroneous detection of cusps and the related special points.

Another challenge in implementing the division of the stroke into different layers is
caused by the fact that our algorithm adds circular crescents to the stroke region for each
new circle C(td). Therefore, the algorithm may have already saved preimage coordinates
for pixels on a texture corresponding to a layer that will no longer belong to that layer
after the stroke is split. This preimage data needs to be correctly transferred to the
next layer. However, computing the correct fold along the curves u1 and u2 is a major
challenge. The seam between R1 and R3 along the line connecting w−(t?) and Se is not
critical, since there is no fold and the preimage coordinates can be transferred without
further calculations.

The correct folding functions are also needed to identify the neighbors of pixels near u1
and u2, which are required for pixel averaging. We expect the resolution of the close
neighborhood around Se, where all three regions meet, to be particularly challenging.
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In the previous chapter, we have presented our algorithm which computes a real-time
approximation of a conformal map from an ornamental strip to a user-drawn stroke. All
computations are executed on the GPU, and both the stroke and strip regions are stored
as textures. The algorithm is based on pixel averaging, where the preimage coordinates
for each pixel within the stroke are computed by iteratively averaging over the preimage
coordinates of its neighbors. This method makes the coordinate system, which was con-
formally transformed from the strip to the stroke, converge to the solution. Reverse pixel
lookup is applied to transfer the artistic content of the strip texture to the stroke texture.

Instead of referring to the artistic content of an ornamental tile, we could also directly
use the transformed coordinate system stored in the texture preimageCanvas to decorate
the stroke. For this, we replace the line 7 in Algorithm 5, which reads a color from tile-
Canvas at the preimage coordinates coord= (x, y) of pixel p, with rules based on these
preimage coordinates. An elementary example is to color a pixel of the stroke in a trans-
parent red, i.e., to set (r, g, b, a)p = (1, 0, 0, 0.5), if y modulo hT

8
> hT

16
. All other pixels

remain fully transparent. The result is a striped stroke as shown in Figure 6.1.

Figure 6.1: Simple example of creating visual output based on coordinates.

For a striped design as in Figure 6.1, it is necessary to specify a reference height hT
even though no preimage tile is used. Similarly for designs with a variation along the
drawing direction of the stroke, it is necessary to specify a reference width wT in which
the design might repeat. This is the case in Figure 6.2 on the left, where the design
repeats every four stars and circles. Once a reference height hT and width wT have been
specified, any design can be developed based on rules for the coordinate system stored
in the stroke’s pixel information. This works well as long as the modulo calculations of
the preimage coordinates are respected when writing the rules. However, there is also
a drawback that we will illustrate below with reference to the design consisting of three
stripes, circles, and stars, as in the stroke in Figure 6.2 on the left.

Since the strokes are modeled for pressure-sensitive digital pens, the defining circles
have variable radii that are determined by the pressure applied, or by the user’s choice
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for non-pressure-sensitive drawings (see Section 5.1). Thus, also the design has to be
suitable for both narrow and wide strokes. Theoretically, this is not a problem since the
colors are assigned correctly no matter how narrow the stroke is. However, for small radii,
i.e., narrow stroke parts, the design of stars and circles is hard to recognize, as in Figure
6.2 on the right, where the design looks pixelated and the individual shapes are badly
recognizable.

Figure 6.2: Drawback of using coordinate based rules: no MIP mapping.

This effect also occurs when using the algorithm presented in Chapter 5, but there it
can be reduced when doing pixel lookup from a tile texture, since the GPU computations
allow the use of MIP mapping. The MIP mapping technique computes downsampled
versions of a texture, which are then displayed according to the pixel resolution of the
regions in which these textures are displayed. Using a downsampled version in an area of
low pixel resolution reduces the aliasing effect that makes the design look pixelated and
partially incomplete, as if pixels have been cut out. Similar to the interpolate modifier
(see Section 5.1.3), the modifier mipmap → true is added to the CindyJS code in line 7 of
Algorithm 5 to activate MIP mapping.

However, when we use the coordinate information from preimageCanvas directly to
generate a design for the stroke, we are not using the reverse pixel lookup from a tile
texture and therefore cannot use the mipmap modifier. One way to address the inability
to use MIP mapping is to implement a rule that omits design details when the radius
of the circle containing the pixel falls below a specific value. Possible variations of the
design consisting of stars and circles are shown in Figure 6.3 on the left: for wide strokes,
the original design is used. For more narrow stroke parts, the stars are replaced by circles
which contain less detail since they don’t have star tips. In the case of very narrow strokes,
all circles are replaced by colored squares, and all black contours are omitted.

Whether a stroke is classified as wide or narrow depends on the observer, or on the
limits imposed on the radii of the stroke-defining circles by the creator of the design rules.
If the radius value of the circle to which a pixel belongs exceeds or falls below a certain
threshold, the variant with more or fewer details is used to determine the pixel’s color.

This radius-based design variation works perfectly for strokes of constant width. How-
ever, if the width of a stroke changes, the design elements are truncated since the stroke
gradually grows by circular crescents of varying radii. This is illustrated in Figure 6.3 on
the right, where three highlighted regions show design elements that are truncated due to
the change of the radii between two neighboring circular crescents.
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Figure 6.3: Pressure-sensitive design and broken stars.

To overcome this problem, we will present a variation of our algorithm from Chapter 5
that computes which design unit of height hT and width wT a pixel in the stroke belongs
to (see Section 6.1). With this approach, we will use different levels of detail in the
units, depending on how wide or narrow the stroke is in those units (see Section 6.2.1).
Furthermore, we will apply design transitions between wider and narrower parts of the
stroke and we will use a start and an end tile (see Section 6.2.2). Moreover, Sections 6.2.2
and 6.2.3 show ways to create more variation in the design, even for strokes of constant
width.

The complete code for the HTML applet, entitled DesignStrokes LP.html and created
in CindyJS, is available on [Pol23b].

6.1 Tile recognition in the algorithm

Let hT be the height and wT the width of a design unit that is supposed to decorate
the stroke. In contrast to the algorithm presented in Chapter 5, we no longer store the
preimage coordinates as preimpt = (x modulo m · hT , y) for each new circular crescent in
the following. Instead, we store the x-coordinate of the preimage of the pixel p modulo wT
and, additionally, the information in which design unit Tk the pixel’s preimage is located
for

k =

⌊
x

wT

⌋
+ 1,

where k ≥ 1 for computational reasons. When using the coordinates for calculations, both
pieces of information are combined and the calculations are performed on these coordi-
nates. This means that the calculations are no longer performed on a shortened preimage
strip Sm of width m · hT (see Section 5.1.1), but on the complete tiled strip Sn consisting
of n design units Tk for k ∈ {1, . . . , n}.

The preimage coordinates preimpt of a pixel p in the stroke are still calculated by the
piecewise defined function τd as in the Equations (5.3). But the subsequent adaptations
due to calculations modulo m · hT are neglected, and τd (γ(td)) =

(
xd,

hT
2

)
with xd as

in Equation (5.2) is also not taken modulo m · hT . The computed preimage coordinates
are taken modulo wT and then stored as usual in the texture preimageCanvas with the
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function splitData. Hence, in Algorithm 4, line 9 is modified to

rgba = splitData ( ( mod(preimpt 1, wT ), preimpt 2, 0, 1), scvel, base); (6.1)

Additionally, a new texture is created, which we call tileCanvas. In this texture, for every
pixel in the stroke, we store the number k of the design unit Tk the pixel belongs to.
The value of k − 1 corresponds to the multiple of wT that was cut off preimpt due to
calculations modulo wT . This means that the rgba-value for a pixel p in the stroke is set
to

(r, g, b, a)p =

(
1+

⌊
preimpt 1

wT

⌋
, 0, 0, 1

)
= (k, 0, 0, 1).

Depending on the use case, a variation of splitData can be defined for the texture tile-
Canvas, which splits the integer k into two different channels of the rgba-vector, making
it possible to store more than 256 different numbers k. For this, the same adaptations
are necessary as for equiCanvas, which stores the amount d of the circles C(td) (see Sec-
tion 5.1.2 below Algorithm 4). For now, we assume that 256 design units are sufficient
and will not make any further adaptions.

In addition to the changed storage of the preimage coordinates modulo wT in preimage-
Canvas, the x-coordinate of the preimage of a circle center τd(γ(td)) is stored modulo wT in
the texture centerCanvas, while its y-coordinate remains hT

2
without exception. However,

additional information is needed to recover the exact coordinates of the preimage circle
centers. In general, adding the multiple of wT stored in tileCanvas to the x-coordinate
in centerCanvas is incorrect. This is because texture tileCanvas contains the number k of
the design unit Tk in which pixel p lies, but its assigned preimage circle center τd(γ(td))
probably lies in a different design unit Tk̃ with k 6= k̃. Hence, we use the blue-channel of

the rgba-vector in centerCanvas to store the correct number k̃ =
⌊
τd(γ(td)
wT

⌋
for the preimage

circle center. Let τd(γ(td)) = (px, py) =
(
px,

hT
2

)
, then for every pixel p of centerCanvas

inside the stroke, the rgba-vector is set to

(r, g, b, a)p =

(
mod(px, wT ), py,

⌊
px
wT

⌋
, 1

)
.

Due to the new way of storing the preimage coordinates and the preimage circle centers
modulo wT in the respective textures, the pixel averaging algorithm of Section 5.2 has to
be adapted slightly. The main algorithmic concept remains unchanged. The arithmetic
mean of the preimage coordinates of the neighbors pi is calculated for each pixel p and
then stored as the new preimage in the rgba-vector of p (see Section 5.2). Also, the
boundary handling with the Schwarz reflection principle for the first and last circles as
well as the adapted generalized version for reflection at the analytic boundary curves
remain the same (see Section 5.2.2). For correct calculations, the preimage coordinates
preimcoord of a neighboring pixel pi have to be restored from the information in the
textures preimageCanvas and tileCanvas as follows:

preimpt = restoreData ( imagergba ( (0,0), (1024,0), “preimageCanvas”, pi ), scvel, base);

tilenum = imagergba( (0,0), (1024,0), “tileCanvas”, pi )− 1;

preimcoord = (tilenum · wT + preimpt 1, preimpt 2);
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To compute the value of tilenum, we subtract 1 from the stored value k ≥ 1. When
circular reflection is applied as part of the boundary handling using the preimage circle
center preimcenter, its coordinates are read from the texture centerCanvas by

center = restoreData ( imagergba( (0,0), (1024,0), “centerCanvas”, pi ), scvel, base);

tilenum = center 3;

preimcenter = (tilenum · wT + center 1, center 2);

When storing the updated coordinates preimnew of a pixel p to the texture preimage-
Canvas after averaging, it is generally not possible to store the vector as in Equation (6.1)
because calculating preimnew 1 modulo wT could cause a loss of information. This loss
of information occurs when pixel averaging shifts a newly calculated preimage point to
another tile or design unit if it was already very close to it before. All new preimage co-
ordinates in preimageCanvas are computed within a colorplot function environment, which
performs all calculations on the GPU in parallel for all pixels in preimageCanvas. Hence,
it is not possible to simultaneously update the entries of tileCanvas. This means that we
have to store the difference between the unit number k from tileCanvas and the actual
value together with the new coordinates preimnew in preimageCanvas to access the correct
coordinates for further calculations later on:

tilenump = imagergba ( (0,0), (1024,0), “tileCanvas”, p ) 1− 1;

rgba = splitData ( ( preimnew 1− tilenump , preimpt 2, 0, 1), scvel, base);

Finally, it is necessary to calculate all preimage coordinates used in the test for con-
formality presented in Section 5.3.1 using the stored number k in tileCanvas and the
coordinates from preimageCanvas.

In the next section, we will apply the new approach of storing preimage information
modulo wT and the number of the design unit Tk to which a pixel belongs. The new
procedure for storing preimage coordinates allows to modify the reverse pixel lookup
from Section 5.1.3.
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6.2 Use cases of variable tiles

To solve the issue that the design for strokes of different widths cuts off design elements
when the design is selected depending on the local width of the stroke (see Figure 6.3), we
have adapted the algorithm to store the number k of the design unit Tk to which a pixel
of the stroke belongs. However, exclusively storing the preimage coordinates differently
than in Section 6.1 for all pixels of the stroke does not solve this problem. In addition,
we need to apply the same design rules to all pixels belonging to the same design unit.
For this, another texture is created, which we call ruleCanvas. This texture operates as
a 1024 × 512 matrix, where each entry is a 4-dimensional rgba-vector. Depending on
the particular use case, rule information for different design units can be stored using
columns, rows, or even smaller units of the matrix. For simplicity, we assume that there
are no more than 1024 design units, which permits using only the columns of the texture
ruleCanvas to store information. Whenever a new design unit Tk is reached in the stroke,
the kth column of ruleCanvas is updated to store the new information in a pixel p = (x, y)
if its x-coordinate is in the interval (k − 0.5, k + 0.5). This is the reason why we started
counting design units with k = 1.

In the part of the algorithm where we previously used reverse pixel lookup to read the
color information for each pixel in the stroke from the shortened strip texture Sm, we now
change our approach to instead read the rule for the tile Tk using the pixel’s corresponding
tile number k from the texture tileCanvas. The rule is stored in the texture ruleCanvas at
position (k, y) for y ∈ [0, 512]. The color of each pixel is defined according to this rule.
What the rules stored in ruleCanvas should look like depends on the use case, as will be
illustrated in the following sections.

6.2.1 Floral design: radius dependent textures

The first example is a floral design based on the four different image tiles floral1 to floral4
from Figure 6.4.

(a) floral1 (b) floral2 (c) floral3 (d) floral4

Figure 6.4: Four different textures of floral design.

Depending on the stroke width that corresponds to one design unit Tk, we select an
image tile and access the color from this tile using reverse pixel lookup. The radius r(td)
of the defining circles C(td) equals half of the stroke width. Since the radii are already
stored in radiusCanvas, we use this information further on. The range of radius values
is [10, 40] (see Section 5.1). We establish the rule to use floral1 for the reverse pixel
lookup in a design unit if the radius is between 10 and 15, floral2 for a radius between 15
and 20, floral3 for a radius between 20 and 30, and floral4 for a radius greater than 30.
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The question is, which pixel within the design unit defines which radius is the decisive
one and, thus, which floral design the rest of the unit has.

To define this, we specify when and how to update ruleCanvas. We determine when a
new rule for a new design unit Tk needs to be specified depending on the progress of the
preimage circle around τd(γ(td)) on the horizontal line y = hT

2
in the preimage strip Sn

as given in Equation (5.2). When the stroke starts, the first circle C(t0) covers hT
wT

design
units because the preimage circles all have a diameter of hT and the design unit has

a width of wT . For each started design unit, i.e., for Tk with k ∈
{

1, . . . ,
⌈
hT
wT

⌉}
, the

corresponding column k in the texture ruleCanvas is assigned the rgba-vector (r, 0, 0, 1),
with r ∈ {1, 2, 3, 4} depending on the radius r(t0) of the first circle C(t0). The variable r

represents the floral image tiles numbered 1 through 4. If r(t0) > 30, r is set to 4;
if 30 > r(t0) > 20, r is set to 3, and so on. When a new circular crescent of C(td) is added
to the stroke after the first circle, pixels within this newly added crescent are tested if
they are contained in a new design unit Tk+1. In this case, a new rule is needed for
those pixels. To compute the number k of the design unit Tk a pixel is contained in,
the amount xd − xd−1 = hT ·|γ(td)−γ(td−1)|

2·r(td)
with x0 = hT

2
(see Equation (5.2)) is added to hT

wT
every time a new circle is appended to the stroke. Hence, the number of started design

units is given by
⌈
hT
wT

+
(
xd − hT

2

)⌉
. If this number increases by one, a new design unit Tk+1

is reached and a new rule depending on the radius r(td) of the current circle C(td) is stored
to the (k + 1)th column of ruleCanvas. This means that the circle C(td) that first reaches
a new design unit sets the rule for the rest of the tile. For strokes that increase in width,
this causes the image tiles intended for narrow parts of the stroke to appear in parts of
the stroke that are wider than the image tile was intended for. For parts of decreasing
stroke width, it is the other way around.

In the reverse pixel lookup, the number of the design unit Tk to which each pixel p in
the stroke belongs is accessed by the texture tileCanvas. At the corresponding column k
of texture ruleCanvas, the number r ∈ {1, 2, 3, 4} determines the preimage texture from
which the pixel’s color has to be read: 1 for floral1, 2 for floral2, 3 for floral3, and 4 for
floral4. Figures 6.5 and 6.6 show some strokes created with these design rules.

Figure 6.5: Stroke with floral design varying with the stroke’s width.
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There are three remarkable specialties in the strokes of Figure 6.6. First, both strokes
have self-intersections, which are treated as usual with a new texture for the second part
of the stroke displayed on top of the first part. A self-intersecting floral design like this
brings up the idea of merging the designs at self-intersections of strokes. An approach
for this is not part of this thesis, but the selection of future research ideas in Chapter 7
revisits this topic. Secondly, the stroke on the right in Figure 6.6 is nearly closing. It
may be desirable to adjust the stroke slightly at both ends so that the stroke actually
closes. At the same time, the design would also need to be adjusted. This also remains
an open problem within this thesis and will be addressed again in Chapter 7. Thirdly,
the design of the floral pattern is truncated at the end of the right stroke, resulting in
two incomplete branches. To avoid this, it is possible to include rules for the design at
the end of a stroke. Such rules will be presented in the following Section 6.2.2 for a braid
design.

Figure 6.6: Stroke with floral design varying with the stroke’s width.

Note 6.2.1 The floral design of this section was created using tangential logarithmic
spirals. We present the necessary theory behind tangentiality of logarithmic spirals in
Appendix B, followed by a CPU-based algorithm for generating strokes of tangential loga-
rithmic spirals.
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6.2.2 Braid design: transitions and variations

In this section, we study the braid design consisting of the image tiles in Figure 6.7.

(a) braid1 (b) braid2 (c) braid3 (d) braid4 (e) braid5 (f) braid6 (g) braid7 (h) braid8

Figure 6.7: Textures of braid design.

There is a significant difference between the braid tiles and the floral tiles in the
previous section: while the edges of the floral tiles match seamlessly, so that all floral tiles
can be combined, there are braid tiles that do not match, such as braid1 and braid4. The
braid tiles 1, 2, 7, and 8 are designated for use in stroke parts with large width, while
braid tiles 4 and 5 are intended for narrow stroke parts. For a seamless transition between
these parts, we need to use the image tiles braid3 or braid6, depending on whether the
width of the stroke increases or decreases.

To detect a transition between a narrow and wide part of the stroke, a new step is
added to the algorithm, which checks the content of column k− 1 in ruleCanvas whenever
column k of ruleCanvas is updated because a new design unit Tk has been reached by the
stroke. If the stroke is narrow according to the preset design rules when it reaches Tk,
one of the image tiles 4 and 5 has to be used as a preimage for all pixels in Tk. But if
column k − 1 in ruleCanvas indicates that the last design unit Tk−1 was assigned one of
the image tiles 1, 2, 7 or 8 for wide parts of the stroke, the design unit Tk is assigned
braid3 as preimage instead of braid4 or braid5. An analogous test assigns braid6 to the
first design unit of a wide part of the stroke if the previous design unit belongs to the
narrow part of the stroke.

For narrow stroke parts, both braid4 and braid5 can be used as design units, while
braid tiles 1, 2, 7, and 8 are alternatives for design units within wide stroke parts. The
presented braid tiles do not contain alternatives for the tiles 3 and 6, but additional tiles
could easily be added. Thus, we have four distinct groups of image tiles: group 1 contains
tiles for wide stroke parts, group 2 contains tiles for the transition from wide to narrow
stroke parts, group 3 contains tiles for narrow stroke parts, and group 4 contains tiles for
the transition from a narrow to a wide stroke part. One possibility would be to select a
tile from the respective group for a new design unit Tk by cyclically rotating between the
alternatives. Another option is to randomly select one image tile per group. Figure 6.8
shows an example where the braid tiles were randomly selected from their respective
groups.

The groups are also helpful to give a clearer structure to the reverse pixel lookup.
In Section 6.2.1, it was defined that column k of ruleCanvas stores the number r of the
image tile assigned to the design unit Tk. If there are a large amount of image tiles, for
example due to many alternatives, it is more convenient to store the group number of
the image tile in the red-channel of all pixels in column k of ruleCanvas. Furthermore,
the number corresponding to the tile of the group is stored in the green-channel. For
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Chapter 6. Application: Ornamental Design

Figure 6.8: Stroke with variable braid design.

instance, if design unit Tk is assigned an image tile from group 1, then r =1 and the
rgba-vector in the kth column of ruleCanvas is assigned the vector (r, g, b, a)k = (1, z, 0, 1)
with z ∈ {1, 2, 7, 8}. See Algorithm 10 for the pseudocode of storing the number of ran-
domly chosen tile alternatives and transition tiles in ruleCanvas. The transition from a
wide to a narrow stroke occurs at a radius value threshold of 25.

Algorithm 10 Random alternatives in ruleCanvas along with transition tiles.

if a new design unit Tk was started in the stroke with circle C(td) then
forall pixels p = (x, y) in ruleCanvas with k − 0.5 < x ≤ k + 0.5 do
if r(td) > 25 then

lastGroup ← red-channel of a pixel in column k − 1 of ruleCanvas
if k > 1 and lastGroup == 3 then (r, g, b, a)p ← (4, 0, 0, 1)
else randomNumber ← random number between 0 and 1

depending on randomNumber choose an alternative z ∈ {1, 2, 7, 8}
(r, g, b, a)p ← (1, z, 0, 1)

end if
else for r(td) ≤ 25

lastGroup ← red-channel of a pixel in column k − 1 of ruleCanvas
if k > 1 and lastGroup == 1 then (r, g, b, a)p ← (2, 0, 0, 1)
else randomNumber ← random number between 0 and 1

depending on randomNumber choose an alternative w ∈ {4, 5}
(r, g, b, a)p ← (3, w, 0, 1)

end if
end if
end forall

end if

The stroke in Figure 6.8 does not have a satisfactory design at its ends because the
strands of the braid, as well as the black border at the top and bottom of the design, end
without closing. A similar issue has already been mentioned in Section 6.2.1.
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6.2. Use cases of variable tiles

To resolve this, we include four additional image tiles for the beginning and end of a
stroke. These braid tiles are shown in Figure 6.9.

Figure 6.9: Braid tiles for the beginning and end of a stroke.

The new image tiles for the beginning of the stroke are integrated into the existing
rule system by automatically assigning one of the two alternatives as the first preimage
tile to the design unit T1. Which one is assigned depends on the stroke width. If the first
design unit belongs to group 1, the left start tile is used. If the first design unit belongs
to group 3, the right start tile is used.

The two image tiles for the end of the stroke are not used while the user is drawing the
stroke. Once the user stops drawing, the last complete design unit is determined. Assume
the last completed design unit is TN−1. Then, the reverse pixel lookup assigns the vector
(0, 0, 0, 0) to all pixels in TN , leaving them fully transparent without any design. For all
pixels in the design unit TN−1, the color is read by the reverse pixel lookup from one of
the end tiles depending on the stored group number in column N − 1 within ruleCanvas.

If both the start and end tiles are used, the result is a stroke with a design that closes
at both ends of the stroke (see Figure 6.10). However, this process results in a sudden
change of the design at the end of a just completed stroke. Additionally, the stroke is
shortened by the last incomplete design unit.

An alternative could be to use the end tiles during the drawing process for the last
complete or incomplete design unit. But this would not only lead to sudden design changes
when the stroke is completed. Instead, when a new design unit is opened, the role of the
“last” design unit would be transferred to another unit Tk. As a result, the sudden changes
would be constantly present instead of once when the stroke is completed.

Figure 6.10: Drawing a stroke with special image tiles for the start and end of the stroke.

Note 6.2.2 Comparing Figures 6.8 and 6.10, it becomes apparent that Figure 6.10 con-
tains fewer alternative image tiles in the wide parts of the stroke. This is because when
using the four additional image tiles for the start and end of the stroke, the large number
of different textures called in the reverse pixel lookup exceeds the maximum number of
textures a colorplot function can handle in CindyJS. We leave the task of finding a way
to allow a larger number of textures within a colorplot function to future research.
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6.2.3 Further design concepts

We present two design concepts for strokes of constant radius function. The image tiles
used for these designs are the tiles circles1 through circles4 shown in Figure 6.11. All
four image tiles show tangential Apollonian circles with different iteration depths. The
basic rules for a stroke design are to use circles4 for strokes with a radius greater than 30
(group 1), to use circles3 for a radius between 20 and 30 (group 2), circles2 for a radius
greater than 15 and less than 20 (group 3), and circles1 for all radii smaller than 15
(group 4).

(a) circles1 (b) circles2 (c) circles3 (d) circles4

Figure 6.11: Four different textures with tangent Apollonian circles.

Our goal is to equip strokes of constant radius function with more variability in their
design without creating alternative image tiles per group. For this, we allow the image
tiles as alternatives for all groups with a higher number than the number of the group they
originally belong to. In our example, the image tile circles1 could be used for all groups,
circles2 for groups 2, 3, and 4, circles3 for groups 3 and 4, and circles4 for group 4 only.
Selecting one of the possible alternatives per group can again be done randomly, as shown
in Figure 6.12.

Figure 6.12: Strokes of different constant widths and variable design of tangent circles.

Another non-random option is to use the most detailed image tiles in the design units
towards the middle of the stroke and to gradually reduce the level of detail in the image
tiles used for the design units towards the ends of the stroke. Figure 6.13 shows an
example.
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Figure 6.13: Strokes of constant width and design depending on their lengths.

As a conclusion, we present a design concept based on the idea of mapping text to
a stroke, keeping the text in the middle of the stroke, and filling the parts of the stroke
between the text and the ends of the stroke with additional ornamental design. If the
length-ratio of the text and the ornament is hT/wT , the presented segmentation of the
stroke into design units can be used in such a way that the design unit(s) in the center
of the stroke are assigned the text tile as a preimage and all other units are assigned the
ornamental tile. Doing this may cause the text to shift to one side of the stroke due to
the design units not subdividing the stroke properly to keep the text in the center of the
stroke.

Alternatively, we use only the method of storing the preimage coordinates from Sec-
tion 6.1, i.e., we use the information from the texture tileCanvas and the coordinates from
the texture preimageCanvas to access the exact preimage coordinates for all pixels in the
stroke. With those exact preimage coordinates, it is possible to keep the text in the center
of the stroke and fill the ends symmetrically with ornamental design. Figure 6.14 shows
a stroke decorated with text together with an ornamental design of logarithmic spirals.

Figure 6.14: Stroke with text and ornamentation.

We assume that both the text and ornamental design are of a height of hT . If not,
they are scaled accordingly. Let the text have a width of wT . To position the text in
the middle of the stroke, we use the preimage coordinates of the last registered circle
center τd(γ(td)) =

(
xd,

hT
2

)
. The center of the stroke is where the pixels’ preimage coordi-

nates have an x-coordinate of xd/2. Hence, for all pixels with preimage coordinates (x, y)
where x ∈

(
xd
2
− wT

2
, xd

2
+ wT

2

)
and 0 ≤ y ≤ hT , the text is displayed in that part of the

stroke. For all remaining pixels, the ornamental design is used as preimage. It is not
necessary that the width of the text is the same as the width of the ornamental tile.
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7 | Future Research

Throughout the thesis, several interesting open research questions have been mentioned.
For example, we consider it relevant to study all cases where singularities occur on the
envelope curves for strokes with non-constant radius functions r. So far, we have only ex-
amined Benchmark Example 2.1.10, which contains a pair of cusps related to an extremum
of curvature of the curve γ. However, Section 2.6.2 demonstrates that A≥3 singularities
and possibly related cusps may also appear at inflection points of γ.

Furthermore, it remains an open question how to determine the point Se that is the
projection of the point where the two folds of the surface Sr meet for non-constant ra-
dius functions r (see Section 4.3.2). In this context, we have also left it open to identify
the curve segments u1 and u2 that connect Se to the two cusp points S1 and S2. These
curve segments border the threefold covered region of the projection of the swallowtail
surface onto the plane (see Section 4.3.2). Similarly, there are other necessary aspects to
accomplish the essential open task of adding an implementation for the case of strokes
with singular boundary points to our algorithm presented in Chapter 5.

The implementation of the stroke model and mapping algorithm is already quite fast
due to the GPU-based computations. However, achieving even faster computations would
be a rewarding task. Faster calculations would improve the drawing experience, as it is
only possible to draw and see the stroke appear at the same time if the user draws slowly.

The clarity of the code could be improved by reducing the number of required textures.
In particular, in the case of self-intersection and, as proposed but not yet implemented,
for regions with singular boundary points, many additional textures would be opened
each time such a special case occurs. Reducing the number of textures involved would
also reduce the time needed for the computations.

Another open task related to implementation is to revise the calculation of the global
deviation of the outcome of our algorithm from conformality in the tile-based stroke im-
plementation from Chapter 6. Currently, the global deviation value jumps to a higher
value from time to time when the algorithm detects a self-intersection. We have identified
that the jump is related to the global deviation value of the first part of the stroke.

In Chapter 2, our stroke model was based on a continuous, differentiable, regular
curve γ. In Chapter 4, we interpolated the curve γ with cubic B-splines based on the
registered discrete data points on the user-drawn path. Throughout the thesis, we have
excluded the case that γ itself has singularities.
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Figure 7.1: Curve γ with a cusp.

However, drawing a path with a cusp, as shown
in Figure 7.1, can cause the curve γ to be singular.
Integrating user-drawn paths with singularities into
the model and algorithm would be an interesting
extension of this work.

Besides the requirement that γ must be regular,
it was also required that the curve drawn by the
user must not be closed. It would be exciting to
study how closed curves, and thus closed strokes,
could be included in our model and algorithm. One
difficulty would be to possibly change the interpolated curve in such a way that almost
closing curves would also be treated as closing. Additionally, the potentially different
radius values at both ends of γ would need to be adjusted to one another, which could
affect not only the area in which the curve closes. Furthermore, the ornamental design
would most likely need to be changed to match the closing stroke.

A related topic is blending of ornamental designs in the case of a self-intersecting
stroke. So far, the different layers of the stroke are displayed on top of each other, as
illustrated in Sections 4.3.1 and 5.4.1. Depending on the opacity of the stroke, only the
last layer is visible, or the previous layers may show through. In any case, the artistic
content of the layers remains separate, but continues seamlessly on the new part of the
stroke. It would be interesting to develop an algorithm that merges the designs when the
stroke passes over already covered parts of the drawing surface.

This is challenging, however, because the self-intersection area of the stroke can be
very complex. Figure 7.2 shows examples of easy self-intersections and of cases that are
most probably very hard to handle. The region covered twice can either be a rather simple
quadrangle, as shown on the left, or an elongated, non-convex region, as shown on the
right. If a stroke intersects itself multiple times, a region may even be covered more than
twice.

Figure 7.2: Regions of a double cover of self-intersecting strokes.

If there are multiple self-intersections of a stroke, it would be desirable to add a
condition to the implementation that the new part of the stroke alternately passes over
and under the existing stroke, similar to the way knots and braids are handled.
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A | Conformal Map of an Ellipse to
an Infinite Strip

In this chapter, we calculate a conformal map from the interior of an ellipse E to an infinite
strip S. For this, the ellipse E is centered at the origin and is given by the equation

x2

a2
+
y2

b2
= 1,

where a, b > 0 are the lengths of the semi-major and -minor axes. The infinite strip S is
defined as −π

2
≤ y ≤ π

2
. To determine the exact map, we concatenate a map w from the

ellipse to the unit disk U given by |z| = |x + iy| ≤ 1 and a map m from the unit disk to
the strip as shown in Figure A.1.

Figure A.1: Map from an ellipse E to an infinite strip S via the unit disk U .

The second map m : U → S can be computed by composition of the following three
maps. First, the Möbius transformation m1 : U → H+ maps the unit disk to the upper
half plane H+ = {z = x+ iy | y ≥ 0} by

m1 : z 7→ i(z + 1)

1− z
.

This can be easily verified by checking that m(i) = −1, m(−1) = 0, and m(−i) = 1. A
Möbius transformation is uniquely defined by three pairs of preimage and image points,
and it maps circles/lines to circles/lines. Hence we see that m maps the unit circle |z| = 1
to the horizontal line y = 0. The interior of U is mapped to the upper half plane and not
the lower one, as m1 maps the origin to i.

Second, the upper half plane H+ is rotated by −90◦ and mapped onto the right side
of the complex plane Cx≥0 := {z = x+ iy ∈ C | 0 ≤ x, y ∈ R}:

m2 : H+ → Cx≥0 z 7→ z · e−i
π
2 = −i · z.
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Appendix A. Conformal Map of an Ellipse to an Infinite Strip

Finally, the complex logarithm maps the right half-plane onto the strip S:

m3 : Cx≥0 → S, z 7→ log(z).

This is verified by writing z ∈ Cx≥0 in polar coordinates as z = reiϕ for some real
radius r ≥ 0 and some real angle ϕ ∈ [−π

2
, π
2
]. Applying m3 yields m3(z) = log(reiϕ) =

log(r)+iϕ, where log(r) ∈ (−∞,∞) since r ≥ 0 and ϕ ∈ [−π
2
, π
2
]. Hence, m3(z) is located

in S.
In total, the unit disk U is mapped to the infinite strip S by

m : U → S, z 7→ m3 ◦m2 ◦m1(z) = log

(
z + 1

1− z

)
.

This map m is made visible by using reverse pixel lookup, which is explained in Sec-
tion 5.1.3. For this, the infinite strip is, for example, filled with a checkerboard pattern as
depicted in Figure A.2 on the right. Then, for each pixel p within the unit disk on the left
of Figure A.2, we calculate the image point m(p) = p′ in S, retrieve the color cp′ = (r, g, b)
at the image pixel p′ from the strip, and display it at the preimage pixel p.

Figure A.2: Conformal map of the unit disk to an infinite strip.

Mapping an ellipse E to the unit disk U is more challenging. An explicit formula for this
can be found in the work of Kober [Kob52, p.177]:

w : E → U

z 7→
√
k · sn

(
2K

π
sin−1

(
z√

a2 − b2

)
, k

)
(A.1)

where sn is the Jacobi elliptic sine function and

K =

∫ π
2

0

1

1− k2 sin2 ϕ
dϕ

k =

(
θ2(τ)

θ3(τ)

)2

τ =
2i

π
log

(
a+ b

a− b

)
∼ eiπτ =

(
a− b
a+ b

)2

.

Although the formula for w in Equation (A.1) is given, it is not obvious how to determine
the coordinates of w(z) ∈ U for z ∈ E. Section A.1 is dedicated to the derivation of
the formula for w as given in Equation (A.1). In Section A.2, we will examine how to
compute w.
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A.1 Jacobi elliptic sine function: map from an ellipse

to the unit disk

In the equation for w in (A.1), the Jacobi elliptic sine function sn is the core component.
To examine its characteristics, we follow the argumentation of Nehari [Neh75, p.280 ff.].

We consider the map F of the upper half plane H+ to a rectangle R with corners
at −K,K,K + iK ′,−K + iK ′ where K,K ′ ∈ R. For a parameter k ∈ R, F is defined as

F : H+ → R, x 7→ z = F (x) =

∫ x

0

1√
(1− ξ2)(1− k2ξ2)

dξ.

This is a conformal Schwarz-Christoffel mapping (SCmap for short) of the upper half
plane H+ to the rectangle R. It maps the following points on the real axis to the corners
of the rectangles, which is also shown in Figure A.3:

−1 7→ −K, 1 7→ K,
1

k
7→ K + iK ′, −1

k
7→ −K + iK ′.

Figure A.3: Map of the upper half plane H+ to the rectangle R.

Following Driscoll and Trefethen [DT02, Section 2.5] or Nehari [Neh75, Chapter V, Sec-
tion 6], the SCmap F can be derived from the general formula for the conformal SCmap
of the upper half-plane to a polygon with n corners. Let ai for i ∈ {1, . . . , n} be the
points on the real line y = 0 that are supposed to be mapped to the corners of the n-gon.
Let µiπ be the interior angle that the polygon has at corner i. Then the conformal map
is given by

f(x) = A+ C

∫ x

0

1

Πi(ξ − ai)1−µi
dξ

for some constants A,C ∈ C [DT02, Theorem 1.1], [Neh75, p.192]. If we set n = 4,
take − 1

k
, −1, 1, and 1

k
as points ai, and assume all interior angles to be right angles,

i.e., µiπ = π
2
, we get equality of f and F for the constants A = 0 and C = 1:

f(x) =

∫ x

0

1√
(ξ + 1)(ξ − 1)(ξ − 1

k
)(ξ + 1

k
)
dξ = F (x).

The resulting rectangle R is symmetric about the vertical line x = 0. The inverse of F is
an analytic function, which is called the Jacobi elliptic sine function

snk(z) = sn(z, k) = F−1(z) = x
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that depends on k ∈ (0, 1). It conformally maps a rectangle to the upper half plane.
However, instead of k, one usually uses

τ =
iK ′

K
or q = eiπτ = e−π

K′
K (A.2)

where k is uniquely defined by τ and q. To determine these unknowns, we require the
equations

K =

∫ 1

0

1√
(1− t2)(1− k2t2)

dt and K ′ =

∫ 1

0

1√
(1− t2)(1− k′2t2)

dt

where k′ =
√

1− k2 and thus K ′(k) = K(k′).

Note A.1.1 The name Jacobi elliptic sine function comes from the analogies to the Eu-
clidean sine function sin, which is a special case of the elliptic snk for k →∞. It is called
an elliptic function because the integral F was first explored in the context of finding the
length of the arc of an ellipse.

Like the sine function, also the Jacobi elliptic snk is periodic; it has even two periods.
See Figure A.4 for a visualization of the rectangles in the following explanations. The
rectangle R has corners at −K, K, K+iK ′, and −K+iK ′ as defined above. It is mapped
to the upper half plane by snk. Reflection of R at y = iK ′ results in a rectangle R1, which
in turn is mapped to the lower half plane. A further reflection at y = 2iK ′ results in a
rectangle which is again mapped to the upper half plane. Hence, one period is 2iK ′ and
it holds sn(z + 2iK ′, k) = sn(z, k). The same happens when R is reflected at x = K. The
resulting rectangle R2 is then mapped to the lower half plane. Reflecting R2 at x = 3K
likewise maps the resulting rectangle to the upper half plane identically to R. Thus, the
second period is 4K, i.e., it holds sn(z + 4K, k) = sn(z, k). The rectangle

Rsn = {z = x+ iy ∈ C| −K ≤ x < 3K, 0 ≤ y < 2iK ′}

is called fundamental rectangle and covers the plane twice when it is mapped by the
Jacobi elliptic sine function snk.

Figure A.4: Periodicity of snk with fundamental rectangle Rsn [Neh75, Fig.35].

Within the fundamental rectangle Rsn, only two values are mapped to zero: 0 and 2K.
Moreover, there are only two finite singularities at iK ′ and 2K + iK ′, which are simple
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poles. Due to periodicity, global zeros occur at z = 2nK + 2imK ′ and global poles occur
at z = 2nK + (2m+ 1)iK ′ for n,m ∈ Z. The global poles and zeros are used to construct
an infinite product that defines sn. For this, we consider the function

g(z) := ξ ·

∞∏
m=0

(1− q2mξ−2) ·
∞∏
m=1

(1− q2mξ2)

∞∏
m=0

(1− q2m+1ξ−2) ·
∞∏
m=0

(1− q2m+1ξ2)

for ξ = e
πiz
2K and q = e−π

K′
K as in Equation (A.2). Since q is in (0, 1), the series

∑
m q

m

converges. Hence, the four products in both the numerator and denominator of the
function g converge absolutely since

∑n
j=1|aj| ≤

∏n
j=1(1 + |aj|).

We investigate the properties of an exemplary product Q =
∏∞

m=1(1 − qmξ). Taking

the logarithm gives logQ =
∑∞

m=1 log(1 − qmξ) which converges if log(1 − qmξ) m→∞−→ 0.

This is true if (1 − qmξ) m→∞−→ 1 which holds since q ∈ (0, 1). Therefore, Q is convergent
and it even converges uniformly which makes it a regular analytic function [Neh75, p.96].

We can conclude that g is a regular analytic function at all finite points where the
denominator does not vanish. The zeros of g are those points where the numerator
vanishes:

1− q2mξ−2 = 0 ⇔ q2mξ−2 = 1 ⇔ e−
2πmK′
K
−πiz

K = 0 for m ≥ 0

1− q2mξ2 = 0 ⇔ q2mξ2 = 1 ⇔ e−
2πmK′
K

+πiz
K = 0 for m ≥ 1

Taking the logarithm gives

−2πmK ′

K
− πiz

K
= 2πin for m ≥ 0, n ∈ Z

−2πmK ′

K
+
πiz

K
= 2πin for m ≥ 1, n ∈ Z

and thus g(z) = 0 ⇔ z = 2nK + 2imK ′ for n,m ∈ Z, which correspond exactly to the
zeros of snk. Analogously, it can be shown that the poles of g and snk coincide.

Next, we show that g has the same double periodicity with periods 4K and 2iK ′

as snk. We observe that the variable z only occurs inside ξ, and it holds that

ξ = e
πi
2K

(z+4K) = e
πi
2K e2πi = e

πi
2K (A.3)

ξ = e
πi
2K

(z+2iK′) = e
πi
2K e−

πK′
K = qe

πi
2K (A.4)

From Equation (A.3), it is evident that one periodicity is in 4K. To get the period of 2iK ′,
we insert Equation (A.4) in g and get

g(z + 2iK ′) = q · g(z)
(1− q−2ξ−2)(1− qξ2)
(1− q2ξ2)(1− q−1ξ−2)

= g(z).

This completes the proof that g and snk have the same periods.
To show equality of g and snk, we define the quotient c(z) := sn(z,k)

g(z)
. As both the

numerator and denominator have identical poles and zeros, they cancel, and c is regular
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at all finite points in the z-plane. Additionally, since both the numerator and denomi-
nator have the same periods, also c is periodic with periods 4K and 2iK ′ and has the
same fundamental rectangle. Within the closure of this rectangle, c is bounded, which
consequently also applies to the whole z-plane. It follows from the Theorem of Liouville
[Neh75, p.117] that c is constant. Hence, the Jacobi elliptic sine function sn and g differ
only by a constant c ∈ C:

sn(z, k) = c · g(z).

To explicitly determine the value of c, we insert some known values to sn and ξ:

sn(K, k) = 1, ξ(K) = e
πiK
2K = i ⇒ 1 = 2ic

∞∏
n=1

(
1 + q2n

1 + q2n−1

)2

(A.5)

sn(K + iK ′, k) =
1

k
, ξ(K + iK ′) = i

√
q ⇒ 1

k
=

ic

2
√
q

∞∏
n=1

(
1 + q2n−1

1 + q2n

)2

(A.6)

Bringing together these two identities yields(
(A.5)

(A.6)

)2

: k2 = 16q
∞∏
n=1

(
1 + q2n

1 + q2n−1

)8

. (A.7)

Since q > 0, we know by (A.5) that ic > 0 and, finally, that

c = −i
4
√
q
√
k
.

Hence, the Jacobi elliptic sine function can be written in terms of the infinite product g:

sn(z, k) = −i
4
√
q
√
k
ξ

∞∏
m=0

(1− q2mξ−2)
∞∏
m=1

(1− q2mξ2)

∞∏
m=0

(1− q2m+1ξ−2)
∞∏
m=0

(1− q2m+1ξ2)

(A.8)

for ξ = e
πiz
2K , q = e−π

K′
K and k as the square root of Equation (A.7). Since k and q are

dependent of each other, it is also common to write sn(z, q).

Using the formula for sn in Equation (A.8) and following Nehari [Neh75, p.295 f.], we
derive the map w from Equation (A.1) which maps an ellipse E to the unit disk U . For
this, we assume that the ellipse E has foci ±1 and semi-axes a = cosh(ζ), b = sinh(ζ) for
some ζ > 0. However, the results can be generalized for any ellipses. Furthermore, we
assume that w maps the origin to itself and that its derivative at zero is positive. This is
possible due to the Riemann mapping theorem, as stated by Nehari [Neh75, p.175]: the
conformal map of a simply connected planar domain that is not the whole plane is unique
if one defines a point to map to the origin and the derivative at that point to be positive.
As a consequence of w(0) = 0 and w′(0) > 0, w maps the upper half of the ellipse to the
upper half of the unit disk.
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A.1. Jacobi elliptic sine function: map from an ellipse to the unit disk

The complex sine function sin maps the rectangle

Rsin := {(x, y) ∈ R2| − π

2
< Re(z) <

π

2
, 0 < Im(z) < ζ}

to the upper half of the ellipse E [Neh75, Chap. VI, Sec. 2]. It holds that

sin
(
−π

2

)
= −1, sin

(π
2

)
= 1, sin

(π
2

+ iζ
)

= cosh(ζ), sin
(
−π

2
+ iζ

)
= − cosh(ζ).

Thus, when given w, it holds that w(sin(z)) maps the rectangle Rsin to the upper half of
the unit circle. By concatenation with a simple Möbius transformation t(z) = 2z

1+z2 that
maps the half unit disk to the upper half plane, it holds that t ◦ w ◦ sin(z) maps Rsin

to H+. Additionally, for α = w(1) it holds

−π
2
7→ − 2α

1 + α2
,

π

2
7→ 2α

1 + α2
,

π

2
+ iζ 7→ 1, −π

2
+ iζ 7→ −1.

Since it holds for the Jacobi elliptic function sn that

−K 7→ −1, K 7→ 1, K + iK ′ 7→ 1

k
, −K + iK ′ 7→ −1

k
,

it follows by comparison of formulas with πK ′ = 2ζK, i.e., q = e−2ζ and k(q) = 2α
1+α2 that

t ◦ w ◦ sin(z) =
2α

1 + α2
· sn

(
2K

π
z, k(q)

)
.

By Nehari [Neh75, p.293,(43)], it holds
2
√
k(q2)

1+k(q2)
= k(q) = 2α

1+α2 , which gives α =
√
k(q2)

and finally

w(sin(z)) =
√
k(q2) · sn

(
2K

π
z, q2

)
.

To obtain w, we take the inverse of sin on z within the Jacobi elliptic sine function,
resulting in w(z) =

√
k(q2) · sn

(
2K
π

sin−1(z), q2
)
. In order to attain the same form of w as

in Equation (A.1), we define a := cosh(ζ) and b := sinh(ζ). Next, we replace q2 =
(
e−2ζ

)2
with

ρ := q2 =

(
a− b
a+ b

)2

which is indeed the same, since ex = cosh(x) + sinh(x) and sinh(x) =
(ex−e−x)

2
as well

as cosh(x) =
(ex+e−x)

2
. Furthermore, it holds a2 − b2 = cosh(ζ)2 − sinh(ζ)2 = 1 and we

obtain the same formula as in Equation (A.1):

w(z) =
√
k(ρ) · sn

(
2K

π
sin−1

(
z√

a2 − b2

)
, ρ

)
=
√
k(ρ) · sn

(
2K

π
sin−1 (z) , ρ

)
. (A.9)
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Appendix A. Conformal Map of an Ellipse to an Infinite Strip

A.2 Concrete calculations

The map w in Equation (A.9) is a precise conformal map from an ellipse E to the unit
disk U . However, the function w is not immediately useful for calculating concrete coordi-
nates due to involved integrals and infinite products. Therefore, we derive for a preimage
point zE how its image point wU can be computed concretely.

For this, we start with Equation (A.9):

w : E → U

z 7→
√
k(ρ) · sn

(
2K

π
sin−1

(
z√

a2 − b2

)
, ρ

)
where

K =

∫ π
2

0

1

1− k2 sin2 ϕ
dϕ

k =

(
θ2(τ)

θ3(τ)

)2

τ =
2i

π
log

(
a+ b

a− b

)
∼ ρ = eiπτ =

(
a− b
a+ b

)2

.

In Kober’s work [Kob52, p.169], the theta functions θ2 and θ3 are defined by

θ2(τ) = ϑ2(0, τ)

θ3(τ) = ϑ3(0, τ)

which in turn depend on the functions ϑ2 and ϑ3. On MathWorld [Wei23b], they are
written in several forms:

ϑ2(z, ρ) =
∞∑

n=−∞

ρ(n+
1
2
)2e(2n+1)iz = 2 4

√
ρ

∞∑
n=0

ρn(n+1) cos((2n+ 1)z) =

= 2G 4
√
ρ cos(z)

∞∏
n=1

(1 + 2ρ2n cos(2z) + ρ4n)

ϑ3(z, ρ) =
∞∑

n=−∞

ρn
2

e2niz = 1 + 2
∞∑
n=1

ρn
2

cos(2nz) =

= G
∞∏
n=1

(1 + 2ρ2n−1 cos(2z) + ρ4n−2)

(A.10)

for ρ = eiπτ and G =
∞∏
n=1

(1− ρ2n). Since k is given by the fraction of ϑ2 and ϑ3, we select
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A.2. Concrete calculations

the product forms where a lot cancels out when they are divided:

k =

(
ϑ2(0, ρ)

ϑ3(0, ρ)

)2
cos(0)=1

=

2 4
√
ρ

∞∏
n=1

(1 + 2ρ2n + ρ4n)

∞∏
n=1

(1 + 2ρ2n−1 + ρ4n−2)

=

(
2 4
√
ρ
∞∏
n=1

(
1 + 2ρ2n + ρ4n

1 + 2ρ2n−1 + ρ4n−2

))2

= 4
√
ρ
∞∏
n=1

(
1 + ρ2n

1 + ρ2n−1

)4

.

This formula for k can be calculated explicitly for a given ρ =
(
a−b
a+b

)2
as in Equa-

tion (A.9). Note that we have derived the same formula for k also given by Nehari
[Neh75, p.292, (41)].

Given k, we study a concrete method for calculating the Jacobi elliptic function sn by

sn(u, k) =
ϑ3

ϑ2

ϑ1(uϑ
−2
3 )

ϑ4(uϑ
−2
3 )

[Wei23a, (12)] with ϑ2 = ϑ2(0, ρ) and ϑ3 = ϑ3(0, ρ) from Equation (A.10) and ϑi(z) = ϑi(z, ρ)
for i = 1, 4 as on MathWorld [Wei23b, (90),(93)] given by

ϑ1(z, ρ) = 2G 4
√
ρ cos(z)

∞∏
n=1

(1− 2ρ2n cos(2z) + ρ4n)

ϑ4(z, ρ) = G
∞∏
n=1

(1− 2ρ2n−1 cos(2z) + ρ4n−2).

(A.11)

Notice that ϑ3

ϑ2
equals 1√

k
since k was defined to be k =

(
ϑ3

ϑ2

)2
. Hence, for the function

w(z) =
√
k · sn (· · · ), the factors

√
k and ϑ3

ϑ2
cancel and it only remains sn(u, k) =

ϑ1(uϑ
−2
3 )

ϑ4(uϑ
−2
3 )

.

It holds that u = 2K
π

sin−1(z) (see Equation (A.9)). With Equation (A.11), we obtain the
following:

w(z) =
ϑ1(uϑ

−2
3 )

ϑ4(uϑ
−2
3 )

= 2 4
√
ρ sin(uϑ−23 )

∞∏
n=1

(
1− 2ρ2n cos(2uϑ−23 ) + ρ4n

1− 2ρ2n−1 cos(2uϑ−23 ) + ρ4n−2

)
.

This is simplified by ϑ2
3 = 2K

π
[Wei23b, (123)] which results in

u · ϑ−23 =
2K

π
sin−1(z) · π

2K
= sin−1(z).

Together with cos
(
2 sin−1(z)

)
= 1− 2z2 and sin

(
sin−1(z)

)
= z, we get

w(z) = 2 4
√
ρ · z

∞∏
n=1

(
1− 2ρ2n(1− 2z2) + ρ4n

1− 2ρ2n−1(1− 2z2) + ρ4n−2

)
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Appendix A. Conformal Map of an Ellipse to an Infinite Strip

with ρ =
(
a−b
a+b

)2
. Since a > b > 0, it holds that 0 < ρ < 1 and the powers of ρ within

the infinite product ρ2n, ρ4n, ρ2n−1 and ρ4n−2 all converge to zero if n → ∞. Hence, the
sequence consisting of the factors of the product converges to 1. This is very convenient
for the concrete computations of w(z), since one can stop multiplying for N � 1 as soon
as the factors of the infinite product are as close to 1 as machine precision.

To visualize these calculations, we again compute the map of an ellipse to the unit
circle and use reverse pixel lookup to display the results. For each pixel located inside the
ellipse, we calculate w(ze) = we′ and obtain the color ce′ = (r, g, b) at this pixel, which is
displayed at pixel ze.

Since our initial focus was on mapping the ellipse to an infinite strip, we use the
resulting checkerboard image inside U from the above computations of the mapm from the
unit disk U to the infinite strip S (see Figure A.2). The final pattern of the concatenated
maps w and m from the ellipse E to the infinite strip S within the ellipse can be seen in
Figure A.5.

Figure A.5: Conformal map of an ellipse to the unit disk.
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B | Logarithmic Spirals

Logarithmic spirals are spirals with equal angle between the tangent at any point on the
spiral and the line connecting the point to the spiral’s center. The spiral’s radius grows
by a constant factor with each winding, while the length from the center to any point on
the spiral is finite. Descartes first studied logarithmic spirals in 1638, and Jakob Bernoulli
was also fascinated by their properties [Rut18, p.71]. The equation for a basic logarithmic
spiral f : R→ R2 is given for constants a, k ∈ R\{0} by

f(ϕ) := a · e(k+i)ϕ = aekϕ ·
(

cos(ϕ)
sin(ϕ)

)
. (B.1)

The spiral’s center is given by P := f(−sign(k) · ∞) and referred to as the spiral’s pole.
In the basic definition of a logarithmic spiral in Equation (B.1), P is located at the
origin (0, 0) of the plane, but this may change later when the spiral is translated. The
variable a is the distance between the pole P and f(0) with f(0) located on the x-axis
at (a, 0).

Parameter k determines the direction and the intensity of the spiral’s winding around P .
When k is positive, the spiral starts at f(0) and moves towards P for decreasing ϕ < 0 in
clockwise direction. Conversely, when k is negative, the spiral moves from f(0) towards P
for increasing ϕ > 0 in counterclockwise direction. The smaller the absolute value of k is,
the closer the spiral is to a circle with radius a and the closer is the winding. This is because
of the factor r(ϕ) := aekϕ, which is called the radius of the spiral. For a full winding of 2π,
the radius increases by the constant factor ek·2π since r(ϕ+ 2π) = aek(ϕ+2π) = ek·2π · r(ϕ).
Figure B.1 shows some basic logarithmic spirals f for different values of k.

Figure B.1: Basic logarithmic spirals.

Parameter k also controls the constant angle between a tangent to the spiral in an
arbitrary point f(ϕ) and the line connecting f(ϕ) and the pole. This angle α is given
by α = π

2
+ tan−1(k), and it measures the counterclockwise angle between the tangent
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Appendix B. Logarithmic Spirals

Figure B.2: Tangents including the same angle α with a line through the pole.

and the line (see Figure B.2 on the left). Since the angle α is independent from ϕ, the
tangents at points f(ϕ+ j · π) for j ∈ Z are parallel (see Figure B.2 on the right).

So far, we have only examined a logarithmic spiral in its basic form, which is neither
translated nor rotated, with P = (0, 0) and f(0) = (a, 0). Now, we generalize this defini-
tion to include a translation to the point A ∈ R2 and a rotation around the origin (0, 0)
by the angle ϑ ∈ [−π, π), which is represented by a matrix M ∈ R2×2:

`(ϕ) := aekϕ ·
(

cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
︸ ︷︷ ︸

:=M

(
cos(ϕ)
sin(ϕ)

)
+ A = aekϕ ·

(
cos(ϕ+ ϑ)
sin(ϕ+ ϑ)

)
+ A. (B.2)

In comparison to the basic definition in Equation (B.1), the pole of the spiral is now
translated to P = A. Additionally, in the initial equation, the point f(0) of the spiral
is situated on the x-axis at (a, 0). For the rotated spiral, `(0) − A is located on a circle
around the origin with a radius of a at an angle of ϑ. The position of `(0) − A on a
circle justifies the restriction of the angle of rotation to the interval [−π, π) caused by
the periodicity of the cosine and sine functions. The property that all tangents enclose
an identical angle α with a line passing through P remains unaltered by rotation and
translation.

In addition to the tangentiality between a line and a logarithmic spiral, we are inter-
ested in the properties of logarithmic spirals that are tangent to each other. In Section B.1,
we will explore various possibilities for placing two spirals so that they are tangent to each
other. We will provide formulae for the explicit computation of a spiral `2 that is tangent
to a given spiral `1.

Building upon this knowledge, we will present a CPU-based digital pen simulation in
Section B.2, which draws tangent logarithmic spirals along a user-drawn path.

Parts of the following are found in our paper [PRG21]. The complete code for the
HTML applet of the digital spiral pen, named SpiralPen LP.html, is available in [Pol23b].

B.1 Tangential logarithmic spirals

In general, logarithmic spirals are infinite curves defined by `(ϕ) for ϕ ∈ (−∞,∞) (see
Equation (B.2)). To analyze tangency between spirals with possibly no further intersec-
tions apart from the point of contact, we limit the spirals to finite curves. This means,
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B.1. Tangential logarithmic spirals

we examine spirals between their starting point `(0) and their pole P , i.e., we restrict the
input parameters to ϕ ∈ [0,∞) if k < 0 and to ϕ ∈ (−∞, 0] if k > 0.

In the following, we investigate tangency between spirals `1 and `2, which are defined
by either the same parameter k = k1 = k2 or parameters k1 = −k2 that have opposite
signs. We differentiate between the occurrence of one or more points of tangency and
give formulas for the definition of `2 for the cases where, in addition to `1, the point of
tangency is given or the pole P2 of the second spiral is known.

Spirals with equal parameters k1 = k2

Given a spiral `1 with parameter k1 and pole P1, we search for a second spiral `2 with
parameter k2 = k1 := k and pole P2 that is tangent to `1. Initially, we assume the point of
tangency to be given by T1 = `1(ϕ1) for ϕ1 ∈ (0,−sign(k)·2π), i.e., the spirals touch on the
outermost winding of `1. Without loss of generality, we define `2 so that `2(0) = `1(ϕ1).

By the definition of tangency, two tangent objects have the same tangent at the point
of contact. Hence, the tangent t at `1(ϕ1) and `2(0) must be the same. We know that t and
the line between `1(ϕ1) and P1 enclose the angle α = π

2
+ tan−1(k) in counterclockwise

direction. Since `2 is defined with the same parameter k = k2 = k1, t encloses the
same angle α with the line between `2(0) = `1(ϕ1) and P2. Consequently, the lines
connecting `1(ϕ1) = `2(0) to P1 and P2 have to be the same and P2 lies on the line
joining `1(ϕ1) and P1 (see Figure B.3).

Proposition B.1.1 Two logarithmic spirals `1 and `2 with identical parameter k are
tangent in a common point T1 if and only if the poles P1 and P2 of the spirals and the
point of contact T1 are collinear.

Figure B.3: The poles and the tangent point of the spirals are collinear.

Since `2 begins at T1 = `1(ϕ1) = `2(0) and has parameter k = k1 = k2, the only piece of
missing information needed to uniquely define the equation of `2 given by

`2(ϕ) = a2 · ekϕ ·
(

cos(ϕ+ ϑ2)
sin(ϕ+ ϑ2)

)
+ P2
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Appendix B. Logarithmic Spirals

is the position of P2. The pole P2 can be freely selected on the line through P1 and T1.
Then, the parameter a2 is given by a2 := dist(P2, T1) = |P2 − T1| and ϑ2 is the angle that
the vector P2 − T1 encloses with the x-axis. In CindyJS [RGK23b], the function arctan2
can be used to calculate this angle ϑ2 := arctan2(P2 − T1).

We observe in Figure B.3 that the pole P2 of spiral `2 may be situated on either the
opposite or same side of the tangent t as the pole P1 of spiral `1. If we define P2 to be
located on the opposite side of T1 than P1, the two spirals are symmetric with respect
to T1 if a1 = a2, i.e., if P2 = T1 + (T1 − P1). If we additionally define T1 as the starting
point of both spirals, i.e., T1 = `1(0) = `2(0), the resulting symmetric double spiral looks
like one of the examples in Figure B.4.

Figure B.4: Symmetric double spirals for different parameters k.

If we define P2 to be on the same side of T1 as P1, we can determine where P2 should
be located to allow for the two spirals `1 and `2 to have a second point of contact as
in Figure B.5 on the left. We call this second point of contact T2. We know from
Proposition B.1.1 that T2 must be on the same line as T1, P1 and P2 since the angle α is
the same throughout `1 and `2. Hence, T2 is given by

T2 = `2(−sign(k) · π) = `1(ϕ1 − sign(k) · 2π).

Figure B.5: Two spirals `1 and `2 with two points of contact T1 and T2.

When T1 and T2 are given, the position of P2 is fixed.

Proposition B.1.2 Let `(ϕ) be a logarithmic spiral with known parameter k 6= 0. Let
two points on the spiral be T1 = `(0) and T2 = `(−sign(k) ·π). Then the pole P of spiral `
is located at

P = T1 +
e|k|·π

(e|k|·π + 1)
· (T2 − T1).

174



B.1. Tangential logarithmic spirals

Proof: Since T1 = `(0), its distance to the pole P defines the parameter a := dist(T1, P ).
The distance between the pole and T2 = `(−sign(k) · π) equals a · e−|k|·π by the definition
of ` in Equation (B.2). Since the pole P and the points T1 and T2 are collinear, it holds
that dist(T1, P ) + dist(T2, P ) = dist(T1, T2). Hence, it holds

dist(T1, P ) = e|k|·π · dist(T2, P ) and dist(T1, T2) =
(
e|k|·π + 1

)
· dist(T2, P ).

Inserting the equation for dist(T1, T2) into the equation for dist(T1, P ) results in

dist(T1, P ) =
e|k|·π · dist(T1, T2)

(e|k|·π + 1)

which concludes the proof. 2

If the roles of T1 and T2 are interchanged, we get a spiral `2 tangent to `1 as in Figure B.5
on the right. The formula for the pole from Proposition B.1.2 remains unchanged.

Another possibility to create tangent logarithmic spirals is to define

T1 = `2(0) = `1(−sign(k) · 2π) and T2 = `1(0) = `2(−sign(k) · 2π).

This leads to intertwined spirals like the ones shown in Figure B.6. If `1 is given, the
position of P2 is calculated by

P2 = T1 +
1

(1− e−|k|2π)
· (T2 − T1).

The proof of this follows the same argumentation as the proof of Proposition B.1.2
for a2 := dist(T1, P2) and dist(T1, T2) + dist(T2, P2) = dist(T1, P2).

Figure B.6: Intertwined tangent spirals for different parameters k.

Another related problem is to find the tangent spiral `2 when the spiral `1 as well as the
pole P2 of the second spiral are given. So far, we calculated P2 from a given point of
contact. Now we have to calculate the common point T of `1 and `2. Again, without
loss of generality, we assume that T = `2(0). Hence, once T is given, we can define `2
with a := dist(T, P2) and ϑ := arctan2(P2 − T ).

We know from Proposition B.1.1 that P1, P2 and T must be collinear. So we need to
find the unique angle ϕ1 ∈ (0,−sign(k) · 2π) for which it holds that the line through P1

and P2 intersects `1 in T = `1(ϕ1).
The angle ϕ1 is determined by the vectors v = P2 − P1 and w = `1(0) − P1. Typi-

cally, the formula ^ = arccos
(

vTw
|v|·|w|

)
is used to calculate the angle between two vectors.
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Appendix B. Logarithmic Spirals

This formula always produces a positive angle smaller than π between the two vectors,
i.e., ^ ∈ (0, π). This, however, is not applicable here as we are looking for ϕ1 in the
interval (0,−sign(k) · 2π). The correct sign of ϕ1 can be added when the absolute value
of ϕ1 is known. To obtain the absolute value between zero and 2π, we calculate the scalar
product of w with v⊥ := (−v2, v1)T . If wTv⊥ > 0, the counterclockwise angle between v
and w is smaller than π. If wTv⊥ < 0, this counterclockwise angle is greater than π. In
Figure B.7 on the left, blue color indicates regions where wTv⊥ > 0, while purple color
indicates regions where wTv⊥ < 0. With this distinction, we have to consider the sign
of the parameter k. If k > 0, `1 moves clockwise towards P1. If k < 0, the spiral `1
moves counterclockwise towards P1. This means, that the absolute value of ϕ1 equals ^
when k > 0 and wTv⊥ > 0. Alternatively, it equals 2π − ^ for k > 0 and wTv⊥ < 0.
For k < 0, it is the other way round. The middle and right images in Figure B.7 illustrate
how the orientation of the spiral influences the absolute value of ϕ1. After calculating
the absolute value, ϕ1 is finally given by ϕ1 = −sign(k) · |ϕ1|. Algorithm 11 presents the
pseudocode for calculating ϕ1 from P1, P2 and `1(0).

Figure B.7: Calculating the angle between P2 − P1 and `1(0)− P1.

Algorithm 11 Calculating ϕ1 from P1, P2 and `1(0).

v ← P2 − P1; w ← `1(0)− P1

v⊥ ← (−v2, v1)T

^← arccos
(

vTw
|v|·|w|

)
if wTv⊥ ≥ 0 then

if k > 0 then |ϕ1| ← ^
else |ϕ1| ← 2π − ^
end if

else if wTv⊥ < 0
if k > 0 then |ϕ1| ← 2π − ^
else |ϕ1| ← ^
end if

end if
ϕ1 ← −sign(k) · |ϕ1|

The point of tangency T is finally given as T = `1(ϕ1) and the tangent spiral `2 is uniquely
defined for `2(0) = T and pole P2. The resulting pair of spirals looks like one of the pairs
shown in the previous figures depending on where P2 is located.
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B.1. Tangential logarithmic spirals

Spirals with opposite parameters k1 = −k2

Instead of two spirals `1 and `2 with the same parameter k = k1 = k2, we will now
examine two spirals with parameters k1 and k2 that have opposite signs, that is, k1 = −k2.
This changes the behavior of tangency at the common point T . For the counterclockwise
angles α1 and α2 formed between the tangent t and the lines connecting T and the poles P1

and P2, respectively, it holds that

α1+α2 =
(π

2
− tan−1(k1)

)
+
(π

2
− tan−1(k2)

)
=
(π

2
− tan−1(k1)

)
+
(π

2
+ tan−1(k1)

)
= π.

Let m1 be line TP1 and let m2 be line TP2. The function join([point1], [point2]) computes
the line between two given points. Hence, it holds m1 = join(T, P1) and m2 = join(T, P2).
It follows from α1 +α2 = π that m1 and m2 must be reflections of each other with respect
to t. This reflection guarantees that `1 and `2 have a common tangent t in T . Figure B.8
shows an example.

Figure B.8: The lines m1 and m2 are reflections with respect to the tangent t.

Proposition B.1.3 Two logarithmic spirals `1 and `2 with parameters k1 = −k2 share
the same tangent t in the common point T if and only if the poles P1 and P2 lie on
lines m1 = join(T, P1) and m2 = join(T, P2), respectively, which are reflections of each
other with respect to t.

If the common point T on `1 is given, we can define without loss of generality that T = `2(0)
and choose P2 onm2 freely. This uniquely defines `2(ϕ) with a := dist(T, P2) and k2 = −k1.
The rotation angle is given by ϑ2 := arctan2(P2 − T ) as for the case when k1 = k2.

If P2 is given instead of T , we have not yet found an easy formula for T on `1 such
that m1 := join(T, P1) and m2 := join(T, P2) are reflections of each other. Therefore,
we must efficiently search for the correct point T on `1. For this, we observe that the
point T always lies between `1(0) and `1(−sign(k) · θ), where θ is the angle between the
vectors (`1(0)− P1) and (P2 − P1) (see Figure B.9). Hence, starting at θ, we take small
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steps with a size of ε > 0 and examine whether S = `1(−sign(k) · (θ − ε)) satisfies the
condition that join(S, P1) and join(S, P2) are reflections with respect to tangent tS at S.
It is also possible to do a search of nested intervals.

Figure B.9: T lies between `1(0) and `1(θ) on join(P1, P2).

Combining tangential spirals with both same and opposite parameters of k is a suitable
method for designing floral structures like those presented in Section 6.2.1.

B.2 A CPU based spiral pen

With the knowledge from the previous section, we implemented a CPU-based pressure-
sensitive pen simulation. The fundamental structure of circles along a user-drawn path
is identical to that of the stroke model described in the main text. Hence, the registered
discrete data points Ptd along the user-drawn path are given as input. The radius values
at these registered data points are calculated using Equation (5.1), based on the pressure
and tilt information of the digital pen and the slider settings for the constant stroke width,
as well as the percentage of pressure and tilt influence. The points Ptd are used as input for
an interpolation of a curve γ on which equidistant points are calculated as in Algorithm 1.
In contrast to the cubic spline interpolation of γ in the algorithm for the stroke model
presented in the main text, we use only linear interpolation here (see Section 4.1.1).
Linear interpolation is also used to calculate the radius values corresponding to the circles
centered at the computed equidistant curve points. This results in a discrete family of
circles along the user-drawn path (see Figure B.10 in the background).

The pressure-sensitive digital pen model presented in the main text was enriched by a
conformally mapped ornamental design. In contrast, we now want to create stamps from
logarithmic spirals placed tangentially next to each other in the stroke given by the family
of circles as shown in Figure B.10. These spirals adapt their position and size according
to the circles’ radii as the stroke is drawn.
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Figure B.10: Tangent spirals placed inside a stroke defined by a family of circles.

To select the appearance of the spiral stamps, a user interface next to the drawing
surface is provided. The parameter k ∈ [−0.5, 0.5] is chosen with a slider. For the
appearance of the printed spirals, the user can choose from several options.

1) One option is to alternately print a single logarithmic spiral with a chosen parame-
ter k and its negative −k along the stroke, as illustrated in Figure B.10. In addition
to the main spiral, it is possible to add an inner spiral with the same parameter k
that touches twice, as in Figure B.5 on the right. A slider determines the position of
the inner spiral relative to its starting point on the outermost winding of the main
spiral. Also, a spiral with the opposite parameter −k can be added, touching the
main spiral from the outside, as in Figure B.9. Another slider controls its position
on the outermost winding of the main spiral. See Figure B.11 on the left for the
user interface of an exemplary selection of a single spiral stamp.

2) Another possibility is to choose a combination of two symmetrical spirals with the
same parameter k, as shown in Figure B.4. There are two additional options, one of
which must be selected: either the same pair of spirals is placed tangentially along
the stroke, or the pair is alternately placed once with parameter k and once with
parameter −k. See Figure B.11 in the middle for an example of the user interface
for this option.

3) The third alternative is to create a stamp of two intertwined spirals, as shown in
Figure B.6. Similar to option 2), a pair of intertwined spirals can be placed repeat-
edly along the stroke, or alternated with a pair of intertwined spirals of opposite
parameter −k. See Figure B.11 on the right for an instance of the user interface for
this case.

Exemplary strokes for all three cases drawn with a pressure-sensitive digital pen are shown
in Figure B.12.

For case 1), we included a pressure sensitivity condition when inner and/or outer spirals
are chosen. If the distance between the pole and the starting point of the supplementary
inner or outer spirals is less than a predetermined value, they will not be displayed despite
being selected in the user interface. This feature is related to the Chapter 6 where adaptive
design concepts that depend on pressure sensitivity are presented.
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Figure B.11: User interface to select different types of tangential spirals.

Figure B.12: Strokes with different types of tangential spirals.

It is important to note that the individual spirals are placed with a stamp, not deformed
to fit the stroke’s appearance. Therefore, the outer spiral in case 1) may exit the region
of the stroke defined by the family of circles. The symmetrical or intertwined spiral pairs
in cases 2) and 3) may also leave the stroke, especially in stroke regions with narrow
turns. Consequently, the map of the tangential spirals onto the stroke is not conformal.
Nonetheless, the outcomes remain aesthetically pleasing.
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Implementation details of the spiral pen

In this section, we provide additional details on the implementation of the spiral pen in
CindyJS [RGK23b]. The required information to print the spirals in the stroke region
is derived from the selections in the user interface (see Figure B.11), from the linearly
interpolated input data and from the selected equidistant curve points with corresponding
radii. This information is stored in a list called spiralList which contains an entry for each
individual spiral. The last entry spiralListn is updated when the corresponding spiral or
pair of spirals in the stroke changes its position and size due to the growing stroke. Once
this (pair of) spiral(s) reaches its final position and size, the entry remains unchanged,
and a new entry spiralListn+1 is added to spiralList for a new upcoming (pair of) spiral(s).

To draw a spiral, it is necessary to know the location of its pole P and its starting
point `(0). Together, these define the parameters a := dist(P, `(0)) and k, and the ro-
tation matrix M (see the definition of a logarithmic spiral in Equation (B.2)). For the
calculations it is also convenient to know the common point of two tangential spirals.

We assume that we are in case 1) of single spirals without additional inner or outer
spirals. We further assume that a spiral `n has reached its final position and a new entry
spiralListn+1 for the new spiral `n+1 was added to spiralList. This entry will contain four
pieces of information that are important for drawing the new spiral: the pole of the new
spiral Pn+1, the spiral’s starting point `n+1(0) which is also the point of contact with the
spiral `n, the parameter kn+1 = −kn, and the rotation matrix Mn+1.

When a new equidistant point γ(ti) is placed on the interpolated user-drawn curve,
the pole Pn and starting point `n(0) of the prior spiral are read from spiralListn. The
appropriate angle ϕn between v = `n(0)− Pn and w = γ(ti)− Pn is then calculated (see
Algorithm 11). This angle ϕn is used to determine whether γ(ti) is located outside the spi-
ral `n. If this is true, a new spiral `n+1 is defined. For this, we compute rn = an · e−|kn|ϕn .
If rn < dist(γ(ti), Pn), the new point γ(ti) is suitable to define the new spiral `n+1.
Since kn+1 = −kn, the next step is to search for point `n+1(0) on `n so that `n+1 is tangen-
tial to `n at that point. As stated in the end of Section B.1, the search begins at `n(ϕn) and
continues until the correct point is found. This point `n+1(0) together with γ(ti) = Pn+1,
the parameter kn+1 and the rotation matrix Mn+1 deduced from `n+1(0) and Pn+1 are
stored in spiralListn+1. When the first spiral is defined, i.e., when the entry spiralList1 is
filled with information, the curve point γ(t0) is automatically taken as the start point of
this first spiral. The described procedure is visualized in Figure B.13.

The procedure is repeated each time a new point γ(ti) is defined. A spiral `n+1 reaches
its final position and size when |dist(`n+1(0), Pn+1)− ri| < ε for ε > 0 and ri being the
radius of the current circle around γ(ti). If dist(`n+1(0), γ(ti)) > ri + ε, the pole Pn+1 is
searched on the line segment between the currently stored Pn+1 and γ(ti). Once `n+1 is
finalized, a new entry is added to spiralList.

If the user selects tangential inner and/or outer spirals in addition to the main spirals,
these spirals are calculated separately for each main spiral `n according to the information
given in the user interface. The necessary formulas for both inner and outer spirals, with
the same and opposite parameters k compared to `n, respectively, were presented in the
preceding Section B.1.
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(a) No new spiral. (b) rn < dist(Pn, γ(ti)). (c) Search `n+1(0) and store new spiral.

Figure B.13: Definition of a new spiral in the stroke.

If the user selects case 2) of a symmetric double spiral or case 3) of an intertwined
pair of spirals, the procedure is essentially identical to that of case 1). However, each
new entry in spiralList has to contain more pieces of information than in case 1) since
every new structure consists of a pair of spirals. Each entry now stores two poles and two
rotation matrices. There is still only one point of contact to the previous pair of spirals.
The two spirals within one pair share the same parameter k. Storing the starting point
of one spiral in a pair is sufficient because the other is either the same (case 2)) or can
be computed from the poles, the given starting point, and the point of contact with the
previous pair of spirals (case 3)).

Furthermore, depending on the selected option in the user interface, two consecutive
pairs of spirals can have either the same or opposite parameters k. Hence, the point of
contact of the new pair of spirals can be directly obtained by calculating the angle ϕn
at the outermost intersection point of the spiral `n with the line passing through Pn
and Pn+1 if k1 = k2. Otherwise, it must be calculated on the second spiral of the previous
pair between the intersection and the starting point of the second spiral of the previous
pair.

Finally, the criterion for determining when a pair of spirals has reached its final posi-
tion must be adjusted to the fact that the pair is considered as one unit and not as two
separate spirals. In case 2), the point γ(ti) does not serve as the second pole of the spiral.
Instead, both new poles are positioned between γ(ti) and the point of contact on the
previous spiral. The starting point of both spirals is determined as the midpoint of γ(ti)
and the touching point. The spirals reach their final size when the distance between the
touching point and γ(ti) is approximately 3 · ri, where ri is the radius of the current circle
around γ(ti). In case 3), the pole of the second spiral in the intertwined pair is defined
as γ(ti). The distance between γ(ti) and the starting point of the second spiral in the new
pair is calculated. If it is approximately equal to the current radius ri, the spiral is fixed.
Otherwise, it is altered in the subsequent iteration when a new curve point is calculated.

According to the selection in the user interface, a stamp is created for the respective
spiral structure, i.e., a single spiral with or without inner and outer spirals, a double
spiral with the same starting point, or a pair of intertwined spirals. This stamp consists
of a texture, i.e., a pixel image, on which the respective spirals are drawn. Additionally,
a second stamp is created that contains the same spirals as the first stamp, but with
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parameters k of opposite sign. This is necessary for creating a stroke consisting of single
spirals and for cases 2) and 3), when the pairs of spirals are intended to have alternating
orientations. The position of the poles and starting points of the involved spirals is stored
for both stamps and required for printing them onto the drawing surface at the correct
location. A similarity transformation is computed for each spiral in the stroke, which
maps the spirals in the stamp to the corresponding spirals in the stroke. Then, the spirals
of the stamp are printed onto the drawing surface at the positions calculated by this
transformation.

Note that printing a stamp texture onto the drawing surface is faster than using the
CindyJS function plot for each spiral in the stroke.
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