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Abstract

Magnetic confinement fusion could one day serve as a critical player in meeting humanity’s
energy demands in the future. The two most prominent approaches are the tokamak and
stellarator concepts. One of the main challenges of these devices is the outflow of heat
and particles within the fusion plasma due to turbulent fluctuations. Understanding and
mitigating these losses is vital for designing a future power plant. The complex and nonlinear
nature of plasma turbulence is largely studied via numerical simulations within the gyrokinetic
framework. Although turbulence in the core of tokamak plasmas has been studied for decades,
stellarator turbulence is understood far less. Due to the inherently three-dimensional magnetic
field geometry, simulations have mainly been limited to small spatial domains, so-called flux-
tubes, following a single magnetic field line once around the torus of the device.

This thesis aims at narrowing the knowledge gap. The GENE-3D code, the extension of
the global gyrokinetic code GENE for stellarator geometries, has been improved to capture
electromagnetic effects. Beyond the capability to simulate flux-tube domains, GENE-3D
also allows for simulations of an entire torus surface at a time, so-called flux-surfaces, and
even for radially global simulations up to the last closed flux-surface. The code upgrade
allows studying global stellarator turbulence in the presence of a finite pressure gradient and
enhances the numerical efficiency of (quasi-)electrostatic simulations using a kinetic electron
model. A detailed discussion of the modifications to the physical model and the changes in
the numerical schemes is provided, and verification studies in tokamak geometries against
GENE are presented.

The new code version has been applied to study multiple topics linked to turbulence in
the configurations of the Wendelstein 7-X stellarator. In the first step, it was shown that even
moderate electromagnetic effects can significantly stabilise global ion temperature gradient
(ITG) turbulence. Following that, the influence of nonlocal effects on ion temperature gradient
turbulence, trapped electron mode (TEM) turbulence and hybrid scenarios of the two was
studied by comparing transport predictions of flux-tube and full-flux-surface simulations. It
was found that while flux-tube simulations can predict similar levels of transport as full-flux-
surface simulations for some cases, there can be significant differences due to nonlocal effects
in other cases. In a final step, radially global, full-flux-surface and flux-tube simulations of
an experimental W7-X discharge were performed to show the existence of TEM turbulence in
the form of ITG-TEM hybrids, primarily driven by the electron temperature gradient in the
core of the plasma, which was hypothesised in the literature to be dominated solely by ITG on
ion-scales. Furthermore, it was shown that electron temperature gradient (ETG) turbulence
substantially contributes to the overall electron heat flux for the case under consideration.
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Zusammenfassung

Kernfusion durch magnetischen Einschluss könnte eine entscheidende Rolle bei der Deckung
des zukünftigen Energiebedarfs der Menschheit spielen. Die beiden bekanntesten Konzepte
sind der Tokamak und der Stellarator. Eine der größten Herausforderungen dieser Anlagen
ist der Verlust von Wärme und Teilchen aus dem Fusionsplasma aufgrund turbulenter Fluk-
tuationen. Das Verständnis und die Reduzierung dieser Verluste sind von entscheidender
Bedeutung für den Entwurf eines zukünftigen Kraftwerks. Die komplexe und nichtlineare
Natur der Plasmaturbulenz wird weitgehend durch numerische Simulationen im Rahmen
der Gyrokinetik untersucht. Während die Turbulenz im Kern von Tokamak-Plasmen seit
Jahrzehnten untersucht wird, ist die Turbulenz in Stellaratoren weit weniger erforscht. Auf-
grund der inhärenten dreidimensionalen Magnetfeldgeometrie beschränken sich die Simula-
tionen hauptsächlich auf kleine räumliche Bereiche, so genannte Flussschläuche, die einer
einzigen Magnetfeldlinie einmal um den Torus der Anlage folgen.

Die vorliegende Dissertation vertieft das theoretische Verständnis von Stellaratorturbu-
lenz. Zu diesem Zweck wurde der Code GENE-3D, die Erweiterung des globalen gyrokin-
etischen Codes GENE für Stellaratorgeometrien, verbessert, um elektromagnetische Effekte
miteinbeziehen zu können. Neben der Möglichkeit, Flussschläuche zu simulieren, erlaubt
GENE-3D auch die Simulation ganzer Torusflächen, so genannter Flussflächen, und radial
globale Simulationen bis hin zur letzten geschlossenen Flussfläche. Die Erweiterung des Codes
ermöglicht nicht nur die Untersuchung globaler Stellaratorturbulenz bei endlichen Druck-
gradienten, sondern verbessert auch die numerische Effizienz von (quasi-)elektrostatischen
Simulationen, welche ein kinetisches Elektronenmodell verwenden. Die Änderungen des
physikalischen Modells und der numerischen Schemata werden ausführlich diskutiert und
Verifikationsstudien gegen den GENE Code in Tokamakgeometrien vorgestellt.

Die neue Version des Codes wurde verwendet, um verschiedene Fragen bezüglich der
Turbulenz in den Geometrien des Wendelstein 7-X Stellarators zu untersuchen. In einem
ersten Schritt wurde gezeigt, dass selbst moderate elektromagnetische Effekte eine signifik-
ante Stabilisierung auf globale, vom Ionentemperaturgradienten getriebene, Turbulenz (ITG)
bewirken können.

Anschließend wurde der Einfluss nicht-lokaler Effekte auf Ionentemperaturgradiententur-
bulenz, Gefangene-Elektronen-Moden-Turbulenz (TEM) und hybride Szenarien der beiden
untersucht, indem die Transportvorhersagen von Flussschlauch- und Flussflächensimulationen
verglichen wurden. Es zeigte sich, dass Flussschlauchsimulationen zwar in einigen Fällen
ähnliche Transportraten vorhersagen konnten wie Simulationen der gesamten Flussfläche,
dass aber in anderen Fällen signifikante Unterschiede aufgrund nicht-lokaler Effekte auftreten
können. In einem letzten Schritt wurden radial-globale Flussflächen- und Flussschlauch-
simulationen einer experimentellen W7-X-Entladung durchgeführt. Entgegen Vorhersagen
aus früherer Literatur, welche eine Dominanz von ITG-Turbulenz auf Ionenskalen postulier-
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ten, wurde ein signifikanter Beitrag von TEM-Turbulenz zum Gesamtwärmestrom im Plas-
makern in Form von ITG-TEM-Hybriden gezeigt, welche primär durch den Elektronentem-
peraturgradienten getrieben werden. Darüber hinaus wurde gezeigt, dass im betrachteten
Fall die Elektronentemperaturgradienten-Turbulenz (ETG) einen wesentlichen Anteil am Ges-
amtwärmestrom der Elektronen im Plasmakern hat.
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Chapter 1

Introduction

1.1 Nuclear fusion as energy source

The continuous population growth and the tight link between societal advancement and en-
ergy consumption have put humanity in front of a global challenge. On the one hand, it
is predicted that primary energy consumption will at least double during this century [1],
requiring a drastic increase in its production worldwide. On the other hand, humanity must
eliminate greenhouse gas emissions to mitigate the effects of climate change, thus having to
move away from burning fossil fuels. In addition to renewable sources such as solar or wind
power, using nuclear reactors poses a suitable way to meet current and future energy needs
since their spatial energy density exceeds that of nonfossil-based power plants by more than
one order of magnitude [2]. This can be done either in the form of nuclear fission or fusion.
Fission reactions have been employed as an energy source since the 1950s [3], in which a heavy,
radioactive nucleus is split by neutron bombardment into several fission products whose total
mass is slightly lower than that of the reactants. The mass deficit ∆m is transformed into
energy ∆E, according to Einstein’s famous formula

∆E = ∆mc2, (1.1.1)

with c being the speed of light. Although nuclear fission is an established technology at this
date, its future use is debated strongly, mainly due to safety concerns in cases of accidents
within the reactor and the production of radioactive waste with half-life times on the order
of 1000 to 10,000 years. The second type of nuclear reaction is the mechanism that powers
the stars: fusion. In this process, two light nuclei fuse into a single nucleus, slightly lighter
than the sum of the initial masses. Like in fission reactions, the mass deficit is converted into
harnessable energy. The proton-proton chain, fuelling the Sun, requires protons to decay into
neutrons and neutrinos via the weak nuclear force [4], which has a reaction cross-section that
is too low for efficient use of this reaction chain as a terrestrial energy source.

The most promising reaction type to this date is that of deuterium and tritium, two heavy
isotopes of hydrogen:

2
1D +3

1 T→4
2 He +1

0 n + 17.6 MeV. (1.1.2)

In this reaction, deuterium and tritium fuse into a helium nucleus and a neutron, where the
latter carries approximately 80% of the 17.6 MeV released in the form of kinetic energy.

Ocean water contains approximately 0.015 mole% of deuterium [5] (1 deuterium atom per
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1.1. NUCLEAR FUSION AS ENERGY SOURCE

6700 hydrogen atoms), thus being an abundant partial fuel source. On the other hand, the
short-lived radioactive tritium must be synthesised in the laboratory. This can be achieved
by neutron activation of lithium-6, a rare isotope of lithium:

6
3Li +1

0 n→4
2 He +3

1 T + 4.8 MeV. (1.1.3)

Lithium, in general, is largely found in the earth’s crust and seawater.
Let us put the benefits of fusion energy into context. There are approximately 9.98×1021

atoms of deuterium in one litre of seawater and 6.59× 1021 6
3Li-atoms in one gram of lithium.

Assuming a conversion efficiency of 33% from fusion energy to electricity, a typical value of
steam turbines, it is straightforward to show that it only takes approximately 8.5 litres of
seawater and 12.8 grams of lithium to match the yearly energy needs of an average German
household [6]. Although this simplified scenario does not consider losses such as energy
requirements for tritium breeding or efficiency losses through engineering constraints, nuclear
fusion seems to provide an energy source with seemingly limitless amounts of fuel. In addition,
fusion reactions do not produce any greenhouse gases such as CO2 like the combustion of fossil
materials. Fusion power plants would be inherently safer than those running on fission, as
their reactions immediately cease in case of any disturbance such as a shutdown or damaging
of the reactor [7]. Finally, the reactions themselves do not produce any long-lived radioactive
materials. Only the fast neutrons will activate the reactor wall. In contrast to fission power
plants, choosing materials that exhibit favourable activation properties is possible. As a
result, most activated components are expected to possess relatively short half-lives, allowing
for their recycling within less than 100 years of secure storage.

Whether a net energy production is achieved through fusion mainly depends on three
parameters. The first one is the temperature, as the positively charged nuclei need sufficient
kinetic energy to overcome the Coulomb repulsion and come close enough for the attractive
strong nuclear force to induce the fusion reaction. Even though the quantum tunnelling
effect lowers the classically required kinetic energy substantially, future reactors will still
have to reach energies in the range of approximately 10 to 20 keV for a sufficient fusion rate,
corresponding to temperatures between 100 and 200 million Kelvin [8]. At these temperatures,
any type of matter is completely ionised and is in the plasma state. The second parameter
is the plasma density. A higher density increases the frequency of the nuclei colliding with
each other, raising the rate of fusion reactions per unit time. The third one is the so-called
confinement time τE, which is a measure of how long the plasma can sustain conditions suitable
for fusion reactions to occur. Through energy balance, one arrives at the so-called Lawson
criterion [9], which states that, under simplified assumptions, the triple product between the
three needs to exceed a value of

nTτE > 3× 1021 keV s

m3
(1.1.4)

in order to obtain a net energy gain. Currently, two main approaches are being pursued to
meet this constraint. The first one is that of inertial confinement fusion, in which lasers or ion
beams are used to compress a fuel pellet to densities of n ∼ 1030 m−3 and sustain this state
for a short time τE ∼ 10−9 s. The alternative is magnetic confinement fusion, in which the
plasma is kept at low densities n ∼ 1020 m−3 for a much longer time τE ∼ 1 s. The following
section will discuss the basic ideas behind magnetic confinement fusion.
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1.2. MAGNETIC CONFINEMENT FUSION: TOKAMAKS AND STELLARATORS

Figure 1.1: Sketch of Larmor motion of a positively charged particle in a uniform magnetic
field (left), along with projection perpendicular to the magnetic field lines (right).

1.2 Magnetic confinement fusion: tokamaks and stellarators

In magnetic confinement fusion, a low-density gas of deuterium-tritium fuel is heated to
approximately 100-200 million Kelvin, at which the gas becomes a plasma. Confining this
state on the timescale of seconds is impossible using material walls since a plasma at such high
temperatures would melt or corrode any material known to this day. Instead, it makes use
of the fact that the plasma consists of charged particles, whose motion can be manipulated
through a magnetic field B = B0b via the Lorentz force

FL =
q

c
v×B, (1.2.1)

where q is the charge of a particle with mass m and velocity v, and c is the speed of light.
Solving Newton’s equations of motion, it is easy to show that a charged particle in a

straight and uniform magnetic field will undergo a circular motion perpendicular to the mag-
netic field lines. In contrast, it can move freely parallel to them. This is exemplified in
figure 1.1, where we have introduced the Larmor radius ρ = v⊥/Ω with the Larmor frequency
Ω = qB0/(mc) and the particle velocity v⊥ perpendicular to the magnetic field lines. A simple
approach is bending the magnetic field to close on itself so that the particles can move in a
toroidal orbit indefinitely. However, this results in an inhomogeneous magnetic field, caus-
ing additional outward drifts that ultimately terminate plasma confinement. The solution
is incorporating a poloidal component into the purely toroidal magnetic field. This addition
generates helical field lines that eliminate the average perpendicular drift over a complete
orbit along the magnetic field, stabilising the plasma.

The first way to add a poloidal magnetic field is to use the transformer principle and drive

3



1.3. TRANSPORT IN MAGNETICALLY CONFINED FUSION PLASMAS

Figure 1.2: Schematic illustration of the tokamak principle. Source: IPP

a toroidal current in the plasma. For this, a solenoidal coil is placed in the centre of the plasma
ring as the primary drive, using the plasma itself as the secondary coil. This approach is usu-
ally referred to as the ’tokamak’ principle, following a Russian acronym for ’toroidal chamber
with magnetic field coils’. Figure 1.2 shows a schematic picture of a tokamak. Although it is
the most advanced magnetic confinement concept to date, tokamaks have several drawbacks.
The transformer principle only allows for pulsed operation unless advanced current driving
mechanisms, which are still being developed, are employed. Furthermore, tokamaks possess
an intrinsic upper bound on the achievable plasma density known as the Greenwald limit
[10], consequently limiting the triple product nTτE. The most prominent disadvantage of
driving a plasma current is the possibility of various types of magnetohydrodynamic (MHD)
instabilities, which can ultimately lead to a disruption of the plasma [11], in which the massive
amount of energy stored in the plasma is released, potentially causing detrimental damage to
the vessel wall.

All of these problems can be avoided if the poloidal magnetic field is not induced via
a plasma current but via the magnetic field coils themselves. This is the basic principle of
stellarators, of which a schematic picture is shown in figure 1.3. This comes at the expense
of the magnetic field having an inherently three-dimensional structure, in contrast to the
axisymmetric tokamak, with complex requirements for the coil design. The additional spatial
variation, however, opens up the possibility of shaping the plasma substantially more than in
tokamaks, opening up the potential for optimising plasma parameters.

1.3 Transport in magnetically confined fusion plasmas

Regardless of which type of magnetic field geometry is chosen, one of the key issues limiting
current-day fusion experiments from reaching a net energy gain is the radial transport of
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1.3. TRANSPORT IN MAGNETICALLY CONFINED FUSION PLASMAS

Figure 1.3: Schematic illustration of the stellarator principle. Source: IPP

particles and energy. This transport usually leads to severe reductions in the plasma confine-
ment time and an overall degradation of the machine’s fusion performance. Oftentimes, one
considers transport to be mainly diffusive, so that Fick’s law

Γ = −D∇n
χ = −nχ∇T

(1.3.1)

is used to link the plasma density and temperature n and T to the particle and heat fluxes
Γ and χ using the diffusion coefficients D, χ ∼ a2/τE, where the (effective) minor radius a of
the fusion device is often used as a characteristic lengthscale.

One usually distinguishes between three main types of transport based on its origin. The
first one is the so-called ’classical’ transport, which is caused by particles colliding with each
other while moving along the magnetic field lines. Using a simple random-walk model

Dclass =
∆x2

∆t
, (1.3.2)

with ∆x ∼ ρ being the distance a particle travels within a time step ∆t ∼ 1/νc on the
timescale of the Coulomb collision frequency νc, one finds Dclass ∼ 10−3 m2/s for reactor-
relevant conditions, which is far from the values ∼ 1 m2/s measured in today’s experiments.

As mentioned before, the toroidal geometry in magnetic confinement devices induces ad-
ditional drifts, which can cause radial fluxes. This type of transport caused by the toroidal
magnetic geometry is usually referred to as ’neoclassical’ transport and has been described
extensively in [12]. While the magnetic field was originally designed to be twisted such that
the averaged drift for particles that traverse the entire surface vanishes, this is only true for
particles that are free to traverse around the entire device, referred to as passing particles.
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1.3. TRANSPORT IN MAGNETICALLY CONFINED FUSION PLASMAS

There is a different class of particles, so-called trapped particles, whose averaged drift does
not vanish and thus must be considered carefully. To understand their origin, consider a
magnetic field whose strength varies periodically along the field lines, the direction which we
label as z, according to

B(z) =
1

2
[(Bmax +Bmin) + (Bmax −Bmin) cos(z + π)] . (1.3.3)

Due to the conservation of the kinetic energy E = m[v2
||(z) + v2

⊥(z)]/2 and the magnetic

moment µ = mv2
⊥(z)/(2B(z)), only particles with

v2
||(0)

v2
⊥(0)

> 1− Bmin

Bmax
(1.3.4)

can move along freely along the entire field. The others will bounce back and forth between
points of equal magnetic field strength and are thus trapped along a field line. Collisional
effects also influence this process due to the exchange of kinetic energy between particles.
Neoclassical theory is, therefore, primarily driven by the plasma’s collisionality and the details
of the magnetic field geometry confining it.

Stellarators have been trailing behind tokamaks for a long time as a potentially viable
concept for a future fusion reactor, as it has been shown that the lack of axisymmetry can
induce significant amounts of neoclassical transport in comparison with tokamaks [12, 13],
imposing a substantial limit on the overall performance of the device. However, the ab-
sence of axisymmetry allows far greater potential for shaping the magnetic field enclosing the
plasma, giving rise to several decades of research on stellarator optimisation. These endeav-
ours culminated in the design of the Wendelstein 7-X (W7-X) stellarator, whose construction
in Greifswald, Germany, finished in 2015. The magnetic field is generated by 50 coils, divided
into five identical modules, with an additional 20 planar coils for greater flexibility in shaping
the magnetic field. The effective minor and major radii are a = 0.55 m and R0 = 5.5 m,
respectively and is thus the largest stellarator built to this day. Besides other optimisation
criteria, which are summarised in [14], it was shown in [15] that this machine is able to reduce
neoclassical losses to the levels of tokamaks.

Even under these conditions, the diffusivities measured experimentally in either tokamak
or stellarator can still be larger by one to two orders of magnitude than what is predicted by
classical and neoclassical theory. The remaining transport is therefore categorised as ’anomal-
ous’, and it is widely accepted nowadays that it is caused by plasma turbulence. This type of
turbulence is usually caused by so-called ’microinstabilities’ with characteristic lengthscales
perpendicular to the magnetic field comparable to the electron or ion Larmor radius. These
instabilities usually arise due to density and temperature fluctuations δn and δT , which can
cause electrostatic or electromagnetic fluctuations δφ and δA due to charge separation. The
latter create additional drifts, which in turn can strengthen the initial perturbation if both are
sufficiently out of phase with each other. The resulting instabilities can then form turbulent
transport of particles and energy due to nonlinear interaction with the plasma.
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1.4 Scope and outline of the thesis

In this section, we briefly introduce some of the theoretical studies on plasma turbulence
within the core of Wendelstein 7-X. The overview is by no means complete but instead focuses
on the topics relevant to this thesis.

With neoclassical losses substantially reduced, it was shown experimentally in [16] that
plasma turbulence is the primary driver of heat and particle transport in the core of Wendel-
stein 7-X. As mentioned in the previous section, turbulence is caused by the nonlinear inter-
action of the plasma with different types of microinstabilities. The most prominent types of
instabilities relevant to W7-X plasmas so far are the ion temperature gradient mode (ITG),
electron temperature gradient mode (ETG) and trapped electron mode (TEM). Electromag-
netic instabilities such as kinetic ballooning modes (KBM) might become relevant in highly
electromagnetic regimes of future experiments [17]. Although a simplified picture of their
linear excitation is given in [18], the complex magnetic geometries of stellarators, as well as
the chaotic nonlinear interaction between plasma and instabilities, makes quantitative studies
only possible in the context of numerical simulations based on so-called gyrokinetic theory.

Although studies of ETG turbulence in stellarators date back as early as 2002 [19], its
impact on transport processes in Wendelstein 7-X is still debated today, with [20] arguing on
the one hand that it should be negligible for W7-X but [21] concluding on the other hand
that it could be the main contributor to the anomalous electron heat transport in the core of
some experimental discharges.

In contrast, there have been extensive studies on turbulence driven by ITG and TEM. It
was argued [22–24] that TEM turbulence should be relatively weak in W7-X due to most of the
trapped electrons residing in regions of positive average magnetic field curvature, something
referred to as the ’maximum-J’ property. In the absence of TEMs, the so-called ion-driven
trapped electron mode (iTEM) is supposed to emerge [25], having the characteristic struc-
ture of TEMs but propagating in the ion diamagnetic direction and using the bulk ions as a
source of free energy. However, it was argued that iTEMs should contribute little to nonlin-
ear transport compared to their ’classical’ counterpart since they usually appear at smaller
lengthscales. It is worth mentioning, however, that many, though not all, of those studies
consider TEMs to be driven primarily by a finite density gradient and not by a finite electron
temperature gradient.

As a result, the most significant contributor to turbulence in the core of W7-X was hypo-
thesised to be ITG, with TEMs only expected to be found in the edge region, if at all [16, 26].
It was argued in [24] that equal density and temperature gradients lead to a regime of sup-
pressed plasma turbulence referred to as a ’stability valley’. This situation could potentially
be achieved in high-density scenarios. Consequently, the suppression of ITG turbulence was
considered to explain record-high plasma performance [27] in W7-X during high-performance
discharge, where pellet injection was used as a fuelling method.

Most of the theories mentioned above were derived based on gyrokinetic simulations that
rely on some approximation. The most common one was using a flux-tube domain, mainly due
to computational cost. Although flux-tube simulations mainly follow the general trends seen in
the experiment, it is not clear that effects beyond their capabilities might not have a significant
impact. In particular, since stellarators do not generally exhibit toroidal symmetry, it is not
apparent which field line or field lines to choose to accurately characterise the mechanisms
one is interested in.

This uncertainty facilitated the development of stellarator codes that can go beyond the
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flux-tube domain. With the flux-surface version of the GENE code [28] providing some form
of an interim solution, GENE-3D has been developed as the first code in the world to be able
to simulate nonlinear stellarator turbulence in a global domain [29, 30], shortly followed by
several other codes [31–33]. Using some of the world’s most powerful supercomputers, these
codes have helped advance the understanding of ITG transport mechanisms. However, all
simulations have relied on the assumption of an adiabatic electron model up to this point,
which has put the studies of trapped electron physics, one of the supposed key mechanisms in
pellet scenarios, and the study of electromagnetic turbulence out of reach. With the improve-
ments of GENE-3D performed throughout this project, it was possible to simulate global,
electromagnetic stellarator turbulence with realistic electrons for the first time [34]. Besides
the possibility of studying electromagnetic turbulence, the code was also capable of simulat-
ing electrostatic turbulence with significantly decreased cost, as stated in chapter 3, allowing
us to test the validity of several of the above claims beyond the flux-tube limit. In partic-
ular, we test the impact of electromagnetic effects on global ITG turbulence in Wendelstein
7-X, showing a stabilising effect even when said effects are moderate. We furthermore show
that a finite density gradient indeed also stabilises ITG turbulence in full-flux-surface sim-
ulations but find that the interplay between ITG and TEM turbulence proposed to explain
the high performance in [23] is heavily affected by the presence of a finite electron temper-
ature gradient. We also show that while heat flux predictions of flux-tube simulations agree
quantitatively well with those considering an entire flux-surface in some cases, substantial
disagreement between the two is found in other scenarios. Finally, we challenge the claims of
weak TEM and ETG turbulence in the core of Wendelstein 7-X based on flux-tube, full-flux-
surface and radially global simulations of one of its experimental discharges. We find that
both types of turbulence are necessary to explain the experimentally measured electron heat
fluxes. We find that TEMs appear hybrid with ITG turbulence and are primarily driven by
the electron temperature gradient, a drive mechanism that has received far less attention in
the literature than those driven by density gradients.

The rest of this thesis is structured as follows. In chapter 2, the fundamentals of gyrokin-
etic theory will be discussed, and the equations used by GENE-3D will be derived. Chapter
3 outlines the numerical algorithm used by GENE-3D. The description includes several new
features added throughout this project, such as considering electromagnetic effects and using
staggered-grid finite-difference schemes to discretise the field equations and electromagnetic
verification studies against the global tokamak version of the GENE code. In chapter 4, global
simulations in stellarator geometry are described to study the influence of electromagnetic ef-
fects on ITG turbulence. Chapter 5 describes studies on the interplay between ITG and TEM
turbulence in stellarator geometries and the influence of a constant equilibrium electric field.
For this, flux-tube as well as full-flux-surface simulations were performed, and their predictive
capabilities were compared with each other. Chapter 6 analyses the turbulence characteristics
of an experimental discharge of Wendelstein 7-X using radially global, full-flux-surface and
flux-tube simulations. Finally, the results are summarised in chapter 7 and an outlook for
future projects is given.
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Chapter 2

Modern derivation of gyrokinetics

The description of the plasma dynamics via the individual particles’ behaviour is unsuitable
for fusion applications, as a particle density of the order of 1019 m−3 puts such an approach out
of reach computationally for any meaningful scenario. Instead, it proves to be advantageous
to consider the bulk behaviour of the plasma via means of statistical physics. For this, each
particle species σ, like ions, electrons, or others, is characterised by a distribution function
fσ(x,v, t), being defined as the number of particles per unit volume in an infinitesimal hyper-
volume centred around the phase-space coordinate (x,v) at time t in the presence of self-
consistently calculated electromagnetic fields. Conservation of particles then dictates that
the total time derivative of fσ has to vanish, giving rise to the so-called Vlasov equation [35]

dfσ
dt

=
∂fσ
∂t

+ ẋσ · ∇xfσ + v̇σ · ∇vfσ = 0, (2.0.1)

where ẋσ and v̇σ are the single-particle characteristics of species σ in x- and v-space. If one
considers only electromagnetic forces acting on the particles, equation (2.0.1) can be shown
to have the form

∂fσ
∂t

+ v · ∇xfσ +
qσ
mσ

(
E(x, t) +

1

c
v×B(x, t)

)
· ∇vfσ = 0 (2.0.2)

in the non-relativistic limit. This equation has to be coupled with Maxwell’s equations

∇ ·E = 4π
∑
σ

ρσ ∇ ·B = 0

∇×E = −1

c

∂B

∂t
∇×B =

4π

c

∑
σ

jσ,
(2.0.3)

where the displacement current (1/c)(∂E/∂t) has been neglected. The charge and current
densities ρσ and jσ are defined in terms of the distribution function as

ρσ(x, t) = qσ

∫
fσ(x,v, t) d3v and jσ = qσ

∫
fσ(x,v, t) v d3v. (2.0.4)

Although providing an accurate description of any non-relativistic plasma, the kinetic
equation (2.0.2) coupled with equations (2.0.3) and (2.0.4) does not provide a suitable tool in
order to investigate the bulk behaviour of fusion plasmas, in particular of plasma turbulence,
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either. The reason is that, especially in a fusion device, the plasma inherits a great variety
of phenomena acting over a broad spectrum of length- and timescales. The spatial variations
range from the size of the minor radius of a fusion device, on the order of a metre, down to the
electron Larmor radius, typically 1-10 micrometres. The temporal variations range from the
confinement timescales on the order of a second down to the electron Larmor frequency on
the order of 10−10 seconds. Resolving five orders of magnitude in space and ten orders in time
is out of reach for even the most powerful supercomputers to this date for any fusion-relevant
application.

In order to overcome this issue, one has to find a theoretical framework in which the
Larmor motion of the particles is eliminated through appropriate averaging procedures so
that one does not consider the motion of the plasma particles themselves but rather the
motion of their centres of rotation. This framework is largely known as gyrokinetic theory.
Frieman and Chen did the original derivation of the system of nonlinear equations [36] using
perturbation techniques, followed by numerous derivations using alternative approaches, such
as variational methods. This chapter will provide a derivation largely based on the references
[37–40].

In the following, we will introduce the underlying assumptions of gyrokinetic theory in
section 2.1, followed by the derivation of the gyrokinetic Lagrangian describing the particle
motion in an electromagnetic field in section 2.2. We will couple the single-particle dynamics
to the Lagrangian of the dynamics of the electromagnetic fields induced by the plasma in
section 2.3, from which we will then derive the equations of motion in section 2.4, which is
necessary to establish the gyrokinetic equation describing the bulk behaviour of the plasma
in section 2.5. Since the plasma is not only affected by electromagnetic fields but also creates
them itself, one has to couple the gyrokinetic equation self-consistently with a system of
equations determining the electric and magnetic potentials, which are derived in section 2.6.
Finally, section 2.7 will discuss the approximations of the gyrokinetic model specific to the
GENE-3D code, which will be the primary numerical tool used in this thesis and which will
be introduced in detail in chapter 3.

2.1 Gyrokinetic ordering

The theoretical study of plasma turbulence in fusion devices mainly deals with phenomena
that act on gyrokinetic length- and timescales. In order to understand what this entails in
detail, we introduce the ordering parameter

εB =
ρs

Lref
= ρ∗s � 1, (2.1.1)

where ρs usually refers to the thermal sound radius of the bulk ions. Assuming this parameter
is small is equivalent to assuming that the plasma is strongly magnetised, as the deviation of
a particle orbit from the magnetic field line is small compared with the reference lengthscale.

We will further split all quantities of interest Q(x,v, t) into a stationary background
Q0(x,v) and a fluctuating perturbation Q1(x,v, t) with

Q1

Q0
∼ εδ. (2.1.2)

Although in the edge and scrape-off layer regions of a plasma fluctuations can reach levels of
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εδ ∼ O(1), it is usually well-justified to assume that εδ ∼ εB � 1 when dealing with physics in
the plasma core. However, turbulent fluctuations turn out to be highly anisotropic in space,
as the Lorentz force causes the fluctuation wavelengths k⊥ perpendicular to the magnetic
field to be around 10 to 100 gyroradii, whereas, in the parallel direction, the associated
wavelengths k|| can extend up to several meters. In contrast, the background quantities are
always assumed to vary on the equilibrium spatial scale Lref . These statements can be turned
into the ordering assumptions

ρs∇⊥ ln(Q1) ∼ k⊥ρs ≡ ε⊥,
ρs∇|| ln(Q1) ∼ k|| ∼ εBk⊥ρs = εBε⊥,

ρs∇ ln(Q0) ∼ εBk⊥ρs = εBε⊥.

(2.1.3)

The parameter ε⊥ helps distinguish between theories dealing with various kinds of plasma
behaviour. In what is known as gyrokinetic theory, one assumes ε⊥ ∼ O(1). In contrast,
driftkinetic theory, the fundamental theory used to describe neoclassical transport phenom-
ena, assumes ε⊥ � 1. Furthermore, one can also consider the so-called ’long-wavelength’
approximation of gyrokinetic theory, in which only terms up to O(ε2⊥) are retained.

As we wish to eliminate the rapid particle gyration around the magnetic field lines from our
description of the plasma, we have to specify that we are only interested in phenomena that
are in the range of a characteristic temporal frequency ω ∼ vth/Lref with εω ≡ ω/Ω ∼ εB � 1.

2.2 Derivation of the gyrokinetic Lagrangian

2.2.1 Zeroth-order description

We start from the Lagrangian of a point particle with mass m and charge q, influenced by
the electrostatic and electromagnetic potentials φ and A, which is given by [41]

L(x,v, ẋ, t) =
(
mv +

q

c
A(x, t)

)
· ẋ−H(x,v, t), (2.2.1)

where the Hamiltonian H is given by

H(x,v, t) =
m

2
v2 + qφ(x, t). (2.2.2)

In order to proceed, it is useful to introduce the Lagrangian one-form γ, which is defined via
its relation to the Lagrangian as ∫

Ldt =

∫
γ,

which means it is given by

γ =
(
mv +

q

c
A(x, t)

)
· dx−H(x,v, t)dt. (2.2.3)

As was mentioned in the introduction, it is beneficial to transform the system into guiding
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centre coordinates

X = x− mc

qB0(x)
b(x)× v, µ =

mv2
⊥

2B0(x)
, v|| = v · b(x)

x = X + ρ(X)a(Θ), v = v||b + v⊥c(Θ), with v⊥ =

√
2µB0(x)

m

a(Θ) = e1 cos(Θ)− e2 sin(Θ), c(Θ) =
∂a

∂Θ
= −e1 sin(Θ)− e2 cos(Θ),

(2.2.4)

with B0 = B0b = ∇×A.
In general the transformation of the one-form γ with the coordinate system (zν) into the

one-form Γ with coordinate system (Zµ) is done using

Γµ = γν
dzν

dZµ
. (2.2.5)

We identify
z0 = t, z1 = x, z2 = y, z3 = z, z4 = vx, z

5 = vy, z
6 = vz (2.2.6)

and
Z0 = t, Z1 = X, Z2 = Y, Z3 = Z, Z4 = v||, Z

5 = µ, Z6 = Θ. (2.2.7)

Notice that γv = 0. Since the time coordinate t is not transformed, we have

Γt = γt = −H(X, v||, µ) = −

(
mv2
||

2
+ µB0(X) + qφ(X)

)
. (2.2.8)

The spatial component of the one-form transforms as

Γi =
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X + ρ(X)a(Θ))

) dxj
dXi

. (2.2.9)

We can see that the last term in the bracket is much larger than the first two since

qA

cmv||
∼ q

mc

B0Lref

vth
∼ Ω

ω
� 1, (2.2.10)

so that we have to retain the first-order expansion in ρ of the term involving the vector
potential. Expanding the vector potential for small gyroradii and evaluating the derivative,
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we get

Γi =
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X + ρ(X)a(Θ))

) dxj
dXi

≈
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

)(
δji +

d

dXi

mcv⊥
qB0(X)

aj(Θ)

)
=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

)(
δji +

d

dXi

2cµ

qv⊥
aj(Θ)

)
=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

)(
δji −

2cµ

qv2
⊥
aj(Θ)

dv⊥
dXi

)
=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

)(
δji −

µaj(Θ)

Ω(X)mv⊥

dB0

dXi

)
=

[(
mv||bi +mv⊥ci(Θ) +

q

c
Ai(X)

)
−A · a(Θ)

µ

B0(X)v⊥

dB0

dXi

]
+
qρ

c
(a(Θ) · ∇)Ai(X) +

µρ

B0(X)v⊥

dB0

dXi

(
aj(Θ)a1(Θ)

∂

∂X1
+ aj(Θ)a2(Θ)

∂

∂X2

)
Aj(X).

(2.2.11)
In order to obtain Γv|| , we notice that v|| only appears in the transformation (vx, vy, vz)→

(v||, µ,Θ) (in contrast to µ and Θ, which also appear in the space coordinate transformations).
However, since we know that γv = 0, Γv|| = 0 as well.

For Γµ we have

Γµ =
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

) dxj
dµ

=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

) d

dµ

mcv⊥
qB0(X)

aj(Θ)

=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

)
aj(Θ)

B0(X)

Ω(X)mv⊥

=
A(X) · a(Θ)

v⊥
+

ρ

v⊥

(
aj(Θ)a1(Θ)

∂

∂X1
+ aj(Θ)a2(Θ)

∂

∂X2

)
Aj(X).

(2.2.12)

Finally, we get for ΓΘ:

ΓΘ =
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

) dxj
dΘ

=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

) mcv⊥
qB0(X)

daj

dΘ

=
(
mv||bj +mv⊥cj(Θ) +

q

c
Aj(X) +

qρ

c
(a(Θ) · ∇)Aj(X)

)
cj(Θ)

mcv⊥
qB0(X)

=

(
mv⊥ +

q

c
A · c(Θ) +

qρ

c

(
cj(Θ)a1(Θ)

∂

∂X1
+ cj(Θ)a2(Θ)

∂

∂X2

)
Aj(X)

)
v⊥
Ω

=

(
mv2
⊥

Ω
+
qv⊥
Ωc

A · c(Θ) +
mv2
⊥

B0(X)Ω

(
cj(Θ)a1(Θ)

∂

∂X1
+ cj(Θ)a2(Θ)

∂

∂X2

)
Aj(X)

)
.

(2.2.13)
Since we want to obtain a one-form that is independent of the gyroangle Θ, we perform an
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average over a full gyro-period, which we do by using the operator

G {...} ≡ 1

2π

2π∫
0

(...) dΘ.

Before we average the individual parts of the one-form, we mention the following relations,
which are easy to prove:

G
{
aiaj

}
=
δij

2
,

G
{
cicj
}

=
δij

2
,

G
{
aicj

}
=

1

2

(
δi2δj1 − δi1δj,2

)
.

(2.2.14)

From this, it follows that

G
{(

aj(Θ)a1(Θ)
∂

∂X1
+ aj(Θ)a2(Θ)

∂

∂X2

)}
=

1

2

(
δj1

∂

∂X1
+ δj2

∂

∂X2

)
(2.2.15)

and

G
{(

cj(Θ)a1(Θ)
∂

∂X1
+ cj(Θ)a2(Θ)

∂

∂X2

)}
=

1

2

(
δj2

∂

∂X1
− δj1 ∂

∂X2

)
. (2.2.16)

Using this, the gyroaveraged spatial parts of the one form become

G {Γi} =

[
mv||bi +

q

c
Ai(X) +

µρ

2B0(X)v⊥

dB0

dXi

(
∂A1

∂X1
+
∂A2

∂X2

)]
=

[
mv||bi +

q

c
Ai(X) +

µρ

2B0(X)v⊥

dB0

dXi
∇ ·A(X)

]
=
[
mv||bi +

q

c
Ai(X)

]
,

(2.2.17)

where we have assumed a Coulomb gauge for the vector potential. Similarly, we find for the
µ-component of the one-form that

G {Γµ} = 0, (2.2.18)

so that the magnetic moment is conserved within the gyroaveraged dynamics. The one-form
contribution of the gyroangle becomes

G {ΓΘ} =

[
mv2
⊥

Ω(X)
+

mv2
⊥

2Ω(X)B0(X)

(
− ∂A2

∂X1
+
∂A1

∂X2

)]
dΘ

=

[
mv2
⊥

Ω(X)
−

mv2
⊥

2Ω(X)B0(X)
B0(X)

]
dΘ

=
µB0(X)

Ω(X)
dΘ.

(2.2.19)

With this, the gyroaveraged one-form G {Γ} up to second-order corrections in εB, which we
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will denote as Γ0 in the following, takes the form [42]

Γ0 =
(
mv||b +

q

c
A(X)

)
· dX +

µB0(X)

Ω(X)
dΘ−

(
mv2
||

2
+ µB0(X) + qφ(X)

)
dt. (2.2.20)

2.2.2 Adding field perturbations

As a next step, we add rapidly varying fluctuations to the electromagnetic fields. That is,
now we assume

A(x, t) = A0(x) + A1(x, t)

φ(x, t) = φ0(x) + φ1(x, t),

where the relation of the field to the ordering parameters was discussed in section 2.1.
We can split the one form γ into two parts γ0 and γ1, where the first part contains the

slowly varying background

γ0 =
(
mv +

q

c
A0(x)

)
· dx−

(m
2
v2 + qφ0(x)

)
dt (2.2.21)

and the second part

γ1 =
q

c
A1(x, t) · dx− qφ1(x, t) dt (2.2.22)

the rapidly varying fluctuations.
We will introduce new velocity coordinates

v||,∗ = v|| +
q

mc
Ã1,||,

v⊥,∗ = v⊥ +
q

mc
A1,⊥,

(2.2.23)

where the tilde indicates the gyroangle-dependent part:

Ã1,|| = A1,|| − G
{
A1,||

}
. (2.2.24)

With this, the one-form γ can be written as

γ =
(
mv∗ +

q

c
A0(x)

)
· dx−

(
mv2
∗

2
+ qφ0(x)

)
dt

+
q

c
G
{
A1,||

}
b · dx−

(
qφ1(x, t)−

qv||,∗

c
Ã1,|| −

q

c
v⊥,∗ ·A1,⊥

)
dt

− q2

2mc2

(
Ã1,||

2
+ |A1,⊥|2

)
dt.

(2.2.25)

Transforming the one-form into guiding centre coordinates yields the one-forms Γ = Γ0 +Γ1 +
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2.2. DERIVATION OF THE GYROKINETIC LAGRANGIAN

Γ2 with the three components

Γ0 =
(
mv||,∗b +

q

c
A0(X + ρ)

)
· dX +

µ∗B0(X + ρ)

Ω(X + ρ)
dΘ

−

(
mv2
||,∗

2
+ µ∗B0(X + ρ) + qφ0(X + ρ)

)
dt,

Γ1 =
q

c
G
{
A1,||(X + ρ, t)

}
b · dX−

(
qφ1(X + ρ, t)−

qv||,∗

c
Ã1,||(X + ρ, t)

)
dt

+
q

c
v⊥,∗ ·A1,⊥(X + ρ, t)dt,

Γ2 =− q2

2mc2

([
Ã1,||(X + ρ, t)

]2
+ |A1,⊥(X + ρ, t)|2

)
dt.

(2.2.26)

Just like before, we wish to remove the Θ−dependence from the one-form. In contrast
to the previous efforts, however, expressing the field perturbations via a truncated Taylor
expansion for small gyroradii is not appropriate, as all terms of the expansion are of the same
order due to the assumption k⊥ρs = ε⊥ ∼ O(1) from section 2.1.

A convenient way to obtain a one-form independent of the gyroangle is to use so-called
Lie transformations [43, 44], a special kind of near-identity transformation in extended phase
space. We introduce a new set of coordinates Z, which we will call gyrocentre coordinates,
together with the smallness parameter ε, which are implicitly defined by the differential
equation

∂Z
ν
(Z, ε)

∂ε
= Gν(Z(Z, ε)), (2.2.27)

with the generating functions Gν(Z(Z, ε)) and the index ν running over all phase-space in-
dices. If we consider the initial condition Z

ν
(Z, 0) = Zν , which is the basic property of a

near-identity transformation, the above equation can be rewritten as

Z
ν
(Z, ε) = T (ε)Zν , (2.2.28)

where the operator T is given by T (ε) = exp (εGν). Using again equation (2.2.5), we obtain
the one-form in the new coordinate system

Γµ(Z, ε) =
dZν

dZ
µΓν(Z(Z, ε)). (2.2.29)

Before continuing, we note the useful identity

Z = Z(Z(Z, ε), ε)

⇒dZν

dε
= 0 =

∂Zν

∂ε
+
dZν

dZ
µ
∂Z

µ

∂ε
=
∂Zν

∂ε
+
dZν

dZ
µG

µ,

so that we have
∂Zν

∂ε
(Z, ε) = − dZ

ν

dZ
µ (Z, ε)Gµ(Z). (2.2.30)
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2.2. DERIVATION OF THE GYROKINETIC LAGRANGIAN

Applying ∂/∂ε to equation (2.2.29) gives us

∂Γµ
∂ε

=− Γν
d

dZ
µ

[
dZν

dZ
λ
Gλ
]
− dZν

dZ
µG

λ

[
dΓν
dZσ

dZσ

dZ
λ

]
=− Γν

d

dZ
µ

[
dZν

dZ
λ
Gλ
]
− dZν

dZ
µG

λ dΓν

dZ
λ
,

(2.2.31)

which can be rearranged to be

∂Γµ
∂ε

=− Γν
d

dZ
µ

[
dZν

dZ
λ
Gλ
]
− dZν

dZ
µG

λ dΓν

dZ
λ

=− d

dZ
µ

[
ΓλG

λ
]
−Gλ

[
dΓµ

dZ
λ
− dΓλ

dZ
µ

]
,

(2.2.32)

where we have used equation (2.2.29). Therefore, if we define the operator LG, applied to a
one-form Γ, as

LGΓ = Gλ
[
∂Γµ

∂Z
λ
− dΓλ

dZ
µ

]
, (2.2.33)

we get that
∂Γ

∂ε
= −LGΓ− d(Γ ·G), (2.2.34)

where the second term on the right hand side is a one-form with components d(Γ · G)i) =
∂(Γ ·G)i)/∂Z i. It is easy to show that any product of the operators LG and d vanish so that

∂nΓ

∂εn
= (−LG)nΓ + (−dG·)nΓ. (2.2.35)

Prescribing the initial condition that Γ = Γ for ε = 0, the solution is given by

Γ = T−1
∗ (ε)Γ + dS, (2.2.36)

with
T−1
∗ (ε) = exp (−εLG) . (2.2.37)

The term dS is an exact differential arising from the second term in equation (2.2.35). The
explicit form of S does not matter, as it will not alter the equations of motion given through
the one-form. It can be considered a gauge function chosen to obtain an easily tractable
one-form. Expanding equation (2.2.36) in powers of the smallness parameter and collecting
terms order by order, we obtain up to second order [44]

Γ0 = Γ0 + dS0 = Γ0,

Γ1 = Γ1 − L1Γ0 + dS1,

Γ2 = Γ2 − L1Γ1 +

(
1

2
L2

1 − L2

)
Γ0 + dS2.

(2.2.38)

In the following, we will only consider first-order perturbations, which means we will only
calculate the form of Γ1. Therefore, for any particular component of the gyrocenter one-form,
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2.2. DERIVATION OF THE GYROKINETIC LAGRANGIAN

we have to use

Γ1,ν = Γ1,ν −Gσ1
[
∂Γ0,ν

∂Zσ
− ∂Γ0,σ

∂Zν

]
+
∂S1

∂Zν
. (2.2.39)

Notice here that we take the derivatives with respect to the old coordinates due to the
expansion, as Z = Z at ε = 0.

For the magnetic moment, we have

Γ1,µ∗ =��
�*0

Γ1,µ∗ −GX
1

 ∂

∂X�
��*

0
Γ0,µ −

�
�
���

0
∂Γ0,X

∂µ

−Gv||,∗1

[
∂

∂v||,∗
��
�*0

Γ0,µ∗ −
∂

∂µ∗�
�
��*

0
Γ0,v||,∗

]

−GΘ
1

[
∂

∂Θ�
��*

0
Γ0,µ∗ −

∂

∂µ∗
Γ0,Θ

]
+
∂S1

∂µ∗

=GΘ
1

mc

q
+
∂S1

∂µ∗
.

(2.2.40)

Since we want the magnetic moment to be conserved even in the presence of rapidly varying
perturbations, we need to impose that Γ1,µ∗ = 0, which means that

GΘ
1 = − q

mc

∂S1

∂µ∗
. (2.2.41)

In an analogous way to that, we can get

Gµ∗1 =
q

mc

∂S1

∂Θ
(2.2.42)

and

GX
1 · b = − 1

m

∂S1

∂v||,∗
(2.2.43)

by imposing that Γ1,Θ = 0 and Γ1,v||,∗ = 0, respectively.
The spatial component of the first-order one-form is given by

Γ1,X =
q

c
G
{
A1,||(X + ρ, t)

}
b +

q

c
GX

1 ×B∗ −mG
v||,∗
1 b +∇S1, (2.2.44)

where we have used that B∗0 = B0 + O (εB0). The goal is to choose the three unknown
functions in such a way that Γ1,X is independent of the gyroangle Θ, i.e. that Γ1,X =
(q/c)G

{
A1,||(X + ρ, t)

}
b, which is known as the ||−symplectic gyrocentre model [37]. There-

fore, we require that

q

c
GX

1 ×B∗ −mGv||,∗1 b +∇S1 = 0, (2.2.45)

with B∗ = ∇×A∗. Taking the dot product equation (2.2.45) with B∗, one obtains

G
v||,∗
1 =

1

mB∗||
∇S1 ·B∗. (2.2.46)

On the other hand, taking the cross product of equation (2.2.45) with b, one obtains a relation

18
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for GX
1 , which reads

GX
1 = − 1

B∗||

[
1

m

∂S1

∂v||,∗
B∗ +

c

q
b×∇S1

]
. (2.2.47)

Inserting all solutions of the generating function into the Hamiltonian part of the one-form, one
obtains an expression that can be used to determine the gauge function S1. The Hamiltonian
part of the gyrocentre one-form then reads up to second-order corrections

Γ1,t =−
[
qφ1(X + ρ, t)−

qv||,∗

c
Ã1,||(X + ρ, t)− q

c
v⊥,∗ ·A1,⊥(X + ρ, t)

]
+ Ω

∂S1

∂Θ

+

(
1

B∗||

[
1

m

∂S1

∂v||,∗
B∗ +

c

q
b×∇S1

]
· ∇(µ∗B0 + qφ0) +

v||,∗

B||,∗
∇S1 ·B∗ +

∂S1

∂t

)
.

(2.2.48)
If we assume that the gauge function also obeys the gyrokinetic ordering concerning its

spatio-temporal variation shown in section 2.1, we can show that all terms in the second row
of equation (2.2.48) are of order εδεB, εδεω or higher orders thereof. Therefore, if we only
want to keep the terms that are of order εδ, we are left with

Γ1,t =− qG {φ1(X + ρ, t)}+
qv⊥,∗
c
G {A1,⊥(X + ρ, t) · c(Θ)}

− qφ̃1(X + ρ, t) +
qv||,∗

c
Ã1,||(X + ρ, t) +

qv⊥,∗
c

˜A1,⊥ · c(Θ)(X + ρ, t) + Ω
∂S1

∂Θ
.

(2.2.49)
If one chooses the gauge function S1 such that

∂S1

∂Θ
=

1

Ω

[
qφ̃1 −

qv||,∗

c
˜A1,||(X + ρ, t)−

qv⊥,∗
c

˜A1,⊥ · c(Θ)

]
, (2.2.50)

the perturbed gyroaveraged Hamiltonian takes the simple form

H1 = qG {φ1(X + ρ, t)} − q

c
G {A1,⊥(X + ρ, t) · v⊥,∗(Θ)} . (2.2.51)

Putting all components together, the full gyrokinetic one-form, up to second-order cor-
rections, can be written as

Γ =Γ0 + Γ1

=
[
mv||,∗b +

q

c
A0 +

q

c
G
{
A1,||

}
b
]
· dX +

µ∗B0

Ω
dΘ

−

(
mv2
||∗

2
+ qφ0 + qG {φ1}+ µ∗B0 −

q

c
G {A1,⊥ · v⊥,∗}

)
dt.

(2.2.52)

As we shall see in section 2.6, the contribution of the electromagnetic fields to the total
Lagrangian of the system is quadratic in the field perturbations φ1 and A1. Therefore, we
also need to take the second-order correction of the gyrocentre Hamiltonian into account to
derive the gyrokinetic field equations consistent with the desired order of accuracy. These
corrections can be obtained by considering again equation (2.2.38) and calculating the second-
order Lie operator and gauge function in such a way that Γ2 = 0. We will skip this step for
brevity, as it can be done analogously. The leading terms of the second-order corrections turn
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out to be of the form [37]

H2 = − q2

2B0

∂

∂µ∗
G
{
χ̃2

1

}
+

q2

2mc2

(
G
{
Ã1,||

2
}

+ G
{
|A1,⊥|2

})
, (2.2.53)

where
χ̃1 = φ̃1 −

v||,∗

c
Ã1,|| −

v⊥,∗
c

˜A1,⊥ · c(Θ). (2.2.54)

It becomes apparent from equation (2.2.23) that the transformation of quantities from gyro-
centre to particle space involves a nonlinear coupling to the perturbed vector potential. For
example, the transformation x↔ X+ρ(X, µ∗,Θ) would involve explicit evaluation of the per-
pendicular vector potential, which is prohibitively expensive to do. Therefore, most gyrokin-
etic codes today use the approximation v∗ ≈ v, meaning that the εδ-correction of the velocit-
ies is dropped. Doing so results in the final form of the Lagrangian, including second-order
corrections used throughout this thesis, which reads

L =
(q
c
A∗0 +

q

c
G
{
A1,||

}
b
)
· Ẋ +

µB0

Ω
Θ̇−

(
mv2
||

2
+ µB0 + qφ0 + qG {ψ1}

)

+
q2
σ

2B0

∂

∂µ
G
{
χ̃2

1

}
− q2

2mc2

(
G
{
Ã1,||

2
}

+ G
{
|A1,⊥|2

})
,

(2.2.55)

where the variables
A∗0 ≡ A0 + (mc/q) v||b (2.2.56)

and

ψ1 ≡ φ1 −
v⊥ ·A1,⊥

c
(2.2.57)

were introduced for convenience.
Finally, one can use the symplectic part of the Lagrangian to calculate the Jacobian for

the transformation between particle and gyrocentre space as

J =

√√√√det

(
∂Γ

symp.
ν

∂Z
λ
− ∂Γ

symp.
λ

∂Z
ν

)
=
B∗||,ε

m
, (2.2.58)

with
B∗ε = B∗0 +∇×

(
G
{
A1,||

}
b
)
,

B∗ε,|| = b ·B∗ε = B∗0,|| + G
{
A1,||

}
b · (∇× b) .

(2.2.59)

Therefore, the infinitesimal phase-space element transforms as

d3xd3v =
B∗ε,||

m
d3XdΘdµ∗dv||,∗. (2.2.60)

The previously mentioned approximation v∗ ≈ v leaves us with the approximate Jacobian

J ≈
B∗0,||

m
,
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so that we will use the phase-space transformation

d3xd3v ≈
B∗0,||

m
d3XdΘdµdv||. (2.2.61)

Although it should be noted that this approximation will violate the conservation of phase-
space volume, as it is incompatible with the symplectic part of the one-form (2.2.52), its effects
seem to be manageable for most gyrokinetic simulations, as benchmarks of parallel-symplectic
codes show good agreement with those using a canonical model [45].

2.3 The gyrokinetic action functional

In order to derive the governing equations of the gyrokinetic Vlasov-Maxwell system in an
energy-preserving manner, one needs to obtain them through a consistent minimisation pro-
cedure. Here, we will follow the derivation of [46] with the addition of introducing a splitting
of the distribution function later in this section.

If we introduce the modified distribution function Fσ(Z, t) ≡ J (Z, t)Fσ(Z, t), the entire
dynamical behaviour of the gyrokinetic system can be described through the Lagrangian of
the system:

Ltotal =
∑
σ

∫
d6Z0Fσ(Z0, t0)Lσ(Zσ (Z0, t0; t) , Żσ (Z0, t0; t) , t)︸ ︷︷ ︸

=: Lpart,σ

+

∫
d3x

1

8π

(
|∇φ(x, t)|2 + |∇ ×A(x, t)|2

)
︸ ︷︷ ︸

=: Lf

.

(2.3.1)

The particle Lagrangian of species σ is determined via the modified distribution func-
tion Fσ(Z0, t0) at an arbitrary point in time t0 and the single particle Lagrangian given by
equation (2.2.55), evaluated at the characteristics Zσ (Z0, t0; t) with the initial conditions
Zσ (Z0, t0; t0) = Z0. Additionally, Lf is the Lagrangian of the electromagnetic field.

With this, we can then introduce the gyrokinetic action functional

I[φ1,A1,Zσ] =
∑
σ

t2∫
t1

Lpart,σ[φ1,A1,Zσ; t]dt+

t2∫
t1

Lf [φ1,A1; t]dt. (2.3.2)

Similar to what is done in classical mechanics, the governing equations of the system are
derived by minimising the action functional (2.3.2) with respect to the quantities of interest.
In particular, minimising (2.3.2) with respect to φ1, A1 and Zσ will give the gyrokinetic
Poisson’s and Ampère’s equations as well as the nonlinear characteristics of motion Zσ of the
so-called ”full-f” model of gyrokinetics. Once the characteristics are known, conservation of
probability then dictates that the modified distribution function Fσ at any point in time is
given by

F(Z, t) =

∫
Fσ(Z0, t0) δ6 (Z− Zσ(Z0, t0; t)) d6Z0. (2.3.3)
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Additionally, if we require that the Jacobian satisfies Liouville’s theorem

∂J
∂t

+∇Z ·
(
J (Z)Ż

)
= 0, (2.3.4)

it is then easy to prove from equation (2.3.3) that Fσ(X, v||, µ, t) satisfies the gyrokinetic
equation

∂Fσ
∂t

+ Ẋσ · ∇Fσ + v̇||,σ
∂Fσ
∂v||

+ µ̇σ
∂Fσ
∂µσ

= 0, (2.3.5)

where Ẋσ and v̇||,σ are the total time derivatives of the characteristics Xσ(Z, t) and v||(Z, t).
Notice here that we replaced the exact Jacobian with an approximation in section 2.2, which
will not satisfy the Liouville theorem exactly. Therefore, our model is not strictly conservative
unless we retain the exact Jacobian. However, the deviation is of order εδε

2
B and might there-

fore be small enough on turbulent timescales for numerical simulations to agree sufficiently
with Hamiltonian frameworks [45]. It might nevertheless be worth exploring if conservation is
still kept to sufficient levels when running gyrokinetic simulations on timescales comparable
to the confinement time.

We will additionally introduce a splitting of the distribution function Fσ(X, v||, µ, t) =
F0,σ(X, v||, µ) + F1,σ(X, v||, µ, t) with F1,σ/F0,σ ∼ O(εδ). We will then truncate the total
Lagrangian at order ε3δ . Therefore, we get

Itrunc =
∑
σ

(
I

(lin)
part,σ[φ1,A1,Zσ] + I

(nonlin)
part,σ [φ1,A1,Zσ]

)
+ Ifield[φ1,A1]. (2.3.6)

Finally, we wish to neglect the nonlinear motion terms arising from the second-order
Hamiltonian H2,σ and only retain its contributions to the electromagnetic field equations.

This can be accomplished by approximating I
(nonlin)
part,σ [φ1,A1,Zσ]→ I

(nonlin)
part,σ [φ1,A1]. A similar

procedure was used in [47], although there a constrained Eularian variation with respect
to the distribution function Fσ was performed instead of a variation with respect to the
characteristics Zσ.

With all of these modifications, the total gyrokinetic action functional can be written as

Itotal[φ1,A1,Zσ] =
∑
σ

(
I

(lin)
part,σ[φ1,A1,Zσ] + I

(nonlin)
part,σ [φ1,A1]

)
+ Ifield[φ1,A1], (2.3.7)
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with

I
(lin)
part,σ[φ1,A1,Zσ] =

t2∫
t1

∫
(F0,σ + F1,σ)

[
qσ
c

(
A∗0 + G

{
A1,||

}
b
)
· Ẋ +

µB0

Ωσ
Θ̇

]
d6Z0 dt

−
t2∫

t1

∫
(F0,σ + F1,σ)

[
H0,σ +H1,σ

]
d6Z0 dt,

I
(nonlin)
part,σ [φ1,A1] = −

t2∫
t1

∫
H2,σ(Z0, t)F0,σ(Z0) d6Z0 dt,

Ifield[φ1,A1] =
1

8π

t2∫
t1

∫ (
|∇φ0(x) +∇φ1(x, t)|2 − |∇ ×A0(x) +∇×A1(x, t)|2

)
d3x dt.

(2.3.8)

2.4 Equations of motion

As was stated before, the equations of motion are obtained by minimising the total action
(2.3.7) with respect to Zσ(Z0, t).

δItotal

δZσ(Z0, t0; t)
=

δI
(lin)
part,σ

δZσ(Z0, t0; t)

=
δ

δZσ(Z0, t0; t)
·

t2∫
t1

∫
(F0,σ + F1,σ)Llin

σ (Zσ(Z′0, t0; t′), Żσ(Z′0, t0; t′), t′)δZσ d
6Z ′0dt

′

=

t2∫
t1

∫
(F0,σ + F1,σ)

[
∂Llin

σ

∂Zσ
δ6
(
Z0 − Z′0

)
δ(t− t′) +

∂Llin
σ

∂Żσ
· δŻσ
δZσ

]
d6Z ′0dt

′

=

t2∫
t1

∫
(F0,σ + F1,σ) δ(t− t′)δ6

(
Z0 − Z′0

) [∂Llin
σ

∂Zσ
− d

dt′
∂Llin

σ

∂Żσ

]
d6Z ′0dt

′

= (F0,σ + F1,σ)

[
∂Llin

σ

∂Zσ
− d

dt′
∂Llin

σ

∂Żσ

]
.

(2.4.1)

Therefore, the minimisation of the gyrokinetic action functional tells us that we have to
calculate the particle trajectories using the Euler-Lagrange equations

d

dt

∂L
∂Żi

=
∂L
∂Zi

, (2.4.2)

from the linear Lagrangian Llin
σ , which is the Lagrangian (2.2.55) without the contribution

coming from H2. If we drop the index σ for now, obtaining the equations of motion from the
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Lagrangian is straightforward. The ones for µ, Θ and X|| are

µ̇ = 0, (2.4.3)

Θ̇ = Ω +
qΩ

B0

∂

∂µ
G {χ1} , (2.4.4)

b · Ẋ = v||. (2.4.5)

Furthermore, we have

∂L
∂Ẋ

=
(q
c
A∗0 +

q

c
G
{
A1,||

}
b
)
,

∂L
∂X

=
q

c
∇
[(

A∗0 + G
{
A1,||

}
b
)
· Ẋ
]
− (µ∇B0 + q∇φ0 + q∇G {ψ1}) ,

so that

mv̇||b +
q

c

[(
Ẋ · ∇

)
A∗0 −∇

(
A∗0 · Ẋ

)]
+
q

c

[(
Ẋ · ∇

)
G
{
A1,||

}
b−∇

(
G
{
A1,||

}
b · Ẋ

)]
=mv̇||b−

q

c
Ẋ×

(
B∗0 +

[
∇×

(
G
{
A1,||

}
b
)])

=mv̇||b−
q

c
Ẋ×B∗ε

=− (µ∇B0 + q∇φ0 + q∇G {ψ1})−
q

c

∂

∂t
G
{
A1,||

}
b.

Applying the operation (b×) to the equation above gives the expressions for Ẋ, which reads

Ẋ =
B∗ε
B∗||,ε

v|| +
c

qB∗||,ε
b× (µ∇B0 + q∇φ0 + q∇G {ψ1})

=v||b +
mσB0

J

(
vE0 + vχ + v∇B + vc +

v||G
{
A1,||

}
B0

(∇× b)⊥

)
,

(2.4.6)

where we expressed B∗ε,|| in terms of the (exact) gyrokinetic phase-space Jacobian J = B∗ε,||/m

defined in equation (2.2.59). Furthermore, we introduced the drift velocities

vE0 ≡
c

B2
0

B0 ×∇φ0 vχ ≡
c

B2
0

B0 ×∇G{χ1}

v∇B ≡
µc

qB2
0

B0 ×∇B0 vc ≡
v2
||

Ω
(∇× b)⊥ =

v2
||

Ω

(
b0 ×

(
∇ ln(B0) +

β

2
∇ ln(p0)

))
,

(2.4.7)

with the gyrokinetic potential being defined as χ1 ≡ ψ1 −
(
v||/c

)
A1,|| = φ1 −

(
v||/c

)
A1,|| −

v⊥ ·A1,⊥/c. On the other hand, applying the operation
(
Ẋ·
)

gives the form of v̇||:

v̇|| = −
qẊ

mv||
·

(
∇φ0 +∇G {ψ1}+

1

c

∂G
{
A1,||

}
∂t

b +
µ

q
∇B0

)
. (2.4.8)
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2.5 The gyrokinetic equation

Having derived the characteristics in phase-space along which the distribution function Fσ
of species σ is advected, it is straightforward to combine equations (2.3.5) and equations
(2.4.3)-(2.4.8) together with the splitting Fσ = F0,σ + F1,σ to give

∂F1,σ

∂t
+

[
v||b +

mσB0

J

(
vE0 + vχ + v∇B + vc +

v||G
{
A1,||

}
B0

(∇× b)⊥

)]
· ∇ (F0,σ + F1,σ)

− qσ
mσv||

[
v||b +

mσB0

J

(
vE0 + vχ + v∇B + vc +

v||G
{
A1,||

}
B0

(∇× b)⊥

)]
·

(
∇φ0

+∇G {ψ1}+
1

c

∂G
{
A1,||

}
∂t

b +
µ

qσ
∇B0

)
∂

∂v||
(F0,σ + F1,σ) = 0.

(2.5.1)
Setting all rapidly fluctuating contributions to zero gives an equation for the background
distribution function, which then reads[

v||b +
mσB0

J
(vE0 + v∇B + vc)

]
·
(
∇F0,σ −

qσ
mσv||

(
∇φ0 +

µ

qσ
∇B0

)
∂F0,σ

∂v||

)
= 0. (2.5.2)

After some algebra and using the fact that, for example, vE0 · ∇G {χ1} = −vχ · ∇φ0,
we can collect all terms that are of first order in the perturbation parameters εB, εδ and εω,
which gives

∂F1,σ

∂t
=−

[
v||b +

mσB0

J
(vχ + v∇B + vc)

]
· ∇F1,σ + b ·

(
∇φ0 +

µ

mσ
∇B0

)
∂F1,σ

∂v||

− mσB0

J
vχ · ∇F0,σ +

qσ
mσv||

∂F0,σ

∂v||

[
v||b +

mσB0

J
(vχ + v∇B + vc)

]
· ∇G{ψ1}

+
qσ
mσc

∂F0,σ

∂v||

∂G{A1,||}
∂t

− mσB0

J
vE0 ·

(
∇F1,σ +

qσv||

c
∇G{A1,||}

)
− mσB0

J
(v∇B + vc) · ∇F0,σ.

(2.5.3)

It should be noted that neglecting the higher-order terms will make the underlying system
non-conservative. However, it was concluded in [48] that the impact on the final heat flux is
negligible, although retaining higher-order terms seems important in terms of entropy balance.

2.6 Gyrokinetic field equations

As was stated already in section 2.3, one obtains the gyrokinetic field equations by minimising
the gyrokinetic action functional with respect to the electromagnetic fields φ1, A1,|| and A1,⊥,
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which we will do in this section. We will start with the field action

Ifield[φ1,A1] =
1

8π

t2∫
t1

∫ (
|∇φ0(x′) +∇φ1(x′, t′)|2 − |∇ ×A0(x′) +∇×A1(x′, t′)|2

)
d3x′ dt′,

given by equation (2.3.8). We will assume that the plasma background is quasineutral, equival-
ent to neglecting the gradient of φ0. Furthermore, we will only retain gradients perpendicular
to the magnetic field, as they are much larger than their parallel counterparts, as stated in
section 2.1. Minimising the field action with respect to φ1 will then give

δIfield

δφ1(x, t)
=

1

8π

t2∫
t1

∫
δ|∇⊥φ1(x′, t′)|2

δφ1(x, t)
d3x′ dt′

=
1

4π

t2∫
t1

∇⊥φ1(x′, t′) · ∇⊥δ(x− x′)δ(t− t′) d3x′ dt′

=− 1

4π

t2∫
t1

∇2
⊥φ1(x′, t′)δ(x− x′)δ(t− t′) d3x′ dt′

=− 1

4π
∇2
⊥φ1(x, t).

(2.6.1)

Similarly, we get

δIfield

δA1(x, t)
=

1

4π

t2∫
t1

∫ [
B0(x) + B1(x′, t′)

]
·
[
∇⊥ × δ(x− x′)δ(t− t′)

]
d3x′ dt′

=− 1

4π

t2∫
t1

∫
∇⊥ × [(B0 + B1)] δ(x− x′)δ(t− t′) d3x′dt′

=− 1

4π
∇⊥ × [B0(x) + B1(x, t)] .

(2.6.2)

Next, we have to look at the linear particle contribution to the total action, providing the
gyrocenter moments of the field equations. Using equation (2.4.5) we can rewrite the particle
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action functional as

I
(lin)
part,σ[φ1,A1,Zσ] =

t2∫
t1

∫
(F0,σ + F1,σ)

[(qσ
c

A∗0 +
qσ
c
G
{
A1,||

}
b
)
· Ẋ +

µB0

Ωσ
Θ̇

]
d6Z0 dt

′

−
t2∫

t1

∫
(F0,σ + F1,σ)

[
H0,σ +H1,σ

]
d6Z0 dt

′

=

t2∫
t1

∫
(F0,σ + F1,σ)

[
qσ
c

A∗0 · Ẋ +
qσ
c
G
{
A1,||

}
v|| +

µB0

Ωσ
Θ̇

]
d6Z0 dt

′

−
t2∫

t1

∫
(F0,σ + F1,σ)

[
H0,σ +H1,σ

]
d6Z0 dt

′

=

t2∫
t1

∫
(F0,σ + F1,σ) [L0,σ − qσG {χ1}] d6Z0 dt

′,

(2.6.3)
where L0,σ contains all the perturbation-free contributions of the single-particle Lagrangian
(2.2.55). We can use conservation of probability density, so that dFσ/dt = 0, along the tra-
jectories Zσ(Z0, t0; t), so that Fσ(Z0, t0) = Fσ(Zσ(Z0, t0; t), t), which we will just abbreviate
as Fσ(Z, t) for convenience. We can further introduce the four-vectors Aλ =

(
φ1, A1,||,A1,⊥

)
and vλ = (c, v||,v⊥), so that χ1 can be expressed as χ1 = −Aλvλ/c using a Minkowski metric.

Therefore, we can write the functional derivative of the linear action functional as

δI
(lin)
part,σ

δAν(x, t)
=− qσ

t2∫
t1

∫ (
F0,σ(X) + F1,σ(X, v||, µ, t)

) δ

δAν(x, t)
G
{
χ1

(
X + ρ, v||, µ, t

′)} d6Z0dt
′

=
qσ

2πc

t2∫
t1

2π∫
0

∫ (
F0,σ(X) + F1,σ(X, v||, µ, t)

)
vλ
δAλ

(
X + ρ(Θ′), v||, µ, t

′)
δAν(x, t)

d6Z0dΘ′dt′

=
qσ

2πc

t2∫
t1

2π∫
0

∫ (
F0,σ(X) + F1,σ(X, v||, µ, t)

)
vλδ(t− t′)δ (X + ρ− x) δνλ d

6Z0dΘ′dt′

=
2πqσ
2πc

∞∫
−∞

∞∫
0

2π∫
0

∫ (
F0,σ(X) + F1,σ(X, v||, µ, t)

)
vνδ (X + ρ− x) d3X0dΘ′dµdv||

≡2πqσ
c

∞∫
−∞

∞∫
0

K{(F0,σ + F1,σ) vν} dµdv||,

(2.6.4)

27



2.6. GYROKINETIC FIELD EQUATIONS

where we have introduced the pull-back gyroaverage operator

K{u} (x) =
1

2π

∫ 2π∫
0

u(X)δ(X + ρ− x) dΘd3X =
1

2π

2π∫
0

u(x− ρ) dΘ (2.6.5)

and renamed the variable Θ′ to Θ.
Analogously, we have to perform the minimisation of the nonlinear contribution to the

action functional, which reads

I
(nonlin)
part,σ [φ1,A1] =

t2∫
t1

∫
q2
σ

2B0c2

∂

∂µ
G
{

˜(−Aλvλ)
2
}
F0,σ(Z0) d6Z0 dt

′

−
t2∫

t1

∫
q2
σ

2mσc2
G
{
Ã1,||

2
}
F0,σ(Z0) d6Z0 dt

′

−
t2∫

t1

∫
q2
σ

2mσc2
G
{
|A1,⊥|2

}
F0,σ(Z0) d6Z0 dt

′.

(2.6.6)

If we only focus on the first integral, we get

δ

δAν(x, t)

t2∫
t1

∫
q2
σ

2B0c2

∂

∂µ
G
{

˜(−Aλvλ)
2
}
F0,σ(Z0) d6Z0 dt

′

=− δ

δAν(x, t)

t2∫
t1

∫
q2
σ

2B0c2

∂F0,σ(Z0)

∂µ

[
G
{(
Aλvλ

)2
}
− G

{(
Aλvλ

)}2
]
d6Z0 dt

′

=−
∫
q2
σ

c2
G
{
∂F0,σ(Z0)

∂µ

(
Aλvλ

) δAλ(X + ρ, t)

δAν(x, t)

vλ

B0

}
d6Z0

+

∫
q2
σ

c2
G
{
δAλ(X + ρ, t)

δAν(x, t)

vλ

B0
G
{
Aλvλ

} ∂F0,σ(Z0)

∂µ

}
d6Z0

=−
∫
q2
σ

c2
G
{
∂F0,σ

∂µ

(
Aλvλ

)
δνλ
vλ

B0
δ (X + ρ− x)

}
d6Z0

+

∫
q2
σ

c2
G
{
δνλ
vλ

B0
δ (X + ρ− x)

∂F0,σ

∂µ
G
{
Aλvλ

}}
d6Z0.

(2.6.7)

Here, we have used that the gyroaverage of a gyroaveraged function is the function itself
and that F0,σ does not depend on Θ in the second-to-last row. Using again the pull-back
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gyroaverage operator, we can rewrite the minimisation (2.6.7) as

− q2
σ

c2

∞∫
−∞

∞∫
0

2π∫
0

[
∂F0,σ

∂µ

(
Aλvλ

) vν
B0
−K

{
∂F0,σ

∂µ

vν

B0
G
{
Aλvλ

}}]
dΘdµdv||

=
q2
σ

c

∞∫
−∞

∞∫
0

2π∫
0

[
∂F0,σ

∂µ
χ1
vν

B0
−K

{
∂F0,σ

∂µ

vν

B0
G {χ1}

}]
dΘdµdv||.

(2.6.8)

Similarly, we obtain

− δ

δA1,||(x, t)

t2∫
t1

∫
q2
σ

2mσc2
G
{
Ã1,||

2
}
F0,σ(Z0) d6Z0 dt

=− q2
σ

mσc2

∞∫
−∞

∞∫
0

2π∫
0

[
A1,||(x, t)F0,σ −K

{
F0,σG

{
A1,||

}}]
dΘdµdv||

=− q2
σ

mσc2

n0,σA1,||(x, t)− 2π

∞∫
−∞

∞∫
0

K
{
F0,σG

{
A1,||

}}
dµdv||


(2.6.9)

and

− δ

δA1,⊥(x, t)

t2∫
t1

∫
q2
σ

2mσc2
G
{
|A1,⊥|2

}
F0,σ(Z0) d6Z0 dt

′

=− q2
σ

mσc2

∞∫
−∞

∞∫
0

2π∫
0

F0,σ dΘdµdv||A1,⊥(x, t)

=− q2
σn0,σ

mσc2
A1,⊥(x, t).

(2.6.10)

Putting everything together, we can, therefore, write the gyrokinetic Poisson equation as

− 1

4π
∇2
⊥φ1 −

∑
σ

q2
σ

∞∫
−∞

∞∫
0

2π∫
0

[
1

B0

∂F0,σ

∂µ
φ1 −K

{
1

B0

∂F0,σ

∂µ
G {φ1}

}]
dΘdµdv||

=−
∑
σ

q2
σ

c

∞∫
−∞

∞∫
0

2π∫
0

v||

[
1

B0

∂F0,σ

∂µ
A1,|| −K

{
1

B0

∂F0,σ

∂µ
G
{
A1,||

}}]
dΘdµdv||

−
∑
σ

q2
σ

c

∞∫
−∞

∞∫
0

2π∫
0

[
1

B0

∂F0,σ

∂µ
A1,⊥ · v⊥(µ,Θ)−K

{
1

B0

∂F0,σ

∂µ
G {A1,⊥ · v⊥(µ,Θ)}

}]
dΘdµdv||

+ 2π
∑
σ

qσ

∞∫
−∞

∞∫
0

K{F0,σ + F1,σ} dµdv||.

(2.6.11)

29



2.6. GYROKINETIC FIELD EQUATIONS

We can additionally use that
∑
σ
qσ
∞∫
−∞

∞∫
0

K{F0,σ} dµdv|| =
∑
σ
qσn0,σ = 0, since we assumed

quasineutrality of the background earlier. Furthermore, integration over Θ will make the first
term containing A1,⊥ in equation (2.6.11) vanish. Therefore, the gyrokinetic Poisson equation
can be written as:

− 1

4π
∇2
⊥φ1 − 2π

∑
σ

q2
σ

∞∫
−∞

∞∫
0

[
1

B0

∂F0,σ

∂µ
φ1 −K

{
1

B0

∂F0,σ

∂µ
G {φ1}

}]
dµdv||

=− 2π
∑
σ

q2
σ

c

∞∫
−∞

∞∫
0

v||

[
1

B0

∂F0,σ

∂µ
A1,|| −K

{
1

B0

∂F0,σ

∂µ
G
{
A1,||

}}]
dµdv||

+ 2π
∑
σ

q2
σ

c

∞∫
−∞

∞∫
0

K
{

1

B0

∂F0,σ

∂µ
G {A1,⊥ · v⊥(µ,Θ)}

}
dµdv||

+ 2π
∑
σ

qσ

∞∫
−∞

∞∫
0

K{F1,σ} dµdv||.

(2.6.12)

Ampère’s law, on the other hand, reads

− 1

4π
∇⊥ × [B0 + B1] +

∑
σ

q2
σ

c

∞∫
−∞

∞∫
0

2π∫
0

[
1

B0

∂F0,σ

∂µ
χ1v−K

{
1

B0

∂F0,σ

∂µ
vG {χ1}

}]
dΘdµdv||

−
∑
σ

q2
σ

mσc2
b

n0,σA1,||(x, t)− 2π

∞∫
−∞

∞∫
0

K
{
F0,σG

{
A1,||

}}
dµdv||

−∑
σ

q2
σn0,σ

mσc2
A1,⊥(x, t)

=− 2π
∑
σ

qσ
c

∞∫
−∞

∞∫
0

K{v(F0,σ + F1,σ)} dµdv||.

(2.6.13)
One can simplify equation (2.6.13) again by noticing that it is an equation for the total
magnetic field. However, it is easy to identify the equilibrium current as

J0,σ ≡ 2πqσ

∞∫
−∞

∞∫
0

K{vF0,σ} dµdv|| = 2πqσ

∞∫
−∞

∞∫
0

vF0,σ dµdv||,

which we assume satisfies Maxwell’s equations on equilibrium scales, so that this term and
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the one containing the curl of B0 will cancel each other. Furthermore, we have

∞∫
−∞

∞∫
0

2π∫
0

1

B0

∂F0,σ

∂µ
χ1v dΘdµdv||

=

∞∫
−∞

∞∫
0

2π∫
0

1

B0

∂F0,σ

∂µ

[
φ1 −

v||

c
A1,|| −

1

c
v⊥ ·A1,⊥

] [
v||b + v⊥

]
dΘdµdv||

=2π

∞∫
−∞

∞∫
0

1

B0

∂F0,σ

∂µ

[
b

(
v||φ1 −

v2
||

c
A1,||

)
−
v2
⊥

2c
A1,⊥

]
dµ dv||

=2π

∞∫
−∞

∞∫
0

b

B0

∂F0,σ

∂µ

(
v||φ1 −

v2
||

c
A1,||

)
dµ dv|| + 2π

∞∫
−∞

∞∫
0

F0,σ

mσc
A1,⊥ dµ dv||

=2π

∞∫
−∞

∞∫
0

b

B0

∂F0,σ

∂µ

(
v||φ1 −

v2
||

c
A1,||

)
dµ dv|| +

n0,σ

mσc
A1,⊥,

(2.6.14)

where we have used that A1,⊥ = A1
1e1+A2

1e2 and v⊥ = v⊥c(Θ) = v⊥(−e1 cos(Θ)−e2 sin(Θ)).
Therefore, Ampère’s law for the perturbed magnetic field B1 can be written as

− 1

4π
∇⊥ ×B1

+ b
∑
σ

2πq2
σ

c

∞∫
−∞

∞∫
0

v||

[
1

B0

∂F0,σ

∂µ
φ1 −K

{
1

B0

∂F0,σ

∂µ
G {φ1}

}]
dµ dv||

− b
∑
σ

2πq2
σ

c2

∞∫
−∞

∞∫
0

v||

[
K
{

1

B0

∂F0,σ

∂µ
G {v⊥ ·A1,⊥}

}]
dµ dv||

− b
∑
σ

2πq2
σ

c2

∞∫
−∞

∞∫
0

v2
||

[
1

B0

∂F0,σ

∂µ
A1,|| −K

{
1

B0

∂F0,σ

∂µ
G
{
A1,||

}}]
dµ dv||

− b
∑
σ

2πq2
σ

mσc2

∞∫
−∞

∞∫
0

[
F0,σA1,|| −K

{
F0,σG

{
A1,||

}}]
dµ dv||

−
∑
σ

2πq2
σ

c

∞∫
−∞

∞∫
0

K
{

1

B0

∂F0,σ

∂µ
v⊥G {χ1}

}
dµ dv||

=− 2πb
∑
σ

qσ
c

∞∫
−∞

∞∫
0

v||K{F1,σ} dµdv|| − 2π
∑
σ

qσ
c

∞∫
−∞

∞∫
0

K{v⊥F1,σ} dµdv||.

(2.6.15)

Both equations (2.6.12) and (2.6.15) can be further simplified by transforming the de-
pendence on the vector quantity A1,⊥ into dependencies on the scalar parallel magnetic field
B1,|| = ∇⊥ ×A1,⊥. To do so, we first consider the quantity (qσ/c)G {A1,⊥ · v⊥}, which can
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be rewritten as

qσ
c
G {A1,⊥(X + ρ, t) · v⊥(Θ)} =

qσ
2cπ

2π∫
0

A1,⊥ · v⊥ dΘ =
qσΩσ

2cπ

2π∫
0

A1,⊥ · [ρ(Θ)× b] dΘ.

(2.6.16)
One can then interpret this expression as integrating A1,⊥ along a gyroring perpendicular
to the magnetic field with the differential line element dl = [ρ(Θ) × b] dΘ. Using Stokes’
theorem, this integral can be transformed into an integral of the surface contained by a given
gyroring, namely

2π∫
0

A1,⊥ · [ρ(Θ)× b] dΘ =−
2π∫
0

 ρ∫
0

(∇×A1,⊥) · b ρ′dρ′
 dΘ

=−
2π∫
0

 ρ∫
0

B1,|| ρ
′dρ′

 dΘ.

(2.6.17)

We now introduce the ”gyrodisk-integral” operator

GD {u} ≡
qσΩσ

2πc

2π∫
0

ρ∫
0

u(X + ρ′(Θ))ρ′dρ′ dΘ, (2.6.18)

so that equation (2.6.16) can be written as

qσΩσ

2πc

2π∫
0

A1,⊥ · [ρ(Θ)× b] dΘ = −GD

{
B1,||(X + ρ, t)

}
. (2.6.19)

Using the identity ∮
∂S

gdl = −
∫
S

∇g × dS (2.6.20)

for a function g and a surface S, we can derive the following relations in analogy:

G {gv⊥} =
c

qσ
GD {∇⊥g × b} , (2.6.21)

K{gv⊥} = − c

qσ
KD {∇⊥g × b} , (2.6.22)

where we have introduced the pull-back gyrodisk-integral operator

KD {u} ≡
qσΩσ

2πc

2π∫
0

ρ∫
0

u(x− ρ′(Θ))ρ′dρ′ dΘ. (2.6.23)

The difference in the sign between equations (2.6.21) and (2.6.22) arises from the fact that
the orbits in both cases will run in opposite directions. This can be understood by using the
relation between x, X, andρ from equation (2.2.4). With this, we can express the line element
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as dl = [(x−X)× b] dΘ. The gyroaverage is evaluated at constant gyrocentre position X,
which means one can transform into a coordinate system where the gyrocentre sits at the
origin, meaning that X = 0. In this system, the line element will be given by dl = [x× b] dΘ
which means the curve will run in a counter-clockwise manner relative to b. On the other
hand, the pull-back average is evaluated at constant particle position so that one can choose a
coordinate system where x = 0. In there, the line element will be dl = [(−X)× b] dΘ, which
means that the curve will now run clockwise relative to the magnetic field vector b.

With the help of the disk integrals, Poisson’s equation (2.6.12) can be rewritten as

− 1

4π
∇2
⊥φ1 − 2π

∑
σ

q2
σ

∞∫
−∞

∞∫
0

[
1

B0

∂F0,σ

∂µ
φ1 −K

{
1

B0

∂F0,σ

∂µ
G {φ1}

}]
dµdv||

= −2π
∑
σ

q2
σ

c

∞∫
−∞

∞∫
0

v||

[
1

B0

∂F0,σ

∂µ
A1,|| −K

{
1

B0

∂F0,σ

∂µ
G
{
A1,||

}}]
dµdv||

− 2π
∑
σ

qσ

∞∫
−∞

∞∫
0

K
{

1

B0

∂F0,σ

∂µ
GD

{
B1,||

}}
dµdv||

+ 2π
∑
σ

qσ

∞∫
−∞

∞∫
0

K{F1,σ} dµdv||.

(2.6.24)

Ampère’s law can be solved more easily by splitting it into its parallel and perpendicular
components. The parallel component reads

− 1

4π
(∇⊥ ×B1) · b

+
∑
σ

2πq2
σ

c

∞∫
−∞

∞∫
0

v||

[
1

B0

∂F0,σ

∂µ
φ1 −K

{
1

B0

∂F0,σ

∂µ
G {φ1}

}]
dµ dv||

+
∑
σ

2πq2
σ

c

∞∫
−∞

∞∫
0

v||K
{

1

qσB0

∂F0,σ

∂µ
GD

{
B1,||

}}
dµ dv||

−
∑
σ

2πq2
σ

c2

∞∫
−∞

∞∫
0

v2
||

[
1

B0

∂F0,σ

∂µ
A1,|| −K

{
1

B0

∂F0,σ

∂µ
G
{
A1,||

}}]
dµ dv||

−
∑
σ

2πq2
σ

mσc2

∞∫
−∞

∞∫
0

[
F0,σA1,|| −K

{
F0,σG

{
A1,||

}}]
dµ dv||

= −2π
∑
σ

qσ
c

∞∫
−∞

∞∫
0

v||K{F1,σ} dµdv||.

(2.6.25)

On the other hand, the perpendicular component of Ampère’s law can now be expressed as
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an equation for B1,||:

− 1

4π
(∇⊥ ×B1)⊥ = − 1

4π
∇⊥B1,|| × b

= −2π

∑
σ

∞∫
−∞

∞∫
0

KD

{
∇⊥

(
qσ
B0

∂F0,σ

∂µ
G {χ1}

)}
dµ dv||

× b

+ 2π

∑
σ

∞∫
−∞

∞∫
0

KD {∇⊥F1,σ} dµdv||

× b.

(2.6.26)

If we now use the assumption of gyrokinetic theory that k⊥/L� 1, pulling the perpendicular
gradient out of the disk integrals and therefore factoring it out of the entire equation is justi-
fied. This approximation can also be made on the Lagrangian level already if the Lagrangian
is written in terms of B1,|| instead of A1,⊥ and the gradient is taken out of the disk integral
there. Therefore, the perpendicular component of Ampère’s law can be rewritten in its final
form, which reads

B1,||

4π
− 2π

∑
σ

∞∫
−∞

∞∫
0

KD

{(
1

B0

∂F0,σ

∂µ
GD

{
B1,||

})}
dµ dv||

=
∑
σ

∞∫
−∞

∞∫
0

KD {F1,σ} dµdv|| + 2π
∑
σ

∞∫
−∞

∞∫
0

KD

{(
qσ
B0

∂F0,σ

∂µ
G {φ1}

)}
dµ dv||

− 2π
∑
σ

∞∫
−∞

∞∫
0

KD

{(
qσv||

B0c

∂F0,σ

∂µ
G
{
A1,||

})}
dµ dv||.

(2.6.27)

2.7 Choice of Maxwellian background and other assumptions
in GENE-3D

In this section, we will introduce additional assumptions employed by the codes of the GENE
family. For most applications dealing with gyrokinetic turbulence in the core of fusion devices,
a popular choice of a background distribution function is that of a local Maxwellian, meaning
that we choose

F0,σ = FM,σ = n0,σ(x)

(
2πT0,σ(x)

mσ

)−3/2

exp

(
−
mσv

2
||/2 + µB0(X)

T0,σ(x)

)
, (2.7.1)

where the density is given by n0,σ(x) = N0,σ(x) exp(−qσφ0(X)/T0,σ(x)) for some function
N0,σ(x). This choice of this function can be motivated by considering plasmas at low colli-
sionality [13]. It follows immediately from the quasineutrality condition

∑
σ
n0,σ = 0 that the

background potential φ0 can only depend on the flux-surface label, meaning that φ0 = φ0(x).
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In addition, we can easily express the derivatives of F0,σ in terms of the function itself, via

∂FM,σ

∂v||
= −

mσv||

T0,σ
FM,σ,

∂FM,σ

∂µ
= − B0

T0,σ
FM,σ,

∇FM,σ =

[
∇ ln(n0,σ) +∇ ln(T0,σ)

(
mσv

2
||/2 + µB0

T0,σ
− 3

2

)
−∇ ln(B0)

µB0

T0,σ

]
FM,σ.

(2.7.2)

Furthermore, we neglect the contribution of magnetic field curvature to the perturbed
magnetic field, meaning that we will assume that B1,⊥ = ∇⊥ × (A1,||b) ≈ ∇⊥A1,|| × b. This
approximation is of no concern for the gyrokinetic equation (2.5.3), where the corresponding
terms were already eliminated. Although this approximation can be done on the Lagrangian
level in terms of the electromagnetic field equations, it results in the perturbed magnetic field
to be not divergence-free anymore [39]. Therefore, it will be interesting to test whether there
are scenarios in which retaining the corresponding terms in Ampère’s law will have an impact
on turbulence dynamics in the future.

Finally, we will use the approximation B∗ε,|| ≈ B0, meaning we will only retain the leading-
order term. We discussed already in section 2.2 that the Jacobian will be approximated to
not depend on the perturbed vector potential A1,|| not having a significant impact when
simulations are compared with those using a canonical model, which is by nature free of this
dependence. However, retaining the curvature term of B∗0,|| will also result in higher-order

corrections than the ones that are retained in the gyrokinetic equation (2.5.3). Therefore, we
assumeB∗ε,|| ≈ B0, which means we will approximate the phase-space Jacobian as J ≈ B0/mσ.

Therefore, the modified distribution function takes the form F0,σ ≈ FM,σB0/mσ.
Using these assumptions, the gyrokinetic Maxwell’s equation and the gyrokinetic Vlasov

equation simplify significantly. Starting from equation (2.5.3) the latter can be written as

∂F1,σ

∂t
=−

[
v||b0 + (vχ + v∇B + vc)

]
· ∇F1,σ +

µ

mσ
b0 · ∇B0

∂F1,σ

∂v||

− vχ ·

[
∇ ln(n0,σ) +∇ ln(T0,σ)

(
mσv

2
||/2 + µB0

T0,σ
− 3

2

)]
FM,σ

−
qσFM,σ

T0,σ

[
v||b0 + (vχ + v∇B + vc)

]
· ∇G{ψ1}

−
qσv||

c

FM,σ

T0,σ

∂G{A1,||}
∂t

− vE0 ·
(
∇F1,σ +

qσv||

c
∇G{A1,||}

)
− (v∇B + vc) ·

[
∇ ln(n0,σ) +∇ ln(T0,σ)

(
mσv

2
||/2 + µB0

T0,σ
− 3

2

)]
FM,σ.

(2.7.3)

The terms in the last row, representing the interaction between gyrokinetic and neoclassical
physics, are usually neglected. Furthermore, we can now express the gyrokinetic potentials
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in terms of B1,|| instead of A1,⊥ as

G {ψ1} ≡ G {φ1}+
G̃D

{
B1,||

}
qσ

,

G {χ1} = G {ψ1} −
v||

c
G
{
A1,||

}
= G {φ1} −

v||

c
G
{
A1,||

}
+
G̃D

{
B1,||

}
qσ

.

(2.7.4)

We can also see that all terms in the field equations (2.6.24), (2.6.25) and (2.6.27) that
depend on F0,σ and are linear in v|| will vanish upon integration over said coordinate. This
simplifies the parallel component of Ampère’s law the most, as it will remove all couplings to
the other field equations and read

∇2
⊥A1,|| = −8π2

∑
σ

qσ
mσc

∞∫
−∞

∞∫
0

v||K{B0F1,σ} dµdv||. (2.7.5)

On the other hand, Poisson’s equation will still be coupled with the perpendicular com-
ponent of Ampère’s law. They will constitute a system of the form(

C11 C12

C21 C22

)(
φ1

B1,||

)
=
∑
σ

8π2

mσ

∞∫
−∞

∞∫
0

(
qσK{B0F1,σ}
−K̃D {(B0F1,σ)}

)
dv||dµ. (2.7.6)

Here, the four operators from the left hand side are given by

C11φ1 = −∇2
⊥φ1 + 8π2

∑
σ

q2
σ

mσ

∞∫
−∞

∞∫
0

(
FM,σB0

T0,σ
φ1 −K

{
FM,σB0

T0,σ
G {φ1}

})
dv||dµ,

C12B1,|| = −8π2
∑
σ

qσ
mσ

∞∫
−∞

∞∫
0

[
K
{
FM,σB0

T0,σ
G̃D

{
B1,||

}}]
dv||dµ,

C21φ1 = 8π2
∑
σ

qσ
mσ

∞∫
−∞

dv||

∞∫
0

dµ

[
K̃D

{(
FM,σB0

T0,σ
G {φ1}

)}]
,

C22B1,|| = B1,|| + 8π2
∑
σ

1

mσ

∞∫
−∞

dv||

∞∫
0

dµ K̃D

{(
FM,σB0

T0,σ
G̃D

{
B1,||

})}
.

(2.7.7)

In all applications of this thesis dealing with turbulence on ion scales, the plasma is
assumed to be quasineutral, which means that the first term appearing in C11φ1 is neglected.
Furthermore, GENE-3D currently assumes B1,|| = 0, so that equation (2.7.6) reduces to an
equation for φ1 only.

Furthermore, it will be beneficial to express the particle distribution functions in terms of
that for the gyrocenters. If a scalar U is given in gyrocentre coordinates, the transformation
into the guiding centre frame is done using the pull-back operator T∗ defined in equation
(2.2.37). Considering only first-order corrections, the transformation is performed using the

36



2.7. CHOICE OF MAXWELLIAN BACKGROUND AND OTHER ASSUMPTIONS IN
GENE-3D

generating functions Gν1 derived in section 2.2.2 according to

U(Z) =T∗U ≈ U0 + U1 +

5∑
ν=0

Gν1
∂U0

∂Zν

≈U0 + U1 + +
1

B0

(
qσφ̃1 − µGD

{
B1,||

}) ∂U0

∂µ
+ Ã1,||

(
qσ
mσc

∂U0

∂v||
−
qσv||

B0c

∂U0

∂µ

)
,

(2.7.8)
where we only retained leading-order contributions of the generating functions. The trans-
formation into particle coordinates then follows according to

u(x,v) =

∫
δ (X + ρ− x)T∗U d

3X. (2.7.9)

If we use the assumptions B1,|| = 0 and F0,σ = FM,σ, this means that the perturbed particle
distribution function f1,σ can be expressed in terms of the gyrocentre distribution function as

f1,σ(x,v, t) =

∫
δ (X + ρ− x)F1,σ(X, v||, µ, t)d

3X

−
∫

δ (X + ρ− x)
qσFM,σ(X, v||, µ)

T0,σ(X)
[φ1(x, t)− G {φ1} (X, t)] d3X.

(2.7.10)

Finally, we note that GENE-3D can use an adiabatic electron model, in which the electrons
are assumed to be massless compared with the bulk ion species, me/mi → 0, making them
infinitely fast and causing a perfect force balance between a perturbed electric field parallel to
the field line and the parallel pressure gradient. This allows us to approximate the perturbed
electron density by a modified Boltzmann response

n1,e

n0,e
=

e

T0,e
(φ1(x, t)− 〈φ1〉FS (x, t)) , (2.7.11)

where we have introduced the flux-surface average [49]

〈u〉FS (x) =
∂

∂V

∫
V

u(x) dV ′ =
1

A(x)

∫
∂V (x)

u(x) dS, (2.7.12)

where V and A(x) = V ′(x) =
∫

∂V (x)

dS are the volume and surface area enclosed by a toroidal

surface at radial coordinate x. Assuming a quasineutral plasma in the electrostatic limit,
equation (2.7.6) then reduces to

e2n0,e

T0,e
(φ1 − 〈φ1〉FS) +

∑
σ 6=e

q2
σ

mσ

∞∫
−∞

∞∫
0

(
FM,σB0

T0,σ
φ1 −K

{
FM,σB0

T0,σ
G {φ1}

})
dv||dµ

=
∑
σ 6=e

qσ
mσ

∞∫
−∞

∞∫
0

K{B0F1,σ} dv||dµ.

(2.7.13)

On the other hand, one can also consider a short-wavelength limit, where the averages
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over ion gyromotion are assumed to vanish. In that case, the ion density can be approximated
as

n1,i

n0,i
= − qi

T0,i
φ1, (2.7.14)

So that the polarisation matrix C11 reduces to

C11φ1 ≈ −∇2
⊥φ1+4π

∑
σ 6=e

q2
σn0,σ

T0,σ
φ1+

8π2e2

me

∞∫
−∞

∞∫
0

(
FM,eB0

T0,e
φ1 −K

{
FM,eB0

T0,e
G {φ1}

})
dv||dµ.

(2.7.15)
The rest of the Poisson-Ampère system (2.7.5)-(2.7.6) can be kept, but the summation over
species is replaced by the electron contributions only.

Although both approximations can significantly ease the computational effort, as they
eliminate the necessity to resolve ion- and electron-timescales simultaneously, their range of
validity is very limited, especially the approximation of adiabatic electrons. Therefore, unless
explicitly stated otherwise, all particle species will be treated as being kinetic throughout this
work.

2.8 Induction field equation

One particular feature of symplectic gyrokinetic models is the explicit time derivative of the
perturbed vector potential in the right hand side of the gyrokinetic equation (2.5.3). For a
long time this issue was dealt with in GENE by introducing a new distribution function gσ =
F1,σ+

(
qσv||FM,σA1,||

) /
(T0,σc) and solving the corresponding gyrokinetic system for gσ instead

of F1,σ [50]. However, it was shown in [51] that such a scheme becomes numerically unstable in
nonlinear simulations at high plasma-β, although being stable linearly. An alternative scheme
was proposed in the same publication, similar to the one presented in [52]. The same approach
is also used in GENE-3D and will be presented in the following for a Maxwellian background
distribution, as the extension to other equilibrium distributions is straightforward.

We begin by defining the parallel inductive electric field as

Eind
|| ≡ −

1

c

∂A1,||

∂t
, (2.8.1)

and rewrite the gyrokinetic equation (2.7.3) into

∂F1,σ

∂t
= Rσ + qσv||

FM,σ

T0,σ
G
{
Eind
||

}
, (2.8.2)

where the term Rσ contains all the contributions to the right hand side except the one
accounting for the parallel inductive electric field. We can then take the partial time derivative
of Ampère’s law (2.7.5) and multiply by (−1/c), which will give a differential equation for
Eind
|| :

− 1

c
∇2
⊥
∂A1,||

∂t
= ∇2

⊥E
ind
|| = 8π2

∑
σ

qσ
mσc2

∞∫
−∞

∞∫
0

v||K
{
B0
∂F1,σ

∂t

}
dµdv||. (2.8.3)
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Inserting definition (2.8.2) into equation (2.8.3) eliminates the explicit coupling of the equation
to the particle distribution function F1,σ. Therefore, one obtains an equation that treats the
inductive electric field as an independent electromagnetic field:

∇2
⊥E

ind
|| −

8π2

c2

∑
σ

q2
σ

mσ

∞∫
−∞

∞∫
0

v2
||K

{
B0FM,σ

T0,σ
G
{
Eind
||

}}
dµdv||

= 8π2
∑
σ

qσ
mσc2

∞∫
−∞

∞∫
0

v||K{B0Rσ} dµdv||.

(2.8.4)

2.9 Chapter summary

The previous chapter introduced the foundation of gyrokinetics, which forms the underlying
theoretical framework for the remainder of this thesis. The general Lagrangian description of
the motion of an electrically charged particle in an electromagnetic field was used as a starting
point to derive a fully self-consistent set of equations describing the behaviour of a plasma
under the ordering assumptions of gyrokinetics, including finite magnetic compressional effects
as well as the possibility of an arbitrary background distribution function. Finally, several
approximations to the model, such as the choice of a Maxwellian background distribution
function or the choice of a simplified phase-space Jacobian, which are specific to GENE-3D,
have been introduced. The numerical discretisation and implementation into the code will be
given in the next chapter.
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Chapter 3

The GENE-3D code

This chapter discusses the inner mechanisms of the GENE-3D code, which was used for most
of the work presented in this thesis. Although it is an independent code, it can be seen as
the extension of the radially global GENE code [50] for non-axisymmetric magnetic fields, as
there is a large amount of legacy from one code to the other. The main difference between the
two is the treatment of one of the spatial coordinates. Since the global version of GENE deals
with tokamaks only, it exploits the inherent axisymmetry to use a Fourier representation in
the binormal direction, leading to a much more efficient numerical treatment. In contrast, as
GENE-3D is meant to simulate systems with broken axisymmetry, a real-space representation
of all spatial coordinates was considered the most efficient approach.

The first publication involving GENE-3D simulations was [29], shortly followed by [30],
which contains a description of the algorithm itself. At the beginning of this project, the code
was well-tested for adiabatic electron simulations, with only a few linear kinetic electron sim-
ulations being run in tokamaks and stellarators with an artificially large electron-to-ion mass
ratio. One major bottleneck at the time was that the code only solved purely electrostatic
systems. This shortcoming does not only limit the range of possible physical applications but
also introduces severe limitations on the maximum allowable numerical time step employed
due to the so-called ωH−mode [53], which can be avoided if the plasma-β is finite but small
enough not to have any impact on the physics.

Thus, one of the project’s first tasks was to upgrade GENE-3D to a code that can treat
electromagnetic effects stemming from magnetic flutter, retaining finite A1,|| fluctuations in
the simulation. While adding this capability, it was discovered that it is necessary for some
stellarator applications to use additional advanced finite-difference schemes to ensure numer-
ical stability, which will be explained below. Furthermore, a methodology was developed to
include effects arising through a finite B1,|| in global simulations at arbitrary wavelengths.
The algorithm has only been implemented in GENE by an external collaborator and has yet
to be in GENE-3D due to time limitations. Nevertheless, we will outline it in this work and
plan to implement this feature into GENE-3D in the near future.

The rest of this chapter is structured as follows: we introduce the coordinate system used
in GENE-3D in section 3.1, followed by the introduction of the normalisations and the corres-
ponding unitless equations that are solved by the code in section 3.2. Section 3.4 discusses the
collision operator model currently implemented in GENE-3D. The current grid structure and
corresponding boundary conditions of the phase-space variables in GENE-3D are outlined in
section 3.5, an essential prerequisite for understanding the construction of the gyroaverage
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and gyrodisk operators presented in sections 3.6 and 3.7, respectively. Further numerical
schemes, such as numerical differentiation and integration, specifics to global simulations,
as well as the introduction of mimetic finite-difference schemes, are discussed in section 3.8.
Finally, the upgrades to include electromagnetic effects are verified in section 3.9 in linear
as well as nonlinear electromagnetic tokamak simulations against the global version of the
GENE code. The details about the implementation of the upgrade, as well as the verification
tests, have been published in [34].

3.1 Choice of coordinates

The large spatial anisotropy of gyrokinetic fluctuations discussed in section 2.1 motivates
the choice of a coordinate system that accounts for an efficient numerical treatment of the
different spatial scales. A popular choice is a Clebsh-type coordinate system (ψ, α, θ∗). It can
be shown [13, 49] that the magnetic field can be expressed as

B0 = ∇ψ ×∇α. (3.1.1)

Here, the toroidal flux ψ serves as a radial coordinate. The field-line label α is defined via

α = q(ψ)θ∗ − φ, (3.1.2)

where φ is the geometrical toroidal angle and the poloidal PEST angle θ∗ [54] is used to serve
as a coordinate parallel to the magnetic field lines. Furthermore, q = q(ψ) is the so-called
safety factor and is defined via

q(ψ) =
dφ

dθ∗
. (3.1.3)

This choice saves several orders of magnitude in computing resources compared to using a
mesh that disregards the magnetic field structure. In GENE-3D, one modifies said coordinate
system further and introduces the coordinates

x = ρtora =

√
ψ

ψedge
a,

y = σBpCyα = σBpCy (q(x)θ∗ − φ) ,

z = σBpθ
∗.

(3.1.4)

Here, ψedge denotes the toroidal flux at the last closed flux-surface, and a =
√
ψedge/(πBaxis)

defines an effective minor radius. σBp is the sign of the poloidal magnetic field and ensures that
the covariant basis vector ez is always parallel to the magnetic field lines and Cy = x0/|q0|
has been introduced so that y is a length in contrast to the angle-like coordinate α. The
subscript ’0’ indicates that the quantity is evaluated at reference position x0. The magnetic
field can be written as

B0 = C(x)∇x×∇y, (3.1.5)

with

C(x) =
x

|q(x)|
Baxis

Cy
. (3.1.6)
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It then becomes obvious that the spatial Jacobian
√
g is given by

√
g = (∇x×∇y) · ∇z =

B0 · ∇z
C

, (3.1.7)

and the metric elements are given by

gij = ∇ui · ∇uj, (3.1.8)

where ui is any of the (x, y, z)−coordinates. We will further introduce the abbreviations

γ1 = gxxgyy − gxygyx,

γ2 = gxxgyz − gyxgxz,

γ3 = gxygyz − gyygxz.

(3.1.9)

One can then see that the outer vector products, related to the drift velocities in (2.4.7) can
be expressed as

1

B2
0

(B0 ×∇ξ) · ∇ =
C
B2

0

∂ξ

∂ui

(
[∇x×∇y]×∇ui

)
· ∇uj ∂

∂uj

=
1

C
gxigyj − gyigxj

γ1

∂ξ

∂ui

∂

∂uj
,

(3.1.10)

where ξ is representative of any scalar whose gradients enter in the drift velocities (2.4.7),
such as cφ0 in vE0 . In the same way, parallel derivatives can be expressed as

B0 · ∇ = C [∇x×∇y] · ∇ui ∂

∂ui
=
C
√
g

∂

∂z
. (3.1.11)

Using these relations, one can then express the gyrokinetic equation (2.7.3) in the (x, y, z)−coordinate
system, which will be expressed in normalised units in the next section.

3.2 Normalisations

Although equations (2.7.3)-(2.7.7) are correct in the limits that they are derived in, it is im-
practical to use them for numerical studies. While the main reason for that is that computers
can use unit-less quantities with magnitude of order one a lot easier than potentially very
large or small dimensioned quantities, it is also worth noting that certain quantities are only
relevant in relation to each other, such as the finite-size parameter ρ∗, introduced in section
2.1. Therefore, we will define appropriate normalisations for all physical quantities, which
will be split into a dimensioned reference part usually identifiable by an index ’ref’ and the
remaining dimensionless value, which will be marked with a hat.

The fundamental reference values required are the elementary charge e, a reference dens-
ity nref and temperature Tref , which are typically chosen to be the equilibrium electron
density and temperature in the centre of the radial domain, a reference mass mref , typic-
ally chosen to be the mass of the bulk ion species, a reference magnetic field strength Bref ,
which in GENE-3D is given by the magnetic field strength on the magnetic axis Baxis of
the device, and a reference lengthscale Lref , typically given by the effective minor radius
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a introduced in section 3.1. With this, one can then define a reference sound velocity as
cref =

√
Tref/mref and a reference Larmor frequency Ωref = eBref/(mrefc), where c is the

speed of light. From this, we then obtain a reference gyroradius ρref = cref/Ωref . With
these expressions, one can identify three derived parameters appearing in the normalised
gyrokinetic equation. They are the finite-size parameter ρ∗ref = ρref/a, the reference ra-
tio between thermodynamic and magnetic field pressure, also known as plasma-β, which is
given by β = βref = 8πnrefTref/B

2
ref and the normalised reference collision frequency νref =

πe4nrefLref/(2
2/3T 2

ref) ·
[
24− ln

(√
nref [1019/m3] · 1013/(Tref [keV] · 103)

)]
, where the expres-

sion in square brackets is the Coulomb logarithm ln Λ [55]. Furthermore, we will split the back-
ground density and temperature profiles into a unique reference value, a species-dependent
normalisation and a dimensionless profile according to n0,σ(x) = nref n̂0,σ(x0)n̂p,σ(x) and
T0,σ(x) = Tref T̂0,σ(x0)T̂p,σ(x).

Based on these definitions, we can write the space and time coordinates as

x = ρref x̂, y = ρref ŷ, z = ẑ, t =
Lref

cref
t̂, (3.2.1)

whereas the velocity-space coordinates will have a species-dependent normalisation of the
form

v|| = cref v̂th,σ(x0)v̂||, µ =
Tref

Bref
T̂0,σ(x0)µ̂, (3.2.2)

with v̂th,σ =
√

2T̂0,σ(x0)/m̂σ being the normalised thermal velocity of species σ. Quantities
related to the geometry are assumed to vary slowly in space so that they will be normalised
with respect to Lref :

γ1 = γ̂1, γ2 =
1

Lref
γ̂2, γ3 =

1

Lref
γ̂3,

√
g = Lref

√
ĝ, C = Bref Ĉ. (3.2.3)

The electromagnetic fields and potentials are given by

φ1 =
ρref

Lref

Tref

e
φ̂1, A1,|| =

ρref

Lref
BrefρrefÂ1,||, B1,|| =

ρref

Lref
BrefB̂1,||. (3.2.4)

Finally, the distribution functions F0,σ and F1,σ are normalised according to

F0,σ =
nref

c3
ref

n̂0,σ(x0)

v̂3
th,σ

F̂0,σ, F1,σ =
ρref

Lref

nref

c3
ref

n̂0,σ(x0)

v̂3
th,σ

F̂1,σ, (3.2.5)

where in this case, we choose a normalised Maxwellian as the background distribution function
so that

F̂0,σ = F̂M,σ =
n̂p,σ(x)(

πT̂p,σ(x)
)3/2

exp

(
−
v̂2
|| + µ̂B̂0(x)

T̂p,σ(x)

)
. (3.2.6)
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With this, the normalised gyrokinetic equation takes the form

∂F̂1,σ

∂t̂
=− v̂th,σ

Ĉ
√
ĝB̂0

v̂||Γ̂z,σ +
v̂th,σ

2

Ĉ
√
ĝB̂0

µ̂
∂B̂0

∂ẑ

∂F̂1,σ

∂v̂||

− T̂0,σ(x0)

q̂σ

2v̂2
|| + µ̂B̂0

B̂0

K̂xΓ̂x,σ

−

[
T̂0,σ(x0)

q̂σ

2v̂2
|| + µ̂B̂0

B̂0

K̂y − βref
p̂0

B̂2
0

T̂0,σ(x0)

q̂σ

v̂2
||

Ĉ
ω̂p,σ

]
Γ̂y,σ

− 1

Ĉ

[
ω̂n,σ + ω̂T,σ

(
v̂2
|| + µ̂B̂0

T̂p,σ

− 3

2

)]
F̂M,σ

∂

∂ŷ
G {χ̂1}

− 1

Ĉ

[{
F̂1,σ,G {χ̂1}

}
x,y

+
q̂σF̂M,σ

T̂0,σ(x0)T̂p,σ

{
G
{
ψ̂1

}
,G {χ̂1}

}
x,y

]

− Êr

Ĉ

(
∂F̂1,σ

∂ŷ
+
q̂σv̂||

v̂th,σ

F̂M,σ

T̂p,σ

∂

∂ŷ
G
{
Â1,||

})

+
q̂σv̂||
√

2√
m̂σT̂0,σ(x0)

F̂M,σ

T̂p,σ

G
{
Êind
||

}
+ C

[
F̂1,σ

]
.

(3.2.7)

Here, we have introduced the abbreviations

ω̂n,σ = −Lref
∂ ln(n̂p,σ)

∂x
, ω̂T,σ = −Lref

∂ ln(T̂p,σ)

∂x
,

ω̂p = −Lref
∂ ln(p̂0)

∂x
, Êr = −eLref

Tref

∂φ0

∂x

(3.2.8)

for the normalised gradient lengths of the equilibrium background fields. We additionally
have defined

K̂x = − 1

Ĉ
Lref

Bref

(
∂B0

∂y
+
γ2

γ1

∂B0

∂z

)
, K̂y = − 1

Ĉ
Lref

Bref

(
∂B0

∂x
− γ3

γ1

∂B0

∂z

)
, (3.2.9)

containing gradients of the equilibrium magnetic field. Furthermore, we have used

Γ̂i,σ =
∂F̂1,σ

∂x̂i
+

q̂σF̂M,σ

T̂0,σ(x0)T̂p,σ

∂

∂x̂i
G{ψ̂1} (3.2.10)

with the normalised potentials and fields

G
{
ψ̂1

}
= G

{
φ̂1

}
+
T̂0,σ(x0)

q̂σ
ĜD

{
B̂1,||

}
, G {χ̂1} = G

{
ψ̂1

}
− v̂th,σv̂||G

{
Â1,||

}
,

G
{
Êind
||

}
= − ∂

∂t̂
G
{
Â1,||

} (3.2.11)
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and ĜD = [Bref/(Tref T̂0,σ(x0))]GD being the normalised gyrodisk-integral operator. Lastly, we
have added the normalised collision operator C[F̂1,σ] to the right-hand side of the gyrokinetic
equation, which will be discussed in more detail in section 3.4. Finally, the nonlinear terms

Nσ = − 1

Ĉ

[{
F̂1,σ,G {χ̂1}

}
x,y

+
q̂σF̂M,σ

T̂0,σ(x0)T̂p,σ

{
G
{
ψ̂1

}
,G {χ̂1}

}
x,y

]
(3.2.12)

require the evaluation of Poisson brackets {., .}x,y, whose treatment will be discussed in section
3.8.5.

Equation (3.2.7) is then coupled self-consistently to the normalised field equations, which
can be shown to be of the form

∇̂2
⊥Â1,|| = −

βref

2

∑
σ

q̂σn̂0,σ(x0)v̂th,σπ

∞∫
0

∞∫
−∞

K
{
F̂1,σB̂0

}
v̂|| dv̂||dµ̂ (3.2.13)

for the parallel vector potential,

∇̂2
⊥Ê

ind
|| − βref

∑
σ

q̂2
σn̂0,σ(x0)

m̂σ
π

∞∫
0

∞∫
−∞

K

{
v̂2
||B̂0F̂M,σ

T̂p,σ

G
{
Êind
||

}}
dv̂||dµ̂

=
βref

2

∑
σ

q̂σn̂0,σ(x0)v̂th,σπ

∞∫
0

∞∫
−∞

K
{
R̂σB̂0

}
v̂|| dv̂||dµ̂

(3.2.14)

for its time derivative and(
Ĉ11 Ĉ12

Ĉ21 Ĉ22

)(
φ̂1

B̂1,||

)
=
∑
σ

n̂0,σ(x0)π

∞∫
−∞

∞∫
0

 q̂σK̂
{
B̂0F̂1,σ

}
−βref T̂0,σ(x0)

2 K̂D

{(
B̂0F̂1,σ

)} dv̂||dµ̂

(3.2.15)
for the electrostatic potential and the parallel magnetic field with

Ĉ11φ̂1 =
∑
σ

q̂2
σn̂0,σ(x0)π

∞∫
−∞

dv̂||

∞∫
0

dµ̂

[
F̂0,σB̂0

T̂0,σ(x0)T̂p,σ

φ̂1 − K̂

{
F̂0,σB̂0

T̂0,σ(x0)T̂p,σ

Ĝ
{
φ̂1

}}]
,

Ĉ12B̂1,|| = −
∑
σ

q̂σn̂0,σ(x0)π

∞∫
−∞

dv̂||

∞∫
0

dµ̂ K̂

{
F̂0,σB̂0

T̂p,σ

ĜD

{
B̂1,||

}}
,

Ĉ21φ̂1 =
βref

2

∑
σ

q̂σn̂0,σ(x0)π

∞∫
−∞

dv̂||

∞∫
0

dµ̂ K̂D

{
F̂0,σB̂0

T̂p,σ

Ĝ
{
φ̂1

}}
,

Ĉ22B̂1,|| =

B̂1,|| +
βref

2

∑
σ

n̂0,σ(x0)T̂0,σ(x0)π

∞∫
−∞

dv̂||

∞∫
0

dµ̂ K̂D

{
F̂0,σB̂0

T̂p,σ

ĜD

{
B̂1,||

}} .
(3.2.16)

At the current stage, parallel magnetic field fluctuations cannot be considered yet in

GENE-3D, which means that from now on, we will assume G
{
ψ̂1

}
→ G

{
φ̂1

}
and equation
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(3.2.15) will reduce to the electrostatic quasineutrality equation

∑
σ

q̂2
σn̂0,σ(x0)π

∞∫
−∞

dv̂||

∞∫
0

dµ̂

[
F̂0,σB̂0

T̂0,σ(x0)T̂p,σ

φ̂1 − K̂

{
F̂0,σB̂0

T̂0,σ(x0)T̂p,σ

Ĝ
{
φ̂1

}}]

=
∑
σ

n̂0,σ(x0)π

∞∫
−∞

∞∫
0

q̂σK̂
{
B̂0F̂1,σ

}
dv̂||dµ̂.

(3.2.17)

3.3 Macroscopic observables

Although the individual particle species’ distribution functions describe the entire dynamical
behaviour, the amount of information contained in their time evolution is too large for most
practical considerations. Instead, one often considers appropriate velocity space moments to
provide suitable quantities that can be compared against experimental measurements. These
moments are of the form

Mab,σ(x, t) =

∫
va|| v

b
⊥ f1,σ(x,v, t) d3v

=

∞∫
0

∞∫
−∞

2π∫
0

∫
δ (X− ρ− x)

(
2B0

mσ

)b
2

T ∗F1,σv
a
||µ

b
2
B0

mσ
d3Xdθdv||dµ

=π

∞∫
0

∞∫
−∞

K

{(
2B0

mσ

)b
2

+1

T ∗F1,σv
a
||µ

b
2

}
dv||dµ,

(3.3.1)

where we have used the relation between particle distribution function f1,σ and gyrocentre
distribution function F1,σ given by equation (2.7.10). With this expression, one can derive a
form of the moments in terms of the distribution function F1,σ and the electromagnetic fields,
as shown in [56]. Here, we give their final expression, using the normalisations introduced in
section 3.2:

Mab,σ(x, t) = ρ∗refnref n̂0,σc
a+b
ref v̂

a+b
th,σM̂ab,σ(x, t), (3.3.2)

with the dimensionless velocity space moment

M̂ab,σ(x, t) =π

∞∫
0

∞∫
−∞

K
{
B̂

b
2

+1

0 F̂1,σv̂
a
||µ̂

b
2

}
dv̂||dµ̂

− q̂σ
n̂p,σT̂

a+b
2

p,σ

T̂0,σT̂p,σ

Υ(a)Γ

(
b

2
+ 1

)
φ̂1

+
q̂σ

T̂0,σ

Υ(a)

∞∫
0

K

 n̂p,σB̂0T̂
a+b
2

p,σ

T̂ 2
p,σ

(
µ̂B̂0

T̂p,σ

)b
2

e
− µ̂B̂0
T̂p,σ G

{
φ̂1

} dµ̂.

(3.3.3)
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Here, Γ(b) =
∞∫
0

yb−1 exp(−y) dy is the Gamma function [57] and Υ(a) is defined as

Υ(a) =
1 + (−1)a

2
√
π

Γ

(
1 + a

2

)
=


1, a = 0

0, a odd
(a−1)!!√

2
a , a even

=


1, a = 0

0, a odd
1·3·...·(a−1)√

2
a , a even.

(3.3.4)
With this definition, it is easy to see that

n1,σ(x, t) = M00,σ(x, t),

j1,||,σ(x, t) = qσM10,σ(x, t).
(3.3.5)

Furthermore, one can introduce the radial turbulent heat and particle fluxes, defined as
[58]

Γσ(x, t) =

∫
vχ · ∇xf1,σ(x,v, t) d3v,

Qσ(x, t) =

∫
mσv

2

2
vχ · ∇xf1,σ(x,v, t) d3v.

(3.3.6)

Both will be of great interest when analysing nonlinear simulations in later chapters. Here,
vχ is the ∇χ-drift introduced in equation (2.4.7). Using equation (3.1.10), one can show that
the radial component of this drift is given by

vχ · ∇x = − 1

C

(
c
∂φ1

∂y
− v||

∂A1,||

∂y

)
. (3.3.7)

One can further split the fluxes into electrostatic and electromagnetic parts, which are dis-
tinguished based on the drift contribution of φ1 and A1,||, respectively. After some algebra,
one finds that

Γes,σ(x, t)

ΓGB
= − n̂0,σ

Ĉ(x)

(
∂φ̂1

∂ŷ
(x, t)M̂00,σ(x, t)

)
,

Γem,σ(x, t)

ΓGB
=
n̂0,σv̂th,σ

Ĉ(x)

(
∂Â1,||

∂ŷ
(x, t)M̂20,σ(x, t)

)
,

Qes,σ(x, t)

QGB
= − n̂0,σT̂0,σ

Ĉ(x)

[
∂φ̂1

∂ŷ
(x, t)

(
M̂20,σ(x, t)− M̂02,σ(x, t)

)]
,

Qem,σ(x, t)

QGB
=
n̂0,σT̂0,σv̂th,σ

Ĉ(x)

[
∂Â1,||

∂ŷ
(x, t)

(
M̂30,σ(x, t) + M̂12,σ(x, t)

)]
,

(3.3.8)

where the so-called Gyrobohm units

ΓGB = nrefcref(ρ
∗
ref)

2,

QGB = nrefTrefcref(ρ
∗
ref)

2
(3.3.9)

have been introduced for normalisation. As the fluxes are still functions of the position x,
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one often considers the flux-surface averages

Γσ(x, t) = 〈Γσ(x, t)〉FS =
1

A(x)

∫
Γσ(x, y, z, t)

√
g dydz,

Qσ(x, t) = 〈Qσ(x, t)〉FS =
1

A(x)

∫
Qσ(x, y, z, t)

√
g dydz,

(3.3.10)

where we have used definition (2.7.12) of the flux-surface average, together with the definition
of the area A(x) = V ′(x) =

∫ √
g dydz of the flux-surface.

3.4 The collision operator

High-temperature, low-density plasmas often exhibit negligible collisional effects. However,
under certain parameter regimes, such as detrapping of trapped particle modes and collisional
damping of zonal flows, collisional effects can become significant. A collision operator must
be added to the right hand side of equation (2.5.3). Different collision operators have been
developed in the literature. GENE-3D currently uses a linearised Landau-Boltzmann collision
operator [59], C[F1σ], which is also used in the global tokamak version of GENE. In our
linearised model, we neglect the equilibrium operator C[F0σ, F0σ′ ] between particle species σ
and σ′, and only retain the test particle operator, C[F1σ, F0σ′ ], and the field particle operator,
C[F0σ, F1σ′ ], which can be expressed as∑

σ′

(
C[F1σ, F0σ′ ] + C[F0σ, F1σ′ ]

)
. (3.4.1)

The test particle operator, given by

C[F1σ, F0σ′ ] =
∂

∂v
·
(
Dσσ′ ·

∂

∂v
−Rσσ′

)
F1σ ≡ CTσσ′ [F1σ] , (3.4.2)

is then transformed into gyrocentre coordinates, and the velocity derivatives are taken with
respect to v‖ and µ. The diffusion tensor, Dσσ′ , and dynamical friction, Rσσ′ , are defined as

Dσσ′ =
γσσ′nσ′Tσ′

m2
σmσ′

1

v3

[
1vΦ1(uσ′) + 3

vv

v2
Φ2(uσ′)

]
, Rσσ′ = −γσσ

′nσ′

mσmσ′

v

v3
Φ3(uσ′) . (3.4.3)

Here, the variable uσ′ ≡ v/vth,σ′ is the normalised velocity, where vth,σ′ =
√

2T0,σ′/mσ′ is the
thermal velocity of species σ′. Above, the shorthand notations

Φ1(uσ′) = uσ′ erf ′ (uσ′) +
(
2u2

σ′ − 1
)

erf (uσ′) , (3.4.4)

Φ2(uσ′) =
(
1− 2u2

σ′/3
)

erf (uσ′)− uσ′ erf ′ (uσ′) , (3.4.5)

Φ3(uσ′) = Φ1(uσ′) + 3Φ2 (uσ′) , (3.4.6)

γσσ′ = 2πq2
σq

2
σ′ ln Λ, (3.4.7)

have been introduced with the Coulomb logarithm ln Λ and the error function erf(uσ′) =
(2/
√
π)
∫ uσ′

0 exp
(
−u2

)
du.

As in GENE, the field particle operator is not evaluated explicitly but replaced by a
model operator to ensure that the collision operator as a whole conserves energy, particles,
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and momentum along the background magnetic field. In particular,

C[F0σ, F1σ′ ] =
v‖F0σ

mσI5,σσ′
δṖ‖σ′σ +

I1,σσ′u
2
σ′ − I2,σσ′

I3,σσ′I1,σσ′ − I2,σσ′I4,σσ′

F0σ

mσ
δĖσ′σ, (3.4.8)

where the collisional parallel momentum transfer δṖ‖σ′σ and energy transfer δĖσ′σ are given
by

δṖ‖σ′σ = −
∫
CTσ′σ[F1σ]mσ′v‖d

3v , δĖσ′σ = −
∫
CTσ′σ[F1σ]mσ′v

2d3v. (3.4.9)

The integrals I1,σσ′ , I2,σσ′ , I3,σσ′ , I4,σσ′ , and I5,σσ′ are evaluated as

I1,σσ′ =

∫
F0σd3v , I2,σσ′ =

∫
F0σu

2
σ′d

3v, (3.4.10)

I3σσ′ =

∫
v2F0σu

2
σ′d

3v, I4,σσ′ =

∫
v2F0σd3v, (3.4.11)

I5,σσ′ =

∫
v2
‖F0σd3v. (3.4.12)

3.5 Numerical grids and boundary conditions

Naturally, the coordinate system introduced in section 3.1 is discretised on a finite grid in
GENE-3D. These grids come with a set of boundary conditions specific to each coordinate.
Both the discretisation and the boundary conditions applied in GENE-3D will be introduced
in the following.

3.5.1 Binormal direction

GENE-3D employs periodic boundary conditions in the binormal direction given by the y-grid.
Considering equation (3.1.4), the periodicity condition

f(x, y + Ly, z) = f(x, y, z) (3.5.1)

is equivalent to

f(ρtor, φ+
2π

n0
, θ∗) = f(ρtor, φ, θ

∗), (3.5.2)

where Ly = 2πCy/n0 and n0 is a positive integer that describes the discrete toroidal symmetry
of the configuration at hand. If n0 = 1, the simulation domain will cover the entire area of a
given set of flux surfaces. However, such a large domain is prohibitively expensive to simulate
in many cases. In practice, one can exploit discrete symmetries intrinsic to the magnetic
configuration at hand. For example, since Wendelstein 7-X consists of five identical modules,
it has a five-fold symmetry. Hence, any simulation involving a W7-X-based geometry can be
run with n0 being a multiple of 5.

3.5.2 Parallel direction

The spatial direction parallel to the magnetic field, represented in GENE-3D by the z-
coordinate, requires a more delicate treatment of its boundary. If again expressed in the
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(ρtor, φ, θ
∗)-coordinate system, the parallel boundary condition reads

f(ρtor, φ, θ
∗ + 2π) = f(ρtor, φ, θ

∗). (3.5.3)

However, it is easy to see from equation (3.1.4) that this implies for the flux-coordinate system
that

f(x, y + 2πCyq(x), z + 2π) = f(x, y, z). (3.5.4)

These so-called ”twist-and-shift” boundary conditions [60] impose a coupling between the
y- and the z-grid. Since the shifted position in the binormal direction will not necessarily
coincide with points on the grid, GENE-3D currently uses a third-order Catmull-Rom spline
interpolation to overcome this issue.

3.5.3 Radial direction

At the current stage, GENE-3D can use Dirichlet or periodic boundary conditions in the
radial direction. In global simulations, the former are employed, implying that turbulence is
modelled to decay towards the domain boundaries with

f(x ≤ x0 −
Lx

2
, y, z) = f(x ≥ x0 +

Lx

2
, y, z) = 0. (3.5.5)

In the case of radially local simulations, one has the choice between Dirichlet and periodic
boundary conditions. The latter is the standard assumption in most flux-tube codes as well
since almost all background quantities are assumed to be constant over the entire radial
domain in this direction. However, in order to include the effect of magnetic shear, one
linearises the safety factor q appearing in the twist-and-shift boundary condition (3.5.4):

q(x) ≈ q(x0) +
dq

dx
(x0)(x− x0) = q0

(
1 + ŝ

x− x0

x0

)
, (3.5.6)

with ŝ = x0(dq/dx) being the magnetic shear. In this case, the twist-and-shift condition is
only compatible with radial periodicity if the shift in the y-direction will be periodic in the
radial direction as well, which is equivalent to

2πCy
q0

x0
ŝLx = 2πŝLx = NLy, N ∈ N. (3.5.7)

This quantisation can make local simulations of low-shear geometries prohibitively expensive,
as the radial box sizes can become much larger than the actual machine size itself.

Alternatively, one can use Dirichlet boundary conditions in this context to circumvent
the restriction on Lx. In this case, no periodicity in the radial direction is required for the
binormal shift given by equation (3.5.4) so that the linearisation given in equation (3.5.6) can
be performed without introducing the quantisation of Lx. However, this alleviation comes at
the cost of introducing numerical sources and buffer zones, which will be discussed in section
3.8.6, just like in a global simulation.

3.5.4 Velocity directions

In gyrokinetic theory, it is assumed that turbulent fluctuations vanish for infinitely large
velocities. Hence, zero-Dirichlet boundary conditions are employed for the grids in the velocity
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space parallel to the magnetic field lines v||− and the magnetic moment µ. The former is
partitioned on an equidistant grid. In contrast, multiple grids are available for the latter,
such as equidistant partitioning or a partitioning based on a Gauss quadrature scheme with
Gauss-Laguerre weights and knots [57]. The latter is the default option, as derivatives in this
direction are only calculated if collisional effects are retained. Therefore, it is reasonable to
choose a grid that is optimised for numerical integration.

3.6 Implementation of the gyroaverage operator

Several terms in the gyrokinetic equation (2.5.3) involve the evaluation of gyroaveraged quant-
ities of the form

G {u} (X) =
1

2π

2π∫
0

u(X + ρ) dΘ, (3.6.1)

requiring high-accuracy approximations of numerical integrals. One particular challenge is
that the calculation requires knowledge of the quantity of interest at positions that will not
necessarily coincide with numerical grid points. GENE-3D deals with this issue by employing
a finite-element representation

u (x(X + ρ), y(X + ρ), z(X + ρ)) ≈
nx,ny∑

i,j

uij(z(X)) Λij (x(X + ρ), y(X + ρ)) (3.6.2)

that can then be used easily for interpolation between grid points. Here, uij denotes the finite-
element coefficient corresponding to its respective basis function Λij, and nx and ny denote
the number of grid points in the x- and y-direction, respectively. Furthermore, we assumed
that the function u will only vary slowly in z, in accordance with the gyrokinetic ordering, so
that its variation along this direction over the course of a gyroradius can be neglected.

In order to ease the computational effort, the basis functions should have compact sup-
port, and the finite-element coefficients should coincide with the values of the function or its
derivatives evaluated on the numerical grid. Alternative approaches, such as using a spline
basis, require the additional solution of a potentially large linear system.

In GENE-3D, a representation with third-order Hermite polynomials with compact sup-
port is chosen, which takes the form

u(x, y, z) ≈
nx,ny∑

i,j

(
H0,0

ij (x, y) +H1,0
ij (x, y)∂x +H0,1

ij (x, y)∂y +H1,1
ij (x, y)∂x,y

)
uij(z), (3.6.3)

inside the support and zero outside, where the operator ∂n,muij represents the n-th derivative
in the x- and the m-th derivative in the y-direction of the function u at (xi, yj). The functions
Hn,m

ij are defined in the following way:

H0,0
ij = (1− σxδx)2 (1 + 2σxδx) (1− σyδy)2 (1 + 2σyδy) ,

H1,0
ij =∆x (1− σxδx)2 (1− σyδy)2 (1 + 2σyδy) ,

H0,1
ij =∆y (1− σxδx)2 (1− σyδy)2 (1 + 2σxδx) ,

H1,1
ij =∆x∆y (1− σxδx)2 (1− σyδy)2 .

(3.6.4)

51



3.6. IMPLEMENTATION OF THE GYROAVERAGE OPERATOR

Here, ∆x = x−xi, δx = ∆x/(xi+1−xi), and σx = sgn(x−xi). These quantities are calculated
analogously for y. Introducing the vector representation u = {uij}, the function u is then
approximated as

u(x, y, z) ≈ Λ(x, y)u(z) =
(
H0,0(x, y) + H1,0(x, y)Dx + H0,1(x, y)Dy + H1,1(x, y)Dx,y

)
·u(z),

(3.6.5)
where Dn,m are numerical approximations of the n-th and m-th derivative in the x- and y-
direction, respectively, which in GENE-3D is chosen to be through a central finite-difference
scheme.

In a similar manner, the gyroaverage of the function u, evaluated at discrete points Xkl =
(X1

k , X
2
l ), can now be approximated as

{G {u(X + ρ)} (Xkl)}k,l ≈
1

2π

2π∫
0

Λ (x(X + ρ(Θ)), y(X + ρ(Θ))) dΘ u(z) ≡ G · u. (3.6.6)

The last step is to map the function values at positions (X + ρ) to the field-aligned (x, y)−grid
used in the code in order to insert them into the finite element basis. Since the mapping
between the two systems is done numerically and only known at a finite number of positions
{Xn}n, an exact mapping of the gyrorings would be very demanding computationally.

As a more practical approach, the mapping between the two coordinate systems is linear-
ised under the assumption of small gyroradii as

x(X + ρ(Θ)) ≈ x(X) + ρ(Θ) · ∇x+O(ρ2),

y(X + ρ(Θ)) ≈ y(X) + ρ(Θ) · ∇y +O(ρ2).
(3.6.7)

To do so, one can introduce the orthonormal basis

e1 =
∇x
||∇x||

=
∇x√
gxx

,

e3 = b,

e2 = e3 × e1 =
∇x×∇y
√
γ1

× ∇x√
gxx

=
1
√
γ1

(√
gxx∇y − gxy

√
gxx
∇x
)
,

(3.6.8)

so that ρ can be written as ρ(Θ) = ρ (e1 cos(Θ)− e2 sin(Θ)), with ρ =
√

2µB0/mσ

/
Ωσ =√

2µ̂m̂σT̂0,σ(x0)/(q̂2
σB̂0) ρref .

The particle position can then be expressed as

x(X + ρ(Θ)) ≈ x(X) + ρ(Θ) · ∇x = x(X) + ρ
√
gxx cos(Θ),

y(X + ρ(Θ)) ≈ y(X) + ρ(Θ) · ∇y = y(X) +
ρ√
gxx

(gxy cos(Θ)−√γ1 sin(Θ)) .
(3.6.9)

We remark that, as discussed in [58], the linearisation used in equation (3.6.9) breaks down
close to the magnetic axis. A solution for tokamak scenarios, using a higher order approach,
has already been provided in [58] and will be explored in the future for GENE-3D.
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As shown in section 2.6, one also needs to evaluate the operator

K{u}(x) =
1

2π

2π∫
0

∫
δ (X− x + ρ) u(X) d3XdΘ, (3.6.10)

when computing the electromagnetic fields. For a discrete point xkl = (x1
k, x

2
l ), the operator

can be approximated by the finite element basis as

K{u}(xkl) ≈
1

2π

∑
i,j

uij

2π∫
0

∫
δ (X− xkl + ρ) Λij(X) dΘ =

1

2π

∑
i,j

uij

2π∫
0

Λij(xkl − ρ) dΘ.

(3.6.11)
Since the basis functions Λij(x) are the same except for a shift of the support region, one
could also write them by introducing the function

Λ0(x− xij) ≡ Λij(x). (3.6.12)

This allows us to write the expression for K{u} as

K{u}(xkl) ≈
1

2π

∑
i,j

uij

2π∫
0

Λ0(xkl − ρ− xij) dΘ

=
1

2π

∑
i,j

uij

2π∫
0

Λ0(ρ + xij − xkl) dΘ

=
1

2π

∑
i,j

uij

2π∫
0

Λkl(ρ + xij) dΘ

=
∑
i,j

Gij,kl uij

=
∑
i,j

G†kl,ij uij,

(3.6.13)

Where Gkl,ij is the (kl, ij)-element of the gyromatrix G defined in equation (3.6.6). Therefore,
if we adopt a matrix-vector notation again, we can see that the pull-back gyroaverage can be
expressed in terms of the gyromatrices via

{K{u}(xkl)}kl = K · u = G† · u. (3.6.14)

Doing so ensures that the approximations of equations (3.2.14) and (3.2.17) will be symmet-
ric.

3.7 Construction of the gyrodisk operators

While the idea of introducing gyrodisk-operators into the analytical form of the gyrokinetic
equation has already been proposed in [61, 62], the actual implementation in global gyrokinetic
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codes has always relied on using a long-wavelength or Padé-approximation. Only recently, an
approach valid at arbitrary wavelengths has been implemented in the GEM code [63] using
pseudo-spectral methods. In the following, we will discuss an implementation that works
entirely in real-space, especially suited for Eulerian codes, as the grid structure of the phase-
space representation enables us to represent the disk integrals as matrix-vector products.
Although not yet implemented in GENE-3D, the model has been tested successfully in GENE
[64] and will be used to include magnetic compression effects in GENE-3D in the future.

We begin by considering the linearised metric (3.6.9) introduced in section 3.6. We can see
that the particle orbits form a sheared ellipse shape if represented in the coordinate system
of GENE-3D. Defining x′ = x(X + ρ)− x(X) and y′ = y(X + ρ)− y(X), one can derive the
polar representation of the particle orbit as

r =
√
x′2 + y′2,

ϑ = arctan

(
y′

x′

)
,

(3.7.1)

where the polar angle ϑ is not to be confused with the gyroangle Θ. The transformation of
the infinitesimal surface element then reads as

dx′dy′ =
r(ϑ)
√
γ1
drdϑ, (3.7.2)

where the factor 1/
√
γ1 appears since the (x, y)-coordinate system used in GENE-3D is non-

Cartesian. We now wish to express the spatial integral in terms of the Larmor radius ρ and
the gyroangle Θ in order to link it to the gyroaverage. It is straightforward to show that

∂r

∂ρ
=

√
gxx cos2(Θ) +

[
1√
gxx

(gxy cos(Θ)−√γ1 sin(Θ))

]2

,

∂ϑ

∂Θ
=

1

1 +
(
gxy

gxx −
√
γ1
gxx tan(Θ)

)2

√
γ1

gxx

1

cos2(Θ)
,

(3.7.3)

where a minus sign in the latter equation is absent due to the orientation of the gyroangle Θ
as defined in GENE. As ϑ does not depend on ρ, the off-diagonal contribution to the Jacobian
vanished, and the transformation to the new coordinate system reads thus

r(ϑ)
√
γ1
drdϑ =

(
gxx cos2(Θ) +

[
1√
gxx

(
gxy cos(Θ)−√γ1 sin(Θ)

)]2
)

1 +
(
gxy

gxx −
√
γ1
gxx tan(Θ)

)2

1

gxx

1

cos2(Θ)
ρdρdΘ

=ρ dρ dΘ.

(3.7.4)

Therefore, although the gyro-orbits have an elliptical shape in GENE-3D, the integration over
a gyrodisk is performed in the same way as if the orbits were circular. Note that this is not
necessarily true if a different representation of the particle position than (3.6.9) is chosen.

As a final step, we can express the Larmor radius ρ as a function of the phase-space
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coordinate µ:
ρ2 = ρ2(X, µ)

=
v2
⊥(X, µ)

Ω2(X)
= 2µ

c

qΩ(X)

⇒ρdρ =
1

2
d(ρ2) =

c

qΩ(X)
dµ.

(3.7.5)

With this, we can then bring the gyrodisk-integral into the final form

GD{u}(X, v||, µ, t) =
qσΩσ

2πc

2π∫
0

ρ∫
0

u(X + ρ′(Θ), v||, µ, t) ρ
′ dρ′dΘ

=
1

2π

2π∫
0

µ∫
0

u(X + ρ′(Θ), v||, µ, t) dµ
′dΘ

=

µ∫
0

Gµ′ {u} dµ′,

(3.7.6)

where Gµ′{·} represents the gyroaverage for a Larmor radius determined by µ′. It is important
to note that the integral over µ′ is still done with u being evaluated at fixed µ as the disk
integral is only an integral in position space.

As for the calculation of the gyroaverage matrices in section 3.6, one can then introduce
a finite-element basis u(x, y, z) ≈ Λ(x, y)u(z), so that one can describe the gyrodisk-integral
as a matrix-vector product between the matrix GD and the finite-element coefficients u.
In particular, for a given Larmor radius associated with a given magnetic moment µ, the
gyrodisk-integral matrix GD,µ is given by

GD,µ =

µ∫
0

G
{
Λ(x(X + ρ(µ′,Θ)), y(X + ρ(µ′,Θ)))

}
dµ′

≈
m∑

m′=1

G {Λ(x(X + ρ(µm′ ,Θ)), y(X + ρ(µm′ ,Θ))) } wµ(m′)

(3.7.7)

for appropriate quadrature points and weights m′ and wµ(m′). In analogy to the gyromatrices
in section 3.6, one can make use of the symmetry properties of the finite-element basis to show
that the pull-back gyrodisk-integral KD,µ can be expressed as KD,µ = GD,µ

†.
The model for this approach has been developed throughout this thesis and adapted for a

Fourier representation in the binormal direction, which has then been implemented in GENE
by Gabriele Merlo (The University of Texas at Austin). In order to test the validity of this
model, it has been compared in flux-tube simulations against the fully local version of the
code, where the gyrodisks are represented by Bessel functions. In figure 3.1, the linear growth
rates and mode frequencies between the fully local and the so-called LILO version of the code,
in which the global algorithm is used, but radial variations of the background are neglected,
are compared for a CBC-like parameter setup (see section 3.9 for more details), showing
excellent agreement, indicating that the prescribed approach is implemented correctly.
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Figure 3.1: Linear growth rates (left) and real frequencies (right) of the n0 = 19 mode
(ky ' 0.3) for local simulations with CBC-like parameters as a function of β. Blue crosses
(resp. red circles) show the results obtained by the LILO (resp. local) version of GENE. For
comparison, results neglecting B1,|| are also shown via green stars (resp. orange squares) for
the LILO version (resp. local).

3.8 Further numerical schemes

The normalised gyrokinetic Vlasov-Maxwell equations given in section 3.2 form an integro-
differential system that requires appropriate methods of discretising derivatives and integrals.
The following sections will briefly describe the methods employed in GENE-3D.

3.8.1 Time-stepping scheme

In order to evolve the distribution function F1,σ in time according to equation

∂F

∂t
= V(t, F ), (3.8.1)

with the right hand side operator given by equation (3.2.7), GENE-3D uses explicit Runge-
Kutta methods. The default option is a fourth-order scheme (RK4),

Fn+1 = Fn +
∆tn

6
(k1 + k2 + k3 + k4) , (3.8.2)
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with tn+1 = tn + ∆tn, Fn = F (t = tn). The coefficients ki are calculated according to

k1 = V(tn, Fn),

k2 = V
(
tn +

∆tn
2
, Fn +

k1∆tn
2

)
,

k3 = V
(
tn +

∆tn
2
, Fn +

k2∆tn
2

)
,

k4 = V (tn + ∆tn, Fn + k3∆tn) .

(3.8.3)

As in all explicit time integrators, a CFL-like limit on the time step ∆tn is required to
guarantee the numerical stability of the algorithm. For linear simulations, an estimate is based
on an upper limit of the normalised advection velocities in each direction given in equation
(3.2.7). The time step is then chosen according to the stability region of the underlying
Runge-Kutta scheme.

While the numerical time step is held constant in linear simulations, adjusting it for each
step in nonlinear runs is necessary. The reason is the nonlinear ∇χ-drift, acting as a time-
dependent advection velocity. To this end, a nonlinear time step adaptation is performed
according to

∆tmax = sc min(∆tlin,∆tNL), (3.8.4)

where ∆tlin is the linear time step calculated at the beginning and ∆tNL is the time step limit
under the assumption that there is only the nonlinear ∇χ-drift. As the superposition of these
two limits is a rather crude approximation, a safety factor sc, usually set to ≈ 0.5, is also
introduced. Additionally, it was reported in [65] that adapting the time step at each iteration
will lead to numerical artefacts if the time step is determined via the nonlinear estimate.
Therefore, it is only changed if 0.8 ≤ ∆t/∆tmax ≤ 1.2, leading to much smoother simulations.

3.8.2 Phase-space derivatives

GENE-3D uses a real-space representation of all phase-space coordinates. As such, a finite-
difference approach is used, with a fourth-order central-difference scheme

∂f

∂u
≈ f(ui−2)− 8f(ui−1) + 8f(ui+1)− f(ui+2)

12∆u
(3.8.5)

shown to be the best compromise between computational cost and numerical accuracy. Here,
u is any of the phase-space variables x, y, z or v||, as no explicit calculation of derivatives in
µ is required.

In order to avoid unphysical high-wavenumber modes that arise due to the central-
difference approximations acting on the distribution function F1,σ, one can introduce nu-
merical hyperdiffusion terms to the right hand side of the gyrokinetic equation to dampen
these modes. The hyperdiffusion terms in the x, y, z and v|| direction are all fourth-order
accurate with second-order stencils, meaning that they are of the form

Hui = ηu
−F1,σ(ui−2) + F1,σ(ui−1)− 6F1,σ(ui) + 4F1,σ(ui+1)− F1,σ(ui−2)

16∆u
, (3.8.6)

where the damping amplitude ηu can be set for each coordinate individually as input by the
user.
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3.8.3 Phase-space integrals

While a standard trapezoidal rule

Lu/2∫
−Lu/2

f(u) du ≈
∑

i

f(ui)∆u (3.8.7)

is employed for integration over any spatial direction, an extended Simpson’s rule [66] is used
in the v||−direction. In the µ−direction, a Gaussian quadrature scheme is used so that the
Gauss-Laguerre knots are used. However, alternative quadrature schemes are also possible in
accordance with the different choices of the underlying grid.

3.8.4 The necessity for conservative finite-difference methods

As mentioned in section 3.5, multiple choices are available for the grid used in the µ-direction.
It was additionally stated that the default option is to use Gauss-Laguerre quadrature points,
as they have proven to be the most efficient option for integration in GENE due to an expected
exponential decay of functions in this coordinate. However, it turns out that for many full-
flux-surface or global simulations, the polarisation matrix C11 defined in equation (3.2.17)
becomes inaccurate, which results in discontinuities in the electrostatic potential along the
magnetic field line, as can be seen in figure 3.2, ultimately leading to the simulations becoming
unstable.

Figure 3.2: Electrostatic potential at t=0, averaged over all field lines, for a typical full-flux-
surface simulation with kinetic electrons, using the full polarisation model.

We have found that using an equidistant grid alleviates this issue, at the cost of using a
significantly higher resolution in µ up to a point which impacts performance [67]. It was
found that while the polarisation matrix can become inaccurate, computing the right hand
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side of the gyrokinetic equation (3.2.7) seems to be well-behaved under the given quadrature
rule. While investigations into alternative grid types are still ongoing, a replacement of the
full polarisation operator C11 by either a long-wavelength

C11,LWA φ1 = −∇⊥ ·

[∑
σ

(
mσn0,σ

B2
0

)
∇⊥φ1

]
(3.8.8)

or Padé approximation

C11,Padé φ1 = −

(
1−∇⊥ ·

[∑
σ

(
T0,σmσ

q2
σB

2
0

)
∇⊥

])−1

∇⊥ ·

[∑
σ

(
mσn0,σ

B2
0

)
∇⊥φ1

]
(3.8.9)

was implemented as a practical solution. The resulting Laplacian-like operators, however,
need to be discretised with great care. The same applies to the Laplacian employed in
Ampère’s law and the induction equation, which we will use to explain the underlying chal-
lenge.

The Laplacian operator can be written in a coordinate-independent version as

∇2u =
1
√
g

∂

∂xi

(
gij
√
g
∂u

∂xj

)
, (3.8.10)

where
√
g is the Jacobain and gij are the metric coefficients. Applying the chain rule gives

∇2u =
1
√
g

(
∂

∂xi
√
ggij

)
∂u

∂xj
+ gij

∂2u

∂xi∂xj
.

Similar to what was done in GENE, the earliest implementation in GENE-3D assumed that
the variation of the metric elements and the Jacobian is much smaller than that of the function
u itself, so the first term on the right hand side could be dropped. Furthermore, only the
symmetric part of the approximate Laplacian was retained for the operators to still have
purely real eigenvalues. The operator that has, therefore, been used is of the form[

∇2 − 1
√
g

(
∂

∂xi
√
ggij

)
∂

∂xj

]
symm

u, (3.8.11)

which might be interpreted as something close to an advection-diffusion operator rather than
a purely elliptical Laplacian, which might be dominated by the term containing first deriv-
atives of u if the derivatives of the metric elements become large, an issue that has already
been known for tokamak simulations close to the magnetic axis or small devices due to the
singularity of the chosen coordinate system at the radial origin [68].

Therefore, a numerical approximation of the Laplacian was implemented throughout this
project that does not make any assumptions about the variation of the metric elements
while still preserving the self-adjointness of the operator. The solution for that is to use
finite-difference methods on staggered grids. In the following, we will explain the idea for a
one-dimensional case using an equidistant grid. A more complete introduction can be found
in [69].
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Consider the differential diffusion equation

− d

dx

(
K(x)

du

dx

)
= f(x), x ∈ (a, b), (3.8.12)

with boundary conditions being discussed later. A different formulation of this is given by

− div (K(x)grad (u)) = f(x), x ∈ (a, b). (3.8.13)

Assuming the matrix K is symmetric positive definite, the entire operator will be symmetric
positive definite. That is, introducing the inner product

(u, v)H =

b∫
a

u(x)v(x) dx,

and considering functions that are zero at the boundary, we have

(−div (Kgrad (u)) , v)H = (u,−div (Kgrad (v)))H

and

(−div (Kgrad (u)) , u)H ≥ 0.

This can be seen by the identity

b∫
a

grad (u) ·A dx+

b∫
a

udiv (A) dx = 0, (3.8.14)

if u is zero at the boundary.
If one, therefore, constructs finite-difference operators Dx and Dx to approximate the

operators grad and div, respectively, in such a way that they fulfil the discrete analogue of
equation (3.8.14), the matrix

−DxKDx

will be symmetric positive given that K is symmetric positive definite. As was shown in
[69], the way to achieve this is to define the operator Dx as a finite-difference operator that
approximates the first derivative at half-cell positions. That is, we want

Dx : u(xi)→
∂u

∂x
|x=xi+1/2

(3.8.15)

to our desired order of accuracy. In order to approximate the diffusive flow K(x)∂u/∂x
correctly, the matrix K, representing the diffusion coefficient, should be given by

Kij = K(xi+1/2) δij. (3.8.16)

The ’derived’ operator Dx, constituting the approximation of the divergence, is then chosen
in such a way that it takes the function values at half-cell positions and maps them back to
the original grid, that is

Dx : v(xi+1/2)→ ∂v

∂x
|x=xi . (3.8.17)
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While the rigorous method of constructing Dx was presented in [69], we note that intuitively
it makes sense that it is given by

Dx = −DT
x

in order to make the composite operator symmetric. As can be shown easily, a fourth-order
accurate approximation of the gradient at xi+1/2 using a finite-difference scheme is given by

(Dxu)i+1/2 =
1

24∆x
(ui−1 − 27ui + 27ui+1 − ui+2) , (3.8.18)

which means that the divergence operator is given by

(Dxv)i = − 1

24∆x

(
−vi−3/2 + 27vi−1/2 − 27vi+1/2 + vi+3/2

)
. (3.8.19)

It becomes apparent that, in order to calculate the Laplacian close to and at the grid bound-
aries, one needs information about the function values outside of the domain. In GENE-3D,
we assume that all functions of interest are periodic or zero beyond the domain boundaries.

If our domain is from [x1, xN−1], so that x0 and xN are the boundary points, then we see
that the Laplacian at our domain grids is given by

(DxDxu)1 =
1

24∆x

(
(Dxu)−1/2 + 27(Dxu)1/2 − (Dxu)3/2 + (Dxu)5/2

)
,

(DxDxu)N−1 =
1

24∆x

(
(Dxu)N−5/2 + 27(Dxu)N−3/2 − (Dxu)N−1/2 + (Dxu)N+1/2

)
.

(3.8.20)

It becomes apparent that we need to calculate gradients at half-cells that are no longer in our
domain. From equation (3.8.18), we see that we require knowledge of the ghost-cells u−2, u−1

and uN+1, which are determined through the choice of boundary conditions as discussed in
section 3.5.

An extension of this formalism to two dimensions was given in [70] and [71] for a second-
and fourth-order accurate algorithm, respectively. Both stencils are implemented in GENE-
3D, where the fourth-order accurate stencil is used as default and reads

(Dxu)i+1/2,j+1/2 =
1

384∆x


243 (Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j)
+27 (Ti,j+2 + Ti,j−1 − Ti+1,j+2 − Ti+1,j−1)
+9 (Ti−1,j+1 + Ti−1,j − Ti+2,j+1 − Ti+2,j)
+ (Ti+2,j+2 + Ti+2,j−1 − Ti−1,j+2 − Ti−1,j−1)

 ,

(Dyu)i+1/2,j+1/2 =
1

384∆x


243 (Ti+1,j+1 − Ti+1,j + Ti,j+1 − Ti,j)
−9 (Ti,j+2 − Ti,j−1 + Ti+1,j+2 − Ti+1,j−1)
−27 (Ti−1,j+1 − Ti−1,j + Ti+2,j+1 − Ti+2,j)
+ (Ti+2,j+2 − Ti+2,j−1 + Ti−1,j+2 − Ti−1,j−1)

 .
(3.8.21)

The divergence operators are given by Dx = −DT
x and Dy = −DT

y , respectively, and the
Laplacian is then

∇2
⊥u ≈

1
√
g

[Dx (
√
ggxxDxu+

√
ggxyDyu) +Dy (

√
ggyyDyu+

√
ggxyDxu)] . (3.8.22)
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The respective field equations are then multiplied by
√
g in order to make the operator

symmetric.
As a result, in contrast to the standard Laplacian, this symmetric formulation produces

reasonable solutions of the field equations, as shown in figure 3.3, resulting in numerically
stable simulations.

Figure 3.3: Left: the same electrostatic potential as in figure 3.2, as a function of y and z;
right: electrostatic potential at t=0 of the same simulation setup, but with a mimetic Padé
approximation of the polarisation matrix.

3.8.5 Treatment of the nonlinear terms

As already mentioned in section 3.2, the nonlinear interaction between distribution functions
and electromagnetic fields can be expressed in terms of Poisson brackets

{F,G}x,y =
∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x
. (3.8.23)

However, simple evaluation of the derivatives via finite-difference approximation results in
numerically unstable simulations. It was shown in [72] that such an approach does not
conserve the system’s free energy. In the same paper, an alternative scheme was proposed,
numerically satisfying∫

{F,G}x,y dxdy = 0,

∫
F {F,G}x,y dxdy = 0,

∫
G {F,G}x,y dxdy = 0,

(3.8.24)
and conserving free energy. The same scheme has been implemented in GENE-3D and uses
a finite-difference approximation of

{F,G}x,y =
1

3

[
{F,G}x,y +

∂

∂x

(
F
∂G

∂y
−G∂F

∂y

)
+

∂

∂y

(
G
∂F

∂x
− F ∂G

∂x

)]
. (3.8.25)
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3.8.6 Sources and sinks

In a nonlinear setup, turbulent heat and particle fluxes arise in the system, which naturally
causes the transport of particle densities and temperatures, especially in the radial direction.
If periodicity of the radial domain is assumed, any quantity of interest leaving through one
side of the domain will automatically reenter through the other side. Thus, the radial average
of particle densities and temperatures will remain constant. This is no longer the case if
Dirichlet boundary conditions are employed. In this case, the system naturally tries to relax
the profiles to a sub-critical state where turbulence is suppressed, which has to be avoided
in gradient-driven simulations, as they aim to calculate turbulent quantities for a fixed set of
profiles.

In order to combat this relaxation, numerical heat and particle sources are added to the
right hand side of the gyrokinetic equation. GENE-3D uses sources of the form

SP,σ = −κP

〈
FM,σ(X, |v|||, µ)

〉
FS∑

σ

〈∫
FM,σ(X, |v|||, µ) d3v

〉
FS

∑
σ

〈∫ 〈
F1,σ(X, |v|||, µ, t)

〉
FS

d3v

〉
FS

(3.8.26)

in the case of the particle source and

SH,σ = −κH

〈F1,σ(X, |v|||, µ, t)
〉

FS
−

〈∫ 〈
F1,σ(X, |v|||, µ, t)

〉
FS

d3v
〉

FS〈∫ 〈
FM,σ(X, |v|||, µ)

〉
FS

d3v
〉

FS

〈
FM,σ(X, |v|||, µ)

〉
FS


(3.8.27)

for the heat source, with

F1,σ(X, |v|||, µ, t) =
F1,σ(X, v||, µ, t) + F1,σ(X,−v||, µ, t)

2
.

The symmetrisation of the distribution function with respect to v|| in equation (3.8.27) en-
sures the conservation of parallel momentum and the terms proportional

〈∫
(...)

〉
FS
/
〈∫

(...)
〉

FS
avoids the unwanted numerical injection of particles [73]. The coefficients κP and κH are spe-
cified by the user and should be chosen to be around 5-10% of the maximum linear growth
rate of the system [58].

Nevertheless, avoiding profile relaxation altogether is impossible in practical applications,
as the sources are only active once finite relaxation occurs. In such instances, small pro-
file variations close to the boundaries might generate large gradients, resulting in significant
fluctuation levels incompatible with the Dirichlet condition. In order to avoid this, one addi-
tionally introduces Krook-type damping terms of the form

Kx = −ν(x)F1,σ (3.8.28)

to the gyrokinetic equation, where the damping factor ν(x) is implemented as a fourth-order
polynomial with compact support within a buffer region at the radial boundaries, typically
5-10% at each side of the domain.
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3.9 Numerical benchmarks of the electromagnetic upgrade

Having introduced the general framework of GENE-3D along with the electromagnetic up-
grades performed throughout this work, the following sections will provide benchmark scen-
arios of GENE-3D against its tokamak counterpart, GENE. At the time of the upgrade,
no other global stellarator code was able to include electromagnetic effects in its considera-
tions. Therefore, the logical option was to benchmark GENE-3D against its long-established
tokamak-counterpart GENE in global, electromagnetic tokamak simulations. In particular,
we consider a modified version of the so-called Cyclone Base Case (CBC) [74, 75], which
constitutes the most widely used setup for benchmarks of gyrokinetic tokamak codes. In
particular, one considers a tokamak geometry with circular, concentric flux-surfaces, as it
provides an easy test case with an analytical magnetic field geometry. The magnetic field on
axis Bref is chosen to be 2.0 T and the major radius considered here is R0 = 1.67 m with an
aspect ratio of a/R0 = 0.36. The safety factor profile is chosen to be

q(x) = 0.86− 0.16(x/a) + 2.52(x/a)2 (3.9.1)

and the temperatures at the reference point x0/a = 0.5 are chosen to be Ti(x0) = Te(x0) =
2.14 keV. As a first step, we perform linear simulations at fixed wavenumber, varying the
plasma-β with both the radially global version of GENE and GENE-3D in section 3.9.1,
showing excellent agreement between the codes. We then take it a step further in section 3.9.2
and compare nonlinear heat fluxes predicted by both codes, only showing small discrepancies.
Both tests together give confidence that the implementation of finite A1,|| in GENE-3D is
correct and that the code is able to simulate electromagnetic plasma turbulence.

3.9.1 Linear β-scan in global tokamak geometry

For the linear scans, the background density and temperature profiles are the same as in [45],
namely of the form

A

A(x0)
= exp

[
−κAwA

a

R0
tanh

(
x− x0

wAa

)]
(3.9.2)

for both, electrons and ions, where A = (n, Ti, Te). The corresponding normalised logarithmic
gradients are

R0

LA
= −R0

∂ ln(A)

∂x
= κA cosh−2

(
x− x0

wAa

)
, (3.9.3)

The reference density nref = n(x0) is adjusted for each case such that the corresponding
plasma-β at the reference position is equal to the desired value. The remaining free parameters
of the profiles are chosen to be κTi = κTe = 6.96, wTi = wTe = 0.3, κni = κne = 2.23
and wni = wne = 0.3. The plasma consists of Deuterium as ionic species and electrons
with twice their realistic mass to keep the ion-to-electron mass ratio to that of a hydrogen
plasma. The box lengths are chosen to be (Lx, Lv|| , Lµ) = (80 ρs, 3 vth,σ(x0), 9T0,σ(x0)/Bref)
and Ly = 21.13 ρs, which results in resolving multiples of the toroidal mode number n0 = 19.

For the GENE-3D simulations, a resolution of (1344 × 16 × 16 × 64 × 32) points
in (x, y, z, v||, µ) were used, together with hyperdiffusion parameters set to ηx = 2.0, ηy =
0.05, ηz = 2.0 and ηv|| = 0.2, respectively. The same parameters were used for performing
the GENE simulations, except that, due to the Fourier representation in y, only one Fourier
mode and no hyperdiffusion in y was used.
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Figure 3.4 shows the linear growth and the corresponding linear frequency of the n0 = 19
mode for various values of β. Red data points indicate results obtained by GENE, whereas
blue represents results obtained by GENE-3D. Both codes show excellent agreement in growth
rates and mode frequencies, with a relative error between both codes being less than 3%.

Figure 3.4: Linear growth rates (left) and mode frequencies (right) of the n0 = 19 mode for
various values of β. Red shows the results obtained with GENE, and blue the ones obtained
with GENE-3D.

In particular, one can observe a reduction of the linear growth rate, which is caused by ITG
instabilities, through increasing β, up to β ≈ 1.4%, where a transition to KBM instabilities
can be observed, which is indicated by the rapid increase in mode frequency.

In order to further verify the results of GENE-3D, the radial and parallel mode structures
of the instability at β = 2.5% are compared for both codes in figure 3.5, again showing
excellent agreement with each other.
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Figure 3.5: Normalised squares of the electrostatic and parallel vector potential for the scen-
ario using β = 2.5%; top: radial (left) and parallel (right) structures of the electrostatic
potential, bottom: radial (left) and parallel (right) structures of the parallel vector potential.
The red dashed line shows the results obtained by GENE, and the blue solid line the ones
obtained with GENE-3D.

3.9.2 Nonlinear turbulence at finite plasma-β in a tokamak

In order to fully verify the correct implementation of all additional terms of the electro-
magnetic upgrade, one has to perform nonlinear simulations and compare them against an
established code, which in this case is GENE again.

While the geometry being used is kept the same in this section, using a broader profile
than the one in the last subsection is helpful in order to reduce the amount of unwanted
profile relaxation that naturally occurs in gradient-driven simulations.

Therefore, new plasma profiles of the form

A

A(x0)
=

cosh
(
x−x0+∆A

wA

)
cosh

(
x−x0−∆A

wA

)
−

κAwA
2

a
R0

(3.9.4)

are chosen, with x0/a = 0.5, κTi = κTe = 6.66, κn = 2.20, wTi = wTe = wn = 0.04
and ∆Ti = ∆Te = ∆n = 0.8. Furthermore, the plasma pressure is such that βe(x0) =
0.75%. In order to save computational time, the simulations were performed further in-
creasing the electron-to-ion mass ratio to me/mi = 0.01 and a finite-size parameter ρ∗s =
ρs/Lref = ρs/R0 = 0.01. The simulation covers the radial domain 0.1 ≤ x/a ≤ 0.9, us-
ing buffer zones of 10% at each side, with normalised box sizes being (Lx, Ly, Lv|| , Lµ) =
(80.0 ρs, 111.4 ρs, 3 vth,σ(x0), 9T0,σ(x0)/Bref) and a resolution of (nx, nky , nz, nv|| , nµ) = (160×
64 × 24 × 64 × 24) for GENE and (nx, ny, nz, nv|| , nµ) = (160 × 256 × 24 × 64 × 24) for
GENE-3D, respectively. Finally, heat and particle sources were added with amplitudes being
κH = κP = 0.1 and hyperdiffusion was set ηx = ηy = 0.05, ηz = 2.0 and ηv|| = 0.2.

In order to compare the results of the two nonlinear simulations, we compare the nonlinear
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Heat flux [QGB] GENE GENE-3D

Qes,ions 76.± 7 75± 11
Qes,electrons 60± 5 55± 6
Qem,ions −1.07± 0.13 −1.13± 0.15

Qem,electrons −1.70± 0.32 −1.65± 0.33

Table 3.1: Time-averaged heat flux contributions of GENE and GENE-3D.

heat fluxes defined in section 3.3. Figure 3.6 shows the volume-averaged time traces of the
ion and electron heat flux contributions, each split into their electrostatic and electromag-
netic components. Since the time traces show large fluctuations in their amplitudes, a simple
comparison between the mean values and the standard deviations obtained by GENE and
GENE-3D is not helpful, as the latter quantity will be of the order of the mean value itself. In
order to obtain a quantitative comparison, the time traces in the range t ∈ [100, 345]R0/cs,
roughly containing the same number of bursts for both codes, are divided into disjoint in-
tervals, each approximately three autocorrelation times long. By taking the mean for each
section individually, one can obtain an ensemble average and variance for the heat flux that
is statistically meaningful in the context of an inter-code comparison.

Figure 3.6: Time traces of the volume-averaged electron and ion heat fluxes. Yellow and green
lines indicate the average over the given time interval for GENE and GENE-3D, respectively.
Electrostatic heat flux of ions (top left) and electrons (top right), and electromagnetic heat
flux of ions (bottom left) and electrons (bottom right).

The results are presented in table 3.1. Both simulations are in good agreement with each
other, as the relative difference between their respective ensemble mean values is below 10 %
for all components.

Further inspection of the radial heat flux profiles, shown in figure 3.7, show excellent
agreement between the two codes. In there, one can see that the electrostatic contribu-
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tions dominate the fluxes, peaking around x/a = 0.6. At this position, GENE predicts the
heat fluxes to be Qes,ions = 103.24QGB, Qes,electrons = 80.09QGB, whereas GENE-3D gives
Qes,ions = 104.72QGB and Qes,electrons = 75.41QGB. Both results differ by less than 6%, giving
additional confidence in the numerical implementation of the latter code.

Figure 3.7: Radial profiles of heat flux contributions. Electrostatic heat flux of ions (top left)
and electrons (top right), and electromagnetic heat flux of ions (bottom left) and electrons
(bottom right).

Finally, the spectra of the electrostatic heat fluxes at x/a = 0.6 are compared in figure
3.8, showing only minor deviations between both codes at the smallest scale, which can be
attributed to the different representations of the binormal coordinate.
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Figure 3.8: ky-spectra of the electrostatic heat fluxes, evaluated at x/a = 0.6.

Overall, these results show excellent agreement of the spectra in the wavenumber interval
where most of the transport is located. Therefore, the linear and nonlinear verification studies
of GENE-3D can be considered successful.

3.10 Chapter summary

The present chapter outlined the numerical techniques used in GENE-3D to discretise the
gyrokinetic Vlasov-Maxwell system. The steps necessary to upgrade the code to an electro-
magnetic turbulence code, including parallel vector potential and possible techniques to im-
plement parallel magnetic field perturbations in the future, have been outlined. Furthermore,
a mimetic finite-difference scheme based on the support-operator method for the Laplacian
operator has been introduced as a necessary tool to run non-local simulations with kinetic
electrons in GENE-3D. Linear and nonlinear verification studies with global, electromagnetic
tokamak simulations against GENE have shown excellent agreement between the two codes
so that the implementation of the improved model can be considered successful.

Thanks to the upgrades performed within this project, GENE-3D can accurately simulate
a broad range of electrostatic as well as electromagnetic phenomena, making it possible to
investigate most of the parameter space of core turbulence considered in the operational
phases of Wendelstein 7-X to this date.
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Chapter 4

Electromagnetic effects on ITG
turbulence in Wendelstein 7-X-like
plasmas

In gyrokinetics, a crucial dimensionless parameter is the plasma-β, which was defined in sec-
tion 3.2. It serves as a measure of the impact of electromagnetic effects on the overall system,
given the explicit dependence of the normalised Ampére’s law (3.2.13) on this parameter.
The effects encompass, amongst other things, both stabilising and destabilising influences
on turbulence, as well as the excitation of instabilities like kinetic ballooning modes (KBM).
Since fusion performance scales favourably with an increasing β [9], the corresponding plasma
regimes need to be well understood for the design of future fusion power plants. Although
finite electromagnetic effects were already incorporated routinely in flux-tube simulations,
comprehensive studies of global stellarator turbulence at finite β were largely absent, with
only a single study using artificially heavy electrons [76] was published at the time. However,
flux-tube and global simulations of tokamaks were shown to predict substantially different
characteristics regarding the saturation of electromagnetic ITG and KBM turbulence in [77].
The reason for the discrepancy was found to be additional global entropy transfer for the
latter model, emphasising the need to study such phenomena globally for stellarators as well.
While such studies are out of the scope of this chapter, the successful verification of the
electromagnetic upgrade of GENE-3D in section 3.9 allows us to gain a first insight into the
influence of electromagnetic effects on ITG turbulence in Wendelstein 7-X-like geometries at
moderate values of β already. The results presented here follow what was published in [34].

The rest of this chapter is structured as follows: we introduce the numerical setup of all
simulations performed throughout this chapter in section 4.1. In section 4.2, we present the
stabilisation of global, linear ITG instabilities through finite plasma-β, followed by an analysis
of the impact of β on nonlinear ITG turbulence in section 4.3.

4.1 Numerical setup

All simulations throughout this chapter are performed using the standard configuration [78] of
Wendelstein 7-X. The normalised density and temperature profiles are chosen to be the same
for all simulations and are shown in figure 4.1. Therefore, in order to change the plasma-β,
only the reference density nref has to be changed.
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Figure 4.1: Left: initial density and temperature profiles. Right: initial normalised density
and temperature gradient profiles.

As can be seen in the right plot of figure 4.1, the profiles are chosen such that most of
the drive is localised around the centre of the plasma volume with no significant contribu-
tions towards the radial boundaries, which allows us to get an accurate representation while
only using a limited radial domain, thus saving computational cost. Furthermore, the ion
temperature gradient is chosen to be significantly larger than the electron temperature and
density gradients, thus mainly destabilising ITG modes. The specific form of the density and
temperature profiles is given by

A

A(x0)
=

cosh
(
x−x0+∆A

wA

)
cosh

(
x−x0−∆A

wA

)
−

κAwA
2

, (4.1.1)

with the defining parameters set to κTi = 4.0, κTe = 1.0, wTi = wTe = 0.04, ∆Ti = ∆Te =
0.17, κn = 1.0, wn = 0.04 and ∆n = 0.17. The reference position x0 is chosen to be at
half-radius x0/a = 0.5. In order to test the influence of electromagnetic effects on ITG
activity, we compare two scenarios. The first one employs β = 0.01% and can be considered
an electrostatic limit. The second scenario uses β = 0.5%, similar to what can be found in
experiments of the first operational phase of W7-X [79]. The specific geometries in this chapter
were generated using the MHD-equilibrium code GVEC [80] to match the background profiles
and prescribed plasma pressures. The plasma is a hydrogen plasma with realistic electron
mass, and the reference temperature is Tref = 4.0, keV. The reference values of Bref = 2.28 T
and Lref = a = 0.52 m result in a finite-size parameter of ρ∗ref = ρs/a = 1/184. The simulations
consider a radial domain of 0.25 ≤ x/a ≤ 0.75, with buffer zones covering 10% of each side.
Moreover, the simulations make use of the five-fold symmetry of W7-X by analysing only one
fifth of the toroidal domain.
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4.2 Linear simulations

As a starting point, we performed linear simulations for both scenarios to compare their
respective growth rates. However, compared to tokamaks, all toroidal modes are coupled
even in linear scenarios in a stellarator. To understand this, consider the following simplified
picture of the linear gyrokinetic equation

d

dt
f(y, t) = L(y, t)f(y, t), (4.2.1)

where L is a linear integrodifferential operator representing the right hand side of the gyrokin-
etic equation such that it contains all linear terms and its dependence on the electromagnetic
fields are expressed through another integrodifferential operator acting on the distribution
function f whose specific form is not relevant to the argument. Taking the Fourier transform
in space of this equation will result in

Fy→ky
{
d

dt
f(y, t)

}
≡ d

dt
f̂(ky, t) = Fy→ky {L(y, t)f(y, t)} =

∞∫
−∞

L̂(k′y, t)f̂(ky − k′y, t) dk′y,

(4.2.2)
where f̂ and L̂ are the Fourier transforms of f and L and ky is the wavelength associated
with the spatial coordinate y. From this, we see that even for a linear model, all modes are
coupled to each other unless the linear operator does not depend on y itself, L = L(t) so
that L̂ ∼ δ(k′y). As such, the only thing that GENE-3D will produce is the fastest-growing
linear mode that is resolved appropriately within a set of toroidal modes determined by the
resolution being used. Such modes, however, often have a large wavenumber that usually
gives only small contributions to the total nonlinear transport, as seen later in this section.

To somewhat overcome this issue, one can lower the resolution in the y-direction to a point
where the strongest binormal mode is not resolved anymore while still properly resolving the
magnetic field geometry so that the second strongest mode will dominate. An alternative
is to use a numerical filter to single out the desired mode, as is done, for example, in the
EUTERPE code. In this work, we chose the former approach, but it was shown in [81] that
both methods agree with each other. Nevertheless, one should interpret such simulations with
great care, as it is unclear for both approaches how much the coupling to the neglected modes
will influence the results.

Three simulations were performed for each case, using a resolution of (120×128×64×24)
points in (x, z, v||, µ), with box lengths of size
(Lx, Ly, Lv|| , Lµ) = (92.22 ρs, 100.64 ρs, 4.2 vth,σ(x0), 17.7T0,σ(x0)/Bref) and hyperdiffusion para-
meters ηx = ηy = 0.05, ηz = 2.0 and ηv|| = 0.2. The binormal resolution was set to
(48, 75, 240), respectively, to resolve different linear modes. This setup produces linear growth
rates for both scenarios shown in figure 4.2. One can see a clear decrease induced by electro-
magnetic effects. The precise numerical values are listed in table 4.1, together with the ratio
between the ion and electron heat fluxes, which will be used later for comparison with the
nonlinear results.
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kyρs γmax [cs/a] Qes,e/Qes,i

0.5 0.155 0.13
0.62 0.176 0.15
1.37 0.231 0.17

(a) Electrostatic case

kyρs γmax [cs/a] Qes,e/Qes,i

0.5 0.116 0.15
0.81 0.155 0.19
1.37 0.179 0.22

(b) Electromagnetic (β = 0.5%) case

Table 4.1: Linear results of electrostatic and electromagnetic W7-X simulations.

Figure 4.2: Linear growth rates as a function of the binormal wavenumber of both electrostatic
and electromagnetic cases.

The growth rates are overall reduced by approximately 20-25%, with the strongest one
going from 0.231 cs/a to 0.179 cs/a. Figure 4.3 compares the radial and poloidal mode struc-
tures of the fastest-growing modes in both scenarios for completeness. With only a tiny
variation between the electrostatic and the electromagnetic cases, all fields peak radially close
to x/a = 0.6. Furthermore, the parallel vector potential of the electromagnetic simulation
covers the entire domain parallel to the magnetic field lines, whereas the electrostatic potential
is highly localised at z = 0 in both cases.
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Figure 4.3: Normalised squares of the electrostatic and parallel vector potential of the fastest
growing modes for the electrostatic and electromagnetic scenarios; top: radial (left) and
poloidal (right) structures of the electrostatic potential, bottom: radial (left) and poloidal
(right) structures of the parallel vector potential. The orange lines show the structures of the
electrostatic simulation, whereas the blue lines correspond to those of the electromagnetic
setup.

4.3 Nonlinear simulations

Having observed a stabilisation of linear ITG modes through electromagnetic effects, we now
test whether this also holds true in nonlinear scenarios. For this, we reuse the setup of the
linear cases, except fixing the binormal resolution to ny = 120. Additionally, we employ
heat and particle sources κH = κP = 0.03. Later in figure 4.5, we see that this keeps the
background profiles nearly identical to the initial ones with only minor deviations.

The volume-averaged time traces of the heat fluxes from the electromagnetic and elec-
trostatic simulations are shown in Figure 4.4. The electromagnetic case exhibits lower levels
of turbulent heat fluxes than the electrostatic case at 200 time units or when saturation is
reached. There, one can see a reduction of heat flux in all channels for the electromagnetic
case compared with the electrostatic one.
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Figure 4.4: Time traces of the volume-averaged heat fluxes; dashed black line indicates the
beginning of time interval used for averaging.

In order to make sure the stabilisation is caused by the electromagnetic effects and not by
relaxation of the background profiles, the final profiles are shown in figure 4.5, showing only
slight variations from the initial ones, so that it can also be concluded that the heat and
particle sources have been chosen appropriately.

Figure 4.5: Time-average of the background density and temperature profiles.
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Figure 4.6: Time-average of the radial heat flux profiles. Left: electrostatic and electromag-
netic heat fluxes; right: electrostatic ion and electron heat fluxes.

Going into a more detailed analysis of the different transport levels, we can compare the
radial profiles of the total electrostatic and electromagnetic heat fluxes in figure 4.6. The
total transport of the electromagnetic case is still mainly of electrostatic nature, with a peak
value of 11.99 QGB, in comparison with the maximum electromagnetic heat flux of 0.36 QGB.
One can further compare the flux contributions from the different species in the right plot of
figure 4.6, showing the radial profiles of the electrostatic heat fluxes of both scenarios. All flux
profiles are peaking approximately at x/a = 0.46, close to where the normalised background
gradients are largest (see figure 4.1). The fact that turbulence is mostly electrostatic and
mainly driven by the ion channel indicates that the turbulence at hand is still mainly driven
by ITG. Both ion and electron fluxes are reduced by approximately 25%, in line with the linear
behaviour seen in table 4.1. In particular, the peak ion heat flux decreases from 13.70 QGB to
10.34 QGB and the electron flux from 2.25 QGB to 1.65 QGB. The nonlinear results are also in
line with the linear precursors in terms of the electron-to-ion flux ratio, which is approximately
Qes,e/Qes,i = 0.15 for both, the electrostatic and electromagnetic scenario. However, prior
linear runs deviate slightly for larger ky in the electromagnetic simulation. This is not a
problem, as most of the transport is produced by modes peaking around kyρs ∼ 0.3, as can
be seen in figure 4.7, with only minor contributions coming from kyρs > 0.75.

Figure 4.7: Wavenumber spectra of electrostatic ion and electron heat fluxes, evaluated at
x/a = 0.46.
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4.4 Chapter summary

This chapter presented the first global electromagnetic simulations in stellarator geometry
using the GENE-3D code. The aim was to investigate the stabilising influence of finite
plasma-β on ITG activity in a W7-X-like geometry. Both linear and nonlinear simulations
have shown that even a moderate β of 0.5%, which is well within the parameter regime
of the first operational phase of W7-X, leads to a reduction of approximately 25% of the
linear growth rates and similar reduction of the nonlinear ion and electron heat fluxes. Such
significant stabilisation and the eventual excitation of kinetic ballooning modes at higher β
highlight the importance of electromagnetic effects for future investigations of reactor-relevant
scenarios.
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Chapter 5

Full-flux-surface effects on
electrostatic turbulence in
Wendelstein 7-X-like plasmas

Experimental discharges in the first operational campaign of W7-X have shown standard,
ECRH-heated plasmas with gas-puff fuelling have a clamped ion core temperature at around
1.5 keV [82]. This issue was overcome transiently through the injection of hydrogen pellets
as fuelling method, along with an increase in heating power. In contrast to tokamak scen-
arios, a significant reduction of turbulent transport was observed in W7-X for such modes
of operation [83]. In [23], two mechanisms were provided as means to explain the improved
performance: one of the main drivers of turbulent transport in W7-X has been identified to
be ITG. Through the injection of pellets, there is a rise of the density gradient in the plasma
core, bringing the temperature-to-density-gradient ratio ηi = Ln/LTi closer to 1, which is
known to have a stabilising effect on this kind of turbulence [22] for tokamaks as well as
stellarators. Unlike in tokamaks, however, it was hypothesised that for W7-X, the increase
in density gradient does not lead to the excitation of trapped electron turbulence as trapped
particles are considered to reside in regions of positive magnetic curvature [84, 85]. To show
this, linear flux-tube simulations with a kinetic-electron model were performed, showing a
transition from ITG instabilities in the pre-pellet phase to the so-called ion-driven trapped
electron mode (iTEM) in the post-pellet phase, causing less transport, as indicated by sub-
sequent nonlinear simulations. A second effect was mentioned based on simulations with the
full-flux-surface version of the GENE code: it was suggested in [28] that ITG turbulence is
highly localised around the outboard-midplane. Based on this, it was argued in [23] that
the pellet injection causes an increase in the radial electric field produced by neoclassical
transport, which in turn will dislocate the turbulent fluctuations into regions of weaker field
curvature, therefore reducing the drive of ITG instabilities. A significant shift in the peak
position was shown. However, the stabilising effect was considered secondary. While already
giving some insight, both explanations fall short in some regard. Although it is a known
effect in tokamaks already, the stabilisation of ITG through a finite density gradient was only
shown for stellarator geometries using flux-tube simulations, considering only a single field
line at a time. While being a reasonable approach in tokamaks due to axisymmetry, the
fact that different modes can potentially reside in different positions on the magnetic surface
is neglected, leaving open the question of whether turbulence is stabilised or just moved to
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a different binormal position. Furthermore, the question about the impact of geometrical
variations on nonlinear mechanisms, such as interaction with zonal flows, is left open. On
the other hand, the full-flux-surface simulations performed in [23] only employed an adiabatic
electron model. As such, the impact of a radial electric field on trapped-particle dynamics,
which are known to influence ITG turbulence even in the absence of an explicit electron drive
[22], as well as on ITG-TEM-hybrid scenarios is left unexplored.

In the following, we will combine both approaches to overcome these limitations by per-
forming full-flux-surface simulations with a kinetic electron model and comparing the results
to their flux-tube counterparts. Furthermore, we will investigate the influence of a constant
radial electric field on various types of turbulence and address the aforementioned localisation
of turbulence and the influence of magnetic field geometry. In part, this chapter follows [86].

The rest of this chapter is structured as follows: in section 5.1, we introduce the numerical
setup of the simulations performed in this study. We show that the stabilisation of ITG-
dominated turbulence through a finite density gradient, predicted by flux-tube simulations
in [23], is reproduced in a nonlinear, full-flux-surface setup. We also investigate the spatial
distribution of turbulent fluctuations, finding a significantly larger extension on the surface
than what was reported, for example, in [28], which we show cannot be explained by the
different treatment of the electrons. After that, we take a look at the configurational effects
on ITG stabilisation through a density gradient in the context of the Low-Mirror configuration
of W7-X in section 5.2. In there, we observe the same qualitative behaviour as for the cases
shown in section 5.1. However, there is a significant fraction of trapped particles in regions
of negative magnetic curvature. We attribute this to the fact that the driving background
gradients are not large enough to highlight the configurational differences between the two
geometries with respect to density gradient-driven ITG stabilisation. In section 5.3, we give
an overview of the influence of a neoclassical electric field on the different types of turbulence
under consideration. We show that its effect on the heat flux is small compared with the
variation of the background gradients and that the dislocation of turbulent density fluctuations
is small. Finally, we study the influence of a finite electron temperature gradient in section
5.4. When comparing flux-tube and full-flux-surface simulations for the parameters under
consideration, we find substantial disagreement between the two models, which cannot be
remedied by increasing the number of flux-tubes used to compare against the higher-fidelity
model.

5.1 Density-gradient-induced ITG stabilisation in local and
full-flux-surface simulations

We begin this study by investigating the influence of full-flux-surface effects on the stabilsation
of ITG turbulence in W7-X through a finite density gradient. In order to avoid systematic
differences, we use GENE-3D for both flux-tube and full-flux-surface simulations. We consider
the standard configuration (EIM) [78] of Wendelstein 7-X at the radial position x/a = 0.65.
We furthermore assume a collisionless and electrostatic (βe = 10−4) limit, as the stabilisation
of ITG is also discussed frequently in this simplified setting. Furthermore we use a refer-
ence temperature Tref = 3.41 keV and Te = Ti, which will result in a finite-size parameter
ρ∗s = 1/200, which is somewhat larger than the values obtained from profiles of typical W7-X
discharges at this position [79]. However, [28] showed that for a similar setup, good agree-
ment between flux-tube and full-flux-surface simulations of ITG turbulence was attained for
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even larger values of ρ∗s . This influence will be addressed more for an experimental setting
in chapter 6. While the full-flux-surface simulations will cover one-fifth of the entire surface,
exploiting the five-fold symmetry of W7-X - the flux-tube simulations will only consider the
bean-shaped (α = 0) flux-tube unless stated explicitly otherwise. The phase space domain
chosen for all simulations in this and the following sections is (Lx, Ly, Lv|| , Lµ) =

(225 ρs, 145.157 ρs, 2π, 3.0 vth,σ(x0), 9.0Tσ/Bref) with a resolution of
(
nx, ny, nz, nv|| , nµ

)
=

(225, 198, 128, 32, 9). Since Dirichlet boundary conditions were employed in the radial direc-
tion, numerical heat and particle sources with an amplitude of κH = κP = 0.02 were added
to the equations in order to retain the background density and temperature profiles [58].

We take into account three scenarios to examine the turbulence stabilisation connected to
a finite density gradient: in the first scenario, all background gradients are set to zero except
for the ion temperature gradient of a/LTi = 2.5. Doing this will make the turbulence entirely
ITG-driven and serve as a reference case. As a comparison at the other end of the spectrum,
the second scenario is a solely density-gradient driven TEM with a/Ln = 2.5 and a/LTi = 0.
While the first two situations give a free-energy source for only ITG and ∇n-driven TEM
turbulence, respectively, we also explore a third example with a mixed drive that lies in
between the other two. The background gradients are chosen to be a/LTi = a/Ln = 2.5,
which according to [24, 87] is considered to be a favourable parameter set for turbulence
suppression since ηi = Ln/LTi = 1. We set the electron temperature gradient to zero for all
three situations for the time being and save the analysis of its effects for section 5.4. Table
5.1 summarises the gradients and the corresponding labelling of the cases for convenience.

Case label a/LTi a/Ln ηi

ITG 2.5 0.0 ∞
TEM 0.0 2.5 0.0
Mixed 2.5 2.5 1.0

Table 5.1: Choice of normalised gradients for the different turbulence scenarios used in this
chapter. Unless stated otherwise, the electron temperature gradient is assumed to be zero.

The heat flux levels of these setups can be compared with each other in figure 5.1. We
reproduce the density gradient-driven turbulence reduction in flux-tube simulations sugges-
ted by linear theory [24, 84] and confirmed for nonlinear flux-tube simulations in [88]. In
particular, we find that the ITG scenario has by far the largest ion and total transport. Com-
pared with that, the turbulence of density-driven TEM seems much more benign, which is
understood to be caused by the trapped electrons primarily residing in regions of positive
average curvature [84]. Additionally, the Mixed case has the lowest transport of all flux-tube
simulations, regardless of the total transport or that of each channel. This is consistent with
the linear results shown in [23] and [24]. In contrast to the previous publications, however, we
can additionally show in figure 5.1 that this stabilisation is also present in surface-global sim-
ulations. In particular, the full-flux-surface simulation results follow the same trends as those
of their flux-tube counterparts, with the ITG case having the highest amount of transport,
followed by the TEM case and the Mixed case having the lowest transport overall.
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Figure 5.1: Averaged ion and electron heat fluxes of all three turbulence scenarios for flux-tube
and full-flux-surface simulations.

Since surface simulations in GENE-3D are much more expensive than flux-tube simula-
tions in GENE due to the absence of a Fourier representation of the binormal direction, it is
natural to ask how well the latter model can approximate the results of the former. To this
end, the averaged ion and electron heat fluxes obtained by the full-flux-surface simulations
are displayed as a function of the field-line label α in figure 5.2 for all three cases. On top,
the corresponding flux-tube results are marked by crosses.

Figure 5.2: Variation of the ion and electron heat fluxes for the three turbulence scenarios as
a function of the field-line label. The dashed black lines indicate the mean value, whereas the
crosses represent the heat flux obtained by the corresponding flux-tube simulation.

With a variance that is always below 20% from the corresponding mean value, the heat
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flux is relatively homogeneous for all scenarios under study. Nevertheless, it can be seen in
figure 5.2 that the flux-tube results are within the range of attained flux-surface values of
heat fluxes for the Mixed and TEM cases. Together with the previously mentioned relatively
uniform distribution over the different field-line labels, it is reasonable to assume that flux-
tube simulations can provide a good proxy for these two scenarios. However, we can see
that for the ITG case, the local and flux-surface results differ by up to 30%, indicating
that combining multiple independent local simulations could yield different results than the
full-flux-surface approach. This contrasts what was shown in [28], where a similar setup
with an adiabatic electron model produced a good agreement between flux-tube and surface
simulations. To test the influence of the electron model, we repeated the simulation of the
ITG case with adiabatic electrons. A comparison of the ion heat flux structure can be found
in figure 5.3.

Figure 5.3: Variation of the ion heat flux for the ITG turbulence scenarios as a function
of the field-line label. The dashed black lines indicate the mean value, whereas the crosses
represent the heat flux obtained by the corresponding flux-tube simulation. The left plot
shows the results obtained with an adiabatic electron model, whereas the results on the right
are obtained with kinetic electrons.

One can see there that the flux-tube and full-flux-surface results agree much better when
using adiabatic electrons than their kinetic counterpart, especially due to the clear maximum
towards the α = 0-field line for the former heat flux. Due to this, the differences between flux-
tube and full-flux-surface simulations reduce to approximately 10% for the adiabatic electron
model, in contrast to the 30% mentioned previously. In contrast, the surface simulation
with kinetic electrons produces a rather uniform flux distribution. This could indicate that
using an adiabatic electron model overstates the localisation of turbulence, which remains to
be further investigated in the future. Figure 5.3 also shows that for both electron models,
flux-tube simulations produce significantly more transport towards the α = 0-tube, which in
combination with the adiabatic electron model’s peaked structure could be one reason for the
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good agreement between flux-tube and full-flux-surface simulations that was shown in [28].
Beyond the one-dimensional structure of the heat fluxes, one can also study the structure

of density fluctuations. Such investigations are of great interest, as previous studies like [23,
28, 87, 89, 90] have indicated that turbulent fluctuations peak only in a slim region around
the outboard-midplane in Wendelstein 7-X and also other stellarators. A localisation with
a maximum-to-minimum fluctuation ratio between a factor of 7-10 could cause difficulty for
experimental measurement in that a slight misalignment of the detector with the peak position
might significantly underestimate the fluctuation levels at play. However, all of the previously
mentioned publications used an adiabatic electron model, which, as we have seen before, can
give substantially different results than the more realistic kinetic electron model. Furthermore,
global simulations performed by GENE-3D and EUTERPE with adiabatic electrons have also
found the fluctuation amplitudes to vary by a factor of two rather than 7-10 in [91].

To shed more light on this discussion, we plot the density fluctuations of all three full-flux-
surface scenarios given in table 5.1 as a function of the poloidal and toroidal PEST angles θ∗

and φ [54], assuming a right-handed system, in figure 5.4.

Figure 5.4: Root mean squared density fluctuations of the ITG, Mixed and TEM case, nor-
malised to their respective maximum value, as a function of the poloidal and toroidal PEST
angles.

As can be seen there, our results are in qualitative agreement with the simulations presented
in [91] in so far as that the fluctuations seem to be fairly extended in both the poloidal and
toroidal directions for all three cases, with the fluctuation level over the surface varying by at
most around a factor of two. In order to test the influence of the treatment of the electrons
further, we additionally compare the spatial distribution of density fluctuations between the
adiabatic and kinetic electron simulation of the ITG scenario in figure 5.5. Although having
a slightly larger ratio between maximum and minimum amplitude, the results obtained with
adiabatic electrons are still far more extended than what was shown in [23, 28, 87, 89, 90],
again being in line with [91]. What causes the difference in the spatial structures between
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the previously mentioned models remains to be understood.

Figure 5.5: Root mean squared density fluctuations of the ITG case, simulated with adia-
batic (left) and kinetic (right) electrons, normalised to their respective maximum value, as a
function of the poloidal and toroidal PEST angles.

5.2 Comparison between standard and low-mirror configura-
tion

Following the argument presented in the introduction that trapped electron mode turbulence
is weak is caused by the electrons mainly residing in regions of positive magnetic curvature in
W7-X, it has been hypothesised that one would observe a similar behaviour as in a tokamak
in field configurations where the overlap is large. One such configuration is the low-mirror
configuration (AIM), which has a local minimum of the magnetic field strength on the out-
board midplane, where the field curvature is the most negative, as can be seen in figure
5.6. However, when simulating the scenarios introduced in the previous section in the mow-
mirror configuration, we can see from figure 5.7 that ITG is also stabilised here, while TEM
turbulence is kept benign.
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Figure 5.6: Comparison of the geometries of the standard (EIM) and low-mirror (AIM)
configuration at x/a = 0.65, α = 0. The magnetic field strength is marked in red, and the
curvature-drive term Ky is marked in blue. The black line indicates Ky = 0.

Figure 5.7: Averaged ion and electron heat fluxes of all three turbulence scenarios for flux-tube
and full-flux-surface simulations in the low-mirror (AIM) configuration.

The overall transport of all cases seems to be larger than the heat fluxes obtained in the
simulations of the standard configuration. The cause for this could be the previously men-
tioned more extensive overlap between regions of bad curvature and magnetic wells, which
can act as a destabilising mechanism of trapped-particle dynamics, even if no TEM drive
is available. However, one still observes a substantial decrease of both flux channels when
adding a density gradient to the ITG scenario, as in figure 5.1. We argue that, for the gradi-
ents under consideration, all configurations of W7-X considered in [24] should benefit from

85



5.3. INFLUENCE OF A RADIAL ELECTRIC FIELD

increasing the density gradient, bringing ηi closer to 1 [87]. As seen in [24], geometrical effects
in stabilisation trends only become apparent at significantly larger gradients. To support this
further, we mention that a reduction of ITG turbulence through a finite density gradient was
even shown for the NCSX stellarator in [88], a machine whose quasi-axisymmetric nature
results in largely unfavourable electron curvature drifts, therefore providing more drive of
trapped-electron modes.

We can furthermore compare the structure of the electron density fluctuations on the
surface again in figure 5.8, observing qualitative agreement with the structure shown in figure
5.4 for the standard configuration.

Figure 5.8: Root mean squared density fluctuations of the ITG, Mixed and TEM case in the
low-mirror (AIM) configuration, normalised to their respective maximum value, as a function
of the poloidal and toroidal PEST angles.

We see that the density fluctuations seem to be somewhat more pronounced for the ITG scen-
ario in comparison with the one shown in figure 5.4, which can be expected since the overall
transport is higher in the low-mirror configuration. Nevertheless, the density perturbation
seems to vary only by slightly more than a factor of two over the entire surface, with all other
qualitative trends being the same as in the standard configuration. Since the same trends
were observed regarding the transport levels and the structure of turbulent fluctuations, we
expect core plasmas in standard and low-mirror configurations for the scenarios under consid-
eration to behave similarly overall. Therefore, we will only focus on the former configuration
from now on.

5.3 Influence of a radial electric field

One distinctive feature that separates flux-tube from full-flux-surface simulations is the fact
that the latter can be influenced by the presence of a constant background radial electric
field Er(x) = −∇φ0(x), usually originating from neoclassical physics. As the background
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quantities do not depend on the binormal direction, it can be shown that the effect of the
electric field can be eliminated through a Galilean transformation into a reference system that
rotates with the corresponding ExB-velocity in this direction, therefore only causing a Doppler
shift of mode frequencies. On the other hand, the binormal dependence of the operators in
the gyrokinetic equation in flux-surface simulations breaks this invariance, not only causing a
Doppler shift. The previous discussion did not consider taking into account a sheared electric
field, which can potentially have a significant impact on flux-tube and flux-surface simulations
and will be part of the investigation presented in chapter 6.

Nevertheless, simulations in [23] show an order-of-magnitude reduction of ITG transport
and a substantial dislocation of the maximum amplitude of turbulent fluctuations on the flux-
surface. These results are again in contrast to global simulations shown in [91], both using
adiabatic electrons, in which the stabilising effect on ITG turbulence as well as the dislocation
through the electric field was reported to be substantially smaller. In this section, we want to
enter this discussion again using a kinetic electron model to assess the electric field’s impact on
different kinds of electrostatic turbulence. To this end, we repeat the three full-flux-surface
scenarios of section 5.1. However, this time we add a normalised electric field with Mach
number MExB = −v̂E0 = ±0.015, where v̂E0 is the normalised velocity associated with the
background electric field, given in section 3.2. This Mach number corresponds approximately
to a radial electric field of ±19 kV/m for the reference temperature Tref = 3.41 keV used in the
simulation. A comparison between the heat fluxes with and without the electric field is given
in figure 5.9. We can see that the effect on turbulence is relatively small, especially compared
with the variation of the gradients. While there is a stabilisation of approximately 16% for the
ITG scenario, all three flux-surface simulations of the TEM and Mixed case scenarios agree
within error bars, respectively. Therefore, we see that, besides the overall small influence of
the electric field on the flux levels, there is no noticeable impact of the sign of the electric
field.

Figure 5.9: Averaged ion and electron heat fluxes of all three turbulence scenarios for full-
flux-surface simulations with and without radial electric field.
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The weak transport stabilisation is accompanied by a slight shift of the turbulent density
fluctuations, as shown in figure 5.10.

Figure 5.10: Root mean squared density fluctuations of the ITG and TEM case, with and
without radial electric field, normalised to their respective maximum value, as a function of
the poloidal and toroidal PEST angles.

The explanation given at the beginning of this section, along with the findings of section
5.1, make it clear why these results also are in agreement with what was shown in [91]: the
radial electric field’s dislocating effect cannot be felt unless turbulence is sufficiently localised.
This is easily understood by imagining an extreme case in which all turbulence is uniformly
distributed, and any kind of dislocation would go undetected. The turbulence is weakly
localised in all three scenarios under discussion, as was already demonstrated in figure 5.4.
Furthermore, as can be observed in figure 5.10, our examples had far less dislocation than the
findings in [23]. To prove that the dislocation is not affected in a significant way by the choice
of the electron model, we again repeat the ITG simulations with adiabatic electrons, observing
also only a reduction in transport by around 8% from 8.42QGB to 7.42QGB. Furthermore,
one can see in figure 5.11 that the dislocation of density fluctuations is equally small as the
ones shown in figure 5.10. Additionally, we propose that even in the situation of strong
localisation, the electric field can only result in dislocations on equilibrium lengthscales if the
corresponding velocities, specifically the ExB- and thermal velocities, are comparable with
one another, which necessitates that MExB ∼ 1. During the study of the examples examined
in section 5.4, we provide evidence to support this.
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Figure 5.11: Root mean squared density fluctuations of the ITG case, run with adiabatic
electrons, with and without radial electric field, normalised to their respective maximum
value, as a function of the poloidal and toroidal PEST angles.

5.4 Effect of a finite electron temperature gradient

As a final step, we will look at the effect of a finite electron temperature gradient on different
types of turbulence and the behaviour of flux-tube and flux-surface simulations. We, therefore,
run the flux-tube and full-flux-surface simulations of section 5.1 again, but this time we add
an electron temperature gradient of a/LTe = 2.5. The corresponding heat fluxes can be
found in figure 5.12. The first thing one can notice is the substantial increase in ion and
electron transport for the ITG cases, which we attribute to the excitation of hybrid ITG-
TEM turbulence, where the trapped electron part is driven by the electron temperature
gradient. This claim is based on the fact that both the flux-tube and surface simulations have
a substantial amount of electron heat flux, which is atypical for pure ITG turbulence.
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Figure 5.12: Averaged ion and electron heat fluxes of all three turbulence scenarios for flux-
tube and full-flux-surface simulations, including a finite electron temperature gradient.

Furthermore, one can take a look at the heat flux structure along the magnetic field, for
simplicity in the case of the flux-tube simulation only, and compare the ITG cases with and
without electron temperature gradient with each other in figure 5.13. In there, we see that
the structure of the ion heat flux is relatively unaffected by the electron temperature gradient,
having a strong peak on the outboard-midplane and a sharp fall-off towards the inboard side.
The electron heat flux, however, while having a very similar structure for the pure ITG case
as its ion counterpart, starts to develop several local maxima along the magnetic field line,
something that can also be observed in the electron heat flux structure of the density gradient
driven TEM case in the rightmost plots of figure 5.13.

Figure 5.13: Ion (top) and electron (bottom) heat flux structures parallel to the magnetic
field, obtained by flux-tube simulations, normalised to their respective maximum; shown, from
left to right, are the pure ITG case, the ITG case with finite electron temperature gradient,
and the TEM case.
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We can now continue to compare the flux-tube to the flux-surface results for the cases
under consideration. Compared with the scenarios considered in section 5.1, the flux-tube
simulations produce heat fluxes that are almost twice as large as the ones obtained with
the full-flux-surface model for the ITG case. Even further, one can see that the two models
now do not only differ quantitatively but also qualitatively for the Mixed and TEM case:
while the flux-tube simulations predict that the Mixed case produces similar levels of total
transport compared with the TEM case, the full-flux-surface simulations predict that the
former produces noticeably more transport than the latter, differing by roughly a factor of
two. This can be seen in figure 5.14, where the same heat fluxes as in figure 5.12 are plotted
without the ITG results for clarity.

Figure 5.14: Averaged ion and electron heat fluxes of the TEM and Mixed case turbulence
scenarios for flux-tube and full-flux-surface simulations, including a finite electron temperature
gradient.

To explore these differences further, we show the heat flux variation along the field-line
label for all three full-flux-surface simulations in figure 5.15. Like in figure 5.2, the corres-
ponding transport levels obtained by flux-tube simulations are placed on top and marked by
crosses. As the two different simulation domains produce the largest discrepancy for the ITG
case, we perform additional local simulations at α = (0.25, 0.5, 0.75) ∗ (2π/5), on top of the
one at α = 0. As shown in figure 5.15, even averaging the flux levels over multiple tubes
still results in a difference of the two domains by a factor of approximately 1.5. Furthermore,
we see that, while the full-flux-surface simulation produces a mostly homogeneous spreading
of heat flux, the local simulations predict a strong peaking of the fluxes in the α = 0-tube,
with a rapid fall-off towards the other tubes. Therefore, it becomes apparent that the two
different simulation domains do not only produce significantly different transport levels but
also a different spatial profile of turbulence.
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Figure 5.15: Variation of the ion and electron heat fluxes for the three turbulence scenarios
as a function of the field-line label. The dashed black lines indicate the mean value, whereas
the crosses represent the heat flux obtained by the corresponding flux-tube simulation.

Similar behaviour can be seen in the same picture for the Mixed and TEM examples, where
local simulations, in turn, either underestimate or overestimate the heat fluxes. Additionally,
as can be shown, the full-flux-surface simulation for both situations seems to predict a slightly
increased transport towards the α = π/5-flux-tube as opposed to the ITG scenario, which
has a little increased transport around α = 0. This suggests that one should compare many
flux tubes while conducting turbulence investigations because there is no assurance that the
transport would always peak in the same binormal position.

As a next step, we look again at the structure of the turbulent density fluctuations between
the three cases in figure 5.16. Comparing these variations of density fluctuations with those
in figure 5.4, it becomes apparent that the ITG and TEM scenarios behave similarly with
or without an electron temperature gradient: both cases show a relatively weak localisation
around the outboard midplane, with the ITG case being slightly more peaked than the TEM
case. In contrast to the previous case, however, the Mixed scenario produces a strongly
localised fluctuation pattern that peeks on the inboard side of the flux-surface. The reason for
this unfamiliar pattern is not yet understood but has been confirmed in flux-tube benchmarks
between GENE and GENE-3D in order to ensure the correctness of the results produced by
GENE-3D, as can be seen in figure 5.17.
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Figure 5.16: Root mean squared density fluctuations of the ITG, Mixed and TEM case with
finite electron temperature gradient, normalised to their respective maximum value, as a
function of the poloidal and toroidal PEST angles.

Figure 5.17: Root mean squared density fluctuations of the Mixed case with finite electron
temperature gradient obtained by flux-tube simulations, as a function of the parallel coordin-
ate. The density obtained by GENE-3D is marked in blue, and the one by GENE in red.

While a dedicated investigation of this behaviour is left for future work, such highly
localised turbulence can indeed serve as a proper candidate to test the possibility of the
electric field dislocating turbulence. Adding an electric field with MExB = −0.015 to the
Mixed case scenario, the ion heat flux reduces from (1.70 ± 0.10)QGB to (1.26 ± 0.11)QGB

and the electron flux from (1.98 ± 0.12)QGB to (1.46 ± 0.13)QGB. As shown for all cases
considered in section 5.3, the density fluctuations are again only shifted very slightly, as
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can be seen in figure 5.18, which overall implies that the radial electric field does not seem
to significantly impact the spatial location of ion and electron fluctuations, even for highly
localised cases, supporting the hypothesis about the flow strength made in section 5.3. It
remains to be seen in the future how much the radial electric field will affect the behaviour
of heavy impurities, as their higher mass makes them more susceptible to its influence.

Figure 5.18: Root mean squared density fluctuations of the Mixed case with finite electron
temperature gradient, with and without radial electric field, normalised to their respective
maximum value, as a function of the poloidal and toroidal PEST angles.

5.5 Chapter summary

This section dealt with the investigation of full-flux-surface effects on ITG- and TEM-driven
turbulence, as well as on the interaction between the two, in Wendelstein 7-X-like configur-
ations. By performing the first-ever full-flux-surface simulations with kinetic electrons, we
confirmed the stabilisation of ITG-dominated turbulence by a finite density gradient origin-
ally predicted by flux-tube simulations. We have further shown that turbulence is spread
out fairly evenly on the surface for the cases under consideration, different from what has
been proposed in previous full-flux-surface studies that used an adiabatic electron model.
Beyond that, we have shown that while flux-tube simulations can be a sufficient approxim-
ation of transport levels for some cases, other cases under consideration showed significant
disagreement compared with flux-surface simulations, especially in cases where transport is
comparatively large. Especially in these cases, the predicted spreading of heat flux between
different field lines was heavily favoured towards a more localised distribution in the case of
the flux-tube simulations. In contrast, the higher-fidelity model produced a rather uniform
variation. Finally, we showed that an external radial electric field without flow shear only
affects turbulence weakly for the cases under consideration, both in terms of the strength of
turbulent transport and in terms of the location of turbulent fluctuations, not even in cases
where the latter are highly localised.

While the parameters under consideration can be considered representative of the main
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types of electrostatic turbulence relevant to the first operational campaign of W7-X, the study
can still be improved in the sense of extending it to fully experimental parameters, including
multiple radial positions, experimentally consistent profiles, electromagnetic effects, and more.
For this reason, we will extend our investigation of different simulation models to the analysis
of an experimental ECRH-heated discharge of Wendelstein 7-X, as well as an analysis of the
underlying turbulence characteristics, in the next chapter.

95



Chapter 6

Analysis of an ECRH discharge in
Wendelstein 7-X

In the preceding two chapters, we have demonstrated on multiple occasions that the predicted
turbulence levels can significantly differ based on the fidelity of the underlying model and the
physical effects taken into account. However, all simulations conducted so far have employed
artificial background profiles, raising the question of the relevance of these findings in real-
world experimental scenarios. Similar concerns also apply to most existing literature on
gyrokinetic stellarator simulations. For instance, studies like [92, 93] employ simulations of
experimental parameters in flux-tube domains, whereas publications like [94] present radially
global simulations using analytical background profiles in the collisionless and electrostatic
limit.

In this chapter, we will bridge this gap by presenting a global simulation of experimental
discharge parameters of Wendelstein 7-X, using a kinetic electron model while accounting
for electromagnetic and collisional effects and considering a finite equilibrium radial electric
field. The only effect missing is magnetic compression, which is expected to have a minor
influence in the case considered due to the low overall plasma-β. To the author’s knowledge,
this simulation is the first of its kind. We will compare the outcomes with those obtained
from flux-tube and full-flux-surface simulations to extend the comparative analysis presented
in chapter 5 to parameters relevant to experimental setups. Additionally, we will explore
the hypothesis regarding the weakness of trapped-electron modes in the core of Wendelstein
7-X plasmas [16, 26], using the radially local and global simulation results obtained before.
Moreover, we will investigate the relative influence of ion- and electron-scale turbulence on the
overall transport levels. Identifying the different types of turbulence is highly important, as
they require different mitigation strategies [95, 96]. The findings in this chapter are currently
being prepared for submission to a peer-reviewed journal.

The rest of the chapter is structured as follows. We begin by introducing the discharge
considered in section 6.1, followed by expanding upon the studies introduced in chapter 5,
extending them to realistic experimental scenarios in section 6.2. Subsequently, we invest-
igate the characteristics of the ion-scale turbulence found in the discharge’s core region in
section 6.3. Through a comprehensive analysis involving the different simulation types and
a comparison against power balance analysis, we present compelling evidence supporting
trapped-electron activity manifested in ITG-TEM hybrid turbulence. This discovery contra-
dicts earlier literature findings. In section 6.4, we explore the influence of ETG turbulence
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on the overall transport and identify factors contributing to its varying strength at differ-
ent radial positions. Finally, in section 6.5, we justify the significance of these results in
the experimental context, even though they may not align perfectly with the power balance
analysis.

6.1 Details of the discharge

In the rest of the chapter, we consider an experimental Electron-Cyclotron-Resonance-Heated
(ECRH) discharge of Wendelstein 7-X. Specifically, our focus is on the W7-X programme
20181016.037, for which the corresponding time traces can be found in figure 6.1.

Figure 6.1: Time traces of the line-integrated density (blue), ECRH heating power (orange)
and diamagnetic energy (green) of the W7-X programme 20181016.037. The area marked in
grey at t = 4− 5 s corresponds to the shot phase considered in this investigation.

For our purposes, the discharge phase of t = 4 − 5 s is particularly well-suited. It can be
considered a representative scenario for gas-fuelled standard discharges within W7-X. The
relevant background density and temperature profiles were obtained using the NTSS code
[97], together with the neoclassical transport code DKES [98] computing the neoclassical
fluxes as well as the equilibrium radial electric field. Figure 6.2 shows the background profiles
and the electric field. One thing to note is that Ti ≥ Te for some positions beyond x/a ≈ 0.5.
This contradicts the expectations for a plasma solely heated by ECRH, as the ions are only
heated through equipartition with the electrons. However, this discrepancy, resulting from
the specific configuration of NTSS used in this scenario, is of minor concern to us. To analyse
turbulent dynamics beyond a comparison between the different simulation models, we largely
focus on the region x/a ≤ 0.5, as will become clear in subsequent discussions.
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Figure 6.2: Density, temperature and radial electric field profiles corresponding to the grey
area in figure 6.1. Top: profiles, bottom: corresponding (normalised) gradients. Bottom
right: normalised flow shear rate, defined in equation 6.2.2 The red lines indicate the limits
of the domain simulated with GENE-3D. The data was provided by Thomas Windisch (IPP
Greifswald).

6.2 Comparison of computational domains

In this section, we begin our investigation of the discharge by comparing the predicted heat
fluxes and turbulent fluctuation levels between flux-tube, full-flux-surface and radially global
simulations. The latter serves as a benchmark, offering a reference point to assess the out-
comes of the other two simulation models. Beyond the extension of the studies presented in
chapter 5, the comparison enables the utilisation of the distinct diagnostic capabilities of each
model, provided the overall transport predictions align reasonably well. For instance, while
flux-surface and global simulations can provide the spatial patterns of turbulence across the
entire surface, flux-tube simulations can isolate single toroidal modes in linear simulations,
which will prove valuable in the subsequent sections.

The global simulation, performed with GENE-3D, considers a radial domain of x/a ∈
[0.275, 0.925], which accounts for roughly 65% of the entire inner plasma volume. The grid
employs resolutions of (325, 256, 126, 64, 16) points in the (x, y, z, v||, µ)-directions, respect-
ively. The corresponding box dimensions are (Lx, Ly, Lv|| , Lµ) =
(259.437, ρs, 265.472, ρs, 3.45, vth,σ(x0), 11.9, T0,σ(x0)/Bref). Using approximately 2.8 million
core hours on the MPCDF cluster Raven, the simulated plasma is saturated based on the time
traces of the volume-averaged heat fluxes illustrated in figure 6.3. To the author’s knowledge,
this simulation marks the first instance of a global gyrokinetic simulation conducted with ex-
perimental discharge parameters from W7-X, incorporating kinetic electrons and accounting
for electromagnetic effects.
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Figure 6.3: Time trace of the volume-averaged heat flux of the global simulation.

The resulting heat flux profiles are compared with the outcomes of radially local sim-
ulations, as depicted in figure 6.4. These local simulations are carried out at the radial
positions x/a = [0.4, 0.5, 0.6, 0.7, 0.8]. The full-flux-surface simulations are performed us-
ing GENE-3D, covering one fifth of the respective surface. Using numerical boxes with
(Lx, Lv|| , Lµ) = (225 ρs, 3 vth,σ(x0),
9T0,σ(x0)/Bref) and a resolution of (nx, ny, nz, nv|| , nµ) = (225, 256, 128, 32, 9) was sufficient
for most cases. However, the velocity grids had to be changed to (Lv|| , Lµ, nv|| , nµ) =
(6, 12, 64, 12) for the simulations at x/a = 0.4 and 0.5. Unless stated otherwise, a finite
equilibrium flow corresponding to the local value of the nominal radial electric field is con-
sidered. The flux-tube simulations are conducted using GENE, as the two codes have been
benchmarked extensively against each other. Nevertheless, GENE employs a much more ef-
ficient treatment of flux-tube domains due to the spectral representation in the radial and
binormal directions. Four flux-tubes at α = [0, 0.25, 0.5, 0.75]2π/5 are considered at each
radial position. Here, a setup of (ky,min, Lv|| , Lµ) = (0.05 ρ−1

s , 3 vth,σ(x0), 9T0,σ(x0)/Bref) and
(nkx , nky , nz, nv|| , nµ) = (128, 64, 128, 32, 9) was found to be sufficient. The radial box sizes
are selected to be approximately Lx ≈ 225ρs and are adjusted according to the magnetic
shear ŝ. In cases where the shear becomes too small, periodic boundary conditions in the z
direction are assumed [99].

Figure 6.4 shows decent agreement of heat flux levels between the local and global sim-
ulations in the core while exhibiting significant disagreement between flux-tube and global
results in the outer region, up to a factor of 2 at x/a = 0.8. In contrast, the alignment between
full-flux-surface and global simulations is better, with a relative error of approximately 30%.
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Figure 6.4: Comparison of the radial heat flux profile obtained from the global simulation with
those obtained by flux-tube (left) and full-flux-surface (right) simulations. Shaded regions
indicate standard deviation in time of the global simulation.

The discrepancies seen in figure 6.4 can partly be explained by the different treatment of
the radial electric field within the three simulation models. As was discussed in section 5.3,
a constant radial electric field can be eliminated in flux-tube simulations by an appropriate
coordinate transformation, whereas full-flux-surface simulations are impacted by it. Moreover,
global simulations account for the radial variation of the electric field, which naturally includes
a shearing effect in the system. This shearing effect is known to have a stabilising impact
on turbulence. However, it is possible to introduce this flow shear approximately in local
simulations by linearising the flow velocity around the reference position according to

v̂E0 = −Êr(x)

Ĉ(x)
≈ −

(
Êr(x0)

Ĉ(x0)
− γ̂ExB(x0) (x̂− x̂0)

)
, (6.2.1)

where we have introduced the normalised ExB-flow shear rate

γ̂ExB(x0) ≡ − d

dx̂

(
Êr(x)

Ĉ(x)

)∣∣∣∣
x=x0

= −

[
dÊr

dx̂
− Êr

x̂
(1− ŝ)

] ∣∣∣∣
x=x0

. (6.2.2)

The Fourier representation of the radial direction employed by GENE necessitates using
a sophisticated algorithm proposed in [100]. In contrast to this, it is straightforward to
incorporate equation (6.2.1) into the gyrokinetic equation (3.2.7) of GENE-3D if Dirichlet
boundary conditions are assumed in the radial direction.

When accounting for the sheared ExB-flow in the radially local simulations, we observe a
noticeable impact in the outer radial region, as indicated in figure 6.5. Since the shear rate is
comparatively low in the inner region, it is understandable that one does not see a significant
change in the transport levels. However, one can see a substantial reduction around x/a = 0.8,
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where the flow shear is strongest.

Figure 6.5: Same as figure 6.4 but linearised flow shear was added for the radially local
simulations.

Qions ·A [MW] Qelectrons ·A [MW]

Flux-tube 3.34± 0.11 0.80± 0.02

Flux-tube (with γ̂ExB) 2.34± 0.04 0.60± 0.01

Flux-surface (no Er) 2.32± 0.06 0.44± 0.01

Flux-surface (with Er) 2.30± 0.05 0.44± 0.01

Flux-surface (with Er & γ̂ExB) 1.77± 0.03 0.36± 0.01

Global 1.77± 0.08 0.30± 0.02

Table 6.1: Ion and electron heat fluxes at x/a = 0.8 as predicted by different models

By repeating the full-flux-surface simulation at x/a = 0.8 while neglecting the equilibrium
ExB-flow, one can infer from table 6.1 that the local radial electric field has no significant
impact on the transport levels at this position. Taking into account the flow shear, on the
other hand, reduces the heat fluxes in both local models by approximately 20-25%, making
the ion heat flux computed by the flux-surface simulation agree with the global results within
error bars. This highlights that the shearing of equilibrium ExB-flows significantly impacts
turbulence levels in stellarators and should, therefore, always be considered in gyrokinetic
simulations. This is especially true in advanced scenarios, such as those with pellet fuelling,
where one can see an even stronger radial variation of the electric field [23].

While the ion heat flux is only overpredicted by approximately 30% by the flux-tube
simulations, the electron heat flux is still larger by a factor of 2 compared with the global
results. Interestingly, however, one can see in figure 6.6 that the different flux-tubes are
stabilised to a different extent by adding flow shear.
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Figure 6.6: Variation of the ion and electron heat fluxes along the field-line label α centred
around x/a = 0.8. Red and blue lines represent the fluxes obtained by global and full-flux-
surface simulations, respectively, while green crosses mark the flux-tube results.

The ion heat flux reduces by approximately 40% within the α = π/10-flux-tube, dropping
from 3.85 MW to 2.28 MW. On the other hand, it only shows a slight decrease of about 3%
at α = π/5, from 2.32 MW to 2.24 MW. The electrons exhibit a slightly weaker stabilisation,
with their heat flux decreasing from 0.89 MW to 0.60 MW at α = π/10 and from 0.6 MW to
0.58 MW at α = π/5, which translates to stabilisation of 32% and 3%, respectively. One can
see that the overall variation of the different flux-tubes is greatly reduced by the addition
of the shear to a level comparable with that of the flux-surface and global simulations. The
mechanism driving this phenomenon will be subject to investigation in future research.

We complete the comparison of the different computational domains in experimental para-
meter regimes by considering the turbulent density fluctuations as a function of the field-line
angles for different radial positions. According to the theory presented in [28] and [89],
turbulent fluctuations are expected to become more localised as ρ∗ decreases. However, as
demonstrated in figure 6.7, even at x/a = 0.8, where ρ∗ ≈ 1/580, the density fluctuations
exhibit a factor of variance of only up to 2.5, which aligns with our earlier considerations in
chapter 5.
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Figure 6.7: Root-mean-square of the electron density fluctuations at x/a = 0.8, normalised
to the respective maximum value for full-flux-surface simulations with and without Er, with
finite ExB-flow shear as well as obtained by the global simulation. Fluctuations of the global
simulations are averaged over x/a ∈ [0.79, 0.81] to reduce statistical noise.

Furthermore, it is noteworthy that retaining the constant radial electric field does not
significantly alter the spatial structure of the density fluctuations computed by the full-flux-
surface simulations, in accordance with the results and subsequent explanation presented in
sections 5.3 and 5.4. Interestingly, including finite γ̂ExB noticeably decreases the extent of the
fluctuations along the toroidal direction. This behaviour is, however, inconsistent with the
global results, also shown in figure 6.7, which has a relatively homogeneous structure in the
toroidal direction. This effect is to be studied in the future.

6.3 Analysis of ion-scale turbulence in the core

After evaluating the predictive capacities of various simulation models for the current ECRH
discharge, we focus on examining the system’s inherent turbulence characteristics. To this
end, we compare the global heat flux profiles predicted by GENE-3D against the anomalous
heat fluxes obtained with NTSS in figure 6.8. The latter is given by the difference between
total and neoclassical heat fluxes, where the latter are calculated with DKES.
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Figure 6.8: Comparison of the radial heat flux profile obtained from the global simulation
with the power balance obtained by NTSS. Shaded regions indicate standard deviation in
time of the global simulation.

The comparison between the power balance and GENE-3D shows good agreement of the
ion heat flux up to x/a = 0.5. However, as we move further out of the core, the simulated
ion heat flux increases substantially, reaching up to 3 MW, which exceeds even the total
ECRH heating power injected into the system, as illustrated in figure 6.1. In contrast, the
electron heat flux computed by GENE-3D appears notably lower across the entire radial
domain. Consequently, our primary focus will be on the region with x/a ≤ 0.5 for in-depth
investigations of turbulence characteristics.

As was already mentioned in the introduction of chapter 6, it was postulated [16, 26]
that ITG should be the dominant type of turbulence in the plasma core, while TEMs, if
at all, should be expected in the plasma edge. However, the results obtained with GENE-
3D and NTSS, as displayed in figure 6.8, suggest that this hypothesis can only be partially
accurate. ’Pure’ ITG turbulence drives only limited electron heat flux in comparison with
the ion channel [101], as can also be observed in figure 5.1. In contrast, GENE-3D and NTSS
predict either Qe ≥ Qi or Qe � Qi in the core, as can be expected for plasmas where the only
direct heating is applied to the electrons. Given that electromagnetic turbulence should be
subdominant for the plasma-β of the discharge, TEM turbulence emerges as a likely candidate,
as it was shown in chapter 5 that it could drive both ion and electron heat flux.

To explore this, we have selected the radial position x/a = 0.4 as a representative flux-
surface within the inner plasma core. In figure 6.9, we present the spatial distribution of heat
flux for both electron and ion channels along the parallel coordinate z and the field-line label
α. Here, one can see that the ion heat flux exhibits primarily a single central peak, while the
electron heat flux has multiple maxima along z at fixed α.
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Figure 6.9: Electron and ion heat fluxes at x/a = 0.4, obtained by the global simulation, as
a function of the parallel coordinate z and the field-line label α.

This distinction becomes even more evident when comparing the parallel structure at α = 0
from flux-tube simulations against the magnetic field structure as well as the curvature drive
Ky in figure 6.10.

Figure 6.10: Blue: parallel ion (left) and electron (right) heat flux structures for the flux-
tube simulation at x/a = 0.4, α = 0 with nominal parameters; red: parallel structure of the
equilibrium magnetic field strength (top) and the curvature-drive term Ky (bottom).

In the case of ion heat flux, it appears to peak at positions where Ky is the most negative.
In contrast, the electron heat flux is additionally influenced significantly by the structure of
magnetic wells. This becomes apparent as the latter has a local minimum at z = 0 despite
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the curvature having a local minimum, closely followed by local maxima coinciding with the
minima of the magnetic wells. The structural differences indicate the existence of a hybrid
ITG-TEM mode, corroborated by linear simulations in figure 6.11.

Figure 6.11: Linear flux-tube wavenumber-scan for the bean-shaped flux-tube at x/a = 0.4;
left: growth rates, middle: mode frequencies, right: quasilinear estimates of the ion-to-electron
heat flux ratio.

In there, all the analysed modes exhibit a positive frequency, indicating their propagation
in the ion-diamagnetic direction. However, both particle channels have comparable strength
regarding their quasilinear heat flux estimates. This points to a tight coupling between ions
and electrons, a clear indication of the presence of ITG-TEM hybrid modes [102]. As can
also be seen, the growth rate spectrum does not decrease within the scanned wavenumber
range. Nevertheless, it becomes apparent that those small-scale modes do not contribute
significantly to the nonlinear transport since the corresponding nonlinear heat flux spectra
shown in figure 6.12 are predominantly determined by wavenumbers up to kyρs ≈ 1.
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Figure 6.12: Nonlinear heat flux spectra for the bean-shaped flux-tube at x/a = 0.4; left: ion
heat flux, right: electron heat flux.

We finalise this investigation by exploring the influence of each of the two temperature
gradients on the overall transport levels. While this approach is not fully rigorous, it offers
some insights into the contributions of different turbulence types to the overall dynamics.

Case Qions ·A [MW] Qelectrons ·A [MW]

Nominal 0.42± 0.05 0.49± 0.07

a/LTe = 0 0.49± 0.06 0.07± 0.01

a/LTi = 0 0.01± 0.00 0.18± 0.01

Table 6.2: Heat fluxes of flux-tube simulations at x/a = 0.4, α = 0, for nominal parameters
and either electron or ion temperature gradient set to zero.

Table 6.2 shows that, when compared to the nominal parameters, excluding the normal-
ised electron temperature gradient has a negligible effect on the ion heat flux, as it remains
similar to the nominal case within error bars. In contrast, the electron heat flux reduces by
approximately 85% in this case, resulting in a scenario dominated by the ion channel. As can
be seen in figure 6.13, the new ion heat flux has a rather ballooning-type structure along the
magnetic field lines with substantially stronger contributions at the magnetic hills close to
z = 0 compared with the ion heat flux shown in figure 6.10. Similar structures were observed
in [23] for a case classified as ITG-driven, which we conclude is also the dominant type of
turbulence here.

107



6.4. IMPACT OF ETG TURBULENCE

Figure 6.13: Left: parallel ion heat flux structure for the flux-tube simulation with a/LTe = 0;
right: parallel electron heat flux structure for the flux-tube simulation with a/LTi = 0. While
the heat fluxes are shown in blue, the parallel structure of the magnetic field strength is
represented by red dashed lines.

Moreover, the ion heat flux vanishes almost completely when the ion temperature gradient
is zero. In this case, the electron heat flux no longer peaks at z = 0, where the magnetic
field strength has a local maximum, as shown in figure 6.13. Unlike the nominal case shown
in figure 6.10, we conclude that the transport is now primarily driven by TEM turbulence,
drawing its energy from the electron temperature gradient ∇Te. Since one can also see in
table 6.2 that the electron heat flux drops by a factor of 7 when the electron temperature
gradient is neglected, one can see the importance of this branch of trapped-electron-modes
compared with those that are primarily driven by an electron density gradient, which have
garnered more attention in the literature thus far [22, 23, 103, 104].

Collectively, the evidence from the power balance, heat flux structure, and linear flux-
tube analysis in this section leads us to conclude that, contrary to the proposition in [16, 26],
trapped-electron-mode turbulence seems to be present in the core of gas-fuelled discharge in
W7-X, at least for the discharge under consideration. However, the generality of this obser-
vation should be explored across various scenarios, a task reserved for future investigations.

6.4 Impact of ETG turbulence

As shown in figure 6.8, one can obtain satisfactory agreement between the predicted anom-
alous ion transport via power balance analysis and the one computed with GENE-3D within
the core. In contrast, the electron transport remains too low. It is, however, essential to
note that, thus far, we have primarily considered turbulence on the ion-scale. Therefore, the
missing contribution to the electron flux could be driven by ETG turbulence.

To this end, we perform additional flux-tube simulations using the adiabatic ion model
presented in section 2.7. We consider the flux-tubes at α = [0, 0.25, 0.5, 0.75]2π/5 for x/a =
[0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The numerical resolution and box sizes remain the same as
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those used in the ion-scale simulations in section 6.2, with the exception being the use of the
electron Larmor radius ρe for normalisation instead of the ion sound Larmor radius ρs.

The resulting fluxes, given in megawatts, are then averaged over the field-line labels and
are added to the ion-scale electron heat flux of GENE-3D via linear interpolation in the radial
coordinate. Figure 6.14 shows the updated global flux profiles. In there, we observe that the
contribution from electron-scale turbulence is negligible in the outer radial region. However,
in the plasma core, ETG turbulence appears to account for over 50% of the turbulent electron
heat flux. Our results align with [21], where ETG turbulence was identified as the potential
main driver for electron heat transport in the core for some cases. However, the electron-scale
contribution to the discharges was identified as even stronger than for the present case.

Figure 6.14: Comparison of the radial heat flux profile with the power balance obtained
by NTSS. The dark red line shows the sum of electron heat fluxes of (separated) ion- and
electron-scale simulations. Shaded regions indicate standard deviation in time of the global
simulation.

In order to understand the discrepancy between the electron-scale contributions at differ-
ent radial positions, one has to consider several possible factors. Figure 6.15 shows that the
heat flux is nearly constant under variation of the field-line label so that the choice of the
flux-tube or subsequent averaging procedures should have negligible impact on the discussion.
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Figure 6.15: Electron heat fluxes obtained by local ETG simulations as a function of the
radial coordinate for different field-line labels.

Previous studies of ETG dynamics in Wendelstein 7-AS [19] and similar simulations in toka-
maks [105] have indicated that the collisionality and plasma-β have only a minor impact.
However, the electron-to-ion temperature ratio τ = Te/Ti and the normalised Debye length

λ̂De = λDe/ρe =
√
B2

ref/(4πc
2mene(x)) were reported to influence ETG turbulence signi-

ficantly. Figure 6.16 shows that the decrease in τ is not responsible for the diminishing
contribution of ETG to the total flux. The decrease in τ should lead to a destabilisation
towards the outer region.

Figure 6.16: Variation of the temperature ratio τ = Te/Ti (red) and the normalised Debye

length λ̂De =
√
B2

ref/(4πc
2mene(x)) (blue) as a function of the radial coordinate.

Besides the change in τ , figure 6.16 also indicates that λ̂De increases towards the edge,
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which is thought to have a stabilising influence on ETG turbulence. By repeating the flux-tube
simulations while artificially setting λ̂De = 0, we observe in figure 6.17 that the stabilisation
resulting from Debye shielding remains inadequate to account for the radial variation in
electron-scale transport, as the difference between both models becomes negligible towards
the edge.

Figure 6.17: Radial electron-scale heat flux profiles of the α = 0-flux-tube with (red) and
without (orange) including λ̂De.

In addition to geometrical factors, such as the magnetic field curvature, the normalised
gradient ratio ηe = Ln/LTe is known to play a significant role, as a decrease has a stabilising
effect on ETG turbulence. This effect was argued to explain the low ETG turbulence in
the outer region of a discharge considered in [20]. If this was the leading cause, setting the
density gradient to zero should naturally result in a radial profile that grows larger towards the
edge, together with the normalised electron temperature gradient driving ETG turbulence.
Although the decrease of ηe in the radial direction, shown in figure 6.18, would, in fact,
support the hypothesis of stabilisation through the density gradient, we can see in the same
figure that setting the density gradient to zero still results in the heat flux decreasing towards
the edge.
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Figure 6.18: Top: Radial electron-scale heat flux profiles of the α = 0-flux-tube with finite
a/Ln (red) and with a/Ln = 0 (orange); bottom: radial variation of the normalised gradient
ratio ηe.

Having eliminated all other options, we conclude that ETG transport is not stiff enough
to compensate for the decrease in density and temperature towards the outer regions. To
confirm this, we present the radial profile of the normalised heat flux and the Gyrobohm
scaling factor profile in figure 6.19.

Figure 6.19: Blue: Radial electron-scale heat flux profile in Gyrobohm units, averaged over all
field lines considered, using nominal simulation parameters; red: radial variation of Gyrobohm
transport. The subscript ’e’ indicates that the electron mass was used as reference mass mref .
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Here, we observe that the former increases by approximately an order of magnitude towards
the edge, aligning with the rise in the normalised electron temperature gradient. Simultan-
eously, the Gyrobohm scaling factor rapidly decreases by more than two orders of magnitude
between the core and the edge. Therefore, we see that the normalised flux does not grow
fast enough with increasing background drive, so the product of the two will decrease with
increasing radial position.

Concluding this investigation, we summarise that we have shown electron-scale turbulence
to be equally important as its ion-scale counterpart to explain the anomalous electron heat flux
in the core of the gas-fuelled ECRH discharge under consideration. Conversely, we observed
only minor contributions in the outer radial regions compared with the electron transport
generated by hybrid ITG-TEM turbulence. Having considered multiple avenues of potential
parametric causes for this, we conclude that ETG transport is less stiff than what is required
by Gyrobohm scaling in order to compensate for the lower density and temperature in the
edge. Whether this statement can be generalised to other discharges remains to be seen.
Furthermore, it will be interesting to study the impact of the magnetic field geometry on
transport stiffness.

6.5 Final remarks on power balance

While we have presented a first-of-its-kind simulation of experimentally relevant parameters
of a gas-fuelled ECRH discharge in W7-X, one might rightfully question the validity of the
conclusions drawn. The scepticism is justified since the simulated heat fluxes still do not
align with the power balance, even with the additional electron-scale contributions. This is
certainly true if one tried to establish a link between simulation and experiment for the outer
region beyond x/a = 0.5 due to the overshoot in the ion heat flux calculated by GENE-3D.
A more robust approach would involve a comprehensive coupling of various codes, including
GENE-3D, GENE (for the ETG simulations), a neoclassical solver like KNOSOS [106] and
other codes, with a transport code like Tango [107–109], to evolve the background profiles self-
consistently until power balance is matched. Although this approach is routinely employed
for tokamaks [110, 111], such simulations were either done globally using adiabatic electrons
[112] or with kinetic electrons using a flux-tube approach [113] for stellarator geometries.
Extending the GENE-3D-Tango approach to include kinetic electrons is beyond the scope of
this thesis due to the high computational cost, but targeted as a project for the future.

Nevertheless, we can fortify the argument for TEM and ETG turbulence being relevant
in the core of gas-fuelled ECRH plasmas without matching power balance by looking at the
electron particle flux contributions. Although the experimental value of the flux is unknown
due to substantial systematic uncertainties, it is reasonable to assume that, in the context of
a purely gas-fuelled discharge, the total particle flux should tend towards zero or, at the very
least, be relatively small deep within the core of the plasma.
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Figure 6.20: Radial profiles of contributions to the electron particle flux. The neoclassical
particle flux, calculated with DKES, is shown in blue, while the anomalous flux, calculated
with GENE-3D, is shown in orange.

A qualitative comparison of the particle flux levels presented in figure 6.20 with those doc-
umented in [93] indicates that the anomalous particle flux predicted by GENE-3D is too
positive to fit the experiment. Since neoclassical transport often produces outward transport
[114, 115], the turbulent particle flux has to become negative towards the magnetic axis, which
is not the case here. Furthermore, as demonstrated in [93], an inward anomalous particle flux
can be achieved by decreasing the density gradient, increasing the electron temperature gradi-
ent, or a combination of the two. Since both of these adjustments would enhance the drive of
∇Te-TEM and ETG turbulence, it is reasonable to assume that, when matching power and
particle balance, the contributions of electron-induced turbulence to the electron heat flux
will be even more pronounced than under the nominal profiles employed in this analysis.

In summary, our evidence strongly supports the existence of trapped-electron turbulence
in the core of gas-fuelled ECRH discharges in the form of an ITG-TEM hybrid and ETG
turbulence. Their relevance in high-performance discharges, such as those with pellet fuelling,
remains to be explored, given that robust density gradients have been shown to suppress ETG
transport, as detailed in the previous section.

6.6 Chapter summary

This chapter presents the analysis of plasma turbulence in an experimental ECRH-discharge
of Wendelstein 7-X using GENE-3D and GENE. We have shown that while flux-tube and full-
flux-surface simulations decently approximate the heat flux levels in the plasma core predicted
by a radially global simulation, the former significantly overpredicts transport in the outer
region of the plasma. This discrepancy can be mitigated to some extent if the shearing of
external ExB-flow is considered, highlighting its importance on turbulence stabilisation even
in standard stellarator discharges.
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Beyond that, we have provided substantial evidence for trapped-electron-mode turbulence
in the plasma core for the case under consideration, in contrast to what has been proposed in
the literature [16, 26]. While not being the sole contributors to transport, they were clearly
shown to exist in the form of ITG-TEM hybrids, with the primary drive being the electron
temperature gradient.

Additionally, we have demonstrated, within the scope of our specific case, that electron-
scale simulations are responsible for a significant portion of electron heat flux compared with
ion-scale simulations, deviating from the proposition of weak ETGs in W7-X made in [20]. In
the outer radial regions of the plasma, their contribution diminishes, which we have shown to
be caused by the normalised ETG transport not increasing sufficiently fast enough towards
the outer region in order to offset the decrease in the Gyrobohm scaling factor caused by the
lower electron temperature and density in the edge.

Finally, we argue for the validity of our claims despite not matching the transport predic-
tions provided by power balance analysis, as the impact of electron-induced turbulence will
only be strengthened if the background profiles are changed to obtain experimentally realistic
particle fluxes.
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Chapter 7

Conclusions

Throughout this thesis, the global gyrokinetic stellarator code GENE-3D has been upgraded
to include electromagnetic effects arising through finite vector potential perturbations parallel
to the magnetic field. In addition, GENE-3D has been used to study various effects relevant
to the plasma performance in Wendelstein 7-X, with particular interest in comparing the
predictive capabilities between flux-tube, full-flux-surface and radially global simulations.
Below is a brief review of the most important accomplishments and insights. Furthermore,
an outlook on possible future research topics is given.

7.1 Summary of the thesis

Upgrading GENE-3D to an electromagnetic turbulence code

Former versions of GENE-3D only used a formulation of the gyrokinetic equations in the
electrostatic limit. While restricting the realm of physical phenomena that can be studied
with the code, this limitation also made simulations including kinetic electrons unfeasible, as
the numerical time step necessary for algorithmic stability was too small for simulations of
meaningful timescales due to the so-called ωH -mode [53]. Therefore, one of the main tasks
was to include electromagnetic effects caused by finite vector potential perturbations A1,||
into the code.

For this, Ampére’s law and an equation for the inductive electric field had to be imple-
mented, which had to be done with a conservative finite-difference scheme inspired by [71] in
order to obtain numerically stable solutions. Besides other modifications, such as the inclu-
sion of external ExB-flow-shear, an additional model for the inclusion of finite B1,||-effects at
arbitrary wavelengths for the global version of GENE has been developed that can be adop-
ted readily for GENE-3D in the future. The electromagnetic upgrade has also been verified
against GENE in linear and nonlinear global electromagnetic tokamak simulations, giving
confidence in the correct model implementation.

Electromagnetic ITG simulation in stellarators

After initial verification studies against GENE, the code was applied to perform the first-ever
global electromagnetic turbulence simulation with realistic electron mass in a stellarator geo-
metry. The aim was to show the stabilising influence of finite plasma-β on ITG instabilities
and turbulence in a Wendelstein 7-X-like plasma at already moderate levels of β, highlighting
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the importance of retaining electromagnetic effects for quantitative investigations of experi-
mental scenarios.

Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like
plasmas

Besides the investigation of electromagnetic turbulence, upgrading GENE-3D also allowed
for much more efficient simulations of electrostatic turbulence, as a small but finite β allows
for a much larger time step while not changing the underlying electrostatic turbulence by
any meaningful amount. Therefore, full-flux-surface simulations with kinetic electrons in stel-
larator geometry have been performed. Using this higher-fidelity setup, we have confirmed
the stabilising effect of a finite density gradient on ITG-driven turbulence in stellarators,
originally proposed through flux-tube simulations. We have furthermore shown that, while
flux-tube simulations might predict similar transport levels compared with full-surface simu-
lations for some of the cases under consideration, significant disagreement between the models
was found in terms of the magnitude of the heat fluxes as well as the spatial distribution for
cases that had a stronger turbulence drive. For most cases considered, we show that turbu-
lent density fluctuations are only weakly localised on a flux-surface, in contrast to what has
been suggested in previous full-flux-surface literature. Finally, it was found that for all cases
considered, an external radial electric field neither caused any significant dislocation of the
density fluctuations on the surface nor stabilised ITG turbulence significantly compared with
an increase in the background density gradient.

Turbulence analysis of experimental ECRH-discharge in Wendelstein 7-X

GENE-3D was pushed to full operability in this chapter by performing simulations of ex-
perimental parameters of Wendelstein 7-X. The profiles under consideration are based on a
discharge from the first operational campaign and can be considered representative of low-
power ECRH-heated discharges with gas-puff fuelling. The discharge was investigated by
performing flux-tube, full-flux-surface and radially global simulations, including kinetic elec-
trons, electromagnetic and collisional effects, and a finite radial electric field. To the author’s
best knowledge, the full-surface and global simulations performed here were the first-of-a-kind
studies of Wendelstein 7-X using experimental parameters. The subsequent analysis of the
simulation results in this chapter was split into two parts.

In the first part, the comparison between flux-tube and full-flux-surface simulations was
extended to experimentally relevant parameters, further comparing the approaches against
predictions of a radially global simulation. In agreement with the previous chapter, we also
found that, although flux-tube simulations can provide a suitable alternative to investigate
the transport in the plasma’s core, significant disagreement with the higher-fidelity models
was found in the outer regions. We have also shown that including a sheared equilibrium-scale
ExB-flow reduced the disagreement with the global results to some extent if the normalised
flow shear rate is sufficiently large.

The second part of the analysis focused on the characterisation of turbulence found in
the plasma’s inner region for the profiles under consideration. In contrast to what was pro-
posed in the literature, we find significant levels of trapped-electron turbulence in the form
of ITG/TEM-hybrids in the core, where we propose that the trapped-electron contribution
is the main contributor to the anomalous electron heat flux on ion scales. Furthermore, we
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have found that electron-scale turbulence in the form of ETGs provides an equally important
contribution to the electron heat flux as TEMs in the core. In contrast, their influence is
negligible in the outer regions. This behaviour was attributed to the fact that the normal-
ised electron-scale transport under consideration was not stiff enough to compensate for the
temperature and density decrease towards the edge, lowering the Gyrobohm scaling factor.

7.2 Outlook for future projects

Beyond the suggestions for future projects given in the previous chapters, there are several
projects that require improvements to the current version of GENE-3D.

Turbulence simulations of highly electromagnetic regimes

Future fusion reactors will likely operate at significantly higher plasma-β than those obtained
in the first operational campaign of Wendelstein 7-X. Therefore, it is necessary to investigate
the excitation of kinetic ballooning modes and their impact on plasma performance in great
detail. Since previous studies have already shown magnetic compression effects to play a
significant role, it is desirable to incorporate finite B1,|| into the gyrokinetic system solved
by GENE-3D. In order to use the model (2.7.6), presented in section 2.7, an alternative
quadrature scheme for the µ-coordinate has to be introduced in order to use the arbitrary-
wavelength model of the Poisson equation at a reasonable cost. One promising candidate is
the discretisation scheme presented in [116], which was shown to behave significantly better
for values of the coordinate close to the origin.

Non-Maxwellian background distribution functions

Besides the already-mentioned implementation of magnetic compression effects, incorporating
the possibility of using non-Maxwellian background distribution functions will open the door
to studying the interaction between neoclassical and gyrokinetic timescales. For this, the
code will have to undergo significant changes, as the several simplifications introduced by a
Maxwellian background have to be revered, resulting, for example, in a coupling between the
field equations for φ1, A1,|| and B1,||, subsequently also making it necessary to solve a coupled
system for their time derivatives.

Interaction between energetic ions and turbulence

In a first attempt, [117] has shown that energetic ions can potentially be used to suppress tur-
bulence in stellarators through resonant effects similar to what is seen in tokamaks [118–120].
It will, therefore, be interesting to study whether stellarators could be optimised so that such
resonances could be exploited, for example, in the presence of fusion-born α-particles. Since
such studies usually deal with a significant difference between core and edge temperatures,
especially those of the fast ions, it will be helpful to implement block-structured velocity
space grids [121], in GENE-3D, as its implementation in GENE has been shown to lead to a
substantial reduction of the numerical cost.
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Plasma profile prediction in stellarators

Although gradient-driven simulations can give valuable insights into the turbulent behaviour
of plasmas, it is desirable to perform simulations at transport timescales. This way, the
impact of physical effects on the density and temperature profiles, and therefore on plasma
performance, can be studied. For this, GENE-3D has already been coupled to the transport
code Tango [109] and applied to various scenarios [112, 122] under the use of an adiabatic
electron model. The extension to kinetic electrons is straightforward and allows for predicting
all particle temperature and density profiles, whereas in the former model, only the ion
temperature is allowed to vary. Since this approach requires multiple global simulations with
GENE-3D, its numerical performance should be improved. Besides the already mentioned
implementation of block-structured velocity space grids, it will be crucial to port GENE-
3D to run on GPUs. For this, the code will be refactored to support an object-oriented
approach that allows the porting procedure via the gtensor library [123], which has been used
successfully for GENE.
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theory for particle-in-cell codes’. Physics of Plasmas 23.8 (2016).

[40] Tilman Dannert. ‘Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen
Teilchen und elektromagnetischen Effekten’. PhD thesis. Technische Universität München,
2005.

[41] H Goldstein Classical Mechanics. Addison-Wesley Series in Physics. 1980.

[42] Robert G Littlejohn. ‘Variational principles of guiding centre motion’. Journal of
Plasma Physics 29.1 (1983), pp. 111–125.

[43] Robert G Littlejohn. ‘Hamiltonian perturbation theory in noncanonical coordinates’.
Journal of Mathematical Physics 23.5 (1982), pp. 742–747.

123



BIBLIOGRAPHY

[44] John R Cary and Robert G Littlejohn. ‘Noncanonical Hamiltonian mechanics and its
application to magnetic field line flow’. Annals of Physics 151.1 (1983), pp. 1–34.

[45] T Görler, N Tronko, WA Hornsby, A Bottino, R Kleiber, C Norscini, V Grandgirard,
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Fernández, A de la Peña, JL Velasco, JA Alonso, M Beurskens et al. ‘Radial electric
field and density fluctuations measured by Doppler reflectometry during the post-pellet
enhanced confinement phase in W7-X’. Nuclear Fusion 61.4 (2021), p. 046008.

[93] H Thienpondt, JM Garćıa-Regaña, I Calvo, JA Alonso, JL Velasco, A González-Jerez,
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