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Chapter 1

INTRODUCTION

Microwave and Radio Frequency (RF) technology form a cornerstone of current technological
advancements, permeating both the commercial and defense sectors. These technologies are pivotal in
applications that encompass information processing, sensing, and communications [1, 2]. Commercially,
they are integral to the operation of devices and systems ranging from smartphones and 5G, WiFi
wireless technologies to radar sensors in various sectors. In defense, microwave technology is essential
for passive and active sensing, communication systems, and weapons control. The reliance on and
evolution within these domains underscore ongoing challenges in RF and microwave engineering.

As the field of RF and microwave engineering continues to encounter ongoing challenges, quantum
physics has begun to play a pivotal role in this expanding domain. In the quantum field, developments
over the past two decades have facilitated the creation and control of complex quantum systems.
These advancements extend well beyond fundamental research to emerging technologies in computing,
communication, and sensing. The superconducting platform, in contrast to other platforms such as
electron spins in silicon [3–8], quantum dots [9–12], trapped ions [13–15], ultracold atoms [16–18],
nitrogen-vacancies in diamonds [19, 20], and polarized photons [21, 22], offers unique opportunities
for parameter manipulation [23, 24]. A significant achievement in this area is the realization of the
strong coupling regime, a condition where interaction strengths surpass individual system decay rates
[25, 26]. This achievement is facilitated by advances in nanofabrication technology, allowing for the
construction of sophisticated superconducting quantum chips. This area of research in physics, where
quantum effects are studied in electrical circuits, is called circuit quantum electrodynamics.

In superconducting circuits and cavity quantum electrodynamics systems, Josephson junctions
play a pivotal role. Characterized by their strong nonlinearity, and low losses, these junctions
are fundamental for various quantum information applications. Their crucial role is evident in the
realization of parametrically driven devices, including quantum amplifiers [27–32], frequency converters
[33–35], nonclassical light generators [36, 37], stabilizers [38, 39], and microwave single-photon detectors
(SPDs) [40, 41]. The operation of these devices is based on three- or four-wave mixing processes enabled
by a strong microwave drive, termed a "pump". Among these, SPDs can be applied for many quantum
protocols, such as quantum teleportation [42], entanglement distillation [43], entanglement swapping
[44], quantum eraser [45], quantum repeater [46], Gaussian boson sampling [47], and quantum error
correction [48].

In the optical regime, single-photon detectors are realized in various kinds of implementations
such as quantum dots [49–51], superconducting nanowires [52], single-photon avalanche photodiodes
[53], and up-conversion detectors [54]. Conversely, development of SPDs in the microwave domain is
particularly challenging. This is primarily attributed to the lower energy scales involved [40, 41, 55–
58] and the high performance standards demanded by applications in quantum information, quantum
sensing, and quantum illumination [59–65]. Despite these obstacles, various microwave SPD designs
with quantum efficiencies exceeding 50% have been demonstrated in the recent years [40, 41, 55–58].
The strategic significance of microwave SPDs becomes particularly important in applications such
as dark matter axion search [61], spin fluorescence detection [66, 67], and quantum radar [64, 68].
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The application of microwave SPDs in the quantum radar systems enables an experimental quantum
advantage in a target detection [64]. In the field of spin fluorescence detection, microwave SPDs can
surpass the signal-to-noise-ratio performance over the conventional electron spin resonance methods,
marking a substantial improvement in detection techniques [66, 67]. Meanwhile, microwave SPD
technologies can also further advance the rapidly growing fields of microwave quantum communication
and sensing [37, 65, 69, 70].

A common technique for detecting single photons in microwave SPDs involves the use of transmon
qubits, a dominant type of superconducting qubits used in quantum computation [40, 41, 57, 58].
The phenomenon of transmon ionization (TI) emerges when the transmon qubit state escapes the
confinement of the Josephson potential. Such behavior can be caused by strong microwave pumping,
which can set the transmon into a rather complex regime involving many quantum levels [71–74].
This phenomenon is known under various names, such as the quantum-to-classical phase transition
[75–77], first-order dissipative phase transition [78–81], chaotic regime [74, 82], and breakdown of
photon-blockade [77, 78]. Various tools and representations, such as Rényi entropy, Floquet theory,
and Husimi Q functions, are employed to indicate potential phase transitions. Notably, within the
framework of the quantum Duffing oscillator, Rényi entropy serves as a quantifier of purity of the
quantum system, while the Floquet theory provides insights into the temporal evolution under periodic
driving. Concurrently, the Husimi Q function offers a phase space representation, revealing significant
quantum fluctuations which arise from tunneling between two metastable states. While this bistability
is known to be useful for high-fidelity readout schemes [73, 83], its influence on the SPD behavior
remains not very well understood until now. Given the importance of such devices in quantum
applications, we investigate its complex dynamical behavior, and quantify the impact of the TI on the
SPD performance.

This thesis is organized as follows. In Chap. 2, we review the fundamental theory of superconducting
microwave circuits. Beginning with the theory of coplanar waveguide (CPW) transmission lines, we
explore the fundamental components including 2D CPW resonators, 3D cavities, and the transmon
qubit. We then examine the concepts, sources, and applications of decoherence in quantum systems.
The chapter also introduces the four-wave mixing process, pivotal in our SPD study, and delves into
quantum-to-classical phase transitions in transmon systems. Subsequently, in Chap. 3, we detail the
fabrication techniques developed at the Walther-Meißner-Institute (WMI). We present our findings on
the internal quality factors of 2D CPW resonators and the coherence times of 2D transmon qubits,
showcasing the advancements made in sample fabrication. In Chap. 4, we present an experimental and
numerical study of the TI onset and the SPD performance of a transmon qubit coupled to a multi-mode
superconducting 3D cavity. Finally, Chap. 5 discusses the potential application of our SPD system as a
multi-photon Fock-state generator. We explore the concept of irreversible coupling and its implications
for quantum state generation and manipulation.
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Chapter 2

SUPERCONDUCTING MICROWAVE CIRCUITS

Before delving into the details of quantum electromagnetic circuits, it is important to highlight some
key points, especially the electromagnetic phenomena, and the linear and nonlinear response.

Quantum electromagnetic circuits can be seen as the quantum mechanical counterpart of microwave
circuits, also known as high-frequency circuits. In many situations, electromagnetic phenomena both
in vacuum and matter can be described classically based on Maxwell’s equation and the concepts
of classical optics. In some cases this is no longer possible and the electromagnetic fields, which so
far have been treated classically, have to be treated quantum mechanically. This extends classical
electrodynamics and optics to quantum electrodynamics and quantum optics.

Whether the considered systems are linear or non-linear is on first sight not relevant for the
classical to quantum transition. For example, also in classical optics we can treat systems by a linear
approximation only in the simplest case (so-called linear response theory) but have to treat them by
a more detailed non-linear description for stronger perturbations, which extends the field to nonlinear
optics1. In that case for all systems showing a nonlinear response the superposition principle is no
longer valid. That is, if one superimposes two electromagnetic waves with two different frequencies, the
resulting wave does no longer contain only these two frequency components, but also other frequency
components [84, 85]. A phenomenon termed as frequency mixing. The spectrum of these emergent
frequencies is modulated by the specific nature of the nonlinearity, potentially leading to three-wave,
four-wave, or even higher-order wave mixing. Such nonlinear dynamics underpin parametric processes,
a principle already harnessed in commercial devices designed for tasks like parametric amplification
and frequency conversion. An illustrative example from our lab is the employment of an I-Q mixer
in a room-temperature qubit measurement setup; it adeptly downconverts a GHz-frequency readout
signal to the MHz domain, aligning with the operational frequency of an FPGA.

Shifting our focus to superconducting circuits, Josephson junctions emerge as quintessential
components characterized by their pronounced nonlinearity, absence of dissipation, and compatibility
with high-frequency operations. Parametrically activated devices, such as quantum amplifiers [27–
32], frequency converters [33–35], nonclassical-light generator [36, 37], stabilizer [38, 39], and single-
photon detectors [40, 41], heavily rely on three- or four-wave mixing processes, making high-frequency
operation crucial for their functionality. It is important to note that while these mechanisms are rooted
in quantum theory, high pump power prerequisites mean that there are scenarios wherein a classical
approach to Josephson circuits suffices. In particular, we can observe a quantum-to-classical phase
transition [75–77]. That is, there exists a threshold power beyond which a classical perspective is
valid. For example, if we can approximate the Josephson system as a quantum Duffing oscillation, this
phenomenon is commonly known as the first-order dissipative phase transition [80, 81, 86]. If quantum
devices are coupled to the so-called transmon qubits, which are specific type of superconducting qubits
based on Josephson junctions, this crossover is often referred to transmon ionization [73, 74] or other

1It is worth to mention that the departure from linearity has nothing to do with the system size but only whether or
not the considered systems responds linearly or nonlinearly to a perturbation. But we can describe small systems always
as so-called lumped element (zero-dimensional) systems as long as the system size is small compared to the wave length
of the electromagnetic fields. This is true for both a classical and quantum description.
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Figure 2.1. Transmission line element represented by a lumped-element circuit.

terms such as break-down of photon blockade [77, 78], or chaotic regime [74, 82].
Hence, the interplay between quantum and classical regimes in superconducting circuits,

underscored by the dynamics of frequency mixing and the pivotal role of Josephson junctions,
remains a paramount topic of investigation. The phase transitions and the associated operational
thresholds emphasize the delicate balance and the non-trivial transition zones in these systems.
Therefore, the study of quantum electromagnetic circuits holds significant importance in the analysis
of superconducting circuits and the design of novel devices.

2.1 Coplanar waveguide transmission lines

This section is mainly based on the paper [87] and partly based on the books [1, 2, 88]. This
section deals with the quantum mechanical description of electromagnetic circuits based on quantum
electrodynamics (QED). This field is called circuit quantum elctrodynamics (cQED) and extends the
classical treatment of microwave circuits to a full quantum description.

2.1.1 Transmission line theory

The electronic circuits considered in this thesis are composed of discrete components like resistors,
capacitors, inductors, and conductors. In classical circuit theory, the predominant parameters used
for the description of these circuits are notably voltage and current. In the realm of field analysis,
parameters of interest are often characterized in terms of their amplitude and phase. The relationship
between these parameters for the input and output fields is systematically captured through the
scattering matrix. To reconcile these two distinct paradigms, we resort to transmission line theory, a
framework that unifies the terminologies of electronic circuitry with those of (quantum) optics.

Classical transmission line theory

To make the transition between a lumped-element (zero dimensional) theory to a theory capable to
describe extended circuits, it is vital to remember that circuit theory fundamentally incorporates four
distinct lumped elements: resistance, inductance, conductance, and capacitance. Our aim, if feasible,
is to utilize these inherent characteristics as linear elements. To be able to describe extended circuits,
we consider an infinitesimal fraction of the transmission line as a lumped-element circuit, such that we
can split up the circuit in many lumped-element circuits that are coupled to each other. In this context,
R represents the series resistance per unit length, L stands for the series inductance per unit length, G
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denotes the shunt conductance per unit length, and C describes the shunt capacitance per unit length
(see Fig. 2.1). It is worth mentioning that a transmission line is often schematically represented as a
two-wire line since transmission lines always have at least two conductors [1].

If we model our problem as shown in Fig. 2.1 and solve by using the Kirchoff’s voltage law and the
current law, we obtain the following differential equations by taking the limit as ∆z → 0,

∂V (z, t)

∂z
= −RI(z, t)− L∂I(z, t)

∂t

and
∂I(z, t)

∂z
= −GV (z, t)− C∂I(z, t)

∂t

known as telegrapher equations. In the frequency domain, the solutions of these differential equations
are

V (z) =Vine
−γz + Voute

γz (2.1)

I(z) =Iine
−γz + Ioute

γz, (2.2)

where
γ =

√
(R− iωL)(G− iωC).

The terms with e−γz represents the incoming wave propagation in the +z direction and the term with
eγz the outgoing wave propagation in the −z direction with carrier frequency ω. Then, Vin,out is the
voltage amplitude of incoming and outgoing wave, respectively, and Iin,out is the current amplitude.
Furthermore, we obtain the so-called characteristic impedance Z0

Z0 =

√
R− iωL
G− iωC

R=G=0
=

√
L

C

and therefore the Eq. (2.2) can be rewritten as

I(z) =
1

Z0
(Vine

−γz − Voute
γz). (2.3)

Therefore, the entire dynamical process can be captured by Vin and Vout
2. To ensure compatibility

with industry-standard microwave equipment, we restrict ourselves to a transmission line design with
an impedance of 50Ω. This impedance matching is critical to minimize signal reflections and enhance
the performance of our microwave circuits. To realize a 50Ω impedance, we adopt specific dimensional
parameters for our transmission line designs. Namely, we opt for a center conductor with a width of
12µm, along with maintaining a 20µm gap between the center conductor and the ground plane. By
adhering to these design guidelines, we can effectively achieve the desired impedance, which allows for
effortless integration with conventional 50Ω microwave systems.

In order to make the transition from a classical to a quantum description, the classical quantities as
voltage and current have to be replaced by corresponding field operators, which in turn are associated

2Strictly speaking, a distinction must be made between incoming wave and +z propagating wave, as well as outgoing
wave and −z propagating wave, especially when we consider Eqs. (2.1) and (2.2). The rationale behind this differentiation
stems from the fact that the relationships expressed in Eqs. (2.1) and (2.3) are typically applicable solely for ±z traveling
waves and Vin and Vout are arbitrary independent functions. However, when two transmission lines are interconnected
(like in semi-infinite lines), the incoming and outgoing waves become dependent due to the boundary conditions, leading
to an equality between both wave types [1, 89].
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with the creation and annihilation operators in quantum mechanics [87, 89]. As a periodic boundary
condition, we consider a finite piece of length l of a transmission line, which results in a selection of
possible wave numbers k with corresponding mode frequencies ωk. A reasonable starting point is to
begin with the Lagrangian by initially associating the flux variable ϕ with voltage and current3 [87, 89].

V (z, t) =∂tϕ(z, t), I(z, t) =− 1

L
∂zϕ(z, t).

Having obtained the flux representation, we can derive the Lagrangian density

L(z, t) ≡ C

2
(∂tϕ(z, t))2 − 1

2L
(∂zϕ(z, t))2, (2.4)

for which we obtain the momentum conjugate of ϕ(z, t) as the charge per length

q(z, t) ≡ δL(z, t)

δ∂tϕ(z, t)
= C∂tϕ(z, t).

The Hamiltonian is then given by

H(t) ≡
∫

dz
1

2C
(q(z, t))2 +

1

2L
(∂zϕ(z, t))2.

As we can examine a wave equation characterized by the flux, calculating the Euler-Lagrange equation
reveals that both the charge per length and the flux are variables undergoing oscillations, resulting in
a Hamiltonian that represents a simple harmonic oscillator. Consequently, we are motivated to recast
this in terms of field variables in order to observe the quantum analogy of the Hamiltonian expressed
in the language of creation and annihilation operators. This can be obtained by defining

Ak(t) ≡
1√
l

∫
dze−ikz

(
1√
2C

q(z, t)− i
√
k2

2L
ϕ(z, t)

)
,

where again the fields as a function of wave vector k have to obey periodic boundary condition on a
length l. Then we have

H(t) =
1

2

∑
k

(A∗kAk +AkA
∗
k). (2.5)

The input voltage Vin and output voltage Vout can be written as

Vin(z, t) =

√
1

2lC

∑
k>0

[Ak(0)e+i(kz−ωkt) +A∗k(0)e−i(kz−ωkt)] (2.6a)

Vout(z, t) =

√
1

2lC

∑
k<0

[Ak(0)e+i(kz−ωkt) +A∗k(0)e−i(kz−ωkt)], (2.6b)

where the frequency ωk is dependent on k.

3An alternative pathway is to start with the Maxwell’s equations, which would offer a more lucid association between
the representations of voltage and current and the field representation, as compared to the Lagrangian methodology.
However, this approach makes drawing parallels with quantum optics challenging. For those interested in pursuing this
line of reasoning, we direct them to Ref. [1].
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Quantum transmission line theory

With the relationship between the voltage-current and field representation in classical transmission
line theory established, we now proceed to its quantization. In the context of the Lagrangian density,
we have derived the momentum conjugate of ϕ(z, t), which turned out to be the charge per length.
Using the correspondence principle [89], we treat these two physical variables as operators that obey
the following commutation relation

[q̂(z), ϕ̂(z′)] = −i~δ(z − z′).

This gives us the basis for the quantization of the field amplitude derived from Eq. (2.6) which obeys

[Âk, Âk′ ] = ~ωkδk,k′ .

Therefore, we can write down the quantized field operator with creation â†k and annihilation operators
âk by

Âk =
√

~ωkâk. (2.7)

Thus, we see by expressing the quantized Hamiltonian with Eq. (2.7) it is consistent with the classical
Hamiltonian form in Eq. (2.5)

Ĥbath =
∑
k

~ωk
[
â†kâk +

1

2

]
. (2.8)

From here on, when we perceive the transmission line as an environment, in a quantum description
it can be viewed as a bath of quantum harmonic oscillators. The core concept of the transmission
line theory, particularly the correlation between the classical voltage-current representation and the
corresponding quantum mechanical field operator description, stems from the Hamiltonian perspective
of the infinitesimally small LC circuit. This LC circuit’s energy per unit length encapsulates the energy
held within the capacitor and the inductor. The quantization of input and output voltage in Eq. (2.6)
reads

V̂in(t) =

√
1

2lC

∑
k>0

√
~ωk

[
âke
−iωkt + h.c.

]
=

∫ ∞
0

dω
2π

√
~ωZ0

2

[
âin[ω]e−iωt + h.c.

]
(2.9a)

V̂out(t) =

√
1

2lC

∑
k<0

√
~ωk

[
âke
−iωkt + h.c.

]
=

∫ ∞
0

dω
2π

√
~ωZ0

2

[
âout[ω]e−iωt + h.c.

]
, (2.9b)

where

âin,out[ω] ≡ 2π

√
1

l

1

LC

∑
k≷0

âkδ(ω − ωk) (2.10)

is the input/output field annihilation operator obeying the commutation relation[
âin,out[ω], (âin,out[ω

′])†
]

= 2πδ(ω − ω′).

7



In our analysis, we are often interested in a specific frequency range centered around a characteristic
drive or resonance frequency ω0. Henceforth, it is advantageous to work in the time-domain using a
frame rotating at ω = ω0. By performing a Fourier transform on Eq. (2.10), we obtain the following
expression

âin(t) =

√
1

l

1

LC

∑
k>0

e−i(ωk−ω0)(t−t0)âk(t0) (2.11)

âout(t) =

√
1

l

1

LC

∑
k<0

e−i(ωk−ω0)(t−t1)âk(t1). (2.12)

Here, t0 < t is the time in the distant past before any wave packet e.g. launched at the cavity reached
it, while t1 > t is a time in the distant future after the input field has e.g. interacted with the cavity
(see also Sec. 2.4). Finally, we obtain for the quantized voltage and current in the frequency domain
as

V̂ [ω] = V̂in[ω] + V̂out[ω] =

√
~ωZ0

2
(âin[ω] + âout[ω]) (2.13a)

Î[ω] =
1

Z0
(V̂in[ω]− V̂out[ω]) =

√
~ω
2Z0

(âin[ω]− âout[ω]). (2.13b)

To summarize this subsection, we have derived the relationship between voltage-current
representation and field representation classically and quantum mechanically.

2.1.2 Superconducting transmission line resonators

Superconducting microwave transmission line resonators play a crucial role in cQED for reading out
the qubit state [90], studying light-matter interaction [25, 26], serving as quantum buses [91], Purcell
filters [92], photon storage devices [93], bosonic cat qubits [94] or waste mode for dissipation engineering
[39, 41]. Here, we will provide an overview of resonant transmission line structures and introduce
the fundamental concepts involved. In contrast to freely propagating waves on transmission lines in
Subsec. 2.1.1, we modify the electromagnetic field to form standing waves with discrete frequencies by
imposing specific boundary conditions. The introduction of boundary conditions into a transmission
line structure can be achieved through two common methods: shorting the line to ground or creating
an open-circuit by cutting the center conductor. Shorting the line to ground forces the voltage at
that position to zero, effectively creating a node. On the other hand, an open-circuit structure leads
to a vanishing current at the cut point, establishing an antinode in the voltage distribution. These
boundary conditions allow us to engineer the electromagnetic field distribution along the transmission
line resonator, resulting in the formation of standing waves with integer multiple of fundamental mode
frequency. By controlling the boundary conditions and resonator length, we can tailor the resonant
frequencies and achieve the desired functionalities for various applications in cQED.

In cQED, there are two types of resonators: quarter-wavelength resonators and half-wavelength
resonators. Quarter-wavelength resonators are commonly used in cQED due to their compact size
compared to half-wavelength resonators. In a quarter-wavelength resonator, one end is shorted, while
the other end is open, as depicted in Fig. 2.5(a). Under these boundary conditions, the electric field
distribution constructively interferes for a wavelength given by λn = 4lr

n , where lr is the resonator
length and n ∈ N denotes the mode number. This interference results in strong suppression of all other
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wavelengths inside the resonator. The wave equation has to satisfy(
∂2

∂x2
+ k2

n

)
ϕ(x) = 0

with the boundary conditions4

ϕ(0) =0, ϕ(lr) =ϕ0.

The solution is ϕ(x) = ϕ0 sin (kx) with klr = πnlr/λn = πn/4. Hence, the resonator frequency, ωr,n,
is formulated as

ωr,n =
1√
LrCr

n

4lr
=

c
√
εeff

n

4lr
. (2.14)

Analogously to Eq. (2.5), the Hamiltonian of the transmission line resonator reads as

H(t) ≡
∫ lr

0
dz

1

2Cr
(q(z, t))2 +

1

2Lr
(∂zϕ(z, t))2, (2.15)

and its quantized version can be expressed as

Ĥr,∞ =
∑
n

~ωr,n
[
â†nân +

1

2

]
.

In practice, we are primarily interested in the fundamental mode of the resonator due to the large
frequency separation between modes. Thus, the Hamiltonian is simplified to

Ĥr = ~ωrâ†râr (2.16)

with ωr ≡ ωr,1.
In summary, a transmission line resonator can be effectively described as a lumped-element LC

circuit with a single resonant frequency of interest. The ability to engineer the resonator’s boundary
conditions and resonant frequencies offers great flexibility and control in cQED experiments and
applications.

2.2 3D cavity

This section is mainly based on the books [85, 95] and partially on [96–98].
A useful realization of a quantum harmonic oscillator in the microwave regime is achieved

through a three-dimensional (3D) cavity. The 3D cavity possesses a closed hollow geometry with
metallic walls that represent high-reflectivity mirrors for microwave radiation and thereby impose
specific boundary conditions on the confined electromagnetic field. Utilizing a 3D cavity offers
distinct advantages for quantum systems compared to 1D resonators. A particular advantage of 3D
cavities is their weak vacuum field, which leads to high internal quality factors (Qi) due to weaker
coupling of the electromagnetic modes to loss channels such as two-level systems. This characteristic
distinguishes them from 1D resonators and enhances their coherence properties. Moreover, the
multimode nature of 3D cavities, arising from their three-dimensional spatial structure, leads to a

4Again, ϕ(0) = 0 physically means the resonator end is open such that no current is flowing, while the other resonator
end is shorted for ϕ(lr) = ϕ0 such that the current is flowing.
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spectrum of eigenfrequencies that are not equidistant as in ideal 1D resonators and their separation
can be engineered by choosing the specific dimensions of the cavity. That is, unlike 1D resonators
where eigenfrequencies are separated by integer multiples of the fundamental mode frequency, the
modes in a 3D cavity are located closer to each other. This characteristic allows for multiple
modes to interact with a qubit with comparable strengths. The unique capabilities of 3D cavities
enable a wide range of applications, including quantum memory, quantum state confinement, and the
generation and manipulation of Schrödinger cat states. These functionalities have been explored in
various experimental studies [39, 57, 71, 99–108]. Furthermore, the implementation of the Gottesman-
Kitaev-Preskill (GKP) encoding, a key approach in fault-tolerant quantum computing, has achieved
a breakthrough using a 3D architecture. This significant milestone marks the realization of the first
logical qubit beyond the break-even point [109]. The 3D cavity’s unique properties make it a promising
platform for advancing quantum technologies and exploring new frontiers in quantum information
processing.

When comparing 3D cavities with 1D resonators, a crucial figure of merit is the strength of the
vacuum field. While 1D resonators usually exhibit smaller mode volumes accompanied by high vacuum
field amplitudes, 3D microwave cavities have much larger mode volumes and correspondingly smaller
vacuum fields. The average mode volume for a 1D microwave resonator is typically on the order of
Vm,1D/λ

3 ≈ 10−5 � 1 [98, 110], while for a 3D microwave cavity, it is generally Vm,3D,mw/λ
3 ≈ 1

[110]. This is a very large mode volume, if we also compare with a typical 3D optical cavity with
Vm,3D,opt/λ

3 ≈ 10−12 � 1 [111]. The vacuum field amplitudes for the electric and magnetic fields are
given by

E0 =

√
~ωr

2ε0Vm
, B0 =

√
µ0~ωr
2Vm

,

respectively. Here, ωr represents the resonant frequency of the resonator and the cavity. If we insert
those values into above equations for ωr/2π = 5GHz (or equivalently λ = 60mm), we obtain

1D resonator 3D Cavity
E0 4.3 mV/cm 4.3µV/cm
B0 1.4 nT 1.4 pT

This distinction influences the coupling strength between the cavity and other systems, such as
qubits or resonators. While 1D resonators allow for strong coupling and hence faster control and
readout, their stronger coupling with the environment can limit coherence times. In contrast, qubits
enclosed within a 3D cavity often demonstrate longer coherence times due to reduced coupling to
external sources of losses.

To explore the multimode nature of a metallic rectangular cavity, we analyze the TE (transversal
electric) mode, which has to satisfy the following wave equation(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

c

)
E(x, y, z) = 0,

where kc is the so-called cutoff wave number. The differential equation presented above can be resolved
using the technique of variable separation, represented as:

E(x, y, z) = Ex(x)Ey(y)Ez(z).
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high

low

(a) (b)

Figure 2.2. (a) Electric and (b) magnetic field distribution of the horseshoe geometry showing the
first mode. The red rectangle indicates the input and output port. The color scale represents the field
strength in arbitrary logarithmic units, and the arrows indicate the field orientation. On all sides, the
boundary conditions for the electric fields are set to E = 0.

Furthermore, to consider the boundary conditions for the electric fields at the walls, specifically at
x = 0, a, y = 0, b and z = 0, d, it is essential to note that the walls are metallic and uncharged. Hence,
according to Gauss’s law, ∇ ·E = ρ/ε0 = 0, the field must be zero at every point on the surface.
Consequently, the boundary conditions are defined as

Ex(0) = Ey(0) = Ez(0) = Ex(a) = Ey(b) = Ez(d) = 0.

Henceforth, we obtain

E(x, y, z) = ExEyEz sin
(nπ
a
x
)

sin
(mπ
b
y
)

sin

(
lπ

d
z

)
.

We see that the cut-off wave number is given by

kc,x =
π

a
, kc,y =

π

b
, kc,z =

π

d

which are associated with the fundamental frequencies

fc,x =
c

2a
, fc,y =

c

2b
, fc,z =

c

2d
.

In general, the possible mode frequencies are given by

fnml =
c

2π

√
(nkc,x)2 + (mkc,y)

2 + (lkc,z)
2.

For more complex cavity structures, simulation software, such as CST Microwave Studio, is often
utilized to characterize the modes [112] (see Fig. 2.2).

2.3 Transmon qubit

This section is mainly based on the paper [90] and partially based on the paper [87] and the Ph.D.
thesis [113].
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(a) (b) (c)

Figure 2.3. (a) Electrical circuit representation of the transmon. Josephson junction is shunted by
a capacitor Cq. (b) Design of 2D floating transmon. The red lines represent the Manhattan-type
Josephson junction and its lead. The width of Josephson junction is not to scale. (c) Design of
3D transmon. The vertically stretched pads with length lq is later required for the electric dipole
interaction with the electric field of the cavity (see Subsec. 2.5.1). In both cases, 2D and 3D, the large
pads (colored in blue) realize the shunted capacitance Cq.

The transmission-line shunted plasma oscillation qubit - briefly called transmon qubit - is one of
the most successful superconducting qubit types until today [23, 24, 87, 90, 99, 113]. The advantages of
this device are the long coherence time due to the insensitivity against charge noise when compared to
the charge qubit [90, 114, 115] and the smaller critical current density of the Josephson junction, which
simplifies one step in the whole complex fabrication process since fluctuations in the oxidation process
such as in the oxidation time are less critical. Both advantages are based on the required relation
between the charge energy and the Josephson energy, namely EC � EJ , which will be explained in
the following.

The transmon qubit consists of a Josephson junction, which is shunted by a large capacitance Cq
as shown in Fig. 2.3. The Hamiltonian of the transmon qubit is described by

Ĥ = 4EC (n̂− ng)2 − EJ cos ϕ̂, (2.17)

where the Josephson energy and the charging energy are defined as

EJ =
Φ0Ic
2π

, EC =
e2

2Cq
, (2.18)

respectively. The effective offset charge reads

ng =
Qr
2e

+
CgVg

2e
(2.19)

with the gate voltage Vg, gate capacitance Cg, and the environment-induced offset charge Qr. Its
eigenenergies can be precisely described in terms of Mathieu functions by

Em(ng) = ECa2[ng+k(m,ng)] (−EJ/2EC) (2.20)

in the phase basis, where aν(q) denotes the Mathieu characteristic value [90, 114]. If we now
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Figure 2.4. (a) Potential energy of a transmon in phase representation with EJ/EC ≈ 80. The
transition frequency ω01 corresponds to the qubit frequency ωq, while the transition frequency ω12 =
ωq − χqq is different from ωq. That is, we can make the separation between the first two energy levels
different. (b) Energy levels as a function of offset-charge ng. We observe flat behavior over all ng for
low energy levels leading to insensitivity against charge noise.

approximate these eigenenergies in the limit, EC � EJ , they can be formulated as

εm u (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC . (2.21)

Henceforth, the transmon qubits have the properties that its charge dispersion decreases exponentially
with EJ/EC , while its loss in anharmonicity is described by a weak power law5. This charge
insensitivity can be well observed in Fig. 2.4, where the lower eigenenergies are not dependent on
ng.

The eigenenergy description in Eqs. (2.20) or (2.21) is a precise formulation, but it can be
approximated in a more tractable expression. In this regard, we expand the Hamiltonian in Eq. (2.17)
up to the fourth order in ϕ̂ = (2EC/EJ)1/4

(
âq + â†q

)
. As derived in Appendix A, we then arrive at

Ĥt = ωqâ
†
qâq +

χqq
2
â†qâ
†
qâqâq (2.22)

with the qubit frequency ωq =
√

8ECEJ − EC and anharmonicity χqq ≈ −EC . Here, â(†)
q is the

annihilation (creation) operator. The nonlinearity of the Josephson junction results in unequal energy
spacings between quantum states. Specifically, the energy difference between the ground state and
the first excited state is different from the energy differences between other states. Consequently, we
can designate the ground state as the logical state |0〉 and the first excited state as the logical state
|1〉. In this regime, where the relevant excitation and dissipation rates are much smaller than the
anharmonicity χqq, we can replace the bosonic annihilation operator âq with the Pauli annihilation
operator σ̂. This substitution leads to the well-known qubit Hamiltonian

Ĥq =
ωq
2
σ̂z. (2.23)

The Hamiltonian in Eq. (2.22) is also known as quantum Duffing Hamiltonian and is an active research
field with respect to the first order dissipative quantum phase transition, photon blockade and quantum

5The typical ratio used in the experiments is EJ/EC = 20− 80 with EC = 200− 350MHz and EJ = 6− 20GHz.
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simulations [77, 81, 85, 86, 116–119].

2.4 Decoherence in superconducting circuits

Up to this point, we have focused on discussing closed quantum systems. However, in practical
applications, quantum systems invariably interact with their surrounding environment, making them
open quantum systems. This interaction with the environment introduces decoherence effects, which
ultimately lead to the loss of quantum information encoded in the system. Decoherence manifests
as energy relaxation and dephasing processes. Energy relaxation refers to the irreversible leakage
of information from the quantum system to the bosonic heat bath of the environment, resulting
in the loss of coherence and ultimately the destruction of quantum information. On the other
hand, dephasing captures the loss of phase coherence between different quantum states, disrupting
the ordered information contained within quantum superpositions. These decoherence processes are
significant challenges in quantum technology, as they limit the coherence time and the preservation of
fragile quantum states. Understanding and mitigating the effects of decoherence are essential for the
development and practical implementation of quantum technologies.

2.4.1 Quantum description of dissipation

In this subsection, we mainly follow the paper [89, 120] and the book [85].

Quantum Langevin equation

Here, we first focus on the equation of motion in the presence of dissipation in the Heisenberg picture
and we will see that the result in Sec. 2.1 will play a central role in our discussion. The mathematical
description of "opening" the system to the environment means an interaction with the surrounding
bath [85, 89], which leads to the following Hamiltonian

Ĥ = Ĥsys + Ĥbath + Ĥsb, (2.24)

where Ĥsys is the system Hamiltonian and Ĥbath is the environment Hamiltonian approximated by the
bath of harmonic oscillators introduced in Eq. (2.8). For simplicity, we assume a cavity resonator as
our system (see Eq. (2.16)). The coupling Hamiltonian within the rotating wave approximation is

Ĥsb = −i~
∑
k

(
fkârâ

†
k − f

∗
k â
†
râk

)
. (2.25)

Here, fk is the interaction strength of the system mode r with the bath mode k. The resulting
Heisenberg equations of motion can be then calculated as

˙̂ak =− iωkâk + f∗k âr (2.26a)
˙̂ar =− iωrâr −

∑
k

fkâk

=− iωrâr −
∑
k

fke
−iωk(t−t0)âk(t0)−

∑
k

|fk|2
∫ t

t0

dτe−i(ωk−ωr)(t−τ)eiωr(τ−t)âr(τ). (2.26b)
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(a)

(b)

Figure 2.5. (a) Image of a λ/4 CPW resonator (green) coupled to a coplanar transmission line
(orange). The left end is shorted, while the right end is open. (b) Equivalent lumped-element-
representation of the CPW resonator, âr, (green) capacitively coupled to the transmission line (orange)
with the decay rate κ. An infinite number of quantum harmonic oscillators can be used to model the
bath represented by the transmission line.

We can further use the Fermi Golden Rule expression such that the decay rate from the n = 1 single
photon excited state to the n = 0 ground state can be expressed as

κ ≡ 2πf2g(ωr) = 2π
∑
k

|fk|2 δ (ωr − ωk) , (2.27)

where the interaction strength fk is assumed to be constant within the Markov approximation and the
density of states is defined as g(ωr) ≡

∑
k δ (ωr − ωk). Additionally, comparing the second term in Eq.

(2.26b) with the result given in Eq. (2.11), we arrive at the quantum Langevin equation for the cavity
mode as

˙̂ar = −iωrâr −
κ

2
−
√
κâin (2.28)

with the propagating input field âin. Thus, we derived the dynamics of the open cavity system for
the energy relaxation process (see Fig. 2.5). For the calculation of the dephasing process, we replace
âr → â†râr.

The time evolution we considered so far is dependent on the past influence of the input field âin,
i.e. t > t0. We can, however, also analyze the propagating output field âout after the input mode has
interacted with the system, so t < t1. Modifying Eq. (2.26b) as

˙̂ar = −iωrâr −
∑
k

fke
−iωk(t−t1)âk(t1) +

∑
k

|fk|2
∫ t1

t
dτe−i(ωk−ωr)(t−τ)eiωr(τ−t)âr(τ)
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and again comparing the second term with Eq. (2.12), we obtain for the cavity mode as

˙̂ar = −iωrâr +
κ

2
−
√
κâout. (2.29)

Subtracting Eq. (2.29) from Eq. (2.28) leads to the input-output formalism for the cavity

âout =
√
κâr + âin. (2.30)

Henceforth, the output field contains information of the system in form of âr, which we will usually
measure in our experiment.

Quantum master equation

The counterpart of quantum Langevin equation for the Schrödinger picture is the quantum master
equation, which describes the system dynamics using the density operator ρ̂. This approach is especially
useful for a statistical description of the dynamics of the localized systems since the effects of the
propagating fields have been averaged over the trace operation [120]. That is, we compute

ρ̂(t) = Trbath (ρ̂sb(t)) ,

where ρ̂ ∈ Hsys is the reduced density matrix of the system and ρ̂sb ∈ Hsys ⊗ Hbath is the density
matrix in the entire system-bath Hilbert space. We again start with the Hamiltonian described by
Eq. (2.24). The master equation of the system-bath density operator in the interaction picture is given
by [121, 122]

˙̂ρsb,int(t) =
1

i~

[
Ĥsb(t), ρ̂sb,int(t)

]
with

Ĥsb(t) = ei(Ĥsys+Ĥbath)t/~Ĥsbe
−i(Ĥsys+Ĥbath)t/~.

We now assume that the system and the bath are initially independent6 such that the density operator
can be described by a product state ρ̂sb = ρ̂⊗ ρ̂bath and Trbath

(
Ĥsb(t)ρ̂sb,int

)
= 0. This leads to the

equation of motion seen solely by the system as

˙̂ρ(t) =− 1

~2

∫ t

0
dt′Trbath

([
Ĥsb(t),

[
Ĥsb(t′), ρ̂sb,int(t

′)
]])

≈− 1

~2

∫ t

0
dt′Trbath

([
Ĥsb(t),

[
Ĥsb(t′), ρ̂(t)⊗ ρ̂bath

]])
, (2.31)

where we have further used the Born-Markov approximation. The Born approximation assumes a
weak coupling and a large heat bath, which means that its interaction does not significantly change
the reservoir

ρ̂sb,int(t) ≈ ρ̂(t)⊗ ρ̂bath

as well as the bath correlation function

Trbath

([
Ĥsb(t),

[
Ĥsb(t′), ρ̂sb,int(t

′)
]])
≈ ρ̂(t′)Trbath

([
Ĥsb(t),

[
Ĥsb(t′), ρ̂bath

]])
.

6That is, the interaction is turned on at t = 0.
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The Markov approximation states that the future evolution of ρ̂sb,int(t) is only dependent on the current
quantum state ρ̂sb,int(t), but not on the past history of ρ̂sb,int(t

′). This is justified since the reservoir is a
large system that remains in thermal equilibrium. That is, we anticipate that any small perturbations
caused by its interaction with the system will not persist for an extended period. In other words,
the reservoir’s correlation time is typically much shorter than the time scale required for significant
changes in the system. Thus, the system can be effectively treated as instantaneous and memoryless,
allowing for a simplified analysis.

For simplicity, we again assume a cavity-type harmonic oscillator as our system (see Eq. (2.16)).
Using Eq. (2.31) we obtain

˙̂ρ(t) = α
(
ârρ̂(t)â†r − â†rârρ̂(t)

)
+ β

(
ârρ̂(t)â†r + â†rρ̂(t)âr − â†rârρ̂(t)− ρ̂(t)â†râr

)
+ h.c.,

where

α =

∫ t

0
dt′
∑
k

|fk|2 e−i(ωk−ωr)(t−t
′),

β =

∫ t

0
dt′
∑
k

n̄th(ωk) |fk|2 e−i(ωk−ωr)(t−t
′),

where n̄th(ωk) is the mean thermal photon number at frequency ωk. In the similar spirit derived for
the quantum Langevin equation and after careful mathematical calculations [85, 120], we arrive at

˙̂ρ(t) = −iωr
[
â†râr, ρ̂(t)

]
+ (n̄th + 1)D[

√
κâr]ρ̂(t) + n̄thD[

√
κâ†r]ρ̂(t).

The second term represents the decay into lower energy states, while the last term corresponds to
the excitation into higher states due to thermal excitation. In the cryogenic environment of around
10mK, the thermal photon number at around 8GHz is negligibly small, n̄th ≈ 2× 10−17. The general
formulation of the master equation is written as

˙̂ρ(t) = L(t) [ρ̂] =
1

i~

[
Ĥ, ρ̂(t)

]
+ (n̄th + 1)D[L̂]ρ̂(t) + n̄thD[L̂†]ρ̂(t), (2.32)

where we have defined the Lindbladian superoperator as L(t) [ρ̂] and the superoperator D[L̂]ρ̂ as

D[L̂]ρ̂ ≡ L̂ρ̂L̂† − 1

2

(
L̂†L̂ρ̂+ ρ̂L̂†L̂

)
. (2.33)

2.4.2 SLH framework

This subsection is mainly based on the paper [120] and focus on specific topics, namely the
generalization of input-output relation and quantum Langevin equation, and the SLH composition
rules.

As quantum technologies evolve, the complexity extends beyond individual quantum systems to the
intricate interconnections established through propagating electromagnetic fields. Such interconnected
landscapes, known as quantum input-output networks (QION), can be adeptly modeled using the
SLH framework. This framework emphasizes characteristics like modularity and hierarchy, enabling a
deeper understanding of these networks. A salient feature of the SLH framework is its compatibility
with control-theoretical analysis of quantum coherent systems. This compatibility seamlessly bridges
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quantum dynamics with classical control theory principles. Feedback and feedforward, fundamental
to control theory, are particularly well-represented in this model. A burgeoning domain, coined as
coherent quantum feedback control theory, is under active exploration, manifesting its potential in
numerous applications. Active devices boasting specialized functions are emerging [123, 124], alongside
advancements in quantum state control [125–127] and innovations in quantum back-action evasion for
gravitational wave detection [124, 128]. Notably, research has theoretically underscored the superiority
of quantum coherent feedback over quantum measurement feedback in executing specific tasks for
linear quantum systems [125, 129]. Additionally, the SLH framework plays a pivotal role in devising
unidirectional devices tailored for quantum information routing. Such capabilities are crucial for
tasks like heralded quantum state transfers across distant qubits and the orchestration of stabilizer
codes, vital for quantum error correction [130]. In the field of quantum filtering, such as Josephson
quantum filter, this framework can also offer strategies to circumvent the inherent trade-off between
fast control/readout and coherence time of a qubit [131].

In the realm of quantum physics, the SLH formalism, encapsulated by the triple (S, L̂, Ĥ), serves
as a comprehensive framework for delineating the interaction dynamics of distinct quantum entities,
including qubits and Josephson parametric amplifiers, with their associated input and output fields.
This framework is characterized by three core elements: the scattering matrix S, the loss operator7

L̂, and the Hamiltonian Ĥ. What sets the SLH triple-based description apart is its versatility and
computational efficiency. It paves the way for streamlined software integration, enabling a more
automated approach to both the design and analysis of quantum network components, thus alleviating
the analytical demands traditionally placed on researchers.

Generalization of input-output relation and quantum Langevin equation

Given the SLH triple G = (S, L̂, Ĥ), we arrive at the following input-output relations for the general
multiple input/output case and the quantum Langevin equation for an arbitrary system operator X̂ 8

âout =L̂ + Sâin (2.34)
d
dt
X̂ =

i

~

[
Ĥ, X̂

]
+D†[L̂]X̂ + â†inS

†
[
X̂, L̂

]
+
[
L̂†, X̂

]
Sâin, (2.35)

where we have defined

âin/out ≡


âin/out,1

...
âin/out,N

 , L̂ ≡


L̂1

...
L̂N

 , [
X̂, L̂

]
≡


[
X̂, L̂1

]
...[

X̂, L̂N

]
 ,

7In our cavity example, we have X̂ = âr and L̂ =
√
κâr for the energy relaxation process.

8Strictly speaking, the quantum Langevin equation is more appropriately expressed within the framework of quantum
stochastic differential equations (QSDEs). This preference arises due to the mathematical singularity of the canonical
commutation relation,

[
âin(t), â†in(t′)

]
= δ(t − t′). To address this issue, we introduce the time-integrated form, Âin =∫ t

0
dτ âin(τ). This redefined quantity offers a commutation relation given by

[
dÂin(t),dÂ†in(t′)

]
= dt. However, for the

sake of maintaining familiarity and brevity in this thesis, we steer clear of the full QSDE description. Expanding on the
broader context, there exists a necessity to incorporate the gauge process, Λin =

∫ t
0
dτ â†in(τ)âin(τ). Yet, as our focus

predominantly rests on vacuum noise, this gauge process often vanishes.
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(b)(a)

Figure 2.6. Schematic representation of (a) series product and (b) direct coupling, where the wiggle
represent the interaction between G1 and G2.

[
L̂†, X̂

]
≡
[ [

L̂†1, X̂
]
, . . . ,

[
L̂†N , X̂

] ]
, D†[L̂]X̂ ≡

N∑
i=1

L̂†i X̂L̂i −
1

2

(
L̂†i L̂iX̂ + X̂L̂†i L̂i

)
.

SLH composition rules

The SLH composition rules are developed by Gough and James [132, 133] and are algebraic
prescriptions for combining the SLH triples of individual components, whose traveling waves are
connected in various ways. There are three physical assumptions for these rules: (i) the validity
of Markov approximation, (ii) the fields are propagating in a dissipation-less and linear medium and
the time for propagation between localized components are negligible, and (iii) the input fields into
the network are in the vacuum state. The third assumption, however, can be easily extended for non-
vacuum states of the propagating fields. In particular, for the coherent state we describe the triple as
Gcoh = (1, α, 0) with the classical field amplitude α.

Rule 1 (Series product) We cascade one output from one localized network, G1 = (S1, L̂1, Ĥ1),
into the input of another, G2 = (S2, L̂2, Ĥ2), as illustrated in Fig. 2.6 (a). The series product of
both networks is given by

GT ≡G2 CG1 = (ST , L̂T , ĤT )

=

(
S2S1,L2 + S2L1, Ĥ1 + Ĥ2 +

~
2i

(
L†2S2L1 − L†1S

†
2L2

))
. (2.36)

Note the directional property of this result which makes G2 CG1 6= G1 CG2.

Rule 2 (Direct coupling) The direct coupling refers to the situation, when G1 and G2 are in parallel
and have a direct Hamiltonian interaction between both systems, Ĥint, as shown in Fig. 2.6 (a).
In that case, we read

GT ≡G1 �G2 = (ST , L̂T , ĤT )

=

([
S1 0

0 S2

]
,

[
L̂1

L̂2

]
, Ĥ1 + Ĥ2 + Ĥint

)
. (2.37)

Rule 3 (Feedback reduction and network interconnection) The feedback reduction computes
the effective SLH triple that results from interconnecting an output of G to an input of G.
Suppose the original system G has N input and output ports. We want to connect the output
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port x to the input port y. This internal link is eliminated by the feedback reduction rule, which
results in a new reduced system Gred = (Sred, L̂red, Ĥred) with

Sred =Sx̄ȳ + Sx̄y (I − Sxy)−1 Sxȳ (2.38a)

L̂red =L̂x̄ + Sx̄y (I − Sxy)−1 L̂x (2.38b)

Ĥred =Ĥ+
~
2i

(
L̂†S:,y (I − Sxy)−1 L̂x − L̂†x

(
I − S†xy

)−1
S†:,yL̂

)
(2.38c)

and the identity I has the same dimension as the reduced Hilbert space. The subscripts on S
and L̂ with overbars denote matrices with certain rows or columns removed. Explicitly,

Sx̄ȳ ≡

[
S1:x−1;1:y−1 S1:x−1;y+1:n

Sx+1:n;1:y−1 Sx+1:n;y+1:n

]
, Sx̄y ≡

[
S1:x−1;y

Sx+1:n;y

]
,

Sxȳ ≡
[
Sx;1:y−1 Sx;y+1:n

]
, S:,y ≡S1:n;y, L̂x̄ ≡

[
L̂1:x−1

L̂x+1:n

]
.

As these rules, especially the feedback reduction rule, are written in an abstract form, we illustrate
an explicit example to understand these prescriptions. This example will be also later used for
understanding the influence of parasitic modes on the quality factors in Chap. 3. We consider two
resonator systems, G1 = (S1, L̂1, Ĥ1 + Ĥint) and G2 = (S2, L̂2, Ĥ2) with

Sk =

[
1 0

0 1

]
, (2.39)

L̂k =

[ √
κk1âk
√
κk2âk

]
, (2.40)

Ĥk/~ =∆kâ
†
kâk, (2.41)

Ĥint/~ =g12

(
â†1â2 + â†2â1

)
. (2.42)

Here, the resonators are described by the annihilation operator âk and the detuning ∆k, which are
directly interacting with Ĥint. Additionally, both systems have two input and two output ports,
which are coupled with strength κk1 and κk2. For example, a typical hanger-type resonator in the
superconducting circuits, as depicted in Fig. 2.5 (a), has two input and two output ports with the
external coupling strengths of κk1 = κk2 = κk/2. We, furthermore, assume that the propagating wave
accumulates some phase φ until it reaches the other local network. This is described by the SLH triples
G3 = G4 = (eiφ, 0, 0). The whole picture of the network interconnection is shown in Fig. 2.7 (a).

Now, let us apply the SLH composition rules. As we have two systems in parallel directly interacting
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(c)(b)(a) (d)

Figure 2.7. Schematic representation of network interconnection via the feedback reduction rule: (a)
An illustration of the network under consideration. Note the flexibility in interpreting which ports are
designated as ’input’ and ’output’ in this depiction. (b) The same components, which are concatenated
and coupled. All inputs are situated on the left and all outputs on the right. (c) Transformation of
the network to ensure eliminated nodes are block-contiguous for the application of Eq. (2.38). For
ease of representation, all nodes targeted for elimination are placed at the top of the circuit. (d) The
necessary rearrangements of the input and output ports from configuration (c) to set the stage for
proper feedback connections. In particular, we require permutations of the input and output ports
such that the ports i ∈ 1, 2, 3, 4 are feedback connected. Finally, we obtain (a).

with each other, we apply the "direct coupling" rule resulting to

GT =G1 �G2 �G3 �G4 (2.43)

=



S1

S2

eiφ

eiφ

 ,


L̂1

L̂2

0

0

 , Ĥ1 + Ĥ2 + Ĥint



=





1

1

1

1

eiφ

eiφ


,



√
κ11â1
√
κ12â1
√
κ21â2
√
κ22â2

0

0


, Ĥ1 + Ĥ2 + Ĥint


. (2.44)

Our next task is to interconnect the composed system to achieve the same result in Fig. 2.7 (a). That
is, we want to connect the input and output ports in the following way:

out in
1 5
4 6
5 3
6 2

We then perform a permutation of input and output ports such that we can use the configuration
depicted in Fig. 2.7 (c) and the application of Eq. (2.38) becomes simple. In particular, we use the
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scattering matrix for the permutation

Sin =



0 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 1 0 0 0


and Sout =



1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0


,

such that we apply the "series product" rule for the rewired system

G′T = (Sout, 0, 0)CGT C (Sin, 0, 0).

This leads to

S′T =



0 0 0 0 1 0

eiφ 0 0 0 0 0

0 0 0 0 0 1

0 0 eiφ 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0


, L̂′T =SoutL̂T =



√
κ11â1

0
√
κ22â2

0
√
κ21â2
√
κ12â1


, Ĥ′T =Ĥ1 + Ĥ2 + Ĥint.

Finally, the "feedback reduction" rule can be utilized to eliminate the interconnections. The reduced
form of the scattering matrix and loss operators is read as

Sxy =


0 0 0 0

eiφ 0 0 0

0 0 0 0

0 0 eiφ 0

 , Sx̄ȳ =

[
0 0

0 0

]
, Sx̄y =

[
0 1 0 0

0 0 0 1

]
, Sxȳ =


1 0

0 0

0 1

0 0



S:y =



0 0 0 0

eiφ 0 0 0

0 0 0 0

0 0 eiφ 0

0 1 0 0

0 0 0 1


, L̂x =


√
κ11â1

0
√
κ22â2

0

 , L̂x̄ =

[ √
κ21â2
√
κ12â1

]
.

Substituting these expressions in Eq. (2.38), we find

Sred =eiφ

[
1 0

0 1

]
(2.45a)

L̂red =

[ √
κ21â2 + eiφâ1
√
κ12â1 + eiφâ2

]
(2.45b)

Ĥred =Ĥ1 + Ĥ2 + Ĥint

+
~√κ11κ21

2i

(
eiφâ1â

†
2 − e

−iφâ†1â2

)
+

~√κ12κ22

2i

(
eiφâ†1â2 − e−iφâ1â

†
2

)
. (2.45c)

A more detailed analysis and interpretation of this resulting system can be later found in Chap. 3.
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2.4.3 Quality factors

This subsection is mainly based on the paper [134–136] and the book [1, 85].

In many applications, the coherence time of quantum devices is limited by internal loss channels,
which can be effectively evaluated using resonators as a chip quality test bed [137, 138]. There are
two primary reasons for selecting resonators for this purpose. Firstly, superconducting resonators
can be easily fabricated without requiring sub-micrometer size fabrication procedures required for e.g.
Josephson junctions. This simplifies the manufacturing process and allows for efficient production.
Secondly, when characterizing losses, it is sufficient to use continuous wave microwave spectroscopy
techniques using a vector network analyzer (VNA), instead of employing more complex pulsed
measurements. This approach enables faster analysis of resonator losses.

The key figure of merit describing the performance of resonator is their quality factorQ. It quantifies
the ratio of energy stored in the resonator Etot to the energy dissipated per cycle Ediss = Ploss/ωr.
Mathematically, it can be expressed as the ratio of the resonator’s angular frequency ωr to the total
dissipation rate κr, which comprises both external loss κr,c and internal loss κr,i, giving rise to the
following relation

Q =
total energy stored

energy dissipated per cycle
=

Etot

Ploss/ωr
=
ωr
κr

=
ωr

κr,c + κr,i
. (2.46)

The external loss represents the intentionally engineered loss channel due to the finite coupling to the
external circuit which is a transmission line in our case. This loss can be accessed and measured in
the single-tone spectroscopy, for example, using a VNA. The method of this extraction will be later
discussed in the quality factor measurement. On the other hand, the internal loss corresponds to the
undesired dissipation due to internal loss channels which may originate from a variety of different
mechanisms. To characterize the overall performance, the loaded quality factor Ql accounts for both
external and internal quality factors inversely summed

1

Ql
=

1

Qc
+

1

Qi
, (2.47)

where Qc = ωr/κr,c is the external quality factor and Qi = ωr/κr,i is the internal quality factor.

Input-output approach for internal and external losses

In this section, we will derive the output field in terms of internal and external losses, which is directly
related to the scattering coefficients. Our focus will be on the reflection measurement, while references
[135, 136] provide further information on transmission measurements and different resonator types
such as hanger-, necklace-, and bridge-type resonators. To facilitate our analysis, we modify the key
equations, Eq. (2.35) and Eq. (2.34), as follows: Considering that the cavity experiences both extrinsic
and intrinsic loss channels, we express the loss operators and the propagating input/output fields as

L̂r =

[ √
κr,câr
√
κr,iâr

]
, âin/out =

[
âin/out,c

âin/out,i

]
. (2.48)
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Substituting these expressions into the Eq. (2.35) and Eq. (2.34), we obtain

˙̂ar =− i∆rdâr −
κr
2
−√κr,câin,c −

√
κr,iâin,i, (2.49a)[

âout,c

âout,i

]
=

[ √
κr,câr
√
κr,iâr

]
+

[
âin,c

âin,i

]
, (2.49b)

where we have transformed into the frame rotating with frequency ωd and defined the detunig as
∆rd = ωr − ωd. Notably, âout,c represents the output field propagating through the transmission
line, emerging from the same port where the input field âin,c is incident. In the steady state, the
input-output relation can be rewritten as

âout,c =

(
1− κr,c

i∆rd + κr/2

)
âin,c −

√
κr,iκr,c

i∆rd + κr/2
âin,i. (2.50)

If we now assume that the input field responsible for the intrinsic decay is a vacuum field, 〈âin,i〉 = 0,
we then find for the reflection scattering coefficient

S11 =
〈âout,c〉
〈âin,c〉

= 1− κr,c
i∆rd + κr/2

= 1− Ql/Qc
1/2 + iQl (ωd/ωr − 1))

. (2.51)

This result reveals two important features. Firstly, for κr,i > 0 and ∆rd = 0, we observe |S11| < 1,
indicating that a portion of the incoming field’s energy is lost to the intrinsic loss channels. Secondly,
when κr,i = 0 and ∆rd = 0, we have S11 = −1, implying a complete π-phase shift upon reflection.
This result serves as the foundation for practical quality factor extraction.

We note that for the transmission measurement of the notch-type resonator, we read

S21 =
〈âout,c2〉
〈âin,c1〉

=
−κr,c/2

i∆rd + κr/2
= − Ql/Qc

1 + 2iQl (ωd/ωr − 1))
, (2.52)

where âin,c1 is the incoming field from the left, and âout,c2 the outgoing field to the right, w.o.l.g..

Quality factor measurement

In practice, we need to consider environmental distortions, which include cable delay, cable losses, and
impedance mismatches [134–136]. These imperfections are taken into account by an amplitude factor
a, phase shift α, cable delay τd, and small circuit asymmetry φ

S11 = aeiαe−iωdτ
(

1− Ql/ |Qc| eiφ

1/2 + iQl (ωd/ωr − 1))

)
. (2.53)

To extract the ideal resonator function (Eq. (2.51)), the circle fit method is employed, which allows us
to fit the data points in the phase space [139]. The circle fit is particularly suitable because the ideal
resonator function traces out a circle in phase space. In the following, we briefly outline the circle
fitting procedure [134, 135], which is visualized in Fig. 2.8.

1. Correction of frequency-dependent phase shift
The first linear fit of the frequency-dependent phase, which changes linearly with ωdτ , roughly
extracts the cable delay τ . This quantity will be needed as initial parameter guess for the
fine phase shift correction. Furthermore, a Lorentzian fit is applied to the frequency-dependent
amplitude to obtain the resonance frequency ωr and to select a reasonable amount of data for
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(a) (c) (d)

(e) (f) (g)

(b)

Frequency ω/2π (GHz)

Frequency ω/2π (GHz)

Frequency ω/2π (GHz)

Figure 2.8. Example of circle fitting procedure with acquired data from sample PRes-061 (blue/green
dots). (a) Rough frequency-dependent phase correction by linear fit (red dashed line). (b) Lorentzian
fit of the amplitude (red dashed line). (c) Unwrapped data S11,1 in the phase space. Due to the residual
frequency-dependent phase shift, the data is deformed. (d) Data points S11,2 after the removal of the
remaining frequency-dependent phase shift. S′off is the off-resonant point altered by the prefactors a
and α. (e) Determination of resonance frequency by fitting the frequency-dependent phase shift θ(ωd).
(f) Corrected data S11,4 after the elimination of the attenuation a and α. The off-resonant point is
finally located at Soff = 1. Furthermore, phase correction φ is determined. (g) Asymmetry corrected
data S11,4 such that the resonance point is located on the real axis. The circle radius is rescaled by
cos(φ) to account for a difference |Qc| and Re(Qc).

the following fitting procedure. Now, our aim is to correct the measured data close to a perfect
circle as the cable delay introduces a frequency dependent rotation of the phase centered at the
origin and, therefore, twists the circle to a loop like curve. Mathematically speaking, we first
transform into the rotating frame of ωr by calculating

S11,1 = S11e
iωrτ ,

which already looks like a circle as demonstrated in Fig. 2.8 (c). Afterwards, the residual phase
shift is corrected by using the circle-fitting technique.

2. Fine correction of phase shift α and scaling factor a
The only imperfection resides in the phase shift α assuming a is independent of the frequency in
the close region of the resonance. To determine a and α, we make use of the powerful property of
the off-resonant point Soff = 1 because it is independent of the resonance frequency, the quality
factor and impedance mismatch. Hence, our goal is to determine the position of S′off , which is
only altered by the prefactors a and α, and then to place and normalize S′off to Soff = 1 in the
complex plane. Since it resides in the opposite direction of the circle, we first determine the
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precise resonance frequency. Now, the circle fit comes into play, which determines the center of
the circle and translates to the origin. Afterwards, we perform a frequency-dependent phase shift
fit

θ(ωd) = θ0 + 2 arctan

(
2Ql

(
1− ωd

ωr

))
, (2.54)

where θ0, Ql and ωr are the fitting parameters. Finally, the off-resonant point S′off is found via
the geometric relations

S11,2 = xc + r0 cos (θ0 + π) + i (yc + r0 sin (θ0 + π))

with r0 being the radius of the circle and rc = (xc, yc) being the circle center. The absolute value
of S11,2 gives the amplitude scaling factor a and arg(S11,2) the phase offset α. After correcting

S11,3 = S11,2/S
′
off

the off-resonant point at Soff = 1 is obtained.

3. Circuit asymmetry correction
To correct for circuit asymmetry, we make use of the property that the center of the circle should
lie on the real axis in the absence of asymmetry. Therefore, we apply a transformation given by

S11,4 = cos(φ)(S11,3 − 1) + 1,

where φ represents the phase correction. It is important to note that we also rescale the radius
of the circle by a factor of | cos(φ)| to account for the difference between |Qc| and Re(Qc) [140].
This transformation allows us to effectively correct for any circuit asymmetry and obtain a more
accurate representation of the resonator function.

2.4.4 Loss mechanisms

In this subsection, our exposition closely aligns with the discourse presented in the paper [141],
supplemented by the insights obtained in [137, 138] for TLSs and [142, 143] for the parasitic modes.

In the field of quantum physics, there are various sources of microwave loss channels that can impact
the performance of quantum devices [141]: two-level systems (TLS), quasiparticles, radiative losses,
eddy current losses, and parasitic modes. In the single-photon regime, which is commonly encountered
in quantum devices, the primary contribution to loss usually arises from TLS. TLS are associated with
impurities [144–147], trapped electrons [148, 149], or adsorbates [150] present at the interfaces between
different materials such as metal/substrate, metal/air, and substrate/air [137, 138, 151]. Additionally,
the generation of quasiparticles in the superconducting material due to stray infrared light or thermal
activation can also introduce loss in these resonators. These contributions should not be overlooked, as
they can significantly impact the performance of quantum devices. In fact, the presence of these loss
mechanisms can lead to an effective qubit temperature that is defined by Teff = ~ωq/kB ln(1/ 〈nq〉− 1)

and exceeds the actual temperature of the cryogenic environment, reaching values of up to 150mK even
when the dilution refrigerator temperature is around 10−50mK [103, 152, 153]. Furthermore, the chip
environment plays a crucial role in device performance, particularly with regards to eddy current loss,
slotline, chip and box modes [142, 143, 154–156]. Implementing countermeasures to improve coherence
times requires careful engineering of the sample box design, including a high density of short grounding
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wirebonds, the absence of a normal conducting ground plane under the chip, and a shift of chip and
box modes to higher frequencies. These measures help mitigate the detrimental effects of the chip
environment, contributing to enhanced coherence times and improved device performance.

TLS losses

TLS are recognized as significant sources of loss in superconducting quantum devices, and they usually
can not avoided completely in various dielectric materials [137, 138, 156]. Especially, the TLS are
contributing most at positions where the electromagnetic field has a high amplitude. These TLS
exhibit two forms of interaction with quantum devices: coherent coupling leading to decoherence
[138, 151, 157], and low-frequency environmental noise causing dephasing [150, 158, 159]. As illustrated
in Fig. 2.9, the impact of TLS is particularly pronounced at interfaces involving metal/substrate,
metal/air, and substrate/air, where the absence of crystalline order characterizes the amorphous state.
Disordered oxide layers commonly associated with these interfaces contain a significant density of TLS
resulting in an undesired loss channel. For instance, when silicon (Si) is utilized as the substrate,
oxidation occurs, resulting in the formation of SiO2. In the case of Nb/Si or Al/Si layers, silicon oxides
can be a prominent source of decoherence at the metal/substrate interface. Similarly, niobium (Nb) as
a superconducting material can form surface oxides such as NbO2 and Nb2O5 [160], while aluminum
(Al) is subject to oxidation, leading to the formation of Al2Ox. In crystalline α−Al2O3, each aluminum
atom is bonded to six oxygen atoms. However, in its glassy form, approximately 55% of aluminum
atoms are fourfold-coordinated (bonded to four oxygen atoms), and 42% are fivefold-coordinated [161].
Although the precise microscopic origin of these two-level systems remains not fully understood [137],
a phenomenological model known as the power and temperature-dependent model provides a suitable
description of their behavior in amorphous glasses [162]. This model predicts the TLS loss δTLS as
[162]

δTLS = δ0
TLS

tanh (~ω/2kBT )√
1 + (nr/nc)

β
, (2.55)

where δ0
TLS represents the internal unsaturated TLS loss, nr = Q2

l /nπQc denotes the photon number
circulating inside the resonator for the nth mode, nr is the photon number resonantly applied to the
input of the resonator, and β is a geometry-dependent design parameter [137, 141, 162–166]. The
critical photon number nc encompasses the average relaxation and dephasing rate of the TLS ensemble
[156, 162],

nc =
3~ε

2µ2
TLSτ1(T = 0)τac

Tα coth (ξ) , (2.56)

with ξ = ~ωr/2kBT , the effective dipole moment of the TLSs µTLS, the relaxation time of the TLSs
τ1 and the TLS coupling rate to acoustic phonons τ−1

ac .

Quasiparticle losses

Quasiparticles in superconducting materials are generated by breaking up the Cooper pairs. The pair-
breaking can occur in various ways: thermal excitation and electromagnetic radiation at frequencies
above the gap frequency [141]. The thermally generated quasiparticle density is usually about
exponentially dependent on the ratio of the thermal energy and the superconducting energy gap ∆sc

at temperatures far below the critical temperature. Henceforth, using superconducting material with
larger ∆sc such as Nb is always beneficial.

27
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metal (Al/Nb)
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oxygen atom
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Figure 2.9. Sketch of defects at interfaces metal/substrate, metal/air, and substrate/air, showing a
cross-section of a chip with no substrate treatment. At the metal/substrate interface and substrate/air
interface, TLS can arise in silicon oxide layers, manifesting as surface defects. In particular, incomplete
bonding of silicon atoms leads to the presence of unpaired electrons localized on the defect silicon
atom, resulting in the formation of dangling bonds [167]. At the metal/air interface, the metal surface
is susceptible to oxidation, which can host TLS in the form of atomic tunneling systems. Additionally,
adsorbates like hydrogen and molecular oxygen introduce surface spins. Residual materials from
fabrication processes, such as resists, also contribute to the presence of surface defects.

Microwave radiation can induce pair-breaking and power-dependent loss, which is characterized by

δmw
qp ∝

(
P

Pc

)k
(2.57)

with an unspecified exponent k. Usually, microwave frequencies of a few GHz are not sufficient for most
materials as the gap frequency corresponds to severy 10 (Al) up to several 100GHz (Nb). However,
they can redistribute already generated quasiparticles to higher energies. So, when a sufficiently
strong microwave tone excites pre-existing quasiparticles from an energy level E > ∆sc to a higher
level E + n~ω (n ∈ N) with ω being the microwave frequency, the quasiparticles can relax towards
energy levels near the superconducting gap by the emission of phonon that are capable to break up
additional quasiparticles. This loss mechanism becomes more noticeable at high power levels.

In case of the thermal activated quasiparticles, the quasiparticle density strongly increases with
decreasing ratio ζ = ∆sc/kBT , of the gap energy and the thermal energy, i.e. with increasing T or
decreasing ∆sc. According to the Mattis-Bardeen theory [168], the loss can be described by

δth
qp =

2K
π

e−ζ sinh (ξ)K0 (ξ)

1− e−ζ
(√

2π/ζ − 2e−ξJ0 (ξ)
) , (2.58)

where K is the ratio of kinetic inductance to the total inductance of the material, ξ = ~ωr/2kBT ,
and K0, J0 are the modified Bessel function of the first and second kind, respectively. In practice,
the refrigerator operating temperature ranges between 10− 50mK. At this temperature quasiparticle
losses are usually negligible even for materials with small energy gap such as Al.

In contrast, non-equilibrium quasiparticle loss has been identified as a significant factor that can
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degrade the performance of quantum devices. This type of loss is attributed to the presence of stray
infrared light originating from higher temperature stages [152, 169], which can be effectively mitigated
by isolating the devices from the radiative environment using multistage shielding techniques [170].
Additionally, cosmic rays can also generate quasiparticles through particle ionization, which poses a
new concern in maintaining device performance [171, 172].

Eddy current loss

Eddy currents are electrical currents that are generated within an electrical conductor by a time-varying
electromagnetic field. This phenomenon simply results from by Faraday’s law of induction [173]. These
flow of currents counterbalance the magnetic fields that created them according to Lenz’ rule. In our
context, the most proximate conductive material is the normal conducting ground plane underneath
the chip, which leads to eddy current loss, also referred to as conductivity loss. This loss depends on
the distance d = dchip + dvac, where dchip denotes the thickness of the substrate and dvac represents
the vacuum gap (see Fig. 2.10). Hence, a common strategy to mitigate this is to construct a sample
box with a far distant ground plane under the chip or to use a superconducting ground plane. Such
a design diminishes conductivity loss and decreases power dissipation by reducing the electric field at
the boundary [142, 143, 155, 156]. As shown by [156], the loss can be described by

δeddy =

√
ωrµ

2σbox

(
1 +

dchip + dvac

dchip/εr + dvac

)
Z0K(d)lr

32(Zvacw)2
, (2.59)

were µ ≈ µ0 is the absolute permeability of the conductive material, σbox refers to the electrical
conductivity at the resonator frequency ωr, Z0 = 50 Ω, Zvac ≈ 377 Ω is the vacuum impedance, and
K(d)2 =

∫∞
−∞ dyk(y, d), where k(y, d) denotes the field distribution at z = 0 along the y-direction. lr

stands for the resonator length, w for the resonator gap width, and εr = 11.9 is the relative dielectric
constant of the Si substrate.

Notably, within a gold-plated copper package with a standard conductivity of σbox = 4.5×109 S/m,
eddy current loss approaches a saturation point at Qeddy = 4.5× 106 when dvac ∼ 3mm. This quality
factor is reduced by around three orders of magnitude for dvac = 0mm, as indicated by the simulation
[142]. Note that Qeddy can be further improved by a proper choice of material, for example Cu coated
by superconducting Al with an oxide thickness of 2 nm. In this situation the quality factor is only
limited by the dielectric loss of 5× 10−12 [143].

Parasitic modes

Parasitic modes in quantum devices are primarily caused by the chip environment, including factors
such as sample boxes, wire bonding, and air bridges [141]. The main issue arises from the overlap
between the parasitic modes and the modes of the quantum device, leading to unwanted cross talk.
This cross talk occurs with low-Ql box modes and slotline modes, resulting in a reduction of the
intrinsic quality factor (Qi) of the device [142, 143, 154, 155]. Several strategies can be employed to
mitigate parasitic losses. One approach is to increase the detuning between the resonator mode and
other modes present, reducing the field overlap. Additionally, increasing Qc of all modes can also help
to minimize the impact of parasitic losses. The presence of a sample box gives rise to box modes,
which correspond to cavity modes within the surrounding free space. These modes exhibit frequencies
that are highly dependent on the specific geometry and boundary conditions of the sample box. By
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Figure 2.10. Illustration of sample box with chip. The Si substrate with the relative dielectric
constant εr = 11.9 (dark blue) covered by the superconducting thin film (beige) is separated from the
copper floor (brown) by a vacuum gap dvac. For dvac = 0, significant loss contribution from the eddy
current loss and cross talk to the chip mode can be expected.

modifying these factors, it is possible to effectively manipulate and control the frequencies of the box
modes.

Another important consideration is the influence of the superconducting thin film that covers
a significant portion of the chip area. This thin film and the floor of the sample box create an
additional cavity inside of the dielectric substrate. The presence of the dielectric medium within this
cavity significantly lowers the frequencies of the fundamental modes compared to the vacuum case.
For a typical chip size of 6 mm × 10 mm, these fundamental mode frequencies typically range from
8− 12GHz [143, 174]. Consequently, the coupling between the quantum system and these box modes
is strengthened, leading to enhanced Purcell decay. To mitigate this effect, it is possible to introduce a
vacuum gap between the substrate and the ground plane of the sample box, as illustrated in Fig. 2.10.
This helps to minimize the influence of the dielectric medium on the fundamental mode frequencies.
Indeed, we can model the relative change in the fundamental mode frequency as

f ′0 − f0

f0
=

√
εr
ε′r
− 1 =

√
εrdvac + dchip

dvac + dchip
, (2.60)

where ε′r represents the effective dielectric constant between the thin film and the sample box floor, dchip

denotes the thickness of the substrate, and dvac represents the vacuum gap. Here, we have assumed
that the cavity dimensions in the z direction are much smaller compared to the (x, y) directions, the
fundamental mode f0 is primarily affected by changes in the dielectric filling. As this equation is a
monotonically increasing function, it allows us to place the fundamental mode at higher frequencies
by increasing dvac.

Parasitic slotline modes arise when there is a voltage difference across the conductor. This typically
occurs when the ground plane is separated from the coplanar waveguides or if there is insufficient
electrical connection between the ground plane and the sample box. These slotline modes can couple
strongly to CPW resonators due to their significant field overlap, resulting in lower Qi values due to
their extended spatial presence in the dielectric and packaging. To mitigate this effect, techniques
such as wire bonding and air bridges can be employed to eliminate or reduce the presence of parasitic
slotline modes.
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Other losses

Other sources of loss in superconducting quantum devices include loss by vortex motion, vortex loss
and radiation loss. Vortex motion induced loss only occurs if there are Abrikosov vortices trapped in
the superconducting materials and if they can move under the action of the Lorentz force induced
by the microwave currents flowing in the superconducting film. Consequently, to mitigate losses
stemming from vortex motion, a technique known as "flux traps" is implemented. These traps are
essentially holes strategically incorporated into the superconducting films, designed to reduce the effects
of vortex motion. Note that even if type-I superconductors are used for the microwave circuits, the thin
superconducting film can exhibit type-II behavior, allowing for the formation of vortices [175, 176].

Radiation loss, on the other hand, stems from the dissipation of energy into free space. The amount
of energy dissipated depends on the frequency and geometry of the CPW resonator. To mitigate
radiation loss, one approach is to place the chip inside a cavity or inside a sample box. This cavity
acts as a filter, reducing the amount of energy radiated into free space and suppressing the radiative
loss [154, 177].

2.5 Interacting system

Having introduced the fundamental systems, namely superconducting microwave resonators and
transmon qubit, we now turn our attention to the interacting system. We first discuss the qubit-
photon interaction following [23, 24] and then address the four-wave mixing process.

2.5.1 Qubit-photon interaction

The qubit-photon interaction, also known as the light-matter interaction, is a central concept. In
general, it is described by the quantum Rabi model, which captures the interaction between a qubit
described by the Hamiltonian in Eq. (2.23), and the quantized harmonic oscillator, as described by Eq.
(2.16) [24, 90, 178, 179]

ĤRabi = ~ωrâ†râr +
~ωq
2
σ̂z + ~gqr

(
σ̂† + σ̂

)(
âr + â†r

)
, (2.61)

where gqr is the vacuum coupling strength. σ̂ and σ̂† is the de-excitation and excitation Pauli operator
of the qubit, respectively, while â(†)

r is the annihilation (creation) operator of the resonator mode. This
Rabi model is, however, not suited for an analytical study. If the eigenfrequencies of each system, ωq,r
are much larger than the coupling strength gqr, we can apply the rotating wave approximation, which
leads to the Jaynes-Cummings Hamiltonian [23, 24, 90, 98, 179]

ĤJC = ~ωrâ†râr +
~ωq
2
σ̂z + ~gqr

(
σ̂†âr + σ̂â†r

)
. (2.62)

We can understand this Hamiltonian as a number preserving process: the qubit can be either excited by
annihilating a resonator photon (σ̂†âr) or de-excited by creating a photon (σ̂â†r). Its eigenfrequencies
can be analytically found to be [98]

ωn,± = ωrn±
√

∆2
qr + g2

qr(n+ 1)
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(a) (b)

Figure 2.11. (a) Lumped-element-representation of the distributed circuit, where the transmon qubit,
âq, and resonator, âr, are coupled together. (b) Schematic representation of a horseshoe 3D cavity
enclosing a transmon qubit chip. A 2D structure placed in a 3D cavity is also called "3D transmon
qubit". The colored vertical arrows depict the electric field ~E(~r). The electric field ~E(~r) and the dipole
moment ~pq are aligned in parallel realizing the electric dipole interaction, gqr = ~pq · ~E.

with the detuning ∆qr = ωq − ωr, and its corresponding eigenstates

|n,+〉 = cos Θn |n+ 1, 0〉+ sin Θn |n, 1〉 (2.63a)

|n,−〉 = sin Θn |n+ 1, 0〉 − cos Θn |n, 1〉 (2.63b)

with the mixing angle

Θn =
1

2
tan−1 2gqr

√
n+ 1

∆qr
.

Thus, the eigenstates of the coupled system (also known as dressed states) are superposition of the
bare (uncoupled) qubit and resonator states.

As already discussed in Sec. 2.3, the transmon qubit is not a pure two-level system and in many
cases the additional levels have to be taken into account. Taking into account only the third level for
simplicity, we can rewrite the Hamiltonian in Eq. (2.62) as [24]

ĤJC/~ = ωrâ
†
râr + ωqâ

†
qâq +

χqq
2
â†qâ
†
qâqâq + gqr

(
â†qâr + âqâ

†
r

)
, (2.64)

where we have replaced the Pauli operators to the annihilation (creation) operators â(†)
q obeying the

commutation relation
[
âq, â

†
q

]
= 1. For example, if the 2D transmon and the resonator are coupled

with capacitance Cc in cQED as shown in Fig. 2.11(a), the coupling strength can be expressed as9 [90]

gqr =
√
ωqωr

Cc

2
√

(Cq + Cc) (Cr + Cc)
. (2.65)

In case of a cavity QED such as illustrated in Fig. 2.11(b), where the transmon is coupled with the
cavity via the electric dipole interaction, we have [24, 104, 106]

gqr = ~pq · ~E(~rq) (2.66)

with the dipole moment ~pq = e~lq and the cavity electric field ~E(~rq) at the position ~rq of the transmon
qubit.

9see also AppendixB.1 for the derivation.
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Qubit driving

One of the most important methods for manipulating single qubits is through an external microwave
drive. Here, we are considering the driving of an interacting qubit-resonator system, but this discussion
is also valid for the direct qubit driving.

Eq. (2.62) can be reformulated as a qubit driving Hamiltonian. Assuming a coherent state for the
resonator10, we can transform the Hamiltonian into the displaced frame and obtain11 [179]

Ĥq,d =
~ωq
2
σ̂z + ~gqr |αr|

(
σ̂†e−iφe−iωdt + σ̂eiφeiωdt

)
, (2.67)

where the time dependent complex amplitude, αr(t), due to the coherent drive with frequency ωd is
given by12

αr(t) = |αr| e−iφe−iωdt = −
√
κr 〈âin〉 e−iωdt

iωr − iωd + κr/2
.

Note that the phase φ is dependent on the detuning ωr − ωd as well. Moving furthermore into the
rotation frame of the drive, Ĥ0 = ~ωdσ̂z/2, we can get rid of the time dependence. We obtain

Ĥ′q,d =
~∆qd

2
σ̂z +

2~gqr |αr|
2

(
σ̂†e−iφ + σ̂eiφ

)
=

~∆qr

2
σ̂z +

~A
2

(
σ̂†e−iφ + σ̂eiφ

)
(2.68)

with the qubit-drive detuning ∆qd = ωq−ωd. The time evolution of the qubit state for |ψ(0)〉rot = |0〉rot

can then be read as (see Sec. C.1 )

|ψ(t)〉rot = sin

(
θ

2

)
e−iφ/2e−iΩRabit/2 |Ψ−〉rot + i cos

(
θ

2

)
eiφ/2eiΩRabit/2 |Ψ+〉rot

with the Rabi frequency ΩRabi =
√
A2 + ∆2

qd. The probability of finding the qubit in the excited state
is determined by

P(|1〉) = 〈ψ(t)|Pe |ψ(t)〉 = 〈ψ(t)| |1〉 〈1| |ψ(t)〉

=

∣∣∣∣−ieiφ/2−iΩRabit/2 sin

(
θ

2

)
cos

(
θ

2

)
+ ieiφ/2+iΩRabit/2 sin

(
θ

2

)
cos

(
θ

2

)∣∣∣∣2
=

sin2 (θ)

4

∣∣∣eiΩRabit/2 − e−iΩRabit/2
∣∣∣2 = sin2 (θ) sin2

(
ΩRabit

2

)
=

A2

A2 + ∆2
qd

sin2

(
ΩRabit

2

)
. (2.69)

We can determine the qubit frequency by plotting the Rabi frequency ΩRabi as a function of the
detuning ∆qr and identifying its minimum. At this minimum, the driving frequency is equal to the
qubit frequency. The Rabi frequency is proportional to the square root of the drive power εr due to its
dependence on the magnitude of αr. In this context, the parameter t can be interpreted as the pulse
length of the drive.

10This assumption is typically valid when using a coherent microwave tone.
11Here, we neglect the quantum fluctuation of the resonator, âr
12Here, we assume that the resonator mode is already in steady state. See Sec. C.3.
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Dispersive regime

The conventional readout procedure introduces noise into the system due to the Heisenberg uncertainty
relation, making it impossible to obtain the same result repeatedly. However, in certain situations, it
is possible to perform a non-destructive readout that does not disturb the system, leading to repeated
identical results. This type of measurement is known as a quantum non-demolition measurement (QND
measurement) and is essential for measurement-based quantum feedback control.

The readout method for the transmon qubit is based on the reformulation of the Jaynes-Cummings
Hamiltonian (Eq. (2.62)) in the dispersive regime, where the condition |∆qr| � gqr is satisfied. In this
regime, the system’s Hamiltonian can be accurately described using the Schrieffer-Wolff transformation
(refer to Sec. C.2 for more details) [23, 24, 90].

Ĥq,disp/~ =
(
ωr +

χqr
2
σ̂z

)
â†râr +

1

2

(
ωq +

χqr
2

)
σ̂z. (2.70)

Here, χqr ≡ 2g2
qr/∆qr is the cross-Kerr strength. The term χqr

2 σ̂zâ
†
râr is known as the ac-Stark shift or

dispersive shift related to the finite number â†râr of resonator photons, while χqr
2 σ̂z is called as Lamb

shift due to vacuum fluctuations. The Hamiltonian presented can be interpreted in two ways: Firstly,
the frequency of the resonator is dependent on the state of the qubit, and secondly, the frequency of
the qubit is dependent on the number of photons in the resonator. The former interpretation is utilized
for reading out the qubit state, while the latter is employed for photon number calibration and is also
the source of increased qubit dephasing.

As discussed in Eqs. (2.51) and (2.54) in Sec. 2.4, the resonator’s response within the rotating frame
of ωrâ

†
râr is expressed as

S11 = 1− 2κr,c
±iχqr + κr,c

, (2.71)

where, for the sake of simplicity, we have neglected internal losses. In both instances, the responses
are primarily focused around the resonator’s resonance frequency. The fundamental principle behind
the qubit readout is that, if this frequency alters due to a shift in the qubit state, we can detect
changes in either the microwave amplitude in transmission measurements or the phase shift in reflection
measurements (in the reflection measurements, we evaluate the phase response as no amplitude change
can be discerned.). The optimal ratio for the readout is χqr = κr, as suggested in [180]. This optimum
can be understood if we consider two extreme scenarios: χqr � κr and χqr � κr. The former scenario
makes it challenging to differentiate between states |0〉 and |1〉 due to significant overlap of the Gaussian
distributions in the I-Q plane, while the latter scenario results in very small signals. Hence, there is
an optimum between two extreme regimes.

If we consider the transmon as three level system, we need to account for the anharmonicity. That
is, the dispersive shift is reduced to [90]

χ′qr = χqr
χqq

χqq + ∆qr
,

which leads to
Ĥt,disp =

(
ωr + χ′qrâ

†
qâq

)
â†râr +

(
ωq +

χqr
2

)
â†qâq. (2.72)

It is important to note that we need to apply the formula gqr =
√
χ′qr∆qr for extracting the qubit-

resonator coupling strength.
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Purcell effect

As discussed in Sec. 2.4, the interaction of a qubit with an open transmission line leads to free-space
spontaneous emission, as the qubit is coupled to an infinite number of harmonic modes. However, when
the qubit is weakly coupled to a single-mode resonator, a significant enhancement in the qubit decay
rate can be observed. This phenomenon is known as the Purcell effect [181, 182]. The key distinction
lies in the density of states (number of states per frequency interval), which determines the number of
photonic states the qubit can interact with.

The density of states for the transmission line is proportional to ω2
q , while the density of states for

the resonator is described by a Lorentzian function [182]

Dr (ωq) =
2

πκr

κ2
r

4∆2
qr + κ2

r

, (2.73)

which essentially acts as a band pass filter. If the detuning between qubit and resonator is negligible
(δqr � κr), the density of states is enhanced by the quality factor of the resonator. This high density
of states enhances the spontaneous emission rate, surpassing that in free space. However, for a large
detuning between the qubit and resonator (δqr � κr), the reduced density of states suppresses radiative
decay. This effect is called Purcell filtering. The Purcell-filtered relaxation rate of the qubit can be
expressed as [92]

γq,P =
κr,c
2
−
√

2

2

√
−A+

√
A2 + (κr∆qr)2 ≈ κr,c

(
gqr
∆qr

)2

(2.74)

with A = ∆2
qr + 4g2

qr − κ2
r,c/4. While the Purcell effect can significantly enhance the coherence time of

the qubit, it is important to note that this enhancement is subject to the condition g2
qr/∆qr � 1 and

κr,c/δqr � 1 at the same time. However, these requirements may be in conflict with achieving strong
qubit-photon coupling and fast qubit readout [100, 106]. In scenarios where a long coherence time
of the qubit is desired but the condition (2.74) is not satisfied, we call the system is Purcell-limited.
To overcome this limitation,so-called Purcell filters are commonly employed in between the readout
resonator and transmission line [183, 184]. These filters can help to control the density of states and
improve the qubit’s coherence properties further.

2.5.2 Four-wave mixing

In this subsection, we delve into the description understanding of multi-wave mixing in Josephson
physics. The Josephson junction, a highly nonlinear element described by a cosine potential in the
Hamiltonian, enables the realization of strong multi-wave mixing processes. Particularly, three- or
four-wave mixing processes find applications in various parametrically activated devices, including
parametric amplifiers [27–32, 185], frequency converters [33–35], nonclassical-light generators [36, 37],
stabilizers [38, 39], and single-photon detectors [40, 41]. Our focus here is specifically on the irreversible
frequency conversion process demonstrated in the recent work by Lescanne et al. [41].

This idea bears resemblance to the Jaynes-Cummings Hamiltonian discussed in Subsec. 2.5.1. In a
similar manner to how the eigenstates in Eq. (2.63) can be described as a superposition of the bare qubit
and resonator states due to their coupling, the bare modes can be expressed as a sum of eigenmodes,
each multiplied by a kth polynomial order when expanding the Josephson cosine potential. By carefully
selecting the appropriate driving frequency, we can engineer specific multi-wave interactions, allowing
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for precise control and manipulation of the system.

Hamiltonian

We are considering a system consisting of a 3D cavity containing a qubit that is coupled to two modes
of the cavity, the so-called buffer and waste mode (see Fig. 2.12). The transmon qubit is coupled
with the buffer and waste mode via electrical dipole interaction. The electrical dipole moment of the
transmon, which is realized by the antenna-like long capacitance, interacts with the electrical fields
of the buffer and waste, as illustrated in Fig. 2.12 (a). The cavity modes can be excited by external
microwave drives via stub antennae by electrical dipole interaction [96, 97]. Hence, the Hamiltonian
description of our system is described by

Ĥ = Ĥq + Ĥb + Ĥw + Ĥqb + Ĥqw + Ĥbd + Ĥwd, (2.75)

where

Ĥq =

(
Q̂−Qg

)2

2CΣ
− EJ cos

(
2π

Φ0
Φ̂

)
(2.76)

is the transmon qubit Hamiltonian with the charge Q̂, the magnetic flux Φ̂, the gate charge Qg, the
total capacitance CΣ, the Josephson energy EJ , and the flux quantum Φ0 [24, 90, 114],

Ĥb/w =
1

2

∫
d3rε0 ~̂E

2
b/w + µ0

~̂H2
b/w (2.77)

is the Hamiltonian describing the buffer/waste with the electric field ~̂E(~r) and the magnetic field ~̂H(~r)

[85, 95],
Ĥqb/w = ~̂pq · ~̂Eb/w (2.78)

is the interaction Hamiltonian between the transmon qubit and buffer/waste mode with the electrical
dipole moment of the transmon ~̂pq = Q̂~lq with its antenna length lq [24, 97, 104], and

Ĥab/w = ~pa(t) · ~̂Eb/w (2.79)

is the external coupling Hamiltonian between the antenna and buffer/waste mode described by the
electrical dipole moment of the antenna ~pa(t) = ~pa cos (ωdt) with the driving frequency ωd [96, 97].
This last term is also called the driving term.

It is convenient for the second quantization, if the unit of all variables is dimensionless. Fortunately,
since the Hamiltonian can be generalized to the generalized coordinates and its conjugate momenta
[186], we will rewrite them in the dimensionless canonical variables (Q̃x, P̃x), where the indices x =

q, b, w represents the qubit mode, buffer mode and waste mode, respectively. In this case, the above
Hamiltonians are reformulated as

Ĥ/~ =
4EC
~

(
ˆ̃Pq − ng

)2
− EJ

~
cos
(

ˆ̃Qq

)
+
ωb
4

(
ˆ̃P 2
b + ˆ̃Q2

b

)
+
ωw
4

(
ˆ̃P 2
w + ˆ̃Q2

w

)
+ g̃b

ˆ̃Pq
ˆ̃Pb + g̃w

ˆ̃Pq
ˆ̃Pw + 2εb cos (ωdt)

ˆ̃Pb + 2εw cos (ωdt)
ˆ̃Pw, (2.80)
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(a) (b)

Al 3D cavity

Figure 2.12. (a) A transmon is mounted in a 3D superconducting cavity coupled with the cavity
waste/buffer mode (orange/green shaded area representing its electric field distribution in the cavity).
(b) Principle of the microwave single-photon detection. A coherent incoming photon (green wave) is
absorbed by a buffer mode, âb, and is converted to a pair of qubit mode, σ̂, and waste mode, âw, with
interaction strength g4ξp. Due to the engineered fast dissipiation of the waste mode, κw � |g4ξp|, the
reverse process (â†bσ̂âw) is effectively inhibited.

where we have defined

ˆ̃Pq ≡Q̂/(2e), ˆ̃Qq ≡
2π

Φ0
Φ̂, ng ≡Qg/(2e), εb/w =

√
κb/w,cpin

with the flux quantum Φ0, gate charge Qg, external coupling rate κb/w,c of the buffer and waste mode,
respectively, and the square root of the pump photon flux pin. Furthermore,

EC ≡
e2

2CΣ
, g̃b/w ≡−

√
ωb/w

2ε0Vb/w
2e~ub/w ·~lq,

where ~ub/w is the unit vector of ~̂Eb/w.

Rescaling of the canonical conjugate pair of the transmon qubit

Since what we measure in experiments is the eigenfrequency of the device, it is convenient to transform
the Hamiltonian in Eq. (2.80) into the eigenmode basis. Furthermore, the eigenmode description also
helps us to understand the four wave mixing process due to the Josephson nonlinearity.

To obtain the eigenmodes, we separate the right hand side of Eq. (2.80) in linear, nonlinear, and
driven parts. Additionally, we included −8ECngP̃q in the driven Hamiltonian, as it does not have a
bilinear form and thus unsuitable for the eigenmode basis calculation. Henceforth, we get

Ĥlin/~ =
4EC
~

ˆ̃P 2
q +

EJ
2~

ˆ̃Q2
q +

ωb
4

(
ˆ̃P 2
b + ˆ̃Q2

b

)
+
ωw
4

(
ˆ̃P 2
w + ˆ̃Q2

w

)
+ g̃b

ˆ̃Pq
ˆ̃Pb + g̃w

ˆ̃Pq
ˆ̃Pw, (2.81)

Ĥnl =− EJ
(

cos
(

ˆ̃Qq

)
+ ˆ̃Q2

q/2
)
, (2.82)

Ĥdrv/~ =− 8EC
~

ng
ˆ̃Pq + 2εb cos (ωdt)

ˆ̃Pb + 2εw cos (ωdt)
ˆ̃Pw. (2.83)

It is favorable, if we can write the two qubit terms in Eq. (2.81) in form of ωq(P̂ 2
q + Q̂2

q)/4. For that
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purpose, we rescale the canonical variables of the transmon qubit as follows13

P̂q ≡2

(
EJ

2EC

)−1/4
ˆ̃Pq, Q̂q ≡

(
2EC
EJ

)−1/4
ˆ̃Qq, (2.84)

Inserting Eq. (2.84) into the two qubit terms in Eq. (2.81), we obtain

4EC
ˆ̃P 2
q +

EJ
2

ˆ̃Q2
q =EC

(
EJ

2EC

)1/2

P̂ 2
q +

EJ
2

(
2EC
EJ

)1/2

Q̂2
q

=

(
ECEJ

2

)1/2

P̂ 2
q +

(
ECEJ

2

)1/2

Q̂2
q

=
~ωq
4

(
P̂ 2
q + Q̂2

q

)
,

where we have defined the qubit frequency ωq ≡
√

8ECEJ/~. The coupling parameters can also be
redefined as

gb/w ≡
1

2

(
EJ

2EC

)1/4

g̃b/w.

Setting P̂b/w ≡
ˆ̃Pb/w and Q̂b/w ≡

ˆ̃Qb/w, we can reformulate Eq. (2.81) in the compact form

Ĥlin/~ =
1

2
~̂P TΩPP

~̂P +
1

2
~̂QTΩQQ

~̂Q (2.85)

with

~̂P ≡
[
P̂q, P̂b, P̂w

]
, ~̂Q ≡

[
Q̂q, Q̂b, Q̂w

]
,

ΩPP ≡
1

2

 ωq gb gw

gb ωb 0

gw 0 ωw

 , ΩQQ ≡
1

2

 ωq 0 0

0 ωb 0

0 0 ωw

 .

Diagonalization of the bilinear Hamiltonian

For the diagonalization of the Hamiltonian Eq. (2.85), we transform into the Lagrangian formalism,
obtain the eigenmodes, and then transform it back to the Hamiltonian. The key point is that the

Lagrange formalism deals with the generalized coordinate ~̂Q and its time derivative
˙̂
~Q, which are in

a direct linear relation. As we will see later, this linear relation is advantageous for the eigenmode
calculation [187].

As derived in AppendixC.4, the Lagrangian of Eq. (2.85) reads14

L/~ =
1

2
~̇QTΩ−1

PP
~̇Q− 1

2
~QTΩQQ

~Q.

Following the approach of [187], we first diagonalize

ΩQQ = OQΛQQ1ωO
†
Q = ΛQQ1ω,

where ΛQQ is a dimensionless diagonal matrix and 1ω is the identity matrix with physical dimensions

13see [24, 90, 114] and AppendixA for more details.
14Within the Lagrangian formalism, we omit the hat denoting the operator for clarity.
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of an angular frequency. We transform the principle-axis of Q to

~̆Q ≡ Λ
1/2
QQ

~Q,

such that
L/~ =

1

2

˙̆
~QTΛ

−1/2
QQ Ω−1

PPΛ
−1/2
QQ

˙̆
~Q− 1

2
~̆QT1ω ~̆Q.

Further, by diagonalizing the matrix in the first term

Λ
−1/2
QQ Ω−1

PPΛ
−1/2
QQ = OPΛ−1

PP1−1
ω O†P ,

where ΛPP is again a dimensionless diagonal matrix, and defining the eigenmode coordinate as

~Qm ≡ Λ
−1/4
PP O†P

~̆Q = Λ
−1/4
PP O†PΛ

1/2
QQ

~Q, (2.86)

the linear Lagrangian can be recast as

L/~ =
1

2
~̇QTmΛ

−1/2
PP 1−1

ω
~̇Qm −

1

2
~QTmΛ

1/2
PP1ω ~Qm.

The Lagrangian equation of motion yields the harmonic eigenvalue equation

0 =
∂L
∂ ~Qm

− d
dt

∂L

∂ ~̇Qm
= Λ

1/2
PP1ω ~Qm + Λ

−1/2
PP 1−1

ω
~̈Qm = Ω ~Qm + Ω−1 ~̈Qm

with the diagonal eigenfrequency matrix Ω ≡ 1
2diag [ωm,q, ωm,b, ωm,w] 1ω = Λ

1/2
PP1ω. The indices q, b, w

refer to the qubit-, buffer-, and waste-type eigenmode. This is reasonable considering the fact that
the ratio gb/w/

∣∣ωq − ωb/w∣∣� 1 in the undriven case. After having obtained the eigenmodes and their
corresponding eigenfrequencies, we can transform back to the Hamiltonian formalism

Ĥlin/~ =
1

2
~̂P TmΩ ~̂Pm +

1

2
~̂QTmΩ ~̂Qm (2.87)

with ~̂Pm = ∂L̂/∂
˙̂
~Qm = Ω−1

˙̂
~Qm.

Here, we want to draw attention to the fact that according to Eq. (2.86) the general coordinate ~Q
can be described as a sum of the variables Q̂m,j in the jth eigenmode basis

Q̂i =
∑
j

ϕ̃ijQ̂m,j , (2.88)

where ϕ̃ij can be interpreted as the (dimensionless) zero-point fluctuation of jth eigenmode at ith
(original) basis with [ϕ̃]ij = Λ

−1/2
QQ OPΩ1/2. Analogously, for the conjugate momenta we can express

P̂i =
∑
j

ñijP̂m,j (2.89)

with the (dimensionless) zero-point fluctuation ñij of jth eigenmode at ith (original) basis with [ñ]ij =
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Ω−1
PPΛ

−1/2
QQ OPΩ3/2. The full Hamiltonian can then be rewritten as

Ĥ/~ =
1

2
~̂P TmΩ ~̂Pm +

1

2
~̂QTmΩ ~̂Qm −

EJ
~

(
cos
(

ˆ̃Qq

)
+

1

2
ˆ̃Q2
q

)
− 4EC

~
ng
∑
j

nqjP̂m,j

+ 2εb cos (ωdt)
∑
j

nbjP̂m,j + 2εw cos (ωdt)
∑
j

nwjP̂m,j

=
1

4

∑
j

ωm,j

(
P̂ 2
m,j + Q̂2

m,j

)
− EJ

~

(
cos
(

ˆ̃Qq

)
+

1

2
ˆ̃Q2
q

)
− 4EC

~
ng
∑
j

nqjP̂m,j

+ 2εb cos (ωdt)
∑
j

nbjP̂m,j + 2εw cos (ωdt)
∑
j

nwjP̂m,j (2.90)

with

ˆ̃Qq =
∑
j

ϕqjQ̂m,j ≡
(

2EC
EJ

)1/4∑
j

ϕ̃qjQ̂m,j

ˆ̃Pq =
∑
j

nqjQ̂m,j ≡
(
EJ

2EC

)1/4∑
j

ñqjQ̂m,j

according to Eq. (2.84).

Thus, we have successfully expressed the bare modes of the uncoupled system as the sums of the
normal modes, which enables the multi-wave mixing process. We further want to note that the driving
term in Eq. (2.90) now contains the qubit driving term

(2εbnbq + 2εwnwq) P̂m,q cos (ωdt) =2
(√
κb,cnbq +

√
κw,cnwq

)
pinP̂m,q cos (ωdt)

≡2
√
γq,PpinP̂m,q cos (ωdt) ≡ 2εqP̂m,q cos (ωdt) , (2.91)

which is nothing but the Purcell effect with the decay rate, γq,P.

Second Quantization of the Hamiltonian

For the second quantization of the Hamiltonian, we introduce the annihilation âj and creation operators
â†j as [

âj

â†j

]
≡ 1

2

[
1 i

1 −i

][
Q̂m,j

P̂m,j

]
(2.92)

with the commutation relation
[
âj , â

†
k

]
= δjk. Thus, the Hamiltonian in Eq. (2.90) in the Fock basis

is reformulated as

Ĥ/~ =
∑

j=q,b,w

ωm,j â
†
j âj −

EJ
~

(
cos
(

ˆ̃Qq

)
+

1

2
ˆ̃Q2
q

)
− 4iEC

~
ng
∑
j

nqj

(
â†j − âj

)
+ 2iεb cos (ωdt)

∑
j

nbj

(
â†j − âj

)
+ 2iεw cos (ωdt)

∑
j

nwj

(
â†j − âj

)
. (2.93)
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Four-wave mixing for single-photon detection

Here, we are interested in the four-wave mixing process allowing to use the system shown in Fig. 2.12,
where its derivation is mostly adapted from [41]. Our aim is to have a term in the Hamiltonian Eq.
(2.93), where the buffer state, which temporary stores the incoming single photon, is converted into a
qubit state and waste mode by applying a pump pulse. That is,

Ĥ4wm/~ = g4ξpâbâ
†
qâ
†
we

i(ω′q+ω
′
w−ω′b−ωd)t + h.c. (2.94)

with the total mean field amplitude ξp ≡ ξq + ξb + ξw, where the qubit, buffer and waste mode is
displaced by ξq/b/w [41, 72, 188]. Henceforth, we choose the drive frequency ωd = ωp = ω′q + ω′w − ω′b.
Here, we use ω′j indicating that we take into account the ac-Stark shift. g4 is the interaction strength
for the four-wave mixing process, which definition will be shown later.

Thus, to obtain the term given in Eq. (2.94) under the conditions provided above, Eq. (2.93)
transforms to

Ĥ′ =
∑

j=q,b,w

ωm,j â
†
j âj − EJ

(
cos
(

ˆ̃Q′q

)
+

1

2
ˆ̃Q′

2

q

)
− 4iECngnqq

(
â†q − âq

)
+ 2iεb cos (ωdt)nbb

(
â†b − âb

)
+ 2iεw cos (ωdt)nww

(
â†w − âw

)
+ 2iεq cos (ωdt)

(
â†q − âq

)
(2.95)

with
ˆ̃Q′q =

∑
j

ϕqj

(
â†j + âj

)
+ ϕqj

(
ξj + ξ∗j

)
.

Here, we also omitted the terms 4ECnqb and 4ECnqw because we assume ECnqw, ECnqw � EJϕ
3
qq. As

mentioned above, the four wave mixing process occurs due to the high nonlinearity of the Josephson

inductance. Henceforth, the fourth order term of cos
(

ˆ̃Q′q

)
+ 1

2
ˆ̃Q′

2

q ≈ 1
24

ˆ̃Q′
4

q is important. As derived in
AppendixB.2, after neglecting terms with O(ϕ3

qb,qw) and performing a rotating wave approximation,
we arrive at

1

24
ˆ̃Q′

4

q =ϕ2
qb

ϕ2
qq

2
â†bâb + ϕ2

qw

ϕ2
qq

2
â†wâw +

ϕ4
qq

2
â†qâq

+
ϕ4
qq

4
â†qâ
†
qâqâq + ϕ2

qbϕ
2
qqâ
†
qâqâ

†
bâb + ϕ2

qqϕ
2
qwâ
†
qâqâ

†
wâw

+ ϕqbϕqqϕqwϕqpξp

(
âqâ
†
bâw + â†qâbâ

†
w

)
with ϕqp ≡ (ϕqqξq + ϕqbξb + ϕqwξw)/ξp. Henceforth, in the rotating frame we arrive at

Ĥ′4/~ ≈∆qâ
†
qâq + ∆wâ

†
wâw + ∆bâ

†
bâb

+
χqq
2
â†qâ
†
qâqâq + χqwâ

†
qâqâ

†
wâw + χqbâ

†
qâqâ

†
bâb + g4ξp

(
â†qâ
†
wâb + âqâwâ

†
b

)
+ iεq(t)

(
â†q − âq

)
+ iε′w(t)

(
â†w − âw

)
+ iε′b(t)

(
â†b − âb

)
, (2.96)

we have defined

∆j ≡ωm,j − ω′j , g4 ≡−
EJ
~
ϕqbϕqqϕqwϕqp,

χqq ≡−
EJ
~
ϕ4
qq

2
, χqw ≡−

EJ
~
ϕ2
qqϕ

2
qw, χqb ≡−

EJ
~
ϕ2
qqϕ

2
qb,
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and for driving strength

ε′w =εwnww, ε′b = εbnbb

For simplicity, we neglected terms with χww, χbb.

2.5.3 Dissipation engineering for irreversible qubit-photon coupling

In this subsection, we follow [41], which derives the nonlinear decay by tracing out the waste modes
with adiabatic elimination. After canceling out the ac-Stark terms and restrict the Hilbert space of
the qubit mode to a two level system (âq → σ̂), we arrive at

Ĥ′′4 =Ĥw + Ĥqb

Ĥw/~ =g4ξpâbâ
†
wσ̂
† + g4ξ

∗
p â
†
bâwσ̂ +

(
∆w − χqwσ̂†σ̂

)
â†wâw

Ĥqb/~ =χqbσ̂
†σ̂â†bâb,

which dynamics is described by the Lindblad master equation

d
dt
ρ̂ =− i

[
Ĥ′′4 , ρ̂

]
+ κwD[âw]ρ̂+ κbD[âb]ρ̂+ γqD[σ̂]ρ̂+ γq,φD[σ̂†σ̂]ρ̂

=− i
[
Ĥw, ρ̂

]
+ κwD[âw]ρ̂+ Lqb [ρ̂] (2.97)

where

Lqb [ρ̂] =− i
[
Ĥqb, ρ̂

]
+ κbD[âb]ρ̂+ γqD[σ̂]ρ̂+ γq,φD[σ̂†σ̂]ρ̂.

Adiabatic elimination

For the adiabatic elimination of the waste mode, we assume that∣∣∣∣g4ξp
κw

∣∣∣∣ , ∣∣∣∣χjj′κw

∣∣∣∣ ∼ δ � 1,

such that the waste mode is dominantly in the vacuum state due to the fast decay rate κw. Hence,
we can reduce the Hilbert space of the waste mode to Hw = span (|0w〉 , |1w〉). In particular, for the
density matrix ρ̂ ∈ Hq⊗Hb⊗Hw, the reduced density matrices acting on the qubit and buffer Hilbert
space we have the following relations

〈0w| ρ̂ |0w〉 =ρ̂00, 〈0w| ρ̂ |1w〉 =δρ̂01, 〈1w| ρ̂ |1w〉 =δ2ρ̂11, 〈0w| ρ̂ |2w〉 =δ2ρ̂02
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with |jw〉 , |j′w〉 being the Fock basis of the waste mode. Note that ρ̂00 ∈ Hq ⊗ Hb. By projecting
Eq. (2.97) with 〈0w| ... |0w〉 , 〈0w| ... |1w〉 , 〈1w| ... |1w〉, respectively, we obtain

d
dt
ρ̂00 =− i 〈0w|

[
g4ξpâbâ

†
wσ̂
† + g4ξ

∗
p â
†
bâwσ +

(
∆w − χqwσ†σ

)
â†wâw, ρ̂

]
|0w〉

+ 〈0w|κwD[âw]ρ̂ |0w〉+ Lqb [ρ̂00]

=− iδ
[
g4ξ
∗
p â
†
bσ̂ρ̂10 − g4ξpρ̂01âbσ̂

†
]

+ δ2κwρ̂11 + Lqb [ρ̂00] +O
(
δ3
)

(2.98)

δ
d
dt
ρ̂01 =− iδ2

[
g4ξ
∗
p â
†
bσ̂ρ̂11 − g4ξpρ̂02âbσ̂

†
]

+ iρ̂00

[
g4ξ
∗
p â
†
bσ̂
]

+ iδρ̂01

[
∆w − χqwσ̂†σ̂

]
− δκw

2
ρ̂01 + δLqb [ρ̂01] +O

(
δ3
)

δ∼g4ξp/κw
= iρ̂00

[
g4ξ
∗
p â
†
bσ̂
]

+ iδρ̂01

[
∆w − χqwσ̂†σ̂

]
− δκw

2
ρ̂01 + δLqb [ρ̂01] +O

(
δ3
)

(2.99)

δ2 d
dt
ρ̂11 =− iδ3

[
g4ξ
∗
p â
†
bσ̂ρ̂21 − g4ξpρ̂12âbσ̂

†
]
− iδ

[
g4ξpâbσ̂

†ρ̂01 − g4ξ
∗
p ρ̂10â

†
bσ̂
]

+ iδ2
[
∆w − χqwσ̂†σ̂, ρ̂11

]
+ δ2κw

 ρ̂02︸︷︷︸
|2〉/∈Hw

−ρ̂11

+ δ2Lqb [ρ̂11] +O
(
δ3
)

=− iδ
[
g4ξpâbσ̂

†ρ̂01 − g4ξ
∗
p ρ̂10â

†
bσ̂
]

+ iδ2
[
∆bwq − χqwσ̂†σ̂, ρ̂11

]
− δ2κwρ̂11 + δ2Lqb [ρ̂11] +O

(
δ3
)

(2.100)

Focusing the relevant dynamics, we find that Eqs. (2.99) and (2.100) include a damping term of order
δ0, while all terms in Eq. (2.98) are of order δ2. Hence, this allows us to treat ρ̂01 and ρ̂11 as a steady
state (adiabatic approximation), which results to

ρ̂01 =iρ̂00

[
g4ξ
∗
p â
†
bσ̂
] [
δ
(κw

2
− i
(

∆w − χqwσ̂†σ̂
))]−1

≈ρ̂00

ig4ξ
∗
p/δ

κw
2 − i (∆w − χqw)

â†bσ̂, (2.101)

where we used â†bσ̂σ̂
†σ̂ = â†bσ. As for the steady state solution for ρ̂11, we get

ρ̂11 =
1(

κw
2

)2
+ (∆w − χqw)2

|g4ξp|2

δ2
âbσ̂
†ρ̂00â

†
bσ̂. (2.102)

Inserting the steady state solutions into Eq. (2.98), we obtain

d
dt
ρ̂00 =− i

[
−i |g4ξp|2

κw
2 + i (∆w − χqw)

â†bâbσ̂σ̂
†ρ̂00 −

i |g4ξp|2
κw
2 − i (∆w − χqw)

ρ̂00â
†
bâbσ̂σ̂

†

]

+
|g4ξp|2(

κw
2

)2
+ (∆w − χqw)2

âbσ̂
†ρ̂00â

†
bσ̂

+ Lqb [ρ̂00]

=i

[
|g4ξp|2(

κw
2

)2
+ (∆w − χqw)2

(∆w − χqw) â†bâbσ̂σ̂
†, ρ̂00

]
+ κnlD

[
âbσ̂
†
]
ρ̂00 + Lqb [ρ̂00] (2.103)

43



with the nonlinear decay rates L̂nl =
√
κnlâbσ̂

†

κnl ≡
|g4ξp|2(

κw
2

)2
+ (∆w − χqw)2

κw
∆w=χqw

=
4 |g4ξp|2

κw
. (2.104)

Qubit evolution

The dynamics describing the transfer of quantum information to the buffer mode is derived. We add
the driving term i

√
κbbin

(
âb − â†b

)
into the master equation (Eq. (2.103)), where bin is the amplitude

of the coherent drive. For simplicity, we set ∆w = χqw in Eq. (2.103) and assume Ĥqb/~, γq, γq,φ � κw

in the zeroth order approximation. This gives us

d
dt
ρ̂00 =κnlD

[
âbσ̂
†
]
ρ̂00 + κbD [âb] ρ̂00 + ε′b

[
âb − â†b, ρ̂00

]
(2.105)

with ε′b =
√
κbbin. Since the time evolution of the buffer mode is dependent on the qubit state, we first

consider ρ̂g ≡ 〈g| ρ̂00 |g〉 and ρ̂e ≡ 〈e| ρ̂00 |e〉, such that

d
dt
ρ̂g =− 1

2
κnl

(
ρ̂gâbâ

†
b + âbâ

†
bρ̂g

)
+ κbD [âb] ρ̂g + ε′b

[
âb − â†b, ρ̂g

]
, (2.106a)

d
dt
ρ̂e =κnlâbρ̂gâ

†
b + κbD [âb] ρ̂e + ε′b

[
âb − â†b, ρ̂e

]
. (2.106b)

In our case, since the applied buffer tone is a coherent tone, we can safely assume that the buffer is in
a coherent state |β〉 with the dimensionless amplitude15 β = −2ε′b/(κnl + κb). That is, ρ̂g/e ∝ |β〉 〈β|.
We can now calculate the qubit ground and excited state probability by tracing them, pg/e = Tr(ρ̂g/e).
This leads us to formulate

d
dt
pg =− κnl |β|2 pg, (2.107a)

d
dt
pe =κnl |β|2 pg. (2.107b)

Assuming the qubit is in the ground state for t = 0, we obtain

pe(t) = 1− exp

(
−

4ε′b
2κnl

(κnl + κb)2
t

)
= 1− exp

(
−ηc |bin|2 t

)
(2.108)

with the conversion efficiency

ηc :=
4κbκnl

(κnl + κb)2
. (2.109)

2.5.4 Limitation

Influence of qubit decoherence rate

In our previous discussions, the effects of qubit decoherence on its temporal evolution have not been
taken into account. To address this issue, we delve into the impact of qubit decoherence on its dynamics.
Notably, it becomes evident that the qubit population never reaches unity. This is a direct implication
of the fact that qubit decoherence inherently reduces the detection efficiency in single-photon detection
scenarios.

15The amplitude can be calculated for steady state using L̂nl and L̂b,c/i =
√
κb,c/iâb as the loss operators.
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The qubit decoherence term is added to the master equation in Eq. (2.105), such that we obtain

d
dt
ρ̂00 =κnlD

[
âbσ̂
†
]
ρ̂00 + κbD [âb] ρ̂00 + ε′b

[
âb − â†b, ρ̂00

]
+ γqD [σ̂] ρ̂00. (2.110)

After following the same procedure as in the previous subsection, the differential equation is formulated
as

d
dt

[
pg

pe

]
=

[
−ηc |bin|2 γq

ηc |bin|2 −γq

][
pg

pe

]
, (2.111)

which solution gives

[
pg(t)

pe(t)

]
=

 ηc|bin|2

ηc|bin|2+γq
e−ηc|bin|

2t−γqt +
γq

ηc|bin|2+γq

γq
ηc|bin|2+γq

(
1− e−ηc|bin|

2t−γqt
)

ηc|bin|2

ηc|bin|2+γq

(
1− e−ηc|bin|

2t−γqt
)

ηc|bin|2

ηc|bin|2+γq
+

γq
ηc|bin|2+γq

e−ηc|bin|
2t−γqt

[ pg(0)

pe(0)

]
.

(2.112)

We find the excitation probability of the transmon qubit for sufficiently long time t as

pe(t→∞) =
ηc |bin|2

ηc |bin|2 + γq
< 1. (2.113)

It is noteworthy that the saturation level of the qubit population establishes a relative dependency
on the qubit energy relaxation rate γq, and the "effective buffer photon conversion rate" ηc |bin|2.
Particularly, the impact of the energy relaxation rate becomes significant when the value of ηc |bin|2 is
comparably small. This observation underscores an interplay or a steady-state dynamics between the
information gain from the incoming buffer photon flux and information loss into the environment. In
other words, while the qubit becomes excited due to photon conversion, it concurrently relaxes back
into its surrounding bath.

Influence of residual waste photon number

In our prior discussions, we assumed that our quantum system experienced only vacuum noise,
excluding the influence of the coherent drive (refer to Sec. 2.4). This is a standard assumption,
primarily justified by the extremely low temperatures of dilution refrigerators, typically in the range
of 10 − 50mK. Nevertheless, heating due to strong system pumping and microwave noise from the
input lines can increase the waste photon number [103, 152, 153]. This is particularly relevant in our
case: the presence of a residual waste photon number can influence the detection efficiency. This is
attributed to the fact that the reversal process (â†bâwσ̂) has a finite probability. Given this potential
complication, it is imperative to thoroughly examine how the residual waste photon number impacts
the qubit’s temporal evolution.

We model the residual waste photon number as arising from a thermal bath. According to Eq. (2.32),
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the Eqs. (2.98), (2.99) and (2.100) are modified to

d
dt
ρ̂00 =− i 〈0w|

[
g4ξpâbâ

†
wσ̂
† + g4ξ

∗
p â
†
bâwσ, ρ̂

]
|0w〉

+ 〈0w|
(
κw (1 + nth,w)D[âw]ρ̂+ κwnth,wD[â†w]ρ̂

)
|0w〉+ Lqb [ρ̂00]

=− iδ
[
g4ξ
∗
p â
†
bσ̂ρ̂10 − g4ξpρ̂01âbσ̂

†
]

+ δ2κw (1 + nth,w) ρ̂11 − κwnth,wρ̂00 + Lqb [ρ̂00] +O
(
δ3
)

(2.114)

δ
d
dt
ρ̂01 =− iδ2

[
g4ξ
∗
p â
†
bσ̂ρ̂11 − g4ξpρ̂02âbσ̂

†
]

+ iρ̂00

[
g4ξ
∗
p â
†
bσ̂
]

+ 〈0w|
(
κw (1 + nth,w)D[âw]ρ̂+ κwnth,wD[â†w]ρ̂

)
|1w〉+ δLqb [ρ̂01] +O

(
δ3
)

=iρ̂00

[
g4ξ
∗
p â
†
bσ̂
]
− δ

κw (1 + 4nth,w)

2
ρ̂01 + δLqb [ρ̂01] +O

(
δ3
)

(2.115)

δ2 d
dt
ρ̂11 =− iδ3

[
g4ξ
∗
p â
†
bσ̂ρ̂21 − g4ξpρ̂12âbσ̂

†
]
− iδ

[
g4ξpâbσ̂

†ρ̂01 − g4ξ
∗
p ρ̂10â

†
bσ̂
]

+ 〈1w|
(
κw (1 + nth,w)D[âw]ρ̂+ κwnth,wD[â†w]ρ̂

)
|1w〉+ δ2Lqb [ρ̂11] +O

(
δ3
)

=− iδ
[
g4ξpâbσ̂

†ρ̂01 − g4ξ
∗
p ρ̂10â

†
bσ̂
]

− δ2κw (1 + 3nth,w) ρ̂11 + nth,wρ̂00 + δ2Lqb [ρ̂11] +O
(
δ3
)

(2.116)

Here, we set ∆w = χqw for simplicity. With the same argument as in Subsec. 2.5.3, we can find the
steady state solutions for ρ̂01 and ρ̂11

ρ̂01 ≈ρ̂00

2ig4ξ
∗
p

δκw(1 + 4nth,w)
â†bσ̂

ρ̂11 ≈
1

δ2κw (1 + 3nth,w)

[
4 |g4ξp|2

κw(1 + 4nth,w)
âbσ̂
†ρ̂00â

†
bσ̂ + κwnth,wρ̂00

]

and insert them into

d
dt
ρ̂00 =− 2 |g4ξp|2

κw(1 + 4nth,w)

[
â†bâbσ̂σ̂

†ρ̂00 + ρ̂00â
†
bâbσ̂σ̂

†
]

+
1 + nth,w
1 + 3nth,w

[
4 |g4ξp|2

κw(1 + 4nth,w)
âbσ̂
†ρ̂00â

†
bσ̂ + κwnth,wρ̂00

]
− κwnth,wρ̂00 + Lqb [ρ̂00] +O

(
δ3
)

≈κnl (1− 4nth,w)D[âbσ̂
†]ρ̂00 − 2κnlnth,wâbσ̂

†ρ̂00â
†
bσ̂ + Lqb [ρ̂00] +O

(
δ3, n2

th,w
)
. (2.117)

Eq. (2.105) can therefore be rewritten as

d
dt
ρ̂00 =κnl (1− 4nth,w)D

[
âbσ̂
†
]
ρ̂00 − 2κnlnth,wâbσ̂

†ρ̂00â
†
bσ̂ + κbD [âb] ρ̂00 + ε′b

[
âb − â†b, ρ̂00

]
, (2.118)

which results to

d
dt
pg =− κnl (1− 4nth,w)

∣∣β′∣∣2 pg, (2.119a)

d
dt
pe =κnl (1− 6nth,w)

∣∣β′∣∣2 pg (2.119b)

with
β′ = −

2ε′b
κnl (1− 4nth,w) + κb

.
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Finally, we obtain the qubit evolution

pe(t) =
1− 6nth,w
1− 4nth,w

(
1− exp

(
−η′c |bin|

2 t
))

(2.120)

with the modified conversion efficiency

η′c :=
4κbκnl (1− 4nth,w)

(κnl (1− 4nth,w) + κb)2
. (2.121)

We clearly see that the qubit population is limited by the waste photon number nth,w and can never
reach unity. For example, if we have nth,w = 0.05 corresponding to an effective temperature of 120mK,
we obtain pe(t→∞) = n∗q = 0.875.

2.6 Quantum-to-classical phase transition of a transmon system

In the previous sections, we have discussed an open and interacting quantum system. In both scenarios,
the system is treated quantum mechanically or semi-classically, where for example the resonator is
treated in classical means (see e.g. the qubit driving in Sec. 2.5). In other words, the full classical
treatment fails to correctly describe its underlying physics. However, in some extreme scenarios, such
as extremely strong driving of the quantum system, the behavior of such system can be well described
classically.

A good example is the Josephson circuit. As the Josephson potential is a cosine potential, its
classical analogue is often represented by a pendulum, where the deviation angle from the equilibrium
position corresponds to the phase difference across the Josephson junction [90, 189]. For a weak
drive, the pendulum acquires some kinetic energy and starts to oscillate around the equilibrium. This
oscillation is described differently in a the quantum and classical treatment: In the quantum mechanical
treatment, the energy is quantized and the system can only acquire discrete energies. In the first-order
approximation such system is known as the simple quantum harmonic oscillator (see App.A). In the
classical description, any energy is allowed, thus it fails to "reproduce" the discretization of the energy
levels. In contrast, for a strong drive, it acquires sufficient energy to escape from its trapping potential
well and rotates indefinitely. That is, the phase particle behaves as a free particle and the energy
quantization is not existent. In other words, the classical treatment is possible.

One may then think, where is the threshold between quantum and classical? Is it a smooth
transition or not? In the transmon case, we actually can observe a quantum-to-classical phase
transition [75–77]. That is, there exists a threshold power, where the behavior of the system suddenly
changes. This phenomenon is also known under various names such as transmon ionization [73, 74],
first-order dissipative phase transition [78–81, 190, 191], chaotic regime [74, 82], and breakdown of
photon-blockade [77, 78].

In this section, we briefly introduce various tools and representation, such as Rényi entropy,
second-order correlation function, Floquet theory, and Husimi Q functions, which are employed to
indicate potential phase transitions. Lastly, we first discuss the quantum Duffing oscillator, which is
an approximation of a transmon qubit up to its anharmonicity, with focus on the first-order dissipative
(quantum-to-classical) phase transition and expand it to the discussion for the transmon.
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2.6.1 Rényi entropy, correlation function, Husimi Q distribution, Floquet theory

Rényi entropy

Here, we briefly discuss the Rényi entropy based on the papers [192, 193]. As we will see later, the
focus of the discussion lies on the measure of the purity of the quantum system and quantum phase
transition.

The Rényi entropy is a term coming from the information theory and is a generalization of various
entropy notions such as Shannon entropy16 (von Neumann entropy in the quantum context17) and
collision entropy. It finds many applications in the context of phase transition in quantum information
theory and quantum computing [194], quantum communication [195], condensed matter physics [196]
and also holography in quantum gravity [193, 197]. This quantity is defined as

Sα =
1

1− α
logTrρ̂α, (2.122)

where α is an order parameter. We emphasize that for α = 1 we obtain the von Neumann entropy,
SN = −Trρ̂ log ρ̂. The advantage of the Rényi entropy compared to the von Neumann entropy is the
simple calculation as the computation of log ρ̂ is a hard task [193]. For the special case of α = 2,

S2 = − logTrρ̂2 = − logP, (2.123)

we observe that S2 measures the purity of a quantum system, P = Trρ̂2, in a logarithmic scale. For
a completely mixed state, the Rényi entropy approaches the limit − log(1/dq), where dq represents
the dimensionality of the associated Hilbert space. The proof that the completely mixed state is an
equiprobable probability distribution of the state can be shown by using the Cauchy-Schwarz inequality

1

d2
q

=

(
1

dq

∑
k

pk

)2

≤ 1

dq

∑
k

p2
k

for the density matrix ρ̂ =
∑

k pk |k〉 〈k| with
∑

k pk = 1. The equality holds only for pk = 1/dq.
Hence, the minimum of the purity is minP = min

∑
k p

2
k = 1/dq. Therefore, the entropy is always

upper-bounded by S2 ≤ − log(1/dq). In the context of quantum-to-classical phase transition, this
method is especially suited to clarify the phase transition to the classical state: According to [73], the
transmon ionization is associated with a sharp drop in the purity. That is, a sudden transition to a
(mostly) completely mixed state.

Second-order correlation function

Here, the second-order correlation function is briefly introduced based on the books [85, 182].

The second-order correlation function is an important concept used to understand and describe the
statistical properties of the quantum state. It is defined as

g(2)(0) =
〈â†qâ†qâqâq〉
〈â†qâq〉2

(2.124)

16The Shannon entropy has been introduced as a classical quantity in the context of information theory.
17The von Neumann entropy is an extension of the concept of Gibbs entropy from classical statistical mechanics to

quantum statistical mechanics.
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for t = 0. In the context of quantum optics, it is a measure of detecting two photons at the same time.
This function helps us to understand the nature of light. For example, for a perfectly coherent state,
we obtain g(2)(0) = 1, and for any other type of classical light we always have a greater value than
unity. In contrast, if we measure g(2)(0) < 1, it is a signature of non-classical nature of light such as
photon anti-bunching and quantum entanglement.

Husimi Q distribution

Here, the Husimi Q distribution is briefly introduced based on the book [85].
The Husimi Q function is a quasi-probability distribution over a phase-space, usually applied to

represent the density matrix ρ̂ of the electromagnetic fields18. It is used to describe the states in
quantum mechanics, where the usual concept of probability distribution is not applicable due to the
Heisenberg uncertainty principle. The Husmi Q distribution is defined on the coherent state basis |α〉,
where α = Re(α) + iIm(α) corresponds to a point in the phase space

Q(α) =
〈α|ρ̂|α〉
π

≥ 0. (2.125)

The advantage of this representation is the non-negativity without any singularity as opposed to the
Glauber-Sudarshan P representation, while its relatively large uncertainty makes it hard to distinguish
e.g. between a vacuum state from a thermal state as opposed to a Wigner representation. Nevertheless,
in the case of the quantum Duffing oscillator and related study, the Husimi Q distribution is a widely
used method to visualize its quantum state [74, 78, 79, 82, 190, 198, 199]. As this topic will be covered
later in more detail, the existence of two metastable states of the Duffing oscillator in its bistable
regime can be well observed in the phase space [78, 79, 81, 86, 191].

Floquet theory

Here, we briefly delve into the Floquet theory, drawing predominantly from [200–203]. Floquet theory
offers a comprehensive framework for understanding periodic systems.

Floquet theory plays a crucial role in analyzing quantum systems characterized by periodic
dynamics. This periodicity in the Hamiltonian often arises due to various factors, such as crystal
potentials, a concept well-articulated in condensed matter physics through Bloch’s theorem, or due to
externally applied time-periodic potentials.

The essence of Floquet theory lies in its ability to render time-dependent problems in a rotating
frame tractable, leveraging the inherent periodicity of the Hamiltonian. Specifically, the theory aids
in decomposing the dynamics into two distinct categories: the fast dynamics within a single period T
of the Hamiltonian and the slower dynamics that evolve from one period to the next. This separation
is crucial for understanding and predicting the system’s behavior over time. An especially valuable
application of Floquet theory is in examining the effects of rapid rotational terms in the Hamiltonian.
While these terms are often neglected in the rotating wave approximation, especially in weakly driven
systems, they become critically significant in scenarios involving strong driving forces. This significance
is exemplified in the phenomenon known as the Bloch-Siegert shift, where the strong drive alters the
resonance conditions of the system. The Bloch-Siegert shift is typically analyzed using a frequency
expansion method, which provides insights into the impact of these otherwise disregarded terms.

18The Husimi Q representation is one of several phase space distributions. Others include Glauber-Sudarshan P
representation and Wigner representation.
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Here, we focus on the time-periodic problem. Beginning with the time-dependent Schrödinger
equation, our wave function is described as

i~
d
dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉

with Ĥ(t) = Ĥ(t+ T ). Its dynamics is captured by the unitary time-evolution operator Û (t, t0)

|ψ(t)〉 = Û (t, t0) |ψ(t0)〉 ,

which is in general a complicated time-ordered exponential. As we are considering a time-periodic
Hamiltonian, the important feature of the Floquet theory can be well found in the one-period evolution
Floquet operator

F̂0 ≡ Û (t0 + T, t0) = e−iĤFT/~, (2.126)

where ĤF is the Hermitian operator. That is, the eigensystem of F̂0 gives our desired Floquet modes
|un(t0)〉 and its quasi-energies εn determined by

F̂0 |un(t0)〉 = e−iεnT/~ |un(t0)〉 . (2.127)

The prefix "quasi-" underscores the fact that this quantity is strictly defined within the confines of
the Brillouin zone and hence εn is only determined by modulo ~Ω with Ω = 2π/T . This is analogous
to the quasi-momentum in the Bloch theorem [189]. A complete set of solution of the time-dependent
Schrödinger equation has the form

|ψn(t)〉 = e−iεn(t−t0) |un(t)〉

with |un(t+ T )〉 = |un(t)〉. For completeness, any state |ψ(t)〉 can therefore be expressed in the basis
of the Floquet modes

|ψ(t)〉 =Û (t, t0) |ψ(t0)〉

=
∑
n

ane
−iεn(t−t0) |un(t)〉 (2.128)

with the coefficients an = 〈un(t0)|ψ(t0)〉.

In the context of phase transitions, the analysis of Floquet modes gains particular significance when
exploring the chaotic regime of a quantum system [74, 82, 198, 199, 204]. Floquet modes, fundamentally,
are the eigenstates of the system’s propagator over a single drive period, as described in Eqs. (2.126)
and (2.127). These modes can be conceptualized as the quantum analog of the stroboscopic Poincaré
map, a tool quintessential in classical dynamics for visualizing and understanding the intricate behavior
of chaotic systems in phase space [205]. The Poincaré map, in classical mechanics, serves as a powerful
method to detect and characterize chaos by graphically representing the trajectory of a system in phase
space. This representation makes it possible to identify patterns and structures that are characteristic
of chaotic dynamics, such as fractals and strange attractors. In a quantum context, the Husimi Q
representation of the Floquet modes serves a similar purpose. This representation provides a phase-
space distribution of the quantum states, analogous to the classical phase-space trajectories depicted in
the Poincaré map. Employing the Husimi Q representation to analyze Floquet modes enables a deeper
understanding of the underlying chaotic behavior in quantum systems. This approach effectively
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bridges the gap between quantum and classical chaos theories. By correlating the quantum Floquet
modes with their classical counterparts through the Poincaré map, we can gain insights into the nature
of the quantum phase transitions, particularly in how they correlate with chaotic dynamics. Such an
analysis is instrumental in unraveling the complex interplay between quantum mechanics and classical
chaos, further enriching our comprehension in chaotic regimes.

2.6.2 From quantum Duffing oscillator to transmon

We first start with the discussion of the quantum Duffing oscillator, which is an approximated form of
the transmon qubit up to its anharmonicity. The quantum Duffing Hamiltonian has already been
introduced in Eq.(2.22). Its quantum Langevin equation given in Eq.(2.35) obeys the following
expression

d
dt
âq = −i∆qdâq − iχqqâ†qâ2

q −
γq
2
âq −

√
γqâin, (2.129)

where ∆qd = ωq − ωd is the frequency detuning between the transmon qubit and the driving field, γq
is the energy dissipation rate of the transmon qubit and âin is the input field. For relatively strong
driving field, we can treat it classically such that εq =

√
γq 〈âin〉. Henceforth, we can express the

effective Duffing Hamiltonian as

ĤD/~ = ∆qdâ
†
qâq +

χqq
2
â†qâ
†
qâqâq + iεq

(
âq − â†q

)
. (2.130)

According to [85, 86], we can obtain the correlation function of the signal moments by solving the
Fokker-Planck equation in the steady state and the correlation function is written as

〈(
â†q

)j
âkq

〉
= d∗jdk

Γ(c)Γ(c∗) 0F2

(
k + c, j + c∗, 4 |d|2

)
Γ(k + c)Γ(j + c∗) 0F2

(
c, c∗, 4 |d|2

) (2.131)

with the unitless detuning c, the unitless driving strength d, the generalized hypergeometric function

0F2, and the gamma special function Γ defined as

c =
2∆qd − iγq

χqq
, d =

2iεq
χqq

, 0F2 (x, y, z) =

∞∑
n=0

Γ(x)Γ(y)zn

Γ(x+ n)Γ(y + n)n!
.

The importance of this result is that all orders of signal moments are always single valued.

This conclusion is completely different from the classical treatment, which states that there is a
bistability or hysteresis [86]. Indeed, if we treat Eq. (2.129) fully classically, i.e. αq = 〈âq〉, we obtain
the classical equation of motion

d
dt
αq = −i∆qdαq − iχqqα∗qα2

q −
γq
2
αq − εq, (2.132)

which is equivalent to the Duffing equation under a rotating wave approximation. Its steady state
equation gives

χ2
qq |α|

6 + 2∆qdχqq |α|4 +

[
∆2
qd +

(γq
2

)2
]
|α|2 − ε2

q = 0. (2.133)

It is evident that the solution of this third-order polynomial equation of |α|2 has three roots. In other
words, a unique solution is not guaranteed [79, 86, 116]. The turning point of the stability region [86]
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is given by

|α±|2 =
−2∆qd ±

√
∆2
qd − 3 (γq/2)2

3χqq
. (2.134)

We can then verify that the bistability occurs for ∆2
qd ≥ 3 (γq/2)2 and ∆qdχqq < 0 as |α|2 is real and

positive.
In the study of the quantum Duffing oscillator, it is intriguing to note that despite the existence of

only a singular steady-state solution, analogies to the bistability observed in its classical counterpart
can be drawn. In the classical regime, bistability is manifested through two distinct solutions which, in
the quantum context, correspond to two metastable states with exceptionally long lifetimes relative to
other system timescales. These metastable states persist before the system eventually relaxes into the
unique steady state as t→∞. This persistence of metastable states can be described by the concept
of the Liouvillian gap. This gap is defined as the difference between the lowest two eigenvalues of the
Liouvillian superoperator19, obtained through the following relation

ρ̂(t) = exp (tLD(t)) [ρ̂(0)] =
∑
n

exp (tλn)

(∑
m

cn,mrn,m

)
. (2.135)

The Lindbladian superoperator LD(t) for the quantum Duffing oscillator is described as

LD(t) [ρ̂(t)] = − i
~

[
ĤD, ρ̂(t)

]
+ γqD [âq] ρ̂(t). (2.136)

Here, cn,m = Tr(ln,mρ̂) represents the trace of the product of the left eigenmatrix ln,m and the density
operator ρ̂. The left ln,m and corresponding right rn,m eigenmatrices of the Liouvillian superoperator
LD correspond to the nth eigenvalue with a geometric multiplicity of m, i.e., λn for n = 0, 1, · · · . We
order these eigenvalues such that δn = Re(λn) with δn < δn+1, creating a discrete spectrum known
as the Liouvillian spectrum. When the second smallest eigenvalue δ1 is significantly smaller and well-
separated from the subsequent values in the Liouvillian spectrum, δ1 � δ2, a two-stage relaxation
process ensues: Initially, the system undergoes a rapid relaxation into the metastable states, followed
by a slower convergence to the stable steady state [81, 206].

In the context of phase transitions within quantum systems, a critical parameter often delineates the
boundary between quantum and classical behaviors. For the quantum Duffing oscillator, this transition
to what can be described as the thermodynamic limit occurs as εq → ∞ while keeping the product
χqqεq constant. This limit intuitively aligns with the concept that, under the regime of strong drive,
the mean-field approximation becomes increasingly valid, thereby permitting a classical treatment of
the system. This theoretical transition is underpinned by the Langevin equation, as formulated in
Eq. (2.132). Here, we rescale the operator âq =

√
Nâc, such that

d
dt
âq =− i

[
∆qdâq −

U

N
â†qâ

2
q

]
− γq

2
âq −

√
Nε0,

−→ d
dt
âc =− i

[
∆qdâc − Uâ†câ2

c

]
− γq

2
âc − ε0, (2.137)

where χqq = U/N and εq =
√
Nε0 with constants U and ε0 and a scaling factor N . In this

framework, the bosonic commutation relation diminishes as
[
âc, â

†
c

]
= 1/N , becoming negligible for

large N and thus validating the classical treatment. As an additional note, another perspective on

19see also Eq. (2.32) for more details
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the thermodynamic limit involves transforming the system into Fourier space, resulting in a Bose-
Hubbard lattice with N sites. For an in-depth exploration of this topic, the reader is directed to the
comprehensive discussion provided in the literatures [207–211]. Furthermore, to develop an intuitive
understanding of the first-order dissipative phase transition, we consider the concept of photon-blockade
breakdown [77, 78]. In this scenario, the driving force is off-resonant with the eigenfrequencies of the
oscillator. Below a critical threshold, energy conservation is not satisfied for excitation to higher energy
states, a consequence of the anharmonicity of the system, which is characterized by unequally spaced
energy levels. This suppression maintains the system predominantly in its ground state, illustrating
the essence of photon-blockade. However, in the driven, dissipative regime, the bandwidth of the
eigenenergies is broadened due to the influence of drive photons, as briefly discussed in Subsec. 2.5.1.
Once the bistability threshold is surpassed, this bandwidth expansion can be sufficient to allow off-
resonant drive photons to induce excitations in the quantum Duffing oscillator. Consequently, the
discrete nature of the energy levels becomes less pronounced, leading to a transition where the behavior
of the system increasingly resembles classical dynamics.

Now, we examine the response of the quantum Duffing oscillator to varying pump power levels,
applying parameters that correlate closely with those of a "transmon qubit" ωq. Additionally, the
driving frequency is significantly detuned from the transmon qubit’s resonant frequency. These
parameters will subsequently form the foundational basis for the analyses in Chap. 4. Our initial
focus is on the steady-state population of the quantum Duffing oscillator, nq = 〈â†qâq〉 . According
to Eq. (2.133), a pronounced increase in the steady-state population is anticipated in proximity to the
classical bistability region. This expectation is confirmed by the data presented in Fig. 2.13 (a), where
a sharp rise in population is observed at approximately −73 dBm. Below the critical pump power,
the steady-state population remains near zero, but after the threshold, it converges to the classical
steady-state population. The Rényi entropy S2 supports this observation. It yields a value of zero at
instances where the system is in a pure state, characterized by a purity P = 1. At the critical point, the
entropy shows a peak, which indicates the maximum mixture of the coherent and the squeezed state.
The Husimi Q function visualizes the equiprobable mixture of both phase in Fig. 2.14 (a). At −98 dBm
and at −70 dBm, we recognize the coherent and the squeezed state, respectively, while at the critical
pump power of −73.1 dBm we find both phases in the phase space. After the threshold, the entropy
drops down monotonically as the state becomes "purely coherent". We further study its behavior in
the context of the Floquet modes. The bottom panel of Fig. 2.13 (a) shows the probability of finding
Floquet modes in the steady-state density matrix of the quantum Duffing oscillator. Interestingly, we
have an equiprobable mixture of the Floquet modes |0〉F , |1〉F , |2〉F associated with a partial mixture of
the Floquet mode |3〉F at −73.1 dBm. The Husimi Q distribution of these Floquet modes demonstrates
that they capture the main feature of the quantum Duffing oscillator: The coherent vacuum state is
one of the eigenstate of the driven system, which is the Floquet state |0〉F , while the squeezed state
can be found for the Floquet state |3〉F (and |1〉F at around −50 dBm). The progressive transition of
the squeezed state can be confirmed by the second-order correlation function. After the threshold, it
starts with a slightly smaller value than unity because of the squeezed state, which eventually reaches
the unity (see Fig. 2.13 (a)).

Extending our analysis, we now apply the theoretical framework developed for the quantum Duffing
oscillator to the transmon qubit system. Numerical simulations, depicted in Fig. 2.13 (b), exhibit
behaviors in the transmon system that are qualitatively similar to those observed in the quantum
Duffing oscillator, particularly in the lower power regime. A notable parallel is the emergence of a peak

53



(a) (b)

Figure 2.13. Numerical simulations allowing to compare the behavior of (a) quantum Duffing
oscillator and (b) transmon qubit. (a) Steady-state population nq calculated by the quantum (blue solid
line) and classical theories (blue dashed line). The unstable classical steady-state solution is represented
by the blue dash-dotted line. Rényi entropy S2 (orange solid line) with its maximum entropy (orange
dashed-dotted line), correlation function g(2)(0) (green solid line) with the unity value (green dashed
line). The probability of finding Floquet modes |0〉F , |1〉F , |2〉F , |3〉F (blue, orange, green, red solid
line) in the simulated density matrix F 〈nq| ρ̂ |nq〉F . The critical point of equiprobable mixture of the
coherent and squeezed state is indicated by the vertical black dashed line at −73.1 dBm, while the
vertical black dashed line at −70 dBm is the starting point of the squeezed state. Rényi entropy S2 (b)
Steady-state transmon population nq (blue solid line), Rényi entropy S2 (orange solid line) with its
maximum entropy (orange dashed-dotted line), correlation function g(2)(0) (green solid line) with the
unity value (green dashed line). The probability of finding Floquet modes |0〉F , |1〉F , |7〉F , |10〉F , |14〉F
(blue, orange, green, red, purple solid line) in the simulated density matrix F 〈nq| ρ̂ |nq〉F . The black
vertical dashed lines are positioned at −67,−62,−59 dBm. The parameters used for both simulations
are ωq/2π = 5.664GHz, χqq/2π = −242MHz, ωd/2π = 5.156GHz, and γq = 1/80 µs with the Hilbert
space dimension of dq = 25. In the case of the transmon qubit, EC/~ and EJ/~ are chosen such that
ωq and χqq coincide with the Duffing parameters.

in the second-order correlation function, g(2)(0), corresponding to an increase in both the transmon
population and the Rényi entropy. The value of this correlation function at the lower power limit
(g(2)(0) ≈ 1.8) closely mirrors that observed in the quantum Duffing oscillator, thereby supporting the
approximation of the transmon qubit as a Duffing system within this specific power regime. However,
the similarity between these systems becomes less pronounced as we move beyond this threshold. In
this higher power regime, the transmon qubit exhibits distinct behavior compared to the quantum
Duffing oscillator, particularly in terms of the Rényi entropy. While the Duffing system demonstrates
a monotonic decrease in entropy, the entropy in the transmon qubit system asymptotically approaches
S2 = − log(1/dq), indicative of a transition towards a completely mixed state. This observation is in
agreement with both numerical and experimental studies [71–73], further validating our findings.

The examination of the Husimi Q function within the phase space offers significant insights into the
evolving dynamics of the transmon qubit system, as depicted in Fig. 2.15 (a). Initially, at a pump power
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(a)

(c)

(d)

(b)

Figure 2.14. Simulated Husimi Q function of the quantum Duffing oscillator for various drive powers.
(a) The Husimi Q function of the steady-state density matrix. (b) The Husimi Q function of the Floquet
modes |0〉F , |1〉F , |2〉F , |3〉F (from top to bottom).

of −62 dBm, the Husimi Q function exhibits a slight deformation from its Gaussian-like distribution,
indicative of the onset of non-trivial quantum effects. As the pump power increases to −53 dBm,
this distribution transitions into a squeezed-like form, characterized by its distinct elongation in the
phase space. For higher pump powers, we observe an irregular delocalization over the phase space, as
shown at −47 dBm in Fig. 2.15 (a). This delocalization within the phase space can be attributed to
changes in the Husimi Q distribution, along with the statistical distribution of the Floquet modes. Up
to approximately −59 dBm, the density matrix of the transmon primarily comprises one, occasionally
two at very low powers, Floquet modes. This is evidenced in the bottom panel of Fig. 2.13 (b). However,
with an increase in pump power, there is a marked reduction in the probability of the leading Floquet
mode’s presence within the density matrix, resulting to an almost equiprobable distribution of these
modes. Concurrently, the Husimi Q functions associated with these Floquet modes begin to show
widespread delocalization across the phase space, as shown in Fig. 2.15 (b). This phenomenon is being
studied in relation to the regular and chaotic states [74, 200, 212]. Regular states in quantum systems
are characterized by predictability and order, typically manifested as well-defined, smooth, and closed
orbits or tori in phase space. In contrast, chaotic states are defined by their sensitivity to initial

55



(a)

(b)

Figure 2.15. Simulated Husimi Q function of the transmon qubit for various drive powers. (a) The
Husimi Q function of the steady-state density matrix. (b) The Husimi Q function of the Floquet modes
|0〉F , |1〉F , |10〉F (from top to bottom).

conditions and aperiodic long-term behavior, often resulting in fractal structures in phase space. In
the context of the transmon qubit, chaotic behavior is observed at the boundary of confined and
unconfined states in the Josephson potential, a region known as the separatrix [74]. To quantitatively
analyze this transition, we consider the mean energy per cycle for a given Floquet mode |ψk(t)〉F

〈〈H〉〉k =
1

T

∫ T

0
dt F 〈ψk(t)| Ĥ(t) |ψk(t)〉F ,

where 〈〈H〉〉k ≈ 2EJ marks the onset of irregular and chaotic behavior in the Floquet modes.
Observations indicate that as the pump power increases, the mean energy per cycle of all Floquet
modes, initially below 2EJ , steadily approaches this critical value, signifying a transition to irregular
and chaotic dynamics [74]. Hence, the widespread delocalilzation of the Floquet modes in the Husimi
Q representation across the phase space is associated with the transition to irregular and chaotic
dynamics. In summary, our investigation into the transmon qubit system reveals that at high pump
powers, there is a complete mixture of chaotic Floquet modes, underscoring the complex quantum-to-
classical transition in this regime.
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Chapter 3

SAMPLE FABRICATION AND CHARACTERIZATION

Sample fabrication plays a critical role in realizing high-performance quantum chips with a continuously
increasing number of circuits components. It involves meticulous material selection, precise chemical
treatment of surfaces and interfaces, and sub-micrometer control in electron/laser beam writing. Major
advancements in fabrication techniques have led to the development of highly coherent quantum
systems with precise frequency control. Notably, IBM recently achieved a transmon coherence time
exceeding 1ms [213], underscoring the significance of nanofabrication technology in the field of circuit
quantum electrodynamics.

In this chapter, we present the fabrication steps and parameters relevant to the production of our
samples based on the superconductors niobium (Nb) and aluminum (Al). A significant breakthrough
in sample fabrication is the use of buffered-oxide etching (BOE), which effectively eliminates surfaces
oxides and contaminants leading to so-called Two-Level-Fluctuators (TLSs), which represent the
dominant sources of loss in superconducting circuits (see Chap. 2). By implementing this technique, we
can minimize the impact of TLS-induced losses and enhance the overall performance of our quantum
devices by increasing their coherence time. We characterize the quality of our fabrication processes
through the extraction of the internal quality factors of the resonators and the measurement of the
coherence time of the transmon qubits.

3.1 Fabrication techniques

In this section, we outline the multi-step process for fabricating high-quality superconducting resonators
and transmon qubits. The fabrication workflow comprises essential stages such as cleaning, material
deposition, lithography, and post-processing. The effective reduction of losses is predominantly
achieved through two key steps: the cleaning step and the post-processing step. These steps involve
processes such as Piranha etching, buffered oxide etching (BOE), argon (Ar) ion milling, and bandaging.
We will delve into each fabrication step in the respective subsections to provide a comprehensive
understanding of their roles in minimizing losses. Moreover, due to the distinct characteristic
dimensions of Josephson junctions and coplanar waveguides, we present separate discussions on the
fabrication techniques for these components. An overview of the whole fabrication procedure is shown
in Figs. 3.1 and 3.2. All fabrication steps are based on the investigations presented in Refs. [214–219].

3.1.1 Fabrication of coplanar waveguides

Substrate treatment

The initial step of our fabrication process involves thorough cleaning of the silicon substrates to establish
a pristine crystal surface. This cleaning procedure is crucial to ensure the success of subsequent
fabrication steps. To remove the protective resist layer from the substrate, we employ hot acetone
and subsequently 2-isopropanol (IPA) in an ultrasonic bath. The application of heat and mechanical
agitation provided by the ultrasonic bath supports the effective dissolution and removal of the resist
layer, leaving behind a clean substrate.
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(a) (b) (c)
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Figure 3.1. Overview of coplanar waveguide fabrication steps. Here, we take Nb as a concrete
example. (a) Substrate treatment. The protective resist layer is removed by hot acetone and IPA.
Afterwards, the substrate is chemically etched by Piranha mixture and BOE. (b) Sputtering of Nb.
After the cleaning process, Nb is sputtered onto the substrate in the PLASSYS system. (c) Resist
coating. Photoresist is spin-coated onto the Nb layer. (d) Optical lithography and development.
The laser writer transfers the desired circuit design into the resist. The unexposed areas will then be
removed by the developer. (e) RIE etching. Removal of uncovered Nb by RIE. (f) Post-processing.
After the removal of the remaining resist in the remover solution, HF dip is employed to remove a
niobium oxide layer.

However, to achieve an even higher level of cleanliness and eliminate any residual organic
contaminants, we implement Piranha etching as a secondary cleaning step. Piranha etching involves
the use of a powerful etchant composed of concentrated sulfuric acid (H2SO4 (100 wt%)) and aqueous
hydrogen peroxide (H2O2 (35 wt%)) in a 3:1 ratio. This mixture undergoes a chemical reaction,
resulting in the production of atomic oxygen [220]

H2SO4 + H2O2 ←→ H3O+ + HSO−4 + O. (3.1)

The atomic oxygen generated during Piranha cleaning exhibits strong reactivity towards organic
materials. It disrupts the hybridized C-C bonds present in carbon-based residues, effectively removing
any remaining resist residues or other organic contaminants from the substrate surface. We place the
sample for 10min in a beaker with piranha solution at 80◦C, and afterwards rinse it in DI water.

During the etching process, a thick silicon oxide layer is formed on the surface [167, 221, 222],
which needs to be removed for further fabrication steps. To address this, we utilize BOE, an aqueous
solution composed of hydrofluoric acid (HF, 6.5 wt%) and ammonia fluoride (NH4F, 34.8 wt%). HF
plays a key role in removing the silicon oxide layer through the following reaction [223]:

Si−O−X + H+ −→ Si−O(H)+ −X, (X = Si or H) (3.2)

Si−O(H)+ −X + HF−2 −→ Si− F + HO−X + HF (3.3)

This reaction results in the formation of Si˘F, which effectively slows down the oxidation process when
the substrate is exposed to air. This helps to preserve the quality of the etched surface and prevents
rapid re-oxidation, allowing for a smooth transition to subsequent fabrication steps. In addition to its
role in oxide removal, NH4F plays a crucial role in maintaining a constant etch rate. It continuously
provides F− ions, ensuring a consistent etching process throughout the duration. This constant etch
rate is essential for a smooth substrate surface [160]. To perform the BOE, our samples are immersed
in the BOE solution for a duration of 30 s. Subsequently, they are rinsed with DI water to remove any
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residual etchant. After rinsing, the samples are carefully blow-dried using nitrogen gas to avoid any
contamination or watermarks. Finally, the samples are transferred to the load lock of the PLASSYS
deposition system for further processing.

Sputtering deposition

Sputtering is a widely used physical vapor deposition (PVD) technique in which a target material,
such as Nb in our case, is bombarded with ions, typically Ar ions. The sputtering process takes
place in a UHV chamber filled with the sputtering gas, which is ionized by applying a high voltage
between the target (cathode) and an anode. This ionization creates a plasma of ionized gas, specifically
ionized argon. The ionized argon ions are accelerated towards the Nb target and upon collision, they
transfer kinetic energy to the Nb atoms. If the transferred kinetic energy exceeds the binding energy
of the Nb atoms, they are dislodged from the target material and travels along a straight trajectory,
ultimately depositing onto the substrate surface. This process allows for the controlled deposition of
a thin film of Nb onto the substrate. In order to achieve high-purity Nb layers, a high-purity target
material (99.95%), a UHV deposition chamber with a base pressure below 10−9 mbar, and a high-purity
sputtering gas (Ar, 99.9999%) are used.

In our work, we utilize a sputtering system provided by PLASSYS. The PLASSYS system features
a confocal sputtering layout, where the target is tilted and offset from the substrate holder. To enhance
the uniformity of the deposited film, the substrate holder rotates during sputtering.

Resist spin coating

Spin coating is employed in this step using an optical negative resist, where the unexposed areas will be
removed in the development process. To achieve a uniform resist thickness, a spin coater is used, which
applies centrifugal force to distribute the resist evenly. Subsequently, the resist is baked to evaporate
the solvent, to improve the adhesion to the substrate and to prevent it from further dispersion.

In our case, the photoresist AZ MiR 701 14cP is spin-coated at 4000 rpm for 1min and soft-baked
for 75 s at 90◦C. This results in a resist thickness of 900 nm.

Optical lithography

To modify the polymer chain structure of the spin-coated sample, we employ a laser writer in our
fabrication process. The laser writer is utilized to irradiate the sample with a focused laser beam. This
irradiation induces changes in the polymer chain structure, allowing us to create the desired circuit
design. The laser writer is well-suited for writing structures with larger spatial dimensions, such as
transmission lines and coplanar waveguide (CPW) resonators, due to its beam spot size between 300 nm
and 5µm. This feature enables precise and efficient fabrication of these components.

For the laser writing process, we use a 405 nm laser in the Picomaster 200 system to draw the
desired circuit design onto the resist. The laser exposes specific areas of the resist, creating patterns
and structures as defined in the design layout. After the laser exposure, a post-exposure bake step is
performed at a temperature of 110◦C for a duration of 90 s. This bake step helps mitigate potential
standing wave effects [214].
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Resist development

In the development stage, an appropriate resist developer is used to remove the unexposed areas,
leaving behind the desired resist pattern.

Here, we utilize a developer called AZ 726 MIF for 60 s, which contains 2.38% tetra methyl
ammonium hydroxide (N(CH3)+

4 OH−) (TMAH).

Reactive ion etching and wet etching process

we employ reactive ion etching (RIE) to etch our Nb layers. RIE is a versatile etching technique
that can remove material both physically and chemically, depending on the ionized gas and the kinetic
energy of the plasma ions. In our case, we utilize SF6 to produce the ionized gas F− and the Nb film as
the target material. Similar to the sputtering mechanism, RIE involves bombarding the target material
with ionized gases. This is achieved by applying a potential difference between the plasma and the
target material underneath. The ions from the plasma are accelerated towards the target, resulting
in the physical removal of the uncovered Nb material. This physical process leads to an anisotropic
etching, primarily occurring in the direction of particle incident. In addition to this physical process,
RIE also involves a chemical process. Radicals formed in the plasma chemically react with the target
material, in this case, Nb. After the chemical reaction, the byproducts desorb from the surface and
are pumped out of the etching chamber. This chemical process, driven by the reaction of radicals,
contributes to the etching process by removing material evenly in all directions. This is known as
isotropic etching, and it can result in undercutting of the Nb material once the etch reaches the Si
substrate. To enhance the anisotropic etching process and mitigate undercutting, we utilize Ar gas.
This ion-assisted etching allows for a more controlled etch process. Our RIE processes are carried out
using a Plasmalab 80 Plus system from Oxford Instruments. It is an inductively coupled plasma RIE
systems, which allows to change the plasma density and the kinetic energy of the ions separately. By
carefully controlling the etching parameters such as gas composition, pressure, power, and etch time,
we can precisely control the etching process and achieve the desired etch profile and depth in the Nb
material.

In contrast to using RIE for etching Nb, when it comes to etching Al, we employ a wet etching
process. This is due to the unavailability of a suitable etching gas in our RIE system for etching
Al. In our wet etching process, we utilize the same solution as for the development, AZ 726 MIF.
Here, the development AND the etching is carried out at room temperature for a duration of 180 s,
simultaneously. After the etching step, the sample is rinsed twice with DI water. Unlike RIE, wet
etching does not attack Si and is a completely isotropic process, which means that it removes aluminum
uniformly in all directions. This includes the sidewalls of the etched structure, resulting in lateral
etching of approximately 0.5µm. It is important to take this lateral etching into account when designing
the device, as it can impact the overall dimensions and geometry of the structures.

To remove any remaining resist, the chip is immersed in a suitable remover solution as part of the
cleaning process.

Post-processing

In the course of the fabrication process, Nb is susceptible to oxidation when exposed to ambient
atmospheric conditions. To address this, when the ground layer is composed of Nb, we begin by
removing the niobium oxide layer through a 30-minute immersion in BOE. As elaborated in the
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subsequent subsection, following this de-oxidation, the Nb metal layer undergoes spin-coating, a pivotal
step in the Josephson junctions’ fabrication. This procedure shields the Nb from re-oxidation such that
it ensures an oxide-free substrate.

3.1.2 Fabrication of Josephson junction

In the fabrication of the Al Josephson junction, we utilize a lift-off process. Central to this procedure is
the so-called shadow evaporation technique, a key method that facilitates the formation of the junction
through aluminum deposition [224]. This technique, established over decades, ensures precise control
and deposition of aluminum, enabling the creation of reliable and consistent junctions.

Following the etching of larger structures as described in Subsec. 3.1.1, we initiate the lift-off
procedure. Successfully merging these processes necessitates precise alignment of the structures. As an
illustrative example, it is important that the Josephson junctions are meticulously positioned between
the pads, as depicted in Fig. 2.3 (b). To facilitate this precision, the etched thin film incorporates the
so-called markers. These markers serve as guides for the electron-beam lithography process, which
subsequently writes the design for the Josephson junction. A more detailed explanation on electron-
beam lithography will be presented later in this subsection. However, for the fabrication of 3D transmon
qubits introduced in Sec. 2.5, we can directly start with an all-aluminum lift-off process. The all-
aluminum process offers several advantages, including a reduced number of process steps, simplifying
the overall fabrication procedure. Additionally, the design of the 3D transmon qubit, resembling a
floating transmon, ensures that the electric field is mainly concentrated around the Josephson junctions.
Consequently, the dominant decoherence source arises from the TLSs distributed in the junction region.
Even in the presence of potential residual resist contamination stemming from the lift-off process, we
can still expect a high coherence time for our qubit.

The typical junction size for transmon qubits is in a sub-micrometer regime1 requiring a precise
patterning of the double-layer resist system by resist electron-beam lithography.

Substrate cleaning (for lift-off process)

We use the cleaning step introduced in the fabrication of coplanar waveguide.

Resist spin coating

In Josephson junction fabrication, we use a double-layer resist system that plays a crucial role in the
successful fabrication of our devices in a shadow evaporation process. This resist system consists of
two distinct layers: a bottom layer with enhanced sensitivity to electron radiation and a top layer that
acts as a "roof" for high-precision resolution at the nanometer scale.

The bottom layer is instrumental in creating an undercut, which prevents the deposition of
aluminum to the resist walls during subsequent deposition steps. This is particularly important for
maintaining the integrity of thin Josephson junctions, which are highly susceptible to variations in the
fabrication process. The top layer of the resist system is designed to have considerable overhangs over
the bottom layer, creating a clear boundary. The overhanging resist structure allows one to avoid any
connection between the Al film deposited on top of the restist and that on the substrate. This prevents
unintended removal of the aluminum during the subsequent lift-off process.

1For a transmon frequency between 4− 8GHz, we require a junction width of around 200 nm to 300 nm.

61



(a) (b) (c)

(d) (e) (f)

Al

Al
O2

Figure 3.2. Overview of the Josephson-junction fabrication steps. (a) Resist spin coating. Bottom
layer with enhanced sensitivity to electron beam irradiation and top layer for high precision resolution
forming a double-layer system. (b) Electron-beam lithography and development. The electron-beam
draws the desired Josephson-junction circuit design into the resist. Here, we design the junctions
in such a way such that a so-called Manhattan-type Al evaporation technique can be applied. The
exposed area will then be removed by the developer. (c) First Al evaporation. In the Josephson
junction evaporation technique, Al is deposited onto the sample surface at a shallow angle (Al film
deposited on top of the resists is not shown for clarity), ensuring that only the microstrip parallel to the
direction of evaporation is coated with Al, while the orthogonal microstrips remain unaffected. Using a
shallow evaporation angle allows for selective deposition, ensuring the desired pattern and configuration
of the Al layer on the sample. (d) Oxidation. In-situ oxidation of Al to form an insulating AlOx layer.
(e) Second Al evaporation. The sample is rotated and tilted to evaporate the second strip. The
Al/AlOx/Al Josephson junction is now formed. (f) Lift-off. All remaining resist is removed after the
lift-off process.

For this process, we utilize a positive electron-sensitive resist that can be selectively removed after
the development process. To ensure a uniform thickness of the resist layer (bottom resist: 700 nm, top
resist: 300 nm), we employ a spin coater that applies centrifugal force to evenly distribute the resist
across the substrate surface. Following the coating step, the resist system is subjected to a baking
procedure to harden the resist layer, enhancing its stability and durability. This step is then repeated
for the top layer to complete the double-layer resist structure.

During this work, we changed our resist layer stack2 in a chronological order (bottom resist, top
resist): (AR-P 617.08, AR-P 679.02), (AR-P 617.08, AR CSAR 6200.09), and (AR CSAR 6200.13,
AR-P 672.045). The reason behind these transitions will be elucidated subsequently.

Electron-beam lithography

In the realm of nanoscale structures, the resolution of optical lithography is limited by the wavelength of
the laser, making it challenging to achieve fine features. In contrast, electron beam lithography (EBL)
offers a much higher resolution, reaching down to a few nanometers. The resolution of EBL is primarily
limited by electron scattering in the resist and substrate [225]. To ensure reproducibility of structures
at the nanometer scale, it is crucial to optimize the writing dose of the electron beam. Monte Carlo
simulations of the electron-solid interaction are employed to simulate a point spread function, which

2All resist products are supplied from Allresist GmbH.
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allows for the correction of proximity effects. This correction is achieved using the BEAMER software
from GenISys, which takes into account the characteristics of the double-layer resist system and silicon.
The resist used in our process contains long polymer chains that are susceptible to damage from
electron bombardment at a critical dose. These damaged polymer chains are subsequently removed
during the development step. For electron beam lithography, we utilize the NanoBeam nB5 system
from NanoBeam Limited, which is located at WMI. The typical parameter values of the beam current
and beam voltage are 6 nA and 80 kV, respectively. This system provides the necessary capabilities for
precise electron beam patterning.

Resist development

As mentioned before, we remove the exposed resist areas by a developer, which dissolves away all
broken-up polymer chains. We employ different development processes for each resist layer stack.

• (AR-P 617.08, AR-P 679.02): We develop the structures with AR 600-56 for 30 s followed by
a 5min bath in 4◦C cold IPA. Owing to the instability of the cold temperature environment,
attributed to factors like a small cold bath and fluctuating room temperature, we encountered
poor reproducibility. [215, 216, 218].

• (AR-P 617.08, AR CSAR 6200.09): We develop the structures with AR 600-546 for 60 s, and
subsequently with AR 600-56 for 90 s for undercut and finally rinse it with IPA. Due to strong
adhesion of AR-P 617.08 to the silicon substrate, complete resist removal is not ensured [217].

• (AR CSAR 6200.13, AR-P 672.045): We develop the structures with AR 600-56 for 180 s, rinse
it with IPA for 30 s, subsequently with AR 600-546 for 90 s for undercut and finally rinse it with
IPA for 30 s.

Aluminum evaporation and oxidation

In our Al evaporation technique, we employ an ultra-high vacuum deposition system operating under
ultra-high vacuum conditions to ensure the purity of the Al films and prevent any contamination. The
process involves the deposition of Al with a purity of 99.999% in two steps, with an initial evaporation
onto a shutter to eliminate any potential crucible contamination and to stabilize the evaporation rate,
followed by deposition onto the substrate.

During the electron beam evaporation process, high-energy electrons, generated by a filament, are
accelerated and deflected using a magnetic field. The resulting electron beam heats the Al crucible,
causing the aluminum material to evaporate. The evaporated aluminum atoms then fly to the substrate,
where they condense and form a thin film.

In the context of our Al evaporation process, we initially employed a home-built evaporation system
as documented in [226]. However, as the research advanced, we transitioned to using an evaporation
system sourced from PLASSYS. Notably, the base pressure for our home-built system is at below
10−8 mbar, while the PLASSYS system is an even lower pressure of 10−9 mbar.

A significant differentiation between the two setups is the location of oxidation chamber. In
our original system, oxidation occurred directly within the evaporation chamber. In contrast, the
PLASSYS system separates the evaporation chamber from the oxidation chamber, with a gate valve
after film deposition. Such an arrangement is crucial as it avoids any oxidation of the Al in the crucible.
Nonetheless, both systems facilitate in-situ oxidation processes, thereby enhancing the precision and
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Figure 3.3. Optical micrograph of the qubit chip Qubit-KH079. (a) Overview of the whole qubit chip
with four transmon qubits and two reference CPW resonators. (b) Zoomed-in 2D floating transmon
qubit, which is capacitively coupled with the readout CPW resonator. (c) Josephson junction (red
box) with its bandage (blue box). The bandage clearly covers the pad (Nb layer) and the lead of the
Josephson junction (Al layer), ensuring the galvanic contact between both metals. See also Fig. 2.3 (b)
for reference.

reproducibility of our experiments. Furthermore, the substrate holder in our system is designed to
rotate around two axes, enabling a Manhattan-type shadow evaporation technique [227].

Lift-off process

After the shadow evaporation step, it is necessary to remove any remaining resist and unwanted metal
on the resist from the sample. To achieve this, we employ a cleaning process involving several steps.
First, the sample is immersed in acetone and heated to 80◦C for a duration of 10min. This helps to
dissolve and remove most of the resist layers together with the Al on the resist. Next, the sample is
placed in IPA at room temperature. Careful stirring with a plastic pipette is performed for 2min to
ensure thorough cleaning of the sample surface. Following the IPA treatment, the sample is transferred
to a supersonic bath set at te lowest level for a duration of 2 s. Finally, the sample is dried using a
stream of nitrogen gas. The gentle flow of nitrogen helps to remove any remaining traces of solvent,
leaving the sample in a clean and dry state. This cleaning procedure ensures the removal of unwanted
residues.

3.1.3 Ar ion milling and bandaging

In our fabrication process, we have chosen Nb ground planes due to their lower losses. However, there
is an inherent limitation as it is difficult to make Nb Josephson junctions fulfilling our parameter
requirements. As a result, we have optimized the fabrication process for Al Josephson junctions. This
brings about a deliberate design choice where we physically separate the Nb metal layer, used for the
coplanar waveguide, from the Al metal layers designated for the Josephson junction. This separation
ensures there is no direct galvanic contact between the two metals, mitigating potential effects from the
lossy oxide layer inherent in the coplanar waveguide material. If aluminum were to be directly deposited
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Figure 3.4. Schematic drawing of wet (left) and dry dilution refrigerator (right) embedding resonator
chip. In the wet dilution refrigerator, A4K,Still,MXC are attenuators, where the values can vary for each
resonator experiment due to the limited availability of input lines.

onto the prefabricated structures, the oxide layer on those structures might introduce additional loss
channels detrimental to our quantum system.

To address this issue, we employ a technique known as argon ion milling. This process involves
using a beam of argon ions to remove the oxide layer from the coplanar waveguide material. Once
the oxide layer is removed, we proceed to deposit another layer of aluminum that covers both the Nb
base layer and the Josephson junction lead. This method is commonly referred to as the bandaging
technique, as it involves "bandaging" or covering the structures with a new layer of aluminum.

By utilizing the bandaging technique, we are able to overcome the challenges posed by the oxide
layer and ensure a high-quality fabrication of our quantum system. The bandaging technique has
been widely adopted in the field and has been shown to be effective in reducing unwanted losses and
improving the performance of the fabricated devices [228].

A typical transmon qubit chip incorporating all fabrication procedures is depicted in Fig. 3.3. Here,
the transmission lines, CPW resonators, and the large qubit pads are fabricated with the Nb etching
process, while the Josephson junctions and the bandages are realized with the Al lift-off process.

3.2 Resonator characterization

3.2.1 Cryogenic setup

As discussed in Chap. 2, the observation of various quantum phenomena necessitates cryogenic
temperatures. To achieve this, we utilize both our in-house built wet dilution refrigerator and a
dry dilution refrigerator from Bluefors.

The dilution refrigerator is a cryogenic system extensively employed in quantum physics
experiments to achieve extremely low temperatures. It consists of multiple thermal stages, including
50K, 4K, and 800mK, leading to a final sample stage temperature ranging from 7mK to 50mK. The
refrigeration process is based on the mixing of two helium isotopes, helium-3 (3He) and helium-4 (4He),
and takes advantage of their unique properties.

When the 3He/4He mixture is cooled down to approximately 870mK, it undergoes a phase
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separation, resulting in the formation of two coexisting phases with different concentrations of 3He.
At low themperature (10 mK) the two phases are a pure 3He phase and a 4He rich phase with a
3He content of 6.5%. The pure 3He phase floats in the 4He-rich phase, as the 3He phase has a larger
volume due to increased zero-energy fluctuations and therfore it is lighter than the 4He-rich phase. By
removing 3He from the diluted phase, the minimum possible content of 6.5% of 3He has to be restored
by the diffusion of 3He across the phase boundary. Since the entropy in the diluted phase is larger,
this process is associated with a removal of heat ∆Q = T∆S = T (Sdil(T )− Scon(T )), which in turn
provides the cooling power for the refrigerator3. The cooling power is proportional to the amount
of 3He atoms per time and can in principle made large by increasing the pumping speed. However,
at millikelvin temperatures, the vapor pressure of 3He becomes extremely low, making it challenging
to extract 3He using conventional pumps. To address this, a distillation chamber (still) is employed,
where the pump acts on the liquid surface at a higher temperature. This arrangement allows for the
efficient removal of 3He from the diluted phase and facilitates the cooling process.

In our setup, we have two distinct dilution refrigerators: the wet dilution refrigerator and the
dry dilution refrigerator. The wet dilution refrigerator undergoes precooling using liquid nitrogen
and liquid helium, while the dry dilution refrigerator employs a pulse tube cryocooler for precooling.
Detailed information regarding the working principle of our wet dilution refrigerator can be found in
Ref. [214].

Wet dilution refrigerator

The cryogenic setup used for measuring the internal quality factor of our resonators in the CIRQUS lab
is depicted in Fig. 3.4. The resonator chip is carefully mounted on the mixing chamber (MXC) stage,
which operates at a base temperature of approximately 50 mK. To minimize thermal photon effects
on the chip, the input lines are equipped with attenuators (A4K +AStill +AMXC), typically providing
an attenuation between −40 to −56 dB. The cable loss is 15 dB. Additionally, a K&L low-pass filter is
incorporated to further reduce the influence of thermal photons.

To detect the small output signals, amplification is necessary. The output is amplified using a
cryogenic HEMT amplifier (+42 dB), and subsequently, an RF amplifier at room temperature (+22dB)
is employed. This amplification setup enables the measurement of weak output signals. To prevent
the amplified reflected signals from the amplifiers from passing through the chip, 50Ω terminated
circulators are utilized.

Dry dilution refrigerator

During this work, a dry dilution refrigerator has arrived in the institute, an LD400 from Bluefors, and
we have been strongly engaged in setting it up. The cryogenic setup used for measuring the internal
quality factor of our resonators in the MCQST lab is depicted in Fig. 3.4.

The basic configuration is the same as that of the CIRQUS lab.

3.2.2 Single-tone spectroscopy

Microwave spectroscopy is a powerful technique used in the frequency domain to determine the
eigenfrequencies of a quantum device under investigation. These eigenfrequencies serve as a basis

3Note that the 3He liquids are Fermi liquids and in the diluted phase the Fermi energy is much lower due to the lower
density of 3He. As the temperature of both liquids are the same (10mK) the relative smearing of the Fermi distribution
T/TF is larger in the diluted phase due to the smaller TF leading to a larger entropy.
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Figure 3.5. (a) Optical micrograph of the chip Res-005. The U-shape end of the resonators was
initially designed with the intent to capacitively couple with an Xmon qubit in later stages. (b) Internal
losses δi = 1/Qi of the chip Res-005 as a function of photon number n for different temperatures at fr =
5.82GHz. The measurement data is represented by symbols, while the dashed lines correspond to the
fit using Eq. (2.55). The dash-dotted lines indicate the base lines of power-independent losses, and the
black solid line represents the base line of power- and temperature-independent losses. (c) Temperature
dependence of power-independent losses δ0+δth

qp. The power- and temperature independent loss is found
to be δ0 = 0.89× 10−5. (d) Temperature dependence of the critical photon number nc. The extracted
exponent is α = 1.73.

for further research and investigations and are often essential in understanding the device’s behavior.

In single-tone spectroscopy, a continuous wave with a single carrier frequency, denoted as ωd, is
applied to the device. The amplitude and phase response of the device are then measured as a function
of the driving frequency to identify its eigenfrequencies. This measurement is typically performed using
a vector network analyzer (VNA), which measures the complex scattering coefficients Sij(ωd). The
VNA provides information about the steady-state response of the system. Fig. 3.4 illustrates the setup
of a VNA measurement. One common application of single-tone spectroscopy is the characterization
of resonators or cavities, where resonant frequencies and quality factors (both external and internal)
are determined using the methods described in Chap. 2.
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3.2.3 Experimental results

Baseline resonators

In order to assess the quality factor of devices fabricated with the process developed at the WMI, we
studied resonators fabricated with the Al lift-off technique. The chip design of the fabricated resonators
is depicted in Fig. 3.5 (a). These resonators serve as a reference for subsequent optimization processes.
The measurement of the quality factor is performed in a wet dilution refrigerator.

To distinguish between various sources of losses, such as TLS and quasiparticles, we investigate
the dependence of the quality factor on probe power and temperature, as discussed in Chap. 2. The
contribution of TLSs can be determined by studying the power dependence, while the influence of
thermal quasiparticles can be quantified by measuring the temperature dependence. Fig. 3.5 (b) shows
the internal losses δi = 1/Qi as a function of the resonator photon number at different temperatures,
with the mean resonator photon number calculated using

nr =
〈
â†râr

〉
ss

=
4κr,c
κ2
r

|〈âin〉|2 . (3.4)

Here, κr is the total dissipation rate of the resonator, κr,c is the external coupling strength of the
resonator, and |〈âin〉|2 is the input photon flux, which is proportional to the microwave power4. As
anticipated, we observe that the TLS contribution increases as the photon number decreases. In the
low photon number regime, there is significant absorption of resonator photons by the unsaturated
TLS. Conversely, in the high power regime, the TLSs are getting increasingly saturated by already
having absorbed photons, making it unable to absorb additional photons. Consequently, the amount
of photons absorbed by the TLS becomes negligible compared to the number of photons present in
the resonator. As the quality factor is defined as the ratio of stored energy and power loss per cycle,
i.e. as the relative loss, it increases, although the absolute amount of loss stays the same. That is, δi
decreases but not the loss per cyle. For our reference sample, the TLS loss is measured to be on the
order of ∼ 10−5.

Additionally, we conduct a fitting analysis of the power-independent losses using Eq. (2.58), as
depicted in Fig. 3.5 (c). Here, we utilize only the ratio of kinetic inductance to the total inductance of the
material K as the free fitting parameter (see Eq. (2.58)). In Fig. 3.5 (d), we also observe that the critical
photon number nc increases with temperature, as higher temperatures lead to increased relaxation rates
of the TLSs and broader energy level distributions due to their interactions, as described by Eq. (2.56).
The extracted exponent, α, was found to be α = 1.73, which is close to the typical literature values
ranging from 2 to 3 [156, 162, 163]. This value deviates from the expected α = 1 of the spin-boson
model, which can be attributed to the fact that ~ωr/kBT ≈ 3 − 6 for T = 50 − 100mK, indicating
that we are not operating in a sufficiently low-temperature limit ~ωr/kBT � 1 [164]. Notably, we
discovered that thermal quasiparticle losses become negligible below 170mK. Specifically, at the base
temperature of CIRQUS of 50mK, the losses due to thermal quasiparticles are expected to be below
10−20. We note, however, the non-thermal quasiparticles, which can be generated for example by an
insufficient protection of samples against infrared radiation, have to be avoided to keep quasiparticle
losses small5.

In contrast to thermal losses, we observe that other types of losses, represented by δ0, are of a
similar magnitude to the TLS losses, around 10−5. This finding is consistent with the values reported

4See also Eq. (2.49) in Subsec. 2.4.3
5See also Subsec. 2.4.4 for more details.
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(a) (b)

1 mm 0.2 mm

Figure 3.6. (a) Optical micrograph of the chip PRes-061 with a zoomed picture of one resonator. The
same design has been used for the chip Qubit-001. (b) Comparison of internal losses δi versus mean
resonator photon number n across different fabrication processes and materials. Individual measured
internal losses are indicated by dots for different resonances, with their mean values illustrated by solid
lines. All chips underwent surface treatment: Res-046-YN is an Al sample with HF-dipped lift-off
process, Qubit-001 is an Al sample with Piranha and BOE using etching process, and PRes-061 is a
Nb sample with Piranha and BOE using etching process.

in [156], where the sample was fabricated using the same recipe at WMI [214]. However, we notice
that δ0 increases by one order of magnitude for the resonator at 6.21GHz. This can be attributed to
the parasitic mode of our sample box, which will be discussed in more detail later. A summary of our
reference sample for different resonators is provided in Tab. 3.1.

fr (GHz) δi (10−5) δ0
TLS (10−5) δ0 (10−5) α β

5.82 3.38 2.49 0.89 1.73 0.70
6.21 17.5 1.79 15.8 2.19 0.57

Table 3.1. Summary of the reference sample Res-005 for different resonators. The parameters fr, δi,
δ0

TLS, δ0, α and β are obtained by fitting Eqs. (2.54), (2.55), (2.56) and (2.58) to the measured power
and temperature sweeps. The high loss δ0 at fr = 6.21GHz is due to a parasitic mode, as it will be
explained later. The sample Res-005 is taken at T = 50mK in the wet dilution refrigerator.

Resonators with surface treatment

Given that the dominant source of loss arises from SiO2 layer covering the substrate surface, which
hosts a significant number of TLS, we have performed a surface treatment to mitigate SiO2 related
losses. In this analysis, we consider three different samples: an Al sample fabricated using the HF-
dipped lift-off process6, an Al sample treated with Piranha and BOE using the wet etching, and an
Nb sample treated with Piranha and BOE using the dry etching process.

In Fig. 3.6, we present a plot depicting the relationship between internal losses and the mean
photon number for the various samples. Notably, we observe a significant enhancement of the internal
quality factors compared to the previously reported values of the reference sample. These findings
strongly suggest that the prominent contribution to losses arises from the presence of the silicon

6Here, we deeply appreciate Mora Linda and Prof. Dr. Ralf Meyer from Walther-Schottky Institute for making the
HF-dip possible.
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oxide layer. Upon closer examination of the internal losses among the different samples, a consistent
trend emerges: δLO,Al

i > δEtch,Al
i > δEtch,Nb

i . The increased losses observed for the lift-off sample,
in comparison to the etched samples, can likely be attributed to the residual resist that remains
after the development process. This residual resist may contribute to additional TLS losses at the
metal/substrate interface. This explains the comparatively large δ0

TLS, while similar power-independent
loss values δLO,Al

0 ≈ δEtch,Al
0 are measured when compared to the Al etched sample. It is worth noting

that the resistivity of the Si substrate has increased from 2 kΩ · cm to 10 kΩ · cm, resulting in improved
internal quality factors [229]. However, it is important to consider that these values may change
completely different at low temperatures and the impact of resistivity is relatively limited, as achieving
internal quality factors on the order of Qi ∼ 107 is still possible even with a resistivity of 3 kΩ · cm [230].
Furthermore, it is crucial to investigate the influence of parasitic modes, as the lift-off sample appears
to be primarily limited by such modes. Detailed discussions regarding this issue will be provided in
more detail later in this thesis.

sample material surface treat. process fr (GHz) δi (10−6) δ0
TLS (10−6) δ0 (10−6)

Res-046-YN Al HF, 3min lift-off 5.08 2.47 1.76 0.71
5.72 5.81 4.60 1.21
5.99 11.59 9.89 1.70

Qubit-001 Al Piranha etch 5.16 2.09 1.27 0.82
+BOE, 30 s 5.38 2.01 1.21 0.80

5.65 1.86 1.05 0.81
5.90 2.53 0.49 2.04
6.14 1.6 0.98 0.62
6.39 3.65 2.52 1.13
6.63 2.44 1.02 1.42

PRes-061 Nb Piranha etch 4.84 2.46 2.27 0.19
+BOE, 30 s 5.21 1.11 0.95 0.16

5.41 1.11 0.91 0.20
5.46 0.72 0.54 0.18
5.69 0.66 0.45 0.21
5.92 1.07 0.76 0.31
6.14 1.38 1.24 0.14
6.37 1.24 0.98 0.26

Table 3.2. Summary of the samples with surface treatment for different resonators: Res-046-YN,
Qubit-001, and PRes-061. The parameters fr, δi, δ0

TLS, and δ0 are obtained by fitting Eqs. (2.54) and
(2.55) to power sweeps. The sample Res-046-YN is taken at T = 50mK in the wet dilution refrigerator,
while the samples Qubit-001, and PRes-061 are measured at T < 7mK in the dry dilution refrigerator.

Additionally, when comparing the Al and Nb samples, we observe a further improvement in the
internal quality factors for Nb resonator. Specifically, the power independent losses δ0 are reduced
by one order of magnitude. This can be attributed to the larger superconducting gap of Nb, with a
critical temperature of 9.3K compared to Al with 1.2K. As a result, fewer non-thermal quasiparticles
are generated in Nb, leading to improved quality factors. A summary of our samples is provided in
Tab. 3.2.

Furthermore, we can enhance the internal quality factors of Nb by employing a post-BOE process
to reduce the niobium oxides on the metal surface, potentially reaching values up to 5 × 106. This
enhancement has been investigated in more detail by another research group at WMI [217, 219].
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(a) (b) (d)

(e)

(c)

Figure 3.7. (a) Picture of four-port sample box with a resonator chip. (b) Lumped-element
representation of the theoretical model. The progression of an incoming propagating wave, âin,c1,
is illustrated (grey wave). This wave encounters and engages with two distinct modes: the resonator
mode, âr, and the parasitic mode, âp. After absorption, each mode reemits as distinct outgoing
traveling waves, âout,c1 and âout,c2. As a consequence, an interference effect appears between the waves
originating from the resonator mode (orange wave) and parasitic mode (blue wave). (c) Schematic
representation of the same theoretical model with Gr = (Sr, L̂r, Ĥr) and Gp = (Sp, L̂p, Ĥp). The
wiggle represents the interaction between the resonator and parasitic mode. (d) External (red) and
internal (blue) losses of the sample Res-086-YN as a function of resonator frequencies. The dots are
measurement data, and the dashed lines are the fit using the Eqs. (3.10) and (3.11). (e) External (red)
and internal (blue) losses of the sample Res-046-YN as a function of resonator frequencies. The dots
are measurement data, and the dashed lines are the fit using the Eqs. (3.10) and (3.11). Here, due to
insufficient data points, we assumed that the parasitic mode frequency ωp and its bandwidth κp are
the same.

.

Influence of chip and box modes

Previously, we observed the increase of losses for certain resonance frequencies both in baseline
resonators and resonators with surface treatment. There, we pointed out the presence of chip and
box modes which can introduce additional loss channels in quantum devices. These modes correspond
to chip modes forming inside the substrate and cavity modes within the sample box, where the electric
fields can overlap with the electric field generated by the quantum system, allowing for interaction. Our
investigations reveal that these parasitic modes - a term we adopt due to our inability to distinguish
between chip and box modes in this study - may have significant impact on both internal and external
quality factors. To differentiate them, similar to designing cavity eigenmodes, the eigenfrequencies of
the box and chip modes can be engineered by carefully designing the sample boxes. In particular, the
size and the effective dielectric constant determine these eigenfrequencies. Indeed, we show that the
internal quality factors change dependent on the sample boxes we use.

Our analysis begins by exploring the influence of parasitic modes in the four-port sample box on
the system’s internal and external quality factors. The corresponding loss measurements are presented
in Fig. 3.7 (d). An initial observation reveals that it displays increased losses around 6.7GHz coinciding
with the eigenfrequency of the parasitic mode. The interesting point is that the Res-086-YK design
experiences an increase in internal and external losses. To explain the underlying physics, we delve
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into the scenario illustrated in Fig. 3.7 (b, c): the resonator and parasitic mode are directly interacting
with each other and are both linked to the transmission line.

The outgoing traveling wave of the resonator serves as the incoming wave for the parasitic mode
after accumulating a phase shift φ, and vice versa. Representing this interplay via a block diagram in
Fig. 3.7 (c), a coherent feedback mechanism becomes evident. As anticipated in Chap. 2, such feedback
pathways can be integrated within the SLH framework, leading to the determination of an effective
SLH Grp = (Srp, L̂rp, Ĥrp). After a slight modification of Eq. (2.45), we find

Srp =eiφ

[
1 0

0 1

]
(3.5a)

L̂rp =


√
κp/2âp + eiφ

√
κr,c/2âr√

κr,c/2âr + eiφ
√
κp/2âp

√
κr,iâr

 (3.5b)

Ĥrp/~ =∆râ
†
râr + ∆pâ

†
pâp + grp

(
â†râp + ârâ

†
p

)
+

√
κr,cκp

4
sinφ

(
â†râp + ârâ

†
p

)
, (3.5c)

with the phase φ = 2πωd
√
εrd̄/c acquired by a photon along the propagation path. Here, d̄ is

the physical distance between the resonator and parasitic mode. The external dissipation rate of
the resonator and the parasitic mode is given by κr,c and κp, respectively, while the internal one of
the resonator is defined as κr,i. ∆r/p = ωr/p − ωd is the detuning, â(†)

r/p are annihilation (creation)
operators of the resonator and parasitic mode, respectively, and grp is the effective coupling strength
between the resonator and parasitic mode. Interestingly, our Hamiltonian, as expressed in Eq. (3.5c),
reveals an effective coupling between the two modes. This phenomenon can be rooted in the established
principle of the input-output relation, which dictates that an outgoing traveling wave invariably carries
information of the originating quantum system. For clarity, we consider, without loss of generality,
the scenario where we are examining the outgoing traveling wave emanating from the parasitic mode,
âp. Given its trajectory, this wave eventually engages with the resonator mode, âr, due to their shared
connection to the same transmission line. Consequently, the outgoing wave from the parasitic mode
is perceived as the incoming wave for the resonator mode. As this wave retains information from the
parasitic mode, it effectively mediates an interaction between the resonator and the parasitic mode.

Given Grp = (Srp, L̂rp, Ĥrp) in Eq. (3.5), the quantum Langevin equation yields

d
dt

[
âr

âp

]
=

 −i∆r − κr,c+κr,i
2 −igrp +

√
κrκp

2 eiφ

−igrp +
√

κrκp
4 eiφ −i∆p − κp

4

[ âr

âp

]

−

 √
κr,c

2

√
κr,c

2 eiφ
√
κr,i√

κp
2 e

iφ
√

κp
2 0


 âin,c1

âin,c2

âin,i1

 ,
and the corresponding input-output relation

 âout,c1

âout,c2

âout,i1

 =


√

κr,c
2 eiφ

√
κr,c

2√
κp
2 eiφ

√
κp
2

√
κr,i 0


[
âr

âp

]
+

 âin,c1

âin,c2

âin,i1

 . (3.6)
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The scattering coefficient for the transmission measurement can be then written in the steady state as

S21 =
〈âout,c2〉
〈âin,c1〉

=
−z(eff)

r,c

i∆r + z
(eff)
r,i /2 + z

(eff)
r,c /2

(3.7)

with the effective external and internal complex "dissipation rate"

z(eff)
r,c =

κr,c
2
−
igrp
√
κr,cκpe

iφ + κr,cκpe
2iφ/4 + i∆κpe

2iφ/2

i∆p + κp/2
(3.8)

z
(eff)
r,i =κr,i +

2g2
rp

i∆B + κp/2
−
igrp
√
κr,cκpe

iφ + κr,cκpe
2iφ/4 + i∆rκpe

2iφ/2

i∆p + κp/2
. (3.9)

For a consistency check, we can observe that we recover Eq. (2.52) for |∆p| → ∞. The real-valued
external and internal dissipation rate is given by

κ(eff)
r,c =Re

[
z(eff)
r,c

]
=
κr,c
2

+
grp
√
κr,cκp

(κp
2 sin(φ)−∆p cos(φ)

)
− κr,cκp

4

(
∆p sin(2φ) +

κp
2 cos(2φ)

)
∆2
p + (κp/2)2 (3.10)
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z

(eff)
r,i

]
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∆2
p + (κp/2)2

+
grp
√
κr,cκp

(κp
2 sin(φ)−∆p cos(φ)

)
− κr,cκp

4

(
∆p sin(2φ) +

κp
2 cos(2φ)

)
∆2
p + (κp/2)2 . (3.11)

Here, we have set ∆r = 0 because the measurements are conducted at around resonator frequencies,
which are equivalent to the driving frequencies.

First, our observations highlight a Lorentzian distribution in both internal and external couplings.
Notably, changes in the external dissipation rate can arise from interactions mediated by the
transmission line, as highlighted in Eq. (3.10). Naturally, one might wonder about the underlying
mechanism allowing for these variations in the external coupling rate. The answer lies in the interference
of the traveling waves. In a scenario where the phase shift is π/2 and ∆p = grp = 0, we see
a pronounced scattering value, S21 = 1, as opposed to the more typical S21 = 1/2 observed in
transmission measurements. In conventional scenarios, half the information is typically lost due to
reflection, making this maximal value look like as the signal has undergone "amplification", even
in passive systems. However, it is pivotal to recognize that our unique configuration introduces a
secondary traveling wave, as illustrated in Fig. 3.7 (b). This wave is originating from the second mode,
which has absorbed the propagating wave coming from the first mode and then reemitted. Given its
path length, this wave accumulates a phase shift of 2φ. Specifically, at φ = π/2, the primary and
secondary waves undergo destructive interference, ensuring no information loss. In tandem, the wave
we measure undergoes constructive interference, effectively doubling the observed signal.

In terms of the internal losses, this outcome underscores the existence of an alternate decay pathway
for the resonator photon, facilitated by the parasitic mode. Once the resonator photon is converted
into the parasitic photon, it rapidly dissipates into the surrounding environment, characterized by the
rate κp. The pronounced Lorentzian trend can be attributed to the detuning between the resonator and
the parasitic mode. When these frequencies are perfectly aligned, photon interaction peaks, optimizing
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(a) (d)

Figure 3.8. (a) Picture of an eight-port sample box without valley. (b) Picture of eight-port sample
box with valley. The size of the rectangular hole in the center is 12 mm×9 mm×2 mm. (c) Picture of
two-port sample box with valley. This sample box is simulated and fabricated by [174]. (d) Comparison
of internal losses δi versus photon number n between different sample boxes: eight-port sample box
without valley (blue), eight-port sample box with valley (orange), and two-port sample box with valley
(green). Individual measured internal losses are indicated by dots for different resonances, with their
mean values illustrated by solid lines. The losses of parasitic modes shown in "eight-port sample box
without valley" are not included in the mean value calculation.

conversion. Conversely, as the detuning widens, the conversion efficiency is suppressed considerably.

Using the Eqs. (3.10) and (3.11), we can extract all parasitic mode and resonator parameters. In
particular, we obtain ωp/2π = 6.73GHz with κp/2π = 0.50GHz for parasitic modes, while κr,i/2π =

0.23MHz for the resonator modes. The coupling strength between both modes is determined to be
grp/2π = 6.79MHz. We can already find the large influence of the parasitic mode. For example, if we
take the resonator mode at 6.69GHz, we can extract that the internal loss due to the direct interaction
is δi,int ≈ 54× 10−6, which is even larger than the intrinsic loss of resonator with δi,r ≈ 34× 10−6. The
loss originating from the mediated interaction is also comparable to other losses with δi,med ≈ 12×10−6.
Furthermore, if we want to suppress the influence of parasitic modes less than 10−6, we need to locate
our resonator frequencies in the range below 4.5GHz.

Indeed, regarding the limitations of the lift-off sample discussed earlier, we can observe this problem
in Fig. 3.7 (e). Res-046-YN was measured using the same four-port sample box, which was not optimized
for mitigating parasitic modes. We find that the external and internal losses are increasing with higher
resonator frequencies, which already suggest the influence of the parasitic mode. Assuming that the
extracted parasitic mode parameters are applicable to the lift-off sample as well, we obtain the intrinsic
loss of the resonator as δi,r ≈ 2×10−6, which is consistent with the values obtained for Qubit-001 and
other aluminum resonator chips [218]. The coupling strength is extracted to be grp/2π = 1.31MHz,
which is comparable to the value obtained for Res-086-YN.

Despite adopting certain assumptions that may not fully align with actual conditions - such as
the same parasitic mode parameters, constant dissipation rates given by κr,i and κr,c, and consistent
coupling strength grp across all resonators - the data was still fitting reasonably well. This further
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sample box fr (GHz) δi (10−6) δ0
TLS (10−6) δ0 (10−6)

eight-port 5.16 3.75 1.51 2.24
w/o valley 5.53 20.15 10.91 9.24

5.65 4.13 3.67 0.46
5.895 4.68 2.42 1.66
6.14 2.26 1.21 1.05
6.39 3.81 1.22 2.59
6.63 4.12 1.39 2.73

eight-port 5.16 2.60 1.40 1.20
w/ valley 5.38 2.17 1.29 0.88

5.65 3.85 2.82 1.03
5.90 2.02 1.01 1.01
6.14 3.10 1.91 1.19
6.39 3.00 1.33 1.67
6.63 2.76 1.47 1.29

two-port 5.16 2.09 1.27 0.82
w/ valley 5.38 2.01 1.21 0.80

5.65 1.86 1.05 0.81
5.90 2.53 0.49 2.04
6.14 1.6 0.98 0.62
6.39 3.65 2.52 1.13
6.63 2.44 1.02 1.42

Table 3.3. Summary of the sample Qubit-001 characterized in different sample boxes: eight-port
without valley, eight-port with valley, and two-port with valley. The parameters fr, δi, δ0

TLS, and δ0

are obtained by fitting Eqs. (2.54) and (2.55) to power sweeps.

highlights the importance of careful sample box engineering to reduce the influence of parasitic modes.

We now study how to mitigate the loss induced by the chip mode. Here, we study three different
sample boxes: eight-port sample box without valley, eight-port sample box with valley, which has a
hole size of 12 mm× 9 mm× 2 mm, and two-port sample box with valley, which has a semi-cylindrical
shape with a radius of 2 mm and a length of 14 mm.

The impact of box modes is shown in Fig. 3.8 (d). As discussed in Chap. 2, mitigation of chip modes
can be achieved through two approaches: minimizing the overlap of the electric fields and shifting the
eigenfrequencies to higher values. The former can be accomplished by drilling a hole into the eight-port
box, while the two-port sample box achieves both objectives. Specifically, reducing the dimensions of
the sample box results in a higher eigenfrequency.

We observe significant improvement of the quality factors of in the Piranha and BOE treated Al
sample when changing the sample box from an eight-port box without a hole to an eight-port box with
a hole, and finally to the two-port box. The internal quality factor was found to improve by 70% from
δEtch,Al
i,eight−port w/o hole = 2.3× 10−6 to δEtch,Al

i,two−port = 1.6× 10−6. The summary of the relevant parameters
of this sample can be found in Tab. 3.3.

3.3 Qubit characterization

As our goal of this chapter is to benchmark the coherence time of the superconducting qubit, we finally
perform an investigation of a fixed-frequency transmon qubit chip, using the insights gained in Sec. 3.2.
The fabrication of this chip integrates the Nb etching process for constructing the larger structures,
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Figure 3.9. Schematic drawing of dry dilution refrigerator embedding qubit chip for the spectroscopy
measurement.

followed by the lift-off procedure for creating the Al/AlOx/Al Josephson junctions, as discussed in
detail in Sec. 3.1. Our fabrication process commences with a silicon 〈100〉 substrate, which possesses
a resistivity of ρ = 10 kΩ · cm. We begin by subjecting the substrate to a Piranha etch followed by a
30 s HF dip. Subsequently, we deposit a 150 nm-thick layer of Nb on the substrate using a PLASSYS
system. Once the Nb layer is in place, we employ optical lithography in combination with reactive ion
etching to pattern the desired structures into the Nb film. The chip is then coated with a double-layer
electron beam resist to provide the mask needed for the formation of Al/AlOx/Al Josephson junctions.
As the final step in the fabrication process, we lay 300 nm-thick Al bandages between the Al stripes
and the Nb ground plane. This arrangement ensures a galvanic contact between the two materials.
Fig. 3.3 shows the optical micrograph of our transmon qubit chip.

3.3.1 Qubit spectroscopy measurement

Qubit spectroscopy is a fundamental technique used to probe and characterize qubits. By studying the
response of qubits to specific input signals, we gain valuable insights into their properties and behavior.
Two commonly used spectroscopy methods in qubit measurement are single-tone spectroscopy and two-
tone spectroscopy. They allow us to probe the behavior of qubits and extract important information
about their characteristic frequencies, as well as their presence and coupling dynamics. In the
following sections, we will delve deeper into the principles and applications of single-tone and two-
tone spectroscopy techniques. In Fig. 3.9, the schematic drawing of our spectroscopy measurement is
shown. All power levels depicted in Fig. 3.10 are at the sample stage. Calibration was performed using
two-tone spectroscopy in conjunction with the dispersion relation provided by Eqs. (2.72) and (3.4).
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Figure 3.10. Spectroscopy measurement of the qubit chip Qubit-KH079. (a) Microwave transmission
amplitude plotted over a broad frequency range. The dashed red box highlights the transmission dip
due to the readout resonator at around 6.158GHz, which is coupled to the qubit and is here used
as an example. (b) Single-tone spectroscopy measurement as a function of probe power around the
specific readout frequency of 6.158GHz. The "punch out" effect can be observed above −113 dBm.
In addition, we notice that the readout frequency in the dressed state is greater than that in the bare
state. This demonstrates that the qubit frequency is lower than the readout frequency, as implied by
the relationship ωr + χqrσ̂z. (c) Two-tone spectroscopy measurement as a function of drive prower.
The qubit frequency at f01 = 3.843GHz and the two-photon process at f02/2 = 3.721GHz can be seen.
Due to a finite qubit temperature, we can observe a transition between the first and second excited
state f12 = 3.599GHz. (d) Two-tone spectroscopy as a function of probe power. The qubit frequency
shifts as a function of readout photon due to ac-Stark shift.

Single-tone spectroscopy

Single-tone spectroscopy serves three main purposes in qubit measurement. Firstly, it enables us
to determine the readout frequency of the resonator similarly to Sec. 3.2. Secondly, it confirms the
presence of the qubit within the qubit-coupled resonator system. Lastly, it allows us to determine
whether the qubit frequency is above or below the readout frequency. These objectives are achieved
simultaneously through a probe power sweep.

In the low power regime, where the resonator is weakly driven, the eigenfrequency of the resonator
corresponds to the dressed eigenstate of the resonator mode. However, in the high power regime,
a phenomenon known as "punch out" occurs [83] as demonstrated in Fig. 3.10(b). This refers to
the observation of the eigenfrequency of the bare resonator mode as the transmon qubit is strongly
off-resonantly driven. In this regime, the transmon qubit occupies highly excited states above the
Josephson potential, behaving like a free phase particle [71, 72]. Consequently, the charge state
becomes highly localized, resulting in a vanishing electric dipole moment and effective decoupling
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of the transmon from the resonator. This phenomenon is often referred to as transmon ionization
[73] or other terms such as first order dissipative phase transition [80, 81, 86], break-down of photon
blockade [77], or chaotic regime [74].

Furthermore, in the dispersive regime, the sign of the cross-Kerr interaction strength (or ac-Stark
shift) is determined by the detuning between the qubit and readout frequencies ∆qr, as shown in
Eq. (2.70). By comparing the eigenfrequencies in the dressed state and the bare state, we can determine
whether the qubit frequency is above or below the readout frequency.

Two-tone spectroscopy

In two-tone spectroscopy, an advanced technique for characterizing quantum devices, two carrier
frequencies are employed to measure both the amplitude and phase response of the device under
test. This method utilizes a VNA to measure the scattering coefficients and requires a microwave
source, such as an SGS source, to generate the second carrier frequency.

In the case of qubit measurements, the VNA serves as the readout instrument providing the probe
tone, while the microwave source is responsible for driving the qubit. For instance, to determine the
qubit frequency or transmon multi-photon transitions, the driving frequency of the microwave source
is swept across the expected frequency range. Meanwhile, the readout power is set to a few readout
photon level at a fixed readout frequency. By varying the drive power, we obtain a spectroscopy
measurement that reveals characteristic features, as depicted in Fig. 3.10 (c). Another application of
two-tone spectroscopy is photon number calibration, which makes use of the dispersive regime and the
associated equations. Once the qubit frequency has been determined, we can perform sweeps around
this eigenfrequency while adjusting the readout photons. As the photon number increases linearly, it
induces changes in the qubit frequency and the bandwidth of the Lorentzian shape7 (see Fig. 3.10 (d)).

3.3.2 Time-domain measurement setup

Pulse generation setup

By establishing precise synchronization and utilizing arbitrary waveform generators (AWG) and
microwave sources, we can generate tailored microwave pulses for qubit control and readout, enabling
accurate manipulation and measurement of the qubit state.

The pulse generation setup is a crucial component for controlling and reading out the qubit state in
our experiments. We employ microwave pulses, which are shaped using an AWG. Specifically, we use
the HDAWG from Zurich Instruments as our AWG, along with the R&S SMF100A and R&S SMB100A
microwave sources8. To combine the pulsed qubit drive and readout drive, we utilize a power combiner.
The combined signal is then sent to the cryostat, where the qubit control and measurement take place.
A schematic of the pulse generation setup can be found in Fig. 3.11.

7This holds true as long as we can ensure homogeneous broadening. Nevertheless, at a certain threshold of photon
number, a transition to inhomogeneous broadening occurs, a broadening that grows with

√
nr due to a Gaussian

distribution. The emergence of this Gaussian line can be traced back to strong measurements where the measurement
rate surpasses the external coupling rate of the readout resonator. Consequently, the qubit transition frequency becomes
contingent upon the instantaneous value of the photon number in the readout resonator. For large photon numbers,
this distribution tends towards Gaussian [231]. In certain instances, this critical photon number could be so low that
calibration of the photon number based on a linear relation becomes challenging. Hence, an alternative and dependable
method for photon number calibration is the use of Ramsey measurements, which will be later performed for single-photon
detection measurements.

8Note: The phase stability of these devices was found to be insufficient for certain measurements, such as T2

measurements and phase readout. Consequently, we replaced these microwave sources with the R&S SGS100A for
single-photon detection measurements.
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Figure 3.11. Schematic drawing of dry dilution refrigerator embedding qubit chip for the time-domain
measurement.

To generate the waveforms that drive the qubit and readout pulses, we digitally synthesize them
and load them into the HDAWG using our measurement software, which is programmed in LabView.
Our measurement software dynamically adapts the number of waveform points to match the desired
cycle length, ensuring a temporal precision of approximately 3.3 ns. Typically, a waveform consists of
2400 points for a cycle time of 1µs9.

Precise synchronization among all devices is crucial for performing accurate time-resolved
measurements. In our setup, synchronization serves two main purposes. First, it ensures that all
devices share the same frequency standard, which is essential for coherent control and measurement of
the qubit. Second, it ensures that the readout pulse arrives precisely at the start of data acquisition
by the digitizer card. To achieve this, the TTL synchronization output of the readout marker channel
triggers the FPGA for data acquisition. This trigger is sent to the FPGA immediately after the readout
pulse. To account for the propagation time of the pulse through the setup, we introduce a delay in the
generated pulse using the synthesized waveform from that channel. Typically, the time delay for the
trigger pulse in our system is approximately 250 ns.

To maintain a common frequency standard, we rely on an atomic clock based on rubidium-87 atoms.

9Note: The HDAWG has a sampling rate of 2.4GSa, with a sequencer clock rate of 0.3 GHz, which is required for
the instructions from the 16 bit sequencer. As a result, waveform lengths must be multiples of 16 sample-clock cycles to
comply with the waveform granularity specification.
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This clock provides a precise 10MHz frequency reference, which is connected to the synchronization
input of all pulse generating devices and microwave sources.

By establishing precise synchronization and utilizing the AWG and microwave sources, we can
generate tailored microwave pulses for qubit control and readout, enabling accurate manipulation and
measurement of the qubit state.

Down-conversion setup

The measurement of the classical readout signal in our experiment is performed in the I-Q plane, where
we measure both the in-phase (I) and quadrature (Q) components of the voltage [23]. This allows us
to distinguish between the ground state and excited state of the qubit. Mathematically, the readout
signal can be described by

s(t) = Re
{
AROe

iθROeiωROt
}
, (3.12)

where ARO and θRO contain information about the qubit state. To visualize this signal, we project it
onto the I-Q plane. To measure the readout signal, we utilize an FPGA. However, since the FPGA
operates in a different frequency regime compared to the readout signal, we need to downconvert the
readout frequency to an intermediate frequency (IF), ωIF. This is where the I-Q mixer comes into play.

The I-Q mixer performs multiplication with the frequency of the local oscillator (LO), ωLO, resulting
in a mixed signal. This mixed signal contains both sum and difference frequencies ωLO ± ωRO. In our
case, we are interested in the difference frequency. To extract this difference frequency, a low-pass filter
is employed to filter out the sum frequency, allowing only the difference frequency to pass through.
The choice of the LO frequency determines the type of demodulation used in the measurement. In
homodyne demodulation, the LO frequency is set equal to the readout frequency, ωLO = ωRO.
On the other hand, in heterodyne demodulation, the LO frequency is offset by an intermediate
frequency on top of the readout frequency, such that ωIF = |ωLO − ωRO|. In our measurement, we use
the heterodyne measurement with ωIF/2π = 60MHz to avoid electronic 1/f noise due to the ac-coupled
analog-to-digital conversion.

Our I-Q mixing setup is electromagnetically shielded by a homemade copper box, in which all
IF components are installed such as I-Q mixer, IF amplifier, low-, band-, and high-pass filters. This
shielding ensures a significant reduction of the noise contribution at 10MHz below the noise floor of
the amplifiers10.

Averaging and Digital homodyning

Here, we elaborate on the digital component of our experimental setup, which is made up of two key
operations: averaging and digital homodyning.

The purpose of the initial step, averaging, is to mitigate the noise integrated from the carrier signal.
In our experimental context, the most significant source of noise is the linear phase-insensitive amplifier.
This device amplifies both quadratures equally, contributing a minimum of 1/2 noise photons, a result
derived from the Caves formula for an ideal case at T = 0K [232]. However, under real conditions,
the amplifier introduces additional thermal noise photons instead of vacuum noise, with their amount
corresponding to the noise temperature of the device. The effect of the thermal noise on the signal
quality can be interpreted via the Friis equation, which states that the first amplifier in the amplification
chain predominantly determines the signal-to-noise ratio [233]. Within the context of our experimental

10for more details the readers are referred to [214].
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Figure 3.12. T1 time measurement of the qubit. (a) An example of a T1 measurement. The measured
data (blue dots) are fitted by nq(t) = nq(0) exp (−t/T1) (orange line) which yields T1 = 146µs.
The inset shows the pulse sequence used in the experiment. (b) Histogram of T1 times obtained in
subsequent measurements. The fluctuation of the T1 times is attributed to the thermal activation of
low-energy TLS, which manifest themselves over time intervals that range from milliseconds to several
hours, even days [149, 234–237].

apparatus, the cold HEMT amplifier serves as this initial amplifier which typically contributes 5 −
10 noise photons at 5GHz. As the carrier signal contains only few photons, a single readout trace
is completely covered by noise. The averaging is conducted by the snap-tool software. When the
maximum number of iterations N is reached, we calculate the mean value of each point in time by
dividing the accumulated value by N and the second order moment.

The ultimate objective of our data analysis is to determine the values of ARO and θRO. To this
end, we utilize the digitized and averaged IF signals given by

sIF(t) = Re
{
AROe

iθROeiωIFt
}

= ARO cos (ωIFt+ θRO) (3.13)

These signals are then subjected to a homodyning procedure, which we implemented in LabView, to
eliminate the IF carrier frequency. The ideal operations we wish to accomplish are

I =
ωIF

2π

N∑
n

sIF(tn) cos (ωIFtn)
N→∞−→ A

2
cos (θRO) , (3.14a)

Q =
ωIF

2π

N∑
n

sIF(tn) sin (ωIFtn)
N→∞−→ A

2
sin (θRO) . (3.14b)

In reality, our LabView setup must deal with with DC offsets and a non-zero spectral component at
2ωIF. Consequently, it implements an optimization process to account for these modulations before
applying Eq. (3.14) 11.

11For a more thorough discussion on this, readers may refer to [214]. An important point to note, based on the
assertions in [214], is that even though they claim no need for calibration measurements, we do require a calibration
measurement for our qubit phase readout to establish a reliable phase reference point.
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3.3.3 Measurement results

The qubit performance is evaluated by measuring the T1 and T2 times. For determining the T1 lifetime,
we initially prepare the qubit in an excited state using a π pulse and measure its relaxation. Each
measurement point is averaged over 10.000 times with a repetition time of 500µs between successive
projective measurements. This interval allows the qubit to return to its ground state. Given the phase
instabilities inherent to our apparatus, combined with the constraint of time, we were unable to carry
out T2 measurements in this particular investigation.

Here, we characterize a fixed-frequency transmon qubit with its transition frequency at ωq =

3.843GHz. In Fig. 3.12 the corresponding data sets for the qubit measurement are shown.
The extracted qubit lifetime is T1 = 118.7±16.3µs. After the photon number calibration and power-

dependent Rabi oscillations, we can extract the Purcell decay rate of γq,P/2π = 0.33 kHz and intrinsic
qubit lifetime of T1,i = 157µs using Eqs. (2.68), (2.72) and (2.74). The corresponding internal quality
factor is Qi = ωqT1,i/2π = 603 351, which is in a good agreement with the resonator measurements in
Sec. 3.2. The coherence time is predominantly limited by the losses in the junction area due to strong
electric fields coupled to the TLSs and thus to the non-optimized resists stack. Improving the undercut
potentially leads to an improved coherence time. All extracted parameters can be found in Tab. 3.4.

ωr/2π (GHz) ωq/2π (GHz) ω02/2/2π (GHz) χqq/2π (MHz) χqr/2π (MHz) gqr/2π (MHz)
6.158 3.843 3.721 −244 −2.25 21.4

Table 3.4. Measured readout resonator and qubit parameters of the sample KH-079.
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Chapter 4

ONSET OF TRANSMON IONIZATION IN MICROWAVE
SINGLE-PHOTON DETECTION

By strongly driving a transmon-resonator system, the transmon qubit may eventually escape from its
cosine-shaped potential. This process is called transmon ionization (TI) and known to be detrimental
to the qubit coherence and operation. In this work, we investigate the onset of TI in an irreversible,
parametrically-driven, frequency conversion process in a system consisting of a superconducting 3D-
cavity coupled to a fixed-frequency transmon qubit. Above a critical pump power we find a sudden
increase in the transmon population. Using Rényi entropy, Floquet modes, and Husimi Q functions,
we infer that this abrupt change can be attributed to a quantum-to-classical phase transition.
Furthermore, in the context of the single-photon detection, we measure a TI-uncorrected detection
efficiency of up to 86% and estimate a TI-corrected value of up to 78% by exploiting the irreversible
frequency conversion. Our numerical simulations suggest that increasing the detuning between the
pump and qubit frequencies and increasing the qubit anharmonicity can suppress the TI impact.
Our findings highlight the general importance of the TI process when operating coupled qubit-cavity
systems. Key results presented in this chapter have been published in [238].

In this chapter, we focus on the onset of TI in the irreversible frequency conversion process, which
is applied for the realization of the single-photon detection in the microwave regime. We start with the
experimental techniques in Sec. 4.1, where we explain the microwave single-photon detector device and
the cryogenic setup used in our experiments. In Sec. 4.2, we describe the preparatory measurements
required for the characterization of the different components of the single-photon detection scheme.
Specifically, we characterize our aluminum 3D horseshoe cavity and transmon qubit, and calibrate
our steady-state photon number of the buffer resonator. The model and the detection principle of
our device is explained in Sec. 4.3. In Sec. 4.4, we study conversion of the incoming photons to the
transmon excitations and waste photons as a function of the pump power. Once the pump power
eventually approaches the critical threshold, it triggers the sudden increase in the transmon population
in response to the incoming buffer photons. We study the process by using the Rényi entropy, the
Floquet theory, and the Husimi Q function. Our results indicate that the abrupt change of the transmon
response can be attributed to a quantum-to-classical phase transition. Subsequently in Sec. 4.5, we
provide a comprehensive analysis of the irreversible frequency conversion in our system, observing
the maximum detection efficiency of 86%. Then, we consider the influence of TI into account and
estimate the TI-corrected detection efficiency to be notably lower, around 78%. Concluding our study,
we systematically evaluate strategies to enhance the SPD detection efficiency by adjusting specific
system parameters. Specifically, we find that increasing the detuning between the pump and qubit
frequencies and increasing the qubit anharmonicity are the most beneficial steps for the detection
efficiency. Furthermore, the arrangement of the buffer and waste frequencies should be done based on
the sign of the qubit anharmonicity, in order to ensure that the pump drive and multi-photon qubit
transitions do not coincide in the frequency space.
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Figure 4.1. Picture of dry dilution refrigerator embedding Al horseshoe cavity with the transmon
qubit chip inside.

4.1 Experimental techniques

4.1.1 Microwave single-photon detector sample

As outlined in Sec. 2.5, our single-photon detection scheme is comprised of two main components: a
horseshoe cavity and a transmon qubit chip. The cavity, consisting of aluminum (Al) with a high
purity level of 99.99%, has been fabricated by the workshop at the WMI. To address the relatively low
thermal conductance of superconducting aluminum, we mount a gold-plated copper plate, 1.5mm in
thickness, onto the cavity. This plate significantly enhances the thermal conductance of the system,
ensuring more efficient heat dissipation. For a comprehensive understanding of the horseshoe cavity’s
design, its simulation, and experimental studies, we refer readers to the master thesis of Julia Lamprich
[239], where these aspects have been intensively explored.

The transmon qubit, central to our detection mechanism, is fabricated on a silicon chip with spatial
dimension of 3.5mm by 10mm. The fabrication process of the transmon qubit, particularly the lift-off
technique employed, is detailed in Chap. 3. The antenna of the qubit has an area of 890µm by 330µm,
ensuring a sufficient dipole interaction strength with the cavity. Additionally, the Josephson junctions
are designed with a width of 240 nm.

A visual representation of the assembly, showcasing the integration of the horseshoe cavity with
the embedded transmon qubit chip, can be found in Fig. 4.1.
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Figure 4.2. Schematic drawing of dry dilution refrigerator embedding Al horseshoe cavity with the
transmon qubit chip inside.

4.1.2 Cryogenic setup

The cryogenic arrangement of the experimental setup used in our measurements is illustrated in
Fig. 4.2. This setup shares several core components with the qubit measurement configuration already
introduced in Sec. 3.3. Consequently, our discussion here will focus on the modifications and additions
unique to the present setup.

For the generation of arbitrary waveforms, we employ the HDAWG from Zurich Instruments.
Additionally, the setup incorporates three microwave sources (R&S SGS100A). These sources are
critical for generating the pump, buffer, and readout signals necessary for our experiments. To integrate
these three pulsed drives, we utilize two power combiners. Initially, the pump and buffer pulses are
merged, followed by their subsequent combination with the readout pulse. This combined signal is
then fed into the cryostat, facilitating both the frequency conversion process and the qubit readout.

It is noteworthy that a similar configuration is employed for spectroscopy measurements. In this
context, the microwave generator designated for readout, along with the measurement components
situated on the output line after the room-temperature amplifier, is substituted by a VNA.

The combined signals pass a series of attenuators mounted at various cooling stages within the
cryostat, followed by a low-pass filter to suppress high-frequency noise. Upon reaching the mixing
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chamber stage, the signal is delivered to the cavity-qubit system. The Al horseshoe cavity, housing the
transmon qubit chip, is shielded from external magnetic fields by a cryoperm shield. The single-port
design of the cavity is coupled with a circulator to separate the output signal from the incoming signal.
This configuration is pivotal in attenuating input signals originating from room-temperature stages
while at the same time amplifying the outgoing output signals.

The output path includes a low-pass filter, followed by passage through two isolators. Amplification
is achieved via a HEMT amplifier located at the 4K stage, and subsequently, through a room-
temperature amplifier.

4.2 Preparatory measurements

In the following section, we present the results of preparatory measurements of our quantum device,
designed to facilitate the implementation of irreversible frequency conversion. The device comprises a
3D cavity made from aluminum, along with a transmon chip. As part of our cavity characterization,
we determine the first couple of eigenmodes and extract their associated quality factors. Subsequently,
we perform a thorough analysis of our transmon qubit, delving into aspects such as its level structure,
coherence properties, and an assessment of the effective qubit temperature. To conclude, we calibrate
the photon number present in the steady-state waste and buffer.

4.2.1 Characterization of 3D cavity

For the cavity characterization, we apply the single-tone spectroscopy measurement introduced in
Chap. 3 to extract the resonant frequencies and the external and internal quality factors.

As depicted in Fig. 4.3 (c), a broad-band microwave sprectroscopy allows to determine the two
lowest two eigenmodes positioned at around 7.61GHz and 7.95GHz. This result agrees well with
the prediction of the CST simulation, yielding an eigenfrequency of 7.45GHz for the first and of
7.915GHz for the second one. Beyond this, we aim to determine the coupling rates between both
cavity eigenmodes and the transmon qubit. To achieve this, we conduct spectroscopy measurements
around the first and second eigenfrequencies, varying the power of the probe tone. By doing so, we are
able to observe the distinct "punch-out" effect, a characteristic of the coupled cavity-qubit system, as
shown in Fig. 4.3 (a,b). Here, we extract the parameters of the bare cavity modes. These are obtained
from the high probe power regime at which the cavity decouples from the qubit due to the transmon
ionization effect [71–73]. We extract ωw/2π = 7.607GHz with the coupled and intrinsic quality factors
of Qc,w = 515 and Qi,w = 122 000, respectively, as well as ωb/2π = 7.954GHz with Qc,b = 2 525 and
Qi,b = 175 000, respectively. As the dissipation rate of the first cavity mode is much larger than that of
the second mode, we therefore attribute the first eigenmode to the waste mode and the second one to
the buffer mode. As an additional but crucial observation, it is important to mention the significance of
the "punch-out" effect in both the waste and buffer modes, particularly at elevated probe power levels.
This effect is not just a completeness of our spectroscopy measurement but has practical implications,
especially considering our reliance on single-photon detection mechanisms that hinge on the four-wave
mixing process. The successful implementation of single-photon detection in our system is deeply
intertwined with the four-wave mixing dynamics, where the pump, the qubit, the waste, and buffer
modes are key participants. Without a robust coupling between the qubit and both cavity modes, the
four-wave mixing process - essential for our experiments - is hindered. This coupling ensures that the
intricate interplay between these components leads to the desired outcomes. Hence, the verification of

86



(b)

(c)

-122-132-142-152 -112
Probe power (dBm)

-122 -82 -62-102-122-132-142

-40.0

-38.0

-38.2

-38.4

-38.6

-38.8

-40.5

-41.0

-41.5

-42.0
-42.5

-43.0

-43.5
-152

7.97

7.63

7.62

7.61

7.4

5.6

-0.5

-50

-100

-150

-1.0

-1.5

-2.0

5.4

5.2

5.0

4.8

7.6 7.8 8.0

7.60

7.59

7.58

7.96

7.95

7.94

7.93
-112

Probe power (dBm)

M
agnitude (dB)

M
agnitude (dB)

Fr
eq

ue
nc

y 
(G

H
z)

Fr
eq

ue
nc

y 
(G

H
z)

Fr
eq

ue
nc

y 
(G

H
z)

Ph
as

e 
(°

)

Phase (°)

Frequency (GHz)

Drive power (dBm)

(a)

(d)

Figure 4.3. Spectroscopy measurement of the device Qubit-036B (a) Single-tone spectroscopy
measurement as a function of the probe power around the waste mode frequency of 7.6GHz. The
"punch-out" effect can be found at around −122dBm. The red dots are the resonance frequency, the
red solid lines are the FWHM of the waste mode, i.e. (ωw ± κw/2)/2π. The label "Magnitude (dB)"
here refers to the magnitude of the readout signal, where we set the reference at the input at the room
temperature stage. (b) Single-tone spectroscopy measurement as a function of the probe power around
the buffer mode frequency of 7.95GHz. The "punch-out" effect can be found at around −125 dBm.
The red dots are the resonance frequency, the red solid lines mark the FWHM of the buffer mode, i.e.
(ωb ± κb/2)/2π. The label "Magnitude (dB)" here refers to the magnitude of the buffer signal, where
we set the reference at the input at the room temperature stage. (c) Microwave phase response plotted
between 7.35GHz and 8.15GHz. The orange (green) arrow indicates the resonance frequency of the
waste (buffer) mode. Here, the phase refers to the phase of the probe signal. (d) Two-tone spectroscopy
as a function of drive power. The qubit frequency at f01 = 5.660GHz and the two-photon process at
f02/2 = 5.536GHz can be seen. Here, the phase refers to the phase of the readout signal.

this coupling is not just a procedural step, but a fundamental prerequisite for advancing to practical
applications in our research.

4.2.2 Characterization of the transmon qubit

Adopting the experimental procedures outlined in Chap. 3, we initially deduce the rough level scheme of
the transmon by employing two-tone spectroscopy, as depicted in Fig. 4.3 (d). However, the transition
frequencies between the qubit level ascertained through this method is subject to ac-Stark shift induced
by the readout tone, given the simultaneous application of two CW tones. In order to pinpoint
the frequency with greater precision, we turn to Rabi measurements and vary the driving frequency
ωd. This approach leads to the generation of a characteristic Chevron pattern, as demonstrated in
Fig. 4.4 (a). As per Eq. (2.69), the driving frequency that corresponds to the minimal Rabi frequency
serves as the precise qubit frequency, as shown in Fig. 4.4 (b).
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(a) (b)

(c) (d)

Figure 4.4. Time-domain measurement of the qubit. (a) Chevron pattern of the qubit obtained by
varying the drive frequency ωd. (b) Rabi frequency as a function of the drive frequency. The red
dots are the extracted values from (a), and are fitted by ΩRabi =

√
A2 + ∆2

qd (blue solid line). The
error bars are hidden behind the data points. (c) An example of a T1 measurement. The measured
data (blue dots) are fitted by nq(t) = nq(0) exp (−t/T1) (orange line) which yields T1 = 30µs (d) An
example of T2 measurement with a slightly detuned frequency of 0.4MHz, such that Ramsey fringes
appear. The measured data (blue dots) are fitted by nq(t) = nq(0) cos (∆qdt+ φ) exp (−t/T2) /2 + B
(orange line) which yields T2 = 17µs.

The method to obtain the T1 times was explained in Chap. 3. In case of T2 time extraction, we
first prepare the qubit in |ψ〉 = (|0〉+ |1〉) /

√
2 via a π/2 pulse, wait for a certain amount of time, and

finally send another π/2 pulse before reading out the qubit state. Each measurement point consists of
5.000 averages with a repetition time of 150µs between subsequent projective measurements to let the
qubit relax to its ground state. We extract T1 = 28± 5 and T2 = 16± 3.

4.2.3 Photon-number calibration

In our experimental setup, the calibration of the steady-state photon number within the cavity mode is
achieved through Ramsey measurements. Specifically, we conduct measurements of the Ramsey fringe
frequency and the dephasing rate of the qubit as a function of the cavity drive amplitude [240]. These
measurements yield precise values for both the dispersive shift and the power associated with a single
photon in the cavity.

The key advantage of utilizing a Ramsey measurement for this calibration lies in its high sensitivity
to the steady-state photon number within the cavity. This sensitivity is particularly pronounced
when compared to the two-tone spectroscopy method, as discussed in Sec. 3.3. In the context of
two-tone spectroscopy, the extraction of the dispersive shift may be compromised by inhomogeneous
broadening, especially when a certain threshold in photon number is exceeded [231]. This broadening
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Figure 4.5. Photon number calibration measurement for the buffer mode. The values of the buffer
input power shown in the plots are all at the cavity. (a) Ramsey measurements at different buffer
input power levels. (b) Dephasing rate as a function of the Ramsey frequency. The blue dots are
the data points extracted from the Ramsey measurements in (a) with the model function, nq(t) =
nq(0) cos (∆qdt+ φ) exp (−t/T2) /2 + B. Some of the Ramsey measurements could not be fitted with
the model function, and thus omitted for the linear fit. The extracted qubit-buffer dispersive shift is
χ′qb/2π = 2.88 ± 0.07MHz. The inset shows the pulse sequence used in the experiment. Qubit π/2
pulse is represented by blue, readout pulse by orange, and buffer pulse by green. (c) Ramsey frequency
as a function of the buffer input power. All error bars are smaller than the symbol size.

effect obscures the linear relationship between frequency shift and bandwidth broadening, posing a
challenge for accurate photon number calibration. Typically, two-tone spectroscopy demands a steady-
state photon number in the order of 0.1 to 1 for reasonable resolution of frequency shifts and bandwidth
alterations. However, these photon numbers might exceed the photon number threshold, which can lead
to the aforementioned inhomogeneous broadening issues. Conversely, the method based on Ramsey
measurements operates effectively within a lower photon number regime, typically between 0.01 and
0.1 photons. This lower range not only circumvents the complications associated with inhomogeneous
broadening but also provides a more reliable and precise means for calibrating the photon number in
the cavity. The Hamiltonian introduced in Eq. (2.72) can be rewritten in the rotating frame Ĥ0/~ =

ωdâ
†
râr + ωdâ

†
qâq such that

Ĥ′q,disp/~ = ∆rdâ
†
râr +

(
∆qd + χ′qrâ

†
râr

)
â†qâq (4.1)

with ∆rd = ωr−ωd and ∆qd = ωq+χ′qr/2−ωd. We remind ourselves that we observe a pure exponential
decay with the time constant T2, if the qubit term is zero, otherwise we observe oscillations denoted as
Ramsey fringes [23]. This oscillation can be again confirmed in Fig. 4.4 (d). Based on this knowledge,
we can deduce that the Ramsey fringes increase with χ′qrnr with nr = 〈â†râr〉 being the average
steady-state resonator photon number. Moreover, the oscillations decay faster with the increase of the
photon number with the relation Γ2(nr) = 2χ′2qrnr/κr +Γ2,0 [240]. Fig. 4.5 (a) shows both phenomena.
Consequently, we obtain the relation between the dephasing rate and Ramsey frequency

Γ2 (ωR) =
χ′2qrnr

κr
+ Γ2,0 =

χ′qr (ωR −∆qd)

κr
+ Γ2,0 =

χ′qr
κr

ωR −
χ′qr∆qd

κr
+ Γ2,0, (4.2)

where the Ramsey frequency is expressed as ωR = ∆qd+χ′qrnr. Therefore, we can extract the dispersive
shift from the slope of the linear fit, as demonstrated in Fig. 4.5 (b) for the buffer mode.

Furthermore, the single-photon power P1ph can be extracted by relating

χ′qrnr = aPRT
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with PRT being the power of the room-temperature device. Hence, the single-photon power is obtained
by P1ph = χ′/a for nr = 1, as shown in Fig. 4.5 (c) for the buffer mode. We can also extract the total
attenuation in the input line at this frequency. We can apply the Eq. (3.4) and relate

4κ2
r

κr,c
nr = |〈âin〉|2 =

PRT

~ωr
10A (4.3)

with the attenuation A. At the buffer mode, we obtain the total attenuation of A = −81.9 dB.

4.3 Demonstration of irreversible frequency conversion process

In our experiments, we use a horseshoe-shaped aluminum 3D cavity, which contains a transmon qubit
chip (as schematically shown in Fig. 4.6(b)). We utilize two of the cavity modes: the waste mode at
ωw/2π = 7.609GHz with a decay rate of κw/2π = 16.7MHz and the buffer mode at ωb/2π = 7.955GHz
with a decay rate of κb/2π = 3.7MHz. The qubit frequency is ωq/2π = 5.664GHz, with T1 = 28 µs
and T2 = 16 µs, limited by the Purcell effect. The qubit is coupled to the waste and buffer modes
with coupling strengths of gw/2π = 30MHz and gb/2π = 18MHz, respectively. In a driven system,
the ac-Stark effect induces shifts in all three eigenfrequencies as a function of the pump power. These
shifted frequencies are denoted by ω′j for the j-th mode, where j = {q, b, w}. Its Hamiltonian in the
rotating frame of Ĥ0/~ = ω′qâ

†
qâq + ω′wâ

†
wâw + ω′bâ

†
bâb is formulated as

Ĥ4/~ ≈
Nt−1∑
k=2

χ(k)

k!

(
â†q

)k
âkq + χqwâ

†
qâqâ

†
wâw + χqbâ

†
qâqâ

†
bâb

+ g4

(
ξpâ
†
qâ
†
wâbe

i∆qwbpt + ξ∗p âqâwâ
†
be
−i∆qwbpt

)
+ 2iεq cos

((
ω′q − ωp

)
t
) (
â†q − âq

)
+ iεb

(
â†b − âb

)
, (4.4)

where âq, âw, and âb are the annihilation operators of the qubit, waste, and buffer modes, respectively,
and Nt is the dimension of the transmon Hilbert space. The detuning involving all four frequencies
is defined as ∆qwbp = ω′q + ω′w − ω′b − ωp and the driving strength of the transmon and buffer mode
as εq,b, respectively. The term χ(k) corrects for the k-th eigenfrequency of the transmon, with χ(2)

being its anharmonicity. In addition, χqw and χqb are the cross-Kerr interaction strengths of the waste
and buffer modes, respectively. Lastly, g4 is the strength of the four-wave mixing interaction, and ξp
is the pump amplitude at the pump frequency, ωp. Below the regime, where all relevant excitation
and dissipation rates are much less than the anharmonicity χ(2), the bosonic annihilation operator
âq can be replaced by the Pauli operator σ̂. The irreversible frequency conversion process is based
on the dissipation-engineered four-wave mixing process of a nonlinear Josephson junction element
[41]. When an incoming photon arrives at the buffer mode frequency, the buffer photon is converted
to the excited state of the qubit and waste photon by a strong pump pulse, corresponding to the
parametrically activated conversion process (âbσ̂

†â†w). However, under the conditions, κw � |g4ξp|,
the waste resonator state rapidly decays to the vacuum state, making the process irreversible and
prohibiting the inverse process (â†bσ̂âw). As a result, information of the incoming photon is stored in
the qubit state, as shown in Fig. 4.6 (a).

By performing a triple-tone spectroscopy composed of the pump and buffer pulses with identical
duration of tb = 20µs, followed by a readout pulse at the waste mode frequency with a duration of
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Figure 4.6. (a) Principle of the microwave single-photon detection. A coherent incoming photon
(green wave) is absorbed by a buffer mode, âb, and is converted to a pair of qubit-waste excitations
described with operators σ̂ (âq) and âw, respectively, with the interaction strength g4ξp. Due to
the engineered fast dissipation of the waste mode, κw � |g4ξp|, the inverse process (â†bσ̂âw) is
effectively suppressed. (b) Schematic of the experimental setup. The transmon is mounted in the
3D superconducting cavity coupled to the cavity waste/buffer modes, represented by orange/green
shaded areas depicting corresponding electric field distributions, respectively. The buffer (green),
readout (orange), and strong pump pulses (purple) are shaped using an the arbitrary wave generator
(AWG) for the time-domain experiments. The buffer, ωb, readout tone, ωw, and pump, ωp, carrier
frequencies are set by external microwave generators.

tr = 2.5µs (see Fig. 4.6), we observe the process of the buffer photons to the qubit excited state. As
shown in Fig. 4.7 (a), if the buffer pulse is switched on, we find the phase response of the transmon in
the pump frequency range of ωp/2π = 5.15− 5.18GHz. This response disappears in the absence of the
buffer pulse (see Fig. 4.7 (b)).

4.4 Onset of transmon ionization

In this section, we present a systematic study of the buffer photon conversion to the transmon-waste
excitations as a function of the pump power. Our measurements reveal a sudden increase in the
transmon population above a certain critical pump power (CPP) of Pc = −67 dBm, as illustrated in
Fig. 4.7 (c,d). To maximize the qubit population for each pump power, we tune our pump frequencies
accordingly.

For the pump powers below the CPP, we observe a monotonic increase in the transmon population
as the steady-state buffer photon number increases. This result is in agreement with theoretical
predictions, which will be discussed in the next section. Conversely, for pump powers above the CPP, we
again observe the monotonic increase in transmon population, but with a sudden jump (discontinuity)
in the transmon response to the buffer power (see Fig. 4.7 (c)). In an independent measurement using a
two-tone spectroscopy approach, we also find a disruption of the buffer and waste resonance frequencies
at a similar pump power, where the pump power is varied at the fixed pump frequency (see Fig. 4.7 (e)).
This observation is consistent with previous studies [71, 83] and numerical simulations [72, 73, 190],
and suggests that here the transmon is entering the ionization process, where it eventually "escapes"
the confines of the Josephson potential.

We explore the system dynamics numerically by utilizing the Hamiltonian presented in Eq. (4.4).
By relying on experimentally determined parameters, we solve the Lindblad-Master equation given
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Figure 4.7. (a) Triple-tone pulsed spectroscopy of the coupled transmon-resonator system as
explained in the main text. An inclined feature (cyan dots) indicates the four-wave mixing process.
(b) Reference two-tone pulsed spectroscopy of the coupled transmon-resonator system without the
buffer signal. (c) Phase shift of the transmon response ∆ϕ normalized to the phase shift between
the ground and first excited states ϕge as a function of the steady state photon number nb. Different
colors correspond to specific pump power values as indicated by the color code. (d)Transmon phase
response for three selected buffer photon numbers nb = 0.00, 0.16, 0.63 (red, orange, blue) as a function
of the pump power. The vertical black dashed line indicates the CPP, at which the abrupt change
of the qubit population can be observed. Solid lines are the simulation results using Eq. (4.4) with
nb = 0.00, 0.16, 0.63 (red, orange, blue). (e)The buffer and waste resonance frequencies as a function of
the pump power at ωp/2π = 5.1595GHz. A distinct jump of the resonance frequencies can be observed
in both resonators at the CPP of −67 dBm.

in Eq. (2.97) and subsequently validate the proposed Hamiltonian by juxtaposing our results with
measurements shown in Fig. 4.7 (d). During the simulation, the Hilbert space dimensions of the
transmon, waste, and buffer modes are chosen to be 9, 3, and 3, respectively. The eigenenergy
calculation of the transmon with the experimental parameters show that the first eight transmon states
are confined states, while the last one lies already above the Josephson junction potential corresponding
to the first ionized state.

To interpret the dynamics of our system, we utilize the Rényi entropy, Floquet theory, and Husimi
Q function, as shown in Figs. 4.8 and 4.9. We begin by considering the Rényi entropy. This entropy
quantitiy can offer valuable insights into the phase transition of our tripartite system around the critical
point [79, 192, 193, 241]. Mathematically, the Rényi entropy is defined as

S2 = − log2 Tr
(
ρ̂2
t

)
, (4.5)

where the reduced density matrix of the transmon, ρ̂t, is achieved by tracing out both the waste and
buffer modes, i.e., ρ̂t = Trw,b (ρ̂). This entropy serves as a key metric for quantifying the purity, and
thereby, the "classicality" of the associated density matrix. Intuitively, a system with higher entropy
is more mixed or less pure, and consequently, is more classical in nature. This entropy allows us to
observe the quantum-to-classical phase transition. As illustrated in Fig. 4.8 (a), a distinct jump in
entropy is evident at the CPP, a feature that is absent without the buffer drive. This marked change
provides clear evidence for the transition of the system from a predominantly quantum state to a more
classical one, thus, supporting the observed quantum-to-classical phase transition [71–74, 80].

Furthermore, we apply the Floquet theory, which is particularly suited for examining strongly-
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Figure 4.8. Rényi entropy, Floquet simulation, and Husimi Q distribution using the Hamiltonian
in Eq. (4.4) with the parameters extracted from the measurements. We choose εb = 0 for the case
"without buffer drive". The vertical black dashed line marks the CPP at Pc = −67 dBm. (a) Rényi
entropy, S2, obtained from the simulated reduced transmon density matrix without (blue) and with
(orange) the buffer drive as a function of the pump power. At the CPP, Pc = −67 dBm, the Rényi
entropy remains rather smooth in the absence of buffer photons, while its sudden increase is observed
for finite buffer signal powers. (b) The overlap between the transmon state |nq00〉 and the Floquet
mode |410〉F as a function of pump power. At the CPP, we find a drastic increase of this overlap for
transmon states characterized by different nq. (c) Probability of finding specific Floquet modes in the
simulated density matrix as a function of the pump power. A sudden increase of the probabilities can
be observed. Insets show Husimi Q distributions of the Floquet states |101〉F , |222〉F and |410〉F at
−66.2 dBm (vertical dash-dotted line).

driven systems, making it suitable for our quantum-to-classical phase transition studies [74, 82]. We
analyze the overlap between the transmon qubit and Floquet states as a function of the pump power.
The Floquet modes are designated as |nqnbnw〉F , aligning with |nqnbnw〉 at minimal pump levels,
which are the eigenstates of Ĥ0. As illustrated in Fig. 4.8 (b), a distinct transition in the overlap of
the Floquet state, |410〉F , is evident at the CPP, Pc = −67 dBm. Comparable trends are noted for
Floquet modes |101〉F and |222〉F (not shown). We further investigate the dynamical properties of
probabilities corresponding to these Floquet modes in the resulting density matrix, deduced from the
Lindblad-Master simulation. In line with the previous findings, a sharp increase in these probabilities is
observed at the CPP, as shown in Fig. 4.8 (c). Henceforth, after the CPP, these Floquet states, |101〉F ,
|222〉F , and |410〉F , emerge as predominant features of the system for the increased pump powers.
The insets of the figure in Fig. 4.8 (c) present the Husimi Q distribution of these Floquet states at
−66.2 dBm, slightly above the CPP. They reveal extensive delocalization, where |101〉F and |222〉F
states are further characterized by the double-peak distributions.

Lastly, we aim to affirm that this bimodal nature observed in the Husimi Q function of the Floquet
modes distinctly manifests in the phase space of the transmon after the CPP. In Fig. 4.9, we show the
Husimi Q representation of the transmon in scenarios with and without the buffer signal. We employ the
double peak of the Husimi Q distribution in the phase space as an indicator of coexisting states. This
characteristic bimodal structure of the Q function is a recognized feature of dissipative quantum phase
transitions observed in quantum Duffing oscillator [78, 79, 81, 190, 242]. Thus, the identification of such
a structure within our system suggests the occurrence of the first-order dissipative phase transition in
the transmon-resonator system. As shown in the top panel of Fig. 4.9, the Gaussian-like distribution
of the Husimi Q function remains largely unchanged until around Pp = −61 dBm, if the buffer drive is
switched off. In other words, the delocalization does not appear even after Pc = −67 dBm. Conversely,
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Figure 4.9. Simulation of the transmon Husimi Q function using the Hamiltonian in Eq. (4.4) in the
absence (top) and presence (bottom) of the buffer signal for various pump powers. In the absence
of the buffer signal, minimal variation is observed around the CPP. Conversely, in the presence of
the buffer signal, the Husimi Q function spreads across the phase space, progressively converging to a
double-peak distribution for higher pump powers. The red dashed box highlights the transmon Husimi
Q function at the CPP. We choose εb = 0 for the case "without buffer drive".

with the buffer drive switched on, the system undergoes a delocalization in the phase space around the
CPP, progressively converging to a double-peak formation at stronger pump powers, as illustrated in
the bottom panel of Fig. 4.9 at −57 dBm. This observation, along with prior simulation results, reveals
that the delocalization in phase space is influenced by the emergence of double-peak distributions.
These distributions are characterized by the Floquet modes, |101〉F , |222〉F , and |410〉F . Importantly,
the manifestation of this bimodal structure is not a gradual transition but occurs abruptly at the CPP.
This phenomenon corresponds to the observed change in the slope of transmon population versus pump
power in the transmon system, as depicted in Fig. 4.7 (d).

4.5 Single-photon detection performance

We further investigate our device as a single-photon detector. An important figure of merit of such
device is its detection efficiency. We extract corresponding efficiencies for various pump frequencies
and powers up to the CPP at various calibrated buffer signal powers (see Fig. 4.10). Performance of
the conversion process is characterized by a separate conversion efficiency defined as [41]

ηc = 4
κnlκb

(κnl + κb)
2 , (4.6)

with κnl = 4 |g4ξp|2 /κw. Its relationship with the qubit population nq =
〈
σ̂†σ̂

〉
is

nq = n∗
(

1− exp
(
ηc |bin|2 tb

))
, (4.7)

where |bin|2 is buffer photon flux and tb is the buffer pulse length. Here, n∗ ≤ 1 is the saturated qubit
population, whence the detection efficiency is defined as

ηdet := n∗ηc. (4.8)
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Figure 4.10. (a) Measurement of the detection efficiency as a function of the pump frequency and
power. (b) Qubit population as a function of the steady state buffer photon number nb. The red
dots are the measured data points, while the blue line is fitted by numerically solving the quantum
Lindblad-Master equation with tb = 0.55µs (see Eq. (4.4)). (c) Lorentzian fit of ηdet at Pp = −67 dBm
and fp = 5.156GHz. (d) Single-photon detection efficiency ηdet as a function of the pump power. The
blue dots are the optimal detection efficiency extracted from the Lorentzian fit described in (c). The
solid line is the fit using Eq. (4.6) and Eq. (4.8). The dashed line shows the case for n∗ = 1. (e) The
simulation of the qubit population of the state |nq = 3〉 as a function of nb for various pump powers.
The population is calculated as 〈3| â†qâqρ̂t |3〉 = 3 × 〈3| ρ̂t |3〉 = 3 × Pq(nq = 3), where the probability
being in the state |nq = 3〉 is denoted as Pq(nq = 3) = 〈3| ρ̂t |3〉.

In actual experiments, reduced detection efficiencies, ηdet < 1, are attributed to factors such as a
finite energy relaxation rate and finite thermal waste photon numbers, which stem from heating
due to the elevated pump powers and microwave noise from the input lines [103, 152, 153]. The
detection efficiencies ηdet are extracted using the Lindblad-Master simulations of the Hamiltonian
given in Eq. (4.4): We simulate the qubit population nq for various g4ξp, |bin|2, and thermal bath
temperatures at a fixed buffer pulse length tb. We finally choose ηdet, such that the simulated nq(nb)
fits all experimentally measured curves (see Fig. 4.10 (b)). For these simulations, the qubit driving
term is neglected, i.e., εq = 0. Additionally, the detuning parameter ∆qwbp is set to zero, and the
transmon Hilbert space dimension is set to Nt = 3, i.e., we take the second excited state into account.
These fits are conducted for every pump power and frequency, as shown in Fig. 4.10 (a). Fig. 4.10 (c)
shows a Lorentzian fit to obtain the optimal detection efficiencies at each pump power. Finally, we
utilize the pump power dependence of ηc, such that n∗ and ηc are determined by fitting the optimal
detection efficiencies as a function of the pump power using Eq. (4.6) and Eq. (4.8), as demonstrated in
Fig. 4.10 (d). In our studies, the maximum conversion and detection efficiencies are ηc = (96±8)% and
ηdet = (86±6)%, respectively. In other words, we have a detection infidelity of 1−ηdet = (14±6)%. As
derived in Subsec. 2.5.4, by taking into account the qubit energy relaxation rate, the saturated qubit
population can be determined as

n∗q =
ηc |bin|2

ηc |bin|2 + γq
. (4.9)
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Figure 4.11. Detection efficiency, qubit population contribution of the state |nq = 3〉, and sensitivity
as a function of the pump power for different system parameters. TI-uncorrected efficiencies ηdet and
sensitivities S are represented by solid lines, while TI-corrected efficiencies η′det and sensitivities S′

are represented by dashed lines. The qubit population of |nq = 3〉 is calculated as 〈3| â†qâqρ̂t |3〉 =
3 × Pq(nq = 3), where the probability being in the state |nq = 3〉 is denoted as Pq(nq = 3). (a) The
impact of various dissipation rates of the waste mode κw/2π = 4.6, 8.6, 16.6, 30MHz (blue, orange,
green, red line). The green dots are the experimentally extracted values for κw/2π = 16.6MHz. (b) The
impact of various four-wave interaction strength g4/2π = 0.9, 1.8, 3.6, 7.2, 14.4MHz (purple, red, green,
orange, blue line). The green dots represent the experimentally extracted values for g4/2π = 3.6MHz.
(c) The impact of various buffer frequency ωb/2π = 9, 10, 11GHz (green, orange, blue line), and (d)
anharmonicity χ(2)/2π = −490, 234, 672, 988MHz (blue, orange, green, red line). For the simulation
with the positive anharmonicity, we consider typical flux qubit values as a reference. (a) and (b) are
simulated at Teff = 98mK, while (c) and (d) are obtained in the zero temperature limit, T = 0K.

In our case, for a buffer photon flux of |bin|2 = 1.22× 106 s−1 corresponding to the steady state photon
number of nb = 0.25 we obtain n∗q = 0.97. Notably, although the buffer photon flux significantly
surpasses the decoherence rate observed in our measurements, we can reach the detection infidelity of
few percents. Inserting this value into Eq. (4.8), we find the detection infidelity of 7%.

In the case of a non-zero waste photon number, the combined quantum system can partially reverse
the four-wave mixing process. Given this scenario, the saturated qubit population is quantified as

n∗w =
1− 6nth,w
1− 4nth,w

, (4.10)

under the condition nth,w � 1 (see Subsec. 2.5.4 for more details). We use a dark count probability of
the qubit (5.4±8.3)%, which we find upon measurements over a short time periods, as compared to T1,
to extract the effective temperature of Teff = 98mK. Using the formula nth,w = (exp(~ωw/kBTeff) −
1)−1, we obtain n∗w = 0.94. This result leads to the detection infidelity of 10%. Adding up both
infidelities, we obtain a total infidelity of 17%, which aligns well with the measured detection infidelity
of 14%.
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The discussion so far has omitted effects of the TI process. To address this, we consider the
impact of the higher qubit level excitation, |nq ≥ 3〉, which may additionally lead to an overestimation
of the detection efficiency. For that purpose, we extract the occupation probability of |nq ≥ 3〉 as a
function of nb at the various pump powers, and find that the occupation probabilities of the states
|nq ≥ 4〉 are negligibly small. In Fig. 4.10 (e), the buffer photon number and pump power dependence
of the state |nq = 3〉 can be clearly observed. Crucially, the dependence on the buffer photon number
leads to an overestimation of the detection efficiency. This effect arises because the occupation of this
state additionally contributes to the qubit population. In order to estimate the TI influence on the
detection efficiency, we remove the contribution of higher excited states, i.e.

∑
nq≤2 〈nq| â

†
qâqρ̂t |nq〉,

and extract its efficiency with the same method used in the experiments. Upon this adjustment, we
observe a reduction in the detection efficiency by 10% with the optimal parameters. We assume that
the correction applied to the simulated data is also applicable to the experimental results. Under
this assumption, the original detection efficiency of ηdet = 86% reduces to the TI-corrected detection
efficiency of η′det = 78%.

Next, we conduct an extensive analysis to enhance the detection efficiency and sensitivity of our
SPD. Furthermore, we also discuss how to suppress the influence of the TI process. Referring to
Fig. 4.11, we present the TI-uncorrected and TI-corrected detection efficiencies and sensitivities across
various parameters. The sensitivities are defined as [243]

S =
~ωb
√
rdc

ηdet
, S′ =

~ωb
√
rdc

η′det

, (4.11)

with the dark count rate rdc. We denote S as the TI-uncorrected sensitivity, and S′ as the TI-corrected
one. We observe an early rise of the detection efficiency ηdet (η′det) for the higher dissipation rate of
the waste mode κw, as demonstrated in Fig. 4.11 (a). However, the increase of κw also leads to an
enhancement of the Purcell decay rate of the qubit. Thus, εq increases for the same pump power
accelerating the onset of the TI, which sets the upper bound of the conversion process. Consequently,
despite the early rise in detection efficiency, ηdet (η′det) fails to achieve higher values for larger κw.
The early increase of the probability Pq(nq = 3) supports the argument of this early onset of the
TI. Therefore, the optimal detection efficiency, ηdet (η′det), along with the sensitivity S (S′), is more
favorably achieved at lower κw. As shown in Fig. 4.11 (b), an enhancement in the coupling strength
g4 improves both ηdet (η′det) and S (S′). Since the CPP does not change under g4 variation, we can
reach higher ηdet (η′det) before reaching the CPP. Additionally, when we tune the buffer frequency ωb
to higher frequencies, Fig. 4.11 (c) predicts that Pq(nq = 3) decreases. This is attributed to a large
detuning between pump and qubit frequencies, which reduces the impact of TI. In other words, ηdet

converges to η′det. Finally, we investigate the influence of the TI for different anharmonicities χ(2). We
observe that large

∣∣χ(2)
∣∣ suppresses the TI process, as expected from the previous studies [244–246].

Accordingly, ηdet asymptotically approaches η′det. Notably, the configuration of the buffer and waste
frequencies should be chosen considering a particular value of χ(2). In general, the pump frequency
can match a frequency of a certain multi-photon process at a certain pump power due to the power-
dependent frequency shift of the qubit frequency. In the regime of negative anharmonicity, this situation
can occur if ωw < ωb, such that ωp, ω0k/k < ω′q, where ω0k/k is the multi-photon transition frequency.
If the pump frequency is close to such a transition frequency, the dark count rate increases, which
eventually degrades the single-photon detector performance. For example, for χ(2)/2π = −490MHz,
the SPD can reach ηdet ≈ 0.5, until the pump collides with the two-photon process in the spectral
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domain. In simulations considering positive anharmonicity values, we use a flux qubit parameters
[246], and predict that it is possible to reach high detection efficiencies up to 95%. Importantly, for
the flux qubit, multi-photon processes become relevant at frequencies exceeding the qubit frequency,
and given that ωp < ω′q for ωw < ωb, such processes are effectively far-detuned, resulting in reduction
of dark counts (Fig. 4.11 (d)).

Lastly, we compare the sensitivity of our detector for the cases with Teff = 98mK (Fig. 4.11 (a,b))
and T = 0K (Fig. 4.11 (c,d)). Although the sensitivity for an ideal environment (T = 0K) generally
improves, it does not reach the state of the art value of S = 10−22 W/

√
Hz [243]. This is attributed

to the filtering effect of our cavity, which requires a stronger pump power to reach the same detection
efficiency, and hence, results into a higher dark count probability due to the pump heating. In our
case, the dark count rate gives 26± 4 kHz at the pump power of Pp = −67 dBm, at which we measure
the maximum ηdet (η′det). Despite of the cavity filtering effect, the dark count rate reported here is
comparable to the values reported in the previous studies [56–58].
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Chapter 5

TOWARDS MULTI-PHOTON FOCK-STATE GENERATOR
BASED ON IRREVERSIBLE COUPLING

In the novel single-photon detection scheme developed by the Flurin group [41], the concept of
irreversible qubit-photon coupling plays a pivotal role. This technique, originally conceptualized for
single-photon detection, can be appropriately modified to facilitate multi-photon Fock-state generation,
as explored in recent studies [93, 247]. Central to this adaptation is the exploitation of three distinct
cavity modes: namely, the buffer, waste, and memory modes. Our own horseshoe cavity, characterized
by several eigenmodes, is well suitable for this application. Specifically, the first three modes of this
cavity are optimally designated as waste, memory, and buffer modes, respectively, as depicted in
Fig. 5.1.

An important observation in the horseshoe cavity setup is the fact that there are different coupling
rates of these modes to the antenna coupling the feed line to the cavity. The waste and buffer modes
exhibit strong coupling, whereas the memory mode is characterized by a markedly weaker interaction.
For an antenna length of 2.3mm, in the absence of qubit chips, the external quality factors for these
modes are quantified as 7.61×106, 4.22×1014, and 6.12×106, respectively. This configuration results in
comparable coupling strengths for the waste and buffer modes. The feasibility of employing the same
horseshoe cavity design as a quantum memory has been previously demonstrated in [97, 106, 239],
where the introduction of a dummy chip, alongside the transmon chip, ensures the symmetry of the
electric field distributions. Thus, the memory mode still couples very weakly to the environment.

Building on the insights from this quantum memory research, we extend our investigation to the
potential application of this system in Fock-state generation. This process is facilitated by two distinct
pumping mechanisms: (1) a pump to induce parametric interactions between the buffer, qubit, and
waste, and (2) a subsequent parametric interactions between the qubit, waste, and memory. The latter
pump is activated following the transfer from the buffer to the qubit, thereby transferring the excited
qubit state to the memory state.

This chapter commences with an exposition of the fundamental working principles of the Fock-state
generator. Following this introduction, we will delve into the detailed theoretical underpinnings that
support this application, providing a comprehensive framework for understanding the intricacies of this
advanced quantum system.

Figure 5.1. The first three eigenmodes of the horseshoe cavity obtained by the CST simulation. (a)
waste mode, (b) memory mode, and (c) buffer mode. The waste mode and the buffer mode is strongly
coupled to the antenna, whereas the memory mode is very weakly coupled to the antenna.
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5.1 Working principle of multi-photon Fock-state generation

The key mechanism of Fock-state generation in our system is based on a sequential, two-pump process.
Initially, a photon captured by the buffer mode is transferred to the qubit and waste mode via the
first pump. The waste photon rapidly dissipates into the environment. Subsequently, the first pump
is deactivated, and the second pump is switched on. This second phase involves the relocation of the
qubit excited state to the memory mode, with the waste mode once again playing the role of dissipating
photons into the environment1.

Thus, the whole process can be described by two effective Hamiltonians: The first buffer-to-qubit
process is formulated as2

Ĥeff,bqw/~ = gbqwâbσ̂â
†
w + h.c., (5.1)

while the second qubit-to-memory process is given by

Ĥeff,qwm/~ = gqwmσ̂â
†
wâ
†
m + h.c., (5.2)

where the pump is driving at the frequency

ωp,qwm = ωgw + ωgm − ωq.

After the adiabatic elimination of the waste, the nonlinear single loss operators for both processes are
calculated as

L̂bq =
√
κbqâbσ̂

†, L̂qm =
√
κqmσ̂â

†
m, (5.3)

with the engineered dissipation rate κbq = 4 |gbqw|2 /κw and

κqm =
|gqwm|2(

κw
2

)2
+ ∆2

bwq

κw

for an arbitrary detuning ∆bwq (see Sec. 5.3 below for more details.). Hence, both conversion processes
are irreversible. Subsequently, the overall process can be summarized as below

|1b0q0w0m〉
gbqwâbσ̂

†â†w−→ |0b1q1w0m〉
κw−→ |0b1q0w0m〉
gqwmσ̂â

†
wâ
†
m−→ |0b0q1w1m〉

κw−→ |0b0q0w1m〉 .

1An alternative scenario where both pumps are continuously active until the readout process has also been examined.
However, this configuration has led to a persistent transfer of photons to an increasingly larger memory photon state due
to the parametric qubit-memory interaction, thereby not taking into account the system’s functionality as a Fock-state
generator (refer to Sec. 5.4 for brief analysis).

2We refer to Sec. 2.5 and Ref. [41] for more details.
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Figure 5.2. Calculated population of the qubit (blue solid line), buffer (orange solid line), and waste
mode (green solid line), as well as the probability for the presence of a memory photon in state |1〉
and |2〉 (red, purple solid line) with two consecutive pulses. The buffer-qubit interaction is switched
on for 0 ≤ t < tbq = 1µs and 2tbq ≤ t < 3tbq = 1µs, while the qubit-memory interaction is switched
on for tbq ≤ t < 2tbq and 3tbq ≤ t < 4tbq. The final qubit population at 1µs and 3µs is nq = 0.987,
while the probability of memory mode occupying |m = 1〉 at 2µs is P(m = 1) = 0.987 and at 4µs
P(m = 2) = 0.975 for |m = 2〉. For the simulation, we used a qubit frequency of ωq/2π = 5.29GHz and
qubit anharmonicity of α/2π = 200MHz, an eigenfrequency of the buffer mode of ωb/2π = 8.25GHz
with the coupling rate of qubit mode of gb/2π = 54MHz and the external decay rate κb/2π = 12MHz,
an eigenfrequency of the waste mode of ωw/2π = 7.45GHz with the coupling strength gw/2π = 44MHz
and the external decay rate κw/2π = 12MHz, and a memory mode frequency of ωm/2π = 7.87GHz
with the coupling strength gm/2π = 64MHz.

For the second incoming photon, we obtain

|1b0q0w1m〉
gbqwâbσ̂

†â†w−→ |0b1q1w1m〉
κw−→ |0b1q0w1m〉
gqwmσ̂â

†
wâ
†
m−→ |0b0q1w2m〉

κw−→ |0b0q0w2m〉 .

The principle of irreversibility in the Fock-state generation process, a key aspect of our system, is
demonstrated through simulations employing Eq. (5.5). These simulations are shown in Fig. 5.2, where
the populations of the qubit, buffer, waste, and the occupation probability of the Fock states of
the memory mode are plotted. In this scenario, a pulsed drive mechanism is utilized to initiate the
population dynamics.

In our simulation, the temporal dynamics of the interactions between the buffer, qubit, and
memory modes are meticulously orchestrated. The buffer-qubit transfer is activated during two distinct
intervals: from 0 to tbq = 1µs and subsequently from 2tbq to 3tbq = 3µs. Conversely, the qubit-memory
transfer is operational in the intervening periods, specifically from tbq to 2tbq = 2µs and from 3tbq to
4tbq = 4µs. This staggered approach allows for a controlled sequence of population transfer between
the modes. Crucially, at the end of the first and second buffer-qubit transfer periods (at 1µs and
3µs, respectively), the qubit population achieves a high value of nq = 0.987. This high population
indicates efficient population transfer from the buffer to the qubit. Subsequently, following each qubit-
memory transfer period, the memory mode occupancy demonstrates significant probabilities for specific
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Fock states. At 2µs, the probability of the memory mode being in the single-photon state |m = 1〉
is P(m = 1) = 0.987. Furthermore, at 4,µs, the probability of observing the memory mode in the
two-photon state |m = 2〉 is P(m = 2) = 0.975. The primary reason for not achieving a fidelity close
to unity is the presence of a nonzero number of waste photons at the beginning of the pulse sequence,
which leads to a finite reverse interaction.

We can extend this discussion to estimate the highest achievable Fock state. The typical timescale
to write a Fock state into the memory is tF = 1/κbq + 1/κqm ≈ 270 ns. To achieve a transfer fidelity
over 99%, the total writing time should be t = 5tF ≈ 1.5µs, as the fidelity evolves approximately
according to 1− exp(−t/tF ) 3. Additionally, we must consider the fidelity loss due to the initial waste
photon population. Based on simulations demonstrated in Fig. 5.2, the estimated total fidelity loss per
Fock state generation is 1.3%. Under these conditions, we can achieve an eighth Fock state with a
fidelity of around 0.9878 ≈ 0.90 over a total duration of ttot = 8t ≈ 12µs. The effect of internal qubit
and memory loss rates is negligible if we assume a reasonable loss rate of 1/κq = 1/κm = 500µs for
the qubit and memory, respectively, as reported in [105].

These probabilities underscore the potentially high performance of the sequential interaction
strategy in generating distinct Fock states within the memory mode. The achievable high values
of P(m = 1) and P(m = 2) at these specific times require the precise and controlled nature of the
photon state transfer from the qubit to the memory mode. If this can be realized, there is an interesting
potential of our system for reliable multi-photon Fock-state generation.

Additionally, we address the critical issue of releasing the generated Fock states, a notable challenge
in our current methodology. The primary limitation arises from the inherent characteristics of the qubit
used in our system. While the process of generating Fock states is efficient, the release mechanism is
constrained by the capacity of the qubit to convert only one photon at a time. This limitation precludes
the direct reversal of the state generation process for multi-photon Fock states. Consequently, while
sequential single-photon Fock states can be released, the simultaneous release of a multi-photon Fock
state remains unfeasible under this setup. To overcome this bottleneck, we propose pivoting from the
3D cavity design to a 2D chip-based approach. Central to this alternative strategy is the modification of
the waste mode into a frequency-tunable waste resonator. This resonator frequency can be dynamically
aligned with that of the memory mode. Given the high dissipation rate of the waste mode, such an
alignment would effectively enhance the coupling of the memory mode to the environment. This
enhanced coupling is pivotal for facilitating the release of multi-photon Fock states. The technical
realization of this frequency tuning can be achieved using a direct-current superconducting quantum
interference device (SQUID), terminating a λ/4 CPW resonator. Drawing parallels with the Josephson
parametric amplifier [248], the application of a magnetic flux through the SQUID alters the inductance
of the resonator. This alteration enables us to modulate the effective resonance frequency of the waste
resonator, thereby creating a tunable system capable of controlled release of multi-photon Fock states.

Lastly, we want to shortly discuss the limitation of a 2D resonator towards a 3D cavity from the
quality factor standpoint. As mentioned in Sec.2.2, due to the weak vacuum field of the 3D cavity, its
internal quality factors can reach up to reaching up to Qi ∼ 109[99, 108], while that of 2D resonators
can reach up to Qi ∼ 107[213].

3We refer to Sec. 2.5 and Ref. [41] for the discussion of the temporal evolution of the conversion process.
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5.2 System Hamiltonian Derivation

The key idea of the derivation follows the description in the paper [41]. The quantum system consists
of a qubit, buffer, waste, and memory mode, and two pump drives for parametric interactions, which
Hamiltonian is read as

Ĥ/~ =
∑

k=b,w,q,m

ωkâ
†
kâk −

EJ
~

(
cosϕ+

ϕ2

2

)
+ 2εbwq cos (ωp,bqwt)

(
âq + â†q

)
+ 2εqwm cos (ωp,qwmt)

(
âq + â†q

)
(5.4)

with the phase across the junction

ϕ̂ =
∑

k=b,w,q,m

ϕk

(
âk + â†k

)
,

where the indices q, b, w,m refers to the qubit, buffer, waste, and memory modes, respectively, ϕk
is the zero-point fluctuations of the phase across mode k, and EJ the Josephson energy. The pump
amplitudes are denoted as εbwq and εqwm for the irreversible transfer from buffer to qubit and from
qubit to memory, respectively.

We first transform our Hamiltonian into the displaced frame to account for the strong pump with
the mean field amplitudes ξp,bwq ≈ −εbwq/ (ωq − ωp,bqw) and ξp,qwm ≈ −εqwm/ (ωq − ωp,qwm) [39, 41].
Furthermore, after transforming into the interaction picture

Ĥ0/~ =
∑

k=b,w,q,m

(ωk − δk) â†t âk

with the arbitrary detuning δk = δk,bqw + δk,qwm, which will be used by the pump tones to cancel
ac-Stark shifts due to the Kerr effect. As a result, we obtain

Ĥ′/~ =
∑

k=b,w,q,m

δkâ
†
kâk −

EJ
~

(
cosϕ′ +

ϕ′2

2

)

with

ϕ̂′ =
∑

k=b,w,m

ϕk

(
âke
−i(ωk−δk) + â†ke

i(ωk−δk)
)

+ ϕq
(
ξp,bwqe

−iωp,bqwt + ξ∗p,bwqe
iωp,bqwt

)
+ ϕq

(
ξp,qwme

−iωp,qwmt + ξ∗p,qwme
iωp,qwmt

)
and the pump frequencies

ωp,bqw = (ωq − δq,bqw) + (ωw − δw,bqw)− (ωb − δb,bqw)

ωp,qwm = (ωm − δm,qwm) + (ωw − δw,qwm)− (ωq − δq,qwm)
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Due to

ϕ̂′4

24
=ξp,bwqe

−iωp,bqwtϕqâ
†
qe
i(ωq−δq,bqw)tϕwâ

†
we

i(ωw−δw,bqw)tϕbâbe
−i(ωb−δb,bqw)t

+ ξp,qwme
−iωp,qwmtϕwâ

†
we

i(ωw−δw,qwm)tϕmâ
†
me
−i(ωm−δm,qwm)tϕqâqe

−i(ωq−δq,qwm)t

+
∑
k,k′

ϕ2
kϕ

2
k′ â
†
kâkâ

†
k′ âk′ +

∑
k 6=q

ϕ2
kϕ

2
q â
†
kâk

(
|ξp,bwq|2 + |ξp,qwm|2

)
+ ϕ4

q

(
|ξp,bwq|2 + |ξp,qwm|2

)
â†qâq +

1

2

∑
k

ϕ4
kâ
†
kâ
†
kâkâk

+ h.c.+ fast rotating terms

expanding the cosine term to the forth order leads to

Ĥ′ ≈ĤStark + ĤKerr + Ĥ4WM

ĤStark/~ =
∑

k=b,w,m

(
δk − χqk

(
|ξp,bwq|2 + |ξp,qwm|2

))
â†kâk

+
(
δq − 2χqq

(
|ξp,bwq|2 + |ξp,qwm|2

))
â†qâq

ĤKerr/~ =−
∑

k=q,b,w,m

χkk
2
â†kâ
†
kâkâk −

∑
k,k′

χkk′ â
†
kâkâ

†
k′ âk′

Ĥ4WM/~ =gbwqâbâ
†
wâ
†
q + g∗bwqâ

†
bâwâq + gqwmâ

†
qâwâm + g∗qwmâqâ

†
wâ
†
m

with the detunings

δq,bqw =2χqq |ξp,bwq|2 , δq,qwm =2χqq |ξp,qwm|2 ,

δb,bqw =χqb |ξp,bwq|2 , δb,qwm =χqb |ξp,qwm|2 ,

δm,bqw =χqm |ξp,bwq|2 , δm,qwm =χqm |ξp,qwm|2 ,

δw,bqw =χqw |ξp,bwq|2 + ∆bwq, δw,qwm =χqw |ξp,qwm|2 ,

the Kerr interaction strengths

χkk =EJϕ
4
k/2/~, χkk′ =EJϕ

2
kϕ
′2
k /~,

and the effective parametric interaction strengths

gbwq =− EJξp,bwqϕ2
qϕwϕb/~, gqwm =− EJξp,qwmϕ2

qϕwϕm/~.

5.3 Derivation of Nonlinear Decay

In this section, we derive the nonlinear decay by tracing out the waste modes with adiabatic elimination.
After canceling out the ac-Stark terms and restrict the Hilbert space of the qubit mode to a two level
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system (âq → σ̂), we arrive at

Ĥ′′ =Ĥw + Ĥqbm
Ĥw/~ =gbwqâbâ

†
wσ̂
† + g∗bwqâ

†
bâwσ̂ + gqwmσ̂

†âwâm + g∗qwmσ̂â
†
wâ
†
m

+
(

∆bwq − χqwσ̂†σ̂ − χbwâ†bâb
)
â†wâw −

χww
2
â†wâ

†
wâwâw

Ĥqbm/~ =−
∑
k=b,m

χkk
2
â†kâ
†
kâkâk −

∑
k 6=k′=q,b,m

χkk′ â
†
kâkâ

†
k′ âk′ ,

which dynamics is described by the Lindblad master equation in Eq. (2.105)

d
dt
ρ̂ =− i

[
Ĥ′′, ρ̂

]
+ κwD[âw]ρ̂+ κbD[âb]ρ̂+ γqD[σ̂]ρ̂+ γφD[σ̂†σ̂]ρ̂

=− i
[
Ĥw, ρ̂

]
+ κwD[âw]ρ̂+ Lqbm [ρ̂] (5.5)

and

Lqbm [ρ̂] =− i
[
Ĥqbm, ρ̂

]
+ κbD[âb]ρ̂+ γqD[σ̂]ρ̂+ γφD[σ̂†σ̂]ρ̂.

For the adiabatic elimination, we assume that∣∣∣∣gbwq,qwmκw

∣∣∣∣ , ∣∣∣∣χkk′κw

∣∣∣∣ ∼ δ � 1,

such that the waste mode is dominantly in the vacuum state due to the fast decay rate κw. In particular,
for the density matrix ρ̂, the reduced density matrices acting on the qubit, buffer, and memory Hilbert
space have the following relations:

〈0| ρ̂ |0〉 =ρ̂00, 〈0| ρ̂ |1〉 =δρ̂01, 〈1| ρ̂ |1〉 =δ2ρ̂11, 〈0| ρ̂ |2〉 =δ2ρ̂02

with |k〉 , |k′〉 being the Fock states basis of the waste mode. By projecting Eq. (5.5) with
〈0| ... |0〉 , 〈0| ... |1〉 , 〈1| ... |1〉, respectively, we obtain

d
dt
ρ̂00 =− i 〈0|

[
gbwqâbâ

†
wσ̂
† + g∗bwqâ

†
bâwσ̂ + gqwmσ̂

†âwâm + g∗qwmσ̂â
†
wâ
†
m, ρ̂

]
|0〉

− i 〈0|
[(

∆bwq − χqwσ̂†σ̂ − χbwâ†bâb − χmwâ
†
mâm

)
â†wâw, ρ̂

]
|0〉

+ 〈0|κwD[âw]ρ̂ |0〉+ Lqbm [ρ̂00]

=− iδ
[
g∗bwqâ

†
bσ̂ρ̂10 − gbwqρ̂01âbσ̂

† + g∗qwmσ̂
†âmρ̂10 − gqwmρ̂01σ̂â

†
m

]
+ δ2κwρ̂11 + Lqbm [ρ̂00] +O

(
δ3
)

(5.6)
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δ
d
dt
ρ̂01 =− iδ2

[
g∗bwqâ

†
bσ̂ρ̂11 − gbwqρ̂02âbσ̂

† + g∗qwmσ̂â
†
mρ̂11 − gqwmρ̂02σ̂

†âm

]
+ iρ̂00

[
g∗bwqâ

†
bσ̂ + g∗qwmσ̂

†âm

]
+ iδρ̂01

[
∆bwq − χqwσ̂†σ̂ − χbwâ†bâb − χmwâ

†
mâm

]
− δκw

2
ρ̂01 + δLqbm [ρ̂01] +O

(
δ3
)

δ∼g/κw
= iρ̂00

[
g∗bwqâ

†
bσ̂ + g∗qwmσ̂

†âm

]
+ iδρ̂01

[
∆bwq − χqwσ̂†σ̂ − χbwâ†bâb − χmwâ

†
mâm

]
− δκw

2
ρ̂01 + δLqbm [ρ̂01] +O

(
δ3
)

(5.7)

δ2 d
dt
ρ̂11 =− iδ3

[
g∗bwqâ

†
bσ̂ρ̂21 − gbwqρ̂12âbσ̂

† + g∗qwmσ̂â
†
mρ̂21 − gqwmρ̂12σ̂

†âm

]
− iδ

[
gbwqâbσ̂

†ρ̂01 − g∗bwqρ̂10â
†
bσ̂ + gqwmσ̂

†âmρ̂01 − g∗qwmρ̂10σ̂â
†
m

]
+ iδ2

[
∆bwq − χqwσ̂†σ̂ − χbwâ†bâb − χmwâ

†
mâm, ρ̂11

]
+ δ2κw

 ρ̂02︸︷︷︸
|2〉/∈Hw

−ρ̂11

+ δ2Lqbm [ρ̂11] +O
(
δ3
)

=− iδ
[
gbwqâbσ̂

†ρ̂01 − g∗bwqρ̂10â
†
bσ̂ + gqwmσ̂

†âmρ̂01 − g∗qwmρ̂10σ̂â
†
m

]
+ iδ2

[
∆bwq − χqwσ̂†σ̂ − χbwâ†bâb − χmwâ

†
mâm, ρ̂11

]
− δ2κwρ̂11 + δ2Lqbm [ρ̂11] +O

(
δ3
)

(5.8)

Focusing the relevant dynamics, we find that Eqs. (5.7) and (5.8) include a damping term of order δ0,
while all terms in Eq. (5.6) are of order δ2. Hence, this allows us to treat ρ̂01 and ρ̂11 as a steady-state
(adiabatic approximation), which results to

ρ̂01 =iρ̂00

[
g∗bwqâ

†
bσ̂ + g∗qwmσ̂

†âm

] [κw
2
− i
(

∆bwq − χqwσ̂†σ̂ − χbwâ†bâb − χmwâ
†
mâm

)]−1

≈ρ̂00

ig∗bwq
κw
2 − i (∆bwq − χqw)

â†bσ̂ + ρ̂00

ig∗qwm
κw
2 − i∆bwq

σ̂†âm, (5.9)

where we used â†bσ̂σ̂
†σ̂ = â†bσ̂ and |χbw| , |χmw| � |χqw|, which is justified because the zero-point

fluctuations of the resonator modes are very small compared to the qubit mode. As for the steady-
state solution for ρ̂11, we get

ρ̂11 =
1(

κw
2

)2
+ (∆bwq − χqw)2

|gbwq|2

δ
âbσ̂
†ρ̂00â

†
bσ̂

+
1(

κw
2

)2
+ ∆2

bwq

|gqwm|2

δ
σ̂â†mρ̂00σ̂

†âm. (5.10)
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Inserting the steady-state solutions into Eq. (5.6), we obtain

d
dt
ρ̂00 =− iδ

[
−i |gbwq|2

κw
2 + i (∆bwq − χqw)

â†bâbσ̂σ̂
†ρ̂00 −

i |gbwq|2
κw
2 − i (∆bwq − χqw)

ρ̂00â
†
bâbσ̂σ̂

†

]

− iδ

[
−i |gqwm|2
κw
2 + i∆bwq

σ̂†σ̂âmâ
†
mρ̂00 −

i |gqwm|2
κw
2 − i∆bwq

ρ̂00σ̂
†σ̂âmâ

†
m

]

+
|gbwq|2(

κw
2

)2
+ (∆bwq − χqw)2

âbσ̂
†ρ̂00â

†
bσ̂

+
|gqwm|2(

κw
2

)2
+ ∆2

bwq

σ̂â†mρ̂00σ̂
†âm

+ Lqbm [ρ̂00]

=iδ

[
|gbwq|2(

κw
2

)2
+ (∆bwq − χqw)2

(∆bwq − χqw) â†bâbσ̂σ̂
†, ρ̂00

]

+ iδ

[
|gqwm|2(

κw
2

)2
+ ∆2

bwq

∆bwqσ̂
†σ̂âmâ

†
m, ρ̂00

]
+ κbqD

[
âbσ̂
†
]
ρ̂00 + κqmD

[
σ̂â†m

]
ρ̂00 + Lqbm [ρ̂00] (5.11)

with the nonlinear decay rates

κbq =
|gbwq|2(

κw
2

)2
+ (∆bwq − χqw)2

κw, κqm =
|gqwm|2(

κw
2

)2
+ ∆2

bwq

κw. (5.12)

5.4 Memory Transfer Dynamics

The dynamics governing transfer quantum information from the buffer mode to memory mode is derived
in the following. We add the driving term i

√
κbbin

(
âb − â†b

)
into the master equation (Eq. (5.11)),

where bin is the amplitude of the coherent drive. For simplicity, we further omit the first two terms in
Eq. (5.11) and assume Ĥqbm, γq, γφ � κw in the zeroth order approximation. This gives us

d
dt
ρ̂00 =κbqD

[
âbσ̂
†
]
ρ̂00 + κqmD

[
σ̂â†m

]
ρ̂00 + κbD [âb] ρ̂00 + ε

[
âb − â†b, ρ̂00

]
(5.13)

with ε =
√
κbbin. Since the time evolution of the memory mode is dependent on the qubit state, we

first consider ρ̂g :== 〈g| ρ̂00 |g〉 and ρ̂e :== 〈e| ρ̂00 |e〉, such that

d
dt
ρ̂g =κqmâ

†
mρ̂eâm −

1

2
κbq

(
ρ̂gâbâ

†
b + âbâ

†
bρ̂g

)
+ κbD [âb] ρ̂g + ε

[
âb − â†b, ρ̂g

]
, (5.14)

d
dt
ρ̂e =− 1

2
κqm

(
ρ̂eâmâ

†
m + âmâ

†
mρ̂e

)
+ κbqâbρ̂gâ

†
b + κbD [âb] ρ̂e + ε

[
âb − â†b, ρ̂e

]
. (5.15)
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To be able to study how the memory mode acquires the quantum information, we further distinguish
the quantum state ρ̂g/e between the memory states by defining ρ̂g/e,m := 〈m| ρ̂g/e |m〉

d
dt
ρ̂g,m =κqmâmρ̂e,m−1 −

1

2
κbq

(
ρ̂g,mâbâ

†
b +

1

2
âbâ
†
bρg,m

)
+ κbD [âb] ρ̂g,m + ε

[
âb − â†b, ρ̂g,m

]
, (5.16)

d
dt
ρ̂e,m =− κqm(m+ 1)ρ̂e,m + κbqâbρ̂g,mâ

†
b

+ κbD [âb] ρ̂e,m + ε
[
âb − â†b, ρ̂e,m

]
. (5.17)

Hence, ρ̂g,m, ρ̂e,m are now the density matrices acting solely on the buffer Hilbert space. In the same
spirit as in Sec. 2.5 and Ref. [41], we use the ansatz ρ̂g/e,m ∝ |β〉 〈β|, which give us after tracing out the
density matrix completely

d
dt
pg,m =κqmmpe,m−1 − κbq |β|2 pg,m, (5.18)

d
dt
pe,m =− κqm(m+ 1)pe,m + κbq |β|2 pg,m. (5.19)

We remind ourselves that κbq,qm are controlled by the pump. For example, if the pump responsible for
the buffer-qubit transfer (qubit-memory transfer) is switched off, we have κbq = 0 (κqm = 0). For the
conversion processes explained in Sec. 5.1, the case study of each process is required for the differential
equations shown above, which are

d
dt
pg,m =

−κbq |β|
2 pg,m, buffer-qubit transfer

κqmmpe,m−1, qubit-memory transfer
(5.20)

d
dt
pe,m =

κbq |β|
2 pg,m, buffer-qubit transfer,

−κqm(m+ 1)pe,m, qubit-memory transfer.
(5.21)

We assume that pg,0(t = 0) = 1 and that the buffer-qubit transfer process is followed by the qubit-
memory transfer. Then, the solution of the differential equation reads

pg,0(t) =

e−κbq |β|
2t, t < tbq, buffer-qubit transfer,

e−κbq |β|
2tbq , t > tbq, qubit-memory transfer,

(5.22)

pe,0(t) =

1− e−κbq |β|
2t, t < tbq, buffer-qubit transfer,(

1− e−κbq |β|
2tbq
)
e−κqmt, t > tbq, qubit-memory transfer,

(5.23)

pg,1(t) =

0, t < tbq, buffer-qubit transfer,(
1− e−κbq |β|

2tbq
) (

1− e−κqm(t−tbq)
)
, t > tbq, qubit-memory transfer,

(5.24)

where tbq is the cut-off time of the buffer-qubit transfer process and the beginning of the qubit-memory
process.

The theoretical framework outlined above finds a compelling alignment with the previously
presented simulation results (see Fig. 5.2). These theoretical insights delve into the intricate dynamics
of state probabilities within our system under specific interaction conditions. In the initial phase of
the pulse-driven interaction, for durations t < tbq, we observe significant developments in the state
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Figure 5.3. Calculated population of qubit (blue solid line), buffer (orange solid line), and waste mode
(green solid line), as well as the probability of memory photon in states |m = 1, 2, 3〉 (red, purple, brown
solid lines).

probabilities. The probability of the system residing in the qubit ground state and in a zero-photon
memory Fock state, pg,0, demonstrates an exponential decrease with increasing pulse length. This
trend indicates the effective excitation of the qubit away from its ground state due to the buffer-qubit
transfer. Indeed, the probability of encountering the system in the excited state of the qubit with no
photons in the memory mode, pe,0, exhibits an increasing trend, converging towards 1 − e−κbq |β|

2tbq .
Notably, throughout this phase, the probability pg,1, corresponding to the qubit being in the ground
state with a single-photon in the memory mode, remains consistently at zero. This observation is in line
with the theoretical expectation that the memory mode does not yet acquire any photons during this
initial interaction period. As the interaction transitions to the qubit-memory phase (for t > tbq), the
theoretical model predicts a notable shift in these probabilities. The pe,0 value, which was previously
increasing, now begins to decrease exponentially, reflecting the transfer of excitation from the qubit to
the memory mode. Concurrently, pg,1 starts to increase, ultimately saturating at 1− e−κbq |β|

2tbq .

Memory transfer dynamics with continuous operation of both pumps

In scenarios where both parametric interactions are perpetually active, the dynamics of memory
transfer exhibit distinctive characteristics. The theoretical formulations for the time-dependent
probabilities of various states are as follows

pg,0(t) =e−κbq |β|
2t, (5.25)

pe,0(t) =
κbq |β|2

κqm − κbq |β|2
(
e−κbq |β|

2t − e−κqmt
)
, (5.26)

pg,1(t) =
κqmκbq |β|2 t
κqm − κbq |β|2

e−κbq |β|
2t +

κqmκbq |β|2(
κqm − κbq |β|2

)2

(
e−κqmt − e−κbq |β|

2t
)
. (5.27)

An important observation from these expressions is the behavior of the occupation probability pg,1,
and by extension pg,m, for higher Fock states. Contrary to approaching a saturation near unity, these
probabilities demonstrate an exponential decay towards zero. This decay emphasizes the fact that the
generation of a controlled multi-photon Fock state is unfeasible under the conditions of simultaneous
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and continuous application of both pumps.
This theoretical prediction is visually corroborated in Fig. 5.3, which illustrates the occupation

probabilities for each memory Fock state. The plot reveals a concurrent rise in the probabilities of
multiple Fock states. Consequently, this pump configuration does not favor the selective generation of
a specific multi-photon Fock state. Rather, it leads to a non-discriminatory increase in the probabilities
of various states, thus hindering the precise control necessary for effective Fock state generation in this
quantum system.
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Chapter 6

CONCLUSION AND OUTLOOK

In this thesis, we have addressed two aspects with significant relevance for the improvement of the
performance of superconducting quantum technology. First, we have performed a systematic study
aiming at the reduction of internal losses in our samples, achieving an improvement by two orders of
magnitude through the implementation of novel fabrication techniques. Second, we have conducted
a thorough experimental and numerical analysis of the onset of transmon ionization (TI) and the
performance of single-photon detectors (SPDs) in a transmon qubit system integrated with a multi-
mode 3D cavity.

Regarding the improvement of superconducting quantum circuits, our study has underscored the
crucial role of surface treatment and material selection, particularly focusing on the superconductors
niobium (Nb) and aluminum (Al), in conjunction with the design of sample boxes. The internal
quality factor of coplanar resonators, fabricated using an Al-based lift-off technique developed at the
WMI, has been measured. We have observed that in the single-photon limit the internal loss rate of
our reference sample was δi = 3.38× 10−5, comprising both power-dependent two-level-system (TLS)
losses (δ0

TLS = 2.49× 10−5) and power-independent losses (δ0 = 0.89× 10−5).

A pivotal reduction of loss channels was realized through the implementation of buffered-oxide
etching (BOE) for surface treatment, which substantially mitigates surface oxides and contaminants
that lead to TLSs. This treatment significantly reduced the internal losse rate of the Al resonators
by approximately an order of magnitude, with δi ∼ 10−6 being achieved for both lift-off and etching
processes. A further enhancement has been observed upon replacing Al by Nb as the superconducting
material, leading to an around 50% reduction in internal loss and our best measured internal loss value
o δi = 0.66× 10−6 in the single-photon limit.

The influence of the sample box environment on both the internal and external loss rate has also
been investigated. Particularly, the presence of parasitic chip and box modes can introduce additional
loss channels in quantum devices under test. Employing the SLH framework, we analyzed the impact
of these parasitic modes. We found that the interference effects between the resonator and parasitic
modes alter the external loss of the resonator. Additionally, direct interactions between the resonator
and parasitic modes create additional decay channels, affecting the internal losses. Experiments with
three different sample boxes revealed that changing from an eight-port box without a hole to a two-port
box with a hole improved the internal loss rate by 70%.

A second main focus of this thesis was the experimental and numerical study of the transmon-
ionization (TI) onset and the single-photon detector (SPD) performance of a transmon qubit coupled
to a multi-mode 3D cavity. We have investigated a dependence of the transmon population on the
buffer photon number nb and pump powers, and observed that the transmon is highly-sensitive to
nb at the region close to critical pump powers (CPP). Through a comprehensive analysis employing
the Rényi entropy, Floquet theory, and Husimi Q function, we found clear evidence for the presence
of a quantum-to-classical phase transition around the CPP. Our numerical simulations are in very
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good agreement with the experimental observations, demonstrating the appropriateness of the chosen
methodologies for simulating the experimental system.

We have also investigated the device as a single-photon detector, and extracted its detection
efficiencies for various pump frequencies and powers up to the CPP. Our measurements show that
a maximum TI-uncorrected detection efficiency reaches 86%, while we estimate the TI-corrected
detection efficiency to only 78%. The conversion efficiency ηc between the buffer and the qubit-waste
mode was found to be limited by the TI, while the reduction of the saturated qubit population n∗ can be
attributed to a thermal waste photon number and the qubit energy relaxation rate. Finally, increasing
the frequency detuning between the pump and qubit frequencies and the qubit anharmonicity was
found to strongly suppress the influence of the TI process and leads to a distinct improvement of the
TI-corrected detection efficiency and sensitivity. The spectral positioning of the buffer and waste mode
frequencies ought to be determined based on the sign of the qubit anharmonicity to ensure that the
pump and multi-photon processes do not overlap.

In conclusion, our systematic investigations offer potential advantages inherent to the onset of
TI, suggesting its prospective extension to high-efficiency microwave SPDs compatible with 3D cavity
architectures. Moreover, this study demonstrates the necessity for a careful analysis of the efficiency
extraction, particularly given the impact of the TI process. These insights bear significant implications
for the development of parametric device applications, which are essential in advancing quantum
information processing and communication based on superconducting circuits.

In the final segment of this thesis, we have explored the prospective application of our advanced
SPD system as a multi-photon Fock-state generator, utilizing the concept of irreversible coupling.
By incorporating an additional memory mode into the existing SPD configuration, our system is
suitable for at converting an excited state of the qubit into a memory photon. This conversion is
facilitated through a sequential application of two distinct pump processes. Our simulation results
have particularly demonstrated the capabilities of our system for the generation of multi-photon Fock
states. Using parameters of present day superconducting circuit technology, our simulation results yield
a high probability for successfully transferring the qubit excited state into the memory photon states.
Notably, high probabilities of finding the memory mode in Fock states 1 and 2 of P(m = 1) = 0.987

and P(m = 2) = 0.975, respectively, have been found. These probabilities underscore the potential of
our system in reliably generating multi-photon Fock states, marking a significant step forward in the
field of quantum state manipulation and generation.
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Appendix A

DERIVATION OF THREE-LEVEL TRANSMON EIGENENERGIES

Let us derive the transmon energies for a three-level system, which we mostly follow the approach
provided by [113]. We expand the Josephson term to the fourth order and calculate the eigenenergies
of this system after rewriting (n̂, ϕ̂) into the annihilation/creation operators. What does this mean
from the two-level system point of view compared to the harmonic oscillator result?

The essential point of the transmon qubit from the two-level quantum system point of view is the
non-linearity of the potential of the Josephson junction, namely,

V̂ = −EJ cos ϕ̂.

Evidently, then the level spacing is not equal as for an harmonic potential of a quantum harmonic
oscillator.
In order to discuss the impact of the nonlinearity, we perform a power series expansion of the cosine
potential up to fourth order. We find 1

Ĥ =4EC n̂
2 − EJ cos ϕ̂

=4EC n̂
2 − EJ

(
1− 1

2!
ϕ̂2 +

1

4!
ϕ̂4 +O

(
ϕ̂6
))

=4EC n̂
2 +

1

2!
EJ ϕ̂

2 − 1

4!
EJ ϕ̂

4 − EJ +O
(
ϕ̂6
)

considering only small values of ϕ, this is a good approximation. Note that the power expansion
contains only even terms in ϕ̂ and therefore there will be no three-wave mixing. An asymmetry can
be easily introduced by applying a finite current or a flux bias.

First, let us focus on the Hamiltonian up to the second order for obtaining the eigenenergy of the
simple quantum harmonic oscillator E0. We can obtain the above eigenequation (neglecting the offset
energy and correcting terms) by using the algebraic derivation of the quantum harmonic oscillator,
however, this form reminds us of the equation of the ellipse given by

x2

a2
+
y2

b2
= 1,

for our case in particular,
Ĥ

2ECEJ
=

n̂2

EJ/2
+

ϕ̂2

4EC
.

But the elliptic method can be more simplified, if we can transform it to a circle. So, for that purpose
let us rescale them by introducing the energy E0 and define

n̂ =

√
EJ/2

E0
p̂, ϕ̂ =

√
4EC
E0

q̂

1Here, we omit the offset charge ng w.l.o.g.
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with the commutation relation

[n̂, ϕ̂] = − i
2

[
â†q − âq, â†q + âq

]
=

√
2EJEC
E2

0

[p̂, q̂] = i

such that these operators are equally scaled in that sense that the ellipse equation only depends on E0

Ĥ
2ECEJ

=
p̂2

E0
+
q̂2

E0
.

Here, E0 is the energy spacing of the quantum harmonic oscillator. That is, Ĥ |m〉 = Em |m〉 =

E0(m+ 1/2) |m〉. This can be used to obtain

n̂ =

√
EJ/2

E0

(
E2

0

2EJEC

)1/4

i
â†q − âq√

2
=

(
EJ

8EC

)1/4

i
â†q − âq√

2
,

ϕ̂ =

√
4EC
E0

(
E2

0

2EJEC

)1/4
â†q + âq√

2
=

(
8EC
EJ

)1/4 â†q + âq√
2

such that

Ĥ
2ECEJ

=
n̂2

EJ/2
+

ϕ̂2

4EC

=
1

EJ/2

((
EJ

8EC

)1/4

i
â†q − âq√

2

)2

+
1

4EC

((
8EC
EJ

)1/4 â†q + âq√
2

)2

=
1√

2EJEC

(
i
â†q − âq√

2

)2

+
1√

2EJEC

(
â†q + âq√

2

)2

.

From this calculation we can deduce E0 =
√

2EJEC and Em = 2E0(m+1/2) for the mth energy state.
ωplasma = 2E0/~ is called as plasma frequency.

Now, let us consider the next leading order of the Hamiltonian, namely the ϕ̂4, leading to the
deviation from equaly spaced energy levels

δEm =− EJ
4!
〈m| ϕ̂4 |m〉

=− EJ
4!

(
8EC
EJ

)
〈m|

(
â†q + âq

)4
|m〉

=− EC
3
〈m|

(
â†q

)2
â2
q +

(
â†qâq

)2
+ â†qâqâqâ

†
q |m〉

− EC
3
〈m| âqâ†qâ†qâq +

(
âqâ
†
q

)2
+ â2

q

(
â†q

)2
|m〉

=− EC
3
〈m| â†q

(
âqâ
†
q − 1

)
âq +

(
â†qâq

)2
+ â†qâqâqâ

†
q |m〉

− EC
3
〈m| âqâ†qâ†qâq +

(
â†qâq + 1

)2
+ âq

(
â†qâq + 1

)
â†q |m〉

=− EC
3

×
(
m2 −m+m2 + 2m(m+ 1) + (m+ 1)2 + (m+ 1)2 +m+ 1

)
=− EC

(
2m2 + 2m+ 1

)
.
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Henceforth, we see that the nonlinearity of the Josephson junction potential induces a non-equal energy
spacing such that the energy level difference between the ground state and the first excited state is not
equal to that between other energy differences. That is, we can specifically assign the ground state and
the first excited state as logical states |0〉 and |1〉, respectively, with a (approximate) qubit frequency
of ωq = ω01 = (

√
8ECEJ − EC)/~. The frequency of 1-2 transition is ω12 ≈ ωq − EC/~.
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Appendix B

DERIVATION OF COUPLED SYSTEMS

B.1 Derivation of qubit-resonator system in cQED

Here, we derive the Hamiltonian of a qubit-resonator system, where we mostly follow the approach
provided by [113, 249]. We first consider two LC resonators capacitively coupled with each other and
show

Ĥ =
1

2

(C2 + Cc) Q̂
2
1 + (C1 + Cc) Q̂

2
2 + 2CcQ̂1Q̂2

C1C2 + Cc(C1 + C2)
+

Φ̂2
1

2L1
+

Φ̂2
2

2L2
.

For that purpose, we consider first the Lagrangian with the node fluxes Φi, Φ̇i as a system variable
and then transform it to the Hamiltonian by obtaining the node charges Qi via an Euler-Lagrange
transformation. If we define dΦi/dt as the general momentum and Φi the position of the ith quantum
system, then the Lagrangian without interaction is written as

L0 =
C1

2

(
dΦ1

dt

)2

+
C2

2

(
dΦ2

dt

)2

− Φ2
1

2L1
− Φ2

2

2L2
.

What we are left with, is now the interaction part. The key point of the interaction is that the voltage
difference between two quantum systems contributes to the energy such that

Cc
2

(
dΦ1

dt
− dΦ2

dt

)2

.

Henceforth, the total Lagrangian is formulated as

L =
C1

2

(
dΦ1

dt

)2

+
C2

2

(
dΦ2

dt

)2

+
Cc
2

(
dΦ1

dt
− dΦ2

dt

)2

− Φ2
1

2L1
− Φ2

2

2L2
.

We can then use the Euler-Lagrange formulation and obtain the Hamiltonian. However, let us use a
more elegant way. We first recognize that the kinetic term is in bilinear form, that is it has terms like(

dΦ1

dt

)2

,

(
dΦ2

dt

)2

,
dΦ1

dt
dΦ2

dt
.

This insight can be used to construct a capacitance matrix, that is,

L =
1

2

[
dΦ1
dt

dΦ2
dt

] [ C1 + Cc −Cc
−Cc C2 + Cc

]
︸ ︷︷ ︸

C

[
dΦ1
dt
dΦ2
dt

]
− Φ2

1

2L1
− Φ2

2

2L2
.

This formulation is very helpful because we have the relation between the charge and voltage as

[
Q1

Q2

]
=

 ∂L
∂
dΦ1
dt
∂L
∂
dΦ2
dt

 = C

[
dΦ1
dt
dΦ2
dt

]
.
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Thus, we obtain for the Hamiltonian

Ĥ =
1

2

[
Q̂1 Q̂2

]
C−1

[
Q̂1

Q̂2

]
+

Φ̂2
1

2L1
+

Φ̂2
2

2L2

=
1

2

(C2 + Cc) Q̂
2
1 + (C1 + Cc) Q̂

2
2 + 2CcQ̂1Q̂2

C1C2 + Cc(C1 + C2)
+

Φ̂2
1

2L1
+

Φ̂2
2

2L2
.

We now rewrite the Hamiltonian into the annihilation/creation operators â(†)
1,2, and regard one of

the LC-circuits as qubit, i.e. replace â1 → â, â2 → σ̂ and the qubit term accordingly. We then derive
the resonance frequency of the resonator ωr, the qubit frequency ωq and the qubit-resonator coupling
strength gqr.

First, let us define the effective self-capacitance and coupling capacitance for charges

1

C̃1

:=
C2 + Cc

C1C2 + Cc(C1 + C2)
,

1

C̃2

:=
C1 + Cc

C1C2 + Cc(C1 + C2)
,

1

C̃c
:=

Cc
C1C2 + Cc(C1 + C2)

.

such that

Ĥ =
Q̂2

1

2C̃1

+
Q̂2

2

2C̃2

+
Q̂1Q̂2

C̃c
+

Φ̂2
1

2L1
+

Φ̂2
2

2L2
.

Now, inserting

Q̂i =

√
~

2Zc,i

(
â†i + âi

)
, Φ̂i =i

√
~Zc,i

2

(
â†i − âi

)
with Zc,i = 1/ωiC̃i we get

Ĥ =ω1

(
â†1â1 +

1

2

)
+ ω2

(
â†2â2 +

1

2

)
+ g

(
â†1 + â1

)(
â†2 + â2

)
,

where

ωi =
1√
LiCi

gqr =
1

2C̃c
√
Z1Z2

=
√
ω1ω2

Cc

2
√

(C1 + Cc) (C2 + Cc)
.

Since we actually wanted to calculate the qubit-resonator system, we replace a1 → a, a2 → σ such
that

Ĥ =ωr

(
â†â+

1

2

)
+ ωq

(
σ̂†σ̂ +

1

2

)
+ gqr

(
â† + â

)(
σ̂† + σ̂

)
.
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B.2 Fouth order calculation

Here, the fourth order of cos(Q̃′q) is calculated. We use the definition ϕqp := (ϕqqξq+ϕqbξb+ϕqwξw)/ξp

for clarity. Neglecting O
(
ϕ3
qb,qw

)
, we obtain1

Q̃′
4
q

24
≈ϕ2

qb

(
ϕ2
qq + (ϕqpXp)

2

2

)
a†bab + ϕ2

qw

(
ϕ2
qq + (ϕqpXp)

2

2

)
a†waw + ϕ2

qq

(
ϕ2
qb + ϕ2

qq + ϕ2
qw + (ϕqpXp)

2

2

)
a†qaq

+
ϕ4
qq

4
a†q

2
a2
q + ϕ2

qbϕ
2
qqa
†
qaqa

†
bab + ϕ2

qqϕ
2
qwa
†
qaqa

†
waw

+ ϕqq

(
ϕqpXp

2

(
ϕ2
qb + ϕ2

qw + ϕ2
qq

)
+

(ϕqpXp)
3

6

)(
a†q + aq

)
+ ϕqb

(
ϕqpXp

2
ϕ2
qq +

(ϕqpXp)
3

6

)(
a†b + ab

)
+ ϕqw

(
ϕqpXp

2
ϕ2
qq +

(ϕqpXp)
3

6

)(
a†w + aw

)
+ ϕqqϕqw

(
ϕ2
qq

2
+

(ϕqpXp)
2

2

)(
a†q + aq

)(
aw + a†w

)
+ ϕqbϕqq

(
ϕ2
qq

2
+

(ϕqpXp)
2

2

)(
a†b + ab

)(
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)
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(
ϕ2
qq

2
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2

2

)(
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)
+ ϕ2
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(
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)
+ ϕqqϕ

2
qw (ϕqpXp) a

†
waw

(
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)
+ ϕ2
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†
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)
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2
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ϕ2
qbϕ

2
qq

4

(
a†q

2
a2
b + a2

qa
†
b

2
)
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b + a†q

2
aqab

)
+ ϕ3

qq

(ϕqpXp)

2

(
a†qa

2
q + a†q

2
aq

)
+
ϕ3
qqϕqw

2

(
a†qa

2
qa
†
w + a†q

2
qaw

)
+
ϕ2
qqϕ

2
qw

4

(
a†q

2
a2
w + a2

qa
†
w

2
)

+ ϕ2
qqϕqw

(
ϕqpXp

2

)(
a†q

2
aw + a2

qa
†
w

)
+ ϕqqϕ

2
qw

(
ϕqpXp

2

)(
a†qa

2
w + aqa

†
w

2
)

+ ϕqbϕqqϕqw(ϕqpXp)a
†
qa
†
baw + ϕqbϕqqϕqw(ϕqpXp)a

†
qaba

†
w

+ ϕqbϕqqϕqw(ϕqpXp)a
†
qabaw + ϕqbϕqqϕqw(ϕqpXp)aqa

†
ba
†
w

+ ϕqbϕqqϕqw(ϕqpXp)aqa
†
baw + ϕqbϕqqϕqw(ϕqpXp)aqaba

†
w

+ ϕqbϕqwϕqq(ϕqpXp)ξ
∗
b ξwa

†
q + ϕqbϕqqϕqw(ϕqpXp)ξbξ

∗
wa
†
q

+ ϕqbϕqqϕqw(ϕqpXp)ξbξwa
†
q + ϕqbϕqqϕqw(ϕqpXp)ξ

∗
b ξ
∗
waq

+ ϕqbϕqqϕqw(ϕqpXp)ξ
∗
b ξwaq + ϕqbϕqqϕqw(ϕqpXp)ξbξ

∗
waq

1In our case, ϕ3
qb,qw ≈ 10−5. Its frequency regime corresponds to EJϕ3

qb,qw ≈ 1 MHz. Since our interested frequency
range is around 100 ∼ 1000 MHz (because the detunings are also around 100 ∼ 1000 MHz), we can safely neglect this
term from the rotating wave approximation point of view.
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Note that we defined Xp := ξp(t)+ξ∗p(t) = 2 |ξp| cos(ωdt) for better clarity. Further, we use the rotating
wave approximation. For that purpose, we transform into the rotating frame of H0 = ωm,qa

†
qaq +

ωm,ba
†
bab + ωm,wa

†
waw. Analyzing the terms carefully, we can recognize that we can boil them down

into the following categories

Xp

(
aj(t) + a†j(t)

)
∝ajeiωdt−iωm,jt +((((((((

aje
−iωdt−iωm,j t+ h.c.

(ϕqpXp)
3
(
aj(t) + a†j(t)

)
∝
((((((((((((
(ϕqp |ξp|)3 aje

3iωdt−iωm,jt

+ 3 (ϕqp |ξp|)3 aje
iωdt−iωm,jt

+ h.c.

(ϕqpXp)
2
(
aj + a†j

)(
aj′ + a†j′

)
∝
(((((((((((((((((

(ϕqp |ξp|)2 ajaj′e
−2iωdt−iωm,jt−iωm,j′ t

+
(((((((((((((((((

(ϕqp |ξp|)2 aja
†
j′e

2iωdt−iωm,jt+iωm,j′ t

+ (ϕqp |ξp|)2 ajaj′e
2iωdt−iωm,jt−iωm,j′ t

+ 2 (ϕqp |ξp|)2 aja
†
j′e
−iωm,jt+iωm,j′ t

+ h.c.

Xp

(
a†ja

2
j′ + a†j′a

2
j

)
∝a†ja

2
j′e

iωdt+iωm,jt−2iωm,j′ t

+
(((((((((((((
a†ja

2
j′e
−iωdt+iωm,jt−2iωm,j′ t

+ h.c.

Xpajaj′a
†
j′′ ∝ajaj′a

†
j′′e

iωdt+iωm,j′′ t−iωm,jt−iωm,j′ t

+
(((((((((((((((((

ajaj′a
†
j′′e
−iωdt+iωm,j′′ t−iωm,jt−iωm,j′ t

Neglecting fast rotating terms, which interaction strength is much less then the minimal detunings2

Q̃′
4
q

24
≈ϕ2

qb

ϕ2
qq

2
a†bab + ϕ2

qw

ϕ2
qq

2
a†waw + ϕ2

qq

(
ϕ2
qq

2
+

(ϕqpXp)
2

2

)
a†qaq

+
ϕ4
qq

4
a†q

2
a2
q + ϕ2

qbϕ
2
qqa
†
qaqa

†
bab + ϕ2

qqϕ
2
qwa
†
qaqa

†
waw

+ ϕqq

(
ϕqpXp

2
ϕ2
qq +

(ϕqpXp)
3

6
+ ϕqbϕqqϕqw(ϕqpXp) (ξb + ξ∗b ) (ξw + ξ∗w)

)(
a†q + aq

)
+ ϕqbϕqqϕqw

(
ϕqpξ

∗
p

)
aqa
†
baw + ϕqbϕqqϕqw (ϕqpξp) a

†
qaba

†
w

Here, we have chosen the drive frequency3 ωd = ωp ≈ ωm,q + ωm,w − ωm,b.

2In our case, this is for example, EJϕ3
qqϕqw ≈ 20 MHz� |ωm,w − ωm,q| ≈ 2 GHz. Terms, which we do not omit, are

e.g. terms with the detunings less than 1 GHz associated with the driving strength in the order of few 100 MHz.
3The approximation here is because of the ac-Stark shift consideration.
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Appendix C

UNITARY TRANSFORMATION

C.1 Transformation into the rotating frame

Here, we briefly review the unitary transformation into the rotating frame, which can be found in many
textbooks [250–252], and show some working examples.

Generally, the unitary transformation of a Hamiltonian is calculated by

Ĥ′(t) = Û(t)ĤÛ †(t)− iÛ(t)
∂

∂t
Û †(t), (C.1)

where Û(t) is some time-dependent unitary operator. Note that for the Hamiltonian Ĥ = Ĥ0 + Ĥint(t)

with Û(t) = e−iĤ0t/~ we are in the interaction picture with

Ĥ′(t) = Û(t)ĤÛ †(t)− Ĥ0 = Û(t)Ĥint(t)Û
†(t). (C.2)

Example: qubit drive

Given the Hamiltonian of a qubit driven by a microwave signal with amplitude A and angular frequency
ωd

Ĥ =
~ωq
2
σ̂z + ~A cos(ωdt+ φ)σ̂x,

we show that the Hamiltonian can be expressed

Ĥ′ = ~
2

(Ωxσ̂x + Ωyσ̂y + ∆qdσ̂z)

by using the rotating wave approximation. Here, ∆qd = ωq − ωd is the detuning between qubit and
drive.

We first decompose σ̂x = σ̂+ σ̂† and also note that the operators σ(†) in the rotating frame can be
written as

σ̂(†) → σ̂(†)e∓iωdt.
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Thus, in the rotating frame of the drive Ĥ0 = ~ωdσ̂z/2

Ĥ′ =ÛĤÛ † − iÛ ∂

∂t
Û †

=
~ωq
2
σ̂z + ~A cos(ωdt+ φ)Û σ̂xÛ

† − ~ωd
2
σ̂z

=~
ωq − ωd

2
σ̂z + ~A cos(ωdt+ φ)

(
σ̂e−iωdt + σ̂†eiωd

)
=~

ωq − ωd
2

σ̂z + ~A cos(ωdt) cos(φ)
(
σ̂e−iωdt + σ̂†eiωd

)
− ~A sin(ωdt) sin(φ)

(
σ̂e−iωdt + σ̂†eiωd

)
=~

ωq − ωd
2

σ̂z +
~A cos(φ)

2

(
σ̂
(
1 + e−2iωdt

)
+ σ̂†

(
1 + e2iωdt

))
− ~A sin(φ)

2i

(
σ̂
(
1− e−2iωdt

)
+ σ̂†

(
−1 + e−2iωdt

))
RWA→ ~

ωq − ωd
2

σ̂z +
~A cos(φ)

2
σ̂x −

~A sin(φ)

2
σ̂y

=
~Ωx

2
σ̂x +

~Ωy

2
σ̂y +

~∆qd

2
σ̂z

with

Ωx =A cosφ, Ωy =−A sinφ, ∆qd =ωq − ωd.

We now calculate the time-evolution of the qubit state for the ground state as an initial state by
making use of the following definition

Ĥ′ = ~ΩRabi

2

[
∆qd

ΩRabi

iAe−iφ

ΩRabi

− iAeiφ

ΩRabi
− ∆qd

ΩRabi

]
=:

~ΩRabi

2

[
cos θ ie−iφ sin θ

−ieiφ sin θ − cos θ

]
.

The Hamiltonian can be rewritten in the matrix form as

Ĥ′ = ~
2

[
∆qd iAe−iφ

−iAeiφ −∆qd

]

First, let us obtain the eigenfrequencies given by

ω± = ±ΩRabi = ±
√

∆2
qd +A2.

and use this for the normalization of the matrix

Ĥ′ = ~ΩRabi

2

[
∆qd

ΩRabi

iAe−iφ

ΩRabi

− iAeiφ

ΩRabi
− ∆qd

ΩRabi

]
=:

~ΩRabi

2

[
cos θ ie−iφ sin θ

−ieiφ sin θ − cos θ

]
.

In this case, it is known that the eigenstates are symmetric and anti-symmetric superpositions of the
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qubit states1

|Ψ+〉 =ie−iφ/2 cos

(
θ

2

)
|0〉+ eiφ/2 sin

(
θ

2

)
|1〉 ,

|Ψ−〉 =e−iφ/2 sin

(
θ

2

)
|0〉 − ieiφ/2 cos

(
θ

2

)
|1〉 .

Then, we can decompose an arbitrary stationary state |ψ(t0 = 0)〉 into

|ψ(t)〉 = 〈ψ(t0)|Ψ−〉 e−iΩRabit/2 |Ψ−〉+ 〈ψ(t0)|Ψ+〉 eiΩRabit/2 |Ψ+〉 . (C.3)

In particular, for the ground state we get

|ψ(t)〉 = e−iφ/2 sin

(
θ

2

)
e−iΩRabit/2 |Ψ−〉+ ie−iφ/2 cos

(
θ

2

)
eiΩRabit/2 |Ψ+〉 .

Physically, the result of the eigenstates tells us that the axis, about which the qubit rotates with
±ΩRabi, goes away from the z-axis and approaches more towards the x − y plane the stronger the
Rabi strength gets. For example, let us take a quantum state parallel to z-axis and the system is
detuned. While the quantum state feels only rotations about z-axis without driving and does not
change its vector in the Bloch sphere, the quantum state starts to oscillate about the eigenvector in
case of driving such that the z-component of the quantum state now oscillates, as well.

Example: From full Rabi model to Jaynes-Cummings Hamiltonian

We briefly derive the Jaynes-Cummings Hamiltonian from the full Rabi Hamiltonian

ĤRabi = ~ωrâ†râr +
~ωq
2
σ̂z + ~gqr

(
σ̂† + σ̂

)(
âr + â†r

)
.

For that purpose, we go into the interaction picture with |ψ(t)〉int = eiĤ0t/~ |ψ(t)〉 with

Ĥ0 = ~ωrâ†râr +
~ωq
2
σ̂z.

We insert them into Eq. (C.2) such that we get

Ĥ′Rabi(t) =~gqreiĤ0t/~
(
σ̂† + σ̂

)(
âr + â†r

)
e−iĤ0t/~

=~gqreiωqtσ̂z/2 (σ̂+ + σ̂−) e−iωqtσ̂z/2eiωrtâ
†
r âr
(
âr + â†r

)
e−iωrtâ

†
r âr

=~gqr
(
σ̂+e

iωqt + σ̂−e
−iωqt) (âre−iωrt + â†re

iωrt
)
,

where we know from the Heisenberg equation of motion

∂

∂t
σ̂± =i

ωq
2

[
σ̂z, σ̂

±]
=iωqσ̂

±

∂

∂t
â(†)
r =iωr

[
â†râr, â

(†)
r

]
=∓ iωrâ(†)

r .

1This can be proved by decomposing the trigonometries into exponentials and simplifying them again.
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Within the rotating wave approximation, we can neglect the fast rotating terms, i.e. oscillating with
the frequency ωq + ωr, and obtain the Jaynes-Cummings Hamiltonian

ĤJC = ~ωrâ†râr +
~ωq
2
σ̂z + ~gqr

(
σ̂†âr + σ̂â†r

)
by transforming back into the laboratory frame.

C.2 Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation is a perturbative method to diagonalize the Hamiltonian of an
interacting qubit-resonator system. For the Jaynes-Cummings Hamiltonian, this transformation is
given by

Ĥdisp = ÛĤÛ †

with Û = eŜ and
Ŝ =

gqr
∆qr

(
ârσ̂

† − â†rσ̂
)

with ∆qr = ωq − ωr. However, for our purpose we only want to obtain terms up to the second order
of gqr/∆qr. Here, we show that this approximation allows us to finally get

Ĥdisp/~ =

(
ωr +

g2
qr

∆qr
σ̂z

)
â†râr +

1

2

(
ωq +

g2
qr

∆qr

)
σ̂z

by using the following instructions2:

The problem of diagonalizing the Jaynes-Cummings Hamiltonian is the off-diagonal interaction
term, since the qubit and resonator terms are diagonal. The essential point of this Schrieffer-Wolff
transformation is to be able to eliminate the off-diagonal interaction term

V̂ = gqr

(
ârσ̂

† + â†rσ̂
)
.

That is, [
Ŝ, Ĥ0

]
= −V̂ .

Let us first calculate the following commutation relations[
ârσ̂

†, σ̂z

]
=− 2ârσ̂

†
[
â†rσ̂, σ̂z

]
=2â†rσ̂[

ârσ̂
†, â†râr

]
=ârσ̂

†
[
â†rσ̂, â

†
râr

]
=− â†rσ̂.

2This result can also be obtained by straight forward calculation. Here, we would like to provide the essence of this
transformation.
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We then can verify[
Ŝ, Ĥ0

]
=

[
gqr
∆qr

(
ârσ̂

† − â†rσ̂
)
,
ωq
2
σ̂z + ωrâ

†
râr

]
=

[
gqr
∆qr

(
ârσ̂

† − â†rσ̂
)
,
ωq
2
σ̂z

]
+

[
gqr
∆qr

(
ârσ̂

† − â†rσ̂
)
, ωrâ

†
râr

]
=− gqr

∆qr
ωq

(
ârσ̂

† + â†rσ̂
)

+
gqr
∆qr

ωr

(
ârσ̂

† + â†rσ̂
)

=− V̂ .

Our next strategy is to make use of the Baker-Campbell-Hausdorff formula

eŜĤe−Ŝ = Ĥ+
[
Ŝ, Ĥ

]
+

1

2!

[
Ŝ,
[
Ŝ, Ĥ

]]
+ ... .

We see that it is composed of repeated commutation relations. Since we have already calculated
the commutation relation between the generator Ŝ and the system Hamiltonian Ĥ0, we calculate the
remained commutation relation[

Ŝ, V̂
]

=

[
gqr
∆qr

(
ârσ̂

† − â†rσ̂
)
, gqr

(
ârσ̂

† + â†rσ̂
)]

=
g2
qr

∆qr

([
ârσ̂

†, a†σ̂
]

+
[
−â†rσ̂, ârσ̂†

])
=2

g2
qr

∆qr

(
ârâ
†
rσ̂
†σ̂ − â†rârσ̂σ̂†

)
=2

g2
qr

∆qr

(
â†râr

(
σ̂†σ̂ − σ̂σ̂†

)
+ σ̂†σ̂

)
=2

g2
qr

∆qr

(
â†rârσ̂z + σ̂†σ̂

)
→2

g2
qr

∆qr

(
â†rârσ̂z +

1

2
σ̂z

)
,

where in the last "equation" we subtracted by ωq. This yields us to evaluate

eŜĤe−Ŝ =Ĥ0 + V̂ +
[
Ŝ, Ĥ0

]
+
[
Ŝ, V̂

]
+

1

2!

[
Ŝ,
[
Ŝ, Ĥ

]]
+O

(
g3
qr

)
=H0 +

1

2

[
Ŝ, V̂

]
+O

(
g3
qr

)
=

(
ωr +

g2
qr

∆qr
σ̂z

)
â†râr +

1

2

(
ωq +

g2
qr

∆qr

)
σ̂z +O

(
g3
qr

)
=
(
ωr +

χqr
2
σ̂z

)
â†râr +

1

2

(
ωq +

χqr
2

)
σ̂z +O

(
g3
qr

)
with χqr := 2g2

qr/∆qr.

Quantum Non-Demolition Measurement

We show that the Jaynes-Cummings Hamiltonian in the dispersive regime is suited for performing
repeated measurements on σ̂z without further changing the state. Furthermore, we ask the question
what the condition for the QND measurement of a certain quantum state is in general?

To show that the Jaynes-Cummings Hamiltonian in the dispersive regime does not further change
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its state by repeated measurements, we have to think about the meaning of repeated measurements
and no-state-change.

To perform repeated measurements means that we perform another measurement after some time
after we have measured its quantum state. So, the time evolution is involved. If the state does
not change after the first measurement, this is equivalent to say that in the Heisenberg picture the
measurement operator is constant in time. In particular, we should obtain

〈ψ| σ̂z(t0) |ψ〉 = 〈ψ| σ̂z(t0 + t) |ψ〉 , ∀t,

since we do repeated measurements on σ̂z, where σ̂z is our measurement operator3. So, our task is to
prove that σ̂z is constant in time. Fortunately, we can use the Heisenberg equation of motion for this
purpose, i.e.

dσ̂z(t)

dt
=
i

~

[
Ĥ, σ̂z(t)

]
!

= 0.

Inserting the dispersive Jaynes-Cummings Hamiltonian, we can easily prove that it commutes with σ̂z.
Hence, σ̂z is constant in time, and equivalently the quantum state is constant in time.

In general, if P̂ is the measurement operator, it has to commute with the Hamiltonian, i.e.

dP̂ (t)

dt
=
i

~

[
Ĥ, P̂ (t)

]
!

= 0.

C.3 Displacement transformation

Displacement transformation is a transformation in the context of coherent states. The name
displacement transformation originates from the fact that the corresponding operator - the
displacement operator D̂ - has the ability to displace a localized state in phase space by an amount
α. Applying the displacement operator to a vacuum state, it is displaced into a coherent state. The
coherent states are eigenstates of the annihilation operator

â |α〉 = α |α〉 . (C.4)

If we transform â with the displacement operator D̂(α) = exp(αâ† − α∗â), we find

D̂†(α)âD̂(α) =α+ â, D̂†(α)â†D̂(α) =α∗ + â†, (C.5)

where α is an arbitrary complex number.

3Some might get confused of the time evolution of the measurement operator. The essential point is that it is an
exchange of the unitary time evolution between the quantum state |ψ〉 and the state onto that we want to project. In
our case, since the measurement process is a projection of the quantum state onto the particular state, if we want to
project the quantum state onto the state |0〉, the transformation between the Schrödinger picture and the Heisenberg
picture is

〈0| |ψ(t)〉︸ ︷︷ ︸
Schrödinger

= 〈0| e−iĤ(t−t0)/~ |ψ(t0)〉 = 〈0(t)|︸ ︷︷ ︸
Heisenberg

|ψ(t0)〉 .

At the same time we also know that the state onto which we want to project can be described by the projection operator.
So, rewriting this for the projection (measurement) operator we arrive at

〈ψ(t)| P̂ |ψ(t)〉︸ ︷︷ ︸
Schrödinger

= 〈ψ(t0)| eiĤ(t−t0)/~P̂ e−iĤ(t−t0)/~ |ψ(t0)〉 = 〈ψ(t0)| P̂ (t)︸︷︷︸
Heisenberg

|ψ(t0)〉

with P̂ = |0〉 〈0|.
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Within the mean field theory point of view, we treat the annihilation operator as a classical field
amplitude α [85]. For example, if we assume a quantum harmonic oscillator described by Eq. (2.16),
αr is treated as the steady state mean field amplitude of âr and is calculated by the quantum Langevin
equation (see Eq. (2.28))

˙̂ar =i
[
Ĥr, âr

]
− κr

2
âr −

√
κrâin(t)

=− iωrâr −
κr
2
âr −

√
κrâin(t).

Here, âin(t) = 2âin cos (ωdt) is not a vacuum quantum fluctuation, but the amplitude of a driving signal
(corresponding to the square root of the photon flux of the driving field) with driving frequency ωd
[89]. After the displacement transformation, the quantum Langevin equation is changed to

α̇r =− iωrαr + 2
√
κr 〈âin〉 cos (ωdt)−

κr
2
αr.

The steady state solution is

αr(t) =e−(iωr+κr/2)tαr(t0)− 2e−(iωr+κr/2)t

∫ t

t0

dτ
√
κr 〈âin〉 e(iωr+κr/2)t cos (ωdτ)

t→∞−→ − e−(iωr+κr/2)t

[
√
κr 〈âin〉

e(iωr+iωd+κr/2)t

iωr + iωd + κr/2
+
√
κr 〈âin〉

e(iωr−iωd+κr/2)t

iωr − iωd + κr/2

]

≈−
√
κr 〈âin〉 e−iωdt

iωr − iωd + κr/2
, (C.6)

where we have neglected the first term in the last approximation. Here, it is important to emphasize
that the amplitude of the mode will oscillate solely with the driving frequency ωd for t→∞, and the
term involving ωr is only relevant over a timescale of 1/κr.

C.4 Relation between linear Hamiltonian and Lagrangian

Here, we formulate the relations between the Hamiltonian and Lagrangian. If we consider a linear
system in the Hamiltonian and Lagrangian formalism

H/~ =
1

2
~P TΩPP

~P +
1

2
~QTΩQQ

~Q,

L/~ =
1

2
~̇QTC ~̇Q− 1

2
~QTL−1 ~Q,

then due to

~P =
∂L

∂ ~̇Q
= C ~̇Q,

we can calculate

H/~ =
1

2
~P TΩPP

~P +
1

2
~QTΩQQ

~Q =
1

2
~̇QTCTΩPPC ~̇Q+

1

2
~QTΩQQ

~Q

= ~̇QT ~P − L

=
1

2
~̇QTC ~̇Q+

1

2
~QTL−1 ~Q.
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Thus, we have
1

2
~̇QT
(
CTΩPP − 1

)
C ~̇Q+

1

2
~QT
(
ΩQQ − L−1

)
~Q = 0

and due to the linear independence

ΩPP =CT
−1

= C−1, ΩQQ = L−1, (C.7)

where we have used the fact ΩPP = ΩT
PP .
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C. D. Nugroho, C. Yang, J. A. Van Donkelaar, A. D. Alves, D. N. Jamieson, C. C. Escott, L. C.
Hollenberg, R. G. Clark, and A. S. Dzurak, Single-shot readout of an electron spin in silicon,
Nature 467, 687 (2010). [Cited on page 1.]

[9] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and
A. Small, Quantum Information Processing Using Quantum Dot Spins and Cavity QED, Physical
Review Letters 83, 4204 (1999). [Cited on page 1.]

[10] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M.
Marcus, M. P. Hanson, and A. C. Gossard, Coherent Manipulation of Coupled Electron Spins in
Semiconductor Quantum Dots, Science 309, 2180 (2005). [Cited on page 1.]

[11] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto,
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[107] M. Kudra, J. Biznárová, A. Fadavi Roudsari, J. J. Burnett, D. Niepce, S. Gasparinetti,
B. Wickman, and P. Delsing, High quality three-dimensional aluminum microwave cavities,
Applied Physics Letters 117, 070601 (2020). [Cited on page 10.]

[108] O. Milul, B. Guttel, U. Goldblatt, S. Hazanov, L. M. Joshi, D. Chausovsky, N. Kahn,
E. Çiftyürek, F. Lafont, and S. Rosenblum, A superconducting quantum memory with tens
of milliseconds coherence time, (2023). [Cited on pages 10 and 102.]

[109] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano, B. L. Brock,
A. Z. Ding, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, Real-time quantum
error correction beyond break-even, (2022). [Cited on page 10.]

[110] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio,
J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Resolving photon
number states in a superconducting circuit, Nature 445, 515 (2007). [Cited on page 10.]

[111] G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, Measurement of ultralow losses in
an optical interferometer, Optical Letters 17, 363 (1992). [Cited on page 10.]

[112] CST STUDIO SUITE www.cst.com. [Cited on page 11.]

[113] Z. Chen, Metrology of Quantum Control and Measurement in Superconducting Qubits, Ph.D.
Thesis, University of California Santa Barbara, 2018. [Cited on pages 11, 12, 113, and 117.]

[114] A. Cottet, Implementation of a quantum bit in a superconducting circuit, Ph.D. Thesis,
l’Universite Paris VI, 2002. [Cited on pages 12, 36, and 38.]

[115] D. I. Schuster, Circuit Quantum Electrodynamics, Ph.D. Thesis, Yale University, 2007. [Cited
on page 12.]

[116] N. S. Maslova, E. V. Anikin, N. A. Gippius, and I. M. Sokolov, Effects of tunneling and
multiphoton transitions on squeezed-state generation in bistable driven systems, Physical Review
A 99, 043802 (2019). [Cited on pages 14 and 51.]

136

http://doi.org/10.1126/science.1259345
http://doi.org/10.1103/PhysRevLett.114.240501
http://doi.org/10.1103/PhysRevB.94.014506
http://doi.org/10.1103/PhysRevB.94.014506
http://doi.org/10.1038/nphys4143
http://doi.org/10.1063/1.5029514
http://doi.org/10.1063/1.5029514
http://doi.org/10.1063/5.0016463
http://doi.org/10.48550/arxiv.org/abs/2302.06442
http://doi.org/10.1038/s41586-023-05782-6
http://doi.org/10.1038/nature05461
http://doi.org/10.1364/OL.17.000363
http://doi.org/10.1103/PhysRevA.99.043802
http://doi.org/10.1103/PhysRevA.99.043802
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[192] A. Rényi, On measures of information and entropy, Proceedings of the fourth Berkeley
Symposium on Mathematics, Statistics and Probability 1, 547 (1960). [Cited on pages 48 and 92.]

[193] S. Qolibikloo and A. Ghodsi, More on phase transition and Rényi entropy, European Physical
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142

http://doi.org/10.1126/sciadv.abe9492
http://doi.org/10.1140/epjc/s10052-019-6927-9
http://doi.org/10.1140/epjc/s10052-019-6927-9
http://doi.org/https://doi.org/10.1016/S1571-0661(04)80556-5
http://doi.org/10.1103/PhysRevLett.96.110404
http://doi.org/10.1103/PhysRevLett.96.110404
http://doi.org/10.1103/PhysRevLett.96.181602
http://doi.org/10.1103/PhysRevLett.96.181602
http://doi.org/10.1103/PhysRevLett.100.104101
http://doi.org/10.1103/PhysRevE.82.021114
http://doi.org/10.1088/0953-4075/49/1/013001
http://doi.org/10.48550/arXiv.2310.17698
http://doi.org/10.1103/PhysRevLett.116.240404
http://doi.org/10.1038/415039a


M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level, Science
329, 547 (2010). [Cited on page 53.]

[209] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the
superfluid-insulator transition, Physical Review B 40, 546 (1989). [Cited on page 53.]

[210] I. Carusotto and C. Ciuti, Quantum fluids of light, Reviews of Modern Physics 85, 299 (2013).
[Cited on page 53.]

[211] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold Bosonic Atoms in Optical
Lattices, Physical Review Letters 81, 3108 (1998). [Cited on page 53.]

[212] M. V. Berry, Regular and irregular semiclassical wavefunctions, Journal of Physics A:
Mathematical and General 10, 2083 (2010). [Cited on page 55.]

[213] https://twitter.com/jaygambetta/status/1395347923123245056 Accessed: 2023/08/01. [Cited on
pages 57 and 102.]

[214] J. Goetz, The Interplay of Superconducting Quantum Circuits and Propagating Microwave States,
Ph.D. Thesis, Technical University of Munich, 2017. [Cited on pages 57, 59, 66, 69, 80, and 81.]

[215] P. Missale, Fabrication of Low-Loss Josephson Junctions for Quantum Devices, Bachelor Thesis,
Technical University of Munich, 2021. [Cited on pages 57 and 63.]

[216] C. Scheuer, Fabrication of Superconducting Thin-Film Resonators and Josephson Junctions,
Master Thesis, Technical University of Munich, 2021. [Cited on pages 57 and 63.]

[217] N. Bruckmoser, Development of a Fabrication Process for High-Coherence Niobium Qubits,
Master Thesis, Technical University of Munich, 2021. [Cited on pages 57, 63, and 70.]

[218] L. Hölscher, Optimization of Aluminum Thin Films and Fabrication of Superconducting Qubit
Systems, Master Thesis, Technical University of Munich, 2021. [Cited on pages 57, 63, and 74.]

[219] D. C. Bunch, Minimizing Losses in Superconducting Coplanar Waveguide Resonators, Master
Thesis, Technical University of Munich, 2022. [Cited on pages 57 and 70.]

[220] K.-S. Koh, J. Chin, J. Chia, and C.-L. Chiang, Quantitative Studies on PDMS-PDMS Interface
Bonding with Piranha Solution and its Swelling Effect, Micromachines 3, 427 (2012). [Cited on
page 58.]

[221] N. Ikarashi, K. Watanabe, and Y. Miyamoto, High-resolution transmission electron microscopy
of an atomic structure at a Si(001) oxidation front, Physical Review B 62, 15989 (2000). [Cited
on page 58.]

[222] D. S. Wisbey, J. Gao, M. R. Vissers, F. C. S. da Silva, J. S. Kline, L. Vale, and D. P. Pappas, Effect
of metal/substrate interfaces on radio-frequency loss in superconducting coplanar waveguides,
Journal of Applied Physics 108, 093918 (2010). [Cited on page 58.]

[223] D. M. Knotter, Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions, Journal
of the American Chemical Society 122, 4345 (2000). [Cited on page 58.]

[224] G. J. Dolan, Offset masks for lift-off photoprocessing, Applied Physics Letters 31, 337 (1977).
[Cited on page 61.]

[225] M. Wang, Lithography, IntechOpen, Rijeka, 2010. [Cited on page 62.]

[226] T. Brenninger, A new thin film deposition system for the preparation of persistent current qubits,
Master Thesis, Technical University of Munich, 2007. [Cited on page 63.]

143

http://doi.org/10.1126/science.1192368
http://doi.org/10.1126/science.1192368
http://doi.org/10.1103/PhysRevB.40.546
http://doi.org/10.1103/RevModPhys.85.299
http://doi.org/10.1103/PhysRevLett.81.3108
http://doi.org/10.3390/mi3020427
http://doi.org/10.1103/PhysRevB.62.15989
http://doi.org/10.1063/1.3499608
http://doi.org/10.1021/ja993803z
http://doi.org/10.1021/ja993803z
http://doi.org/10.1063/1.89690


[227] M. V. Costache, G. Bridoux, I. Neumann, and S. O. Valenzuela, Lateral metallic devices made
by a multiangle shadow evaporation technique, Journal of Vacuum Science and Technology B 30,
04E105 (2012). [Cited on page 64.]

[228] A. Dunsworth, A. Megrant, C. Quintana, Z. Chen, R. Barends, B. Burkett, B. Foxen, Y. Chen,
B. Chiaro, A. Fowler, R. Graff, E. Jeffrey, J. Kelly, E. Lucero, J. Y. Mutus, M. Neeley,
C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, and J. M. Martinis,
Characterization and reduction of capacitive loss induced by sub-micron Josephson junction
fabrication in superconducting qubits, Applied Physics Letters 111, 022601 (2017). [Cited on
page 65.]

[229] R.-Y. Yang, C.-Y. Hung, Y.-K. Su, M.-H. Weng, and H.-W. Wu, Loss characteristics of silicon
substrate with different resistivities, Microwave and Optical Technology Letters 48, 1773 (2006).
[Cited on page 70.]
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In addition, I would like to thankDr. Hans Hübl for helping me, when I was searching for specific
things required for my research and lab. Besides, your cheerful character was amusing, especially in
the Oktoberfest. Thank you for inviting us for a mass!

Special thanks go to Dr. Jürgen Lisenfeld and Dr. Alexander Bilmes for inviting me to
Karlsruhe, but also helping me to figure out the problems occurred in the fabrication, even after I left
Karlsruhe. I cannot forget your openness to sharing any knowledge you gained. You explained me

149



everything in details, which was so astonishing to me. This open spirit is also now part of me. Thanks
to your support, I learned a lot about the fabrication. Your hospitality in Karlsruhe was perfect.
Especially, I did not expect at all that I would play Mahjong with you and with your great friends
in a bar, Alex! I also would like to thank Dr. Akira Mochihashi for your hospitality during the
stay in Karlsruhe. I did not expect that we would meet each other again so early, when we met in the
conference in Dresden. Thank you very much for letting me stay at your home and showing your large
accelerator facility, KARA.

Thanks to all my colleagues in WMI during my time as a Ph.D. student. First, I would like to
thank our fab specialist and the member of our Honghong group Kedar E. Honasoge. You are the
most humorous person I have ever met in my entire life. I’m pretty sure that your existence changed
uncountable things in WMI. Ranging from work to private, from hard times to joyful moments, from
discussions to jokes, from cooking to drinking, from watching movies at home to traveling to Amsterdam
and Las Vegas, from hiking to skiing, we experienced everything together. I still can remember, when
Frank introduced us each other, saying that "we should work coherently". Yes, you were the best
partner ever. I enjoyed a lot fabricating new chips with you, analyzing the measurement data, staying
late for closing the fridge, and having our cooldown beer in the backyard. By the way, 361.

Next, I would like to express my dearest thanks to my soul, tea and office mate and the member
of our Honghong group Daniil Bazulin. You are the most entertaining person I have ever met in my
entire life. Together with Kedar, we experienced so much in the work and life. Thanks to you, our
office was always filled with laugh. Especially, the interplay with Dave and Maria was always so much
fun. Of course, not to be forgotten, your fashion, your unique policy and your dedication to cocktails,
tea and coffee definitely contributed to this. It was so nice drinking with you in a cozy bar, going
snowboarding in Kufstein, visiting Amsterdam, chilling at someone’s home, and, of course, going to
Honghong. I’m convinced that your special JTWPA operation will be more than successful! Spaciba!!

Moreover, I would like to thank our fab queen and my office mate Maria-Teresa Handschuh.
You realized me how much potential a mere power point has: it is not a software, but an art. Your
kindness was always heartwarming. It was so warm that our other office mates started to complain
that our office is too hot - which I do not agree. Your character as a perfectionist is definitely needed
for improving the fabrication processes. Also in private, we had together so many nice times in the
WMI backyard, Amsterdam, Sonthofen, Dresden, Munich and of course in the Isar in the summer
days.

I furthermore would like to thank our fab Yankee and my office mate David Cole Bunch. You
are the beloved Capitalist who forms the yin and yang with our beloved Communist. You were also
the last missing piece in our office. We know each other, since you joined us as a master student.
The fact that Daniil and Kedar convinced Hans to place you in our office already tells how incredible
person you are. Indeed, I was really happy, when you invited me for your Christmas party and sauna.
Nice memories also include the bike trip to the neighborhood aiming to reach the Biergarten, along
with the hike trip in Tegernsee. Naturally not to be forgotten, you are the most integrated person in
the Bavarian culture. We need to play more Schafkopfen!

Many thanks also go to our former office mate, our toughest drinker, and the member of our
Honghong group Janine Gückelhorn. It is incredible that we shared our office for more than three
years together. You were the holy mother in our office, who warmly observed over us, whatever
ridiculous things we did. Although you usually left WMI in the evening, I really appreciated, when
you were with us in our (really late) Honghong dinner. Beside of playing board games, I had great times
skiing with you in Kufstein. My still unsolved mystery is how much you can drink and outperform
others by far - I still cannot understand. I hope you have an enjoyable life in Barcelona!

I would like to express my thanks to our former office mate Dr. Daniel Schwienbacher. Besides
being really funny, you always helped me with the fab and answered my questions, whenever I had
questions. You continued helping our fab team as a postdoc, which was a great help. I hope you have
a great time in Australia!

I would like to express my thanks to our former office mates Dr. Daniel Schwienbacher, Dr.
Leander Peis and Dr. Lukas Liensberger.

150



Dr. Edwar Xie is the first person, who introduced me to the superconducting quantum circuit
fabrication in WMI. Thank you very much for your time!

Of course, I have to further express my dearest thanks to all the members of qubit team! I would
like to start with my good Bavarian sir, Dr. Michael Renger. Your deep understanding in physics
surprised me always. The occasional sight of you smoking a pipe I think well represents your personality.
This is also the reason why you were always welcome in our Honghong table.
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