
Technical University of Munich

Department of Mathematics

Master’s Thesis

Partial Homoscedasticity in
Graphical Models

Marvin Sylejmani

Supervisor: Prof. Dr. Mathias Drton

Advisor: M.Sc. Jun Wu

Submission Date: 23.10.2023

I hereby declare that this thesis is my own work and that no other sources have

been used except those clearly indicated and referenced.

Munich, 23.10.2023

Acknowledgements

First, I would like to thank Professor Mathias Drton for giving me the great oppor-

tunity to write my thesis in the fascinating area of causal inference and for giving

me interesting ideas and suggestions when needed. Further, I also want to thank

Jun Wu for his amazing supervision, answering all kinds of questions, and engaging

in deep discussions about the topics.

Finally, I want to thank my family, my girlfriend, and all my friends for supporting

me during this intense time. Without them, I would not have made it.

Abstract

Graphical models associated with directed acyclic graphs (DAGs) are commonly

used probabilistic models where the nodes represent random variables, and the

edges encode conditional independence relations. These can also be thought of as

structural equation models (SEMs), allowing for a natural causal interpretation.

Linear Gaussian SEMs, one of the most frequently used models due to their com-

putability, have been examined in prior work for the case of arbitrary error variances

and the case of all error variances equal.

In this thesis, we study the case of groupwise equal error variances (Wu and Drton

(2023)). As we will see, partial homoscedasticity of errors leads to the exhibition

of algebraic constraints and, as a consequence, to specific model equivalence state-

ments. The resulting equivalence classes can be represented by completed partially

directed acyclic graphs (CPDAGs). In a simulation study, we show that integrat-

ing the learning of partition blocks in greedy search-based approaches can lead to

strong results in estimating the CPDAG.

Zusammenfassung

Graphische Modelle, verknüpft mit gerichteten azyklischen Graphen (DAGs), sind

häufig genutzte probabilistische Modelle, bei denen die Knoten Zufallsvariablen

darstellen und die Kanten bedingte Unabhängigkeit kodieren. Diese Modelle können

auch als Strukturgleichungsmodelle (SEMs) betrachtet werden, die eine natürliche

kausale Interpretation ermöglichen. Lineare Gaußsche SEMs, die aufgrund ihrer

Berechenbarkeit zu den am häufigsten verwendeten Modellen gehören, wurden in

früheren Arbeiten für den Fall beliebiger Fehlervarianzen und für den Fall, dass alle

Fehlervarianzen gleich sind, untersucht.

In dieser Arbeit untersuchen wir den Fall gruppenweise gleicher Fehlervarianzen

(Wu and Drton (2023)). Wie wir sehen werden, führt die partielle Homoskedas-

tizität der Fehler zum Auftreten algebraischer Bedingungen und infolgedessen zu

spezifischen Aussagen über Modelläquivalenz. Die sich daraus ergebenden Äquiv-

alenzklassen können durch vervollständigte, teilweise gerichtete azyklische Graphen

(CPDAGs) dargestellt werden. In einer Simulationsstudie zeigen wir, dass die Inte-

gration des Lernens von Partitionsblöcken in auf Greedy-Algorithmen basierenden

Ansätzen zu guten Ergebnissen bei der Schätzung des CPDAG führen kann.

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Graph Theory . 3

2.2 Structural Equation Models . 6

3 Partial Homoscedasticity in Linear Gaussian SEM 10
3.1 Definition . 10

3.2 Equal Variance Constraints . 11

3.3 Characterization of the Models . 16

3.4 Model Equivalence . 18

3.5 Examples for Π-model Equivalence Classes 26

4 Greedy Search Algorithms 31
4.1 Likelihood Inference . 31

4.2 Search Schemes in Partition Space 33

4.3 Search Scheme in DAG space . 38

4.4 Constructing Greedy Search for both DAG and Partition 40

4.4.1 Baseline Estimation Technique 40

4.4.2 Simultaneous DAG and Partitions Steps 41

4.4.3 Alternating DAG and Partition Search 44

5 Numerical Experiments 46
5.1 Simulated Data . 46

5.2 Results . 47

5.2.1 Estimating Partition Blocks 47

5.2.2 Estimating CPDAG under Partition Information 50

6 Conclusion 63

References 65

1 Introduction

Recent breakthroughs in machine learning, especially in the domain of large lan-

guage models (LLMs), have sparked big debates about their capabilities and, there-

fore, potential to replace humans. One of the major topics discussed is the ability of

these models to reason and develop a causal understanding of the world (Kıcıman

et al. (2023)). But what does causal understanding mean? Judea Pearl, one of

the most influential scientists in the area of causal inference, describes the ”three

levels of causation” (Pearl and Mackenzie (2018)), a hierarchy of causal reasoning

problems. The first level is ”seeing” and ”observing” (Associations), the second

one is about ”doing” (Interventions), and the highest level assumes ”imagining”

(Counterfactuals). His explanation of the causal hierarchy helps illustrate the kind

of queries one can ask given a model and data.

Structural equation models (SEMs) provide a powerful mathematical framework

for analyzing causal relationships between variables in both observational stud-

ies and experimental interventions (Pearl (2009), Spirtes et al. (2000)). Initially

developed by Wright (1921) in the field of genetics using an approach based on

path analysis, structural equation modeling has found applications in various disci-

plines. Haavelmo (1944) and Koopmans (1945) further developed structural models

in econometrics, while Duncan (1975) introduced them in social sciences. The in-

creasing computing power in the subsequent years enabled many scientists to apply

structural equation models on large datasets.

Cause and effect in an SEM are modeled through functional relationships as specific

assignment mechanisms, given by a different equation for each variable. Directed

graphs are used to illustrate this, with every node corresponding to a variable and

every directed edge representing the causal structure between variables. This the-

sis will focus on directed acyclic graphs (DAGs). A SEM can also be viewed as

a directed graphical model, i.e., a probabilistic model expressing the conditional

independence structure between random variables using a DAG. This characteriza-

tion leads to criteria for deciding on observational equivalence of two models, i.e.,

when two different SEMs (and different DAGs) define the same statistical model.

1

1 Introduction

The challenge lies in learning the DAG from data (Structure Learning) since dif-

ferent SEMs can generate the same joint distribution. Depending on the type of

SEM, we can make statements about identifiability. For the following classes of

models, assuming causal minimality (Peters et al. (2017)), one can identify the un-

derlying DAG from the joint distribution: Linear SEMs with non-Gaussian noise

or LiNGAM (Shimizu et al. (2006)); non-linear additive noise models (Hoyer et al.

(2008); Peters et al. (2011)); and linear SEMs with Gaussian noise that have equal

variance (Peters and Bühlmann (2014)). In the case of linear Gaussian SEMs with

arbitrary variance, one can learn the graph only up to the (Markov) equivalence

class from observational data (Peters et al. (2017)).

This thesis will focus on a newly formulated type of linear Gaussian SEM, lying

between the cases of arbitrary error variances and equal error variances. We look at

the so-called partially homoscedastic linear Gaussian SEM, as described in Wu and

Drton (2023). The set of variables is grouped into partition blocks, indicating equal

error variance within the block and possibly different error variance between blocks.

Trivially, the two extreme cases arising are the already known ones with arbitrary

error variance (every variable represents one block) and full homoscedasticity of

error variance (all variables in one block). In this novel setup, we will investigate

the emergence of constraints due to the group-wise error variances and, as a result,

new criteria of model equivalence. Structure learning becomes more challenging

in this framework because, in addition to estimating graph structures, we also

have to incorporate partitioning of the variable set into possible algorithms and

methods. Using a greedy score-based approach, we design different schemes of

learning partition and DAG.

The thesis is structured as follows: Chapter 2 briefly introduces graph theory and

SEMs, focusing on the linear Gaussian case. Then, in Chapter 3, we describe par-

tially homoscedastic linear Gaussian SEMs and dive into equal variance constraints,

which lead to a formulation of model equivalence in this modified setup. In Chapter

4, we develop different ways of learning DAG and partition from data. In Chapter

5, we present the results of testing the described approaches on simulated datasets.

Chapter 6 closes the thesis with a conclusion and brief discussion.

2

2 Preliminaries

In this chapter, we introduce necessary background and terminology about graph-

ical structures and structural equation models. We first look at directed acyclic

graphs (DAGs), which will be important when defining structural equation models

(SEMs). As we will see, every model implies a graph, making DAGs a powerful tool

to visualize causal structures between variables. We finish this chapter by stating

important results about conditional independence and model equivalence in linear

Gaussian SEMs.

2.1 Graph Theory

A directed graph is a tuple G = (V,E), where V is the set of nodes or vertices

and E ⊆ V × V is the set of edges. (v,w) ∈ E encodes the edge v → w, where

v is called tail of edge and w head of edge. We will only consider directed graphs

without self-loops, which means E ∩ {(v, v) : v ∈ V } = ∅. Two vertices v, w ∈ V
are called adjacent, if (v, w) ∈ E or (w, v) ∈ E. The subgraph induced by A ⊆ V
is GA = (A, E ∩ (A× A)).

Paths
In a directed graph G = (V,E) a path is an alternating sequence

π = (v1, e1, v2, e2, . . . , vn−1, en−1, vn) of nodes from V and edges from E, such

that ei = (vi, vi+1) or ei = (vi+1, vi) for all i = 1, . . . , n − 1. In this definition,

we allow the path to contain a node more than once. If ei = (vi, vi+1) for all

i = 1, . . . , n− 1, then π is a directed path.

A trek is a path of the form

vLl ← vLl−1 ← · · · ← vL1 ← vtop → vR1 → · · · → vRr−1 → vRr

where the left side of the trek is a directed path from vtop to vLl and the right side

is a directed path from vtop to vRr . The node vtop is called top node.

3

2 Preliminaries

Relations among vertices

In an edge v → w, we call v a parent of w and w a child of v. We can denote the

sets of parents and children of a node i by pa(i) and ch(i), respectively.
Additionally we define ancestors and descendants of i in G by

an(i) := {k ∈ V : ∃k → · · · → i inG} and de(i) := {k ∈ V : ∃i→ · · · → k inG},

where we use the convention, that i /∈ an(i) and i ∈ de(i). We say that G contains

a cycle if a pair (j, k) exists with directed paths from j to k and k to j. A graph

without a cycle is called a directed acyclic graph (DAG). The skeleton of a DAG

is the undirected graph formed by removing directions of all the edges in the DAG.

Topological ordering becomes crucial when using DAGs to describe data-generating

procedures in structural equations.

Definition 2.1. Let G = (V,E) be a DAG with |V | = p. A bijective mapping

δ : {1, . . . , p} → {1, . . . , p} is called topological ordering of G, if for all i, j ∈ V
we have that i ∈ an(j) implies δ(i) < δ(j).

The ordering is such that for (i, j) ∈ E, it follows that i appears before j in the

ordering. We know from Peters et al. (2017) that for every DAG, there exists a

(non-necessarily unique) topological ordering. Topological ordering can be natu-

rally extended to a 2-tuple of nodes.

d-Separation

In a directed graph G = (V,E) we call a triplet of vertices (i, j, k) a collider
triple, if i → k and j → k. We call k a collider and distinguish between an

unshielded collider or immorality if i and j are non-adjacent, and a shielded
collider otherwise. Let π = (v1, e1, v2, e2, . . . , vn−1, en−1, vn) be a path. We call

vi with i ∈ {2, . . . , n − 1} a collider relative to this path if vi−1 → vi and

vi+1 → vi are edges in π.

Closely related to the notion of colliders is the construction of directional separation

criteria in DAGs.

4

2 Preliminaries

Definition 2.2. Two nodes v,w in a DAG G = (V,E) are d-connected given
C ⊆ V \ {v, w}, if there exists a path π from v to w, for which the following

conditions hold :

i) every collider on π is in C, and

ii) every non-collider on π is not in C.

If no path between v and w satisfies these conditions, we say that v and w are

d-seperated given C. We then write v ⊥⊥G w | C. Let A,B,C ⊆ V be pairwise

disjoint sets. We then write A ⊥⊥G B | C, if there are no vertices a ∈ A and

b ∈ B such that a and b are d-connected given C.

A trek, for example, is a path without a collider. Hence, its endpoints are

d-connected given ∅. To build the bridge between DAGs and conditional indepen-

dence statements, we will look at the global Markov property of joint distributions.

Definition 2.3 (Global Markov property). Let G = (V,E) be a DAG with

V = {1, . . . , p} and X = (X1, . . . , Xp) a multivariate random variable with joint

distribution PX . Let A,B,C ⊆ V be pairwise disjoint sets.

We say that PX satisfies the global Markov property or isMarkovian with respect

to G, if

A ⊥⊥G B | C ⇒ A ⊥⊥ B | C,

where A ⊥⊥ B | C means that A is conditionally independent of B given C.

We also define the following converse.

Definition 2.4. Same setup as in Def 2.3.

We say that PX is faithful with respect to G, if

A ⊥⊥ B | C ⇒ A ⊥⊥G B | C.

In summary, if a distribution is Markovian to G, we can read conditional inde-

pendence statements from the graph. If additionally it is faithful, all conditional

independence statements are encoded in G.

5

2 Preliminaries

2.2 Structural Equation Models

We now look at the general definition of structural equation models before studying

our special case of interest. The main part of this section adopts Peters et al. (2017)

and Drton (2018).

Definition 2.5 (Structural equation model). A structural equation model (SEM)

C = (S, P ϵ) for random vector X = (X1, . . . , Xp) is a collection S of p structural

assignments

Xi := fi(Xpa(i), ϵi), i = 1, . . . , p,

where pa(i) ⊆
{
X1, . . . , Xp

}
\ {Xi} are called parents of Xi, and a joint distri-

bution P ϵ over the noise variables ϵ = (ϵ1, . . . , ϵp) ∼ P ϵ. We require the noise

variables to be jointly independent; P ϵ is a product distribution.

The directed graph of this SEM is obtained by creating one vertex for each variable

Xi and drawing directed edges from each element of pa(i) toXi for all i = 1, . . . , p.
From now on, we assume the graph to be a DAG. Within the framework of causal

modeling, we call the elements of pa(i) direct causes of Xi, and Xi a direct effect
of its direct causes.

This thesis will concentrate on an important case of structural equation models.

Definition 2.6. A linear structural equation model (linear SEM) over p-dimensional

random vector X = (X1, . . . , Xp) is of the form

Xi :=
∑

k∈pa(i)

λkiXk + εi, i = 1, . . . , p

or in matrix notation

X = ΛTX + ϵ,

where Λ := (λij) ∈ Rp×p is the matrix of coefficients, which represents the causal

structure among the variables. ϵ = (ϵ1, . . . , ϵp) is the random vector modeling the

error terms with covariance matrix V ar[ϵ] := Ω. Since we assume independent

errors, Ω = diag(w1, . . . , wp) ∈ Rp×p is a diagonal matrix containing the positive

noise variances. The focus will be on covariance matrices; therefore w.l.o.g, we can

assume that E[ϵ] = 0.

Let I be the identity matrix. If I−Λ is invertible, then the linear equation system

is uniquely solved by X = (I − Λ)−T ϵ and

V ar[X] = (I − Λ)−TV ar[ϵ](I − Λ)−1 = (I − Λ)−TΩ(I − Λ)−1.

6

2 Preliminaries

Consequently, we can encode the structure of a DAG in a linear SEM by setting

all entries λij of the coefficient matrix Λ to zero whenever the corresponding edge

i→ j is missing in the graph (see Figure 2.1)

X1 = ϵ1

X2 = λ12X1 + ϵ2

X3 = λ13X1 + λ23X2 + ϵ3

X1 X2

X3

Figure 2.1: Example of a linear SEM and corresponding DAG

Let G = (V,E) be a DAG with |V | = p. We then define by

RE = {Λ = (λij) ∈ Rp×p : λij = 0, if i→ j /∈ E}

the set of p × p matrices with support in E. Combined with the error variances,

we can now parametrize the covariance matrix of X by following map

ϕG : RE × (0,∞)p 7→ PD, (Λ, w) 7→ (I − Λ)−Tdiag(w)(I − Λ)−1,

where w = (w1, . . . , wp) is the vector of error variances, and PD is the cone of

positive definite matrices. As a result, I − Λ is invertible for all Λ ∈ RE , since G
is a DAG and hence Λ can be permuted into lower-triangular form.

By taking the error vector to follow a Gaussian distribution and looking at the

fact that the linear transformation of a Gaussian random vector is again Gaussian;

we can define the following special case, which we will focus on for the rest of the

thesis.

Definition 2.7. Let G = (V,E) be a DAG with |V | = p. The linear Gaussian
SEM (or directed Gaussian graphical model) given by G is the family of all

multivariate normal distributions in Rp with covariance matrices in the following

set:

MG = {Σ : Σ = ϕG(Λ, w),Λ ∈ RE, w ∈ (0,∞)p}.

7

2 Preliminaries

We can calculate the covariances between individual entries of X with the result

known as trek rule , using the parametrization of the covariance matrix by Λ and

w, see Drton (2018)[Theorem 4.1].

Theorem 2.8 (Trek rule). Let G = (V,E) be a DAG with |V | = p and let
Λ ∈ RE, w ∈ (0,∞)p. For i, j ∈ V , let T (i, j) be the set of all treks between i
and j. We define for a trek τ with top node i0 the trek monomial

τ (Λ, w) = wi0

∏
k→l∈τ

λkl.

The covariance between Xi and Xj is the sum of all trek monomials between
i and j

ϕG(Λ, w)ij =
∑

τ∈T (i,j)

τ (Λ, w), i, j ∈ V.

Before we look closer at conditional independence statements in linear Gaussian

SEMS, we first state an important result about conditional independence in Gaus-

sian distributions. More details in Drton et al. (2009).

Theorem 2.9. Let X = (X1, . . . , Xp) be a Gaussian random vector with
covariance matrix Σ. Let i, j ∈ {1, . . . , p} be two distinct indices, and let C ⊆
{1, . . . , p} \ {i, j}. Then we have i ⊥⊥ j | C if and only if det(Σi∪C,j∪C) = 0,
i.e., the corresponding minors of the covariance matrix vanish.

Linear SEMs entail conditional independence statements, which can be read off

the corresponding DAG using d-separation criteria. We summarize these facts in

following theorem, see Spirtes (2013) and Richardson and Spirtes (2002) for further

discussion.

Theorem 2.10. Let G = (V,E) be a DAG. Let i, j be two distinct nodes,
and let C ⊆ V \ {i, j}.

i) The joint distribution PX of a linear SEM corresponding to the DAG
G satisfies the global Markov property with respect to G.

ii) A matrix Σ ∈ PD is in MG if and only if det(Σi∪C,j∪C) = 0 for all triples
(i, j, C) with i ⊥⊥G j | C.

8

2 Preliminaries

Different DAGs can encode the same set of conditional independence; they define

the same statistical model. This notion is called Markov equivalence.

Definition 2.11 (Markov equivalence). Two DAGs G1 and G2 are Markov
equivalent, if MG1 = MG2 .

Verma and Pearl (1990) provide a compact characterization of Markov equivalent

graphs, which makes it simple to determine equivalence:

Lemma 2.12. Two DAGs G1 and G2 are Markov equivalent if and only if
they have the same skeleton and unshielded colliders.

Figure 2.2 shows an example of Markov equivalent DAGs. DAGs who are Markov

equivalent entail the same d-separation statements. They form an equivalence class

and can be represented by a completed partially directed acyclic graph (CPDAG),

more on that in Section 3.4.

1 2

3 4

1 2

3 4

1 2

3 4

Figure 2.2: Example of Markov equivalent DAGs.

9

3 Partial Homoscedasticity in
Linear Gaussian SEM

In this chapter, we introduce partially homoscedastic linear Gaussian SEM and de-

velop algebraic constraints for that model. We then fully characterize this new class

of models and investigate model equivalence in this setup. Section 3.1-Section 3.4

closely adopt Wu and Drton (2023), including all proofs (except for Theorem 3.13).

In the final section, we look at examples of the new model equivalence classes and

compare them to classic Markov equivalence classes.

3.1 Definition

In order to define our new class of models, we first need to establish the concept of

partitioning the vertex set in a DAG.

Definition 3.1. Let G = (V,E) be a DAG. We say that Π = {π1, . . . , πk} forms

a partition of V , if π1, . . . , πk are non-empty and pairwise disjoint subsets of V

such that ∪̇kl=1πl = V .

We can define an equivalence relation on V by setting i ∼ j, whenever i and j are in
the same block πl and will write i ∼Π j for the rest of the thesis to indicate that the
two vertices i and j are in the same block of the partition Π. Our main idea now is

to incorporate a priori assumptions about the error variances of the linear Gaussian

SEM using the partition of the vertex set. We have equal error variances within

partition blocks and possibly different error variances between partition blocks.

Definition 3.2. LetG = (V , E) be a DAG with |V | = p, and let Π be a partition

of V . The partially homoscedastic linear Gaussian SEM given by G and Π is

the family of all multivariate normal distributions in Rp with covariance matrices

in the following set:

MG,Π = {Σ : Σ = ϕG(Λ, w),Λ ∈ RE, w ∈ (0,∞)p with wi = wj if i ∼π j}.

10

3 Partial Homoscedasticity in Linear Gaussian SEM

X1 = ϵ1, ϵ1 ∼ N (0, w2
1)

X2 = λ12X1 + ϵ2, ϵ2 ∼ N (0, w2
2)

X3 = λ13X1 + λ23X2 + ϵ3, ϵ3 ∼ N (0, w2
2)

X1 X2

X3

Figure 3.1: Example of a partially homoscedastic linear Gaussian SEM with two

blocks and the corresponding DAG

This partially homoscedastic setup includes the standard heteroscedastic case with

arbitrary variances by setting Π = {{1}, {2}, . . . , {p}} (MG,Π = MG) and the

fully homoscedastic case (Peters and Bühlmann (2014)) with all error variances

being equal by setting Π = {{1, 2, . . . , p}}.
Figure 3.1 shows an example of a partially homoscedastic linear Gaussian SEM.

As we will see later, this new model setup leads to a refinement of the standard

Markov equivalence classes. But before we look closer at model equivalence, we

first dive into algebraic constraints, which will help us make statements about the

identifiability of our model.

3.2 Equal Variance Constraints

Unlike the standard case of arbitrary error variances, algebraic constraints arise in

the partially homoscedastic case. In order to describe them, we first look at how

to obtain the error variances from the covariance matrix.

Theorem 3.3. Let G = (V,E) be a DAG with |V | = p, and let
Σ = ϕG(Λ, w) for Λ ∈ RE and w ∈ (0,∞)p. Then for any i ∈ V , the error
variance wi can be calculated from the covariance matrix Σ as

wi = σi − Σi,A(ΣA,A)
−1ΣA,i, (3.1)

where σi := Σi,i denotes the variance of i ∈ V and A may be any subset such
pa(i) ⊆ A ⊆ V \ de(i).

Proof. We adapt the proof of Drton (2018)[Theorem 7.1], where A = pa(i). Let

a ∈ A, i ∈ V . We now look at all possible treks between a and i. If there is a trek

between a and i, which ends at i with an edge of the form k ← i, then the trek

looks the following: a ← · · · ← k ← i. This would mean that a is a descendant

of i.

11

3 Partial Homoscedasticity in Linear Gaussian SEM

But that is not possible since A ⊆ V \ de(i). So every trek between a and i must

end with the edge k → i. Using the trek rule (Theorem 2.8), we can now conclude

Σa,i =
∑

l∈pa(i)

Σa,lΛl,i.

It follows immediately that

ΣA,i = ΣA,pa(i)Λpa(i),i = ΣA,AΛA,i, (3.2)

where the second equality comes from the fact that pa(i) ⊆ A and Λk,i = 0 for

k /∈ pa(i). We now look at treks between i and i. Since G is a DAG, the trek

i→ · · · → i is not possible. Using the trek rule again, we get

σi = wi +
∑

r∈pa(i)

Λr,i

∑
l∈pa(i)

Σr,lΛl,i,

where wi is the trek monomial of the trivial trek, which contains only the vertex i.
Converting to matrix notation and using the zeros in ΛA,i, we get

σi = wi + ΛT
pa(i),iΣpa(i),pa(i)Λpa(i),i = wi + ΛT

A,iΣA,AΛA,i.

Rearranging this term and inserting (3.2), we finish the proof.

Consequently, we get the following result about equal variance assumption.

Corollary 3.4. Let ϵi, ϵj be two random Gaussian errors with equal variance,
i.e., i and j are in the same block of a partition Π. Then all covariance
matrices in MG,Π satisfy that

σi − Σi,Ai(ΣAi,Ai)
−1ΣAi,i = σj − Σj,Aj (ΣAj ,Aj)

−1ΣAj ,j (3.3)

for all subsets Ai and Aj such that pa(i) ⊆ Ai ⊆ V \ de(i) and pa(j) ⊆ Aj ⊆
V \ de(j).

The following theorem shows the converse.

Theorem 3.5. Let G = (V,E) be a DAG with |V | = p and let i ∈ V . Let
A ⊆ V \ {i}. Fix any vector of positive error variances w ∈ (0,∞)p. If for
all Λ ∈ RE the covariance matrix Σ = ϕG(Λ, w) satisfies equation (3.1), then
it must hold that pa(i) ⊆ A ⊆ V \ de(i).

Proof. Let us assume that there exists a node k ∈ pa(i) \A. We now choose Λ so

that all entries are zero, except for λki. By the trek rule, we get Σi,A = 0, since

k /∈ A. Using that together with (3.1) we conclude that wi = σi.

12

3 Partial Homoscedasticity in Linear Gaussian SEM

But looking at the fact that the only treks between i and i are the trivial one and

i← k → i, we consequently get by the trek rule σi = wi + λ2
kiwk > wi, which is

a contradiction to (3.1).

Now we will assume that there exists a node k ∈ A \ (V \ de(i)) = de(i)∩A. This

means that k is a descendant of i. Hence there exists a directed path i→ ·· · → k.
We can always pick k as this path’s first node in A. Therefore the path has the

form i → m1 → · · · → mt → k with m1,m2, . . . ,mt /∈ A. We now choose Λ

such that all entries are zero except for λim1, λm1m2, . . . , λmt−1mt, λmtk. By the

trek rule, we get σi = wi since the only non-zero trek (no edge with zero weight)

between i and i is the trivial one. Also, by the trek rule, we get that

Σi,k = wiλim1λmtk

t∏
i=2

λms−1ms.

Inserting that in (3.1) and taking into account all the zeros in Σ we get

wi = σi −
(
wiλim1λmtk

t∏
i=2

λms−1ms

)2
[(ΣA,A)

−1]kk

= σi −
(
wiλim1λmtk

t∏
i=2

λms−1ms

)2 1

σk
< σi = wi,

which is a contradiction. This concludes the proof.

We can now combine Theorem 3.3 and Theorem 3.5 to characterize the equal vari-

ance constraints which hold in a partially homoscedastic model.

Theorem 3.6. Let G = (V,E) be a DAG, and let Π be a partition of V . Let
i, j ∈ V bet two nodes such that i ∼Π j, i.e., they are in the same partition
block, and let Ai ⊆ V \ {i} and Aj ⊆ V \ {j}. Then the equation (3.3) holds
for all matrices Σ ∈ MG,Π if and only if pa(i) ⊆ Ai ⊆ V \ de(i) and pa(j)
⊆ Aj ⊆ V \de(j) .

Proof. The “if” direction follows directly from Corollary 3.4. In the “only if” direc-

tion, we will distinguish different cases for the set Ai using proof by contradiction

similar to the proof of Theorem 3.5. The proof for the set Aj is analogous.

13

3 Partial Homoscedasticity in Linear Gaussian SEM

a) ∃ k ∈ pa(i) \Ai : We choose Λ such that all entries are zero, except for λki.

Using the trek rule we get Σi,Ai = 0, since k /∈ Ai. Therefore (3.3) yields :

σi = σj − Σj,Aj (ΣAj ,Aj)
−1ΣAj ,j ≤ σj.

By the trek rule we also get σj = wj and σi = wi + λ2
kiwk > wi, which

follows from the fact that the only non-zero treks between i and i are the

trivial one and i← k → i. It follows that

σi ≤ σj = wj = wi < wi + λ2
kiwk = σi,

which is a contradiction. We conclude that pa(i) ⊆ Ai.

b) ∃ k ∈ de(i)∩Ai : We deduce that there exists a directed path i→ · · · → k.
Analogous to the proof of Theorem 3.5 we will choose k such that the path is

“minimal”, which means i→ m1 → · · · → mt → k with m1,m2, . . . ,mt /∈
Ai. We continue by distinguishing three subcases (illustrated in Figure 3.2) :

i) We first look at the case where the minimal path from i to k does not

intersect j. Similar to the proof of Theorem 3.6, we set all edge weights

in Λ to zero, except for those in the path. The trek rule asserts that

σi = wi = wj = σj and

Σi,k = wiλim1λmtk

t∏
i=2

λms−1ms.

Consequently we get under equation (3.3)

wi = σi −
(
wiλim1λmtk

t∏
i=2

λms−1ms

)2 1

σk
< σj = wj,

which is a contradiction.

ii) Now we consider the case where every minimal path from i to k contains

j and additionally Aj ∩ de(j) ̸= ∅. Let k
′ ∈ Aj ∩ de(j). That means

we have a directed path from j to k
′ ∈ Aj . The node i is not part of

this path. Otherwise, we would have a directed cycle from i to i, which
contradicts G being a DAG. We can see that we have the analogous

case of subcase i), with i and j switched, and hence can construct a

contradiction to equation (3.3).

14

3 Partial Homoscedasticity in Linear Gaussian SEM

i

m1

...

mt−1

mt

j

k

i)

i

m1

...

j

...

mt k...k
′

ii)

i

m1

...

?

j

... k

iii)

Figure 3.2: The three subcases where there exists a node k ∈ de(i) ∩ Ai.

iii) In the last subcase, we consider that every minimal path from i to k
contains j and that j is being visited only after the path intersects with

nodes in Aj . If the node preceding j is not in Aj , we are again in the

case of a) with i and j flipped, since we would have pa(j)\Aj ̸= ∅.
Otherwise, we set all edge weights to zero except for those on the path.

Let A
′

j be the nodes of Aj in the path. In the new DAG containing only

the edges of the directed path, A
′

j satisfies pa(j)⊆ A
′

j ⊆ V \de(j). We

can now use Theorem 3.3 and obtain

wj = σj − Σj,A
′
j
(ΣA

′
j ,A

′
j
)−1ΣA

′
j ,j

= σj − Σj,Aj (ΣAj ,Aj)
−1ΣAj ,j.

But computing the left-hand side of (3.3) using the same steps as in i),

we get the following strict inequality:

σi − Σi,Ai(ΣAi,Ai)
−1ΣAi,i = wi −

(
wiλim1λmtk

t∏
i=2

λms−1ms

)2 1

σk
< wi

= wj = σj − Σj,Aj (ΣAj ,Aj)
−1ΣAj ,j.

Theorem 3.6 gives us an algebraic description of partially homoscedastic linear

Gaussian models. We can express the equal variance constraints in the form of

equations between conditional variances, where the choice of conditioning sets can

vary within a given range of sets. In the following result, we order this range of

15

3 Partial Homoscedasticity in Linear Gaussian SEM

sets from smallest to largest one, where we partially order sets by set inclusion

and extend the ordering to pairs of sets, i.e., (Ai, Aj) ≤ (Bi, Bj) if Ai ⊊ Bi or if

Ai = Bi and Aj ⊆ Bj .

Corollary 3.7. Let G = (V,E) be a DAG, and let Π be a partition of V with
nodes i, j ∈ V such that i ∼Π j, i.e., they are in the same partition block.
Let Aij be the family of all pairs (Ai, Aj) with Ai ⊆ V \{i} and Aj ⊆ V \{j}
for which equation (3.3), i.e.,

σi − Σi,Ai(ΣAi,Ai)
−1ΣAi,i = σj − Σj,Aj (ΣAj ,Aj)

−1ΣAj ,j,

holds for all covariance matrices Σ ∈MG,Π. It follows that

i) Aij contains a unique minimal pair, namely, Ai = pa(i) and Aj = pa(j),
and

ii) Aij contains a unique maximal pair, namely, Bi = V \ de(i) and Bj =

V \ de(j).

3.3 Characterization of the Models

In the last section, we developed algebraic constraints for our partially homoscedas-

tic model setup. In order to make statements about model equivalence, we addi-

tionally need conditional independence constraints derived from d-separation. We

now show that equal variance assumptions do not alter the set of conditional in-

dependence statements in a linear SEM. We will use the proof of Geiger and Pearl

(1990)[Theorem 1 and 3], where they showed soundness and completeness of d-

separation in SEMs, by modifying it for our setting.

Proposition 3.8. Let G = (V,E) be a DAG, and let Π be a partition of V .
Let i, j be two distinct nodes and let S ⊆ V \ {i, j}. Then the conditional
independence Xi ⊥⊥ Xj | S holds for all multivariate normal random vectors
X with covariance matrix in MG,Π if and only if the d-separation i ⊥⊥G j | S
holds in G.

Proof. The “if” direction follows directly from Theorem 2.10 ii), since MG,Π ⊆
MG. For the “only if” direction, we assume that i and j are not d-separated given

S in G. This means there is a path q which d-connects i and j given S, i.e., every
collider is in S and every non-collider is outside of S. If S = ∅, a trek exists

between i and j. Setting all edge weights to zero, except for those on the trek,

16

3 Partial Homoscedasticity in Linear Gaussian SEM

i ... h1
...

...

z1

h2
...

...

z2

... hk

...

zk

... j

Figure 3.3: The active path q.

we can conclude by the trek rule that in the covariance matrix Σi,j ̸= 0 holds and

hence Xi ⊥̸⊥ Xj . Now let S ̸= ∅. We denote by S
′
= {z1, z2, . . . , zk} ⊆ S all

colliders (see Figure 3.3) in the path. We will now construct a covariance matrix

Σ, such that Xi ⊥̸⊥ Xj | S. To make sure that our covariance matrix is in MG,Π

and not merely in MG, we set all error variances wi = 1. All edge weights are

set to zero, except for those edges on the path q, which we assign the same value

ρ ∈ (0, 1). Let Σ = ϕG(Λ, w) be the covariance matrix obtained by the resulting

choice of Λ and w.

Using the trek rule for the diagonal entries of Σ = (σkl) we get

σkk = 1 ∀k ∈ S \ S
′
,

since all nodes which are in both S and the path q are the colliders in the set S
′
.

Now we can observe that between each pair of consecutive nodes in the sequence

i ≡ z0, z1, z2, . . . , zk, zk+1 ≡ j there exists a unique non-zero trek. Denoting with

rt the number of edges that go from zt to zt+1 in the path q, the trek rule satisfies

for all t = 0, . . . , k :

σzt,zt+1 = ρrt.

Using all that information and ordering the nodes as i, z1, . . . , zk, j followed by the

nodes in S \ S ′
, we obtain that

ΣijS,ijS =



σi,i ρr0 0 . . . 0 0

ρr0 σz1,z1 ρr1 . . . 0 0

0 ρr1 σz2,z2
. . . 0 0 0

...
...

.

0 0 0
. . . σzk,zk ρrk

0 0 0
... ρrk σj,j
0 IS\S′



17

3 Partial Homoscedasticity in Linear Gaussian SEM

By removing the i-th row and j-th column, we get a lower triangular matrix and

hence det(ΣiS,jS) = ρ
∑k

t=0 rt ̸= 0. By Theorem 2.9 we deduce that Xi ⊥̸⊥ Xj | S
and finish the proof.

Summarizing all facts about conditional independence and equal variance con-

straints, we can now fully describe a partially homoscedastic Gaussian linear model.

Theorem 3.9. Let G = (V,E) be a DAG with |V | = p, and let Π be a parti-
tion of V . Then a covariance matrix Σ ∈ PD is in the partially homoscedastic
Gaussian linear model MG,Π if and only if Σ satisfies all conditional inde-
pendence constraints given by d-separation and all equal variance constraints
from Corollary 3.4.

Proof. The “only if” direction follows directly from Proposition 3.8 and Corol-

lary 3.4. For the “if” direction we assume that Σ satisfies all condition indepen-

dence and equal variance constraints associated with G. Theorem 2.10 ii) tells us

that a covariance matrix, which satisfies all conditional independence constraints

given by d-separation, is an element of MG. Consequently there exist Λ ∈ RE and

w ∈ (0,∞)p such that Σ = ϕG(Λ, w) ∈ MG. Theorem 3.3 implies that wi = wj

for i ∼Π j. It follows that Σ ∈MG,Π.

3.4 Model Equivalence

We can now discuss model equivalence in partially homoscedastic Gaussian linear

SEMs. First, we formalize the idea of model equivalence in partially homoscedastic

linear Gaussian SEMs analogous to the standard case.

Definition 3.10. Let Π be a partition of the vertex set V . We call two DAGs

G1 = (V,E1) and G2 = (V,E2) Π-model equivalent if MG1,Π = MG2,Π. In this

case, we write G1 ≈Π G2.

Lemma 2.12 gives us graphical criteria for determining whether two DAGs are

Markov equivalent, i.e., when they describe the same d-separation relations. We

extend these criteria now for the partially homoscedastic setup.

18

3 Partial Homoscedasticity in Linear Gaussian SEM

Theorem 3.11. Let G1 = (V,E1) and G2 = (V,E2) be DAGs with |V | = p,
and let Π be a partition of V . Then G1 and G2 are Π-model equivalent if and
only if the following conditions hold :

i) G1 and G2 have the same skeleton and unshielded colliders, and

ii) paG1(i)= paG2(i) for all nodes i that belong to a partition block πk ∈ Π

with size |πk| ≥ 2.

Proof. For the “if” direction we assume that conditions i) and ii) hold. From i)
follows that G1 and G2 entail the same d-separation relations and hence MG1 =

MG2 by Lemma 2.12. Let Σ ∈ MG1,Π. Since MG1,Π ⊆ MG1 = MG2 , we can find

Λ(2) ∈ RE2 and w(2) ∈ (0,∞)p such that Σ = ϕG2(Λ
(2), w(2)). Now let i ̸= j be

two nodes which belong to the same partition block πk with size |πk| ≥ 2. Using

that Σ ∈MG1,Π, we get by Corollary 3.4

σi − Σi,paG1
(i)(ΣpaG1

(i),paG1
(i)

−1ΣpaG1
(i),i = σj − Σj,paG1

(j)(ΣpaG1
(j),paG1

(j))
−1ΣpaG1

(j),j.

Following (ii) we have paG1
(i) = paG2

(i) and paG1
(j) = paG2

(j) and hence

w
(2)
i = σi − Σi,paG2

(i)(ΣpaG2
(i),paG2

(i))
−1ΣpaG2

(i),i

= σj − Σj,paG2
(j)(ΣpaG2

(j),paG2
(j))

−1ΣpaG2
(j),j = w

(2)
j .

Consequently, we have by Theorem 3.9 that Σ ∈ MG2,Π and hence MG1,Π ⊆
MG2,Π. Swapping the roles of G1 and G2 we conclude that MG1,Π = MG2,Π.

For the “only if” direction we assume that MG1,Π = MG2,Π holds. Theorem 3.9

implies, that G1 and G2 induce the same conditional independence constraints

given by d-separation. It follows that condition i) holds. Let i ̸= j be two nodes

belonging to the same partition block πk. Theorem 3.9 also implies, that G1 and

G2 induce the same equal variance constraints, given as in Corollary 3.4. That

means that the set Aij , defined as in Corollary 3.7, is the same for G1 and G2.

We now use the result from Corollary 3.7, which says, that the unique minimal

element of Aij consists of the parent set of i and j in both G1 and G2. Therefore

paG1
(i) = paG2

(i) and paG1
(j) = paG2

(j), and hence condition ii) holds.

Remark 3.12. If follows directly that in the standard heteroscedastic case with

Π = {{1}, {2}, ..., {p}} this theorem reduces to the standard Markov equivalence

result (Lemma 2.12). In that case, the graph can be identified by the joint distribu-

tion only up to its Markov equivalence class (assuming faithfulness, see Lemma 7.2

19

3 Partial Homoscedasticity in Linear Gaussian SEM

in Peters et al. (2017)). Whereas in the full homoscedastic case Π = {{1, 2, ..., p}}
with all noise variables having the same variance, we conclude that no two distinct

graphs can define the same model since all edges are fixed by condition ii). Also

proven in Peters and Bühlmann (2014).

We know from Drton (2018) that the parametrization ϕG(Λ, w) is injective, hence

ϕG(Λ, w1) ̸= ϕG(Λ, w2) for w1 ̸= w2. It follows that for a DAG G = (V,E) and

partitions Π1 ̸= Π2 we have in generalMG,Π1 ̸= MG,Π2 . In this novel result, we look

further at which necessary and sufficient conditions two partially homoscedastic

linear Gaussian SEMs are the same.

Theorem 3.13. Let G1 = (V,E1) and G2 = (V,E2) be DAGs with |V | = p.
Let Π1 and Π2 be partitions of V . Then MG1,Π1 = MG2,Π2 if and only if Π1

= Π2 and G1 ≈Π1 G2 (or G1 ≈Π2 G2).

Proof. The “if” direction follows directly from Theorem 3.11. For the “only if” di-

rection, we do a proof by contradiction. Suppose that Π1 ̸= Π2. That means there

exists i, j ∈ {1, . . . , p} such that i ∼Π2 j and i ̸∼Π1 j. We now choose Λ(1) = 0

to be the edge weight matrix and w(1) = (1, . . . , 1, wi, . . . , wj, 1, . . . , 1) ∈ Rp

with wi ̸= wj to be the the corresponding vector of error variances. The covari-

ance matrix obtained by this parametrization is hence Σ(1) = ϕG1(Λ
(1), w(1)) =

diag(1, . . . , 1, wi, 1, . . . , wj, 1, . . . , 1) ∈ MG1,Π1 . Since we have MG1,Π1 = MG2,Π2

it follows that Σ1 ∈ MG2,Π2 . Let Σ(1) = ϕG2(Λ
(2), w(2)) be the parametrization

where Λ(2) ∈ RE2 and w(2) ∈ (0,∞)p, such that if follows the partition of Π2.

Since Σ(1) is a diagonal matrix, we can conclude that Λ(2) = 0. We prove this

claim by contradiction. Let us assume that Λ(2) ̸= 0 and (k, l) be the “minimal”

pair of nodes (minimal according to the topological ordering of pair of nodes in

G2), which have a non-zero edge between them, i.e., Λ
(2)
k,l ̸= 0. Because of this

“minimality”, there are no non-zero treks of the form k ← · · · ← t → · · · → l
or k → · · · → t→ · · · → l between k and l. The only non-zero trek is therefore

k → l and applying the trek rule, we get Σ
(1)
kl ̸= 0, which is a contradiction to Σ(1)

being a diagonal matrix.

Using now that Λ(2) = 0, we conclude that Σ(1) = diag(w(2)) with w
(2)
i ̸= w

(2)
j ,

which is a contradiction to i ∼Π2 j. This finishes the proof.

In classical Markov equivalence theory an edge x→ y is called compelled in a DAG

G, if for every DAG G′ Markov equivalent to G, x → y exists in G′. Otherwise,

an edge x → y is termed reversible if there exists a DAG G′ that is equivalent

to G and in which the direction of that edge is reversed. As mentioned before,

20

3 Partial Homoscedasticity in Linear Gaussian SEM

1 2

3

5 4

1 2

3

5 4

Figure 3.4: DAG (left) and corresponding CPDAG (right)

Markov equivalence classes can be represented by a so-called completed partially
directed acyclic graph (CPDAG), as shown in Andersson et al. (1997). CPDAGs

are mixed graphs, meaning they consist of directed and undirected edges. The

directed edges in the CPDAG are the compelled edges of the represented equivalence

class. Undirected edges stand for the reversible edges in that class (see Figure 3.4).

We now adapt these ideas for our partially homoscedastic setup.

Definition 3.14. Let G = (V,E) be a DAG and Π a partition of the vertex

set. The CPDAG (completed partially directed acyclic graph) of G under the
partition Π is obtained by taking the union of all DAGs that are equivalent to G :

G∗
Π := ∪ (G′|G′ ≈Π G).

Adapting the notion of compelled and reversible edges in the standard heteroscedas-

tic case to our Π-model equivalence, G∗
Π consists of directed edges for compelled

edges and undirected edges for reversible edges. An edge x→ y is therefore called

compelled in a DAG G if for every DAG G′ Π-model equivalent to G, x → y
exists in G′. Analogously, an edge x → y is termed reversible if there exists a

DAG G′ that is Π-model equivalent to G and in which the direction of that edge is

reversed. It follows from Theorem 3.11 that, besides unshielded colliders, all edges

of nodes from a partition block of size bigger than two are compelled in a Π-model

equivalence class.

21

3 Partial Homoscedasticity in Linear Gaussian SEM

R1 =⇒ R3 =⇒

R2 =⇒ R4 =⇒

Figure 3.5: The 4 orientation rules

We now focus on the task of obtaining a CPDAG given DAG G and partition Π. In

the standard heteroscedastic case, Meek (1995) shows how to construct a CPDAG

given conditional independence statements. Furthermore, Meek (1995) details the

procedure for constructing a CPDAG when provided with background knowledge

regarding certain edges. Background knowledge is encoded in K = ⟨F,R⟩, where
F consists of edges not in DAG and R of edges in DAG. The whole process can be

summarized as follows:

I. Conditional independence statements are translated into adjacencies and un-

shielded collider triples.

II. The first 3 of the 4 orientation rules by Verma and Pearl (1992)(see Figure 3.5)

are applied.

Phases I and II give the classical CPDAG without background knowledge. In the

final phase, background knowledge is integrated, and the existence of a compatible

CPDAG is verified. CPDAG at the current step is denoted by G∗.

III. The following steps are taken :

S1 If there is an edge i→ j in F such that i→ j in G∗ then FAIL.

S1’ If there is an edge i→ j in R such that j → i in G∗ or i, j not adjacent

in G∗ then FAIL.

S2 Randomly choose one edge i→ j from R and let R = R \ {i→ j}.
S3 Orient i→ j in G∗ and close orientations under R1, R2, R3 and R4.

S3 If R ̸= ∅, then go to S1.

22

3 Partial Homoscedasticity in Linear Gaussian SEM

Algorithm 1 Constructing CPDAG given DAG and partition

Require: DAG G, partition Π of vertex set V
1: Create an empty graph G′

2: Copy the skeleton and all edge orientations with unshielded colliders of G to

G′

3: Apply rules R1, R2 and R3 on G′ until no more edges can be oriented

4: for i ∈ V with i ∈ πk and |πk| ≥ 2 do
5: Copy the orientation of edges in G having one endpoint at i to G′

6: end for
7: Apply rules R1 and R2 on G′ until no more edges can be oriented

8: return G∗
Π = G′

We now adapt this procedure to our partially homoscedastic setup by using a

simplified version of it, see Algorithm 1. The background knowledge consists of all

edges of nodes from a block πk with size |πk| ≥ 2. A proof is needed to show the

correctness of the algorithm.

Theorem 3.15. Let G = (V,E) be a DAG, and let Π be a partition of V .
Then Algorithm 1 outputs the correct corresponding CPDAG G∗

Π.

Proof. We now try to fill the gaps between the general procedure of constructing a

CPDAG with background knowledge and the simplified procedure in Algorithm 1.

The general algorithm has been proven in Meek (1995)(Theorems 2-4).

First, we create the CPDAG without background knowledge (CPDAG in classic

heteroscedastic setup). Because we know the DAG G, all conditional independence

statements can be read off and are therefore known. Thus, we only need to copy

the skeleton and unshielded colliders of G to empty graph G′. Then, we apply the

orientation rules R1, R2, and R3 to the graph. This concludes Phase I and II.

Next, we insert the background knowledge from the given partition Π into G′.

Equal variance constraints determine the adjacencies of all vertices in a block πk
with size |πk| ≥ 2. Hence K = ⟨F,R⟩, where R consists of all those edges with

one endpoint in these vertices and F consists of the reversal of those edges.

23

3 Partial Homoscedasticity in Linear Gaussian SEM

We adopt the steps of Phase III the following :

i) Since DAG and partition are given, we know the existence of at least one

member of the equivalence class; therefore, the general algorithm will not

fail. Hence, the background knowledge checks S1 and S1’ are redundant and

can be omitted.

ii) We can now simultaneously add the edges from R and then close the orienta-

tions sequentially. Every newly directed edge relies on background knowledge.

Once all the dependencies are accounted for and incorporated, the edge can

be oriented without encountering any conflicts.

iii) As a result of this special type of background knowledge, only the situations

of rule R1 and R2 can happen. Creating examples where the patterns in R1

and R2 originate from knowledge of the adjacency directions of specific nodes

is simple.

In R3, there exists an unshielded collider triple. However, when propagat-

ing with background knowledge, no new collider triples emerge. Otherwise,

the resulting CPDAG would not possess the same conditional independence

statements as the original DAG. Consequently, any patterns observed in R3

must have arisen during the construction of the CPDAG without background

knowledge and will not appear in the final propagation phase.

Let us assume that R4 appears. We now examine the first appearance of

R4. The edge i3 → i4 is not obtained during the construction of standard

CPDAG without background knowledge because i4 → i1 would have also

been oriented, and hence pattern R4 appears, which is a contradiction. If

the orientation i3 → i4 is a direct result of background knowledge, it would

imply that we also know the orientations of all adjacent edges connected to

either i3 or i4. This would lead to the orientation of i2− i3 or i2− i4, which
again is a contradiction. Figure 3.6 illustrates the scenario where the orien-

tation i3 → i4 is obtained from R1 using unshielded triple l → i3 − i4. To

maintain the non-orientation of i2 − i3, the edge l → i2 becomes necessary.

Additionally, the undirected edge i2− i4 implies an adjacency between l and
i4. However, this creates a shielded triple (l, i3, i4), contradicting the pattern

described in R1. Figure 3.7 shows the case of i3 → i4 resulting from R2.

In order to keep i2 − i4 not oriented, the edge l → i2 must exist. But as

a consequence, R2 can be applied and hence i2 − i3 is oriented as i3 → i2,
which again leads to a contradiction.

24

3 Partial Homoscedasticity in Linear Gaussian SEM

i2

i1 i3

i4

l

Figure 3.6: i3 → i4 from R1

i2

i1 i3

i4

l

Figure 3.7: i3 → i4 from R2

We proved that the modifications to the general algorithm using a special type of

background knowledge are correct.

1 2

3 4

5

1 2

3 4

5

Figure 3.8: DAG (left) and corresponding CPDAG (right) under fixed partition

Consider the example in Figure 3.8. The vertex set is V = {1, 2, 3, 4, 5} and

the partition is given by Π = {{1, 2}, {3}, {4}, {5}}. Applying Algorithm 1 on

the DAG to obtain the CPDAG, we do the following steps: First, we keep the

skeleton and all unshielded colliders (in that case, there are none). Then, those

edges containing node 1 or 2 are oriented the same as in the DAG. The last step

is to propagate the rules R1 and R2. Consequently, edge 4→ 5 is oriented by R1,

and 3− 4 stays undirected.

25

3 Partial Homoscedasticity in Linear Gaussian SEM

3.5 Examples for Π-model Equivalence Classes

The assumptions of partial homoscedasticity are interesting as their emergence of

error variance constraints leads to a refinement of the Markov equivalence classes.

Using the results of the last chapter, we illustrate this point by looking at some

examples of Π-model equivalence classes and comparing them to classic Markov

equivalence classes.

Enumerating the number of Markov equivalence classes is a difficult problem that

a few publications have addressed. Radhakrishnan et al. (2018) conclude that

counting the number of Markov equivalence classes must be NP-hard. Gillispie

and Perlman (2001) were able to calculate the number of equivalence classes, as

specified by Pearl and Verma (Lemma 2.12), up to 10 nodes. Table 3.1 shows their

results. As we can see, this quantity grows extremely large.

Table 3.1: Equivalence classes by number of nodes p (from Gillispie and Perlman

(2001))

p Equivalence classes

1 1

2 2

3 11

4 185

5 8782

6 1067825

7 312510571

8 212133402500

9 326266056291213

10 1118902054495975141

Theorem 3.11 gives us criteria for deciding model equivalence in our new partially

homoscedastic setup. In addition to skeleton and collider information, we need to

check on the partition information of specific nodes. Consequently, the number

of equivalence classes increases in most cases in comparison to the standard het-

eroscedastic case. We look in the following at some examples and how, depending

on the partition, the classical equivalence classes are refined.

26

3 Partial Homoscedasticity in Linear Gaussian SEM

Figure 3.9: Comparison of Markov equivalence and Π-model equivalence in an ex-

ample with two nodes. The color of nodes indicates partition grouping.

Figure 3.9 shows the simple case of an equivalence class with DAGs consisting of two

nodes. In that case, we only have two possible partitions. The heteroscedatic case

results in the classic Markov equivalence class, and full homoscedasticity results in

every DAG defining its own equivalence class (see Remark 3.12). Figure 3.10 shows

an example with three nodes and Π-model equivalence of two partitions. For three

variables, we have five possible partitions (more on counting of partitions in 4.2).

It is easy to see that, except for the finest possible partition, every partition leads

to the situation of every DAG being its own CPDAG.

Figure 3.11 shows an example with four nodes and Π-model equivalence of two

partitions. Both partitions lead to a refinement of the Markov equivalence class.

As in the other examples, these refinements follow from the partition structure and

Theorem 3.11, which specifies that the edges of nodes in a block with a size greater

or equal to two are fixed.

27

3 Partial Homoscedasticity in Linear Gaussian SEM

Figure 3.10: Comparison of Markov equivalence and Π-model equivalence for two

different partitions in an example with three nodes. The color of nodes

indicates partition grouping.

28

3 Partial Homoscedasticity in Linear Gaussian SEM

Figure 3.11: Comparison of Markov equivalence and Π-model equivalence for two

different partitions in an example with four nodes. The color of nodes

indicates partition grouping.

29

3 Partial Homoscedasticity in Linear Gaussian SEM

Remark 3.16. We can formalize these observations to a more general statement

about the number of equivalence classes under partitioning. Let p ≥ 3 be the

number of nodes. Let Π be a partition of the nodes, such that there is at most

one partition block πl ∈ Π with size |πl| = 1. Then, the number of Π-model

equivalence classes equals the number of DAGs.

30

4 Greedy Search Algorithms

In the last chapter, we developed the necessary theory for partially homoscedastic

Gaussian linear SEMs. We now take the next step and look at how to learn DAG

and partition of this model from data.

There have been different approaches to learning the structure of directed graphical

models. Two of the most popular ones are constraint-based methods and score-

based methods. Constrain-based methods perform statistical conditional indepen-

dence tests on the data to infer the graph. One commonly used constraint-based

method is the PC algorithm (Spirtes et al. (2000)). Score-based methods compare

and evaluate different candidates of DAG/CPDAGs based on a scoring criterion

(e.g., penalized likelihoods like BIC) and try to optimize the score. Popular ex-

amples of these types of methods are the GES algorithm (Chickering (2003)) and

MMHC (Tsamardinos et al. (2006)).

In this thesis, the focus will be on greedy score-based search algorithms, and this

chapter introduces searching schemes for partition and DAGs (Sections 4.2 + 4.3).

These will serve as building blocks for constructing various sophisticated methods

to estimate the CPDAG under partitioning (Section 4.4). We start by stating the

likelihood of a partially homoscedastic Gaussian linear SEM and the maximum

likelihood estimates of its parameters to calculate a score.

4.1 Likelihood Inference

Given DAG G = (V,E) with |V | = p and partition Π with |Π| = K blocks, we

can compute the maximum likelihood estimation of edge weight and error variance

parameter (Λ, ω). Let X = (X1, . . . , Xp)
T ∈ Rp×n be a data matrix, with n i.i.d

and centered columns generated from a multivariate normal distribution N (0,Σ)
with covariance matrix Σ. Let S = XXT/n be the sample covariance matrix.

31

4 Greedy Search Algorithms

The likelihood function is given by

LG(Λ, ω) =

n∏
i=1

1√
(2π)pdet(Σ)

exp
{
− 1

2
XT

(i)Σ
−1X(i)

}
= (2π)−

np
2 det(Σ)−

n
2

n∏
i=1

exp
{
− 1

2
XT

(i)Σ
−1X(i)

}
,

where X(i) ∈ Rp denotes the i-th observation. Using now the parametrization of

Σ by Λ and ω, we can rewrite

det(Σ)−
n
2 =

[
det((I − Λ))−2 det(diag(ω))

]−n
2

.

Using again the parametrization of Σ and trace rules, we obtain

n∏
i=1

exp
(
− 1

2
XT

(i)Σ
−1X(i)

)
= exp

{ n∑
i=1

−1

2
XT

(i)(I − Λ)diag(ω)−1(I − Λ)TX(i)

}
= exp

{
− n

2

n∑
i=1

tr((I − Λ)diag(ω)−1(I − Λ)T
1

n
X(i)X

T
(i))
}

= exp
{
− n

2
tr((I − Λ)diag(ω)−1(I − Λ)TS)

}
.

Combining the results above, the log-likelihood is given by

lG(Λ, ω) = C +
n

2

(
− log(det(ω)) + log(det((I − Λ))2)− tr((I − Λ)diag(ω)−1(I − Λ)TS)

)
= C +

n

2

K∑
k=1

(
− |πk| log(ωk)−

1

nωk

(∑
i∈πk

∥Xi − ΛT
pa(i),iXpa(i)∥2

))

= C +
n

2

K∑
k=1

lG,πk
(Λ, ωk),

where in the second equality, we use properties of diagonal and triangular matrices

regarding determinants and trace rules. The sum can be decomposed into the sum

of the log-likelihood values of the K blocks plus the constant C = (−np
2) log(2π).

32

4 Greedy Search Algorithms

The maximum log-likelihood value of Λ is calculated by performing linear regression

at each node on its parents. The estimates of (Λ̂, ω̂) are therefore given by

Λ̂pa(i),i = argmin
β∈R|pa(i)|

∥Xi − βTXpa(i))∥2,

ω̂k =
∥Xi − Λ̂T

pa(i),iXpa(i)∥2

n|πk|
.

We can now compute the Bayesian information criterion (BIC), as described in

Peters et al. (2017), for a DAG G under partition Π given observational data X.

The BIC score is decomposed into the sum of scores of each block.

sBIC(G,Π) =
1

n

(
l̃G(Λ̂, ω̂)−

log(n)

2
|E|
)

=
1

2

K∑
k=1

(
− |πk|log(ω̂k)− |πk| −

log(n)

n

∑
i∈πk

|pa(i)|
)
,

where l̃G(Λ̂, ω̂) denotes the log-likelihood without the constant C, since it is not

dependent on the data.

4.2 Search Schemes in Partition Space

We look now at ways to construct greedy search on the space of partitions. Let

G = (V,E) be a DAG with vertex set V = {1, 2, . . . , p}. The total number of

partitions of V is given by the so-called Bell number Bp (Becker and Riordan

(1948)). The first Bell numbers are B0 = 1, B1 = 1, B2 = 2 and for p ∈ N they

satisfy following recursion

Bp+1 =

p∑
k=0

(
p

k

)
Bk.

For 10 nodes/variables, we already get B10 = 115975 (OEIS Foundation Inc.

(2023)) possible partitions and hence a large search space for partitions. Applying

an exact score-based search would lead to an exhaustive search. For this reason,

we propose two greedy search schemes, adapted from Andres (2020). As derived

in the last section, we will use BIC as the scoring criterion. Let sBIC(G,Π) be

33

4 Greedy Search Algorithms

the BIC score for DAG G = (V,E) and partition Π given observational data

X = (X1, . . . , Xp)
T ∈ Rp×n with n i.i.d. and centered columns. The idea is now

to traverse through the space of partitions while keeping the same DAG fixed. The

DAG can either be already known or learned by algorithms like GES, for example.

Greedy joining algorithm

We first examine the so-called greedy joining algorithm. Typically starting from

the finest partition possible (Π0 = {{1}, {2}, . . . , {p}}), we recursively join pairs

of subsets until no further improvement of BIC score is achievable. For any partition

Π of V, let A,B ∈ Π be two partition blocks. We define the partition, which is

obtained by joining A and B :

joinA,B[Π] := (Π \ {A,B}) ∪ {A ∪B}.

Starting from a partition, we first look at all pairwise combinations of subsets/partition

blocks and construct the partitions derived by joining each one of these pairs to-

gether. All of these partitions form the so-called local neighborhood. For each

partition in the neighborhood, we compute the BIC score and compare it amongst

all resulting partitions. Consequently, we choose the highest-scoring partition and

compare it to the BIC score of the current one. If it is higher, we move to the new

partition and repeat all these steps until no improvement is possible. Subsets can

only grow, and the number of subsets decreases by one in every step. The DAG

is fixed before and does not change during the procedure. Figure 4.1 illustrates an

exemplified running of the algorithm.

Algorithm 2 greedy-joining(Π,G)

Require: Initial partition Π, fixed DAG G, data X
Choose {A,B} ∈ arg max

{A′ ,B′}∈(Π2)
sBIC(G, join{A′ ,B′}[Π])

if sBIC(G, join{A,B}[Π]) > sBIC(G,Π) then

Π
′
:= greedy-joining(join{A,B}[Π],G)

else
Π′ := Π

end if
return Π

′

34

4 Greedy Search Algorithms

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure 4.1: Example of a searching scheme in greedy joining algorithm for p = 4.

Colors indicate partition blocks. We start with the initial partition

Π0 = {{1}, {2}, {3}, {4}} and then construct each member of the

local neighborhood by joining one pair of partition blocks. A partition

with bounding boxes indicates the biggest improvement in BIC score

compared to the currently selected partition. The score of the lastly

selected partition Π = {{1, 2, 3}, {4}} has to be compared with the

full partition {{1, 2, 3, 4}} in a final step.

35

4 Greedy Search Algorithms

Greedy moving algorithm

Another approach is the greedy moving algorithm. Starting from any initial parti-

tion, we recursively move nodes of partition blocks to another partition block until

there is no improvement in the BIC score. Let Π be a partition of the vertex set V
and i ∈ V . Also, let U ∈ Π : i /∈ U be any partition block that does not include

node i already. We define the partition obtained by moving node i to partition

block U :

movei,U [Π] := Π \ {U} \ {W ∈ Π | i ∈ W}

∪ {U ∪ {i}} ∪
⋃

{W∈Π | i∈W∧{i}≠W}

{W \ {i}}.

Having chosen the starting partition, the local neighborhood consists of all par-

titions that can be constructed by moving one node to another partition block.

Figure 4.2 shows a schematic example of a local neighborhood. Analogous to the

greedy joining algorithm, we calculate the BIC score of all local neighborhood states

and choose the highest-scoring one. If the score exceeds the current state, we move

to the new partition and repeat all steps until no improvement is possible. When

the last element of a partition block is moved out of the subset, the number of

partition blocks decreases. The DAG is fixed before and does not change during

the procedure. Compared to the finite amount of local steps in the greedy joining

algorithm, greedy moving offers a more flexible searching scheme across partition

space.

Algorithm 3 greedy-moving(Π,G)

Require: Initial partition Π, fixed DAG G, data X
Choose (i, U) ∈ arg max

(i′ ,U ′)∈V×Π\{W∈Π | i′∈W}
sBIC(G,movei′ ,U ′ [Π])

if sBIC(G,movei,U [Π]) > sBIC(G,Π) then

Π
′
:= greedy-moving(movei,U [Π],G)

else
Π′ := Π

end if
return Π

′

36

4 Greedy Search Algorithms

Figure 4.2: Local neighborhood in greedy moving algorithm for partition Π =

{{1}, {2, 3}, {4}}. The neighborhood states are all partitions created

by moving one node to another partition block in Π.

37

4 Greedy Search Algorithms

4.3 Search Scheme in DAG space

After inspecting searching schemes for the partition while keeping the DAG fixed,

we now look at the converse. Maximizing the BIC score over the space of all DAGs

becomes infeasible since the number of DAGs grows exponentially with increasing

number of nodes p. Robinson (1973) shows that the number of DAGs Dp on p
nodes is given by the recurrence relation

Dp =

p∑
k=1

(−1)k−1

(
p

k

)
2k(p−k)Dp−k p = 0, 1, 2, 3,

For p = 8 we already get D8 = 7.8 × 1011 possible DAGs (OEIS Foundation Inc.

(2023)). Hence, we adopt a greedy searching scheme also for DAGs.

Given any arbitrary DAG, we define the local neighborhood of that DAG as the set

of DAGs that can be obtained by adding, deleting, or removing one edge. We call

these operators. Let neighborhood(G) denote the set of all neighbors of DAG G.

We may restrict the local neighborhood by a random subset of a given size bound

or some threshold for the number of parents. So, starting from an initial DAG, we

compare the BIC score of the current DAG with the score of all DAGs in the local

neighborhood and move to the state with the biggest gain in BIC score, if possible.

The algorithm stops when no score improvement is achievable. It is important to

recall that the partition of the DAG is fixed before the procedure and does not

change. Figure 4.3 shows an example of a local neighborhood in DAG-Space.

Algorithm 4 greedy-DAG-search(G,Π)

Require: Initial DAG G, fixed partition Π, data X
Choose G̃ ∈ arg max

G′∈neighborhood(G)
sBIC(G

′,Π)

if sBIC(G̃,Π) > sBIC(G,Π) then

G∗ := greedy-DAG-search(G̃,Π)

else
G∗ := G

end if
return G∗

38

4 Greedy Search Algorithms

Initial State

1

2 3

ADD

1

2 3

1

2 3

DELETE

1

2 3

1

2 3

REVERSE

1

2 3

1

2 3

Figure 4.3: States resulting from applying one of the operators on a DAG

39

4 Greedy Search Algorithms

4.4 Constructing Greedy Search for both DAG
and Partition

In the previous sections, we presented greedy search for learning the partition and

DAG from data. In this section, we use these as components to build advanced

methods to estimate the CPDAG under partition knowledge. DAG and partition

are estimated in each method, and the CPDAG is constructed by applying Algo-

rithm 1. The main idea is to exploit partition information through variations of

greedy search schemes. We develop three approaches, which will be evaluated on

simulated datasets in the next chapter.

4.4.1 Baseline Estimation Technique

The first method we are looking at combines commonly used methods for structure

learning with greedy search strategies introduced in the preceding sections. We

first learn the DAG using GES or PC, followed by the greedy joining algorithm to

estimate the partition. Afterward, we fine-tune the results using alternated greedy

partition and DAG steps.

The whole procedure has two phases and can be described as follows:

Phase I. We first learn the CPDAG from data using PC or GES and then randomly

choose a representative DAG of that estimated equivalence class. Fixing that

DAG, we run the greedy joining algorithm(Algorithm 2) to obtain an estimate

of the partition of the vertex set.

Phase II. Starting from the estimates G∗ and Π∗ of Phase I, we execute alternating

greedy DAG and partition steps until no improvement of the BIC score is

possible: InitializingG∗ and Π∗, we first fix the partition Π∗ and construct the

local neighborhood of DAG G∗ (Section 4.3). We now compare the BIC score

of G∗ given Π∗ with the score of each neighbor given Π∗. If no improvement

is possible, the whole procedure stops. If possible, we move to the neighbor

with the biggest gain in BIC score. Now we fix that DAG and construct the

local neighborhood of partition Π∗ obtained by doing a greedy moving step

(Section 4.2). We now compare the BIC score of Π∗ given G∗ with the score

of each partition neighbor given G∗. Again, if no improvement is possible,

the whole procedure stops. If possible, we move to the neighbor with the

biggest gain in BIC score. We fix the new partition and continue with the

greedy DAG step again. It is important to stress that we do not run an entire

40

4 Greedy Search Algorithms

greedy moving algorithm or DAG search at each point, which might consist

of multiple consecutive movements across partition or DAG space. Only a

single greedy moving or greedy DAG step is executed. This alternation of

single partition and DAG steps is repeated until either one does not improve

the BIC score. The algorithm returns DAG and partition at the point of

termination.

The first phase gives us a baseline estimation of the DAG and its corresponding

partition of the vertex set. The second phase aims to fine-tune the results from

the first phase by alternating greedy DAG and partition steps. The goal is to

improve the results from the first phase by adding local changes to the DAG and

the partition. Figure 4.4 shows a sketch of the whole procedure.

4.4.2 Simultaneous DAG and Partitions Steps

The next method takes a different approach. Instead of starting with a baseline

estimation using known learning methods, we can first initialize DAG and partition

in two different ways for greedy search :

1. Empty DAG and the finest partition possible as a starting point. We refer to

this initialization of the partition as an “empty” partition.

2. Random initiation of DAG and partition: In Section 5.1 we will see how to

generate a random DAG. To generate a random partition, we sample uni-

formly p times with replacement from vector (1, 2, . . . , p), where p is the

number of variables. Looking at our sampled vector, variables with the same

number on their position are grouped into one partition block. For example,

the sampled vector (1,4,4,1) indicates that we have two partition blocks with

each two variables.

After initialization, given the data, we proceed with a greedy search on both DAG

and partition. But rather than doing alternated greedy DAG and partition steps,

we search simultaneously on DAG and partition space. More precisely, the local

neighborhood of each current state consists of all pairwise combinations of local

neighbors in a greedy DAG step (Section 4.3) and local neighbors of a greedy

moving step (Section 4.2).

41

4 Greedy Search Algorithms

DATA

PC/GES

Estimated DAG G∗

GREEDY
JOINING

ALGORITHM

Estimated Partition Π∗

PHASE I

Initializing G∗, Π∗ for
alternating

G∗ . . .

. . .

GREEDY DAG STEP
(single step)

and Π∗ . . .

. . .

GREEDY MOVING
STEP (single step)

Terminates when either greedy
step does not improve score

Estimated DAG G∗∗ and Partition Π∗∗

PHASE II

Figure 4.4: Baseline estimation technique

42

4 Greedy Search Algorithms

DATA

Initializing DAG G0 and partition Π0:
1. Empty DAG and partition (|Π0| = |V |) or
2. Random DAG and partition for

G0, Π0

G0, Π
′

G0, Π
′′

. . .

G
′
, Π0

G
′′
, Π0

. . .

SIMULTANEOUS DAG + GREEDY MOVING STEPS

Terminates when greedy step
does not improve score

Estimated DAG G∗ and Partition Π∗

Figure 4.5: Estimation using simultaneous DAG and partition steps

43

4 Greedy Search Algorithms

The combined DAG plus partition neighbor, which leads to the biggest gain in the

BIC score, is chosen as the following state. If no gain is possible, we terminate

the greedy search. We move across DAG plus partition space through different

partially homoscedastic models. Carrying out greedy joining steps (Section 4.2)

instead would not be suitable in this design, as it would strongly limit the overall

number of possible DAG movements. Figure 4.5 gives an overview of the method.

The size of the local neighborhood of a current state is the size of the DAG neigh-

borhood times the size of the neighborhood obtained by a greedy moving step on

the partition. A shortcoming is that for a large number of variables, we have to

calculate the BIC score for a potentially enormous neighborhood. For example,

with p = 30 and empty initiation, the local neighborhood at the first step consists

of 378 450 DAG plus partition pairs.

4.4.3 Alternating DAG and Partition Search

The last technique we describe contains elements of both methods we have looked

at so far. Analogously to the last method, we can first initialize DAG and partition

as either empty or random. DAG and partition are then learned from data using

an alternation of greedy DAG search (Algorithm 4) and greedy moving algorithm

(Algorithm 3).

In detail, we first apply DAG search on the initialized DAG while fixing the initial-

ized partition. Provided that the score can be improved, the obtained DAG is fixed,

and we apply the greedy moving algorithm on the partition. Again, provided that

the score can be improved, we fix the obtained partition and run the DAG search

again, proceeding until neither greedy search improves the score. In summary,

we alternate between greedy DAG search and greedy moving search, terminating

when either algorithm executes no single greedy step. It is important to emphasize

the difference between the procedure here and Phase II of the Baseline estimate

technique (Section 4.4.1). In the latter one, we alternate between single DAG and

greedy moving steps. Here, we alternate between possibly multiple consecutive

DAG and greedy moving steps. Figure 4.6 shows a sketch of the procedure.

Each of these three proposed methods outputs an estimated DAG and partition

of the variable set. The CPDAG under partition information is then obtained by

applying Algorithm 1 in a final step.

44

4 Greedy Search Algorithms

DATA

Initializing DAG G0 and partition Π0:
1. Empty DAG and partition (|Π0| = |V |) or
2. Random DAG and partition for

alternating

G0 . . .

. . .

GREEDY DAG SEARCH
(multiple steps possible) and

Π0 . . .

. . .

GREEDY MOVING
ALGORITHM

(multiple steps possible)

Terminates when either greedy DAG search or greedy moving algorithm
does not improve score

Estimated DAG G∗ and Partition Π∗

Figure 4.6: Estimation using alternated DAG and partition search

45

5 Numerical Experiments

In this chapter, we evaluate the algorithms developed in the last chapter on syn-

thetically created datasets. In addition to comparing performance, we also give

additional insights into the number of greedy steps and runtime. We use the pro-

gramming language R for generating data and implementing the algorithms.

5.1 Simulated Data

We start by describing the process of creating our simulated datasets.

To generate n i.i.d samples from a partially homoscedastic linear Gaussian SEM,

we do the following steps :

1. Given the number of variables p, we generate a random DAG: First, we

determine the sparsity of the DAG by distinguishing two different settings.

In the sparse setting, the adjacency probability between every pair of nodes

is prob = 3/(2p− 2), whereas in the dense scenario, the probability is set to

0.3. For each (i, j) pair with i < j, we generate independent uniform random

variables Uij ∼ U(0, 1) and add the edge i→ j if Uij < prob. Once we have

traversed all node pairs, we randomly shuffle the node labels.

2. The edge weights corresponding to the DAG are then uniformly drawn from

[−1,−0.3] ∪ [0.3, 1] ⇒ Λ∗ coefficient matrix.

3. Given the number of partition blocks, we generate a random partition Π of

the vertex set {1, . . . , p} (as described in Section 4.4.2). The error variance

of each block is then uniformly drawn from [0.3, 1] ⇒ w∗ vector of error

variances.

4. We simulate n i.i.d samples from from normal distribution N (0,Σ∗), where

Σ∗ = ϕG(Λ
∗, w∗).

The CPDAG under partition information is obtained by applying Algorithm 1 on

DAG and partition generated.

46

5 Numerical Experiments

5.2 Results

5.2.1 Estimating Partition Blocks

We first look at how well the greedy joining algorithm (Algorithm 2) and greedy

moving algorithm (Algorithm 3) perform at learning the correct partition blocks

from data. The dataset is created as explained in Section 5.1, where we set following

configurations :

• n = 1000,

• p ∈ {10, 15, 20, 25, 30}, where corresponding number of partition blocks is

⌈p/3⌉ + 1, i.e., the number of blocks increases with the number of variables,

• sparse graphs.

We then evaluate the number of correctly learned blocks of a partition for three

different settings. The first setting involves fixing the true DAG, while in the

other two settings, the fixed DAG is learned using the GES and PC algorithm

(more precisely, GES and PC algorithm return CPDAG, and we randomly pick a

representative DAG of that corresponding Markov equivalence class). Important

to mention is that the initialization of the partition differs: In the greedy joining

algorithm, we start with the finest partition possible, while for the greedy moving

algorithm, we initialize a random partition (described as in Section 4.4.2). The

simulation runs 100 times for each configuration.

Figure 5.1 and Figure 5.2 show the experiment results. As expected, choosing

the true DAG for the partition search leads to better performance, i.e., a higher

number of correctly learned partition blocks. We can also observe the overall trend,

especially for the case of fixed DAG learned by PC and GES, that with an increasing

number of variables (and partition blocks), fewer partition blocks are correctly

estimated. Especially looking at p = 20 (8 blocks) and higher, we can see that

mostly never more than four correct blocks are learned. This indicates that both

partition searches reach a limit when inferring a larger number of partition blocks.

Comparing both algorithms, we observe a slightly better performance for the greedy

moving algorithm.

47

5 Numerical Experiments

True DAG GES DAG PC DAG

p=
10

p=
15

p=
20

p=
25

p=
30

0 2 4 0 2 4 0 2 4

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

20

40

0

20

40

60

Number of correct partition blocks

co
un

t

Figure 5.1: Barplots showing number of correctly predicted partition blocks for

greedy joining algorithm by p and type of fixed DAG. Sparse graph

setting with ⌈p/3⌉ + 1 blocks and n = 1000.

48

5 Numerical Experiments

True DAG GES DAG PC DAG

p=
10

p=
15

p=
20

p=
25

p=
30

0 2 4 0 2 4 0 2 4

0

10

20

30

40

0

10

20

30

40

50

0

10

20

30

40

0

20

40

60

0

20

40

60

Number of correct partition blocks

co
un

t

Figure 5.2: Barplots showing number of correctly predicted partition blocks for

greedy moving algorithm by p and type of fixed DAG. Sparse graph

setting with ⌈p/3⌉ + 1 blocks and n = 1000.

49

5 Numerical Experiments

5.2.2 Estimating CPDAG under Partition Information

Next, we investigate the performance of the methods in Section 4.4 in estimating the

true CPDAG under partition knowledge. Throughout this section, we will compare

these methods to known state-of-the-art algorithms GES and PC on our datasets

simulated from partially homoscedastic linear Gaussian SEMs. We want to observe

to what extent the incorporation of partition information in our developed methods

can leverage the results compared to the standard methods that do not integrate

the grouping of error variances into their algorithms.

As an error metric, we adopt the modified structural Hamming distance (SHD) from

Peters and Bühlmann (2014). The traditional structural Hamming Distance (SHD)

measures the total number of edge additions, deletions, and reversals required to

transform one graph into another, i.e., all edge mistakes count as 1. The difference

between an undirected edge and a directed edge also counts as 1. Considering the

crucial role of parental information in our partially homoscedastic setup, we use

the modified version, where a distance of 2 is assigned to each pair of reversed

edges. Consequently, we evaluate our methods by calculating the SHD between

true CPDAG and estimated CPDAG.

The PC algorithm uses conditional independence tests to learn edges in the graph,

where α denotes the significance level. To compare score-based methods and

constraint-based methods, we consider a range of values for α from 10−5 to 0.8,

increasing by the ratio 1.1 (Harris and Drton (2013)). The value of α with the

maximum BIC score is picked. We will do this throughout all experiments.

We also track the runtime performance of several methods. The following exper-

iments were conducted on a Macbook Air (2020) with an M1 processor and 8GB

RAM.

Baseline estimation technique

We start by evaluating the Baseline estimation technique (Section 4.4.1), where we

further will compare the CPDAG estimate after Phase I to the CPDAG estimate

after Phase II of the algorithm and assess how much fine-tuning through alternated

greedy DAG and partition steps improves the result.

As explained in 4.4.1, Phase I consists of learning the DAG by GES or PC and

then running the greedy joining algorithm. We call these procedures ges-ph1 and

pc-ph1 respectively.

50

5 Numerical Experiments

We set the following configurations :

• n ∈ {100, 500, 1000},

• p ∈ {6, 12, 18, 30}, where corresponding number of partition blocks is ⌈p/3⌉
+ 1, i.e., the number of blocks increases with the number of variables.

• sp ∈ {sparse, dense}, where sp stands for sparsity of generated DAG.

The simulation runs 100 times for each configuration. Figure 5.3 and Figure 5.4

show the box plots of the SHD between true CPDAG and estimated CPDAG for

different methods. In the sparse setting across all number of variables (except

p = 12) and sample size n = 500 and n = 1000, we can see that pc-ph1 performs

marginally better than PC. Here, the exploitation of partition information gives

pc-ph1 only a small advantage. The same statements can be made about ges-ph1

for a smaller number of variables (p = 6 and p = 12).

In the setting with dense graphs, however, one can observe little to no difference

between the Phase I results and PC/GES. As expected, the dense setting is more

challenging.

We saw in the results that learning the DAG by PC or GES and then running

the greedy joining algorithm can only achieve slightly better results in estimating

the CPDAG under the true partition than the common methods. Consequently, we

want to evaluate the results after adding a fine-tuning phase (Phase II). We focus on

the PC-based method since PC concentrates on testing conditional independence

statements, and we know that in partially homoscedastic models, the conditional

independence statements are not altered (Proposition 3.8). We refer to the method

combining Phase I and II as pc-ph2.

In the next simulation, the performance between pc-ph1 and pc-ph2 in estimat-

ing the CPDAG is compared. The same configurations of n and p are used, but

only at the sparse graph setting. Again, the simulation runs 100 times for each

configuration. It is important to add that the local neighborhood size in each DAG

step in pc-ph2 is restricted to 300.

51

5 Numerical Experiments

n=100 n=500 n=1000

p=
6

p=
12

p=
18

p=
30

ge
s−

ph
1

ge
s

pc
−p

h1 pc

ge
s−

ph
1

ge
s

pc
−p

h1 pc

ge
s−

ph
1

ge
s

pc
−p

h1 pc

0

5

10

15

0

10

20

30

0
10
20
30
40

0

20

40

60

Methods

S
H

D
 to

 tr
ue

 C
P

D
A

G

Figure 5.3: Box-Plots of SHD to true CPDAG by p and n for sparse graphs and

⌈p/3⌉ + 1 blocks. Estimated CPDAG by method in 4.4.1 after Phase

I (ges-ph1, pc-ph1) compared to GES (ges) and PC (pc).

52

5 Numerical Experiments

n=100 n=500 n=1000

p=
6

p=
12

p=
18

p=
30

ge
s−

ph
1

ge
s

pc
−p

h1 pc

ge
s−

ph
1

ge
s

pc
−p

h1 pc

ge
s−

ph
1

ge
s

pc
−p

h1 pc

0

5

10

15

0

20

40

0

30

60

90

120

100

200

300

Methods

S
H

D
 to

 tr
ue

 C
P

D
A

G

Figure 5.4: Box-Plots of SHD to true CPDAG by p and n for dense graphs and

⌈p/3⌉ + 1 blocks. Estimated CPDAG by method in 4.4.1 after Phase

I (ges-ph1, pc-ph1) compared to GES (ges) and PC (pc). Note that

for p = 6, dense graph equals sparse graph in the generation procedure.

53

5 Numerical Experiments

Figure 5.5 displays the average SHD between the CPDAGs estimated by pc-ph1

and pc-ph2. The difference decreases when we grow the sample size n and increases

across the number of variables p. Figure 5.6 shows the performance results. For

p = 6 and p = 12 across sample sizes n = 500 and n = 1000, one can see slightly

better performance of pc-ph2 compared to pc-ph1, showing that the fine-tuning

phase can add relevant local changes to DAG and partition estimated by pc-ph1.

One can observe no improvement for a higher number of variables, indicating that

fine-tuning does not enhance baseline estimation in those cases. Figure 5.7 shows

that overall, the number of greedy steps performed in Phase II is small. Figure 5.8

adds information about the running time of the whole procedure. As expected, it

increases with sample size and number of variables.

To demonstrate the possible advantage of pc-ph2 to pc-ph1 more clearly, we look

at an additionally generated simulation where p = 6 (⌈p/3⌉ + 1 = 3 blocks) and

n = 1000. Figure 5.9 and Figure 5.10 show the results of this example, where

estimation of both DAG and partition improved after performing greedy steps in

the fine-tuning phase.

1

2

3

4

5

6 12 18 30
Number of variables

S
H

D

Sample size

n = 100
n = 500
n = 1000

Figure 5.5: Average SHD between CPDAGs estimated by pc-ph1 and pc-ph2

by number of variables and sample size

54

5 Numerical Experiments

n=100 n=500 n=1000

p=
6

p=
12

p=
18

p=
30

pc
−p

h1

pc
−p

h2

pc
−p

h1

pc
−p

h2

pc
−p

h1

pc
−p

h2

0.0
2.5
5.0
7.5

10.0
12.5

0
5

10
15
20
25

0
10
20
30
40

0
25
50
75

100

Methods

S
H

D
 to

 tr
ue

 C
P

D
A

G

Figure 5.6: Box-Plots of SHD to true CPDAG by p and n in sparse graph set-

ting with ⌈p/3⌉ +1 blocks. Comparison between estimated CPDAG by

method in 4.4.1 after Phase I (pc-ph1) and estimated CPDAG after

Phase II (pc-ph2).

55

5 Numerical Experiments

2

4

6

6 12 18 30
Number of variables

G
re

ed
y

S
te

ps Sample size

n = 100
n = 500
n = 1000

Figure 5.7: Average number of greedy steps (DAG + partition steps) in pc-ph2

during Phase II by number of variables and sample size.

0

10

20

30

40

50

6 12 18 30
Number of variables

T
im

e
(in

 s
ec

on
ds

)

Sample size

n = 100
n = 500
n = 1000

Figure 5.8: Average runtime for pc-ph2 by number of variables and sample size.

56

5 Numerical Experiments

2

1 4

5

3

6

(a) True DAG

2

1 4

5

3

6

(b) DAG estimated by pc-ph1

2

1 4

5

3

6

(c) DAG estimated by pc-ph2

Figure 5.9: Comparison of true DAG with DAGs estimated by pc-ph1 and pc-ph2

for one simulation where p = 6 and n = 1000 in sparse graph setting.

One can see that the edge 4 → 6 (in red) is correctly reversed during

Phase II in pc-ph2.

57

5 Numerical Experiments

2

4

5

1 3

6

(a) True partition

1

5

2

3

4 6

(b) Partition estimated
by pc-ph1

1

5

3

6

4 2

(c) Partition estimated
by pc-ph2

Figure 5.10: Comparison of true partition with partitions estimated by pc-ph1 and

pc-ph2 for one simulation where p = 6 and n = 1000 in sparse graph

setting. After Phase I in pc-ph1 no true partition block is learned, but

fine-tuning in Phase II leads to one correct block ({3,6}). Partition

blocks are indicated by different colors.

58

5 Numerical Experiments

Simultaneous DAG and partitions steps

Next, we observe the results of estimating the true CPDAG using simultaneous

DAG and partition steps (Section 4.4.2), where both empty and random initializa-

tion are compared. We refer to these as sim-empty and sim-random respectively.

Moreover, we restarted the random initialization five times and chose the result

with the highest score. When dealing with a large number of variables, the size

of the local neighborhood of a state becomes enormous. Due to the limitation

of computational resources for this exhaustive greedy search, only the following

configurations were considered :

• n ∈ {100, 500, 1000},

• p ∈ {6, 12}, where the corresponding number of partition blocks is ⌈p/3⌉ +
1, i.e., the number of blocks increases with number of variables.

• sparse graphs.

The simulations run 100 times for each configuration. Figure 5.11 displays the

Box-Plots of the SHD between true CPDAG and CPDAG estimated by empty and

random initialization of the method with PC and GES. As one can see, for high

sample size n = 1000, both sim-empty and sim-random underperform across

p = 6 and p = 12. However for n = 100 and n = 500 with p = 6, sim-empty

performs the best, while for p = 12, sim-random shows the best results. Table 5.2

shows the average runtime per simulation for n = 1000. One can see the extreme

increase from p = 6 to p = 12 for both initialization methods. These results can

be explained by the exponential growth of the local neighborhood for DAG and

partition when increasing the number of variables. As expected, the number of

greedy steps increases from p = 6 to p = 12 (see Table 5.1).

Table 5.1: Average number of greedy steps by number of variables p and by initial-

ization of method in 4.4.2; n = 1000.

p = 6 p = 12

sim-empty 5.55 13.14

sim-random 6.65 26.03

59

5 Numerical Experiments

n=100 n=500 n=1000

p=
6

p=
12

sim
−e

m
pt

y

sim
−r

an
do

m pc ge
s

sim
−e

m
pt

y

sim
−r

an
do

m pc ge
s

sim
−e

m
pt

y

sim
−r

an
do

m pc ge
s

0

5

10

15

0

10

20

30

Methods

S
H

D
 to

 tr
ue

 C
P

D
A

G

Figure 5.11: Box-Plots of SHD to true CPDAG by p and n for sparse graph set-

ting with ⌈p/3⌉ + 1 blocks. Estimated CPDAG by method in 4.4.2

for empty and random initialization (sim-empty, sim-random), com-

pared to GES (ges) and PC (pc).

Table 5.2: Average runtime (in seconds) by number of variables and by initializa-

tion for method in 4.4.2, compared to PC and GES; n = 1000. For

sim-random and PC, the runtime is calculated as the cumulative value

of all restarts in each simulation.

p = 6 p = 12

sim-empty 0.29 21.1

sim-random 1.53 228

pc 0.5 1.49

ges 0.002 0.003

60

5 Numerical Experiments

Alternating DAG and partition search

At last, we evaluate the performance of alternating DAG and partition search (Sec-

tion 4.4.3). Here, we also compare empty initialization with random initialization.

We refer to these as alt-empty and alt-random respectively. For random ini-

tialization, we choose the result with the highest score among the five restarts.

Similar to the last simulation, the greedy search is exhaustive for a high number of

variables. Therefore, we look at the following configurations:

• n ∈ {100, 500, 1000},

• p ∈ {6, 12, 18}, where corresponding number of partition blocks is ⌈p/3⌉ +
1, i.e., the number of blocks increases with the number of variables.

• sparse graphs.

The simulations run 100 times for each configuration. Figure 5.12 displays the

Box-Plots of the SHD between true CPDAG and CPDAG estimated by empty

and random initialization with PC and GES. It is easy to see that alt-random

achieves remarkable results and performs better than all other methods across all

configurations of p and n. On the contrary, alt-empty performs worst across all

numbers of variables and sample sizes. Table 5.3 gives additional information on

the average number of greedy steps. One can see that alt-random nearly executes

twice as many greedy steps. This supports Table 5.4, where alt-random has longer

runtime than alt-empty , heavily exceeding PC and GES for p = 12 and p = 18

with n = 1000 as expected. The results from Table 5.3 and Table 5.4 indicate that

alt-empty rather quickly stucks at a local optimum, a possible explanation for

the poor performance.

Table 5.3: Average number of greedy steps by number of variables p and by initial-

ization for method in 4.4.3; n = 1000. In each simulation, the number

of every greedy step of all greedy DAG and greedy moving searches has

been summed up.

p = 6 p = 12 p = 18

alt-empty 7.73 18.15 29.78

alt-random 13.51 35.5 58.07

61

5 Numerical Experiments

n=100 n=500 n=1000

p=
6

p=
12

p=
18

alt
−e

m
pt

y

alt
−r

an
do

m pc ge
s

alt
−e

m
pt

y

alt
−r

an
do

m pc ge
s

alt
−e

m
pt

y

alt
−r

an
do

m pc ge
s

0
5

10
15

0
10
20
30

0
10
20
30
40
50

Methods

S
H

D
 to

 tr
ue

 C
P

D
A

G

Figure 5.12: Box-Plots of SHD to true CPDAG by p and n for sparse graphs set-

ting with ⌈p/3⌉ + 1 blocks. Estimated CPDAG by method in 4.4.3

for empty and random initialization (alt-empty, alt-random), com-

pared to GES (ges) and PC (pc).

Table 5.4: Average runtime (in seconds) by number of variables and by initializa-

tion for method in 4.4.3, compared to PC and GES; n = 1000. For

alt-random and PC, the runtime is calculated as the cumulative value

of all restarts in each simulation.

p = 6 p = 12 p = 18

alt-empty 0.027 0.38 1.93

alt-random 0.27 5.54 30.36

pc 0.52 1.37 4.24

ges 0.002 0.003 0.005

62

6 Conclusion

In this thesis, we examined the partially homoscedastic linear Gaussian SEM. A

newly studied setup which falls between the classical case of linear Gaussian SEM

with arbitrary error variances and the recently considered case of equal error vari-

ances. One theoretical key finding for this new model is the exhibition of algebraic

constraints due to the equality among error variances in the same partition block.

Consequently, a new type of model equivalence was developed, refining the classical

Markov equivalence classes. To illustrate this, we displayed some examples for a

small number of variables.

We then proposed three different methods for learning this new type of equivalence

class from data. Each method utilizes a greedy score-based approach for estimating

DAG and partition, varying on the combination of different searching schemes. In

simulation studies, we tested the performance on the task of correctly estimating

the CPDAG under partition information. Initializing DAG and partition randomly,

followed by alternating multiple greedy DAG and partition steps, as described in

Section 4.4.3, appears to be the most promising approach. It confirmed our ex-

pectation that exploiting partition information in the search algorithm can lead

to better results in estimating CPDAG under partition information than standard

methods like PC or GES. However, our approach of moving through DAG and

partition space simultaneously (Section 4.4.2) underperformed on most configura-

tions of sample size and number of variables inspected. Additionally, the runtime

increased enormously with a larger number of variables.

One possible way to avoid inefficient search spaces is to move between equivalence

classes. Assuming that the partition Π (or equivalently, background knowledge)

of the variable set is known, one might extend the approach of Chickering (2002)

to Π-model equivalence classes. There, a set of equivalence-class operators are

introduced, which can be applied to a CPDAG and create a new CPDAG. This

prevents moving within an equivalence class, and the set of local neighbors of a

current state are scored locally, further increasing the computational efficiency.

63

6 Conclusion

To conclude, this thesis described two schemes of moving across partition space.

Exploring more ways of moving across a partition lattice might further improve

the methods presented. Another interesting future work would be to evaluate the

techniques for estimating DAG and partition on possible future real-world datasets.

64

References

Andersson, S. A., Madigan, D., and Perlman, M. D. (1997). “A characterization

of Markov equivalence classes for acyclic digraphs”. In: Ann. Statist. Volume

25.(2), pp. 505–541.

Andres, B. (2020). Lecture in Machine Learning I. Machine Learning for Com-

puter Vision TU Dresden https://mlcv.inf.tu-dresden.de/courses/

wt20/ml1/07-partitioning-handout.pdf.

Becker, H. W. and Riordan, J. (1948). “The arithmetic of Bell and Stirling num-

bers”. In: Amer. J. Math. Volume 70, pp. 385–394.

Chickering, D. M. (2002). “Learning equivalence classes of Bayesian-network struc-

tures”. In: J. Mach. Learn. Res. Volume 2.(3), pp. 445–498.

Chickering, D. M. (2003). “Optimal structure identification with greedy search”.

In: J. Mach. Learn. Res. Volume 3, pp. 507–554.

Drton, M. (2018). “Algebraic problems in structural equation modeling”. In: The
50th anniversary of Gröbner bases. Vol. 77. Adv. Stud. Pure Math. Math. Soc.

Japan, pp. 35–86.

Drton, M., Sturmfels, B., and Sullivant, S. (2009). Lectures on algebraic statistics.
Vol. Volume 39. Oberwolfach Seminars. Birkhäuser Verlag.

Duncan, O. D. (1975). Introduction to structural equation models. Academic

Press [Harcourt Brace Jovanovich, Publishers].

Geiger, D. and Pearl, J. (1990). “On the logic of causal models”. In: Uncertainty
in artificial intelligence, 4. Vol. 9. Mach. Intelligence Pattern Recogn. North-

Holland, pp. 3–14.

Gillispie, S. B. and Perlman, M. D. (2001). “Enumerating Markov Equivalence

Classes of Acyclic Digraph Models”. In: Proceedings of the Seventeenth Con-
ference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publish-

ers Inc., pp. 171–177.

65

https://mlcv.inf.tu-dresden.de/courses/wt20/ml1/07-partitioning-handout.pdf
https://mlcv.inf.tu-dresden.de/courses/wt20/ml1/07-partitioning-handout.pdf

References

Haavelmo, T. (1944). “The probability approach in econometrics”. In: Economet-
rica Volume 12, S, pp. iii–115.

Harris, N. and Drton, M. (2013). “PC algorithm for nonparanormal graphical mod-

els”. In: J. Mach. Learn. Res. Volume 14, pp. 3365–3383.

Hoyer, P., Janzing, D., Mooij, J. M., Peters, J., and Schölkopf, B. (2008). “Non-

linear causal discovery with additive noise models”. In: Advances in Neural
Information Processing Systems. Vol. 21.

Kıcıman, E., Ness, R., Sharma, A., and Tan, C. (2023). Causal Reasoning and
Large Language Models: Opening a New Frontier for Causality. Preprint at
https://arxiv.org/abs/2305.00050.

Koopmans, T. (1945). “Statistical Estimation of Simultaneous Economic Rela-

tions”. In: Journal of the American Statistical Association Volume 40.

Meek, C. (1995). “Causal Inference and Causal Explanation with Background

Knowledge”. In: Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pp. 403–410.

OEIS Foundation Inc. (2023). Entry A000110 (Number of partitions) in The On-

Line Encyclopedia of Integer Sequences, https://oeis.org/A000110.

OEIS Foundation Inc. (2023). Entry A003024 (Number of DAGs) in The On-Line

Encyclopedia of Integer Sequences, https://oeis.org/A003024.

Pearl, J. (2009). Causality: Models, Reasoning and Inference, 2nd Edition.
Cambridge University Press.

Pearl, J. and Mackenzie, D. (2018). The book of why : The new science of cause
and effect. Basic Books.

Peters, J. and Bühlmann, P. (2014). “Identifiability of Gaussian structural equation

models with equal error variances”. In: Biometrika Volume 101.(1), pp. 219–228.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal inference.
Adaptive Computation and Machine Learning. MIT Press.

Peters, J., Mooij, J., Janzing, D., and Schölkopf, B. (2011). “Identifiability of Causal

Graphs using Functional Models”. In: Proceedings of the Twenty-Seventh Con-
ference on Uncertainty in Artificial Intelligence. UAI’11. AUAI Press, pp. 589–
598.

66

https://oeis.org/A000110
https://oeis.org/A003024

References

Radhakrishnan, A., Solus, L., and Uhler, C. (2018). “Counting Markov equivalence

classes for DAG models on trees”. In: Discrete Appl. Math., pp. 170–185.

Richardson, T. and Spirtes, P. (2002). “Ancestral graph Markov models”. In: Ann.
Statist. Volume 30.(4), pp. 962–1030.

Robinson, R. W. (1973). “Counting labeled acyclic digraphs”. In: New directions
in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan,
Ann Arbor, Mich., 1971). Academic Press, pp. 239–273.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. (2006). “A linear non-

Gaussian acyclic model for causal discovery”. In: Journal of Machine Learning
Research (JMLR) Volume 7, pp. 2003–2030.

Spirtes, P. (2013). “Directed Cyclic Graphical Representations of Feedback Mod-

els”. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, prediction, and
search, 2nd Edition. Adaptive Computation and Machine Learning. MIT Press.

Tsamardinos, I., Brown, L., and Aliferis, C. (2006). “The max-min hill-climbing

Bayesian network structure learning algorithm”. In: Machine learning Volume

65.(1), pp. 31–78.

Verma, T. and Pearl, J. (1992). “An Algorithm for Deciding If a Set of Observed

Independencies Has a Causal Explanation”. In: Proceedings of the Eighth In-
ternational Conference on Uncertainty in Artificial Intelligence. UAI’92.
Morgan Kaufmann Publishers Inc., pp. 323–330.

Verma, T. and Pearl, J. (1990). “Equivalence and Synthesis of Causal Models”. In:

Proceedings of the Sixth Annual Conference on Uncertainty in Artificial
Intelligence, pp. 255–270.

Wright, S. (1921). “Correlation and causation”. In: Journal of agricultural re-
search Volume 20.

Wu, J. and Drton, M. (2023). Partial Homoscedasticity in Causal Discovery
with Linear Models. Preprint at https://arxiv.org/abs/2308.08959.

67

	Introduction
	Preliminaries
	Graph Theory
	Structural Equation Models

	Partial Homoscedasticity in Linear Gaussian SEM
	Definition
	Equal Variance Constraints
	Characterization of the Models
	Model Equivalence
	Examples for -model Equivalence Classes

	Greedy Search Algorithms
	Likelihood Inference
	Search Schemes in Partition Space
	Search Scheme in DAG space
	Constructing Greedy Search for both DAG and Partition
	Baseline Estimation Technique
	Simultaneous DAG and Partitions Steps
	Alternating DAG and Partition Search

	Numerical Experiments
	Simulated Data
	Results
	Estimating Partition Blocks
	Estimating CPDAG under Partition Information

	Conclusion
	References

