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Abstract

Real-time tracking and mapping approaches support intelligent agents such as robots,
AR/VR devices, and autonomous driving vehicles to interact with unknown environments.
Visual-based tracking methods aim to estimate the six degrees of freedom (DoF) camera
poses, while mapping algorithms aim at reconstructing unknown environments into sparse
or dense models.

Commonly, camera poses tend to drift when errors accumulate during tracking processes. To
limit the increase of pose errors, solutions, including local bundle adjustment, sliding window
optimization, marginalization, and loop closure, are proposed to use correspondences to
build co-visibility graphs. Those approaches achieve robust tracking performance after
using optimization modules. However, the co-visibility strategy based on point features
still needs to improve in low/non-textured regions since only some features are extracted
during the tracking process. Furthermore, lines and planes, especially in indoor scenes, are
explored under the co-visibility architecture to compensate for the reduction in the number
of point correspondences. Given more features, the robustness of trackers will be continually
improved. However, the shortness of co-visibility graphs that mainly rely on overlaps needs
to be addressed, which leads to shorter constraint edges in the graphs.

Instead of only using re-projection errors of point-line-plane correspondences under the
co-visibility graph pipeline, more structure information, such as Vanishing Point and Man-
hattan/Atalanta World Assumptions, is leveraged into our pose estimation modules by
assuming scenes have some perpendicular and orthogonal cues. Since these structural cues
are loosely organized by basic landmarks rather than represented as minimal parameteriza-
tions, it is difficult to use them in optimization modules. Even though they are often used
in visual odometry systems, keeping these structural landmarks correct during the tracking
process remains an open challenge.

How to exploit structural regularities in pose estimation and scene reconstruction is the most
critical exploration goal of this dissertation. The methods presented here are incorporated
into a completed tracking and mapping system. Specifically, our tracking module uses the
structural regularities in the front-end and back-end modules. Moreover, we propose a new
type of graph architecture, the Extensibility Graph, which is incorporated with co-visibility
graphs to make up for the shortcomings of over-reliance on visual overlaps of traditional
co-visibility ones.
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Zusammenfassung

Echtzeit-Tracking- und Mapping-Ansätze helfen intelligenten Agenten wie Robotern, AR/VR-
Geräten und autonomen Fahrzeugen, mit unbekannten Umgebungen zu interagieren. Visuell
basierte Tracking-Methoden zielen darauf ab, die sechs Freiheitsgrade (DoF) von Kame-
rapositionen abzuschätzen, während Mapping-Algorithmen darauf abzielen, unbekannte
Umgebungen in spärliche oder dichte Modelle zu rekonstruieren.

Im Allgemeinen neigen Kamerapositionen dazu, zu driften, da sich bei den Tracking-
Vorgängen Fehler anhäufen. Um die Zunahme von Posenfehlern zu begrenzen, werden
Lösungen einschließlich lokaler Bündelanpassung, Schiebefensteroptimierung, Marginali-
sierung und Schleifenschließung vorgeschlagen, um Korrespondenzen zur Erstellung von
Ko-Sichtbarkeitsdiagrammen zu verwenden. Diese Ansätze erzielen nach Verwendung von
Optimierungsmodulen eine robuste Tracking-Leistung. Allerdings muss die auf Punktmerk-
malen basierende Co-Sichtbarkeitsstrategie in Regionen mit spärlicher/nicht texturierter
Struktur noch verbessert werden, da während des Tracking-Prozesses nur einige Merkmale
extrahiert werden. Darüber hinaus werden Linien und Ebenen, insbesondere in Innenszenen,
im Rahmen der Co-Visibility-Architektur untersucht, um die Verringerung der Anzahl der
Punktkorrespondenzen auszugleichen. Durch weitere Features wird die Robustheit der Tra-
cker kontinuierlich verbessert. Ko-Sichtbarkeitsdiagramme basieren jedoch hauptsächlich
auf Überlappungen, was zu kürzeren Einschränkungskanten in den Diagrammen führt.

Anstatt nur Reprojektionsfehler von Punkt-Linie-Ebene-Korrespondenzen als Teil der Co-
Visibility Graph-Pipeline zu verwenden, werden mehr Strukturinformationen in unsere
Posenschätzungsmodule integriert, indem davon ausgegangen wird, dass Szenen senkrechte
und orthogonale Hinweise haben. Da diese strukturellen Hinweise lose nach grundlegenden
Orientierungspunkten organisiert sind, ist es schwierig, sie in Optimierungsmodulen zu
verwenden. Obwohl sie häufig in visuellen Odometriesystemen verwendet werden, bleibt
die korrekte Beibehaltung dieser strukturellen Orientierungspunkte während des Verfol-
gungsprozesses eine offene Herausforderung.

Die Ausnutzung struktureller Gesetzmäßigkeiten bei der Posenschätzung und Szenenre-
konstruktion ist das Hauptforschungsziel dieser Dissertation. Die hier vorgestellten Metho-
den werden in ein fertiges Tracking- und Mapping-System integriert. Konkret nutzt unser
Tracking-Modul die Strukturgesetze in den Front-End- und Back-End-Modulen. Darüber hin-
aus schlagen wir eine neue Art von Grapharchitektur vor, den Erweiterbarkeitsgraphen, der
in Co-Sichtbarkeitsgraphen integriert ist, um die Mängel einer übermäßigen Abhängigkeit
von der visuellen Überlappung herkömmlicher Co-Sichtbarkeitsgraphen zu kompensieren.
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Notation

u→ This font is used for quantities that are real scalars

u→ This font is used for quantities that are real column vectors

U→ This font is used for quantities that are real matrices

Pw → This font is used for quantities that are 3D point landmarks in the world coordinate

pi → This font is used for quantities that are 2D point features on the image plane

Lw → This font is used for quantities that are Euclidean 3D line landmarks in the world
coordinate

li → This font is used for quantities that are 2D line segments on the image plane

Lw → This font is used for quantities that are Plücker 3D line landmarks in the world
coordinate

Ow → This font is used for quantities that are Orthonormal 3D line landmarks in the world
coordinate

Rw,ci → A rotation matrix which rotates from the ith camera coodinate to the world coordi-
nate

Tw,ci → A transformation matrix from the ith camera coodinate to the world coordinate

SO(3)→ The special orthogonal group

SE(3)→ The special Euclidean group

so(3)→ The Lie algebra associated with SO(3)

se(3)→ The Lie algebra associated with SE(3)

Rm×n → The vectorspace of realm× nmatrices

[·]× → The skew-symmetric operation

P(u)→ This font is used for time-invariant system quantities

P(v|u)→ The probability density of v given u
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1Introduction

In the beginning chapter of the dissertation, Section 1.1 briefly introduces the motivations and
background of localization and reconstruction tasks in 3D unknown environments. Based
on a sequence of visual images as inputs, the goal of a general incremental tracking and
mapping estimation system is introduced in Section 1.2. The special requirements for SLAM
systems in man-made environments are described in Section 1.3. Finally, the structure of this
dissertation is listed in Section 1.4.

1.1 Background

Organisms conduct positioning and navigation activities intentionally or unintentionally by
searching for clues in unknown environments. Depending on those key patterns of scenes,
the direction to a destination will become apparent in motion. In ancient times, people
determined direction by observing natural features such as the sun, stars, and landmarks.
For example, people use the position of the Big Dipper to determine direction when sailing
at sea. Other natural phenomena, such as the flow of rivers, can help navigate land travel.
Rivers always flow from high to low so that the general direction can be determined based
on the river’s flow and the sun’s position.

With the development of science and technology, localization in marine scenarios was de-
duced using tools to measure the altitudes of stars, such as sextants and mariner’s astrolabes.
In the 20th century, aerospace technology achieved impressive development, and the global
positioning system (GPS) supported by satellites went into daily life, which enabled people to
conduct precise positioning and navigation more freely and conveniently. However, auxiliary
algorithms are still needed to navigate agents in environments without GPS. Alternatives to
these navigation systems include odometry-based mechanisms and inertial measurement
unit (IMU) setups, which can provide tracking results directly and are commonly found in
modern intelligent robots and vehicles. Nevertheless, those alternatives can only support
robust tracking services for a short time.

When navigating in an unknown environment as shown in Figure 1.1, the mapping of
that environment and the localization within the reconstructed map have proven to be
interdependent. Furthermore, an accurate map makes localization robust, while accurate
trajectories also help improve the quality of the map. Inspired by the iterative process, a
complex solution is considered: simultaneous localization and mapping (SLAM), the concept
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Chapter 1: Introduction

(a) RGB image (b) Dense 3D model

(c) Height map (removing ceil-
ing and floor)

(d) Navigation in the map. The start and end points are red
and green respectively

Figure 1.1 An example of SLAM applications. Starting from a sequence of images, dense maps of unknown
environments are reconstructed, which can be used for navigation applications of robots.

first proposed in the 1990s [10], introduced in the scientific community in the 1980s [11] and
originated in the early stages.

1.2 Simultaneous Localization and Mapping

As its name suggests, SLAM aims to reconstruct unknown environments and position agents
in the environments. Based on the outputs of SLAM systems, intelligent setups will have the
fundamental ability to interact with those environments without needing prior knowledge of
the location. Therefore, the method is of great importance to robots operating in unknown
scenes, especially where GPS is not reliable anymore.

Given a sequence of images as illustrated in Figure 1.2, spatial patterns (features), such as
points and lines, are extracted from each image. By matching the same patterns (correspon-
dences) measured by different views, relative motion (rotation and translation) between
two positions can be inferred. Meanwhile, those same patterns existing in different views
can also be used in building 3D landmarks that are representations of the scenes. In the
further process, reconstructing landmarks of environments and tracking new views are
interdependent, and the process can be called Visual Odometry (VO). Even though there are
different strategies for mapping and localization tasks, the core ideas are designed similarly.
Since the performances of VO systems are sensitive to challenging scenes and motions, there
are two widely used strategies, including new types of measurements and well-designed

8



1.2 Simultaneous Localization and Mapping

Figure 1.2 Illustration of 2D RGB images, point (green) and line (red) measurements, and trajectories and the 3D
dense reconstruction model on the ICL-NUIM dataset [12].

refinement modules, to improve the robustness of systems. Generally, both of them can be
found in impressive SLAM systems.

More reliable tracking and mapping performances could be expected when more powerful
sensors enhance the process. Specifically, Stereo cameras provide real scale to the map and
make the tracking process more robust. RGB-D sensors help depth maps generate dense
3D models easily on GPUs or CPUs. Moreover, visual-inertial setups are widely used in the
improvement process, where IMU sensors can provide rotation and translation measurements
directly based on post-processing steps.

Another direction for achieving robust tracking performances is to explore refinement, opti-
mization, and drift-removing strategies for VO systems. The bundle adjustment approach is
popularly used to refine a single relative pose based on the observation relationships between
landmarks and measurements. Some solutions, including local bundle adjustment [13, 14],
sliding window [15], marginalization [16, 17], and loop closure [18, 13], are widely used in
camera tracking processes, and the idea behind of those solutions is using correspondences
to build co-visibility factor graphs for structure and motion optimization.

Motivated by these refinement and optimization solutions, this dissertation focuses on
incremental tracking and mapping in structural scenes, such as houses, office buildings, and
parking lots, where structural scenes as illustrated in Section 1.3 provide new challenges and
chances for SLAM systems.

9



Chapter 1: Introduction

(a) nostructure_texture_near (b) structure_texture_near

(c) office_room_0 (d) living_room_0

Figure 1.3 Image views and 3D point-line sparse models of indoor scenes. Parallel 3D lines are in the same color.
The process of structural model generation is introduced in Section 3.2.1.

1.3 Tracking and Mapping in Indoor Environements

Structural environments can be found in most artificial spaces, including general living
scenarios, buildings, parking lots, etc, as shown in Figure 1.3. Compared with wild envi-
ronments, indoor scenes have several apparent differences that provide new challenges to
SLAM systems. For example, low/non-textured scenarios are common in such scenes (see
Figure 1.3), which means that there is no guarantee to detect sufficient point features to
support robust visual-based tracking performance.

From the perspectives of industry products, tracking and mapping in those scenes are in-
volved in augmented/virtual reality, service robots, and autonomous driving. Therefore,
achieving robust and accurate tracking, mapping, and understanding performance in struc-
tural scenes is of great value in both industry and academia. Although those SLAM systems

10



1.4 Structure of the Dissertation

have achieved existing results in general scenarios, in vertical domains, such as indoor
environments, their performance shows some deterioration phenomena.

Before discussing indoor SLAM designing, we will first analyze indoor scene characteristics
and then introduce how to leverage those characters in tracking and reconstruction tasks.
Regular geometric elements are commonly detected in man-made scenes as lines and planes
are used to build surfaces of floors, ceilings, walls, and objects. When we try to analyze
the relationship of those lines (or planes), it is easy to find some parallel and perpendicular
geometric relationships. For example, ceilings are generally parallel to floors, while walls are
perpendicular to ceilings and floors. Not only does the architectural structure of the buildings
have the above characteristics, but the furniture, office supplies, and other decorations also
show the above characteristics to a greater or lesser extent.

How to take advantage of those new patterns is a critical problem for SLAM systems designed
for indoor scenarios. Based on those different types of features, like lines and planes, a naive
and direct idea is to extend point-based SLAM systems to read multiple features since multi-
feature tracking can improve the robustness of general systems in indoor scenes. The direct
idea improves the systems’ robustness by leveraging more re-projection constraints in the
front-end and back-end. Nevertheless, the journey of exploration goes beyond that. For
example, scenes in Figure 1.3 have several sets of parallel lines, and some of those sets are
perpendicular. Those geometric features and relationships can be used to reduce computation
and improve accuracy in tracking and mapping simultaneously. When we redefine those
new patterns and constraints in the feature detection, matching, reconstruction, minimal
representation, and factor graph optimization modules, we will slowly uncover this field,
which is the main topic of this dissertation.

1.4 Structure of the Dissertation

This chapter, Chapter 1, briefly introduces SLAM topics’ motivation and illustrates the
process from images to relative motions and maps. Given the introduced research background
on the community and our interesting field, this section briefly outlines the structure of this
cumulative thesis, starting from Chapter 2 to 8.

Chapter 2: Fundamental Theories. This chapter introduces the basic theory of multiple view
geometry, including correspondence detection and initial pose estimation, in Section 2.2.
Then, the optimization theory containing factor graph construction and solvers for non-linear
least squares problems is introduced in Section 2.3. Finally, Section 2.4 introduces basic
theories in deep neural networks, such as basic operations and the common architectures
built from these operators.

Chapter 3: Tracking and Mapping in Structural Scenes. This chapter continues to direct
our attention to the critical tracking and mapping involvements in structural environments,

11



Chapter 1: Introduction

the main topic we aim to discuss in the following chapters. Furthermore, open challenges in
indoor environments and our contributions are summarized in Section 3.1.

Chapter 4: Structure-slam: Low-drift monocular slam in indoor environments. Yanyan
Li∗, Nikolas Brasch∗, Yida Wang, Nassir Navab and Federico Tombari; In. RA-L 2020 [8].

Chapter 5: RGB-D SLAM with structural regularities. Yanyan Li, Raza Yunus, Nikolas
Brasch, Nassir Navab and Federico Tombari; In. ICRA 2021 [5].

Chapter 6, Co-Planar Parametrization for Stereo-SLAM and Visual-Inertial Odometry.
Xin Li∗, Yanyan Li∗, Evin Pınar Örnek, Jinlong Lin, and Federico Tombari; In. RA-L 2020 [9].

Chapter 7, E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs.
Yanyan Li and Federico Tombari. In. ECCV2022 [4].

Chapter 8: Conclusion and Future work. This chapter provides conclusions in Section 8.1
and suggestions for Future work in Section 8.2.

12



2Fundamental Theories

Fundamental theories related to tracking and mapping tasks are introduced in this chapter.
First, Section 2.1 briefly outlines the development history of SLAM topics by revisiting
the definition of the problem. Then, we introduce geometry-based approaches, including
feature detection, matching, triangulation, pose initialization, and optimization, in Section 2.2,
where those modules can build a complete visual odometry pipeline to estimate camera
poses and build sparse maps simultaneously. Given initial poses and landmarks from visual
odometry, another critical fundamental theory refers to optimization in Section 2.3. To
compensate for traditional geometry approaches’ limitations, we introduce basic operators
and architectures, including multi-layer perceptron and convolutional neural blocks widely
used in semantic segmentation, depth prediction, dense mapping, and scene completion
networks in Section 2.4.

2.1 Problem Definition of SLAM

Standing at the beginning of this discipline decades ago, no one knew how to simultaneously
track camera poses and reconstruct unknown scenes by taking several photos. With the
community’s joint efforts for such a long time, the original goal has been achieved by SLAM
systems with different strategies. However, looking back, this vast tree’s growth vein is
clearer. Let us start with the definition of this problem and gradually expand the complexity
of this domain.

For the discussion about the definition of SLAM topics, there are many different perspec-
tives on how to present the core idea of the SLAM problem, however using probability
representation is undoubtedly one of the most elegant ways.

An image sequence with n camera poses (T = {T1, . . . , Tn}) is recorded in an environment
with m landmarks (P = {P1, . . . , Pm}). During the tracking process, measurements (Q =

{p1, . . . , pK}) are used to build a conditional probabilistic distribution model as follows:

P(T,P|Q) (2.1)

13



Chapter 2: Fundamental Theories

which shows how to update the camera poses and scene representations based on the batch
of measurements Q. The problem can further be transformed into a likelihood probabilistic
model via the Bayesian probability operation

P(T,P|Q) =
P(Q|T,P)P(T,P)

P(Q)

∝ P(Q|T,P)P(T,P)
(2.2)

here P(Q|T,P) is called Likelihood, which can be understood as the probability of producing
those measurements under the 3D environments and camera poses. P(T,P) is called Prior,
which can be understood as the probability that the robot is in the current environment and
pose. Compared to the posterior probability introduced in the formula 2.1, P(Q|T,P) provides
a better perspective for solving incremental tracking and mapping topics.

Therefore, we can intuitively feel that the process of calculating the optimal pose and 3D
landmarks is the process of finding the pose and landmark information that can best produce
the current observation, which can be described by the following formula

(T,P)∗ = arg max
T,P

P(Q|T,P). (2.3)

For a measurement of the measurement batch Q, pi,j shows that the Pj is observed by
Tj, which can be represented based on the measurement model f(Ti, Pj) + ni,j, where
ni,j ∈ N(0,

∑
) means that the noise ni,j obeys the zero-mean normal distribution. Then

the probability distribution of the conditional probability P(pi,j) still obeys the Gaussian
distribution in N(f(Ti, Pj),

∑
), which can be represented as

P(pi,j) =
1√

(2π)Ndet(
∑

)
exp

(
−

1
2
(pi,j − f(Ti, Pj))

T
∑

−1 (pi,j − f(Ti, Pj))
)

(2.4)

here N shows the dimension of pi,j. Via the negative log operation, − ln(·), the Equation 2.4
can be equivalently written as

(Ti, Pj)∗ = arg min
Ti,Pj

(− ln (P(pi,j|Ti, Pj)))

= arg min
Ti,Pj

(
1
2

ln
(
(2π)N det(

∑
)
)
+

1
2
(pi,j − f(Ti, Pj))

T
∑

−1 (pi,j − f(Ti, Pj))
)

= arg min
Ti,Pj

(
(pi,j − f(Ti, Pj))

T
∑

−1 (pi,j − f(Ti, Pj))
)

(2.5)

here pi,j − f(Ti, Pj) is denoted as ei,jz and
∑

−1 is denoted as Λ. The single observation

is written as ei,jz
T
Λei,jz . Assuming that the measurements are independent of each other,

therefore, Equation 2.3 can be rewritten as

P(Q|T,P) =
∏
i,j

P(pi,j|Ti, Pj). (2.6)
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And the optimized camera poses and landmarks,

(T,P)∗ = arg min
Ti,Pj


∑

i

∑
j

ei,jz
T
Λei,jz


 (2.7)

where the maximum likelihood problem is transfered to a nonlinear least square optimization
probem that is widely used for building optimization modules. As shown in Equation 2.5,
the problem mainly involves four parts, including measurements, camera poses, scene rep-
resentations, and error convergence models, which are introduced in following sections.

2.1.1 Measurements

Figure 2.1 Feature reconstructed from a pair of RGB-D images. In the bottom raw, from left to right, there are
point, line and plane primitives.

Generally, the method that only extracts distinct points can be called a detector, and the
approach that generates abstract information by handcrafting rules to present the difference
between 2D measurements is called a descriptor. The first important task is automatically
detecting those measurements to achieve video-based tracking and mapping performances.
As shown in Figure 2.1, point, line and plane measurements are obtained from a pair of RGB
and depth images.

Points. For distinct point detection methods, FODPL [19], proposed in 1987, and Harris [20],
proposed in 1988, are essential tools to open the curtain of modern computer vision. Given
selected distinct points, the first strategy, the Kanade-Lucas-Tomasi (KLT) approach [21], is
proposed to track points by defining a photometric error based on the constant brightness
assumption of adjacent frames. Another more robust corner estimation method, FAST [22],
was proposed in 2008.

Compared with the color intensity that can only be used to match correspondences in local
areas, more abstract information is encoded into descriptor vectors by approaches, such as
SIFT [23] (in 1999), SURF [24] (in 2006) and ORB [25] (in 2011), where those complicated
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vectors are more robust in being invariant to image scaling, translation, and rotation, and
even illumination changes compared with color intensity. Therefore, it can support global
matching searching strategies by computing the difference between two descriptors. SIFT [23]
is one of the most famous traditional local feature point, which identifies candidate keypoints
by looking for local maxima and minima in the Difference of Gaussian (DoG) scale-space
representation of the image. Then, it refines these candidate keypoints by fitting a model that
is invariant to scale, rotation, and affine distortion. Finally, it computes a descriptor for each
keypoint by taking a histogram of gradient orientations in the local neighborhood around the
keypoint. FAST [22] is a high-speed corner detection approach that is designed for real-time
applications. It works by examining contiguous pixels on a circle around a central pixel to
determine whether the central pixel is a corner or not. If a sufficient number of contiguous
pixels differ greatly in intensity from the central pixel, then the central pixel is classified as
a corner. BRIEF [26] is a binary feature descriptor that encodes the gradient information of
detected keypoints into binary strings, which samples the intensity values at pairs of points
in a local neighborhood surrounding the keypoint and compares them using a binary test.
This process generates a binary string for each keypoint that describes its local appearance.

Lines and Planes. Lines and planes are existed widely in man-made environments, which
provide more constraints than point features. The line extraction task is also interested
in the community at an early stage. Burns et al. [27] proposed an approach to detecting
straight lines in 1986. While a linear-time line detector, LSD [28], and a faster line detection
method, EDLines [29], were proposed in 2008 and 2011, respectively. The descriptor LBD [30]
proposed in 2013 is a widely used algorithm to match line segments between different views.
With the development of RGB-D sensors, RANSAC-based methods, like [31], were used
in plane detection. Furthermore, Hough transformation [32] was exploited to implement
pre-segmentation steps for plane segmentation. Furthermore, a faster plane detection ap-
proach [33] based on an agglomerative hierarchical clustering algorithm was proposed in
2014. RANSAC-Based strategies are popular in fitting planes from point clouds by randomly
selecting a subset of points that potentially belong to the same plane. AHC [34] start with
some initial seed points and expand each region by adding neighboring points that satisfy
certain criteria, such as distance and normal angle similarity. These methods compute the
normal vectors of each point in a point cloud and accumulate them into bins based on their
direction. The bin with the highest vote represents the dominant plane in the scene.

2.1.2 Scene Reconstruction

For scene reconstruction, sparse approaches triangulate those correspondences detected in
tracking processes into sparse landmarks, while dense systems aim to use all pixels of 2D
images. Methods between sparse and dense reconstruction are called semi-dense, where the
number of tracked points is more significant than in sparse methods, but not every pixel can
be used in modeling as dense reconstruction approaches are. In addition to visual sparseness,
another fundamental principle is that those landmarks are regarded as independent in the
sparse formulation. Although the reconstructed maps can be very dense and complete with
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Figure 2.2 Example of dense and sparse models. Left: scene image with segmented planes marked in different
colors; middle: dense mesh model based on the planar regions; right: sparse mapping based on the
points, lines and planes.

the help of line and plane features, those maps of feature-based systems are still regarded as
sparse methods.

Sparse Scene Parametrization. The Euclidean XYZ landmark parametrization is straight-
forward to represent point landmarks but faces challenges for low parallax correspondences.
Inverse depth parametrization [35] uses the ray to go through the anchor frame position
and the observed feature. The straightforward representations for line and plane land-
marks are Euclidean XYZ endpoints and Hessian parameterization, but both of them have
over-parametrization issues in optimization. Bartoli and Sturm [36] proposed Plücker and
Orthonormal representations for using lines in triangulation and bundle adjustment. The
minimal parametrization proposed in [37] uses azimuth and elevation angles to represent
the normal vectors of plane landmarks. For feature-based SLAM systems, landmarks re-
constructed incrementally are generally optimized via factor graphs. Therefore, a suitable
parameterization method is necessary for landmarks refinement.

Dense Scene Representation. Compared with sparse models, dense reconstruction gen-
erally provides more information to support scene understanding tasks and new views
rendering. In dense reconstruction, different types of methods are explored for different
sensors. For monocular dense reconstruction, the core technology for obtaining dense depth
maps of multiple views is per-pixel matching based on the Epipolar algorithm or patch-based
matching methods [38]. Similar to those sparse landmarks that can be optimized in a bundle
adjustment model, those estimated dense point clouds can also be filtered based on depth
filters by using Gaussian Distribution models [39, 40].

For RGB-D sensors, depth maps can be obtained directly. Different from those parametric
landmarks, the following introduced methods, the occupancy grid [41] and signed distance
function (SDF) [42], build non-parametric environment models. A 3D volume of voxels
represents environments, and the value recorded in each cell is a probability of occupancy [41]
that will be updated when a new observation comes in. SDF [42] proposed in 1996 represents
surface interfaces as zeros. From an SDF representation, two main algorithms render the
surface regions, summarized by [43]. The first one is using the marching-cube algorithm [44].
Another strategy is using the raycasting method [45] to avoid visiting areas of the function
that are outside the desired view field.
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2.1.3 Error Convergence Model

As introduced in Section 2.1.1, a difference between measurements and estimated ones is
computed based on obtained poses and landmarks. In this section, we introduce different
routes for residuals computation and initial refinement via two directions: direct vs. indirect
and filtering-based vs. optimization-based.

Direct vs. Indirect. In Equation 2.2, camera poses are the targets that we want to estimate
using different methods. Based on the fed constraints about environments, tracking and
mapping systems can be classified as direct and indirect methods. Specifically, the direct
strategy makes use of raw sensor values as measurements in a probabilistic model, while an
indirect method takes advantage of a part of the pixels with known matching relationships. In
short, given two images, direct methods will estimate the relative pose and depth of each
pixel at the same time based on photometric constraints. However, indirect approaches
first take action to detect correspondences that provide stronger geometric constraints in
camera poses and features’ depth information.

Direct methods. These direct approaches do not require knowledge of robust correspondences
between images. Therefore, the points used for tracking can be key points and corner points,
and no descriptors need to be calculated. Some early systems [46, 47] are proposed to achieve
robustness by detecting outliers via an iterative reweighting approach. Meanwhile, direct
methods also can provide sparse, semi-sparse, and dense models when there are changes in
light and dark in the scene.

Indirect methods. Based on correspondences generated by KLT feature tracking algorithms
or descriptors, relative camera poses and depth information can be estimated in Epipolar
geometry. With the help of those theories, filtering-based algorithms, from FastSLAM-2.0 [48]
in 2000 and MonoSLAM [49] in 2007, are proposed to get real-time tracking capabilities. The
first multi-thread system using non-linear least square optimization to deal with keypoints
obtained from keyframes is PTAM [50] proposed in 2007.

Filtering vs. Optimization. Filtering and optimization are two directions for SLAM sys-
tems to refine initial estimates. Filtering-based SLAM is generally more computationally
efficient, while optimization-based SLAM is often more accurate but computationally expen-
sive.

Filtering-based SLAM methods [51, 52] use recursive Bayesian filtering techniques, such as
Kalman Filter [53] or Extended Kalman Filter [52], to estimate the camera’s pose and map the
environment. These methods work by propagating a probabilistic state estimate forward in
time and then updating it based on new measurements. Since filtering-based SLAM methods
are computationally efficient and can operate in real time, they are ideal for applications with
limited computational resources.

Optimization-based SLAM methods [13, 54, 15] use non-linear least square optimization tech-
niques, such as bundle adjustment, to optimize the camera’s pose and reconstruct environ-
ments. These methods minimize the difference between the predicted image measurements
and the actual measurements from the sensors based on the photometric or geometric rela-
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tionships. Optimization-based SLAM can be more accurate than filtering-based methods but
is computationally expensive in global optimization.

2.1.4 Classical SLAM Frameworks

After introducing the important elements in SLAM systems, classical SLAM frameworks are
briefly revisited in this section. With the gradual improvement of basic tools and theories,
vision-based SLAM and odometry systems have shown impressive performance through
different architectures. By extending these fundamentals from visual setups to IMU, LiDAR,
and event camera sensors and creating new methods for these sensors, tracking and mapping
services can be provided using increasingly diverse settings. In this section, we divide these
state-of-the-art systems into two categories: visual SLAM and multi-sensor fusion, where
the first category of methods is designed for monocular or stereo or RGB-D sensors, while
the second category of methods uses IMU or LiDAR sensors in tracking and reconstruction
tasks.

SVO: Semi-Direct Visual Odometry. Unlike traditional visual odometry approaches that
rely on feature extraction and matching, SVO also takes advantage of photometric errors from
corner points. Furthermore, the system proposes a depth filter based on the mixed-Gaussian
distribution model. This approach allows SVO to be more robust to lighting changes and
occlusions than feature-based methods.

LSD-SLAM: Large-Scale Direct Monocular SLAM. LSD-SLAM is fed by monocular input
to reconstruct a 3D map and camera poses. LSD-SLAM directly estimates the camera pose
by minimizing photometric errors using an efficient optimization algorithm. This approach
allows LSD-SLAM to work well in large-scale, dynamic environments with few features and
significant changes in illumination or perspective.

DSO: Direct Sparse Odometry. DSO is a visual odometry method that estimates the motion
of a camera by directly minimizing the photometric errors based on all available pixel
information and does not require explicit feature detection, matching, or tracking. This
allows for better performance in challenging environments with few features or fast motion.
Furthermore, DSO uses a sliding window optimization approach to improve estimation
accuracy over time and reduce drift.

ORB-SLAM: Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. ORB-
SLAM is a family of open-source SLAM libraries for monocular, stereo, RGB-D, and visual-
inertial sensors based on feature-based techniques. Similar to PTAM [50], monocular ORB-
SLAM [13] is a multi-thread tracking and mapping system, which relies heavily on feature
tracking and optimization. ORB-SLAM2 [54] extends the functionality of ORB-SLAM by in-
creasing robustness and improving accuracy. It also supports monocular, stereo, and RGB-D
cameras. Compared with ORB-SLAM [13] and ORB-SLAM2 [54], atlas strategies are lever-
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aged for different sensor setups, ORB-SLAM3 [55] further improves upon its predecessors by
integrating the atlas map strategy and IMU sensors.

VINS: Visual-Inertial State Estimator. VINS is a system that estimates the motion of a
camera in 3D space by fusing information from both visual and inertial sensors. It uses feature-
based techniques to extract and match visual features in the images while also incorporating
data from IMU to estimate the camera’s orientation and velocity. VINS optimizes its estimates
using a sliding window and nonlinear optimization to improve accuracy and robustness.
Furthermore, it can operate in real-time on a variety of platforms, including smartphones,
drones, and autonomous vehicles.

KIMERA: Open-Source Visual Inertial Odometry. Kimera is an open-source visual-inertial
odometry system that combines visual and inertial data to estimate the motion of a camera in
real time. It uses feature-based techniques to extract and match features in the images, as well
as IMU measurements to estimate the camera’s orientation and velocity. Kimera employs a
sliding window optimization approach that improves accuracy over time by incorporating
past information.

OpenVINS: A Research Platform for Visual-Inertial Estimation. OpenVINS is a research
platform for visual-inertial estimation, designed to facilitate the development and evaluation
of state-of-the-art algorithms for robotics and other applications. It provides a suite of open-
source software tools that allow users to perform real-time visual inertial odometry, SLAM,
and 3D reconstruction using a combination of visual and inertial sensor data. OpenVINS
employs a modular approach to system design, allowing users to easily swap out different
components, such as sensor models, optimization algorithms, and sensor fusion techniques.
This flexibility enables researchers to quickly prototype and evaluate new ideas in a con-
trolled environment. Additionally, OpenVINS includes a range of evaluation metrics and
visualization tools that enable users to assess the performance of their algorithms in detail,
including pose accuracy, drift, and computational efficiency.

2.2 Multiple View Geometry

Camera pose estimation and mapping problems are systematic and require many modules.
In this section, we revisit the core blocks of this process that begin with image inputs and end
at generating factor graphs as shown in Figure 2.3. The process can be summarized as follows.
When we feed a sequence of images to the system, the 2D feature fjci is extracted from frame
Fi first. We then obtain its correspondence fj

′
ci+1 in the next frame Fi+1 via different feature

tracking strategies, including descriptors [56, 57] and optical-flow [58] (see Section 2.2.1).
Based on those correspondences, we can estimate the relative pose Ti+1,i, from the camera
coordinate Ci to Ci+1, and the 3D landmark Pjw in the world coordinate (see Section 2.2.2).
After an association step 2.2.4, we will get the observation relationship that shows the 3D
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landmark Pjw is measured by frame Fi at the pixel position pjci . Therefore, the graph (see
Figure 2.3) can be generated finally.

1 2 3 4 5

1 2 3 4

Camera Pose

Point Landmark

Re-projection factor

Figure 2.3 Factor graph representation. Camera poses and landmarks are vertices of the graph, where re-
projection relationships are factors between vertices.

2.2.1 Feature Detection and Matching

Typically, features in SLAM are pixels (such as corners) or groups of pixels (such as lines and
planes) that can be directly extracted from an RGB (depth) image because they are distinct
from their neighbors. In this section, we first introduce popular features used in SLAM
systems, including points, lines, and planes, while the corresponding matching methods are
continued in subsequent paragraphs.

Feature Detection. The feature detection operation is the most essential step in a SLAM
system, which aims to find unique clues for the current input. Therefore, this module is
called frequently, almost on every input frame. Many aspects can be used to represent the
specificity of an input frame. However, we refer to those cues that can be used in further
pose estimation and reconstruction modules as features. This section details three popular
features: points, lines, and surfaces. Details in point, line, and plane detection methods are
illustrated in Section 2.1.1.

Feature Tracking. After extracting features from frame Fi and Fi+1, the next problem we
have to solve is selecting the same features from two images. If two images observe the
same position in the scene, those projections of the 3D point on those two images are termed
correspondences. Therefore, the process of obtaining correspondence is feature tracking.

Descriptors are popular manners used in SLAM methods [13, 15] to track correspondences
in different frames. The core idea of this method is to use abstract codes to represent each
feature uniquely. The SIFT [23] algorithm generates a descriptor vector in 256× 1, which is
invariant to illumination changes, orientation, and uniform scaling. The BRIEF approach [59]
used in the ORB algorithm provides binary descriptors for points, which can be measured by
Hamming distance in the correspondence matching process.
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Optical Flow is an effective method for feature matching during tracking based on the gray
invariance assumption, as I(u+ du, v+ dv, t+ dt) = I(u, v, t), here I(u, v, t) is the gray value
of pixel (u, v) at time t, and the new position of the pixel moves to (u+ du, v+ dv) at time
t+dt. The optical flow algorithm tracks these features over subsequent frames by computing
each pixel’s displacement vector (du,dv) from one frame to the next. The Lucas-Kanade
method [60] is widely used in sparse optical flow estimation. Based on the gray invariance
assumption, we can obtain that

[
Iu Iv

]


Vx

Vy


 = −It (2.8)

here Vx and Vy are motion velocities of the pixel on the x-axis and y-axis respectively, and
Iu, Iv, and It are the partial derivatives of the image I concerning position u, v and time t,
evaluated at the point (u, v) at the current time. When pixels in a w×wwindow centered

at (u, v) have the same motion, we can obtain
[
Vx Vy

]T
for pixels of the window. To

improve the robustness of the algorithm, strategies about weighted windows and image
pyramids are used in the optical tracking process.

2.2.2 Initial Pose Estimation

The task of camera pose estimation is to estimate 6-DoF camera poses T4×4 =




R3×3 t3×1

01×3 1


,

where T ∈ SE(3), R ∈ SO(3), and t ∈ R3. SE(3) stands for the special Euclidean group, while
SO(3) is the special orthogonal group. Traditionally, the 6-DoF camera pose is regarded as a
whole in our estimation model.

A 3D point Pi in the coordinate ci can be transformed into the coordinate cj via the following
formulation

P̄j = Tcj,ci P̄i (2.9)

here ·̄ shows the homogeneous operation. And the transformation Tcj,ci can be obtained
by

Tcj,ci = T−1
w,cjTw,ci (2.10)

here T−1
w,cj = Tcj,w =




Rw, cjT −Rw, cjT tw,cj

0 1


.

According to the inputs, we clustered those methods into two strategies: 2D-2D and 3D-2D.
For example, "3D-2D" means that the inputs of the pose computation task are 3D point
clouds and 2D measurements. However, some structural cues help estimate orientations in
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manufactured environments. Therefore, another direction that decouples 4×4 transformation
into two sequential steps. We will also introduce related theories in this section.

2D-2D Pose estimation. Given two RGB images Fi and Fj, and 2D correspondences pi
and p

′
j, the relationship can be represented as

K−1p̄i = Rci,cjK
−1p̄

′
j + tci,cj (2.11)

here K is the intrinsic matrix and p̄ is the homogenous vector of p.

Then we use [tci,cj ]× to deal with Equation 2.11, and obtain the following equation,

[tci,cj ]×K
−1p̄i = [tci,cj ]×Rci,cjK

−1p̄
′
j (2.12)

where [tci,cj ]× is the skew-symmetric matrix of tci,cj , and the nature of the [tci,cj ]×K
−1p̄i

operation is that the cross product operation between tci,cj and K−1p̄i, namely tci,cj ×K−1p̄i.
Therefore, the relationship can be further represented as

(K−1p̄i)T [tci,cj ]×Rci,cjK
−1p̄

′
j = 0 (2.13)

here [tci,cj ]×Rci,cj is called Essential Matrix E, while K−T [tci,cj ]×Rci,cjK
−1 is Fundamental

Matrix F.

Therefore, the essential matrix or fundamental matrix can be computed by several correspon-
dences. As we all know, tci,cj and Rci,cj have three degrees of freedom, respectively.

Since the translation vector has a scale ambiguity problem, the degree of freedom of the
essential matrix is only five. Therefore, five points [61] can be used to estimate the matrix.
Furthermore, the 3 × 3 matrix can be estimated by the eight-match algorithm [62, 63] that
builds a set of linear equations. Given the essential matrix, a SVD process is used to compute
tci,cj and Rci,cj which generates four matrices but only the result that makes the 3D landmark
P is in front of both cameras is the correct one.

3D-2D Pose estimation. This method is commonly used in incremental tracking processes,
where several 3D landmarks reconstruct a map. Benefitting feature matching methods, we
obtain the matching relationships between incoming 2D features and 3D landmarks, and the
3D-2D strategy is also called Perspective-n-Point (PnP). Similar to Equation 2.11, we also can
make use of the following function to describe the problem,

sp̄ = KRTw,c(Pw − tw,c) (2.14)
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here s is a scale factor, and Pw =

[
Xw Yw Zw

]T
. Then the matrix

[
KRTw,c −KRTw,ctw,c

]

is denoted as A, where A =




t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12



=




AT1

AT2

AT3




. The Equation 2.14 can be rewritten

as

s




u

v

1




=




t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12







Xw

Yw

Zw

1




=




AT1

AT2

AT3







Xw

Yw

Zw

1




. (2.15)

Since s = t9Xw + t10Yw + t11Zw + t12 = AT3 P̄w, we can remove the scale factor in our
relationships to obtain the formula between unknown parameters and the given 3D-2D
observation AT1 P̄w − AT3 P̄wu = 0

AT2 P̄w − AT3 P̄wv = 0
(2.16)

here at least 6 matches are needed to solve Equation 2.15 as a linear transformation problem.
Extended from the basic PnP strategy, EPnP [64] and UPnP [65] are proposed to estimate
camera poses.

Structure-based Pose estimation. Instead of using Equation 2.11 to estimate a transfor-
mation T4×4 in one time, here we decouple the transformation matrix into rotation and
translation parts. The pose estimation problem can be transferred to a linear least-square
problem with a known rotation part. Approaches [66, 67] make use of the Manhattan World
and Atlanta World assumptions (see Figure 2.4) and explore a decoupled solution to deal
with rotation R ∈ SO(3) and translation t ∈ R3 separately.

(a) Manhattan World (b) Atalanta World (c) Mixture of Manhattan Frame

Figure 2.4 Examples of different structure assumptions.

Manhattan World. Based on the assumption of Manhattan World, a Manhattan coordinateM
is built, and the center of the coordinate is located on the same point as the camera coordinate.
Therefore, we only have a rotation motion Rm,ci betweenM and the camera coordinate ci.
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In the initialization module, besides building the relative rotation Rw,c0 , we also have to
compute the rotation between the Manhattan coordinate and the world coordinate Rw,m that
is introduced in Section 3.3.3 in detail. Therefore, the traditional purpose of estimating Rw,ci

is transferred to estimate Rcj,m via the following function

Rw,cj = Rw,mRTcj,m (2.17)

here Rw,m is obtained in the initialization process, while RTcj,m is supposed to computed in
the tracking process. In Equation 2.17, the rotation will be affected by frames between the
start frame and the jth frame, which has the core idea, low-drift rotation estimation, of the
Manhattan World assumption.

Since the transformation from the first frame to the world coordinate is Tw,c0 =



I3×3 03×1

01×3 1


.

Therefore, the Rw,m is equal to Rc0,m. During the tracking process, the rotation between the
ith frame and Manhattan world M is computed as Rci,m. Therefore, the relative rotation
motion Rci,cj is represented as

After estimating rotation Rw,cj of Fj, the unknown the parameters of Equation 2.14 is tw,cj

which can be estimated by a closed-form method based on 2 pairs of 3D-2D matches via

tw,cj = Pw − s(KRTw,cj)
−1p̄j. (2.18)

Therefore,




txw,cj

tyw,cj

tzw,cj




can be computed directly. Therefore, one of the advantages of decou-

pling pose estimation methods is that fewer correspondences are required, which is helpful
in low-textured scenes.

2.2.3 Initial Landmark Reconstruction

After illustrating feature extraction and pose estimation methods, we continue to introduce
the fundamental theories in feature triangulation and sparse reconstruction here, which
start from the topics that how to represent those landmarks in maps. Since a type of 3D
landmark may have different representations, we can regard the representation is not minimal
representation if the parameters is more than the degreeds of freedom of the landmark.
The overparameterization issue is critical in the optimization modules, but for initial 3D
reconstuction over-parameterized representation also can be used.

As shown in Figure 2.5, sparse maps are generally composed of points, lines, and planes, and
these 3D landmarks are mainly concentrated in structured and textured areas. In this section,
3D points and lines are representation based on the simple Euclidean representation, where a
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3D point is denoted as P3×1 =

[
x y z

]T
and a 3D line is denoted as two endpoints, Ps

and Pe, of the line, namely L3×2 =

[
Ps Pe

]
.

Figure 2.5 Examples of sparse reconstruction. From left to right, images are RGB inputs, point map, line map
and plane map.

Point Triangulation. The point correspondences pk and pk′
lying on the two images Fi

and Fj are respectively extracted, which are re-projected from the same landmark point
Pw. Triangulation aims to use 2D feature points to compute spatial 3D landmarks. The
triangulation process of a point is written as p̂k = QiP̄w

p̂k′
= QjP̄w

(2.19)

where Qi = [KRci,w|tci,w]3×4. Since p̂k ×QiP̄w = 0, we can obtain the following function

APw =




p̂k ×QiP̄w

p̂k′ ×QjP̄w


 =




p̂k ×Qi

p̂k′ ×Qj


 P̄w = 0 (2.20)

here




p̂k ×Qi

p̂k′ ×Qj


 is represented as A. Due to the noise of points’ positions and estimated

camera poses, the noise is more likely to be amplified when the parallax angle between
correspondences is too small. Therefore, those cases are filtered out in map points reconstruc-
tion [13].

Line Triangulation. In order to be more intuitive in geometry, a 3D line landmark L is
represented as two endpoints Ps and Pe. Due to occlusion issues during the observation
process, the two endpoints of the re-projected line on Fi cannot guarantee matching with
corresponding endpoints on Fj when Fi and Fj observe the same line landmark. Therefore,
the method to reconstruct a line landmark can be directly regarded as point reconstruction,
which needs to perform some special processing.
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2.2 Multiple View Geometry

First, we assume that pixel positions psi and pei lying on the ith image plane are the re-
projection results of those two 3D endpoints Ps and Pe, respectively. Then, the observation
relationship is described as

psi = QiP
s (2.21)

here Qi shows the measurement function of the ith frame.

As we mentioned, we may do not know the exact position of Ps on the jth image plane, but
we make sure that the re-projected points psi and psj are lying on the 2D extracted lines li and
lj, respectively. Therefore, another two relationships are built to describe the position of Ps

as follows  lipsi = liQiPs = 0

ljps′j = ljQjPs = 0
(2.22)

here li is computed by 2D endpoints, psi and pei , of a 2D line feature via a cross production
p̄s
i×p̄e

i√
a2+b2 .

Combined by Equation 2.21 and 2.22, the relationships between 2D measurements and 3D
line landmark Ps can be summarized as

psi = QiPs

lipsi = liQiPs = 0

ljps′j = ljQjPs = 0

(2.23)

Similar to the triangulation process of point landmarks, we also make use of the SVD
operation to solve Equation 2.23. Due to the noise of endpoints’ positions, the length of
2D line features, and estimated camera poses, we also build a threshold for the parallax
angle between correspondences, where those cases below the threshold are filtered out in the
reconstruction process.

2.2.4 Keyframe and Observation Association

Another critical step in building factor graphs for optimization modules is data association,
which is essential in bridging front and back ends. Generally, feature extraction, pose
estimation, and landmarks reconstruction are finished in the front-end module. On the one
hand, we need the association module to organize those observation relationships between
frames and landmarks into structures. On the other hand, those redundant reconstruction
results and unnecessary connections should be fused in this module.

Keyframe Selection. Only point features are considered in the keyframe selection process
in ORB-SLAM [13] and VINS-based methods [15]. For methods [5] that uses lines, planes,
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and vanishing directions in the tracking process, the keyframe selection module will consider
other features to achieve more precise information.

Landmark Fusion. During incremental tracking, for some reasons, including occlusion and
noise, those IDs of frames that detect the same feature are not consecutive. As shown in
Figure 2.6, feature 1 are detected in frames Fi+1 and Fi+2, but they are failed in matching.
Therefore, in local reconstruction, the same feature tends to be reconstructed into two land-
marks L1 and L

′
1. Therefore, every new reconstructed landmark should be examined via the

following process.

Figure 2.6 Example of landmarks fusion. From Fi+1 to Fi+2, feature 1 is failed in tracking.

To remove redundant reconstruction results, we re-project map points P to the image plane
of the newly generated keyframe kFi based on the initial camera pose Tw,ci , where the image
plane is divided into several grids. After obtaining the grid id gn of the re-projection point,
we select several interesting grids Gn that are neighboring of gn. Then, point features located
on the region Gn are regarded as correspondence candidates of P.

Since each map point has its descriptorD, we will compute the distance between candidates’
descriptor vectors and D. When a candidate is selected to connect to the map point, we
merge related co-visibility relationships.

2.3 Optimization Theory

To limit the increase of pose errors, there are some optimization solutions, including local
bundle adjustment [13, 14], sliding window [15], and loop closure [18, 13], where the core
idea back of those solutions is abstracting observation relationships to co-visibility graphs.
Therefore, optimizing camera poses and landmarks will be transformed into a problem of
modifying those vertices to achieve the best result of a loss function introduced in Section 2.1.
The ideas for building the loss function and updating vertices will be described in the
following sections.
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Figure 2.7 Example of graphs. Pose vertices are in green and constraints between are in black.

2.3.1 Vertex Representation

In factor graphs, camera poses and landmarks are represented as pose vertices Vpose and
landmark vertices Vp. To limit the size of graphs, all those pose vertices are generated from
keyframes rather than each frame fed from inputs in ORB-SLAM, while sliding-window-
based optimization methods [15] further fix the size of pose vertices according to the size of
the window. The keyframe selection and landmark reconstruction approaches are introduced
in Section 2.2.4.

Given initial camera poses and landmarks in the world coordinate, another critical step to
building a factor graph is parameterizing those landmarks for optimization. Generally, a line
landmark in 3D space is in four DoFs, while point and borderless plane landmarks in 3D
space are in three DoFs; therefore, if the optimized parameters of those landmarks are more
than their degrees of freedom. It means having more model parameters than necessary. We
call the situation over-parameterization, which leads to additional degrees of freedom and
introduces errors in the process [68]. To address the problem, a minimal representation for
the rotation is suggested to take place to those over-parameterization parameters.

Point landmarks representation. The straightforward minimal parameterization for a

point landmark is Euclidean XYZ, which is represented as
[
x y z

]T
∈ R3. Even the

representation has disadvantages in parameterizing low parallex features, the representation
is also widely used in SLAM systems [13, 54] since bad cases can be removed in front-ends.
To deal with features over a huge range of depths, the inverse depth parametrization [35] can
be used to represent landmarks generated by little parallax correspondences.
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In the inverse depth scheme, a 3D point landmark Pi in the scene is measured at pixel

pi =
[
ui vi

]
,

Pi =




xi

yi

zi




+
1
ρi




cosβ sinα

− sinβ

cosβ cosα




(2.24)

here α and β are azimuth and elevation, respectively. ρi is the inverse depth.

Line landmarks representation. The 3D line L = [n3×1 d3×1] used in the map is repre-
sented as Plücker Parametrization, where n ∈ R3 and d ∈ R3 show normal and direction
vectors of the 3D line. To address the over-parametrization issue of the Plückermethod, we
make use of the orthonormal parametrization O = [ϕ, θ] in the optimization module. The
transfermation between Plücker and Orthonormal is ilustrated as

[n d] =

[
n

||n||
d

||d||
n

||n|| × d
||d||

]



||n|| 0

0 ||b||

0 0




=
√
||n||2 + ||b||2R(ϕ)




cosθ 0

0 sinθ

0 0




(2.25)

here ϕ = [ϕ1 ϕ2 ϕ3]
T and || · || is the normalization operation.

Here we make use of U = R(ϕ), U ∈ SO(3), W =



w1 −w2

w2 w1


 = 1√

||n||2+||d||2




||n|| −||d||

||d|| ||n||


.

Plane landmarks representation. Similar to the Plücker method, the Hesse form [nT d]T

is a good method to show geometry representation. But the method also has the over-
parameterization issue due to the fact that the unit normal vector part has 3 parameters, but
actually only has 2 degrees of freedom. To address the problem, the minimal parameterization
τ = [θ φ d]T of a plane in optimization, here θ and φ are the azimuth and elevation angles of
the normal vector respectively. Therefore, the relationship between τ and π can be denoted
as

τ = q(π) = (θ = arctan
ny

nx
,φ = arcsinnz,d) (2.26)

here n =

[
nx nx nz

]T
, and the azimuth and elevation angles are restricted in (−π,π] to

avoid the singularities situation in optimization.
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2.3.2 Co-visibility Factors

In this section, we introduce a widely used factor graph structure in detail, Co-visibility
factor graphs, where those edges between vertices are built based on co-visible relationships.
Co-visibility connections [69, 13, 54, 55] are built when two images detect the same landmark,
like a mappoint or a mapline. Based on the re-projection models of point and line features, the
co-visibility factors are defined in this section. Specifically, after feeding pose and landmark
vertices into a graph optimization pipeline, a factor connection happens in two cases:

• During the tracking process, when an existed landmark LMi reconstructed before is
associated to the current frame Fc, a new observation will be built.

• During the loop closure modules, when two existing landmarks reconstructed repeat-
edly are fused into a landmark, old observations of those landmarks will be merged.

Observation in Tracking. In tracking process, the observation between 2D feature lmj and 3D
landmark LMj is constructed, and the factor can be represented as

f(lmj, KTcwLMj) (2.27)

here f(·, ·) is the re-projection function between 2D measurements and corresponding 3D
landmarks. Furthermore, lmj used in this section represents points, lines, and planes. To be
specific, points and lines can be matched by descriptors, while planes are associated based
on the Gauss representation π = [n d].

Observation fusion in Loop Closure. As introduced in Equation 2.27, the re-projection factor
will be built incrementally. Caused by noise introduced in Section 2.1.1, an environment
landmark measured by different frames may be reconstructed into several 3D primitives.
Therefore, when we detect that a camera revisits the same place based on the DBoW [70]
method, the correspondences between two vertices Tcn,w and Tcm,w are matched. Then those
redundantly reconstructed landmarks, lmj and lmi, are fused into one landmark associated
with those two pose vertices. Based on the loop closure constraints, the factor between
measurements and 3D primitives is represented as

f(lmj, KTcn,wLMj)

f(lmi, KTcm,wLMi)

 fusion−−−→
∑

s∈(m,n)

∑
k∈(i,j)

f(lmk, KTcs,wLMi) (2.28)

where fusion−−−→ is the landmark fusion step in the loop closure module.

Point Re-projection Factor. Based on the point feature measurement model, the measure-

ment of the ith global point landmark Pi = [ xi yi zi ]T detected by frame Fj is repre-

sented as pjk = [ ujk vjk ]T in the normalized coordinate, and the re-projection error of this

observation relationship is defined as rp(p
j
k,Pi, Tw,cj) where

rp(p
j
k,Pi, Tw,cj) = KRTw,j(Pi − tw,j) − pjk (2.29)
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here (·) is to compute the normalized coordinate.

Line Re-projection factors. The mapline Lw in the world coordinate is represented by

Lw =

[
nw dw

]T
, here dw is the direction vector of Lw while nw is normal vector of the

plane constructed by landmark Lw and the original point of the world coordinate.

From the world coordinate to the ith camera coordinate, the line landmark in the camera
coordinate can be represented as

Lci =




nci

dci


 = Tci,w




nw

dw


 (2.30)

here Tci,w =




Rci,w [tci,w]×Rci,w

0 Rci,w


, and [·]× is the skew-symmetric operation.

Furthermore, we re-project the Lci onto the image plane. Assuming ps and pe are two
endpoints re-projected by Lci via

p̄k = KP̄k,k ∈ (s, e) (2.31)

here P̄k is a normalized 3D endpoint in the camera coordinate.

Therefore, the re-projected line function ljk [zhangline], can be obtained by

ljk = p̄s × p̄e = KP̄s ×KP̄e = K(P̄s × P̄e) = Knj (2.32)

here K =




fy 0 0

0 fx 0

−fycx −fxcy fxfy




.

Finally, the re-projection error between lj and its extracted line feature l =
[

ps pe

]T
can

be written as

rl(p
j
k,s,p

j
k,e, Lw, T) =



d(pjk,s, l

j)

d(pjk,e, lj)


 (2.33)

where d(pjk,s, l) =
pjT

k,s·l√
l2

1+l
2
2

, and lj =
[
l0 l1 l2

]T
is the 2D line re-projected from the jth 3D

mapline. pk =

[
x̄k ȳk 1

]T
,k ∈ (s, e), are the normalized coordinates of endpoints.

Factor Graph Construction. Given vertices and re-projection errors listed in Equation 2.29
and 2.33, the co-visibility graph G can be established, where the vertices in this graph G contain
camera poses Vpose, point landmarks Vp, and line landmarks Vl. Furthermore, those pose
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vertices are Tw,ci =



Rw,ci tw,ci

0 1


 where Tw,ci ∈ SE(3), Rw,ci ∈ SO(3) and tw,ci ∈ R3.

Points used in the optimization module is parameterized as Pkw =

[
xk yk zk

]T
. The

edge between Vpose and Vp is called as a factor Epose,p. Since the Plücker approach has an

over-parameterization issue, we make use of Orthonormal representation Okw =

[
θ ω

]

in the line landmark updating process.

Based on the result of the frond-end, observation at different timestamps are considered
together, then the co-visibility factor graph can be abstracted as the following loss function

m∑
i=1

n∑
j=1

||rp(p
j
k,Pi, T)||2Λp

+

m∑
i=1

n∑
j=1

||rl(p
j
k,s,p

j
k,e, Lw, T)||2Λl

(2.34)

here j shows the ID of the camera j ∈ (0, . . . ,n) and i shows the ID of the map point
i ∈ (0, . . . ,m). And Λ is the information matrix and rp is shorten for rp(p

j
k,Pi, T). where

Λp and Λl are information matrices.

Pose Graph optimization. Instead of optimizing both pose and landmark vertices, some-
times pose graphs are more prevalent in real-time SLAM systems since the optimization
problem size is much smaller than the factor graph introduced in the last paragraph. In
pose graphs, there are only pose vertices as shown in Figure 2.7(b). Edges between frames
represent the relative transformation that can be generated based on co-visible landmarks.
Constraints between poses are used for optimization. In visual SLAM, the vertices are in
6-DoF, while visual-inertial odometry methods [15] perform 4-DoF pose graph optimization
since the observation of roll and pitch angles can be fully supported by IMU.

When a loop closure is detected in a trajectory, new connections between the current frame
and the previous ones that detect the same place will be established. For visual-SLAM
systems, the relative translation can be estimated by methods like PnP [64]. Then, the
sequential constraints and loop closure constraints are used to build the following function

min
Tci ,w

∑
(i,j)∈S

||ri,j||2 +
∑

(m,n)∈C
||rm,n||

2 (2.35)

here S and C represent the set of sequential and all loop closure frames, respectively.

2.3.3 Matrix Lie Groups and Lie Algebras

Matrix Lie Groups
There are two specific matrix Lie Groups in pose optimization tasks, Special Orthogonal
Group, denoted SO(3), and the Special Euclidean Group, SE(3), which can be represented
rotation and transformations respectively.
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Special Orthogonal Group. SO(3) describes the set of orthogonal matrices as,

SO(3)=̇{R ∈ R3×3|RTR = 1,det(R) = 1} (2.36)

here det(·) shows that the product of each one of its elements is of determinant 1.

In mathematics, a group is built by a set of elements together with an operation, and the third
element generated via the operation and two of its elements is also in the set. Even the matrix
R can be shown as the format of vectorspace, SO(3) is not a valid subspace. But there are
characteristics for SO(3):

1. SO(3) is closed under matrix multiplication, namely Rij = RiRj, Rij ∈ SO(3);

2. the inverse, R−1
i , is the matrix transpose is RTi , matrix transposition, where R−1

i ∈ SO(3);

3. given the identity matrix I ∈ SO(3), RiI = IRi = Ri, Ri ∈ SO(3);

4. the associativity for the rotation motion Rk(RjRi) is equal to (RkRi)Rj.

With those properties, also called as group axioms,the group is a differential manifold that
can be seen as Euclidean on a local scale. and the optimization on manifold is possible.

Similar to SO(3), the Special Orthogonal group in dimension 2 is denoted as SO(2), which is
used in planar orientation motions, as well as in 3D line optimization modules as introduced
in Section 2.3.1.

Special Euclidean Group. SE(3) describes the set of rigid motion in 3D space, which is
denoted as

SE(3)=̇

T =




R t

0 1


 ∈ R4×4|R ∈ SO(3), t ∈ R3

 (2.37)

here SE(3) also satisfies four conditions, including closure, invertibility, identity and asso-
ciativity. Specifically, the group operation of SE(3) is matrix multiplication, TiTj, and the

inverse is T−1 =

[
RT −RT t

]
, T−1 ∈ SE(3).

Lie Algebras
The tangent space to the manifold SO(3) (at the identity) is denoted as so(3), which is
vectorspace of the Lie algebra. Therefore, so(3) perfactly captures the local characteristics of
SO(3).
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From a vectorφ =




φ1

φ2

φ3




in R3, the operator [·]× representing a skew symmetric matrix op-

eration, transferms the vector as a matrix [φ]× =




0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0




. So the vectorspace

of so(3) can be denoted as

so(3)=̇
{
Φ = [φ]× ∈ R3×3|φ ∈ R3} . (2.38)

Furthermore, φ can be represented by a normalized vector a and φ, φ = φa. Then,
exp([φ]×) = exp (φa∧) is denoted by

exp (φa∧) = 1 + (1 − cosφ)(a∧)2 + sinφa∧ (2.39)

here the exponential map (at the identity) exp () can be used to associate Lie Algebra elements
to rotation in SO(3) by using R = exp (φa∧). A first-order approximation of the exponential
map is

exp ([φ]×) ≈ 1 + [φ]×. (2.40)

In the tangent space, an increments δφ in the additive operation is related to multiplicative
increments of SO(3) via the left Jacobian Jl(φ),

exp ([φ+ δφ]×) ≈ exp (([Jl∆φ]×)) exp ([φ]×) (2.41)

which provides a new perspective to map the small movement in the tangent space to
operations of SO(3).

Similarly, the Lie algebra associated with SE(3) is represented by

se(3)=̇
{
Ξ = [ξ]× ∈ R4×4|[ξ]× ∈ R6} (2.42)

here [ξ]× =




[φ]× ρ

OT 0


 ∈ R4×4. φ and ρ two 3-dimensional vectors.
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2.3.4 Solver

In Section 2.3.2, different types of factor graphs are built to describe the tracking and mapping
process as introduced in Equation 2.34. To obtain accurate camera poses and landmarks, we
minimize the loss function in an iteration converge module

x∗ = argminH(x) (2.43)

where the set of variables of the factor graph is denoted as §. Since those factors involve
the non-linear rotation variables, the nature of the loss function is a non-linear least-squares
problem. The function f(§) in Equation 2.43 can be approximated via the first order Taylor
expansion at §0, written as

H(xk + δx) = H(xk) + J(xk)δx (2.44)

z(x) = f(xk+1) + gk(x− xk+1) +
(x− xk+1)

TG(x− xk+1)

2
(2.45)

here G = ∆2f(xk+1) and gk+1 = ∆f(xk+1).

As introduced in Figure 2.9(a), there are n poses andm landmarks in the graph, where the
re-projection factors only connect parts of vertices based on observation. Therefore, the
structure of the problem is sparse as shown in Figure 2.9(b).

Gauss-Newton Solver The Gauss-Newton algorithm is a variance of the Newton method
that has a faster convergence speed in unconstrained optimization problems, therefore before
analyzing the problems of the Gauss-Newton method, the Newton optimization method is
revisited first.

For the Gaussian solution, the extreme point can be obtained by taking the derivative of the
above formula and making the derivative equal to zero.

∆z(x) = ∆f(f(xk+1)) +G(x− xk+1) = 0 (2.46)

If G−1 is a non-singular matrix, then xk+1 = xk − G−1gk+1, so that iterative update can
be achieved. As mentioned before, the convergence speed of Newton’s method is similar
to the second order. However, when this method encounters the BA problem, solving the
Hessian matrix requires a huge workload. At the same time, there is no guarantee that the
Hessian matrix of the objective function exists at every iteration point. All can maintain
righteousness. In order to take advantage of the advantages of Newton’s method and avoid
its disadvantages, BA solution methods such as the Gauss-Newton method have emerged.

The main idea of this method is to perform Taylor expansion at the iteration values, and then
use the expansion to approximate the target equation. Therefore, the nonlinear problem can
be transformed into a linear problem, and the new iteration point can be obtained by finding
the minimum point of the quadratic model. Through multiple iterations, until a satisfactory
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accuracy is achieved. Perform first-order Taylor expansion on the formula 2.44, here we only
expand the part of the feature points in the formula.

Normally, Hd = J(x)TF(x), here H is Hessian Matrix, and H = J(x)T J(x) +
∑
Fi(x)

2. In
the Gauss-Newton method, the second term is ignored, and the method only makes use of
J(x)T J(x) as Hessian Matrix. Therefore, it can be seen that the algorithm lacking high-order
derivative information must satisfy the positive definite condition of the Hessian matrix in
the iterative solution process and then requires the full rank of the Jacobian matrix. Otherwise,
the algorithm fails. The Jacobian matrix is the representation between the camera and the
three-dimensional feature points, which changes as the input parameters change. Therefore,
the requirement for the Jacobian matrix becomes the requirement for the initial value of the
observation, which is the fundamental reason why the Gauss-Newton method is sensitive to
the initial value.

Leverberg-Marquart Solver. When we use JT J to take the place of the Hessian Matrix, the
bundle adjustment problem is often encountered from convergence issues. To solve the
problem, Leverberg-Marquart was proposed to solve bundle adjustment models. The target
function of Leverberg-Marquart is written as

(JT J+ λI)dLMk = −JTgk (2.47)

here I shows an identity matrix, and λ is a damped value. Therefore, the singularity issue of
Gauss-Newton will be solved. There are two parts on the left of Equation 2.47. The method
will automatically modify the ratio between JT J and λI during the iterations. When λ is much
bigger than JT J, Equation 2.47 can be regarded as a gradient descent algorithm, namely

dLMk = −
1
λ
JTgk (2.48)

Similarly, if λ is much smaller, then the method can work as the Gauss-Newton method.
Therefore, the LM method can be regarded as a combination of Steepest Descent and Gauss-
Newton.

Sparsity in Jacobian and Hessian matrices. As introduced in the previous sections, the
Jacobian matrix J computation is important in the iterative updating process. First, a con-
nection between the jth point landmark and the ith camera pose will generate a residual
error eij, which means that the jth point landmark is observed by the ith view as shown in
Figure 2.8. Therefore, the residual function only involves two vertices, namely Ti,w and Pjw.
The Jacobian matrix generated by this connection can be denoted as

Ji,j(X) =
[

02×6 . . . ∂eij
∂Ti,w

. . . 02×3
∂eij
∂Pj

w
. . . 02×3

]
(2.49)

here since other vertices have no relationship with this residual connection, those vectors
besides ∂eij

∂Ti,w
and ∂eij

∂Pj
w

are zero matrices.
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(a) The structure of Ji,j

(b) The structure of JTi,jJi,j

Figure 2.8 The sparsity of Jacibian and Hessian matrices generated by eij. White cubes are zero blocks.

Following the Equation 2.47, Ji,j can be used to build a Hessian Matrix via the JTi,jJi,j operation,
and the non-zero blocks are located at the position of (i, i), (j, j), (i, j) and (j, i) as shown in
Figure 2.8. Since the sparsity of Jacobian matrices, the matrix JTi,jJi,j will remain the sparsity
when we merge all residual connections.

Typically, factor graphs are constructed from hundreds of landmarks and dozens of poses,
and it is not easy to directly solve such a large matrix in every iteration. However, based on
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(a) The structure of a factor graph.

Figure 2.9 The structure of factor graph and sparsity of Hessian matrix generated by the graph. White cubes are
zero blocks.

the sparse structure of the Hessian matrix, the computational burden will be greatly reduced.

Let denote the




B A

A C


, the Equation 2.47 can be rewritten as




B A

AT C






δxT

δxP


 =




gT

gP


 (2.50)

here



δxT

δxP


 are required to update in iterations.

By using the Schur Elimination operation, Equation 2.50 can be transferred to




B − AC−1AT 0

AT C






δxT

δxP


 =




gT − AC−1gP

gP


 (2.51)

Therefore, we can obtain the relationship for δxT by using

[B − AC−1AT ]δxT = gT − AC−1gP. (2.52)

Since C is a diagonal matrix as illustrated in Figure 2.9, it is efficient to compute C−1. After
obtaining δxT , the δxP can be computed via the following function

δxP = C−1(gP − ATδxT ). (2.53)

In landmark optimization process, there is an over-parametrization issue that we have to face
with. For example, a plane in 3D space R3 has only 3 degrees of freedom, which means that
only 3 parameters can represent a plane, whrereas the Hesse form ı = [n,d] has 4 parameters.
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The number of parameters is more than the actual representation of degrees of freedom,
which is called the over-parameterization issue.

For the Gauss-Newton optimization solver, if it is an over-parameterized form, the Hessian
matrix calculated during the optimization process will not be of full rank, so the proposed
JT J cannot be inverted for solving the problem. Even, the problem can be addressed by
the Levenberg-Marquardt algorithm, we still have a convergence problem to deal with.
Since the cost function is flat in some directions, there are infinitely many solutions, which
will make the convergence rate of the algorithm become the linear convergence rate of the
gradient descent method, rather than the quadratic convergence rate of the Gauss-Newton
method, so it will lead to Convergence becomes slower. Therefore, we will introduce proper
parametrization approaches for primitives implicated in this section.

Parameterization is an important step if we want to optimize a type of landmark in the
factor graph. First of all, most of them focus on how to represent point, line, and plane
features in the optimization modules. Inverse depth parameterization improves numerical
stability compared with the XYZ method. Plücker and Orthonomal line representation are
proposed to represent a line in the tracking and optimization process, respectively, where
Orthonormal solves the over-parametrization issues in the optimization step by using 4
parameters to represent 3D lines. And then, for structural regularities, implicit methods [71,
14] add more structural constraints at the end of re-projection residual loss functions of
individual landmarks, while the explicit strategies choose to parameterize those constraints
as a type of primitive and feed them into optimization tasks directly. Generally, there are two
advantages to explicit strategies. On the one hand, there are fewer parameters will be used in
optimization modules. On the other hand, the binding force of explicit methods is stronger
than implicit constraints.

2.4 Deep Neural Networks

Deep neural networks have shown impressive performances in the computer vision commu-
nity. Compared with multiple view geometry, those networks are good at high-level tasks,
including plane segmentation, single-RGB depth/normal prediction, and scene completion,
by training large-scale parameterized pipelines with massive data. To break the bounds of
traditional SLAM/VO methods, neural networks can be leveraged in tracking, mapping, and
scene understanding modules. Based on the surface normal prediction [8] and plane instance
segmentation [9] networks, new types of data can be leveraged into SLAM systems.

First, we introduce the basic operators and blocks, including convolutional and fully-
connected layers, pooling, and dropout operations in Section 2.4.1, and then fundamental
blocks in Section 2.4.2.
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2.4.1 Basic Operators

Convolutional layer. A convolutional layer is typically composed of several 2D/3D filters,
and the weights of each filter are learned via back-propagation during training processes.
The filters then slide over the input data in a specified stride along different dimensions and
convolve with a local patch of the input data at each position. Therefore, 2D and 3D filters
form 2D feature maps and 3D feature volumes, respectively.

For 2D convolutional layers, the expression to generate a single convolution output for a
single 2D position (u, v) with value f(u, v) can be expressed as

g(u, v) =
ku∑

du=−ku

kv∑
dv=−kv

ω(du,dv)f(u− du, v− dv) (2.54)

here g(u, v) is the result and ω is weight of the convolution kernel. Those elements are
changed in the range of [−ku,ku] and [−kv,kv] in the filter kernel. The size of the receptive
field is determined by the kernel size kx. When the kernel size is larger than a single element,
some deep features are extracted based on multiple local elements.

Pooling layer. Pooling operation is a typical post-process operation after convolutional
neural layers, simulating the human visual system to reduce the data dimension and extract
dominant features. For example, a max pooling layer [72] divides each input feature map
into rectangular areas and filters out features that are not the maximum within a rectangular
neighborhood. Based on this operation, the network parameters and calculation costs are re-
duced, while the over-fitting issue will reduced as well. The use of pooling layers, along with
convolutional layers, has led to significant improvements in performance in many computer
vision tasks such as object detection [73], segmentation [74], and classification [75].

Similarly, Average Pooling is the average of the values in the locally accepted domain.
Stochastic pooling is proposed by [76] to the effect that it only needs to randomly select the
elements of the feature area according to their probability values, and the probability of being
selected with a significant element value is also considerable. Local Importance-based Pooling
proposes automatically learning the importance through a sub-network based on input
features. It can adaptively determine which features are more critical while automatically
enhancing identifying features during sampling. The idea is to learn a map similar to
attention on the original feature map, then perform a weighted average with the original
image. The sampling interval here is actually fixed, which does not meet the first item of the
above description. However, the author believes that the deformed receptive field can be
realized since the importance is variable. Max pooling is a common type of pooling operation
where the maximum value within each pooling region is taken as the output value for that
region.

Fully-connected layer. Fully-connected layers, also known as dense layers, are a common
type of layer used in neural networks. In a fully connected layer, every neuron of the layer
is connected to every neuron in the previous layer, creating a dense matrix of weights that
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x fcdimin ,dim1 bias h fcdim1 ,dim2 bias h fcdim2 ,dim3 bias h y

Figure 2.10 A multi-layer perceptron pipeline composed by three fully-connected layers together with biases and
non-linear activation.

can be trained during the learning process. In a neural network architecture, fully connected
layers are typically used after one or more convolutional or pooling layers to analyze higher-
level features extracted from input data such as images or audio signals. The previous layer’s
output is flattened into a 1D vector and fed as input to fully connected layers.

The neurons in a fully connected layer compute a weighted sum of their inputs, adding a
bias term and an activation function. The activation function introduces non-linearity to the
learned model and enables it to learn complex relationships between features in the input
data. Fully-connected layers are often used as the final layer in a neural network model to
produce classification or regression outputs. For example, in an image classification task, a
fully connected layer can take the output of a convolutional layer and output a probability
distribution over the possible classes.

Activation functions. Activation functions are non-linear mathematical operations applied
to the output of a neuron, which introduces non-linearity into networks and enables them to
model complex relationships between inputs and outputs. There are several types of activa-
tion functions used in neural networks, including ReLU [77], Sigmoid [78] and Softmax [79].
ReLU is a rectified linear unit function that sets all negative input values to zero and leaves
positive input values unchanged. It is computationally efficient and has been shown to
perform well in many deep-learning applications. A softmax function maps any input vector
to a probability distribution over classes, making it useful for multi-class classification tasks,
and a sigmoid function maps any input value to a value between 0 and 1, making it useful for
binary classification tasks. However, it can suffer from vanishing gradients when the input
values are too large or too small.

2.4.2 Architecture

By implementing some inference models in deep architectures, layer-by-layer operations
are used, as mentioned in Section 2.4.1. The performance of deep architectures can surpass
human expert performance usually because of its large-scale parametric model, where
different operators should be carefully connected to form some standard modules. In the
following paragraphs, we illustrate some basic architectures including

Multi-layer perceptron (MLP). A multilayer perceptron (MLP), such as the one shown in
Fig. 2.10, consists of three fully connected layers, each with a nonlinear activation function
at its output. Ignoring forward-pass data with batch sizes greater than 1, a single input to
an MLP is always flattened into a vector, with each element in the vector connected to each
element in the next layer with a certain weight.
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The output dimension and the number of layers are the two most important factors in
MLP. As shown in Figure 2.10, dimin and dim3 are determined by the task. The sizes of
dim1 and dim2 are hyperparameters that can be flexibly designed based on factors such as
expected inference accuracy and efficiency. Overall, a multilayer perceptron (MLP) represents
a function y(x;Θ), parameterized by the weights Θ and their biases in fully connected layers.
Generally, deeper MLPs make the model more capable of adapting to the training data.

Convolutional neural networks. Convolutional neural networks (CNN) can be regarded
as regularized versions of MLP, which connect each neuron in one layer to all neurons in the
next. The complete connectivity between these layers makes MLPs prone to over-fitting data.
However, the situation changes in CNNs where regularization is performed by using the
hierarchical pattern in data and assembling those increasingly complex patterns. And those
patterns embossed in their filters are smaller and simpler. One of the impressive works of
CNN applications is LeNet-5 [80], which uses seven convolutional layers to classify digits
from an image.
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3Tracking and Mapping in Structural
Scenes

Following Chapter 2 introducing fundamental theories related to general SLAM methods,
this chapter continues to illustrate necessary theories and technologies used in tracking,
mapping, and optimization modules in structural scenes. In this chapter, we first revisit the
recent history of this field in Section 3.1, and introduce the data flow of a point-line SLAM
from the front-end to the back-end modules on a simulated scene in Section 3.2, which helps
describe how to organize fundamental theories in SLAM software. Furthermore, we continue
introducing strategies for using structural regularities in pose estimation in Section 3.3, and
3D reconstruction in Section 3.4.

3.1 Recent History in Structural SLAM

In many scenarios, SLAM and VO methods introduced in Section 2.1.4 have shown impressive
performance as general trackers. However, these methods still suffer from tracking loss in
some man-made regions where insufficient point features are detected. Even though those
areas are only a tiny part of the scene, the problem of tracking loss still dramatically reduces
the robustness performance of the whole system.

Traditionally, monocular SLAM methods are considered extremely limited in information
perception, especially in indoor environments with several low/non-textured regions. Al-
though many non-textured regions exist in manufactured environments, we can also find
other types of landmarks, such as lines and planes, which wildly exist on furniture surfaces,
ceilings, floors, and walls. We agree that adding line features, such as PL-SLAM [81, 82], helps
to increase information for tracking, but the ratio of information enhancement is minimal.
Therefore, we can summarize the dilemma of monocular SLAM methods as the effective use
of input information is low, which will be in trouble when the information usage gets lower
in low-textured scenarios.

Compared with monocular-SLAM methods, stereo, and RGB-D approaches are more ro-
bust in the same evaluation environments since an accurate local/global map is easier to
reconstruct to support map-to-frame tracking strategies [13, 54]. In some scenarios, such as
corridors, where features are centered at a part of regions of images, those methods based on
features still face enormous challenges.

45



Chapter 3: Tracking and Mapping in Structural Scenes

Taking the fact that 3-DoF translation estimation is a linear problem with given known 3-DoF
rotation [83], some approaches [67, 84] proposed to decouple the 6-DoF pose estimation
into rotation and translation estimation via structural assumptions, like Manhattan/Atlanta
World Assumptions [8, 85], based on perpendicular/orthognal lines and planes. At the
same time, based on an estimated rotation matrix, fewer points are required to compute
the translation motion, leading to more robustness in low-textured regions. A line of work
exploits additional environmental constraints and regularities to improve pose estimation
and mapping performance. When only planes are used for the rotation estimation as in
OPVO [84], at least two orthogonal planes are required to be detected in each frame; the
addition of vanishing points extracted from lines can be used alternatively, as done in
LPVO [66]. Based on the assumption of environments, the situation of error accumulation
will be improved. Since those methods do not consider parametrizing those structural
regularities in optimization modules, it is challenging to optimize scene representations,
camera poses, and structural regularities at the same time.

In contrast to sparse point clouds widely used in general SLAM systems, some dense mapping
algorithms showing better visualization performance are designed for indoor scenes. By
building a volume to an environment, elements of the scene are voxelized, which can
be used to build an occupancy map [86] that is important in navigation for robots and
autonomous driving vehicles. In addition, each voxel can also be used to record some implicit
parameters, like sdf [87] and tsdf [45]. Based on those implicit voxels, we can mesh surfaces
via raycasting [45] or marching cube [88] algorithms. Meanwhile, the geometric abstraction
method [89] based on structure priors is proposed for lightweight model generation instead
of reconstructing the visual scenes as the same as the physical ones.

3.2 Data Flow Analysis In Point-Line SLAM

In this section, we introduce how to connect those theories and modules in a complete
tracking and mapping pipeline, PointLine-SLAM [1], as shown in Figure 3.1. Then, by
analyzing the data flowing from one module to another, it will be easier to find the advantages
and disadvantages of different modules, providing a systemic perspective in SLAM system
design.

3.2.1 Data flow Overview

Inputs. As shown in Figure 3.1, the pipeline starts from point-line measurements directly
by skipping the process of feature detection to remove the randomness of the detection and
matching process. Each point and endpoint of lines have their corresponding depth, which
means that 3D point and line landmarks in the camera coordinates can be obtained directly
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Figure 3.1 Architecture of tracking and sparse mapping system. In the "Point-Line Measurements" window,
points and lines are green and red. In the co-visibility graph optimization window, dark blue, light
blue, and red figures present optimized, initial, and ground truth, respectively.

via the intrinsic matrix K. Similar to those real measurements obtained from raw RGB-D
images, the measurements also have noise. And the noise model follows the method in
ICL-NUIM [12].

System Initialization. Since the 3D measurements are fed to the system, the initialization

module is used to activate the world coordinate at




I3×3 03×1

01×3 1


, which is also the pose of

the first frame. Furthermore, in the initialization module, we also have to activate the local
map by feeding the point and line measurements, p and l, of the first frame to the world
coordinate.

Incremental tracking. After activating the coordinate systems and the local map, the pose
Tci,w of the new frame Fci newly fed to the system can be estimated via Frame-to-Frame
or Map-to-Frame strategies by build correspondences between two frames or landmarks-
frames, which the map-based on method is more robust since the number of visual landmarks
collected in the map are no less than last frame’s.

The process of associating current frames’ measurements with 3D landmarks is essential
because the process affects two modules. First, the association’s performance determines the
performance of the initial pose estimation as introduced in Section 2.2.4. If there are some
outliers in those matches, using the PnP method to compute the camera pose is challenging.
Therefore, some RANSAC-based methods are proposed to remove those outliers in the
iterative estimation process. Second, The association relationships will be used in co-visibility
graphs for building re-projection factors, which are critical to the optimization process.
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Figure 3.2 Measurements of points and structural line segments. Parallel lines are marked in the same color.
Black shows individual lines.

Figure 3.3 Initial trajectory estimates (left) and ground truth (right).

In this point-line SLAM system, the observation is simulated, where we give the same ID
to those correspondences of different frames. The ID of each measurement looks like their
descriptor vectors that can determine matches and co-visible connections.

Sparse reconstruction and updating. Since former views already detect a part of the mea-
surements detected in the new frame, the PnP algorithm can be used for camera pose
estimation of this frame. One of the biggest problems resulting in tracking loss is caused
by no co-visible relationships anymore. Another part of them is newly detected; otherwise,
this new frame cannot provide new information anymore. Therefore, for most frames, those
two types of measurements should be dealt with in two manners. New measurements
are initialized and merged into the world coordinate, while measurements that have been
detected before are passed through a landmark fusion module. In ORB-SLAM [54], each
point landmark in the map saves a descriptor vector for the coming landmark fusion steps.

3.2.2 Front-end

After obtaining measurements and observing relationships between landmarks and camera
poses, initial pose estimation and sparse mapping are implemented incrementally, as shown
in Figure 3.2 and 3.3.

First, when a new group of measurements is fed to the system, initial 6-DoF transformation
Tw,ci is estimated based on the RANSAC-based PnP method [65]. Furthermore, the 3D points
and lines are reconstructed and fused based on measurements and initial camera poses.

Given 2D measurements, including points and lines, and related depth information as
shown in Figure 3.2, a sparse 3D map based on point and line landmarks can be initialized.
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(a) Trajectory results (b) Rotation results

Figure 3.4 Comparison in trajectory results of initials, Point-BA, and PointLine-BA methods in the sequence.

Furthermore, the initial map can be used to estimate the current camera pose when a new
image is fed to the system based on the map-to-frame strategy, which is implemented based
on 3D-2D alignment as introduced in Section 2.2.2. After getting the initial camera pose,
measurements of the current frame are used to build the model. Those measurements are
fused to the map for matched features, while those new measurements will be used to
initialize landmarks.

As introduced in previous chapters, point-only visual odometry systems are sensitive to
low-textured scenarios, like the 20th frame, in Figure 3.2. The phononomen in Figure 3.3
shows that the Map-to-Frame pose estimation method cannot estimated accurate initial
camera poses under those challenging scenes.

3.2.3 Back-end

General SLAM systems [55, 15, 14] have achieved impressive performances. However,
they still need help in challenging scenarios and sharp camera motions. To solve those
problems, algorithms are proposed to update parts of those core modules, such as structural
regularities [8], parameterization [35], and new factor loss functions [14], of those popular
SLAM systems. Inspired by those SLAM methods, the initial camera poses estimated based
on the Map-to-Frame strategy are refined via point [13] and line [90] optimization methods.

Co-visibility factor Graph Construction
The vertices in this graph G contain camera poses Vpose, point landmarks Vp, and line

landmarks Vl. To be specific, camera pose Tw,ci =



Rw,ci tw,ci

0 1


, where Tw,ci ∈ SE(3),

Rw,ci ∈ SO(3) and tw,ci ∈ R3. Points used in the optimization module is parametrized as
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Pkw =

[
xk yk zk

]T
, and line landmarks are represented in Plücker Parameetrization [36]

as Lk =

[
wnn

k wdd
k

]
where nk and dk are unit vectors, and the first one is the normal

vector of the plane built by camera center ci and endpoints of the kth line, while the second
one is a direction vector. In the iterative optimization process, we transfer the Plücker
Parametrization to Orthonormal Representation.

Factor Graph optimization
In the architecture of the Co-visibility Factor Graph (CFG), we evaluate Point BA [54] and
Point-Line BA [90]. For fair comparison, the input to those optimization modules is the
same.

Point BA. Following ORB-SLAM2 [54], Point BA makes use of the Euclean parametrization
to represent point landmarks and the loss function is based on re-projection errors between
re-projected points and pixel measurements.

Based on the point feature measurement model, the measurement of the ith global point

landmark Pi = [ xi yi zi ]T at frame cj is represented as pjk = [ ujk vjk ]T in the nor-

malized coordinate, and the re-projection factor of a point feature is defined as rp(p
j
k,Pi,X)

where
rp(p

j
k,Pi,X) = KRTw,j(Pi − tw,j) − p

j
k (3.1)

here (·) is to compute the normarlized coordinate. The corresponding Jacobian matrices Jp
and JX can be obtained respectively for updating landmarks and camera states according to
Equation 3.1.

Point-Line BA. Following PL-VIO [90], the Plück presentation is used for re-projection
error computation, and the Orthonormal method is used for iteration optimization steps.

Traditionally, the mapline Lw in the world coordinate is represented by

Lci =



nci

dci


 = Tci,w



nw

dw


 (3.2)

here Tci,w =



Rci,w [tci,w]×Rci,w

0 Rci,w


, and [·]× is the skew-symmetric operation.

On the image plane, the reprojected endpoints, ps and pe, of a 3D line in the camera
coordinate can be obtained by

p̄k = KP̄k,k ∈ (s, e) (3.3)
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here P̄k is a normalized 3D endpoint in the camera coordinate. Therefore, the reprojected line

lj = p̄s × p̄e = KP̄s × KP̄e = K(P̄s × P̄e) = Knj, and K =




fy 0 0

0 fx 0

−fycx −fxcy fxfy




.

When the mapline Lw is detected by frame Fi and Fj, we can find the 2D correspondences
lying on related images. The error between the re-projected line lj and two endpoints, ps
and pe, of the extracted 2D line in the frame, can be written as

rl(p
j
k,s,p

j
k,e,Lw,X) =



d(pjk,s, l

j)

d(pjk,e, lj)


 (3.4)

where d(pjk,s, l) =
pjT

k,s·l√
l2

1+l
2
2

, and lj =
[
l0 l1 l2

]T
is the 2D line re-projected from the jth 3D

mapline. pk =

[
x̄k ȳk 1

]T
,k ∈ (s, e), are the normalized coordinates of endpoints.

As shown in Figure 3.4a, benefitting from the local map, we can obtain more accurate camera
poses compared with the frame-to-frame tracking strategy. Furthermore, the optimization
modules based on points and lines achieve more smooth trajectories than visual odometry
systems. However, when we focus on those two optimization modules, it is easy to find that
constraints from line features improve the robustness of the point-based refinement step, but
the distance in accuracy is not very large, as shown in Figure 3.4b.

3.3 Structural Regularities in Tracking

Before discussing structure-based tracking, let us first revisit the co-visibility factor graph
introduced in Section 2.3.2. As shown in Equation 2.34, point and line landmarks are
connected to views that detect those landmarks. Based on those observation relationships,
the co-visibility graph optimizes landmarks and camera pose simultaneously. Obviously,
in these graphs, the only types of relationships we need to know are observations between
individual landmarks and their corresponding measurements.

For textured scenes, such as outdoors, where landmarks are evenly distributed in the scene,
the optimization module tends to converge to good enough results from initial values. But
the fact changes in indoor environments. On the one hand, features are measured in uneven
situations. For example, extracting useful point features from textureless walls is problematic,
resulting in insufficient observations for these factor graphs. On the other hand, these indoor
environments commonly provide particular patterns rarely detected in the wild. Specifically,
those widely discovered structural regularities can be summarized as follows:

• Collinear points: multiple points located on the same line;
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• Coplanar points and lines: points and lines located on the same plane;

• Vanishing point: the intersection point of two-dimensional parallel lines;

• Atlanta World: all scene elements share a dominant direction;

• Manhattan world: those where the relationship between landmark elements is limited
to parallel or perpendicular.

This section introduces three manners of usage in those structural regularities. The first is
to compute additional residuals based on structural constraints (see section 3.3.1). Instead
of using constraints in optimization modules, Section 3.3.2 provides the second strategy
that directly codes structural priors into landmarks by proposing new representations for
the optimization process. Finally, the third approach, illustrated in Section 3.3.3, makes a
structure containing several landmarks into a primitive and optimizes the primitive directly
rather than optimizing its landmarks.

3.3.1 Structural constraints.

Collinear points. In direct methods, like the direct visual odometry DSO [17], point-based
photometric errors are critical constraints for the refinement process in a sliding window,
which results in less robust depth estimation issues since those point landmarks are dealt
with individually. In the DPLVO [71] method extended from DSO, line segments are extracted
using the LSD algorithm. Then, points are sampled from those 2D line segments, while the
length of each line decides the size of sampled points.

In the tracking process, the depths of those collinear points are estimated as those ordinary
points. And then, these depths are exploited in 3D line initialization. Based on the Plücker

representation L =

[
n d

]
, the residual vector rcol of the collinear constraint on point P is

built by
rcol = n − P× d (3.5)

here the shape of rcol is 3× 1.

Furthermore, the constraints are used in the windowed optimization module with traditional
photometric constraints.

Parallel and perpendicular planes. Given depth maps, plane features can be extracted
and generally represented in the Hessian form π = [n,d]. However, the parameterization
approach has an over-parameterization issue and cannot be used directly in optimization
modules. To address the problem, PS-SLAM [91] makes use of minimal parameterization
τ = [θ,φ,d] of planes in optimization, here θ and φ are the azimuth and elevation angles of
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the normal vector respectively. Therefore, the relationship between τ and π can be denoted
as

τ = q(π) = (θ = arctan
ny

nx
,φ = arcsinnz,d) (3.6)

here n =

[
nx nx nz

]
, and the azimuth and elevation angles are restricted in (−π,π] to

avoid the singularities situation in optimization.

Since PS-SLAM is extended from ORB-SLAM2 [54], the PS-SLAM system manages all ex-
tracted planes in the local map thread inherited from ORB-SLAM2’s architecture. Therefore,
the method continues to analyze the parallel or perpendicular constraints between those
planes saved in the map based on the structural priors in indoor scenes. Based on the
structure regularities, those planes closing in parallel or perpendicular relationships provide
residuals for pose optimization.

Those constraints constructed based on plane normal vectors are written as follows rpp = qn(R⊥nci) − qn(Rci,wnw)

rpo = qn(nci) − qn(Rcwnw)
(3.7)

here the rotation matrix R⊥ is used to rotate the normal to the same direction of Rci,wnw,
rpp and rpo are residuals for perpendicular planes and parallel planes, respectively. Given
depth maps, plane features can be extracted and generally represented in the Hessian form
π = (n,d). However, the parameterization approach has an over-parameterization issue and
cannot be used directly in optimization modules. To address the problem, PS-SLAM [91]
makes use of minimal parameterization of planes in optimization τ = (θ,φ,d), where θ and
φ are the azimuth and elevation angle of the normal respectively.

co-planarity constraints. In the last paragraph, parallel and perpendicular constraints be-
tween planes are explored in pose optimization. Here, we introduce co-planarity constraints
that are generated from those points and lines located on the same plane. In indoor scenes,
points and lines are commonly detected on the surfaces of floors, ceilings, and the surface of
furniture, where most of those regions are in planar shapes.

For the co-planar regularities in points, rcop can be built based on a landmark P ∈ R3 and a
plane π = [n d]. The residuals rcop can be obtained based on the distance between the point
and the plane via the following function,

rcop = nT · P − d (3.8)

here the distance residual rcop is scalar.

In Kimera-VIO [92], the parameters of planes are refined and updated in the optimization
process. To avoid the over-parametrization problems of planes, the method optimizes them
in the tangent space TnS

2, based on the retraction operation, Rn(), changes in the tangent
space are mapped to changes of the normals in S2. Therefore, the method optimize [v,d] ∈ R3

directly.
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In addition, Kimera-VIO also proposes a novel approach to reconstruct planar regions
without using depth maps. First, the method uses 2D Delaunay triangulation to connect those
keypoints tracked successfully in the latest frame. And then those 2D triangulations in the
camera coordinate. Furthermore, geometric filters [93] are used to remove misrepresentative
faces of the mesh. Following the idea of Kimera-VIO, PL-VIO [94] extended the point-based
pipeline to lines and proposed co-planar constraints for line segments.

3.3.2 Landmark Structuralization

Compared with constraints introduced in Section 3.3.1, the big difference between those
constraints and methods discussed in this section is that the structural regularities used
in the following methods are explicit and stranger. In other words, when we use those
constraints, like coplanarity constraints, combined with other types of errors in joint op-
timization models, there is no guarantee that those points will lay on the corresponding
planes during the optimization. But if the landmark is using a new structural representa-
tion to replace constraints. The coplanarity constraint will be satisfied during the whole
refinement stage. Under the assumption of structural regularities, the process of parameter-
izing traditional landmarks by encoding structural cues is called landmark structuring in
this section.

StructLine. For line landmarks, the widely used minimal representation in bundle ad-
justment modules is the Othoronormal representation, which does not consider structural
regularities. By assuming that dominant directions exist in most indoor scenes, Struct-
SLAM [95], proposes a new parametrization for lines aligning with those three dominant
directions.

In StructLine, three orthogonal planes crossed at the origin of the world coordinate, the blue
line is parallel to the normal vector of the ZX plane, and the interaction point between the
line and the plane is denoted as A. Then, we also could re-project the camera center O on the
plane, and the position of the re-projected pointO

′
is (Ca,Cb). Therefore, the blue line can be

represented based on one of the dominant directions. And the minimal parameterization is

L =

(
Ca Cb θ h

)T
where

[
Ca Cb

]T
where the θ is the angle of the ray through

point A and O
′
, while h shows the inverse depth of the distance between those two points.

Based on the representation, those structural line landmarks are parallel with the related
dominant directions in the whole process and do not need to add additional constraints in
bundle adjustment modules.

After proposing a parametrization, a measurement and an update models are required to
compute residuals and update parameters for solvers, as introduced in Section 2.4.2. First,
since the proposed parameterization can be retracted to the Pücker representation, it is easy
to build re-projection errors as traditional line landmarks. So, the core step for this structural
parametrization is introducing the updating model.
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Collinear Point constriant As introduced in Section 3.3.1, DPLVO [71] takes advantage of
colllinear constraints in the windowed optimization module based on the architecture of
DSO. In this section, the DPLVO method is updated by EDPLVO [96], which parameterizes
each 3D point of the collinear group based on the line and inverse depth of the point. The
representation process can be denoted as

Px = (ATl Al)−1ATl bl (3.9)

here [dl]× and [dx]× are the skew-symmetrics matrices of dl and dx, respectively. Further-
more, those incorporating those lines in a photometric error model.

Since the number of collinear points is very large, when we use the shared parameters of
the line and the unique inverse depth of each point, the number of variables in the Hessian
Matrix can be significantly reduced. Meanwhile, the method satisfies the collinear constraint
during the optimization, improving the accuracy.

3.3.3 Structural Primitives

In this thesis, primitive is the collective term for organized structures, which can be built
by some basic landmarks like points, lines, and planes. Specifically, parallel lines lying on
an image plane will cross at a point named Vanishing Point, and perpendicular/orthogonal
planes/lines construct a well-known structure, Manhattan World. It is evident that compared
with landmarks, primitives contain more structures of the environment. Therefore, those
primitives tend to be observed by lots of frames, while few neighboring images generally
observe individual landmarks.

Vanishing Point and Vanishing Direction Vanishing Point is a pixel position on image
planes, representing relationships of a parallel line group. For example, there are a group of
3D parallel lines L = [L0, . . . , Li, . . . , Ln] in the world coordinate. If point pi is the cross point
of those 2D parallel line measurements, the point can be associated with any lines of this
group rather than considering its descriptor. The relationship between a vanishing point and
a vanishing direction can be seen in Figure 3.5, namely, when we project the vanishing point
p to the normalized camera coordinate and obtain P̂, the vanishing direction of p is P̂

||P̂|| .

There are two main strategies to estimate vanishing direction. First, after reconstructing 3D
line landmarks, clustering methods can be used to find parallel lines based on the constraints
of direction angles since this method is affected by the quality of reconstructions. Another
method is to extract parallel lines from 2D line segments having more robust performance.
The J-Linkage algorithm [97] is widely used in vanishing point detection, which clusters the
lines into several parallel line groups.

Since those clustering algorithms using only 2D information tend to generate incorrect line
classification, in case of having depth inputs, a single-line RANSAC can be performed for

55



Chapter 3: Tracking and Mapping in Structural Scenes

Figure 3.5 The vanishing point is a cross point when we re-project two parallel lines to the image plane.

each cluster to remove the outliers. Each cluster � = {l1, l2, . . . , ln} corresponds to a vanishing
point v. Mathematically, the formula is satisfied, i.e. ,

STv = 0 (3.10)

where S is a 3 × n matrix of which the columns represent the equation of the lines in the
clusterΠ.

The linear system, Equation 3.10, can be easily solved via SVD decomposition. A two-step
refinement method is performed to improve the vanishing points’ accuracy further and
remove outliers. For each cluster, we can get a nonlinear least-squares problem as follows:

v̂ = arg min
∑
li∈L

dist2([ei]×v, e1
i) (3.11)

where dist(·, ·) represents the vertical distance between a line and a point, ei and e1
i are the

middle point and start point of the line li, respectively.

(a) Indoor Scenarios (b) Unit Sphere pro-
jection

(c)Manhattan World Seg-
mentation.

Figure 3.6 Process of Manhattan Frame detection based on RGB-D maps.

Manhattan Frame Detection As shown in Figure 3.6(a), an orthogonal cue, the Manhattan
world, exists in the scene, which shows a global structure of the building. Generally, not all
objects and scenarios satisfy this constraint. However, if parts of the views in a sequence
detect this structure, methods [66] assume that the entire scene is a Manhattan world model,
and the frame that detects at least a Manhattan World is regarded as a Manhattan Frame. The
process of Manhattan Frame detection will be introduced in the following paragraphs.
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1.Manhattan Frame Detection based on RGB-D images. Given a depth map, it is easy to
compute a dense normal map for every pixel. In OPVO [98], the depth image is first filtered
by a simple box filter for removing noise regions. Then, surface normal vectors are computed
based on the cross-product operation on the two tangential vectors that are tangential to the
local area of each 3D point. Furthermore, all those surface normals are mapped to the unit
sphere as shown in Figure 3.6(b), where all normals are laying on the sphere’s surface since
every normal vector is normalized. According to the assumption, the distribution of those
normals will group at several centers, each located on the axis of the orthogonal coordinate.

Since some local regions are not in good Manhattan World (like pillows on the sofa), several
normals are lying in the other regions outside those areas. To solve the problems, a sphere-
based mean shift method to detect three dominant axes is used in methods [67, 98], which is
briefly introduced in the following paragraphs.

Sphere Mean Shift. A random rotation R3×3 can be regarded as three 3× 1 vectors, namely
R = [s1 s1 s1], that are lying on the unit sphere. Each vector is regarded as a seed to find the
corresponding dominant axis. In those methods, they run the Manhattan Frame detection
procedure 100 times. In each iteration, given the seed si on the sphere S2, then all neighboring
normal vectors within a conic window of si are considered for computing the mean value
and shift size. The neighbouring vector nk is associated to the conic window of si if nk
satisfies

||nk · si|| > cosθconic (3.12)

here θconic ∈ [0,π/2] is the threshold as shown in Figure 3.6(b), and the selected region on
the sphere is colored green, red, and purple, respectively. Furthermore, two perpendicular
bases, bix and biy, are selected on the tangent space of the vector si. The process of basis
selection can be summarized as three steps:

1. Randomly finding two non-parallel unit vectors vix and viy, i.g. vix = [1, 0, 0] and
viy = [0, 1, 0].

2. If si is parallel to vix, then bix = si × viy. Otherwise bix = si × vix.

3. biy = si × bix.

Furthermore, xk and yk are corresponding disturbments towards bix and biy, respectively.
Then the target si can be represented as

n
′
k = si + xkb

i
x + ykb

i
y. (3.13)

The position (xk,yk) on the tangent space is represented asmk.

Therefore, the updated direction s
′
i is obtained by

s
′
i = si + δsi,xb

i
x + δsi,yb

i
y. (3.14)
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Maintaining Orthogonality. After computing a mean shift for each vector s
′
i, the updated

matrix is R
′
=

[
s

′
1 s

′
2 s

′
3

]
, which may lose the orthogonality of a rotation matrix.

To maintain the orthogonality, the updated R
′

is fed to a SVD progress
[

U D V

]
=

SVD(R′
), and the final rotation between the camera and Manhattan World can be obtained

by R = UVT .

3.3.4 Orientation Estimation via Multi Manhattan World

To solve the problem, a multi-Manhattan World model is proposed to estimate the camera
pose robustly. It collects all Manhattan Frames detected in the tracking process rather than
retains a dominant one in their environments. When a new Manhattan Frame is detected, we
will associate it with other Manhattan Frames saved in the map. If the relationship is built
successfully, a similar rotation estimation method introduced in Section 2.2.2 will be used
here to estimate rotation in the world coordinate.

In this thesis, those Manhattan Frames detected from scenes are collected in the Manhattan
map Gm = Mk,k ∈ (0, . . . ,m), where Gm stores both full and partial Manhattan Frame
observations. Specifically, the full Manhattan Frame means that three orthogonal elements
(we use planes) are detected, while a partial one only has two perpendicular elements.
Furthermore, the matching process between a new Manhattan Frame MFj and the Manhattan
map Gm is based on the plane matches because each plane in the map is given a unique ID
during the tracking process. To be specific, MFj is represented as ıi and ıj, where i and j are
ids of those planes, respectively. If other Manhattan Frames are also constructed by those
two planes, then the match process for Manhattan Frames can be implemented.

Only perpendicular and orthogonal planes are considered in the Manhattan maps Gl intro-
duced in Section 3.3.4. Therefore, the numbers of Manhattan Frame are decreased since parts
of images cannot detect two planes but measure several lines that satisfy similar conditions.

To break the limitation existing in Section 2.2.2 and 3.3.4, a more flexible algorithm is proposed
and introduced in this section. First, we introduce the process that transfers a 2D vanishing
point to a 3D vanishing direction vector. As shown in Figure 3.5, the ray l (blue dash line)
constructed by Vanishing Point and camera center O is parallel to those two 3D parallel lines
in the camera coordinate. Therefore, the

pci = f(KLmci ,KLnci) (3.15)

here the function f(·, ·) is to compute the cross point p between two 2D lines that are re-
projected by two 3D parallel lines, respectively. And the operation KLmci re-projects 3D line
Lmci (in the camera ci coordinate) to the image plane. And the ray K−1pci can be built from
the pixel pci .
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Therefore, when those two parallel lines are detected in camera coordinate cj, the similar
equation, like 3.15, can be built to compute another ray K−1pcj in the camera cj coordinate.
Based on the relative rotation Rci,cj , those two rays can be connected via

K−1pcj = Rci,cjK
−1pci . (3.16)

However, in Equation 3.16, the relationship cannot fully observe the relative rotation. There-
fore, another type of vanishing point or a plane surface normal is required to compensate for
the observation ignored by K−1pcj .

Therefore, two non-parallel directions generated from lines and planes are used to generate a
perpendicular group to supervise the relative motion via the Gram-Schmidt orthogonalization
process.

3.4 3D Reconstruction in Indoor Scenes
Sparse point clouds [54, 39] reconstructed by feature points and corners are essential in
removing camera drift via a frame-to-map pose estimation strategy. However, dense models
have more advantages than sparse ones in scene understanding, interaction, and robot navi-
gation applications. In 2011, the impressive dense reconstruction method, KinectFusion [45],
demonstrated real-time dense mapping using a consumer depth camera, but the original
KinectFusion system was limited to small-scale scenes. This limitation in model size is
removed based on technologies like the voxel hashing scheme [99]. More and more efficient
dense reconstruction systems are proposed for indoor reconstruction tasks.

In this section, we first introduce the volumetric-based dense mapping methods in Sec-
tion 3.4.1. Then, lightweight reconstruction methods based on planar priors will be illustrated
in Section 3.4.2.

3.4.1 Volumetric Representation

The volumetric data structure implicitly stores environments as an alternative reconstruction
method for point-based methods. For example, Those volume voxels can be used to save
the occupied probability and generate an occupancy map for intelligent agent navigation
applications. However, those voxels can also record the signed distance fields that are
converted from depth maps, which can be exploited for further surface reconstruction by
extracting the zero-level set of the implicit function using raycasting. This section will focus
on surface reconstruction methods based on volumetric representations.

TSDF. The truncated signed distance function (TSDF) is a core component of the KinectFu-
sion system, where each voxel stores the signed distance to the closet surface. In KinectFusion,
the volumetric model is also responsible for pose estimation via an ICP registration approach
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by aligning the current frame’s surface model with the global map. Given camera poses, the
TSDF fusion module will be more efficient, and the fusion process will be introduced in the
following paragraphs.

As a classic algorithm for real-time 3D reconstruction, the TSDF algorithm is simple and
easily parallelizable. TSDF is an improvement of SDF. It limits the value to the range of
[−1, 1] and only performs calculations within a limited distance range from the object surface,
reducing the amount of calculation.

Given a volume built based on the size of the scene and the resolution of each voxel, we
can build a retraction function pic()̇ for transferring a voxel xi to the world coordinate via
Piw = pic(xi). Furthermore, we re-project those valid voxels into the camera coordinate of
Ck and get depth information by using

dxi = D(KRck,wPiw + tck,w) (3.17)

hereD(p) is depth value at the location of p. Then, the SDF value is computed by computing
the distance sdf(x) = dxi − cam(x).

According to the requirements of TSDF, the SDF value is truncated in the range of [−1, 1]
based on

tsdf(x) = max(−1,min(1,
sdf(x)

t
)) (3.18)

where t is the truncate threshold.

Finally, the new tsdf value is fused to the volume by using

TSDF(x) =
Wi−1(x)TSDFi−1(x) +wi(x)tsdfi(x)

Wi−1(x) +wi(x)
(3.19)

whereW is the weight of voxel x in the volume.

Occupancy grid map. Occupancy Grid reconstruction is widely used in probabilistic
robotics for mobile robots to generate maps from noisy and uncertain sensor measure-
ment data, assuming that the robot pose is known. First, an environment is devided into
several grids, and the basic idea of the occupancy grid is recording the possibility of obstacle
occupied at that location.

3.4.2 Mesh with Structural Regularities

Each voxel is dealt with individually for dense models introduced in Section 3.4.1. Although
some methods are proposed to speed up the reconstruction method, the computation burden
still needs to be more significant to implement in embedded devices. Generally, an environ-
ment can be divided into planar and non-planar areas. Plane areas often can be detected
from floors, walls, ceilings, and furniture surfaces. They occupy a large area but are easy
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3.4 3D Reconstruction in Indoor Scenes

(a) Original mesh plane (b) boundary completion

Figure 3.7 Planar reconstruction. (a) original mesh with flaws in boundaries. (b) complete mesh after boundary
completion.

to parameterize. As shown in Figure 3.7(a), planar regions can be reconstructed by several
triangular faces, which are constructed by several sparse points lying on the plane surfaces,
which is much more efficient than TSDF-based mesh approaches.

Scene Abstraction
Instead of building a one-to-one model of the real world, some applications require lightweight,
low-polygonal, and high-resolution models. Scene Abstraction [100, 101, 102, 5] is the task
from the scanned geometry to the lightweight model.

This topic has been explored by geometric [100] and data-driven [101, 102] methods that
make use of a single RGB-D pair or a reconstructed 3D model. Based on surroundings,
those single-frame approaches try to recover the shape of some objects and structures, which
rely heavily on learned priors from training datasets. Moreover, those methods suffer from
inconsistency issues since they deal with each pair as independent scenes.

Unlike those data-driven methods, offline methods [100] are designed to deal with dense
3D models generated by other dense reconstruction architectures. After extracting planar
regions, they can reduce the size of models sharply. In general, those approaches need more
time to process each whole model, which can satisfy the need for real-time applications.

During the tracking process, we built a sparse map using points, lines, and planes, where
different planar regions are already segmented into different plane instances. The growing
process of a plane instance starts when a small plane is detected from a new coming depth
map. If the small plane is matched with the planes in the map, it will be merged into the
corresponding planar regions. Otherwise, the small plane is a new planar region we did
not detect before. We will initialize a new plane instance in the map. Generally, the planar
point clouds directly segmented from a depth map are very noisy. When we merge those
planes, the planar regions will be very noisy. Based on feature-based methods [5] exploit
re-project errors from plane features to optimize poses, the normal vector of the fused plane
is optimized. Then, those points that do not ideally satisfy a plane function can be fine-tuned
to achieve flat mesh planar models.
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4Structure-SLAM: Low-Drift
Monocular SLAM in Indoor
Environments

Traditionally, limited pixels can be used by monocular SLAM methods since features only
take a small part of pixels on an image. For some low-textured scenes, even semi-direct
or direct approaches also suffer from the issue since most of the pixels in the low-textured
area are very similar. A direct strategy is using more different types of features, but more is
needed to solve the issue effectively.

To improve pose estimation accuracy, we propose a novel architecture for monocular sensors.
First, the 6DoF camera pose is decoupled into rotation and translation estimation processes.
The rotation estimation module is implemented based on dense surface normal maps. Based
on the assumption of Manhattan World, those normals lying on the unit sphere are clustered
into several groups, and the centers of those groups are supposed to construct an orthogonal
coordinate. And other normals are regarded as outliers if they do not lie in those areas.
Therefore, the relative rotation between two frames can be computed by tracking the center
movement of each group. Benefiting from the estimated rotation, the 3DoF translation part
can be solved robustly based on fewer point and line features. More results of the architecture
tested on untrained scenes can be found in Appendix IV.

Contributions. Federico Tombari’s suggestion inspires the idea of providing the Manhattan
World assumption to monocular RGB sensors. I proposed and implemented a rotation and
translation estimation SLAM architecture based on point-line features and a surface normal
predictor, Where the neural network is modified and fine-tuned by Nikolas Brasch and
Yida Wang. Federico Tombari and Nikolas Brasch helped structure and polish the paper
description.
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Structure-SLAM: Low-Drift Monocular SLAM
in Indoor Environments

Yanyan Li , Nikolas Brasch, Yida Wang , Nassir Navab, and Federico Tombari

Abstract—In this letter a low-drift monocular SLAM method
is proposed targeting indoor scenarios, where monocular SLAM
often fails due to the lack of textured surfaces. Our approach decou-
ples rotation and translation estimation of the tracking process to
reduce the long-term drift in indoor environments. In order to take
full advantage of the available geometric information in the scene,
surface normals are predicted by a convolutional neural network
from each input RGB image in real-time. First, a drift-free rotation
is estimated based on lines and surface normals using spherical
mean-shift clustering, leveraging the weak Manhattan World as-
sumption. Then translation is computed from point and line fea-
tures. Finally, the estimated poses are refined with a map-to-frame
optimization strategy. The proposed method outperforms the state
of the art on common SLAM benchmarks such as ICL-NUIM and
TUM RGB-D.

Index Terms—SLAM, visual learning.

I. INTRODUCTION

V ISUAL Simultaneous Localization and Mapping (V-
SLAM) systems are important for autonomous robots

and augmented reality, as they are used to estimate poses and
reconstruct unknown environments. In numerous SLAM use
cases and applications, monocular cameras are the most com-
mon sensors in indoor scenarios. Indoor environments are often
characterized by a lack of textured surfaces, and by irregularly
distributed feature points. In particular, low-textured walls, floor
and ceiling are difficult to deal with by both state-of-the-art
feature-based methods [1] as well as direct methods [2], [3]. For
low-textured scenes, SLAM systems combining point and line
features have been proposed to target low-textured scenes, e.g.
Stereo-PLSLAM [4], PLVO [5], Mono-PLSLAM [6] and [7],
extending the working scenarios to low-textured environments
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with visible structural edges. Since the map is built from a
sequence of input frames, small errors accumulate over time,
resulting in drift which affects dense reconstruction by leading
to misaligned surfaces and artifacts.

There are two main strategies to overcome these errors. Loop
closure detection [1], [8] combined with pose graph optimization
detects previously seen landmarks and optimizes the pose graph
based on the new constraints, thus correcting the accumulated
drift. Loop closure, however, brings in an extra computational
burden and removes the drift only when revisiting the same
place. Another strategy consists of assuming an underlying
(global) structure in the world frame, then each tracked frame can
be directly aligned to this world structure instead of the last frame
or keyframes. The most common formulation of a structured
scene is the Manhattan World (MW) [9], [10] where the environ-
ment shown in Fig. 1(a) consists of geometric structures (planes
and lines) oriented in one of three orthogonal orientations. It is
particularly useful in indoor environments where structures such
as walls, floor and ceilings often show consistent alignment over
multiple rooms, enabling a global alignment.

The MW approach is an efficient method to keep the accu-
mulated drift low by providing a drift-free strategy for rotation
estimation, as the rotational component is the main source of
overall drift [11], [12].

The state of the art of monocular approaches relying on a
MW [9], [10] are based on parallel and orthogonal lines alone,
as it is difficult to extract 3D information, except for vanishing
points, from a monocular RGB image, which is a quite strong
limitation for most scenarios. Furthermore, indoor environments
often consist of large planar regions with few features for pose
estimation. RGB-D methods [12], [13], directly measure the
structure of the scene in the form of depth maps, this allows
them to compute dense surface normals for each pixel.

Inspired by recent works based on convolutional neural net-
works (CNN) and scene geometry prediction approaches from
a single view [14], [15], we propose a monocular SLAM frame-
work which leverages the underlying scene structure to carry out
low-drift SLAM even in presence of low-textured environments,
in the form of densely predicted normal maps from a CNN,
analogously to existing works based on dense RGB-D sensors.

Specifically, we propose the following contributions:� A low drift real-time monocular SLAM framework for
structured environments, with decoupled rotation and
translation� Dense monocular normal estimation for rotation estimation
leveraging the MW assumption

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. The proposed approach targets low-textured indoor scenes to carry out
low-drift monocular SLAM based on dense normal prediction and leveraging
the Manhattan World assumption.

� A method for translation estimation relying on point and
line features

We evaluate numerically on common SLAM benchmarks
such as ICL-NUIM [16] and TUM RGB-D [17] showing that the
proposed approach outperforms the state of the art in monocular
SLAM.

II. RELATED WORK

A. Monocular SLAM

PTAM [18] is a monocular, keyframe-based SLAM system
which was the first work to introduce the idea of splitting camera
tracking and mapping into parallel threads, and demonstrate
to be successful for real time augmented reality applications
in small-scale environments. Strasdat et al. [8] present a large
scale monocular SLAM system in which the front-end bases on
optical flow implemented on a GPU, followed by FAST feature
matching and motion-only BA, and a back-end based on sliding-
window BA. As a complete SLAM pipeline, ORB-SLAM [1]
combines feature based tracking, sparse point mapping, descrip-
tor based re-localization and loop closure altogether. In addition
to point features several works propose the use of lines [4], [5] for
low-textured environments, we propose to use additional dense
structural information in the form of predicted normal maps.

Inspired by the recent success of deep learning based depth
prediction, CNN-SLAM [19] incorporates a neural network

which estimates depth information within the popular LSD-
SLAM [2] framework to create dense scene reconstructions in
metric scale, where depth predictions are used to initialize the
SLAM system and merged continuously with the semi-dense
depth maps optimized by the SLAM system. Instead of esti-
mating depth maps only for key-frames in CNN-SLAM, our
approach predicts surface normals from every RGB frame in
real-time. In CodeSLAM [20], a neural network learns a compact
latent representation for the structure of a scene conditioned on
the RGB image, showing that the joint optimization of both
structure and pose can improve monocular pose estimation. By
predicting normal maps instead of depth maps we avoid the
necessary differentiation operation which could introduce noise.
Predicting normal maps also seems to generalize better between
datasets as depth does.

B. RGB-D SLAM

Probabilistic-VO [7] combines points together with lines and
planes for pose estimation while modeling their uncertainties.
Due to the combination of 2D-3D point and line correspon-
dences and 3D-3D plane matches, a weighting between re-
projection and euclidean errors must be chosen empirically.
CPA-SLAM [21] extended DVO-SLAM with global plane land-
marks. Pose estimation and soft assignment of depth measure-
ments to planes are computed in an Expectation-Maximization
framework. KDP-SLAM [22] combines photometric and ge-
ometric loss based on plane segments instead of points for
frame-to-frame pose estimation and additionally aligns plane
segments with global planes in a Smoothing and Mapping
(SAM) framework.

C. Manhattan World

Straub et al. [11] and Zhou et al. [23] show that the main
source of drift in traditional feature-based systems is caused by
the rotation estimation.

Even if the MW assumption is a good constraint for indoor
SLAM, it is difficult to enforce it in monocular methods because
only limited 3D information can be obtained. Zhou et al. [10]
applies J-linkage [24] to classify parallel line segments into
different groups and estimate the dominant direction from the
vanishing points. If depth maps are available, surface normals
can be computed directly. Joo et al. [25] provide a branch-and-
bound framework for Manhattan Frame estimation. MVO [23]
propose a unit sphere mean shift method to find the rotation
matrix between the Manhattan World and the camera system.
For the translational part, they compute and align density dis-
tributions of points in each orthogonal direction, avoiding the
costly matching of points. OPVO [26] use planes to estimate
the Manhattan Frame rotation, limiting its application to envi-
ronments with at least 2 orthogonal planes. LPVO [12] adds
vanishing points of lines for the rotation estimation. Both use
point based methods for translation estimation. L-SLAM [13]
replaces the graph based translation estimation from LPVO with
a Kalman filter based SLAM update, using the LPVO translation
estimation in the prediction step. Compared with [12], [13],
we build an initialization module based on points, lines and
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predicted normals. Further more, a refinement module is added
to optimize the pose after the decoupled initialization.

III. SCENE STRUCTURE ANALYSIS

The structural information used in the system is analyzed
in this section. First, we describe the methods for extraction
and triangulation of points and lines; Then, an architecture for
surface normal prediction is introduced.

A. Points and Lines Analysis

Point features, due to their descriptiveness, compactness and
robustness to illumination changes, are the most common fea-
tures used in visual SLAM systems. In our method, ORB fea-
tures [27] are adopted which are fast enough to extract and robust
enough to get matched. Since it’s hard to extract sufficient feature
points for robust pose estimation in low-textured environments,
we further supplement them with line segments extracted and
encoded using the LSD [28] and LBD [29] accordingly.

Similar to ORB-SLAM [1], once the 2D point features pn =
(un, vn) and line segments lm = (pm,s, pm,e) are extracted
in the new keyframe Fi, new features are triangulated to 3D
points Pn and lines Lm with correspondences located on other
connected keyframes.

Due to the factorization of rotation and translation estimation,
it is possible to estimate the pose even in cases with pure rotation
and no translation or with small parallax, which would not be
possible with pure monocular feature based approaches. The
rotation can be estimated from the Manhattan World Frame, this
means fewer landmarks are needed to obtain the remaining 3
degrees of freedom for the translation.

B. Surface Normal Prediction

We use learned knowledge to reason about the 3D envi-
ronment, instead of measuring dense depth values directly.
Therefore, a 2D convolutional architecture(CNN) is trained to
segment planar regions and predict pixel-wise surface normals.
The proposed CNN is composed of a ResNet101-FPN [14]
encoder for feature extraction and a two-branch decoder for
planar area segmentation and normal estimation. As the planar
and non-planar regions are unbalanced in indoor scenarios, we
use the balanced cross entropy loss for training

Lp = −1(1− w)
∑

i∈P
log pi − w

∑

i∈Pneg

log(1− pi), (1)

where P and Pneg represent planar and non-planar regions,
respectively. pi represents the probability of the ith pixel being
located in a planar region. We use w to balance the contributions
of planar and non-planar pixels. Then the loss function for the
normal estimation is filtered by the planar mask.

Ln = − 1

n

∑

i∈P
ni · n∗

i , (2)

where ni and n∗
i are the predicted normal and ground truth

normal for the ith pixel.

IV. INITIALIZATION

In this section, we describe the strategy of computing the
relative poses between two frames and reconstructing an initial
map. In order to be robust to different motions, we decouple
pose estimation into rotation and translation which is explained
further in the following paragraphs.

Rotation. First, we assume that there is a Manhattan coordi-
nate system M shown in Fig. 3, we compute the relative rotation
RC1M from Manhattan coordinate frame M to the first frame
C1 by clustering the normal map vsi of C1 on the unit Gaussian
sphere [12], [23] centered on the M . Following [12], [23], we
project the normals onto the tangent plane of each Manhattan
world axis rn, where n ∈ [1, 2, 3], for the current estimation.
Instead of testing several random matrices, we found that setting
RC0M to identity and running multiple mean-shift iterations is
enough to obtain a good estimate. In order to remove noise from
normal maps, we only consider the vectors vs

′
in which are close

to the axis rn.
Then, the refined surface normal vectors vs

′
in are projected to

two-dimensional vectors m
′
in in the nth tangential plane. We

compute the cluster mean s
′
n for the nth tangential plane under

a Gaussian kernel by

s
′
n =

∑
in e

−c‖m′
in‖2m

′
in∑

in e
−c‖m′

in‖2
(3)

where c is a hyper parameter that defines the width of the kernel,
which is set to 2 in our experiments. Then, we transform the
cluster centers back onto the Gaussian sphere as sn, which are
used to update the angle between the camera and the MW axis
r̂n combining with the current rotation Qn,

r̂n = Qnsn, (4)

here Qn = [rmod(n,3), rmod(n+1,3), rmod(n+2,3)] and mod() is
a modulus operation. The tangent plane and the cluster centers
are iteratively computed until the rotation estimate is converged.
Then we obtain RC1M = [r̂1, r̂2, r̂3]

T .
Translation. As for the translation estimation, 2D correspon-

dences of points [p1i , p
2
i ] between two frames and their relative

rotation RC1C2
are used

X2
i =

⎡
⎣
x2
i

y2i
z2i

⎤
⎦ =

⎡
⎣
r1
r2
r3

⎤
⎦X1

i +

⎡
⎣
t1
t2
t3

⎤
⎦ (5)

whereXj
i represents a 3D point in the jth camera. By eliminating

the scale z2i , we obtain
⎡
⎣
x̃2
i

ỹ2i
1

⎤
⎦ =

⎡
⎣
(r1 ·X1

i + t1)/(r3 ·X1
i + t3)

(r2 ·X1
i + t2)/(r3 ·X1

i + t3)
1

⎤
⎦ (6)

where [x̃j
i x̃

j
i 1]

T represents the ith normalized 3D point in the
jth camera frame. Since X1

i is also a 3D point, we need to
eliminate z1i and build

⎡
⎣

−ỹ1i t3 + t2
x̃1
i t3 − t1

−x̃1
i t2 + ỹ1i t1

⎤
⎦
T ⎡
⎣
r1
r2
r3

⎤
⎦
⎡
⎣
x̃1
i

ỹ1i
1

⎤
⎦ = 0 (7)
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Fig. 2. Proposed SLAM framework (StructureSLAM). In the front-end, the encoder-decoder network predicts dense surface normals. In parallel, point and line
features are extracted from the RGB image. In the back-end, first the scene structure in the form of normals and lines is used to estimate the global rotation of the
camera. Then, the remaining 3-DoF for the translation are obtained using point and line features. The initial pose estimate is validated and refined using the local
map. Keyframes are selected based on the availability of point and line features.

Fig. 3. Rotation estimation between multiple frames via the Manhattan world.

where [x̃j
i x̃

j
i 1]

T = KT (uj
i v

j
i 1) andK is the intrinsic matrix of

the camera [12]. (uj
i v

j
i ) is the ith pixel in the jth frame. Based

on eq. (6) and eq.(7), we construct a translation relationship
between those 2D correspondences. Then, we solve the system
in eq. (7) using SVD to obtain the translation.

V. TRACKING

Instead of estimating rotation and translation between two
frames, we estimate the rotation between each frame and the
underlying Manhattan World. The residual rotation errors are
independent of the sequence length and cannot be propagated
between frames. Point and line correspondences are used to es-
timate translation (3 DoFs) by a combination of frame-to-frame
and frame-to-map methods.

A. Manhattan Rotation Estimation

This section describes the rotation estimation between camera
and Manhattan system.

Given the surface normals and mask of planar regions from
the network, we follow the mean-shift clustering approach, as
desribed in IV, to find the dominant axes on the euclidean
sphere and estimate the rotation RCKM . Since normal maps

might contain errors due to the networks inference process, the
clustering approach is used to remove outliers first. Furthermore,
the initial rotation will be refined in following sections.

B. Translation Estimation

After obtaining the rotation matrix, we use the points and
line segments to estimate the 3-DoF translational motion, which
requires less features than the full 6-DoF estimation. We re-
project the 3D points from the last frame to the current one and
define the error function, based on the re-projection error, as
follows,

epk,j = pk − π(Rk,jPj + tk,j) (8)

hereπ() is the projection function. Since the rotation matrixRk,j

has already been estimated in the last step, we fix the rotation and
only optimize the translation using the right half of the Jacobian
matrix for eq. (8),

∂epk,j
∂ξ

=

[
xyfx
z2 − z2+x2

z2 fx
yfx
z − fx

z 0 xfx
z2

z2+y2

z2 fy −xyfy
z2 −xfy

z 0 − fy
z

yfy
z2

]
(9)

For the lines we obtain the normalized line function from the
2D endpoints pstart and pend as follows,

l =
pstart × pend
‖pstart‖‖pend‖

= (a, b, c) (10)

We formulate the error function based on the point-to-line dis-
tance between l and the projected 3D endpoints Pstart and Pend

from the matched 3D line in the keyframe. For each endpoint
Px, the error function can be noted as,

elk,j = lπ(Rk,jPx + tk,j) (11)

The Jacobian matrix for the line error eq. (11) is given by

∂elk,j
∂ξ

=

⎡
⎢⎣
− fylyz

2+fxlxxy+fylyy
2

z2 ,
fxlxz

2+fxlxx
2+fylyxy

z2 ,

− fxlxy−fylyx
z , fxlx

z ,
fyly
z , − fxlxx+fylyy

z2

⎤
⎥⎦

(12)
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Fig. 4. Trajectory analysis, comparing the proposed method, ORB-SLAM and the ground-truth on the “of-k3” sequence in the ICL NUIM dataset.

The combined least squares cost for points and lines can be
written as

t∗ = argmin

M∑

j∈(k−2,k−1)

(epk,j
T
epk,j + elk,Px

T
elk,Px

) (13)

The system is solved using the Levenberg-Marquardt algorithm.

C. Fallback and Pose Refinement

The pose estimate is based on the MW assumption. In cases
of Non-Manhattan Worlds or where the Manhattan Frame is not
visible in the current frame the estimated pose will be incorrect.
To check whether the pose estimate obtained from the previous
steps is correct we project all features from the last n keyframes
onto the current frame and compute the re-projection error. By
applying a threshold to filter the features we require a minimum
number of inliers to accept the pose.

When not enough inliers are found we fall back to a frame-to-
frame tracking method until we estimate a pose that agrees again
with the Manhattan World. As a fallback we first track the new
frame based on the last frame using an efficient re-projection
search scheme [30] for points and lines, using the same least
squares method as for the translation, this time using the full
Jacobian matrix. In the case we do not get a good solution,
measured based on the number of inliers, we try to estimate the
pose based on the last keyframe using descriptor matching for the
points [30] and re-projection based search for the lines. To reduce
the drift, in the final step we optimize the pose of the new frame
based on a local map constructed from the last n keyframes [30].
Here we do not use the MW assumption anymore, as we found
that the initial rotation estimation is enough to reduce the drift
and errors in the predicted normal maps can lead to inconsistent
pose estimates.

In contrast to other work, based on Manhattan frames for
rotation estimation this heuristic allows us to fall back to a purely
feature based pose estimation in case the estimate from the MW
pose estimation is wrong or not available.

VI. EXPERIMENTS

Implementation details: We train the network implemented
for normal estimation based on the ScanNet [31] dataset with a
batch size of 32 for 8 epochs. The backbone is pretraind on Ima-
geNet [32] for feature extraction and PlaneReconstruction [14]
for understanding plane regions. We use the Adam optimizer
with a learning rate of 10−4 and a weight decay of 10−5.
Our model is trained in an end-to-end manner and can predict
normal maps in real-time. As a baseline we use the original
GeoNet [15] model trained by the authors for 400 k iterations
on NYU-DepthV2 [33]. Models used in the experiments are
not fine-tuned on other datasets. All experiments were carried
out with an Intel Core i7-8700 CPU (with @3.20 GHz) and a
NVIDIA 2080 Ti GPU. We run each sequence 5 times and show
median results for the accuracy of the estimated trajectory. We
evaluate our proposed SLAM system on public datasets and
compare its performances with other state-of-the-art methods.
The evaluation metrics used in the experiments are the absolute
trajectory error (ATE) and the relative pose error (RPE) [17],
which measure the absolute and relative pose differences be-
tween the estimated and the ground truth motion.

Evaluation and datasets: In order to evaluate our method,
on the one hand, we compare against several monocular SLAM
frameworks, as CNN-SLAM [19] that connects SLAM with
predicted depth maps based on keyframes, LSD-SLAM [2] that
is popular direct method and ORB-SLAM [1]. We align the
trajectories for ORB-SLAM, LSD and the proposed method to
the ground truth trajectories using a similarity transformation [1]
due to the unknown real scale. On the other hand, we run our
SLAM architecture with different normal maps to evaluate the
importance of accurate normals, by switching our normals with
the ones from the state-of-the-art, but not real-time capable
network, GeoNet [15] and normal maps computed from the
depth maps provided by the dataset using [34].� ICL-NUIM dataset [16] is a synthetic indoor datasets that

provide RGB images, depth maps and ground-truth camera
poses. There are two scenes, named “living room” and “of-
fice” which are noted as “lr” and “of” in our experiments.
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Fig. 5. Results of normal prediction model on ICL-NUIM (top) and TUM-
RGBD (bottom) scenes for different approaches.

TABLE I
PERFORMANCE OF THE SURFACE NORMAL PREDICTION ON

THE SCANNET [31] TEST SET

� TUM RGB-D dataset [17] was collected using a real RGB-
D sensor in real scenes as well as specially designed scenes
to challenge current SLAM algorithms, featuring challeng-
ing scenes with good structure, but without texture.� HRBB4 dataset [35] which has 12,000 frames of640× 320
pixels recorded by a monocular camera in a corridor.

A. Normal Prediction

Fig. 5 presents qualitative results on unseen images of differ-
ent normal estimation methods. In our method, we mask out the
lampshade (first row) and small boxes (second row), as these
regions are classified as non-planar. The first two rows, show
common examples for indoor environments. Both of them show
good results, GeoNet shows smaller inaccuracies. For the last
two rows, which are very uncommon scenes, the planar region
detection and normal estimation of our model are still generating
reasonable results, while the quality of the normal predictions
from GeoNet decreased severely.

The agglomerative hierarchical clustering (AHC) algo-
rithm [34] is an efficient method to detect planes in a depth
map. However it difficult to detect planes (like in the third an
forth row) where the quality of the depth maps decrease due
to a highly slanted surface. In the Table I, the performance of
the network is evaluated on the ScanNet [31] dataset generated
by [36] against the ground truth.

B. Pose Estimation

In order to evaluate our method in different environments,
we select structured image sequences from the ICL-NUIM
dataset [16] and the TUM RGB-D dataset [17]. Table II shows

the RMSE for all methods on several sequences, ‘lr’ and ‘of’
stand for the living room and office room sequences in the
ICL-NUIM dataset. ‘s-t-near’ and ‘s-not-near’ are the structure-
texture-near and structure-notexture-near sequences in the TUM
RGB-D dataset, respectively. ‘s-t-near’ and ‘s-t-far’ are showing
the same environment consisting of multiple textured planes,
‘s-not-near’ and ‘s-not-far’ consist of a similar structure, but
without texture.

From the six row to the eight row, different normal maps
are given to the same backbone. It is obvious that using AHC-
based normal maps (obtained from ground truth depth map)
obtain the best results compared to other methods. It also shows
the potential of our SLAM architecture, given precise normal
maps. Performances from −w Ours (combination of our normal
prediction network and the backbone) is more robust than −w
GeoNet (combination of GeoNet and the backbone), especially
in the ‘s-not-far’ sequence. For those non-textured images, it is
difficult for GeoNet to predict accurate normals. In the backbone,
conic areas around each axis are used during the sphere mean-
shift method to filter the normal maps, this allows the handling of
normal outliers up to a certain point. In cases were the number
of outliers is too high, it is difficult to obtain a good rotation
from the back-end of the architecture. Different to the monocular
methods, LPVO [12] works directly with RGB-D images, which
prevents scale drift and allows tracking directly on the depthmap.
In comparison our method achieves comparable performance
without the use of a depth sensor.

Our method obtains good results and shows robust perfor-
mance in all five sequences. In the first two sequences, the differ-
ence between the point based ORB-SLAM and our method, that
connects structure and geometric information, is not significant.
However ORB-SLAM is not able to find enough point matches
over a sequence of frames and looses tracking in some of the
sequences, these are marked with a cross (×). Our method, which
additionally uses lines for the translation estimation achieves
even better results.

When we compare -w Ours, -w GeoNet with ORB-SLAM
in textured sequences, they obtain similar results because those
sequences have a sufficient number of features distributed evenly
on each frame. However for indoor environments, like Fig. 4,
it is difficult to obtain enough point features because of large
non-textured planar regions. In the ‘of-kt3’ sequence, there is
little change in the first 57 frames, so ORB-SLAM cannot ini-
tialize successfully, because it needs enough points for homog-
raphy/fundamental model selection. After initialization, it is also
challenging for ORB-SLAM to track via the point-based motion
model. For our case, the initial rotation matrix is estimated
by the mean-shift method instead of estimating the essential
or homography matrices. This means we can deal with pure
rotational motion. Furthermore, points and line segments are
used for 3 DoFs translation only, which is more robust even in
large non-textured scene.

In order to present the robustness of our method, we compute
the RPE for those sequences, which can be processed robustly
by ORB-SLAM and our method. For ‘s-t-far’ and ‘s-t-near’ that
are textured sequences, ORB-SLAM and the proposed method
have similar performences. The relative translation errors for
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TABLE II
COMPARISON OF TRANSLATION RMSE (M) FOR ICL-NUIM [16] AND TUM RGB-D [17] SEQUENCES USING MONOCULAR CAMERA. WE USE BOLD NUMBERS TO

MARK THE BEST RESULT PER SEQUENCE. −w MEANS THAT THE PROPOSED FRAMEWORK USES THE CORRESPONDING SURFACE NORMALS. × INDICATES THAT

THE ALGORITHM FAILS DUE TO LOST TRACKING

Fig. 6. Relative translational error comparison between ORB-SLAM and our method on different sequences (left) and a comparison of the average runtime length
on each sequence before tracking is lost (right).

Fig. 7. rotation error comparison between ORB-SLAM and our method on
sequence lr-k2.

the sequence ‘of-kt3’ in Fig. 6 (left) is significantly larger for
ORB-SLAM, which corresponds to the result presented in Fig. 4.
As shown in Fig. 7, the proposed method, Structure-SLAM, is
more stable in rotation estimation compared with ORB-SLAM.

We also compare the number of frames tracked by different
methods. Compared with ORB-SLAM, our method retrieves
the camera pose more reliable. Especially in ‘lr-kt2,’ ‘of-kt3’
and ‘s-t-far,’ our method initializes fast and tracks all frames in
the sequences, as can be seen in sequence ‘of-kt3’ in Fig. 6 on
the right. Similar results can be found for HRBB4 in Fig. 8.
Compared with ORB-SLAM which only initializes after the
628th frame, our method is able to initialization much earlier
around frame 110. Furthermore, the proposed method shows a
more stable behaviour in the upper right corner of the corridor
where the environment changes drastically.

Fig. 8. The estimated trajectories of the camera on the HRBB4 [35] dataset.
Left: ORB-SLAM, Right: Structure-SLAM.

VII. CONCLUSION

We have proposed a SLAM system for monocular cameras
based on points, lines and surface normals. Using the Manhattan
World assumption for rotation estimation and point and line
features for windowed translation estimation we achieve state-
of-the-art performance. We have shown that normals, learned
from a single RGB image, can be used to estimate the rotation
between frames leveraging the MW assumption. Compared to
other state-of-the-art methods based on global rotation estima-
tion, in our method there exists a fallback level using points
and lines to estimate the full pose, in case no Manhattan frame
can be found. This enables the tracking over short sequences
to later re-localize within the Manhattan world. In the future,
global bundle adjustment could be used to correct the frames
during these sequences without global frames. Furthermore, we
would like to leverage the learned structure information for the
translation estimation as well.
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5RGB-D SLAM with Structural
Regularities

This work proposes an open-source SLAM system for RGB-D sensors, which uses points, lines,
and planes of structured environments in tracking and mapping modules. Plane features are
merged into our Manhattan-based framework, which estimates the initial translation vector
and retains Manhattan relationships as constraints in the refinement module. Furthermore,
an efficient meshing module is proposed that reconstructs the scene structure based on the
obtained planar regions in the sparse map.

Based on the MW-based decoupled pose estimation theory, we improve the translation esti-
mation by combining point and line features with planes and an additional pose refinement
step with Manhattan relationships.

We propose a lightweight planar instance-wise mesh-based reconstruction method generating
a compact representation of the environment from a sparse point cloud. A general framework
for real-time RGB-D SLAM where these components are used to localize and map under
structured environments with high accuracy.

Contributions. Yan Li proposed the architecture, and Yan Li and Raza Yunus implemented
the system. Nokolas Brasch helped to correct the combined cost functions. Nikolas Brasch
and Federico Tombari further helped to polish the methodology description.
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Yanyan Li1, Raza Yunus1, Nikolas Brasch1, Nassir Navab1,2 and Federico Tombari1,3

Abstract— This work proposes a RGB-D SLAM system
specifically designed for structured environments and aimed
at improved tracking and mapping accuracy by relying on
geometric features that are extracted from the surrounding.
Structured environments offer, in addition to points, also an
abundance of geometrical features such as lines and planes,
which we exploit to design both the tracking and mapping
components of our SLAM system. For the tracking part, we
explore geometric relationships between these features based
on the assumption of a Manhattan World (MW). We propose
a decoupling-refinement method based on points, lines, and
planes, as well as the use of Manhattan relationships in an
additional pose refinement module. For the mapping part,
different levels of maps from sparse to dense are reconstructed
at a low computational cost. We propose an instance-wise
meshing strategy to build a dense map by meshing plane
instances independently. The overall performance in terms
of pose estimation and reconstruction is evaluated on public
benchmarks and shows improved performance compared to
state-of-the-art methods. The code is released at https://
github.com/yanyan-li/PlanarSLAM.

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (SLAM)
algorithms are used to estimate the 6D camera pose while
reconstructing the surrounding unknown environment. They
have shown to be useful in a wide range of applications,
such as autonomous robots, self-driving cars and aug-
mented/virtual reality, where camera pose estimation enables
cars, robots and mobile devices to localize themselves, while
the dense map provides a representation of the environment,
e.g. for robot-environment or human-environment interac-
tion.

Many SLAM applications have to deal with structured
scenes, i.e. man-made environments that are usually char-
acterized by low-textured surfaces - a typical example is
an indoor scene, or an outdoor parking place. This induces
a lack of visual features, that visual SLAM systems typ-
ically leverage to improve camera pose estimation and/or
3D reconstruction, e.g. by carrying out loop closure and
bundle adjustment to reduce drift. In order to deal with
structured scenes, specific SLAM methods based on points
and line segments, like S-SLAM [1], Stereo-PLSLAM [2],
PLVO [3], Mono-PLSLAM [4] and Probabilistic-VO [5]
have been proposed, extending the working environment to
scenes where more lines than points can be detected. SP-
SLAM [6] merges plane features into ORB-SLAM2 [7],
achieving robust results in low-textured scenes.

1:Technical University of Munich, Germany; {yanyan.li,
raza.yunus, nikolas.brasch, nassir.navab,
federico.tombari}@tum.de; 2:Johns Hopkins University,
USA;3:Google Inc.

Fig. 1. RGB-D SLAM system. (a) Examples of a typical structured scene,
and 2D features and orthogonal lines and planes segmentation. (b) Point
cloud including points, lines and planes. (c) Real-time mesh on a CPU.

For the reconstruction, there are sparse, semi-dense and
dense methods. Compared to the first two classes, which only
provide incomplete maps, dense reconstruction is required
to provide sufficient information for applications such as
robot-environment interaction and 3D scene understanding.
Many algorithms have been proposed to reconstruct indoor
scenes via RGB-D sensors. KinectFusion [8] is a pioneering
work relying on the truncated signed distance field (TSDF)
representation of the map. In order to reconstruct large scale
scenarios, surfel-based methods, like ElasticFusion [9], were
proposed. Instead of reconstructing each pixel, Wang et
al. [10] extracts superpixels from RGB images and depth
maps, which is more efficient but still has redundant infor-
mation especially in indoor scenarios where large planes can
be commonly found.

In this paper, we build on our monocular Structure-
SLAM [1] and propose a robust RGB-D SLAM system
specifically designed to deal with structured environments,
which improves tracking and mapping at the same time.
Figure 1 illustrates the components of such structured scenes,
which contains points, lines and plane segments. Following
the decoupling strategy of Structure-SLAM, we estimate a
drift-free rotation matrix first, and then the 3-DoF translation.
The initial rotation and translation are refined via a map-to-
frame strategy. Different to [1], [11], [12], plane features are
merged into our Manhattan-based framework, which is used
to estimation the initial translation vector and retain Man-
hattan relationships as constrains in the refinement module.
Furthermore, an efficient meshing module is proposed that
reconstructs the scene structure based on the obtained planar
regions in the sparse map. In summary our contributions are:

• Based on the concept of MW-based decoupled pose
estimation, we improve the translation estimation by
combining point and line features with planes and an
additional pose refinement step with Manhattan rela-
tionships.

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China
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• We propose a planar instance-wise mesh based recon-
struction method generating a compact representation
of the environment from a sparse point cloud.

• A general framework for real-time RGB-D SLAM
where these components are used to localize and map
under structured environments with high accuracy.

We evaluate the performance of our approach in terms of
both camera pose estimation and reconstruction on public
benchmarks, showing improved performance compared to
state-of-the-art methods.

II. RELATED WORK

In the following we review the literature related to RGB-
D based SLAM systems as well as methods leveraging
structural regularity as the MW assumption.

a) RGB-D SLAM.: In [13], [14] it was proposed to
use planes over point features whenever possible, as the
averaging over multiple depth measurements reduces the
noise significantly. In Dense Planar SLAM [15] surfels
belonging to the same planar areas are smoothed by fitting a
plane to them and back-projecting the surfels onto the plane.
Le et al. [16] rely on a scene layout consisting of a ground
plane and several walls, and use dynamic programming to
infer a sequentially consistent assignment of pixels to planes.
In Probabilistic-VO [5], the uncertainties of points, lines
and planes are modelled explicitly and used during pose
estimation, where points, lines and planes are represented
in a uniform framework in [17]. A direct SLAM system
combining photo-metric and geometric terms is proposed
in DVO-SLAM[18] and extended in CPA-SLAM [19] with
global planes, where depth measurements are assigned to the
global planes with weights.

b) Dense Reconstruction.: While the aforementioned
methods have the goal to estimate precise poses and therefore
only maintain a map with the most reliable information,
several works have been proposed with the goal to create a
complete dense reconstruction of the environment. KinetFu-
sion [8] and ElasticFusion [9] explore dense reconstruction
for RGB-D sensors. The first method fuses all depth data
into a volumetric dense representation, which is used to
track the camera pose using ICP. The size of the map
is usually limited in volumetric methods due to memory
constraints. Different from KinectFusion, ElasticFusion is
a map-centric system that reconstructs surfel-based maps
of the environment. In order to decrease the number of
surfels in the map, superpixel-based surfels are proposed
by [10], which reduces the number of surfels compared with
ElasticFusion. Recently BAD-SLAM [20] proposed a direct
bundle-adjustment approach for RGB-D SLAM. In [21] a
textured mesh is extracted from a dense surfel cloud. A direct
mesh based reconstruction approach for RGB-D sensors was
proposed in [22].

c) Structural Regularity.: A line of works exploits
additional constrains and regularities in the world, to improve
the reconstruction performance. In [23] and [24] the authors
showed that the rotation estimation error is the main reason
for long-term drift.

Fig. 2. Overview of the proposed framework. Point, line and plane features
are extracted from the RGB-D frame. Rotation and translation are estimated
in a decoupled fashion first and refined afterwards. The planar segments are
used to create a mesh-based reconstruction of the environment.

A branch-and-bound framework for Manhattan Frame
estimation is proposed in [25]. In MVO [24] a method using
mean shift on the unit sphere is used to find the transfor-
mation between the MW and the current frame. When only
planes are used for the rotation estimation as in OPVO [26] at
least 2 orthogonal planes must be detected in each frame, the
addition of vanishing points extracted from lines can be used
alternatively, as done in LPVO [11]. The methods mentioned
above use point features to estimate the translation. Structure-
SLAM [1] is a monocular system that predicts normals via a
convolutional neural network leverages normals with points
and lines in a decoupling strategy. Since predicted normals
are not as accurate as those computed from a depth map,
the system provide a refinement/fallback module based on
points and lines. Compared with Structure-SLAM, optimized
vanishing points of lines and plane features are used for
rotation and translation in this work. Then, the fallback part
is removed and the refinement part incorporates geometric
relationship of planes. Instead of the sparse point-line map, a
dense mesh as output is more useful for robotics applications.
L-SLAM [12] is also based on the MW assumption, which
obtains translation, rotation and pixels of potential planar
regions from LPVO. Then it refines 3D translational and 1-
D plane offsets with a linear Kalman Filter. However, we
use a more robust front-end for initial translation estimation.
Furthermore, the 6D pose refinement step is used to optimize
rotation and translation simultaneously and allows an offset
to the initial rotation from MW, which is more robust to non-
MW (curved surfaces and few planar regions) compared with
L-SLAM and LPVO (see Figure 6).

III. PROPOSED FRAMEWORK

Given a sequence of RGB-D frames from a structured
environment, the goal of our method is to reconstruct the 3D
scene while simultaneously estimating the 6D camera pose at
each frame. Section IV provides an overview of the proposed
tracking pipeline, which decouples rotation and translation,
while section V describes different types of mapping pre-
sentations generated by the system. We now describe the
system’s underlying features and structural components.

A. Extended feature set

In our method we use ORB features [27], which are fast
to extract and match. In low-textured environments, it is
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hard to extract sufficient points for robust pose estimation,
therefore we extend the feature set with lines, which are
extracted using the LSD [28] approach, as described by
LBD [29]. Furthermore, it is common to find non-textured
planar regions in indoor environments, where plane instances
extracted from the depth maps are valuable cues to extend
points and lines. Planes are detected using the connected
component analysis method [30]. They are represented by
the Hessian normal form π = (n̂, d), where n̂ = (nx, ny, nz)
is the normal of the plane, representing its orientation and d
is the distance from the camera origin to the plane.

a) Points and lines: After the extraction of 2D
point features xj = (uj , vj) and line segments lj =
(xj,start, xj,end) in frame Fi, we can back-project points and
lines using the camera intrinsic parameters and the depth map
to obtain 3D points Xj and 3D lines Lj . The depth map is not
always correct, especially at depth discontinuities e.g. object
boundaries. Therefore a robust fitting method for 3D lines is
needed. First, we count the number of pixels with non-zero
depth values intersected by the detected line segment. If the
number exceeds a certain threshold, the 3D line Lj will be
estimated via RANSAC to remove potential outliers.

b) Normals and planes.: Smooth normals are computed
by averaging the tangential vectors from the depth image
inside a patch of 10× 10 pixels using integral images. After
plane detection, we use the strategy of [6] to associate the
observed planes with those present in the map. To match
an observed plane with one from the map, we first check
the angle between their normals. If it is below the threshold
θn, we check the point-to-plane distance between them. The
plane which has the minimum distance to the observed plane,
and also lies below the distance threshold θP , is matched to
the observed plane. In the experiments, θn and θP are set at
10 degrees and 0.1 m respectively. Furthermore, we also keep
parallel and perpendicular relationships [6] between the map
planes to leverage additional constraints during the tracking
process. These are determined by the angle between the plane
normals. Since they only provide constraints for orientation,
we do not consider their distance.

B. Decoupling pose estimation and refinement.
To reduce error propagation between frames, we build on

our monocular architecture [1] that computes rotational mo-
tion based on the MW assumption. Then the corresponding
translational motion is estimated by features, with the fixed
rotation computed from last step. In the font-end of this work,
we use optimized lines for rotation estimation and planes for
translation estimation.

Differently to Structure-SLAM [1] that uses a point-line
local map to optimize translation and rotation together, we
leverage planes in the local map and also make use of the
geometric relationship (parallel and perpendicular) of those
planes as constrains, which improves the accuracy of the
system as it will be shown in Figure 4 and Table I.

IV. TRACKING

Differently from traditional pose estimation methods, we
decouple the 6D camera pose into rotation and translation.

Based on the MW assumption, we obtain the rotational
motion Rcim between the MW and camera ci. In this way,
the rotation estimation will not be affected by the pose of the
last frame or last keyframe, which reduces drift effectively.
Afterwards, point, line and plane features as well as the initial
rotation matrix are used for translation estimation, which
consists of just 3 Degrees-of-Freedom (DoFs).

A. Rotation estimation

Instead of tracking the camera from frame-to-frame di-
rectly, the drift-free rotation estimation method estimates
the rotation Rcm between each frame and the Manhattan
coordinate frame, by modeling the indoor environments as
a MW, thus reducing the drift generated from frame-to-
frame tracking. As shown in Figure 1, Manhattan coordinate
frames can be aligned to the starting frame of the camera
via Rk+1,m. Generally, the coordinate of the first frame is
regarded as the world frame, i.e. R1,m = RTm,w. So we can
obtain pose in the world coordinate by using,

Rk+1,w = Rk+1,mRm,w (1)

Here Rm,w represents the relation from the world to MW,
which is obtained by the MW initialization step and Rk+1,m

is the relation from MW to the (k + 1)th frame. These two
matrices are computed via a sphere mean-shift method [24],
where the normals and normalized vanishing directions are
projected onto the tangent planes of the current rotation
estimate. Then a mean shift step is performed on the tangent
planes, which generates new centers and back-projects them
to the sphere as new estimates. We refer the reader to [24]
and [26] for more details on the sphere mean-shift method.
To handle difficult scenes where only one or no plane at
all is detected, we feed the unit sphere with both vanishing
directions of the refined 3D lines and surface normals of
planes, which is a more robust approach than [26], [1] under
these challenging conditions.

B. Translation estimation

After estimating the rotation, points, lines and planes are
used to estimate the translation. We re-project 3D points
from the last frame into the current one and define the error
function, based on the re-projection error, as follows,

epk,j = pk −Π(Rk,jPj + tk,j) (2)

where Π(·) is the projection function. Since the rotation
matrix Rk,j has been obtained in the last step, we fix the
rotation and only estimate the translation using the Jacobian
matrix corresponding to (2).

As for lines, we obtain the normalized line function from
the 2D endpoints pstart and pend as follows

l = [pstart × pend]/[‖pstart‖‖pend‖] = (a, b, c). (3)

Then, we formulate the error function based on the point-
to-line distance [4] between l and the projected 3D endpoints
Pstart and Pend from the matched 3D line in the keyframe.
For each endpoint Px, the error function can be noted as,

elk,Px
= lΠ(Rk,jPx + tk,j). (4)
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To get a minimal parameterization of a plane π for
optimization, we represent it as q(π) = (φ, ψ, d) where φ
and ψ are the azimuth and elevation angles of the normal
and d is the distance from the Hessian form

q(π) = (φ = arctan(
ny
nx

), ψ = arcsin(nz), d). (5)

So, the error function between the observed plane πk in the
frame and corresponding map plane πx is

eπk,πx
= q(πk)− q(T−Tcw πx) (6)

where T−Tcw is the transformation from world to camera co-
ordinates.Assuming that the observations follow a Gaussian
distribution, the final non-linear least squares cost function
t∗ can be written as in (7), where Λpk,j

, Λpk,Px
and Λk,πx

are the inverse covariance matrices of points, lines and
planes, and ρp, ρl and ρπ are robust Huber cost functions,
respectively.

t∗ =argmin
M∑
j

ρp

(
epk,j

T
Λpk,j

epk,j

)
+ ρl

(
elk,Px

T
Λpk,Px

elk,Px

)
+ ρπ

(
eπk,πx

TΛk,πx
eπk,πx

)
(7)

Here, a solution is determined using the Levenberg-
Marquardt algorithm.

C. Pose refinement

The last two steps assume that the scene is a good Manhat-
tan model, nevertheless several general indoor environments
are not strictly adhering to the MW assumption, leading
to degradation in accuracy. So, after obtaining the initial
pose via the decoupled rotation and translation strategy, the
refinement module [1] fine-tunes the pose to compensate
for deviations from the MW or unstable initial estimates.
In the refinement step, to reduce the drift from frame-to-
frame pose estimation, the local map constructed by previous
keyframes is used to optimize the pose based on a map-to-
frame strategy [7].

Similar to [6], [7], [31], we also use keyframes to build
a local map, although our map has point, line and plane
landmarks, which are projected into the current frame to
search for matches. Furthermore, we explore the relationship
between planes in the local map and planes detected in
the current frame. The parallel and perpendicular constraints
between those planes are described as (8),{

e
π‖
k,nx

= ||qn(nk)− qn(Rcwnx)||
eπ⊥
k,nx

= ||qn(R⊥nk)− qn(Rcwnx)|| (8)

where qn(π) = (φ, ψ) and Rcw is the transformation from
world to camera coordinates. For perpendicular planes, their
plane normal is rotated by 90 degrees (R⊥) to construct the
error function. These two error functions are merged to (7) to
build a joint optimization function in the refinement module.

Fig. 3. Different levels of maps provided by the system.Top row: office
room of the ICL-NUIM; bottom row: structure-nontexture-near of TUM
RGB-D;

V. MAPPING

This section describes the keyframe-based 3D mapping
strategy used in our SLAM framework. Keyframes and
3D features build up a co-visibility graph, where nodes
and edges are updated whenever a new keyframe and new
features are available.

A. Sparse Mapping

As shown in Figure 3, the sparse map module is
reconstructed by point-line-plane features extracted from
keyframes. The first frame is set as the first keyframe and the
global map is initialized by the landmarks thereby detected.
When new points, lines and planes are detected in a new
keyframe, which are not in the global map, they will be
saved to a local map first. Then we check the quality of
the landmarks in the local map, and then push reliable
landmarks into a global map after culling bad ones. Different
to the matching methods for points and lines, for each
detected plane in a new keyframe, we first check whether
it is associated with a plane in the map using the strategy
described in section III. If we find an association, we add
the 3D points of the new plane to the associated plane in the
global map and filter out redundancies using a voxel grid to
get a compact point cloud again. If the incoming plane is
not associated to any plane in the global map, we add it to
the map as a new plane.

B. Planar instance-wise meshing

The sparse map obtained in the previous section is still
not adequate for applications involving robot-environment
interactions, but it provides information about planar and
non-planar instances. Therefore, we construct a denser map
using an instance-wise meshing strategy. Indoor scenes can
be divided into planar and non-planar regions. Planar areas
like floors, walls and ceiling have often a large extent,
however a dense pixel-wise information does not add to the
quality and is highly redundant. So instead of using surfel
or TSDF, we regard plane regions as instances that include
a small and fixed number of elements independently of their
size.

In particular, we input plane instances to the meshing
module, which meshes them independently. First, the points
belonging to a plane are organized as a kd-tree data-structure.
Different to unstructured inputs, our method needs less time
for searching several nearest neighbors. Then, we use Greedy
Surface Triangulation (GST) [33] to build an instance-wise
mesh, which is designed to deal with planar surfaces. Note
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Sequence Ours Ours/-wo ORB [7] PS-SLAM [6] LPVO [12] L-SLAM [11] DVO [18] InfiniTAM [32]
lr-kt0 0.006 0.025 0.025 0.016 0.015 0.012 0.108 ×
lr-kt1 0.015 0.036 0.008 0.018 0.039 0.027 0.059 0.006
lr-kt2 0.020 0.053 0.023 0.017 0.034 0.053 0.375 0.013
lr-kt3 0.012 0.059 0.021 0.025 0.102 0.143 0.433 ×
of-kt0 0.041 0.068 0.037 0.032 0.061 0.020 0.244 0.042
of-kt1 0.020 0.028 0.029 0.019 0.052 0.015 0.178 0.025
of-kt2 0.011 0.060 0.039 0.026 0.039 0.026 0.099 ×
of-kt3 0.014 0.012 0.065 0.012 0.030 0.011 0.079 0.010

snot-far 0.022 0.026 × 0.020 0.075 0.141 0.213 0.037
snot-near 0.025 × × 0.013 0.080 0.066 0.076 0.022
cabinet 0.035 0.057 0.075 0.067 0.520 0.291 0.690 0.035

large-cabinet 0.071 0.813 0.124 0.079 0.279 0.140 0.979 0.512

TABLE I
COMPARISON OF TRANSLATION RMSE (M) FOR ICL-NUIM AND TUM-RGB-D SEQUENCES. × MEANS THE METHOD FAILS IN THE TRACKING

PROCESS. -WO MEANS ONLY USING DECOUPLED TRACKING WITHOUT THE REFINEMENT STEP.

Fig. 4. Comparison of relative pose error (RPE) for rotation on the ICL-
NUIM and TUM RGB-D sequences.

Fig. 5. Qualitative results of sparse reconstruction and trajectory between
the proposed method and ORB-SLAM2 in the TAMU dataset.

that in our experiments, the initial search radius for selecting
neighbors for triangulation is set to 5m and the multiplier is
set as 5 to modify the final search radius to adapt to different
point densities on the plane regions.

VI. EXPERIMENTS

We evaluate the proposed SLAM system on two well
known public datasets, the ICL-NUIM [34] and TUM RGB-
D [35] benchmarks, comparing its performance with other
state-of-the-art methods such as ORB-SLAM2 [7], PS-
SLAM [6] that are feature-based methods, but removed
the global bundle adjustment modules in the following
experiments. Methods based on the MW assumption such
as LPVO [11] and L-SLAM [12]. DVO-SLAM [18] is a
direct method and InfiniTAM [32] uses a GPU for real-
time tracking and mapping based on RGB and depth images.
Additionally, we provide the reconstruction accuracy of our

time Feat. extr. Rotat. Transla Refinement Total
Median 19.9 2.1 4.8 13.0 42.5
Mean 20.5 3.0 5.4 13.1 43.7
Std. 3.6 0.4 2.8 4.8 9.4

TABLE II
MEASURED TRACKING TIMES (MS) ON THE TUM RGB-D SEQUENCES

Sequence RGB-D ElasticFu InfiniTAM SPFu Ours
kt0 4.4 0.7 1.3 0.7 0.4
kt1 3.2 0.7 1.1 0.9 0.6
kt2 3.1 0.8 0.1 1.1 0.6
kt3 16.7 2.8 2.8 1.0 0.8

TABLE III
RMSE RECONSTRUCTION ERROR (CM) ON THE ICL-NUIM DATASET IN

CENTIMETERS.

reconstructed model on the ICL-NUIM dataset and compare
it with other popular methods for dense reconstruction.
Lastly, to demonstrate that our system is robust over time,
we also test on a sequence from the TAMU [3] dataset
containing long sequences covering a large indoor area. All
experiments are carried out with an Intel Core i7-8700 CPU
(with @3.20GHz) and without any use of GPU. The ICL-
NUIM dataset [34] provides synthetic scenes for two indoor
environments, one living room and one office room scenario.
These scenes contain large areas of low textured surfaces
such as walls, ceilings, floors, etc. There are four sequences
for each scene. We evaluate our method on all sequences.

A. ICL-NUIM RGB-D Dataset

Table I shows that our method obtains the best perfor-
mance on three out of the eight sequences, based on the
translation RMSE (ATE). InfiniTAM also performs well on
lr-kt1, lr-kt2 and of-kt3 sequences, but the method also loses
tracking in other sequences. As the dataset contains large
structured areas, the Manhattan-based methods LPVO and
L-SLAM are able to get a good estimate of the orientation
and provide good results throughout. However, they usually
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Sequences Ours ORB-SLAM2 length
Corridor-A 1.62 3.13 88
Stair-A 0.94 1.44 66
Entry-Hall 1.33 2.22 80

TABLE IV
COMPARISON OF THE ACCUMULATED DRIFT (M) IN DIFFERENT LARGE

SCALE SEQUENCES.

need two planes, or alternatively, one plane and a vanishing
direction to be visible at all times to estimate a good
Manhattan frame. As shown in Figure 6, there are several

Fig. 6. Results in lr-k3. (a) input image; (b) point-line features and the
segmented plane; (c) reconstructed 3D map and trajectory.

challenging scenes in lr-kt3, where only a white wall and
two leaves from a plant are captured when the camera is
close to the wall. In this situation, OPVO and L-SLAM are
unable to yield a good performance. When a bad initial pose
is obtained in our system due to the scene not being a rigid
MW, the refinement step based on point-line-plane features
allows us to recover the pose nevertheless, while L-SLAM
ignores optimizing rotation in the LKF module. Moreover,
while DVO, being a dense method, may struggle because
of the large areas of walls, floor etc. not containing enough
gradient for the photometric error, ORB-SLAM2 and PS-
SLAM perform well, as both environments contain sufficient
ORB features extracted from furniture, objects etc. As our
method takes advantage of all geometric elements, it is able
to perform robustly in most sequences. In addition, Figure 4
shows the relative pose error for ORB-SLAM, PS-SLAM and
our method. Our method obtains notably better results than
the other two in relative translation and rotation. Especially
the rotation error is much lower for our method, due to the
use of the decoupled MW rotation estimation.

B. TUM RGB-D Dataset
The TUM RGB-D benchmark [35] is one of the most

popular datasets for RGB-D SLAM systems, which provides
indoor sequences under different texture and structure condi-
tions. This allows us to separately test sequences which have
structure, texture or both. In order to evaluate our method in
challenging environments, we select four structured image
sequences, the first three with low texture and the last one
with a large scale environment. As all sequences listed in
Table I have structure, but the large-cabinet sequence is not
a rigid Manhattan scenario. Manhattan-based methods are
able to provide good pose estimates on snot-far sequence, but
the results degenerate in large-cabinet and cabinet sequences.
The first two sequences include the same environment con-
sisting of multiple non-textured planes. Here ORB-SLAM2

is not able to find enough point correspondences along the
sequence and loses tracking. Our method, which additionally
uses lines and planes for translation estimation, achieves
better results. As shown in Figure 4, cabinet and large-
cabinet are challenging sequences because of several low-
texture frames. Our method’s tracking strategy limits the
relative rotation error to under 2 degrees, which is better
than ORB-SLAM2 and PS-SLAM. The statistics of the time
spent for each operation are shown in Table II, where we use
different CPU threads to deal with points, lines and planes
in the feature extraction and refinement modules.

C. Large scale sequence
The TAMU dataset [36] provides large-scale indoor se-

quences (constant lighting). While it does not provide
ground-truth camera poses, the start and end point are the
same, which can be used to evaluate the overall drift by
computing the final position errors. As shown in Figure 5,
the trajectory in the sequence Stair-C is a loop between
two floors, where the improvement of our method over the
whole trajectory length is 34.7% in drift compared to ORB-
SLAM2. Similar situations can also be found in Corridor-A
and Entry-Hall. More qualitative results are provided in the
supplementary material.

D. Reconstruction Accuracy
We reconstruct models from ICL-NUIM and compare

the results with state-of-the-art mapping methods, as shown
in Table III. The accuracy of the reconstruction results is
defined as the mean difference between the predicted model
and the ground-truth model [34]. We compare the proposed
mapping module against RGB-D SLAM [37], ElasticFu-
sion [9], InfiniTAM [38], and SuperpixelFusion [10].

The SuperpixelFusion method is constrained by using
ORB-SLAM for pose estimation, whereas our method also
works well in low-textured environments. InfiniTAM obtains
the best results in kt2, but shows worse performance on
the kt0 and kt3 sequences, potential due to the large low-
textured regions. ElasticFusion shows a similar behavior. Our
method reconstructs more accurate maps than the others,
but InfiniTAM and ElasticFusion provide more complete
models than our map since we ignore small objects even
though features based on points, lines and planes cover most
of the pixels. Remarkably, all fusion methods, except for
SuperpixelFusion and ours, rely on GPU based acceleration.

VII. CONCLUSIONS

We have proposed a RGB-D SLAM system based on
points, lines and planes. Using the MW assumption for
rotation estimation, and point, line and plane features for
translation estimation, we achieve state-of-the-art perfor-
mance. Also, a novel instance-wise meshing approach can
reconstruct planar regions in the environment efficiently.
The resulting dense map allows for interactions with the
environment in robotic and AR/VR applications. In the future
we would like to extend the planar reconstruction with a
meshing of the non-planar parts in the environment to allow
the complete reconstruction of more complex scenes.
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6Co-Planar Parametrization for
Stereo-SLAM and Visual-Inertial
Odometry

This work proposes a visual-inertial system for monocular-imu and stereo-imu setups. Moti-
vated by those methods that leverage more constraints into the bundle optimization modules,
we explore explicit methods to present those constraints to real relationships.

The relationship we focus on is co-planarity, meaning point or line landmarks are located
in the same planar area. First, the paper builds an efficient and robust parametrization of
co-planar points and lines, where the plane represents those points and lines to take the
place of the original individual representations. The strategy leverages specific geometric
constraints to improve camera pose optimization in terms of efficiency and accuracy.

In addition, to support the robustness of the co-planar parametrization method, a reliable
plane detection module is proposed based on neural layer and RANSAC outlier removing
approaches. The pipeline consists of extracting 2D points and lines, predicting planar regions,
and filtering the outliers via RANSAC. Our parametrization scheme then represents co-planar
points and lines as their 2D image coordinates and parameters of planes.

Contributions. Xin Li, Yan Li, and Federico Tombari proposed connecting neural networks
with geometric methods for robust localization methods. I implemented the plane-instance
segmentation network and evaluated the computation time in experiments. Federico Tombari
and Jinlong Lin suggested to design the VIO system for monocular and stereo sensors. Evin
Pınar Örnek helped to polish out the paper and videos. Xin Li evaluated our camera pose
results in experiments.
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Co-Planar Parametrization for Stereo-SLAM
and Visual-Inertial Odometry

Xin Li , Yanyan Li , Evin Pınar Örnek, Jinlong Lin, and Federico Tombari

Abstract—This letter proposes a novel SLAM framework for
stereo and visual inertial odometry estimation. It builds an efficient
and robust parametrization of co-planar points and lines which
leverages specific geometric constraints to improve camera pose
optimization in terms of both efficiency and accuracy. The pipeline
consists of extracting 2D points and lines, predicting planar re-
gions and filtering the outliers via RANSAC. Our parametrization
scheme then represents co-planar points and lines as their 2D
image coordinates and parameters of planes. We demonstrate the
effectiveness of the proposed method by comparing it to tradi-
tional parametrizations in a novel Monte-Carlo simulation set.
Further, the whole stereo SLAM and VIO system is compared
with state-of-the-art methods on the public real-world dataset
EuRoC. Our method shows better results in terms of accuracy
and efficiency than the state-of-the-art. The code is released at
https://github.com/LiXin97/Co-Planar-Parametrization.

Index Terms—SLAM, Visual Learning.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) and
Visual Inertial Odometry (VIO) algorithms aim at cam-

era pose estimation and scene reconstruction under unknown
environments. They are ubiquitously employed in robotics for
tasks such as planning, obstacle avoidance and navigation. When
applied to indoor environments, these methods have to face
important challenges due to the poor visual features available in
the scene, which is often mostly characterized by low textured
surfaces.

It has been shown that the structural regularities in the envi-
ronment (e.g., lines and planes) bring valuable information to
both SLAM and VIO systems [1], [2]. Such features can guide
the SLAM optimization process by introducing additional con-
straints. However, how to organize such structural information
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and integrate it with the optimization in an efficient way is still an
open question. Traditional representations focused on improving
the trajectory accuracy, yet they ignored the high computational
burden. In this work, we aim to tackle this problem by designing
a better representation for planar structures, which simultane-
ously improves the accuracy and the efficiency of integrated
stereo SLAM and VIO systems.

So far in the literature, several works leveraged points and
lines detected from an RGB image to handle challenging envi-
ronments [2]–[5]. Yet, the inner geometric relationship between
those features is ignored in most of them. Different than using
independent features of line segments and points, planar regions
require fewer parameters to represent environments. Such planar
regions and features can be found in almost all man-made
environments, and they have been studied and leveraged in stereo
SLAM and VIO systems [1], [6]–[9]. They introduce more con-
straints to the system that are helpful to improve overall accuracy.
Nevertheless, they also rely on a high number of optimization
parameters yielding limitations in real-world scenarios.

In this work, we propose a novel method to employ planarity
constraints to improve the accuracy and efficiency of SLAM
models based on VIO or stereo in indoor environments. Our
method detects the co-planar point and line features through
a deep learning based plane detection followed by RANSAC
filtering. We then introduce a novel parametrization to represent
these co-planar features in an unified manner instead of using
them as independent features. The resulting parametrization
decrease the size of Hessian matrix, as well as make it sparser
as shown in Fig. 1(e). As a result, solving the bundle adjustment
problem for estimating the correct camera parameters and 3D
landmarks through second-order Newton optimization, which
relies on calculating Schur complement on the Hessian matrix,
becomes more efficient.

Furthermore, we show how our parametrization model can be
integrated in a stereo SLAM or VIO pipeline as shown in Fig. 2
as we want to prove that our plane extraction and parametrization
methods are general. By taking either a stereo image input, or an
image with IMU sensor data, we solve the tracking and mapping
problem through a graph based optimization. The non-planar
3D landmarks are integrated in the traditional way as 3D points,
whereas the planar landmarks are introduced within the pipelines
through proposed co-planarity parameters.

For evaluation, we used the public real-world EuRoC dataset
and a newly created Monte-Carlo simulation set to perform
further ablation studies. We compare our stereo-SLAM method
against point-line SLAM approaches, as well as our VIO

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. System results: (a) input RGB frame; (b) plane instance segmentation;
(c) reconstruction for points, lines and infinite planes; (d) and (e) Hessian
matrices that show the spatial correlation of camera and 3D landmarks within the
traditional [10], [11] and proposed parametrizations, respectively. Black areas
represent zeros, non-zeros otherwise. (e) is sparser than (d). Number of camera
parameters (green), points and lines features (orange) and plane parameters
(blue) are shown.

method against the state-of-the-art plane-based VIO models.
Our method shows improvement in accuracy on both pipelines
while benefiting from lower runtime, demonstrating the effec-
tiveness of co-planar constraints for SLAM. In summary, our
paper proposes the following contributions:� a novel two-stage plane detection strategy from RGB im-

ages, leveraging a neural network based plane segmenta-
tion and a robust outlier filtering� a novel parametrization for co-planar points and lines that
unifies the parameters, resulting in an efficient bundle
adjustment optimization through the smaller and sparser
Hessian matrix� the deployment of these contributions within two different
camera tracking frameworks, based respectively on VIO
and stereo SLAM, both individually reporting state-of-the-
art results.

II. RELATED WORK

Feature-based SLAM is traditionally addressed by tracking
keypoints along successive frames and then minimizing some
error functions (typically based on re-projection errors) to esti-
mate the camera poses [13]. For point/based only method, there
are many successful proposals, such as PTAM [14], SVO [15]
and ORB-SLAM [3]. However, using only point features has
strong limitations within textureless environments as well as
under illumination changes.

To deal with these problems, line-segment based methods
were proposed [16], [17]. Moreover, planar regions and as-
sociated features have been leveraged by SLAM systems. In
early works [1], planes in the scene were detected by RANSAC
among estimated 3D points, which is time consuming and
not stable. These plane-based mapping and tracking methods,
however, are common within RGB-D sensors since it is easier
to segment planes from depth maps. Salas-Moreno et al. [18]
present a dense mapping approach by using bounded planes and
surfels with RGB-D sensors. Point-Plane SLAM [19] computes
orthogonal relationships between planes from depth maps, then
uses constraints for pose estimation. CPA-SLAM [20] models
the scene as a global plane model, which is helpful to remove
drift by aligning current RGB-D frame with the plane model.
By using IMU, VIO methods can deal with fast motion easily.
MSCKF [21] and ROVIO [22] are popular filter-based methods,
but the first one does not maintain estimates of 3D landmarks
in the state vector. Different to those methods, an optimization
strategy is used VINS-MONO [5] and Mesh-VIO [6] for pose
estimation.

Instead of a set of features, planes are also used to construct
co-planar regularities for points and lines. Instead of extracting
planes from sparse point cloud, Mesh-VIO [6] builds 2D De-
launay triangulation based on 2D points first, and then project
them into 3D from their correspondences. They find vertical
and horizontal planes from the gravity vector given by the IMU,
then merge the co-planar constraints in the optimization module.
With the introduction of deep learning, methods were proposed
to estimate planes from a single RGB image, hence opening up
new possibilities for SLAM systems. PlaneReconstruction [23]
and PlaneRCNN [24] are state-of-the-art plane instance segmen-
tation methods for a single image. In addition to planes, they also
estimate depth and normal maps from a single RGB image.

Inverse depth [10] and parallax angle [25] were proposed to
represent point features in monocular systems. Inverse depth
parametrization uses the inverse of the depth from its anchor
camera, which works more accurately for distant features. In-
stead of using depth, the parallax angle is used in [25] which
obtains good performance in both nearby and distant features.
TextSLAM [26] suggests to extract text-based visual infor-
mation and treats each detected text as a planar feature. In
line parametrization methods, Plücker coordinate is a popular
representation method for 3D line initialization and transfor-
mation. Each 3D line, however, has only 4 degrees of freedom
(4DoFs), and the six parameters of Plücker coordinates lead
to over-parameterization [27]. So, an orthogonal representation
based on only four parameters is used in the optimization to
solve this problem.

III. PROPOSED METHOD

In this section, we first explain our co-planar parametrization
strategy, which includes plane instance detection and RANSAC
based filtering steps. Then, we introduce the implementation
details of our stereo and VIO versions that use the proposed
parametrization in a sliding window optimization fashion.
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Fig. 2. The pipeline of our plane-parametrized SLAM system. The overall pipeline follows the classical tracking and mapping approaches [3], along with the
sliding-window based optimization. The pipeline can take as input either a stereo image pair or an image with IMU sensor data. 2D features and initial camera pose
is estimated in a similar way as previous works [5], [12]. Then we detect planar regions via plane instance segmentation. After selecting the potential co-planar
points and lines on the planar region, we remove the outliers with RANSAC. We present the remaining robust points and lines with the proposed parametrization,
which can be directly integrated as an additional constraint in SLAM optimization.

Fig. 3. Examples of plane instance segmentation on EuRoC dataset and
architecture of the plane instance segmentation network.

A. Coplanarity-Based Parametrization

A plane is defined by equation nXT
c + d = 0, where n =

(n1, n2, n3) ∈ R3 is the normal of the plane, Xc is a 3D point
in camera coordinates, and d ∈ R is the distance from the plane
to the origin of the camera c. However, this representation has
an over-parametrization problem, and it cannot be solved with
the Gauss-Newton approach due to singularity issue [28]. So
we optimize the normal n on the tangent space S2 with another
optimization method, which is similar to Mesh-VIO [6]. In this
section, we first describe how the co-planar points and features
are detected. Then, we explain our parametrization for points
and lines, respectively.

a) Plane Instance Segmentation: In order to detect planar
regions in the scene in real-time, we use a plane instance seg-
mentation network, which is a simplified version of PlaneRecon-
struction [23]. This network has two branches: planar mask de-
coder and a plane embedding decoder. The first branch decodes

a binary mask for planar regions. The second one decodes the
feature maps to an embedding space where mean-shift clustering
is used to group each pixel into planar instances, iteratively. We
train this plane detection network on ScanNet dataset [29] for
30 epochs.

b) Co-planar Feature Extraction: Since the plane instance
segments extracted by the neural network might be at times
inaccurate, we refine them by extracting 2D point and line
features from images. Selecting the extracted features that align
with the detected plane segments will lead us to robust features.
We use ORB features [30] and LSD segment detection [31]
to extract sets of co-planar points [Sx

1 , . . . S
x
m] and co-planar

lines [Sl
1, . . . S

l
m], where each distinct set consists of co-planar

features Sx
n = [xi . . . xj ], n ∈ [1,m] and xi is a 2D pixel. For

a stereo input, we obtain 3D points and lines by triangulating
left-right image pairs. Whereas for VIO, the visual input is
monocular and we triangulate sequential frames. During SLAM
optimization, when a frame is detected as a new keyframe, we
associate the features of this new frame with previous keyframes
(i.e. check if they match and if they do not match, initiate new 3D
landmarks with these features). After associating the landmarks,
we build the potential co-planar points and lines, as shown in
Fig. 2.

Due to the presence of outliers in the potential co-planar sets,
we employ the following refinement strategy. First, for the cur-
rent frame, we preserve the features that have been successfully
triangulated. Then, we classify them according to detected 2D
plane instance segments. If the number of features detected in
a plane instance region is greater than a certain threshold, it
will be considered as a potential planar region in 3D. If it is
smaller than the threshold, plane will not be considered. After
that, we use a RANSAC filter to find co-planar constraints in the
potential planar region. We take out pointsCx and linesCl in the
potential planar region and feed them to the filter. Specifically,
corresponding rules in Eq. 1 are selected to fit parameters Γ of
the plane according to the type of z (∀z ∈ Z,Z = [Cx, Cl]),

f(c,Γ) =

{
δ⊥(Px,Γ), z ∈ Cx

max(δ⊥(cls,Γ), δ⊥(cle),Γ), z ∈ Cl
(1)
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Fig. 4. Point and line features are shown on a detected planar region πj with
a normal nπ . hi is the depth from camera frame origin to the 3D point pi.
nl is the normal of a line on the plane nπ . Our parametrization rewrites the
plane equation in terms of image pixel coordinates and combine line and point
features.

where δ⊥(·, ·) denotes the perpendicular distance from a 3D
point Px to the plane in 3D, cls and cle are the start and end
points of the line respectively. Note that we only consider lines
which have both endpoints lie on the same planar region. If the
size of the largest consensus set exceeds a threshold θcp (80% in
our experiments), we add the corresponding plane candidate to
the system and establish point-plane and line-plane associations
in the consensus set. We remove the outliers from the initial sets.
When new 3D points and lines are generated in the system, we
check if they belong to existing planes using the same metric
defined above and store those correspondences. It is important
to note that it would be also possible to detect planar regions
by using only RANSAC (without the deep learning method).
However, when there are unknown number of planes in a scene,
RANSAC does not work optimal. It requires several iterations,
where at each time a single planar region is detected and inlier
points are removed. Yet, the false-detections accumulate over
each time and results degenerate. We prevent this issue by
detecting all planes through a neural network initially.

c) Parametrization of Points: After associating points and
lines to co-planar regions as previously described, we obtain
refined co-planar feature sets and parameters for each plane
instance. As shown in Fig. 4, 3D points are the intersections of
the detected plane and the camera-to-landmark rays. For each
3D point P c

x = (xc, yc, zc) which lies on the plane π in camera
frame c, we have the function nT

πP
c
x + dπ = 0. For example,

the depth from origin of camera frame to the 3D point Pi

is hi. A normalized 3D point is presented as (x̂, ŷ, 1), where
(xc, yc, zc) = (x̂, ŷ, 1) · hi. Also,

(x̂, ŷ, 1)T = K−1(u, v, 1)T (2)

where K is the intrinsic matrix of camera c, and (u, v) is the 2D
point corresponding to the landmark P c

x . Then, the co-planar
relationship for points can be represented as

hi · nT
πK

−1(u, v, 1)T + dπ = 0, (3)

where the relationship contains 2D pixel of the landmark and
parameters of the plane. So in our parametrization, the point p∗

lying on a planar region can be represented as

p∗ = [nπ, dπ]. (4)

d) Parametrization of Lines: For line features, the Plücker
coordinatesL = [n�

l ,d
�]� are used to initialize 3D lines, where

d ∈ R3 is the line’s direction vector in camera frame c, and
nl ∈ R3 is the normal vector of the plane determined by the line
and the camera frame’s origin point (Fig. 4). Furthermore, the
line is the intersection of two known planes πl and πP , so the
dual Plücker matrix L∗ can be computed by:

L∗ =

[
[d]× nl

−n�
l 0

]
= πlπ

�
P − πPπ

�
l ∈ R4×4 (5)

where [·]× is the skew-symmetric matrix of a three-dimensional
vector, and π = [n, d] is a 4D vector. Then we can easily get
Plücker coordinates L = [n�

l ,d
�]� from the dual Plücker ma-

trix.
e) Resulting Hessian matrix: Compared with other pro-

posed representations, which treat points and lines as indepen-
dent features, our method uses one plane parameter to represent
all co-planar features. Novel parametrization is then used in the
bundle adjustment, which is solved by a second-order Newton
optimization method, the Levenberg-Marquardt algorithm. This
relies on taking the gradients of the residuals with respect
to parameters (3D landmarks and camera poses) and solving
the normal equations. Hence, when there are less number of
parameters, Hessian matrix will be smaller. When there are
less dependencies between the parameters, the sparse structure
of Hessian can be employed more efficiently through Schur
complement. The resulting Hessian matrix is illustrated in Fig. 1
and it’s effects on efficiency are further shown in Experiments
section, in Tab. III. The optimization equations are explained in
next subsection. Further interested reader is referred to [32].

B. System Implementation

In this section, implementation details are introduced for
both versions of our approach, i.e. the stereo SLAM and VIO,
respectively.

a) Tracking: The goal of the tracking module is to extract
2D features and estimate the camera pose for each frame. In
the stereo version, we estimate camera pose via point and line
features, where stereo keypoints are defined by three coordinates
xs = (uL, vL, uR), here (uL, vL) are coordinates on the left
image and uR is the horizontal coordinate for the corresponding
matches in the right image. Similar to points, lines between
two images are matched by Line Band Descriptor (LBD) [33].
Furthermore, motion model is used to provide an initial pose
that is refined by a frame-to-frame tracking strategy similar to
ORB-SLAM [3]. Instead, for the VIO version, the initialization
strategy of IMU is similar to VINS-Mono [5], which relis on
a loose coupling strategy to align IMU pre-integration with
the visual-only part. Different than visual-only (stereo) branch,
the initial pose for optimization in VIO is obtained from IMU
pre-integration [2], [5] so that the visual part can be regarded as
a purely monocular version. Monocular keypoints are defined
by two coordinates xm = (uL, vL) which are triangulated from
multiple views.

In the system, we use different strategies for keyframe detec-
tion in stereo and VIO pipelines. For the former one, a new
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keyframe can be added only after at least 20 frames. Each
keyframe tracks more than 40 points and 10% of keypoints
should be new keypoints compared to the nearest keyframe.
However, for the latter one, we consider the average parallax
(with rotation compensation) of tracked features between two
keyframes, which should be more than 10 degrees (similar to
VINS-Mono [5]).

b) Mapping: When a keyframe is detected and inserted,
we associate its 2D features to 3D corresponding landmarks
in the sliding window (or local map) by 2D feature matching.
For each non-associated 2D feature, we triangulate it with other
keyframes in the VIO version, while for stereo, non-associated
points and lines are usually triangulated by each stereo pair. Dif-
ferent from points, 3D lines are triangulated by two intersecting
planes colored in blue in Fig. 4, which are observed in different
views.

Based on the potential co-planar regions and the RANSAC
filter, 3D landmarks are divided into two sets for optimization:
planar features and non-planar features. Inverse depth algorithm
is used to represent points; and Plücker coordinates and or-
thonormal representations are used to represent lines following
He [2], which are then fed to window-based bundle adjustment
for optimizing poses and landmarks.

c) Bundle Adjustment With Co-Planar Parametrization:
In this part, we use re-projection error functions to optimize cam-
era pose and landmark positions. Two different error functions
are used for planar and non-planar features. Non-planar features
are represented by traditional parametrization and optimized di-
rectly. However, co-planar features are refined by optimizing the
parameters of the proposed parametrization. For point features,
the re-projection error rpik strands for the the distance between
the projected point of the jth map point and the observed point
in the kth frame, which is noted as

rpik = xik −Π(Tkw, P
w
i ) (6)

where Π() re-projects the ith global 3D point Pw
i coordinates

into the kth frame. For general points, Pw
i is represented as

(xw, yw, zw). Points lying on a plane are represented with
Eq. (3).

For line features, the re-projection error rljk is defined as the
distance between the re-projected line of the jth map line and
two endpoints of its corresponding 2D line in the kth keyframe,
which is given by,

rljk =
[

s�nl√
n2
1+n2

2

e�nl√
n2
1+n2

2

]�
(7)

wherenl = [n1, n2, n3]
� is the 2D line re-projected from the 3D

line to the camera frame, s = [x̂s, ŷs, 1]
� and e = [x̂e, ŷe, 1]

�

are two end-points of the observed line segment in the kth
image plane. For general lines, nl can be represented as in an
orthonormal way [2]. Lines lying on a plane are represented with
the Eq. (5).

Given by the Eq. (6) and Eq. (7), We can therefore construct a
unified target function which optimizes all terms simultaneously,

E =
∑

k,i

ρp(r
p
ik

�
Λikr

p
ik) +

∑

k,j

ρl(r
�
jklΛjkr

l
jk) (8)

here ρp and ρl present robust Cauchy cost functions. Respec-
tively, Λik and Λjk are the information matrices of points and
lines, as calculated in [2], [5].

d) Tightly-Coupled Optimization for Inertial Constraints:
For the VIO case, we fuse the data coming from the visual
and inertial sensors via non-linear optimization in a tightly
coupled form. Different from the stereo case, visual features
are transferred to the IMU body coordinate system via extrinsic
parameters [Rbc tbc] between camera and IMU. So the unified
target function for the VIO branch can be shown as,

E =
∑

k,i

ρp(r
pik�Λikr

p
ik) +

∑

kj

ρl(r
�
jklΛjkr

l
jk)

+
∑

b

ρl(r
b�Λbr

b) + Em (9)

where rb is the IMU residual, and Em is the prior residual from
marginalization operator in the sliding window. For more details,
readers are referred to [5].

IV. EXPERIMENTS

To evaluate the proposed method, we benchmark it against
the state of the art on the EuRoC dataset [34]. In addition,
we perform Monte-Carlo simulations to verify the robustness
and efficiency of the novel parametrization. We evaluate both
stereo and VIO pipelines with Absolute Trajectory Error (ATE)
which measures absolute translational distances between the
ground truth pose and the corresponding estimated pose. All
the experiments run on an Intel Core i7-8550U @ 1.8 GHz and
16 GB RAM.

A. EuRoC Dataset

EuRoC is a popular public dataset for stereo SLAM and
VIO systems, which collects stereo images and inertial data
from an aerial vehicle in indoor environments [34]. There are
two scenarios in this dataset: Vicon Room (V) and Machine
Hall (MH), with eleven sequences in total. VH is an indoor
environment and has several planar regions, whereas MH is
the interior of an industrial facility where planar regions are
unevenly distributed.

a) Ablation Studies: In order to evaluate the performance
of the proposed parametrization in EuRoC, we fix the front-end
and compare five formulations: P (−wo), P (−w), PL(−w),
P (−r), and PL(−r), where P denotes a point-based method,
and PL denotes a point-line-based system. (−wo) means the
traditional parametrization (only inverse depth), and both (−r)
and (−w) use co-planar constraints in the optimization module,
but in different ways. (−r) uses more equations between point-
to-plane and line-to-plane, which are merged into optimization
as in Mesh-VIO [6], [8]. Whereas (−w) presents these residuals
within the proposed co-planar parametrization.

The results of the stereo and VIO versions on EuRoC dataset
are presented in Fig. 5 and Fig. 5, respectively. In general,
the proposed parametrization PL(−w) results in lower RMSE
compared to traditional parametrizations,P (−wo) andP (−w),
in both cases, and especially in the MH sequences, where the
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Fig. 5. Comparison in terms of ATE of different parametrization variants:
P (−wo), P (−r), P (−w), PL(−r) and PL(−w). The top part shows results
for stereo, and the bottom one for VIO. The proposed parametrization PL(−w)
achieves the best results for all sequences where structural regularities are
detected and enforced. * shows lost tracking on V103 and V203 sequences.

line features can provide more robust constraints with planar
regions in the large industrial environment.

For stereo approaches, as shown in Fig. 5, line features make
the system more robust especially inV 103 andV 203 sequences,
where severe motion blur happened. In other Vicon sequences,
PL(−w) performs better than PL(−r) because the proposed
two-stage co-planar approach removes distances between those
co-planar features and planes directly. In MH01, MH02 and
MH03 which are textured sequences, all approaches obtain
similar results. In Fig. 5, P (−wo) and P (−w) perform equally
on MH03, MH04 and MH05 sequences, because there are
not any structural regularities detected. When there are some
planar regions detected, as in V 202, MH01 and MH02, the
proposed parametrization P (−w) obtains better performance
than traditional methods. If enough features can be obtained
and few good co-planar sets, our system’s performance will
degenerate to that of traditional methods, as in sequences V 102
andV 201. The computation time of different operations in V101
is presented in Table II.

b) EuroC Evaluation: We compare our stereo branch
against the stereo version of ORB-SLAM2 [12] and FMD-
SLAM [35]. It is important to note that, for fairness of com-
parison, the tested ORB-SLAM2 does not have loop closure.
Furthermore, we compare our VIO version against the recently

Fig. 6. Two simulation environments are illustrated, where points and lines
are in red and blue, respectively. Camera follows green trajectories.

proposed MSCKF [21], ROVIO [22], VINS-MONO [5], and
Mesh-VIO [6]. Results are given in Table I. These VIO algo-
rithms use all a monocular camera, except Mesh-VIO that uses a
stereo camera. Results of previous works are taken from Rosinol
et al. [6].

The left part of Table I shows that thePL(−w) approach is an
accurate and robust method compared with state-of-the-art VIO
methods on sequences. Compared with Mesh-VIO [6], which
also uses planar information to build co-planar regularities in
the optimization process, our method performs better on most
sequences, where Mesh-VIO obtained more vertical planes from
3D mesh due to using gravity during plane detection. When
horizontal and vertical planes are difficult to detect as in V 103
and some of the MH sequences, Mesh-VIO tends to degenerate
easily so that it cannot build co-planar constraints. In sequence
MH05, we observe a 26% improvement compared to the sec-
ond best performing algorithm (Mesh-VIO), and in sequence
V 103, a 15% improvement and 35% improvement compared
to VINS-MONO and Mesh-VIO, respectively. It can be seen
that the optimization methods of VINS-MONO, Mesh-VIO
and PL(−w) are more robust than the filter-based MSCKF.
Meanwhile, our method is more robust for indoor environments
that have lots of co-planar regularities.

The stereo SLAM comparison is shown on the right side of
Table I. Stereo ORB-SLAM2 obtains comparable results to ours
on all sequences except V203 and MH04. In those textured se-
quences, this method tracks the features in a stable and accurate
way. Instead, V203 is a difficult sequence because of the fast
motion and the strong illumination changes, and tracking fails
for both ORB-SLAM2 and FMD-SLAM. Benefiting from using
point and line features, our method is instead more robust and
can deal also with this sequence. The average RMSE values, for
fairness computed without taking sequence V203 into account,
show that our method obtains 25.7% and 38.7% improvements
compared to ORB-SLAM2 and FMD-SLAM, respectively.

B. Simulation Dataset

We create two simulation sequences with ideal co-planar envi-
ronments to evaluate the efficiency with respect to performance
under different parametric formulations. As shown in Fig. 6(a),
the first sequence has 100 lines and 200 points generated in 4
directions, which are observed by virtual cameras that follow
a sinusoidal trajectory with 150 simulated poses. The second
sequence consists of 20 lines and 50 points observed by 50
camera poses as shown in Fig. 6(b).
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TABLE I
COMPARISON IN TERMS OF RMSE (CM) OF THE PROPOSED PL(−w) PIPELINE AGAINST THE STATE OF THE ART ON THE EUROC DATASET. BEST RESULTS ARE

BOLDED. × SHOWS LOST TRACKING. AVERAGED RESULTS WITH * DO NOT INCLUDE THE SEQUENCE V203

TABLE II
COMPUTATION TIME (MEAN, MS) OF DIFFERENT OPERATIONS IN THE V101
SEQUENCE OF EUROC. * MEANS THAT THE OPERATION IS USED FOR EACH

FRAME, OTHERWISE IT IS PERFORMED ON KEYFRAMES ONLY. D&M NOTES

DETECTION AND MATCHING. - MEANS THAT THE OPERATION IS NOT USED

For line measurements, the virtual camera gets two endpoints
from each measurements. Note that each measurement of a point,
including endpoints of lines and point features, is corrupted
by 1-pixel Gaussian random noise. In order to simplify the
simulation, we simulate relative pose odometry measurements
as pose estimation results from the tracking module, which have
random noise as,

q̄m =

[
1
2nθ

1

]
⊗ q̄, pCm = pC + np (10)

where nθ and np are the Gaussian white noises added to the
relative pose, with σθ = 1 deg and σp = 10 cm, respectively.

a) Performance: We pose the visual SLAM system as a
non-linear least squares problem, solved via Gaussian-Newton.
Maximum 10 iterations are allowed for each method in this
simulation for a fair comparison. We run the simulation sequence
30 times and show median results for the accuracy of the
estimated trajectory and optimization time. Fig. 7 shows similar
performance across sequences, that is, (−w) is more accurate
and efficient than (−r) and (−wo). The second sequence (b)
requires more optimization time and results in lower RMSE
since more features are measured by each camera compared
to the first. P (−wo) requires less time than P (−r) in two
sequences because it does not use structural regularities and
has small optimization computation as shown in Fig. 1(d).
P (−r) has a higher computational burden (Fig. 1(e)) and is
more accurate than P (−wo). While combining line features in

Fig. 7. Comparison of the optimization time (ms, top) and RMSE (cm, bottom)
for pipelines P (−wo), P (−r), P (−w), PL(−r) and PL(−w).

the system, like PL(−r), results are more accurate even if the
method requires more time. Compared to P (−r) and PL(−r),
our parametrizations for points and lines (P (−w)) are more
efficient. In terms of optimization time, P (−w) has a 31%
improvement and PL(−w) 33%, compared to P (−r).

b) Number of Parameters: Furthermore, we analyze the
reason of efficiency from the perspective of number of param-
eters that are to be updated. In traditional parametric methods
(inverse depth for points and orthogonal approach for lines),
each point, line and plane need 1 parameter, 4 parameters and
3 parameters, respectively. However, in our parametrization
method, all points and lines in the plane are represented by only
one plane parameter. Hence, there is only one parameter for each
planar region during optimization. Table III shows the number
of parameters that need to be updated in the global bundle
adjustment on the second Monte Carlo sequence, where 20 lines
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TABLE III
THE NUMBER OF LANDMARKS UPDATED IN OPTIMIZATION

MODULE OF SEQUENCE 2

and 50 points are observed by 50 cameras. P (−w) uses points
only, so it has to update 100 items at each iteration. Similar to
P (−wo), we have to update 101 items and 121 items in P (−r)
and PL(−r). Note that those two need to update one plane
item because they use of co-planar constraints of point-to-plane
and line-to-plane. In the proposed solutions, only 51 items (50
cameras and 1 plane) are updated in P (−w) and PL(−w)
because they use the plane to represent co-planar points and
lines.

V. CONCLUSION

We presented an efficient and robust co-planar parametriza-
tion method for points and lines by leveraging geometric and
learning approaches together, which increases sparsity and re-
duces the size of Hessian matrix in each optimization mod-
ule. Then, we illustrated how our co-planar parametrization
can be implemented in stereo-SLAM and VIO pipelines. Our
experiments show that our approach improves the efficiency
and accuracy of both stereo and VIO optimization in indoor
environments. As for future work, we plan to reconstruct dense
maps from monocular data and merge together semantic seg-
mentation and depth prediction to improve tracking and mapping
simultaneously.
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7E-Graph: Minimal Solution for
Rigid Rotation with Extensibility
Graphs

Camera pose estimation is a fundamental ability in intelligent agents, including robots,
autonomous driving cars, and virtual/augmented reality devices, which provide tracking and
re-localization services when those agents interact with unknown environments. Features,
initial camera poses, and a front-end module generate measurement associations. While
a back-end part acting as a critical formulation is responsible for refining and smoothing
initials to accurate poses and landmarks by defining the problem as factor graphs. The typical
visual factor graphs are constructed via covisibility relationships where each factor represents
that an image frame measures a landmark. Benefiting from those relationships, relative
transformations between different camera views can be estimated. Those vertices tend to be
clustered into several local groups. When landmarks are distributed evenly in environments,
those local clusters can be connected. Those co-visibility graphs achieve robust performance.
However, extracting enough and even landmarks to maintain the connections between those
local groups in low-textured scenes takes a lot of work, which brings problems in tracking
and optimization modules.

To solve this problem, this paper proposes a new pose estimation approach based on a new
type of pose graph structure. During the tracking process, points, lines, and planes will be
extracted from each RGB-D frame. Instead of using those features to estimate 6-DoF camera
poses, we first analyze vanishing directions and plane normals from line and plane features.
When unparalleled directions are detected, a local coordinate Vi will be built. Then, we
will check the association relationships between Vi and the set of other local coordinates
Vm,m ∈ (0, . . . ,n), where n is the number of local coordinates. When we detect matched
coordinates Vi and Vj, the orientation Ri of the current frame can be computed based on the
former rotation Rj directly, but not affected by cumulative errors generated in the tracking
process from frame Fj+1 to Fi.

Contributions. Yan Li implemented and proposed the prototype idea of using vanishing
directions of those 3D lines to build a new type of landmarks. Federico Tombari clarified
some details about how to design experiments to evaluate the idea. All the experiments are
carried out by Yan Li.
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Abstract. Minimal solutions for relative rotation and translation esti-
mation tasks have been explored in different scenarios, typically relying
on the so-called co-visibility graphs. However, how to build direct rota-
tion relationships between two frames without overlap is still an open
topic, which, if solved, could greatly improve the accuracy of visual
odometry. In this paper, a new minimal solution is proposed to solve rel-
ative rotation estimation between two images without overlapping areas
by exploiting a new graph structure, which we call Extensibility Graph
(E-Graph). Differently from a co-visibility graph, high-level landmarks,
including vanishing directions and plane normals, are stored in our E-
Graph, which are geometrically extensible. Based on E-Graph, the rota-
tion estimation problem becomes simpler and more elegant, as it can deal
with pure rotational motion and requires fewer assumptions, e.g. Man-
hattan/Atlanta World, planar/vertical motion. Finally, we embed our
rotation estimation strategy into a complete camera tracking and map-
ping system which obtains 6-DoF camera poses and a dense 3D mesh
model. Extensive experiments on public benchmarks demonstrate that
the proposed method achieves state-of-the-art tracking performance.

1 Introduction

Camera pose estimation is a long-standing problem in computer vision as a key
step in algorithms for visual odometry, Simultaneous Localization and Mapping
(SLAM) and related applications in robotics, augmented reality, autonomous
driving (to name a few). As part of the camera pose estimation problem, the
minimal case [40] provides an estimate of whether the problem can be solved
and how many elements are required to obtain a reliable estimate. According
to the input data type and scenarios, different solutions [1, 28, 15, 9] were pro-
posed, most of which became very popular in the computer vision and robotic
community, such as the seven-point [1] and five-point [28] approaches. A typical
limitation of traditional pose estimation solutions based on the minimal case [1,
28, 31, 9] is that both rotation and translation estimation rely on the co-visibility
features between two frames, this having as a consequence that the length of an
edge between two nodes is often relatively short. Therefore, tracking errors tend
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(a) Dense scene reconstruction (b) Sparse scene reconstruction

(c) Covisibility graph (d) Extensibility graph

Fig. 1. Dense (a) and sparse (b) scene reconstruction of the office-room scene from the
ICL dataset [10] obtained by the proposed method. (c) and (d): keyframes (in blue)
and connected frames are linked with green and red lines, respectively, to build up
the proposed covisibility and extensibility graphs. The black ellipses denote the start
points of the camera trajectory.

to accumulate easily based on a frame-to-frame or frame-to-keyframe strategy.
To solve this issue, more advanced tracking systems [26, 3] with optimization so-
lutions, including local and global bundle adjustment approaches, were exploited
to refine poses from minimal solutions. Loop Closure is a common algorithm used
in feature-based [24] and direct [7] methods to remove drift. However, it also re-
quires the camera to revisit the same place, which is a limiting assumption in
many scenarios.

Compared with point features, lines and planes require more computation to
be extracted and described. Early multi-feature SLAM systems [8] use them to
increase the number of features to combat low-textured scenes. After that, co-
planar, parallel and perpendicular relationships were explored [39, 18, 20] to add
more constraints in the optimization module, still following a similar tracking
strategy as ORBSLAM [25] or DSO [36] for the initial pose estimation.

Different to the tightly coupled estimation strategy, some works [43] proposed
to decouple the 6-DoF pose estimation into rotation and translation estimation
aiming to achieve a more accurate rotation estimation, based on the idea that
pose drift is mainly caused by the rotation component [14]. At the same time,
based on an estimated rotation matrix [31], only two points are required to
compute the translation motion, leading to more robustness in low-textured
regions.

The Manhattan World (MW) [43] and Atlanta World (AW) [13] assump-
tions introduce stronger constraints since they require a single orthogonal scene,
or a scene with a unified vertical direction. Unlike loop closure that removes
drift by detecting trajectory loops, the assumption of MW and AW is intro-
duced for indoor tracking scenarios [19, 14] to improve the accuracy of camera
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pose estimation, since most indoor artificial environments follow this assump-
tion. MW and AW improve accuracy when the main structure of the scene has
orthogonal elements However, since this assumption requires the observation of
vertical/orthogonal environmental features (such as straight lines or planes), the
SLAM system using this method is also limited in the types of scenarios it can
be successfully applied to.

In this paper we propose a rigid rotation estimation approach based on a novel
graph structure, which we dub Extensibility Graph (E-Graph), for landmark
association in RGB-D data. Our approach is designed to reduce drift and improve
the overall trajectory accuracy in spite of loop closure or MW/AW assumptions.
Benefiting of E-Graph, the drift-free rotation estimation problem is simplified to
the alignment problem of rotating coordinate systems. Importantly, our rotation
step does not need overlaps between two frames by making use of vanishing
directions of lines and plane normals in the scene, hence can relate a higher
number of keyframes with respect to standard co-visibility graphs, with benefits
in terms of accuracy and robustness in presence of pure rotational motions.

In addition, we develop a complete tracking and dense mapping system base
on the proposed E-Graph and rotation estimation strategies, which we demon-
strate to outperform state-of-the-art SLAM approaches [20, 38, 26, 3]. To summa-
rize, the main contributions of this paper are as follows: i) a new perspective for
reducing drift is proposed based on our novel graph structure, E-Graph, which
connects keyframes across long distances; ii) a novel drift-free rotation alignment
solution between two frames without overlapping areas based on E-Graph; iii) a
complete SLAM system based on the two previous contributions to improve ro-
bustness and accuracy in pose estimation and mapping. The proposed approach
is evaluated on common benchmarks such as ICL [10] and TUM-RGBD [33],
demonstrating an improved performance compared to the state of the art.

2 Related work

By making the assumption of planar motion [9], two-view relative pose estima-
tion is implemented based on a single affine correspondence. Point features are
common geometric features used in VO and SLAM [3] systems. To remove the
drift from point-based front ends, different types of back ends are explored in
tracking methods. Loop closing is an important module to remove drift, which
happens when the system recognizes that a place [6, 23] has been visited be-
fore. After closing the loop, associated keyframes in the covisibility graph will
be adjusted. Benefiting of loop closure and optimization modules, ORB-SLAM
series [26, 3] organize the keyframes efficiently, which provides robust support for
tracking tasks. Different from sparse point features used in ORB-SLAM, BAD-
SLAM [32] implements a direct bundle adjustment formulation supported by
GPU processing.

However, in indoor environments, to cover texture-less regions that have few
point features, more geometric features are merged into the front end of sys-
tems. At the early stage, methods build re-projection error functions for lines
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and planes. CPA-SLAM [22] makes use of photometric and plane re-projection
terms to estimate the camera pose. Based on estimated camera poses, detected
planes are merged together with a global plane model. Similar to our method,
CPA-SLAM and KDP-SLAM [11] can build constraints between non-overlapping
frames. However those constraints are used to build heavy optimization targets
instead of improving the efficiency. Furthermore, the relationship between paral-
lel lines (vanishing points) and perpendicular planes is explored in [17, 41]. Based
on the regularities of those structural features, they obtain a more accurate per-
formance. Instead of exploring the parallel/perpendicular relationships between
lines/planes, [30, 18] make use of constraints between co-planar points and lines
in the optimization module.

Those regularities aim to build constraints between local features, [14, 20]
introduce global constraints by modeling the environment as a special shape,
like MW and AW. The MW assumption is suitable for a cuboid scenario, which
is supposed to be built by orthogonal elements. Based on this assumption, those
methods estimate each frame’s rotation between the frame and the Manhattan
world directly, which is useful to avoid drift between frames in those scenes.
L-SLAM [14] groups normal vectors of each pixel into an orthogonal coordi-
nate by projecting them into a Gaussian Sphere [43] and tracks the coordinate
axes to compute the relative rotation motion. Similar to the main idea of L-
SLAM, [15] provides a RGB-D compass by using a single line and plane. Since
the line lies on the plane, the underlying assumption of the system is the MW-
based rotation estimation method. However, the limitation of this strategy is
also very obvious, that it works only in Manhattan environments. Based on
ORB-SLAM2 [26], Structure-SLAM [19, 20] merges the MW assumption with
keyframe-based tracking, to improve the robustness of the system in non-MW
indoor scenes, which refine decoupled camera pose by using a frame-to-model
strategy. Compared with MW-based tracking methods, our approach is less sen-
sitive to the structure of environments.

3 Minimal case in orientation estimation

Commonly, the 6-DoF Euclidean Transform T ∈ SE(3) defines motions as a set
of rotation R ∈ SO(3) and translation t ∈ R3. Based on point correspondences,
camera pose estimation can be defined as,

P
′

= RP + t (1)

where P
′

and P are 3D correspondences, and [R, t] defines the relative motion
between two cameras. For monocular sensors, their image normalized represen-

tations are X
′
c and Xc,

X
′
c = α(RXc + γt) (2)

where α and γ are depth-related parameters. After multiplying (2) by X
′T
c [t]x,

we can obtain the classic essential matrix equation,

X
′T
c EXc = 0 (3)
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where E = [t]xR and [t]x is the skew symmetric matrix formed by t.
For RGB-D sensors, the task is simplified since the absolute depth infor-

mation is directly provided by sensors. Equation (1) can be solved by using
3 non-collinear correspondences only [29], although the distance between two
frames is supposed to be kept small to extract enough correspondences.

3.1 Minimal solution for rotation

Fig. 2. Minimal case of rotation estimation in EG

Different from traditional methods based on co-visibility graphs, the proposed
method decouples rotation and translation estimation into two separate stages.
Moreover, the rotation estimation task does not require feature correspondences.
As shown in Figure 2, non-parallel direction vectors vm,m ∈ [0, 1, . . . , n] are de-
tected in the camera coordinate Cj , where vjm = [xv

j
m,y v

j
m,z v

j
m]T . In Euclidean

3D space, the size of a finite and linearly independent set of vectors is less then
four. According to the Gram-Schmidt orthogonalization process, we can obtain
an orthogonal set S = [u0,u1,u2],

u0 = vj0
u1 = vj1 − proj[vj

0]
(vj1)

u2 = vj2 − proj[vj
0]

(vj2)− proj[vj
1]

(vj2)

(4)

by using the projection operator proj[u](v) = <u,v>
||u||||v||v, where < u,v > shows

the inner product of the vectors u and v. Furthermore, we obtain the normalized
vectors e0, e1 and e2 via em = um

||um|| .

For the Euclidean space R3, the relevant orthonormal basis set based on
the detected direction vectors is (e0, e1, e2). In the jth camera coordinate, the
orthonormal set is detected as (e0, e1, e2), while (e∗0, e

∗
1, e
∗
2) in the kth camera

coordinate.
Therefore, from the perspective of the orthonormal set, those jth and kth

coordinates are represented as [e0, e1, e2]T and [e∗0, e
∗
1, e
∗
2]T , respectively.
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Given



eT0
eT1
eT2


 [e0, e1, e2] is the identity matrix, the matrix [e0, e1, e2] is an

orthogonal matrix and the columns of [e0, e1, e2]T are orthonormal vectors as
well, which can be used to build the orthonomal basis set of the jth camera
coordinate. Therefore, in R3 an arbitrary vector x can be represented by two
orthonormal sets, (e0, e1, e2)T and (e∗0, e

∗
1, e
∗
2)T , independently,

x = (e0, e1, e2)T (x0, x1, x2)T

= (e∗0, e
∗
1, e
∗
2)T (x∗0, x

∗
1, x
∗
2)T

(5)

Finally, (x0, x1, x2)T = (e0, e1, e2)(e∗0, e
∗
1, e
∗
2)T (x∗0, x

∗
1, x
∗
2)T where the rota-

tion motion Rcjck from camera k to camera j is [e0, e1, e2][e∗0, e
∗
1, e
∗
2]T .

Two-Observation case. In the spatial case where two linearly independent
direction vectors are detected, u2 can be achieved by the cross product process
of u0 and u1. Obviously, the new set [u0,u1,u0 × u1] maintains the orthogonal
property, which is the minimal solution for relative pose estimation problems.

Orthogonal-Observation case. As discussed in Section 2, the MW assump-
tion is enforced mostly by SLAM/VO methods designed to work indoor [15,
14, 19, 38], achieving particularly good results when the MW assumption holds.
When the observation vectors vjm are orthogonal, the projection operation be-
tween different vectors is zero and the proposed method degenerates to a multi-
MW case,

Rcjck = RcjMiR
T
ckMi

= [
vj
0

||vj
0||
,

vj
1

||vj
1||
,

vj
2

||vj
2||

][
vk
0

||vk
0 ||
,

vk
1

||vk
1 ||
,

vk
2

||vk
2 ||

]T .
(6)

For single-MW scenarios, a global orthogonal set can be obtained by every
frame, therefore Rcjw, from world to camera Cj , can be computed by RcjMR

T
c0M

,
here Rc0w is an identity matrix.

Compared with the visual compass [15] method making use of a combina-
tion of line and plane features from MW [14] to estimate camera rotation, our
graph is more robust and flexible. Furthermore, compared to [31] that generates
four rotation candidates after aligning two frames’ vanishing points, our method
not only leverages plane features, but also solves the ambiguity regarding the
directions of the vanishing points [31].

After the relative rotation pose estimation step between two frames, in case
of no overlap between them, we need to make use of their neighboring frames to
compute translation vectors. Note that only two correspondences are required in
translation estimation by making use of Equation 1, which is particularly suited
to deal with scenes and environments characterized by different texture types
compared to traditional approaches [26, 3].
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(a) (b) (c)

Fig. 3. Vanishing point detection and Rotation connection examples. (a) Detection
results of J-Linkage. (b) Refined results by our system. (c) E-Graph (black) and co-
visibility graph (red).

4 Extensibility Graph (E-Graph)

As shown in Figure 3(c), the E-Graph method builds rotation connections (edges)
between frames [CEG1 , CEG2 , CEG3 ] that share global directions instead of any low-
level correspondences (like points and lines). At the same time, no connection
between CCG4 and CCG6 can be made since these frames have no co-visible fea-
tures within the co-visibility graph. The proposed connection strategy will be
detailed in the following subsections.

4.1 Landmarks from a RGB-D frame

Similar to the co-visibility graph, the proposed graph is also a topological rep-
resentation of scenes. The difference is that the proposed graph is built based
on the scene structure rather than on overlapping parts between frames. The
distance between connected frames in a co-visibility graph tends to be small (see
Figure 3) since two frames that are distant from each other rarely overlap, lead-
ing to the pose of the current frame being estimated based on the last frame or
last keyframes only. The issue can be alleviated by using global bundle adjust-
ment and loop closure modules, although they bring in intensive computation
and trajectory constraints (e.g. need to re-visit a certain area).

In our graph G = [Nc,Nlm,E ] frames and landmarks are regarded as nodes
Nc and Nlm respectively, while E represents the edges among connected frames.
Note that landmarks are border-less planes and vanishing directions, e.g. VD1,2,3,
of lines detected in multiple views. In particular, an edge is established between
two frames every time two or more structural elements are matched across them.

Features and landmarks. Vanishing directions are estimated from parallel
lines detected by a joint 2D-3D process, where LSD [35] is used to extract 2D
line features from RGB images. Meanwhile, AHP [5] is carried out to extract
plane features from depth maps.
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Firstly, as shown in Figure 3(a), we make use of the J-Linkage algorithm
to classify detected 2D lines into different groups of parallel lines as described
in [34]. However, there are still outliers left based on the 2D process. To solve this
issue, we take advantage of depth maps to check the directions of lines in each
group by using RANSAC to detect the best direction vector VDn to represent
the group Sn.

As for planar landmarks, we make use of the Hessian (πππ = (nπ, dπ)) to
represent a plane detected from the ith frame, where nπ denotes the normal
vector and dπ represents the distance between the camera center and this plane,
which is transferred to world coordinates via the initial pose Twci .

4.2 Data Association

After generating vanishing directions and planes, we now explain how to initialize
and update them.

Initialization. Combined with the first keyframe Kf 0, detected planes and
optimized vanishing directions are used to initialize the E-Graph. The camera
pose T0 of Kf 0 is set as the world coordinate for landmarks in the E-Graph.
Planes πππi measured by Kf 0 are transferred to the graph directly as,

G0 = [Nc0 ,Nlm0 ,E0] (7)

where Nc0 is Kf 0 and E0 has no edges yet. Nlm0 contains [πππi,VD i,PDj ], where
VD i and PDj refer to two different types of 3D lines detected in the RGB-D
frame: the former refers to lines that are parallel to at least another 3D line,
the latter to lines that are not parallel to any line. The first type of lines can
generate vanishing directions VD i in a single view, which are stored into the
graph directly, similarly to planes. In addition, lines that do not have parallel
lines detected in this RGB-D frame are marked as potential vanishing direction
PDj . In case parallel lines will be detected in successive frames, these lines will
also be transferred to VDj , otherwise, they are removed from the E-Graph.

Landmarks fusion. For each new input frame we need to extract vectors nπ,
VD and PD from the current frame. After rotating VDc

i to the world coordinate
frame as VDw

i , if the direction between VDc
i is parallel to VDw

k , k ∈ [0, . . . ,m],
where m is the number of vanishing directions saved in E-Graph, VDc

i is then
associated to the graph. To solve the unsure issues [31] of vanishing directions,
we will unify the direction during the association process by using

˜V D
c

i =

{
VDc

i (|norm(VDw
i ·VDw

k )− 1| < thvd)
−VDc

i (|norm(VDw
i ·VDw

k ) + 1| < thvd)
(8)

where norm(·) shows a dot product between two normalized vectors and | · | is
the absolute difference. thvd is a threshold to check the angle distance between
two vectors. To include additional graph connections, we also try to associate
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PDc
j with VDw

k and PDw
k . If new pairs can be made at this stage, the associated

PD vectors are transferred to the vanishing directions and fused into the graph.
Since the vanishing direction is independent from translation motion, VDw

i ,
the vanishing direction in the world coordinate can be obtained as

VDw
i = RwcVDc

i (9)

where Rwc is the rotation motion from the camera coordinate frame to the world
coordinate frame.

In certain indoor scenes, e.g. a corridor or hallway, when a robot moves along
the wall, an extended planar region is detected across multiple views, with most
of these views encompassing no overlap. To address this issue, we extract the
normal vector [ncx, n

c
y, n

c
z] of the plane in the camera coordinate, which can be

fused into the world coordinate in the same way as the vanishing directions.

Edge connection. In E-Graph, all landmarks come from keyframes that follow
the decision mechanisms of a feature-based SLAM system [24, 20], which we
summarize in the following. A new keyframe is detected if it satisfies one of the
following two conditions: 1) 20 frames have passed from the last keyframe; 2)
the current frame tracks less than 85% points and lines correspondences with
the last keyframe. Furthermore, when the current frame detects a new plane or a
new vanishing direction, the frame is considered as a new keyframe. In addition,
new landmarks connected to this keyframe are also merged into the graph at
this stage.

By sequentially processing keyframes, if more than two pairs of matched
landmarks are observed between two keyframes, an edge will be created to con-
nect the respective two graph nodes. As shown in Figure 2, Cj and Ck detect the
plane πππ and the same vanishing point generated by L1 and L2. Notably, even if
these two frames do not have any correspondence, they can still be connected in
our E-Graph.

5 Experiments

In this section, the proposed system is evaluated on different indoor benchmarks:
ICL-NUIM [10] and TUM RGB-D [33]. ICL-NUIM [10] contains eight synthetic
sequences recorded in two scenarios (living room and office room). TUM RGB-
D [33] is recorded in real scenarios and includes varied sequences in terms of
texture, scene size, presence of moving objects, etc.

Rotation estimation. The proposed rotation algorithm is compared with other
state-of-the-art orientation estimation approaches. Compass [15] makes use of
a single line and plane. OPRE [43] and GOME [12] estimate the distribution
of surface normal vectors based on depth maps. OLRE [2] and ROVE [16] take
advantage of vanishing directions for rotation estimation. Importantly, Compass,
GOME, OLRE, OPRE, and P-SLAM [20] are all based on the MW assumption,
while our method, ORB-SLAM2 [25] and ROVE are designed for general scenes.
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Translation estimation. Since the rotation of the current frame is estimated
from a keyframe that may not be overlapping with the current frame, we follow
the 3D translation estimation model [26, 20] to estimate the translation t based
on the predicted rotation. In this module, re-projection errors from point-line-
plane feature correspondences are used to build a target optimization function,
t = argmin(

∑n
j=0 e

π
i,jΛ

πeπi,j + eLi,jΛ
LeLi,j + ePi,jΛ

LePi,j), where eπ, eL and eP are
re-projection error functions for planes, lines and points, respectively. The target
function is optimized by using the Levenberg-Marquardt method. The transla-
tion is compared with the following state-of-the-art methods. ORB-SLAM2 [26]
and ORB-SLAM3 [3] are popular keypoint-based SLAM systems. In our exper-
iments, for fairness of comparison the loop closure is removed to reduce the
effect of the back-ends. SP-SLAM [39] additionally uses points and planes in
the tracking and optimization modules based on ORB-SLAM2. P-SLAM [19]
assumes the indoor environments as MW, and includes a refinement module to
make the tracking process more robust. Moreover, we also compare our system
with GPU-based methods, including BadSLAM [32] and BundleFusion [4].

Dense mapping. In this paper, a mapping module is implemented to recon-
struct unknown environments in sparse and dense types. The sparse map is
reconstructed by the point-line-plane features extracted from keyframes, which
supports a frame-to-map pose refinement step. Since sparse maps cannot pro-
vide enough information for robots, our system also generates a dense mesh
map incrementally based on CPU. When a new keyframe is generated from the
tracking thread, we make use of the estimated camera pose and the RGB-D pair
to build a dense TSDF model based on [42, 27]. After that, the marching cubes
method [21] is exploited to extract the surface from voxels.

Metrics. The metrics used in our experiments include absolute trajectory error
(ATE), absolute rotation error (ARE), and relative pose error (RPE) that shows
the difference in relative motion between two pairs of poses to evaluate the
tracking process. Our results are reported in Table 2 and obtained on an Intel
Core @i7-8700 CPU @3.20GHz and without any use of GPU resources.

5.1 ICL NUIM dataset

As shown in Table 1, the proposed method outperforms other MW-based and
feature-based methods in terms of average rotation error. In office room se-
quences, OPRE and P-SLAM also perform well since orthogonal planar features
can be found in the environment. However, in office room 0, parts of the camera
movement only contain a single plane and some lines, leading to performance
degradation, while our method achieves robust orientation tracking by taking
advantage of a set of non-parallel planes and lines.

Furthermore, we compare the translation results against two feature-based
methods as shown in Table 2. The first four sequences are related to a living
room scenario, while the remaining sequences are from an office scenario. All
methods obtain good results in living room 0 where the camera moves back and
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Table 1. Comparison of the average value of the absolute rotation error (degrees) on
ICL-NUIM and TUM RGB-D structural benchmarks. The best result for each sequence
is bolded. × shows that the method fails to track the orientation.

Sequence Ours Compass [15] OPRE [43] GOME [12] ROVE [16] OLRE [2] ORB2 [26] P-SLAM [20]

office room 0 0.11 0.37 0.18 5.12 29.11 6.71 0.40 0.57
office room 1 0.22 0.37 0.32 × 34.98 × 2.30 0.22
office room 2 0.39 0.38 0.33 6.67 60.54 10.91 0.51 0.29
office room 3 0.24 0.38 0.21 5.57 10.67 3.41 0.36 0.21

living room 0 0.44 0.31 × × × × 0.97 0.36
living room 1 0.24 0.38 0.97 8.56 26.74 3.72 0.22 0.26
living room 2 0.36 0.34 0.49 8.15 39.71 4.21 0.83 0.44
living room 3 0.36 0.35 1.34 × × × 0.42 0.27

f3 stru notex 4.46 1.96 3.01 4.07 × 11.22 × 4.71
f3 stru tex 0.60 2.92 3.81 4.71 13.73 8.21 0.63 2.83
f3 l cabinet 1.45 2.04 36.34 3.74 28.41 38.12 2.79 2.55
f3 cabinet 2.47 2.48 2.42 2.59 × × 5.45 1.18

forth between the two parallel walls. P-SLAM detects a good MW model, and
ORB-SLAM3 also observes enough features, benefiting from paintings hanging
on the wall and small furniture. Compared with the living room, the office room
has many low-textured regions. The performance of feature-based algorithms is
not as good as in the living room scenes, especially in office room 1 and office
room 3.

Table 2. Comparison in terms of translation RMSE (m) for ICL-NUIM and TUM
RGB-D sequences. × means that the system fails in the tracking process.

Sequence Ours P-SLAM[20] ORB-SLAM3[3]

office room 0 0.014 0.068 0.035
office room 1 0.013 0.020 0.091
office room 2 0.020 0.011 0.010
office room 3 0.011 0.012 0.096

living room 0 0.008 0.006 0.006
living room 1 0.006 0.015 0.206
living room 2 0.017 0.020 0.018
living room 3 0.021 0.012 0.019

f1 360 0.114 × 0.108
f1 room 0.095 × ×
f2 rpy 0.002 0.154 0.003
f2 xyz 0.003 0.009 0.004
f3 l o house 0.012 0.122 0.009
f3 stru notex 0.017 0.025 ×
f3 l cabinet 0.058 0.071 0.072

To analyze the relationship between rotation and translation results of dif-
ferent methods, absolute translation and rotation errors on the office room 0
sequence are presented in Figure 4. When the camera moves to the ceiling,
the number of detected features decreases, then an interesting phenomenon is
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witnessed (see also Figure 4(a)): the tracking error of feature-based systems
quickly and drastically increases, then gradually fades as the number of features
increases. At the same time, our method and P-SLAM exhibit a more robust
performance when they face this challenge. An important difference is that, while
P-SLAM underperforms due to the non-rigid MW scene, our method’s perfor-
mance is accurate thanks to the use of the E-Graph, which demonstrates to be
more flexible than MW-based paradigms.

(a) ATE

(b) Ours (c) P-SLAM (d) ORB-SLAM3

Fig. 4. Comparison of the proposed system against state-of-the-art methods in the
office room 0 sequence of ICL NUIM in terms of mean/average absolute translation
errors (top) and rotation errors (bottom).

5.2 TUM RGB-D

Different types of sequences are included from the TUM RGB-D benchmark,
which aims to test general indoor scenes with low-textured scenes and sharp
rotational motions. f1 360, f1 room, f2 rpy and f2 xyz are recorded in real office
scenes, but the camera’s rotation motion changes sharply especially in the first
sequence. f3 l o house, f3 sn near and f3 l cabinet contain more structural infor-
mation, where f3 sn near is built on two white corners, and f3 l cabinet records
several movements around the white cabinet. Table 1 shows that ROVE, OLRE
and ORB-SLAM2 have problems in low/non-textured regions. In f3 l cabinet
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(a)

(b)
(c)

(d)

(e)

Fig. 5. Scene and graphs of f3 l o house. (a) 2D image, (b) dense mesh model, (c)
sparse map, (d) E-Graph, (e) co-visibilitity graph.

that is not a rigid MW environment, the quality of depth maps is noisy, the
surface normal maps extracted by OPRE have a negative effect on rotation es-
timation.

Table 3. ATE RMSE results (cm) on the TUM RGB-D dataset. Results for Bundle-
Fusion and BadSLAM are taken from [32]

Sequence
Ours BundleFusion [4] ElasticFusion [37] BadSLAM [32]
CPU GPU GPU GPU

f1 desk 1.0 1.6 2.0 1.7
f2 xyz 0.7 1.1 1.1 1.1
f3 office 1.4 2.2 3.6 1.7

For structural sequences listed in Table 1, P-SLAM shows stable performance.
In Table 2, general scenes are added as a comparison. As listed in Table 2, the
keypoint-based method [3] cannot achieve robust results in f3 sn near, i.e. , a
textureless scenario, while the MW-based method [20] has problems when the
scene structure breaks the MW assumption, by reporting a low performance in
f2 rpy and f3 l o house, and even losing track in f1 360 and f1 room. There-
fore, the proposed method shows more robust performances in different types
of scenarios, compared with MW-based systems [20, 15] and feature-based ap-
proaches [26, 3]. Furthermore, compared with GPU-based systems, our system
only works on limited computation sources. As shown in Figure 5, f3 l o house
is used to compare E-Graph and co-visibility graph. As clearly shown, E-Graph
allows connecting more distant keyframes than a co-visibility graph. When two
keyframes can be connected together, drifting phenomena can more easily be
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limited, in a similar way to the underlying idea behind loop closure. The cabinet
scene is also a difficult sequence for point-based methods (see Figure 6(b)) since
point features are concentrated in a few boundary regions. However, our method
can deal with this type of scene where the same plane is observed in a number
of frames.

(a)

(b)
(c) (d)

Fig. 6. Scene and graph of f3 cabinet. (a) E-Graph, (b) trajectory from ORB-SLAM3,
(c) sparse map, (d) 2D image.

6 Conclusion

This paper proposed a new graph structure, E-Graph, to reduce tracking drift
based on plane normals and vanishing directions in a scene, which can be used
to build a rotation connection between two frames without visual overlap. The
advantage of this idea is that rotation errors that occur between two frames
have small or no effect on this relative rotation estimation step. Based on the
proposed graph, a minimal solution is presented, that shows that two landmarks
and two correspondences can be used to solve the relative camera pose. There-
fore, the proposed method is better suited for texture-less scenes compared with
traditional minimal solutions based on co-visible features. However, the proposed
method also has limitations. Compared with point-based systems, our approach
requires more types of features. Furthermore, since we need vanishing directions
and plane vectors, the method is more suitable for man-made scenes.

Feature work. The E-Graph is a new tool to establish connections across
frames and keyframes. An interesting topic for future exploration is considering
a covisibility graph and our graph together to revisit pose estimation and obtain
further improvements in drift removal.

Acknowledgements. We gratefully acknowledge Xin Li, Keisuke Tateno,
Nicolas Brasch and Dr. Liang Zhao for the helpful discussion.
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8Conclusion and Future Work

8.1 Contributions and Conclusions

Contributions

Primitive detection modules based on geometry and learning algorithms. Primitives de-
tection is one of the most basic modules in SLAM systems. It supports tracking and mapping
parts to pursue robust and accurate performances. To improve the pixel utilization rate of
monocular images, we provide a semi-dense surface normal detection method (Chapter 4)
for SLAM systems. First, dense surface normal maps of monocular images are predicted by
convolutional neural networks. Furthermore, we use a sphere mean-shift algorithm to filter
out noisy regions based on the dominant directions of indoor environments. For Stereo im-
ages, we provide a plane detection method (Chapter 6) that takes advantage of convolutional
neural networks to predict potential planar regions first and then uses 3D points and lines in
those regions to remove outlier regions based on the RANSAC algorithm.

Robust rotation estimation approach for monocular and RGB-D sensors. A 6-DoF rigid
camera motion T contains 3-DoF rotation R ∈ SO(3) and 3-DoF translation t ∈ R3. Since a
translation estimation task is a linear problem given rotation results, the 3-DoF orientation
estimation tasks are critical for pose estimation. In this thesis, we provide novel solutions for
rotation estimation by exploring structural relationships. Based on the assumption of Man-
hattan World, we provide an architecture for monocular (Chapter 4) and RGB-D (Chapter 5)
sensors. For monocular SLAM, we estimate rotation by tracking the perpendicular/orthogo-
nal dominant directions from predicted surface normals. We can estimate relative rotation
motions after tracking Manhattan world measurements between two frames. To deal with
non-rigid Manhattan scenarios, our architecture provides a bundle adjustment module to
refine the local map and camera poses at the same time.

Parametrizations for co-planar primitives In this thesis, we propose two types of primi-
tives that are constructed by a set of basic point-line-plane landmarks with special structural
regularities. Given co-planar relationships of points and lines, we propose a parametrization
approach (Chapter 6) that represents those points and lines via parameters of the plane they
are lying on. Compared with individual landmarks representation, the noise of landmarks’
depth is limited mainly.
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Joint co-visibility and extensibility factor graphs for optimization. Regarding factor graph
optimization tasks, the graph architecture that optimizes those co-observed landmarks and
camera poses is termed as Co-visibility Graphs, where co-observed landmarks can only be
measured by those closing frames in space. Compared to co-visibility graph architecture, the
graph architecture using connections between structural regularities and camera orientation
is termed as Extensibility Graphs (Chapter 7).

Conclusion

SLAM and VO methods [13, 55] working as general trackers have presented impressive
performances in many scenarios, but those methods still suffer from tracking lost issues in
some man-made regions where not enough point features are being detected. Although
those regions are only a part of the scene, this tracking loss problem still dramatically reduces
the system’s performance. To make tracking and mapping systems more accurate, robust,
and reliable in man-made scenes, we propose solutions to improve primitives detection,
pose estimation, primitives representation, and factor graph optimization modules in this
dissertation.

Traditionally, monocular SLAM methods, especially feature-based systems, take advantage
of very limited pixels of images since only small parts of input pixels can be worked as point
features. We agree that adding line features will help increase tracking information, but
the increase is limited. To solve the problem, our first work, Structure-SLAM, proposes a
decoupled pose estimation architecture for a monocular RGB sensor, which uses points and
lines and leverages dense surface normals estimated from a neural network into the tracking
module. Furthermore, the proposed method estimates rotation motion based on surface
normals under the assumption of Manhattan World. A translation vector is solved under a
linear, close-formed relationship given rotation and features.

The architecture of Structure-SLAM is extended for RGB-D sensors, where real scales for
scenes can be recovered benefitting from depth maps. In this completed architecture, plane
primitives are added to estimate camera poses jointly with points and lines. After classifying
those lines and planes into three orthogonal groups, we add parallel and perpendicular
constraints in the bundle adjustment module. Since we have reconstructed dominant planar
point clouds during the tracking process, we mesh them to dense representations for robot
navigation applications. Those planar point clouds are also explored by building deformable
surfaces based on superpixel representations.

The assumption of Manhattan World shows advantages in scenes that satisfy the assumption.
However, it brings problems to our system in more general indoor environments since
different parts of indoor areas cannot be modeled by a single Manhattan World. Therefore,
we evolved the architecture by making the Manhattan World model work locally. During the
tracking process, we record every Manhattan Frame constructed by at least two perpendicular
planes into a structure graph. Therefore, in the rotation estimation module, we will revisit
the graph when we detect that the new coming frames contain structure information. Based
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on the matching strategies, relative rotation between two frames may be estimated without
visual overlaps.

Due to perpendicular planes are not very common in indoor scenes, we extend primitives to
vanishing points that are built by parallel lines on image planes. And then, we break down
the limitation of perpendicular relationships by using Schmidt quadrature operations on non-
parallel primitives. In this work, those structure primitives, including vanishing directions
and surface normals, will be maintained in a new factor graph structure, Extensibility Graph,
which is proposed to distinguish those new constraints from ones in co-visibility graphs. The
advantage of our new graph is that the edges connecting primitives and rotation vertices
in extensibility graphs can be built without visual overlaps. Specifically, an edge in the
co-visibility graph is generated because of the observation between landmarks and the
camera. Taking the factor that different parallel line landmarks have the same direction
vector. In contrast, a plane, no matter how big, only has a normal vector; the rotations of
some cameras, even though they do not have any overlaps, are possibly connected directly
in our extensibility graphs. However, it will never happen in co-visibility graphs. In other
words, some long-distance rotation connections will be generated in our graphs, while
corresponding connections in co-visibility graphs will be much shorter. Short connections
have difficulties in limiting pose drift issues.

8.2 Future Work

While exploring the relationship between structural regularities and SLAM problems, we
notice that some important and exciting topics still await exploration in parameterization,
optimization, and dense reconstruction areas. This section categorizes future work into
fundamental theories, SLAM system development, and deep neural networks for scene
understanding.

Fundamental Theories
Representation and Optimization of 3D Lines. 3D lines are commonly detected in objects’
surfaces and structures of man-made environments, some exhibiting a high degree of struc-
tural forms. When it comes to leveraging those line landmarks into co-visibility graphs of
SLAM systems, the robustness of pose estimation will be improved compared with point-
only factor graphs. The optimization processes of normalized direction and normal vectors
are regarded as the same in the popular minimal parameterization method, Orthonomal
Representation. However, the idea will be changed when we consider a set of parallel line
landmarks simultaneously. Specifically, for a set of parallel lines, the normalized direction
vectors of each line are the same in mathematics, but the normal vectors are different from one
to another. Therefore, the Orthonormal approach can not be directly extended to represent
a set of structural lines. To solve this issue, a future direction represents the normalized
direction vector on S2 and parameterizes the normalized normal vector on S1 to take place of
SO(3) and SO(2) used in O.
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Orientation Closure for SLAM systems. In the incremental localization process, the cam-
era poses tend to drift during the accumulation of errors in estimated poses and maps. A loop
closure module is widely used in SLAM systems to reduce the drift generated in the process,
which uses co-visible features between two ends of a loop. Given a relative pose between two
remote images at the end of the loop, a constraint between estimated camera poses and new
relative poses provided by the loop closure module can be used to optimize pose graphs and
factor graphs. Loop closure shows impressive pose drift-removing abilities, but the limitation
is that the robot has to revisit the same place. Taking the fact that visual-based 6-DoF pose
estimation can be transferred to a linear least-square problem with a known orientation
part [103] and the relative rotation estimation between two frames does not require visual
over-laps, a type of new closure, Orientation Closure, can be expected to be used in SLAM
systems to decrease camera pose drift. Furthermore, another important thing is that the
Orientation Closure does not require the same place revisiting.

SLAM system development
Structural Regularities and Self-supervised Networks for dense monocular SLAM. Nor-
mals predicted by supervised deep networks are leveraged in our monocular SLAM architec-
ture, Structure-SLAM, but limited by the ground truth surface normal maps, domain shift
issues have a negative effect on the performance of normal prediction in real-world scenes.
Taking the fact that there are several dominant directions in man-made environments, most
planar regions are possible to parallel to one of those dominant directions and perpendicular
to some of the other directions. Furthermore, by tracking the dominant directions in different
views, the normal estimation method provides consistent surface normal loss functions.
The predicted surface normals are used in the rotation estimation of a monocular SLAM
method.

Tracking, Understanding, and Mapping in Large Scenes. Some tracking and mapping
applications are required in large indoor scenes, like office buildings, where traditional RGB-
D sensors are inefficient for fast reconstructions since the valid depth perception distance
of those sensors is very short. Therefore, future work is to design a new device based on
monocular and solid-state LiDAR sensors to meet tracking, understanding, and mapping
requirements for large-scale environments. First, a robust initialization algorithm is proposed
to activate a co-visibility graph with a real scale, which uses the semi-direct strategy based on
visual features and sparse LiDAR points. Furthermore, sequential inputs are fed to the faster
tracking module based on structural regularities. Based on our tracking and sparse mapping
algorithms, a keyframe-based depth completion module based on neural convolutional
networks is implemented to reconstruct dense maps incrementally.

Deep neural Networks for scene understanding
3D reconstruction from a single RGB image. In man-made environments, especially for
indoor scenes, it is common to observe orthogonal and parallel planes and lines that can be
noted as Manhattan World, and those image frames with this information can be noted as
Manhattan Frame. The Manhattan Frame has an important usage application of computer
vision and robotics, which can be used to regress the rotational motion between the camera
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and the real world. Based on the explored constraints between structural cues, a future
direction is to explore a network to extract and reconstruct parallel and perpendicular planes
from a single RGB image, which predicts instance-wise normal and depth maps and recovers
angles between different instances.
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A. JacobianMatrices in Optimization

1. JacobianMatrix fromRe-projection Factors of Lines

The Plücker representation of the mapline Lw in the world coordinate is denoted by

Li =



ni

di


 = Tci,w



nw

dw


 (.1)

here Tci,w =



Rci,w [tci,w]×Rci,w

0 Rci,w


, and [·]× is the skew-symmetric operation. Then, the

[
ni di

]
can be denoted by
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ni di

]
=
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||n||
d
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||d||
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||n|| 0

0 ||b||
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cosθ 0
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(.2)

here ϕ = [ϕ1 ϕ2 ϕ3]
T and || · || is the normalization operation. We make use of U =

[
u1 u2 u3

]
, U ∈ SO(3) to represent R(ϕ). W =



w1 −w2

w2 w1


 = 1√

||n||2+||d||2




||n|| −||d||

||d|| ||n||


.

On the image plane, the reprojected endpoints, ps and pe, of a 3D line in the camera
coordinate can be obtained by

p̄k = KP̄k,k ∈ (s, e) (.3)
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here P̄k is a normalized 3D endpoint in the camera coordinate. Therefore, the re-projected

line lj = p̄s × p̄e = KP̄s ×KP̄e = K(P̄s × P̄e) = Knj, and K =




fy 0 0

0 fx 0

−fycx −fxcy fxfy




.

The reprojected line lj lying on the image plane can be represented as

lj = Kncj = w
j
1




fy 0 0

0 fx 0

−fycx −fxcy fxfy




uj1. (.4)

When the mapline Lw is detected by frame Fi and Fj, we can find the 2D correspondences
lying on related images. The error between the re-projected line lj and two endpoints, ps
and pe, of the extracted 2D line in the frame, can be written as

rl(p
j
k,s,p

j
k,e,Lw,X) =



d(pjk,s, l

j)

d(pjk,e, lj)


 (.5)

where d(pjk,s, l) =
pjT

k,s·l√
l2

1+l
2
2

, and lj =
[
l0 l1 l2

]T
is the 2D line re-projected from the jth 3D

mapline. pk =

[
x̄k ȳk 1

]T
,k ∈ (s, e), are the normalized coordinates of endpoints.

Jacibian for Line landmarks

In the iterative optimization process, the line representation is represented as ζ|4×1 =[
θT γ

]T
, the pose is detected as ξ|6×1 =

[
ρT φT

]T
. Based on the chain rule, the

Jacobian matrix J = ∂rl
∂δζ

can be calculated via ∂rl
∂δθ

and ∂rl
∂δγ

, which are denoted as
∂rl

∂δθ
=
∂rl

∂l
∂l
∂Lc

∂Lc

∂Lw

∂Lw

∂O

∂O

∂δθ

∂rl

∂δγ
=
∂rl

∂l
∂l
∂Lc

∂Lc

∂Lw

∂Lw

∂O

∂O

∂δγ

(.6)

where ∂l
∂Lc

=

[
K 0

]
, ∂Lc

∂Lw
= T−1

wc, and the representation of O is
[

nT dT ωn ωd

]T
.

Therefore, ∂Lw

∂O
can be obtained by

∂




ω1n

ω2d




∂O
=

[
Lw

∂n
Lw

∂d
Lw

∂ω1

Lw

∂ω2

]
=



ω1I 0 n 0

0 ω2I 0 d


.
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Futhermore, ∂O

∂




δθ

δγ




can be denoted as

∂O

∂



δθ

δγ




=




∂n
∂δθ

∂n
∂δγ

∂d
∂δθ

∂d
∂δγ

∂ωn

∂δθ
∂ωn

∂δγ

∂ωd

∂δθ
∂ωd

∂δγ




(.7)

Since U ∈ SO(3) and W ∈ SO(2), we take advantage of the perturbation model and Lie
algebras to update them. Specifically, ∆U = exp([δθ]×) and ∆W = exp([δγ]×) are operated
on U and W, respectively.

U
′
= U exp([δθ]×) ≈ U(I + [δθ]×)

W
′
= W exp([δγ]×) ≈W(I + [δγ]×)

(.8)

Therefore, the Jacobian matrix can be computed as

∂u1

∂δθ
=

[
0 −u3 u2

]

∂u2

∂δθ
=

[
u3 0 −u1

]

∂ω1

∂δγ
= −ω2

∂ω2

∂δγ
= ω1

(.9)

Therefore, the Equation .7 can be represented as

∂O

∂



δθ

δγ




=




∂n
∂δθ

∂n
∂δγ

∂d
∂δθ

∂d
∂δγ

∂ωn

∂δθ
∂ωn

∂δγ

∂ωd

∂δθ
∂ωd

∂δγ




=




0 −u3 u2 0

−u3 0 −u1 0

0 0 0 −ω2

0 0 0 ω1




(.10)

Therefore, all components on the chain are computed for the final Jacobian matrix.
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B. Supplementaries forMethodology

1. Structure-SLAM for Unknown Scenes

Figure .1 RBB4[104] has 12,000 frames recorded in a corridor. The dataset includes one camera ground truth
pose every 50 frames

In the experiment, we use TUM RGB-D and ICL-NUIM images for network finetune. There-
fore, in the Supplymentries, we test the Structure-SLAM system in a public sequence in
which the scene was not used for training. As shown in Figure .1, the proposed method
based on surface normals performs more robust in initialization and corner regions than
ORB-SLAM.

2. Co-planar Primitives Detection
When points, lines, and planes are detected in the tracking process, re-projection errors
are generally used to optimize landmarks and poses. In the Kimera-VIO method, the co-
planar relationships, like point-plane and line-plane, are detected to add new distance
constraints between those co-planar points/lines and the corresponding planes during the
bundle adjustment model. When more and more features and constraints are added to the
optimization modules, the computation burdens will be more intensive.
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To solve the problem, the co-planar feature group is regarded as a new type of primitive,
which works as a whole in the optimization module. The process of co-planar primitive
detection is an efficient solution, which contains three steps as follows:

• (1) plane segmentation based on a single RGB image;

• (2) points and lines lie on the planar regions are regarded as potential co-planar features,
which will be rechecked by feeding points, lines, and parameters of the plane into a
RANSAC model;

• (3) The plane parameters in the optimization module represent those point and line
inliers.

The detection process will be introduced in this section.

Plane Segmentation. For a single RGB image input, the results predicted by networks, as
shown in Figure .2, have some outlier regions, which can not be used for co-planar feature
association.

Figure .2 Planes segmentation based on neural networks. Black color shows non-planar regions.

However, the RANSAC method assumes the presence of a single plane instance in the input
data. So, to extract more than one plane from the same point cloud, one has to apply RANSAC
iteratively to extract planes one after another. A standard approach to carry out this is to
remove its inliers every time a plane is detected and execute the algorithm again to find the
next plane. This is suboptimal for the following reasons: We do not know the number of
plane models in the point cloud. So, we do not know how many times to run the algorithm.
Results will be affected if points belonging to other planes are detected as inliers for the
current one and removed from the point cloud.

As shown in Figure .3, we generate four scenes with different numbers of planes. Each
3D plane consists of 90 inlier points (50 points and 40 endpoints from 20 lines), which are
corrupted by 0.1 m Gaussian random noise, and 9 Outliers (10%).

We have tested RANSAC in these four scenes where the number of planes changes from one
to four. For our method, the RANSAC can be guided by detecting a plane region first. The
performance of the standard RANSAC deteriorates as the number of planes increases due to
false positives. Results are shown in Table .1.
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(a) Scene A (b) Scene B (c) Scene C (d) Scene D

Figure .3 From left to right, scenes contain different numbers of planes, which are built by points and endpoints
of lines.

Scene A Scene B Scene C Scene D

max iterations 30 234 666 892

max inlier ratio 52.76% 27.29% 19.17% 17.37%

Fitting accuracy 100% 96.3% 64.4% 40%

Table .1 Analysis of our method and the RANSAC in finding one plane with different scenes. We report the
mean from 1000 runs

In the experiments, RANSAC is used to extract the parameters of a plane. Then, by comparing
parameters with the ground truth, the plane will be regarded as a correct one if the parameters
between detection ıdt and ground truth πgt is less than a threshold tr tangle =

ndt·ngt

||ndt||||ngt||

tdis = ddt − dgt

(.11)

In the experiments, we assume that the correct model can be obtained in 99.99% of the cases.
Scene A has one plane, and RANSAC can fit the plane accurately in 30 iterations. When the
number of planes increases in Scene B, Scene C, and Scene D, the fitting accuracy decreases
from 96.3% to 40%, but the process takes more iterations, increasing from 234 to 892. If a
scene has many planes, we will divide those planes first. Therefore, our method solves this
issue in Scene B, Scene C, and Scene D.
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Structure-SLAM: Low-Drift Monocular SLAM
in Indoor Environments

Yanyan Li , Nikolas Brasch, Yida Wang , Nassir Navab, and Federico Tombari

Abstract—In this letter a low-drift monocular SLAM method
is proposed targeting indoor scenarios, where monocular SLAM
often fails due to the lack of textured surfaces. Our approach decou-
ples rotation and translation estimation of the tracking process to
reduce the long-term drift in indoor environments. In order to take
full advantage of the available geometric information in the scene,
surface normals are predicted by a convolutional neural network
from each input RGB image in real-time. First, a drift-free rotation
is estimated based on lines and surface normals using spherical
mean-shift clustering, leveraging the weak Manhattan World as-
sumption. Then translation is computed from point and line fea-
tures. Finally, the estimated poses are refined with a map-to-frame
optimization strategy. The proposed method outperforms the state
of the art on common SLAM benchmarks such as ICL-NUIM and
TUM RGB-D.

Index Terms—SLAM, visual learning.

I. INTRODUCTION

V ISUAL Simultaneous Localization and Mapping (V-
SLAM) systems are important for autonomous robots

and augmented reality, as they are used to estimate poses and
reconstruct unknown environments. In numerous SLAM use
cases and applications, monocular cameras are the most com-
mon sensors in indoor scenarios. Indoor environments are often
characterized by a lack of textured surfaces, and by irregularly
distributed feature points. In particular, low-textured walls, floor
and ceiling are difficult to deal with by both state-of-the-art
feature-based methods [1] as well as direct methods [2], [3]. For
low-textured scenes, SLAM systems combining point and line
features have been proposed to target low-textured scenes, e.g.
Stereo-PLSLAM [4], PLVO [5], Mono-PLSLAM [6] and [7],
extending the working scenarios to low-textured environments
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with visible structural edges. Since the map is built from a
sequence of input frames, small errors accumulate over time,
resulting in drift which affects dense reconstruction by leading
to misaligned surfaces and artifacts.

There are two main strategies to overcome these errors. Loop
closure detection [1], [8] combined with pose graph optimization
detects previously seen landmarks and optimizes the pose graph
based on the new constraints, thus correcting the accumulated
drift. Loop closure, however, brings in an extra computational
burden and removes the drift only when revisiting the same
place. Another strategy consists of assuming an underlying
(global) structure in the world frame, then each tracked frame can
be directly aligned to this world structure instead of the last frame
or keyframes. The most common formulation of a structured
scene is the Manhattan World (MW) [9], [10] where the environ-
ment shown in Fig. 1(a) consists of geometric structures (planes
and lines) oriented in one of three orthogonal orientations. It is
particularly useful in indoor environments where structures such
as walls, floor and ceilings often show consistent alignment over
multiple rooms, enabling a global alignment.

The MW approach is an efficient method to keep the accu-
mulated drift low by providing a drift-free strategy for rotation
estimation, as the rotational component is the main source of
overall drift [11], [12].

The state of the art of monocular approaches relying on a
MW [9], [10] are based on parallel and orthogonal lines alone,
as it is difficult to extract 3D information, except for vanishing
points, from a monocular RGB image, which is a quite strong
limitation for most scenarios. Furthermore, indoor environments
often consist of large planar regions with few features for pose
estimation. RGB-D methods [12], [13], directly measure the
structure of the scene in the form of depth maps, this allows
them to compute dense surface normals for each pixel.

Inspired by recent works based on convolutional neural net-
works (CNN) and scene geometry prediction approaches from
a single view [14], [15], we propose a monocular SLAM frame-
work which leverages the underlying scene structure to carry out
low-drift SLAM even in presence of low-textured environments,
in the form of densely predicted normal maps from a CNN,
analogously to existing works based on dense RGB-D sensors.

Specifically, we propose the following contributions:� A low drift real-time monocular SLAM framework for
structured environments, with decoupled rotation and
translation� Dense monocular normal estimation for rotation estimation
leveraging the MW assumption

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 15,2023 at 13:25:23 UTC from IEEE Xplore.  Restrictions apply. 



6584 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 1. The proposed approach targets low-textured indoor scenes to carry out
low-drift monocular SLAM based on dense normal prediction and leveraging
the Manhattan World assumption.

� A method for translation estimation relying on point and
line features

We evaluate numerically on common SLAM benchmarks
such as ICL-NUIM [16] and TUM RGB-D [17] showing that the
proposed approach outperforms the state of the art in monocular
SLAM.

II. RELATED WORK

A. Monocular SLAM

PTAM [18] is a monocular, keyframe-based SLAM system
which was the first work to introduce the idea of splitting camera
tracking and mapping into parallel threads, and demonstrate
to be successful for real time augmented reality applications
in small-scale environments. Strasdat et al. [8] present a large
scale monocular SLAM system in which the front-end bases on
optical flow implemented on a GPU, followed by FAST feature
matching and motion-only BA, and a back-end based on sliding-
window BA. As a complete SLAM pipeline, ORB-SLAM [1]
combines feature based tracking, sparse point mapping, descrip-
tor based re-localization and loop closure altogether. In addition
to point features several works propose the use of lines [4], [5] for
low-textured environments, we propose to use additional dense
structural information in the form of predicted normal maps.

Inspired by the recent success of deep learning based depth
prediction, CNN-SLAM [19] incorporates a neural network

which estimates depth information within the popular LSD-
SLAM [2] framework to create dense scene reconstructions in
metric scale, where depth predictions are used to initialize the
SLAM system and merged continuously with the semi-dense
depth maps optimized by the SLAM system. Instead of esti-
mating depth maps only for key-frames in CNN-SLAM, our
approach predicts surface normals from every RGB frame in
real-time. In CodeSLAM [20], a neural network learns a compact
latent representation for the structure of a scene conditioned on
the RGB image, showing that the joint optimization of both
structure and pose can improve monocular pose estimation. By
predicting normal maps instead of depth maps we avoid the
necessary differentiation operation which could introduce noise.
Predicting normal maps also seems to generalize better between
datasets as depth does.

B. RGB-D SLAM

Probabilistic-VO [7] combines points together with lines and
planes for pose estimation while modeling their uncertainties.
Due to the combination of 2D-3D point and line correspon-
dences and 3D-3D plane matches, a weighting between re-
projection and euclidean errors must be chosen empirically.
CPA-SLAM [21] extended DVO-SLAM with global plane land-
marks. Pose estimation and soft assignment of depth measure-
ments to planes are computed in an Expectation-Maximization
framework. KDP-SLAM [22] combines photometric and ge-
ometric loss based on plane segments instead of points for
frame-to-frame pose estimation and additionally aligns plane
segments with global planes in a Smoothing and Mapping
(SAM) framework.

C. Manhattan World

Straub et al. [11] and Zhou et al. [23] show that the main
source of drift in traditional feature-based systems is caused by
the rotation estimation.

Even if the MW assumption is a good constraint for indoor
SLAM, it is difficult to enforce it in monocular methods because
only limited 3D information can be obtained. Zhou et al. [10]
applies J-linkage [24] to classify parallel line segments into
different groups and estimate the dominant direction from the
vanishing points. If depth maps are available, surface normals
can be computed directly. Joo et al. [25] provide a branch-and-
bound framework for Manhattan Frame estimation. MVO [23]
propose a unit sphere mean shift method to find the rotation
matrix between the Manhattan World and the camera system.
For the translational part, they compute and align density dis-
tributions of points in each orthogonal direction, avoiding the
costly matching of points. OPVO [26] use planes to estimate
the Manhattan Frame rotation, limiting its application to envi-
ronments with at least 2 orthogonal planes. LPVO [12] adds
vanishing points of lines for the rotation estimation. Both use
point based methods for translation estimation. L-SLAM [13]
replaces the graph based translation estimation from LPVO with
a Kalman filter based SLAM update, using the LPVO translation
estimation in the prediction step. Compared with [12], [13],
we build an initialization module based on points, lines and
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predicted normals. Further more, a refinement module is added
to optimize the pose after the decoupled initialization.

III. SCENE STRUCTURE ANALYSIS

The structural information used in the system is analyzed
in this section. First, we describe the methods for extraction
and triangulation of points and lines; Then, an architecture for
surface normal prediction is introduced.

A. Points and Lines Analysis

Point features, due to their descriptiveness, compactness and
robustness to illumination changes, are the most common fea-
tures used in visual SLAM systems. In our method, ORB fea-
tures [27] are adopted which are fast enough to extract and robust
enough to get matched. Since it’s hard to extract sufficient feature
points for robust pose estimation in low-textured environments,
we further supplement them with line segments extracted and
encoded using the LSD [28] and LBD [29] accordingly.

Similar to ORB-SLAM [1], once the 2D point features pn =
(un, vn) and line segments lm = (pm,s, pm,e) are extracted
in the new keyframe Fi, new features are triangulated to 3D
points Pn and lines Lm with correspondences located on other
connected keyframes.

Due to the factorization of rotation and translation estimation,
it is possible to estimate the pose even in cases with pure rotation
and no translation or with small parallax, which would not be
possible with pure monocular feature based approaches. The
rotation can be estimated from the Manhattan World Frame, this
means fewer landmarks are needed to obtain the remaining 3
degrees of freedom for the translation.

B. Surface Normal Prediction

We use learned knowledge to reason about the 3D envi-
ronment, instead of measuring dense depth values directly.
Therefore, a 2D convolutional architecture(CNN) is trained to
segment planar regions and predict pixel-wise surface normals.
The proposed CNN is composed of a ResNet101-FPN [14]
encoder for feature extraction and a two-branch decoder for
planar area segmentation and normal estimation. As the planar
and non-planar regions are unbalanced in indoor scenarios, we
use the balanced cross entropy loss for training

Lp = −1(1− w)
∑

i∈P
log pi − w

∑

i∈Pneg

log(1− pi), (1)

where P and Pneg represent planar and non-planar regions,
respectively. pi represents the probability of the ith pixel being
located in a planar region. We use w to balance the contributions
of planar and non-planar pixels. Then the loss function for the
normal estimation is filtered by the planar mask.

Ln = − 1

n

∑

i∈P
ni · n∗

i , (2)

where ni and n∗
i are the predicted normal and ground truth

normal for the ith pixel.

IV. INITIALIZATION

In this section, we describe the strategy of computing the
relative poses between two frames and reconstructing an initial
map. In order to be robust to different motions, we decouple
pose estimation into rotation and translation which is explained
further in the following paragraphs.

Rotation. First, we assume that there is a Manhattan coordi-
nate system M shown in Fig. 3, we compute the relative rotation
RC1M from Manhattan coordinate frame M to the first frame
C1 by clustering the normal map vsi of C1 on the unit Gaussian
sphere [12], [23] centered on the M . Following [12], [23], we
project the normals onto the tangent plane of each Manhattan
world axis rn, where n ∈ [1, 2, 3], for the current estimation.
Instead of testing several random matrices, we found that setting
RC0M to identity and running multiple mean-shift iterations is
enough to obtain a good estimate. In order to remove noise from
normal maps, we only consider the vectors vs

′
in which are close

to the axis rn.
Then, the refined surface normal vectors vs

′
in are projected to

two-dimensional vectors m
′
in in the nth tangential plane. We

compute the cluster mean s
′
n for the nth tangential plane under

a Gaussian kernel by

s
′
n =

∑
in e

−c‖m′
in‖2m

′
in∑

in e
−c‖m′

in‖2
(3)

where c is a hyper parameter that defines the width of the kernel,
which is set to 2 in our experiments. Then, we transform the
cluster centers back onto the Gaussian sphere as sn, which are
used to update the angle between the camera and the MW axis
r̂n combining with the current rotation Qn,

r̂n = Qnsn, (4)

here Qn = [rmod(n,3), rmod(n+1,3), rmod(n+2,3)] and mod() is
a modulus operation. The tangent plane and the cluster centers
are iteratively computed until the rotation estimate is converged.
Then we obtain RC1M = [r̂1, r̂2, r̂3]

T .
Translation. As for the translation estimation, 2D correspon-

dences of points [p1i , p
2
i ] between two frames and their relative

rotation RC1C2
are used

X2
i =

⎡
⎣
x2
i

y2i
z2i

⎤
⎦ =

⎡
⎣
r1
r2
r3

⎤
⎦X1

i +

⎡
⎣
t1
t2
t3

⎤
⎦ (5)

whereXj
i represents a 3D point in the jth camera. By eliminating

the scale z2i , we obtain
⎡
⎣
x̃2
i

ỹ2i
1

⎤
⎦ =

⎡
⎣
(r1 ·X1

i + t1)/(r3 ·X1
i + t3)

(r2 ·X1
i + t2)/(r3 ·X1

i + t3)
1

⎤
⎦ (6)

where [x̃j
i x̃

j
i 1]

T represents the ith normalized 3D point in the
jth camera frame. Since X1

i is also a 3D point, we need to
eliminate z1i and build

⎡
⎣

−ỹ1i t3 + t2
x̃1
i t3 − t1

−x̃1
i t2 + ỹ1i t1

⎤
⎦
T ⎡
⎣
r1
r2
r3

⎤
⎦
⎡
⎣
x̃1
i

ỹ1i
1

⎤
⎦ = 0 (7)
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Fig. 2. Proposed SLAM framework (StructureSLAM). In the front-end, the encoder-decoder network predicts dense surface normals. In parallel, point and line
features are extracted from the RGB image. In the back-end, first the scene structure in the form of normals and lines is used to estimate the global rotation of the
camera. Then, the remaining 3-DoF for the translation are obtained using point and line features. The initial pose estimate is validated and refined using the local
map. Keyframes are selected based on the availability of point and line features.

Fig. 3. Rotation estimation between multiple frames via the Manhattan world.

where [x̃j
i x̃

j
i 1]

T = KT (uj
i v

j
i 1) andK is the intrinsic matrix of

the camera [12]. (uj
i v

j
i ) is the ith pixel in the jth frame. Based

on eq. (6) and eq.(7), we construct a translation relationship
between those 2D correspondences. Then, we solve the system
in eq. (7) using SVD to obtain the translation.

V. TRACKING

Instead of estimating rotation and translation between two
frames, we estimate the rotation between each frame and the
underlying Manhattan World. The residual rotation errors are
independent of the sequence length and cannot be propagated
between frames. Point and line correspondences are used to es-
timate translation (3 DoFs) by a combination of frame-to-frame
and frame-to-map methods.

A. Manhattan Rotation Estimation

This section describes the rotation estimation between camera
and Manhattan system.

Given the surface normals and mask of planar regions from
the network, we follow the mean-shift clustering approach, as
desribed in IV, to find the dominant axes on the euclidean
sphere and estimate the rotation RCKM . Since normal maps

might contain errors due to the networks inference process, the
clustering approach is used to remove outliers first. Furthermore,
the initial rotation will be refined in following sections.

B. Translation Estimation

After obtaining the rotation matrix, we use the points and
line segments to estimate the 3-DoF translational motion, which
requires less features than the full 6-DoF estimation. We re-
project the 3D points from the last frame to the current one and
define the error function, based on the re-projection error, as
follows,

epk,j = pk − π(Rk,jPj + tk,j) (8)

hereπ() is the projection function. Since the rotation matrixRk,j

has already been estimated in the last step, we fix the rotation and
only optimize the translation using the right half of the Jacobian
matrix for eq. (8),

∂epk,j
∂ξ

=

[
xyfx
z2 − z2+x2

z2 fx
yfx
z − fx

z 0 xfx
z2

z2+y2

z2 fy −xyfy
z2 −xfy

z 0 − fy
z

yfy
z2

]
(9)

For the lines we obtain the normalized line function from the
2D endpoints pstart and pend as follows,

l =
pstart × pend
‖pstart‖‖pend‖

= (a, b, c) (10)

We formulate the error function based on the point-to-line dis-
tance between l and the projected 3D endpoints Pstart and Pend

from the matched 3D line in the keyframe. For each endpoint
Px, the error function can be noted as,

elk,j = lπ(Rk,jPx + tk,j) (11)

The Jacobian matrix for the line error eq. (11) is given by

∂elk,j
∂ξ

=

⎡
⎢⎣
− fylyz

2+fxlxxy+fylyy
2

z2 ,
fxlxz

2+fxlxx
2+fylyxy

z2 ,

− fxlxy−fylyx
z , fxlx

z ,
fyly
z , − fxlxx+fylyy

z2

⎤
⎥⎦

(12)
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Fig. 4. Trajectory analysis, comparing the proposed method, ORB-SLAM and the ground-truth on the “of-k3” sequence in the ICL NUIM dataset.

The combined least squares cost for points and lines can be
written as

t∗ = argmin

M∑

j∈(k−2,k−1)

(epk,j
T
epk,j + elk,Px

T
elk,Px

) (13)

The system is solved using the Levenberg-Marquardt algorithm.

C. Fallback and Pose Refinement

The pose estimate is based on the MW assumption. In cases
of Non-Manhattan Worlds or where the Manhattan Frame is not
visible in the current frame the estimated pose will be incorrect.
To check whether the pose estimate obtained from the previous
steps is correct we project all features from the last n keyframes
onto the current frame and compute the re-projection error. By
applying a threshold to filter the features we require a minimum
number of inliers to accept the pose.

When not enough inliers are found we fall back to a frame-to-
frame tracking method until we estimate a pose that agrees again
with the Manhattan World. As a fallback we first track the new
frame based on the last frame using an efficient re-projection
search scheme [30] for points and lines, using the same least
squares method as for the translation, this time using the full
Jacobian matrix. In the case we do not get a good solution,
measured based on the number of inliers, we try to estimate the
pose based on the last keyframe using descriptor matching for the
points [30] and re-projection based search for the lines. To reduce
the drift, in the final step we optimize the pose of the new frame
based on a local map constructed from the last n keyframes [30].
Here we do not use the MW assumption anymore, as we found
that the initial rotation estimation is enough to reduce the drift
and errors in the predicted normal maps can lead to inconsistent
pose estimates.

In contrast to other work, based on Manhattan frames for
rotation estimation this heuristic allows us to fall back to a purely
feature based pose estimation in case the estimate from the MW
pose estimation is wrong or not available.

VI. EXPERIMENTS

Implementation details: We train the network implemented
for normal estimation based on the ScanNet [31] dataset with a
batch size of 32 for 8 epochs. The backbone is pretraind on Ima-
geNet [32] for feature extraction and PlaneReconstruction [14]
for understanding plane regions. We use the Adam optimizer
with a learning rate of 10−4 and a weight decay of 10−5.
Our model is trained in an end-to-end manner and can predict
normal maps in real-time. As a baseline we use the original
GeoNet [15] model trained by the authors for 400 k iterations
on NYU-DepthV2 [33]. Models used in the experiments are
not fine-tuned on other datasets. All experiments were carried
out with an Intel Core i7-8700 CPU (with @3.20 GHz) and a
NVIDIA 2080 Ti GPU. We run each sequence 5 times and show
median results for the accuracy of the estimated trajectory. We
evaluate our proposed SLAM system on public datasets and
compare its performances with other state-of-the-art methods.
The evaluation metrics used in the experiments are the absolute
trajectory error (ATE) and the relative pose error (RPE) [17],
which measure the absolute and relative pose differences be-
tween the estimated and the ground truth motion.

Evaluation and datasets: In order to evaluate our method,
on the one hand, we compare against several monocular SLAM
frameworks, as CNN-SLAM [19] that connects SLAM with
predicted depth maps based on keyframes, LSD-SLAM [2] that
is popular direct method and ORB-SLAM [1]. We align the
trajectories for ORB-SLAM, LSD and the proposed method to
the ground truth trajectories using a similarity transformation [1]
due to the unknown real scale. On the other hand, we run our
SLAM architecture with different normal maps to evaluate the
importance of accurate normals, by switching our normals with
the ones from the state-of-the-art, but not real-time capable
network, GeoNet [15] and normal maps computed from the
depth maps provided by the dataset using [34].� ICL-NUIM dataset [16] is a synthetic indoor datasets that

provide RGB images, depth maps and ground-truth camera
poses. There are two scenes, named “living room” and “of-
fice” which are noted as “lr” and “of” in our experiments.
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Fig. 5. Results of normal prediction model on ICL-NUIM (top) and TUM-
RGBD (bottom) scenes for different approaches.

TABLE I
PERFORMANCE OF THE SURFACE NORMAL PREDICTION ON

THE SCANNET [31] TEST SET

� TUM RGB-D dataset [17] was collected using a real RGB-
D sensor in real scenes as well as specially designed scenes
to challenge current SLAM algorithms, featuring challeng-
ing scenes with good structure, but without texture.� HRBB4 dataset [35] which has 12,000 frames of640× 320
pixels recorded by a monocular camera in a corridor.

A. Normal Prediction

Fig. 5 presents qualitative results on unseen images of differ-
ent normal estimation methods. In our method, we mask out the
lampshade (first row) and small boxes (second row), as these
regions are classified as non-planar. The first two rows, show
common examples for indoor environments. Both of them show
good results, GeoNet shows smaller inaccuracies. For the last
two rows, which are very uncommon scenes, the planar region
detection and normal estimation of our model are still generating
reasonable results, while the quality of the normal predictions
from GeoNet decreased severely.

The agglomerative hierarchical clustering (AHC) algo-
rithm [34] is an efficient method to detect planes in a depth
map. However it difficult to detect planes (like in the third an
forth row) where the quality of the depth maps decrease due
to a highly slanted surface. In the Table I, the performance of
the network is evaluated on the ScanNet [31] dataset generated
by [36] against the ground truth.

B. Pose Estimation

In order to evaluate our method in different environments,
we select structured image sequences from the ICL-NUIM
dataset [16] and the TUM RGB-D dataset [17]. Table II shows

the RMSE for all methods on several sequences, ‘lr’ and ‘of’
stand for the living room and office room sequences in the
ICL-NUIM dataset. ‘s-t-near’ and ‘s-not-near’ are the structure-
texture-near and structure-notexture-near sequences in the TUM
RGB-D dataset, respectively. ‘s-t-near’ and ‘s-t-far’ are showing
the same environment consisting of multiple textured planes,
‘s-not-near’ and ‘s-not-far’ consist of a similar structure, but
without texture.

From the six row to the eight row, different normal maps
are given to the same backbone. It is obvious that using AHC-
based normal maps (obtained from ground truth depth map)
obtain the best results compared to other methods. It also shows
the potential of our SLAM architecture, given precise normal
maps. Performances from −w Ours (combination of our normal
prediction network and the backbone) is more robust than −w
GeoNet (combination of GeoNet and the backbone), especially
in the ‘s-not-far’ sequence. For those non-textured images, it is
difficult for GeoNet to predict accurate normals. In the backbone,
conic areas around each axis are used during the sphere mean-
shift method to filter the normal maps, this allows the handling of
normal outliers up to a certain point. In cases were the number
of outliers is too high, it is difficult to obtain a good rotation
from the back-end of the architecture. Different to the monocular
methods, LPVO [12] works directly with RGB-D images, which
prevents scale drift and allows tracking directly on the depthmap.
In comparison our method achieves comparable performance
without the use of a depth sensor.

Our method obtains good results and shows robust perfor-
mance in all five sequences. In the first two sequences, the differ-
ence between the point based ORB-SLAM and our method, that
connects structure and geometric information, is not significant.
However ORB-SLAM is not able to find enough point matches
over a sequence of frames and looses tracking in some of the
sequences, these are marked with a cross (×). Our method, which
additionally uses lines for the translation estimation achieves
even better results.

When we compare -w Ours, -w GeoNet with ORB-SLAM
in textured sequences, they obtain similar results because those
sequences have a sufficient number of features distributed evenly
on each frame. However for indoor environments, like Fig. 4,
it is difficult to obtain enough point features because of large
non-textured planar regions. In the ‘of-kt3’ sequence, there is
little change in the first 57 frames, so ORB-SLAM cannot ini-
tialize successfully, because it needs enough points for homog-
raphy/fundamental model selection. After initialization, it is also
challenging for ORB-SLAM to track via the point-based motion
model. For our case, the initial rotation matrix is estimated
by the mean-shift method instead of estimating the essential
or homography matrices. This means we can deal with pure
rotational motion. Furthermore, points and line segments are
used for 3 DoFs translation only, which is more robust even in
large non-textured scene.

In order to present the robustness of our method, we compute
the RPE for those sequences, which can be processed robustly
by ORB-SLAM and our method. For ‘s-t-far’ and ‘s-t-near’ that
are textured sequences, ORB-SLAM and the proposed method
have similar performences. The relative translation errors for
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TABLE II
COMPARISON OF TRANSLATION RMSE (M) FOR ICL-NUIM [16] AND TUM RGB-D [17] SEQUENCES USING MONOCULAR CAMERA. WE USE BOLD NUMBERS TO

MARK THE BEST RESULT PER SEQUENCE. −w MEANS THAT THE PROPOSED FRAMEWORK USES THE CORRESPONDING SURFACE NORMALS. × INDICATES THAT

THE ALGORITHM FAILS DUE TO LOST TRACKING

Fig. 6. Relative translational error comparison between ORB-SLAM and our method on different sequences (left) and a comparison of the average runtime length
on each sequence before tracking is lost (right).

Fig. 7. rotation error comparison between ORB-SLAM and our method on
sequence lr-k2.

the sequence ‘of-kt3’ in Fig. 6 (left) is significantly larger for
ORB-SLAM, which corresponds to the result presented in Fig. 4.
As shown in Fig. 7, the proposed method, Structure-SLAM, is
more stable in rotation estimation compared with ORB-SLAM.

We also compare the number of frames tracked by different
methods. Compared with ORB-SLAM, our method retrieves
the camera pose more reliable. Especially in ‘lr-kt2,’ ‘of-kt3’
and ‘s-t-far,’ our method initializes fast and tracks all frames in
the sequences, as can be seen in sequence ‘of-kt3’ in Fig. 6 on
the right. Similar results can be found for HRBB4 in Fig. 8.
Compared with ORB-SLAM which only initializes after the
628th frame, our method is able to initialization much earlier
around frame 110. Furthermore, the proposed method shows a
more stable behaviour in the upper right corner of the corridor
where the environment changes drastically.

Fig. 8. The estimated trajectories of the camera on the HRBB4 [35] dataset.
Left: ORB-SLAM, Right: Structure-SLAM.

VII. CONCLUSION

We have proposed a SLAM system for monocular cameras
based on points, lines and surface normals. Using the Manhattan
World assumption for rotation estimation and point and line
features for windowed translation estimation we achieve state-
of-the-art performance. We have shown that normals, learned
from a single RGB image, can be used to estimate the rotation
between frames leveraging the MW assumption. Compared to
other state-of-the-art methods based on global rotation estima-
tion, in our method there exists a fallback level using points
and lines to estimate the full pose, in case no Manhattan frame
can be found. This enables the tracking over short sequences
to later re-localize within the Manhattan world. In the future,
global bundle adjustment could be used to correct the frames
during these sequences without global frames. Furthermore, we
would like to leverage the learned structure information for the
translation estimation as well.
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RGB-D SLAM with Structural Regularities

Yanyan Li1, Raza Yunus1, Nikolas Brasch1, Nassir Navab1,2 and Federico Tombari1,3

Abstract— This work proposes a RGB-D SLAM system
specifically designed for structured environments and aimed
at improved tracking and mapping accuracy by relying on
geometric features that are extracted from the surrounding.
Structured environments offer, in addition to points, also an
abundance of geometrical features such as lines and planes,
which we exploit to design both the tracking and mapping
components of our SLAM system. For the tracking part, we
explore geometric relationships between these features based
on the assumption of a Manhattan World (MW). We propose
a decoupling-refinement method based on points, lines, and
planes, as well as the use of Manhattan relationships in an
additional pose refinement module. For the mapping part,
different levels of maps from sparse to dense are reconstructed
at a low computational cost. We propose an instance-wise
meshing strategy to build a dense map by meshing plane
instances independently. The overall performance in terms
of pose estimation and reconstruction is evaluated on public
benchmarks and shows improved performance compared to
state-of-the-art methods. The code is released at https://
github.com/yanyan-li/PlanarSLAM.

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (SLAM)
algorithms are used to estimate the 6D camera pose while
reconstructing the surrounding unknown environment. They
have shown to be useful in a wide range of applications,
such as autonomous robots, self-driving cars and aug-
mented/virtual reality, where camera pose estimation enables
cars, robots and mobile devices to localize themselves, while
the dense map provides a representation of the environment,
e.g. for robot-environment or human-environment interac-
tion.

Many SLAM applications have to deal with structured
scenes, i.e. man-made environments that are usually char-
acterized by low-textured surfaces - a typical example is
an indoor scene, or an outdoor parking place. This induces
a lack of visual features, that visual SLAM systems typ-
ically leverage to improve camera pose estimation and/or
3D reconstruction, e.g. by carrying out loop closure and
bundle adjustment to reduce drift. In order to deal with
structured scenes, specific SLAM methods based on points
and line segments, like S-SLAM [1], Stereo-PLSLAM [2],
PLVO [3], Mono-PLSLAM [4] and Probabilistic-VO [5]
have been proposed, extending the working environment to
scenes where more lines than points can be detected. SP-
SLAM [6] merges plane features into ORB-SLAM2 [7],
achieving robust results in low-textured scenes.

1:Technical University of Munich, Germany; {yanyan.li,
raza.yunus, nikolas.brasch, nassir.navab,
federico.tombari}@tum.de; 2:Johns Hopkins University,
USA;3:Google Inc.

Fig. 1. RGB-D SLAM system. (a) Examples of a typical structured scene,
and 2D features and orthogonal lines and planes segmentation. (b) Point
cloud including points, lines and planes. (c) Real-time mesh on a CPU.

For the reconstruction, there are sparse, semi-dense and
dense methods. Compared to the first two classes, which only
provide incomplete maps, dense reconstruction is required
to provide sufficient information for applications such as
robot-environment interaction and 3D scene understanding.
Many algorithms have been proposed to reconstruct indoor
scenes via RGB-D sensors. KinectFusion [8] is a pioneering
work relying on the truncated signed distance field (TSDF)
representation of the map. In order to reconstruct large scale
scenarios, surfel-based methods, like ElasticFusion [9], were
proposed. Instead of reconstructing each pixel, Wang et
al. [10] extracts superpixels from RGB images and depth
maps, which is more efficient but still has redundant infor-
mation especially in indoor scenarios where large planes can
be commonly found.

In this paper, we build on our monocular Structure-
SLAM [1] and propose a robust RGB-D SLAM system
specifically designed to deal with structured environments,
which improves tracking and mapping at the same time.
Figure 1 illustrates the components of such structured scenes,
which contains points, lines and plane segments. Following
the decoupling strategy of Structure-SLAM, we estimate a
drift-free rotation matrix first, and then the 3-DoF translation.
The initial rotation and translation are refined via a map-to-
frame strategy. Different to [1], [11], [12], plane features are
merged into our Manhattan-based framework, which is used
to estimation the initial translation vector and retain Man-
hattan relationships as constrains in the refinement module.
Furthermore, an efficient meshing module is proposed that
reconstructs the scene structure based on the obtained planar
regions in the sparse map. In summary our contributions are:

• Based on the concept of MW-based decoupled pose
estimation, we improve the translation estimation by
combining point and line features with planes and an
additional pose refinement step with Manhattan rela-
tionships.
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• We propose a planar instance-wise mesh based recon-
struction method generating a compact representation
of the environment from a sparse point cloud.

• A general framework for real-time RGB-D SLAM
where these components are used to localize and map
under structured environments with high accuracy.

We evaluate the performance of our approach in terms of
both camera pose estimation and reconstruction on public
benchmarks, showing improved performance compared to
state-of-the-art methods.

II. RELATED WORK

In the following we review the literature related to RGB-
D based SLAM systems as well as methods leveraging
structural regularity as the MW assumption.

a) RGB-D SLAM.: In [13], [14] it was proposed to
use planes over point features whenever possible, as the
averaging over multiple depth measurements reduces the
noise significantly. In Dense Planar SLAM [15] surfels
belonging to the same planar areas are smoothed by fitting a
plane to them and back-projecting the surfels onto the plane.
Le et al. [16] rely on a scene layout consisting of a ground
plane and several walls, and use dynamic programming to
infer a sequentially consistent assignment of pixels to planes.
In Probabilistic-VO [5], the uncertainties of points, lines
and planes are modelled explicitly and used during pose
estimation, where points, lines and planes are represented
in a uniform framework in [17]. A direct SLAM system
combining photo-metric and geometric terms is proposed
in DVO-SLAM[18] and extended in CPA-SLAM [19] with
global planes, where depth measurements are assigned to the
global planes with weights.

b) Dense Reconstruction.: While the aforementioned
methods have the goal to estimate precise poses and therefore
only maintain a map with the most reliable information,
several works have been proposed with the goal to create a
complete dense reconstruction of the environment. KinetFu-
sion [8] and ElasticFusion [9] explore dense reconstruction
for RGB-D sensors. The first method fuses all depth data
into a volumetric dense representation, which is used to
track the camera pose using ICP. The size of the map
is usually limited in volumetric methods due to memory
constraints. Different from KinectFusion, ElasticFusion is
a map-centric system that reconstructs surfel-based maps
of the environment. In order to decrease the number of
surfels in the map, superpixel-based surfels are proposed
by [10], which reduces the number of surfels compared with
ElasticFusion. Recently BAD-SLAM [20] proposed a direct
bundle-adjustment approach for RGB-D SLAM. In [21] a
textured mesh is extracted from a dense surfel cloud. A direct
mesh based reconstruction approach for RGB-D sensors was
proposed in [22].

c) Structural Regularity.: A line of works exploits
additional constrains and regularities in the world, to improve
the reconstruction performance. In [23] and [24] the authors
showed that the rotation estimation error is the main reason
for long-term drift.

Fig. 2. Overview of the proposed framework. Point, line and plane features
are extracted from the RGB-D frame. Rotation and translation are estimated
in a decoupled fashion first and refined afterwards. The planar segments are
used to create a mesh-based reconstruction of the environment.

A branch-and-bound framework for Manhattan Frame
estimation is proposed in [25]. In MVO [24] a method using
mean shift on the unit sphere is used to find the transfor-
mation between the MW and the current frame. When only
planes are used for the rotation estimation as in OPVO [26] at
least 2 orthogonal planes must be detected in each frame, the
addition of vanishing points extracted from lines can be used
alternatively, as done in LPVO [11]. The methods mentioned
above use point features to estimate the translation. Structure-
SLAM [1] is a monocular system that predicts normals via a
convolutional neural network leverages normals with points
and lines in a decoupling strategy. Since predicted normals
are not as accurate as those computed from a depth map,
the system provide a refinement/fallback module based on
points and lines. Compared with Structure-SLAM, optimized
vanishing points of lines and plane features are used for
rotation and translation in this work. Then, the fallback part
is removed and the refinement part incorporates geometric
relationship of planes. Instead of the sparse point-line map, a
dense mesh as output is more useful for robotics applications.
L-SLAM [12] is also based on the MW assumption, which
obtains translation, rotation and pixels of potential planar
regions from LPVO. Then it refines 3D translational and 1-
D plane offsets with a linear Kalman Filter. However, we
use a more robust front-end for initial translation estimation.
Furthermore, the 6D pose refinement step is used to optimize
rotation and translation simultaneously and allows an offset
to the initial rotation from MW, which is more robust to non-
MW (curved surfaces and few planar regions) compared with
L-SLAM and LPVO (see Figure 6).

III. PROPOSED FRAMEWORK

Given a sequence of RGB-D frames from a structured
environment, the goal of our method is to reconstruct the 3D
scene while simultaneously estimating the 6D camera pose at
each frame. Section IV provides an overview of the proposed
tracking pipeline, which decouples rotation and translation,
while section V describes different types of mapping pre-
sentations generated by the system. We now describe the
system’s underlying features and structural components.

A. Extended feature set

In our method we use ORB features [27], which are fast
to extract and match. In low-textured environments, it is
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hard to extract sufficient points for robust pose estimation,
therefore we extend the feature set with lines, which are
extracted using the LSD [28] approach, as described by
LBD [29]. Furthermore, it is common to find non-textured
planar regions in indoor environments, where plane instances
extracted from the depth maps are valuable cues to extend
points and lines. Planes are detected using the connected
component analysis method [30]. They are represented by
the Hessian normal form π = (n̂, d), where n̂ = (nx, ny, nz)
is the normal of the plane, representing its orientation and d
is the distance from the camera origin to the plane.

a) Points and lines: After the extraction of 2D
point features xj = (uj , vj) and line segments lj =
(xj,start, xj,end) in frame Fi, we can back-project points and
lines using the camera intrinsic parameters and the depth map
to obtain 3D points Xj and 3D lines Lj . The depth map is not
always correct, especially at depth discontinuities e.g. object
boundaries. Therefore a robust fitting method for 3D lines is
needed. First, we count the number of pixels with non-zero
depth values intersected by the detected line segment. If the
number exceeds a certain threshold, the 3D line Lj will be
estimated via RANSAC to remove potential outliers.

b) Normals and planes.: Smooth normals are computed
by averaging the tangential vectors from the depth image
inside a patch of 10× 10 pixels using integral images. After
plane detection, we use the strategy of [6] to associate the
observed planes with those present in the map. To match
an observed plane with one from the map, we first check
the angle between their normals. If it is below the threshold
θn, we check the point-to-plane distance between them. The
plane which has the minimum distance to the observed plane,
and also lies below the distance threshold θP , is matched to
the observed plane. In the experiments, θn and θP are set at
10 degrees and 0.1 m respectively. Furthermore, we also keep
parallel and perpendicular relationships [6] between the map
planes to leverage additional constraints during the tracking
process. These are determined by the angle between the plane
normals. Since they only provide constraints for orientation,
we do not consider their distance.

B. Decoupling pose estimation and refinement.
To reduce error propagation between frames, we build on

our monocular architecture [1] that computes rotational mo-
tion based on the MW assumption. Then the corresponding
translational motion is estimated by features, with the fixed
rotation computed from last step. In the font-end of this work,
we use optimized lines for rotation estimation and planes for
translation estimation.

Differently to Structure-SLAM [1] that uses a point-line
local map to optimize translation and rotation together, we
leverage planes in the local map and also make use of the
geometric relationship (parallel and perpendicular) of those
planes as constrains, which improves the accuracy of the
system as it will be shown in Figure 4 and Table I.

IV. TRACKING

Differently from traditional pose estimation methods, we
decouple the 6D camera pose into rotation and translation.

Based on the MW assumption, we obtain the rotational
motion Rcim between the MW and camera ci. In this way,
the rotation estimation will not be affected by the pose of the
last frame or last keyframe, which reduces drift effectively.
Afterwards, point, line and plane features as well as the initial
rotation matrix are used for translation estimation, which
consists of just 3 Degrees-of-Freedom (DoFs).

A. Rotation estimation

Instead of tracking the camera from frame-to-frame di-
rectly, the drift-free rotation estimation method estimates
the rotation Rcm between each frame and the Manhattan
coordinate frame, by modeling the indoor environments as
a MW, thus reducing the drift generated from frame-to-
frame tracking. As shown in Figure 1, Manhattan coordinate
frames can be aligned to the starting frame of the camera
via Rk+1,m. Generally, the coordinate of the first frame is
regarded as the world frame, i.e. R1,m = RTm,w. So we can
obtain pose in the world coordinate by using,

Rk+1,w = Rk+1,mRm,w (1)

Here Rm,w represents the relation from the world to MW,
which is obtained by the MW initialization step and Rk+1,m

is the relation from MW to the (k + 1)th frame. These two
matrices are computed via a sphere mean-shift method [24],
where the normals and normalized vanishing directions are
projected onto the tangent planes of the current rotation
estimate. Then a mean shift step is performed on the tangent
planes, which generates new centers and back-projects them
to the sphere as new estimates. We refer the reader to [24]
and [26] for more details on the sphere mean-shift method.
To handle difficult scenes where only one or no plane at
all is detected, we feed the unit sphere with both vanishing
directions of the refined 3D lines and surface normals of
planes, which is a more robust approach than [26], [1] under
these challenging conditions.

B. Translation estimation

After estimating the rotation, points, lines and planes are
used to estimate the translation. We re-project 3D points
from the last frame into the current one and define the error
function, based on the re-projection error, as follows,

epk,j = pk −Π(Rk,jPj + tk,j) (2)

where Π(·) is the projection function. Since the rotation
matrix Rk,j has been obtained in the last step, we fix the
rotation and only estimate the translation using the Jacobian
matrix corresponding to (2).

As for lines, we obtain the normalized line function from
the 2D endpoints pstart and pend as follows

l = [pstart × pend]/[‖pstart‖‖pend‖] = (a, b, c). (3)

Then, we formulate the error function based on the point-
to-line distance [4] between l and the projected 3D endpoints
Pstart and Pend from the matched 3D line in the keyframe.
For each endpoint Px, the error function can be noted as,

elk,Px
= lΠ(Rk,jPx + tk,j). (4)
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To get a minimal parameterization of a plane π for
optimization, we represent it as q(π) = (φ, ψ, d) where φ
and ψ are the azimuth and elevation angles of the normal
and d is the distance from the Hessian form

q(π) = (φ = arctan(
ny
nx

), ψ = arcsin(nz), d). (5)

So, the error function between the observed plane πk in the
frame and corresponding map plane πx is

eπk,πx
= q(πk)− q(T−Tcw πx) (6)

where T−Tcw is the transformation from world to camera co-
ordinates.Assuming that the observations follow a Gaussian
distribution, the final non-linear least squares cost function
t∗ can be written as in (7), where Λpk,j

, Λpk,Px
and Λk,πx

are the inverse covariance matrices of points, lines and
planes, and ρp, ρl and ρπ are robust Huber cost functions,
respectively.

t∗ =argmin
M∑
j

ρp

(
epk,j

T
Λpk,j

epk,j

)
+ ρl

(
elk,Px

T
Λpk,Px

elk,Px

)
+ ρπ

(
eπk,πx

TΛk,πx
eπk,πx

)
(7)

Here, a solution is determined using the Levenberg-
Marquardt algorithm.

C. Pose refinement

The last two steps assume that the scene is a good Manhat-
tan model, nevertheless several general indoor environments
are not strictly adhering to the MW assumption, leading
to degradation in accuracy. So, after obtaining the initial
pose via the decoupled rotation and translation strategy, the
refinement module [1] fine-tunes the pose to compensate
for deviations from the MW or unstable initial estimates.
In the refinement step, to reduce the drift from frame-to-
frame pose estimation, the local map constructed by previous
keyframes is used to optimize the pose based on a map-to-
frame strategy [7].

Similar to [6], [7], [31], we also use keyframes to build
a local map, although our map has point, line and plane
landmarks, which are projected into the current frame to
search for matches. Furthermore, we explore the relationship
between planes in the local map and planes detected in
the current frame. The parallel and perpendicular constraints
between those planes are described as (8),{

e
π‖
k,nx

= ||qn(nk)− qn(Rcwnx)||
eπ⊥
k,nx

= ||qn(R⊥nk)− qn(Rcwnx)|| (8)

where qn(π) = (φ, ψ) and Rcw is the transformation from
world to camera coordinates. For perpendicular planes, their
plane normal is rotated by 90 degrees (R⊥) to construct the
error function. These two error functions are merged to (7) to
build a joint optimization function in the refinement module.

Fig. 3. Different levels of maps provided by the system.Top row: office
room of the ICL-NUIM; bottom row: structure-nontexture-near of TUM
RGB-D;

V. MAPPING

This section describes the keyframe-based 3D mapping
strategy used in our SLAM framework. Keyframes and
3D features build up a co-visibility graph, where nodes
and edges are updated whenever a new keyframe and new
features are available.

A. Sparse Mapping

As shown in Figure 3, the sparse map module is
reconstructed by point-line-plane features extracted from
keyframes. The first frame is set as the first keyframe and the
global map is initialized by the landmarks thereby detected.
When new points, lines and planes are detected in a new
keyframe, which are not in the global map, they will be
saved to a local map first. Then we check the quality of
the landmarks in the local map, and then push reliable
landmarks into a global map after culling bad ones. Different
to the matching methods for points and lines, for each
detected plane in a new keyframe, we first check whether
it is associated with a plane in the map using the strategy
described in section III. If we find an association, we add
the 3D points of the new plane to the associated plane in the
global map and filter out redundancies using a voxel grid to
get a compact point cloud again. If the incoming plane is
not associated to any plane in the global map, we add it to
the map as a new plane.

B. Planar instance-wise meshing

The sparse map obtained in the previous section is still
not adequate for applications involving robot-environment
interactions, but it provides information about planar and
non-planar instances. Therefore, we construct a denser map
using an instance-wise meshing strategy. Indoor scenes can
be divided into planar and non-planar regions. Planar areas
like floors, walls and ceiling have often a large extent,
however a dense pixel-wise information does not add to the
quality and is highly redundant. So instead of using surfel
or TSDF, we regard plane regions as instances that include
a small and fixed number of elements independently of their
size.

In particular, we input plane instances to the meshing
module, which meshes them independently. First, the points
belonging to a plane are organized as a kd-tree data-structure.
Different to unstructured inputs, our method needs less time
for searching several nearest neighbors. Then, we use Greedy
Surface Triangulation (GST) [33] to build an instance-wise
mesh, which is designed to deal with planar surfaces. Note
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Sequence Ours Ours/-wo ORB [7] PS-SLAM [6] LPVO [12] L-SLAM [11] DVO [18] InfiniTAM [32]
lr-kt0 0.006 0.025 0.025 0.016 0.015 0.012 0.108 ×
lr-kt1 0.015 0.036 0.008 0.018 0.039 0.027 0.059 0.006
lr-kt2 0.020 0.053 0.023 0.017 0.034 0.053 0.375 0.013
lr-kt3 0.012 0.059 0.021 0.025 0.102 0.143 0.433 ×
of-kt0 0.041 0.068 0.037 0.032 0.061 0.020 0.244 0.042
of-kt1 0.020 0.028 0.029 0.019 0.052 0.015 0.178 0.025
of-kt2 0.011 0.060 0.039 0.026 0.039 0.026 0.099 ×
of-kt3 0.014 0.012 0.065 0.012 0.030 0.011 0.079 0.010

snot-far 0.022 0.026 × 0.020 0.075 0.141 0.213 0.037
snot-near 0.025 × × 0.013 0.080 0.066 0.076 0.022
cabinet 0.035 0.057 0.075 0.067 0.520 0.291 0.690 0.035

large-cabinet 0.071 0.813 0.124 0.079 0.279 0.140 0.979 0.512

TABLE I
COMPARISON OF TRANSLATION RMSE (M) FOR ICL-NUIM AND TUM-RGB-D SEQUENCES. × MEANS THE METHOD FAILS IN THE TRACKING

PROCESS. -WO MEANS ONLY USING DECOUPLED TRACKING WITHOUT THE REFINEMENT STEP.

Fig. 4. Comparison of relative pose error (RPE) for rotation on the ICL-
NUIM and TUM RGB-D sequences.

Fig. 5. Qualitative results of sparse reconstruction and trajectory between
the proposed method and ORB-SLAM2 in the TAMU dataset.

that in our experiments, the initial search radius for selecting
neighbors for triangulation is set to 5m and the multiplier is
set as 5 to modify the final search radius to adapt to different
point densities on the plane regions.

VI. EXPERIMENTS

We evaluate the proposed SLAM system on two well
known public datasets, the ICL-NUIM [34] and TUM RGB-
D [35] benchmarks, comparing its performance with other
state-of-the-art methods such as ORB-SLAM2 [7], PS-
SLAM [6] that are feature-based methods, but removed
the global bundle adjustment modules in the following
experiments. Methods based on the MW assumption such
as LPVO [11] and L-SLAM [12]. DVO-SLAM [18] is a
direct method and InfiniTAM [32] uses a GPU for real-
time tracking and mapping based on RGB and depth images.
Additionally, we provide the reconstruction accuracy of our

time Feat. extr. Rotat. Transla Refinement Total
Median 19.9 2.1 4.8 13.0 42.5
Mean 20.5 3.0 5.4 13.1 43.7
Std. 3.6 0.4 2.8 4.8 9.4

TABLE II
MEASURED TRACKING TIMES (MS) ON THE TUM RGB-D SEQUENCES

Sequence RGB-D ElasticFu InfiniTAM SPFu Ours
kt0 4.4 0.7 1.3 0.7 0.4
kt1 3.2 0.7 1.1 0.9 0.6
kt2 3.1 0.8 0.1 1.1 0.6
kt3 16.7 2.8 2.8 1.0 0.8

TABLE III
RMSE RECONSTRUCTION ERROR (CM) ON THE ICL-NUIM DATASET IN

CENTIMETERS.

reconstructed model on the ICL-NUIM dataset and compare
it with other popular methods for dense reconstruction.
Lastly, to demonstrate that our system is robust over time,
we also test on a sequence from the TAMU [3] dataset
containing long sequences covering a large indoor area. All
experiments are carried out with an Intel Core i7-8700 CPU
(with @3.20GHz) and without any use of GPU. The ICL-
NUIM dataset [34] provides synthetic scenes for two indoor
environments, one living room and one office room scenario.
These scenes contain large areas of low textured surfaces
such as walls, ceilings, floors, etc. There are four sequences
for each scene. We evaluate our method on all sequences.

A. ICL-NUIM RGB-D Dataset

Table I shows that our method obtains the best perfor-
mance on three out of the eight sequences, based on the
translation RMSE (ATE). InfiniTAM also performs well on
lr-kt1, lr-kt2 and of-kt3 sequences, but the method also loses
tracking in other sequences. As the dataset contains large
structured areas, the Manhattan-based methods LPVO and
L-SLAM are able to get a good estimate of the orientation
and provide good results throughout. However, they usually
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Sequences Ours ORB-SLAM2 length
Corridor-A 1.62 3.13 88
Stair-A 0.94 1.44 66
Entry-Hall 1.33 2.22 80

TABLE IV
COMPARISON OF THE ACCUMULATED DRIFT (M) IN DIFFERENT LARGE

SCALE SEQUENCES.

need two planes, or alternatively, one plane and a vanishing
direction to be visible at all times to estimate a good
Manhattan frame. As shown in Figure 6, there are several

Fig. 6. Results in lr-k3. (a) input image; (b) point-line features and the
segmented plane; (c) reconstructed 3D map and trajectory.

challenging scenes in lr-kt3, where only a white wall and
two leaves from a plant are captured when the camera is
close to the wall. In this situation, OPVO and L-SLAM are
unable to yield a good performance. When a bad initial pose
is obtained in our system due to the scene not being a rigid
MW, the refinement step based on point-line-plane features
allows us to recover the pose nevertheless, while L-SLAM
ignores optimizing rotation in the LKF module. Moreover,
while DVO, being a dense method, may struggle because
of the large areas of walls, floor etc. not containing enough
gradient for the photometric error, ORB-SLAM2 and PS-
SLAM perform well, as both environments contain sufficient
ORB features extracted from furniture, objects etc. As our
method takes advantage of all geometric elements, it is able
to perform robustly in most sequences. In addition, Figure 4
shows the relative pose error for ORB-SLAM, PS-SLAM and
our method. Our method obtains notably better results than
the other two in relative translation and rotation. Especially
the rotation error is much lower for our method, due to the
use of the decoupled MW rotation estimation.

B. TUM RGB-D Dataset
The TUM RGB-D benchmark [35] is one of the most

popular datasets for RGB-D SLAM systems, which provides
indoor sequences under different texture and structure condi-
tions. This allows us to separately test sequences which have
structure, texture or both. In order to evaluate our method in
challenging environments, we select four structured image
sequences, the first three with low texture and the last one
with a large scale environment. As all sequences listed in
Table I have structure, but the large-cabinet sequence is not
a rigid Manhattan scenario. Manhattan-based methods are
able to provide good pose estimates on snot-far sequence, but
the results degenerate in large-cabinet and cabinet sequences.
The first two sequences include the same environment con-
sisting of multiple non-textured planes. Here ORB-SLAM2

is not able to find enough point correspondences along the
sequence and loses tracking. Our method, which additionally
uses lines and planes for translation estimation, achieves
better results. As shown in Figure 4, cabinet and large-
cabinet are challenging sequences because of several low-
texture frames. Our method’s tracking strategy limits the
relative rotation error to under 2 degrees, which is better
than ORB-SLAM2 and PS-SLAM. The statistics of the time
spent for each operation are shown in Table II, where we use
different CPU threads to deal with points, lines and planes
in the feature extraction and refinement modules.

C. Large scale sequence
The TAMU dataset [36] provides large-scale indoor se-

quences (constant lighting). While it does not provide
ground-truth camera poses, the start and end point are the
same, which can be used to evaluate the overall drift by
computing the final position errors. As shown in Figure 5,
the trajectory in the sequence Stair-C is a loop between
two floors, where the improvement of our method over the
whole trajectory length is 34.7% in drift compared to ORB-
SLAM2. Similar situations can also be found in Corridor-A
and Entry-Hall. More qualitative results are provided in the
supplementary material.

D. Reconstruction Accuracy
We reconstruct models from ICL-NUIM and compare

the results with state-of-the-art mapping methods, as shown
in Table III. The accuracy of the reconstruction results is
defined as the mean difference between the predicted model
and the ground-truth model [34]. We compare the proposed
mapping module against RGB-D SLAM [37], ElasticFu-
sion [9], InfiniTAM [38], and SuperpixelFusion [10].

The SuperpixelFusion method is constrained by using
ORB-SLAM for pose estimation, whereas our method also
works well in low-textured environments. InfiniTAM obtains
the best results in kt2, but shows worse performance on
the kt0 and kt3 sequences, potential due to the large low-
textured regions. ElasticFusion shows a similar behavior. Our
method reconstructs more accurate maps than the others,
but InfiniTAM and ElasticFusion provide more complete
models than our map since we ignore small objects even
though features based on points, lines and planes cover most
of the pixels. Remarkably, all fusion methods, except for
SuperpixelFusion and ours, rely on GPU based acceleration.

VII. CONCLUSIONS

We have proposed a RGB-D SLAM system based on
points, lines and planes. Using the MW assumption for
rotation estimation, and point, line and plane features for
translation estimation, we achieve state-of-the-art perfor-
mance. Also, a novel instance-wise meshing approach can
reconstruct planar regions in the environment efficiently.
The resulting dense map allows for interactions with the
environment in robotic and AR/VR applications. In the future
we would like to extend the planar reconstruction with a
meshing of the non-planar parts in the environment to allow
the complete reconstruction of more complex scenes.
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Co-Planar Parametrization for Stereo-SLAM
and Visual-Inertial Odometry

Xin Li , Yanyan Li , Evin Pınar Örnek, Jinlong Lin, and Federico Tombari

Abstract—This letter proposes a novel SLAM framework for
stereo and visual inertial odometry estimation. It builds an efficient
and robust parametrization of co-planar points and lines which
leverages specific geometric constraints to improve camera pose
optimization in terms of both efficiency and accuracy. The pipeline
consists of extracting 2D points and lines, predicting planar re-
gions and filtering the outliers via RANSAC. Our parametrization
scheme then represents co-planar points and lines as their 2D
image coordinates and parameters of planes. We demonstrate the
effectiveness of the proposed method by comparing it to tradi-
tional parametrizations in a novel Monte-Carlo simulation set.
Further, the whole stereo SLAM and VIO system is compared
with state-of-the-art methods on the public real-world dataset
EuRoC. Our method shows better results in terms of accuracy
and efficiency than the state-of-the-art. The code is released at
https://github.com/LiXin97/Co-Planar-Parametrization.

Index Terms—SLAM, Visual Learning.

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM) and
Visual Inertial Odometry (VIO) algorithms aim at cam-

era pose estimation and scene reconstruction under unknown
environments. They are ubiquitously employed in robotics for
tasks such as planning, obstacle avoidance and navigation. When
applied to indoor environments, these methods have to face
important challenges due to the poor visual features available in
the scene, which is often mostly characterized by low textured
surfaces.

It has been shown that the structural regularities in the envi-
ronment (e.g., lines and planes) bring valuable information to
both SLAM and VIO systems [1], [2]. Such features can guide
the SLAM optimization process by introducing additional con-
straints. However, how to organize such structural information
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and integrate it with the optimization in an efficient way is still an
open question. Traditional representations focused on improving
the trajectory accuracy, yet they ignored the high computational
burden. In this work, we aim to tackle this problem by designing
a better representation for planar structures, which simultane-
ously improves the accuracy and the efficiency of integrated
stereo SLAM and VIO systems.

So far in the literature, several works leveraged points and
lines detected from an RGB image to handle challenging envi-
ronments [2]–[5]. Yet, the inner geometric relationship between
those features is ignored in most of them. Different than using
independent features of line segments and points, planar regions
require fewer parameters to represent environments. Such planar
regions and features can be found in almost all man-made
environments, and they have been studied and leveraged in stereo
SLAM and VIO systems [1], [6]–[9]. They introduce more con-
straints to the system that are helpful to improve overall accuracy.
Nevertheless, they also rely on a high number of optimization
parameters yielding limitations in real-world scenarios.

In this work, we propose a novel method to employ planarity
constraints to improve the accuracy and efficiency of SLAM
models based on VIO or stereo in indoor environments. Our
method detects the co-planar point and line features through
a deep learning based plane detection followed by RANSAC
filtering. We then introduce a novel parametrization to represent
these co-planar features in an unified manner instead of using
them as independent features. The resulting parametrization
decrease the size of Hessian matrix, as well as make it sparser
as shown in Fig. 1(e). As a result, solving the bundle adjustment
problem for estimating the correct camera parameters and 3D
landmarks through second-order Newton optimization, which
relies on calculating Schur complement on the Hessian matrix,
becomes more efficient.

Furthermore, we show how our parametrization model can be
integrated in a stereo SLAM or VIO pipeline as shown in Fig. 2
as we want to prove that our plane extraction and parametrization
methods are general. By taking either a stereo image input, or an
image with IMU sensor data, we solve the tracking and mapping
problem through a graph based optimization. The non-planar
3D landmarks are integrated in the traditional way as 3D points,
whereas the planar landmarks are introduced within the pipelines
through proposed co-planarity parameters.

For evaluation, we used the public real-world EuRoC dataset
and a newly created Monte-Carlo simulation set to perform
further ablation studies. We compare our stereo-SLAM method
against point-line SLAM approaches, as well as our VIO

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. System results: (a) input RGB frame; (b) plane instance segmentation;
(c) reconstruction for points, lines and infinite planes; (d) and (e) Hessian
matrices that show the spatial correlation of camera and 3D landmarks within the
traditional [10], [11] and proposed parametrizations, respectively. Black areas
represent zeros, non-zeros otherwise. (e) is sparser than (d). Number of camera
parameters (green), points and lines features (orange) and plane parameters
(blue) are shown.

method against the state-of-the-art plane-based VIO models.
Our method shows improvement in accuracy on both pipelines
while benefiting from lower runtime, demonstrating the effec-
tiveness of co-planar constraints for SLAM. In summary, our
paper proposes the following contributions:� a novel two-stage plane detection strategy from RGB im-

ages, leveraging a neural network based plane segmenta-
tion and a robust outlier filtering� a novel parametrization for co-planar points and lines that
unifies the parameters, resulting in an efficient bundle
adjustment optimization through the smaller and sparser
Hessian matrix� the deployment of these contributions within two different
camera tracking frameworks, based respectively on VIO
and stereo SLAM, both individually reporting state-of-the-
art results.

II. RELATED WORK

Feature-based SLAM is traditionally addressed by tracking
keypoints along successive frames and then minimizing some
error functions (typically based on re-projection errors) to esti-
mate the camera poses [13]. For point/based only method, there
are many successful proposals, such as PTAM [14], SVO [15]
and ORB-SLAM [3]. However, using only point features has
strong limitations within textureless environments as well as
under illumination changes.

To deal with these problems, line-segment based methods
were proposed [16], [17]. Moreover, planar regions and as-
sociated features have been leveraged by SLAM systems. In
early works [1], planes in the scene were detected by RANSAC
among estimated 3D points, which is time consuming and
not stable. These plane-based mapping and tracking methods,
however, are common within RGB-D sensors since it is easier
to segment planes from depth maps. Salas-Moreno et al. [18]
present a dense mapping approach by using bounded planes and
surfels with RGB-D sensors. Point-Plane SLAM [19] computes
orthogonal relationships between planes from depth maps, then
uses constraints for pose estimation. CPA-SLAM [20] models
the scene as a global plane model, which is helpful to remove
drift by aligning current RGB-D frame with the plane model.
By using IMU, VIO methods can deal with fast motion easily.
MSCKF [21] and ROVIO [22] are popular filter-based methods,
but the first one does not maintain estimates of 3D landmarks
in the state vector. Different to those methods, an optimization
strategy is used VINS-MONO [5] and Mesh-VIO [6] for pose
estimation.

Instead of a set of features, planes are also used to construct
co-planar regularities for points and lines. Instead of extracting
planes from sparse point cloud, Mesh-VIO [6] builds 2D De-
launay triangulation based on 2D points first, and then project
them into 3D from their correspondences. They find vertical
and horizontal planes from the gravity vector given by the IMU,
then merge the co-planar constraints in the optimization module.
With the introduction of deep learning, methods were proposed
to estimate planes from a single RGB image, hence opening up
new possibilities for SLAM systems. PlaneReconstruction [23]
and PlaneRCNN [24] are state-of-the-art plane instance segmen-
tation methods for a single image. In addition to planes, they also
estimate depth and normal maps from a single RGB image.

Inverse depth [10] and parallax angle [25] were proposed to
represent point features in monocular systems. Inverse depth
parametrization uses the inverse of the depth from its anchor
camera, which works more accurately for distant features. In-
stead of using depth, the parallax angle is used in [25] which
obtains good performance in both nearby and distant features.
TextSLAM [26] suggests to extract text-based visual infor-
mation and treats each detected text as a planar feature. In
line parametrization methods, Plücker coordinate is a popular
representation method for 3D line initialization and transfor-
mation. Each 3D line, however, has only 4 degrees of freedom
(4DoFs), and the six parameters of Plücker coordinates lead
to over-parameterization [27]. So, an orthogonal representation
based on only four parameters is used in the optimization to
solve this problem.

III. PROPOSED METHOD

In this section, we first explain our co-planar parametrization
strategy, which includes plane instance detection and RANSAC
based filtering steps. Then, we introduce the implementation
details of our stereo and VIO versions that use the proposed
parametrization in a sliding window optimization fashion.
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Fig. 2. The pipeline of our plane-parametrized SLAM system. The overall pipeline follows the classical tracking and mapping approaches [3], along with the
sliding-window based optimization. The pipeline can take as input either a stereo image pair or an image with IMU sensor data. 2D features and initial camera pose
is estimated in a similar way as previous works [5], [12]. Then we detect planar regions via plane instance segmentation. After selecting the potential co-planar
points and lines on the planar region, we remove the outliers with RANSAC. We present the remaining robust points and lines with the proposed parametrization,
which can be directly integrated as an additional constraint in SLAM optimization.

Fig. 3. Examples of plane instance segmentation on EuRoC dataset and
architecture of the plane instance segmentation network.

A. Coplanarity-Based Parametrization

A plane is defined by equation nXT
c + d = 0, where n =

(n1, n2, n3) ∈ R3 is the normal of the plane, Xc is a 3D point
in camera coordinates, and d ∈ R is the distance from the plane
to the origin of the camera c. However, this representation has
an over-parametrization problem, and it cannot be solved with
the Gauss-Newton approach due to singularity issue [28]. So
we optimize the normal n on the tangent space S2 with another
optimization method, which is similar to Mesh-VIO [6]. In this
section, we first describe how the co-planar points and features
are detected. Then, we explain our parametrization for points
and lines, respectively.

a) Plane Instance Segmentation: In order to detect planar
regions in the scene in real-time, we use a plane instance seg-
mentation network, which is a simplified version of PlaneRecon-
struction [23]. This network has two branches: planar mask de-
coder and a plane embedding decoder. The first branch decodes

a binary mask for planar regions. The second one decodes the
feature maps to an embedding space where mean-shift clustering
is used to group each pixel into planar instances, iteratively. We
train this plane detection network on ScanNet dataset [29] for
30 epochs.

b) Co-planar Feature Extraction: Since the plane instance
segments extracted by the neural network might be at times
inaccurate, we refine them by extracting 2D point and line
features from images. Selecting the extracted features that align
with the detected plane segments will lead us to robust features.
We use ORB features [30] and LSD segment detection [31]
to extract sets of co-planar points [Sx

1 , . . . S
x
m] and co-planar

lines [Sl
1, . . . S

l
m], where each distinct set consists of co-planar

features Sx
n = [xi . . . xj ], n ∈ [1,m] and xi is a 2D pixel. For

a stereo input, we obtain 3D points and lines by triangulating
left-right image pairs. Whereas for VIO, the visual input is
monocular and we triangulate sequential frames. During SLAM
optimization, when a frame is detected as a new keyframe, we
associate the features of this new frame with previous keyframes
(i.e. check if they match and if they do not match, initiate new 3D
landmarks with these features). After associating the landmarks,
we build the potential co-planar points and lines, as shown in
Fig. 2.

Due to the presence of outliers in the potential co-planar sets,
we employ the following refinement strategy. First, for the cur-
rent frame, we preserve the features that have been successfully
triangulated. Then, we classify them according to detected 2D
plane instance segments. If the number of features detected in
a plane instance region is greater than a certain threshold, it
will be considered as a potential planar region in 3D. If it is
smaller than the threshold, plane will not be considered. After
that, we use a RANSAC filter to find co-planar constraints in the
potential planar region. We take out pointsCx and linesCl in the
potential planar region and feed them to the filter. Specifically,
corresponding rules in Eq. 1 are selected to fit parameters Γ of
the plane according to the type of z (∀z ∈ Z,Z = [Cx, Cl]),

f(c,Γ) =

{
δ⊥(Px,Γ), z ∈ Cx

max(δ⊥(cls,Γ), δ⊥(cle),Γ), z ∈ Cl
(1)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 15,2023 at 13:26:54 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: CO-PLANAR PARAMETRIZATION FOR STEREO-SLAM AND VISUAL-INERTIAL ODOMETRY 6975

Fig. 4. Point and line features are shown on a detected planar region πj with
a normal nπ . hi is the depth from camera frame origin to the 3D point pi.
nl is the normal of a line on the plane nπ . Our parametrization rewrites the
plane equation in terms of image pixel coordinates and combine line and point
features.

where δ⊥(·, ·) denotes the perpendicular distance from a 3D
point Px to the plane in 3D, cls and cle are the start and end
points of the line respectively. Note that we only consider lines
which have both endpoints lie on the same planar region. If the
size of the largest consensus set exceeds a threshold θcp (80% in
our experiments), we add the corresponding plane candidate to
the system and establish point-plane and line-plane associations
in the consensus set. We remove the outliers from the initial sets.
When new 3D points and lines are generated in the system, we
check if they belong to existing planes using the same metric
defined above and store those correspondences. It is important
to note that it would be also possible to detect planar regions
by using only RANSAC (without the deep learning method).
However, when there are unknown number of planes in a scene,
RANSAC does not work optimal. It requires several iterations,
where at each time a single planar region is detected and inlier
points are removed. Yet, the false-detections accumulate over
each time and results degenerate. We prevent this issue by
detecting all planes through a neural network initially.

c) Parametrization of Points: After associating points and
lines to co-planar regions as previously described, we obtain
refined co-planar feature sets and parameters for each plane
instance. As shown in Fig. 4, 3D points are the intersections of
the detected plane and the camera-to-landmark rays. For each
3D point P c

x = (xc, yc, zc) which lies on the plane π in camera
frame c, we have the function nT

πP
c
x + dπ = 0. For example,

the depth from origin of camera frame to the 3D point Pi

is hi. A normalized 3D point is presented as (x̂, ŷ, 1), where
(xc, yc, zc) = (x̂, ŷ, 1) · hi. Also,

(x̂, ŷ, 1)T = K−1(u, v, 1)T (2)

where K is the intrinsic matrix of camera c, and (u, v) is the 2D
point corresponding to the landmark P c

x . Then, the co-planar
relationship for points can be represented as

hi · nT
πK

−1(u, v, 1)T + dπ = 0, (3)

where the relationship contains 2D pixel of the landmark and
parameters of the plane. So in our parametrization, the point p∗

lying on a planar region can be represented as

p∗ = [nπ, dπ]. (4)

d) Parametrization of Lines: For line features, the Plücker
coordinatesL = [n�

l ,d
�]� are used to initialize 3D lines, where

d ∈ R3 is the line’s direction vector in camera frame c, and
nl ∈ R3 is the normal vector of the plane determined by the line
and the camera frame’s origin point (Fig. 4). Furthermore, the
line is the intersection of two known planes πl and πP , so the
dual Plücker matrix L∗ can be computed by:

L∗ =

[
[d]× nl

−n�
l 0

]
= πlπ

�
P − πPπ

�
l ∈ R4×4 (5)

where [·]× is the skew-symmetric matrix of a three-dimensional
vector, and π = [n, d] is a 4D vector. Then we can easily get
Plücker coordinates L = [n�

l ,d
�]� from the dual Plücker ma-

trix.
e) Resulting Hessian matrix: Compared with other pro-

posed representations, which treat points and lines as indepen-
dent features, our method uses one plane parameter to represent
all co-planar features. Novel parametrization is then used in the
bundle adjustment, which is solved by a second-order Newton
optimization method, the Levenberg-Marquardt algorithm. This
relies on taking the gradients of the residuals with respect
to parameters (3D landmarks and camera poses) and solving
the normal equations. Hence, when there are less number of
parameters, Hessian matrix will be smaller. When there are
less dependencies between the parameters, the sparse structure
of Hessian can be employed more efficiently through Schur
complement. The resulting Hessian matrix is illustrated in Fig. 1
and it’s effects on efficiency are further shown in Experiments
section, in Tab. III. The optimization equations are explained in
next subsection. Further interested reader is referred to [32].

B. System Implementation

In this section, implementation details are introduced for
both versions of our approach, i.e. the stereo SLAM and VIO,
respectively.

a) Tracking: The goal of the tracking module is to extract
2D features and estimate the camera pose for each frame. In
the stereo version, we estimate camera pose via point and line
features, where stereo keypoints are defined by three coordinates
xs = (uL, vL, uR), here (uL, vL) are coordinates on the left
image and uR is the horizontal coordinate for the corresponding
matches in the right image. Similar to points, lines between
two images are matched by Line Band Descriptor (LBD) [33].
Furthermore, motion model is used to provide an initial pose
that is refined by a frame-to-frame tracking strategy similar to
ORB-SLAM [3]. Instead, for the VIO version, the initialization
strategy of IMU is similar to VINS-Mono [5], which relis on
a loose coupling strategy to align IMU pre-integration with
the visual-only part. Different than visual-only (stereo) branch,
the initial pose for optimization in VIO is obtained from IMU
pre-integration [2], [5] so that the visual part can be regarded as
a purely monocular version. Monocular keypoints are defined
by two coordinates xm = (uL, vL) which are triangulated from
multiple views.

In the system, we use different strategies for keyframe detec-
tion in stereo and VIO pipelines. For the former one, a new
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keyframe can be added only after at least 20 frames. Each
keyframe tracks more than 40 points and 10% of keypoints
should be new keypoints compared to the nearest keyframe.
However, for the latter one, we consider the average parallax
(with rotation compensation) of tracked features between two
keyframes, which should be more than 10 degrees (similar to
VINS-Mono [5]).

b) Mapping: When a keyframe is detected and inserted,
we associate its 2D features to 3D corresponding landmarks
in the sliding window (or local map) by 2D feature matching.
For each non-associated 2D feature, we triangulate it with other
keyframes in the VIO version, while for stereo, non-associated
points and lines are usually triangulated by each stereo pair. Dif-
ferent from points, 3D lines are triangulated by two intersecting
planes colored in blue in Fig. 4, which are observed in different
views.

Based on the potential co-planar regions and the RANSAC
filter, 3D landmarks are divided into two sets for optimization:
planar features and non-planar features. Inverse depth algorithm
is used to represent points; and Plücker coordinates and or-
thonormal representations are used to represent lines following
He [2], which are then fed to window-based bundle adjustment
for optimizing poses and landmarks.

c) Bundle Adjustment With Co-Planar Parametrization:
In this part, we use re-projection error functions to optimize cam-
era pose and landmark positions. Two different error functions
are used for planar and non-planar features. Non-planar features
are represented by traditional parametrization and optimized di-
rectly. However, co-planar features are refined by optimizing the
parameters of the proposed parametrization. For point features,
the re-projection error rpik strands for the the distance between
the projected point of the jth map point and the observed point
in the kth frame, which is noted as

rpik = xik −Π(Tkw, P
w
i ) (6)

where Π() re-projects the ith global 3D point Pw
i coordinates

into the kth frame. For general points, Pw
i is represented as

(xw, yw, zw). Points lying on a plane are represented with
Eq. (3).

For line features, the re-projection error rljk is defined as the
distance between the re-projected line of the jth map line and
two endpoints of its corresponding 2D line in the kth keyframe,
which is given by,

rljk =
[

s�nl√
n2
1+n2

2

e�nl√
n2
1+n2

2

]�
(7)

wherenl = [n1, n2, n3]
� is the 2D line re-projected from the 3D

line to the camera frame, s = [x̂s, ŷs, 1]
� and e = [x̂e, ŷe, 1]

�

are two end-points of the observed line segment in the kth
image plane. For general lines, nl can be represented as in an
orthonormal way [2]. Lines lying on a plane are represented with
the Eq. (5).

Given by the Eq. (6) and Eq. (7), We can therefore construct a
unified target function which optimizes all terms simultaneously,

E =
∑

k,i

ρp(r
p
ik

�
Λikr

p
ik) +

∑

k,j

ρl(r
�
jklΛjkr

l
jk) (8)

here ρp and ρl present robust Cauchy cost functions. Respec-
tively, Λik and Λjk are the information matrices of points and
lines, as calculated in [2], [5].

d) Tightly-Coupled Optimization for Inertial Constraints:
For the VIO case, we fuse the data coming from the visual
and inertial sensors via non-linear optimization in a tightly
coupled form. Different from the stereo case, visual features
are transferred to the IMU body coordinate system via extrinsic
parameters [Rbc tbc] between camera and IMU. So the unified
target function for the VIO branch can be shown as,

E =
∑

k,i

ρp(r
pik�Λikr

p
ik) +

∑

kj

ρl(r
�
jklΛjkr

l
jk)

+
∑

b

ρl(r
b�Λbr

b) + Em (9)

where rb is the IMU residual, and Em is the prior residual from
marginalization operator in the sliding window. For more details,
readers are referred to [5].

IV. EXPERIMENTS

To evaluate the proposed method, we benchmark it against
the state of the art on the EuRoC dataset [34]. In addition,
we perform Monte-Carlo simulations to verify the robustness
and efficiency of the novel parametrization. We evaluate both
stereo and VIO pipelines with Absolute Trajectory Error (ATE)
which measures absolute translational distances between the
ground truth pose and the corresponding estimated pose. All
the experiments run on an Intel Core i7-8550U @ 1.8 GHz and
16 GB RAM.

A. EuRoC Dataset

EuRoC is a popular public dataset for stereo SLAM and
VIO systems, which collects stereo images and inertial data
from an aerial vehicle in indoor environments [34]. There are
two scenarios in this dataset: Vicon Room (V) and Machine
Hall (MH), with eleven sequences in total. VH is an indoor
environment and has several planar regions, whereas MH is
the interior of an industrial facility where planar regions are
unevenly distributed.

a) Ablation Studies: In order to evaluate the performance
of the proposed parametrization in EuRoC, we fix the front-end
and compare five formulations: P (−wo), P (−w), PL(−w),
P (−r), and PL(−r), where P denotes a point-based method,
and PL denotes a point-line-based system. (−wo) means the
traditional parametrization (only inverse depth), and both (−r)
and (−w) use co-planar constraints in the optimization module,
but in different ways. (−r) uses more equations between point-
to-plane and line-to-plane, which are merged into optimization
as in Mesh-VIO [6], [8]. Whereas (−w) presents these residuals
within the proposed co-planar parametrization.

The results of the stereo and VIO versions on EuRoC dataset
are presented in Fig. 5 and Fig. 5, respectively. In general,
the proposed parametrization PL(−w) results in lower RMSE
compared to traditional parametrizations,P (−wo) andP (−w),
in both cases, and especially in the MH sequences, where the
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Fig. 5. Comparison in terms of ATE of different parametrization variants:
P (−wo), P (−r), P (−w), PL(−r) and PL(−w). The top part shows results
for stereo, and the bottom one for VIO. The proposed parametrization PL(−w)
achieves the best results for all sequences where structural regularities are
detected and enforced. * shows lost tracking on V103 and V203 sequences.

line features can provide more robust constraints with planar
regions in the large industrial environment.

For stereo approaches, as shown in Fig. 5, line features make
the system more robust especially inV 103 andV 203 sequences,
where severe motion blur happened. In other Vicon sequences,
PL(−w) performs better than PL(−r) because the proposed
two-stage co-planar approach removes distances between those
co-planar features and planes directly. In MH01, MH02 and
MH03 which are textured sequences, all approaches obtain
similar results. In Fig. 5, P (−wo) and P (−w) perform equally
on MH03, MH04 and MH05 sequences, because there are
not any structural regularities detected. When there are some
planar regions detected, as in V 202, MH01 and MH02, the
proposed parametrization P (−w) obtains better performance
than traditional methods. If enough features can be obtained
and few good co-planar sets, our system’s performance will
degenerate to that of traditional methods, as in sequences V 102
andV 201. The computation time of different operations in V101
is presented in Table II.

b) EuroC Evaluation: We compare our stereo branch
against the stereo version of ORB-SLAM2 [12] and FMD-
SLAM [35]. It is important to note that, for fairness of com-
parison, the tested ORB-SLAM2 does not have loop closure.
Furthermore, we compare our VIO version against the recently

Fig. 6. Two simulation environments are illustrated, where points and lines
are in red and blue, respectively. Camera follows green trajectories.

proposed MSCKF [21], ROVIO [22], VINS-MONO [5], and
Mesh-VIO [6]. Results are given in Table I. These VIO algo-
rithms use all a monocular camera, except Mesh-VIO that uses a
stereo camera. Results of previous works are taken from Rosinol
et al. [6].

The left part of Table I shows that thePL(−w) approach is an
accurate and robust method compared with state-of-the-art VIO
methods on sequences. Compared with Mesh-VIO [6], which
also uses planar information to build co-planar regularities in
the optimization process, our method performs better on most
sequences, where Mesh-VIO obtained more vertical planes from
3D mesh due to using gravity during plane detection. When
horizontal and vertical planes are difficult to detect as in V 103
and some of the MH sequences, Mesh-VIO tends to degenerate
easily so that it cannot build co-planar constraints. In sequence
MH05, we observe a 26% improvement compared to the sec-
ond best performing algorithm (Mesh-VIO), and in sequence
V 103, a 15% improvement and 35% improvement compared
to VINS-MONO and Mesh-VIO, respectively. It can be seen
that the optimization methods of VINS-MONO, Mesh-VIO
and PL(−w) are more robust than the filter-based MSCKF.
Meanwhile, our method is more robust for indoor environments
that have lots of co-planar regularities.

The stereo SLAM comparison is shown on the right side of
Table I. Stereo ORB-SLAM2 obtains comparable results to ours
on all sequences except V203 and MH04. In those textured se-
quences, this method tracks the features in a stable and accurate
way. Instead, V203 is a difficult sequence because of the fast
motion and the strong illumination changes, and tracking fails
for both ORB-SLAM2 and FMD-SLAM. Benefiting from using
point and line features, our method is instead more robust and
can deal also with this sequence. The average RMSE values, for
fairness computed without taking sequence V203 into account,
show that our method obtains 25.7% and 38.7% improvements
compared to ORB-SLAM2 and FMD-SLAM, respectively.

B. Simulation Dataset

We create two simulation sequences with ideal co-planar envi-
ronments to evaluate the efficiency with respect to performance
under different parametric formulations. As shown in Fig. 6(a),
the first sequence has 100 lines and 200 points generated in 4
directions, which are observed by virtual cameras that follow
a sinusoidal trajectory with 150 simulated poses. The second
sequence consists of 20 lines and 50 points observed by 50
camera poses as shown in Fig. 6(b).
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TABLE I
COMPARISON IN TERMS OF RMSE (CM) OF THE PROPOSED PL(−w) PIPELINE AGAINST THE STATE OF THE ART ON THE EUROC DATASET. BEST RESULTS ARE

BOLDED. × SHOWS LOST TRACKING. AVERAGED RESULTS WITH * DO NOT INCLUDE THE SEQUENCE V203

TABLE II
COMPUTATION TIME (MEAN, MS) OF DIFFERENT OPERATIONS IN THE V101
SEQUENCE OF EUROC. * MEANS THAT THE OPERATION IS USED FOR EACH

FRAME, OTHERWISE IT IS PERFORMED ON KEYFRAMES ONLY. D&M NOTES

DETECTION AND MATCHING. - MEANS THAT THE OPERATION IS NOT USED

For line measurements, the virtual camera gets two endpoints
from each measurements. Note that each measurement of a point,
including endpoints of lines and point features, is corrupted
by 1-pixel Gaussian random noise. In order to simplify the
simulation, we simulate relative pose odometry measurements
as pose estimation results from the tracking module, which have
random noise as,

q̄m =

[
1
2nθ

1

]
⊗ q̄, pCm = pC + np (10)

where nθ and np are the Gaussian white noises added to the
relative pose, with σθ = 1 deg and σp = 10 cm, respectively.

a) Performance: We pose the visual SLAM system as a
non-linear least squares problem, solved via Gaussian-Newton.
Maximum 10 iterations are allowed for each method in this
simulation for a fair comparison. We run the simulation sequence
30 times and show median results for the accuracy of the
estimated trajectory and optimization time. Fig. 7 shows similar
performance across sequences, that is, (−w) is more accurate
and efficient than (−r) and (−wo). The second sequence (b)
requires more optimization time and results in lower RMSE
since more features are measured by each camera compared
to the first. P (−wo) requires less time than P (−r) in two
sequences because it does not use structural regularities and
has small optimization computation as shown in Fig. 1(d).
P (−r) has a higher computational burden (Fig. 1(e)) and is
more accurate than P (−wo). While combining line features in

Fig. 7. Comparison of the optimization time (ms, top) and RMSE (cm, bottom)
for pipelines P (−wo), P (−r), P (−w), PL(−r) and PL(−w).

the system, like PL(−r), results are more accurate even if the
method requires more time. Compared to P (−r) and PL(−r),
our parametrizations for points and lines (P (−w)) are more
efficient. In terms of optimization time, P (−w) has a 31%
improvement and PL(−w) 33%, compared to P (−r).

b) Number of Parameters: Furthermore, we analyze the
reason of efficiency from the perspective of number of param-
eters that are to be updated. In traditional parametric methods
(inverse depth for points and orthogonal approach for lines),
each point, line and plane need 1 parameter, 4 parameters and
3 parameters, respectively. However, in our parametrization
method, all points and lines in the plane are represented by only
one plane parameter. Hence, there is only one parameter for each
planar region during optimization. Table III shows the number
of parameters that need to be updated in the global bundle
adjustment on the second Monte Carlo sequence, where 20 lines
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TABLE III
THE NUMBER OF LANDMARKS UPDATED IN OPTIMIZATION

MODULE OF SEQUENCE 2

and 50 points are observed by 50 cameras. P (−w) uses points
only, so it has to update 100 items at each iteration. Similar to
P (−wo), we have to update 101 items and 121 items in P (−r)
and PL(−r). Note that those two need to update one plane
item because they use of co-planar constraints of point-to-plane
and line-to-plane. In the proposed solutions, only 51 items (50
cameras and 1 plane) are updated in P (−w) and PL(−w)
because they use the plane to represent co-planar points and
lines.

V. CONCLUSION

We presented an efficient and robust co-planar parametriza-
tion method for points and lines by leveraging geometric and
learning approaches together, which increases sparsity and re-
duces the size of Hessian matrix in each optimization mod-
ule. Then, we illustrated how our co-planar parametrization
can be implemented in stereo-SLAM and VIO pipelines. Our
experiments show that our approach improves the efficiency
and accuracy of both stereo and VIO optimization in indoor
environments. As for future work, we plan to reconstruct dense
maps from monocular data and merge together semantic seg-
mentation and depth prediction to improve tracking and mapping
simultaneously.
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Abstract. Minimal solutions for relative rotation and translation esti-
mation tasks have been explored in different scenarios, typically relying
on the so-called co-visibility graphs. However, how to build direct rota-
tion relationships between two frames without overlap is still an open
topic, which, if solved, could greatly improve the accuracy of visual
odometry. In this paper, a new minimal solution is proposed to solve rel-
ative rotation estimation between two images without overlapping areas
by exploiting a new graph structure, which we call Extensibility Graph
(E-Graph). Differently from a co-visibility graph, high-level landmarks,
including vanishing directions and plane normals, are stored in our E-
Graph, which are geometrically extensible. Based on E-Graph, the rota-
tion estimation problem becomes simpler and more elegant, as it can deal
with pure rotational motion and requires fewer assumptions, e.g. Man-
hattan/Atlanta World, planar/vertical motion. Finally, we embed our
rotation estimation strategy into a complete camera tracking and map-
ping system which obtains 6-DoF camera poses and a dense 3D mesh
model. Extensive experiments on public benchmarks demonstrate that
the proposed method achieves state-of-the-art tracking performance.

1 Introduction

Camera pose estimation is a long-standing problem in computer vision as a key
step in algorithms for visual odometry, Simultaneous Localization and Mapping
(SLAM) and related applications in robotics, augmented reality, autonomous
driving (to name a few). As part of the camera pose estimation problem, the
minimal case [40] provides an estimate of whether the problem can be solved
and how many elements are required to obtain a reliable estimate. According
to the input data type and scenarios, different solutions [1, 28, 15, 9] were pro-
posed, most of which became very popular in the computer vision and robotic
community, such as the seven-point [1] and five-point [28] approaches. A typical
limitation of traditional pose estimation solutions based on the minimal case [1,
28, 31, 9] is that both rotation and translation estimation rely on the co-visibility
features between two frames, this having as a consequence that the length of an
edge between two nodes is often relatively short. Therefore, tracking errors tend
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(a) Dense scene reconstruction (b) Sparse scene reconstruction

(c) Covisibility graph (d) Extensibility graph

Fig. 1. Dense (a) and sparse (b) scene reconstruction of the office-room scene from the
ICL dataset [10] obtained by the proposed method. (c) and (d): keyframes (in blue)
and connected frames are linked with green and red lines, respectively, to build up
the proposed covisibility and extensibility graphs. The black ellipses denote the start
points of the camera trajectory.

to accumulate easily based on a frame-to-frame or frame-to-keyframe strategy.
To solve this issue, more advanced tracking systems [26, 3] with optimization so-
lutions, including local and global bundle adjustment approaches, were exploited
to refine poses from minimal solutions. Loop Closure is a common algorithm used
in feature-based [24] and direct [7] methods to remove drift. However, it also re-
quires the camera to revisit the same place, which is a limiting assumption in
many scenarios.

Compared with point features, lines and planes require more computation to
be extracted and described. Early multi-feature SLAM systems [8] use them to
increase the number of features to combat low-textured scenes. After that, co-
planar, parallel and perpendicular relationships were explored [39, 18, 20] to add
more constraints in the optimization module, still following a similar tracking
strategy as ORBSLAM [25] or DSO [36] for the initial pose estimation.

Different to the tightly coupled estimation strategy, some works [43] proposed
to decouple the 6-DoF pose estimation into rotation and translation estimation
aiming to achieve a more accurate rotation estimation, based on the idea that
pose drift is mainly caused by the rotation component [14]. At the same time,
based on an estimated rotation matrix [31], only two points are required to
compute the translation motion, leading to more robustness in low-textured
regions.

The Manhattan World (MW) [43] and Atlanta World (AW) [13] assump-
tions introduce stronger constraints since they require a single orthogonal scene,
or a scene with a unified vertical direction. Unlike loop closure that removes
drift by detecting trajectory loops, the assumption of MW and AW is intro-
duced for indoor tracking scenarios [19, 14] to improve the accuracy of camera
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pose estimation, since most indoor artificial environments follow this assump-
tion. MW and AW improve accuracy when the main structure of the scene has
orthogonal elements However, since this assumption requires the observation of
vertical/orthogonal environmental features (such as straight lines or planes), the
SLAM system using this method is also limited in the types of scenarios it can
be successfully applied to.

In this paper we propose a rigid rotation estimation approach based on a novel
graph structure, which we dub Extensibility Graph (E-Graph), for landmark
association in RGB-D data. Our approach is designed to reduce drift and improve
the overall trajectory accuracy in spite of loop closure or MW/AW assumptions.
Benefiting of E-Graph, the drift-free rotation estimation problem is simplified to
the alignment problem of rotating coordinate systems. Importantly, our rotation
step does not need overlaps between two frames by making use of vanishing
directions of lines and plane normals in the scene, hence can relate a higher
number of keyframes with respect to standard co-visibility graphs, with benefits
in terms of accuracy and robustness in presence of pure rotational motions.

In addition, we develop a complete tracking and dense mapping system base
on the proposed E-Graph and rotation estimation strategies, which we demon-
strate to outperform state-of-the-art SLAM approaches [20, 38, 26, 3]. To summa-
rize, the main contributions of this paper are as follows: i) a new perspective for
reducing drift is proposed based on our novel graph structure, E-Graph, which
connects keyframes across long distances; ii) a novel drift-free rotation alignment
solution between two frames without overlapping areas based on E-Graph; iii) a
complete SLAM system based on the two previous contributions to improve ro-
bustness and accuracy in pose estimation and mapping. The proposed approach
is evaluated on common benchmarks such as ICL [10] and TUM-RGBD [33],
demonstrating an improved performance compared to the state of the art.

2 Related work

By making the assumption of planar motion [9], two-view relative pose estima-
tion is implemented based on a single affine correspondence. Point features are
common geometric features used in VO and SLAM [3] systems. To remove the
drift from point-based front ends, different types of back ends are explored in
tracking methods. Loop closing is an important module to remove drift, which
happens when the system recognizes that a place [6, 23] has been visited be-
fore. After closing the loop, associated keyframes in the covisibility graph will
be adjusted. Benefiting of loop closure and optimization modules, ORB-SLAM
series [26, 3] organize the keyframes efficiently, which provides robust support for
tracking tasks. Different from sparse point features used in ORB-SLAM, BAD-
SLAM [32] implements a direct bundle adjustment formulation supported by
GPU processing.

However, in indoor environments, to cover texture-less regions that have few
point features, more geometric features are merged into the front end of sys-
tems. At the early stage, methods build re-projection error functions for lines
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and planes. CPA-SLAM [22] makes use of photometric and plane re-projection
terms to estimate the camera pose. Based on estimated camera poses, detected
planes are merged together with a global plane model. Similar to our method,
CPA-SLAM and KDP-SLAM [11] can build constraints between non-overlapping
frames. However those constraints are used to build heavy optimization targets
instead of improving the efficiency. Furthermore, the relationship between paral-
lel lines (vanishing points) and perpendicular planes is explored in [17, 41]. Based
on the regularities of those structural features, they obtain a more accurate per-
formance. Instead of exploring the parallel/perpendicular relationships between
lines/planes, [30, 18] make use of constraints between co-planar points and lines
in the optimization module.

Those regularities aim to build constraints between local features, [14, 20]
introduce global constraints by modeling the environment as a special shape,
like MW and AW. The MW assumption is suitable for a cuboid scenario, which
is supposed to be built by orthogonal elements. Based on this assumption, those
methods estimate each frame’s rotation between the frame and the Manhattan
world directly, which is useful to avoid drift between frames in those scenes.
L-SLAM [14] groups normal vectors of each pixel into an orthogonal coordi-
nate by projecting them into a Gaussian Sphere [43] and tracks the coordinate
axes to compute the relative rotation motion. Similar to the main idea of L-
SLAM, [15] provides a RGB-D compass by using a single line and plane. Since
the line lies on the plane, the underlying assumption of the system is the MW-
based rotation estimation method. However, the limitation of this strategy is
also very obvious, that it works only in Manhattan environments. Based on
ORB-SLAM2 [26], Structure-SLAM [19, 20] merges the MW assumption with
keyframe-based tracking, to improve the robustness of the system in non-MW
indoor scenes, which refine decoupled camera pose by using a frame-to-model
strategy. Compared with MW-based tracking methods, our approach is less sen-
sitive to the structure of environments.

3 Minimal case in orientation estimation

Commonly, the 6-DoF Euclidean Transform T ∈ SE(3) defines motions as a set
of rotation R ∈ SO(3) and translation t ∈ R3. Based on point correspondences,
camera pose estimation can be defined as,

P
′

= RP + t (1)

where P
′

and P are 3D correspondences, and [R, t] defines the relative motion
between two cameras. For monocular sensors, their image normalized represen-

tations are X
′
c and Xc,

X
′
c = α(RXc + γt) (2)

where α and γ are depth-related parameters. After multiplying (2) by X
′T
c [t]x,

we can obtain the classic essential matrix equation,

X
′T
c EXc = 0 (3)
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where E = [t]xR and [t]x is the skew symmetric matrix formed by t.
For RGB-D sensors, the task is simplified since the absolute depth infor-

mation is directly provided by sensors. Equation (1) can be solved by using
3 non-collinear correspondences only [29], although the distance between two
frames is supposed to be kept small to extract enough correspondences.

3.1 Minimal solution for rotation

Fig. 2. Minimal case of rotation estimation in EG

Different from traditional methods based on co-visibility graphs, the proposed
method decouples rotation and translation estimation into two separate stages.
Moreover, the rotation estimation task does not require feature correspondences.
As shown in Figure 2, non-parallel direction vectors vm,m ∈ [0, 1, . . . , n] are de-
tected in the camera coordinate Cj , where vjm = [xv

j
m,y v

j
m,z v

j
m]T . In Euclidean

3D space, the size of a finite and linearly independent set of vectors is less then
four. According to the Gram-Schmidt orthogonalization process, we can obtain
an orthogonal set S = [u0,u1,u2],

u0 = vj0
u1 = vj1 − proj[vj

0]
(vj1)

u2 = vj2 − proj[vj
0]

(vj2)− proj[vj
1]

(vj2)

(4)

by using the projection operator proj[u](v) = <u,v>
||u||||v||v, where < u,v > shows

the inner product of the vectors u and v. Furthermore, we obtain the normalized
vectors e0, e1 and e2 via em = um

||um|| .

For the Euclidean space R3, the relevant orthonormal basis set based on
the detected direction vectors is (e0, e1, e2). In the jth camera coordinate, the
orthonormal set is detected as (e0, e1, e2), while (e∗0, e

∗
1, e
∗
2) in the kth camera

coordinate.
Therefore, from the perspective of the orthonormal set, those jth and kth

coordinates are represented as [e0, e1, e2]T and [e∗0, e
∗
1, e
∗
2]T , respectively.
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Given



eT0
eT1
eT2


 [e0, e1, e2] is the identity matrix, the matrix [e0, e1, e2] is an

orthogonal matrix and the columns of [e0, e1, e2]T are orthonormal vectors as
well, which can be used to build the orthonomal basis set of the jth camera
coordinate. Therefore, in R3 an arbitrary vector x can be represented by two
orthonormal sets, (e0, e1, e2)T and (e∗0, e

∗
1, e
∗
2)T , independently,

x = (e0, e1, e2)T (x0, x1, x2)T

= (e∗0, e
∗
1, e
∗
2)T (x∗0, x

∗
1, x
∗
2)T

(5)

Finally, (x0, x1, x2)T = (e0, e1, e2)(e∗0, e
∗
1, e
∗
2)T (x∗0, x

∗
1, x
∗
2)T where the rota-

tion motion Rcjck from camera k to camera j is [e0, e1, e2][e∗0, e
∗
1, e
∗
2]T .

Two-Observation case. In the spatial case where two linearly independent
direction vectors are detected, u2 can be achieved by the cross product process
of u0 and u1. Obviously, the new set [u0,u1,u0 × u1] maintains the orthogonal
property, which is the minimal solution for relative pose estimation problems.

Orthogonal-Observation case. As discussed in Section 2, the MW assump-
tion is enforced mostly by SLAM/VO methods designed to work indoor [15,
14, 19, 38], achieving particularly good results when the MW assumption holds.
When the observation vectors vjm are orthogonal, the projection operation be-
tween different vectors is zero and the proposed method degenerates to a multi-
MW case,

Rcjck = RcjMiR
T
ckMi

= [
vj
0

||vj
0||
,

vj
1

||vj
1||
,

vj
2

||vj
2||

][
vk
0

||vk
0 ||
,

vk
1

||vk
1 ||
,

vk
2

||vk
2 ||

]T .
(6)

For single-MW scenarios, a global orthogonal set can be obtained by every
frame, therefore Rcjw, from world to camera Cj , can be computed by RcjMR

T
c0M

,
here Rc0w is an identity matrix.

Compared with the visual compass [15] method making use of a combina-
tion of line and plane features from MW [14] to estimate camera rotation, our
graph is more robust and flexible. Furthermore, compared to [31] that generates
four rotation candidates after aligning two frames’ vanishing points, our method
not only leverages plane features, but also solves the ambiguity regarding the
directions of the vanishing points [31].

After the relative rotation pose estimation step between two frames, in case
of no overlap between them, we need to make use of their neighboring frames to
compute translation vectors. Note that only two correspondences are required in
translation estimation by making use of Equation 1, which is particularly suited
to deal with scenes and environments characterized by different texture types
compared to traditional approaches [26, 3].
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(a) (b) (c)

Fig. 3. Vanishing point detection and Rotation connection examples. (a) Detection
results of J-Linkage. (b) Refined results by our system. (c) E-Graph (black) and co-
visibility graph (red).

4 Extensibility Graph (E-Graph)

As shown in Figure 3(c), the E-Graph method builds rotation connections (edges)
between frames [CEG1 , CEG2 , CEG3 ] that share global directions instead of any low-
level correspondences (like points and lines). At the same time, no connection
between CCG4 and CCG6 can be made since these frames have no co-visible fea-
tures within the co-visibility graph. The proposed connection strategy will be
detailed in the following subsections.

4.1 Landmarks from a RGB-D frame

Similar to the co-visibility graph, the proposed graph is also a topological rep-
resentation of scenes. The difference is that the proposed graph is built based
on the scene structure rather than on overlapping parts between frames. The
distance between connected frames in a co-visibility graph tends to be small (see
Figure 3) since two frames that are distant from each other rarely overlap, lead-
ing to the pose of the current frame being estimated based on the last frame or
last keyframes only. The issue can be alleviated by using global bundle adjust-
ment and loop closure modules, although they bring in intensive computation
and trajectory constraints (e.g. need to re-visit a certain area).

In our graph G = [Nc,Nlm,E ] frames and landmarks are regarded as nodes
Nc and Nlm respectively, while E represents the edges among connected frames.
Note that landmarks are border-less planes and vanishing directions, e.g. VD1,2,3,
of lines detected in multiple views. In particular, an edge is established between
two frames every time two or more structural elements are matched across them.

Features and landmarks. Vanishing directions are estimated from parallel
lines detected by a joint 2D-3D process, where LSD [35] is used to extract 2D
line features from RGB images. Meanwhile, AHP [5] is carried out to extract
plane features from depth maps.
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Firstly, as shown in Figure 3(a), we make use of the J-Linkage algorithm
to classify detected 2D lines into different groups of parallel lines as described
in [34]. However, there are still outliers left based on the 2D process. To solve this
issue, we take advantage of depth maps to check the directions of lines in each
group by using RANSAC to detect the best direction vector VDn to represent
the group Sn.

As for planar landmarks, we make use of the Hessian (πππ = (nπ, dπ)) to
represent a plane detected from the ith frame, where nπ denotes the normal
vector and dπ represents the distance between the camera center and this plane,
which is transferred to world coordinates via the initial pose Twci .

4.2 Data Association

After generating vanishing directions and planes, we now explain how to initialize
and update them.

Initialization. Combined with the first keyframe Kf 0, detected planes and
optimized vanishing directions are used to initialize the E-Graph. The camera
pose T0 of Kf 0 is set as the world coordinate for landmarks in the E-Graph.
Planes πππi measured by Kf 0 are transferred to the graph directly as,

G0 = [Nc0 ,Nlm0 ,E0] (7)

where Nc0 is Kf 0 and E0 has no edges yet. Nlm0 contains [πππi,VD i,PDj ], where
VD i and PDj refer to two different types of 3D lines detected in the RGB-D
frame: the former refers to lines that are parallel to at least another 3D line,
the latter to lines that are not parallel to any line. The first type of lines can
generate vanishing directions VD i in a single view, which are stored into the
graph directly, similarly to planes. In addition, lines that do not have parallel
lines detected in this RGB-D frame are marked as potential vanishing direction
PDj . In case parallel lines will be detected in successive frames, these lines will
also be transferred to VDj , otherwise, they are removed from the E-Graph.

Landmarks fusion. For each new input frame we need to extract vectors nπ,
VD and PD from the current frame. After rotating VDc

i to the world coordinate
frame as VDw

i , if the direction between VDc
i is parallel to VDw

k , k ∈ [0, . . . ,m],
where m is the number of vanishing directions saved in E-Graph, VDc

i is then
associated to the graph. To solve the unsure issues [31] of vanishing directions,
we will unify the direction during the association process by using

˜V D
c

i =

{
VDc

i (|norm(VDw
i ·VDw

k )− 1| < thvd)
−VDc

i (|norm(VDw
i ·VDw

k ) + 1| < thvd)
(8)

where norm(·) shows a dot product between two normalized vectors and | · | is
the absolute difference. thvd is a threshold to check the angle distance between
two vectors. To include additional graph connections, we also try to associate
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PDc
j with VDw

k and PDw
k . If new pairs can be made at this stage, the associated

PD vectors are transferred to the vanishing directions and fused into the graph.
Since the vanishing direction is independent from translation motion, VDw

i ,
the vanishing direction in the world coordinate can be obtained as

VDw
i = RwcVDc

i (9)

where Rwc is the rotation motion from the camera coordinate frame to the world
coordinate frame.

In certain indoor scenes, e.g. a corridor or hallway, when a robot moves along
the wall, an extended planar region is detected across multiple views, with most
of these views encompassing no overlap. To address this issue, we extract the
normal vector [ncx, n

c
y, n

c
z] of the plane in the camera coordinate, which can be

fused into the world coordinate in the same way as the vanishing directions.

Edge connection. In E-Graph, all landmarks come from keyframes that follow
the decision mechanisms of a feature-based SLAM system [24, 20], which we
summarize in the following. A new keyframe is detected if it satisfies one of the
following two conditions: 1) 20 frames have passed from the last keyframe; 2)
the current frame tracks less than 85% points and lines correspondences with
the last keyframe. Furthermore, when the current frame detects a new plane or a
new vanishing direction, the frame is considered as a new keyframe. In addition,
new landmarks connected to this keyframe are also merged into the graph at
this stage.

By sequentially processing keyframes, if more than two pairs of matched
landmarks are observed between two keyframes, an edge will be created to con-
nect the respective two graph nodes. As shown in Figure 2, Cj and Ck detect the
plane πππ and the same vanishing point generated by L1 and L2. Notably, even if
these two frames do not have any correspondence, they can still be connected in
our E-Graph.

5 Experiments

In this section, the proposed system is evaluated on different indoor benchmarks:
ICL-NUIM [10] and TUM RGB-D [33]. ICL-NUIM [10] contains eight synthetic
sequences recorded in two scenarios (living room and office room). TUM RGB-
D [33] is recorded in real scenarios and includes varied sequences in terms of
texture, scene size, presence of moving objects, etc.

Rotation estimation. The proposed rotation algorithm is compared with other
state-of-the-art orientation estimation approaches. Compass [15] makes use of
a single line and plane. OPRE [43] and GOME [12] estimate the distribution
of surface normal vectors based on depth maps. OLRE [2] and ROVE [16] take
advantage of vanishing directions for rotation estimation. Importantly, Compass,
GOME, OLRE, OPRE, and P-SLAM [20] are all based on the MW assumption,
while our method, ORB-SLAM2 [25] and ROVE are designed for general scenes.
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Translation estimation. Since the rotation of the current frame is estimated
from a keyframe that may not be overlapping with the current frame, we follow
the 3D translation estimation model [26, 20] to estimate the translation t based
on the predicted rotation. In this module, re-projection errors from point-line-
plane feature correspondences are used to build a target optimization function,
t = argmin(

∑n
j=0 e

π
i,jΛ

πeπi,j + eLi,jΛ
LeLi,j + ePi,jΛ

LePi,j), where eπ, eL and eP are
re-projection error functions for planes, lines and points, respectively. The target
function is optimized by using the Levenberg-Marquardt method. The transla-
tion is compared with the following state-of-the-art methods. ORB-SLAM2 [26]
and ORB-SLAM3 [3] are popular keypoint-based SLAM systems. In our exper-
iments, for fairness of comparison the loop closure is removed to reduce the
effect of the back-ends. SP-SLAM [39] additionally uses points and planes in
the tracking and optimization modules based on ORB-SLAM2. P-SLAM [19]
assumes the indoor environments as MW, and includes a refinement module to
make the tracking process more robust. Moreover, we also compare our system
with GPU-based methods, including BadSLAM [32] and BundleFusion [4].

Dense mapping. In this paper, a mapping module is implemented to recon-
struct unknown environments in sparse and dense types. The sparse map is
reconstructed by the point-line-plane features extracted from keyframes, which
supports a frame-to-map pose refinement step. Since sparse maps cannot pro-
vide enough information for robots, our system also generates a dense mesh
map incrementally based on CPU. When a new keyframe is generated from the
tracking thread, we make use of the estimated camera pose and the RGB-D pair
to build a dense TSDF model based on [42, 27]. After that, the marching cubes
method [21] is exploited to extract the surface from voxels.

Metrics. The metrics used in our experiments include absolute trajectory error
(ATE), absolute rotation error (ARE), and relative pose error (RPE) that shows
the difference in relative motion between two pairs of poses to evaluate the
tracking process. Our results are reported in Table 2 and obtained on an Intel
Core @i7-8700 CPU @3.20GHz and without any use of GPU resources.

5.1 ICL NUIM dataset

As shown in Table 1, the proposed method outperforms other MW-based and
feature-based methods in terms of average rotation error. In office room se-
quences, OPRE and P-SLAM also perform well since orthogonal planar features
can be found in the environment. However, in office room 0, parts of the camera
movement only contain a single plane and some lines, leading to performance
degradation, while our method achieves robust orientation tracking by taking
advantage of a set of non-parallel planes and lines.

Furthermore, we compare the translation results against two feature-based
methods as shown in Table 2. The first four sequences are related to a living
room scenario, while the remaining sequences are from an office scenario. All
methods obtain good results in living room 0 where the camera moves back and
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Table 1. Comparison of the average value of the absolute rotation error (degrees) on
ICL-NUIM and TUM RGB-D structural benchmarks. The best result for each sequence
is bolded. × shows that the method fails to track the orientation.

Sequence Ours Compass [15] OPRE [43] GOME [12] ROVE [16] OLRE [2] ORB2 [26] P-SLAM [20]

office room 0 0.11 0.37 0.18 5.12 29.11 6.71 0.40 0.57
office room 1 0.22 0.37 0.32 × 34.98 × 2.30 0.22
office room 2 0.39 0.38 0.33 6.67 60.54 10.91 0.51 0.29
office room 3 0.24 0.38 0.21 5.57 10.67 3.41 0.36 0.21

living room 0 0.44 0.31 × × × × 0.97 0.36
living room 1 0.24 0.38 0.97 8.56 26.74 3.72 0.22 0.26
living room 2 0.36 0.34 0.49 8.15 39.71 4.21 0.83 0.44
living room 3 0.36 0.35 1.34 × × × 0.42 0.27

f3 stru notex 4.46 1.96 3.01 4.07 × 11.22 × 4.71
f3 stru tex 0.60 2.92 3.81 4.71 13.73 8.21 0.63 2.83
f3 l cabinet 1.45 2.04 36.34 3.74 28.41 38.12 2.79 2.55
f3 cabinet 2.47 2.48 2.42 2.59 × × 5.45 1.18

forth between the two parallel walls. P-SLAM detects a good MW model, and
ORB-SLAM3 also observes enough features, benefiting from paintings hanging
on the wall and small furniture. Compared with the living room, the office room
has many low-textured regions. The performance of feature-based algorithms is
not as good as in the living room scenes, especially in office room 1 and office
room 3.

Table 2. Comparison in terms of translation RMSE (m) for ICL-NUIM and TUM
RGB-D sequences. × means that the system fails in the tracking process.

Sequence Ours P-SLAM[20] ORB-SLAM3[3]

office room 0 0.014 0.068 0.035
office room 1 0.013 0.020 0.091
office room 2 0.020 0.011 0.010
office room 3 0.011 0.012 0.096

living room 0 0.008 0.006 0.006
living room 1 0.006 0.015 0.206
living room 2 0.017 0.020 0.018
living room 3 0.021 0.012 0.019

f1 360 0.114 × 0.108
f1 room 0.095 × ×
f2 rpy 0.002 0.154 0.003
f2 xyz 0.003 0.009 0.004
f3 l o house 0.012 0.122 0.009
f3 stru notex 0.017 0.025 ×
f3 l cabinet 0.058 0.071 0.072

To analyze the relationship between rotation and translation results of dif-
ferent methods, absolute translation and rotation errors on the office room 0
sequence are presented in Figure 4. When the camera moves to the ceiling,
the number of detected features decreases, then an interesting phenomenon is
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witnessed (see also Figure 4(a)): the tracking error of feature-based systems
quickly and drastically increases, then gradually fades as the number of features
increases. At the same time, our method and P-SLAM exhibit a more robust
performance when they face this challenge. An important difference is that, while
P-SLAM underperforms due to the non-rigid MW scene, our method’s perfor-
mance is accurate thanks to the use of the E-Graph, which demonstrates to be
more flexible than MW-based paradigms.

(a) ATE

(b) Ours (c) P-SLAM (d) ORB-SLAM3

Fig. 4. Comparison of the proposed system against state-of-the-art methods in the
office room 0 sequence of ICL NUIM in terms of mean/average absolute translation
errors (top) and rotation errors (bottom).

5.2 TUM RGB-D

Different types of sequences are included from the TUM RGB-D benchmark,
which aims to test general indoor scenes with low-textured scenes and sharp
rotational motions. f1 360, f1 room, f2 rpy and f2 xyz are recorded in real office
scenes, but the camera’s rotation motion changes sharply especially in the first
sequence. f3 l o house, f3 sn near and f3 l cabinet contain more structural infor-
mation, where f3 sn near is built on two white corners, and f3 l cabinet records
several movements around the white cabinet. Table 1 shows that ROVE, OLRE
and ORB-SLAM2 have problems in low/non-textured regions. In f3 l cabinet
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(a)

(b)
(c)

(d)

(e)

Fig. 5. Scene and graphs of f3 l o house. (a) 2D image, (b) dense mesh model, (c)
sparse map, (d) E-Graph, (e) co-visibilitity graph.

that is not a rigid MW environment, the quality of depth maps is noisy, the
surface normal maps extracted by OPRE have a negative effect on rotation es-
timation.

Table 3. ATE RMSE results (cm) on the TUM RGB-D dataset. Results for Bundle-
Fusion and BadSLAM are taken from [32]

Sequence
Ours BundleFusion [4] ElasticFusion [37] BadSLAM [32]
CPU GPU GPU GPU

f1 desk 1.0 1.6 2.0 1.7
f2 xyz 0.7 1.1 1.1 1.1
f3 office 1.4 2.2 3.6 1.7

For structural sequences listed in Table 1, P-SLAM shows stable performance.
In Table 2, general scenes are added as a comparison. As listed in Table 2, the
keypoint-based method [3] cannot achieve robust results in f3 sn near, i.e. , a
textureless scenario, while the MW-based method [20] has problems when the
scene structure breaks the MW assumption, by reporting a low performance in
f2 rpy and f3 l o house, and even losing track in f1 360 and f1 room. There-
fore, the proposed method shows more robust performances in different types
of scenarios, compared with MW-based systems [20, 15] and feature-based ap-
proaches [26, 3]. Furthermore, compared with GPU-based systems, our system
only works on limited computation sources. As shown in Figure 5, f3 l o house
is used to compare E-Graph and co-visibility graph. As clearly shown, E-Graph
allows connecting more distant keyframes than a co-visibility graph. When two
keyframes can be connected together, drifting phenomena can more easily be
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limited, in a similar way to the underlying idea behind loop closure. The cabinet
scene is also a difficult sequence for point-based methods (see Figure 6(b)) since
point features are concentrated in a few boundary regions. However, our method
can deal with this type of scene where the same plane is observed in a number
of frames.

(a)

(b)
(c) (d)

Fig. 6. Scene and graph of f3 cabinet. (a) E-Graph, (b) trajectory from ORB-SLAM3,
(c) sparse map, (d) 2D image.

6 Conclusion

This paper proposed a new graph structure, E-Graph, to reduce tracking drift
based on plane normals and vanishing directions in a scene, which can be used
to build a rotation connection between two frames without visual overlap. The
advantage of this idea is that rotation errors that occur between two frames
have small or no effect on this relative rotation estimation step. Based on the
proposed graph, a minimal solution is presented, that shows that two landmarks
and two correspondences can be used to solve the relative camera pose. There-
fore, the proposed method is better suited for texture-less scenes compared with
traditional minimal solutions based on co-visible features. However, the proposed
method also has limitations. Compared with point-based systems, our approach
requires more types of features. Furthermore, since we need vanishing directions
and plane vectors, the method is more suitable for man-made scenes.

Feature work. The E-Graph is a new tool to establish connections across
frames and keyframes. An interesting topic for future exploration is considering
a covisibility graph and our graph together to revisit pose estimation and obtain
further improvements in drift removal.

Acknowledgements. We gratefully acknowledge Xin Li, Keisuke Tateno,
Nicolas Brasch and Dr. Liang Zhao for the helpful discussion.
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Open-Structure: a Structural Benchmark Dataset for
SLAM Algorithms

Yanyan Li1, Zhao Guo2, Ze Yang2, Yanbiao Sun2, Liang Zhao3 and Federico Tombari1,4

1 Technical University of Munich
2 Tianjin University

3 University of Edinburgh
4 Google

Abstract. This paper introduces a new benchmark dataset, Open-Structure, for evaluating
visual odometry and SLAM methods, which directly equips point and line measurements,
correspondences, structural associations, and co-visibility factor graphs instead of providing
raw images. Based on the proposed benchmark dataset, these 2D or 3D data can be directly
input to different stages of SLAM pipelines to avoid the impact of the data preprocessing
modules in ablation experiments. First, we propose a dataset generator for real-world and
simulated scenarios. In real-world scenes, it maintains the same observations and occlusions
as actual feature extraction results. Those generated simulation sequences enhance the
dataset’s diversity by introducing various carefully designed trajectories and observations.
Second, a SLAM baseline is proposed using our dataset to evaluate widely used modules
in camera pose tracking, parametrization, and optimization modules. By evaluating these
state-of-the-art algorithms across different scenarios, we discern each module’s strengths and
weaknesses within the camera tracking and optimization process. Our dataset and baseline
are available at https://github.com/yanyan-li/Open-Structure.
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wMPS-SLAM: An Online and Accurate Monocular
Visual-wMPS SLAM System

Ze Yang1, Yanyan Li2, Yanbiao Sun1, Jiarui Lin1, Jigui Zhu1

1 Tianjin University
2 Technical University of Munich

Abstract. Tracking drift issues resulting from the lack of global positioning constraints pre-
vent visual simultaneous localization and mapping (SLAM) systems from providing accurate
pose estimation services, especially in indoor environments. Similar to the function of the
Global Navigation Satellite System (GNSS), a new indoor equipment called workshop Mea-
surement Positioning System (wMPS) has been developed to provide millimeter-level global
positioning information in the large-volume metrology industrial community but is rarely
applied to SLAM solutions. In this paper, we introduce a novel wMPS-SLAM framework
that combines 3 degree-of-freedom (DoF) wMPS signals into our monocular pose estimation
algorithm, enabling drift-free global 6DoF pose estimation in indoor scenarios. Firstly, a
system calibration method is proposed to establish the relationship between the camera
and wMPS and fuse the sensor information. Secondly, a variant similarity transformation
scheme is employed to jointly estimate the scale factor and extrinsic parameters of the camera
frame w.r.t the world frame for estimating the global camera poses. Lastly, a pose graph
optimization method that minimizes global position and relative pose errors is utilized to
fuse Visual Odometry (VO) estimation and wMPS measurements. Evaluation experiments
conducted on two datasets demonstrate that wMPS-SLAM outperforms the state-of-the-art
monocular visual solution (ORB-SLAM3) in terms of accuracy. Specifically, the absolute
translation error (ATE) of the proposed system is reduced from 28.58mm to 7.018mm in
real-world experiments.

204



Tightly-coupled fusion of iGPS measurements in
optimization-based visual SLAM

Ze Yang1, Yanyan Li2, Jiarui Lin1, Yanbiao Sun1, Jigui Zhu1

1 Tianjin University
2 Technical University of Munich

Abstract. The monocular visual Simultaneous Localization and Mapping (SLAM) can
achieve accurate and robust pose estimation with excellent perceptual ability. However,
accumulated image error over time brings out excessive trajectory drift in a GPS-denied
indoor environment lacking global positioning constraints. In this paper, we propose a novel
optimization-based SLAM fusing rich visual features and indoor GPS (iGPS) measurements,
obtained by workshop Measurement Position System, (wMPS), to tackle the problem of
trajectory drift associated with visual SLAM. Here, we first calibrate the spatial shift and
temporal offset of two types of sensors using multi-view alignment and pose optimization
bundle adjustment (BA) algorithms, respectively. Then, we initialize camera poses and map
points in a unified world frame by iGPS-aided monocular initialization and PnP algorithms.
Finally, we employ a tightly-coupled fusion of iGPS measurements and visual observations
using a pose optimization strategy for high-accuracy global localization and mapping. In ex-
periments, public datasets and self-collected sequences are used to evaluate the performance
of our approach. The proposed system improves the result of absolute trajectory error from
the current state-of-the-art 19.16mm (ORB-SLAM3) to 5.87mm in the public dataset and from
31.20mm to 5.85mm in the real-world experiment. Furthermore, the proposed system also
shows good robustness in the evaluations.
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Stereo Matching.

Hongzhi Du1, Yanyan Li2, Yanbiao Sun1, Jigui Zhu1, Federico Tombari2,3

1 Tianjin University
2 Technical University of Munich

3 Google

Abstract. The cost aggregation strategy shows a crucial role in learning-based stereo match-
ing tasks, where 3D convolutional filters obtain state of the art but require intensive computa-
tion resources, while 2D operations need less GPU memory but are sensitive to domain shift.
In this paper, we decouple the 4D cubic cost volume used by 3D convolutional filters into
sequential cost maps along the direction of disparity instead of dealing with it at once by ex-
ploiting a recurrent cost aggregation strategy. Furthermore, a novel recurrent module, Stacked
Recurrent Hourglass (SRH), is proposed to process each cost map. Our hourglass network is
constructed based on Gated Recurrent Units (GRUs) and down/upsampling layers, which
provides GRUs larger receptive fields. Then two hourglass networks are stacked together,
while multi-scale information is processed by skip connections to enhance the performance of
the pipeline in textureless areas. The proposed architecture is implemented in an end-to-end
pipeline and evaluated on public datasets, which reduces GPU memory consumption by up
to 56.1% compared with PSMNet using stacked hourglass 3D CNNs without the degradation
of accuracy. Then, we further demonstrate the scalability of the proposed method on several
high-resolution pairs, while previously learned approaches often fail due to the memory
constraint. The code is released at https://github.com/hongzhidu/SRHNet.

206
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Abstract. In this paper, a robust RGB-D SLAM system is proposed to utilize the structural
information in indoor scenes, allowing for accurate tracking and efficient dense mapping
on a CPU. Prior works have used the Manhattan World (MW) assumption to estimate low-
drift camera pose, in turn limiting the applications of such systems. This paper, in contrast,
proposes a novel approach delivering robust tracking in MW and non-MW environments.
We check orthogonal relations between planes to directly detect Manhattan Frames, modeling
the scene as a Mixture of Manhattan Frames. For MW scenes, we decouple pose estimation
and provide a novel drift-free rotation estimation based on Manhattan Frame observations.
For translation estimation in MW scenes and full camera pose estimation in non-MW scenes,
we make use of point, line and plane features for robust tracking in challenging scenes.
Additionally, by exploiting plane features detected in each frame, we also propose an efficient
surfel-based dense mapping strategy, which divides each image into planar and non-planar
regions. Planar surfels are initialized directly from sparse planes in our map while non-planar
surfels are built by extracting superpixels. We evaluate our method on public benchmarks for
pose estimation, drift and reconstruction accuracy, achieving superior performance compared
to other state-of-the-art methods. We will open-source our code in the future.
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