
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Type Invariants and Ghost Code in Rust
Verification with Creusot

Typinvarianten und Ghostcode in
Rust-Verifikation mit Creusot

Author: Dominik Stolz
Supervisor: Prof. Tobias Nipkow
Advisor: Jacques-Henri Jourdan, Xavier Denis
Submission Date: 15.11.2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.11.2023 Dominik Stolz

Acknowledgments

I extend my sincere thanks to my advisors, Jacques-Henri Jourdan and Xavier Denis,
for their invaluable guidance and steadfast support. Xavier’s pivotal encouragement
to apply for a research internship at the Laboratoire Méthodes Formelles significantly
enriched my research journey. This opportunity was only made possible thanks to
Jacques-Henri’s relentless dedication to surmounting bureaucratic challenges. Their
expertise and keen insights have been instrumental to the completion of this thesis.

I am also grateful to the entire team at the Laboratoire Méthodes Formelles for their
warm welcome and stimulating discussions. On a personal note, I wish to thank my
family and friends for supporting me throughout this project.

Abstract

This thesis explores the adoption of two established specification patterns within the
Rust verifier Creusot: type invariants and ghost code. Type invariants empower users
to attach logical predicates to data types, which Creusot enforces for all values of a
type. Ghost code enables auxiliary constructs that bolster verification without affecting
the program’s runtime behavior. Especially when employed in tandem, these patterns
enhance the expressivity of specifications and ensure the scalability of Rust verification.
We introduce an innovative framework for type invariants, including its implementation
in Creusot. Moreover, we scrutinize Creusot’s current implementation of ghost code,
identifying soundness deficiencies and presenting refinements to address them. Our
evaluation demonstrates that these extensions not only facilitate more concise program
specifications but also maintain robust verifiability.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Overview . 3

2 Background 5
2.1 Rust . 5
2.2 Deductive Verification . 8
2.3 Rust Verification with Creusot . 11

3 Type Invariants 17
3.1 Design Challenges . 17

3.1.1 Open and Closed Invariants . 17
3.1.2 Interaction of Invariants and Borrowing 19

3.2 Prophetic Invariants . 20
3.2.1 Basic Usage . 20
3.2.2 Prophetic Invariants . 22
3.2.3 Soundness . 23

3.3 Structural Invariants . 25
3.3.1 Preventing Hidden Invariants . 25
3.3.2 Derivation of Structural Invariants 26
3.3.3 Invariant Encoding . 27
3.3.4 Invariant Elision & Parametricity . 29

3.4 Prophecy Resolution . 31
3.4.1 Early and Late Resolution . 31
3.4.2 Resolution Algorithm . 33
3.4.3 Correctness of Resolution . 34
3.4.4 Incompleteness of Resolution . 36

3.5 Limitations . 38

4 Ghost Code 39
4.1 Design Goals . 39
4.2 Ghost Code in Creusot . 41

4.2.1 Embedding Ghost Code in Program Code 42

vi

Contents

4.2.2 Ghost Code Erasure . 42
4.3 Soundness Analysis . 42

4.3.1 Termination of Auxiliary Functions 43
4.3.2 Well-Formedness of Data Types . 44
4.3.3 Soundness of Prophecies in Ghost Code 46
4.3.4 Summary . 49

5 Evaluation 51
5.1 Evaluation Criteria . 51
5.2 Case Studies and Experiments . 52

5.2.1 Data Structures . 52
5.2.2 Iterators . 54

5.3 Discussion . 58
5.3.1 Specification Expressivity . 58
5.3.2 Verifiability & Prover Performance 58
5.3.3 Usability & Robustness . 60

6 Related Work 61

7 Conclusion and Future Work 65
7.1 Conclusion . 65
7.2 Future Work . 65

List of Figures 68

List of Tables 70

Bibliography 71

vii

1 Introduction

Writing correct computer programs is hard. Programmers must grasp not only the
intricacies of the problem they aim to solve but also the exact semantics of their chosen
programming language. As a result, most programs unsurprisingly contain errors. The
tolerance for these errors varies depending on the type of error and the program’s
intended usage context. Consequently, methods of varying thoroughness have been
developed to gain confidence in a program’s correctness. For most applications, identify-
ing errors through testing and rectifying them retroactively suffices. However, in critical
applications where software flaws could have grave consequences up to the point of
endangering lives, far higher assurances are needed.

Enter Rust [MK14], a programming language designed to provide heightened safety
guarantees and thus a representative of language-based approaches to increasing con-
fidence in programs. It has gained popularity thanks to its promise to overcome the
classical tradeoff between high-level safety and low-level control [Jun+21]. Unlike most
safe languages, Rust does not incur overhead due to superfluous memory allocations or
costly runtime checks. Unlike most low-level languages, well-typed Rust programs stati-
cally guarantee the absence of memory safety errors. Adoption of Rust for safety-critical
applications [Gil21] bears witness to the success of this approach.

While memory safety already rules out large classes of errors, ensuring a program’s
functional correctness demands more potent methods. A program is functionally correct
if it not only never performs illegal operations but also always computes the expected
result. Establishing this property is the goal of deductive program verification, aiming
to mathematically prove that a program behaves as expected in all possible scenarios.

Rust is a prime candidate for writing verified programs, especially among imperative
programming languages with pointers. Traditionally, verification of programs in such
languages presents a challenge due to the complexities of reasoning about aliasing
pointers. Aliasing occurs when multiple pointers reference the same memory location.
This complicates verification since changes made via one pointer can affect data accessed
by another. However, by leveraging the guarantees of well-typed Rust programs,
reasoning about aliasing becomes far more tractable.

The Creusot tool [DJM22] builds upon this insight to verify Rust programs. It
distinguishes itself from other Rust verifiers, such as Prusti [Ast+19] or Verus [Lat+23],
through its use of prophecy variables to encode pointers. This enables Creusot to
translate Rust into a functional representation, avoiding the need to reason about
general pointer programs.

1

1 Introduction

1.1 Motivation

Scaling verification to larger programs faces a disproportional increase in the complexity
of specifications. As a countermeasure, encapsulation patterns have emerged to confine
the complexity behind an abstraction barrier. In this work, we focus on two complemen-
tary verification patterns: type invariants and ghost code. While these patterns are already
well understood for other languages [Coh+09; Lei10; FGP16], their adoption for Rust
and Creusot presents unique challenges. In the following, we motivate how the two
concepts are useful for Rust verification, individually as well as in combination.

Type Invariants. Certain data types impose specific conditions on the validity of their
values extending beyond the expressivity of Rust’s type system. Operations defined
for such types often rely on these conditions in their implementation. Hence, verifying
the correctness of such operations necessitates a mechanism to specify and enforce
adherence to the validity conditions. This is facilitated through the definition of a type
invariant: a logical predicate attached to a data type. Verification enforces that a type
invariant is preserved by all operations, thereby ensuring it holds for all values of the
type. For example, a list type optimized for fast lookups might have a type invariant
specifying that the stored elements are sorted. An operation such as inserting an element
into the list, must guarantee that the list remains sorted.

This thesis presents a novel design for type invariants that we implemented in
Creusot. While similar features have been implemented in other Rust verifiers [Ast+19;
Leh+23; Gäh+23], support in Creusot necessitates a unique design to maintain sound-
ness in the interaction with its distinguishing prophecies.

Ghost Code. Verification often benefits from additional context that is irrelevant
during execution. However, augmenting a program’s implementation with assertions or
variables to provide such context would mean imposing a runtime overhead. Ghost code,
auxiliary code added to a program solely for the purpose of verification, solves this issue.
It upholds a characteristic erasure property stating that it can be removed from a program
without changing its behavior. Because ghost code is not executed, it permits additional
operations that only have a logical interpretation. These enable specifying higher-level
properties that do not map directly onto the low-level details of the implementation. For
example, ghost code is commonly used to create a ghost copy, or snapshot, of a value
at the start of a function. When the value is subsequently modified, the copy allows
relating the original and updated values at the end of the function. The usage of ghost
code ensures that the creation of snapshots does not incur performance costs at runtime.

In this thesis, we analyze the soundness of an existing implementation of ghost code
in Creusot. The analysis revealed several deficiencies, which we corrected by extending
the existing implementation.

2

1.2 Thesis Overview

Type Invariants and Ghost Code Combined. While type invariants and ghost code
are both useful individually, the true potential lies in their combination. A data structure
may have an associated abstract state that is not directly constructible from its concrete
data but connected through a logical relation. In such cases, the data structure can
explicitly store the abstract state in a ghost field and enforce its consistency with the
concrete state using a type invariant. For instance, consider a data structure that
implements a state machine and is represented logically using a predicate specifying the
transition relation. Traditionally, specifying properties about the state machine’s history
requires existentially quantifying over possible histories using the transition relation, as
the runtime representation only stores the current state. Ghost code and type invariants
offer a more elegant alternative: Operations store additional historical information in a
ghost field and a type invariant enforces that historical and current states adhere to the
transition relation. This pattern has shown to be useful, for example, to verify Rust’s
iterators [DJ23].

In summary, type invariants and ghost code are indispensable tools in the Rust
verification toolkit. By effectively leveraging these concepts, users can specify and verify
larger, more complex programs.

1.2 Thesis Overview

As a preliminary, Chapter 2 provides background information on Rust, deductive
program verification, and Creusot. The thesis covers two main topics: type invariants
and ghost code, which are presented in Chapter 3 and Chapter 4, respectively. After
having been considered independently, the two concepts are evaluated in combination in
Chapter 5. We discuss related work in Chapter 6 and draw comparisons with our work.
Finally, in Chapter 7, we summarize our contributions and outline potential extensions.

3

2 Background

Before further discussing type invariants and ghost code, we give an overview of the
Rust programming language and automated verification with Creusot.

2.1 Rust

Rust [MK14] is a compiled, statically typed systems programming language. It draws
inspiration from both imperative and functional languages.

Basic Syntax. Rust adopts a C-style syntax, with code blocks enclosed in braces and
statements terminated by semicolons. By default, variables in Rust are immutable,
preventing their modification unless they are explicitly declared mutable using the
mut keyword. Rust’s control flow mechanisms, such as if expressions and while loops,
look similar to those in other imperative languages. Functions are introduced with the
fn keyword, and their return types are delineated with ->. While the return keyword
can explicitly specify a return value, functions implicitly return the value of their final
expression. Rust provides various primitive types, including u8 for unsigned 8-bit
integers, i32 for signed 32-bit integers, and bool for booleans. Beyond these primitives,
the language supports custom algebraic data types via the struct and enum keywords,
representing record and sum types, respectively. The match expression facilitates pattern
matching, allowing values of algebraic types to be deconstructed by handling each
variant. To attach behavior to types, methods can be defined inside of impl-blocks,
making them callable using the typical dot notation. Within method definitions, the first
parameter, self, refers to the value on which the method is invoked.

Figure 2.1 shows an example defining the enum List with two variants Nil and
Cons. The sum method, defined only for lists of i32 integers, computes the sum of their
elements. Through iterative pattern matching, the function deconstructs the given list
self, updating the mutable local variables list and res. Finally, when list matches
Nil, the aggregated sum res is returned.

Ownership Types. Rust is distinguished by its language-based approach to memory
safety [Jun+21], central to which is its ownership type system [CPN98]. In Rust, types are
indicative of ownership. Specifically, possessing a value of a certain type implies an
exclusive ownership of the associated data. This concept is influenced by substructural
type systems, which, unlike traditional type systems, place constraints on how often a
variable may be accessed. In Rust’s context, while variables can be accessed or read

5

2 Background

1 enum List<T> {
2 Nil,
3 // recursive type definitions require indirection (here: Box)
4 Cons(T, Box<List<T>>),
5 }
6

7 impl List<i32> {
8 fn sum(self) -> i32 {
9 let mut list = self;

10 let mut res = 0;
11

12 loop { // loop expressions evaluate to break value
13 match list {
14 List::Cons(x, xs) => {
15 res += x;
16 list = *xs; // access inner value of box
17 }
18 List::Nil => break res,
19 }
20 }
21 }
22 }

Figure 2.1: Example showcasing basic Rust syntax.

6

2.1 Rust

multiple times, the exclusive ownership of a variable can be transferred only once.
Thus, function arguments are passed by value (i.e., shallow-copied into the callee),
resulting in the transfer, or move, of ownership to the callee. After having been moved,
the argument is no longer accessible to the caller. This system ensures a unique data
owner at any point, mitigating concurrency issues like data races due to shared state
between threads. Some types, such as primitive integer types and booleans, are exempt
from the ownership rules. These types have copy semantics instead of move semantics,
allowing them to be duplicated through shallow copies without transferring ownership.
Rust also allows marking custom types as having copy semantics. Importantly, this
ownership paradigm allows the compiler to statically determine when memory can be
safely deallocated, eliminating the need for garbage collection. If a variable has not
been moved and goes out of scope, Rust automatically drops it, invoking destructors and
releasing resources.

Figure 2.2 illustrates these concepts. It defines two functions print_str and print_i32
taking arguments of types String and i32, respectively. The String type represents a
heap-allocated string and has move semantics, as a shallow copy would reference the
same backing heap memory. In the function example, we first allocate a new string s
using the to_string method. Then, we pass s to print_str, transferring its ownership.
Because s has now been moved, another call to print_str would trigger an error during
compilation. This ensures memory safety, as transferring ownership also transfers
the capability to deallocate the string. This means, that s is deallocated at the end
of the first invocation of print_str, making any subsequent use illegal. The example
also demonstrates copy semantics using the primitive i32 type. After the first call to
print_i32, the variable x remains usable because its value is duplicable.

1 fn print_str(s: String) { println!("{s}"); }
2 fn print_i32(x: i32) { println!("{x}"); }
3

4 fn example() {
5 let s = "Rust rocks".to_string();
6 print_str(s); // moves s
7 // print_str(s); ERROR: s has been moved
8

9 let x = 42;
10 print_i32(x); // copies x
11 print_i32(x);
12 }

Figure 2.2: Example demonstrating the concept of ownership in Rust.

Borrowing. In addition to Rust’s ownership model, the language introduces the
concept of borrowing, granting temporary access to a value without transferring its

7

2 Background

ownership. Borrowing a variable creates a reference, of which Rust distinguishes two
types: shared references, denoted by &T, and mutable references, denoted by &mut T. Unlike
some other languages, Rust treats references as first-class types, allowing arbitrary
composition, such as having a reference to another reference. References adhere to the
edict “aliasing XOR mutation”. This means, that shared references permit duplication,
creating multiple aliases, but are read-only, ensuring the underlying value remains
unchanged. Conversely, mutable references grant exclusive, mutable access to the value
they point to, but are unique and cannot be duplicated. In other words, shared references
have copy semantics while mutable references have move semantics. Every reference
in Rust has an associated lifetime, specifying the duration a reference remains valid.
While the compiler can infer lifetimes automatically in most cases, users can explicitly
specify them using the syntax &'a T or &'a mut T. Lifetimes help the compiler reason
about the relationships between references and the values they point to. During the
lifetime of a reference, the original, borrowed variable is blocked, meaning it cannot
be used or borrowed further. Only once Rust determines that a reference went out of
scope, its lifetime ends and the original variable can be used again. The borrowing
mechanism ensures safety by enforcing a pivotal rule: for any given value, either
multiple shared references or a single mutable reference may exist simultaneously. This
prevents mutable shared state, a common pitfall in concurrent programs. Moreover,
Rust protects variables from being dropped while borrowed, safeguarding against the
peril of dangling references. Figure 2.3 illustrates Rust’s borrowing system.

Traits. Rust’s trait system is a mechanism for abstracting over functionality shared
by several types. It draws inspiration from type classes in languages like Haskell but
has its own unique characteristics. A trait encapsulates a set of function signatures
that each implementing type must support. Consequently, an implementation of a trait
for a specific type must provide a definition for each function specified by the trait.
The special type Self may be used within a trait definition to refer generically to the
implementing type. A type is said to implement a trait if an appropriate implementation
exists. Traits can be used to bound generic type parameters in polymorphic functions,
restricting instantiations to types implementing specific traits. This enables a form of
ad hoc polymorphism, where different implementations can influence the behavior of
a function based on the instantiation of the type parameter. So-called marker traits are
special traits used to signify certain properties of types. While not necessarily defining
any methods, they rather act as a kind of capability attached to a type. Prominently, the
Copy trait signifies to the Rust compiler that a type should have copy semantics. The
example shown in Figure 2.4 demonstrates these concepts.

2.2 Deductive Verification

Deductive program verification seeks to formally establish that all possible executions
of a program adhere to a given specification.

8

2.2 Deductive Verification

1 fn print_str_ref(s: &String) { println!("{s}"); }
2 fn reverse_str(s: &mut String) { s.reverse(); }
3

4 fn example() {
5 let mut s = "Rust rocks".to_string();
6

7 let r1 = &s; // borrow as shared reference
8 // print_str(s); ERROR: s is borrowed
9 // let r2 = &mut s; ERROR: s is borrowed

10 print_str_ref(r1); // copy r1
11 print_str_ref(r1);
12 // lifetime of r1 expires, s is no longer borrowed
13

14 let r2 = &mut s; // borrow as mutable reference
15 // print_str(s); ERROR: s is borrowed
16 // let r3 = &s; ERROR: s is borrowed
17 reverse_str(r2); // move r2
18 // lifetime of r2 expires, s is no longer borrowed
19

20 print_str(s); // ok
21 }

Figure 2.3: Example illustrating borrowing in Rust.

1 trait Add {
2 // Self refers to the implementing type
3 fn add(self, other: Self) -> Self;
4 }
5

6 impl Add for i32 {
7 fn add(self, other: i32) -> i32 {
8 self + other
9 }

10 }
11

12 // T is bounded to types implementing Add and Copy
13 fn double<T: Add + Copy>(x: T) -> T {
14 // we can use x twice because T: Copy
15 x.add(x)
16 }

Figure 2.4: Example of defining and using traits in Rust.

9

2 Background

Hoare Logic. Hoare logic [Hoa69] provides a formal system to prove properties about
the behavior of imperative programs. It provides a set of rules to reason about Hoare
triples, the formulas of Hoare logic combining a program with its specification. The
triple {P} s {Q} states that if the precondition P holds before executing the program s
then the postcondition Q holds afterward. A triple is valid if it can be derived from a set
of axioms and inference rules. A valid triple implies partial correctness: The execution
of s does not get stuck, and starting in a state where P is true, if s terminates, then
Q is true at the end. Hoare logic gives rise to the weakest precondition (WP) calculus
[Dij+76]. Given a program and a postcondition, it computes a precondition that makes
the corresponding Hoare triple valid by applying the Hoare rules backward. Hence, for
all programs s and postconditions Q, the triple {wp(s, Q)} s {Q} is valid. The computed
precondition is weakest, in the sense that it is subsumed by every other precondition
making the triple valid.

Automated Verification. Leveraging the framework provided by Hoare logic, proving
program correctness can be translated into a computational problem automatable to
a certain degree. Given a program and its specification, a set of verification conditions
(VCs) can be computed based on the structure of the program. These logical predicates
capture exactly the conditions for partial correctness of a program. For example, a
Hoare-style contract {P} s {Q} results in a VC essentially stating P =⇒ wp(s, Q).
To avoid having to find fixpoints when computing the WP of a loop, users explicitly
annotate loops with loop invariants. The VC includes additional conditions ensuring that
every loop preserves its invariant and the invariant implies the loop’s postcondition.
Finally, automated proving systems, such as satisfiability module theory (SMT) solvers,
can be used to prove or disprove the generated formulas.

Why3. Why3 [FP13] is a platform for program verification, offering a unified interface
to several automated and interactive theorem provers. These backends include SMT
solvers like CVC5 [Bar+22] or Z3 [DB08], and auto-provers such as Alt-Ergo [Con+18].
At its core is the functional language WhyML which is used both for writing programs
as well as specifying them using Hoare-style pre- and postconditions. Based on an
annotated WhyML program, Why3 generates a set of verification conditions that imply
the program’s correctness. The interactive Why3 IDE [DMM18] helps with proving the
generated VCs. It shows each VC as a goal along with its corresponding context. The
context contains axioms and hypotheses coming from preconditions, proved assertions,
or contracts of other functions. Each goal can be either discharged by one of the backends
or further transformed, producing one or more subgoals. Invoking a backend solver
may either return a result, signifying a proof or disproof of the goal, or timeout. Prover
timeouts are typically caused by missing hypotheses or a too complex formulation of
the goal. While the former requires adjusting the specifications, the latter can also be
tackled by applying manual transformations. Such transformations include, for example,
splitting conjunctions, rewriting terms, or instantiating existential quantifiers.

10

2.3 Rust Verification with Creusot

2.3 Rust Verification with Creusot

Toolchain. Creusot [DJM22] is a deductive verifier for Rust programs built on top of
the Why3 platform. Figure 2.5 shows a high-level overview of the verification toolchain.
Before running Creusot, the user annotates their Rust program with specifications.
Creusot invokes the Rust compiler rustc to parse and analyze the source program,
extracting the compiler-internal mid-level intermediate representation1 (MIR). Next,
Creusot translates the MIR and the given specifications to the MLCFG dialect of
WhyML, the functional language at the core of Why3. Based on the generated WhyML
program, Why3 computes verification conditions to be discharged by its backends.

Rust Creusot

rustc

MLCFG Why3 CVC5

Z3

. . .

Figure 2.5: Overview of Creusot’s verification toolchain.

Specifying Rust Functions. Specifying Rust programs entails annotating functions
with Hoare-style contracts. Therefore, Creusot provides the #[requires(...)] and
#[ensures(...)] attributes, specifying a function’s pre- and postconditions, respec-
tively. Both have access to the function’s prestate, i.e., the values of the function arguments
when called. The postcondition can additionally refer to the special symbol result
representing the function’s return value. In addition to the properties specified as
postconditions, Creusot verifies the absence of panics and overflows for every function,
including those without explicit annotations.

Loop Invariants. Loop invariants are properties that hold before entering a loop
and are preserved in each loop iteration. Stating loop invariants is a prerequisite to
computing VCs. Hence, Creusot requires users to explicitly annotate loops with the
#[invariant(...)] attribute. It can be attached to all looping constructs, such as while-
and for-loops. Why3 generates an initialization and a preservation goal for each loop
invariant.

Pearlite. The logical predicates inside of the shown attributes are written in Pearlite,
Creusot’s specification language. The syntax of Pearlite is a subset of the syntax of

1MIR represents Rust code as a control-flow graph. Unlike lower-level representations, such as LLVM IR,
MIR fully preserves type information.

11

2 Background

Rust expressions extended with additional logical constructs. These include the implica-
tion operator ==>, the universal quantifier forall<x: T>, and the existential quantifier
exists<x: T>. The quantifiers specify the type T of the bound variable. Pearlite can
use both Rust types, which are translated into a corresponding WhyML type by Creusot,
as well as logical types defined in Why3’s standard library. Such types are, for example,
Int for unbounded integers, or Seq<T> representing generic, mathematical sequences.
Unlike Rust code, Pearlite is not compiled to MIR by rustc but instead extracted at
the AST level and directly translated to WhyML. The proof_assert! macro allows
verifying interim properties by embedding Pearlite expressions in Rust code. Unlike
Rust’s assert! macro which checks a boolean expression at runtime, proof_assert!
checks an expression at verification time.

Auxiliary Functions. Auxiliary logic functions allow factoring out common parts of
specifications. While looking similar to regular Rust functions superficially, their bodies
are defined using Pearlite instead of Rust. To distinguish them from Rust functions,
they are marked with the #[logic] or #[predicate] attributes. Predicate functions
must return a boolean value, whereas logic functions can return values of any type.
Using non-Rust syntax in auxiliary functions requires enclosing the Pearlite expression
in the pearlite! macro which desugars Pearlite constructs to valid Rust syntax.

Verified Sorting Routine. In the following, we demonstrate how to verify a simple
sorting routine, using the example of gnome_sort shown in Figure 2.6. The function sorts
a given slice of integers v in place, repeatedly swapping adjacent elements if they are
not yet in the right order. The ensures attribute specifies the function’s postcondition,
saying that the elements of v are sorted after the function returns. Because both, pre- and
postconditions, relate to the prestate of a function, we must use the final value operator ˆ
to refer to the values pointed to by v after having been sorted. This operator can only
be used in Pearlite, works only on mutable references, and can be understood as a
prophetic version of the normal dereferencing operator *. The example also uses the
model operator @, another special Pearlite construct, which is used to refer to the logical
representation of a value. In the example, it lifts the given Rust slice to a logical sequence
of type Seq<i32>. Proving the postcondition requires a corresponding loop invariant,
stating that the first i elements in the slice are sorted. The annotations in gnome_sort use
an auxiliary predicate sorted, defining what it means for a given sequence to be sorted.
Since its definition contains special Pearlite syntax, namely a universal quantifier and
an implication, it is wrapped in the pearlite! macro which desugars Pearlite syntax
to valid Rust. A more complete specification for the gnome_sort function would include
an additional postcondition ensuring that no elements are added or removed from the
slice.

After having annotated the program with specifications, the user invokes Creusot

by running the command cargo creusot. This works because Creusot integrates with
Rust’s build and package management tool Cargo. Running the command produces a

12

2.3 Rust Verification with Creusot

1 #[predicate]
2 fn sorted(s: Seq<i32>) -> bool {
3 pearlite! {
4 forall<i: Int, j: Int> 0 <= i && i < j && j < s.len()
5 ==> s[i] <= s[j]
6 }
7 }
8

9 #[ensures(sorted((^v)@))]
10 fn gnome_sort(v: &mut [i32]) {
11 let mut i = 0;
12 #[invariant(sorted(v[..i]@))]
13 while i < v.len() {
14 if i == 0 || v[i-1] <= v[i] { i += 1; }
15 else { v.swap(i-1, i); i -= 1; }
16 }
17 }

Figure 2.6: Example of verifiying a sorting function with Creusot.

file with the MLCFG representation of the program that can be opened in the Why3 IDE.
Figure 2.7 shows the user interface of the Why3 IDE when opened on the MLCFG file
generated for the gnome_sort function. On the left-hand side, there is a tree of all goals
and the right-hand side shows the proof context of the currently selected goal. Taking a
closer look at the tree, the top-level goal gnome_sort’vc has five children: four failed
proof attempts and one transformation. Each of these proof attempts represents the
invocation of a different backend. However, none of the backends succeeded in proving
the goal and were interrupted by Why3 after a timeout of one second. Consequently,
the user applied the split_vc transformation to the goal, which splits the top-level
goal into multiple subgoals. Rerunning the backends on each of the generated subgoals
successfully verified the function, as indicated by the green checkmarks.

Lemma Functions. A common proof strategy is to first prove several simpler lem-
mas which can subsequently be used as additional hypotheses for more complex
properties. To use this strategy in Creusot, one can either use the proof_assert!
macro or lemma functions: auxiliary logic functions with contract annotations. Such a
function yields a lemma stating that the function’s preconditions imply its postcondi-
tions, which, when proven, can be used as a hypothesis in other functions. Because
a lemma function typically has no return value, its body is irrelevant to the defini-
tion of the lemma. However, the body of a lemma function may include explicit
instantiations of other lemmas, guiding provers or even enabling a primitive form
of induction. This is exemplified in Figure 2.8 using the lemma sum_odd_sqr stating

13

2 Background

Figure 2.7: The gnome sort function opened in Why3 IDE.

∀x.x ≥ 0 =⇒ sum_odd(x) = x2. Its body contains a recursive call corresponding to
the induction hypothesis ∀x.x > 0 =⇒ sum_odd(x − 1) = (x − 1)2. Because logic
functions are required to terminate, we must provide a #[variant(...)] annotation
which specifies a strictly decreasing quantity.

1 #[logic]
2 #[requires(x >= 0)]
3 #[ensures(sum_odd(x) == x*x)]
4 #[variant(x)]
5 fn sum_odd_sqr(x: Int) {
6 if x > 0 {
7 sum_odd_sqr(x - 1)
8 }
9 }

Figure 2.8: Example of a lemma function.

Prophecies. What allows Creusot to functionally reason about imperative Rust pro-
grams, is its encoding of mutable references using prophecies. Creusot represents
mutable references as a pair of their current value and a nondeterministic prophecy
equal to the last value pointed to by the reference before it is dropped. We illustrate the
basic concept with the example in Figure 2.9. We create a mutable reference r by borrow-

14

2.3 Rust Verification with Creusot

ing x, and write the value 3 to it. Traditional verification would require knowing how x
and r are connected to also update the value of x when writing to r. While this would
be rather easy in the case of our example, such reasoning generally is hard, especially
when taking into account nested references and interprocedural effects. Creusot solves
this issue using the prophecy ^r, linking the borrowed x and the reference r. In the
example, the comments next to the Rust statements indicate their functional translation.
Borrowing x involves three steps:

1. Create the prophecy ^r, whose actual value is unknown at this point and is thus
assigned the nondeterministic value any,

2. Create the reference r as the pair of its current value x and final value ^r,

3. Set the value of the borrowed x to ^r.

This works thanks to Rust’s borrowing semantics. As the borrowed variable x is
blocked until r is dropped, its concrete value can remain prophetic up to that point.
Furthermore, since mutable references cannot alias, the final value for each borrowed
variable is uniquely determined.

Writing to the reference means updating its current value and leaving the prophecy
untouched. At the end of the lifetime of r (i.e., once it is no longer used and thus
has been modified for the last time), we learn that its final value ^r is 3. Creusot

automatically determines this point, at which it resolves r, assuming an axiom stating
that the final value ^r and the current value *r are equal. After resolution, the axiom
becomes available as a hypothesis and we can prove the assertion using the equalities
x = ˆr = ∗r = 3.

1 let mut x = 5; // x <- 5
2 let r = &mut x; // ^r <- any; r <- (x, ^r); x <- ^r
3 *r = 3; // r <- (3, ^r)
4 // Creusot resolves r: assume ^r = *r
5 proof_assert! { x == 3 }; // provable by assumption

Figure 2.9: Example of the prophetic encoding of mutable references.

The expressivity of this approach is demonstrated in Figure 2.10. The function
index_mut takes a mutable slice s (i.e., a reference to a contiguous sequence of elements)
and an index i, returning a reference to the element at that index. Postcondition (2)
accordingly states that the current value of the returned reference result equals the
respective slice element. By writing to the returned reference, the caller can modify the
input slice s. Consequently, specifying the effect of index_mut on s requires knowing
how the caller uses the returned reference. Thanks to prophecies, this is rather straight-
forward: The final value at index i in s is the final value of result (cf. postcondition (3)).
While the actual value of the prophecy ^result is never learned in index_mut, the
postcondition communicates the link between the two prophecies to the caller.

15

2 Background

1 #[requires(i@ < (*s)@.len())] // i is a valid index
2 #[ensures((^s)@.len() == (*s)@.len())] // length of s does not change
3 #[ensures(*result == (*s)[i@])] // (2)
4 #[ensures((^s)[i@] == ^result)] // (3)
5 #[ensures(
6 forall<j: Int> 0 <= j && j != i@ && j < (*s)@.len()
7 ==> (^s)[j] == (*s)[j]
8)] // other elements remain unchanged
9 fn index_mut<T>(s: &mut [T], i: usize) -> &mut T {

10 &mut s[i]
11 }

Figure 2.10: Example of using prophecies to specify index_mut.

16

3 Type Invariants

This chapter focuses on the design and implementation of type invariants in Creusot.
First, Section 3.1 explains the main design challenges and the motivation behind our
approach. As a solution to these challenges, we present prophetic invariants in Section 3.2.
For this approach to be sound, several conditions must be met. In Sections 3.3 and 3.4,
we focus on these conditions and explain how they are enforced.

3.1 Design Challenges

This section explains the main considerations and design questions that we needed to
address to support type invariants in Creusot. Those can be roughly summarized by
the following questions:

(D1) How to attach invariants to types in a composable manner?

(D2) When can invariants be temporarily broken and when must they hold?

(D3) How should type invariants interact with mutable references?

Question (D1) entails designing a mechanism to determine the invariant of a type
based both on the invariants of its parts as well as user-defined invariants. For type
invariants to be practical, there must exist a mechanism for temporarily suspending
them. A core challenge thus lies in the design of the rules governing this mechanism, as
characterized by question (D2). Furthermore, question (D3) calls for scrutiny in design-
ing a system compatible with Creusot’s prophecies. We elaborate on questions (D2)
and (D3) in the following two subsections.

3.1.1 Open and Closed Invariants

Concerning question (D2), we distinguish open and closed invariants. While a type
invariant is open, it can be temporarily broken and, conversely, it must hold when
closed. Closing an open invariant thus requires proving that it is still satisfied by the
potentially modified value. In general, functions should be able to open a value’s type
invariant internally as long as it is closed before the value can be observed by another
function. This leads to function calls as a natural boundary for enforcing type invariants.

Figure 3.1 demonstrates this guiding design principle. The type SumTo10 is a pair of
integers and its invariant requires that the sum of both values equals 10. The function
mingle takes an argument s of type SumTo10 and returns a value of the same type. Using

17

3 Type Invariants

1 // Invariant: a + b == 10 (definition omitted in the example)
2 struct SumTo10 { a: i32, b: i32 }
3

4 fn mingle(mut s: SumTo10) -> SumTo10 {
5 proof_assert! { s.a + s.b == 10 };
6 // OPEN the invariant
7 s.a -= 1; // breaks the invariant
8 s.b += 1; // restores the invariant
9 // CLOSE the invariant

10 s
11 }

Figure 3.1: Example of temporarily opening a type invariant.

the type invariant of s, the assertion s.a + s.b == 10 is provable at the start of the
function. Next, the invariant is implicitly opened, allowing to temporarily break it by
decrementing s.a. This is fine because the invariant is closed before finally returning
the modified value.

1 // Owned Values
2 fn zeroize(mut s: SumTo10) {
3 s.a = 0; s.b = 0;
4 // invariant not closed
5 }
6

7 // Mutable References
8 fn swap(s: &mut SumTo10) {
9 let tmp = s.a;

10 *s.a = s.b;
11 *s.b = s.a
12 // must close invariant
13 }
14

15 // Shared References
16 fn swapped(s: &SumTo10)
17 -> SumTo10 {
18 // create a copy of s
19 let mut s2 = SumTo10 {
20 a: 0, b: 0 };
21 s2.a = s.a; s2.b = s.b;
22

23 // swap a and b in place
24 let r = &mut s2;
25 swap(r);
26

27 s2
28 }

Figure 3.2: Example of type invariants across function boundaries.

To further illustrate when invariants must be restored, we consider the example shown
in Figure 3.2. Each of the three functions zeroize, swap, and swapped demonstrates one
of the tree principle ways how values can be passed to a function.

Owned Values. The argument of the zeroize function is moved; its ownership is
transferred from the caller. The value is dropped at the end of the function and cannot

18

3.1 Design Challenges

be observed by any other function. Therefore, it is permitted to break the invariant of s
by setting both fields to zero. If zeroize returned s or passed s to another function, the
invariant would have to be before that.

Mutable References. The function swap takes its argument s as a mutable reference
and swaps the values of its two fields in place. Rust’s type system guarantees that as
long as the original value is borrowed by swap, it cannot be observed by other functions.
This makes it legal to temporarily break the invariant during the three-step exchange.
Nonetheless, the invariant must be restored before the borrow ends and swap’s caller
regains access.

Shared References. The function swapped takes a shared reference to a SumTo10 value
and returns a copy where the values of a and b are swapped. Because shared references
can alias, other functions may observe the value but the read-only characteristic makes it
impossible to break the invariant. The simple and obvious implementation for swapped
would initialize a new SumTo10 value with the values from s in swapped order. However,
our implementation deliberately constructs the result in a roundabout way to make the
behavior of the involved type invariants explicit. First, a local copy s2 of s is created
by first constructing a zero-initialized SumTo10 value and then setting each field at a
time. This demonstrates that it is allowed to construct values not satisfying their type
invariant. Only after setting the second field s2.b, the invariant of s2 becomes provable,
using the invariant of the argument s as a hypothesis. Next, s2 is mutably borrowed to
obtain the mutable reference r and pass it to the function swap which swaps the two
fields. Since the constructed value crosses a function boundary, its invariant must be
closed at this point. Finally, the modified value s2 is returned, which again requires us
to show its invariant.

3.1.2 Interaction of Invariants and Borrowing

To answer question (D3) and to better understand how to ensure that invariants are
closed at the end of borrows, we take a closer look at the call to swap in swapped. In
Creusot’s translation to MLCFG, borrowing s2 as r puts the newly created reference’s
final value ^r into s2 (cf. §2.3). Consequently, to prove the invariant of s2 after the call to
swap, we need a hypothesis about ^r. One way to obtain such a hypothesis would be to
have the callee’s postcondition guarantee that the final value of the argument s satisfies
its invariant. This way, the invariant of the final value becomes available as a hypothesis
in swapped after the call. So, in this example, we can determine a postcondition for swap
ensuring that the reference’s invariant is maintained in swapped. However, this approach
does not work in general; there is not always an appropriate postcondition for functions
that may take a mutable reference as an argument.

To clarify the issue we consider the function call_generic, shown in in Figure 3.3.
This function mutably borrows s of type SumTo10 and passes it to the generic function

19

3 Type Invariants

generic, which takes an argument of generic type T. Since calling generic moves r, it is
not resolved in the caller and the actual value of ^r remains unknown. Thus, closing the
invariant of s before it is returned would require the postcondition of generic to state
that the invariant of its argument’s final value holds. However, from the perspective of
generic, the argument has generic type T, which does not have a notion of final values.
Consequently, it is not possible to determine the necessary postcondition solely based
on the callee as it depends on the instantiation of T in the caller.

1 fn generic<T>(x: T) {}
2

3 fn call_generic() -> SumTo10 {
4 let mut s = SumTo10 { a: 3, b: 7 };
5 let r = &mut s; // now s equals ^r
6 generic(r); // we learn nothing about ^r
7 s // how to prove the invariant of s?
8 }

Figure 3.3: Example demonstrating the issue with deriving postconditions for closing
invariants of mutable references.

To summarize, the obvious approach is incompatible with Creusot’s prophecies.
It is not generally possible to encode the invariant preservation property of mutable
references as a postcondition. To overcome this challenge, we developed prophetic
invariants, a novel approach that is fully composable with Rust’s type system.

3.2 Prophetic Invariants

After having outlined the main design challenges of type invariants, we present our
approach and demonstrate how it overcomes these challenges. First, Section 3.2.1 shows
how a user can define an invariant for a type and how type invariants affect Pearlite

and Rust functions. In Section 3.2.2, we present prophetic invariants, our solution to the
challenge discussed in 3.1.2. Finally, Section 3.2.3 explains the conditions under which
this approach is sound. For the remainder of this chapter, we write “Creusot

+” to refer
to the version of Creusot including our contributions concerning type invariants.

3.2.1 Basic Usage

Defining Invariants. We leverage Rust’s trait system as a composable mechanism to
attach an invariant to a type, addressing design question (D1). To attach an invariant to a
type, a user implements the Invariant trait provided by Creusot

+, shown in Figure 3.4.
It defines the invariant predicate that only exists on the logic level and uses Pearlite

in its body. It takes a single argument self of the type implementing the trait. Figure 3.4

20

3.2 Prophetic Invariants

also exemplifies how to define the invariant of the type SortedInts, which simply states
that the list’s logical representation, denoted using the @ sigil, is sorted.

1 trait Invariant {
2 #[predicate]
3 fn invariant(self) -> bool;
4 }
5

6 enum SortedInts {
7 Nil,
8 Cons(i32, Box<SortedInts>),
9 }

10

11 impl Invariant for SortedInts {
12 #[predicate]
13 fn invariant(self) -> bool {
14 pearlite! {
15 self@.sorted()
16 }
17 }
18 }

Figure 3.4: The definition of the Invariant trait and an example of defining a type
invariant.

User Invariants and Structural Invariants. While we have seen how type invariants are
defined, we have not yet explained how the invariant for a particular type is determined.
In general, the invariant for a type T consists of the conjunction of two parts:

1. A user invariant, provided by the user through an implementation of the Invariant
trait, and

2. A structural invariant, derived automatically based on the constituents of T.

The user invariant is determined through trait resolution, which, given a type and a trait,
finds a suitable implementation. If no implementation exists, the user invariant defaults
to the trivial invariant satisfied by all values. The structural invariant combines the
invariants of the constituent types. As an example, we consider Rust’s Option<T> type,
which has two constructors, None and Some(T). The user invariant is trivial because
the Invariant trait is not implemented for Option<T>. The corresponding structural
invariant is true for None values, otherwise, it equals the invariant of the inner type T.
This allows us to conclude that the invariant of a value x holds when pattern matching
on Some(x). Structural invariants ensure composability (D1) and are discussed in detail

21

3 Type Invariants

in Section 3.3. We henceforth write inv(x) to refer to the combined type invariant of a
value x.

Type Invariants in Pearlite. In Pearlite, Creusot
+ enforces type invariants by guard-

ing quantifiers with the bound value’s type invariant. For example, the expression
forall<s: SumTo10> P(s) says that the predicate P(s) is true for all values s if s has
type SumTo10 and the invariant of s holds. Consequently, the term forall<s: SumTo10>
s.a@ + s.b@ == 10 is always true and exists<s: SumTo10> s.a@ + s.b@ != 10 is al-
ways false. Generally, for a type T and its invariant predicate inv, the term forall<x: T>
P(x) is equivalent to forall<x: T> inv(x) ==> P(x), and exists<x: T> P(x) is equiv-
alent to exists<x: T> inv(x) && P(x). This is achieved by synthesizing the guarding
invariant predicates during Creusot

+’s translation of Pearlite into MLCFG.

Contract Elaboration. As explained in Section 3.1, type invariants are enforced on
function boundaries. Therefore, type invariants of a function’s arguments are treated as
additional preconditions. Analogously, a type invariant of the return value corresponds
to an extra postcondition. Figure 3.5 shows an example of how a contract is elaborated
based on a function’s signature. The predicate inv represents the respective type invari-
ant. Creusot

+ synthesizes a precondition for each argument and a postcondition for the
return value. These simple rules achieve the desired behavior described by question (D2).
Inside functions, users are allowed to open the invariants of the function arguments
and must close the invariant of the return value. Calling another function requires
proving its precondition, meaning that the invariants of the function arguments must be
closed. Besides regular Rust functions, Creusot

+ also elaborates the contracts of lemma
functions. As the axiom generated from such a function universally quantifies over the
function’s arguments, synthesizing preconditions for those arguments is analogous to
how quantifiers are guarded in Pearlite.

1 #[requires(inv(a))] // <
2 #[requires(inv(b))] // < synthesized
3 #[ensures(inv(result))] // <
4 fn concat(a: SortedInts, b: SortedInts) -> SortedInts { todo!() }

Figure 3.5: Example demonstrating the effect of contract elaboration.

3.2.2 Prophetic Invariants

In the following, we present prophetic invariants, our approach to solving the challenges
presented in 3.1.2, and discuss its consequences. To briefly recapitulate, the objective is
to maintain the type invariants of mutable references when passed to other functions.
We previously explained that it is not generally possible to make the contract of the
called function guarantee invariant preservation. Prophetic invariants solve this issue by

22

3.2 Prophetic Invariants

assuming the invariants of prophecies in the caller. This eliminates the need to propagate
these facts as postconditions. Furthermore, this approach complements Creusot’s
fundamental prophetic interpretation of borrowing. The prophecy assigned to borrowed
variables now includes a guarantee that whatever value it is resolved to satisfies its
invariant.

Figure 3.6 shows an example of a mutable reference passed as a function argument,
similar to the one in Figure 3.3. In call_generic, the value s satisfying its invariant is
borrowed, obtaining the mutable reference r which is passed to the function generic.
The elaborated contract of generic includes a precondition for the invariant of r. As
Creusot understands a mutable reference as a pair of its current and final value, the
invariant of r structurally consists of the invariants of its parts *r and ^r. The invariant
of the current value follows from the invariant of s and the invariant of the final value is
prophetically assumed when borrowing.

After the call, Creusot
+ must prove that the invariant of s still holds. In Section 3.1.2,

we concluded that it is not generally possible to automatically infer a contract for generic
that ensures the invariant of its argument’s final value. However, with the encoding
proposed in this section, proving the invariant does not require any hypotheses from
the call to generic. Because s and ^r are logically equal and Creusot

+ prophetically
assume the invariant for ^r, the assertion is provable.

1 fn generic<T>(x: T) {}
2

3 fn call_generic() -> SumTo10 {
4 let mut s = SumTo10 { a: 3, b: 7 };
5 let r = &mut s; // s <- ^r
6 // ASSUME inv(^r)
7 generic(r);
8 proof_assert! { s.a@ + s.b@ == 10 }; // provable!
9 s

10 }

Figure 3.6: Example illuminating how prophetic invariants solve the challenges concern-
ing invariants of mutable references.

3.2.3 Soundness

Soundness of prophetic invariants requires that at no point it is possible to show that
the invariant of a prophecy does not hold. If it were possible to produce such a proof, it
would contradict the assumption made when creating the prophecy. As contradictory
assumptions allow proving arbitrary terms, it would make the verification unsound.
Thanks to Rust’s guarantees for mutable borrows, there are only two conditions we
must consider for every prophecy to uphold soundness:

23

3 Type Invariants

(S1) The invariant is not provably false when creating the prophecy, and

(S2) The invariant holds when resolving the prophecy.

The first condition (S1) forbids invariants that are trivially false for all values. It is
enforced by the inhabitation law, to which implementors of the Invariant trait must
adhere. Laws are special trait methods that, similar to lemma functions, generate a
proof obligation for every implementation. As shown in Figure 3.7, the Invariant trait
defines a law called is_inhabited requiring each implementation to prove there is at
least one value satisfying the invariant. Consequently, Creusot

+ never assumes trivially
false invariants and fulfills condition (S1).

1 #[law]
2 #[ensures(exists<x: Self> x.invariant())]
3 fn is_inhabited();

Figure 3.7: The Inhabitation Law.

Condition (S2) ensures that the prophetically assumed invariant actually holds once
a borrow’s final value is learned. The final value is determined through resolution,
assuming equality of the borrow’s current and final value after its last use (cf. §2.3).
At this point, Creusot

+ generates a proof obligation that the current value fulfills the
invariant. Crucially, this must be shown before equating current and final value as the
assertion would otherwise be a tautology.

To show that these conditions are sufficient, we argue that if condition (S1) is fulfilled,
the invariant holds at every point up until the prophecy is resolved. A prophecy is
created by mutably borrowing a variable. Rust ensures that the borrowed variable
remains inaccessible as long as the reference exists. Since Rust code may only refer to
the prophecy through the borrowed variable, the prophecy’s value remains unchanged
until it is resolved. Therefore, it is sufficient to only check the invariant at prophecy
creation (S1) and resolution (S2).

As a consequence of condition (S2), correctly resolving every prophecy is critical for
soundness. Before the introduction of type invariants to Creusot, omitting to resolve
a prophecy only affected completeness, making some assertions not provable. Now,
missing resolutions mean unjustified prophetic invariants. In particular, there are two
challenges to consider:

1. If a mutable reference is nested inside a value of another type, the invariant of the
prophecy must still be proven, no matter the invariant of the outer type, and

2. Every variable must be resolved at the correct location.

These two challenges are discussed in detail in the following Sections 3.3 and 3.4.

24

3.3 Structural Invariants

3.3 Structural Invariants

So far, we have seen how type invariants are defined, how they are used, and how they
interact with prophecies. In the following, we first argue why structural invariants are
necessary for soundness and then explain how exactly they are derived for a specific
type.

3.3.1 Preventing Hidden Invariants

In Section 3.2.3, we stated that soundness requires that every mutable reference is
resolved, including those nested in other values. Without structural invariants, resolving
a value of type Option<&mut SumTo10> would not require proving the invariant of the
contained reference. Therefore, the assumption that the final value’s invariant holds
would have been unjustified. This is illustrated in Figure 3.8. The example assumes that
the type Option<T> does not have a structural invariant. The mutable reference r is used
to break the invariant of the borrowed SumTo10 value s. Subsequently, r is moved into a
newly created option x that is never used and thus immediately dropped. When x is
resolved, its invariant must be proven but, since it is trivial, this does not entail proving
the invariant of r. As a result, the false invariant of the updated value s is provable by
assumption.

1 let mut s = SumTo10 { a: 3, b: 7 };
2 let r = &mut s;
3 *r.a = 0;
4 let x = Some(r);
5 // resolve x: prove inv(x), assume ^x == *x
6 proof_assert! { 0 + 7 == 10 }; // unsound!

Figure 3.8: Example demonstrating how hidden invariants can cause unsoundness.

In general, Creusot resolves not just mutable references but values of any type.
For this, it utilizes a special trait called Resolve which for any type defines what it
means to resolve a value of that type. By convention, the resolve operation structurally
resolves every component of a value. This ensures that, for example, resolving a pair
of mutable references means resolving each individual reference. We want the same
behavior for type invariants; resolving a pair of mutable references must require proving
the invariants of both contained references. While it may seem obvious to base type
invariants for composite values on a similar trait-based mechanism, there are several
disadvantages to consider:

1. An incorrectly defined trait implementation, omitting certain fields, would be
unsound. Hence, we would have to trust users to correctly define structural
invariants for their types.

25

3 Type Invariants

2. There would be an additional burden to add a trait implementation for every
custom type. While this could be partially alleviated with macros, there would
still be an ergonomic overhead.

3. The Resolve trait uses specialization, an experimental Rust feature, to be able to
provide implementations for any type. However, this feature comes with several
limitations that would restrict how type invariants can be used.

Due to these factors, we chose to not rely on traits but derive correct structural
invariants automatically.

3.3.2 Derivation of Structural Invariants

The following rules specify how Creusot
+ derives the invariant of a type τ for a

simplified model of Rust’s type system. The uinv, sinv, and inv predicates represent
the user, structural, and combined invariant, respectively. The injection functions inji
construct sum types and the projections proji destruct product types.

Type τ := bool | i32 | τ × τ | τ + τ | &τ | &mut τ

invτ(x) := uinvτ(x) ∧ sinvτ(x) (3.1)

sinvτ(x) := true if τ is primitive (3.2)

sinvτ1×τ2(x) := invτ1(proj1 x) ∧ invτ2(proj2 x) (3.3)

sinvτ1+τ2(inj1 x) := invτ1(x) (3.4)

sinvτ1+τ2(inj2 x) := invτ2(x) (3.5)

sinv&τ(x) := invτ(∗x) (3.6)

sinv&mut τ(x) := invτ(∗x) ∧ invτ(ˆx) (3.7)

Except for rule 3.7, these rules should be unsurprising. In Creusot, mutable references
can be understood as a pair of current value and final value. Analogous to rule 3.3,
Creusot

+ consequently derives the structural invariant of a mutable reference from the
invariants of its current and final value. Consequently, calling a function with a mutable
reference as an argument requires proving the invariants of both its current and final
value as a precondition. However, the prophetic invariant of the final value is usually
easy to prove as it has been assumed when creating the reference.

Some types, including Rust’s Vec type, internally store data with raw pointers and
use unsafe code to modify the data. In unsafe code, memory safety is not automati-
cally checked by the Rust compiler but is the responsibility of users. Types like Vec
provide a safe interface around unsafe code, ensuring memory safety through careful
implementation. While Creusot does not support unsafe code, it still works with types
safely encapsulating unsafe code. Similar to how users must manually ascertain the
safety of such types, users are also required to manually define their type invariants.

26

3.3 Structural Invariants

For example, the Vec type has a user invariant which states that the invariants of all
contained elements hold. Raw pointers are considered primitive and thus have a trivial
structural invariant according to rule 3.2.

3.3.3 Invariant Encoding

In Section 3.2, we used the generic symbol inv to refer to type invariants and explained
its meaning for specific types in Section 3.3.2. Now, we take a closer look at how exactly
the symbolic predicate and its interpretation are linked.

Creusot translates type declarations from Rust into WhyML. During this translation,
Creusot

+ additionally generates an unfolding axiom that dictates how to unfold the inv
symbol for that specific type. Figure 3.9 shows the declaration of the inv symbol and
the generated unfolding axiom for the SortedInts type. The inv symbol is declared
as an abstract predicate in the Inv module, which also declares an abstract type t. To
use the inv predicate, the SortedInts_Inv module clones the Inv module, substituting
the abstract type t with a concrete type. Cloning conceptually copies the definition of
one module, applies substitutions, and inserts it into another module. In the example,
the Inv module is cloned twice to distinguish between the invariant of the SortedInts
and i32 types. The generated axiom inv_sorted_ints equates inv with its definition
consisting of the user invariant and a derived structural invariant. In case self is a
Cons, the structural invariant includes the invariants of the head and the tail, which
are expressed using the respective inv clones. The benefit of this encoding is that it
correctly handles recursive and mutually recursive types, as shown in the example.
Since each application of the axiom unfolds a single level of invariants, we avoid circular
definitions.

For soundness, we must make sure to not generate contradictory unfolding axioms.
Contradictory axioms are possible when the left-hand side of the equality occurs on
the right-hand side in negated form. Since such negated invariants cannot occur in
the structural part of the right-hand side, it suffices to consider user invariants. Fig-
ure 3.10 demonstrates an ill-defined user invariant, for which Creusot

+ generates the
unsound axiom ∀ self. inv(self) = ¬inv(self). We safeguard against such invariants
by imposing additional rules on defining user invariants. Firstly, user invariants are
prohibited from using the inv symbol, preventing cases like the one in Figure 3.10.
Secondly, we disallow the use of the type for which the invariant is defined in quan-
tifiers, protecting against user invariants like forall<x: Self> false. Due to how
Creusot

+ guards quantifiers, such an invariant results in a contradictory axiom stating
∀ self. inv(self) = ∀ x. (inv(x) → ⊥).

At the time of writing, the enforcement of these rules is not yet implemented in
Creusot

+. Instead, users are required to manually ascertain that their invariant defini-
tions follow the described rules.

27

3 Type Invariants

1 module Inv
2 type t
3 predicate inv (x : t) (* the abstract inv symbol *)
4 end
5

6 module SortedInts_Inv
7 clone Inv as Inv0 with type t = sorted_ints
8 clone Inv as Inv1 with type t = i32
9 (* clone translated Invariant trait implementation *)

10 clone Invariant_Impl_SortedInts as UserInv
11

12 (* the unfolding axiom for sorted_ints *)
13 axiom inv_sorted_ints : forall self : sorted_ints .
14 Inv0.inv self = UserInv.invariant self /\ match self with
15 | Nil -> true
16 | Cons x xs -> Inv1.inv x /\ Inv0.inv xs
17 end
18 end

Figure 3.9: The unfolding axiom generated for SortedInts (WhyML syntax).

1 impl Invariant for Unsound {
2 #[predicate]
3 fn invariant(self) -> bool {
4 !inv(self)
5 }
6 }

Figure 3.10: Example of a user invariant resulting in an unsound axiom.

28

3.3 Structural Invariants

3.3.4 Invariant Elision & Parametricity

When a type neither has a user invariant nor structurally contains values of types with
a user invariant, its invariant is trivial. This means that all values of that type satisfy
the invariant (i.e., the invariant is a tautology). Invariant elision is an optimization
that removes assertions of trivial invariants. During contract elaboration, Creusot

+

determines for each type whether it has a trivial invariant, in which case it skips
generating the respective pre- or postcondition. For example, there is no precondition
for an argument of type Option<i32>. Similarly, Creusot

+ does not assume trivial
invariants for prophecies nor asserts them at resolution. Additionally, during the
generation of structural invariants, fields with trivial invariants are ignored. However,
checking invariant triviality generally only works for monomorphic types. For example,
whether the invariant of the polymorphic type Option<T> is trivial depends on the
instantiation of the parameter T.

As an additional optimization for polymorphic types, Creusot
+ exploits the split

between abstract symbol and unfolding axiom in the encoding of invariants (cf. §3.3.3).
This enables Creusot

+ to give different interpretations to inv in different contexts.
When instantiating a generic type such that its invariant becomes trivial, Creusot

+

provides an axiom that unfolds inv to true instead of the structural unfolding axiom.
Therefore, the clone of the module generated for the generic type’s invariant is replaced
with a clone of the special Trivial_Inv module, shown in Figure 3.11.

1 module Trivial_Inv
2 type t
3 clone Inv as Inv0 with type t = t
4 axiom inv_trivial : forall self : t . Inv0.inv self = true
5 end

Figure 3.11: The trivial invariant unfolding axiom (WhyML syntax).

This optimization is illustrated by the example shown in Figure 3.12. It depicts several
modules, represented by the nodes, and visualizes clones as arrows between the modules.
Modules can have type parameters, indicated in angle brackets, and clones are annotated
with the corresponding substitutions. Two substitutions for the same parameter mean
that there are two distinct clones of the target module in the origin module. The example
considers the modules generated for three Rust functions: IsSome, CallerA, and CallerB.
The IsSome function is parametric over a type w and, given a value of type Option⟨w⟩,
returns true if the argument is a Some value. The functions CallerA and CallerB call
IsSome on Option⟨SumTo10⟩ and Option⟨i32⟩ values, respectively. Since the invariant of
Option⟨SumTo10⟩ is not trivial, CallerA clones the full unfolding axiom for the Option
type. However, in CallerB, Creusot

+ determines that the invariant of Option⟨i32⟩ is
trivial and thus clones the trivial unfolding axiom. This is indicated by the orange edge
from CallerB to Trivial_Inv. Without the optimization, CallerB would also clone

29

3 Type Invariants

Option_Inv like CallerA. As explained in Section 3.3.3, the modules for the unfolding
axioms clone the Inv module defining the inv symbol. For simplicity, the graph hides
transitive clones of Inv in the function modules.

CallerA SumTo10_Inv

IsSome⟨w⟩ Option_Inv⟨u⟩ Inv⟨t⟩

CallerB Trivial_Inv⟨v⟩

w=SumTo10
u=SumTo10

t=SumTo10

v=w

t=Option⟨u⟩, t=u

w=i32

v=Option⟨i32⟩
t=v

1 fn is_some<T>(opt: Option<T>) -> bool {
2 match opt { Some(_) => true, None => false }
3 }
4

5 fn caller_a(opt: Option<SumTo10>) { is_some(opt); }
6 fn caller_b(opt: Option<i32>) { is_some(opt); }

Figure 3.12: Illustration of optimized clones (indicated by orange edges).

The clone of Trivial_Inv in IsSome (corresponding to the second orange edge)
constitutes a special case. Leveraging parametricity [Rey83], invariants can be considered
trivial as long as the corresponding types are generic. Consequently, in the body of
IsSome, Creusot

+ can consider the argument’s invariant trivial because w is fully
parametric. Yet, CallerA is still required to prove the full, non-trivial type invariant
before calling IsSome. The optimization is sound because parametricity means that it is
impossible to break the invariant of a value in a generic way. While Rust’s type system
does not uphold parametricity in general due to ad hoc polymorphism with traits, it
works in our more specific case. Thanks to Creusot’s modular approach to verification,
one function can trust the contracts of other functions. Consequently, when passing
a generic value to a function, Creusot

+ can assume that the called function correctly
enforces type invariants. Besides the usage as a function argument, the only other
possible operations on generic values are moving it between variables and dropping it.
Both operations cannot break the value’s type invariant and, therefore, the parametricity
optimization is sound.

30

3.4 Prophecy Resolution

3.4 Prophecy Resolution

Resolution is an analysis performed by Creusot that instruments the translated program
with axioms revealing the definite values of prophecies. Once the value of a mutable
reference is definite, a generated axiom equates the respective prophecy with the
reference’s current value. In Section 3.2.2, we explained how Creusot

+ prophetically
assumes the invariant of final values. We argued that this is sound as long as a value’s
invariant is closed right before it is resolved. Therefore, correctly determining the points
of resolution is crucial for soundness. In the course of our work on type invariants,
Creusot’s existing prophecy resolution algorithm proved to be incompatible with
prophetic invariants. In the following, we present a new algorithm implemented in
Creusot

+ and argue that it is correct.

3.4.1 Early and Late Resolution

Creusot’s existing early resolution algorithm makes correct programs using type in-
variants unprovable as it resolves some variables before their type invariant can be
proven. Therefore, we devised late resolution, a new approach to overcome these issues
in Creusot

+.
Using the example shown in Figure 3.13, we explain why early resolution is incompati-

ble with prophetic invariants. In the example, the variable ra reborrows r, projecting the
mutable reference to the first field. Like any other borrow operation, it assigns the final
value ^ra to r. The assumption of the prophetic invariant inv(^b2) is omitted in the
example because ^b2 has type i32 and thus a trivial invariant. Early resolution resolves r
before writing to ra. The created chain of prophecies s.a == (^r).a == ^ra guarantees
soundness by keeping the still mutable part of s prophetic until ra is resolved as well.
However, at the early resolution point, it is impossible to reason about the invariant
of r. Because we do not yet know the value of ^ra, we cannot prove or disprove the
invariant ^ra + 7 == 10. Late resolution delays the obligation to prove the invariant of
r until after resolving ra. At this point, we know the value of ^ra and can show that the
invariant still holds after the write. To summarize, while equivalent in terms of learning
the values of prophecies, late resolution ensures that variables are only resolved once
we have enough information to prove their invariants.

1 let s = SumTo10 { a: 3, b: 7 };
2 let r = &mut s; // s <- ^r, assume inv(^r)
3 let ra = &mut r.a; // (*r).a <- ^ra
4 // (EARLY) resolve r: prove inv(r), assume ^r == *r
5 *ra = 3;
6 // resolve ra: assume ^ra == *ra
7 // (LATE) resolve r: prove inv(r), assume ^r == *r

Figure 3.13: Example of how early and late resolution handle reborrows.

31

3 Type Invariants

In the following, we explain the criteria determining when to resolve a variable in late
resolution.

Liveness. Fundamentally, resolution is based on liveness, a classic data-flow analysis
determining the set of live variables at each program point. A variable is live if it is still
used in any further execution of the program. Once a variable is dead, we know that
any contained mutable references will not be written anymore. We write Lp and Dp to
denote the sets of live and dead variables at a program point p.

Initialization. Besides liveness, resolution needs to take into account whether a variable
is initialized. A variable becomes uninitialized when its value is moved. For example,
the assignment x = y, where both variables are of type &mut T, moves the value of y into
x. Even if y is dead after the assignment, it is no longer initialized and thus should not
be resolved. This is the expected behavior as the mutable borrow can still be modified
through x, and so its final value is not yet known. We write Ip for the set of initialized
variables at program point p.

Borrowing. Another way a mutable reference may still be modified after being dead
is through reborrows. Reborrowing describes the derivation of new a reference from
an existing one, which becomes blocked as long as the reborrow exists. It is used, for
instance, to project a reference of type &mut (T, U) to a reference of type &mut T. We
want to ensure that mutable references are only resolved after their reborrows have been
resolved. Therefore, late resolution takes into account the set of currently borrowed
variables Bp. To determine this set, Creusot

+ relies on information provided by the
Rust compiler.

Figure 3.14 exemplifies the data-flow analyses. The comments indicate the sets Lp, Ip,
and Bp after each statement.

1 let s = SumTo10 { a: 3, b: 7 }; // L={s}, I={s}, B={}
2 let r1 = &mut s; // L={r1}, I={s, r1}, B={s}
3 let r2 = r1; // L={r2}, I={s, r2}, B={s}
4 let ra = &mut r2.a; // L={ra}, I={s, r2, ra}, B={s, r2}
5 *ra = 3; // L={ra}, I={s, r2, ra}, B={s, r2}
6 drop(ra); // L={}, I={s, r2}, B={s}

Figure 3.14: Example of the data-flow analyses used in resolution.

In summary, late resolution resolves a variable once it is dead, initialized and not
borrowed. This yields the set Rp of late-resolved variables at program point p, defined
as follows:

Rp := Ip \ (Lp ∪ Bp)

32

3.4 Prophecy Resolution

The original early resolution algorithm considers only liveness and initializedness.
Hence, the set of early-resolved variables is Ip \ Lp ⊆ Rp. In Figure 3.13, early resolution
resolves r before writing to ra as it is dead and initialized after being reborrowed.
Late resolution additionally takes into account whether a variable is borrowed. Since r
remains blocked until the end of ra’s lifetime, the obligation to prove the invariant of r
is delayed until after resolving ra.

3.4.2 Resolution Algorithm

So far, we have seen how the set of resolved variables is determined at a specific
program point. Next, we explain how exactly this information is used to insert the
resolve statements. As a reminder, a resolve of a variable asserts that its invariant holds
and then structurally assumes the current and final value of all contained mutable
references are equal. Algorithm 1 shows the late resolution algorithm for a simplified
model of Rust’s MIR. It takes a function f structured as a control flow graph (CFG) that
contains a set of basic blocks f .blocks. A basic block b consists of a list of statements
b.stmts, a set of predecessors b.preds, and successors b.succs. For simplicity, we only
consider assignment statements s which have a left-hand-side variable s.lhs. On the
right-hand side of these assignments are function applications of the form g(e), where
g is the name of a function and e is an opaque expression. We can assume that the
left-hand side of an assignment does not occur in its right-hand side, as v = g(v) can
be rewritten as v′ = g(v); v = v′ where v′ is a fresh variable. Each statement has two
associated program points s.start and s.end denoting the points before and after the
statement, respectively. Analogously, for a block b we define the points b.start and b.end
as the points before the first statement and after the last statement, respectively. We
write Resolve(p, V) to insert resolves for all variables in the set V at program point p.

The algorithm first performs a data-flow analysis to compute the liveness set Lp, the
initialization set Ip, and the borrowing set Bp for each program point p. From these sets,
the set of resolved variables Rp and the set of variables that need eventually be resolved
Np are computed. The set Np includes initialized variables that are not yet resolved and
is defined as follows:

Np := Ip \ Rp = Ip ∩ (Lp ∪ Bp)

Fundamentally, at a statement s, the algorithm resolves those variables that are
resolved after the statement but have not already been resolved before (line 5). The
remainder of the algorithm handles special cases. When the left-hand side of an
assignment still needs to be resolved, it must be resolved before the assignment (line 7).
Resolving it at a later point would be impossible because the assignment overwrites
the old value. When the left-hand side of an assignment is dead after the assignment,
it is immediately resolved. This is necessary because such a variable may already
be resolved before the assignment and thus does not transition from not resolved to
resolved. Lines 10–14 handle merge points in the CFG. For those, the algorithm inserts
a new block b∗ on each incoming edge to account for differences in resolved variables

33

3 Type Invariants

between predecessors. In each such block, it resolves those variables resolved at the start
of the current block but not at the end of the preceding block (line 12). Additionally, it
resolves variables that need to be resolved at the end of the preceding block but not at
the start of the current block (line 13). This ensures that Creusot

+ correctly resolves
variables that are only initialized in some of the predecessors. Finally, in the return
block, all variables that still need to be resolved are resolved except the return variable
f .ret (line 16).

Algorithm 1 Late Resolution

1: procedure InsertResolves(f)
2: Compute Dp, Rp, and Np for all program points p in f
3: for all b ∈ f .blocks do
4: for all s ∈ b.stmts do
5: Resolve(s.end, Rs.end \ Rs.start)
6: if s.lhs ∈ Ns.start then ▷ Resolve reassigned variables
7: Resolve(s.start, {s.lhs})

8: if s.lhs ∈ Ds.end then ▷ Resolve never live variables
9: Resolve(s.end, {s.lhs})

10: for all b′ ∈ b.preds do ▷ Resolve between blocks
11: Create an empty basic block b∗

12: Resolve(b∗.end, Rb.start \ Rb′.end)
13: Resolve(b∗.end, Nb′.end \ Nb.start)
14: Insert b∗ between b′ and b
15: if b.succs = ∅ then ▷ Resolve before return
16: Resolve(b.end, Nb.end \ { f .ret})

3.4.3 Correctness of Resolution

The resolution algorithm is correct if it enforces the soundness of prophecies and
prophetic invariants. This requires the following two conditions:

1. No live variable is resolved, and

2. Every value except the one returned from the function is resolved eventually.

We first argue that these conditions are sufficient for correctness and then prove that
they are satisfied by the resolution algorithm. Prophecies are sound if the assumption
ˆr = ∗r, made when resolving a mutable reference r, is correct. This means that the
current value of r at the point of resolution must be the actual final value; writing
to r after it has been resolved would be unsound. A reference can be written to by
dereferencing a variable that refers to the reference. Because dereferencing a variable
counts as use in the liveness analysis, it is sufficient to show that the algorithm never

34

3.4 Prophecy Resolution

resolves live variables (condition 1). Prophetic invariants are sound if there is a proof
obligation for the invariant of every value (cf. §3.2.3). The invariant of the return value
is taken care of by the corresponding synthesized postcondition. Invariants of other
values are asserted when these values are resolved, making condition 2 sufficient.

We now show that the resolution algorithm fulfills the desired properties.

Theorem 3.4.1. Let f be a function. For all program points p and sets V, if InsertResolves(f)
calls Resolve(p, V), then Lp ∩ V = ∅.

Proof. Let f be a function, p a program point and V a set of variables, such that V is
resolved at p. We consider each call to Resolve.

• Line 5: Ls.end ∩ (Rs.end \ Rs.start) = ∅
Because Ls.end ∩ Rs.end = ∅ and (Rs.end \ Rs.start) ⊆ Rs.end.

• Line 7: Ls.start ∩ {s.lhs} = ∅
Because s.lhs is dead before the assignment by the definition of liveness.

• Line 9: Ls.end ∩ {s.lhs} = ∅
Because the algorithm checks that s.lhs is dead after the assignment.

• Line 12: Lb∗.end ∩ (Rb.start \ Rb′.end) = ∅
Because Lb∗.end = Lb.start and Lb.start ∩ Rb.start = ∅.

• Line 13: Lb∗.end ∩ (Nb′.end \ Nb.start) = ∅
Because Lb∗.end = Lb.start = Lb.start ∩ Ib.start ⊆ Nb.start.

• Line 16: Lb.end ∩ (Nb.end \ { f .ret}) = ∅
Because Lb.end = { f .ret}.

The second condition ensures the soundness of prophetic invariants. While the first
condition considered variables, we must now consider values (i.e., the data named by
variables). We consider a single function f and, in the spirit of modular verification,
assume that the algorithm works correctly for any function called by f .

Theorem 3.4.2. Let f be a function. For all values x in f , either

• x is moved into another function, or

• f .ret refers to x when f returns, or

• There is a point p, a set V, and a variable v ∈ V such that InsertResolves(f) calls
Resolve(p, V) and v refers to x at the point p.

35

3 Type Invariants

Proof. Let f be a function and x a value in f . If f returns x, we are done. So, we assume
that f does not return x. We consider how x is introduced. If x is the result of an
expression used as an argument in a function application, it gets correctly resolved by
the called function. Otherwise, x is an argument passed to f or the return value of a
called function. Then, x is referred to by the variable corresponding to the argument, or
the variable on the left-hand side of the assignment containing the call, respectively. We
call that variable v and consider its membership in Np for every program point p.

1. If v ∈ Np holds for all p, then either

• There is a statement s that reassigns v, and therefore x gets resolved before s
in line 7, or

• The variable v still refers to x at the end of the function and, since v ̸= f .ret,
x is resolved in line 16.

2. If there exists a point p such that v /∈ Np because v ∈ Rp, then either

• There is a statement s such that v /∈ Rs.start and v ∈ Rs.end. Then, the algorithm
resolves x after s in line 5.

• There is an edge between two blocks b′ and b such that v /∈ Rb′.end and
v ∈ Rb.start. Then the algorithm creates a new block on that edge in which x
is resolved in line 12.

3. If there exists a point p such that v /∈ Np because v /∈ Ip, then either

• There is a statement s such that v ∈ Is.start and v /∈ Is.end. Then, v must be a
call operand and x is moved into the called function, which correctly resolves
x.

• There is an edge between two blocks b′ and b such that v ∈ Ib′.end and
v /∈ Ib.start. We can assume v /∈ Rb′.end as we proved the contrary in case 2.
Hence, we know v ∈ Nb′.end and v /∈ Nb.start, as Nb.start ⊆ Ib.start. So, the
algorithm creates a new block on that edge in which x is resolved in line 13.

3.4.4 Incompleteness of Resolution

While late resolution works well for most programs using prophetic invariants, some
programs remain unprovable. Those are not fundamental limitations of our approach
but rather technical consequences of the resolution algorithm. Three such cases are
demonstrated in Figure 3.15.

In the first example two_refs, Creusot
+ is forced to resolve the variable x despite

it being borrowed by xa. Since the assignment x = y overwrites its previous value, it
is the last possibility to resolve the original value. Consequently, users must prove its
invariant before the assignment, which is impossible as it would require knowing the

36

3.4 Prophecy Resolution

value of ^xa. As a potential solution to this issue, Creusot
+ could automatically create

a ghost snapshot of x before the reassignment and resolve it at the end of xa’s lifetime.
Future work is required to investigate feasibility.

The second function project returns a reference obtained by reborrowing its argument.
It encounters a similar issue as the previous example. The argument x is resolved at
the end of the function, which requires knowing the final value of the return value to
prove the invariant. Because the caller may write any value to the returned reference, it
is impossible to close the invariant of x in project. To solve this issue, project would
need a special kind of precondition restricting how the caller may use the returned
reference.

The last example function takes a pair consisting of an owned and a borrowed
value. Assigning the first component to x0 moves it out of the pair, making it partially
uninitialized. As resolution still considers such values initialized, x is resolved at the end
of the function. This is necessary to ensure the second component is correctly resolved.
However, this means that the invariant is no longer provable, as the uninitialized field
has the unknown value any. Solving this issue would require changing the resolution
algorithm to work on a per-place basis instead of only considering variables.

1 fn two_refs<'a>(mut x: &'a mut SumTo10,
2 y: &'a mut SumTo10) {
3 let xa = &mut x.a; // (*x).a <- ^xa
4 // resolve x due to reassignment
5 // cannot prove inv(x): ^xa unknown
6 x = y;
7 *xa = 3;
8 }
9

10 fn project(x: &mut SumTo10) -> &mut i32 {
11 &mut x.a // (*x).a <- ^result
12 // resolve x due to return
13 // cannot prove inv(x): ^result unknown
14 }
15

16 fn partial_move(x: (SumTo10, &mut SumTo10)) {
17 let x0 = x.0; // x <- (any, x.1)
18 // resolve x due to return
19 // cannot prove inv(x): x.0 unknown
20 }

Figure 3.15: Examples demonstrating the limitations of resolution.

37

3 Type Invariants

3.5 Limitations

At the time of this writing, type invariants in Creusot
+ face certain limitations due

to either incomplete implementation aspects or unresolved design considerations. We
provide a summary in the following:

• Presently, Creusot
+ does not support user invariants for partially instantiated

types or adding trait bounds beyond those present on the type definition. For
example, the type Generic<T: Bound> only permits invariant definitions for ex-
actly that type, keeping the parameter T generic. In theory, it should be possible
to define user invariants for instantiated types like Generic<Specialized> or fur-
ther constrained types, such as Generic<Bound + OtherBound>. This limitation
primarily stems from technical challenges in resolving user invariant implemen-
tations during the generation of the unfolding axiom for a type. The potential
support for constraining user invariants with additional trait bounds requires
further consideration to ensure its soundness.

• The generation of structural invariants does not yet cover all Rust types. In
particular, Creusot

+ lacks support for deriving structural invariants for closures,
which should include the invariants of all captured values. This is a technical
limitation due to the way Creusot translates closures. Furthermore, Creusot

+

does not yet support invariants for empty types, such as enums without variants
or the never type !. While it would be plausible to assign the invariant false to
these types, it remains unclear how this aligns with the inhabitation requirement
of type invariants.

• Creusot
+ does not yet provide user invariant definitions for all types in Rust’s

standard library that require them. Specifically, container types like Vec, which in-
ternally use unsafe code, necessitate manual invariant definitions. While Creusot

+

defines the invariant for Vec, definitions for less commonly used types are still
missing.

• Passing values with open invariants between functions is not yet supported in
Creusot

+. This would be useful for invariant definitions containing calls to auxil-
iary logic functions with postconditions. Currently, defining an invariant passing
self to such a function results in an unprovable VC asserting the argument’s
invariant. The exact mechanics of this feature, especially regarding its soundness,
remain an open design question.

• Lastly, the issues discussed in Section 3.4.4 limit which programs can be verified.

38

4 Ghost Code

This chapter discusses the design and implementation of ghost code in Creusot. While
support for ghost code existed in Creusot before our work, it faced several problems
leading to unsoundness. Our contribution thus lies in the analysis of the soundness of
ghost code and in modifications to the existing implementation to solve these issues.
First, Section 4.1 motivates the design by studying several typical use cases. Next,
Section 4.2 presents the existing support for ghost code. Finally, Section 4.3 analyzes the
soundness of Creusot’s ghost code, explains its issues, and proposes countermeasures.

4.1 Design Goals

We distinguish ghost code and program code. While program code just describes regular,
executable Rust code, ghost code is not executed and solely exists to facilitate verification.
Both coexist and ghost code usually needs to refer to program values to be meaningful.
Yet, ghost code does not share the same semantics as program code. The erasure
property of ghost code, requiring that its presence cannot affect the enclosing program
code, limits the set of allowed operations. For example, operations such as writing to
mutable references or diverging the control flow by returning from a function would
be observable from program code and are thus illegal in ghost code. Besides those
restrictions, there are other operations that are only meaningful in ghost code. These
encompass logic-level constructs such as quantifiers or the final value operator. The
central challenge therefore is the design of rules governing the use of ghost code while
keeping its interaction with program code sound.

To better understand the requirements of ghost code, we consider several typical use
cases.

Assertions, Auxiliary Functions, and Lemmas. A common use case for ghost code is
the decomposition of complex properties into simpler ones. Lemma functions (cf. §2.3)
and proof_assert! assertions guide verification by proving interim properties. While
assertions are automatically available as hypotheses for subsequent goals, users must
manually add lemma functions to the proof context by invoking them in ghost code.
Auxiliary logic functions enable richer assertions by abstracting logical properties. As
all of these concepts exist purely for verification, they constitute different forms of ghost
code.

39

4 Ghost Code

Ghost Snapshots. To specify how a variable is updated, it is often useful to relate its
original value to the new value. Such specifications are particularly important for loop
invariants if a variable is successively modified in the loop. For example, an in-place
sorting function typically ensures that the sorted result is a permutation of the input
list, i.e., no elements are added or removed. Figure 4.1 illustrates this principle using
an augmented version of the gnome_sort example (cf. Figure 2.6). In the contract, the
current and final value operators are used to express the relationship between input
and output. To prove the added postcondition, the sorting loop must preserve the
permutation invariant in each iteration. Unlike the contract, loop invariants only have
access to the current, partially sorted value of the list. To relate the initial, unsorted
value to the current value, we must explicitly bind the initial value to a name at the start
of the function. This is achieved using snapshots, which assign a name to the value of a
variable at a specific program point so that it can be referred to in specifications. In the
example, we create a snapshot old_v at the start of the function using the gh! macro
marking its contents as ghost code. If the assignment were normal Rust, it would move
v into old_v, making further uses of v illegal. However, since ghost code in Creusot

does not have the same ownership semantics as Rust, the assignment does not affect v.

1 #[ensures(sorted((^v)@))]
2 #[ensures((^v)@.permutation_of(v@))] // NEW
3 fn gnome_sort(v: &mut [i32]) {
4 let old_v = gh! { v }; // NEW: snapshot of v
5 let mut i = 0;
6 #[invariant(sorted(v[..i]@))]
7 #[invariant(v@.permutation_of(old_v@))] // NEW
8 while i < v.len() {
9 if i == 0 || v[i-1] <= v[i] { i += 1; }

10 else { v.swap(i-1, i); i -= 1; }
11 }
12 }

Figure 4.1: The gnome_sort example using ghost snapshots.

Instantiation of Existential Quantifiers. Specifications containing existential quanti-
fiers are challenging to prove automatically since they require provers to construct a
witness satisfying the required property. Ghost code can help move this burden from the
prover to the user by making the construction of the witness explicit in the specification.
This is especially useful if the witness is constructed from intermediate values no longer
present at the time the existence should be proven. Ghost code allows keeping those
intermediate values without additional overhead for the program code. An example
illustrating this concept is shown in Figure 4.2. Given a function f, the example counts
the values i ∈ [0, 100) where f.eval(i) = 0. The program function f.eval is specified

40

4.2 Ghost Code in Creusot

using the logical predicate f.p where f.eval(i) = x ↔ f.p(i, x). To prove the assertion
at the end of the example, provers must instantiate the quantified term with a sequence
s. This is facilitated by the ghost variable zeros that directly satisfies the assertion.

1 // Count values i s.t. f.eval(i) == 0
2 let mut count = 0;
3 let mut zeros = gh! { Seq::EMPTY };
4 let mut i = 0;
5

6 #[invariant(0 <= i@ && i@ <= 10 && count@ <= i@)]
7 #[invariant(count@ == zeros.len())]
8 #[invariant(forall<j: Int>
9 (0 <= j && j < i@ && f.p(j, 0)) == zeros.contains(j))]

10 while i < 100 {
11 if f.eval(i) == 0 {
12 proof_assert! { f.p(i@, 0) };
13 count += 1;
14 zeros = gh! { zeros.push(i@) };
15 }
16 i += 1;
17 }
18

19 proof_assert! { exists<s: Seq<Int>> count@ == s.len() &&
20 forall<i: Int> (0 <= i && i < 100 && f.p(i, 0)) == s.contains(i) }
21 // Additionally, values in s must be unique (omitted for simplicity)

Figure 4.2: Example of ghost code used to instantiate an existential quantifier.

4.2 Ghost Code in Creusot

In this section, we describe how ghost code works in Creusot.
Ghost code in Creusot is based on its specification language Pearlite. It is used in

contracts, as the body of auxiliary logic functions, or inside of macros such as gh! or
proof_assert!. Pearlite code is type-checked by the Rust compiler but not borrow-
checked. Borrow checking is an analysis performed by the Rust compiler to detect
violations of its ownership and borrowing rules. In particular, it rejects code where a
variable is used while being borrowed or after it has been moved. Since Pearlite code
is not borrow-checked, it can use variables without moving them, enabling the snapshot
use case. In other words, it treats every type as copyable, allowing the duplication of
any value. However, this is at odds with Rust’s non-aliasing guarantees that rely on the
fact that mutable references are linear and thus cannot be duplicated. Hence, rules are

41

4 Ghost Code

needed to ensure that no unsoundness arises from this difference in the semantics of
mutable references.

In the following, we first explain how ghost code and program code can interact and
then argue how the erasure property of ghost code is guaranteed.

4.2.1 Embedding Ghost Code in Program Code

The grammar of Pearlite is derived from the grammar of Rust expressions. For
instance, Pearlite expressions permit literals, variables, binary operators, function calls,
type constructors, pattern matching, and field accessors. Notably, Pearlite does not
support loops, control flow constructs (e.g. return, break), or assignments. The lack
of assignments means that ghost code cannot mutate variables or write to mutable
references. Yet, it is often desirable to store the result of a ghost expression in a variable
that persists over several points in the program.

This is enabled by the gh! macro and the Ghost type, which allow embedding ghost
code in program code. The gh! macro takes a Pearlite expression of type T and
produces a Rust value of type Ghost<T>. Such values live in program code and can thus
be assigned to variables, passed as function arguments, or stored in structs. However,
program code cannot extract the inner value of type T. Only ghost code can call the
ghost function inner to access the contained value. Declaring a data type’s field to be of
type Ghost creates a ghost field. Such fields associate concrete Rust values with abstract
values that can be used in ghost code.

4.2.2 Ghost Code Erasure

Ghost code erasure relies on the dead code elimination optimization performed by
the Rust compiler and its backends. In Rust, Ghost<T> is defined as a zero-sized type,
meaning that its runtime representation does not occupy any memory. It only exists in
Rust’s type system and is erased during runtime. Operations loading or storing values of
type Ghost<T> are thus no-ops and get removed by the compiler during optimizations.

To ensure that erasing ghost code does not alter a program’s behavior, ghost code
must not interfere with program code. Noninterference dictates that ghost code does not
have any observable side effects. Pearlite expressions uphold noninterference because
they terminate, are pure, and cannot update variables or write to mutable references. As
Pearlite does not support loops, it suffices to guarantee that recursive logic functions
terminate. This is discussed in detail in Section 4.3.1.

4.3 Soundness Analysis

This section analyzes how ghost code in Creusot can lead to unsoundness and proposes
several measures to prevent such issues. Importantly, this analysis does not constitute a
comprehensive proof of soundness, which is beyond the scope of this thesis. Instead,
the analysis aims to identify a set of necessary conditions for soundness in a structured

42

4.3 Soundness Analysis

manner but does not claim that this set is complete. Because support for ghost code, as
described so far, existed in Creusot prior to our work, the soundness analysis constitutes
the main contribution of this chapter. Based on our analysis, we suggest enhancements
to the existing ghost code support and write “Creusot

+” to refer to the version of
Creusot implementing those.

First, we consider how to ensure that Pearlite is sound as a proof language. In
particular, this entails that all auxiliary logic functions terminate and that types do not
permit infinite values. These two issues are discussed in Section 4.3.1 and Section 4.3.2,
respectively. Second, we regard the interaction of Pearlite with Rust code. Specifically,
ghost code must uphold the conditions required for the soundness of prophecies. We
discuss the soundness of prophecies in interaction with ghost code in Section 4.3.3.

4.3.1 Termination of Auxiliary Functions

Auxiliary logic functions are required to terminate. While Pearlite does not support
loops, nontermination can be the result of recursion, whether directly or indirectly.
Indirect forms of recursion encompass mutually recursive functions and recursion using
traits. We consider each type of recursion in the following.

Direct Recursion. Creusot permits directly recursive logic functions but necessitates
annotating them with the variant attribute, specifying a decreasing quantity. The
quantity, expressed in terms of the function’s parameters, must have a lower bound and
must decrease with every recursion. For each recursive call, the user is thus obligated to
prove that the quantity, when applied to the callee’s arguments, is less than when applied
to the caller’s arguments. Figure 4.3 illustrates how this prevents unsound recursive
functions. Verifying the logic function direct_rec would constitute an unsound proof
of false due to its postcondition. This is prevented by the variant attribute dictating
that the argument x must decrease in every recursive call. Because the argument of the
inner call is x - 1, the variant requirement is satisfied. However, the lower bound of x,
specified as a precondition, forces guarding the recursive call in an if-expression. Thus,
soundness is maintained as verifying direct_rec still requires proving the (unprovable)
postcondition in the case where x is 0.

Mutual Recursion. Figure 4.3 shows an example of unsound mutual recursion. The
postconditions of mutual_rec1 and mutual_rec2 can be proven using each other. Creusot

rejects such code because it does not support mutually recursive logic functions. During
translation, Creusot determines a linear order of definitions based on a topological sort
of the call graph. In the case of a cycle in the call graph, Creusot raises an error.

Recursion Through Traits. Traits, which are also supported in Pearlite, can encode
nontermination by passing a function to itself as an argument. Figure 4.4 illustrates
recursion using traits. The function call_f takes an argument f of generic type F bound

43

4 Ghost Code

1 #[logic]
2 #[requires(x >= 0)]
3 #[ensures(false)]
4 #[variant(x)]
5 fn direct_rec(x: Int) {
6 if x > 0 {
7 direct_rec(x - 1)
8 } else {
9 // cannot prove false

10 }
11 }

12 #[logic]
13 #[ensures(false)]
14 fn mutual_rec1() {
15 mutual_rec2()
16 }
17

18 #[logic]
19 #[ensures(false)]
20 fn mutual_rec2() {
21 mutual_rec1()
22 }

Figure 4.3: Example of (mutually) recursive logic functions.

by the trait Func, representing a first-class function. We create a new first-class function
by implementing Func for the singleton type Rec. In its implementation of the call
method, it calls call_f on the method receiver argument self. Consequently, invoking
Rec.call() will in turn call call_f with the argument Rec, which again invokes the
call method on Rec. Similar to mutually recursive functions, such code is rejected by
Creusot. The call method of Rec is not allowed to call call_f, because instantiating
the generic call_f with the implementation of Func for Rec cyclically depends on the
definition of Rec::call.

1 trait Func {
2 #[logic]
3 #[ensures(false)]
4 fn call(self);
5 }
6

7 #[logic]
8 #[ensures(false)]
9 fn call_f<F: Func>(f: F) {

10 f.call();
11 }

12 struct Rec;
13

14 impl Func for Rec {
15 #[logic]
16 #[ensures(false)]
17 fn call(self) {
18 call_f(self);
19 }
20 }
21

22 // Rec.call()

Figure 4.4: Example of unsound recursion using traits.

4.3.2 Well-Formedness of Data Types

When Creusot translates Rust types to logic types, it must ensure that the resulting
definitions are well-formed. In particular, recursive Rust types get translated to inductive

44

4.3 Soundness Analysis

types, which must guarantee that any value of the type can be constructed by a finite
number of applications of the constructors. Normally, Rust’s type system prevents
infinite values. However, this is no longer true with ghost fields, as is demonstrated
in Figure 4.5. The comments indicate which equalities hold after each statement,
representing r as a pair of its current and final values. Ghost values are created using
the function gh and unwrapped using inner. The recursive type GhostList has two
constructors Nil and Cons, which contains a mutable reference to itself as a ghost field.
This allows constructing a self-referential value that gives rise to an unsound induction
principle. We initialize the variable x with Nil, borrow x to obtain r, and take a ghost
snapshot g of r. Next, we construct a Cons value from g, write it to r and resolve r
learning the updated value of x. With that, we have created an infinite value: x contains
g as a subterm which in turn contains x. Without ghost code, r would be moved into g
and, thus, the Rust compiler would deny writing to r subsequently.

1 enum GhostList<'a> {
2 Nil,
3 Cons(Ghost<&'a mut GhostList<'a>>),
4 }
5

6 fn infinite_value() {
7 let mut x = GhostList::Nil;
8 let r = &mut x; // x = ?, r = (Nil, x)
9 let g = gh! { r }; // g = gh (Nil, x)

10 *r = GhostList::Cons(g); // r = (Cons (gh (Nil, x)), x)
11 // resolve r: x = Cons (gh (Nil, x))
12 proof_assert!(^g.inner() == x && x == GhostList::Cons(g));
13 }

Figure 4.5: Example of creating infinite values of recursive types with ghost fields.

To prevent unsoundness due to ill-formed type definitions, we propose additional
rules for Rust types with ghost fields. Every recursive occurrence of a type in the types
of its fields must not be in ghost position. A recursive occurrence is in ghost position if
it is used directly or indirectly as the parameter T of the Ghost<T> type. In Figure 4.5,
the recursive occurrence of GhostList is in ghost position because it is directly used in
the ghost type’s parameter. An indirect use means that the type recursively occurs as a
parameter to another type, which in turn contains a ghost occurrence of the parameter.
For example, consider the type IndirectGhost<T> which has a field of type Ghost<T>.
Then, replacing Ghost with IndirectGhost in the definition of GhostList would still be
ill-formed.

The implementation of these rules is twofold. On the one hand, Creusot
+ rejects

recursive type definitions with ghost fields. However, this does not catch cases where a
type indirectly includes itself in a ghost field. Therefore, Creusot

+, on the other hand,

45

4 Ghost Code

relies on Why3’s validation of inductive types, which dictates that a type may only occur
strictly positively in its definition. This rejects types that recursively include themselves
on the left-hand side of an arrow. In particular, the parameters of opaque, abstract types
are not considered strictly positive. By declaring the ghost type as an abstract type, we
can leverage this mechanism to reject ill-formed recursive types that are not detected by
Creusot

+’s check.

4.3.3 Soundness of Prophecies in Ghost Code

The soundness of prophecies in Creusot relies on the guarantees of Rust’s borrow
checker. In particular, the current value of a mutable reference must not depend on
its prophetic final value. Otherwise, causality loops are possible leading to unsound
assumptions when resolving the reference. For example, we consider a mutable reference
to a boolean r that has the current value not (ˆr). Resolving r would assume ˆr = ∗r =

not (ˆr)—a contradiction.

Direct Use of Prophecies. Using ghost code, it is possible to construct programs where
the current value of a mutable reference depends on its prophecy. This is demonstrated in
Figure 4.6, showing two variations of an unsound usage of ghost code. In both examples,
we first create a ghost boolean x and mutably borrow it to obtain r. Next, we create a
new ghost value by negating the prophecy of r and write it to r. In the first example, we
refer to the prophecy by the borrowed variable x and in the second example we use the
final value operator. From the logical perspective, both variations are equivalent. After
that, r is resolved and we assume that x = ˆr = ∗r = gh (not (inner x)). Applying
inner to both sides of the equation directly yields the asserted contradiction.

Without ghost code, constructing such references would not be possible. The final
value operator is only available in Pearlite and using x while it is borrowed violates
Rust’s borrowing rules and would thus be rejected by the compiler.

We suggest additional rules that forbid the unsound usage of borrowed variables and
the final value operator in ghost code. For this purpose, Creusot

+ distinguishes two
dialects of Pearlite: logic Pearlite and ghost Pearlite. While logic Pearlite is used
in contracts and assertions, ghost Pearlite is used inside the gh! macro. Analogously,
Creusot

+ distinguishes auxiliary functions containing logic Pearlite, marked with the
#[logic] or #[predicate] attributes, from those containing ghost Pearlite, marked
with the #[ghost] attribute. Logic functions are allowed to call ghost functions, but not
vice versa. Unlike logic Pearlite, ghost Pearlite cannot use borrowed variables or the
final value operator, preventing the issues demonstrated in Figure 4.6. Table 4.1 shows
a comparison of Rust and the two Pearlite dialects. While theoretically sound, the
ability to use borrowed variables in logic Pearlite is parenthesized, as such uses are
often misleading, indicating user errors.

Use of Prophecies Through Equality. Another way to let the current value of a
mutable reference depend on its prophecy is by using equalities. In particular, Creusot’s

46

4.3 Soundness Analysis

1 fn borrowed() {
2 let mut x = gh! { true };
3 let r = &mut x; // x = ?, r = (gh true, x)
4 *r = gh! { !x.inner() }; // r = (gh (not (inner x)), x)
5 // resolve r: x = gh (not (inner x))
6 proof_assert! { x.inner() == !x.inner() } // UNSOUND!
7 }
8

9 fn final_value() {
10 let mut x = gh! { true };
11 let r = &mut x; // x = ?, r = (gh true, x)
12 *r = gh! { !(^r).inner() }; // r = (gh (not (inner x)), x)
13 // resolve r: x = gh (not (inner x))
14 proof_assert! { x.inner() == !x.inner() } // UNSOUND!
15 }

Figure 4.6: Two examples demonstrating unsound usage of prophecies in ghost code.

Table 4.1: Comparison of Rust and Pearlite Dialects

Rust Ghost Pearlite Logic Pearlite

Erased no yes yes
Borrow-Checked yes no no
Must Terminate no yes yes
Use Final Value no no yes

Use Borrowed Variables no no (yes)
Call Rust Functions yes no no

Call Ghost Functions no yes yes
Call Logic Functions no no yes

47

4 Ghost Code

representation of mutable references as a pair of current and final values results in an
extensionality axiom stating

∀r1, r2 : &mut T . r1 = r2 ⇐⇒ (∗r1 = ∗r2) ∧ (ˆr1 = ˆr2)

How this can be exploited using ghost code is shown in Figure 4.7. We create a ghost
boolean x, borrow it to obtain r1 and take a snapshot g of the reference. Now, r1 is
resolved making inner g = (gh true, gh true). Next, we create a second reference
r2 and compare it to inner g. The following equalities show that r2 = inner g ⇐⇒
inner x:

r2 = inner g ⇐⇒
⇐⇒ (gh true, x) = (gh true, gh true) ⇐⇒
⇐⇒ x = gh true ⇐⇒
⇐⇒ inner x = true

The extensionality axiom is used in the first step to rewrite the references into pairs.
Writing the negated result of the comparison to r2 yields the same unsound value as in
the previous examples. Hence, a contradiction is assumed when r2 is resolved, allowing
to prove the false assertion.

1 fn extensionality() {
2 let mut x = gh! { true }; // x = gh true
3 let r1 = &mut x; // x = ?, r1 = (gh true, x)
4 let g = gh! { r1 }; // g = gh (gh true, x)
5 // resolve r1: x = gh true
6 let r2 = &mut x; // x = ?, r2 = (gh true, x)
7 *r2 = gh! { r2 != g.inner() };
8 // r2 = (gh (not (r2 = inner g)), x) = (gh (not (inner x)), x)
9 // resolve r2: x = gh (not (inner x))

10 proof_assert! { x.inner() == !x.inner() }; // UNSOUND!
11 }

Figure 4.7: Example of unsound prophecies exploiting reference equality.

To guard against the unsound use of the extensionality of mutable references we
propose to change the representation of mutable references. In Creusot

+, the encoding
of mutable references should include a third value that is opaque and incomparable.
Consequently, the equality of two references is no longer equivalent to the equality of
their current and final values. However, this change has not yet been implemented at the
time of writing and future work is required to determine the viability of this measure.

48

4.3 Soundness Analysis

4.3.4 Summary

We discussed the soundness of ghost code in Creusot and proposed several measures to
remedy the found issues. Table 4.2 shows an overview of the implementation status for
each proposed measure. At the time of writing, all except one measure are implemented.
The measures marked with * are functional but could be improved to be less restrictive
or give better diagnostics.

Table 4.2: Implementation Status of each Soundness Measure

Issue Measure Creusot Creusot
+

Termination Variant attribute, cycle detection ✓* ✓*
Infinite Values Check recursive type definitions × ✓*
Final Value Operator Ghost Pearlite × ✓
Borrowed Variables Ghost Pearlite × ✓
Reference Equality Change the encoding of &mut × ×

49

5 Evaluation

In this chapter, we evaluate Creusot’s support for type invariants and ghost code and
highlight their connection. In Section 5.1, we explain which criteria determine the
success of those features. In Section 5.2, we consider several case studies and describe
the experiments conducted to assess the criteria. In Section 5.3, we discuss our results
and summarize the limitations of our approach.

5.1 Evaluation Criteria

To evaluate type invariants and ghost code in Creusot we consider the following criteria:

(C1) Specification Expressivity: How concisely can users formulate specifications?

(C2) Verifiability & Prover Performance: How do the presented features impact the
ability of provers to verify the VCs?

(C3) Usability & Robustness: How applicable are the presented features to real-world
problems?

In the following, we elaborate on these criteria.

C1: Specification Expressivity. Providing sufficient expressivity to enable users to
write succinct specifications that map closely to their understanding is crucial for
accessibility of verification with Creusot. However, increased expressivity is at odds
with avoiding overly complex and verbose specifications. As both type invariants and
ghost code provide a means of abstraction, we hypothesize that the presented features
help balance this tradeoff. To assess this criterion, we determine the specification
overhead by counting the source lines of code (SLOC) making up contracts in proportion
to the total SLOC.

C2: Verifiability & Prover Performance. Depending on how specifications and pro-
grams are represented logically, the time it takes provers to verify the VCs varies. Provers
are usually allotted a maximum runtime, after which they are interrupted. In such cases,
Why3 either tries simplifying the subgoal with transformations or aborts verification as a
failure. Therefore, it is crucial that our encoding considers the strengths and weaknesses
of the provers. The evaluation of this criterion considers whether provers manage to
verify a program at all and the consumed time for verification. Verification time is
measured by aggregating the times expended to prove each goal.

51

5 Evaluation

C3: Usability & Robustness. The applicability of the presented features to real-world
problems hinges on minimizing the number of correct yet non-verifiable programs. Our
design should embody composability and consistency, which are vital to avoid user
confusion. Moreover, a priority should be placed on ergonomics and high automation to
promote ease of use and to streamline the verification process. Additionally, the design
should robustly guard against accidental misuse, ensuring that users encounter no
subtle surprises during utilization. Usability and robustness are assessed qualitatively.

5.2 Case Studies and Experiments

In the following we consider two case studies to gain a better understanding of how well
our presented design achieves the evaluation criteria. The first case study comprises
several data structures that use type invariants to ensure their internal consistency.
The second case study focuses on Rust’s iterators, highlighting in particular how type
invariants and ghost code complement each other. For each case study, we present the
considered test cases, the conducted experiments, and their results. All experiments
were performed on a machine running Arch Linux 6.5.5 equipped with an Intel i5-8250U
CPU and 16 GB of RAM. We installed Alt-Ergo 2.5.1, Z3 4.12.2, CVC4 1.8, and CVC5
1.0.5 as backends for Why3. The source code of the utilized version of Creusot as well
as the case studies is available online [Cre23].

5.2.1 Data Structures

In the first case study, we consider several data structures that use type invariants. These
data structures require certain consistency properties such that their implementation
is correct. We relied on existing implementations, which we adapted to utilize type
invariants. In particular, we analyzed the following data structures:

• vecmap This test case is based on an implementation of an associative array
originally presented in [Hay23]. It stores key-value pairs in a vector that is
required to be sorted with respect to the keys. This permits the mapping type to
check membership using binary search. We adapted the implementation to use
type invariants to enforce the sortedness property.

• sparse_array This test case implements the sparse array data structure from
the VACID-0 verification benchmark suite [LM10]. It allows storing a sparsely
populated array in a dense, contiguous representation by keeping a mapping
from virtual to physical indices. A type invariant ensures the consistency of this
mapping. We adapted an existing implementation in Creusot’s test suite to use
type invariants.

• bdd This test case implements binary decision diagrams with hash consing. A
context structure stores a mapping from hashes to nodes and a type invariant

52

5.2 Case Studies and Experiments

ensures the consistency of the mapping and the underlying graph. We adapted an
existing implementation in Creusot’s test suite to use type invariants.

We conducted two experiments on each test case:

E1: Manual Encoding of Type Invariants. Instead of using the built-in type invariant
support presented in this work, users can alternatively encode type invariants manually.
This is achieved by defining a predicate stating the invariant property and explicitly
adding pre- and postconditions to functions enforcing the invariant’s preservation. The
manual approach does not support prophetic invariants; instead, users have to resort to
the non-composable method of adding postconditions for mutable reference arguments.
We want to see how the built-in type invariants compare to manually encoded type
invariants in terms of the defined evaluation criteria. Therefore, we created a variation
of each data structure where we replaced built-in invariants with manual invariants.
Figure 5.1 exemplifies the manual encoding of type invariants for the insert method,
which inserts a value into a VecMap.

1 #[requires(self.is_sorted())]
2 #[ensures((^self).is_sorted())]
3 #[ensures(...)]
4 pub fn insert(&mut self, key: K, value: V) -> Option<V> {
5 // ...
6 }

Figure 5.1: Manual encoding of invariants for VecMap::insert.

E2: Effect of Type Invariant Optimizations on Solvers. In Section 3.3.4, we explained
two optimizations that simplify trivial type invariants. Invariant elision omits trivial
invariants in contracts and structural invariants. The parametricity optimization instan-
tiates fully generic invariants such that they are trivial. We want to determine whether
these optimizations improve the solver’s verification performance (C2). Consequently,
we modified Creusot to allow optionally disabling the optimizations and measured the
impact on verification times.

Results. Table 5.1 shows the results of our experiments. There are three rows per
test case corresponding to the experiments E1 (manual), E2 (built-in, no-opt), and
the baseline (built-in, opt). The baseline describes the built-in type invariants with
enabled optimizations, as presented in this thesis. The first column shows the contract
SLOC for each test case and each experiment. Experiment E2 does not affect the
specifications and thus has the same values as the baseline. The percentages inside of
the parentheses signify the proportion of contracts to total SLOC. We see that manually
encoding type invariants results in a plus of 3 – 4 percentage points compared to

53

5 Evaluation

the baseline. Furthermore, using built-in type invariants increases verification times
compared to manually encoded invariants. However, our measurements are evidence of
the effectiveness of the optimizations. While the verification time more than doubles
for vecmap without optimizations (built-in, no-opt) compared to the manual version
(manual), the baseline version (built-in, opt) only sees an increase of 28.5 %.

Table 5.1: Evaluation Results for Data Structures

Test Specification SLOC Verification Time

vecmap (manual) 116 (27.4 %) 14.39 s
vecmap (built-in, no-opt) 95 (23.6 %) 34.85 s
vecmap (built-in, opt) 95 (23.6 %) 18.49 s
sparse_array (manual) 25 (17.7 %) 7.30 s
sparse_array (built-in, no-opt) 18 (14.4 %) 15.87 s
sparse_array (built-in, opt) 18 (14.4 %) 7.33 s
bdd (manual) 80 (15.6 %) 45.38 s
bdd (built-in, no-opt) 63 (12.7 %) 95.69 s
bdd (built-in, opt) 63 (12.7 %) 63.12 s

5.2.2 Iterators

Creusot includes a formalization of Rust’s iterators, which utilizes both type invariants
and ghost code. Hence, we consider iterators as a case study, demonstrating the synergy
between ghost code and type invariants.

Rust’s iterators offer a flexible and composable mechanism for sequential traversal
of items in collections. Central to this mechanism is the Iterator trait, which every
iterator implements. This trait specifies the next method, governing the generation of
subsequent values in a sequence. During this process, iterators can modify their internal
state. The next method returns an Option value, where None indicates the end of the
iteration. Notably, Rust’s for-loops are built upon this iterator mechanism, continuously
invoking the next method until it returns None.

Creusot supports iterators by specifying them as state machines [DJ23]. Therefore,
the Iterator trait is augmented with the two additional ghost predicates produces
and completed. The produces predicate encodes the transition relation and completed
encodes the set of final states. Given two states a and b and a sequence of values p,
we write produces(a, p, b) as a p

⇝ b. Accordingly, the next method has a postcondition
stating that the method performs a valid state transition. Every iterator implementation
must define the two predicates and prove that produces is reflexive and transitive.

The case study comprises two parts. In the first part, we consider the specification
of consuming an iterator using a for-loop and explain how ghost code helps eliminate
existential quantifiers. In the second part, we specify an iterator adaptor using a

54

5.2 Case Studies and Experiments

combination of ghost code and type invariants. We perform the following additional
experiment to evaluate ghost code:

E3: Comparision of Ghost Code and Existential Quantifiers. A major use case for
ghost code is the explicit construction of values that could otherwise only be expressed
using existential quantifiers. For example, without snapshots, users would have to
existentially quantify the historical value and constrain it with a predicate capturing
its relation to the current value. We want to test the impact of ghost code on the
performance of solvers when compared to equivalent specifications using existential
quantifiers.

Consuming Iterators. The Rust compiler desugars for-loop syntax into a more primi-
tive loop that repeatedly invokes the iterator. Figure 5.2 shows two desugarings of a
for-loop, which differ only in their use of ghost code. The desugarings are equivalent to
writing for x in it { <body> }. In both versions, the fixed iteration scheme enables
the desugaring to provide a loop invariant “for free”. The invariant states that it is
obtained from it0 by repeatedly calling next, or, in other words, ∃ p. it0

p
⇝ it, which

corresponds to the version on the left. The version on the right avoids the existential
quantifier (E3) by explicitly tracking the sequence of produced values produced in ghost
code. It therefore initializes the ghost variable p to an empty sequence before the loop
and subsequently appends each item returned by next.

1 let it0 = gh! { it };
2 #[invariant(exists<p: Seq<Item>>
3 it0.produces(p, it))]
4 loop {
5 match it.next() {
6 None => break,
7 Some(x) => {
8 // <body>
9 }

10 }
11 }
12

13 let it0 = gh! { it };
14 let mut p = gh! { Seq::EMPTY };
15 #[invariant(it0.produces(p, it))]
16 loop {
17 match it.next() {
18 None => break,
19 Some(x) => {
20 p = gh! { p.push(x) };
21 // <body>
22 }
23 }
24 }

Figure 5.2: Consuming an iterator with a for-loop.

For experiment E3, we created a test program using for-loops and a variation where
we replaced the for-loops with a manual desugaring with existential quantifiers in the
loop invariant.

55

5 Evaluation

Iterator Adaptors. While the desugaring of for-loop already demonstrates how ghost
code can replace existential quantifiers, it does not yet motivate the combined use of
type invariants and ghost code. Therefore, we examine the specification of an iterator
adaptor as a case study. An iterator adaptor is an iterator that wraps another iterator and
applies certain transformations on the generated items. Typical examples include, for
example, the Map adaptor, which applies a function to each item of the inner iterator, or
the Filter adaptor, which only yields elements that satisfy a specific criterion. In our
case study, we consider the adaptor FilterZero, which wraps an u32 iterator and only
yields non-zero values of the inner iterator. For the purpose of our case study, we use a
simplified version of Rust’s iterator trait, shown in Figure 5.3. Our version differs from
the original formalization in [DJ23] in the following ways:

• Our iterators only iterate over values of type u32 whereas Rust’s iterators can
iterate over values of any type.

• Our iterators have no final states and so the next method returns a u32 value
instead of an Option value.

• The specification of Rust’s iterators uses a produces predicate which is the reflexive-
transitive closure of our produces predicate. This means implementors are not
required to prove reflexivity and transitivity in our version.

1 pub trait Iter {
2 #[predicate]
3 fn produces(self, x: u32, other: Self) -> bool;
4

5 #[ensures(self.produces(result, ^self))]
6 fn next(&mut self) -> u32;
7 }
8

9 struct FilterZeros<I: Iter> {
10 inner: I,
11 hist: Ghost<Seq<(I, u32)>>,
12 }

Figure 5.3: The Iter trait and the FilterZeros adaptor.

To implement Iter for FilterZero, we first define the produces predicate. A
FilterZero iterator a produces a value x if the wrapped iterator produces a sequence of
one or more elements where every element is zero except the last element which must
equal x. This is expressed by the following transition relation (if n = 1, a.inner only
produces a single, non-zero value):

56

5.2 Case Studies and Experiments

a x
⇝ b ⇐⇒ x ̸= 0 ∧ ∃ h1, . . . , hn. a.inner = h1

0
⇝ h2

0
⇝ · · · 0

⇝ hn
x
⇝ b.inner

Similar to how we use ghost code to replace the existential quantifier in the desugaring
of for-loops, we follow that approach in this case. While we previously stored produced
items in a local ghost variable, we must now use a ghost field, that is populated by the
next method and can be referred to by produced. Figure 5.3 shows the definition of the
FilterZeros type that stores a sequence of iterator-item pairs in a ghost field hist. This
sequence stores the (zero-valued) items generated by the inner iterator since the last
non-zero value along with snapshots of the inner iterator, representing its state before
each item was generated. Defining a type invariant for FilterZeros allows exactly
specifying the properties of hist, as shown in the following:

uinv(b) ⇐⇒ let ((h1, x1), . . . , (hn, xn)) = b.hist in h1
x1⇝ · · · xn−1⇝ hn

xn⇝ b.inner

With this type invariant, we can reformulate the produces relation to use the ghost
field hist as an explicit witness for the existential quantifier:

a x
⇝ b ⇐⇒ x ̸= 0 ∧ let ((h1, x1), . . . , (hn, xn)) = b.hist

in a.inner = h1 ∧ xn = x ∧ ∀ i < n. xi = 0

Results. Table 5.2 shows the results of our experiments on iterators. There are two
test cases, corresponding to the presented studies on for-loops and iterator adaptors.
Each test case has one baseline variant with ghost code (ghost) and one represent-
ing experiment E3 (existential), where ghost code is removed in favor of existential
quantification. In the first test case concerning for-loops, replacing ghost code with
existential quantifiers doubled the verification time. In the second test case, the ver-
sion of FilterZero without ghost code could not be verified automatically by running
Why3’s “Auto level 3” proof strategy. Specifically, none of the backend solves was able
to instantiate the existential quantifier in the produces predicate, which must be proven
as part of a loop invariant of the next function.

Table 5.2: Evaluation Results for Iterators

Test Verification Time

Consuming for-loops (ghost) 0.42 s
Consuming for-loops (existential) 0.83 s
FilterZero (ghost) 2.62 s
FilterZero (existential) ×

57

5 Evaluation

5.3 Discussion

In this section, we discuss the observations gained from the presented case studies and
experiments. Not all observations can be directly attributed to experimental evidence;
some are anecdotal and therefore have a speculative character. Consequently, we
emphasize the limitations to the validity of our claims where applicable. The structure
of this section follows the criteria; both positive and negative findings are discussed for
each criterion.

5.3.1 Specification Expressivity

O1.1: Built-In Type Invariants Simplify Specifications. Experiment E1 showed that
built-in support for type invariants enables simpler specifications as compared to
manually encoded type invariants. While manual invariants achieve a similar effect as
using the built-in type invariants, they require significantly more verbose specifications.
Firstly, our approach does not require pre- and postconditions for type invariants as
they are automatically generated by contract elaboration. Secondly, automatic derivation
of structural invariants alleviates the need to explicitly define type invariants for many
purely structural types.

O1.2: Ghost Code Improves Encapsulation. Ghost code enables auxiliary logic func-
tions and lemma functions that provide a way to break down specifications into smaller
units. This reduces code duplication, reducing the overall amount of required annota-
tions.

5.3.2 Verifiability & Prover Performance

A major factor determining the efficacy of an SMT solver is its ability to instantiate
formulas containing quantifiers. Instantiation is required as most specialized theory
solvers (e.g. for linear arithmetic or bit vectors) can only reason about quantifier-free
terms. To control instantiation, SMT solvers use heuristics, often based on triggers.
A trigger is a term or pattern within a quantified formula that, when matched in the
current formula set, prompts the instantiation of the quantifier. However, selecting
good triggers is challenging, and improper trigger selection can lead to inefficiencies
like matching loops [Mos09]. This situation arises when the instantiation of a quantified
formula results in new terms, which in turn trigger further instantiations of the same or
other quantified formulas. This can lead to an infinite sequence of instantiations without
making any real progress towards determining satisfiability. In essence, the solver gets
“stuck” in a loop of generating terms without ever concluding.

O2.1: Ghost Code Helps Solvers Instantiate Existential Quantifiers. Experiment E3
showed that goals containing existential quantifiers are harder to verify for solvers.
Verification of such goals requires instantiating the quantified term with an explicit

58

5.3 Discussion

witness. In cases where the construction of such witnesses is non-trivial, verification can
fail due to solver timeouts. However, experiment E3 also showed that this challenge is
alleviated when users provide witnesses using ghost code.

O2.2: Guarded Quantifiers Hamper the Instantiation of Univeral Quantifiers. Ex-
periment E1 showed that built-in type invariants cause an increase in verification times
compared to manually encoded type invariants. We conjecture that this is (partly) due
to how quantifiers are guarded with type invariant predicates. The encoding of type
invariants presented in Chapter 3 affects the ability of SMT solvers to select optimal
triggers. In particular, quantifiers in Pearlite are guarded with invariant predicates,
resulting in terms of the form ∀ x. inv(x) → P(x). Similarly, axioms generated from
lemma functions are guarded by the invariants of their parameters. Based on these
formulas, SMT solvers may choose the invariant predicate as a trigger for instantiation,
which is a suboptimal choice in most cases. To what extent this explains the increased
verification times, is difficult to determine. Solvers give little indication of the exact
factors determining their ability to prove a specific goal. Furthermore, these factors are
usually not uniform for all solvers. Ultimately, more experiments are required to better
understand the correlation between type invariants are verifiability.

O2.3 Optimization of Trivial Invariants Improves Solver Performance. Experiment E2
showed that the optimizations for trivial type invariants improve verification time. The
effectiveness of the optimizations can be explained with observation O2.2. Eliding trivial
invariants in quantified terms partially mitigates the instantiation issues.

O2.4: Manual Unfolding of Type Invariants is Required in Some Cases. The encoding
of type invariants as uninterpreted inv predicate and unfolding axioms per type has
been observed to impair verifiability in rare cases. While solvers are usually able to
automatically apply the axioms as needed, manual rewrite transformations to unfold
the invariant are required in some goals. Further investigation is required to determine
the exact causes of this behavior.

O2.5: Solvers Struggle to Prove Invariant Inhabitation. For complex type invariants,
it is often challenging for solvers to prove that the invariant is inhabited. Provers are
required to instantiate the existentially quantified invariant term, which requires the
construction of a witness. An alternative to enforcing inhabitation as a trait law would
be to generate a proof obligation when creating a mutable reference that asserts the
invariant of the borrowed value. This would potentially result in more proof goals but
avoid the existential quantifier.

59

5 Evaluation

5.3.3 Usability & Robustness

Comparing manually encoded type invariants and built-in type invariants shows that
the latter avoid several pitfalls of the former.

O3.1: Type Invariants Prevent Oversights. We conjecture that manually encoding type
invariants is prone to oversights. Users might forget to include an argument’s invariant
in a function contract, leading to an unprovable goal when passing the argument to
another function. Furthermore, with manual encoding, it is not obvious to users which
types define type invariants. Built-in support for type invariant prevents such oversights.

O3.2: Prophetic Invariants Ensure Composability. Experiment E1 showed that without
prophetic invariants, users have to resort to specifying postconditions for mutable
reference arguments. As discussed in Section 3.1.2, this approach is not composable
with generic functions.

O3.3: Type Invariants are not Automatically Preserved in Loops. Modifying a value
that must satisfy a type invariant in a loop often requires a loop invariant enforcing
the preservation of the type invariant. At the moment, Creusot does not automatically
generate such loop invariants, instead requiring users to manually write such loop
invariants. This is inconsistent with the general approach to hide type invariants in
specifications.

60

6 Related Work

Refinement Types. Refinement types, first introduced by Freeman and Pfenning in
1991 [FP91], constrain their set of possible values with a logical predicate. For example,
{ x: i32 | x != 0 } describes a subtype of i32 which is constrained to be non-zero.
The same type can be described using type invariants in Creusot by implementing the
Invariant trait for a new type wrapping an i32 value. While similar in expressivity,
a key difference between our type invariants and refinement types lies in the method
of enforcement. As refinement types make the constraining properties part of the type
system, they are enforced through type checking. In contrast, type invariants in Creusot

are translated into VCs which are verified independently of type checking.

Refinement Types for Rust. Flux [Leh+23] extends Rust’s type system with refinement
types, which it calls existential types. Furthermore, it introduces indexed types, a form
of dependent types [XP99]. For example, the type RVec<T>[n], which is indexed by
an integer n, lifts the length of a vector to the type system. This lets users write
{ n. RVec<T>[n] | n > 0 } for the refined type of non-empty vectors. While Creusot

does not support dependent types, abstract values can be associated with concrete
values using logic functions. In particular, the model operator associates an abstract
sequence to each vector. Thus the type of non-empty vectors can be specified in Creusot

by defining an invariant constraining the length of the vector’s model. An interesting
difference between Flux and type invariants in Creusot lies in the handling of mutable
references. Flux distinguishes two kinds of mutable references: invariant-preserving
and type-changing, or strong, references. While the former prohibit modifications
breaking the invariant, the latter permit arbitrary modifications but require annotating
the reference’s updated type. In Creusot, mutable references always preserve their
invariants across function boundaries, making them similar to the invariant-preserving
variant in Flux. However, Creusot also allows temporary invariant-breaking updates,
which are only possible using strong references in Flux. In summary, invariants in
Creusot and Flux are comparably expressive regarding the specification of mutable
references. In general, however, Creusot enables more complex invariants than Flux

thanks to its more powerful logic that supports quantifiers, for instance.

Foundational Rust Verification. RustBelt [Jun+17] provides a semantic model for
Rust by formalizing its type system in the Iris separation logic [Jun+18]. RustHornBelt

[Mat+22] extends RustBelt with prophecies and thus establishes a semantic foundation
for Creusot. In contrast to automated verification tools, these foundational models

61

6 Related Work

require a manual translation from Rust into λRust, a Coq-based representation, and
manual proofs in Iris. However, being built on the Iris separation logic enables the
verification of programs that internally use unsafe Rust features. This is harder in
non-foundational tools like Creusot because specifying such programs requires general
assertions about Rust’s memory model, which goes beyond Creusot’s prophecy-based
model. RefinedRust [Gäh+23] aims to overcome this gap, combining automation and
support for unsafe Rust features. Inspired by RefinedC [Sam+21], it translates Rust
into the Coq-based operational semantics Radium. Specifications are supplied similar
to Flux, by refining Rust types with predicates. While verification still requires a Coq
proof, high automation is possible thanks to using RefinedC’s Lithium engine.

Type Invariants in Prusti. Prusti [Ast+19] is a Rust verification tool similar to Creusot.
It translates Rust into the Viper separation logic framework that, similar to Why3, uses
SMT solvers for automated verification. Unlike Creusot, Prusti reconstructs the aliasing
guarantees from Rust’s type system in its logic. Instead of prophecies, it uses pledges:
properties that can be assumed to be true at the end of a reference’s lifetime. Prusti

supports a form of type invariants through #[invariant(...)] attributes on struct and
enum definitions. A potential advantage of Creusot’s trait-based approach to defining
invariants is the possibility of constraining invariants with trait bounds. However,
Creusot’s current implementation does not yet offer that flexibility (cf. §3.5), making
trait-based invariants equally expressive as Prusti’s attributes. Similar to Creusot,
Prusti generates structural invariants based on type definitions. Unlike Creusot, Prusti

generates postconditions for mutable references in function parameters. A benefit of
Prusti’s pledge-based approach is support for assert_on_expiry assertions. In contrast
to regular pledges, these specify properties that must be proven at the end of a reference’s
lifetime. This enables specifying functions returning mutable references to types with
invariants, which are currently unsupported by Creusot (cf. §3.4.4).

Type Invariants in Why3. Why3 [FP13] supports defining type invariants for record
types. Similar to Creusot, type invariants must be shown to be inhabited and are
enforced on function boundaries. However, unlike Creusot, all type invariants must
be restored at function exit instead of just the return value’s invariant. Moreover, users
must show all newly constructed records satisfy their invariants while in Creusot

values with an open invariant can be constructed. Since Creusot is based on Why3
and both support type invariants, in an alternative design, Creusot could translate
type invariants into their Why3 equivalent. However, this would oblige Creusot’s type
invariants to tightly follow Why3’s design choices, which may not be optimal choices for
Rust. For example, Why3 forbids recursive types with invariants, whereas such types
are supported in Creusot thanks to the encoding via unfolding axioms. Ultimately, not
relying on Why3’s type invariants means more flexibility and control.

62

Ghost Code in Why3. The WhyML language of Why3 supports ghost code [FGP16].
While WhyML is a unified language for both programs and specifications, it distin-
guishes program and logic expressions. Creusot translates Rust to program expressions
and Pearlite to logic expressions. Unlike Creusot’s Ghost type, WhyML’s ghost code is
embedded into program code using a ghost modifier that can be applied to let-bindings,
function arguments and return types, and record fields. Only program expressions
marked as ghost expressions can read or write variables annotated with a ghost modifier.
However, ghost expressions cannot modify regular variables, ensuring their erasure
without changing the surrounding program’s behavior. The noninterference property
of this approach is proven using a type system with effects and bisimulation [FGP16],
drawing parallels to noninterference in information flow control.

Ghost Code in Verus. The Verus [Lat+23] Rust verifier stands out thanks to its support
for linear ghost code, i.e., ghost code where Rust’s ownership and borrowing rules
are enforced. This approach contrasts with Creusot’s non-linear ghost code, where
values can be freely duplicated. To also support use cases benefitting from non-linear
features, such as snapshot variables, Verus employs a stratified design, distinguishing
three modes:

• exec for executable program code,

• proof for linear ghost code, and

• spec for non-linear ghost code.

While spec-mode code is similar to ghost code in Creusot, proof-mode code blends
characteristics of the other two modes. Like spec code, it is erased, must terminate and
be pure. Like exec code, it is borrow-checked and allows mutations.

Mode annotations apply to both functions and variables, akin to the ghost modifier
in Why3. As hinted by the name, proof-mode functions are used to write lemma
functions as spec functions cannot define postconditions. Notably, proof-mode variables
are instrumental in encoding linear ghost permissions. Reminiscent of separation logic
formulas, such permissions track the evolving state of a resource, but rely entirely on
Rust for enforcing linearity.

Leveraging linear ghost permissions, Verus provides replacements for unsafe Rust
features that encode the respective safety conditions in their specifications. Unlike
foundational tools capable of verifying unsafe Rust code directly, Verus requires pro-
grammers to refactor unsafe code to utilize the provided replacements. For example,
Verus introduces the permissioned pointer type PPtr<T> as a safe replacement for
raw heap pointers. Each PPtr<T> is accompanied by a ghost permission value of type
PermData<T>, which is acquired alongside the pointer upon allocation. While PPtr<T>
pointers are duplicable like Rust’s raw pointers, the permission values are linear. Con-
sequently, writing to a PPtr<T> pointer requires both a shared reference to the pointer
itself and exclusive access to the corresponding PermData<T> ghost permission.

63

7 Conclusion and Future Work

7.1 Conclusion

Support for type invariants and ghost code in the Rust verifier Creusot empowers users
to write more expressive specifications, improving the viability of verifying complex
programs. The main contributions of this work can be summarized as follows:

• We introduced an innovative design for type invariants that ensures compos-
ability, in particular in the interaction with Creusot’s prophetic encoding of
mutable references. Although we did not present a comprehensive formal proof of
soundness, we discussed the soundness of critical components. In particular, this
work includes a correctness proof of the prophecy resolution algorithm, which is
responsible for maintaining type invariants for mutable references.

• We implemented type invariants in Creusot and tested them through several case
studies. Based on these case studies, we conducted experiments affirming the
applicability of our design to real-world scenarios. While these studies underscored
the expressive capabilities of type invariants, they also highlighted challenges in
verifiability, which we addressed through targeted optimizations.

• We conducted a thorough analysis of Creusot’s preexisting ghost code implemen-
tation. In particular, we mapped out the necessary conditions for the soundness of
prophecies in ghost code. The existing implementation fell short of fully ensuring
these conditions, prompting us to suggest and implement appropriate refinements.

• We integrated all but one of the proposed enhancements into Creusot. Further-
more, we tested how the usage of ghost code to instantiate existential quantifiers
improves verifiability. Regarding Rust’s iterators as a case study not only con-
firmed this hypothesis but also demonstrated the synergy between type invariants
and ghost code.

7.2 Future Work

Validation of Type Invariant Definitions. In Section 3.3.3, we explained how con-
tradictory user invariants can cause unsoundness. We stated the rules users must
follow when defining invariants to uphold soundness. However, these rules are not yet
validated by Creusot. Implementing such checks therefore remains an important future
improvement.

65

7 Conclusion and Future Work

Inference of Loop Invariants Preserving Type Invariants. When modifying a value
with a non-trivial type invariant within a loop, users have to manually add a loop
invariant stating that the loop preserves the type invariant. An interesting future
improvement would be to automatically infer such loop invariants.

Specification of Functions Returning Reborrows. In Section 3.4.4, we discussed why
prophecy resolution renders some programs not verifiable. In particular, Creusot

currently does not support functions that return reborrowed references to values with
invariants. Specifying such functions requires a new type of precondition that can
impose conditions on how a returned reference is used in the caller. A mechanism
similar to Prusti’s assert_on_expiry is imaginable and illustrated in Figure 7.1.

1 #[requires_on_expiry((*x).a@ + (^result)@ == 10)]
2 fn project(x: &mut SumTo10) -> &mut i32 {
3 &mut x.a // (*x).a <- ^result
4 // the invariant of x is provable using the precondition
5 }

Figure 7.1: Hypothetical specification for a function returning a reborrow.

Trusted Type Invariants. For some types, Rust’s type system provides additional
guarantees that can not yet be leveraged in verification with Creusot. For instance, an
array a of type [u8; 10] always has length 10 and thus the property a@.len() == 10
must always be true. While this property can be expressed as a type invariant, it is
different from the type invariants considered so far. Since the property is enforced by
Rust itself and cannot be broken, it can be assumed as an axiom for all values of the
type and users should never be required to prove it. This is similar to Creusot’s concept
of trusted specifications, which generate no proof obligations. Other types that would
benefit from trusted invariants are mutable slices, such as the slice s of type &mut [u8].
Since Rust only allows changing the elements referenced by s but not its length, we
could define the trusted invariant (^s)@.len() == (*s)@.len().

Extensionality of Mutable References. As discussed in Section 4.3.3, the encoding of
mutable references ought to be changed to prevent unsound comparisons of mutable
references in ghost code. One potential approach is the addition of a third opaque
value to each reference, making it impossible to exploit extensionality. However, there
remain open questions concerning the correct behavior for reborrows and the impact on
verifiability.

Linear Ghost Code. An intriguing future research direction for Creusot involves
supporting ghost code in which Rust’s ownership and borrowing paradigm is enforced.

66

7.2 Future Work

Such ghost code would enable linear ghost permissions, which Verus [Lat+23] has
shown useful in specifying resource-managing types. It would be compelling to explore
to what extent linear ghost code can mimic the concept of ghost resources in the Iris

[Jun+18] separation logic. This could pave the way not only for specifying types with
interior mutability, as demonstrated by Verus, but also for the verification of concurrent
programs. Furthermore, it merits contemplation whether Creusot’s type invariants
could emulate aspects of Iris’ concept of invariants.

67

List of Figures

2.1 Example showcasing basic Rust syntax. 6
2.2 Example demonstrating the concept of ownership in Rust. 7
2.3 Example illustrating borrowing in Rust. 9
2.4 Example of defining and using traits in Rust. 9
2.5 Overview of Creusot’s verification toolchain. 11
2.6 Example of verifiying a sorting function with Creusot. 13
2.7 The gnome sort function opened in Why3 IDE. 14
2.8 Example of a lemma function. 14
2.9 Example of the prophetic encoding of mutable references. 15
2.10 Example of using prophecies to specify index_mut. 16

3.1 Example of temporarily opening a type invariant. 18
3.2 Example of type invariants across function boundaries. 18
3.3 Example demonstrating the issue with deriving postconditions for closing

invariants of mutable references. 20
3.4 The definition of the Invariant trait and an example of defining a type

invariant. 21
3.5 Example demonstrating the effect of contract elaboration. 22
3.6 Example illuminating how prophetic invariants solve the challenges con-

cerning invariants of mutable references. 23
3.7 The Inhabitation Law. 24
3.8 Example demonstrating how hidden invariants can cause unsoundness. . 25
3.9 The unfolding axiom generated for SortedInts (WhyML syntax). 28
3.10 Example of a user invariant resulting in an unsound axiom. 28
3.11 The trivial invariant unfolding axiom (WhyML syntax). 29
3.12 Illustration of optimized clones (indicated by orange edges). 30
3.13 Example of how early and late resolution handle reborrows. 31
3.14 Example of the data-flow analyses used in resolution. 32
3.15 Examples demonstrating the limitations of resolution. 37

4.1 The gnome_sort example using ghost snapshots. 40
4.2 Example of ghost code used to instantiate an existential quantifier. 41
4.3 Example of (mutually) recursive logic functions. 44
4.4 Example of unsound recursion using traits. 44
4.5 Example of creating infinite values of recursive types with ghost fields. . 45
4.6 Two examples demonstrating unsound usage of prophecies in ghost code. 47

68

List of Figures

4.7 Example of unsound prophecies exploiting reference equality. 48

5.1 Manual encoding of invariants for VecMap::insert. 53
5.2 Consuming an iterator with a for-loop. 55
5.3 The Iter trait and the FilterZeros adaptor. 56

7.1 Hypothetical specification for a function returning a reborrow. 66

69

List of Tables

4.1 Comparison of Rust and Pearlite Dialects 47
4.2 Implementation Status of each Soundness Measure 49

5.1 Evaluation Results for Data Structures . 54
5.2 Evaluation Results for Iterators . 57

70

Bibliography

[Ast+19] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. “Leveraging Rust types
for modular specification and verification.” In: Proceedings of the ACM on
Programming Languages 3.OOPSLA (2019), pp. 1–30.

[Bar+22] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A.
Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, et al. “cvc5: A versatile
and industrial-strength SMT solver.” In: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer. 2022,
pp. 415–442.

[Coh+09] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. “VCC: A practical system for verifying concurrent
C.” In: Theorem Proving in Higher Order Logics: 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings 22. Springer.
2009, pp. 23–42.

[Con+18] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout. “Alt-Ergo 2.2.”
In: SMT Workshop: International Workshop on Satisfiability Modulo Theories.
2018.

[CPN98] D. G. Clarke, J. M. Potter, and J. Noble. “Ownership types for flexible
alias protection.” In: Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications. 1998, pp. 48–
64.

[Cre23] Creusot Contributors. Creusot GitHub Repository (evaluation branch). 2023.
url: https://github.com/voidc/creusot/tree/evaluation (visited on
11/13/2023).

[DB08] L. De Moura and N. Bjørner. “Z3: An efficient SMT solver.” In: International
conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2008, pp. 337–340.

[Dij+76] E. W. Dijkstra, E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra. A discipline
of programming. Vol. 613924118. prentice-hall Englewood Cliffs, 1976.

[DJ23] X. Denis and J.-H. Jourdan. “Specifying and Verifying Higher-order Rust Iter-
ators.” In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2023, pp. 93–110.

[DJM22] X. Denis, J.-H. Jourdan, and C. Marché. “Creusot: a foundry for the de-
ductive verification of rust programs.” In: International Conference on Formal
Engineering Methods. Springer. 2022, pp. 90–105.

71

https://github.com/voidc/creusot/tree/evaluation

Bibliography

[DMM18] S. Dailler, C. Marché, and Y. Moy. “Lightweight interactive proving inside
an automatic program verifier.” In: arXiv preprint arXiv:1811.10814 (2018).

[FGP16] J.-C. Filliâtre, L. Gondelman, and A. Paskevich. “The spirit of ghost code.”
In: Formal Methods in System Design 48 (2016), pp. 152–174.

[FP13] J.-C. Filliâtre and A. Paskevich. “Why3—where programs meet provers.” In:
Programming Languages and Systems: 22nd European Symposium on Program-
ming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings
22. Springer. 2013, pp. 125–128.

[FP91] T. Freeman and F. Pfenning. “Refinement types for ML.” In: Proceedings
of the ACM SIGPLAN 1991 conference on Programming language design and
implementation. 1991, pp. 268–277.

[Gäh+23] L. Gäher, M. Sammler, R. Jung, R. Krebbers, and D. Dreyer. “RefinedRust:
High-Assurance Verification of Rust Programs.” unpublished. 2023.

[Gil21] F. Gilcher. Ferrocene Part 3: The Road to Rust in mission- and safety-critical. 2021.
url: https://ferrous-systems.com/blog/ferrocene-update-three-the-
road/ (visited on 11/11/2023).

[Hay23] J. Hayeß. “Verifying the Rust Runtime of Lingua Franca.” MA thesis. 2023.

[Hoa69] C. A. R. Hoare. “An axiomatic basis for computer programming.” In: Com-
munications of the ACM 12.10 (1969), pp. 576–580.

[Jun+17] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. “RustBelt: Securing the
foundations of the Rust programming language.” In: Proceedings of the ACM
on Programming Languages 2.POPL (2017), pp. 1–34.

[Jun+18] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer.
“Iris from the ground up: A modular foundation for higher-order concurrent
separation logic.” In: Journal of Functional Programming 28 (2018), e20.

[Jun+21] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. “Safe systems program-
ming in Rust.” In: Communications of the ACM 64.4 (2021), pp. 144–152.

[Lat+23] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou, J. Howell, B.
Parno, and C. Hawblitzel. “Verus: Verifying rust programs using linear ghost
types.” In: Proceedings of the ACM on Programming Languages 7.OOPSLA1
(2023), pp. 286–315.

[Leh+23] N. Lehmann, A. T. Geller, N. Vazou, and R. Jhala. “Flux: Liquid types for
rust.” In: Proceedings of the ACM on Programming Languages 7.PLDI (2023),
pp. 1533–1557.

[Lei10] K. R. M. Leino. “Dafny: An automatic program verifier for functional correct-
ness.” In: International conference on logic for programming artificial intelligence
and reasoning. Springer. 2010, pp. 348–370.

72

https://ferrous-systems.com/blog/ferrocene-update-three-the-road/
https://ferrous-systems.com/blog/ferrocene-update-three-the-road/

Bibliography

[LM10] K. R. M. Leino and M. Moskal. “VACID-0: Verification of Ample Correctness
of Invariants of Data-structures, Edition 0.” In: Proceedings of Tools and
Experiments Workshop at VSTTE. 2010.

[Mat+22] Y. Matsushita, X. Denis, J.-H. Jourdan, and D. Dreyer. “RustHornBelt: a
semantic foundation for functional verification of Rust programs with unsafe
code.” In: Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 2022, pp. 841–856.

[MK14] N. D. Matsakis and F. S. Klock. “The rust language.” In: ACM SIGAda Ada
Letters 34.3 (2014), pp. 103–104.

[Mos09] M. Moskal. “Programming with triggers.” In: Proceedings of the 7th Interna-
tional Workshop on Satisfiability Modulo Theories. 2009, pp. 20–29.

[Rey83] J. C. Reynolds. “Types, abstraction and parametric polymorphism.” In:
Information Processing 83, Proceedings of the IFIP 9th World Computer Congres.
1983, pp. 513–523.

[Sam+21] M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg.
“RefinedC: Automating the foundational verification of C code with refined
ownership types.” In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 2021, pp. 158–
174.

[XP99] H. Xi and F. Pfenning. “Dependent types in practical programming.” In:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1999, pp. 214–227.

73

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Thesis Overview

	Background
	Rust
	Deductive Verification
	Rust Verification with Creusot

	Type Invariants
	Design Challenges
	Open and Closed Invariants
	Interaction of Invariants and Borrowing

	Prophetic Invariants
	Basic Usage
	Prophetic Invariants
	Soundness

	Structural Invariants
	Preventing Hidden Invariants
	Derivation of Structural Invariants
	Invariant Encoding
	Invariant Elision & Parametricity

	Prophecy Resolution
	Early and Late Resolution
	Resolution Algorithm
	Correctness of Resolution
	Incompleteness of Resolution

	Limitations

	Ghost Code
	Design Goals
	Ghost Code in Creusot
	Embedding Ghost Code in Program Code
	Ghost Code Erasure

	Soundness Analysis
	Termination of Auxiliary Functions
	Well-Formedness of Data Types
	Soundness of Prophecies in Ghost Code
	Summary

	Evaluation
	Evaluation Criteria
	Case Studies and Experiments
	Data Structures
	Iterators

	Discussion
	Specification Expressivity
	Verifiability & Prover Performance
	Usability & Robustness

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

