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Abstract

End-to-end speech recognition systems are trained in an end-to-end manner. In contrast
to other conventional speech recognition systems, they do not require multiple refine-
ment steps during training or rely on an ensemble of models for acoustic classification
and language features. Two structural principles are the most popular for end-to-end
speech recognition: (1) Neural networks trained with Connectionist Temporal Classifi-
cation (CTC) loss provide strong temporal alignments. (2) Attention-based structures
sequentially generate their output sequence. Hybrid CTC/attention end-to-end speech
recognition combines both powerful concepts that exhibit complementary characteristics.

One key assumption about hybrid CTC/attention is that CTC helps to enforce the
attention mechanism to sequential alignments. The first part of this work investigates
this key assumption on the basis of various hybrid CTC/Attention hyperparameter
configurations. Multiple speech recognition models were trained iteratively and evaluated
on the TED-LIUM 2 corpus, whereas each set of parameters was chosen using Gaussian
Process optimization. In total, the experiment combined data from 70 models and
590 beam search runs. Summarizing the results, hybrid models exhibit better speech
recognition performance when compared to attention-only or CTC-only models.

Deep hybrid CTC/attention neural networks are increasingly complex and prone
against specially crafted noise, in particular adversarial noise. Therefore, the second part
investigates methods to generate audio adversarial examples for hybrid CTC/attention ar-
chitectures from CTC loss, based on the attention mechanism or as hybrid CTC/attention
adversarial examples. The generated adversarial examples are represented in the feature
space and can be converted to audio using feature inversion. Experimental results
demonstrate an improvement of speech recognition performance and robustness by aug-
menting training data with adversarial noise. As adversarial noise is partially inaudible,
psycho-acoustic compression methods suppress adversarial noise to some extent. This
hypothesis is evaluated for MP3-compression using hybrid CTC/attention models trained
on the uncompressed VoxForge corpus in terms of character error rate and SNR of the
adversarial noise. Results show improved performance on adversarial examples and a
decrease of a portion of the adversarial noise, but at the cost of reduced speech recognition
performance on regular audio.

Hybrid CTC/attention models are trained in an end-to-end manner but still require
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pre-processed input data. The third part of this work describes how the feature extraction
is incorporated into the trainable model in form of Sinc convolutions. Sinc convolutions
entail a similar structural information as preprocessed audio features but also provide a
trainable flexibility such as regular convolutional network layers. A keyword classification
experiment on the Google Speech Commands corpus demonstrates these advantages:
The Sinc convolutional network exhibits superior performance, even when compared to
larger and more complex convolutional networks. A second experiment incorporates the
Sinc convolution into the hybrid CTC/attention architecture for end-to-end decoding,
which improved speech recognition performance while at the same time reducing model
size.

As these deep neural networks grow increasingly complex, they also require more
training data, represented in the form of audio segments annotated with transcription.
The final part of this work describes CTC segmentation, a dynamic programming
algorithm that aligns transcription text to audio using CTC-based network activations.
We use this algorithm to align sentences from audiobooks and evaluate models with
different training dataset compositions on the German speech corpus TuDa-DE. Speech
recognition performance increases in relation to more training data with more accurate
alignments. In comparison to other forced alignment algorithms, CTC segmentation
skips unrelated speech segments and yields a confidence score that can be used to filter
out utterances with mismatching transcriptions. This CTC-based data cleansing can be
an essential building block for automated data acquisition, which is demonstrated with
the example of Jtubespeech, the largest publicly available Japanese speech dataset.
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Zusammenfassung

Ende-zu-Ende-Spracherkennungssysteme werden mit akustischen Merkmalsdaten direkt
auf den Ausgabetext trainiert. Im Gegensatz zu anderen konventionellen Spracherken-
nungssystemen benötigen sie nicht mehrere Verfeinerungsschritte während des Trainings
oder stützen sich auf ein Ensemble von Modellen für die akustische Klassifizierung
und Sprachmerkmale. Zwei Techniken sind für die Ende-zu-Ende-Spracherkennung am
weitesten verbreitet: (1) Neuronale Netze, die mithilfe von der Connectionist Temporal
Classification (CTC) als Zielfunktion trainiert werden, generieren zeitlich gebundene
Klassenwahrscheinlichkeiten. (2) Attention-basierte Netze erzeugen den Ausgabetext
sequentiell. Die hybride CTC/Attention Ende-zu-Ende-Spracherkennung kombiniert
beide Konzepte, welche sich gegenseitig ergänzen.

Eine der wichtigsten Annahmen über die hybride CTC/Attention Architektur ist,
dass CTC den Fokus des Attention-Mechanismus lenkt. Der erste Teil dieser Arbeit
untersucht diese Annahme auf der Grundlage verschiedener hybrider CTC/Attention-
Parameterkonfigurationen. In einem iterativen Verfahren wurden mehrere Modelle auf
dem TED-LIUM 2-Sprachkorpus evaluiert, wobei jeder Parametersatz mittels Gaußscher
Prozessoptimierung ausgewählt wurde. Insgesamt wurden in dem Experiment Ergebnisse
von 70 Modellen und 590 Dekodiervorgängen kombiniert. Die Ergebnisse geben Hinweise
auf bewährte Parameterkombinationen und zeigen, dass hybride Modelle im Vergleich zu
reinen Attention- oder CTC-Modellen eine bessere Spracherkennungsleistung aufweisen.

Tiefe hybride neuronale CTC/Attention Netze werden immer komplexer und sind
anfällig für speziell erzeugtes Rauschen, insbesondere für Adversarial Noise. Daher
werden im zweiten Teil Methoden zur Erzeugung von Audio-Adversarial Examples für
hybride CTC/Attention Architekturen untersucht, als CTC-basierte, Attention-basierte
oder als hybride CTC/Attention Adversarial Examples. Die generierten Gegenbeispiele
werden als Merkmalsdaten dargestellt und können mittels Feature Inversion in reguläre
Audiodaten umgewandelt werden. Experimentelle Ergebnisse zeigen eine Verbesserung
der Spracherkennungsleistung und der Robustheit durch die Anreicherung der Trainings-
daten mit Adversarial Noise. Da Adversarial Noise im Audiobereich teilweise unhörbar
ist, können psychoakustische Kompressionsverfahren dieses Rauschen bis zu einem gewis-
sen Grad unterdrücken. Diese Hypothese wird für die MP3-Kompression mit hybriden
CTC/Attention-Modellen, die auf dem unkomprimierten VoxForge-Sprachdatenschatz
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trainiert wurden, in Bezug auf die Spracherkennungsleistung und das Signal-Rausch-
Verhältnis des erzeugten Rauschens evaluiert. Die Ergebnisse zeigen eine verbesserte
Leistung bei Adversarial Examples und eine Verringerung von Adversarial Noise, jedoch
um den Preis einer geringeren Spracherkennungsleistung bei regulären Sprachaufnahmen.

Hybride CTC/Attention Netze werden zwar Ende-zu-Ende trainiert, benötigen aber
immer noch Merkmalsdaten aus einem zusätzlichen Vorverarbeitungsschritt. Der dritte
Teil dieser Arbeit beschreibt, wie diese Merkmalsextraktion in Form von Sinc-Faltungen
in das trainierbare Modell integriert wird. Sinc-Faltungen beinhalten eine ähnliche
strukturelle Information wie vorverarbeitete Audio-Merkmale, bieten aber auch eine
trainierbare Flexibilität wie reguläre Faltungen. Ein Experiment zur Klassifizierung
von Schlüsselwörtern auf dem Google Speech Commands Datensatz demonstriert die
Vorteile dieses Ansatzes: Das Netzwerk mit Sinc-Faltungen zeigt eine überlegene Leistung,
selbst im Vergleich zu größeren und komplexeren Faltungsnetzwerken. In einem zweiten
Experiment wird die Sinc-Faltung in die hybride CTC/Attention-Architektur integriert,
was die Spracherkennungsleistung verbessert und gleichzeitig die Modellgröße reduziert.

Da diese tiefen neuronalen Netze immer komplexer werden, benötigen sie auch mehr
Trainingsdaten in Form von Audiosegmenten, die mit Transkriptionen versehen sind.
Der letzte Teil dieser Arbeit beschreibt CTC Segmentierung, einen Algorithmus, der
Textabschnitte mithilfe von einem CTC-basierten Netz an Audiosegmenten ausrichtet.
Wir verwenden diesen Algorithmus zur Ausrichtung von Sätzen aus Hörbüchern und
evaluieren Modelle mit verschiedenen Datensatz-Zusammenstellungen auf dem deutschen
Sprachkorpus TuDa-DE. Die Spracherkennungsleistung steigt mit zunehmender Anzahl
von guten Trainingsdaten und genaueren Abschnittszeiten. Im Vergleich zu anderen
Algorithmen kann CTC Segmentierung leere Audiosegmente überspringen und liefert
einen Konfidenzwert, der zum Herausfiltern von Audioabschnitten mit nicht übereinstim-
menden Transkriptionen verwendet werden kann. Diese CTC-basierte Datenbereinigung
kann ein wesentlicher Baustein für die automatische Datenerfassung sein; dies wird am
Beispiel von Jtubespeech, dem größten öffentlich verfügbaren japanischen Sprachdaten-
satz, demonstriert.
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Introduction

This thesis contributes to the field of human-machine interaction, in particular on
modern methods to transcribe speech to text. In the field of human-machine interaction,
automatic speech recognition (ASR) plays the critical role in transcribing speech to text.

ASR is a complex task due to the inherent variability and ambiguity in spoken
language. While written language is a structured cultural creation, spoken language often
mirrors fluid thought processes, communicates abstract concepts, and conveys nuanced
ideas. This complexity is widely acknowledged in related scientific fields. For instance,
Ferdinand de Saussure, a prominent linguist, proposed the notion of the arbitrariness
of spoken language, asserting that there is no predetermined rule or direct connection
between a written word, its pronunciation, and its meaning [50].

Speech is a natural and intuitive means of communication, and ASR aims to convert
spoken language into written text through complex machine learning techniques. ASR
systems have been under continuous development for decades, with numerous applications
ranging from transcription services and voice-controlled devices to language translation
and communication aids. As technology advances, there is a growing demand for more
accurate and efficient speech recognition systems.

Classical ASR methods often employ a combination of Hidden Markov Models (HMM)
and Deep Neural Networks (DNN), resulting in hybrid DNN/HMM systems. However,
recent research has demonstrated the potential of large end-to-end neural network models
to outperform these conventional approaches. Consequently, the field of ASR is currently
experiencing a transition towards end-to-end models.

This dissertation contributes to this transition by proposing replacements and sup-
plements for functionalities of end-to-end models that were previously prevalent among
conventional DNN/HMM ASR systems. It investigates the domain of end-to-end speech
recognition systems, concentrating on the examination of hybrid Connectionist Temporal
Classification (CTC)/attention models and their potential for enhanced performance
and robustness.
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1. Introduction

1.1 Automatic Speech Recognition

The development of ASR has involved addressing two key challenges for traditional
hybrid DNN/HMM models: acoustic modeling, which translates the waveform of a
spoken utterance into an intermediate representation like phonemes; and language
modeling, which generates the corresponding written text based on linguistic rules and
grammar.

Recent advancements in ASR have led to the emergence of end-to-end models, which
are end-to-end trainable and combine both acoustic and language modeling tasks into a
single, unified framework. These modern approaches may even eliminate the need for a
distinct language model, as they inherently capture the language-function within their
architecture. Throughout this chapter, we will explore traditional approaches to acoustic
and language modeling, as well as hybrid DNN/HMM systems, and discuss how the
paradigm shift towards end-to-end models has transformed the ASR landscape.

Chapter 2 introduces the terms of speech recognition in more detail and gives an
introduction to readers of related fields.

1.2 Hybrid CTC/Attention Speech Recognition

The combination of CTC and attention mechanisms holds considerable promise [196].
Traditional ASR systems often resort to hand-crafted, linguistically informed modules,
leading to potential errors and inefficiencies. CTC and attention-based methods, in their
unique ways, address these complexities by proposing simplified, unified models.

CTC models offer efficient computation of monotonic alignments, crucial for ASR
given the sequential nature of speech. These models adhere to a temporal sequence
mapping, ensuring alignment with the progression in speech signals. However, their
application often requires additional language models and graph-based decoding, unless
large-scale training data sets are available.

Conversely, attention-based models provide a distinct advantage by directly estimating
posteriors without necessitating conditional independence assumptions. These models
can flexibly form temporal alignments, though this flexibility occasionally results in
irregular alignments, especially in ASR scenarios where input and output sequence
lengths can vary significantly.

Thus, in an end-to-end ASR context, the fusion of CTC and attention mechanisms
seems a particularly potent approach. By utilizing the monotonic alignment from CTC
and the direct posterior estimation from the attention mechanism, the proposed hybrid
CTC/attention model aims to circumvent the limitations inherent in each standalone
approach. The idea is to capitalize on the strengths of both methods, employing
CTC-based alignment as a regularization during training and jointly decoding with
both attention-based and CTC scores. This design is anticipated to mitigate irregular
alignments and enhance the robustness and efficacy of end-to-end ASR systems.
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1.3 Scientific Goals of this Work

The transition to end-to-end models demands novel approaches that were solved in
the domain of HMM-based systems, but were not solved previously for end-to-end
models. Within this context, this work investigates new aspects for of end-to-end models,
such as model parameter spaces, feature extraction, adversarial noise and audio-to-text
alignment.

1.3.1 Exploration of Hybrid CTC/Attention ASR Models

Hybrid CTC/attention models integrate both the temporal alignment capabilities of CTC
and the sequential output generation of attention mechanisms. A critical assumption
underpinning this hybrid model is the presumed role of CTC in enforcing the attention
mechanism towards sequential alignments. In challenging this assumption, the study
presented in Chapter 3 applied Gaussian process optimization to a multitude of hybrid
CTC/attention network parameters and language model weights. This approach not only
tests the underlying hypothesis but also allows the derivation of general recommendations
for model configurations.

This investigation was carried out by training and evaluating 70 hybrid CTC/attention
networks with various parameter configurations on the TED-LIUM 2 test set, coupled
with 590 beam search runs with a RNNLM. The performance of these models was
evaluated on the basis of CER, WER and attention accuracy.

Contrary to prevailing assumptions, the study provides evidence-based argumentation
that CTC primarily regularizes the impact of language model feedback in a one-pass
beam search, rather than constraining the attention mechanism to sequential alignments.
Surprisingly, attention-only models without RNNLM achieved a 22.4% WER, while
attention-only decoding combined with an RNNLM significantly underperformed. The
best performance was obtained from the combined hybrid CTC/attention model with
RNNLM, yielding a 17.6% CER. This research highlights the regularization role of CTC,
and identifies specific parameter configurations in combination that can either enhance
or hinder performance of language model-supported decoding.

1.3.2 Adversarial Machine Learning

The ascendancy of end-to-end ASR systems has culminated in superior performance in
comparison to conventional DNN/HMM models through the utilization of deeper and
more complex models. However, these models exhibit increased susceptibility to audio
adversarial examples, specialized noise instances crafted to deceive and misguide their
processing, yielding misclassifications.

Advancing the understanding and application of adversarial examples, Chapter 4
demonstrates methods to generate audio adversarial examples for hybrid CTC/attention
models, in a combination of both CTC and attention techniques into a unified gradient
method. This chapter then discusses adversarial training as a method to improve
robustness against adversarial noise. Concurrently, a mitigation strategy is explored
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through the application of MP3 compression as preprocessing step, employed to reduce
the adversarial noise and its impact in audio samples processed by ASR systems.

Experiments were conducted using a hybrid CTC/attention ASR model to generate
and apply these new adversarial examples in the training phase, effectively augmenting
the robustness of the ASR model. Alongside this, the proposed MP3 compression
technique was applied to adversarial examples to assess its capacity to diminish the
influence of adversarial noise.

Verification of these methods was undertaken via Character Error Rates (CER) and
Signal-to-Noise Ratio (SNR), using a set of ASR models trained on different audio formats
and a suite of uncompressed and MP3-compressed adversarial examples reconstructed
by feature inversion. Empirical results validate both the effectiveness of the developed
audio adversarial examples in strengthening ASR model robustness, and the efficacy
of MP3 compression in reducing adversarial noise, as indicated by decreased CER and
heightened SNR. However, MP3 compression applied to utterances augmented with
regular noise led to an increase in transcription errors, underscoring its specificity in
diminishing adversarial noise only.

1.3.3 End-to-End Architecture with Raw Audio Input

The term end-to-end in relation to ASR architecture can often imply end-to-end train-
ability, or it can refer to a simplified structure, distinguishing it from hybrid DNN/HMM
systems that necessitate a collection of multiple models for inference and multiple stages of
training. This type of architecture, however, still mandates a discrete step for preprocess-
ing audio features, specifically for filter bank features. The elimination of pre-processed
frequency-domain features and the pursuit of a fully trainable ASR system becomes the
objective of Chapter 5. It accomplishes this by integrating Sinc-Convolutions to extract
spectral features directly from raw audio input. As a distinction to previous work, the
Sinc convolutions are combined with depthwise separable convolutions and function as
an integrated frontend for the ASR system.

This methodology is verified through a keyword spotting architecture. Notably,
conventional studies depend on preprocessed features; nevertheless, bypassing feature
extraction comes with its own advantages. The keyword spotting task is predominantly
used on always-on and battery-operated smart devices, which are bound by hardware
resources and power consumption constraints. In this context, classification from raw
audio decreases the need for feature extraction, thereby reducing hardware requirements;
additionally, low-parameter architectures minimize the quantity of power-consuming
memory transfers. As a result, the low-parameter keyword spotting model achieves a
commendable accuracy of 96.4% on Google’s Speech Commands test set with a mere
62k parameters.

Building on the proof-of-concept end-to-end architecture, this work discusses Light-
weight Sinc-Convolutions (LSC). LSC expands on the previously developed end-to-end
architectural concept that amalgamates Sinc Convolutions with depthwise separable
convolutions and serves as a low-parameter, machine-learnable feature extraction for
end-to-end RNN-based ASR systems. Further enhancements, such as data augmentation
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in the time-domain using SpecAugment, filter-level improvements, and the application
of log-compression as an activation function are also explored. As a result, the model
demonstrates a smooth convergence behaviour, achieving a word error rate of 10.7% on
the TED-LIUM 2 test dataset. It surpasses the corresponding architecture with regular
log-mel filterbank features by an absolute 1.9%, but only constitutes 21% of its model
size.

1.3.4 Text-to-Audio Alignment using CTC Segmentation

The recent advancements in end-to-end systems have underscored their potential to
surpass traditional hybrid DNN/HMM ASR systems in performance. This evolution
is predicated on architectural enhancements and model expansion in terms of depth,
parameters, and model capacity. Despite these improvements, these models necessitate
an increase in training data to attain comparable performance. The development of large
speech corpora is instrumental in improving performance, especially in languages other
than English where such resources have remained scarce. However, this process can be
complicated by the need for manual segmentation and labeling.

Chapter 6 demonstrates the construction of large and diverse corpora for German
and Japanese speech recognition and the utility of segmentation using the posterior
probabilities of a CTC network for utterance segmentation. The application of CTC
segmentation facilitates bootstrapping of additional training data from unsegmented
or unlabeled data, thereby providing an efficient approach to prepare large volumes of
speech data for model training.

The discussed methodology for data preparation involves a two-stage approach. To
initiate the process, an existing pre-trained hybrid CTC/attention model, specific to the
target language and capable of generating CTC output, is utilized. This model is then
used to extract utterances from label probabilities obtained from the network trained
with CTC to determine segment alignments. Moreover, CTC segmentation streamlines
the process of extracting and refining data from YouTube videos and audiobooks,
requiring minimal language-specific procedures. It notably improves the accuracy of
the transcriptions, which often contain errors, by scoring and correcting discrepancies
between the audio and the subtitles. The data was efficiently extracted solely utilizing
the output of a CTC-based network, thereby removing the need for alignment tools
based on HMMs or Dynamic Time Warping (DTW) that would otherwise necessitate
separate hybrid DNN/HMM models.

The resultant corpora amassed over 1700 hours of German speech data and more than
10,000 hours of Japanese speech data from manually subtitled videos. With the German
speech data, we trained a hybrid CTC/attention Transformer model that achieved a
12.8% WER on the Tuda-DE test set, surpassing the previous 14.4% WER baseline
of conventional hybrid DNN/HMM ASR. Additionally, the Japanese corpus yielded a
large-scale ASR benchmark with over 1,300 hours of data. These outcomes underscore
the efficacy of CTC segmentation in multilingual corpora construction and its potential
in advancing end-to-end ASR systems.
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1.4 Mathematical Notation

Before proceeding, it is important to clarify the time indices notation, t = 1, · · · , T .
Audio samples are typically sampled at a rate of 16 kHz. After feature extraction, the
number of data points in t is reduced, and the neural networks discussed later in this paper
employ subsampling techniques, further reducing the data’s temporal resolution. Despite
being in the same time domain, these indices differ in proportion due to subsampling.

For simplicity and clarity, this thesis uses the index t and length T as generic indicators
of time domain. To prevent confusion between similar time domains, we use additional
indices. Raw audio data is denoted as R = {rt ∈ R|t = 1, · · · , TR}, and pre-processed
audio features as X = {xt ∈ RD|t = 1, · · · , TX}, where t indexes the time domain.
Thus, TR and TX are the lengths of time domain for raw and feature-extracted audio
respectively. Similarly, TH is used for the time domain of the annotated feature sequence.

An equivalent convention also applies to the index notation of sequences l = 1, · · · , L.
The general label sequence is annotated as Y = (y1, y2, . . . , yL). To distinguish the
inferred label sequence from the ground truth label sequence when required, we use an
overbar to annotate the ground truth sequences as Y = (y1, y2, . . . , yL), and the circumflex
accent to denote the inferred sequence as Ŷ = (ŷ′1, ŷ2, . . . , ŷL). Partial sequences are
denoted with an apostrophe as Y ′ = (y′1, y

′
2, . . . , y

′
L′).

In concise notation, sequences can also be represented by specifying the range of
indices, such as x1:T , to denote the sequence (x1, x2, . . . , xT ).

The choice of sequence representation varies with the neural network architecture,
highlighting their unique processing characteristics. As discussed in Chapter 2, RNNs
operate on data sequentially, leading to the use of xt to denote sequence data at a
specific time step. In contrast, Transformers handle the entire sequence in a single go,
representing the full input sequence as X.

Different neural architectures produce outputs in varying domains, which is reflected
in their index notation. The output of a CTC network, which is proportionate to the
audio duration, is expressed in simplified notation as p(yt) using the generic index t.
Meanwhile, the output of the attention mechanism, being in the sequential domain, is
denoted as p(yl) using the index l.

1.5 Document Structure

The remainder of this thesis is grouped into three parts: Chapter 2 gives an overview
over the core concepts of ASR, Chapters 3 is mostly experimental, and Chapters 4, 5
and 6 introduce new methods.

Chapter 2 introduces the ASR system used throughout this thesis, i.e., the hybrid
CTC/attention neural network architecture, and its common building blocks. Chapter 3
presents experimental results for parameter exploration and optimization using Gaussian
processes. Chapter 4 describes adversarial examples that are constructed to mislead
classification, and then are used to train a more robust ASR model. Further experiments
also demonstrate how psycho-acoustic MP3 compression reduces adversarial noise. Chap-
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ter 6 introduces CTC segmentation which uses the output of a CTC-based network to
align utterances in audio files. This new method can be used for corpus construction
and data clean-up, as demonstrated on a German and a Japanese dataset. Chapter 5
describes Sinc convolutions as a method how the hybrid CTC/attention system can
directly classify from raw audio, instead of relying on pre-processed filterbank features.
Chapter 7 concludes this thesis.
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2

Fundamental Concepts of Speech
Recognition

This chapter explores the core principles of speech recognition, transitioning from basic
neural network notations to modern end-to-end methods. It offers insights into the scien-
tific objectives and challenges addressed in this research, highlighting both handcrafted
feature extraction and data-driven neural network approaches. This exploration offers
an understanding of the scientific challenges that have emerged with the rise of deep
end-to-end neural networks in ASR.

2.1 The Speech Recognition Objective

The input for ASR systems consists of spoken sentences. Spoken language is an innate
human ability that has developed in conjunction with our auditory system. Statistical
modeling of speech mimics the psychoacoustic properties of human hearing [218]. The
most effective ASR systems today utilize frequency filters for feature preprocessing, which
are grounded in psychoacoustic insights. As one of the five senses, the auditory system
is estimated to contribute approximately 10% of perceived information [161].

The output of ASR systems is always text, representing written language. Converting
speech into written text involves addressing challenges such as differences in speaking
styles such as accents and dialects, out-of-vocabulary words, background noise, and
speech disfluencies like hesitations and repetitions. The arbitrariness of spoken language,
which lacks a direct link between written words, pronunciation, and meaning, adds to
this complexity. ASR systems must also handle the intricate structure and rules of
written language that can vary across languages and domains. To effectively model and
process speech data, ASR systems rely on sophisticated mathematical frameworks and
large amounts of training data to tackle these challenges and generate accurate written
text.

In formal terms, ASR maps a raw audio recording of speech R = {rt ∈ R|t =
1, · · · , TR} via an intermediate sequence in feature space X = {xt ∈ RD|t = 1, · · · , TX}
to a ground truth character or token sequence Y = {yl ∈ U|l = 1, · · · , L} of the token
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dictionary U . Bayesian decision theory is employed to mathematically establish an
optimization objective to the most likely character sequence, represented as Ŷ . This
objective can be expressed as

Ŷ = arg max
Y

p(Y |X). (2.1)

Thus, the primary challenge in ASR lies in calculating the posterior distribution, p(Y |X).

2.1.1 Measurement of Performance

The quality or performance of speech recognition systems is assessed using two primary
metrics, namely the Word Error Rate (WER) and the Character Error Rate (CER). These
error rates are calculated based on the normalized Levenshtein Distance, also known as
Edit Distance, that quantifies the minimum number of single-word or single-character
edits (insertions, deletions, or substitutions) required to change the inferred utterance into
the ground truth [116, 130]. Then, error rates are expressed as (S + D + I)/N , where S
represents the number of substitutions, D denotes deletions, I stands for insertions, and
N indicates the number of words in the reference sentence.

The quality of sequence classification or of token-level prediction tasks is evaluated
based on accuracy. Accuracy measures the proportion of total correct predictions in
a classification problem. It is defined as the proportion of correct predictions yi = yi
divided by the total number of predictions N .

acc =
1

N

N∑
i=1

1(yi=ŷi) (2.2)

Attention-based sequence generative models may also be evaluated based on their
accuracy, but only during training. Here, accuracy specifically refers to how accurately
the model predicts each subsequent token in the sequence, using a portion of the ground
truth sequence as input, a technique known as teacher forcing.

In the context of neural network language models, perplexity is a measure of how well
a probability model predicts a sample. Given a sequence of N tokens Y = [y1, y2, · · · , yN ],
the perplexity PP(Y ) is:

PP(Y ) = p(Y )−
1
N =

[
N∏

n=1

p(yn|y1, · · · , yn−1)

]− 1
N

(2.3)

Perplexity is computed over the entire dataset and can be interpreted as the average
number of choices to continue the word sequence Y at any position n. A lower perplexity
indicates that the model is better at predicting the sample.

2.1.2 Feature Extraction

In the initial stage of speech recognition, digital audio is represented as a continuous
sequence of numerical samples, obtained from the sound wave of the audio signal.
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Typically, the sampling rate is set to 16 kHz, which is necessary to accommodate the
significant frequencies of speech signals, which can be up to 8 kHz. According to the
Nyquist-Shannon sampling theorem, the sampling rate should be at least twice the
highest frequency of interest.

Feature extraction is the process of transforming the sampled audio into a sequence
of feature vectors. This process is inspired by models of the human auditory system
and aims to mimic the way humans perceive sound. To enhance the accuracy of speech
recognition, a normalization step is employed to eliminate irrelevant information. From
an information-theoretic perspective, feature extraction serves as a lossy compression
method.

To calculate the feature vectors, windowed samples of the audio signal are used,
typically consisting of 25 ms of audio, as it is assumed that the speech signal remains
static during this time frame. Spectral analysis, commonly based on the Fast Fourier
Transform (FFT), is a widely used technique in speech recognition [151]. However, most
systems disregard the phase information after performing the Fourier transformation [1].
Triangular filter functions are then applied in the spectral domain, enabling the computa-
tion of Mel-frequency Cepstral Coefficients (MFCCs) [49] or Perceptual Linear Prediction
(PLP) coefficients [80].

In hybrid DNN/HMM systems, additional techniques may be employed to enhance
speech recognition performance, such as speaker adaptation. One common method
for speaker adaptation is vocal tract length normalization, which accounts for the
differences in vocal tract length among speakers. Furthermore, speaker adaptation can
be incorporated into the training process through data augmentation, in which vocal
tract length perturbation is utilized.

Neural networks often necessitate fewer processing steps, with filter banks frequently
being used directly [128]. In some cases, pitch features are incorporated, offering benefits
for tonal languages predominantly spoken in Asia. However, as discussed in later chapters,
a separate feature extraction step may not always be essential, as some neural networks
can directly classify speech from raw audio.

In hybrid DNN/HMM speech recognition systems, the acoustic model can directly
classify raw speech using various techniques, such as convolutional neural networks
(CNNs) or Sinc convolutions, as implemented in an architecture known as SincNet.
Conventional CNNs may not converge as effectively, which is one of the advantages of
Sinc convolutions. SincNet employs Sinc convolutions that fulfill a similar purpose as
feature extraction: instead of performing an FFT, these convolutions directly apply a filter
function in the time domain, which can be parameterized using learnable parameters.

End-to-end speech recognition systems often employ feature extraction techniques
grounded in psycho-acoustics, primarily utilizing filter bank features. Alternatively,
some systems classify from a speech spectrogram [76], leveraging convolutional neural
network architectures employed in the field of computer vision. Furthermore, end-to-end
systems may directly classify raw audio using Sinc convolutions, a technique that will be
elaborated in Chapter 5.

11
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2.2 Neural Networks

A thorough discussion of neural networks at large is beyond the scope of this work. This
section serves to introduce fundamental concepts and pertinent formalism related to the
neural networks discussed in this thesis. For a more in-depth introduction, readers are
referred to textbooks such as [17] and [65].

2.2.1 Basic Notation of Neural Networks

Within the scope of this work, neural networks are employed for classification tasks, that
is, they serve as models for class-posterior probabilities. Given an observation space and
a finite set of C classes, the neural network can be described as a parameterized function:

gθ : RD → RC , x 7→ gθ(x) (2.4)

The parameters θ are learned using labeled data points from a given dataset. Instead of
directly outputting a class decision, the function produces class posterior probabilities.
For any input x, the function g(x) generates a C-dimensional vector containing pseudo-
probabilities, leading to the following decision rule:

r : RD → c ∈ {1, · · · , C}, x 7→ arg max
c

pθ(c|x) (2.5)

Single-layer neural networks, also known as perceptrons, consist of a single layer of
input nodes connected to an output layer. While they can effectively model linearly
separable problems, they are limited in their ability to learn complex, non-linear patterns
in the data. The introduction of multi-layer neural networks, specifically feedforward
networks with one or more hidden layers, marked a critical step in the evolution of neural
networks. These hidden layers allow the network to learn more complex, non-linear
relationships between inputs and outputs by transforming the input data through a series
of non-linear activation functions. In mathematical terms, the network is composed of N
layers and the organization of these layers defines the architecture of the network. Each
layer is represented as a basic function, i.e.,

gθ = g
(N)

θN
◦ g(N−1)

θN−1 ◦ · · · ◦ g(1)θ1 , (2.6)

where each layer consumes the output of the previous layer of dimension Dn−1, and
produces a tensor of dimension Dn, i.e.,

g
(n)
θn : RDn−1 → RDn . (2.7)

The first layer is termed as the input layer and responsible for receiving the raw data,
typically in the form of feature vectors. Hidden layers are the intermediate layers of a
neural network that lie between the input and output layers. A neural network with
multiple hidden layers is known as a deep neural network, giving rise to the term “deep
learning.” The output layer is the final layer in a neural network that produces the
network’s predictions.

12
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The last layer of multi-class classification networks typically uses a softmax to match
the distribution of the posterior probabilities pθ(c|x) of Equation 2.5. The softmax
function [25] converts the output layer’s raw scores into probability distributions over
the possible classes, and is defined as

Softmax(xi) =
exi∑n
j=1 e

xj
, (2.8)

where xi is the input vector’s i-th element, and n is the number of elements in the input
vector. This value is computed for all i elements of x, resulting in an output vector that
has the same size of x.

2.2.2 Feed-Forward Neural Network Layers

A single linear layer, also known as a fully connected or dense layer, connects each scalar
of the input tensor to every scalar of the output tensor through a set of learnable weights,
represented by the matrix W , and biases, denoted as b, thereby transforming the input
data through a linear operation.

Linear(x) = Wx + b (2.9)

A variant of the linear layer, denoted as Linear′(x), excludes the bias term, resulting in
a transformation determined solely by the weight matrix W and the input x.

Linear′(x) = Wx (2.10)

One-dimensional Convolutional Neural Networks (1D CNNs) are a type of neural
network that applies a convolution operation over a one-dimensional input, typically
used for processing time-series data or sequences. The convolution operation in CNNs is
commonly described by a number of key parameters: The filter, or kernel, f , is convolved
over the input. The width or size of this filter is represented by k. As the filter scans
the input, it moves in steps defined by the stride s. Another important parameter is the
padding p which designates the number of zeros added to the input’s edges. After the
convolution is computed, a bias term b is added to the result. Additionally, i refers to
the specific position in the input where the convolution is executed. The mathematical
representation of a single-channel 1D convolutional layer using filter f and input x is

yi = (f ∗ x)i = b +
k∑

j=1

fj · xi+j−1. (2.11)

where yi is the output at position i, and ∗ denotes the convolution operation. To
incorporate the padding p, the formula can be expanded to the more comprehensive form

yi = Convk,s,p(f, x, i) = b +
k∑

j=1

fj · xi·s+j−1+p. (2.12)
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In Equation 2.12, Convk,s,p(f, x, i) denotes a convolution operation at position i with
filter f and input x with kernel width k, stride s, and padding p. The output at position
i, yi, is then the result of this convolution operation plus a bias term b. Padding p
typically adds zeros around the input data before any convolution operation begins, and
doesn’t influence the position where the operation is applied directly. However, it does
affect the size of the output and thus the range of i.

2.2.3 Recurrent Network Layers

Recurrent Neural Networks (RNNs) are widely employed in speech recognition tasks due
to their proficiency in modeling sequential data and identifying temporal dependencies.
RNNs excel at processing sequences by maintaining a hidden state that updates at each
time step, allowing them to store information from previous time steps and capture
context within the input data. Their ability to handle input and output sequences
of varying lengths makes RNNs particularly well-suited for speech recognition tasks.
Moreover, RNNs are trained end-to-end, processing input tokens and directly predicting
output posteriors sequentially, eliminating the need for intermediate representations.
RNNs can be defined as

ht = ϕ(Wh · [ht−1, xt] + bh) (2.13)

yt = Wy · ht + by. (2.14)

Here, xt represents the input at time step t, and ht−1 denotes the hidden state from
the previous time step. The updated hidden state at the current time step is given by
ht, and the activation function, typically a non-linear function like tanh or sigmoid, is
represented by ϕ. The weight matrices for the hidden state and output are represented
by Wh and Wy, respectively, while the bias terms for the hidden state and output are
given by bh and by, respectively. Finally, yt represents the output at time step t.

While training RNNs, the gradients of the loss function concerning the model pa-
rameters can occasionally diminish, resulting in a significantly slowed learning process
or even a complete halt. To address this issue, Long Short-Term Memory (LSTM)
networks were developed, incorporating gating mechanisms that effectively regulate
the flow of information throughout the network. The LSTM cell consists of several
gating mechanisms: the input gate, forget gate, output gate, and a memory cell. LSTM
units [69] are defined as

ft = σ(Wxfxt + Whfht−1 + Wcf ⊙ ct−1 + bf ) (2.15)

it = σ(Wxixt + Whiht−1 + Wci ⊙ ct−1 + bi) (2.16)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc) (2.17)

ot = σ(Wxoxt + Whoht−1 + Wco ⊙ ct + bo) (2.18)

ht = ot ⊙ tanh(ct), (2.19)

where xt represents the input at time step t, while ht−1 and ct−1 denote the hidden
state and memory cell state from the previous time step, respectively. The forget gate
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activation is given by ft, and the input gate activation is represented by it. The updated
memory cell state is given by ct. The output gate activation is represented by ot, and the
updated hidden state is denoted as ht. The weight matrices for each gate are represented
by Wxf ,Wxi,Wxc,Wxo,Whf ,Whi,Whc,Who,Wcf , and Wco, while the bias terms for each
gate are given by bf , bi, bc, and bo. The sigmoid activation function is denoted by σ,
the hyperbolic tangent activation function is represented by tanh, and the element-wise
(Hadamard) product is denoted by ⊙.

Bidirectional RNNs [166] process input sequences using two separate RNN layers,
one moving forward and the other moving backward, enabling the capture of information
from both past and future time steps. The hybrid CTC/attention architecture employed
in this thesis utilizes bidirectional LSTMs (BLSTM). To differentiate between the forward

and backward directions, the hidden states of the forward LSTM are denoted as
−→
ht , while

the hidden states of the backward LSTM are represented as
←−
ht . Similarly, the weights

for the forward and backward directions are distinguished as W→ and W←, respectively.
The outputs from the forward and backward LSTMs are combined at each time step
through concatenation:

BLSTM(xt) = ht = [
−→
ht ;
←−
ht ] (2.20)

Here, the function BLSTM(xt) serves as abstraction for bidirectional LSTM layers that
are used in the RNN-based ASR architecture described in a later section.

2.2.4 Activation Functions

Activation functions are used in neural networks to introduce non-linearity, enabling
the network to learn complex patterns in the data. These activation functions are
applied element-wise to the output of a linear layer or other layers in the neural network,
transforming the output values to introduce non-linear behavior.

The sigmoid function maps input values to a range between 0 and 1, often used as
an activation function in binary classification tasks or as a gate function in LSTMs to
control information flow between cells:

σ(x) =
1

1 + e−x
(2.21)

The Hyperbolic tangent (tanh) function scales input values to a range of (−1, 1),
commonly applied as an activation function in hidden layers of RNNs and LSTMs due
to its zero-centered output, which can help mitigate the vanishing gradient problem:

tanh(x) =
ex − e−x

ex + e−x
(2.22)

The Rectified Linear Unit (ReLU) function sets all negative input values to zero
and keeps positive values unchanged, widely used in the hidden layers of feedforward
neural networks and CNNs, but less common in sequence-to-sequence models like RNNs,
LSTMs, and Transformers due to its non-zero-centered output and potential for dead
neurons.

ReLU(x) = max(0, x) (2.23)
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The Leaky Rectified Linear Unit (Leaky ReLU) function is a variation of the ReLU
function that allows for small negative values when the input is less than zero, helping to
mitigate the vanishing gradient problem in deep neural networks and improve learning
performance:

LeakyReLUα(x) = max(αx, x), (2.24)

where α is a small positive constant, usually 0.01.

2.2.5 Supervised Training of Neural Networks

Supervised training of neural networks relies on training samples, which are input-output
pairs. Inputs are data or features given to the network, and outputs are the desired
outcomes the network should predict or generate. Let D be a dataset containing N
training samples; then, each training sample (xn, yn) consists of an input xn and its
corresponding output (or target) yn.

D = {(x1, y1), (x2, y2), · · · , (xN , yN)} (2.25)

For end-to-end speech recognition networks, training samples (xn, yn) include input
audio vectors and corresponding ground truth label sequences. While this section
primarily addresses the general principles of supervised training for neural networks, the
training of sequence discriminative and sequence generative architectures, as applied
to speech recognition, are fundamentally based on the methodologies presented in this
section. These specific techniques are examined in greater detail when discussing their
respective architectures.

The training criterion, also termed loss function or objective function, evaluates a
neural network’s performance during training by quantifying the difference between its
predictions and actual target values. The objective is to minimize the loss function by
adjusting the model’s parameters θ.

L(θ) =
1

N

N∑
n=1

Ln(yn; f(xn; θ)) (2.26)

Here, Li is the individual loss for the training sample, comparing the ground truth yn
with the predicted value gθ(xn), where g is the neural network function with parameters
θ. The objective function L(θ) is the average of the individual losses over all N training
samples in the dataset. The goal during the training process is to find the optimal
parameters θ∗ that minimize this loss:

θ∗ = arg min
θ
L(θ) (2.27)

Commonly used for classification tasks, cross-entropy loss measures the difference between
the predicted probability distribution and the actual probability distribution for the
target classes [25]. Cross entropy loss is defined as

LCE(xn, yn; θ) = − log pθ(yn|xn), (2.28)
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which, when minimized, leads to high probability for the correct class and low probability
for other classes. The loss approaches zero when the correct class is predicted,

LCE(xn, yn; θ) ≈ 0 when pθ(yn|xn)→ 1.0. (2.29)

The Softmax function, as in Equation 2.8, is used as output layer to normalize the output
of a neural network towards a probability function, so that pθ(yn|xn) ≡ gθ(xn).

Neural network training is a non-convex optimization problem and the loss function’s
minimum cannot be analytically determined. Thus, iterative numerical optimization
techniques are employed, utilizing the local gradient. The gradient is calculated using
the backpropagation algorithm [26, 160, 163], which is a widely accepted method for
computing the gradients of the objective function concerning each neural network
parameter. These gradients are then utilized to update the weights and biases, ultimately
minimizing the loss function. The backpropagation algorithm exploits the chain rule of
calculus to compute the gradient of the loss function with respect to each weight within
the network by propagating the error in reverse, from the output layer to the input layer.

The most prevalent iterative numerical optimization method is Stochastic Gradient
Descent (SGD). It computes the gradient based on a small, randomly chosen subset,
denoted as a mini-batch B ⊂ D. In each iteration i, the parameters θ are updated
accordingly with the learning rate ηi:

∇L(θ,B) =
∑
n∈B

Ln(θ) (2.30)

θi = θi−1 − ηi∇L(θ,B) (2.31)

The learning rate is not maintained at a constant value; instead, learning rate scheduling
adapts the learning rate according to the specific architecture being used. SGD facilitates
enhanced optimization and better convergence across various model architectures. In
the context of this work, plain SGD is mainly used for the training of RNN language
models and for the generation of adversarial noise; architecture-specific strategies will be
discussed in the respective sections.

The networks trained in this work utilize several regularization techniques. One
method is dropout [81, 174] that “drops out” the output of each neuron with probability
p at each training step. As a result, the network becomes less sensitive to specific weights
of neurons, promoting a more generalized model. Weight decay [84] adds a penalty
to the loss function proportional to the magnitude of the weights, often through L2

regularization; weight decay ensures that the model weights remain small, preventing
overfitting and improving generalization. Finally, early stopping serves as a regularization
method by monitoring the model’s performance on a separate validation dataset. If
the validation performance stops improving after several epochs, indicating possible
overfitting on the training set, the training is halted early.
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2.3 Hybrid DNN/HMM Approaches to ASR

Traditional ASR systems necessitate pretraining and several refinement stages. They
consist of partially hand-crafted components for feature extraction, phoneme probability
inference, and decoding linguistic priors. Training labels for a DNN are acquired only
after estimating phoneme or state alignments via a Gaussian mixture model. The
decoding process involves a global search over numerous possible word sequences using
weighted finite state transducers.

Various open-source toolkits offer DNN/HMM speech recognizers. An overview is
provided by Gaida et al . [61]. Notably, Kaldi [148] is the primary tool utilized for
evaluation in Chapter 6.

Hybrid DNN/HMM approaches [21] employ Bayes’ theorem and introduce the HMM
state sequence S = {st ∈ {1..J}|t = 1, · · · , T} to decompose p(Y |X) into three separately
modeled parts,

arg max
Y

p(Y |X) = arg max
Y

∑
S

p(X|S, Y )p(S|Y )p(Y ), (2.32)

where the acoustic, lexicon, and language models are represented as p(X|S, Y ), p(S|Y ),
and p(Y ), respectively. To make the acoustic model more manageable, the conditional
independence assumption suggests that, given the corresponding word sequence, the
observed acoustic features are independent of each other. Thus, p(X|S, Y ) ≈ p(X|S),
resulting in a simplified expression:

arg max
Y

p(Y |X) ≈ arg max
Y

∑
S

p(X|S)p(S|Y )p(Y ) (2.33)

This assumption reduces dependencies between acoustic features, making it more straight-
forward to model and calculate probabilities.

2.3.1 Hybrid DNN/HMM Acoustic Model

In the acoustic model, p(X|S), the probability is further factorized using the probabilistic
chain rule and a further conditional independence assumption.

p(X|S) =
T∏
t=1

p(xt|x1, · · · , xt−1, S) (2.34)

≈
T∏
t=1

p(xt|st) (2.35)

≡
T∏
t=1

p(st|xt)

p(st)
(2.36)

Equation 2.36 states the hybrid approach to speech recognition [21], which combines
posterior probabilities of a neural network with HMM states. To use the neural network as
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emission model, the frame-wise likelihood function p(xt|st) is replaced with the frame-wise
posterior distribution p(st|xt)/p(st) computed by DNN classifiers. This rearrangement
of the conditional probability is done by applying Bayes’ rule, p(a, b|c) = p(a|b, c)p(b|c).

The assumed conditional independence in the acoustic model does not take into
account any input and hidden state contexts. To address the limitations arising from
the conditional independence assumption, DNNs with long context features or recurrent
neural networks are often employed, as incorporating additional context improves the
system’s accuracy.

To train the frame-wise posteriors, a frame-wise state alignment, st, is needed as a
target. This alignment is typically provided by an HMM/GMM system, which offers the
necessary contextual information for the acoustic model.

2.3.2 Lexicon Model

The lexicon model p(S|Y ) serves as an intermediary between the language model and
the acoustic model, by providing a mapping between words and their corresponding
HMM states, phonemes or sub-word units through a pronunciation dictionary. The
pronunciation dictionary comprises a list of words, each accompanied by their phonetic
representation in the form of phonemes, which are the most basic sound units that can
distinguish words in a language. In some cases, a word might have multiple pronunciations,
which can be due to dialectal variations, speaker-specific accents, or coarticulation effects.
The lexicon model is factorized and simplified using a first-order Markov assumption:

p(S|Y ) =
T∏
t=1

p(st|s1, · · · , st−1, Y ) (2.37)

=
T∏
t=1

p(st|st−1, Y ) (2.38)

The first-order Markov assumption states that the probability of the current state st
depends only on its immediate predecessor st−1, and it is conditionally independent of
all previous HMM states given the immediate predecessor.

2.3.3 Language Model

The language model, as expressed in equation 2.39, is designed to predict a sequence of
words or symbols Y by learning the probability distribution of sequences. It does this by
sequentially predicting each subsequent word or symbol yl based on the preceding words
or symbols y1, · · · , yl−1.

p(Y ) =
L∏
l=1

p(yl|y1, · · · , yl−1) (2.39)
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This can be factorized using the (m− 1)st-order Markov assumption for m-gram models:

p(Y ) ≈
L∏
l=1

p(yl|yl−m, · · · , yl−1) (2.40)

Contemporary hybrid DNN/HMM systems utilize neural network language models that
circumvent the conditional independence assumption issue, allowing for the modeling of
long-term contexts. Architectures used for language models include Recurrent Neural
Network Language Models (RNNLMs [126]) and attention-based Transformers [91].
These models and integration strategies into end-to-end ASR systems are discussed in
Section 2.4.9.

2.4 Contemporary End-to-End Techniques for ASR

End-to-end ASR aims to simplify the training and decoding procedure by directly
inferring sequential letter probabilities given a speech signal [31, 196]. Such systems
usually transcribe speech features to letters or word fragments without any intermediate
representations. It is also possible to train these networks in an end-to-end manner
without previous refinement steps.

Conventional hybrid DNN/HMM speech recognition systems rely on these advances
in technology: Mel Frequency Cepstral Coefficients reflect the spectral characteristics of
the human auditory system. Hidden Markov Models that are excellent for statistical
modeling of time sequences. DNNs provide a statistical model for classification.

In hybrid DNN/HMM systems, DNNs usually classify the hidden states within
HMMs. These systems rely on handcrafted linguistic information. Training labels are
not derived directly from text but rather in multiple refinement steps; with respect to
their phonetic equivalents, statistical models determine the hidden states that serve as
labels for the DNN. A global search over many possible word sequences then extracts
the most probable word sequence by combining the output of the network, as well as
linguistic and probabilistic prior knowledge.

The inferred classes can be either sequential or temporal. Modern large end-to-end
networks achieve language modeling by using extensive text corpora for training. As
described in the architecture chapter, certain parts of the end-to-end network already
function as a language model. Training data typically comprises a set of utterances,
where each utterance consists of an audio segment accompanied by its corresponding
textual transcription.

2.4.1 Definition of End-to-End Speech Recognition

In the context of speech recognition, the term end-to-end is used to describe models that
are end-to-end trainable [71]. An end-to-end model is trained directly from the input
data to output the final transcription, i.e., from audio features to text output.

One could argue that this is not genuinely end-to-end. Firstly, these so-called end-
to-end networks arguably still don’t infer directly from raw audio; instead, they still
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necessitate a feature extraction stage. Secondly, CTC-based end-to-end networks provide
per-frame probabilities, which subsequently necessitate a forward algorithm for decoding.
Finally, although attention models can generate correct sentences without a supporting
language model, the quality of their transcription is typically enhanced by employing
an additional model. The term end-to-end doesn’t necessarily apply to single-model
architectures that handle input data and produce the desired output without requiring
distinct intermediate steps or modules as in other fields; for example, end-to-end object
detection means that the object detection pipeline is without any non-differentiable
component [175].

For speech recognition, early works on end-to-end architectures used the term end-to-
end to emphasize the contrast from hybrid DNN/HMM systems, that require several
stages during the training process [71, 196].

2.4.2 Types of End-to-End Architectures

Approaches utilized in modern end-to-end speech recognition systems can be classified
into two main categories:

• Sequence-generative neural networks are designed to generate sequences of data,
by predicting each next item based on previous items in the sequence.

• Frame-discriminative neural networks aim to classify or discriminate each indi-
vidual input item in a sequence independently.

Sequence-generative neural networks typically employ attention-based encoder-deco-
der architectures, which offer flexibility to handle variable-length input but also require
additional information about the sequential arrangement of the input features. In
the literature, sequence-generative architectures are commonly labeled as sequence-to-
sequence (seq2seq) architecture, a terminology introduced by Sutskever et al . [178].
Alternatively, attention-based architectures are also known as Listen-Attend-Spell (LAS),
a term established by Chan et al . [31]. While Section 2.4.3 describes general properties
of sequence-generative architectures using attention, the two fundamental attention
architectures used in this work, namely RNN-based attention models and Transformers,
are detailed in Section 2.4.4 and Section 2.4.5, respectively.

Section 2.4.6 discusses the general properties of CTC introduced by Graves et al . [70],
which is the primary technique in modern end-to-end trained frame-discriminative neural
networks. These employ frame-based classification via CTC, with the HMM-like structure
of the CTC loss imposing strong temporal dependencies during decoding.

Some publications also mention RNN-Transducers [67] as a third category. Their
architecture resembles the encoder-decoder structure of attention-based models. A
transcription network (the encoder) extracts an intermediate representation, and a
prediction network (the decoder) sequentially generates output tokens or output token
posteriors. The prediction network’s dictionary also includes a blank token, similar to
CTC-based architectures. In a distinction to sequence-generative models, these output
token posteriors do not directly represent the output sequence, but are conditioned as
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probability lattices, and are decoded using the forward-backward algorithm. Unlike CTC-
based models, RNN-Transducers have the advantage of generating output sequences
longer than their input. However, this feature might not be as relevant for speech
recognition tasks and is not used in this work.

2.4.3 Sequence-generative Models

In their simplest form, sequence-generative networks use an RNN to establish a probability
distribution over the next-in-sequence token, essentially predicting the subsequent token
in the sequence [69]. In an early work on sequence to sequence models, RNNs encoded
the input into a fixed-size context vector, as in the models of Cho et al . [38, 39] and
Kalchbrenner et al . [96]. The model of Sutskever et al . is depicted in Figure 2.1. In a
similar approach by Sutskever et al . [178], the information of the input sequence was
encoded into the hidden state of an LSTM, after which the end-of-sequence (EOS) token
provides a signal for the LSTM to generate its output sequence. These approaches already
employ an encoder-decoder architecture, as the encoder processes a variable-length input
X and generates a fixed-size intermediate representation c, from which the decoder
generates the variable-length output sequence Y .

c = enc(X) (2.41)

Y = dec(c) (2.42)

... <EOS>

... <EOS>

Figure 2.1: The sequence-generative architecture by Kalchbrenner et al . [96] that encodes the
input sequence with an LSTM, generating an intermediate representation of the audio sequence.
The neural network was then given the signal to generate output tokens with an additional
end-of-sequence (EOS) token, as proposed by Sutskever et al . [178].

The attention-based encoder-decoder sequence transformation was a subsequent
improvement of this principle, that was first proposed as a method for machine language
translation by Bahdanau et al . in [10]. The attention mechanism performs a weighting
for a variable-length input and aggregates all values into a single vector. Although
such aggregation can be achieved using fixed-size convolutional kernels, as demonstrated
by Elbayad et al . [56], the attention mechanism provides a flexible window size. In
combination with a sequential decoder, the attention mechanism establishes alignments
between the input and output sequences [42].

22



2. Fundamental Concepts of Speech Recognition

The LAS architecture was originally proposed with two main components: the listener,
or encoder network, and the speller, or decoder network. The listener processes the input
speech signal into a higher-level intermediate representation H = {ht ∈ H|t = 1, · · · , T}
that contains the information of the input sequence with annotations by the encoder. The
speller incorporates an attention mechanism that scores the listener’s output sequence
for each output symbol, thereby providing an alignment function. Raw attention scores
are combined with a Softmax function to obtain normalized attention weights al,t. The
context vector cl is generated from the attention weights for each sequential output step
l that depends on a state ql−1 of the decoder, the decoding decision of the previous state,
and the high-level representation H. The speller network then generates the output text
sequence Y , one symbol yl at a time.

H = enc(X) (2.43)

cl = att(H, yl−1, ql−1) (2.44)

yl = dec(cl, yl−1, ql−1) (2.45)

In this model, RNN-based networks use the encoder-decoder attention mechanism, which
focuses on different parts of the input sequence for each step in the output sequence.
A novel feature of the LAS model is its use of a pyramidal encoder, that reduces the
temporal resolution of the speech signal, thereby enabling more efficient handling of long
sequences.

Attention-based systems, such as LAS, are characterized by their lack of independence
assumptions between sequence elements, enabling the capture of complex dependencies.
The attention mechanism, integral to the decoder, dynamically shifts focus across
different segments of the input, allocating attention, based on the relevance of the input
components to the output being generated.

While encoder-decoder attention models like LAS employ attention mechanisms
within the decoder to link output characters to relevant parts of the input sequence,
Transformers models take a distinct approach with self-attention. In the Transformer
architecture, self-attention operates within the encoder, establishing connections between
each feature or intermediate value in the input sequence and every other value, capturing
complex internal structures within the data.

2.4.4 Location-aware Encoder-decoder Attention

Similar to an alignment model in conventional ASR, RNN-based attention architectures
employ a recurrent attention mechanism applied to the hidden values. The attention
weights al,t are used in this mechanism to influence the annotated sequence H for each
vector ht during the l-th decoding step. This work employs the location-aware attention
that was described by Chorowski et al . in [43]. The weights depend on the input sequence
that was encoded in H and on the carried-over state of the decoder ql−1. Location-aware
attention, denoted as attloc, includes the attention weights of the previous sequential
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output al−1,t.

al,t = attloc(ql−1, ht, al−1,t) (2.46)

= Softmax(gT · tanh( Linear′(ql−1) + Linear′(ht) + Linear(K ∗ al−1,t) )) (2.47)

In this context, ∗ represents the convolution operator applied with the trainable con-
volutional kernel K. A scalar product operation with the trainable vector g condenses
the activations of the attention network’s internal linear layers into a single scalar value.
The attended parts of the sequence are then aggregated into the context vector cl using
a weighted sum, expressed as

cl =
T∑
t=1

al,tht. (2.48)

...

Decoder

Encoder

att

...

Attention

Figure 2.2: Encoder-decoder attention. An input sequence is processed by the encoder to
produce an intermediate representation in the form of vectors ht. These vectors are passed
to the attention block which assigns weights al,t to each ht and computes a weighted sum to
form the context vector cl for each decoding step l. The context vector cl is then used by
the decoder to generate the output sequence one symbol at a time. A characteristic of the
encoder-decoder attention mechanism is its dependence on the previous decoder state ql−1
when assigning weights al,t.

2.4.5 Attention in the Transformer Architecture

In RNN-based networks, such as LSTM encoders, feature vectors are provided as input
in a sequential manner, with each vector being processed individually and in order. Both
the encoder and decoder components of Transformer models use a dot-product attention
mechanism that processes given sequences concurrently, as opposed to the recurrent
nature of RNNs.
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Transformer models were introduced by Vaswani et al . [189] for machine transla-
tion. Early adopters of Transformers to speech recognition were Dong et al . [52] for
attention-based speech recognition, and Karita et al . [102] for the hybrid CTC/attention
architecture. This work utilizes the implementation of Karita et al . for experiments.

... ...

... ...

Residual
connection

Figure 2.3: The self-attention sublayer of a Transformer with a single head. The input sequence
vectors of X = [x1, · · · , xT ] are transformed into query, key and value vectors. To demonstrate
the information flow and data dependencies, the matrices Q, K, and V are represented as
single-input slices qt, kt and vt. Scaled dot product attention calculates the attention weights
for each qt with all key vectors, as in Equation 2.51. In the weighted summation step, each value
vector is multiplied by its corresponding attention weight; the resulting weighted values are
then summed across all sequence positions, thereby producing the output ct of the self-attention
layer for each query. Here, ct corresponds to the slice of matrix Ch (the output of a single
attention head, Equation 2.53) at position t. The original input is then added back to this
output, forming a residual connection. In contrast to encoder-decoder attention, the query
vector qt in self-attention is derived directly from the input sequence.

The attention mechanism in the Transformer uses query (Q), key (K), and value (V )
matrices as input to the attention layer. The K and V matrices are generally derived from
the same input matrix and are analogous to the intermediate representation H in encoder-
decoder attention models, both containing encoded information about the input sequence.
Similarly, the query matrix Q carries information that is comparable to the decoder
state ql in encoder-decoder attention models, as both guide the attention mechanism.
K and V share the same dimensions, i.e., K,V ∈ Rnk×dk and Q ∈ Rnq×dk . Here, nk and
nq represent the number of elements in the sequence and dk is the dimensionality of
features.

How the query, key, and value matrices are derived differs depending on whether
the MHA is utilized as self-attention or as encoder-decoder attention. In the standard
self-attention mechanisms, all three matrices (Q, K, V ) are derived from the same input
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matrix,
(Q,K, V )self-attention = (X ′i, X

′
i, X

′
i) with X ′i = LayerNorm(Xi). (2.49)

This is typically true for both the encoder and decoder portions of transformer models
that employ self-attention. For self-attention, the number of query elements equals the
number of key-value pairs and thus, nk and nq are equal.

On the other hand, in encoder-decoder attention settings, as only used in the decoder,
the query matrix usually comes from the decoder’s state, while the key K and value V
matrices are generated from the encoder’s output H.

(Q,K, V )encoder-decoder attention = (X ′i, Xe, Xe) with X ′i = LayerNorm(Xi). (2.50)

Transformers use scaled dot product attention that enables highly parallelized com-
putation on GPUs. With QKT as the attention matrix, the scaled dot product attention
can be written as

attdot(Q,K, V ) = softmax

(
QKT

√
dk

)
· V (2.51)

To improve the stability of the numerical computation of the Softmax, the attention
matrix is scaled by 1/

√
dk.

Transformers also employ multi-head attention in each self-attention sublayer, that
allows the model to capture different types of information from different parts of the
input. The concept of multi-head attention was previously integrated into end-to-end
speech recognition using standard encoder-decoder attention as presented in [167] and
explored in [37]. The model generates multiple queries, keys, and values from the input,
processes each set independently as heads, then combines the results. The multi-head
attention mechanism, which incorporates H heads[i], functions as a wrapper around
the dot product attention sublayer. It utilizes the same input matrices Q, K and V,
multiplied with learnable weight matrices W q

h ,W
k
h ,W

v
h ∈ Rdk×dk for each head h, and

delivers an output with identical dimensions by multiplying with the weight matrix
W head ∈ R(Hdk)×dk .

MHA(Q,K, V ) = [C1, C2, · · · , CH ]W head (2.52)

Ch = attdot(QW q
h , KW k

h , V W v
h ) withh = 1, · · · , H (2.53)

After the attention sublayers, the output is layer-normalized [9] and passed through a
feed-forward neural network FFN(x) that is applied to each position. This network has
two linear layers, as in Equation 2.9, and a ReLU activation in between. Its output is
then added to the input of the normalization layer, forming a residual connection. Layer

[i]In the notation presented by Vaswani et al . [189], the number of attention heads is represented by
C and the outcome of the dot product attention is labeled as Hc. In this explanation, we’ve altered the
symbol notation to highlight a parallel: The context vector cl of Equation 2.48 signifies the result of
the encoder-decoder attention, capturing annotated context information. Similarly, Ch symbolizes the
output of an individual attention head, containing its own annotated context information, as defined in
Equation 2.53.
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normalization is also applied before the multi-head attention [203]. A single multi-head
attention block with input Xi and output Xi+1 is determined by:

FFN(x) = Linear( ReLU( Linear(x) ) ) (2.54)

X ′i = MHA(Q,K, V ) + Xi with K,Q, V from Equation 2.49 (2.55)

Xi+1 = FFN(LayerNorm(X ′i)) + X ′i (2.56)

Figure 2.3 shows a simplified structure of the self-attention sublayer. While vectors are
represented separately for illustrative purposes in this figure, during actual GPU-based
computation, they are referred to as matrices Q, K, and V for each layer or attention
head. Given that all computations in a single layer can be viewed as matrix-matrix
multiplications and additions, these operations are highly parallelizable and efficient on
modern GPUs.

2.4.6 Frame-Discriminative Connectionist Temporal Classifica-
tion (CTC)

CTC enables temporal classification using end-to-end neural networks, but does not
require the network to be combined with hidden Markov models [68, 70]. With CTC,
RNNs or Transformers can be trained directly for temporal classification tasks. CTC
achieves this by allowing the network to make label predictions at any point in the
input sequence, under the condition that the overall sequence of labels is correct. Pre-
segmentation of speech data is no longer necessary, since the alignment of the labels
with the input is no longer important. CTC directly estimates the probabilities of the
complete label sequences, effectively acting as a temporal classifier.

In a preparation step at training, the L-length token sequence Y = {yl ∈ U|l =
1, · · · , L} of the token dictionary U is extended to an (2L + 1)-length letter sequence Y ∗

that includes the blank token “ϵ”:

Y ∗ = {ϵ, y1, ϵ, y2, ϵ, · · · , ϵ, yL−1, ϵ, yL, ϵ} (2.57)

This resembles a left-right HMM with three states for each token with these transitions,
i.e., [ϵ, yl, ϵ] for each token in the sequence. The function B as a many-to-one mapping
collapses sequences, removing redundant symbols, i.e., removing the ϵ as well as any
repeated tokens of a sequence, for example:

B(aϵabϵ) = B(ϵaaϵϵabb) = aab (2.58)

Let Sπ = {π|B(π) = Y } be the set of all sequences with length T that map onto Y
after reduction. The conditional probability of the output sequence Y is determined by
summing the probabilities of all the possible alignments in Sπ,

pCTC(Y |X) =
∑
π′∈Sπ

p(π′|X). (2.59)
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The alignment probability p(π′|X) of a single path given the matrix of token probabilities
Cctc ∈ RT×(|U|+1) is

p(π′|X) =
T∏
t=1

Cctc[t, π[t]]. (2.60)

Here, the matrix Cctc is the output of the network itself. Section 2.4.7 describes the CTC
modules used in the RNN and Transformer architectures.

During the training process, the CTC loss function tunes the network for predicting
frame-wise token probabilities. This CTC loss function determines the likeliest path
through the label sequence by computing the probability of a specific target sequence
through aggregating the frame-based letter probabilities across all potential paths in the
modified letter sequence, using the forward-backward algorithm. This computation of
path probabilities is tractable, i.e., its gradient can be efficiently computed, and thus
can be used as objective function in neural network training.

With this loss function, the neural network converges towards classifying token
occurrences, i.e., the network aims to activate each token at only a single time step, while
classifying the blank token at the other time steps. Figure 2.4 shows an equivalent HMM
state diagram, showing the transitions of the CTC state sequence for the word “CAT”.

C TA

Figure 2.4: An equivalent HMM state diagram, illustrating the transitions of the CTC state
sequence for the word “CAT”.

Kanda et al . [98] partitioned the probability pCTC(Y |X) into an acoustic model and
a letter model, shedding more light on the similarities between HMM-based ASR systems
and CTC. Watanabe et al . [196] also used this formulation when outlining the hybrid
CTC/attention architecture.

This work employs the CTC loss function provided by the PyTorch Toolkit [142].
It’s worth noting that, although not utilized in this research, there exist other variants of
this loss function which could be used as suitable alternatives. Of particular interest are
recent advancements in computationally efficient and GPU-executable weighted finite
state transducers, like GTN [77] and k2 [103], which have the capability to mimic the
HMM structure of CTC.

2.4.7 Inference of CTC Posterior Probabilities

The matrix Cctc with frame-wise token probabilities p(yt), that is used in Equation 2.60, is
derived directly from the encoded values H = [h1, · · · , hT ]. Both RNN and Transformer
architectures only use a single fully connected layer to generate the token posterior
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probabilities from each ht:

Cctc = Softmax(Linear(H)) (2.61)

= [Softmax(Linear(h1)), · · · , Softmax(Linear(hT ))] (2.62)

= [p(y1|h1), p(y2|h2), · · · , p(yT |hT )] (2.63)

Here, Linear(H) represents the application of the linear layer to each encoded value ht,
producing a logit vector for each frame t. The Softmax function then converts these
logits into a probability distribution over the possible tokens for each frame.

The encoded representation ht at each time step t is transformed into a vector of token
probabilities p(yt|ht), capturing the likelihood of each token occurring at that specific
time step. This probabilistic output Cctc also serves as the input to the subsequent CTC
loss computation, enabling the model to align the predicted token sequences with the
ground truth sequences during training.

2.4.8 Text Tokenization

The transcription is represented as a sequence of tokens. During the training process, the
text is tokenized, meaning it is encoded as a series of integer token IDs that correspond
to the original text. At tokenization, out-of-vocabulary characters cannot be represented
as tokens and are therefore excluded from the process.

The architectures discussed in this work employ the following tokenization methods:
(1) Byte-Pair Encoding (BPE), (2) unigram tokens and (3) simple character-level tokeniza-
tion. Both BPE and unigram tokens are determined using subword-based tokenization
with SentencePiece.

Character-level tokenization uses one token per character in the text, providing a
straightforward and simple representation. Subword-based tokenization with Senten-
cePiece [107] incorporates either unigram or BPE encodings to generate token repre-
sentations. In this approach, frequently occurring shorter words are represented as
individual tokens, while single characters are also tokenized, allowing for the construction
of more complex and infrequent words. Notably, SentencePiece can handle languages
that do not separate words with spaces, as it processes text as a continuous input stream.
BPE [60] determines tokens by beginning with individual characters and successively
merging the most frequently occurring character combinations throughout the text. The
unigram [106] method starts with an extensive vocabulary and gradually reduces it to
the desired number of tokens, while consistently retaining the base characters in the
token dictionary.

2.4.9 Language Models for End-to-end Networks

While attention models are capable of generating coherent sentences, they are typically
trained on relatively smaller text corpora compared to standard language models. They
may occasionally produce ungrammatical or nonsensical sequences.
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In the context of attention-based models, Gulcehre et al . [73] introduced shallow
fusion; further integration of beam search into the seq2seq framework was described by
Wiseman et al . [198]. Shallow fusion incorporates a pre-trained language model into the
beam search decoding. Shallow fusion applies a language model rescoring, i.e., it merges
the attention model’s log probabilities with those from the language model during the
beam search decoding phase using a weight parameter β:

log p(ŷl) = log pAtt(ŷl) + β · log pLM(ŷl) (2.64)

2.5 Hybrid CTC/Attention End-to-End Architec-

tures

End-to-end models, as opposed to hybrid DNN/HMM systems, offer a simplified ASR
pipeline and eliminate the need for complex legacy architectures. Attention-based
frameworks consolidate acoustic, lexicon, and language models into a unified encoder-
decoder network. CTC networks skip hidden states and directly deduce frame-wise
probabilities of characters or tokens, eliminating the need for Markov or conditional
independence assumptions. End-to-end models typically utilize letter, or BPE/unigram
token outputs instead of word representations, that enables them to manage out-of-
vocabulary situations and enhances generalization. These models can be jointly optimized
as a single network for enhanced coherence. Also, end-to-end models do not require
further adaptive techniques, such as speaker adaption or vocal tract length normalization.

Watanabe et al . [195, 196] amalgamated CTC and attention approaches in the hybrid
CTC/Attention architecture, which optimizes both networks simultaneously for improved
performance over either model used independently. This hybrid model efficiently manages
irregular alignments frequently seen with standalone attention models. The pairing of
CTC’s monotonic alignment and the attention model’s ability to tackle complex mappings
accelerates convergence during training. In the decoding phase, the hybrid model merges
attention-based and CTC scores using a one-pass beam search algorithm. This section
introduces the main components to combine CTC and attention in a single architecture.

Hybrid CTC/attention with RNNs is discussed in Section 2.6 and with Transformers
in Section 2.7. Karita et al . [101] provide an extensive comparison between these RNNs
and Transformers with this architecture.

2.5.1 Model Training based on Multiobjective Learning

The application of a multi-objective training function [104, 119] merges CTC and attention
loss through the introduction of a multi-objective training factor κ, which ranges from 0
to 1. Thus, the combined loss, Lhybrid, is expressed as

Lhybrid = κLCTC + (1− κ)LAtt. (2.65)

A network solely comprising an attention network results from training with κ = 0.0, while
a network solely consisting of a CTC network arises from training with κ = 1.0. Networks
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trained with κ values between 0.0 and 1.0 (excluding the extremes) are denominated as
hybrid models in this work, whereas networks with κ = 0.0 and κ = 1.0 are referred to
as attention-only and CTC-only models, respectively.

The CTC loss is used as discussed in Section 2.4.6. The loss function for the
attention decoder is also calculated using cross entropy, given as LAtt = − log pAtt(Y |X).
The Adadelta optimizer is typically employed for RNN networks [213] and the Adam
optimizer [46] for Transformers. Popel et al . [147] discusses suitable training parameters
for Transformers.

For the purpose of data augmentation, spectral augmentation techniques are applied
on top of the extracted features using SpecAugment [141]. The spectral augmentation
involves two techniques: time warping and dropout-like masking. Time warping distorts a
portion of the input features to simulate variations in speech speed, while the dropout-like
masking is applied to blocks in both the feature and time dimensions.

2.5.2 CTC/Attention Joint Decoding

The Hybrid CTC/attention architecture employs a one-pass decoding beam search
technique that melds frame-based and sequential letter probabilities [196]. This algorithm
seeks the most likely sequence of letters Ŷ for the hypothesis Y , represented as:

p(Ŷ ) = arg max
Y

p(Y |X) (2.66)

In the context of beam search, letters are joined together based on their posterior
probabilities, forming a rebuilt letter sequence [67]. This study utilizes the commonly
adopted joint decoding approach which straightforwardly combines the sum of log
probabilities from both the attention and CTC models [10, 87]. In employing beam
search decoding, attention networks directly yield the next-in-sequence token probabilities,
or partial hypotheses Y ′, and these are arranged in order of their likelihood [31]. This
continues until the sequence conclusion is identified.

CTC generates probabilities for tokens on a frame-by-frame basis. To modify this
to fit the sequential output probabilities, the calculation of the forward probability
becomes an extra step needed to determine the next token probability in the sequence as
produced by CTC. This probability within the CTC network is estimated using a prefix
probability [68, 78]. Let Sh = {h · ν|ν ∈ (U ∪ EOS)+} be the set of all label sequences
that start with the prefix h and continue with any non-empty label sequence ν from the
set of all labels U and end with the end-of-sequence symbol (EOS). The prefix Y ′ includes
the first LY ′ tokens or characters of the full utterance hypothesis. The prefix probability
represents the conditional probability of the partial hypothesis Y ′ by summing over the
probabilities of all label sequences in SY ′ ,

pctc(Y
′, . . . |X) =

∑
π∈SY ′

p(π|X). (2.67)

Furthermore, the CTC score [196] is then defined from the probability pctc(Y
′, . . . |X) as

α(Y ′, X) ≜ pctc(Y
′, . . . |X). (2.68)
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Within the attention network, the probability of a partial hypothesis Y ′ is determined
by applying the probabilistic chain rule, hence

patt(Y
′|X) ≈

LY ′∏
l=1

p(yl|yi, . . . , yl−1, X). (2.69)

The probability approximation for the attention model patt(Y |X) is computed as the
product of conditional probabilities for each token given previous tokens and input X.
For the CTC model, pCTC(Y |X) is approximated by the forward function α(Y,X) on the
sequence and the input X. The CTC posterior, unlike the attention posteriors, does not
have a recursive calculation method; however, it can be computed in an efficient manner
by maintaining the forward probabilities across the input frames for every individual
partial hypothesis [196].

The probability of a full hypothesis is estimated as:

patt(Y |X) ≈
L∏
l=1

p(yl|yi, . . . , yl−1, X). (2.70)

pctc(Y |X) ≈ α(Y,X) (2.71)

The joint decoding further fuses the language model using shallow fusion [73]. Shallow
fusion combines the log probabilities of the attention model and CTC model with the
log probabilities of the language model using a weight β. The hybrid probability is then
computed in a multi-objective style, using the weight parameters λ as CTC probabilities
and β for language model probabilities. The calculation is then represented as:

phybrid(Y |X) = λ pCTC(Y |X) + (1− λ)patt(Y |X) + β pLM(Y |X). (2.72)

2.6 The Hybrid CTC/Attention RNN Architecture

The RNN-based architecture was initially introduced as the inaugural Hybrid CTC/Atten-
tion architecture, which is thoroughly explored in Chapter 3. The RNN architecture, as
discussed, comprises the encoder, attention network, and decoder. This builds on the
location-aware attention mechanism outlined in Section 2.4.4.

2.6.1 BLSTM Encoder

The architecture takes as input 80-dimensional log-Mel filterbank features, with the
option to include an additional three pitch features. These pitch features can enhance
ASR performance especially for tonal languages, like Mandarin or Vietnamese [63, 125].
Starting with an input sequence X of feature vectors, it is converted by the encoder
into a hidden representation h1, · · · , hT . The encoder network, shown in Figure 2.5,
integrates a convolutional VGGnet [170] and a stacked BLSTM layer, topped with a
fully connected layer of projection neurons, represented by Linear().

ht = encRNN(X) = [Linear(BLSTM)]Nelayers(VGG2(X)) (2.73)
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Figure 2.5: Encoder of the hybrid CTC/attention RNN-based architecture.

The encoder uses VGG2L [195], a simplified version of the VGGnet architecture. This
VGG2L variant consists of two blocks, each containing two convolutional layers followed
by a ReLU activation function and a max-pooling layer. The convolutional layers in the
first block have 64 filters and the ones in the second block have 128 filters. After these
convolution and pooling blocks, the features are flattened and passed through a linear
layer to produce the output[ii] to the LSTM layers of the encoder.

The projection neurons within the BLSTM blocks apply subsampling to the features
to reduce the computational complexity of the model. Resembling the behavior in other
attention encoder-decoder models, they implement a pyramid-like structure, similar to
the pyramidal encoder of the LAS architecture [31], meaning they systematically diminish
the temporal resolution of the representation, for instance, in a 2-to-1 manner.

2.6.2 Decoder with Location-aware Attention

In this work, the RNN-based model incorporates the location-aware attention mechanism,
denoted as attRNN, in accordance with Equation 2.46. This mechanism operates by ac-
cepting the decoder’s internal state vector and the annotated speech sequence h1, · · · , hT

as its input. Subsequently, it yields the context vector cl for each sequential output step
l, as defined in Equation 2.48.

The attention decoder network, denoted as decRNN, uses the context vector to generate
posterior probabilities for each letter in the sequence, including an extra label EOS
signifying the sequence’s end. The decoder is composed of several LSTM layers, without

[ii]Its output dimension is determined by the feature dimension Dfeat, number of feature channels Dfc,

the number output filters and the two max-pooling layers, Dvgg = 128
⌈⌈

Dfeat

Dfc
÷ 2

⌉
÷ 2

⌉
. With 80-dim

log-Mel filterbank features in a single channel, the output dimension to the BLSTM layer is 2560.
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any intermediate projection layers or subsampling. The decoder operates recursively,
using its previous internal state vector ql−1 and the predicted previous letter ŷl−1 from
the beam search.

ql = decRNN(ct, ŷl−1) = [LSTM]Ndlayers(ct, ql−1, ŷl−1) (2.74)

p(yl) = Softmax(Linear(ql)) (2.75)

Notably, ql serves a dual role: it acts as the internal state guiding the attention mechanism
and the next-in-sequence output token is classified based on it. Utilizing the hidden values
produced by the encoder, the attention and decoder networks cooperatively generate
a sequence in a recurrent fashion, as depicted in Fig. 2.6. With the calculated letter
posteriors p(yl), the beam search selects a likely letter hypothesis ŷl. The process then
cycles back to the attention network and continues this way until it encounters the
label signifying the end of the sequence. The configuration of the CTC output layer is

Figure 2.6: Decoder of the hybrid CTC/attention architecture.

depicted in Figure 2.6, adjacent to the attention mechanism. The encoder’s pre-computed
hidden values inherently incorporate a short-term context drawn encoded in the hidden
representation ht. A linear layer then calculates the CTC posterior probabilities on each
frame using a linear layer as in Equation 2.63.

2.7 The Hybrid CTC/Attention Transformer Archi-

tecture

The Transformer encoder-decoder architecture uses attention in three different ways.
The decoder attends over all items in the encoded input using encoder-decoder attention,
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i.e., the queries derive from the preceding decoder layer, while the memory keys and
values originate from the encoder output. Self-attention layers in both the encoder and
decoder contain regular self-attention layers that derive its keys, values and queries from
the previous layer, with the decoder implementing a mask to preserve the auto-regressive
property by preventing future information from influencing the current or past positions.
Figure 2.7 provides a visual overview of the Transformer architecture, which is further
detailed in the section that follows. The formulae in this section are primarily based on
the notation of Karita et al . [102].

2.7.1 Transformer Encoders

At the input layer, the model uses 80-dim log-Mel filterbank features; the extracted
features x1, · · · , xT are concatenated in the feature matrix X ∈ RT×80. The features in
X are then subsampled to Xsub using a convolutional neural network that has stride
size of 2 and a kernel size of 3. Within transformer encoders, positional encodings
are added to the acoustic feature vectors to convey positional information for each
token in the sequence, ensuring the model captures the contextual relationships between
tokens effectively. Speech recognition Transformer architectures typically use sinusoidal
positional encoding as positional encoding (PE) function [47, 102, 189]. The input X0 to
the first encoder layer is the matrix of features stacked on top of positional encodings:

PEt =


sin

(
t

10000
t
dk

)
if t is even

cos

(
t

10000
t
dk

)
if t is odd.

(2.76)

X0 =

[
xsub,1 · · · xsub,T ′

PE(1) · · · PE(T ′)

]
with Xsub = [xsub,1, . . . , xsub,T ′ ] (2.77)

Each encoder layer leverages the multi-head self-attention mechanism described in
Equation 2.52, complemented by the feed-forward network from Equation 2.54.

X ′i = Xi + MHA(Xi, Xi, Xi) (2.78)

Xi+1 = X ′i + FFN(X ′i) (2.79)

The final output from the last encoder layer is represented as the annotated sequence Xe.

2.7.2 Transformer Decoders

Similar as its RNN counterpart, the Transformer decoder serves as a next-in-sequence
predictor. For this, the decoder consumes the encoded sequence Xe and the sequence of
preceding tokens. The following paragraphs describe the inner workings of the decoder
that has d layers.

The prefix sequence of the already decoded partial sequence Y ′ = [y0, · · · , yl−1] is
determined as a sequence of token IDs. To convert it into a learnable format, the token
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IDs are encoded using an embedding layer.

Yemb = Embed(Y ′) (2.80)

The embedding matrix is concatenated with positional encoding to obtain the input to
the first decoder layer Z0.

Z0 =

[
yemb,0 · · · yemb,l−1
PE(1) · · · PE(l − 1)

]
(2.81)

The decoder uses multi-head attention differently compared to the pure self-attention
in the encoder, in two ways: First, the decoder applies masked multi-head attention
onto the layer input. Second, multi-head attention is used as regular encoder-decoder
attention include the input of the encoded audio sequence.

In masked multi-head attention, the decoder attends only to earlier sequence positions,
inhibiting leftward information propagation. Unlike standard multi-head attention, its
dot product attention, as in Equation 2.51, omits the lower triangular section of the
QKT matrix. The masked attention is thus determined by

Mi,j =

{
0 if j ≤ i

−∞ otherwise
(2.82)

attdot, masked(Q,K, V ) = softmax

(
QKT + M√

dk

)
· V, (2.83)

which is integrated into the multi-head mechanism MHAmasked(Q,K, V ) and applied to
obtain the first intermediate result

Z ′j = Zj + MHAmasked(Zj, Zj, Zj). (2.84)

Following the masked multi-head attention step, the encoder-decoder attention focuses
on the encoded sequence. In this encoder-decoder attention mechanism, while the
computation is analogous to standard self-attention, the distinctions arise from the
source of its inputs. Specifically, the keys and values for attention are derived from the
encoded sequence, whereas the queries are sourced from the encoder. This mechanism is
termed as encoder-decoder attention, drawing parallels with the flow of information seen
in the listen-attend-spell attention architecture.

Z ′′j = Zj + MHAencoder-decoder(Zj, Xe, Xe) (2.85)

As a finalizing step for each layer, the output is propagated through the feed forward
network of Equation 2.54.

Zj+1 = FFN(LayerNorm(Z ′′j )) + Z ′′j (2.86)

Finally, a fully connected layer with a Softmax determines the probability of the next-in-
sequence token p(yl) from the previous-in-sequence output of the last layer Zd[l − 1].

p(yl) = Softmax(Linear(Zd[l − 1])) (2.87)

Figure 2.7 gives an overview of the Transformer encoder-decoder architecture.
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2.7.3 Conformer Architecture

The Conformer, as introduced by Gulati et al . [72], is an augmentation of the Transformer
architecture, embedding a convolutional layer after each attention layer. This architecture
replaces standard Transformer blocks with Conformer blocks, by integrating Transformer’s
self-attention with CNNs for ASR, which helps to also capture local patterns using
convolutions. The combination of CNNs and attention layers in the Conformer follows
a sequential processing approach, inspired by Macaron-Net [120]. The Conformer
adopts relative sinusoidal positional encodings, as introduced in the Transformer-XL [47]
architecture.

While this architecture is only used for a comparative experiment in Section 6.4, an
in-depth discussion of this architecture is beyond the scope of this introductory segment.
Readers seeking an in-depth understanding are directed to the seminal work by Gulati
et al . [72]. This work uses the implementation for ESPnet by Guo et al . [74].
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Encoder
e layers

Multi-head attention

QK/V

FFN

Decoder
d layers

Masked multi-head
attention

QK/V

Encoder-decoder
multi-head attention

QK/V

FFN

Linear layer+Softmax

Figure 2.7: Encoder and decoder of the Transformer architecture.
On the left side, the encoder is depicted. The first encoder layer consumes the subsampled
input features xsub,t combined with positional encoding PE(t). Within each layer, the data is
passed through a regular self-attention block and a feed-forward neural network block.
On the right side, the decoder is shown. The already decoded partial sequence, y0, · · · , yl−1,
is first embedded and concatenated with its positional encoding to produce the inptu to the
first decoder layer Z0. Each layer of the decoder processes its input using masked multi-head
attention, ensuring that future information doesn’t influence current or past positions. Following
this block, encoder-decoder multi-head attention attends to the encoded sequence H, before a
feed-forward network refines the output for the current decoder layer.
Finally, a fully connected layer with a Softmax determines the probability of the next-in-
sequence token p(yl) from the previous-in-sequence output of the last layer Zd[l − 1].
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Exploration of Hybrid

CTC/Attention Speech Recognition

This chapter explores Gaussian process optimization performed on the speech recog-
nition model detailed in Chapter 2. For this, we trained in total 70 different hybrid
CTC/attention models and performed 595 beam search decoding iterations. Its aim is
two-fold, parameter space exploration and optimization. The results of this exploration
help to derive general training recommendations, and also revisit the key assumption
of the hybrid CTC/attention approach stating that CTC provides alignments to the
attention mechanism. This chapter summarizes the work published in [8†].

3.1 Gaussian Processes Optimization

Under the assumption that few parameters are more influential than other parameters,
sequential optimization methods perform better than random search, by weighting
the importance of each dimension [15]. The following investigation uses Gaussian
processes as tool for parameter optimization and exploration. Gaussian processes capture
function uncertainty at all input points, enabling informed decisions in optimization
by balancing exploitation and exploration [3]. In comparison, random brute-force
searches don’t consider this uncertainty, resulting in possible inefficient evaluations.
Gaussian process optimization is a sequential model-based optimization method that
was shown to outperform random brute-force search and human performance for many
algorithms [79, 172]. Gaussian processes were first applied to optimize hyperparameters
in [16].

In the experiment, each training or decoding run was evaluated by the word or
character error rate on a test dataset. This evaluation metric is represented by an
unknown function f that samples from the discrete parameter set X. Given that
continuous functions simplify optimization tasks compared to discrete samples, the
following steps demonstrate how these discrete samples are recast to a continuous
function. Gaussian processes help to generate continuous functions in a probabilistic
manner that estimate f . Optimization is then applied to find the optima, i.e., good
parameter configurations.
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To formalize this, Gaussian processes estimate the unknown function f : X → R.
The finite set of points {X(n) ∈ X} induces a joint Gaussian distribution in RN . A
Gaussian process is described by two functions, the mean-function µ : X → R and the
kernel k : X × X → R. We additionally need a suitable kernel and acquisition function
for good optimization results [172]. The Matérn-kernel [154] is a generalization of the
radial-basis function kernel, defined by

kMatérn(r(n)) =
21−ν

Γ(ν)
(

√
2νr(n)

l
)νKν(

√
2νr(n)

l
). (3.1)

Here, Kν is the modified Bessel function and Γ(ν) is the Gamma-function. Using
r(n) = ||X(n) −X ′(n)|| as the Euclidean distance between two parameter sets, the kernel
characterizes a statistical covariance between sample points. The kernel has two positive
parameters, ν > 0 and l > 0. Gaussian noise in the target value f(X(n)) is modeled by
adding a small noise constant ϵ onto the kernel in all sample points.

Hypotheses modeled as a Gaussian process fGP ∝ GP(µ, k) are generated based on
the previous observations D = {(X(i), Y (i))}, i = {1, 2, . . . , n}. The acquisition function
assists in finding the next optimal point X(n+1) by weighting the mean-function and the
kernel. Using the so far minimum observed value fmin, the Expected Improvement (EI)
metric helps to find a suitable new parameter configuration from the hypotheses:

fEI(X
(n+1)) = E[max(0, fmin − fGP(X(n+1)))|X(n+1), D], (3.2)

This acquisition function is continuous and can be optimized, e.g., by a grid search over
its input space [15] in combination with quasi-Newton optimization methods. To avoid
local optima, points are randomly sampled as optimization starting point. From those,
the quasi-Newton L-BFGS-B optimization [27] is applied on the EI function to find the
next optimal point.

3.2 Experiment Setup

Gaussian process hyperparameter optimization is applied on the hybrid CTC/attention
network provided in the ESPnet toolkit[i]. The TED-LIUM 2 dataset serves as training
recipe and testing benchmark. The experiment was done in two stages: First, optimizing
the hyperparameters of the end-to-end model, and second, optimizing the decoding
parameters. For each iteration, observations and parameters were passed to the Gaussian
process optimizer to obtain the next parameter configuration.

The first stage optimized the parameter configuration of the hybrid CTC/attention
architecture. This experiment is based on the standard BLSTMP architecture, as
described in Section 1.2, that uses a bidirectional LSTM encoder with projection neurons
and an LSTM decoder with location-aware attention. Subsampling was applied to the
second and third layer of the encoder, i.e., only every second hidden value is forwarded in
these projection layers to the subsequent layer. Parameters along with their upper and

[i]ESPnet version 0.3.0, on git commit hash 716ff54.
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lower bounds are listed in Table 3.1; this includes the network depth and width, and the
multi-objective training parameter κ. The parameter κ determines network structure, as
CTC-only models did not contain any attention mechanism, while attention-only models
omitted the CTC output layer. In total, 70 models were trained in the first stage:

• 20 models were trained beforehand to provide the starting observations.

• Then, 40 models were trained with optimized parameters. A decoding run without
language model with each model was performed. Here, the model CER served as
optimization target.

• This stage included ten further models, optimizing towards the accuracy of the
attention mechanism on the validation set. This performance metric is already
available during training, which is an advantage, as no additional decoding run is
needed to derive it.

Table 3.1: Optimized hyperparameters of the model training and decoding stages for the
Gaussian Process optimization.

Stage Parameter Symbol Range

Model training

Encoder layers Nenc [1; 6]
Decoder layers Ndec [1; 6]
Encoder layer width Wenc [25; 400]
Projection units Ndec [25; 400]
Decoder layer width Wdec [25; 400]
Attention layer width Watt [25; 400]
CTC weight κ [0.0; 1.0]
Attention channels Natt [1; 20]
Attention filters NK [30; 150]

Beam search decoding
Language model weight β [0.0; 1.0]
CTC weight at decoding λ [0.0; 1.0]
Language model index [1; 4]

The second stage optimized beam search parameters, such as CTC weight and
language model weight, as in Tab. 3.1. Additionally, the optimizer also could choose
from four different RNNLM language models; each with 2-layers to 650 LSTM units
and a perplexity on the text corpus ranging from 3.32 to 4.02. We set the CER on the
TED-LIUM 2 dev set as target value. This stage included the hybrid models of the
previous stage. To obtain the first decoding results, decoding was done with and without
language models, with the same CTC weight during the training, i.e., λ = κ.
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3.3 Experimental Results

Overall, 70 models were trained and results were gathered from 590 decoding runs.
Compared with the baseline model that achieved 10.1% CER on the TED-LIUM 2 test
set [195], our best model achieved 8.9% CER, an absolute improvement of 1.2% CER.
As non-hybrid models have a κ value at the borders of its interval, and starting values
were already provided at these values, the algorithm exclusively chose hybrid model and
decoding configurations.

A few parameter groups emerged from the results, distinguishable by their CTC
weight at decoding and language model weight. Figure 3.1a displays these groups on
a CER-WER plot. Most beam search results are between 10% and 20% CER. From
inspection of decoding runs with higher error rates, two parameter groups were clearly
distinguishable from the other results:

Group 1: High WER but relatively low CER. This group mostly contained
results from CTC-only decoding without a language model, i.e. λ > 0.8; β < 0.1, that
may be explained by the properties of CTC: CTC-based networks generate temporal
probabilities for each character. When those network activations are seen as a sequence,
sometimes characters are switched or omitted. This group characteristically exhibits
spelling errors within words, or sometimes shifted word boundaries. Each wrongly
spelled word causes one word error, each shifted space token two word errors. Temporal
information of word writing may be distributed unevenly within a word, thus it is usually
combined with a sequence-based language model.

Group 2: Low WER but relatively high CER. Attention-only decoding in
combination with an RNNLM language model, i.e. λ < 0.05; β > 0.3, exhibits word loops
and dropped utterance parts, but mostly correct spelling. By intuition, attention-based
decoding that is supported by a language model should improve performance, however,
in the experiment this was not the case and adding the RNNLM in the beam search
deteriorated results. Possible causes for this effect are discussed in section 3.4.

By manual inspection, there was no single parameter that strongly influenced the
CER. Still, larger networks have a tendency to perform better, resulting in a weak
inverse correlation of the number of learnable parameters with the CER, as pictured in
Figure 3.1b.

Figure 3.1c separates these results into further categories by distinguishing hybrid,
CTC-only, and attention-only models and beam search runs. (1) includes all decoding
runs, and (2) and (3) show the performance of hybrid models with and without language
model. Categories (4) and (5) show attention-only beam search results of hybrid models;
their performance was clearly better without RNNLM (4) than with it (5). A similar
effect was observed on models that were only trained with attention mechanism, again,
with a better performance without RNNLM (6) than with it (7). Categories (8) and (9)
show the CER of hybrid models that were decoded solely with the CTC output of the
network. Again, CTC-only beam search runs with hybrid models yielded better CER
with RNNLM (8) than without it (9). A similar result was observed with CTC-only
models in categories (10) and (11).

The best performance in the experiment, however, was only achieved in a hybrid
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Figure 3.1: TED-LIUM 2 exploration results overview as discussed in Sec. 3.4.
(a) shows three parameter groups in the WER-CER scatter graph: Attention-only beam search
with RNNLM → λ < 0.05;β > 0.3. CTC-only beam search without RNNLM → λ > 0.8;β <
0.1; (b) demonstrates how larger networks tend to have a higher performance; manifesting in a
weak inverse correlation between network size and the CER; (c) lists parameter categoriesaand
their CER distributions.

aIn detail: Hybrid models → κ ∈]0.0; 1.0[, attention-only models → κ = 0.0, att.-only beam search
→ λ = 0.0, CTC-only models → κ = 1.0, CTC-only beam search → λ = 1.0, ‘w/o LM’ → β = 0.0, ‘with
LM’ → β = 1.0.
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decoding approach with a language model, as shown in Figure 3.1c, item (3). The results
of this figure are further quantified in Tab. 3.2. Notably, the columns of attention-only
or CTC-only models contain parameter configurations that were handpicked, due to the
algorithmic preference of hybrid models and beam search runs.

3.4 On Word Loops and Dropped Sentences

In the experiment, attention-based shallow fusion decoding deteriorated performance
when using a language model. This is not intuitive and also stands in contrast to
previous publications; those successfully combined attention-only models with a language
model [31, 183]. There may be possible explanations of this deteriorated performance:

Different token distributions in training and decoding: Due to train-test-
mismatches in sequential training, the ASR network may be less prepared for unseen
letter sequences. In the experiment, only ground truth letters are fed into the network
as previous letter hypothesis yl−1; this method is called teacher forcing [197]. Teacher
forcing trains the model only with the ground truth sequence, and thus, the model will
generate sequences at inference that were not seen during training. This leads to a
discrepancy between training and inference distributions and to an accumulation of errors.
Scheduled sampling [14] solves this by randomly selecting the previous letter hypothesis
yl−1. For example, the listen-attend-spell architecture [31] uses scheduled sampling; that
architecture was discussed in Section 2.4.3 as a precursor to the investigated RNN model
and is based on a content-based attention mechanism. Attention-only decoding with
RNNLM of the test set introduces such unexpected letter hypotheses. This effect may
explain an amplification of small errors in the beginning of the generated sequence,
however, does not yet explain how word loops and missing sequence parts are generated.
Other factors may also contribute to this issue, as explained in the following paragraphs.

Delayed information propagation in the attention mechanism: Architectural
differences of the attention mechanism may impact the decoding. As a general observation,
the attention mechanism uses a weighted sum to extract information about the next-in-
sequence token, which depends on the temporal location within the encoded sequence
of the next possible character. Attention does not have a strong temporal alignment
such as CTC, and thus, the attention focus does not always progress linearly in time,
depending on spreading of intra-word alignments or pronunciation.

The investigated CTC/attention architecture uses the location-aware attention mech-
anism, as discussed in Section 2.4.4. While the letter hypotheses, i.e., which character
was chosen for yl−1, are given as feedback to the network, the next-in-sequence attention
weights may be shifted wrongly due to delayed sequential processing: The next-state ql
depends on the previous state vector ql−1, and also previous attention weights al−1,t. The
attention focus may need readjustment for different hypotheses, e.g., for an unexpected
letter hypothesis yl−1. But the information of the chosen hypothesis yl−1 arrives at the
attention state not at the current l but with an additional delay l + 1, because the
context vector cl at position l can not consider the information of the previous letter
yl−1. Instead, information of the chosen hypothesis propagates to the state vector only
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at time step l + 1, and only then impacts the attention weights at time step l + 2. These
delays of information flow may accumulate to a feedback loop due to a cyclic progression:
Hypotheses with a feedback loop may then have higher posterior probabilities p(yl)
based on the estimated cl and the preceding letter hypothesis. Wrong estimations of the
letter probabilities then may accumulate to a wrong decoded sequence with a wrongly
estimated high confidence.

At the time of the experiment, the beam search did not contain any regulating
mechanisms such as a penalty to decoded sequence length. Later, the default parameters
of the hybrid CTC/attention architecture were extended with two regulating parameters[ii],
setting an interval for the ratio of input length to output length. A sensibly chosen
interval significantly reduces word loops or dropped sentence parts.

Low-perplexity language models: The language models itself may not be perfor-
mant enough. In a later inspection of RNN language models, many of them produced
word loops themselves without any influence of an ASR model. Experiments on the
LibriSpeech dev set [138] by Karita [99] demonstrated how language model perplexity
can be improved from 56.5 to roughly 30.6 when switching from an RNNLM (similar to
ours, 2 layers with 1024 LSTM units) to a large Transformer language model (18 layers,
2048 units).

Even large language models can exhibit repetitive loops, a phenomenon termed as
neural text degeneration [36, 85, 204]. Repetitive loops also occur in ASR Transformers,
but RNN networks seem to be more prone to it [100].

3.5 Revisiting the Hybrid CTC/Attention Hypothe-

sis

The motivation to jointly train and decode the CTC network with an attention mechanism
was introduced by Watanabe et al . [196], to provide temporal alignments to the attention
mechanism. Using the experimental results of the parameter exploration, we can evaluate
this notion.

For this, we compare the hybrid model with joint beam search in Figure 3.1c item (2)
with the attention-only approach (6). Transcriptions of both classes had mostly correct
alignments, and errors were dominantly introduced by similar-word mistakes. In item
(6), attention-only beam search, lost alignments were rare - without needing CTC as
alignment regularization. Another indication of this is that attention-only beam search
with hybrid models (4) did not yield better results than with attention-only models (6).

Here, the results did not prove the advantage of combining CTC with an attention
architecture, but rather that attention models alone already achieve acceptable perfor-
mance. Still, the best performance in the experiment was achieved in a hybrid decoding
approach with a language model with a CTC weighting of 0.63 and a language model
weighting of 0.73. Even with larger attention models, misspellings and similar-word
substitutions can only be reduced to a minimum by joint decoding with a language model.

[ii]The two parameters are minlenratio and maxlenratio in ESPnet 1.
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Nevertheless, in combination with a language model, adding CTC to the attention for
the beam search regularizes and provides temporal alignments.
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4

Adversarial Machine Learning

There is a general trend from ASR systems with handcrafted features towards deeper
neural networks that are trained in an end-to-end manner. Deeper neural networks are
also more complex and, in many cases, susceptible to adversarial noise: Adversarial noise
is a specially crafted disturbance that is optimized to interfere with the classification of
a neural network. In some cases, even a small amount of such noise is sufficient to cause
the network to falsely classify its input [180, 202]. Samples with adversarial noise are
called adversarial examples.

From a security perspective, misleading neural networks into falsely classifying
their inputs has direct implications for the security of systems with ASR functionality.
Personal assistants that are prone to adversarial examples constitute a potential attack
surface [201]. A TV show or a sound may play a barely noticeable adversarial example
to issue hidden voice commands [29, 30], e.g., to unlock a door or to order a product.

Most importantly, the performance of speech recognition systems should closely align
with human hearing and comprehension. ASR systems should be robust against types of
noise that are nearly imperceptible to humans. To solve this, we will describe later in
this chapter how to improve the robustness of the model, by using adversarial training
that infuses adversarial examples during the training process.

This chapter combines the work published in two publications [1†, 7†], building on
top of two master’s theses by Andronic [1+] and Chavez Rosas [5+], and focuses on ad-
versarial examples in hybrid CTC/attention ASR, adversarial training and corresponding
countermeasures. All experiments and benchmarks are conducted using the RNN-based
architecture discussed in Section 2.6. The first section gives an overview of related work
of adversarial examples, and countermeasures such as adversarial training. Then, the
following section presents several methods to generate untargeted adversarial examples
in the feature domain for the hybrid CTC/attention ASR system. The third section
demonstrates how these adversarial examples can be incorporated back into the training
process through a technique called adversarial training, which serves as a countermeasure
against adversarial noise. At the same time, adversarial training improves generalization
in the conducted experiment and improves the speech recognition performance by a
relative 10% compared to the baseline model. While audio adversarial examples are
commonly generated in the feature domain, the fourth section discusses a method to
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directly generate adversarial examples in the time domain. The last section investigates
MP3 compression as a successful countermeasure against time domain adversarial exam-
ples. Adversarial noise often includes inaudible components, which are reduced by MP3
compression.

4.1 Related Work

Before examining the effects of adversarial machine learning on the end-to-end ASR
architecture, this section conducts a review of the literature in the field of adversarial
machine learning, with a focus on whitebox models, where the parameters θ are fully
known.

4.1.1 Adversarial Machine Learning

Adversarial machine learning, i.e., adversarial noise and adversarial examples, were first
described in the image recognition domain by Szegedy et al . [180], and then further
investigated by Kurakin et al . [109, 112].

This chapter focuses on a white box model scenario. In adversarial machine learning,
a white box model refers to a machine learning model whose parameters θ and internal
workings are fully known to an adversary. In contrast to black box models, where the
inputs and outputs of the model are known, white box models allow adversaries to
directly manipulate the model’s behavior and optimize attacks. Therefore, white box
models are often more vulnerable to adversarial attacks than black box models.

Most methods to generate adversarial noise depend on computing the gradient of the
network with respect to its input [4]. The most popular method of generating adversarial
noise for a neural network with known parameters is the Fast Gradient Sign Method
(FGSM) [66], of which a formal description will be given in Section 4.2. Similar to
stochastic gradient descent, it is gradient-based and may be used as a one-step method or
applied iteratively. This method can generate untargeted adversarial examples, causing
the network to misclassify, or targeted adversarial examples that intentionally mislead
the network to classify an input into a specific, incorrect class [28].

The perturbation introduced to create adversarial examples for speech recognition
networks can be minor, remaining imperceptible to human listeners [191]. However, this
subtle alteration can be significant enough to cause system misclassification. From an
adversarial’s perspective, the amplitude of the adversarial perturbation should be lower
or below the hearing threshold compared to the original input xt, ensuring it remains
unnoticeable.

A method for defending against white-box attacks involves the use of adversarial
training, where the model is trained on both clean and adversarial examples, forcing it
to learn robust features that are less susceptible to attacks. Adversarial training also
has to take label leaking [111] into account: Untargeted adversarial examples, which
are generated using the ground truth, contain information about that ground truth.
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Consequently, the network might inadvertently learn to predict the correct labels based
on these adversarial examples during the adversarial training process.

4.1.2 Audio Adversarial Examples

While most work on adversarial machine learning focuses on image recognition, adversarial
examples in the time domain for speech recognition are more difficult [44], due to the use
of preprocessed acoustic features and temporal dynamics [206]. A general introduction
to adversarial attacks on ASR systems and countermeasures is found in [89]. Audio
adversarial examples are even transferable between architectures [2, 131, 185].

Adversarial examples are very relevant to ASR systems, as they are not just a theo-
retical construct but have been shown to work in real-world physical environments [210].
Carlini et al . [29] demonstrated working hidden voice commands in a physical room
against HMM-based ASR systems, being transferable and functional across a wide range
of simulated rooms and environments. For this, they simulated the room impulse re-
sponse (RIR) in the construction of the adversarial noise and included the RIR in the
optimization process. Their adversarial examples also were transferable on the Google
Assistant on the phone when played over-the-air.

In the same publication, Carlini et al . [29] were also the first to publish adversarial
machine learning on conventional hybrid DNN/HMM ASR. Another significant work on
adversarial machine learning for hybrid DNN/HMM speech recognition is the Backstitch
algorithm [192], an adversarial training approach that modifies the original SGD optimizer
to reduce the sample bias of the training process. This algorithm takes advantage of
specific properties of the Natural Gradient [5, 149], which is used in the kaldi toolkit but
not for hybrid CTC/attention ASR.

CTC-based adversarial examples were first constructed based on DeepSpeech by
Hannun et al . [76] using the FGSM. Carlini et al . [30] later successfully constructed
adversarial examples for longer sentences on DeepSpeech [76]. However, their constraint
for minimizing the added adversarial noise did not consider the limits and sensitivities of
human auditory perception, so the introduced perturbations could still be noticed by a
human.

Audio adversarial examples on sequence-based ASR systems were first demonstrated
for the attention-based system Listen-Attend-Spell [31] by Sun et al . [176] who apply
FGSM to the sequential attention decoder. In a similar fashion, adversarial training
feeds the corresponding sequence-based adversarial examples to the model as a form of
data augmentation.

Some works focus on making adversarial examples inconspicuous; see Sharif et al . [168]
in the domain of face recognition. Similarly, audio adversarial examples may be made
undetectable by the human hearing using psychoachustic hiding [150, 164]. This technique
restricts the adversarial noise to the spectral envelope of the human hearing threshold. The
human hearing threshold may be derived based on MP3 compression [1†, 1+]. Schönherr et
al . [164] were the first to develop imperceptible audio adversarial examples for conventional
hybrid DNN-HMM ASR. As demonstrated in a subsequent publication [165], audio
adversarial examples with psychoacoustic hiding can also be constructed to be transferable
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between architectures and successful in over-the-air scenarios. Vadillo et al . discuss
suitable metrics to evaluate human perceptability of adversarial examples [186]. Further
methods have been proposed in the literature for hidden adversarial attacks that, however,
are not relevant for our investigation into ASR systems, e.g., the DolphinAttacks [214]
leverage nonlinearities of microphones and modulated their audio signal on an inaudible
ultrasound carrier.

As most ASR systems build on MFCCs or F-bank features, their audio adversarial
examples are in feature domain, not in time domain. Features over time have a similar
representation as spectrogram and thus can be treated with approaches to adversarial
machine learning derived from computer vision [89]. Due to the lossy compression of
the feature extraction step, it is non-trivial to transform adversarial features back to
the time domain. Previous works demonstrate various approaches to this issue [92], but
with relative success, as the transformed audio sounds drastically different from the
original. Andronic et al . describes a method to generate such adversarial examples in
time domain [1+, 1†] that will be discussed in Section 4.4.

4.1.3 Countermeasures Against Adversarial Examples

Similar to adversarial machine learning, most research on countermeasures against
adversarial machine learning has been done in the computer vision domain. Many of
those techniques inspired works in the ASR, that Hut et al . [89] categorized into reactive
and proactive strategies. Proactive approaches harden the ASR network during training
using adversarial training [177] or distillation [139]. Reactive approaches reduce or
detect adversarial noise with an already trained ASR network using audio processing
methods, such as compression or down-sampling. Local smoothing, down-sampling were
shown to be effective for short utterances [207]. Band-pass filtering and compression
(MP3 and AAC) and more complex speech coding algorithms (Speex, Opus) mitigated
adversarial noise on a keyword spotting system [153]. Similar to the work in Section 4.4,
Das et al . [48] used MP3 compression to mitigate targeted adversarial examples in the
CTC-based DeepSpeech model.

4.2 Generation of Adversarial Examples

This section introduces four methods to generate adversarial noise using the FGSM [66, 5+]
on the hybrid CTC/attention architecture: 1. At the attention decoder at a fixed point in
the decoding sequence, 2. at the attention decoder using an averaged gradient over several
points in the decoding, 3. from the CTC loss, and 4. a combination of attention-based
and CTC-based loss.
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4.2.1 Adversarial Examples in Feature Domain

The adversarial noise δ(xt) is generated for a specified sample X = x1:T in feature domain.
To obtain the adversarial example, this noise is then added onto the sample:

x̂t = xt + δ(xt), ∀t ∈ [1, T ]. (4.1)

The FGSM method uses backpropagation, implying the consideration of a whitebox
model with known network parameters. The generation of adversarial examples is
restricted to untargeted types, meaning the adversarial noise optimizes for the increase of
the objective function LCE(X, y; θ), given a token sequence y and the parameters of the
model θ. Analogous to the learning rate of SGD, FGSM can be applied in an iterative
manner weighted by the factor ϵ that controls the intensity of the adversarial noise.

For T time steps utilizing the ASR model, a decoded sequence Ŷ = {ŷ1, · · · , ŷL} is
deduced from X = {x1, · · · , xT}. Subsequently, this reconstructed label sequence is used
for generating adversarial noise instead of the ground truth to avoid label leaking.

4.2.2 Attention-based Static Window Adversarial Examples

Attention-based decoding uses a beam search, as discussed in Section 2.66. Sun et
al . [176] were the first to propose an application of the FGSM method to sequence-to-
sequence models. They derived the sequential attention cross-entropy loss LCE(X, yl; θ)
with respect to the feature sequence X by iterating over sequential token posteriors.
Then, the adversarial noise δ(xt) is calculated for the full decoded sequence as

δSW(xt) = ϵ · sgn(∇xt

L∑
l=1

LCE(X, ŷl; θ)), l ∈ [1;L]. (4.2)

This method applies the FGSM on the gradient of all sequence steps equally, and thus
equally distributes adversarial noise over the full audio utterance.

The latter method calculates a gradient of all sequential outputs and can be further
reduced using the autoregressive properties of the attention mechanism; Under the
assumption that errors propagate to subsequent decoding steps, only a few steps are
needed to be calculated. As discussed in Section 3.4, attention-based decoding is prone
to disruption under certain circumstances, for example, word loops when the attention
focus is lost. It thus is already sufficient to target a part in the sequence, that not
only distorts the corresponding decoded token but also may distort further decoding.
Localized adversarial loss is generated from a single decoding step or an interval of steps,
by applying FGSM on a static window of w gradient steps from the starting token at
index lγ up to the ending token at index lγ+w:

δSW(xt) = ϵ · sgn(∇xt

γ+w∑
l=γ

LCE(X, ŷl; θ)), l ∈ [1;L]. (4.3)
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4.2.3 Attention-based Moving Window Adversarial Noise

Some audio segments are more susceptible to adversarial noise than others, as they are
given a higher weight by the attention mechanism. In many cases, the static window
method of Equation 4.3 changed only a localized part of the transcription. To generate
noise that affects the full transcription, the static window of adversarial noise can be
repeated in intervals. By accumulating the obtained gradients, localized maxima of
adversarial noise are reduced and dissipated over the utterance.

The moving window approach uses the same window as the static window approach
with length w and repeats it with stride ν to obtain an accumulated gradient ∇MW(xt).
The iterative gradient accumulation can lead to high variances, which can be balanced
using gradient normalization [53], i.e., the gradient is normalized by the L1 norm of
itself. With that, the adversarial noise δMW (xt) for the moving window is determined as:

∇MW(xt) =

⌈L/ν⌉∑
i=0


∇xt

lw+i·ν∑
l=i·ν

LCE(X, ŷl; θ)

||∇xt

lw+i·ν∑
l=i·ν

LCE(X, ŷl; θ)||1

 , l ∈ [1;L] (4.4)

δMW (xt) = ϵ · sgn(∇MW(xt)) (4.5)

Sun et al . [176] apply the adversarial gradient on each sequence element. Due to
sequential dependencies in the decoding process, applying the gradient on all steps may
not always be necessary. Skipping certain parts of the sequence reduces the computational
overhead and still generates an effective adversarial example.

4.2.4 Adversarial Noise from CTC Loss

With CTC, the loss function is applied in a single step upon the full utterance, as
explained in Section 2.4.6. It then suffices to apply the FGSM on CTC loss LCTC over
the reconstructed label sentence Ŷ :

δCTC(xt) = ϵ · sgn(∇xtLCTC(X, Ŷ ; θ)). (4.6)

4.2.5 Hybrid CTC/Attention Adversarial Noise

To obtain hybrid CTC/attention adversarial noise, both attention δatt and CTC δCTC

adversarial noise are fused together in the form of multi-objective optimization [119]
with the weighting parameter ξ ∈ [0; 1].

δHybrid(xt) = (1− ξ) · δatt(xt) + ξ · δCTC(xt), ∀t ∈ [1, T ] (4.7)

This multi-objective weighting of adversarial noise, derived from both CTC loss and
attention loss, mirrors the multi-objective structure of the hybrid CTC/attention archi-
tecture. The adversarial noise for the attention mechanism may be derived using the
windowed methods of Equations 4.3 or 4.4, or also derived from the full sequence as in
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Figure 4.1: Generation of hybrid CTC/attention adversarial examples. The reconstructed
label sequence and feature vector x1:T serve as initial input data. With that, the hybrid
CTC/attention model performs an inference and determines attention and CTC losses. Adver-
sarial noise is then generated from the windowing method on the attention loss and the FGSM
on the CTC loss. Both noise vectors are added together, weighted by the weighting parameter
ξ and scaled by the noise factor ϵ. This results in the adversarial noise that is added onto the
feature vector x1:T to obtain the adversarial example.

Equation 4.2. The generation process of hybrid CTC/attention adversarial examples is
shown in Figure 4.1. Several enhancements to this algorithm are plausible. It can be
augmented to produce targeted adversarial examples and iteratively refine the adversarial
noise, as proposed by Carlini et al . [30]. Additionally, the integration of psychoacoustic
hiding is feasible, allowing the adversarial noise to be limited to the psychoacoustic
hearing threshold in either the spectral or feature domain [164, 1+].

4.2.6 Generated Adversary Examples

This section demonstrates the impact of adversarial examples on decoding results based
on two noise-free sentences. Noise-free audio rules out interference of other noise sources
and improves decoding performance.

The first example sentence was obtained from the Tacotron text-to-speech toolkit [169]
as an example sentence:

Peter Piper picked a peck of pickled peppers.
How many pickled peppers did Peter Piper pick?

The second example sentence was generated using the Tacotron text-to-speech model
of the ESPnet toolkit[i]. Their model was trained on the LJ Speech Dataset [93] based
on audio of the LibriVox project [117] and is available on the ESPnet project page as
ljspeech.tacotron2.v2. The ground truth of the sentence “Anie” is:

Anie gave Christina a present and it was beautiful.
The adversarial examples are calculated using the pre-trained model tedlium2.rnn.v1

provided by the ESPnet toolkit, an RNN-based ASR network that was trained on the
TED-LIUM 2 dataset[ii]. Inference is done without a language model. With that, the

[i]The model is available on the ESPnet project page as ljspeech.tacotron2.v2.
[ii]The hybrid CTC/attention model tedlium2.rnn.v1 has a four-layer encoder with unidirectional

LSTM units and projection neurons. Its decoder uses the location-aware attention mechanism of
Section 2.46 and has only a single layer. Each layer has 1024 neurons. Its location-aware attention
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two sentences “Anie” and “Peter” are recognized as:
peter piper picked a peck of pickle peppers

how many pickle peppers did Peter Piper pack
any gave christina a present and it was beautiful

Recognition errors are printed in bold. While the transcription is very similar in its
pronunciation compared to the ground truth, it contains a few errors that are explained
by the lack of a language model. These two decoded sentences serve as the reference to
generate adversarial examples to avoid label leaking.

The subsequent paragraphs demonstrate adversarial examples and their impact on
the decoded sentence. Throughout these examples, the additive weight of the noise to
the example is consistently set to ϵ = 0.3, a value also used by Sun et al . for adversarial
training [177]. The CTC weight parameter is uniformly set to ξ = 0.5 for all hybrid
CTC/attention examples.

First, adversarial examples that are obtained using the FGSM method from CTC
loss. The CTC-based adversarial examples result in the following transcription:

peter piper a picked a pack of tackled tappers
how many piggle peppers didn’t pay their piper pick

any dove christian no presented it was beautiful
Here, the word errors caused by adversarial noise are printed in bold. By inspection,
errors caused by CTC-based adversarial noise are distributed across the sentences.

While the CTC-based adversarial noise is applied globally on the utterance, the static
window method applies FGSM at only certain decoding steps at decoding. Table 4.1
shows the sentences “Anie” and “Peter” with static window adversarial examples. This
noise mainly causes a localized disturbance on the tokens at these steps, however, also
effects decoding of the whole utterance; for example, the static window was applied to
four tokens of “Peter”, and the adversarial example achieved an error rate of 87.5%.
Table 4.1 also includes the hybrid adversarial example that has a slightly lower WER of
56.3%.

The moving window method applies adversarial noise across the utterance and thus
avoids localizing the adversarial noise. Table 4.2 lists the adversarial examples generated
with the moving window method. In this example, applying the static window method
on “Peter” achieves a WER of 93.8% w.r.t. the ground-truth; this is a higher error rate
than with the static window method. However, this example also uses more than 20
tokens in the calculation, compared to only four tokens in the static windowing example.
The hybrid adversarial example achieves an error rate of 56.3% WER with the same
parameter configuration.

Adversarial noise changes the recognized sentence and adds additional recognition
errors. Examples generated with the moving window exhibit higher error rates than
compared with static window or CTC-based adversarial examples. The inspection of
“Anie” and “Peter” makes it evident that the moving window method created the most
effective perturbations; thus it is a suitable choice as augmentation method in adversarial

mechanism is used with five channels and 100 filters. The training weight of the CTC loss is set to
α = 0.5. The model was trained for 10 epochs.
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Table 4.1: Recognized sentences with the static window method from attention-only and
hybrid adversarial examples. Word errors caused by adversarial noise are printed in bold. The
attention-based adversarial noise fo the static window acts as a localized distortion on certain
tokens; those affected tokens are underlined in the text.

Adv. Example Type Recognized Sentence

ŷ with lw = 3, γ = 4 any gave christina a present and it was beautiful
Attention-only any game christian out priasant and it was beautiful
Hybrid, ξ = 0.5 any game christian a present and it was beautiful

ŷ with lw = 4, γ = 26 peter piper picked a peck of pickle peppers. how many
pickle peppers did peter piper pack

Attention-only either piper cricker ticket tickless techners came a
typical turkished plea piper pick

Hybrid, ξ = 0.5 peter piper picked a pick of tickle tappers how many
tickle tapper stood plea piper piper pick

Table 4.2: Recognized sentences with the moving window method from attention-only and
hybrid adversarial examples. Word errors caused by adversarial noise are printed in bold. The
attention-based adversarial noise acts as a localized distortion on certain tokens; those affected
tokens are underlined in the text.

Example type Recognized Sentence

MW, lw = 2, ν = 3 any gave christina a present and it was beautiful
MW any canada’s crystall out current since and it was –
Hybrid MW any gaitians crystain out a present and it was beautiful

MW, lw = 3, ν = 3 peter piper picked a peck of pickle peppers. how many pickle
peppers did peter piper pack

MW-AAE huge her piper okapk pickple take her techners harmony
pittle tipers stayed peter paper pick

Hybrid, ξ = 0.5 feater piper a picked depic of tapled tapper how many
pickles pepper state peter piper pick
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training.

4.2.7 Adversarial Examples in Time Domain

Previous sections described adversary examples only in feature domain. This section
shows how to generate adversarial examples in time domain.

Adversarial noise is generated only for the feature domain, as the neural network
uses features as its input. Feature inversion converts the adversarial example into time
domain [20]. Feature inversion algorithms are provided by audio libraries, such as the
Librosa toolbox [124].

Figure 4.2 visualizes the steps from the original recording to the audio-domain
adversarial example. Feature extraction is applied on an audio recording as a first step
to generate its adversarial example. Using a pre-trained neural network, adversarial
noise is generated that is added onto the original features. Lastly, a feature inversion
algorithm obtains the adversarial example in time domain. The feature inversion step
involves approximately inverting the non-bijective Mel frequency weighting, and then an
application of the Iterative Short-Time Fourier Transform (iSTFT) in combination with
the Griffin-Lim algorithm to reconstruct the phase information of the audio signal [143].

Figure 4.2: Generation of adversarial examples in time domain. Initially, feature extraction is
employed on an audio recording to obtain F-bank features. A pre-trained neural network is
then utilized to generate adversarial noise, which is subsequently added to the original features.
A feature inversion algorithm reconstructs the adversarial example in the time domain.

This approach, however, has certain inherent limitations: The feature extraction
is lossy, as it discards phase information and compresses spectral information. It is
thus not possible to achieve an exact reconstruction of the original audio; reconstructed
audio contains audible artefacts. Second, pitch information is not included in the feature
inversion as a limitation of the inversion algorithm.

An experiment was conducted to compare raw audio to reconstructed audio, evaluating
whether the relevant acoustic features are still preserved. This experiment was performed
with an RNN model described in Section 2.6. The training and decoding parameters for
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the model[iii] are based on the default network configuration for the VoxForge dataset in
ESPnet v0.8.0 [129]. All conducted experiments utilized the VoxForge [190] dataset, a
modestly-sized open-source speech database comprising brief, basic sentences spoken by
various volunteers in 17 languages. Only the English portion of the dataset was used for
training and analysis, containing approximately 130 hours of audio from 1234 speakers.
This section was further divided, allocating 80% for training and 10% each for validation
and testing. The audio files are 16-bit encoded wav files with a 16kHz sampling rate.
This dataset’s uniqueness lies in its availability in an uncompressed format, permitting
additional compression and ensuring the elimination of any prior compression artifacts.

To obtain a comparison set that contains reconstructed audio, feature extraction
and then feature inversion is applied to the test set. The performance of the model is
then evaluated on both the original and reconstructed test set. In the experiment, the
reconstructed audio had an absolute increase of 1.3% CER.

4.3 Adversarial Training for Robust Models

Adversarial training augments regular training samples with adversarial noise, effectively
extending the training data. This section explores the potential additional benefit of this
augmentation. Specifically, it examines whether the integration of adversarial examples
within the same amount of training data contributes to enhanced model performance.
The broader goal of adversarial training is to improve the robustness of the model against
adversarial noise, and as discussed later, it also improves generalization and robustness
against regular noise. This section described the experiment setup, demonstrates the
effects of adversarial noise using two case studies, and then discusses the effect of
adversarial training on model robustness for noisy datasets.

4.3.1 The Adversarial Training Algorithm

The adversarial training algorithm in this section is based on the adversarial regularization
described by Sun et al . [176]. After a warm-up period of N training epochs, the training
data is augmented with adversarial examples. The algorithm decides for each mini-
batch with a predefined probability pa whether to augment the current mini-batch with
adversarial noise.

However, two properties to this algorithm are changed for this experiment: Sun et al .
include a weighting factor α to distinct sequence components; this weighting factor is
not used in this work and the adversarial noise is derived from the current mini-batch,
i.e., one inference at a time. Kurakin et al . [111] proposed sampling the perturbation
step size ϵ to avoid overfitting to adversarial examples. This experiment also includes

[iii]The VGGBLSTMP architecture used involves a convolutional VGG2-Net, followed by a 4-layer
bidirectional LSTM encoder, in which each layer has 320 units and projection neurons. The decoder is
composed of a single layer with 300 units. The multitask learning parameter α is set to 0.3. A maximum
of 25 epochs was used with a patience of 3. During training, a scheduled sampling with a 0.5 probability
was applied. Complete parameters’ configuration can be found in [1+].
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their improvement and thus, the perturbation step size ϵ is randomly sampled for each
mini-batch.

At training, the expanded sequential loss function that includes the augmented
adversarial noise is applied to the model and determined according to Goodfellowet
al . [66] as

L̂CE(X, y; θ) =
∑
i

(LCE(X, yi; θ) + LCE(X̂, yi; θ)). (4.8)

Here, LCE is the cross-entropy loss of equation 2.28. With this approach, the loss function
in the adversarial training consists of two equally weighted components, i.e., the regular
loss and the adversarial loss. Goodfellowet al . also introduced a weighting factor in their
formulation, but it is omitted here. Similar to Equation4.8, their losses were equally
weighted as well.

4.3.2 Evaluation of Adversarial Training

The following experiment uses the TED-LIUM 2 dataset to train the ASR model and the
moving window method to augment its training data. This dataset includes many shorter
utterances that are covered more effectively with a small window size and overlapping
segments. The moving window parameters for window length lw = 4 and utterance
partitions ν = 2 were chosen beforehand based on effectiveness of their adversarial
examples in Subsection 4.2.6 and the dataset. The sampling probability of augmenting
a mini-batch pa is set to 0.05. The noise factor ϵ is sampled uniformly from a range of
[0.0; 0.3]. The adversarial training in this experiment is performed without SpecAugment
to obtain comparable results; nevertheless, it is possible to combine adversarial training
with SpecAugment. To keep the benchmarked models comparable, models shall be
exposed to the same number of training samples, i.e., all models are trained for 10 epochs.
All augmented models have a warm-up period of N = 5, i.e., their adversarial training
starts after the 5th epoch.

The pre-trained LSTMP model[iv] of the ESPnet toolkit [195] provides a baseline that
helps to compare results. While the LSTMP model can be used for streaming ASR, this
property is not needed for this experiment. Thus, the models trained in the experiment
use bidirectional encoders that are more often used than unidirectional LSTM encoders.
Other than that, the parameters of the various models are the same. Thus, the three
RNN models are trained in this experiment: (1) A model with a regular training regime,
(2) an attention-only model with attention-based adversarial training, and (3) a hybrid
CTC/attention model with hybrid CTC/attention adversarial training. Decoding with
support of a language model uses a weight in decoding of β = 1.0 and a pre-trained
RNNLM language model that has 2 layers with each 650 units.

Table 4.3 shows the evaluation results of those four models on four variants of the
TED-LIUM 2 test set: (1) The unchanged test set, (2) adversarial examples generated

[iv]This model, tedlium2.rnn.v1, was already mentioned in Section 4.2.6. It is a RNN network as
described in Section 2.6 that has a four-layer unidirectional encoder with projection neurons, and only
one decoder layer. Each layer has 1024 neurons.
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Table 4.3: Benchmark for adversarial training on the TED-LIUM 2 dataset. The first row
shows results with a pre-trained model of the ESPnet toolkit as baseline. The second row
contains results using a BLSTMP model. The third and the fourth row include the CER and
WER results for the attention-only and for the hybrid model, respectively. The first value in
each cell corresponds to the CER and the second to the WER, both given as percentage. The
CTC weight during adversarial noise generation is determined by the value of ξ; the parameter
λ sets the weight of the CTC model during decoding.

Dataset

CER/WER ξ λ LM test
test

AAE
noise
30dB

noise
5dB

pre-trained
model

- 0.0 - 20.7/22.8 90.7/89.1 23.6/25.8 78.8/78.8
- 0.5 - 15.7/18.6 86.1/89.9 18.1/21.3 66.1/68.3
- 0.5 ✓ 16.3/18.3 98.5/92.2 19.2/20.8 73.2/72.7

regular model

- 0.0 - 18.5/20.2 69.4/67.7 21.1/22.7 76.9/76.0
- 0.5 - 14.4/16.8 58.0/60.8 16.7/19.2 63.9/66.1
- 0.5 ✓ 15.4/17.0 65.9/62.7 17.8/19.2 71.2/69.6

att.-based ad-
versarial train-
ing

0.0 0.0 - 17.7/19.6 63.6/63.3 21.0/22.8 74.7/74.4
0.0 0.5 - 14.3/16.9 53.5/56.8 16.5/18.9 62.6/65.0
0.0 0.5 ✓ 15.1/16.9 60.3/58.3 17.5/18.9 69.0/68.0

hybrid adver-
sarial training

0.5 0.0 - 17.9/19.8 65.2/65.0 20.4/22.3 74.9/75.0
0.5 0.5 - 14.0/16.5 54.8/58.6 16.2/18.7 63.5/65.8
0.5 0.5 ✓ 14.8/16.6 61.8/59.9 17.0/18.5 70.0/69.2

using the moving window method, (3) the test set augmented with low white noise at
30 dB, and (4) the test set augmented with loud 5 dB white noise. In general, the
generated adversarial examples are effective on all tested models; recognition performance
is reduced for all models in comparison of the regular test set to the adversarial example
test set.

Also, decoding with CTC reduces the error rates. Decoding with the support of a
RNNLM increased error rates. Here, the language model weight was set to a relatively
high value of β = 1.0 in all decoding runs. Language model rescoring would increase the
recognition performance, but in this case, a constant value was set in all decoding runs
to keep the results comparable to each other.

The result table includes CER as well as WER, as this gives a hint how a certain
noise affected the model. This analysis has parallels to the discussion of error patterns in
Chapter 3. A CER higher than the WER may indicate word loops or dropped sentence
parts, and a higher WER may indicate that the words itself are more often misspelled.
Section 3.4 discusses possible causes for generated patterns that are generated when the
attention decoder looses its alignment. However, in most adversarial examples, CER and
WER remain at similar levels, and word loops or dropped sentence parts appear rarely.
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Decoding the adversarial examples with a language model caused a slightly higher
averaged rate of CER to WER than regular noise for all models. The baseline model
performed worse on the adversarial example test set with an error rate of over 90%.
Its transcriptions showed on average 90% substitution errors and only 20% insertion or
deletion errors.

It is partly a consequence of using a bidirectional encoder that the regularly trained
model performs better on the regular test set than the baseline model. However, the
results show a general trend that adversarial training improved the robustness on regular
noise and specially on adversarial noise. Both adversarially trained models performed
better than the non-adversarially trained models, especially on the adversarial examples
test set. Hybrid adversarial training improved not only the robustness against adversarial
examples, but also improved performance on the regular test set by an absolute of 2.1%
to 16.5% WER in comparison to the baseline model. It also achieved an improvement
of 24% up to 33% absolute WER compared to the baseline on adversarial examples.
Decoding in combination with CTC and LM achieves a WER of 58.6%, but with the
regularly trained model only a WER of 92.2%.

This evaluation compared various types of adversarial noise. Among those types,
attention-only noise achieved the highest error rates. Yet this did not translate to better
performance in adversarial training: Attention-only as well as hybrid adversarial training
achieved a similar performance in this experiment.

4.4 MP3 Compression as Countermeasure

This section investigates the MP3 audio compression codec as a method to diminish
adversarial noise. This technique can be applied to a pretrained model without any need
for modifications to the existing model architecture. The MP3 algorithm encodes audio
streams using lossy audio compression that discards inaudible audio components, e.g,
that are below the psychoacoustic hearing threshold [23, 24, 218]. MP3 compression itself
introduces additional artifacts, notably low-pass filtering and spectral valleys. While
MP3 compression in addition with noise can be used for data augmentation [132], high
compression ratios degrade ASR performance [18, 19, 145, 146]. This effect is primarily
observed with compression ratios greater than 32 kbps [171]. Schönherr et al . [164] were
the first to hypothesize MP3 as a countermeasure against adversarial examples. Zhang
et al . [215] employed MP3 compression to combat adversarial noise stemming from CTC
loss. The following sections demonstrate an experimental proof of MP3 compression
effectiveness against adversarial noise, specifically with the hybrid end-to-end ASR
network.

This hypothesis is evaluated using four models trained on various levels of MP3
compressed training data. Their performance on regular and adversarial examples are
listed in Section 4.4.2. Section 4.4.4 discusses the effect of various MP3 compression ratios
on robustness against adversarial examples. The results indicate that MP3 compression
partially reduces the error rates on adversarial examples. This desirable effect of MP3
compression does not apply to samples augmented with regular noise, as indicated
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by the experiments in Section 4.4.5. The investigation concludes with the proof that
MP3 compression reduces adversarial noise by using an estimation of the SNR value of
adversarial audio examples before and after MP3 compression.

4.4.1 Experimental Evaluation

For experimental evaluation, four ASR models trained on uncompressed audio data,
as well as 24, 64 and 128 kBit MP3 compressed data. The compression was executed
using the Lame MP3 encoder [35]. Previous experiments use the TED-LIUM 2 corpus,
which is already compressed, as the audio data is obtained from the TED website that
provides only mp4 video files with compressed audio [159]. To eliminate effects of an
already applied MP3 compression on the experiment, the experiments are conducted
on an uncompressed corpus. Therefore, the ASR model in the following experiments
on MP3 compression are trained on the freely available VoxForge dataset that contains
130.1 hours of uncompressed audio [190], of which 105 hours were used as training set.
These four models share the same parameter set and are based on the previous RNN
model configuration mentioned in Section 4.2.7.

To generate adversarial audio, the moving window adversarial noise with gradient
normalization is applied, as described in Equation 4.4 of Section 4.2.3. This gradient
is then weighted by the factor ϵ, which is set to 0.3 in the following experiments, and
then added to the original features. To prevent label leaking, a previously decoded
label sequence is utilized as a reference [110]. Accumulated gradients from a sliding
window with a fixed length lw and stride ν contribute to the adversarial noise ∇Adv(xt),
with gradient normalization ensuring the appropriate accumulation of the gradient
directions [53].

∇Adv(xt) = ∇MW(xt) (4.9)

δAAE(xt) = ϵ · sgn(∇Adv(xt)) (4.10)

x̂t = xt + δAAE(xt), ∀t ∈ [1, T ] (4.11)

y ̸= f(x̂t, θ) (4.12)

No language model was used for decoding, only the hybrid CTC/attention ASR model.

Figure 4.3: General experimental workflow for MP3-compressed audio adversarial examples.
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4.4.2 Performance on Regular and Adversarial Examples

Table 4.4 lists the decoding results of the experiment workflow depicted in Figure 4.3.
Decoding only uses the ASR model, without any language model; in this case, CER is
more suitable as a performance metric. All models achieve on the regular test set an
average CER of 18.8. The model trained with uncompressed data performed slightly
better, whereas the model trained on 24kbps performed slightly worse.

Table 4.4: Results of the MP3 compression experiment on regular and adversarial test sets.
The table contains the performance of the four ASR models trained on various levels of MP3
compression. The results correspond to four types of test datasets from the original test dataset
to its MP3-compressed adversarial audio as shown in Figure 4.3. The last row gives the relative
CER improvements from adversarial features to MP3-compressed adversarial audio.

CER MP3 compression on the training dataset
Uncompressed 128 kbps 64 kbps 24 kbps

Type of test dataset
Original test dataset 17.8 18.8 18.6 20.2
Adversarial features 70.5 72.3 71.8 69.0
Reconstructed adversarial audio 62.2 64.0 63.1 60.5
24 kbps MP3 adversarial audio 57.4 58.4 56.5 55.3

Relative CER change −18.58% −19.23% −21.31% −19.86%

The test set augmentation with adversarial noise led to additional 52% of relative
CER on average for all models. All models exhibit a CER of around 71 on adversarial
features. The significant increase of CER demonstrates that the adversarial examples
are effective on this dataset.

Reconstruction of adversarial features to adversarial audio led to a slight decrease
of decoding errors. All models exhibit an average CER of 62 on the reconstructed
adversarial audio set. This slight improvement of error rates in comparison to adversarial
features may be attributed to the data processing. Starting from adversarial features,
the corresponding audio is reconstructed and given to feature extraction for decoding
with the ASR model. This process is lossy and seems to impact the adversarial noise as
well.

The final dataset consists of 24kbps MP3-compressed reconstructed adversarial audio,
that reduces CER to an average of 56.9. The last row compares these results to the
adversarial features test set, as the error rates are reduced by around 20%. While the
MP3 compression improves the CER, error rates are still significantly higher than on
the original test set. The reduced error rates indicate that MP3 compression is partially
effective as a countermeasure against adversarial noise.

For all models, MP3 compression improved the performance on the test set in terms
of relative CER significantly. While the model trained on 24kbps exhibited the best
performance on adversarial examples, but deteriorated performance on regular test data.
The model trained on 64kbps MP3 data performs relatively well on the original data
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and shows the best relative CER improvement on the MP3-compressed adversarial
example. Thus, this model provides a trade-off between regular ASR performance and
countermeasure against adversarial noise.

4.4.3 Visualization of Adversarial Noise and MP3 compression

MP3 compression induces changes in the spectral composition diagram that are visible
in the spectrogram. This section investigates the effect of adversarial noise by inspection
of the spectrum of MP3 compressed adversarial examples.

Figure 4.4 shows the spectrograms of the original audio, the reconstructed audio
and the uncompressed adversarial example. In the reconstructed audio, a small band
of the lower frequencies is missing that is lost after reconstruction. Mel filters start at
roughly 40Hz, and any spectral information in lower frequencies than that is not included
as extracted features. When comparing the reconstructed audio and the adversarial
example, the adversarial noise introduced slight changes in the spectral composition of
the audio that are distributed across the spectrogram. The spectrogram of the adversarial
example exhibits a slightly elevated level of background noise and slightly blurred spectral
features, e.g., the original audio spectrum exhibits vowel harmonics that are reduced in
the spectrum of the adversarial audio.

Figure 4.5 displays the spectrograms of 128, 64 and 24 kbps MP3 compressed audio
adversarial examples. These are the MP3 compressed counterparts to the adversarial
example in Figure 4.4. MP3 compression with 128 and 64 kpbs had a relatively low
impact on the spectral composition, and are barely distinguishable by hearing and by
visual inspection of the spectrum. On the third spectrogram, 24 kpbs compression nearly
cropped the spectrum at 6 kHz and the spectral distribution is not nearly as fine-grained
as before.

4.4.4 Quantifying the Effect of MP3 compression using SNR

MP3 compression reduces error rates on adversarial examples, but does MP3 also directly
reduce the adversarial noise? This section investigates this question by inspection of the
spectrum of MP3 compressed adversarial examples. Signal-to-noise ratio (SNR) helps to
quantify the adversarial noise and its reduction by MP3 compression. The SNR before
and after MP3 compression is estimated and evaluated regarding statistical significance.

SNR is generally calculated as

SNRdB = 10 log10

signal power

noise power
(4.13)

In our case, adversarial noise is generated and added in the feature domain. Because
it is not trivial to determine signal power from the feature domain, the signal power is
derived from the reconstructed time domain:

SNRdB = 10 log10

Reconstructed audio power

Adversarial audio power - Reconstructed audio power
, (4.14)
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Figure 4.4: Spectrograms for original and reconstructed audio, and the reconstructed adversarial
example. The original audio displays clearly visible horizontal lines in the lower frequency
bands, indicating harmonic frequencies. These lines, however, become somewhat obscured in
the reconstructed audio and are significantly blurred in the reconstructed adversarial example.
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Figure 4.5: Spectrograms of 128, 64 and 24 kbps MP3 compressed audio adversarial examples.
MP3 compression reduces spectral entropy in higher frequencies above 7.5kHz, and even above
6 kHz for 24 kbps compression. Compression still preserves most of the spectral features when
compared to uncompressed adversarial audio in Figure 4.4.
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whereas each signal power is determined from the corresponding audio signal in time
domain xa(t) as

Pa =
1

T

T∑
t=1

xa(t)
2. (4.15)

The SNR is then computed for compressed as well as for uncompressed adversarial
audio. Audio reconstruction and MP3 compression changes the audio file, e.g., by audio
normalization or by padding or dropped values due to fixed block lengths of intermediate
processing steps. To ensure an accurate SNR estimation, the SNR is calculated from the
same-type audio signals that are either reconstructed or MP3-compressed.
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Figure 4.6: SNR estimation for uncompressed and 24 kbps MP3 compressed adversarial
audio [1+]. The histograms are normalized and the number of histogram bins was set to
50 for both plots. The measured SNRs of uncompressed adversarial audio predominantly
show negative values, suggesting audible adversarial noise. After MP3 compression, there is a
notable shift towards positive SNR values, indicating a reduction in adversarial noise and an
improvement in SNR.

Adversarial noise strongly depends on a given audio utterance, and thus, the SNR
value is obtained for each utterance rather than to calculate an average SNR value for
the dataset. Measured SNRs of utterances follow a certain distribution that can be
visualized in a histogram. Figure 4.6 shows the SNR distributions of uncompressed and
MP3-compressed adversarial audio datasets. Measured SNRs of uncompressed adversarial
audio are between −5dB and +25dB, while MP3-compressed adversarial audio ranges
between −5dB and +35dB. Notably, the majority of SNR values of uncompressed
adversarial audio is negative, i.e., the adversarial noise outweighs the original audio signal
and is audible. After MP3 compression, the centre of the SNR distribution is shifted
towards positive values. The trend to positive SNR values indicates that the SNR is
improved and adversarial noise is diminished after MP3 compression.

With these SNR distributions, the main thesis of this section can be validated: Does
MP3 compression reduce adversarial noise? The SNR distributions are evaluated with
the Kolmogorov–Smirnov test [123] to assess whether they originate from the same
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underlying probability distribution. This statistical test constructs two hypotheses: (1)
The null hypothesis states that MP3 compression did not improve the SNR and thus,
the SNR distributions before and after the compression are identical. (2) The alternative
hypothesis is that these two distributions are not identical. These two hypotheses are
evaluated with the Kolmogorov–Smirnov test statistic. This is the two-sided form of the
Kolmogorov–Smirnov test which yields a p-value that indicates the probability of the
null hypothesis under the given data [83].

To pass this test, any p–value that is smaller than 0.05 validates the alternative
hypothesis with sufficient statistical significance. The Kolmogorov–Smirnov test of
the SNR distributions between uncompressed and MP3-compressed adversarial audio
returned a p–value of 0.039. Therefore, the test finds that MP3 compression increases
the SNR values of adversarial samples and reduces adversarial noise.

4.4.5 Comparison to Regular Noise

Results in Table 4.4 demonstrated that MP3 compression improves ASR performance on
samples with adversarial noise. This section investigates whether MP3 compression also
reduces the impact of other noise types, namely white, pink, brown and babble noise.

These noise variants have distinct spectral distributions: White noise is sampled from
the uniform distribution and resembles a hissing sound; its spectral function is constant
over the audible frequency range from 20 Hz up to 20 kHz. Pink noise is characterized
by a reduced spectral power density at higher frequencies which resembles common
ambient noises such as leaves in the wind or a waterfall. Brown noise has a greater
intensity on lower frequencies in comparison to pink noise, and rather sounds like heavy
rainfall. In mathematical terms, the spectral power density of pink noise is inversely
proportional with frequency f , i.e., Sp(f) ∝ 1/f , while the density for brown noise is
inversely proportional to f so that Sb(f) ∝ 1/f 2. And lastly, babble noise is composed of
overlapping voices, representing the generalized spectrum of human speech. White, pink,
and brown noises were produced with the SoX audio utility [12]. Meanwhile, babble
noise was created from a benchmark recording.

Table 4.5 shows the experimental evaluation of the effects of noisy data and their
MP3-compressed correspondent. This ASR model achieved a CER of 17.8 on the original
uncompressed data. The VoxForge test set was augmented with noise at different
intensities that was then decoded with the ASR model trained on uncompressed data
from Section 4.4.2. In a second step, each augmented test set was then MP3 compressed
and decoded. The table lists results for six different SNRs, from barely audible noise at
30 dB, over to noticeable distortion at 5 dB SNR, and up to the SNR of −10 dB in which
the noise predominates the speech signal. Overall, increasing noise lowers the SNR and
reduces ASR performance. White noise and babble noise are more evenly distributed
on the spectrum and seem to be the most detrimental to the speech recognition system.
Pink noise and brown noise exhibit higher spectral density on lower frequencies and have
less interfering impact on the investigated ASR decoder.

Error rates turn out higher for the MP3-compressed test sets when compared with
the uncompressed set, regardless of noise type or SNR. To put this into contrast, MP3
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Table 4.5: CER values for test sets augmented with regular noise distributions without and
with 24 kbps MP3 compression. All results were obtained using the ASR model trained from
uncompressed data. In all cases, MP3 compression increased the CER.

CER SNR [dB]
30 10 5 0 -5 -10

White noise 19.1 32.7 41.9 53.7 66.2 78.2
+ MP3 compression 29.1 51.2 61.7 71.2 78.7 86.0

Relative CER change +52.4% +56.6% +47.3% +32.6% +18.9% +10.0%

Pink noise 18.5 29.1 38.1 51.7 67.4 82.1
+ MP3 compression 26.9 42.5 53.0 66.4 79.8 89.9

Relative CER change +45.4% +46.0% +39.1% +28.4% +18.4% +9.5%

Brown noise 17.9 19.7 21.9 26.1 34.1 47.8
+ MP3 compression 25.3 29.0 32.5 38.0 47.3 60.6

Relative CER change +41.3% +47.2% +48.4% +45.6% +38.7% +26.8%

Babble noise 18.3 35.8 53.4 77.4 89.0 93.6
+ MP3 compression 25.8 48.2 66.0 83.6 93.1 95.4

Relative CER change +41.0% +34.6% +23.6% +8.0% +4.6% +1.9%

compression on adversarial examples reduces error rates, as listed in Table 4.4. These
results provide further evidence that MP3 compression reduces adversarial noise to a
certain proportion, whereas the investigated other types of noise are not diminished by
compression.
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Integrated Feature Extraction with
Sinc Convolutions

Hybrid CTC/attention speech recognition relies on F-bank features, i.e., pre-processed
frequency-domain features. Very similar to Mel Frequency Cepstral Coefficients (MFCCs),
the F-bank features are not parametrized learnable features but rather designed to emulate
the human hearing.

The work presented in this chapter is motivated by advances in speech and speaker
recognition on learnable feature extraction, which can be integrated into end-to-end
trainable neural architectures as a network layer. In particular, Sinc convolutions mirror
the behaviour of band pass filters in time domain and are an effective approach to
classify directly from raw audio. Two exemplary applications investigate the properties
of integrated Sinc convolutions:

The first exemplary application is a keyword spotting task based on the Google
speech commands dataset. Architectures for this task are usually small and employed in
battery-powered microcontrollers. Our example architecture demonstrates how networks
with Sinc convolutions can have only 64k parameters, but still outperform larger networks
that use conventional convolutions.

The second exemplary application is integrated feature extraction in an RNN-based
hybrid CTC/attention speech recognition network. For evaluation, a Sinc convolutional
model was trained and tested on the TED-LIUM 2 dataset. The resulting Sinc con-
volutional ASR model was much smaller but still slightly outperformed a comparable
baseline model.

The work in this chapter is driven by recent advancements in speech and speaker
recognition, which utilize learnable feature extraction techniques that can be integrated
into an end-to-end trainable neural network [58, 114, 140, 155–157, 199, 20†]. This
chapter summarizes the work published by Mittermaier et al . [20†, 20+] and by Kürzinger
et al . [6†].

The first section of this chapter contains a general introduction to previous work
regarding Sinc convolutions, keyword spotting and fully end-to-end speech recognition.
The second section introduces the classification architecture using Sinc convolutions for
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the keyword spotting task. The third section demonstrates a speech recognition system
with integrated Sinc convolutions as learnable feature extraction input layer.

5.1 Related Work

This section offers an organized overview of existing literature, categorized into three
essential topics: 1. The original SincNet architecture that utilizes Sinc convolutions for
hybrid DNN/HMM speech recognition; 2. prior work to keyword spotting on raw audio;
3. and end-to-end speech recognition on raw audio data.

5.1.1 SincNet and Derivatives

For traditional hybrid DNN/HMM speech recognition, the relationship between the
acoustic speech signal and HMM states, representing phonemes, is modeled by first
extracting acoustic features from the speech signal and then training a classifier to
estimate the emission probabilities of the HMM states. Several prior publications have
focused on using raw audio input for acoustic modeling [64, 135–137, 184]. Tüske et al .
directly utilized the raw audio as input to the DNN [184]. Both Golik et al . [64] and Palaz
et al . [137] proposed approaches using CNNs as a filter to transform raw speech signals
for input into the DNN, aiming to estimate the HMM state class conditional probabilities
at the output. As noted by Palaz et al . [137], this method allows for the simultaneous
learning of relevant features and the classifier from the raw speech signal. This eliminates
the need for separate feature extraction and statistical modeling steps. Moreover, their
approach demonstrated that relevant feature representations are more effectively learned
by processing the input raw speech at the sub-segmental level, consequently yielding
improved ASR performance.

A significant insight in the domain of feature extraction is that parameterizable
convolutions with a filter structure exhibit superior convergence behavior on raw audio
data compared to CNNs alone [156]. Based on this insight, Ravanelli et al . proposed the
SincNet architecture [156], which uses Sinc convolutions as its input layer, followed by
CNN layers. This architecture was first applied to speaker recognition [156, 157] and
subsequently to phoneme recognition [155].

The advantages of combining Sinc convolutions with regular CNN layers have been
explored in the SincNet architecture. However, alternative convolutional filters can offer
benefits such as faster convergence, improved data structure compatibility, and reduced
network parameters. Section 5.3 descrives an approach that involves the application of
depthwise separable convolutions [41, 95] on top of Sinc convolutions. This approach
was first employed by Mittermaier et al . [20†], where Sinc convolutions are effectively
used for low-parameter keyword spotting to optimize power consumption in battery-
driven devices. The benefits of depthwise separable convolutions are particularly evident
in low-parameter settings, as shown in previous studies such as HelloEdge [88, 217].
Another technique to decrease the number of parameters in convolutions is lightweight
convolutions [200], which are based on depthwise convolutions.
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5.1.2 Keyword Spotting

The application of an architecture, which is a derivative of the SincNet architecture, to
the Keyword Spotting (KWS) task, specifically wakeword recognition, is presented in
Section 5.3. KWS models are trained to detect the presence of specific spoken words
within unconstrained speech [59]. Such models are an integral component of voice-
activated systems and virtual assistants, allowing them to “wake up” or start processing
user commands upon detecting the wake word. This section examines prior architectures
relevant to keyword spotting.

In recent years, DNNs [33] and CNNs have been utilized effectively for KWS [40, 115,
181, 216, 217]. Zhang et al . evaluated various neural network architectures, including
CNNs, LSTMs, and GRUs, in terms of accuracy, computational operations, memory
footprint, and deployment on embedded hardware [217]. They achieved their best results
using a CNN with depthwise separable convolutions (DSConvs). Further analysis of
the memory requirements of the model in [217] is conducted in [167]. Choi et al . also
built upon this work by utilizing a ResNet-inspired architecture, but instead of using 2D
convolution over a time-frequency representation of the data, they convolve along the
time dimension and treat the frequency dimension as channels [40].

5.1.3 Fully End-to-End Speech Recognition

Despite being referred to as end-to-end models, i.e., models trained in an end-to-end
manner, end-to-end speech recognition systems still require the use of pre-processed
acoustic features, such as Mel-filter-banks, thus precluding a purely end-to-end pipeline
based on the raw audio signal. Notable prior work to integrating feature extraction into
end-to-end models has been made by Latif et al . [114] and Won et al . [199].

Section 5.4 presents a fully end-to-end speech recognition system that incorporates
the Sinc convolution as its first input layer. The kernels of the first convolutional layer
are limited to learning only the shapes of parametrized Sinc functions. However, this is
not the first architecture of this structure to be proposed. The SincNet architecture has
also been applied to end-to-end speech recognition. Parcollet et al . introduced the E2E-
SincNet [140], which integrates SincNet as building block into the hybrid CTC/Attention
architecture. Their aim was to move towards a fully end-to-end speech recognition
system.

However, there were previous architectures that employed fully end-to-end speech
recognition from the raw waveform. These approaches also started to outperform
conventional hybrid DNN/HMM speech recognition [6, 76, 108, 211]. One approach to
classify directly from the raw waveform, using Gammatone filterbanks [199]. Another
approach to classify directly from the raw waveform is to use the scattering transform [211].
The last two approaches inspired the use of CNNs that are guided by mel filter coefficients.
Another common approach is also to classify using similar methods as in image recognition.
For example, Hannun et al . train an end-to-end recurrent network on spectrogram
features [76]. But only few architectures directly classify on raw audio such as [108, 212].
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5.2 Architecture Elements

This section explores the Sinc convolution, along with other architectural elements used
in keyword spotting and speech recognition architectures. These elements comprise the
Hamming and Hann windowing functions, the use of the log compression function as an
activation layer, and depthwise separable convolutions.

5.2.1 Sinc Convolutions

A bandpass filter in spectral domain can be constructed as a learnable convolutional
filter, applied to the signal in time domain [156]. The rectangular function in the spectral
domain corresponds to a Sinc function in time domain.

sinc(x) =
sin(x)

x
(5.1)

Therefore, a band pass filter with cutoff frequencies f1 and f2 corresponds to the Fourier
transform of two Sinc functions.

G[f, f1, f2] = rect(
f

2f2
)− rect(

f

2f1
) (5.2)

Application of the band pass filter is a convolution in time domain. A Sinc convolutional
kernel with L coefficients is derived by sampling the continuous filter function

g[n, f1, f2] = 2f2 sinc(2πf2n)− 2f1 sinc(2πf1n). (5.3)

The cutoff frequencies for the filter shall fulfill f1, f2 ≥ 0 and f2 ≥ f1. To ensure that
the filter frequencies are bound to this condition, the Sinc convolutional layer integrates
two learnable parameters w1 and w2 that directly relate to the cutoff frequencies:

f1 = |w1| (5.4)

f2 = |w1|+ |w2 − w1|. (5.5)

During training, only the two parameters are tuned, the low and high cutoff frequency of
each band-pass filter. The convolutional kernel is symmetrical about the y-axis and has
an odd number of coefficients. It’s essential for the kernel size to be odd to incorporate
the coefficient at y = 0. Throughout this study, the chosen kernel length was L = 101.

5.2.2 The Hamming Windowing Function

The windowing function is an additional step in the feature extraction to mitigate spectral
distortions that are caused by discontinuities at the edges of the windowed signal segment.
For extraction of conventional F-bank features, the windowing function is applied onto
the windowed audio data before frequency transformation.

Sinc convolutions fully operate on the signal in the time domain. Here, the Window
function softens the convolutional kernel to approximate it towards an ideal filter. It is
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advantageous to convolve the windowing function directly on the convolutional kernel,
as both the windowing function and the convolutional filter can be precomputed. The
Hamming window is multiplied with the L weights in the Sinc-convolution kernel:

w[n] = 0.54− 0.46 cos
(2πn

L

)
(5.6)

g′[n, f1, f2] = g[n, f1, f2] · w[n] (5.7)

The architecture discussed in this chapter use the Hamming windowing function,
whereas the standard feature extraction of hybrid CTC/attention models is the Hann
windowing function [134], described by

wHann[n] =
1

2

[
1− cos

(
2πn

L− 1

)]
. (5.8)

5.2.3 Log Compression as Activation Function

The Sinc convolution is combined with an activation function that serves as a non-linearity.
The original publication on Sinc convolutions uses the ReLU activation function, which
may drop some information. This work uses the log compression:

LogCompression(x) = log(|x|+ 1) (5.9)

Log compression is an already established preprocessing step in regular feature extraction.
Mittermaier et al . demonstrated that log compression can improve the classification
performance on raw audio when compared to regular ReLU activation function [211, 212,
20+, 20†]

5.2.4 Depthwise Separable Convolutions

Depthwise separable convolutions are modifications of standard convolutions, factoring
the convolution operation into two components: depthwise and pointwise convolutions.
This factorization decreases the quantity of parameters and computations, thus making
the network more lightweight without major performance loss.

Kaiser et al . [95] provide an in-depth and mathematical overview of depthwise
separable convolutions; this is a brief summary: Regular 1D convolutional layers perform
convolution along the time axis, simultaneously merging the input channels. However, in
Depthwise Separable Convolution (DSConv), each input channel is first convolved with a
separate 1D filter (depthwise convolution). Subsequently, a 1×1 or pointwise convolution
is used to merge the distinct channels. This decomposed approach significantly reduces the
parameter and computation requirements of the convolution operation. The parameter
count for regular convolution, DSConv, and Grouped Depthwise Separable Convolution
(GDSConv) is expressed as follows [95, 20†]:

NConv = kcincout (5.10)

NDSConv = kcin + cincout (5.11)

NGDSConv = kcin +
cincout

g
(5.12)
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Figure 5.1: Progression of kernels from a standard convolution to a grouped depthwise separable
convolution; parameters are shared across elements of the same color. In the context of
1D convolutions, standard convolutions operate along the time axis, spanning across all
channels simultaneously. On the other hand, depthwise convolutions process each input channel
independently.
Pointwise convolutions are a specific form of convolution where a 1D filter is applied across all
channels. Combining depthwise and pointwise convolutions results in a depthwise-separable
convolution, where channels are convolved separately along the time axis (depthwise) and then
information across channels is integrated using a 1x1 convolution (pointwise).
Building upon this, grouped depthwise-separable convolutions are derived by segmenting
channels into g distinct groups, with a DSConv being independently applied to each of these
groups. Thus, grouped depthwise-separable convolutions essentially represent a grouped
execution of depthwise-separable convolutions operations across partitioned channel sets.

In situations where the kernel length k is less than the number of output channels cout,
the majority of parameters are situated within the term for the pointwise convolution
cincout. This relates to approximately 95% of parameters in the architecture described in
Section 5.4.

Two basic strategies can be used to further reduce the number of parameters within
the DSConv: (1) utilizing weight sharing in the depthwise convolution, as lightweight
convolution [200] or sub-separable convolution [95], and (2) grouping channels in the
pointwise convolution, as originally proposed as super-separable convolution in [95].
Kaiser et al . [95] proposed the use of grouped convolution with DSConv, which reduces
the parameters for the pointwise convolution by a factor gi, indicating the number of
channel groups in each layer. To facilitate information exchange between groups, different
numbers of groups per layer, specifically 2 and 3 as in the original paper, are utilized
for the KWS architecture in Section 5.3. This low-parameter model uses GDSConv to
reduce the parameter count more efficiently than simply minimizing model depth.
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5.3 Keyword Spotting with Sinc Convolutions

The task of Keyword Spotting (KWS) is to enable speech-based user interaction on
smart devices. Applications for these devices often require real-time capability and
high accuracy, while also being subject to constraints on hardware resources and power
consumption.

Previous KWS architectures have extracted acoustic features and applied a neural
network to classify keyword probabilities, with a focus on optimizing memory footprint
and execution time. These architectures were designed to utilize MFCC features. The
work presented in this section seeks to improve upon previous work by taking additional
steps to reduce power and memory consumption while maintaining classification accuracy.

This is achieved by eliminating power-intensive audio preprocessing and data transfer
steps through the use of an end-to-end architecture that extracts spectral features using
parametrized Sinc-convolutions and reduces memory footprint through the use of grouped
depthwise separable convolutions. The resulting network achieved an accuracy of 96.4%
on the Google Speech Commands test set with only 62k parameters, demonstrating an
improvement of 0.3% compared to a similarly sized ResNet model that relies on feature
pre-processing.

5.3.1 Architecture for Keyword Spotting

The architecture of the proposed model is illustrated in Fig. 5.2, starting with the
SincConv layer responsible for extracting features from the raw audio input. Standard
activation functions are replaced with log-compression as per Equation 5.9, a successful
technique in other CNN models handling raw audio data [211, 212].

Following feature extraction, the architecture comprises five layers of (G)DSConv to
further analyze the obtained features. The first of these layers utilizes a larger kernel
size to expand the number of channels to 160. The remaining four layers each maintain
160 input and output channels. Every (G)DSConv block includes the (G)DSConv layer,
batch normalization [90], spatial dropout [182] for model regularization, and average
pooling to reduce temporal resolution.

Post (G)DSConv blocks, global average pooling is applied, generating a 160-element
vector. This vector undergoes processing through a Softmax layer, classifying into one of
12 categories, including unknown and silence classes.

The base model, as depicted in Fig. 5.2, consists of 122k parameters. The optimal
hyperparameters were selected through comprehensive experiments, aiming to achieve
the highest validation accuracy with a number of parameters similar to those in models
presented in [40, 217]. The low-parameter version of this model, achieved by applying
alternating groups of 2 and 3 to the DSConv layers, significantly reduces the total
parameters to 62k. This reduction ensures a comparable footprint to the small-medium
models by Zhang et al . [217].
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SincConvBlock(40,101,8)

DSConvBlock(160,25,2)

(G)DSConvBlock(160,9,1)
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Softmax(12)
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Figure 5.2: The keyword spotting architecture, elaborated upon in Section 5.3 and proposed
by Mittermaier [20†], employs convolutions parameterized as c, k, s, denoting the number of
output channels, kernel length, and stride, respectively. The parameter configurations of
convolutions are indicated in the convolution blocks. In the low-parameter model comprised of
62k parameters, convolutional layers from the third to the sixth are grouped.

5.3.2 Experimental Setup

The investigated model is trained and evaluated utilizing the Google’s Speech Commands
dataset [193], a popular dataset for assessing KWS systems. The first version of this
dataset comprises 65k one-second audio utterances of 30 distinct keywords spoken by
1881 unique speakers. It’s important to note that this experiment focuses on the first
version of the dataset, which differs from the second version that consists of 2618 unique
speakers. While the second version of the dataset has 105k samples and five extra
keywords [193], previous KWS research only reported results on the first version.

The standard setup classifies audio into 12 categories: “yes”, “no”, “up”, “down”,
“left”, “right”, “on”, “off”, “stop”, “go”, unknown, or silence. The additional 20 keywords
are categorized as unknown, while pre-provided background noise files are labeled as
silence. To maintain reproducibility of the benchmarks, a distinct test set is provided,
complete with a pre-established list of samples for the unknown and silence categories.

In the training process, every sample from the training set is used, resulting in a class
imbalance due to a higher number of unknown samples. To counteract this, class weights
are employed during the training phase, assigning lesser weight to unknown samples,
thereby ensuring their influence on the model aligns with other classes. Consequently, the
model can experience more unknown word samples during training without developing a
bias.
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The model is trained for 60 epochs, using the Adam optimizer [46] with an initial
learning rate of 0.001, and a learning rate decay of 0.5 applied after 10 epochs. The
model demonstrating the highest validation accuracy is saved for subsequent evaluation
of accuracy on the test set.

5.3.3 Evaluation of Results

The base model, which is made up of DSConv layers without grouping, achieves a
competitive accuracy of 96.6% on the Speech Commands test set. The low-parameter
model that uses GDSConv layers nearly matches this accuracy at 96.4%, despite having
approximately half the parameters. These results affirm the efficacy of GDSConv for
reducing the model’s size.

As detailed in Table 5.1, these results are compared to similar research. The network
demonstrates a higher efficiency in terms of accuracy for a given parameter count when
contrasted with the DSConv network in [217]. Our base model’s accuracy exceeds their
largest model by 1.2%, even though their model has roughly four times more parameters.
Our results also surpass those of Choi et al . [40], improving accuracy for a given number
of parameters. Their use of 1D convolution along the time dimension may suggest this
method’s usefulness for audio processing, particularly for KWS.

Unlike prior studies, the presented architecture obviates the requirement for prepro-
cessing for feature extraction, attributed to the SincConv layer’s capacity for direct raw
audio sample feature extraction. Such a characteristic allows for the complete execution
of inference as floating-point operations, eliminating the necessity for auxiliary hardware
modules for the processing or transfer of preprocessed features. As a result, microcon-
trollers with diminished modules demonstrate enhanced energy efficiency. Moreover,
no residual connections were used in this network architecture, as this adds memory
overhead and increases challenges for hardware acceleration modules.

The architectures were also evaluated on the newer second version of the Speech
Commands dataset to ensure future comparability. As shown in Table 5.1, this resulted
in even higher accuracies of 97.4% and 97.3% for two investigated models, respectively.
Models trained on this second version of the dataset tend to perform better on both the
second version’s test set and the first version’s test set [193].

It’s crucial to note that the comparative models presume preprocessed audio features
and therefore do not account for the number of parameters or operations of any prepro-
cessing steps. As our architecture incorporates feature extraction from raw audio with
the SincConv layer, the total model parameters in Table 5.1 includes the SincConv layer.
From a power-efficiency perspective, a single SincConv filter only requires two read oper-
ations to generate the filter for each channel. Power-optimized spectral transformations
also involve the precomputation of filter maps [179].

Figure 5.3 provides a visualization to understand the initial setup of the sinc filters
and their progression during training. The stages from the initialization of the Sinc
convolution using the Mel-scale filter bank to the fully trained filter is shown, Additionally,
the latter part of this visualization represents the sinc filter’s response to the keyword
“Yes”.
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(a) Sinc filters are initialized with values of the Mel-scale filter bank.
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(d) Filter bank output of the trained Sinc con-
volution filter for the keyword “Yes”.

Figure 5.3: From the Mel-scale filter bank as initialization for the Sinc convolution to the
trained filter [20†]. The filter responses of a Sinc convolution layer to the keyword “Yes” with
only seven channels is given as an example.
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5.3.4 Discussion of Sinc Convolutions for KWS

Sinc convolutions present an efficient approach to apply neural networks directly on raw
audio without necessitating preprocessing. Their outputs are more interpretable than
conventional CNNs, and its light footprint – marked by a reduced parameter count –
makes it well-suited for small embedded architectures. Additionally, GDSConv provides
a means to further trim down the already small memory footprint of DSConv, without
significant accuracy loss. Energy-efficient neural networks that maintain high accuracy
are crucial for always-on, battery-operated devices performing keyword spotting. The
architecture was constructed on the assumption that in a neural network, the number of
parameters plays a significant role in power consumption, as memory access typically
consumes more power than computation [34]. Based on this observation, an energy-
efficient keyword spotting architecture combines SincConvs for feature extraction with
GDSConv layers.

The discussed architecture employs parametrizable SincConvs to extract pertinent
features from raw audio. The base model, composed of DSConvs – which already have
fewer parameters than a regular convolution – attains a competitive accuracy on Google’s
Speech Commands dataset. Grouping convolutional channels to GDSConv, which further
decreases the number of parameters, culminates in a low-parameter model with merely
62k parameters.

5.4 Sinc Convolutions in the Hybrid CTC/Attention

Architecture

The motivation for integrating Sinc convolutions and depthwise separable convolutions
into the hybrid CTC/attention architecture lies primarily in the aim to create a fully
end-to-end trainable system that can work directly on raw audio data, eliminating the
need for a separate, pre-processing step for audio features. Conventionally, ASR systems
have depended on pre-processed frequency-domain features, handcrafted to emulate
human hearing, as inputs. Such a pre-processing step adds a discrete stage to the ASR
process and might not be fully optimal as these features are not learned during the
training process.

Sinc convolutions, as integrated frontend for the ASR system, allow for spectral
feature extraction directly from the raw audio input. This enables the model to learn
more optimal feature representations from the raw data during the training process,
potentially improving the model’s performance. Depthwise separable convolutions, on
the other hand, reduce the computational complexity and model size while maintaining
similar performance characteristics as regular convolutions. This makes the model more
efficient and lightweight.

Thus, the integration of these two types of convolutions aims to create a lightweight,
low-parameter, machine-learnable feature extraction for ASR systems that can outper-
form conventional systems relying on pre-processed features, both in terms of model
performance and computational efficiency. The architecture discussed in this section
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was proposed by Kürzinger et al . [6†] and investigated in the works of Klewitz [12+] and
Lindae [19+].

5.4.1 Lightweight Sinc Convolutions for End-to-End Decoding

The frontend is designed to derive more abstract latent representations from a sequence
of raw audio frames R = r1:T . This is accomplished by utilizing a layer of parameterized
Sinc-convolution followed by multiple layers of depthwise convolutions. These layers
transform the raw audio input into filter features, effectively substituting the traditionally
precomputed log-mel filterbank features used in end-to-end ASR systems. The above
architecture is referred to as Lightweight Sinc-Convolutions (LSC) and is depicted in
Figure 5.4. This frontend architecture employs two essential building blocks, the Sinc
convolution block and the Depthwise separable convolutional layers.

The Sinc convolution block proceeds in a sequential manner, initiating with the Sinc
convolution layer, denoted as SincConv(c,k,s), which comprises c channels, a kernel size
k, and stride s. This is immediately followed by log compression, 1D batch normalization,
and 1D average pooling, which averages every two adjacent values, thereby halving the
data length. The block for Depthwise separable convolutional layers, represented as
DConvBlock(c, k, s), encompasses a depthwise separable convolutional layer characterized
by c channels, kernel size k, and stride s. Subsequently, it integrates a leaky ReLU
activation and a 1D batch normalization. During training, this block incorporates a
dropout layer with a 15% probability. With these building blocks, the equation for the
LSC frontend is given by:

LSC(R) = [DConvBlock]5(SincBlock(R)) (5.13)

Contrasting with precomputed filterbank features, Sinc convolutions can be incorpo-
rated within a neural network as a differentiable layer in relation to cutoff frequencies.
For improved approximation of an ideal Sinc filter, the filter kernel weights are multiplied
with the Hamming window. In standard hybrid DNN/HMM ASR, the window function
is employed on the input data to mitigate artifacts during spectral transformation.
Multiplying the kernel with the window function does not yield an equivalent result
due to the non-distributive nature of convolution over multiplication. Nonetheless, this
process attenuates edge artifacts in the kernel, mitigating spectral distortions in a similar
manner. This method is more efficient, as it only requires a single application on the
kernel filter rather than on each input frame. Figure 5.5 gives a comparison of a Sinc
convolution kernel with and without a window function.

The Sinc convolution block applies log-compression as its activation function after
the Sinc convolution, effectively compressing the output to a value range beneficial for
further convolutional layers. Contrary to the ReLU activation function used in SincNet,
log-compression discards less information, thus potentially enhancing the performance of
classification on raw audio.

After the Sinc-convolutional block, multiple depthwise convolutions are employed to
extract more abstract latent representations. These extract short-time context along the
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Figure 5.4: The figure illustrates Lightweight Sinc-Convolutions that are employed as a frontend
for raw audio inputs. The process begins by segmenting the raw audio stream into discrete
frames. Following this, Sinc-convolutions and several layers of depthwise convolutions are
implemented for a low-parameter extraction of speech features.
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Figure 5.5: Comparison of Sinc filters with and without a window function.
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time dimension but are restricted to data within a single frame. This segment of the
architecture serves as a coupling layer between the raw audio signal and the encoder.

The feature extraction frontend has strong similarities with the lightweight keyword
spotting architecture by Mittermaier et al . [20†], which employs depthwise separable
convolutions. A key distinction is that the adaptation to ASR excludes the inter-
frame pointwise convolution to further decrease the number of parameters. Depthwise
convolutions contribute more significantly to high-level feature extraction than pointwise
convolutions, while comprising only a small fraction of the learnable parameters.

5.4.2 Integration into the ASR Architecture

The back-end architecture, as depicted in Fig. 5.6, translates the features extracted by the
LSC front-end into a sentence. This experiment uses the RNN-based model described in
section 2.6. The encoder forms the first part of this process, which employs the front-end
extracted features and is composed of BLSTM layers supplemented with projection
layers. This maps the sequence of latent representations, denoted as X = [x1, · · · , xTX

],
to a series of high-level representations expressed as H = h1:T = BLSTMP(x1:TH

).
The remaining architecture, i.e., the hybrid CTC/attention decoder, aligns with the

standard RNN architecture described in Section 2.6. The transcription process from
raw audio to a sentence incorporates beam search using shallow fusion, bolstered by a
language model which has been trained on a substantial text corpus.

5.4.3 Experimental Evaluation

This architecture is assessed using the TED-LIUM 2 corpus [159]. The raw audio stream
is segmented into frames of 25 ms each, with a 15 ms overlap between two successive
frames, thereby resulting in a stride of 10 ms. These frame parameters are selected in
line with the standard setting for MFCC features in the Kaldi toolkit [148]. Given that
the audio is recorded at a sampling frequency of 16 kHz, each frame comprises of 400
samples with an overlapping portion of 240 samples.

The network training is executed using the Adadelta optimizer with parameters
ρ = 0.95, ϵ = 10−8. The training process runs for 22 epochs before early termination
halts the training; subsequently, the model exhibiting the highest validation accuracy
is selected for evaluation. In this experiment, the Sinc convolution integrates 128 Sinc
filters, which are initialized with mel filterbank weights.

These convolutions are selected such that the length of a frame is reduced to one,
thereby leaving 256 features at the culmination of the feature extraction process. The
encoder component of this network consists of four BLSTM layers with projection neurons
of size 512. The decoder is composed of a single LSTM layer of size 512 coupled with
an attention layer of the same size. The CTC/Attention weight during training is set
to κ = 0.5. The model uses 500 unigram units as tokens created by SentencePiece, as
described in Section 2.4.8.

Spectral augmentation, as described in Section 2.5.1, is employed as a data aug-
mentation technique directly on the windowed raw audio signal. This is advantageous
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compared to applying it on the extracted features; time warping introduces distortion
into the audio signal, while masking functions similarly to dropout, thus enhancing the
robustness of the model. The model training relied on the preset configuration as per the
ESPnet toolkit; no additional adaptations or modifications were made. For the decoding
process, a pre-established language model supplied by ESPnet was employed. Language
model rescoring was conducted with a language model weight set at β = 0.5 and a CTC
weight λ = 0.4.

5.4.4 Results

The performance of the proposed architecture is compared with a standard RNN baseline
model that employs log-mel F-bank features, as constructed in Section 2.6, and the
top-performing result on the TED-LIUM 2 corpus [195]. This result utilizes a VGGnet
coupled with a BLSTM encoder and projection neurons, denoted as VGG-BLSTMP.
Table 5.2 provides a parameter comparison between the two investigated models, i.e.,
using F-bank features and Sinc convolutions.

The proposed model, built for raw audio input, exhibits fewer learnable parameters
than the VGG-BLSTMP model, primarily due to the integration of Sinc and depthwise
convolutions. This results in LSC employing only 16k front-end parameters, compared
to VGG’s 259k parameters. The incorporation of pointwise convolution in the depthwise
convolutional blocks would add an additional 240k parameters.

The back-end layers, smaller at 512, as opposed to VGG-BLSTMP’s 1024, reduces
the parameter count to 22.3m from 106m. The CTC layer, necessitating a short-term
context, is facilitated by the BLSTM in the encoder, allowing for the application of
frame-wise 1D filter convolutions without loss of inter-frame information.

Despite its reduced size, the model outperforms in terms of WER on the TED-LIUM 2
test set. The model’s loss convergence during training exhibits a smooth, asymptote-like
curve. On the other hand, the VGG-BLSTMP architecture’s convergence curve is more
step-like, with an initial warm-up phase, sudden improvements, and then a plateau.

Table 5.3 compares the performance of the LSC and the VGG-BLSTMP model on
the TED-LIUM 2 dataset. The LSC model records a 0.9% decrease in WER, resulting
in 11.7% on the test set, when decoded with a similar-sized language model (8.9m versus
7.4m parameters). The WER is further lowered by 1% to 10.7% when applying the
larger language model used for ESPnet’s transformer network on TED-LIUM 2, though
it increases the parameter count to 139m. A more lightweight language model can be
chosen for evaluation depending on the application context. For a clearer comparison,
the parameter-reduced VGG-BLSTMP model, with only 19m parameters, is similar in
size to the LSC model under evaluation. However, this model only achieved a WER of
18.6% when evaluated with the large RNNLM [102].

The employment of spectral augmentation was also found to enhance the network’s
performance. This is the case even without specific fine-tuning for raw audio data input.
Spectral augmentation resulted in a WER improvement of 2.3% and 0.9%, when decoding
was conducted without and with the large language model respectively.

The effectiveness of log-compression as an alternative activation function was also
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evaluated. For this, a model instance was tested where the ReLU function was used as
the activation function in the SincBlock (as depicted in Figure 5.4). With ReLU, slightly
worse WERs of 11.0%/10.9% for the development and test set were achieved, confirming
the findings of Mittermaier et al . [20†, 20+]. This indicates that log-compression is
advantageous for the extraction of filter features from raw audio. The results reinforce the
premise that leveraging learnable feature extraction methods can bring about significant
performance improvements and reductions in the complexity of ASR systems.

Figure 5.7 displays four of the Sinc-convolution filters that were learned through the
LSC process, while Figure 5.8 offers a visual representation of both the default mel filters
used for log-mel F-Bank features and the filters learned by the model. This was achieved
by sorting these filters and then plotting their upper and lower limits.

These filters exhibited a noticeable shift towards higher amplitude and a wider band-
pass in the spectral domain. Remarkably, one Sinc filter converged to a configuration that
allowed for the passage of the entire raw audio signal, featuring a lower start and higher
stop frequency of approximately 8kHz to 21kHz. This suggests the network’s tendency to
process the raw data directly. The kernel of this filter is presented in Figure 5.9. Apart
from that, the learned filters still largely mirror the initial distribution mapped along
the values of the log-Mel scale.

5.5 Integration into the ESPnet Toolkit

The LSC module for speech recognition from raw audio data, as detailed in Section 5.4.1,
was submitted and integrated into the ESPnet toolkit. The provided module [11†],
seamlessly integrates LSC into both RNN and Transformer models and offers recipes
for datasets such as TED-LIUM 2, TIMIT, and Librispeech. The framework allows for
the straightforward incorporation of Sinc convolutions, positioning it as a pre-encoder.
The workflow with LSC follows a sequence: 1. The frontend module receives the raw
audio and generates audio frames using a sliding window, 2. spectral augmentation
serves as data augmentation (however, in time domain instead of spectral domain),
3. normalization, 4. LSC pre-encoder with Sinc convolutions and depthwise separable
convolutions, 5. encoder, and 6. decoder. While there are resemblances between LSC and
SincNet, significant distinctions exist, notably the inclusion of depthwise convolutions
and log compression. Additionally, the module allows initialization of Sinc convolution
parameters using the Bark scale instead of the Mel scale [219]. The bark scale’s broader
filters at lower frequencies can be advantageous for learnable filter parameters. During the
module’s development, it was noted that reducing grouping in the depthwise convolutional
layers can increase complexity, impacting both memory consumption and training
duration.
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Table 5.1: Keyword spotting performance of discussed models on the Speech Commands dataset
version 1 and version 2 [193].

Model Accuracy (v1) Accuracy (v2) Parameters

DS-CNN-S [217] 94.1% - 39k
DS-CNN-M [217] 94.9% - 189k
DS-CNN-L [217] 95.4% - 498k

ResNet15 [181] 95.8% - 240k
TC-ResNet8 [40] 96.1% - 66k

TC-ResNet14 [40] 96.2% - 137k
TC-ResNet14-1.5 [40] 96.6% - 305k
SincConv+DSConv 96.6% 97.4% 122k

SincConv+GDSConv 96.4% 97.3% 62k

Table 5.2: Architecture parameters for a model with F-bank features and for raw audio input.

VGG+BLSTMP LSC+BLSTMP
(ESPnet) (Ours)

Feature Type F-bank + Pitch Sinc Convolutions
Input sample rate 16 kHz 16 kHz
Window function Hann (Eq. ) Hamming
Windowing frame size 25 ms 25 ms
Windowing frame shift 10 ms 10 ms
Features frequency bins 80 + 3 128
Coupling VGGnet Depthwise Convolutions
Output dimension 2688 256
Size of the front-end 259k 16k
Size of the back-end 106m 22.3m
Size of the RNNLM 7.4m 8.9m / 139m

Table 5.3: Comparison of ASR results on the TED-LIUM 2 Dataset between the LSC and
the VGG-BLSTMP model, on the development and test sets with and without employing a
language model. The LSC model demonstrates a significant reduction in WER, achieving the
lowest at 10.7% on the test set with the employment of a language model.

Model Feature type LM Dev Test

VGG-BLSTMP F-bank ✓ 12.8 12.6
VGG-BLSTMP (small) F-bank ✓ 19.8 18.6
LSC raw - 15.1% 15.7%
LSC+SpecAug raw - 13.5% 13.4%
LSC raw ✓ 11.4% 11.6%
LSC+SpecAug (ReLU) raw ✓ 11.0% 10.9%
LSC+SpecAug (logCpr) raw ✓ 10.7% 10.7%
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Figure 5.6: Back-end for the RNN-based architecture that classifies from raw audio: The
front-end’s extracted features are conveyed through a BLSTM encoder with projection neurons.
The encoder states are subsequently employed by both a CTC and an attention decoder. Apart
from the raw audio input module, this setup corresponds to the standard RNN architecture
described in Section 2.6.
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Figure 5.7: Four exemplary Sinc-convolution kernels. The corresponding mel-scale filters are
marked with blue dashed lines. The kernels’ center frequencies are arranged in a sequential order
from top left to bottom right, and they are 790Hz, 2.2kHz, 5.4kHz, and 7.9kHz respectively.
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Figure 5.8: Lower and upper edges of initialized and learned Sinc-convolution filters are plotted
for visualization.
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Figure 5.9: The filter kernel that ultimately converged to a passthrough filter. The structure of
this filter is characterized by a large kernel value at the center, with near-zero values elsewhere.
By convolving this filter with the audio signal, the signal essentially passes through untouched.
This indicates that the network is also attempting to learn directly from the raw data.
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6

CTC Segmentation

This chapter discusses CTC segmentation, an algorithm to determine utterance alignments
within audio recordings. Previous approaches of aligning text to audio rely on pre-trained
HMMs or TTS neural nets. CTC segmentation fills this gap and provides a tool for
alignment using already pre-trained end-to-end ASR models. This algorithm was first
explored by Winkelbauer [34+] and published by Kürzinger et al . [10†].

CTC segmentation also generates a confidence score of how well each utterance fits
to its audio segment. This score helps to filter out bad utterances, and thus is useful for
automated corpus construction. The second half of this chapter illustrates this process
through the development of both German and Japanese speech corpora.

After Section 6.1 reviews previous work on established alignment methods, it intro-
duces the CTC segmentation algorithm. The algorithm is available as a Python package
that is documented in Section 6.2. Section 6.3 shows the construction of a German
dataset and provides an an example of how this additional training data improved ASR
performance. Section 6.4 demonstrates advanced techniques to align large data exemplary
on JTubeSpeech, a large Japanese dataset published by Takamichi et al . [21†].

6.1 CTC Segmentation

This section begins by examining traditional alignment methodologies, predominantly
rooted in HMMs and the Viterbi algorithm. It then introduces the CTC segmentation
algorithm that eliminates the need for HMM models, relying solely on a CTC-based
speech recognition network for alignment generation.

6.1.1 Related Alignment and Segmentation Tools

Training data for ASR requires labeled speech data. Modern ASR systems take audio
segments with text as training data. Utterances in a speech dataset comprise an audio
segment of usually several seconds and the text as ground truth. In many cases, these
utterances are cut from a longer audio recording which can be done manually or automated
using alignment tools. Forced alignment tools determine the most probable alignment of
a token sequence to an audio recording.
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Many popular tools use the Viterbi or Baum–Welch algorithm to align phonemes
based on HMMs. The program first encodes the ground truth text as a graph of
phoneme sequences. These sequences are aligned with the phoneme state probability
time sequence obtained from a pre-trained acoustic model. Utterance segments are
derived from phoneme timings. HMM-based forced alignment is a popular approach
included in many speech recognition toolkits; such as the Munich Automatic Segmentation
(MAUS) system [162] of the Hidden Markov Model Toolkit (HTK [209]), or Gentle that
is included in Kaldi [148].

The DeepSpeech aligner tool DSalign [97] adopts a more flexible approach compared
to other forced alignment tools that require correct data. Text preprocessing and
normalization is performed on the ground truth transcriptions to facilitate alignment
with the automatic speech recognition transcripts. The speech audio is divided into
fragments of approximately 15 seconds and transcription of all audio fragments is
performed. The preprocessed text and transcribed audio are roughly aligned using the
Smith–Waterman algorithm and non-fitting audio segments are removed. This tool
requires an additional alignment step that removes any artifacts from splitting the audio,
e.g., gaps in the transcription.

In an alternate approach, the ground truth text is synchronized to the audio using
audio that was generated from the transcription. The Aeneas [144] alignment tool uses
synthetic audio from a text-to-speech (TTS) module. From synthetic and original audio,
Aeneas uses the Dynamic Time Warping (DTW) algorithm to generate a synchronization
map, and subsequently determine utterance alignments.

6.1.2 The CTC Segmentation Algorithm

CTC segmentation is an algorithm to align text to audio using a pre-trained end-to-end
ASR model with a CTC output layer. Using the output probabilities of a CTC-based
ASR network, the algorithm determines transition probabilities and token timings. As
a distinct advantage, acoustic models to classify HMM states are no longer necessary,
but only the CTC output probabilities. The HMMs of acoustic models used in Gentle
or MAUS infer phoneme probabilities for each time step. In contrast to labeling each
time step with a classified phoneme, the CTC layer classifies the occurring time step of a
token.

A CTC network infers frame-based character posteriors p(cj|t,X) from a given audio
recording. The audio recording contains multiple utterances, i.e., sentences, that are
consecutively encoded to a sequence of tokens. Given a sequence of tokens cj with
j ∈ [1;M ], the algorithm determines transition probabilities over the CTC output frames
t ∈ [1;T ]. The algorithm returns these probabilities in the form of a table with N rows
and M columns, in which the i-th row corresponds to the i-th audio frame and the j-th
column corresponds to the j-th token. The cells of this table contain the maximum joint
probabilities kt,j of segment alignments that are obtained using dynamic programming
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by the following rules:

pstay = kt−1,j · p(blank|t) (6.1)

ptransition = kt−1,j−1 · p(cj|t) (6.2)

kt,j =


max(pstay, ptransition) if t > 0 ∧ j > 0

0 if t = 0 ∧ j > 0

1 if j = 0

(6.3)

Each maximum joint probability kt,j is determined by what transition is more probable:
kt−1,j · p(blank|t) represents the probability that transition path continues at the current
token index j and kt−1,j−1 · p(cj|t) gives the probability of a transition from the previous
token.

To distinguish start and ends of utterances, separators are inserted into the token
sequence[i]. Unrelated audio parts at the beginning of the recording are skipped by
setting the transition cost for the first token to zero. This approach effectively allows
the algorithm the flexibility to begin when the token probability signals the presence of
the first token in the utterance. This capability to start aligning at the most pertinent
section also sets CTC segmentation apart from other forced alignment methods.

Token alignments are then obtained by backtracking from the frame with the highest
joint probability of the last token kM at t = arg maxt′ kt′,M . The highest transition
probability determines the alignment at, i.e., the token index the audio frame t is aligned
to, as

at =


M − 1 if t ⩾ arg maxt′(kt′,M−1)

at+1 if kt,at+1 · p(blank|t + 1) > kt,at+1−1 · p(cj|t + 1)

at+1 − 1 else.

(6.4)

The alignment probability ρt to every audio frame is determined from the alignment
at as ρt = p(cat|t). A confidence score sseg for each utterance helps to evaluate how well
each utterance was aligned, or, how well the recording segment fits to the ground truth
utterance text. Audio frames within the given utterance are split into parts of length
L. L is chosen as the equivalent to one second which depends on the ASR model, for
example, L = 30 in the work described in Section 6.3. Then, the alignment probabilities
within each part are averaged to a mean value mj. Finally, the confidence score sseg is
defined as the lowest of averages within the utterance:

sseg = min
j

mj with mj =
1

L

(j+1)L∑
t=jL

ρt (6.5)

Taking only the lowest minimum probability helps to minimize and filter out utterances
with mismatches between audio and text. In this way, long utterances exhibit low
confidence scores if a single word is a mismatch or missing in the transcription.

[i]The implementation uses the label of the blank token as separator, as it is never used in the ground
truth text.
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Figure 6.1 provides an example of the first step, where all state probabilities are
written in a large table. The second step, shown in Figure 6.2, involves the backward
pass that determines the most probable path through the trellis. Finally, Figure 6.3
visualizes the determination of the confidence score.

C

A

T

S

Figure 6.1: Step 1: Calculate all stay and transition probabilities.

C

A

T

S

Figure 6.2: Step 2: Determine the most probable path in the backward pass.

ρt

mj

sseg min{0.84, 0.30, 0.80} = 0.30

C A T S A N D D O G S
0.9 0.8 0.85 0.8 0.5 0.2 0.4 0.1 0.7 0.9 0.8 0.7 0.9

0.84 0.30 0.80

Figure 6.3: Step 3: Calculate the alignment score by averaging alignment probabilities within
each part of an utterance (e.g., 1-second segments) and selecting the lowest average.

The runtime complexity of CTC segmentation can be reduced based on two assump-
tions. Under the assumption that the ratio of audio frames per token is nearly constant,
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the complexity is reduced to O(M) instead of O(M ·N). A further optimization assumes
that the audio position is proportional to the token sequence position. With that, not all
probabilities kt,j are required, but only the audio frames in the interval [t−W/2, t+W/2]
with t = jN/M and window size W .

6.1.3 Alignment of an Example Sentence

Figure 6.4 gives an example of CTC segmentation. This utterance is included in the
ESPnet toolkit as examples sentence[ii] that was derived from the WSJ dataset [45]. It is
transcribed as:

THE SALE OF THE HOTELS IS PART OF HOLIDAY’S STRATEGY
TO SELL OFF ASSETS AND CONCENTRATE ON PROPERTY MANAGEMENT
The upper plot shows the raw audio waveform with estimated alignments. The second
heatmap contains the CTC layer activations over the audio time. Here, the lowest row
shows the blank at index 0 that has the most activations, the other tokens in the order
of their appearance in the dictionary are
|, E, T, A, O, N, I, H, S, R, D, L, U, M, W, C, F, G, Y, P, B, V, K, ’, X, J, Q, Z.

The third plot contains the path probability matrix; from this matrix, the most probable
alignments are estimated.

6.1.4 Evaluation of Alignments

The TED-LIUM 2 dev and test sets comprise recordings from 19 unique speakers and
serve as datasets for evaluation. In this dataset, long audio recordings of TED talk
presentations are labeled with begin and end timestamps of separate sentences. These
alignments have been done manually and serve as reference for the evaluation.

Alignments are validated by three metrics, (1) the mean deviation of segment timings
from the ground truth, (2) their respective standard deviation and (3) the ratio of
alignments within 0.5 seconds from ground truth timings.

As ASR model type also has a certain impact on CTC segmentation. This evaluation
is done with pretrained RNN-based and Transformer-based ASR models[iii]provided by
the ESPnet toolkit [102, 195].

Results are compared with three other established forced alignment tools: MAUS,
Gentle and Aeneas. As these tools yield phone-wise alignments, this experiment obtains
the utterance timings from the onset of the first phoneme, and the offset of the last
phoneme of the corresponding utterance.

[ii]The example audio file in the ESPnet git repository at test utils/ctc align test.wav.
[iii]The experiment employs pretrained models from ESPnet v1. The Transformer model utilized

features a self-attention encoder with 12 layers, each comprising 2048 units. Conversely, the RNN model
comprises an encoder with a VGGnet-preencoder, bidirectional LSTM units, and projection neurons.
Its encoder encompasses four layers, each containing 1024 units with sub-sampling occurs in the second
and third layers, as described in Section 2.6. On the TED-LIUM 2 test set, the Transformer yields a
WER of 10.4, while the RNN model achieves a WER of 12.6.
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Figure 6.4: Aligned example sentence. The plot above shows the raw audio waveform with
estimated alignments. The second heatmap contains the CTC layer output; the blank token
(at index 0) is in the lowest row. The bottom image displays the path probability matrix; the
central line marks the most probable path through the trellis. This illustration is inspired by
Hira’s forced alignment visualization [82, 205].
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Table 6.1: Accuracy of alignments generated by CTC segmentation, MAUS, Gentle and Aeneas
on the TED-LIUM 2 dev/test sets. Alignments are validated by three metrics, (1) the mean
deviation of segment timings from the ground truth, (2) their respective standard deviation
and (3) the ratio of alignments within 0.5 seconds from ground truth timings.

Mean Std < 0.5s

Other alignment tools
MAUS (HMM-based using HTK) 1.38s 11.62 74.1%

Aeneas (DTW-based) 9.01s 38.47 64.7%
Gentle (HMM-based using kaldi) 0.41s 1.97 82.0%

CTC Segmentation
RNN trained on TED-LIUM 2 0.34s 1.16 90.1%

Transformer trained on TED-LIUM 2 0.31s 0.85 88.8%
Transformer trained on Librispeech 0.35s 0.68 85.1%

Table 6.1 shows the alignment results. CTC segmentation produced alignments that
are significantly closer to the manually labeled ground truth when compared to segment
timings generated by other tested alignment algorithms.

While alignment metrics in Table 6.1 demonstrate that there is a certain difference
in timing accuracy, it does not distinguish between utterance start and end timings.
Figure 6.5 visualizes how these timings are distributed in relation to the ground truth.
The histogram contains alignment distributions generated by CTC segmentation and
the Gentle alignment tool. In both cases, the majority of timing deviations are smaller
than one second. Alignments from CTC segmentation are mostly within 0.5 seconds
with a mean deviation of 0.35s, closely followed by the accuracy of HMM-based Gentle
alignments that exhibit a mean deviation of 0.41s. These experimental results on the
TED-LIUM 2 dataset indicate that alignments from CTC segmentation are more accurate
when compared to Viterbi- or DTW-based algorithms.

CTC segmentation distinguishes transitions between utterances from transitions
between tokens. The stay probability pstay in the trellis is not reduced at start and end
of an utterance, as detailed in Equation 6.8 and 6.3. With that technique, unrelated
audio segments such as preambles can be automatically skipped in a robust manner.
Also, the algorithm may detect deviating transcriptions using the confidence score. To
evaluate how well CTC segmentation handles unrelated audio segments in comparison
to other alignment tools, a preamble and postamble are added to each of the utterances
in the TED-LIUM 2 dev and test set. The preamble is taken from the last tpre seconds
of every audio utterance and the postamble from the first tpost seconds, where tpre and
tpost are randomly chosen from the uniform distribution in the interval [10, 30]s.

Table 6.2 compares the alignment algorithms in terms of accuracy to the ground
truth labels. In general, MAUS and Aeneas seem to not skip unrelated segments but
rather force alignments within the unrelated audio parts. Alignments from Gentle and
CTC segmentation exhibit the highest accuracy in these cases and skip any unrelated
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Figure 6.5: Histogram of alignment timings generated by Gentle and CTC segmentation,
compared to manually labeled segments [10†]. The plot shows the relative deviation in seconds
of generated segment start and end timings. CTC segmentation with the RNN-based ASR
model generated more accurate timings at the start of the segment (left) than Gentle; and
generated slightly more accurate segment ending timings (right). The y axis denotes density in
the histogram with 60 bins.

preambles.

Table 6.2: Accuracy of alignments generated by CTC segmentation, MAUS, Gentle and
Aeneas that are evaluated on the modified TED-LIUM 2 dev and test sets with preambles and
postambles. Alignments are validated by three metrics, (1) the mean deviation of segment
timings from the ground truth, (2) their respective standard deviation and (3) the ratio of
alignments within 0.5 seconds from ground truth timings.

Mean Std < 0.5s

Other alignment tools
MAUS (HMM-based using HTK) 3.18s 18.97 66.9%

Aeneas (DTW-based) 10.91s 40.50 62.2%
Gentle (HMM-based using kaldi) 0.46s 2.40 81.7%

CTC Segmentation
RNN trained on TED-LIUM 2 0.40s 1.63 89.3%

Transformer trained on TED-LIUM 2 0.35s 1.38 89.2%
Transformer trained on Librispeech 0.40s 1.21 84.2%

The timing data from the two experiments suggests that alignments from CTC
segmentation are closer to the manually labeled ground truth than alignments that were
generated with DTW- and HMM-based tools. The models trained on the TED-LIUM
2 corpus performed better on the test/dev set of the same corpus. Nevertheless, the
Transformer model trained on Librispeech still generated more accurate alignments when
compared to Gentle. The Transformer model also generated more accurate alignments
than the RNN model, which is likely a consequence of the more powerful encoder and
improved ASR performance.
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6.1.5 Accuracy Constraints

CTC loss fine-tunes the neural network using weak temporal labels, i.e., training towards
a specific sequential ordering of labels without predetermining a label for each time step.
As such, CTC loss is indifferent to corresponding time shifts and tends to maintain
the sequential token order, even if the acoustic information of output tokens is not
arranged in a temporally sequential manner. Watanabe et al . [196] noted that this
CTC’s monotonic alignment property mirrors the same alignment characteristic found in
conventional hybrid DNN/HMM ASR systems. Graves highlighted the significance of
the CTC outputs for alignments:

This ‘collapsing together’ of different paths onto the same labelling is what
allows CTC to use unsegmented data, because it removes the requirement
of knowing where in the input sequence the labels occur. In theory, it also
makes CTC unsuitable for tasks where the location of the labels must be
determined. However in practice CTC networks tend to output labels close
to where they occur in the input sequence. (Graves [68])

Building on this, Graves also demonstrated an experiment where CTC effectively predicted
both the labels and their approximate placements [59, 68].

The alignment accuracy of CTC segmentation strongly depends on the accuracy of the
CTC activations. Several factors can impact the accuracy of CTC activations, including
the performance of the ASR model, audio quality and label quality. For example,
background noise may lead the algorithm to detect an early start of the sentence.

While the accuracy of CTC activations is never a direct optimization goal of CTC
loss during training; nevertheless, the CTC-based alignments are mostly accurate within
500ms of hand-labeled alignments, as observed in Section 6.1.4. Still, CTC posteriors are
not always accurate, temporal displacements of 500ms or more can occur in rare cases.
Such misalignments arise under specific conditions but can be addressed with additional
methods.

Such inaccuracies often manifest at the beginning and end of an aligned audio file.
Bakhturina et al . noticed that sometimes the conclusion of the last utterance is truncated
prematurely [11]. Their solution was to adjust the alignment of the final utterance based
on a threshold set on the mean absolute signal. Side information from acoustic activity
then helped to synchronize the alignment with the audio.

A distinct form of inaccuracy, primarily for Japanese speech data, was noted by Yin
et al . [208]. Their alignment inaccuracies were considerably reduced by prepending a few
seconds of audio to each audio file.

Similar to the accurate estimation of alignments, the accuracy and temporal ordering
of token probabilities also affect the confidence score. This score estimates the log-space
probability of the match between the transcription and audio data, and is significantly
impacted by factors such as the quality of the ASR models, input data, and pre-processing.
Consequently, the choice of ASR model affects which utterances are filtered out based
on their confidence scores. Additionally, confidence scores can serve as a diagnostic
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indicator, as atypical scores on utterances may signal a misalignment between the audio,
transcription, and speech recognition model.

6.2 Python Package and Toolkit Integration

The CTC segmentation algorithm was published as a Python package [9†], suitable
for aligning text to audio with any CTC-based ASR network. This Python package is
adapted for and integrated into several toolkits, in Espnet [195], Speechbrain [158] and
NeMo [11]. These toolkits provide user-friendly access to pre-trained models and a direct
Python command line interface to CTC segmentation.

Kürzinger et al .’s initial version [10†] was set up as an ESPnet 1 recipe. Similar to
the kaldi-toolkit, the ESPnet 1 toolkit uses recipes that are corpus-specific. However, the
updated package introduces a feature for direct alignment from tokenized label sequences,
enhancing speed and memory efficiency.

A second subsection introduces a modification to the algorithm itself; the CTC seg-
mentation algorithm differentiates itself by efficiently skipping unrelated audio segments
at the start of a recording. An additional modification has been made to the algorithm
to filter out unrelated audio throughout the recording by adjusting the transition prob-
abilities, which can potentially lead to skipping sections if better token matches are
identified later.

The third subsection discusses the computational resources required for the alignment
process, emphasizing that while the dynamic programming algorithm used is efficient,
the bulk of computational demand arises when obtaining CTC activations, especially
with Transformer models on long audio sequences.

6.2.1 Text Preprocessing

The accurate preparation of the ground truth token list for alignment determines the
quality of alignments. A tokenizer in many speech recognition toolkits typically produces
this list. However, when dealing with texts that haven’t been previously tokenized, there
arises a need for tokenization.

A challenge with many Byte-Pair Encoding (BPE) or unigram dictionaries is that
they often possess overlapping word parts of varied lengths. Directly aligning from the
transcribed token sequence is ideal for character-based ASR models but might reduce
accuracy with BPE models that have many tokens. For instance, the token “cat” might
be represented not only by itself but also by its individual segments: “c”, “ca”, and
possibly their duplicates with a word-boundary delimiter.

While ASR models would correctly transcribe sentences with these tokens, the inherent
ambiguity in these overlapping tokens can lead to misalignments. The reason being, the
CTC activations might respond to both the token as a whole and its parts. This can
particularly be problematic for models with extensive dictionaries, which encapsulate a
plethora of word combinations and their constituent parts.
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To mitigate such ambiguities, a preprocessing step is designed to manage the partial
sequences. By identifying and handling these partial character sequences, it ensures a
more accurate alignment.

Consider a scenario where we are given a text with a value “cat” and a dictionary[iv]

containing both the word cat and its constituent parts: “•”, “UNK”, “a”, “c”, “t”, and
“cat”. When employing an already tokenized list, the resulting ground truth token list
simply contains the individual index of the “cat” token, i.e., (5).

This label sequence will then be aligned as the following token sequence:

C =


−1
0
5
0

 (6.6)

The first entry also contains (−1) which denotes the starting token as a helper for
the algorithmic processing. Generally, all entries with (−1) are ignored and act as
placeholders. All 0 entries denote separators at the start, at the ending of the label
sequence and between utterances.

On the other hand, splitting the text sequence into partial sequences results in:

C =


−1 −1 −1
0 −1 −1
3 −1 −1
2 −1 −1
4 −1 5
0 −1 −1

 (6.7)

In this instance, the algorithm identifies both the partial characters (3, 2, 4) and the
complete “cat” token represented by (5); furthermore, it computes transition probabilities
for both combinations, and chooses the more probable sequence. The intention behind
this process is to achieve enhanced time resolution for the alignment. Yet, this introduces
an added layer of complexity to the algorithm. Since alignment probabilities must be
computed for potential token combinations, there’s a modest rise in computational
overhead, while the memory overhead increases in proportion to the maximum token
length in the model’s dictionary.

To give an example, the RNN model employed for alignment incorporates a set of
500 tokens with a token length that can reach up to 10. This set comprises entire words,
such as “different” and “actually”. As an illustration, the word “something” can be
tokenized starting with the parts “s”, “so”, “som”, “some”, “somet”, and the complete
word “something”, highlighting the range of token sizes in the list.

Models based on characters, which exclusively use character tokens, avoid these
ambiguities during tokenization and do not require this type of partial token text
preprocessing.

[iv]Note that indices in this dictionary start from zero. The first token in the dictionary is the
blank token, that is represented by a placeholder “•”. On the other hand, “UNK” serves as the token
representing the unknown class.
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6.2.2 Adaptions to the Algorithm

A key differentiator of CTC segmentation compared to other forced alignment tools is
the ability to skip unrelated audio parts at the start of a recording, such as introductory
music, ambient noise, or unrelated chatter, by setting the transition cost for the first
token to zero. However, many recordings not only start with unrelated segments, but
also contain these unrelated parts interspersed within the audio recording itself.

Thus, the aim of an additional modification to the algorithm is to extend the existing
algorithm to effectively filter out these unrelated segments, both at the beginning and
throughout the recording, ensuring a more cohesive and relevant audio output. To skip
these intermediate unrelated parts of the recording, the transition of the separator token
can be set to zero. This is achieved by distinguishing an additional case in Equation 6.3
during the calculation of the transition probabilities kt,j,

kt,j =


max(kt−1,j, ptransition) if (t > 0 ∧ j > 0) ∨ cj = separator

max(pstay, ptransition) · p(cj|t)) if (t > 0 ∧ j > 0) ∨ cj ̸= separator

0 if t = 0 ∧ j > 0

1 if j = 0

. (6.8)

The equation employs the stay and transition probabilities consistent with those in
Equation 6.1 and Equation 6.2, which are reiterated below for clarity.

pstay = kt−1,j · p(blank|t) (6.9)

ptransition = kt−1,j−1 · p(cj|t) (6.10)

The expression max(kt−1,j, ptransition) generates a stable region or plateau for the prob-
ability. This allows the transition path to remain within this region if a suitable path
isn’t identified within the token sequence of the subsequent utterance. Consequently,
this can lead to parts of the audio being skipped if sequences with more fitting token
probabilities emerge later on.

6.2.3 Computational Resources

For the study in Section 6.3, numerous audio files span over three hours. When the
text aligns appropriately with the audio, the alignment process is expected to complete
within approximately 500 milliseconds[v], even for audio files spanning several hours. If
the provided text lacks relevance or accuracy, the algorithm may require several seconds
before indicating unsuccessful alignment, though such an outcome is not anticipated in
this context.

The dynamic programming algorithm operates in a sequential manner, utilizing only
a single CPU thread. However, using a multicore CPU, the process can be accelerated
by conducting alignments on multiple files simultaneously, with the primary constraint

[v]Experiments were conducted on a PC with 64GB RAM, Nvidia RTX 2080ti, and an AMD Ryzen 7
2700X.
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being memory consumption. Given the aligned token sequence length Ltoken and the
length of the CTC output Lctc, the memory consumption M is roughly proportional to
their product,

M ∝ Ltoken × Lctc. (6.11)

Additionally, this proportionality is influenced by factors such as the floating point
precision, typically 32 bits, and the sum of aligned tokens and utterances, and token
length, as elaborated in Section 6.2.1.

Compared to the alignment using CTC segmentation, ASR inference to acquire the
CTC activations typically requires significantly more computational resources. Therefore,
optimizing alignment runtime should focus on the inference step for RNN or Transformer
models. Although RNNs are rarely used in modern systems, Transformer-based networks
have become the norm. Nevertheless, conventional Transformers demand substantial
resources, especially for extended sequences. On extended audio files, Transformers tend
to exhaust memory, whereas RNNs can handle the inference. However, it is not necessary
to train an RNN for alignment of long audio files. Section 6.4.6 proposes a possible
approach for this issue by splitting up the audio file in several parts.

6.3 Alignment of a German Corpus

This section outlines the construction of a German corpus as presented by Kürzinger
et al . [10†] and in the work of Winkelbauer [34+]. It introduces related corpora and
provides an example of text preprocessing, which is essential for preparing the text to
obtain label sequences that assist the ASR model in aligning the text with the audio.
The section also offers a comparison of German speech datasets and their selections
for training. Results suggest that increased training data enhances speech recognition
performance. Additionally, performance is further improved when realigned data from
CTC segmentation is used.

6.3.1 Related Corpora

Previous work on publicly available German speech datasets was done by Milde et
al . [127] who combined freely available German language datasets. Their work also
provided a DNN/HMM model of the Kaldi toolkit trained with this collected dataset.
In summary, their collection contains the Tuda-DE dataset [152], the Spoken Wikipedia
Corpus (SWC, [13]) and the M-AILABS Speech Dataset [173]. See Table 6.3 for a
more detailed description about these datasets and example sentences. The collection
of datasets used in this study further includes the CommonVoice dataset [8] and the
Librivox [117] dataset. LibriVox only provides audio files, and thus the corresponding
ground truth text was obtained from the Gutenberg Project [75]. A similar collection
that also includes non-free speech datasets was used by Denisov et al . [51]; their work
uses the RNN-based hybrid CTC/attention ASR model of the ESPnet toolkit.
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Table 6.3: Overview of German speech datasets utilized in the study, along with a brief
description of each.

Dataset Description

Tuda-DE [152] Various topics narrated by 180 individuals, recorded using
five different microphones.

Spoken Wikipedia Cor-
pus / SWC [13]

Audio versions of Wikipedia articles, narrated by community
volunteers.

M-AILABS [173] Audio content sourced from political discourses and LibriVox
book narrations.

CommonVoice [8] Crowd-sourced single-sentence recordings, both contributed
and reviewed by the public.

Librivox [117] Public domain literary works narrated by volunteers and
hosted on the LibriVox platform.

6.3.2 Text Preprocessing

Chapters from LibriVox audiobooks and Wikipedia articles provide the ground truth
text to the corresponding audio files, but require certain preprocessing steps before its
intended use as speech dataset.

Preprocessing steps include a conversion to the form of the Tuda-DE dataset that
includes Latin letters from a-z and German umlauts[vi], but no numbers or punctuation
tokens. Therefore, text preprocessing replaces any numbers and abbreviations contained
in the original transcriptions by their spoken equivalent. Pronunciation of numbers
differs depending on their context that can be determined by simple heuristics using
an NLP tagger. For example, “1800 Soldaten” is spoken as “eintausendachthundert
Soldaten”, whereas “Es war 1800” is pronounced as “Es war achtzehnhundert”. Number
conversion is performed using the NLP tagger of the spaCy toolkit [86].

Older texts require an additional processing step; LibriVox consists of books with
expired copyright that are at least 70 years old and therefore are written in old German
orthography. Here, the particular texts are converted to the reformed German orthography
with an automated lookup-table of word replacements.

After text conversion, the preprocessing splits long text at punctuation marks to
derive single-sentence utterances from a continuous text.

6.3.3 German Speech Datasets and Selections for Training

The following experiment builds upon a previous corpus collection, and appends additional
speech datasets obtained via CTC segmentation. Table 6.4 gives an overview of the
specific datasets.

The construction of the German speech training dataset comprised three distinct
selections:

[vi]The supported German umlauts are ä, ü, ö and ß.
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Table 6.4: The German speech training data resources are used for corpus selection in model
training.

Datasets Length Speakers Utterances

Tuda-DE train [152] TD 127h 147 55497
Tuda-DE dev dev 9h 16 3678
Tuda-DE test test 10h 17 4100

SWC, aligned by Milde et al . [127] SW 285h 363 171380
M-ailabs MA 237h 29 118521

Common Voice CV 319h 4852 279516
SWC, aligned by CTC segmentation SW* 210h 363 78214

Librivox, aligned by CTC segmentation LV* 804h 251 368532

1. Milde Selection: Milde et al . [127] curated a dataset by integrating Tuda-DE, SWC,
and M-AILABS. This culminated in 649 hours of speech data. Notably, recordings
from Tuda-DE made with the Realtek microphone were intentionally omitted, a
decision that is mirrored in this study as well. Speech data of the SWC in this
selection was aligned with the Viterbi algorithm of the Sphinx toolkit [113].

2. CommonVoice Inclusion: This selection extends the dataset to 968 hours by further
including the CommonVoice dataset. During the preprocessing phase, any numbers
found in the CommonVoice annotations were converted into their spoken form.

3. Re-aligned Selection: The most extensive selection, this dataset amounts to 1460
hours. It includes re-aligned SWC and LibriVox datasets acquired through CTC
segmentation, alongside Tuda-DE and CommonVoice. Post CTC segmentation, the
duration of SWC data reduced from 285 hours to 210 hours. This reduction was
a result of filtering out poorly aligned or incorrect sentences. Bad or misaligned
sentences were filtered out using the confidence score sseg with a threshold of −1.5
in log space, selecting utterances with a minimum average production probability
of at least 0.22 per second. Notably, since M-AILABS partially originates from
LibriVox, this selection replaces M-AILABS with LibriVox. For the alignment
process, the original LibriVox text was fetched on a chapter-by-chapter basis from
Project Gutenberg-DE [75] and subsequently processed as outlined in Section 6.3.2.
In the same manner as with the SWC corpus, LibriVox utterances are also filtered
with a confidence score threshold of −1.5.

6.3.4 Training Results and Evaluation

Benchmarking across the different training set selections is done on end-to-end Trans-
former ASR networks of the ESPnet toolkit. All models were trained for 23 epochs and
without data augmentation such as SpecAugment. The Transformer model has a 12-layer
encoder and a 6-layer decoder, each with 2048 units per layer. Attention blocks feature
4 heads, with each having 256 units. Two multi-layer LSTM language models assist the
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Table 6.5: WER on training sets composed of existing and re-aligned datasets. In a comparison
of the TDNN-HMM models with the end-to-end Transformer models, the Transformer models
achieve better performance but with more training data.

Datasets
ASR model LM

Tuda-DE
Training Datasets h dev test

TD + SW [127] 412 TDNN-HMM 4-gram KN 15.3 16.5
TD + SW [127] 412 TDNN-HMM LSTM (2× 1024) 13.1 14.4
TD + SW + MA [127] 649 TDNN-HMM 4-gram KN 14.8 15.9

TD + SW + MA 649 Transformer RNNLM (2× 650) 16.4 17.2
TD + SW + MA + CV 986 Transformer RNNLM (2× 650) 16.0 17.1
TD + SW + MA + CV 986 Transformer RNNLM (4× 1024) 14.1 15.2
TD + SW* + LV* + CV 1460 Transformer None 19.3 19.7
TD + SW* + LV* + CV 1460 Transformer RNNLM (2× 650) 14.3 14.9
TD + SW* + LV* + CV 1460 Transformer RNNLM (4× 1024) 12.3 12.8

ASR model at decoding: A two-layer LSTM with 650 units per layer and a perplexity of
8.53 and a four-layer LSTM with 1024 units per layer and a perplexity of 6.46.

The obtained results are compared to the results of Milde et al . [127], using a TDNN-
HMM acoustic model in combination with a 4-gram language model with Kneser-Ney
(KN [105]) smoothing or an LSTM language model.

Table 6.5 shows the ASR performance on the Tuda-DE benchmark of model trained
on different training set selections. On the first dataset selection, the TDNN-HMM
model trained decoded the Tuda-DE test set with a WER of 15.9, while the end-to-end
Transformer model scored a higher WER of 17.2. The Transformer model surpassed the
TDNN-HMM with a WER of 15.2 on the second selection that additionally included
CommonVoice and used the larger language model for decoding. The largest selection
with the re-aligned SWC and LibriVox further improved the WER to 12.8.

Using a language model with higher accuracy also significantly improves the WER.
The was reduced from 19.7 to 14.9 with the small language model, and ultimately reduced
to 12.8 with the large language model. Here, the language model improvement originates
from better recognition of German words and grammar forms. Especially compounding
poses a challenge for ASR systems [127]; recognizing two words instead of the compound
word results in at least two word errors. For example, the falsely recognized compound
“Tunneleinfahrt” is decoded as “Tunnel ein fahrt” that results in one substitution and
two insertion errors. A comparable observation regarding end-to-end models was reported
by Boyer et al . in their study on the French language [22].

To what extent does additional training data improve the performance of the end-to-
end ASR system? As shown in Table 6.5, adding the CommonVoice dataset with 319h
of audio to the first selection barely improved the performance, i.e., the WER decreased
from 17.2 to 17.1 when decoding with the small language model. The third selection
replaced the SWC and the M-ailabs corpora with the re-aligned SWC and LibriVox
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datasets to a total of 1460h of audio. This step considerably improved the WER from
17.1 to 14.9, or, from 15.2 to 12.8 with the large language model, which can be attributed
to the increased amount of training data and more accurate utterance alignments using
CTC segmentation.

6.4 Construction of JTubeSpeech - a Large Japanese

Corpus

This section describes the construction of a corpus from YouTube videos and subtitles for
speech recognition using CTC segmentation. The method utilized for this construction
is CTC segmentation, which not only aligns the transcriptions but also serves as a tool
for evaluating the fit of the transcription to the audio.

The construction of JTubeSpeech [21†], the largest publicly available Japanese dataset,
follows this approach. It is a non-English speech dataset that has been generated through
crawling YouTube for audio-text pairs. The subtitles are aligned with the audio using a
CTC-based ASR model and CTC segmentation, which calculates a confidence score to
filter the audio-text pairs. This method does only require very little language-dependent
pre-processing, thanks to the end-to-end ASR framework. JTubeSpeech consistently
employs techniques that only require a pre-trained CTC-based ASR model, resulting in a
large-scale Japanese ASR benchmark with over 1300 hours of data. While JTubeSpeech
also provides a data collection for speaker verification, this section focuses on the aspects
of speech recognition and data cleansing using CTC segmentation.

6.4.1 Text-Audio Mismatches of the Scraped Data

The subtitles to the videos provided on the Youtube platform are often not synchronous
with the audio track or mismatch with the subtitle text.

These mismatches can take various forms, such as subtitles written in a language
different from the audio, inaccuracies in transcriptions resulting from volunteer contri-
butions or automatic speech recognition systems, and subtitles that do not correspond
to the speech at all, such as speaking notes, commentary, or annotations. Some auto-
matically generated subtitles are highly repetitive, such as annotations of the clock time.
Additionally, there are many cases where the subtitles are correct, but the timestamps
are misaligned.

As a result of these inconsistencies, the reliability of the subtitles and transcriptions
obtained from the platform is limited, and thus, processing steps are necessary that
realign the text to speech and filter out misaligned subtitles.

6.4.2 Related Work on Corpus Construction

Constructing a speech corpus is labor-intensive, encompassing data acquisition, audio
segmentation, and defining training sets. Early work on this problem was done by
Macherey et al . [121] who automated this process for news broadcasts using HMMs and a
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discriminatively trained segmenter. This segmenter differentiates between noise, speech,
and music, using Markov networks and Gaussian mixtures for probability modeling. By
segmenting audio and ensuring sentence-wise cutting, they facilitate training corpus
creation and transcription verification with minimal manual effort, even with only
preliminary textual transcriptions.

Gigaspeech [32] is an English speech recognition dataset composed of 10, 000 hours
of audio-transcription pairs crawled from the internet, including YouTube videos with
manually-generated subtitles. The team normalized the text by normalizing cases,
removing special symbols, and converting numbers and dates/times to words. Audio
and text alignment was executed using DNN/HMM ASR via the Kaldi toolkit and by
the Smith–Waterman algorithm.

In a similar work, Elfeky et al . created an extensive corpus comprising 162, 000
hours of speech sourced from YouTube videos and other sources [57]. They employed an
HMM-based method combined with an LSTM acoustic model for data alignment.

In “The People’s Speech” by Galvez et al . [62], the researchers used a two-step data
filtering process with both hybrid DNN/HMM and end-to-end ASR systems. Out of the
initial 52, 500 hours of audio, 31, 400 hours remained post-cleaning. They employed forced
alignment for transcript correction and timestamping, and partitioned the hypothesis
transcripts into 15-second chunks for DSAlign. This method faced challenges with
text-audio mismatches and lengthy audio files (up to 13.4 hours). DSAlign outperformed
traditional aligners but struggled with descriptive and translated text. Due to DSAlign’s
extensive runtime for unmatched segments, a 200-second timeout was set. If the character
error rate (CER) between the ground truth and the aligned transcript exceeded 50%,
the segment was excluded.

6.4.3 Comparison to Related Corpora

Table 6.6 shows a comparison with the existing corpora. From the approximately 10, 000
hours of crawled subtitled audio data, roughly 1, 300 hours of clean speech audio was
selected using the confidence score threshold θ = −0.3. The JTubeSpeech corpus has a
similar size compared to the LaboroTVspeech (Japanese) and CommonVoice (English).
The duration of the JTubeSpeech corpus does not include all collected data, but the
subset that was selected by the data cleansing described in Section 6.4.8.

JTubeSpeech also includes a subset of utterances for speaker verification, e.g., selected
utterances with only single speakers. However, this is not subject of this thesis; the dataset
composition and evaluation for this task is described in the JTubeSpeech paper [21†].

6.4.4 Obtaining Speech Data

JTubeSpeech uses Youtube as source for speech data. The online video platform Youtube
offers a vast and diverse collection of videos, including those with accompanying subtitles.
The acquisition of audio and subtitles is facilitated through the utilization of web scraping
techniques.
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Table 6.6: A comparison of speech corpora of Japanese, English and Chinese based on their
source and duration. While approximately 10, 000 hours of audio was crawled from Youtube
for the JTubeSpeech corpus, the selected clean utterances include 1, 300 hours of speech data.

Language Corpus Source Duration[h]

Japanese JNAS [94] In-house recording 90
Japanese CSJ [122] Conference talk 600
Japanese LaboroTVspeech [7] Broadcast TV 2,000
Japanese Common Voice (ja) [8] Web-based recording 2
Japanese JTubeSpeech YouTube 1,300

English Librispeech [138] Web-based recording 982
English Common Voice (en) [8] Web-based recording 1,100
English SPGISpeech [133] Earnings calls 5,000
English GigaSpeech [32] Web crawl 10,000

Chinese Common Voice (cn) [8] Web-based recording 12
Chinese HKUST [118] Telephone 200
Chinese AISHELL-2 [54] In-house recording 1,000

Data collection for JTubeSpeech took place between February and April of 2021. Out
of the 110000 analyzed YouTube videos, 0.92% had manual subtitles and 41.7% had
automatic subtitles. A total of approximately 10000 hours of speech data was obtained.
Most videos were less than 5 minutes in length, with an average duration of 3.8 minutes;
only a few videos were several hours long. In general, the utterances in the videos were
shorter than 25 seconds due to the synchronization of the subtitles with the video; a few
utterances spanned several hours due to their timestamps.

As described in Subsection 6.4.1, many subtitles are not in sync with the audio
or do not match at all. To address this, they require re-alignment and correction of
mismatches.

6.4.5 Data Cleansing

The audio data obtained came with pre-existing annotations in the form of subtitles
and timings. To improve the accuracy of the utterance timings, CTC segmentation was
applied to determine a score for the fit between the audio and subtitles. Utterances
with low scores were filtered out. In addition, due to a significant number of inaccurate
subtitle timings, a full re-alignment of the subtitles and audio was conducted.

The following steps were applied:

1. Text pre-processing: Minimal text pre-processing was performed to ensure that
the ground truth text obtained from subtitles consisted of characters or tokens
in the model dictionary. Numbers were replaced with their spoken equivalent
using the “num2words” Python library [55]. Repetitive automated subtitles were
detected and filtered out based on the average relative Levenshtein distance between
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subtitles.

2. Alignment: CTC segmentation was applied, with the option to skip unrelated
audio parts, as described in Subsection 6.2.2. The applied scoring length L = 30
corresponds to 0.96s of audio.

3. Cleaning: Samples with low quality were eliminated based on the CTC segmenta-
tion confidence score. For the final selection of utterances, the score threshold is
set to θ = −3.0; this can be interpreted as a production probability of the audio
sequence given the text of at least 75% each second.

6.4.6 Alignment of Long Audio Files

The alignment process necessitates the inference of audio utilizing the encoder and the
CTC layer of a pre-trained ASR model. However, the inference of the CTC model
encountered a practical limitation. The memory complexity of a Transformer-based
model displays a quadratic relationship with audio length, limiting a device with 64 GB
of memory to perform inference on no more than 500 seconds of audio. Many audio files,
however, exceed three hours in length. RNN-based models, with their relatively linear
memory complexity for longer audio data, offer a potential solution for decoding longer
files with reduced memory requirements. Yet, these models face limitations as well, with a
maximum inference capability of 2.7 hours of audio before reaching a software-dependent
memory limit imposed by the Pytorch toolkit.

To address the aforementioned limitation, long audio files are divided into smaller
segments. The CTC activations are obtained from the inference of the ASR model on
these segments. These CTC posteriors from the segments are then concatenated into a
sequence that represents the CTC posteriors of the full audio file. This sequence is then
subjected to CTC segmentation.

lcut llastlcut

lfull

loverlap

Figure 6.6: Partitioning of longer audio files to smaller parts.

As depicted in Figure 6.6, a long audio file of lfull samples is partitioned into smaller
segments, each with length lcut. The maximum length of the final segment llast may
exceed the default length lcut by up to 25% to avoid excessively short segments. In the
setup presented in this chapter, the largest audio segment comprised 320 seconds of
audio.

Furthermore, to minimize distortions during inference due to abrupt cuts in the audio,
an overlap with a duration of loverlap is added to each side of the segment. Examination
of the CTC posteriors revealed that an overlap between audio segments is necessary to
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reduce distortions and maintain an acceptable level of impact on scoring. The minimum
length of this overlap is dependent on the model, with the Transformer model used in
this study requiring a minimum of 600 milliseconds. Based on this approximate value, an
overlap of 1 second was chosen for the overlap duration. Before concatenating the inferred
posteriors of the segments, the CTC posteriors corresponding to the overlaps are removed.
To preserve timing information and maintain the correct form of the concatenated CTC
posterior tensor, all lengths were chosen as multiples of the samples–to–posteriors ratio.

6.4.7 Distribution of Confidence Scores

Two pre-trained hybrid CTC/Attention models are employed for alignment, a Conformer
model [72, 74] and an RNN model. Both models were trained on the LaboroTVspeech
corpus [7, 188], a large Japanese corpus with 2000 hours of speech data. In general, the
Transformer-based model has a better ASR performance than the RNN-based model on
the LaboroTVspeech corpus.

CTC segmentation was applied to all videos, resulting in the calculation of an average
score for each video. Videos with subtitles that did not match the audio had a very low
average score. Based on this notion, a subset of 15000 videos with the highest average
scores was selected and referred to as “top15k”. This selection filtered out videos with
poorly matching subtitles. In total, top15k comprises around 300GB in 16kHz-sampled
monaural WAV format.
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Figure 6.7: Histograms that visualize the distributions of CTC confidence scores for Transformer-
and RNN-based ASR models over all utterances of the top15k subset.

Table 6.7 shows the distribution of CTC confidence scores for the Transformer-
and for the RNN-based model. The Transformer model exhibited more spiky CTC
activations which led to higher confidence scores for well-fitting utterances in general.
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Similarly, mismatching utterances also had a lower score than with the RNN-based model.
By inspection, better ASR performance seems to correlate with more confident CTC
activations, resulting in higher scores for correct transcription-audio matches, and lower
scores for mismatches.

6.4.8 Dataset Compositions

Several ASR models were trained using selected utterances, which were determined by
filtering out utterances below a certain confidence score sseg ≥ θ. These selections were
evaluated on the hybrid CTC/attention Conformer model of the ESPnet toolkit [74].
The Conformer encoder has 12 Conformer blocks with a kernel size of 31, 512 attention
dimensions, eight attention heads, and 2048 feed-forward dimensions. The model uses a
Transformer decoder that has six blocks of eight attention heads, and 2048 feed-forward
dimensions. SpecAugment is applied as data augmentation during training. The detailed
configuration can be found in the ESPnet JTubeSpeech recipe [194].

Figure 6.8 gives an overview over the dataset composition. Several subsets were
selected, starting with videos featuring only one speaker. The d-vector [187], or encoded
speaker representation, was calculated for each recording. Recordings with multiple
speakers were omitted, and only videos with single speakers were selected. In this step,
videos with synthesized speech were also excluded due to their low d-vector variance.
This was done to create a corpus with two purposes: speech recognition and speaker
verification. The focus of this section is speech recognition; further details on the speaker
verification selection can be found in the original publication [21†].

The single speaker video set was divided into three parts in a 90% − 8% − 2%
ratio, forming the training set, evaluation set, and development set[vii], respectively.
Both the eval and the dev sets were filtered by their CTC segmentation confidence
scores sseg, each set by θ = −0.3 and θ = −1.0, resulting in an “easy” and “normal”
variant for each of them; both were manually evaluated and verified to have accurate
transcriptions. The single–speaker videos were filtered using different confidence score
thresholds θ ∈ {−0.3,−0.5,−1.0,−2.0,−3.0}, resulting in five selections of varying
sizes, ranging from 12.7 hours up to 362.0 hours of speech. Table 6.7 lists the dataset
compositions, their θ thresholds, number of videos, utterances and duration.

6.4.9 Training and Evaluation of Models with Cleaned and
Re-aligned Data

Re-aligning existing utterance alignments can improve training data and the resulting
ASR model, an approach proposed by Chen et al . [32]. The benefits of realigning
using CTC segmentation were analyzed through a comparison of two models trained on

[vii]The evaluation set is synonymous to the “test” set, that is a portion of the data set that is set
aside and used to evaluate the performance of the model after it has been trained. The “dev set” or
“development set” refers to a portion of the data set that is used to evaluate its performance during
model training, and in some cases tune the learning rate and other hyperparameters.

112



6. CTC Segmentation

Crawled
Youtube 
videos

Single-speaker
videos

Top15k 
videos

Videos filtered 
by d-vector 

variance
Eval set

Dev set

Training set

Videos sorted by 
the average CTC 

score

8%

2%

90%

Easy dev set

Normal dev set

Easy eval set

Normal eval set

Top15k training
set

θ = -1.0

θ = -1.0
θ = -0.3

θ = -0.3

θ values 
-0.3, -0.5, -1.0, 

-2.0, -3.0

θ = -3.0 Full JTubeSpeech 
training set

single-speaker
training sets

Figure 6.8: JTubeSpeech dataset overview.

Table 6.7: Various dataset selections of the JTubeSpeech corpus.

Data subset θ Videos Utterances Duration[h]

Easy dev set −0.3 110 785 0.7
Easy eval set −0.3 106 829 0.7

Normal dev set −1.0 128 1, 036 1.1
Normal eval set −1.0 129 834 0.8

Single–speaker train set −0.3 1, 297 14, 797 12.7
Single–speaker train set −0.5 1, 792 26, 209 24.2
Single–speaker train set −1.0 2, 906 66, 563 71.9
Single–speaker train set −2.0 4, 068 186, 733 227.4
Single–speaker train set −3.0 4, 342 285, 846 362.0

Top15k train set −3.0 14, 418 1, 048, 699 1087.1

Top15k + single–speaker train set −3.0 17, 761 1, 270, 124 1376.9

different text timings of the same dataset selection. In the first run, a Conformer model
was trained on the single–speaker training set filtered with a score threshold of θ = −1.0,
with 71.9 hours of data. The performance of the ASR model trained only on cleaned
data using original timings is described in Table 6.8.

In the second run, another Conformer model was trained using the same utterances
as training data, but using the original YouTube timings; the data was filtered with
a score threshold of θ = −1.0, but only by calculation of a CTC score without full
subtitle-audio alignment. This CTC score for each audio-text pair was calculated by
cutting out the audio segment of each subtitle and deriving only its confidence score.
Table 6.8 demonstrates a significant improvement in performance achieved through the
use of CTC segmentation, effectively highlighting the benefits of realigning the data.
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Table 6.8: A comparison of two Conformer models: One was trained with re-aligned and filtered
data using CTC segmentation, the other model was trained with data that had the original
utterance timings and was only filtered based on the utterance CTC scores. The model trained
on the utterance timings obtained with CTC segmentation exhibits better performance.

WER dev set eval set
easy normal easy normal

Original timings 11.5 16.5 9.2 15.7
CTC segmentation 9.2 14.3 6.9 13.6
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Conclusion

Revisiting the introductory thesis, this dissertation recognized the historical importance
of the hybrid DNN/HMM systems in the ASR domain. Yet, with the evolving inclination
towards end-to-end neural networks, specific functionalities integral to DNN/HMM
were missing in the emerging hybrid CTC/attention framework. This work identifies
and bridges the gaps related to parameter exploration, susceptibility to adversarial
noise in complex end-to-end models, continued dependence on pre-processing for fea-
ture extraction, and the utility of CTC outputs in speech alignment and automated
dataset generation. The subsequent sections revisit these contributions to the hybrid
CTC/attention framework.

7.1 Exploration of Hybrid CTC/Attention Speech

Recognition

Chapter 3 examined the hybrid CTC/attention RNN architecture’s parameter settings,
especially multi-objective configurations. Gaussian process hyperparameter optimization
was employed on the hybrid CTC/attention RNN network trained on the TED-LIUM 2
dataset. The two-stage experiment involved optimizing the end-to-end model’s hyperpa-
rameters, focusing on the hybrid CTC/attention architecture, and subsequently refining
the beam search parameters, including language model and CTC weights. Gaussian
processes enable parameter optimization by capturing function uncertainty across all
input points, fostering a balance between exploitation and exploration. This method
outperforms random brute-force searches by considering this uncertainty and has been
proven to excel in optimizing hyperparameters.

In total, 70 networks were trained and 590 beam search runs conducted. Analy-
sis revealed distinct parameter groups, with larger networks tending to have better
performance. The first group, characterized by high WER but relatively low CER,
primarily consisted of results from CTC-only decoding without a language model, often
exhibiting spelling errors or shifted word boundaries. The second group, with low WER
but relatively high CER, was associated with attention-only decoding paired with an
RNNLM language model, frequently displaying word loops and dropped utterance parts
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but mostly accurate spelling. The best performance in the experiment was achieved
using a hybrid CTC/attention decoding approach.

7.2 Adversarial Machine Learning

As models grow larger, they become more complex and also more prone to adversarial
noise. Previous research explored adversarial machine learning in CTC-based and
attention-based networks. Chapter 4 explores adversarial machine learning for the hybrid
CTC/attention architecture.

Two methods for generating adversarial noise using attention were introduced: a
static window and a sliding window. Examples generated with the sliding window exhibit
higher error rates than compared with static window or CTC-based adversarial examples.
The multi-objective construction of hybrid CTC/attention adversarial examples was
demonstrated. Subsequent adversarial training of a hybrid CTC/attention ASR network
enhanced its resilience against adversarial examples and showing improvement against
white noise. Notably, the adversarial training of an RNN model also improved its regular
speech recognition performance.

Adversarial features were converted to audio using feature inversion. Furthermore,
the reconstructed adversarial audio was MP3 compressed. It was hypothesized that MP3
compression might mitigate adversarial noise effects by eliminating inaudible sections.
Evidence supported this: MP3 compression enhanced performance on adversarial noise
samples but worsened it with regular noise. Furthermore, MP3 compression reduced the
SNR of adversarial noise on the test data.

7.3 Integrated Feature Extraction with Sinc Convo-

lutions

Most end-to-end ASR systems rely on pre-processed features. Chapter 5 proposed an
extension to the RNN-based hybrid CTC/attention ASR architecture, incorporating a
front-end for direct raw audio classification, referred to as Lightweight Sinc Convolutions
(LSC). This network architecture combines Sinc Convolutions for feature extraction with
grouped depthwise separable convolutional layers and is geared towards maintaining a
minimalistic parameter structure. Additional enhancements such as the incorporation of
log-compression as an activation function and spectral augmentation for time-based data
augmentation were also discussed. When prototyping this architecture as a keyword
spotting system, it achieved competitive performance on the Google’s Speech Commands
dataset while significantly reducing parameter count to only 62k parameters.

With the collaboration of a sizable RNN language model, the LSC model delivers
a word error rate of 10.7%, marking an absolute improvement of 1.9% over the best
performing model utilizing the corresponding f-Bank architecture, while containing
merely 21% of the model size of the latter. Given that the model processing raw audio is
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smaller yet exhibits superior speech recognition performance, the improvement on the
WER can be attributed to the Sinc filters and depthwise convolutions.

7.4 Text-to-audio Alignment using CTC Segmenta-

tion

End-to-end ASR systems often demand more training data compared to traditional
DNN/HMM configurations, especially as they evolve in depth, complexity, and parameter
count. Chapter 6 demonstrated the ability of a pre-trained hybrid CTC/attention model
to leverage its CTC output for aligning text with corresponding audio.

This method, termed CTC segmentation, can be employed to automatically generate
labeled speech datasets by extracting utterances along with their precise time-based
alignments. Therefore, alignment does not require a separate HMM-based acoustic model,
and any CTC-trained model is compatible with CTC segmentation. The alignment
accuracy was assessed using the manually labeled TED-LIUM 2 dataset and compared
with the alignments from conventional DNN/HMM systems. In a comparison, alignments
from CTC segmentation are closer to the manually labeled ground truth than alignments
generated with DTW- and HMM-based tools.

Furthermore, CTC segmentation provides a confidence metric indicating the con-
gruence of each utterance to its associated audio segment. This metric is instrumental
in filtering out inaccuracies, making it a valuable tool for automated dataset creation.
Expanding on this, the latter half of the chapter describes the creation of two distinct
speech datasets: one in German, derived from openly accessible audiobooks, and another
in Japanese, sourced from Youtube videos. The latter was constructed using an almost
language-agnostic approach requiring only minimal text preprocessing.
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and C. Biemann. Open Source German Distant Speech Recognition: Corpus and
Acoustic Model. In P. Král and V. Matoušek, editors, International Conference on
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