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Abstract

The rapid growth in population is putting a lot of pressure on the environment in terms
of the demand for additional infrastructure, food and water, healthcare, schools, etc.
A thorough understanding of current population distribution and future forecasts could
support the government in many decision-making processes involving urban planning
and policies, effectively allocating socio-technical supply and ensuring a good standard of
living for all. The traditional method of collecting population data is through the census,
in which the population data is collected and compiled across the census units. However,
it is expensive, time-consuming and results in low spatial resolution population data.
Alternatively, statistical and machine-learning methods have become more prevalent
in population estimation studies to develop more up-to-date and spatially improved
population data.

Despite these advancements, a thorough literature study undertaken as part of this
Ph.D. research indicated that the majority of existing large-scale gridded products dis-
aggregate known census counts to grids. Therefore, their accuracy is dependent on the
quality of the census data. Other approaches that could predict the population in ad-
dition to population disaggregation are typically based on regional data obtained from
a few cities. This limits their transferability to a different geographical region. The
application of deep learning approaches in population estimation enables more efficient
population maps. Nevertheless, due to the blackbox nature of these models, understand-
ing and explaining their findings, as well as revealing the key features employed by the
model to obtain its outcome, becomes critical. The resolution of the population data
sets continues to be a challenge in various disciplines that demand high spatial-resolution
population data such as infectious disease containment or disaster management. Over-
all, it has been determined that the constraints observed in population estimating stud-
ies are either a) due to the unavailability of large-scale data sets, b) transferable and
interpretable methods, and c) enhancements in the spatial resolution of the existing
population data.

In this context, this Ph.D. thesis investigates the various input data sources that
correlate well with the population and creates a large-scale benchmark data set for
population estimation using publicly available data sets. This data collection would aid
in overcoming the limitation a) described above. It will be a valuable addition to the
current literature and research community for developing new sophisticated methods in
population estimation studies and comparing various approaches established utilizing
regional data sets.

Using this data set, an end-to-end deep learning-based framework is developed that
predicts the population rather than population disaggregation. Since the method can
infer the population even in the absence of census data and only uses openly avail-
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able large-scale data sets, it is easily transferable. To assess the method’s performance,
a comparison with another community standard product is performed for a few cities
in Europe and the United States. And to further promote the trustworthiness of the
method, an explainable AI technique is employed to unwire the blackbox model and
comprehend its performance and limitations. These methods help to identify the im-
portant features that the model employed to reach its decision. The emphasis is on the
method’s accuracy, its transferability and interpretability to address the limitation b).

Finally, this thesis focuses on improving the resolution of the population data and
thus addresses limitation c) from above. It employs a hybrid deep learning approach
that generates gridded population maps and then disaggregates the estimated population
counts to buildings, resulting in building level population maps. This study integrates
the building data, such as building functions, building areas, and heights, to improve
the accuracy and resolution of the population estimates. It also conducts a qualitative
comparison of building data sets gathered from publicly accessible large-scale sources
and regional open-access administrative sources, as well as examines how data quality
impacts population estimation on a fine scale.
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Zusammenfassung

Das rasche Bevölkerungswachstum setzt die Umwelt stark unter Druck. durch den Be-
darf an zusätzlicher Infrastruktur, Nahrung undWasser, Gesundheitsversorgung, Schulen
usw. Ein gründliches Verständnis der aktuellen Bevölkerungsverteilung und der zukünfti-
gen Prognosen könnte die Regierung bei vielen Entscheidungsprozessen in der Stadtpla-
nung und -politik unterstützen der Stadtplanung und -politik, der effektiven Verteilung
des soziotechnischen Angebots und der Gewährleistung eines guten Lebensstandards für
alle Lebensstandard für alle. Die traditionelle Methode zur Erhebung von Bevölkerungsd-
aten ist die Volkszählung, bei der die Bevölkerungsdaten in den einzelnen Volkszählungse-
inheiten gesammelt und zusammengestellt werden. Allerdings, Sie ist jedoch teuer,
zeitaufwändig und führt zu Bevölkerungsdaten mit geringer räumlicher Auflösung. Al-
ternativ dazu haben sich statistische und maschinelle Lernmethoden durchgesetzt in Stu-
dien zur Bevöl-kerungsschätzung durchgesetzt, um aktuellere und räumlich verbesserte
Bevölkerungsda-ten zu entwickeln.

Trotz dieser Fortschritte hat eine gründliche Literaturstudie, die im Rahmen dieser
Doktorarbeit durchgeführt wurde, gezeigt, dass die Mehrheit der bestehenden groß an-
gelegten, gerasterten Produkte die bekannten Volkszählungsdaten in Raster aufschlüsselt.
Daher hängt ihre Genauigkeit von der Qualität der Volkszählungsdaten ab. Andere
Ansätze, die die Bevölkerung zusätzlich zur Bevölkerungsdisaggregation vorhersagen
könnten, basieren in der Regel auf regionalen Daten, die von einigen wenigen Städten
stammen. Dies schränkt ihre Übertragbarkeit auf eine andere geografische Region ein.
Die Anwendung von Deep Learning-Ansätzen bei der Bevölkerungsschätzung ermöglicht
effizientere Bevölkerungskarten. Aufgrund des Blackbox-Charakters dieser Modelle ist es
jedoch von entscheidender Bedeutung, ihre Ergebnisse zu verstehen und zu erklären sowie
die Schlüsselmerkmale aufzudecken, die das Modell verwendet, um sein Ergebnis zu erzie-
len. Die Auflösung der Bevölkerungsdatensätze ist nach wie vor eine Herausforderung
in verschiedenen Disziplinen, die Bevölkerungsdaten mit hoher räumlicher Auflösung
erfordern, wie etwa die Eindämmung von Infektionskrankheiten oder das Katastrophen-
management. Insgesamt wurde festgestellt, dass die bei Bevölkerungsschätzungsstudien
beobachteten Einschränkungen entweder a) auf die Nichtverfügbarkeit großer Datensätze,
b) auf übertragbare und interpretierbare Methoden und c) auf Verbesserungen der
räumlichen Auflösung der vorhandenen Bevölkerungsdaten zurückzuführen sind.

In diesem Zusammenhang untersucht diese Doktorarbeit die verschiedenen Eingangs-
datenquellen, die gut mit der Bevölkerung korrelieren, und erstellt einen groß angelegten
Benchmark-Datensatz für Bevölkerungsschätzungen unter Verwendung öffentlich verfüg-
barer Datensätze. Diese Datensammlung würde dazu beitragen, die oben beschriebene
Einschränkung a) zu überwinden. Sie wird eine wertvolle Ergänzung der aktuellen
Literatur und der Forschungsgemeinschaft sein, um neue anspruchsvolle Methoden für
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Bevölkerungsschätzungsstudien zu entwickeln und verschiedene Ansätze zu vergleichen,
die unter Verwendung regionaler Datensätze entwickelt wurden.

Unter Verwendung dieses Datensatzes wird ein auf Deep Learning basierendes End-to-
End-Rahmenwerk entwickelt, das die Bevölkerung vorhersagt und nicht die Bevölkerungs
disaggregation. Da die Methode die Bevölkerung auch ohne Volkszählungsdaten ableiten
kann und nur offen zugängliche, groß angelegte Datensätze verwendet, ist sie leicht
übertragbar. Um die Leistung der Methode zu bewerten, wird ein Vergleich mit einem
anderen Community-Standardprodukt für einige Städte in Europa und den Vereinigten
Staaten durchgeführt. Und um die Vertrauenswürdigkeit der Methode weiter zu fördern,
wird eine erklärbare KI-Technik eingesetzt, um das Blackbox-Modell zu entschlüsseln
und seine Leistung und Grenzen zu verstehen. Diese Methoden helfen dabei, die wichti-
gen Merkmale zu identifizieren, die das Modell für seine Entscheidung verwendet hat.
Der Schwerpunkt liegt dabei auf der Genauigkeit der Methode, ihrer Übertragbarkeit
und Interpretierbarkeit, um die Einschränkung b) zu beheben.
Schließlich konzentriert sich diese Arbeit auf die Verbesserung der Auflösung der Popu-

lationsdaten und geht damit die oben genannte Einschränkung c) an. Sie verwendet einen
hybriden Deep-Learning-Ansatz, der gerasterte Bevölkerungskarten erzeugt und dann die
geschätzten Bevölkerungszahlen auf Gebäude aufschlüsselt, was zu Bevölkerungskarten
auf Gebäudeebene führt. Diese Studie integriert die Gebäudedaten, wie Gebäudefunktio-
nen, Gebäudeflächen und -höhen, um die Genauigkeit und Auflösung der Bevölkerungssc-
hätzungen zu verbessern. Sie führt auch einen qualitativen Vergleich von Gebäudedaten-
sätzen durch, die aus öffentlich zugänglichen, groß angelegten Quellen und regionalen,
frei zugänglichen administrativen Quellen stammen, und untersucht, wie sich die Daten-
qualität auf die Bevölkerungsschätzung auf feiner Ebene auswirkt.
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being my mentor and for his constant encouragement and insightful feedback. Next,
I would like to thank Prof. Monika Kuffer for serving as an external examiner on my
thesis committee and Prof. Dr. rer. nat. Martin Werner for acting as the chair of my
doctoral defense. I appreciate their interest and effort in reviewing and examining this
thesis.
Throughout my Ph.D. research, I was fortunate to collaborate with smart and dedi-

cated individuals from a variety of disciplines. I am thankful to my colleagues at TUM
SiPEO and DLR’s IMF DAS departments for enhancing my Ph.D. life by exchanging
great ideas during post-lunch walks, coffee breaks, virtual meetup and chit-chat during
the pandemic. Special thanks to Dr. Andres Camero Unzueta for consistently organiz-
ing the opportunities to present and discuss the ideas within DLR. In the event of any
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1 Introduction

The world’s population exceeded 8 billion in 2022, followed by 9.7 billion in 2050 [7].
Due to this rapid population growth, the proportion of the world’s population living in
urban areas is expanding dramatically [8]. This worldwide emerging trend of urbaniza-
tion is changing the world, while new megacities are emerging in developing countries,
some cities in Eastern Europe, including Poland, Romania, the Russian Federation, and
Ukraine, are seeing population declines [8]. As seen in Figure 1.1, 70% of the world’s
urban population presently resides in developing nations and the percentage will rise
to 80% by 2050 if the current trend holds. On the other side, the global urban pop-
ulation is declining in urbanized developed nations [1, 9]. A strategic response to this
unprecedented urban population growth is imperative for humankind.

Figure 1.1: Percent Urban vs. Percent of Global Urban Population in developed and developing
countries for the years 2007 and 2050 [1].
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1 Introduction

1.1 Motivation

Cities’ population growth has changed as they have grown. This momentum of pop-
ulation growth puts a lot of pressure on the environment, particularly because of the
increased demand for food, water, infrastructure, health facilities, and other resources. In
2015, the United Nations (UN) adopted 17 Sustainable Development Goals (SDGs) [10]
to protect the planet and ensure good health, basic facilities, and prosperity for every-
one. Population growth directly impacts the SDGs and could pose hurdles in achieving
them. However, a good understanding of population distribution and projection could
aid their accomplishment. Population estimation and distribution is crucial to many
other disciplines, such as managing catastrophes, disease control, civil protection, etc.,
and influence a government’s policy-making, planning, and fund allocation [4]. The na-
tional census has traditionally been undertaken to obtain population count, distribution,
and demographic information. The government has extensively used this data to pre-
pare for a region’s future and essential services. Census data is generally collected once
every decade, and in certain nations, once every few decades [11, 12]. Particularly in
low-income nations with erratic governments, where the population is expanding quickly
and unevenly, it becomes extremely difficult to conduct the national cenus [12]. For ex-
ample, the first and only national census in Afghanistan was conducted in 1979 and due
to security reasons, only 67% of districts were covered [12]. The fast population growth
rate means these estimates could be incomplete and outdated by a decade or possibly
sooner. Furthermore, census enumeration zones limit the spatial resolution of population
distribution, making it unsuitable for use in some applications such as earthquakes and
floods [13]. Another challenge is the cost-effectiveness of the complete census process.
The U.S. Census Bureau estimated the 2020 census cost around $14.2 billion [14]. Ac-
cording to the United Nations Population Fund (UNPF), “censuses are one of the most
complex and massive peacetime exercises a nation undertakes” [15].

Remote sensing techniques, particularly optical satellite images, have grown in popu-
larity recently and are an important independent source of data for studying population
disaggregation and, more importantly, population prediction. More precise and rapid
population estimation has been rendered possible by the availability of high-resolution
satellite images and an upsurge in machine learning techniques [16, 17, 18, 19]. However,
the actual ground truth data often do not exist [16]. As a result, most approaches have
yet to be tested on a large-scale and instead have been built using data from only a few
cities. Across all regions, they are lacking in sustainability and external review. Only a
few studies have compared their estimations with the other population products [20, 21],
however, the census data must be gathered and processed for these investigations. As
a result, it is challenging and time-consuming to replicate the findings or contrast the
methodologies [4].

Therefore, this thesis aims to develop a large-scale population estimation data set and
fine-resolution population estimation framework that solely employs publicly available
data sets to estimate the population on a large-scale with unparalleled quality.
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1.2 Objectives

To accomplish the above-mentioned overall objective of this research, the following in-
dividual goals are noted:

• Population Estimation Data Set: This dissertation shall provide a large-scale
population estimation benchmark data set created from publicly available data
sets. This data set would save the cost of gathering and processing a new data set
to develop and validate the methods in this domain. It would pave the way for the
development of powerful statistical and machine-learning methods for population
estimation. It would also lay the foundation for future research into a variety of
additional urban related applications.

• Deep Learning for population estimation: This dissertation aims to design a
deep learning method that only uses openly available Earth Observation (EO) data
for population estimation. The method should improve the accuracy of the state-
of-the-art large-scale gridded population products. Additionally, explainable AI
methods are utilized to enhance the transparency and confidence of the proposed
model.

• Building level population estimation: Additionally, this dissertation aims to
improve the resolution of the existing population products by proposing a method
for mapping the population to individual buildings using only the open-access
data set. The approach is being developed and evaluated in two rapidly expanding
Bavarian cities. This work also investigates and compares the suitability of regional
vs. large-scale open-access data sets for fine-scale population estimation.

1.3 Structure of Thesis

While this chapter highlighted the need for population estimation as well as the the-
sis’ objectives, the next chapter, Chapter 2, gives background information that aids in
comprehending the fundamentals of population estimation methods and deep learning.
Using this information, Chapter 3 provides a summary of related research in the areas
of population estimation, existing population products, remote sensing, and machine
learning in urban environments. Our benchmark data set for population estimation is
introduced in Chapter 4. The deep learning techniques for reliable, large-scale popula-
tion estimation using Earth observation data are described in Chapter 5. In Chapter 6,
a study for estimating the population at the building level is provided. The techniques,
outcomes, and opportunities for further research are discussed in Chapter7.

3





2 Fundamentals

This chapter provides an overview of the methods employed in this thesis. It begins
with an overview of remote sensing and its applications in urban environments. Following
that, population estimation methods are discussed. Finally, the deep learning approaches
employed in this study are described.

2.1 Remote Sensing in Urban environment

For the majority of us, the word ‘remote sensing’ brings up the images from satellites.
However, it is more than that. In an environmental context, it usually refers to a process
of collecting electromagnetic radiation from distant objects, be it on the Earth’s surface,
oceans, or atmosphere and then analyzing its physical characteristics [22, 23]. The two
main categories are active and passive remote sensing. In active remote sensing, the
sensor directs its own radiation at the target and captures the radiation that is reflected
from the surface. These sensors are important, for example, to assess the topography of
the sea surface, ice, precipitation, and winds, among other things, and have the ability to
penetrate the atmosphere under most circumstances. Synthetic Aperture Radar (SAR)
systems like Sentinel-1 [24] and Light Detection and Ranging (LiDAR) sensors are typical
examples of active systems. In passive remote sensing, electromagnetic radiation is
sourced from surface reflections of the sun or ground-based emissions such as thermal
or night lights, etc., and is measured by detectors on a remote sensing platform [22].
These sensors could gauge physical characteristics like vegetation characteristics, cloud
and aerosol characteristics, land and sea surface temperatures, and more [25]. The
Sentinel-2 [26] and Landsat [27] optical satellites are two popular examples that work
passively.
The majority of remote sensing data consists of digital images acquired by active and

passive sensors. A digital image comprises of a two-dimensional array of discrete pixels,
each of which has an intensity value and a geographical address. In terms of computer
science, a pixel’s intensity is a numerical value representing the physical amount mea-
sured over the entire ground area that the pixel is covering. A pixel’s logical address is
a one-to-one relationship between its column-row address and the location’s coordinates
(such as longitude and latitude) [28]. Therefore, each pixel is associated with a specific
geographic area on the ground, and this measurement of the geographic area on the
ground that a pixel represents [29] is known as spatial resolution or ground sample dis-
tance (GSD). For instance, Landsat-7 [30] acquires imagery at a 15m resolution, which
means that each pixel in its imagery corresponds to a 15 × 15 m grid cell on the ground
[31]. The higher the spatial resolution of the imagery, the smaller the area it covers on
the ground and the better its ability to discriminate between objects.
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The physical characteristics of objects on Earth determined from remote sensing data
could be used in a variety of research areas, including sustainable development [32], nat-
ural hazards research [33], environmental study [34], the impact of climate change [35],
and land use mapping [36], among many others. Remote sensing could be utilized in
urban settings to monitor and manage the urban environment, supporting the planning
processes for resilient and sustainable cities. High-resolution imagery from Earth obser-
vation satellites, for example, could aid in the identification, monitoring, and capture of
a variety of urban environmental variables [37], the morphology of formal and informal
urban settlements [38], detect the presence of human settlement [39], and so on. This
information is critical for estimating urban population and contributing to achieving the
UN’s sustainability goals. Following the increase in remote sensing data, new methods
especially deep learning algorithms are becoming more accepted in the field of urban re-
mote sensing [40, 41, 42]. More information and insights into deep learning are provided
in section 2.3.

2.2 Population estimation techniques

A population estimate calculates the number of people living in a census or administra-
tive unit. The population has traditionally been measured through a national census.
Censuses have a long history, dating back to 3800 BC when they were first used to count
the number of people, cattle, quantities of butter, honey, milk, wool, and vegetables, to
the modern population census, which took place in Canada in the years 1665-1666 [43].
Aside from the primary goal of giving a total enumeration of a nation’s population, it
also provides critical information on its spatial distribution, age and gender structure,
and other vital social and economic features [44]. Population estimation is sometimes
mistaken for population projection. Population projection predicts the future population
size based on multiple factors such as current population count, the other population
growth metrics such as the birth and mortality rate, immigration, and urbanization, etc.
[45].

Census data is often provided at the aggregated level to protect people’s privacy, which
is typically an administrative unit [46]. Hence, the data quality depends on the num-
ber and size of administrative units, which vary significantly across and within nations.
Because of this lack of consistency, census data cannot be readily integrated with other
data sets and used in large-scale analyses. Alternatively, much work has been done to
convert vector-based census data to grids with uniform spatial resolution [47] using an
interpolation algorithm. It has two key advantages: first, it makes it simple to inte-
grate population data with other geospatial data, and second, it makes population data
comparable and uniform across regions. Interpolation algorithms usually translate the
data from coarse, high-level geographic areas to consistent fine-scale or areas with com-
parable scales but different boundaries [48]. The accuracy of the interpolation method
is determined by the relative size and homogeneity of the two zonal sets, the method’s
generalization, and the correlation between the variables used, among other factors [49].
Many studies used the areal interpolation method for population estimation. Areal in-
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terpolation is the process of making estimations from one spatial unit, the source zone
(known values), to another, known as the target zone (unknown values) [50]. Areal in-
terpolation algorithms are further classified into two types based on whether auxiliary
information is employed [49] or not for the interpolation.

Areal Interpolation without Ancillary Information: It is an interpolation method used
when population data from the source zone is available, and there are no constraints for
its spatial reallocation into the target zones [51]. The areas of intersection between
the source zone and the target zone are used to proportionally reallocate the population
counts from the source units to target units [50]. It keeps the population count or volume
preserved, which implies that the aggregate of population counts from all target units
equals the original population total of the source unit. One drawback is that it makes an
assumption that is rarely true in reality: geographic homogeneity, which means that the
same number of persons would be assigned to each target unit inside a source unit [52].
Since the interpolation is based only on the geometric properties of the source and target
zone, therefore, its quality depends on the accuracy and spatial resolution of the source
zone population data [53, 54]. However, in the lack of auxiliary information, it is still
a viable option and could be easily integrated with other geospatial data sets without
restrictions [55]. Figure 2.1(a) depicts areal interpolation without the use of auxiliary
data, in which the population counts from the source zones are uniformly redistributed
to the target zones, assuming spatial homogeneity.

Areal Interpolation with Ancillary Information: This method tries to overcome the
limitation of the areal weighting by using an auxiliary layer that constrains how source
zone data is allocated to the target zone. A correlation between the additional ancillary
data and the information being interpolated results in a more accurate allocation and
depiction of the real distribution [56]. The population allocation within target zones is
generally guided by remote sensing data such as satellite imagery, digital surface models,
night lights, land use and land cover data, other socioeconomic characteristics and more,
which significantly correspond with the population. Figure 2.1(b) depicts the impervious
layer in the middle being utilized as auxiliary data to mask out the unpopulated target
cells (water and road) and distribute the population counts to the rest of the target
zones depending on their residential proportions. Despite the fact that this mapping
might offer a more spatially informed interpolation, the application of such methodolo-
gies places additional demands on the availability of ancillary data [57]. However, the
availability of publicly accessible new forms of data, such as volunteered geographic in-
formation and social media data, opens up fresh opportunities for performing informed
areal interpolation [48]. One of the most used interpolation methods using ancillary
information is dasymetric mapping [46] and based on the modeling technique, it could
be further divided into two categories: binary and intelligent dasymetric mapping [58].

Binary dasymetric mapping [59] is a basic method that divides a source zone into two
zones, usually populated and unpopulated. The binary layers that are widely used
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include water bodies, natural or protected areas, build-up regions that mask out the
unpopulated zones and all of the source zone population is assigned to the populated
areas. A major disadvantage of this strategy is that it allocates the people equally to all
populated regions, whether rural or urban, and there will be no population allocation
if the populated area is misclassified, which will have an impact on the quality of the
population distribution.

Intelligent dasymetric mapping [60] uses one or more ancillary data to calculate a
weighted layer that determines how much population to allocate to each grid cell within
a source zone. These weights reflect the correlation between population counts and
geospatial data. While preserving volume, it allocates population counts to target cells
in a heterogeneous manner, resulting in more realistic spatial and accurate distributions
[61]. Usually, this complex relationship is modeled using a variety of statistical [62] and
machine-learning methods [63]. Currently, deep learning approaches [16, 18] are being
utilized to automatically identify abstract features from auxiliary data and optimize the
dasymetric distribution of the population from source zones to target zones. The com-
plexity rises as more variables are incorporated. As a result, it’s crucial to use the right
ancillary data when choosing population spatial distribution indicators [58].

2.3 Deep Learning

Deep learning is a subfield of machine learning that is motivated by the structure of
a human brain. It automatically extracts the low and high-level features to learn the
multiple levels of representations [64]. Recently, they have been great success and used in
various fields such as healthcare [65, 66], natural language processing [67, 68], self-driving
cars [69, 70], virtual assistants [71], and many more.

Computer vision is one of the most well-known fields where deep learning techniques
are successful. It has been employed on various computer vision tasks, including semantic
segmentation [72, 73], pose estimation [74, 75], face recognition [76, 77], and object
detection [78, 79]. With the increased availability of data and computational resources,
deep learning is finally taking off in remote sensing as well. The handcrafted geometrical
and textural aspects of the images were not as robust in traditional remote sensing
methodologies [80]. As a result, deep learning has proven to be a novel and intriguing
method for handling large-scale raw big data in remote sensing applications [40, 41, 81].

While the majority of deep learning methods are well known for classification or de-
tection tasks, most remote sensing problems aim to predict continuous values [40]. The
deep learning architectures used for classification typically have numerous convolutional
layers, often followed by a few fully connected layers and a classification softmax layer
[82]. The overall architecture is referred to as a Convolutional Neural Network (CNN).
For regression analysis, a fully connected regression layer with linear or sigmoid activa-
tions is frequently used instead of the softmax layer [82]. A brief overview of the basic
components of neural networks is presented in the following section. More theoretical
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Figure 2.1: population mapped from source to target zones (a) without any ancillary data
and assuming an equal distribution to all the target zones (b) with ancillary data,
the impervious layer in the middle indicates the unpopulated (water and road)
and populated cells with residential proportions. This information is used for the
weighted redistribution of population counts from source to target zones.

details about deep learning can be found in Goodfellow et al. [83]. Next, discussed the
state-of-the-art deep architectures used in this work.

2.3.1 Components of Neural Network

2.3.1.1 Layers

Convolutional Layer: Our visual cortex served as inspiration for a convolutional layer.
It utilizes various filters to slide over the whole input image to generate a feature map. A
model can extract and learn the underlying features from a previous input by employing
a number of these filters. Filters in the first layers detect simple features, and as the
network progresses, filters may detect increasingly complex features. The convolution
operation is a critical component of deep learning architectures.

Fully connected Layer: It is a fundamental layer of deep learning architecture, often
known as the dense or feed-forward layer. It connects each input of the preceding layer
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to each output of the subsequent layer, as the name implies. It flattens the output re-
ceived from the previous layer and passes it on to generate the final output.

Pooling Layer: The pooling operations, also called subsampling or downsampling, are
used to reduce the spatial dimensions of the data. It aggregated the information of
nearby features to a single feature as they are likely to contain the same information.
The most common strategies are average pooling and max pooling. Max pooling uses
the maximum value, and average pooling takes the average of the values in the feature
map to keep only the relevant features.

2.3.1.2 Activation Functions

It is an additional function that neural networks use to learn complicated patterns from
data instead of just learning linear relationships. Using a non-linear function, it can
transform the output from the previous cell into different forms that can be utilized as
input to the following cell. It is applied to all neural network nodes except the input
and output nodes, and the activation function selection significantly impacts the model’s
performance. In different parts of the network, different activation functions could be
applied. For example, the most typical activation function for hidden layers is Rectified
Linear unit (ReLu). For the output layer, the right activation function depends on the
predictions made by the network.

2.3.1.3 Objective Functions

A cost or loss function are two common names for the objective function. Configuring
a neural network requires an objective function that calculates the model error. The
objective function could maximize or minimize while optimizing the network’s learning.
The methodology used to determine the error has a significant impact on the loss func-
tion that is used. The literature has put out a number of different objective functions
for the classification and regression tasks. Here are a few that have been used in this
work.

Classification functions: Classification involves discrete and mutually exclusive predic-
tions, which could be labels or categories. The following are two objective functions used
for classification analyses in this study:

1. Cross Entropy (CE) Loss: It is also known as softmax loss and is typically used
for classification tasks. In classification, the neural network outputs a vector of
probabilities over the pre-defined categories (classes) and then the category with
the highest probability is selected for the given input. It measures the loss by
calculating how far away the actual distribution is from the target distribution
and mathematically, it is defined as follows, where Y is the true class and p is the
predicted probability vector.
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CE = −
n∑

i=1

Yilog(pi) (2.1)

2. Focal Loss (FL): Cross entropy loss does not perform well when there is a class
imbalance by favoring the majority class and failing to pay attention to the hard
examples. Focal loss solves this problem by introducing down weighting, which
ensures the model improves over hard examples over time rather than on the ones
it can predict confidently. Mathematically, it is achieved by adding a tunable focus
parameter called gamma (γ) to the CE.

FL = −
n∑

i=1

(1− pi)
γlog(pi) (2.2)

Regression functions: Regression makes continuous and real-valued predictions. There-
fore, the goal of regression analysis is to reduce the difference between the predicted and
the actual value. The loss functions used in this study’s regression analyses are listed
below.

1. Mean Squared Error (MSE): It is a default loss function used while training the
linear regression models. As all error terms are squared, it results in a substan-
tially more severe penalty for large errors than for small ones. It measures the
mean of squared differences between the actual value and the estimated value,
mathematically defined as follows:

MSE =
1

n

n∑
i=1

( yi − ŷi)
2 (2.3)

2. Mean Absolute Error (MAE): To evaluate the efficacy of a regression model,
MAE averages the absolute differences between the actual and anticipated out-
puts. When there are many outliers or extreme values in the training data, MAE
is helpful because it pays more attention to the little errors and does not penalize
the large errors as harshly as MSE. It is described as following where yi donates
the ground truth and ŷi denote the prediction:

MAE =
1

n

n∑
i=1

| yi − ŷi| (2.4)

2.3.1.4 Regularization

Regularization is a technique to improve the generalization of the deep learning model.
Model generalization is the ability of deep learning models to perform good not only
on the observed data but also on real-world unseen data. Overfitting transpires when a
model performs better on training data than on testing data and consequently does not
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generalize well to new data. Deep neural networks are especially prone to overfitting
because of their large number of parameters. In the literature, several strategies have
been presented to handle the overfitting [84, 85, 86, 87]. Here are some commonly used
strategies:

Data Augmentation: Increasing the number of training data is the easiest technique
to prevent overfitting, but labeled data acquisition is usually difficult and expensive. In
this case, incorporating transformations into the training data, such as scaling, random
variation, noise, rotation, and flipping of the image could aid in increasing the size of
the data and preventing overfitting on a particular set of observed data.

Early Stopping : The training loss may continue to diminish after a certain point while
the validation loss rises. Therefore, in order to avoid overfitting, the model training
should be halted right away using the early stopping when the performance of the model
does not further improve on the validation set.

Weight decay : It is also known as L2 regularization as it penalizes the model parameters
with the L2 norm. By penalizing the large weights in the network, it prevents overfitting
and pushes the model to learn simpler functions and makes it less likely to overfit the
training set of the data.

Dropout : It is one of the most popular regularization methods in the deep learning
community. This method randomly removes neurons from the neural network during
each iteration in training, together with all their incoming and outgoing connections.
Each iteration produces a unique set of outputs, resulting in different architectures in
parallel. This probabilistic node dropping introduces randomness into the model, making
it more robust.

2.3.1.5 Evaluation Metrics

To evaluate the performance of a trained neural network, different types of metrics could
be used depending on the task, Classification or Regression.

Classification Metrics: As classification tasks produce discrete results, classification
metrics are designed to compare discrete classes; nevertheless, they can be evaluated
differently.

1. Confusion Matrix: Confusion Matrix is a table-based depiction of actual labels
versus predicted. Each row of the confusion matrix represents an example in a
predicted class, while each column represents an occurrence in an actual class.
The table is filled by counting how the test set samples are predicted. Figure
2.2 represents a confusion matrix for binary classification, implying two classes.
All the successfully predicted samples are on the diagonal, whereas all incorrect
predictions are in the other cells.

12



2.3 Deep Learning

• True Positive (TPci): how many samples of a class ci are correctly predicted.

• True Negative (TNci): how many samples of second class cj are correctly
predicted.

• False Positive (FPci): how many samples of other class cj are incorrectly
predicted as class ci.

• False Negative (FNci): how many samples of class ci are incorrectly predicted
as other class cj .

Figure 2.2: Example of a confusion matrix

These counts could be used to determine the precision and recall measures.

Precision indicates how often it correctly predicts a class for the sample. There-
fore, it is calculated by taking the total number of correctly predicted samples
(true positives) divided by the column sum (true positives & false positives). In
the example above, the precision (Pci) of a class ci is defined as:

Pci =
TPci

TPci + FPci

(2.5)

Recall measures how accurately a model is able to predict a correct class and is
calculated as the number of correctly predicted samples divided by the row sum
(true positives & false negatives). Again, from the example above, recall (Rci) of
class ci is defined as:

Rci =
TPci

TPci + FNci

(2.6)
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2. Accuracy: It is the simplest and most commonly used metric to assess the overall
performance of the neural network. It is calculated by dividing the number of
correct predicted labels by the total number of predictions [88].

Accuracyci =
TPci + TNci

TPci + FPci + FNci + TNci

(2.7)

3. F1-score: The F1-score utilizes a classifier’s precision and recall and is calculated
by taking their harmonic mean. It limits the number of false positives and false
negatives. Its range is [0,1]; the greater the F1 score, the better the performance.

F1ci =
TPci

TPci +
1
2(FPci + FNci)

= 2

(
precisionci × recallci
precisionci + recallci

)
(2.8)

4. Balanced Accuracy: It is a better metric to use with imbalanced data when the
instances of one of the target classes are much more than the others.

BalancedAccuracyci =
1

2

(
TPci

TPci + FNci

+
TNci

TNci + FPci

)
(2.9)

Regression Metrics : Regression models produce a continuous result. Therefore, to
evaluate the performance of a regression model, there is a need of a metric that gauges
the difference between predicted and observed values. Following are some population
regression metrics that have been employed in this work:

1. Mean Absolute Error: It measures the average discrepancy between the actual
values and the forecasts. As MAE does not differentiate between high or low
errors, it is more resistant to outliers. It increases linearly as the magnitude of the
error increases and since it uses the absolute value of the error without considering
their direction, it cannot determine whether the model is under- or over-predicting.
It is mathematically expressed as:

MAE =
1

n

n∑
i=1

| yi − ŷi| (2.10)

where yi donates the ground truth and ŷi denote the prediction.

14



2.3 Deep Learning

2. Root Mean Squared Error: It is one of the regression model’s primary performance
indicators. By calculating the square root of the errors, it is an extension of MSE.
Root Mean Squared Error (RMSE) measures the deviation of the predictions from
the true values; the larger the difference, the higher the penalty. Mathematically,
it is calculated by taking the square root of the mean of all the squared errors and
formulated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.11)

where yi donates the ground truth and ŷi denote the prediction.

3. Coefficient of determination (R2): R2 measures how much of a dependent variable’s
variance is explained by the independent variable in a regression model [89]. It
gives a squared correlation between the predicted values and actual values. The
higher the R-squared value, the better the model fit.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(2.12)

where yi donates the ground truth, ŷi denote the prediction and ȳi is the mean of
y.

2.3.2 State-of-the-art architectures

The neural network’s history began in 1943 when Walter Pitts and Warren McCulloch
developed a mathematical model of a neural network [90], followed by the introduction
of convolutional operations in neural networks in 1980 [91]. The true evolutionary stride
for deep learning occurred in 1999 when computers began to process data faster, and
Graphics Processing Units (GPU) were introduced, increasing computational speeds by
1000 times [92]. AlexNet [93], a CNN architecture that won multiple international com-
petitions in 2011 and 2012, is one early successful example. However, the architectures
are still refining and evolving. This section explains the two state-of-the-art architectures
used in this thesis.

2.3.2.1 VGG16

VGG-16 is a 16-layer deep CNN, which means it has sixteen learnable layers [94]. It
improves on AlexNet by adding depth and replacing large filters with small convolution
filters (3 × 3) with a stride of one pixel. The advantage of using multiple convolution
layers with smaller filters over one with bigger filters is that there will also be multiple
non-linear activation layers with convolutional layers rather than just one, allowing the
network to converge faster. The Figure 2.3 illustrates the architecture. Following the
convolution stacks are three fully connected layers, two of size 4096 and one of size
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1000, corresponding to the total number of ImageNet classes. The final output layer has
softmax activation.

Figure 2.3: VGG16 network architecture. Source [2].

2.3.2.2 ResNets

Beyond a certain number of layers, the idea of increasing depth with smaller convolu-
tional filters and improving performance does not scale. Every step of backpropagation
makes the gradients from the loss function smaller as the depth is increased. This issue
is known as the vanishing or exploding gradient problem, which is fixed in ResNet [3].
ResNet is constructed from Residual Blocks, which use skip connections between the
layers to give the gradients a different and faster route to flow. The skip connection
makes it possible to train significantly deeper networks by adding the outputs from the
previous block to the current block. Figure 2.4 illustrates a residual block.
The most significant change to understand in the Figure 2.4 is the skip connection or

identity mapping. As can be seen, the output from the preceding layer flows not just to
the layer ahead but also makes a hop and is fed to another layer down the architecture,
resulting in the residual block taking the input x and generating f(x) + x as output. In
a residual block, the most commonly utilized activation function is ReLu.
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Figure 2.4: Residual block architecture. Source [3].
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3 Related Work

This chapter gives an overview of the relevant work that has been done in the field of
population estimation. First, the review of different population products is discussed,
followed by the role of remote sensing in population estimation and different methods
based on that.

3.1 Review of population data sources

A wide number of disciplines, including good governance, policy formulation, develop-
ment planning, and many other SDGs, depend on population data. Traditionally, pop-
ulation estimation has been carried out through a census, in which information about a
nation’s populace and its spatial distribution within an administrative unit is carefully
collected and assembled. However, censuses are not frequently conducted as they are
costly and time-consuming [95]. Additionally, it still lacks complete information for some
nations. There is an estimate that 350 million individuals globally remain unaccounted
for in national censuses, particularly in poorer nations where informal settlements are not
tallied [96]. Agarwal et al. in India demonstrated that the official population estimates
for many Indian cities are false because they underestimated to take into consideration
unrecognized informal settlements [97].
A city, district, or province is usually the census unit that serves as the spatial res-

olution for a national census. As a result, the majority of census data are provided as
low-resolution data, which masks the fine-scale population dynamics and limits their
use for extensive applications. Statistics that are based on the nation as a whole may
conceal the fact that those who need help the most often fall behind [98, 99]. Despite
these limitations, censuses are conducted and regarded as one of the most expensive
government statistics that could go up to several billion US dollars for a country. Efforts
have been made to create gridded maps at higher resolution out of the national census
data by using different algorithms and variables, resulting in varying-quality population
distribution maps. A few large-scale gridded data packages have been outlined in the
subsections that follow.

3.1.1 GPW

Gridded Population of the World (GPW), now in its fourth version (v4), is a gridded
data product on population count and density which are consistent with the national
population census or alternative sources where no census data is available. It is developed
by Center for Iternational Earth Science Information Network (CIESIN), Columbia Uni-
versity and accessible on a worldwide scale with the World Geodetic System (WGS84)

19



3 Related Work

geographic reference system at a spatial resolution of 1 km. The population disaggrega-
tion method employed by GPW is unmodeled and based on the water mask. It simply
uses the areal weighing scheme to disaggregate the population only to the land pixels.

Since the census units were utilized as the input, the quality of the data differs sig-
nificantly among countries. In another version, the population counts are matched with
the UN adjusted population totals from the World Population Prospects: The 2015
Revision. Data is available as raster data and contains the population counts over the
years 2000, 2005, 2010, 2015, and 2020. It could be freely downloaded and accessible
in both GeoTIFF and ASCII (text) formats at https://sedac.ciesin.columbia.edu/
data/collection/gpw-v4. Technical details and input data sources utilized in different
regions are also available.

3.1.2 GRUMP

Global Rural-Urban Mapping Project (GRUMP) data set is produced by CIESIN in
collaboration with International Food Policy Research Institute (IFPRI), The World
Bank, and Centro Internacional de Agricultura Tropical (CIAT) to create the popu-
lation count grids for the years 1990, 1995, and 2000 [100]. It is built on the GPW
population data collection. It uses the binary dasymetric approach to allocate the
population counts to urban and rural areas as derived from the night light imagery
[101]. To identify urban settlement points, the night-time satellite images of a city
from the National Oceanic and Atmospheric Administration [102] are used. It is also
available in WGS84 at a spatial resolution of 1 km. The data is openly available at
https://sedac.ciesin.columbia.edu/data/collection/grump-v1

3.1.3 GHS-POP

To provide the population count and density distribution at a finer grid level, the Euro-
pean Commission Joint Research Centre (JRC) and CIESIN, Columbia University cre-
ated GHS-POP. The population information used to disaggregate the population count
to grid cells is utilized from the CIESIN-produced GPWv4. It employs the weighted
dasymetric approach, which distributes the population proportionally to the grid cell’s
built-up density in relation to the entire cell area. The GHS-BUILT data collection
is used to calculate built-up density. It aims to refine the dasymetric mapping by in-
cluding built-up regions that are directly related to the population, producing precise
population distributions. It is accessible in the global Mollweide projection at two spa-
tial resolutions, 1 km (GHS-POP 1km), and 250m (GHS-POP 250m). The grids are
built using open and publicly available input data and are, thus, freely downloadable
at https://ghsl.jrc.ec.europa.eu/ghs_pop2023.php. Their detailed disaggregation
algorithm can be found in their scientific paper [103].

3.1.4 LandScan

The ambient (average day/night) population distribution at a worldwide level is rep-
resented by LandScan from Oak Ridge National Laboratory (ORNL) [104]. LandScan
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disaggregates census counts to the grid cells at a geographical resolution of 30 arc-seconds
(approximately 1 km) as a function of census demographic data, additional geographic
data, and remote sensing imagery using a multivariate dasymetric modeling framework
[105]. It’s a smart interpolation approach that is dynamically adaptive to the various
input data available in each country. For each country, it uses the set of sub-national
level census data, high resolution satellite imagery, and local supplementary data which
includes land cover and land use, urban and suburban regions, and street networks as
key indicators to map the population. The population distribution model uses these
regional statistics to calculate the probability coefficient for each cell and the popula-
tion of the area is distributed to each cell proportionally to the determined probable
population coefficient. LandScan Global is freely available for educational purposes and
downloadable at https://landscan.ornl.gov/.

3.1.5 WorldPop

The WorldPop project by the University of Southampton generates gridded population
count products as well as a range of other demographic data on a worldwide scale [106].
By combining the three regional population mapping products: AfriPop [107], AsiaPop
[108], and AmeriPop [109] - the WorlPop program was launched in 2013. It uses the
weighted intelligent dasymetric mapping to create a weighting layer that dasymetrically
redistributes the recent census-based population counts to 100 x 100m grid cells in the
geographic projection WGS84.

The most recent official census data on population is one of the input variables for
WorldPop, along with a wide range of supplementary spatial data sets. The spatial
databases include information on the whereabouts and sizes of settlements, as well as
nighttime lights, maps of buildings and roads, locations of medical facilities, vegetation,
and refugee camps. Then, a predictive weighting layer is created using a RF [110]
regression tree-based mapping technique to reallocate population counts into gridded
pixels. The data set offers gridded annual population data for the years 2000 to 2020 and
is freely downloadable on their project website (https://www.worldpop.org/project/
list). All the input data and covariates utilized in model prediction are also openly
accessible.

3.1.6 HRSL

High Resolution Settlement Layer (HRSL) is a Facebook Connectivity Lab (FCL) and
CIESIN project that provides human population distribution across 140 countries. The
population grids are provided in the WGS84 geographic reference system with a spatial
resolution of approximately 30m. To identify the populated regions, DigitalGlobe’s very
high resolution satellite images (0.5m) served as an input to machine learning models
that identified the settlements in the region. Population counts from the most recent
national census have been distributed proportionally to the identified settlements in
the grid cell. More technical information about their technique and accuracy analysis
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can be found in their scientific article [111]. The population grids are accessible and
downloadable at https://www.ciesin.columbia.edu/data/hrsl/.

3.1.7 GHS-POP-EUROSTAT

European Commission Joint Research Centre put an effort to produce the detailed pop-
ulation grids in Europe, GHS-POP-EUROSTAT [112]. This data set illustrates the
residential population distribution and density at a spatial resolution of 100m in equal-
area projection (LAEA ETRS89). It employs intelligent dasymetric mapping [60] to
disaggregate each country’s 2011 census count to built-up areas informed by European
Settlement Map and scaled by the land use and land cover extracted from Corine Land
Cover Refined 2006 [113], as well as the distribution and density of settlements as de-
fined in the European Settlement Map layer [114, 115]. This data product can be found
and downloaded for free at http://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_
pop_eurostat_europe_r2016a.

Table 3.1 outlines the similarities and differences between these data products based
on their corresponding methods, resolution and sources.

Global

Product Resolution Source Method

GPWv4 1 km CIESIN areal weighting

GRUMP 1km
CIESIN, IFPRI, The
World Bank, CIAT

dasymetric

GHS-POP 250m JRC, CIESIN refined dasymetric

LandScan 30 arcsec ORNL smart interpolation

WorldPOP 100m
University of
Southampton

dasymetric

Regional

HRSL 30m FCL, CIESIN binary dasymetric

GHS-POP-
EUROSTAT

100m JRC intelligent daysmetric

Table 3.1: Summary of the popular gridded products at the global and regional levels, together
with their methods and sources utilized.
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3.2 Remote Sensing in population estimation

The use of remote sensing has been continuously explored in the population estimation
literature due to its ability to gather information about large geographic areas quickly
and efficiently. The widely used remote sensing sources in the population estimation
studies are discussed below:

a) Optical Satellite Imagery: Optical sensors record the reflected infrared and visible
light from the Earth’s surface. These images are frequently employed in population es-
timation studies since they offer high resolution visual representations of the landscape
[116, 117, 118]. Optical satellite data is particularly helpful for locating built-up ar-
eas, urban centers, and human settlements. Some prominent sources consistently used
in the literature include Landsat Program [119, 120, 121], Sentinel-2 [53, 122], Maxar
[123, 124], and SPOT [125, 126].

b) Synthetic Aperture Radar: SAR sensors utilize microwave signals to penetrate clouds
and provide all-weather, day-and-night imaging. SAR data is useful for tracking changes
in land cover and urban growth, two important factors in population estimation. SAR
data has been used in several research studies for population estimation. Henderson
et al. demonstrated the potential of SAR data in urban studies focusing on settlement
detection and population estimation [127]. Esch et al. investigated the TanDEM-X SAR
satellite capability to analyze and monitor human settlement patterns [128].

c) Nighttime Light Data: Nighttime lights are often acquired by satellites equipped with
specialized sensors. It has been widely used in the literature to estimate population
density by correlating light intensity with human activities. The intensity of nighttime
lights serves as a proxy for human presence and economic activities, particularly in ur-
ban areas. Areas with brighter nighttime lights tend to have higher population densities,
while areas with darker or less intense lights indicate lower population densities. Sev-
eral works utilized different night light data sources. Defense Meteorological Satellite
Program (DMSP)-Operational Linescan System (OLS) and the National Polar-orbiting
Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) are two widely
used nighttime lights data in population estimation studies [129, 130, 131].

e) LiDAR: LiDAR data offers three-dimensional information that helps characterize and
identify structures and vegetation. It has mostly been used to extract building footprints
and heights, which are essential for precise population estimation [129]. Although Li-
DAR data has much to offer for population estimation, there are some drawbacks, such
as the expense of data collecting and processing. Additionally, not all places may have
easy access to LiDAR data, particularly in developing nations [132]. Despite these dif-
ficulties, combining LiDAR data with additional remote sensing and demographic data
sources can boost the accuracy and utility of population estimation models, especially
in urban settings and places with complicated topography.
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3.3 Machine Learning in population estimation

Machine learning approaches have lately sparked renewed interest in remote sensing
[40] and in a variety of other related fields, including population estimation, because of
their ability to handle complex data, adaptability, and learning non-linear patterns in
the data. One often used method in the literature is the RF model to determine the
weighted dasymetric mapping scheme for population disaggregation. Recent research
has employed deep learning models, particularly CNN to directly predict the population
counts from the remote sensing data instead of disaggregating the known census counts.
They have demonstrated promising results in extracting significant characteristics from
a variety of data sources such as remote sensing imagery, ancillary data, and other
socioeconomic indicators to create more precise and dynamic population estimates.

Stevens et al. [63] estimated the population of Vietnam, Cambodia, and Kenya at
∼ 100m resolution using a RF approach. They used census data from Cambodia’s Na-
tional Institute of Statistics, Vietnam’s National Statistics Office, and Kenya’s National
Bureaus of Statistics, as well as a variety of other remotely sensed and geospatial data
sets such as nighttime lights, road network, health facilities, elevation models, land cover,
vegetation, and built-up regions. Hara et al. [133] trained a RF regressor using social
media data to estimate the population in a specific region. Doupe et al. [19] proposed a
method that combined Landsat-7 satellite data with (DMSP/OLS) nighttime lights to
estimate the population using a CNN. They trained their model with data from Tanza-
nia at a resolution of 250m and approximated Kenya’s population at an 8 km resolution.
Robinson et al. [16] proposed yet another CNN-like method. They estimated the popu-
lation in US counties at a 1 km resolution using US census summary grids and Landsat
data. Hu et al. [18] suggested a deep learning technique for determining population
density in India at village and subdistrict level by combining Landsat-8 and Sentinel-1
satellite data with the Socio-Economic Caste Census survey. Huang et al. [134] trained
a deep learning model with existing population grids from LandScan [104] to map popu-
lation changes in two US cities using a variety of different state-of-the-art architectures.
Metzger et al. [135] employed a deep learning model to perform population distribu-
tion at the spatial resolution of 100m. When census data is unavailable, they could
alternatively anticipate the population count using open geodata. Similarly, Georganos
et al. [136] proposed a deep learning-based methodology to estimate the population in
three Sub-Saharan nations at 100m resolution using open building footprints and high
resolution satellite data. Most of the above mentioned methods provide the popula-
tion estimates at a coarser-scale and many researchers have revealed that their spatial
resolution might not be sufficient for reaching a well-informed conclusion [20, 54].

As a result, recent research investigates population estimation at relatively fine res-
olutions. Fine-resolution gridded population data are critical for a variety of domains,
including urban planning, resource allocation optimization [137, 138], natural disaster
management [139, 140], public health [141], and as a foundation for various other appli-
cations. Zhou et al. [142] estimated the population distribution in Chongqing, Southwest
China at 30m spatial resolution using the RF regression approach with numerous data
sources. Balakrishnan et al. [143] build a population estimation technique that gen-
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erates population density maps at 30m resolution using building information, known
census data, and other socioeconomic variables. Considering where people live has a
significant correlation with the buildings, building level population estimation would be
the finest level source [144]. Only some studies have recently evaluated methodologies
for calculating population counts at the building level [129, 132, 145, 146, 147]. These
studies used high resolution satellite imagery or other supplementary data sources such
as land use/land cover maps, night lights, and other socioeconomic indicators to map
census population counts to buildings. Some of those methods rely on building volumes
obtained from LiDAR [129] or digital surface models (DSM) [147], both of which are not
always available [132]. Also, the majority of these studies rely on handcrafted features
to dissagregate the available census data to buildings [20, 132, 145, 146, 147] and this
limits their transferability. Additionally, due to the diversity in input data, each has
its own framework, making standardization and comparison of the approaches difficult
[132]. Nonetheless, their preliminary findings pave the way for further research into
fine-scale population estimation.

3.4 Summary

Remote sensing could provide extensive and consistent coverage over large geographic
areas, including remote and inaccessible regions which is very important in the field
of population estimation where traditional data collection approaches are difficult and
costly. Also, remote sensing data could be gathered and updated frequently. It allows
researchers to track the population change due to urbanization and other migration
events over time. However, integrating the remote sensing data with the population
counts needs robust methodology which is an ongoing research to improve the accuracy
and utility of remote sensing in population estimation. Several efforts have been made
in the past to generate large-scale gridded population products. The field of large-scale
population grid modeling is developing, leading to more precise and spatially refined pop-
ulation grids. Additionally, incorporating deep learning and machine learning techniques
leads to the development of more sophisticated methods. Despite these developments,
the majority of these data sets still have several limitations due to the methodology
utilized, the completeness of the census, and the supplementary data used.

According to the accuracy assessment done by Thomsan et al., the lack of ancillary
data on building use and built-up densities causes the gridded population products,
such as the GPWv4, GHS-POP, WordPOP, and LandScan, to significantly underesti-
mate population counts in slums and densely populated areas of Kenya and Nigeria [54].
In general, a lack of built-up environment data leads to an overestimation in unpopulated
areas (with industry and commercial complexes) and an underestimation in high-rise res-
idential structures. On the one hand, including multiple variables in weighted dasymetric
mapping, such as in Worldpop and Landscan, helps to make more informed decisions;
on the other hand, inconsistencies and disagreements in the multi source data may add
bias to the results and make frequent product updates difficult [101]. Some other studies
highlight the limitation of spatial resolution in some specific applications. Smith et al.
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demonstrated that the resolution of the WorldPop (100m) and LandScan (1 km) data
sets limits their integration with other high resolution data sets, such as flood hazard
data (90m) and suggest improving the resolution of existing gridded population data
sets [148]. It has been identified that lower resolution creates erroneous population esti-
mates and these errors grow worse as the geographic resolution required for the analysis
decreases [20, 149].

Therefore, several studies focus on fine-resolution population estimates. The majority
of these research used their own methodologies, regional data and evaluated solely in
comparable geographical areas. Therefore, it is important to build approaches that rely
on freely accessible worldwide data sets that may be compared in different geographic
regions. Another challenge is the availability of reference population data, which is
usually lacking or out-of-date. Even when it is available, the resolution is typically at the
scale of census enumeration zones, which are relatively coarse, making validation of the
methods at fine resolution difficult. Therefore, aggregating fine-resolution predictions
to the next level to compare them with the available reference population data has
become the most commonly accepted practice in population estimation studies. With
this indirect assessment setting, it is critical to impose the trustworthiness of the method
developed. With explainable Artificial Intelligence (xAI), methods may become more
apparent and interpretable. Beyond quantitative performance, this unboxing of black
box models would aid in better understanding and comparing the operation of deep
learning algorithms in population estimation.
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Population distribution is a key to study the spatiality of our landscapes. Undergoing
rapid urbanization in cities is leading to environmental concerns such as climatic changes,
food and water scarcity, poor air quality, deforestation, and so on [150, 151, 152, 153,
154]. In the past few years, machine learning and statistical methods have been used to
estimate population distributions directly from remote sensing data [16, 18, 19, 47, 155].
In most of these studies, either the data is not available for download or could be
reconstructed only for a few cities. Also, due to the lack of a large-scale benchmark
population estimation data set, these methodologies have been applied to a smaller region
or require collecting and processing census data. This makes the overall development of
the new methods complex and time-consuming. As a result, this work aims to build a
comprehensive data set for large-scale population estimation. The data set provides a
systematic regression and classification scheme by fusing multi-source Earth observation
data over 98 European cities. These cities serve 28 European Union (EU) member
countries and four European Free Trade Association (EFTA) countries, representing a
diverse variety of topography, demography, and architectural designs [4].

4.1 Study area

The study area is spread over Europe, the orange dots in Figure 4.1 depict the selected
cities. The cities are chosen based on the total number of inhabitants. First, all cities
in Europe with a population of 300000 or more in 2014, according to the UN World
Urbanization Prospects - The 2014 Revision [156] are selected. Then, depending on the
availability of the reference population data, 106 cities are chosen. The extraction of
the city’s geographic area using the administrative boundary could be difficult because
administrative census tracts split or combine over time. Furthermore, due to rapid city
growth, cities expand well beyond their official bounds [157, 158]. So, an algorithm is
employed to determine the city’s extent, considering city growth over time. The city
center coordinates from the UN World Urbanization Prospects - The 2014 Revision
[156] are utilized as a starting point, along with the Global Urban Footprint (GUF)
[159], which gives a binary mask of urban versus non-urban regions. A rectangle that is
centered at the extracted coordinates of each city is adaptively expanded outward until
half of its area is no longer built up [4] according to the GUF. To further account for
rising urbanization, each side of the rectangle is increased by a factor of two (a factor of
four in the area).
Considering that the resulting rectangles of two neighboring cities may intersect, a set

of rules is used to assign the intersecting region to one of the two cities and to ensure
that each city’s extent covers a distinct area. The algorithm is summarized in Algorithm

27



4 Population Estimation Data Set

Figure 4.1: The orange dots on the figure above indicate the location of selected EU cities in
our study. Image is taken from our own publication [4].

1. It iterates in descending order, beginning with the cities with the biggest overlap.
Depending on the proportional size of the overlapping region, citya is either merged into
cityb or the overlapping area is allotted to citya and removed from cityb. After resolving
the overlaps, the number of cities was merged to 98. Based on the defined extent of each
city, the following data were collected and processed for the data set.

Figure 4.2 shows the three cases that are presented in Algorithm 1. In the first sce-
nario (4.2a), Birken (citya) and Liverpool (cityb) have an overlapping area larger than
the threshold, which is equal to 50% of Birken’s total area. Additionally, Birken is an
entire subset of Liverpool. Thus, Birken was removed. In the second case (4.2b), again,
the overlapping area between Coventry (citya) and Birmingham (cityb) is greater than
the 50% of Coventry’s total area, however, Coventry is not a subset of Birmingham.
Therefore, Coventry is merged with Birmingham. In the third scenario (4.2c), the over-
lapping area between the New Port (citya) and Cardiff (cityb) is less than the threshold
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Algorithm 1 Allocation of intersecting areas - Pseudocode.

Require: citya and cityb with biggest overlap and cityb ≥ citya
1: for citya ∩ cityb in data set do
2: while overlap > 0.5 ∗ citya do
3: if citya ⊂ cityb then
4: Remove citya
5: else
6: Merge overlapping area of citya into cityb
7: end if
8: end while
9: Remove overlapping area from cityb

10: end for

(50% of New Port’s total area), thus, the overlapping area is merged to the New Port
and removed from Cardiff.

4.2 Data

The data set comprises reference population data, multi-spectral Sentinel-2 imagery
(SEN2), Digital Elevation Model (DEM), Local Climate Zones (LCZ), VIIRS Nighttime
lights, and data from the OpenStreetMap (OSM) initiative.

4.2.1 Population data

The census bureau of each country publishes population estimates on its administrative
units. However, the size of administrative units varies from region to region, making
these data difficult to use for analysis. In such a case, gridded population data, in
which the uniformly sized grid cell represents the people living in that grid area, offers
consistent population data.

In Europe, the European Statistical System (ESSnet) project, in collaboration with
the European Forum for Geography and Statistics (EFGS), developed and published
such population grids using census data at a resolution of 1 km. Their methodology
includes aggregation, disaggregation, and a hybrid approach, depending on the avail-
ability of the data. Typically, aggregation (bottom-up) is considered the most accurate
approach for creating population grids [160] and in their project for approximately 18
nations, aggregation or a hybrid approach is used to produce the population grids. The
disaggregation method is used for the remainder due to a lack of detailed data [161].
As a result of the differences in methods, the quality of the output differs. In disag-
gregation, for example, the misplacement of persons is proportional to the size of the
census unit; the larger the census unit, the greater the misplacement. The positional
accuracy for each building and address ranges from 0.1m in Austria to 100m in Estonia
[162]. The population grids are publicly available for non-commercial use via Eurostat
and cover approximately 4.3 million km2 with 480 million inhabitants [160]. The GEO-
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Liverpool

Birken

Liverpool

(a) Case 1: the overlapping area between Birken (citya) and Liverpool (cityb) is
greater than the threshold (50% of Birken’s total area) and Birken is an entire
subset of Liverpool, therefore, Birken is removed.

Birmingham

Coventry

Birmingham

(b) Case 2: the overlapping area between Coventry (citya) and Birmingham (cityb)
is greater than the threshold (50% of Coventry’s total area) and Coventry is not
a subset of Birmingham, therefore, Coventry is merged to Birmingham.

Figure 4.2: Illustration of Algorithm 1 with three use cases regarding the allocation of inter-
secting areas among the selected European cities.
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Cardiff

New Port New Port

Cardiff

(c) Case 3: the overlapping area between New Port (citya) and Cardiff (cityb) is less than the
threshold (50% of New Port’s total area), therefore, the overlapping area merged to New Port
and removed from Cardiff.

Figure 4.2: Illustration of Algorithm 1 with three use cases regarding the allocation of inter-
secting areas among the selected European cities.

STAT 1B project website contains additional information about the product standards,
methodology, and quality assessments [163].

4.2.2 Sentinel-2

The Sentinel-2 mission was launched in June 2015 [164], consisting of two identical
satellites (2A & 2B) in a sun-synchronous orbit phased at 180 degrees to each other.
Sentinel-2 satellites offer multi-spectral optical images spanning 13 spectral bands at
spatial resolutions of 10m, 20m, and 60m. Thus, it has an enormous potential for fine-
scale mapping of human populations, however, obtaining could-free mosaics are always
a challenge. Google Earth Engine (GEE) is employed to create the cloud-free Sentinel-2
images [165], following three main steps: querying, scoring and mosaicing. In the query
step, the Sentinel-2 images are loaded from the catalogue. The quality score for the
loaded image is calculated in the scoring step based on pixel-by-pixel cloud analysis and
in the mosaicing step, the selected images are mosaiced based on the meta-information
calculated in the previous steps. The complete details of this algorithm can be found
at [166]. To capture seasonal variations in the data, all four seasonal sets of Sentinel-2
imagery are used. We processed Sentinel-2 imagery from 10-2016 until 09-2017, covering
Winter, Spring, Summer, and Autumn.

4.2.3 TanDEM-X Digital Elevation Model

An accurate 3D topographic map of Earth could be very useful in urban studies and other
land use-related downstream applications. In view of this, the TanDEM-X mission is
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launched to create a high-quality, homogeneous, three-dimensional image of Earth. The
data for the global DEM product was collected between December 2010 and January
2015, and in September 2016, the global DEM was completed. It is considered to be
one of the most accurate digital elevation models available on a global scale [167]. Thus,
it is suited for many environmental studies such as land use and cover analysis, urban
planning, climate change, etc. with a coverage of 150 million km2 of the entire landmasses
of the Earth and 10m absolute height accuracy (90% linear error) [168]. We used the
publicly available TanDEM-X 90m (3 arcsec) global DEM product [169], which provides
a final Digital Elevation Model of the Earth’s landmasses.

4.2.4 Local climate zones

While local climatic zones (LCZ) are explicitly created to standardize urban heat island
research, they are currently utilized to categorize urban areas in many environmental-
related studies [170]. It is divided into 17 structural categories based on the land surface
and properties, with 10 defining built-up zones ranging from compact high-rise to open
low-rise and 7 describing natural zones ranging from dense vegetation to bare fields.
As a result, the built-up and land cover properties distinguish each zone. Our work
utilizes the So2SatLCZ v1.0 urban local climatic zone classifications at a resolution of
100m. They were created by fusing the LCZ classification results from freely available
Sentinel-1 and Sentinel-2 data using deep learning [171]. The patches in this data set are
hand-labeled by 15 domain experts according to the local climate zone categorization
methodology, followed by a well-defined visual and quantitative evaluation process. As
an outcome, this benchmark data collection could be useful to urbanologists, demogra-
phers, climatologists, and a variety of other studies.

4.2.5 Nighttime lights

Nighttime lights have been widely used in population estimation studies because of their
strong correlation with the spatial distribution of human population [56, 172, 173, 174].
DMSP-OLS and NPP-VIIRS are the two most commonly utilized nighttime light data.
With finer spatial resolution NPP-VIIRS offers a better potential for modeling socio-
economic indicators than DMSP-OLS [175]. For each year, 2012 to 2020, global VIIRS
nighttime lights have been produced using the monthly cloud-free mean radiance. In
this work, the average-masked radiance version of VNL V2 with a resolution of 500m is
used. It is a preprocessed version free of outliers from transitory events [176] and freely
available at (https://eogdata.mines.edu/products/vnl/)

4.2.6 OpenStreetMap

OpenStreetMap (OSM) (http://www.openstreetmap.org) was launched in London in
2004 as a wiki-style collaborative mapping project with approximately 10 million reg-
istered participants. Based on aerial images and field research, its contributors correct
and insert the geographical location data on a very detailed level. This data could be en-
tered as nodes or relations and characterized with informative tags. The locations cover,
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for example, types of streets, buildings, boundaries, water bodies, etc. [177]. OSM
is openly available on a large-scale under the Open Data Commons Open Database
License (ODbL) (http://www.opendatacommons.org/licenses/odbl/1.0/). In this
work, low-level and high-level features from the OSM data are extracted. The OSM
features that have a strong correlation with the local population are included in the
low-level features. For example, the statistics computed for a location with a high num-
ber of certain nodes (such as stores, gas stations, dwellings, schools, etc.) is a reliable
indicator and can be used as a feature vector to estimate population density. High-level
features define urban land use by extracting the building functions from OSM building
tags. These features together illustrate the interplay between human activities and the
environment [178].

4.3 Data Preparation

For all the data sources, a two-stage preprocessing is employed. In the first stage, data is
gathered from all the sources mentioned above, cropped using extended city extents, and
then processed. In the second stage, the 1 x 1 km patches have been generated for each
city. Figure 4.3 depicts all of the preprocessing steps performed for each input data in the
first stage of data preprocessing. Data collected from all the sources has been cropped
using the extended city boundaries predefined by our algorithm. The DEM mean is
subtracted from DEM data to standardize it and scaled to a unit variance. Since the
input data is gathered from various sources, they are at different spatial resolutions and
in multiple Coordinate Reference Systems (CRS). For example, the nighttime lights data
is in WGS84 (EPSG:4326) while the LCZ, DEM, and Sentinel-2 data are in Universal
Transverse Mercator (UTM) zones, and the population grid is in EPSG:3035 - ETRS89-
extended / LAEA Europe. All input data have been reprojected from their respective
coordinate system to the EPSG:3035 coordinate reference system in order to align with
the population grid. As the sentinel-2 data has the highest spatial resolution (10m)
among others, all input data has been upsampled to match it.

Low-level features have been extracted from the OSM planet dump (https://planet.
osm.org/planet/2017/) downloaded from 2017 to match the year with the Sentinel-
2 data. Each city’s bounding box is utilized to extract the OSM dump using the
command-line tool Osmosis (https://github.com/openstreetmap/osmosis), and the
node statistics for each 1 x 1 km patch of all cities are computed using the OSMnx
python library [179]. The chosen OSM tags for which the statistical counter has been
computed are displayed in the Table 4.1.

High-level features represent the land use. In this work, the three different OSM
tags: building, amenity, and shop are extracted. According to OSM guidelines, each
of the three tags could have a variety of values. These three tags have a total of 341
potential values that are mapped to a unified and reduced system of classifying land uses:
commercial, industrial, residential, and other. Due to the possibility of the three tags
occurring simultaneously, it has been ensured that they do not conflict with one another
and any buildings with inconsistent values are excluded. Additionally, because the tags
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Figure 4.3: Step-by-step preprocessing of all the input data sources to prepare the correspond-
ing input data for each city. Image is taken from our own publication [4].

are recorded as free-form text fields, OSM contributors are not limited to using them
and can instead input any text, so their semantic information needs to be homogenized.
After homogenizing, the building polygons are converted into raster data. The values
of the raster represent the area covered by building polygons that lie within a raster
pixel. A four-band raster with associated land use proportions is produced by using
this approach for each land use class. Figure 4.4 displays the results of the first data
preprocessing stage for the city of Munich.

All the input data processed in the first stage are utilized to create patches in the
second stage. The population grid with the grid cell size of 1 x 1 km is used as a reference
to crop all the other input data. Since the grid cells at the border of the city boundary

aerialway building historic natural restrictions water
aeroway craft landuse office route waterway
amenity emergency leisure place shop

addr:housenumber geological man made power sport
barrier healthcare other: True public transport telecom

boundary highway military railway tourism

Table 4.1: Nodes with these OSM tags are considered for the statistical analysis/counting of
the corresponding 1 x 1 km patch. Table is taken from our own publication [4].
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Digital elevation model Local climate zone VIIRS Nightlights Land use Population grid

SEN2 - WinterSEN2 - Autumn SEN2 - Spring SEN2 - Summer OSM

Figure 4.4: All the input data for the Munich city which is created using the first step of data
preprocessing. Image is taken from our own publication [4].

might be cut in between, an area threshold is applied to each cell. Only cells larger than
0.9 km2 or 90% of typical cell size are considered part of the city. This eliminates the
remaining cells while including the edge cells that lie mostly within the city boundary.

The reference population grid, which serves as our ground truth contains only popu-
lated grid cells, which means that the uninhabited regions of a city are not well repre-
sented in these grids. These missing grid cells were randomly examined in a few cities,
and it was discovered that they covered green spaces and water bodies. In the develop-
ment of population estimation methods, to understand the geographical pattern of the
regions where people live, it is also important to understand the spatial features that
do not correlate with the residential settlements. Therefore, these cells have been added
to the data set. All input data is cropped to patches measuring 1 x 1 km using all grid
cells, whether populated or not. The procedure of creating a patch is shown in Figure
4.5. As a result, a total of 9 patches, one from each input data source, are produced for
each population grid cell.

There are some applications where an approximation of people living in a region is
sufficient such as climate change or post-impact studies of natural disasters. Therefore,
the absolute population counts are binned into population classes based on the specified
range in which the population count falls. Following Robinson et al. [16] discretization
method, the population class of a grid cell Ccell is a function of its absolute population
count Pcell defined as follows:
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Ccell =



1 if 20 ≤ Pcell < 21

2 if 21 ≤ Pcell < 22

3 if 22 ≤ Pcell < 23

. . .

k + 1 if 2k ≤ Pcell < 2k+1

This can be simplified as follows, where Ccell denotes the population class and Pcell

the absolute population of the corresponding cell:

Ccell = ⌊log2(Pcell)⌋+ 1

This leads to the following population range and their class associations:

Class Population Range

Class 0 0
Class 1 1
Class 2 2− 3
Class 3 4− 7
Class 4 8− 15
Class 5 16− 31
Class 6 32− 63
Class 7 64− 127
Class 8 128− 255
Class 9 256− 511
Class 10 512− 1023
Class 11 1024− 2047
Class 12 2048− 4095
Class 13 4096− 8191
Class 14 8192− 16383
Class 15 16384− 32767
Class 16 32768− 65536

As per the collected population data, k has a maximum value of 16, thus 17 classes
in total. Including population class, in addition to population counts, would provide
end-users additional freedom to create either a regression or a classification model for
the task based on the application’s requirements.

After both preprocessing steps, Figure 4.6 illustrates the odd-numbered class patch-
sets from the data set, as well as their respective population class and population count.
Lower-class patches mainly consist of green fields, water bodies, bare grounds, and
sparsely inhabited areas. As the class number increases, patches represent low to high-
populated regions. In other words, patches ranging from lower to higher classes indicate
rural to urban areas.
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Figure 4.5: Patch creation process, the second step of data preprocessing. All input data sources
have been cropped for each cell in the population grid. The size of each patch is
1 x 1 km.

4.4 Data Structure

The raw OSM data is available as OSM XML files, the statistical features extracted
from the OSM are available as Comma Separated Value (CSV) files and rest of the
data as GeoTiff files. Due to different licensing requirements, the data set has been
split into two parts: So2Sat-POP Part1 and So2Sat-POP Part2. So2Sat-POP Part1 is
distributed under the Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/), and So2Sat-POP Part2 is distributed
under the Creative Commons Attribution Share-Alike International License (http://
creativecommons.org/licenses/by-sa/4.0/). So2Sat-POP Part 1 includes patches
from all the seasons of Sentinel-2, local climate zones, nighttime lights, land use, and
OSM features, yielding a total of 1104688 patches. So2Sat-POP Part2 consists of 276172
patches from the digital elevation model and raw OSM patches. So2Sat-POP Part1 re-
quires ∼ 98 GB of storage, while So2Sat-POP Part2 requires ∼ 5.20 GB.

The data set has a predefined train and test split in both the parts. For the training
set around 80% of the data (80 cities) have been randomly selected and the rest 20%
of the data (20 cities) constitutes the test set. In addition to the input data folders,
all city folders in So2Sat-POP Part1 have a comma-separated value (*.csv) file with the
referenced ground truth, population count and a population class for each patch. All data
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folders follow a standard folder structure, with class sub-folders labeled Class x, where
x is the class value. The number of class folders varies in each city due to differences in
population distribution. Malaga, for example, has the highest class folder of 16 because
the largest population count in the city’s 1 x 1 km area is 39535, whereas Riga has the
highest population count of 15839, hence the highest class folder in the Riga city folder
is 14.

The city folder is named as xxxx xxxxx city name, where xxxx xxxxx is a randomly
generated identification number and the city’s postal code. Each patch name has a
unique identification code that matches the naming convention of its associated popula-
tion grid cell [161]. Zero-count patches that do not constitute population grids have been
issued a numeric identification number. The data set is freely accessible through the of-
ficial media library of the Technical University of Munich (TUM). So2Sat-POP Part 1 is
available for download at (https://mediatum.ub.tum.de/1633792), and So2Sat-POP
Part 2 is available at (https://mediatum.ub.tum.de/1633795).

Figure 4.6: Sample patches from the odd-numbered classes of our data set. Lower classes depict
sparsely populated regions while higher classes depict densely populated regions.
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4.5 Technical Validation

The RF proposed by Breiman [110] is a sort of ensemble learning that consists of a
set of randomly generated decision trees that can be used for classification and re-
gression and has been utilized successfully in numerous population estimation studies
[63, 146, 180, 181]. Besides its ability to handle noisy data and impervious to overfitting,
it is simple within the RF algorithm to assess the relative relevance of each feature on
prediction. Therefore, in this study to demonstrate the suitability of the data for pop-
ulation estimation, a RF algorithm is implemented in Python for both regression and
classification. The two important hyper-parameters in the RF model, the number of
trees to grow and the maximum number of features are automatically fine-tuned using
the grid search combined with 10-fold cross-validation to avoid the impact of the data
partition.

In order to train the model, different features have been extracted from all the input
data of the training set. These features include the mean, median, min, max, and
standard deviation from the Sentinel-2 imagery’s RGB band, the mean and max for the
DEM and nightlights, the total area covered by each class of land use, the majority
class of the LCZ and OSM-based statistical features such as street density, the presence
of highways, railways, and other [4]. Using this method, 125 features in total were
extracted. While class labels are employed as the ground truth in classification, the
absolute population count is the response variable in regression.

On the 18 unseen test cities, the trained model has been assessed. For regression, the
model is evaluated using RMSE, MAE and R2 as indicated in Table 4.2. For each grid
cell in the test data, its actual population count versus the predicted population count is
plotted to visually assess the model fit. Figure 4.7 (a) shows that the model understates
the population counts for the high population density patches. However, it is a fair
fit for patches with a population count of less than 15000. The classification model’s
performance is assessed using balanced accuracy and macro-averaged Precision, Recall,
and F1-score due to the data imbalance caused by a higher percentage of low to medium-
population density patches than high-population density patches. The classification
results are listed in a Table 4.3. A normalized confusion matrix is presented to show
the performance of the classification model for each class. Figure 4.7 (b) shows that the
model is more capable of accurately forecasting the upper classes than the lower classes,
particularly in the first three populated classes (Class 1, 2, and 3). These three classes
indicate areas where the population count is between 1 and 8. It is possible that it is
difficult to tell if these three classes are apart due to their similar features. A few Sentinel-
2 samples from each of these three classes are examined visually to determine whether or
not they can be distinguished visibly. As seen in the Figure 4.8, the randomly selected
patches from Class 1, 2 and 3 appear to be quite similar visually, making it exceedingly
challenging for the model to distinguish among them. Merging these indistinguishable
three classes is one possible taxonomy modification that retains all vital information
while assisting the model in better classifying these very low populated regions.

The RF algorithm’s built-in feature importance describes which attributes are more
significant for the predictions. It also aids in understanding the model’s learning. The
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importance of each feature is computed by calculating how each feature on the internal
nodes across the decision trees in the forest reduces the impurity of the split in clas-
sification or decreases the variance in regression. The method is included in the RF
scikit-learn implementation. Figure 4.9 only shows the twelve most important features
chosen by the RF algorithm and utilized to estimate the population count and population
class for the cities in the test data set. Land use area proportions, LCZ classes, night-
lights, and statistical variables retrieved from OSM, such as count on buildings, shops,
and highways, are ranked as the most essential features for regression and classification.

Regression

Method RMSE MAE R2

RF 1276.26 463.35 0.827

Table 4.2: Evaluation of RF model to estimate the population counts on the test data set. The
experimental results have been directly taken from our own publication [4].

Classification

Method Accuracy Balanced Accuracy F1 score Precision Recall

RF 0.5913 0.3795 0.3833 0.4533 0.3795

Table 4.3: Evaluation of RF model to predict the population class on the test data set. The
experimental results have been directly taken from our own publication [4].

4.6 Summary

The development and evaluation of novel approaches in population estimation studies
have always been a challenge owing to the lack of data. For most population estimation
studies, data utilized is either developed on a very small scale or not openly available.
There are some gridded population products such as GHS-POP, LandScan, Worldpop,
HRSL available on a large-scale as discussed in section 3.1. However, most of these prod-
ucts yield different results due to differences in their methodology and use of regional
data sources. There have been some comparison studies to evaluate them. But, these
studies also necessitate the collection of accurate reference population data. Thus, re-
producing the results, comparing methodologies, and developing new methods becomes
difficult and time-consuming. In this work, an attempt has been made to fill this gap
by offering a systematic population estimation data set.
It is a large-scale data set spanning 98 European cities, including different landscapes,

demography, and geography and integrates data from previously unexplored data sources
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(a)

(b)

Figure 4.7: (a) Predicted vs. Actual Values for regression, the model fits well except for the
high population counts where the points appeared dispersed from the regressed
diagonal line (b) Confusion matrix for classification, normalized by class support
size (number of patches in each class). Confusion among the non-urban classes is
higher than among the urban classes.
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Figure 4.8: Visualization of a few randomly selected Sentinel-2 patches from Class 1, 2 and 3
to determine their distinguishability. These examples appear to be visually similar.

in population estimation studies. The reference population data grids utilized in this data
set are accessible throughout Europe via the ESSnet project at a consistent resolution
of 1 km, however, the quality varies by country depending on the data available and
the method used. Furthermore, the population grids have been created using the 2011
population and housing census while the data collected from other input sources are from
a different time period. For example, Sentinel-2 data is from 2017, as the mission was
initiated in 2015. The time lag between collecting population data and other associated
input data may induces noise of uncertain quality. However, because population data
is typically collected once every decade, obtaining data from different sources from the
same year becomes extremely challenging. Nonetheless, this data set will be useful in
developing new statistical and machine-learning approaches for estimating population
at a consistent spatial resolution which is often missing in today’s population data sets
across countries.

In addition to population estimation studies, this data set could serve as a foundation
for future comparative studies in a variety of applications. This improved population
distribution database collected from multiple sources could provide substantial data in
both academic and non-academic domains such as disaster risk analysis, urban plan-
ning, provision of socio-technical infrastructure, updating of census, or understanding of
changing population dynamics and urbanization trends.
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(a)

(b)

Figure 4.9: RF feature importance based on the mean decrease in impurity (MDI). The higher
the value the more important the feature. Plot shows only the twelve most relevant
features for both regression (a) and classification (b)
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5 Deep Learning for population estimation

Recent advances in deep learning approaches and the availability of high resolution
satellite imagery have enabled more accurate and up-to-date population estimation [16,
17, 18, 19, 182]. The majority of these approaches rely on an external settlement layer to
assign known census population numbers to grid cells. Recent studies attempt to address
this issue by designing algorithms that could directly predict the population counts
from remote sensing data. Metzger et al. [135], for example, employed a deep learning
model to predict population without relying solely on the known census. Similarly,
Georganos et al. [136] proposed a deep learning-based methodology for predicting the
population in three Sub-Saharan African countries without always relying on census
data. However, differences in employed input data result in varied outcomes and their
methods have been evaluated only in a comparable geographic area, which does not
reflect their generalizability. Therefore, in this work a deep learning approach on a large-
scale is developed and also comprehensive analyses in various geographies is conducted.
Another major drawback of these methods is their lack of transparency. The black-
box nature of deep learning models makes it impossible to thoroughly understand the
methods’ outcomes, thus makes difficult for end users to trust the results [183, 184]. To
improve the transparency of these models an explainable AI technique is investigated
and integrated which highlights the important features identified by the model while
making the predictions. This interpretable framework has the potential to increase the
usability and reliability of deep learning algorithms for population estimation.

5.1 Data

5.1.1 So2Sat-POP data set

The experiments are based on the So2Sat-POP data set developed in the chapter 4. This
data set covers 98 cities in Europe, with 80 serving as the training set and the remaining
18 being used as the test set. It’s a multi-source data set that includes the digital
elevation model, local climate zone classifications, land use, nighttime light emissions,
Sentinel-2 imagery from all seasons, and OpenStreetMap data. This data set could be
used to build regression and classification population models. Section 4.2 contains more
information on the input data sources utilized in the So2Sat-POP data set. Figure 5.1
depicts a sample patch taken from all input sources, with a reference population count
of 755 and a population class of 10. There are a total of 276172 patches. The overall
area covered by test cities is ∼ 18292 km2, whereas train cities encompass ∼ 119794 km2.
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Figure 5.1: A patch-set from Class 10 and a reference population count of 755 as the ground-
truth labels. Each such patch set consists of 9 patches, one from each input data
source. Image is taken from our own publication [5].

5.1.2 Supplementary data set

A popular community standard product for population estimation, GHS-POP[103] is
collected for comparison analysis. The European Union Joint Research Center created
this gridded population data product utilizing remote sensing data. It offers a worldwide
population count at two different resolutions of 250m and 1 km [149]. In this comparison
analysis, the ESSnet project’s population grids are again used as reference population
data [162]. It is same source as utilized in the So2Sat-POP data set, but it is unseen in
our training, validation, and test data.

To demonstrate the transferability of our model, an additional data set is prepared
using the three randomly selected cities in the United States (US): New York City, San
Jose, and Denver. To account for ongoing urbanization, the geographic extent of the
cities has been determined by the expansion algorithm from section 4.1. For each of
these cities, the data is gathered from all of the input data sources used in the So2Sat-
POP data set, preprocessed, and cropped to create 1× 1 km patches. Census grids from
the Socioeconomic Data and Application Center (SEDAC) are collected at a resolution
of 1 km as the reference population data in the US. A quick overview of different data
sets used in this chapter is presented in the Table 5.1.

5.1.3 Data preparation

The So2Sat-POP data set has a predefined train and test split. Only the training set
is analyzed and used in data preprocessing step. The test set is left untouched, so it is
unknown to the model. Figure 5.2 shows the distribution of population counts in the
training data set. The right-skewed distribution indicates that high-populated samples
are underrepresented in the data set. Often remote sensing data is affected by the noise
introduced due to strong light sources on the ground such as in event of fire or reflections
from sun and ice. These outliers could affect the data normalization. Therefore statistics
such as mean, maximum, minimum, standard deviation and the 99.9th percentile of the
pixel values have been computed for each input data source and shown in Table 5.2. In
case of multi-channel data sources, statistics were calculated separately for each channel.
While the 99.9th percentile for all channels is around 3200 in the Sentinel-2 imagery, the
maximum lies in the range of 30000. Similarly, the maximum pixel value for the VIIRS is
approximately six times its 99.9th percentile. As a result, pixels in the 99.9th percentile
are regarded as outliers and the channels are clipped to its 99.9th percentile. Following
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Data set Year Resolution Purpose

So2Sat-POP

Sentinel-2 2017 10 m So2Sat-POP is a

Digital Elevation Model (TanDEM-X) 2016 10 m collection of multi-

Local climate zones (So2Sat LCZv1.0) 2017 10 m data sources. It is

Nighttime lights (NPP-VIIRS) 2016 10 m used as the input

OpenStreetMap (OSM) 2017 10 m data for our

Population Grids (GEOSTAT- EU) 2011 1 km training pipeline.

Reference population

SEDAC Census Grids (US) 2010 1 km grid for the compar-

ison study in the US.

Gridded population

GHS-POP 2015 1 km poduct for compa-

rison in EU & US.

Table 5.1: A summary of all the data sets used in our work for training and comparison analysis.

the removal of outliers, the Sentinel-2 images are normalized in accordance with F. Li et
al.’s [185] recommended preprocessing for images while training a ResNet or ResNet-like
architecture, such that the channel-wise mean is zero and the channel-wise standard
deviation is one. The VIIRS and DEM values are normalized to the range [0, 1]. Land
use is a four band raster in which each pixel value represents the area covered by the
respective land use classes (commercial, industrial, residential, and other) within that
pixel. Given that it is a land use proportion percentage, it should theoretically add up to
1 for each pixel. However, it has been noticed in Table 5.2 that these values sometimes
exceed because the buildings are stacked on top of each other and are in mixed-use, such
as residential buildings on top of a commercial complex. Such values are normalized so
that the maximum value for a pixel summed across all channels is equal to 1.

LCZ is categorical data with classes ranging from 1 to 17, classes 1–10 representing
built classes, and classes 11–17 representing natural classes [186]. To simplify this cat-
egorization system, all-natural classes are mapped to 0 so that the model treats them
the same and does not need to differentiate between them. All of the build classes are
assigned a value between 0.1 and 1, ranging from lightly to heavily built-up areas. Table
5.3 shows the mapping of the LCZ categories to new processed values. The low-level
features prepared in chapter 4 from OSM data are the vector values in different ranges.
Therefore, a min-max normalization is employed to bring all values on the same scale
[187].
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Data Source Mean Standard
Deviation

Maximum Minimum 99.9th
Percentile

SEN-2 (Autumn)

Channel-R 708.69 474.74 32563.00 0.00 3597.00

Channel-G 839.14 440.73 31634.00 0.00 3185.00

Channel-B 1005.07 486.69 31914.00 0.00 3243.00

SEN-2 (Spring)

Channel-R 747.21 492.73 29986.00 0.00 3371.00

Channel-G 838.89 442.19 28499.00 0.00 2976.00

Channel-B 931.09 442.19 29134.00 0.00 2926.00

SEN-2 (Summer)

Channel-R 770.02 549.05 25484.00 0.00 3534.00

Channel-G 881.28 476.76 23252.00 0.00 3160.00

Channel-B 949.80 481.49 23290.00 0.00 3104.00

SENl-2 (Winter)

Channel-R 740.05 493.04 32304.00 0.00 5387.00

Channel-G 838.21 457.98 32791.00 0.00 4715.00

Channel-B 1067.63 536.39 31532.00 0.00 3104.00

Land use

Commercial 0.002 0.02 3.90 0.00 0.48

Industrial 0.002 0.02 2.00 0.00 0.54

Residential 0.004 0.03 1.64 0.00 0.36

Other 0.023 0.08 3.99 0.00 0.88

DEM 153.70 152.46 2431.60 -976.44 1414.87

VIIRS 2.86 7.83 535.94 0.00 86.48

Table 5.2: Pixel-level statistics of the input data sources in the training data set.
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Figure 5.2: Population distribution of the training data set. The right-skewed distribution
indicates that high-populated samples are underrepresented in the data set.

5.2 Method

VGG and ResNet have been the most widely used deep learning models in population
estimation studies [16, 18, 19, 135]. Therefore, the two architectures are compared using
a subset of the So2Sat-POP data set in an initial experiment. In this subset, Germany’s
northern cities serve as the train and validation set, while the southern cities serve as
the test set. All the image data is concatenated and fed as input, and the vector data is
added directly to the fully connected layers. ResNets outperformed the VGG-16 on this
So2Sat-POP subset and was thus chosen for further experiments.

Due to the difference in dimensionality, the input data is divided into two categories.
The first is two-dimensional raster data, which includes Sentinel-2 (RGB), VIIRS, LCZ,
land use, DEM, and the second is one-dimensional feature vectors extracted from OSM
data. The ResNet architecture is modified to handle both data categories simultaneously.
The custom architecture, as depicted in the Figure 5.3 consists of two branches: the
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Category LCZ class Mapped value

Compact highrise 1 1.0

Compact midrise 2 0.9

Compact lowrise 3 0.8

Open highrise 4 0.7

Open midrise 5 0.6

Open lowrise 6 0.5

Lightweight lowrise 7 0.4

Large lowrise 8 0.3

Sparsely built 9 0.2

Heavy industry 10 0.1

Dense trees A 0.0

Scattered trees B 0.0

Bush, scrub C 0.0

Low plants D 0.0

Bare rock or paved E 0.0

Bare soil and sand F 0.0

Water G 0.0

Table 5.3: Mapping of LCZ categories from their corresponding classes to new processed values.

upper branch handles image data, called the image branch, and the bottom branch
handles vector data, called the vector branch, and both are concatenated before the first
fully connected layer. Both branches make use of a modified ResNet-50 [3] architecture.
The image branch is modified to handle inputs of size 10×100× 100 (channels × width
× height), whereas the lower branch uses a ResNet-50-like architecture for tabular data
[188], where the convolutional layers of the ResNet-50 architecture are replaced with
fully connected layers. The two branches are fused using intermediate fusion protocol
[189].

5.2.1 Experimental setup

The training set is split into training (80%) and a validation set (20%). For all the
experiments, the normal Xavier initialization [190] is used to initialize weights and bi-
ases. An ADAM optimizer [191] is used with an initial learning rate of 1 x 10−4 and
decayed by a factor of 0.1 whenever the training loss did not improve for five subsequent
epochs. Each experiment is run for a maximum of 50 epochs with a batch size of 32.
Regularization techniques include batch normalization [190] and weight decay [192]. In
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Figure 5.3: The proposed interpretable deep learning framework for population estimation.
Image is taken from our own publication [5].

addition to random flipping and rotations, random brightness and gamma adjustments
are also used to add randomized natural luminance shifts and scalings to the images with
beta = [0.8, 1.2] and gamma = [0.8, 1.2], respectively [193, 194]. All data augmentation
approaches are used with a 50% probability of being applied to the image, resulting in a
differently augmented image each time. The model output size for classification is set to
17 as indicated by the data set, whereas the model output for regression is a single value
population count. For regression, the loss function is set to Mean Squared Error (MSE)
and for classification, it is set to Focal Loss [195]. The complete method is written in
Python 3.8 and implemented with the PyTorch 1.10 framework [196]. All models are
trained on a single NVIDIA RTX 3090 GPU and 24GB of RAM.

5.2.2 Evaluation metrics

For regression, the commonly used evaluation metrics RMSE and MAE are employed.
To calculate the proportion of variance in population counts captured by the model, R2 is
used. For classification, in addition to accuracy, balanced accuracy, and macro-averaged
F1-score, another metric called class distance is used. Class Distance (CD) measures the
distance between the actual and the predicted class label. The metric takes into account
that a misclassification to a “nearby” class has a lower error than to a “far away” class
due to the underlying regression task. The CD is calculated using the equation 5.1.
The Mean Absolute Class Distance (MACD), which is basically the average of the class
distances across all samples (N) is calculated using equation 5.2 .

CD = reference classi − predicted classi (5.1)
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Regression

Sentinel-2 season RMSE MAE R2

Autumn 1579.59 548.93 0.747

Spring 1501.62 545.12 0.785

Summer 1776.90 562.74 0.680

Winter 1453.54 613.46 0.781

Table 5.4: Evaluation of different Sentinel-2 seasons on the test set for regression.

Classification

Sentinel-2 season Accuracy(%) Bal. Accuracy(%) F1 score MACD

Autumn 56.52 35.43 0.355 1.01

Spring 57.63 37.34 0.378 0.977

Summer 57.58 36.32 0.369 0.981

Winter 55.27 36.85 0.377 1.25

Table 5.5: Evaluation of different Sentinel-2 seasons on the test set for classification.

MACD =
1

n

N∑
i=1

|reference classi − predicted classi| (5.2)

5.3 Experiments & Results

5.3.1 Relevance of input data sources

The initial experiments are carried out to determine which Sentinel-2 season to employ
for further studies as the So2Sat-POP data set includes four seasons of Sentinel-2: au-
tumn, spring, summer, and winter. This experiment setup omitted the vector branch
and only the individual Sentinel-2 images for each season are fed to the model. Table
5.4 shows that Sentinel-2’s spring season yields better performance on the MAE than
the autumn (by 0.7%), summer (by 3%), and winter (by 11%) and ∼ 6% on an average
on R2. Also, the classification achieved better-balanced accuracy, MACD and F1 scores
in the spring season as indicated in Table 5.5. Therefore, in the following experiments,
the Sentinel-2 spring season is utilized as satellite imagery.

To examine the relevance of other input data sources in the data set, different experi-
ments based on various combinations of the data sources have been conducted using both
the branches of proposed deep learning architecture. For regression and classification,
models are trained following the “leave-one-out” principle in cross-validation except for
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Regression

Excluded data source RMSE MAE R2

None 1164.39 394.38 0.863

OSM 1216.65 422.18 0.849

DEM 1181.46 404.87 0.858

LU 1270.64 437.71 0.836

LCZ 1224.74 428.46 0.847

VIIRS 1168.89 386.64 0.861

Table 5.6: Evaluation of the relevance of input data sources using the test set by omitting each
input data source once, except Sentinel-2 (spring) for regression [5].

Classification

Excluded data source Acc.(%) Bal. Acc.(%) F1 score MACD

None 61.40 45.25 0.449 0.781

OSM 61.68 44.25 0.442 0.791

DEM 61.71 43.68 0.444 0.778

LU 58.44 37.68 0.374 0.887

LCZ 60.63 40.55 0.413 0.833

VIIRS 61.69 42.87 0.436 0.779

Table 5.7: Evaluation of the relevance ofinput data sources using the test set by omitting each
input data source once, except Sentinel-2 (spring) for classification [5].

the Sentinel-2 spring season. Using this strategy, all data sources are included in the
initial experiment and then each input data source is removed once for successive trials
to see if its removal affects the outcomes. Each trained model is evaluated on the 18
unseen test cities. The results of this set of experiments are shown in Table 5.6 for
regression and 5.7 for classification. In both studies, land use was found to be the most
important input by improving balanced accuracy by 7.5% in the case of classification
and decreasing mean absolute error by 11% in the case of regression. While the results
deteriorate slightly in the absence of each input data source, the impact is the least when
excluding VIIRS in regression and DEM in classification. In fact, the MAE slightly im-
proved in regression when VIIRS was excluded. Similarly, in classification, the absence
of DEM slightly improved the accuracy and MACD. When none of the data sources
were removed, the best results were achieved on the majority of metrics. Therefore, it
has been concluded that all input data sources are important for both regression and
classification models.
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Regression

Model RMSE MAE R2

Random Forest 1276.26 463.35 0.827

Custom ResNet-50 1164.39 394.38 0.863

Classification

Acc.(%) Bal. Acc.(%) F1 score MACD

Random Forest 59.13 37.95 0.383 0.896

Custom ResNet-50 61.40 45.25 0.449 0.781

Table 5.8: Comparison of the best deep learning-based models with the baseline RF model.
Across all criteria, the deep learning model outperforms the RF model [5].

5.3.2 Comparison with Random Forest

In chapter 4, RF is utilized as the baseline model on the So2Sat-POP data set [4].
Therefore, the best regression and classification model achieved in the experiments above
is compared with the RF model. Table 5.8 shows that the baseline RF results have been
improved across all metrics. There has been roughly an improvement of 7.5% in balanced
accuracy, as well as 15% and 8% improvements in RMSE and MAE, respectively. For the
visual comparison, two top-performing, two average, and two worst-performing test cities
are selected. In Figure 5.4 the normalized confusion matrix for each of these six selected
cities are visualized. The confusion matrices show that, while the model is confident
in predicting classes with moderate to high population densities, it performs poorly on
classes with very low population densities (Class 1, 2, and 3) and very high population
densities (Class 15 and 16). As highlighted in Figure 4.8 of section 4.5, patches from these
very low population density classes are difficult to distinguish and frequently misclassified
among themselves. On the other hand, as illustrated in Figure 5.2, there are very
few samples in the classes with the highest population density, which leads to their
poor classification performance. The RF model, for most cities, overestimates in low-
population classes and underestimates in high population classes. For regression, the
scatter plots of the predicted population counts versus the actual population count for
each of these cities are plotted, as shown in Figure 5.5. The scattering in the deep
learning model predictions is closer to the ideal fitting line for low to moderate population
values and more dispersed from the ground truth values for higher population counts.
On the other hand, for the RF model, a similar pattern has been observed as in the case
of its classification results, with an over-prediction over low population values and an
under-prediction across higher population ranges.

5.3.3 Comparison with GHS-POP

Using these six cities from above, a comparative study is conducted with GHS-POP,
which has been collected and processed as supplementary data in section 5.1.2. Table
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Figure 5.4: Normalized confusion matrix of two top-performing cities (Bremen, Liverpool 5.4a),
two average (Rotterdam, Malaga 5.4b), and two worst-performing cities (Wroclaw,
Genoa 5.4c) test cities for our deep learning and RF model. Image is taken from
our own publication [5].
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Figure 5.4: Normalized confusion matrix of two top-performing cities (Bremen, Liverpool 5.4a),
two average (Rotterdam, Malaga 5.4b), and two worst-performing cities (Wroclaw,
Genoa 5.4c) test cities for our deep learning (DL) and RF model. Image is taken
from our own publication [5].
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Figure 5.4: Normalized confusion matrix of two top-performing cities (Bremen, Liverpool 5.4a),
two average (Rotterdam, Malaga 5.4b), and two worst-performing cities (Wroclaw,
Genoa 5.4c) test cities for our deep learning (DL) and RF model. Image is taken
from our own publication [5].
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Figure 5.5: Scatter plots of our deep learning (DL) model predictions and RF model at the grid
level for two top-performing cities (Bremen, Liverpool 5.5a), two average (Rotter-
dam, Wroclaw 5.5b), and two worst-performing cities (Malaga, Genoa 5.5c) test
cities. The black dotted line, identity, represents the perfect fitting line and regres-
sion line, in red, indicates the trend in the model predictions [5].
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Figure 5.5: Scatter plots of our deep learning model (DL) predictions and RF model at the grid
level for two top-performing cities (Bremen, Liverpool 5.5a), two average (Rotter-
dam, Wroclaw 5.5b), and two worst-performing cities (Malaga, Genoa 5.5c) test
cities. The black dotted line, identity, represents the perfect fitting line and regres-
sion line, in red, indicates the trend in the model predictions. Image is taken from
our own publication [5].
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Regression

Cities
Ours GHS-POP

RMSE MAE R2 RMSE MAE R2

Bremen 537.67 272.89 0.933 1530.27 892.60 0.461

Liverpool 616.86 308.88 0.887 1039.60 607.16 0.679

Rotterdam 884.05 427.06 0.890 1871.76 1097.83 0.509

Wroclaw 1184.88 518.58 0.856 2199.25 1096.29 0.515

Malaga 3758.04 1710.72 0.777 6492.98 3901.72 0.334

Genoa 3724.55 2652.69 0.686 2732.62 1906.80 0.831

Table 5.9: Quantitative comparison of our best regression model with GHS-POP on two top-
performing (Bremen, Liverpool), two average (Rotterdam, Wroclaw), and two worst-
performing-performing (Malaga, Genoa) test cities [5].

5.9 and 5.10 show a quantitative comparison of our deep learning-based model predictions
versus GHS-POP estimations for regression and classification, respectively. On most of
the observed evaluation metrics, our method outperforms GHS-POP. In regression, the
improvements in RMSE for Bremen and Liverpool are up to 65%, and for our two worst-
performing cities, while Genoa performed poor than GHS-POP, Malaga still outperforms
the GHS-POP with a 42% improvement in RMSE. For classification, again, our model
outperformed the GHS-POP across every evaluation metric for all of these cities except
Genoa. The improvements in balanced accuracy ranges from 33% in Rotterdam to 16%
in Malaga. A visual comparison is shown in Figure 5.6 and 5.7. As seen in these plotted
population maps, GHS-POP does not capture heavily populated urban centers well. It
under-counts the population in the city’s densely populated central parts and does not
discriminate between dense and sparsely populated areas very well.

5.3.4 Evaluation and comparison on inter-regional cities

Since the model was trained on the So2Sat-POP data set, which only contains Euro-
pean cities, it was tested for transferability and generalizability in a new geographical
region. For this evaluation, a subset of three randomly selected US cities generated
as supplementary data in section 5.1.2 is utilized. The model predicts a population
class and a population count over all 1 x 1 km patches of each city. The estimations are
again compared with GHS-POP and the reference population data from SEDAC. The
results in Tables 5.11 and 5.12 for classification and regression, respectively, show that
our model, trained using data only from European cities, does not clearly outperform
the GHS-POP in US. In New York, our model outperformed the GHS-POP by 21%
improvement in the RMSE, but in San Jose, it underperformed than GHS-POP and
nearly doubled the RMSE. A similar pattern is observed in classification. Nevertheless,
our model performed in line with the GHS-POP, though it was never trained in the US.
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Classification

Cities
Ours GHS-POP

Acc.(%) Bal. Acc.(%) MACD Acc.(%) Bal. Acc.(%) MACD

Bremen 54.15 46.67 0.096 23.42 17.28 1.89

Liverpool 53.03 41.78 0.179 19.13 13.56 2.38

Rotterdam 51.19 48.88 0.071 15.52 11.74 2.39

Malaga 42.26 41.19 0.989 25.77 20.66 1.63

Wroclaw 36.06 42.03 - 0.08 19.91 15.46 2.23

Genoa 22.00 15.05 0.340 56.00 31.90 0.92

Table 5.10: Quantitative comparison of our best Classification model with GHS-POP on two
top-performing (Bremen, Liverpool), two average (Rotterdam, Malaga), and two
worst-performing (Wroclaw, Genoa) test cities [5].
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Figure 5.6: Comparison of two top-performing cities (Bremen, Liverpool), two average (Rotter-
dam, Wroclaw), and two worst-performing cities (Malaga, Genoa) with GHS-POP
for regression. Please note that the population counts are in thousands. Image is
taken from our own publication [5].
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Figure 5.7: Comparison of two top-performing cities (Bremen, Liverpool), two average (Rotter-
dam, Malaga), and two worst-performing cities (Wroclaw, Genoa) with GHS-POP
for classification. Image is taken from our own publication [5].
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Regression

Cities
Ours GHS-POP

RMSE MAE R2 RMSE MAE R2

New York 1615.96 674.10 0.60 2042.18 718.14 0.38

San Jose 1550.16 611.40 0.16 761.54 338.71 0.35

Denver 420.69 264.32 0.21 447.03 174.62 0.17

Table 5.11: Quantitative comparison of our best Regression model (trained with European
cities only) with GHS-POP on three random US test cities [5].

Classification

Cities
Ours GHS-POP

Acc.(%) Bal. Acc.(%) MACD Acc.(%) Bal. Acc.(%) MACD

New York 18.70 21.10 2.04 12.23 8.19 3.53

San Jose 38.20 15.46 0.84 41.29 25.73 2.04

Denver 23.48 7.14 2.92 34.02 30.48 1.46

Table 5.12: Quantitative comparison of our best Classification model (trained with European
cities only) with GHS-POP on three random US test cities [5].

These preliminary quantitative results suggest that our methodology has the potential
to be applied to different geographic regions, implying transferability. Of course, by fine-
tuning the model using a local micro-census, the model’s performance in a new region
could be considerably improved.

5.4 Interpretability

In the previous experiments, the results demonstrated that the deep learning models
could be used to reliably estimate the population and has the potential to help data-
driven decision-making. However, in order to ensure its acceptance and use by the key
stakeholders, its transparency must be improved by revealing its inner workings beyond
predicted performance. Therefore, an explainable AI (xAI) module is fused with the
proposed deep learning framework which examines the outcomes of the blackbox model.
Figure 5.8 depicts the complete framework. The xAI module is based on the Integrated
Gradients (IG) saliency method [197] to reveal the relevant features used by the model
for population estimation. While most explainability approaches are specific for image
inputs, the IG method can attribute multi-model inputs, which is also the case for the
proposed deep learning model, which has both image and tabular input data. Fur-
thermore, IG satisfies two fundamental axioms, namely sensitivity and implementation
invariance. The sensitivity axiom guarantees that if an input feature changes the model
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scores in any way, then the attribution to that feature should be non-zero. On the
other hand, the implementation invariance guarantees the feature attributions of two
functionally equivalent models should also be identical.

The feature attribution for an input example x is defined as the integral of the gradients
for the model predictions on examples that lie along the path from x′ to x, where x′ is
the baseline input that signifies the absence of a feature in an input. In practice, the
integral is approximated with a summation, and the importance Id (x) for a feature d of
the input example x is computed with the following equation [197]:

Id (x) =
(xd − x′d)

m

m∑
k=1

∂f
(
x′ + k

m (x− x′)
)

∂xd
(5.3)

In the framework for population estimation, x is the multi-modal input example con-
sisting of images and tabular data, x′ is the baseline input consisting of a black image
and a zero OSM vector, and f is the prediction of the ResNet-50 model for population
estimation. And, m is the number of interpolation steps in the path from x′ to x.

Applying this method, the feature attribution maps for a few examples from the test
data are visualized in Figure 5.9. In this example, the feature attribution map and the
corresponding Sentinel-2, LCZ, land use, and OSM features are plotted. The first two
instances are selected where the estimations are entirely correct. The predicted popula-
tion in the first instance is 4747, as is the actual population count. The model correctly
identified the settlements, as demonstrated in the feature attribution map. Similarly, in
the second instance, the actual and predicted population count is 3. The model focuses
on the built-up areas in the upper-left corner and distinguishes them from the natural
surroundings, which in this case are vegetation and bare soil. The street statistics such
as length, count, and proportions are among the most important OSM elements. In the
third case, the reference population count is 11 and the predicted population count is
216. Although the information from the land use data is absent in this case, a built-up
region is clearly visible in the corresponding Sentinel-2 and LCZ patches. Despite the
fact that the predicted population count does not match the reference population count,
the feature attribution map reveals that the model accurately recognized the settlements
in the areas. This mismatch could be due to discrepancies in the reference data as a
result of the time lag between the acquisition of reference population data and the other
corresponding input data. The fourth instance represents the port of Genoa with a
reference population count of 126, however, the population count was significantly over-
estimated to 1400. Its feature attribution map shows that the model is looking at the
upper left corner of the image, which appears to be a built-up region in the Sentinel-2,
LCZ, and land use data. Furthermore, the model discovered meaningful features on the
right side, resulting in an over-prediction by the model. This area has been investigated
and it was discovered to be a dock container terminal. It is densely packed with big
containers that may easily be misidentified as house roofs in satellite imagery. As a re-
sult, the model incorrectly interprets it as settlements and overestimates the population
in this patch. This example illustrates some of the limitations of utilizing satellite data
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to estimate the population as in some instances, the physical characteristics of built-up
areas in satellite images are not discernible even to humans.

Integrated Gradients

Spatial feature importance OSM feature importance

Population estimation module

Explainable AI module

Figure 5.8: The deep learning based population estimation module integrated with the explain-
able AI module [5].

5.5 Summary

In this work, an interpretable deep learning framework is proposed for estimating the
population at a consistent resolution of 1 km using only publicly available data sources.
The deep learning architecture is customized to handle raster and vector data at the
same time and predicts the population by generalizing across countries. The emphasis
has been placed on the method’s transparency so that it may be used in real-world
applications such as urban planning, infrastructure development, risk assessments, and
so on. The model is trained using the So2Sat-POP data set that has been mentioned
in chapter 4. The evaluations done on the 18 unknown test cities showed promising
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results. A comparative analysis has also been carried out in a few US and European
cities with a popular community standard product, GHS-POP. In most European cities,
a better performance than the GHS-POP has been achieved. However, due to a lack of
non-European training data, our estimations did not clearly outperform GHS-POP in US
cities. Nevertheless, our model performed in line with GHS-POP and this geographically
heterogeneous evaluation illustrates the method’s transferability.

Using an explainable AI technique, the most relevant features used by the model to
reach an outcome are assessed. This additional interpretation of the model’s decisions
would not only promote trustworthiness but may also be used as a reference to compare
the functioning of deep learning models beyond their predictive performance. The fea-
ture attribution maps in the explainability analysis reveal that the model is capable of
detecting the built-up areas and used them as the most relevant features. This also sup-
ports the intuition that land use data is a crucial predictor of population. However, in
some cases, the model could not distinguish between the residential and non-residential
built-up regions. The addition of high resolution satellite data and detailed building
function maps could further help to improve the results.
Also, the model is trained only on European cities, which means that the model’s

estimation could suffer a high bias in very densely or sparsely populated regions such
as India, China, and Mongolia or regions with very different architectural or cultural
peculiarities compared to Europe. Including these cities would also help to balance the
So2Sat-POP data set since there are only a few samples from the high population density
regions. Thus, expanding the training data or fine-tuning with the local micro-census
might boost the generalizability and performance of the model. Nevertheless, even in
the absence of census data, the framework could be utilized to generate more accurate
and interpretable population estimation maps at a large-scale.
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Figure 5.9: Explainability maps for a few examples from the test set, which represents the cal-
culated attribution score. Image is taken from our own publication [5]. A higher
feature attribution score implicitly indicates the higher importance of that feature
for the model’s prediction. Only Sentinel-2, LCZ, Land Use (LU), and OSM patches
as they allow for visual interpretation of the semantically significant features. De-
tailed documentation about the OSM geometric and topological network features
can be found at OSMnx [6] user reference (https://osmnx.readthedocs.io/en/
stable/osmnx.html)
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6 Building level population estimation

One of the primary issues of census data, as previously stated in section 2.2, is its
resolution is usually at census administrative units, making it impractical for certain
applications [129]. One example of an application being impacted by such national census
constraints is the Global Polio Eradication Initiative (GPEI) effort in Nigeria. GPEI
regularly undertakes vaccination programs intending to immunize every child under the
age of five [198]. Nigeria’s most recent national census, conducted in 2006, provides
the population counts and distribution at the Local Government Area (LGA) level.
This level of aggregation did not allow the identification of every vaccine-eligible child
under five and the campaign might miss some. The scarcity of available comprehensive
geo-demographic data and its limited access makes such ambitious projects extremely
difficult to implement and execute efficiently [199]. Fine-grained population estimation
could be beneficial in a variety of domains, including urban planning, resource allocation
optimization [137, 138], natural disaster management [139, 140], public health [141], and
as a foundation for various other applications.

Some studies have tried to improve the resolution of the available population data
by employing deep learning approaches [135, 136, 143], however, the spatial resolution
remains low. Where people live correlates strongly with the buildings; therefore, building
level population estimation would be the most precise and finest level source [144].
Recently, few studies have examined different methods for estimating population counts
at the building level [129, 132, 145, 146, 147]. These studies mapped census population
counts to buildings using high resolution satellite imagery or ancillary data sources such
as land use/land cover maps, night lights, and other socioeconomic indicators. Some
of these methods solely rely on building volumes acquired from LiDAR [129] or digital
surface models (DSM) [147], which are not available everywhere [132]. The majority
of these works used handcrafted features to disaggregate the available census data to
buildings [132, 145, 146, 147], which limits their transferability. Additionally, due to the
diversity in regional input data, each study has its own framework, making it difficult
to standardize and compare the methodologies [132]. Nonetheless, their preliminary
findings open the field for fine-scale population estimation for further exploration.

In contrast to the handcrafted features used in the related building population estima-
tion studies [129, 132, 145, 146, 147], in this work, a hybrid deep learning-based approach
is employed. The method uses the high resolution satellite imagery and building-related
data to predict the population at the 1 km and subsequently redistributes the estimated
population counts to the buildings. The predicted building population maps are aggre-
gated to 100m for evaluation purposes and compared with the popular state-of-the-art
population data set, WorldPOP.
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While satellite imagery is widely accessible, building data sets are often constrained
by their spatial coverage and quality. Therefore, in this work, using a case study in
two Bavarian cities, the significance and impact of data quality in the context of fine-
scale population estimation is investigated. Besides the widely available OSM open
data, high-quality regional data from open-access official sources is also collected. The
building-related data collected from sources that are readily accessible on a large-scale
is called coarse level data and the more comprehensive data collected from local gov-
ernment agencies is referred to as granular level data. For the first time, a population
estimation study uses the Bavarian Surveying Administration’s recently released open
geodata and compares them quantitatively and qualitatively to crowd-sourced platform
data sets. The comparative results indicate a clear advantage of using regional gov-
ernmental sources over crowd-sourced platforms. This could encourage the government
administrative offices to openly publish the geodata, which could be very useful for urban
research and development. To the best of our knowledge, this is the first effort toward
investigating a deep learning method coupled with OSM and Bayern open-access EO
data to estimate the population at the building level and study the impact of varying
data quality.

6.1 Study area

The method has been demonstrated using the two largest cities in Bavaria, Munich and
Nuremberg (Figure 6.1a). The city of Munich is the most densely populated municipality
in Germany, with a population density of 4777 inhabitants per km2 [200] and Nuremberg
is the second-largest city in Bavaria. Since 2000, Munich and Nuremberg have been
Germany’s two fastest-growing metropolitan regions, making them excellent examples
of thriving cities in Bavaria [201]. Due to the city’s tremendous expansion outwards,
an expansion algorithm suggested in section 4.1 is utilized. This algorithm expands
the city to accommodate the city’s ongoing urbanization. Table 6.1b shows the overall
statistics for the expanded version of the cities. This extension technique expands the
administrative area of both cities by approximately six times, resulting in a good balance
of urban and suburban areas in the study.

6.2 Data

For both cities, the reference population data, high resolution satellite imagery and the
building data sets, which include building functions, building areas and building heights,
are collected.

6.2.1 Input data

Population data

A good reference population data is crucial to develop an accurate population estima-
tion method. Therefore, the population grids are collected from official statistical offices
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(a) Study area in Germany. Munich and Nuremberg
are used as train and test cities, respectively.

City Area(km2) Population

Munich 2,052 2,016,101
Nuremberg 962 892,874

(b) Overview of the extended cities in
Bavaria, Germany.

Figure 6.1: Location and statistics of the study area.

at spatial resolutions of 1 km and 100m in order to assess the grid level and building
level population estimates, respectively. The 1 km-resolution population grids is from
the ESSnet project in partnership with the European Forum for Geography and Statis-
tics (EFGS) and are collected at a spatial resolution of 1 km. The 100m-resolution
population grids are collected from Germany’s Federal Statistical Office. These grids
were generated by utilizing information on people, buildings, and apartments for every
address that is allocated to a grid cell size 100 x 100m based on its geographic coordi-
nates [202]. Thus, the population count for a grid cell is obtained by aggregating the
counts from all of its allocated addresses, yielding a population count at 100m. More
information regarding its method could be obtained on the project website [202], in the
document titled “Explanatory notes on Demographie am 100 Meter-Gitter”.

Satellite imagery

Satellite imagery has a strong potential to track the physical environment and hu-
man footprint. Several studies have used satellite imagery to estimate populations
[16, 17, 18, 203]. While high resolution satellite imagery is expensive and may not be
publicly available, alternatively, Google Earth satellite imagery is utilized. It is a large-
scale, freely accessible imagery subject to some restrictions for commercial purposes. It
provides a clear view of buildings, streets, vegetation, etc., and therefore could be suf-
ficiently utilized for urban-related applications. The noise caused by the heterogeneity
in the image acquisition dates of this imagery lies in the range of heterogeneity in the
remaining data sources as well as the ground truth census data. The satellite imagery
is automatically retrieved, within the limitations of Google’s usage agreements by using
the freely available Geographic Information System (GIS) software product SASPlanet.
The bounding box coordinates of the retrieved city extents have been used as region of
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interest in selection for the batch download in the zoom level 20 of the Google satellite
layer.

Building function

Building-related data offers a reasonably accurate representation of population trends
[204] and could be particularly useful for urban studies. OSM (http://www.openstreet-
map.org) is a large-scale open and crowd-sourced mapping tool where millions of con-
tributors gathered the geographic and descriptive information for buildings with good
coverage for the urban areas of Germany [205, 206]. Therefore, the building footprints
from OSM are extracted for the study area using the Geofabrik [207] OSM service
provider. The downloaded OSM data comprises buildings as polygons and the function
of the buildings as building tags. For the coarse level, the OSM data is utilized as it is.
While the building footprint is reasonably complete in OSM, building function tags are
not [132]. Therefore, for the granular level, the building functions from the official Ger-
man cadastral land register ALKIS (Amtliches Liegenschaftskatasterinformationssystem
[208] are collected. The “Actual Use” (Tatsächliche Nutzung) layer, a component of
ALKIS, published by the Bavarian Surveying Administration, describes the utilization
of the buildings in detail [209].

Building heights

Building heights are a key element in reflecting the varied pattern of buildings within
a region. Due to a lack of data, information on urban building height across vast ar-
eas is currently scarce [210]. A few modeled products are available in the literature.
However, their quality is still debatable because they have been generated utilizing
multiple regional input data and methodologies, thus, also not available on large-scale
[210, 211, 212, 213]. Therefore, for coarse level, a large-scale open database called EU-
BUCCO is utilized. This data set is based on publicly available government data sets
and OSM that have been gathered, harmonized and partly validated [214]. Milojevic-
Dupont et al. built the EUBUCCO scientific database of individual building footprints
for nearly 206 million buildings across the 27 European Union countries and Switzerland,
with the completeness of 74% for the building heights attribute [214]. For the granular
level, again the ALKIS, which provides the open-source CityGML 3D building models
(3D-Gebäudemodelle (LoD2)) [215] is utilized.

6.2.2 Data Preparation

All of the aforementioned input data sources for Munich and Nuremberg have been
gathered. Each input data has been cropped using the city extents established by the
expansion algorithm. Since the data is gathered from different sources, they are rep-
resented in distinct CRS. The reference population grid is represented as EPSG:3035 -
ETRS89-extended/LAEA Europe. Therefore, all input data from their associated coor-
dinate systems are reprojected to the EPSG:3035 CRS in order to align them with the
population grid.
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Building function data gathered from OSM and ALKIS contains a variety of land use
tags. OSM has 147 distinct land use tags for buildings in the study area, while ALKIS
has 103 collected from two land use attributes: usage type (Nutzungsart) and detailed
descriptor (Bezeichnung). A mapping scheme has been devised to homogenize the land
use categorization of buildings, with each tag mapped to a reduced building use classifi-
cation: commercial, industrial, residential, and other, with certain buildings remaining
unlabeled due to the lack of any building use tag. Detailed mapping scheme can be
found in Appendix Tables A.1, A.2, and A.3. Table 6.1 summarizes the completeness of
OSM and ALKIS building function tags in Munich and Nuremberg. Using the reduced
building function tags, data is further processed to create the binary residential/non-
residential building masks with their corresponding built-up area.

Building Function

Munich Nuremberg

OSM ALKIS OSM ALKIS

Commercial 1.47% 3.21% 0.92% 3.14%

Industrial 0.57% 3.96% 0.37% 4.40%

Residential 30.16% 68.92% 17.85% 72.22%

Other 19.52% 22.24% 15.57% 17.87%

Unlabelled 48.27% 1.67% 65.29% 2.34%

Table 6.1: The percentage of buildings that fall into each of our simplified building use classi-
fication schemes, as well as those that remain unlabeled.

3D building models are available in ALKIS as CityGML data with Level of Detail 2
(LoD2). CityGML is a data modeling standard for semantic 3D cities and landscape
models based on the Geography Markup Language (GML) [216]. The GML files are
parsed to extract the building polygons and their corresponding height values. The
height values represent the vertical disparity between the lowest terrain intersection and
the highest point of the roof. In EUBUCOO, the data is provided as a geo-package
(GPKG), which is another Open Geospatial Consortium (OGC) standard for the ex-
change of geospatial data. Similarly, the GPKG files are parsed to extract and assign
height values to all buildings in the study area. However, due to missing data, around
3.9% and 80.9% of the buildings in ALKIS and EUBUCCO, respectively, remain with-
out a height value. Figure 6.2 shows the building footprint extracted from OSM for a
few buildings in the Munich city center, as well as their associated building usage, as
indicated by (a) ALKIS and (b) OSM data and 3D building map generated using the (c)
ALKIS and (d) EUBUCCO data sets. In this example, residential buildings refer to the
predefined simplified building use classification scheme’s residential class. In contrast,
non-residential buildings comprise commercial, industrial, and other classes, with some
unlabeled buildings in both scenarios. As can be seen, the completeness of the data in
crowd-sourced platforms and official sources differ significantly.
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(a) ALKIS building function (granular level) (b) OSM building function (coarse level)

(c) ALKIS 3D map (granular level) (d) EUBUCCO 3D map (coarse level)

Figure 6.2: Building footprint for a few buildings of Munich city center and building function
maps generated using the (a) ALKIS and (b) OSM building use data, building-
height map created using (c) ALKIS and (d) EUBUCCO data set.

After all input data has been processed and cleaned, ESSnet project population grid
cells are used as a reference to crop the 1 x 1 km patches from the corresponding input
data. The complete preprocessing pipeline is shown step-by-step in Figure 6.3.

6.3 Method

Being excellent at computer vision tasks, convolutional neural networks (CNN) have been
effectively used in state-of-the-art deep learning-based methods for population estimation
[16, 17, 18, 19]. As a result, in this study, experiments are conducted with a modified
version of ResNet18 [217], pre-trained on the ImageNet data set as Xie et al. noted that
pre-training on standard data sets could be useful for satellite imagery as well [218].
ResNet has proven to be a reliable architecture for population mapping [17, 53, 136],
but previously has not been utilized in building level population estimation studies.
The input layer of the model is modified to handle inputs of size 334 x 334 xC (width ×
height × channels) using the RGB bands from satellite imagery and the single bands
from residential masks, building area, and height rasters. Also, the output layer is
adapted for regression and reduced to a single value to predict a population count.
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Figure 6.3: Step-by-step preprocessing of all the input data sources to create the corresponding
input data for each city.

6.3.1 Experimental setup

The model is trained to predict a population count at 1 km2 using four different scenarios.
In each setup, a new input layer is added to determine the significance of each input
data. Table 6.2 shows these four configurations, together with the data used in each
case. The outcomes are evaluated for each of these described scenarios to quantify the
added value achieved by adding an additional level of detail in each case. In addition to
the satellite imagery used in Scenario 1, all experiments in other scenarios are carried out
at two alternative building data quality levels, coarse and granular, in order to compare
and contrast the results obtained for each set of studies. For all the experiments, 80% of
the grid cells in Munich are utilized for training and the remaining 20% for validation.
All of the grid cells in Nuremberg are used only for testing. All models are trained for
a maximum of 75 epochs with a batch size of eight. The ADAM optimizer is used with
β1 = 0.9, β2 = 0.999, and an initial learning rate of 1 x 10−4, which is decayed by a
factor of 0.1 if the training loss did not improve for five subsequent epochs. Random
flipping, random rotations, random brightness and gamma adjustments with beta = [0.8,
1.2] and gamma = [0.8, 1.2] are employed as data augmentation techniques to improve
the models’ robustness and performance [193, 194]. All data augmentation approaches
are used with a 50% probability of being applied to the image, resulting in a differently
augmented image each time. The implementation was done using Python 3.8 and the
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Setup Data utilized

Scenario 1 Satellite Imagery

Scenario 2 Satellite Imagery
+ Residential Masks

Scenario 3 Satellite Imagery
+ Residential Masks
+ Building Area

Scenario 4 Satellite Imagery
+ Residential Masks
+ Building Area
+ Building Heights

Table 6.2: Overview of four scenarios and the corresponding data utilized for grid level popu-
lation estimation.

PyTorch 1.10 framework [196]. All models are trained on a single NVIDIA RTX 3090
GPU with 24GB RAM.

6.3.2 Evaluation Metrics

To evaluate the models’ predictions, the root-mean-square error (RMSE) and the mean
absolute error (MAE) are employed. To study the error distribution pattern at two
different data quality levels, calculate the percent Relative Estimation Error (REE) [61].
The absolute difference between the actual (yi) and estimated (ŷi) population counts,
divided by the actual population count for each grid cell, is used to compute the REE.

REEi =
|ŷi − yi|

yi
∗ 100

6.3.3 Mapping population to buildings

To map the estimated grid level population counts to buildings, a post-processing pipeline,
as shown in Figure 6.4 is employed. To assign the population only to the residential
buildings in a grid cell, first, the residential mask is applied to extract the residential
buildings, followed by adding its height information as per the availability to construct
the residential area or volume masks. The estimated population of the grid cell is then
distributed among its residential buildings in proportion to their residential area, which
is then further refined when the residential volume is available such that no building is
missed owing to a lack of 3D information. Since building level population estimates are
typically not publicly available, the conventional technique of aggregating and analyz-
ing the results at the next possible fine resolution is followed [18, 129, 219, 220, 221].
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The reference population data collected and processed at 100m is used to validate the
building level population estimates.
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Figure 6.4: The subsequent processing to map population to buildings and its accuracy assess-
ment at 100m.

6.4 Experimental Results

This section first presents the findings for the population estimation at grid level using
the coarse and granular data and then assesses how well the estimated population is
mapped among the buildings.

6.4.1 Grid level Population Estimation

For grid level population estimation, the model is trained to predict a population count
at a resolution of 1 km in all four scenarios, adding one level of detail at a time. Table
6.3 presents the RMSE and MAE for the population estimation in each scenario. Since
Scenario 1 only uses identical satellite imagery, the outcomes are the same at the coarse
and granular levels. In scenario 2, the residential masks extracted from OSM (coarse)
and ALKIS (granular) are added as input data in addition to the satellite imagery,
which tremendously improved the results across all metrics. The MAE of the population
prediction improved by 13% at the coarse level and 24% at the granular level. The
addition of a building area improved the outcomes slightly in scenario 3. In scenario 4,
the addition of height information further improved the MAE by 3% at the coarse level
and 12% at the granular level. It has been believed that the completeness of the height
data results in multi-fold improvement at the granular level compared to the coarse
level. The scatter plots for all scenarios are shown in Figure 6.5. In these plots, the
dotted line represents the identity or line of equality with slope one and the solid line
represents the regression line fitted by our model. In general, while the model under-
predicts at the (a) coarse level, it slightly over-predicts at the (b) granular level. As a
new input layer is added for each scenario at both levels, not only does the dispersion for
population values below 2500 get closer to the identity line, but the estimates for higher
values also become closer to the actual population counts. The addition of building
areas and building heights improved the values for moderately populated values ranging
between 2500 and 5000 at the granular level, while at the coarse level, it improved the
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predictions for the population values greater than 15000. These improvements highlight
the learning ability and potential of the proposed method.

Setup Coarse Granular

RMSE MAE RMSE MAE

Scenario 1 653.59 255.90 653.59 255.90

Scenario 2 550.65 220.88 446.17 194.25

Scenario 3 529.97 218.76 423.52 189.22

Scenario 4 511.58 211.89 385.82 166.07

Table 6.3: Evaluation metrics for the population estimation at 1 km resolution for all four sce-
narios using the coarse and granular data.

The addition of residential masks in Scenario 2 significantly improved the MAE, ap-
proximately 13% at the coarse level and 24% at the granular level. Despite being
considered very important information, the improvements with the addition of building
areas and heights are not as large as in Scenario 2. Therefore, the distribution of resi-
dential building’s heights vs. non-residential building’s heights and residential building’s
areas vs. non-residential building’s areas are analyzed to ascertain whether their distri-
bution separates residential and non-residential buildings. As shown in Figure 6.6(a),
residential building height values at both data quality levels substantially overlap with
non-residential building heights. In Figure 6.6(b), though the non-residential buildings
appear to have larger areas than the residential buildings, the residential building area
values again coincide with the non-residential building area values. As a result, dis-
tinguishing between residential and non-residential buildings purely on their heights or
areas seems difficult.

6.4.2 Building level Population Estimation

To map the population to buildings, as illustrated in Figure 6.4, the estimated population
from the best-trained models is allocated to buildings as a function of building use
and building area or volume based on the availability of the data. Figure 6.7 shows
an example of the distribution of the predicted population among residential buildings
without and with height information. The population estimates for the buildings are
aggregated and compared to the reference population at 100m, shown in Table 6.4.
Around four people, on average, are misplaced at the granular level, whereas around
nine are misplaced at the coarse level by their corresponding 100m grid cell. Figure 6.8
depicts population maps at 100m for (a) coarse level, (b) granular level, (c) WorldPop,
and (d) reference population data. The population map generated at the granular level is
the most accurate among others. At coarse level, while the population map is comparable
to the reference population map in densely populated urban sections of the city, it
appears empty as it moves farther from the city, supporting the notion that OSM data
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Figure 6.5: Scatter plots of predicted vs. actual population counts for all four scenarios at (a)
coarse and (b) granular levels. The dotted line represents the identity or line of
equality and the solid line represents the regression line fitted by our model.

is more complete in densely populated urban regions within the city. The WorldPop
population map appears to be anticipating a similar population count for adjacent grid
cells and overestimates in the less populated outskirts of the city, resulting in a higher
mean absolute error.

Setup RMSE MAE

Coarse level 34.79 8.99

Granular level 14.12 3.85

Table 6.4: Evaluation metrics for population estimation at the building level for the city of
Nuremberg aggregated at 100 m for both granular and coarse levels.

To further visualize the error distribution pattern, the REE for each populated grid
cell is calculated, and its histogram normalized by the total number of grids is plotted
in Figure 6.9. It can be seen that around 65% of the patches at the coarse level have
estimation errors that are larger than 100%, indicating that more than half of the predic-
tions are off by over twice the absolute population counts which include over-predictions
as well as under-predictions. For the Worldpop, the majority of error lies between 40%
and 80%. On the other hand, at the granular level, the predicted population counts
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Figure 6.6: The distribution of (a) Residential vs. Non-residential building heights and (b)
Residential vs. Non-residential building areas at both coarse and granular lev-
els to analyze whether their distribution separates residential and non-residential
buildings.
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6.4 Experimental Results

Satellite Imagery 1. Applied residential mask

Residential

Non-residential

2. Applied residential built-up area3. Distributed predicted population (Ptotal: 100)

4. Applied residential built-up heights 5. Readjusted population (P1, P2 and P3)

Figure 6.7: An example that illustrates the population mapping to individual residential build-
ings as a function of building area, subsequently refined for the buildings with height
information.
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are closer to the actual population counts for the majority of patches with REE smaller
than 40%.

The association between the distribution of REEs at both data levels and the related
population counts is studied further. Figure 6.10 depicts the relationship between the
REE distribution within a specific population range. At the coarse level, the majority of
the large errors are concentrated in low-population regions with a population of less than
100. REE continues to be high within populations ranging from 100 to 200; however,
REE improves in moderately populated regions. A similar pattern is observed at the
granular level, with high estimation errors for population areas up to 200, and the REE
remains less than 40% for moderately populated regions and again increases for more
populated regions due to the small sample size in this range. Figure 6.11 presents (a)
building population maps of Nuremberg at coarse and (b) granular level, (c) and (d)
represent the Nuremberg city center, and (e) and (f) the Nuremberg suburb at coarse
and granular levels, respectively. Similar to population maps at 100m, the coarse level
building population maps are substantially poorer in the suburbs due to a lack of OSM
data.

6.5 Conclusion

This work offers a deep learning-based end-to-end pipeline for estimating the population
at buildings. It has been accomplished by first predicting the population at the grid level
(1 km) and then mapping the predicted population count into individual buildings as a
function of building use, building area, and building volume whenever this information
is available. Since building population counts are frequently unavailable, the building
population counts are aggregated to compare them to the reference population data
accessible at 100m. In Nuremberg, with the MAE of 4, the granular level population
map at 100m is highly accurate.

The input data is generated at two levels to highlight the impact of data quality on
population estimation: one with large-scale open-access sources (coarse level) and an-
other with comprehensive open-access data from official administrative sources (granular
level). Along with comparing their quality, all experiments are conducted at both levels.
It has been discovered that the completeness of building function data is critical in pop-
ulation estimation. The use of a residential mask generated from building function data
significantly enhanced the results. Also, at coarse level, while the population maps at
both 100m and building level look good in urban parts of the city, they appear empty
in Nuremberg city suburbs due to a lack of OSM building function tags. However, with
an active OSM community, its quality is continually improving. Nonetheless, population
maps at both coarse and granular scale results in better accuracy than Worldpop.

The encouraging results at the coarse level also demonstrate that the method is easily
adaptable and could yield acceptable outcomes even when only employing publicly avail-
able large-scale data sources. Therefore, this method could reasonably work in a remote
setting where extensive regional data from official sources is not available. However, be-
cause the data was considerably more complete at the granular level, the best results are
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achieved at the granular level. These findings could stimulate and encourage regional
federal offices to develop and offer open-access detailed data that many downstream
applications can use.

The population estimates for the buildings are evaluated only at 100m due to the
scarcity of available building level population data. Evaluating the results at the build-
ing level itself could help to further understand the method’s capabilities and limitations.
Exploring and integrating other data sources with high correlations to the population,
such as night light data, would be a worthwhile future effort to improve performance.
Monitoring the population dynamics at a fine level or building level as a result of ur-
banization could be another interesting future topic.
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Figure 6.8: Population maps at 100m for (a) coarse level, (b) granular level, (c) Worldpop,
and (d) reference population data.
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Figure 6.9: Relative estimation error distribution at 100 m for granular and coarse level. It
displays the proportion of patches (y-axis) that fall into a particular relative error
range.
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Figure 6.10: Boxplots showing the relationship between the relative estimation error percentage
(REE%) and population range at different coarse and granular levels.
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(a) Building population map (coarser level) (b) Building population map (granular level)

(c) Nuremberg city center (coarser level) (d) Nuremberg city center (granular level)

(e) Nuremberg suburb (coarser level) (f) Nuremberg suburb (granular level)

Figure 6.11: Building population maps for Nuremberg (a) and (b), Nuremberg city center (c)
and (d), and Nuremberg suburbs shown in (e) and (f) at coarse and granular
levels, respectively.
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Remote sensing has propelled the population estimating literature because of its ability
to acquire information about vast geographic areas rapidly and efficiently. It enabled
the large-scale study as well as the investigation of new data sets and methodologies.
This chapter presents a brief review of the various input data sources investigated in
this thesis, methodological advancements achieved, the results from different efforts,
and future work that could improve and extend the existing approaches.

7.1 Conclusion

Accurate and frequently updated population information is critical for achieving the
UN’s SDGs. A population census is the standard method of collecting population data,
but it comes with its own set of challenges. With the availability of large amounts of
EO data sets, population distribution may now be studied on a regular basis, across
multiple spatial resolutions, and at a far lesser cost than census data. This thesis inves-
tigates openly available EO data that has a strong correlation with people, as well as
advancements in deep learning to create interpretable high resolution population maps.

In Chapter 4, this thesis proposed So2Sat-POP, a novel data set that incorporates
multi-input geospatial data that were previously unexplored at the cross-country level
in the domain of population estimation. The data set covers 98 European cities, thus
providing a diverse mix of topography, demography, and architectural styles. The data
set includes digital elevation models, local climate zones, land use, nighttime lights,
Sentinel-2 imagery and OpenStreetMap data. All input data for each city is collected,
processed and cropped using the reference population grids at a resolution of 1 km, yield-
ing a total of 276172 patches. This data set would eliminate the need to acquire and
process the data from scratch in order to develop and evaluate the population estima-
tion algorithms. The RF model is trained as a baseline to demonstrate the potential
capabilities of the data set, and preliminary findings show that the So2Sat-POP data set
has the potential to support the development of sophisticated algorithms for population
estimation.

Using this data set, an end-to-end interpretable deep learning framework is developed
to predict the population at a resolution of 1 km (Chapter 5). The deep learning archi-
tecture is based on an adaptation of the widely used ResNet-50 architecture, which has
shown promising results in population mapping. In European cities, results indicate that
our population maps are more accurate than GHS-POP. Furthermore, the significance
of different input data sources included in the So2Sat-POP data set was explored. The
findings indicate that land use data is the most important indicator of population.
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To enhance the trustworthiness of the model’s inferences, IG, a popular xAI method, is
employed. It highlights the most relevant features considered by the model for population
estimation, thus sheds light on the workings of the model. It also highlights some specific
challenges when relying solely on remote sensing data for population estimation, such
as its inability to differentiate between distinct kinds of built-up regions.

To improve the spatial resolution of the existing population data, an extensive study
is being carried to map the population to the buildings, with application to two Bavarian
cities. A hybrid deep learning approach is developed that first predicts the population
at the grid level and subsequently redistributes the predicted population to individual
buildings. The method relies on publicly available high resolution satellite imagery and
building data such as building functions, area, and volumes, allowing it to be easily
applied to a remote situation.

While various deep architectures for population estimation have been studied in the lit-
erature, less effort has been made to investigate the impact of data quality in population
mapping. To investigate this impact, building data sets at two different quality levels are
collected, one from crowd-sourced platforms and the other from regional administrative
sources. Their comparative analysis reveals the incompleteness of the crowd-sourced
platforms, particularly in the city’s suburbs, and the models developed using data from
regional governmental sources are substantially more accurate than those trained on
data from crowd-sourced platforms. This could encourage the government administra-
tive offices to openly publish the geodata, which could be very useful for urban research
and development. It is an initial effort to combine open-access EO data with a deep
learning method for building level population estimation, as well as to investigate the
influence of variable data quality.

7.2 Outlook

There are numerous possibilities for further investigation. In Chapter 4, a benchmark
data set, So2Sat-POP, for population estimation is proposed. Since only European
cities are included in this data set, methods developed using this data set may be biased
in denser or more sparsely populated areas, such as India and China, or areas with
very different architectural or cultural quirks from Europe, such as modern US cities.
Expanding the data set to include these missing regions would be good future work
to further assist the researchers. Also, another challenge in the population data is
noisy labels. In Chapter 5, it was discovered that the reference population count of a
region does not always agree with features extracted from satellite imagery and other
supplementary input data. As a result, in addition to developing robust algorithms,
utilizing uncertainty to detect a certain form of label noise would be highly beneficial,
and this is a subject that has not previously been investigated in population estimation
studies.

Typically, bias in the reference population counts affects the work in this field. For
example, in Europe, the samples from the very high population counts were fewer than
the ones from the lower population counts. Chapter 5 seeks to overcome it, for example,
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by applying cost-sensitive loss functions and data augmentation. One area of future
research could be exploring more advanced approaches to handle imbalanced data and
be more resistant to outliers, such as dynamic sampling [222] or distribution smooth-
ing [223]. Additionally, using the “Leave One-Out” principle, Chapter 5 examines the
importance of different input data sources for modeling population counts using the
suggested deep learning architecture. The same setup is used for each configuration.
This principle does not investigate other possible combinations of input data and fusion
strategies, which could be expanded in this study.
Although the method is assessed and compared with GHS-POP in a few European

cities and three additional US cities, it remains open to compare the method with other
state-of-the-art large-scale gridded population products across different regions of the
world. This comparison could aid in further understanding the generalizability of our
model and explore transfer learning methods in population estimation. However, the
availability of reference population data will always be a constraint. As a result, less
data intensive methodologies, such as semi-supervised learning, could be investigated.
For example, if the population data from micro-census could be collected and processed
at a global scale, semi-supervised methods could be utilized for developing population
estimation models worldwide.
In Chapter 6, the creation of population maps at the building level helped to visualize

the detailed population distribution. However, the estimates were only analyzed at the
aggregated resolution of 100m due to the lack of available building population counts. In
this situation, the model’s effectiveness might be further assessed by applying population
estimates to specific downstream tasks for which reference data is available and directly
related to building occupancy, such as building electricity or water consumption. This
would help to understand the model’s performance at the building level and highlight
the significance of fine-scale population estimates in real-world applications.
Another exciting direction could be the illustration of growth of the human population

at a global scale. As the population continues to expand rapidly, monitoring the popu-
lation dynamics and patterns becomes increasingly crucial in maintaining a sustainable
living environment. With the availability of multi-temporal high resolution satellite pro-
grams such as LandScan, new methods for multi-temporal population mapping could be
investigated.
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[182] M. Sapena, M. Kühnl, M. Wurm, J. E. Patino, J. C. Duque, and H. Taubenböck.
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A Appendix

Table A.1: Mapping of Bezeichnung values from the Bayernatlas to the reduced classification
scheme used in this thesis. The value represents the land use value in German
directly derived from the ALKIS Tatsächliche Nutzung data, translation represents
its translation in English, and class represents its corresponding mapped class in
the reduced classification scheme.

Value Translation Class

Abfallbehandlungsanlage Waste treatment plant 2

Ackerland Farmland 2

Anlegestelle Jetty 1

Ausstellung, Messe Exhibition, fair 1

Autokino, Freilichtkino Drive-in cinema, open-air cinema 1

Baumschule Tree nursery 2

Botanischer Garten Botanical garden 4

Campingplatz Camping ground 1

Deponie (oberirdisch) Landfill (above ground) 2

Deponie (untertägig) Landfill (below ground) 2

Entsorgung Waste disposal 2

Erholungsfläche Recreation area 4

Fähranlage Ferry facility 1

Festplatz Fairground 1

Fischereiwirtschaftsfläche Fishery area 2

Forstwirtschaftliche Betriebsfläche Forestry operational area 2

Förderanlage Conveyor plant 2

Freilichtmuseum Open-air museum 1

Freilichttheater Open-air theater 1

Freizeitanlage Recreational area 1

Continued on next page
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A Appendix

Table A.1 – continued from previous page

Value Translation Class

Freizeitpark Amusement park 1

Funk- und Fernmeldeanlage Radio and telecommunication system 2

Fußgängerzone Pedestrian zone 5

Garten Garden 4

Gaswerk Gas plant 2

Gärtnerei Gardening shop 1

Gebäude- und Freifläche,
Mischnutzung mit Wohnen

Building and open space,
mixed use with housing

3

Gebäude- und Freifläche
Land- und Forstwirtschaft

Building and open space
agriculture and forestry

2

Golfplatz Golf course 1

Grünanlage Green area 4

Grünland Grassland 2

Hafenanlage (Landfläche) Port facility (land area) 1

Handel und Dienstleistung Trade and services 1

Heizwerk Heating plant 2

Hopfen Hops 2

Hubschrauberflugplatz Helicopter airfield 1

Industrie und Gewerbe Industry and commerce 5

Internationaler Flughafen International airport 1

Kanal Water duct 4

Kläranlage, Klärwerk Sewage plant, sewage treatment plant 2

Kleingarten Allotment garden 4

Kraftwerk Power plant 2

Kultur Culture 4

Lagerplatz Storage yard 2

Landeplatz, Sonderlandeplatz Landing field, special landing field 1

Landwirtschaftliche Betriebsfläche Agricultural farmland 2

Marktplatz Market place 1

Medien und Kommunikation Media and Communication 4

Modellflugplatz Airfield for model planes 1

Continued on next page
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Table A.1 – continued from previous page

Value Translation Class

nan - 5

Null - 5

Obstplantage Orchard 2

Öffentliche Zwecke Public purposes 4

Park Park 4

Parkplatz Parking lot 4

Raffinerie Refinery 2

Rastplatz Rest area (next to a motorway) 4

Raststätte Roadhouse 1

Regionalflughafen Regional airport 1

Safaripark, Wildpark Safari park, game park 1

Schleuse (Landfläche) Sluice (land area) 1

Schwimmbad, Freibad Swimming pool, outdoor pool 1

Segelfluggelände Glider site 1

Speicherbecken Reservoir 4

Spielplatz, Bolzplatz Playground, football field 4

Sportanlage Sports facility 1

Stausee Reservoir lake 4

Umspannstation Electrical substation 2

Verkehrslandeplatz Airfield 1

Versorgungsanlage Supply facility 2

Wasserwerk Waterworks 2

Weihnachtsbaumkultur Christmas tree nursery 2

Weingarten Winegarden 2

Werft Shipyard 2

Wochenendplatz Weekendplace 4

Wochenend- und Ferienhausfläche Weekend- and cottage area 1

Zoo Zoo 1
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A Appendix

Table A.2: Mapping of Nutzungsart values from the Bayernatlas to the reduced classification
scheme used in this thesis. value represents the land use value in German directly
derived from the ALKIS Tatsächliche Nutzung data, translation represents its trans-
lation in English, and class represents its corresponding mapped class in reduced
classification scheme.

Value Translation Class

Bahnverkehr Railroad traffic 4

Bergbaubetrieb Mining area 2

Fläche besonderer funktionaler Prägung Area of special functional character 4

Fläche gemischter Nutzung Area of mixed use 5

Fließgewässer Running water 4

Flugverkehr Air traffic 1

Friedhof Cemetery 4

Gehölz Woodland 4

Hafenbecken Dock 4

Haide Heath 4

Heide Heath 4

Industrie- und Gewerbefläche Industrial and commercial area 5

Landwirtschaft Agriculture 2

Moor Moor 4

Platz Square 5

Schiffsverkehr Shipping traffic 1

Sport-, Freizeit- und Erholungsfläche Sports, recreational and rest area 5

Stehendes Gewässer Standing water 4

Straßenverkehr Road traffic 5

Sumpf Swamp 4

Tagebau, Grube, Steinbruch Open pit, mine, quarry 2

Unkultivierte Fläche Uncultivated area 4

Unland/Vegetationslose Fläche Vegetation free area 4

Wald Forest 4

Weg Road 5

Wohnbaufläche Residential area 3
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Table A.3: Mapping of OSM tag values to the reduced classification scheme used in this work.
value represents the land use tag in OSM and class represents its corresponding
mapped class in reduced classification scheme.

Value Class Value Class

allotment house 3 conservatory 4

allotments 4 construction 4

apartments 3 container 4

arts centre 4 court 4

attachment 4 cowshed 4

barn 4 demolished 4

bicycle parking 4 detached 3

boathouse 1 disused 4

brewery 2 dormitory 3

bridge 4 elevator 4

brothel 1 exhibition hall 4

building passage 4 farm 4

bungalow 3 farm auxiliary 4

bunker 4 farmland 2

cabin 4 farmyard 3

carport 4 fga 4

castle 4 film set 4

cemetery 4 fire station 4

chapel 4 flo 4

chimney 4 forest 4

church 4 G 4

cinema 1 GA 4

civic 4 garage 4

collapsed 4 garages 4

college 4 garbage shed 4

columbarium 4 gazebo 4

commercial 1 ger 3

Continued on next page
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Table A.3 – continued from previous page

Value Class Value Class

grandstand 4 parking 4

grass 5 pavilion 4

greenhouse 4 power station 4

gymnasium 4 prefabricated 4

hangar 4 presbytery 4

heath 4 proposed 4

horseshed 4 public 4

hospital 1 public transport 4

hotel 1 quarry 2

house 3 recreation ground 4

hut 3 rectory 4

industrial 2 religious 4

kindergarten 4 residential 3

kiosk 1 restaurant 1

loading ramp 4 retail 1

manufacture 4 riding hall 4

meadow 4 roof 3

military 4 roofed ramp 4

monastery 4 ruins 4

mosque 4 school 4

museum 1 scrub 4

nan 5 semidetached house 3

nature reserve 4 service 4

no 4 shed 4

Null 5 sheepfold 4

nursing home 3 shelter 4

office 1 ship 4

orchard 2 shrine 4

parish hall 4 silo 4

park 4 skyscraper 1

Continued on next page
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Table A.3 – continued from previous page

Value Class Value Class

social facility 4 terrace 3

sports centre 1 Tiefgarage 4

sports hall 4 toilets 4

stable 4 tower 4

stadium 1 train station 4

staircase 4 transformer tower 4

stairs 4 transportation 4

static caravan 4 triumphal arch 4

storage tank 4 university 4

street cabinet 4 warehouse 1

substation 4 waste 4

supermarket 1 water 4

synagogue 4 water tower 4

temple 4 workshop 4

tent 4 yes;industrial 2

terminal 1 yes;apartments 3

117


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of Thesis

	2 Fundamentals
	2.1 Remote Sensing in Urban environment
	2.2 Population estimation techniques
	2.3 Deep Learning
	2.3.1 Components of Neural Network
	2.3.1.1 Layers
	2.3.1.2 Activation Functions
	2.3.1.3 Objective Functions
	2.3.1.4 Regularization
	2.3.1.5 Evaluation Metrics

	2.3.2 State-of-the-art architectures
	2.3.2.1 VGG16
	2.3.2.2 ResNets



	3 Related Work
	3.1 Review of population data sources
	3.1.1 GPW
	3.1.2 GRUMP
	3.1.3 GHS-POP
	3.1.4 LandScan
	3.1.5 WorldPop
	3.1.6 HRSL
	3.1.7 GHS-POP-EUROSTAT

	3.2 Remote Sensing in population estimation
	3.3 Machine Learning in population estimation
	3.4 Summary

	4 Population Estimation Data Set
	4.1 Study area
	4.2 Data
	4.2.1 Population data
	4.2.2 Sentinel-2
	4.2.3 TanDEM-X Digital Elevation Model
	4.2.4 Local climate zones
	4.2.5 Nighttime lights
	4.2.6 OpenStreetMap

	4.3 Data Preparation
	4.4 Data Structure
	4.5 Technical Validation
	4.6 Summary

	5 Deep Learning for population estimation
	5.1 Data
	5.1.1 So2Sat-POP data set
	5.1.2 Supplementary data set
	5.1.3 Data preparation

	5.2 Method
	5.2.1 Experimental setup
	5.2.2 Evaluation metrics

	5.3 Experiments & Results
	5.3.1 Relevance of input data sources
	5.3.2 Comparison with Random Forest
	5.3.3 Comparison with GHS-POP
	5.3.4 Evaluation and comparison on inter-regional cities

	5.4 Interpretability
	5.5 Summary

	6 Building level population estimation
	6.1 Study area
	6.2 Data
	6.2.1 Input data
	6.2.2 Data Preparation

	6.3 Method
	6.3.1 Experimental setup
	6.3.2 Evaluation Metrics
	6.3.3 Mapping population to buildings

	6.4 Experimental Results
	6.4.1 Grid level Population Estimation
	6.4.2 Building level Population Estimation

	6.5 Conclusion

	7 Summary
	7.1 Conclusion
	7.2 Outlook

	Bibliography
	A Appendix

