
Technische Universität München
TUM Campus Straubing für Biotechnologie und Nachhaltigkeit

Automated Flowsheet Synthesis via Reinforcement Learning
and piece-wise linear thermodynamic Models

Quirin Göttl

Vollständiger Abdruck der vom TUM Campus Straubing für Biotechnologie und

Nachhaltigkeit der Technischen Universität München zur Erlangung eines

 Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Michael Zavrel

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Jakob Burger

2. Prof. Dr. Dominik Grimm

3. Prof. Dr.-Ing. Artur Schweidtmann

Die Dissertation wurde am 31.10.2023 bei der Technischen Universität München eingereicht

und durch den TUM Campus Straubing für Biotechnologie und Nachhaltigkeit am 03.04.2024

angenommen.

Danksagung
Diese Dissertation entstand während meiner Tätigkeit an der Professur für Chemische
und Thermische Verfahrenstechnik am Campus Straubing für Biotechnologie und Nach-
haltigkeit der TU München. Von Juli 2019 bis August 2023 war ich dort als wissen-
schaftlicher Mitarbeiter angestellt. Hiermit möchte ich meine aufrichtige Dankbarkeit
gegenüber all jenen zum Ausdruck bringen, die mich während dieser Zeit auf meinem
akademischen Weg unterstützt haben.

Zunächst gebührt mein Dank meinem Doktorvater Prof. Dr.-Ing. Jakob Burger für die
fachliche Anleitung und Unterstützung in den vergangen Jahren. Ganz besonders möch-
te ich mich für Dein Vertrauen und Deine Risikobereitschaft bedanken, jemanden ohne
verfahrenstechnische Grundkenntnisse einzustellen und damit diese Promotion erst zu
ermöglichen. Aus meiner Sicht hat sich das Risiko auf jeden Fall gelohnt und ich kann
mir vorstellen, dass Du das genauso siehst. Darüber hinaus möchte ich mich auch bei
meinem Zweitbetreuer Prof. Dr. Dominik Grimm ganz herzlich für die Zusammenarbeit
bedanken. Vielen Dank für die anregenden Diskussionen und letztendlich auch für die
Chance, die erarbeiteten Methoden abseits von der chemischen Verfahrenstechnik ein-
zusetzen. Aus fachlicher Sicht hat neben mir wahrscheinlich niemand mehr Bezug zum
Thema dieser Arbeit als Jonathan Pirnay. Lieber Jonathan, vielen Dank für all die Dis-
kussionen, die konstruktiven Gespräche, und für die Zusammenarbeit, die schlussendlich
die Basis für den Erfolg dieser Arbeit bildete. Auch allen Kollegen, insbesondere dem
CTV-Team, sei an dieser Stelle nochmal herzlichst gedankt für all die fachliche und vor
allem auch moralische Unterstützung während der vergangenen Jahre.

Ein besonderer Dank geht an meine Familie, insbesondere an meine Eltern und Groß-
eltern, für Eure bedingungslose Unterstützung und Euren unermüdlichen Glauben an
mich während dieser Reise. Ihr habt mir bei den wichtigen Entscheidungen oft einen
Schubs in die richtige Richtung gegeben und mich trotzdem zu nichts gezwungen. Vie-
len Dank, dass Ihr mir ein Studium meiner Wahl ermöglicht habt, ich glaube es war die
richtige Entscheidung! Liebe Natalie, in den letzten beiden Jahren musste wahrschein-
lich niemand mehr meiner Launen aushalten als Du. Vielen Dank, dass Du mich bei
jedem Schritt unterstützt hast und immer für mich da warst. Ich liebe Dich. Mein Dank
gilt auch meinen Freunden, die mich mit ihrem Rat, ihrer moralischen Unterstützung

II

und ihrer Freundschaft durch diese Zeit begleitet haben. Ihre Beiträge haben nicht nur
meine Arbeit bereichert, sondern auch mein Leben.

Abschließend möchte ich mich bei all jenen bedanken, die bisher noch nicht namentlich
genannt wurden und auf irgendeine Weise dazu beigetragen haben, dass mir meine
Doktorandenzeit in guter Erinnerung bleibt und dass meine Promotion schlussendlich
Realität geworden ist.

Siegenburg, im Mai 2024
Quirin Göttl

Abstract III

Abstract

Automated flowsheet synthesis is an important research field in computer-aided process
engineering. The present work demonstrates how reinforcement learning, a machine lear-
ning sub-branch, can be used for automated flowsheet synthesis without any heuristics
or prior knowledge of conceptual design. In reinforcement learning, the main goal is to
teach an agent to master a predefined task by interacting with its environment. In the
case of the present work, a steady-state flowsheet simulation serves as an environment
where the agent can build up flowsheets that solve a given process problem. To set up the
environment, we implement short-cut models that enable the simulation of unit operati-
ons and their underlying phase equilibria. For this purpose, the convex envelope method
for constructing liquid phase equilibria is developed within this work. In this method,
the composition space is discretized and the convex envelope of the Gibbs energy graph
is computed. Employing the tangent plane criterion, all liquid phase equilibria can be
determined robustly. For chemical systems with an arbitrary number of components,
a mathematical framework is described and shown to work numerically with various
examples from the literature of up to six components. On the reinforcement learning
side, we stepwise present several frameworks that enable to train an agent to synthesize
process flowsheets for tasks of increasing difficulty. First, a novel method named Syn-
GameZero is developed to ensure good exploration schemes in the complex problem.
Therein, flowsheet synthesis is modeled as a competitive two-player game. The agent,
which consists of an artificial neural network and a tree search, is trained by playing this
game against itself. The approach is shown to work for simple problems within a discrete
action space. Second, the SynGameZero approach is extended by structuring the agent’s
actions in several hierarchy levels. This improves the approach’s scalability and allows
more sophisticated flowsheet problems to be considered. We successfully demonstrate
the usability of the hierarchical SynGameZero approach through the fully automated
synthesis of an ethyl-tert-butyl-ether process. Third, a single-player framework is de-
rived, which combines several elements from the hierarchical SynGameZero approach
and recently developed methodologies from the research field reinforcement learning.
The agent is trained within a hybrid action space to set up processes for separating
azeotropic mixtures out of several chemical systems.

Kurzfassung V

Kurzfassung

Die automatisierte Fließbildsynthese ist ein wichtiges Forschungsgebiet in der compu-
tergestützten Verfahrenstechnik. In der vorliegenden Arbeit wird Reinforcement Lear-
ning, eine Subdisziplin des Machine Learning, für die automatisierte Fließbildsynthese
eingesetzt. Hauptziel von Reinforcement Learning ist es, einem Agenten eine vordefi-
nierte Aufgabe durch Interaktion mit seiner Umgebung beizubringen. In unserem Fall
besteht die Umgebung aus einem Fließbildsimulator, in welchem der Agent Prozess-
schemata erstellen kann. Im Rahmen dieser Arbeit implementieren wir verschiedene
Short-Cut-Methoden zur Simulation der Apparatemodelle und der zugrundeliegenden
Phasengleichgewichte innerhalb des Fließbildsimulators. Zusätzlich wird eine Methodik
zur Konstruktion von Flüssigphasengleichgewichten entwickelt. Hierbei wird der Kompo-
sitionsraum diskretisiert und die konvexe Hülle des Graphs der Gibbs-Energie berechnet.
Mithilfe des Tangentenkriteriums können anschließend alle Flüssigphasengleichgewichte
bestimmt werden. Die Gültigkeit der Methodik wird für Systeme mit einer beliebigen
Anzahl an Komponenten mathematisch bewiesen. Zudem werden quantitative Ergeb-
nisse für verschiedene Beispielsysteme mit bis zu sechs Komponenten präsentiert. Nach-
folgend entwickeln wir schrittweise Methodiken im Bereich Reinforcement Learning, die
es ermöglichen, einen Agenten ohne Vorkenntnisse zu trainieren, Prozesse für Probleme
mit steigendem Schwierigkeitsgrad zu synthetisieren. Zunächst wird eine Methode na-
mens SynGameZero vorgestellt, welche Fließbildsynthese als kompetitives Zwei-Spieler
Spiel modelliert. Der Agent, bestehend aus einem künstlichen neuronalen Netz und ei-
ner Baumsuche, wird trainiert, indem er dieses Spiel gegen sich selbst spielt. Es wird
gezeigt, dass der Ansatz für einfache Probleme innerhalb eines diskreten Aktionsraums
funktioniert. Anschließend wird der SynGameZero-Ansatz erweitert, indem die Aktionen
des Agenten in mehreren Hierarchieebenen strukturiert werden. Dies verbessert die Ska-
lierbarkeit der Methodik und ermöglicht die Lösung komplexerer Probleme. Dies wird
am Beispiel der vollautomatisierten Synthese eines Prozesses für die Herstellung von
Ethyl-tert-Butylether gezeigt. Abschließend wird ein Ein-Spieler Ansatz beschrieben,
der mehrere Elemente des hierarchischen SynGameZero-Ansatzes und kürzlich entwi-
ckelte Methoden aus dem Bereich Reinforcement Learning kombiniert. Hierbei wird der
Agent in einem hybriden Aktionsraum trainiert, um Prozesse zur Trennung von azeo-

VI Kurzfassung

tropen Gemischen aus verschiedenen Beispielsystemen zu synthetisieren.

Declaration of Authorship VII

Declaration of Authorship

This dissertation contains material that has been published previously or that is included
in submitted publications. In the following, these publications are listed together with
a statement on the contributions of the author of the present dissertation.

• Q. Göttl, D.G. Grimm, and J. Burger. 2021. Automated process synthesis using
reinforcement learning. Comput. Aided Chem. Eng., 50, 209–214.

The author set up the implementation, carried out the experiments, and evaluated
the results. The author developed the model and the algorithmic framework. The
author wrote the manuscript. D.G. Grimm and J. Burger supervised the project.
Material of that publication appears partly in Sections 1, 2, 3.2.2, 3.2.3, 4.2, 4.3,
and 5 of this dissertation.

• Q. Göttl, Y. Tönges, D.G. Grimm, and J. Burger. 2021. Automated flowsheet
synthesis using hierarchical reinforcement learning: proof of concept. Chem. Ing.
Tech., 93, 12, 2010–2018.

The author set up the implementation, carried out the experiments, and evaluated
the results. The author developed the model and the algorithmic framework. The
author wrote the manuscript. The author developed together with Y. Tönges the
utilized model for cost estimation of flowsheets. D.G. Grimm and J. Burger su-
pervised the project. Material of that publication appears partly in Sections 1, 2,
3.2.3, 4.3, and 5 of this dissertation.

• Q. Göttl, D.G. Grimm, and J. Burger. 2022. Automated synthesis of steady-state
continuous processes using reinforcement learning. Front. Chem. Sci. Eng., 16,
288–302.

The author set up the implementation, carried out the experiments, and evaluated
the results. The author developed the model and the algorithmic framework. The
author wrote the manuscript. D.G. Grimm and J. Burger supervised the project.
Material of that publication appears partly in Sections 1, 2, 3.2.2, 4.2, and 5 of
this dissertation.

VIII Declaration of Authorship

• Q. Göttl, D.G. Grimm, and J. Burger. 2022. Using reinforcement learning in a
game-like setup for automated process synthesis without prior process knowledge.
Comput. Aided Chem. Eng., 49, 1555–1560.

The author set up the implementation, carried out the experiments, and evaluated
the results. The author developed the model and the algorithmic framework. The
author wrote the manuscript. D.G. Grimm and J. Burger supervised the project.
Material of that publication appears partly in Sections 1, 2, 3.2.3, 4.3, and 5 of
this dissertation.

• Q. Göttl, J. Pirnay, D.G. Grimm, and J. Burger. 2023. Convex envelope method
for determining liquid multi-phase equilibria in systems with arbitrary number of
components. Comput. Chem. Eng., 177, 108321.

The author set up the implementation, carried out the experiments, and evaluated
the results. The author developed the methodology. The author wrote the manus-
cript. J. Pirnay revised the implementation and the mathematical framework. D.G.
Grimm and J. Burger supervised the project. Material of that publication appears
partly in Sections 1, 2, 3.1.2, 4.1, and 5 of this dissertation.

• Q. Göttl, J. Pirnay, J. Burger, and D.G. Grimm. 2023. Deep reinforcement learning
uncovers processes for separating azeotropic mixtures without prior knowledge.
Currently under review for publication. Preprint available under: https://doi.
org/10.48550/arXiv.2310.06415.

That publication is a result of a shared first-authorship between the author of the
present work, Q. Göttl, and J. Pirnay. Both contributed equally to the implemen-
tation, the development of the methodology, and the manuscript. D.G. Grimm and
J. Burger supervised the project. Material of that publication appears partly in
Sections 1, 2, 3.2.4, 4.4, and 5 of this dissertation.

Additionally, the author of the present dissertation published other research during his
doctorate that is not part of the present dissertation and listed in the following:

• D. Vasiliu, Q. Göttl, S. Bröcker, and J. Burger. 2021. Multiple Solutions When
Fitting Excess Gibbs Energy Models and Implications for Process Simulation.
Chem. Ing. Tech., 93, 3, 490–496.

• J. Pirnay, Q. Göttl, J. Burger, and D.G. Grimm. 2023. Policy-based self-competition
for planning problems. Eleventh International Conference on Learning Represen-
tations (ICLR).

Contents IX

Contents

List of Figures XIII

List of Tables XVII

1 Introduction 1
1.1 Automated Flowsheet Synthesis: Problem Description and Classification

of Approaches . 1
1.2 Machine Learning and Artificial Intelligence in Process Systems Engineering 2
1.3 Reinforcement Learning for Automated Flowsheet Synthesis 2

2 Motivation 5
2.1 Thesis . 5
2.2 General Reinforcement Learning Framework and Challenges 6

3 Methodology 9
3.1 Environment: Process Simulation . 9

3.1.1 General Remarks and Available Unit Operations 9
3.1.2 Modeling of Decanters: Convex Envelope Method 12

3.1.2.1 General Idea . 12
3.1.2.2 Mathematical Framework 15

3.2 Reinforcement Learning Frameworks . 22
3.2.1 General Remarks . 22
3.2.2 SynGameZero: Proof of Concept . 23

3.2.2.1 General Idea . 23
3.2.2.2 Agent . 24

3.2.3 SynGameZero: Integration of Hierarchical Reinforcement Learning 30
3.2.3.1 General Idea . 30
3.2.3.2 Agent . 31
3.2.3.3 Variation of the Hierarchical Framework 36

X Contents

3.2.4 Single-Player Reinforcement Learning Framework for Automated
Flowsheet Synthesis . 37
3.2.4.1 General Idea . 37
3.2.4.2 Agent . 38

4 Results and Discussion 43
4.1 Modeling of Decanters: Convex Envelope Method 43

4.1.1 Qualitative Evaluation . 43
4.1.2 Quantitative Evaluation . 43
4.1.3 Analysis of the Impact of the Discretization Parameter δ 45
4.1.4 Discussion . 46

4.2 SynGameZero: Proof of Concept . 48
4.2.1 General Remarks . 48
4.2.2 Case Study 1 . 49
4.2.3 Case Study 2 . 50
4.2.4 Discussion . 52

4.3 SynGameZero: Integration of Hierarchical Reinforcement Learning 55
4.3.1 General Remarks . 55
4.3.2 Original Hierarchical Framework . 56
4.3.3 Variation of the Hierarchical Framework 57
4.3.4 Discussion . 60

4.4 Single-Player Reinforcement Learning Framework for Automated Flow-
sheet Synthesis . 62
4.4.1 General Remarks . 62
4.4.2 Overall Performance . 64
4.4.3 Comparison to Flowsheets from the Literature 65
4.4.4 Evolution of Long-Planned Recycles 66
4.4.5 Discussion . 68

5 Conclusion and Outlook 71

Bibliography 73

Appendix 83

A Appendix A 83
AI Modeling of Distillation Columns: ∞/∞-Analysis 83

Contents XI

B Appendix B 87
BI Modeling of Decanters: Convex Envelope Method 87

BI.1 Mathematics . 87
BI.1.1 Simplex Geometry . 87
BI.1.2 Discretization of the Composition Space 88

BI.2 Implementation . 88
BI.3 Detailed Results . 89

C Appendix C 95
CI SynGameZero: Proof of Concept . 95

CI.1 Environment . 95
CI.1.1 Chemical System and Unit Operations 95
CI.1.2 Cost Function . 96

CI.2 Generation of the Flowsheet Matrix 97
CI.3 Implementation and Training Procedure 98

CI.3.1 Implementation . 98
CI.3.2 Training Procedure . 99

D Appendix D 101
DI SynGameZero: Integration of Hierarchical Reinforcement Learning 101

DI.1 Environment . 101
DI.1.1 Chemical System and Unit Operations 101
DI.1.2 Cost Function . 102

DI.2 Generation of the Flowsheet Matrix 104
DI.3 Implementation and Training Procedure 105

DI.3.1 Implementation . 105
DI.3.2 Training Procedure . 106

E Appendix E 107
EI Single-Player Reinforcement Learning Framework for Automated Flow-

sheet Synthesis . 107
EI.1 Environment . 107

EI.1.1 Chemical Systems and Unit Operations 107
EI.1.2 Cost Functions . 109

EI.2 Generation of the Flowsheet Matrix 111
EI.3 Implementation and Training Procedure 112

EI.3.1 General Implementation 112
EI.3.2 Artificial Neural Network Implementation 113

XII Contents

EI.3.3 Sampling of Problem Instances during Training 114
EI.3.4 Training Procedure . 114

List of Figures XIII

List of Figures

1 A general RL framework for AFS. The agent interacts with a process
simulation as an environment and constructs a flowsheet by systematic
generation. The agent can see the current state of the process and receives
a reward depending on some monetary cost function. 6

2 Unit operations considered throughout this work: I) reactor, II) distilla-
tion column, III) decanter, IV) add solvent, V) mixer, VI) recycle, and
VII) split. 10

3 Example for the discretization of simplices depending on the parameter
δ for systems with N = 2 or N = 3 components. 15

4 Example for the convex envelope of a ∆gmix graph for a binary system
(solid black and dashed red line segments). The homogeneous simplices
are the black, solid line segments (those simplices connect only points
that are direct neighbors in the discretized composition space). The red
dashed line segment is a heterogeneous simplex (it spans over a multiphase
region). The lower part shows the projection of the convex envelope to
the discretized composition space. 16

5 Example for the classification of homogeneous (black) and heterogeneous
(red) simplices for a ternary system. The homogeneous simplices connect
neighboring points in the discretization space, while the heterogeneous
simplices span over a larger area. 17

6 Examples for heterogeneous simplices. The homogeneous line segments
are solid, and the heterogeneous line segments are dashed. The considered
feed compositions are marked with the symbol x. The red lines in the
first two columns show unique, linear splits of feeds inside the simplices.
The last column shows two examples of simplices that cannot be modeled
uniquely. 18

7 SynGameZero approach for AFS. The agent plays against itself by switch-
ing between the roles of players 1 and 2. 24

8 The agent’s decision process in SynGameZero. 25

XIV List of Figures

9 Example tree search at the beginning of the game (flowsheets of both
players empty) with three possible actions: T, D1, R. 27

10 The agent’s hierarchical decision process. 32
11 Hierarchical ANN structure of the agent. 33
12 Example structure of the search tree with integrated hierarchy levels. . . 35
13 The agent’s decision process. 39

14 Selection of ternary systems with UNIQUAC parameters from [62, 82]
constructed with the generalized CEM at atmospheric pressure. The
plots display molar fractions. The transparent red areas in the systems
1-hexanol – nitro methane – water and water – nitro methane – nonanol
display three-phase regions, all other red areas display two-phase regions
(for every two-phase region, a few example tie lines are plotted in black). 44

15 MD values for several choices for δ for the systems n-hexane – benzene
– sulfolane and n-octane – toluene – sulfolane. MD was calculated using
phase split data and parameters from [94]. Some points in the graph are
marked with the symbol x, which indicates that no phase split was found
for some given feed stream compositions for this choice of δ. 46

16 Variation of δ for the construction of ternary diagrams for the systems
n-hexane – benzene – sulfolane and n-octane – toluene – sulfolane from
[94] at 298.15 K and atmospheric pressure. The red triangles are the
heterogeneous simplices (i.e., simplices that span over a phase split region). 47

17 Illustrative example for the evolution of the agent during the training
process in Case Study 1. Flowsheets proposed by the agent to separate
an equimolar quaternary mixture are shown. Streams that leave the
process without description (e.g., ABC) are empty. 50

18 Benchmark flowsheets for Case Study 2. 51
19 Example for the evolution of the agent during the training process for sit-

uation 1, Case Study 2. The 3D plots show the value of three highlighted
actions of the ANN’s policy output over a subset of the composition space
of the feed streams (ṅA = ṅB, ṅC = ṅD) for the first action of the agent.
Action 1 is mixing both feed streams. Action 2 refers to placing a distil-
lation column of type D3 at the C – D feed stream. Action 3 refers to
placing a reactor R at the A – B feed stream. 53

20 Benchmark flowsheets designed by the authors for the quaternary system
Et – IB – nBut – ETBE. 56

21 Examples for flowsheets proposed by the trained agent. 58

List of Figures XV

22 Examples for the agent’s behavior for several feedstream combinations.
a), b), c), and d) refer to the flowsheets shown in Figure 21. 59

23 Illustration of the agent’s evolution at different stages during training.
The matrix field represents different feed stream combinations. The color
code marks the winning player. The red box shows the winning flowsheet
for the respective feed streams. 61

24 Flowsheets constructed by the trained agent for feed situations given in
the literature [103–106] (training process was carried out using NPV).
Flowsheet a) shows a process for the separation of Ac and Ch (feed
composition: xAc = 0.5, xCh = 0.5) using Be as solvent. Flowsheet b)
shows a process for the separation of Et and Wa (feed composition:
xEt = 0.5, xWa = 0.5) using solvent Be. Flowsheet c) shows a process
for the separation of Bu and Wa (feed composition: xBu = 0.4, xWa = 0.6).
Flowsheet d) shows a process for the separation of Py and Wa (feed com-
position: xPy = 0.1, xWa = 0.9) using To as solvent. 67

25 Examples for the implications of recycles on the compositions of the
streams, which show the planning capabilities of the trained agent. The
agent constructed the displayed examples after being trained using GCF.
To the left, the flowsheets without recycles are shown (to the right, the
flowsheets with recycles are shown). Inside the ternary diagrams, the feed
stream is marked by a black square, and the output streams are marked
with a brown triangle (connected by a blue line). Panel a) shows a process
for the separation of Ac and Ch using To as entrainer (feed composition:
xAc = 0.74, xCh = 0.26). Panel b) shows a process for the separation of Wa
and Py using To as solvent (feed composition: xWa = 0.04, xPy = 0.96). . . 69

A1 Topology of the VLE in the ternary system acetone – benzene – chloro-
form at 1 bar. The binary azeotrope and benzene span the distillation
boundary. The arrows indicate the direction of the distillation lines to-
ward the low-boiler. 84

C1 Construction of the flowsheet matrix F in the SynGameZero approach.
F contains the information of the stream table combined with structural
information on the flowsheet. All entries in the matrix, which are not
needed for now, are set to 0 (0 refers to a vector consisting of as many
entries equal to 0 as required for the width of the respective column). . . 98

XVI List of Figures

D1 Topology of the VLE in the quaternary system Et – IB – nBut – ETBE
at 8 bar. The binary azeotropes and IB span the distillation boundary
(gray surface). The arrows indicate the direction of the distillation lines
toward the low-boiler. 103

D2 Construction of the flowsheet matrix F in the hierarchical SynGameZero
approach. The matrix contains a stream table and information on the
connectivity of the streams in the flowsheet. 105

E1 Construction of the flowsheet matrix F in the single-player framework.
The matrix contains a stream table and information on the connectivity
of the streams in the flowsheet. 113

List of Tables XVII

List of Tables

1 Average performance metrics for Case Study 2. 51
2 Average performance metrics for the original hierarchical framework (the

values are rounded). 56
3 Performance of the agent on the test set for both cost functions NPV

and GCF. The ratio R indicates how much of the input (feed and added
solvent) the agent’s flowsheet separates into pure components. Addition-
ally, we report how often the agent proposes a flowsheet that separates
the feed and added solvent completely into pure streams (Compl. sep.).
Row 1 and 2 show the results for the agent using MCTS with a simulation
budget of K = 200. Row 3 and 4 show the results for unrolling the policy
with beam search (beam width k = 512). 65

B1 Results for ternary systems from [94] at atmospheric pressure. The pa-
rameter δ was set to 128, and the NRTL model was used for all systems.
M describes the number of feed streams that were examined for the cal-
culation of the MD. 90

B2 Results for quaternary systems at atmospheric pressure. The parameter
δ was set to 64 for all systems. M describes the number of feed streams
that were examined for the calculation of the MD. 91

B3 Results for quinary systems at atmospheric pressure. The parameter δ

was set to 32, and the NRTL model was used for all systems. M describes
the number of feed streams that were examined for the calculation of the
MD. 93

B4 Results for systems containing six components at atmospheric pressure.
The parameter δ was set to 16 for all systems. M describes the number
of feed streams that were examined for the calculation of the MD. 94

C1 Iu parameters for Case Study 1 and Case Study 2. 97
C2 Component prices for Case Study 1 and Case Study 2. 97
C3 Numerical tuning parameters for Case Study 1 and Case Study 2. The

parameter K specifies the depth of the tree search. 99

XVIII List of Tables

D1 Base values for investment costs of the units. 103
D2 Prices for components and steam. 104

E1 Considered chemical example systems and the available solvents for the
single-player framework. We use the following abbreviations for the com-
ponents: acetone (Ac), benzene (Be), butanol (Bu), chloroform (Ch),
ethanol (Et), pyridine (Py), tetrahydrofuran (Te), toluene (To), water
(Wa). The flowsheet simulation is based on phase equilibria that are
constructed assuming constant conditions (temperature and pressure for
liquid-liquid equilibria, pressure for vapor-liquid equilibria and distillation
boundaries). 108

E2 Parameters for the cost function NPV. The base values for the investment
costs of the unit operations are taken from [106] (for a mass flowrate
ṁ0 = 25000kg

h). I0,D refers to the base value for the distillation column.
I0,Dec refers to the base value of the decanter. Investment costs for all
unit operations that are not listed are neglected. The prices for steam
and components are chosen similarly as in Appendix DI.1. 110

E3 Parameters for GCF (as GCF has no unit, the parameters also have no
units). 112

List of Symbols XIX

List of Symbols

Latin symbols

gE Molar excess Gibbs energy
K Number of simulations in tree search
k Beam width in beam search
m Parameter for sequential halving procedure
ṁ Mass flowrate
ṅ Molar flowrate
p Filtered policy
R Universal gas constant
R Performance ratio
r Reward
s State
v Value, output of the value-head
y Normalized visit counts of tree search
Nbatch Batchsize
Nlayer Number of layers in neural network
Nmatrix Number of rows of flowsheet matrix
Nmemory Size of replay buffer
Nnode Width of a layer of a neural network
Nsteps Number of training steps

Greek symbols

δ Discretization parameter in the CEM
π Policy, output of the policy-head

XX List of Symbols

Abbreviations

Ac Acetone
ACN Actor-critic network
AFS Automated flowsheet synthesis
AI Artificial intelligence
ANN Artificial neural network
Be Benzene
Bu Butanol
Ch Chloroform
Et Ethanol
ETBE Ethyl-tert-butyl-ether
GCF Generic cost function
IB Isobutene
LLE Liquid-liquid equilibrium
MCTS Monte-Carlo tree search
MD Mean deviation
ML Machine learning
MLP Multi-layer perceptron
nBut n-Butane
NPV Net present value
OHE One hot encoding
PSE Process systems engineering
Py Pyridine
RL Reinforcement learning
Te Tetrahydrofuran
To Toluene
VLE Vapor-liquid equilibrium
Wa Water

1 Introduction 1

1 Introduction

1.1 Automated Flowsheet Synthesis: Problem
Description and Classification of Approaches

In chemical engineering, process synthesis (alternatively, flowsheet synthesis) can be
defined as the act where one invents the structure and operating levels for a new chemical
manufacturing process [1]. During process synthesis, the flowsheet topology is defined
by specifying the placement of unit operations and recycles [2]. After chemical route
synthesis, it can be seen as the second step in conceptual process design [3] and is to be
distinguished from subsequent process optimization steps [4].

The process systems engineering (PSE) community has focused on computer-aided pro-
cess synthesis for decades [5]. There are many methods in which the roles of humans and
computers are quite different and vary in their proportions. On one end of the spectrum,
humans invent flowsheets, provide mechanistic models of apparatus and physicochem-
ical properties, and employ computers solely in simulations to evaluate and check the
developed designs. On the other end of the spectrum is automated flowsheet synthesis
(AFS), which we call human-aided process synthesis by a computer instead. Therein,
the structure of the process and operating levels are chosen autonomously by the com-
puter based on predefined input, i.e., available feed streams, desired products, and a
predefined objective (e.g., some monetary profit). Siirola [6] classified AFS into three
categories: superstructure optimization, evolutionary modification, and systematic gen-
eration. In superstructure optimization, a large flowsheet structure (the superstructure)
is set up so that a large set of process alternatives can be obtained by removing parts
of that structure [7, 8]. An objective function or cost function is defined and the op-
timal configuration for the flowsheet is determined by an optimization algorithm that
uses decision variables to remove parts of the superstructure. Evolutionary modifica-
tion works as follows: a process flowsheet is devised (by any method at hand), analyzed,
and changed in one or more ways repeatedly to improve it. The changes are continued
until no further improvement in the flowsheet can be made [9]. Systematic generation
creates a flowsheet sequentially by adding unit operations from a predefined set. The

2 1 Introduction

decision process is usually based on heuristics or prior knowledge. Alternatively, it is
possible to derive heuristics by comparing many flowsheets systematically with the help
of a computer [10]. Prominent examples of the systematic generation approach are the
expert systems [11, 12]. Sometimes, two of the three categories are combined in hybrid
synthesis methods [13, 14]. For further reading concerning the state-of-art of AFS, we
refer to the already cited literature and review articles [5, 7, 15–18].

1.2 Machine Learning and Artificial Intelligence in
Process Systems Engineering

As machine learning (ML) and artificial intelligence (AI) are rapidly expanding fields,
a lot of research focuses on applying these kinds of techniques in PSE [19–25]. For
example, ML approaches enable training of surrogate models for the prediction of phase
equilibria [26–30] or molecular properties [31–33]. Surrogate models are also applied for
process simulation and optimization to reduce computational time [26, 34–36].

AI offers, however, more potential, as stated by Dimiduk et al. [21]: "Or, how can
one best apply the newest advances in ML and AI to improve materials, processes, and
structures engineering results? Speculating still further, why are there no emerging
AI-based engineering design systems that recognize component features, attributes, or
intended performance to make recommendations about directions for final design, man-
ufacturing processes, and materials selections or developments?" The ML technique that
could address these problems is reinforcement learning (RL). The objective of RL is to
teach an agent, which could, for example, consist of an artificial neural network (ANN),
to master a given task through repeated interactions with its environment [37]. As the
goals of RL and technical control schemes align nicely, RL is a frequently used tool in
the field of optimal process control [38, 39]. Another RL application in the PSE field
is the optimization of reaction pathways utilizing a variant of Monte-Carlo tree search
(MCTS) [40, 41].

1.3 Reinforcement Learning for Automated
Flowsheet Synthesis

The present work focuses on a combination of RL and AFS. As mentioned before, it is
based on already published work of the author [42–47]. In the following, we provide a

1 Introduction 3

brief overview of other RL-based AFS approaches that partially build on features of the
frameworks presented in this work.

To our knowledge, Midgley [48] proposed the first approach to train an agent by RL for
AFS. In this framework, the agent consists of an actor-critic network (ACN) and can
set up simple distillation sequences for zeotropic process examples. Khan and Lapkin
[49] demonstrated that it is possible to identify promising processing routes in hydrogen
production by using an RL approach. Given the open streams in a linear scheme,
the agent uses a thermodynamic graph and the Q-value to choose the units of the
flowsheet. In [50], a hierarchical RL framework that decomposes process synthesis into
two hierarchy levels is proposed. At the first level, a topology for several process sections
(e.g., a section for separation) is constructed using a similar approach as in [49]. At the
second level, these process sections are specified in detail by connecting unit operations.
This part of the agent was trained using proximal policy optimization [51]. The approach
was shown alongside an example process for ethylene oxide production. This work was
further continued in [52], where an ontological framework supported the agent in its
decisions. In [53], a different hierarchical RL framework is presented. The agent chooses
an open stream at the first level and at the second level a corresponding unit. At a third
level, a continuous specification for that unit is set. The flowsheets are represented
as graphs and the agent consists of several graph neural networks combined with an
actor-critic architecture. The agent is trained via proximal policy optimization [51] to
construct a process for the production of methyl acetate.

2 Motivation 5

2 Motivation

2.1 Thesis

The thesis of this work is that it is possible to train an agent from scratch via RL with-
out using heuristics to synthesize processes for conceptual design problems in chemical
engineering. The flowsheets are set up by the agent sequentially by connecting unit
operations, specifying their operational parameters, and deciding on the termination
of the synthesis process. This means that the agent can operate in a heterogeneous,
continuously parameterized (’hybrid’) action space without guidance from human engi-
neers. During training, the agent encounters varying initial situations (i.e., feed streams
in several chemical systems). It learns to approach a broad range of conceptual design
problems by developing its artificial process engineering intuition.

The motivation for omitting any guidance for the agent by heuristics or prior knowledge
is twofold: on the one hand, the usage of heuristics might restrict the agent’s ability to
come up with genuinely new designs; on the other hand, it has been shown on multiple
occasions that AIs can be trained via RL without prior knowledge to outperform hu-
mans in various domains with combinatorial search spaces, e.g., [54–57]. The present
work adapts and further improves on recently published ideas concerning RL and in-
tegrates those into an AFS framework. Furthermore, a flowsheet simulation based on
thermodynamic short-cut models is provided within this work as an environment for
the RL agent. To achieve this, existing ideas on thermodynamic short-cut models are
implemented, further developed, and proven to work. In summary, this work marks a
significant step towards a general process engineering AI, which can transfer its learn-
ings from the training process onto conceptual design problems it has never encountered
before.

6 2 Motivation

Figure 1: A general RL framework for AFS. The agent interacts with a process simula-
tion as an environment and constructs a flowsheet by systematic generation.
The agent can see the current state of the process and receives a reward
depending on some monetary cost function.

2.2 General Reinforcement Learning Framework
and Challenges

A general RL framework that models AFS as Markov decision process (MDP) [37] is
explained alongside Figure 1. The environment for the agent is a deterministic, steady-
state process simulation. The flowsheet is constructed using systematic generation [6],
i.e., by sequentially connecting unit operations. The agent can observe the state of the
environment, i.e., a stream table of the current flowsheet combined with information on
the connectivity inside the process. The possible actions that the agent can perform
are adding new unit operations to the flowsheet, setting their operational parameters
if applicable, or terminating the flowsheet synthesis. After choosing an action, the
environment updates the state by simulating the current flowsheet. As feedback, the
agent obtains a reward, which is generally based on a cost function that is evaluated in
the simulation (e.g., net present value (NPV) of the process).

The goal is to train the agent from scratch via RL to maximize this reward while
interacting with the simulation only. To achieve this, one must overcome some significant
challenges listed below.

2 Motivation 7

Challenges on environment side

I) Robustness of process simulation
As the agent has no prior knowledge of AFS, it will likely propose flowsheets of
low quality during the early stages of training. A robust environment is required
as it is difficult to provide a resulting state and reward to the agent in case of
a divergent simulation. Therefore, whenever possible, models for unit operations
should be chosen to converge for most of the possible input specifications.

II) Speed of process simulation
In other RL applications, the agent has to interact thousands of times with the
environment to master specific tasks (e.g., board games such as chess [54, 55]).
Therefore, it is expected that the agent has to construct thousands of flowsheets
to grasp fundamental concepts from conceptual process design. To train the agent
in a reasonable time, it is essential to provide an environment that simulates
the proposed designs fast, e.g., by using short-cut models for the available unit
operations.

Challenges on agent side

I) Local optima
A general problem in RL and optimization is convergence to local optima. In
our case, this problem is twofold. On the one hand, the agent must decide if a
flowsheet is an optimal solution or if further exploration is needed. On the other
hand, the RL framework must ensure that the agent’s policy converges to a global
optimum (or at least not stopping training at a local optimum).

II) Sparse reward signal
The reward guides the agent’s training process; thus, it is advantageous to provide
a reward after every action the agent takes. This is quite difficult for AFS (and
most planning processes in general), as it is very hard to judge the quality of a
particular action without knowing the final result, i.e., the final flowsheet. For ex-
ample, think of a multi-step separation sequence that only works successfully after
a recycle has been closed. After placing the first unit operation of the sequence, a
constructive reward is hard to determine. Further, if the agent does not close the
recycle and terminates the flowsheet synthesis instead, the process does not work.
Which was the unit operation that caused the process ultimately to fail? In this
case, it is not even possible to reward or punish individual actions constructively
after completing the flowsheet synthesis. Consequently, we suggest not rewarding
every single action but rather looking only at the final flowsheet and providing

8 2 Motivation

a reward based on its value (e.g., NPV) for the agent. This leads to a relatively
sparse reward signal, which may cause difficulties for the agent’s learning process.

III) Hybrid and heterogeneous action space
To construct a flowsheet, one needs to work in a hybrid action space consisting of
discrete and continuous actions, e.g., deciding on the destination of a recycle and
specification of the split ratio inside a distillation column, respectively. A lot of
RL algorithms only work with either discrete or continuous actions. While much
research focuses on hybrid action spaces, e.g., [58, 59], the proposed algorithms
are usually tailor-made for a specific problem class. Additionally, the action space
is heterogeneous, which means several types of actions cause different implications
for the flowsheet, e.g., placing a unit operation to an open stream, terminating the
process synthesis, or deciding on the destination of a recycle. To summarize, the
structure of the action space is quite complex; therefore, great attention should
be paid to this fact during the setup of the RL framework.

The subsequent chapters will address these challenges, which are structured as follows.
In Chapter 3, the methodology is introduced. Section 3.1 presents the unit operations
considered throughout this work. In Section 3.1.2, the development of the convex enve-
lope method (CEM) is explained. The CEM constructs linear representations of liquid
phase equilibria that are used to model decanters subsequently. In Section 3.2.2, the
SynGameZero approach is introduced. It models flowsheet synthesis as a competitive
two-player game and enables training an agent for AFS by RL within a discrete action
space. In Section 3.2.3, the SynGameZero approach is further improved by the hierar-
chical decomposition of the action space. Finally, in Section 3.2.4, a single-player RL
framework suitable for AFS is described. In Chapter 4, results for the methodologies
described in Sections 3.1.2, 3.2.2, 3.2.3, 3.2.4 are presented and discussed. In Chapter
5, an outlook onto directions for future research and concluding remarks are provided.

3 Methodology 9

3 Methodology

3.1 Environment: Process Simulation

3.1.1 General Remarks and Available Unit Operations

The environment is a deterministic, steady-state process simulation set up in Python. A
set of feed streams initializes it. An action consists of terminating the process synthesis
or choosing an open stream in the current flowsheet, a unit operation, and its specifica-
tion. After each action, the simulation returns an updated state of the current process.
The simulation solves the process-specific unit operation models in a sequential-modular
way [60]. The unit operations are based on short-cut models, which allow a quick and
robust evaluation.

The unit operations and specifications considered throughout this work are shown in
Figure 2 and listed below. Additional information will be provided alongside the case
studies in subsequent sections.

I) Reactor
The model for this unit operation depends on the chemical system and is explained
alongside the respective case studies.

Within this work, placing a reactor is a purely discrete action without further
specifications (e.g., temperature, pressure) to be set.

II) Distillation column
Distillation columns are modeled using the∞/∞-approach [61–64] by employing a
linearised representation of the underlying vapor-liquid equilibrium (VLE). As the
approach was adapted from [62, 63], we outline the basic concepts in the Appendix
AI.

When a distillation column is placed, the ratio of distillate flowrate ṅD to feed
flowrate ṅF has to be specified:

ṅD

ṅF ∈ [0, 1]. (1)

10 3 Methodology

Figure 2: Unit operations considered throughout this work: I) reactor, II) distillation
column, III) decanter, IV) add solvent, V) mixer, VI) recycle, and VII) split.

3 Methodology 11

III) Decanter
We employ a linearised representation of the underlying liquid-liquid equilibrium
(LLE) constructed by the convex envelope method (CEM) for a decanter model.
Details are provided in Section 3.1.2.

Within this work, placing a decanter is a purely discrete action without further
specifications (e.g., temperature, pressure) to be set. If a decanter is placed to a
feed stream that does not display a liquid phase split into two phases, the envi-
ronment simulates the decanter as split (see VII) Split). This ensures a constant
number of two output streams for the decanter.

IV) Add solvent
It can be decided to mix a solvent to an open stream. In this case, the ratio of
solvent flowrate ṅS to the flowrate of the open stream ṅF has to be specified:

ṅS

ṅF ∈ [0,∞). (2)

V) Mixer
Placing a mixer to an open stream is a discrete action requiring a discrete spec-
ification, namely, choosing another open stream to mix with. If more than two
streams must be mixed, placing multiple mixers in a cascade is possible.

IV) Recycle
Throughout this work, tear streams are used to simulate recycles [60]. The under-
lying fixed-point problem is transformed into a root-finding problem and solved
by the usage of the function fsolve provided within the Python package scipy
[65].

Similarly to the mixer, recycling an open stream is a discrete action, which requires
a discrete specification, namely, choosing the destination of the recycle. Possible
destinations are all other closed streams (i.e., streams that are not open) in the
current flowsheet.

VII) Split
This unit splits its feed stream according to a predefined ratio into two streams
of identical composition as the feed stream. In the present work, this ratio is
constantly set to 0.5, meaning that both output streams are identical in flowrate
and composition.

As explained above (see III) Decanter), a split is only introduced to ensure a
constant number of output streams for the simulation of a decanter. It is not

12 3 Methodology

provided as a separate option for the agent to choose from.

3.1.2 Modeling of Decanters: Convex Envelope Method

3.1.2.1 General Idea

The underlying liquid phase equilibrium has to be modeled to simulate a decanter. While
there exists a plethora of different approaches related to this topic, most of them are still
based on mechanistic models. Given a gE-model, one can try to solve an equation system
based on the isoactivity condition [66–68]. As this condition is only a necessary but not
sufficient criterion for stable equilibrium phases, more equations and conditions must be
considered to ensure correct solutions [66]. Additionally, these methods usually rely on
a good initial guess for the resulting compositions of the phases to prevent convergence
to trivial solutions [66, 67]. Thus, most gE-model-based approaches employ the tangent
plane criterion [69], based on the minimization of Gibbs energy [70, 71]. For a given feed
composition, the stable phases are therein found by an optimization algorithm. There
exist various examples of such approaches. Listing just a few, they can be classified
in deterministic [72–77] or stochastic optimization algorithms [78, 79]. We refer to the
literature for a thorough summary [68, 80, 81].

Within this section, we provide a generalization of the CEM [62, 82], which is based on
the tangent plane criterion [69], but can also be seen as a surrogate model, as it con-
structs an approximation of the phase equilibrium within a discretized space. Contrary
to the approaches mentioned beforehand, the CEM constructs a liquid phase equilib-
ria diagram for the (discretized) composition space of a given mixture as a whole and
stores it in a piecewise linear representation. Afterward, phase splits can be computed
robustly and fast for given feed compositions. The number of phases for a given feed
is computed by the CEM and thus has not to be specified beforehand. Obviously, the
construction for the whole composition space is computationally inefficient if only a
few feed compositions for fixed conditions (temperature and pressure) have to be eval-
uated. However, it is advantageous in conceptual process design when many different
process options with possible recycles have to be evaluated robustly. In the CEM, the
composition space is discretized into equally distributed points, and the Gibbs energy
of mixing is calculated at every point. Combined with those values, the discretization
points represent a graph, which is used as a basis to construct a convex envelope around
it. Given this surface, the tangent plane criterion [69] is used to determine all stable
equilibrium states in the whole composition space. [62] and [82] presented the CEM to
determine phase equilibrium diagrams in the liquid phase for up to four components.

3 Methodology 13

While it is clear from a thermodynamic point of view, as stated in [62, 82], that the
CEM applies to systems with an arbitrary number of components, such a generalization
is still missing. This generalization will be provided by the present work, which presents
a changed version of the CEM.

We refer to [62, 82] for a detailed derivation and explanation of the CEM and give a
brief description of the general steps for a system consisting of N ∈ N components:

I) Discretization of the composition space
A system consisting of N components can be represented by a simplex with N

vertices (for a mathematical explanation, we refer to Appendix BI.1.1). This
simplex is discretized by choosing points inside it, which are uniformly distributed.
This is done by specifying a minimal distance 1

δ , δ ∈ N between the discretization
points. Figure 3 provides a visualization of this concept. For N = 2 and δ = 4, a
binary system is discretized into 5 points with a minimal distance of 1

4 between
them (Figure 3 a)). For N = 3 and δ = 4, the discretization yields 15 points in total
(Figure 3 b)). Note that the number of points in the discretized space is bounded
by O((δ+1)N−1), but alongside Figure 3 it is also easy to visualize that for N > 2,
the number of points is less than (δ + 1)N−1. We refer to Appendix BI.1.2 for a
detailed explanation of the discretization procedure.

II) Determination of the ∆gmix-graph and the convex envelope
For each point in the discretized space with molar fractions x, the Gibbs energy
of mixing [83] is calculated:

∆gmix(x) = g(x) −
N

∑
i=1

xig
pure
i =RT

N

∑
i=1

ln(xiγi). (3)

The molar fractions x are transformed to cartesian coordinates a ∈ Rn (described
in Appendix BI.1.1) with n = N − 1. Combined with the values for ∆gmix(x), one
obtains points of the form (a, gmix(x)), which represent a graph in Rn+1. The
convex envelope is constructed around the points of this graph.

III) Classification of the simplices of the convex envelope
The convex envelope from step II) consists of several simplices, i.e., boundary el-
ements. For example, the simplices of the convex envelope in two dimensions are
straight line segments in three dimensions triangles. Figure 4 shows an example
for the convex envelope of a binary system. To obtain possible phase splits, one
has to classify the simplices of the envelope into homogeneous (black, solid line
segments) and heterogeneous (red, dashed line segment). A homogeneous simplex
connects only points that are direct neighbors in the discretized composition space,

14 3 Methodology

i.e., points with minimal distance, specified by the parameter δ (see also Figure
3). All other simplices are heterogeneous and span over a multiphase region. As
shown in the lower part of Figure 4, the simplices can be classified after the pro-
jection of the convex envelope to the discretized composition space. The values for
∆gmix are discarded, and the remaining distances determine whether two points
are neighboring. In a ternary system, the simplices are triangles consisting of
straight line segments, where each line segment either connects two neighboring
points in the discretization space, i.e., a homogeneous line segment, or not, i.e., a
heterogeneous line segment. Simplices that connect only neighboring points and
thus consist only of homogeneous line segments are called homogeneous; all other
simplices are called heterogeneous. Figure 5 visualizes the classification into ho-
mogeneous (black) and heterogeneous (red) simplices for a ternary system.
For each heterogeneous simplex, one must check if it can be used to model a unique
phase split in a linearised decanter model. This is shown alongside Figure 6 simi-
larly as in [62]. The homogeneous line segments are solid, and the heterogeneous
line segments are dashed. Figure 6 a) shows a split of a feed in a ternary system
into two phases: a unique straight line through the feed, which ends in the com-
positions of the two phases. Figure 6 b) shows a split of a feed in a ternary system
into three phases (a unique plane, which contains the feed and the compositions
of the three phases). In Figure 6 c), there are infinitely many possibilities to draw
a straight line through the feed and the two phases. Therefore, we can not model
this simplex uniquely and omit it for further analysis in step IV). Figures 6 d)-f)
show the same situations for systems with four components.
As mentioned in [62], heterogeneous simplices, which are not feasible for a unique,
linear phase split, occur rarely and only at the boundary of multiphase regions,
i.e., at locations where heterogeneous and homogeneous simplices are direct neigh-
bors. They nearly vanish when more points are specified within the discretization.
We provide detailed results on the effect of a low value for δ on the accuracy of
the CEM later on.

Steps I)-III) yield the phase diagram for the given system at the temperature used to
calculate ∆gmix. Examples are shown in the Results section. These steps have to be
done only once per system at fixed conditions, i.e., temperature and pressure.

IV) Computation of phase splits
For a given feed composition, one has to check if the point lies within a feasible,
heterogeneous simplex, which has been stored at step III). The occurring phase
split is computed depending on the simplex structure and the lever arm rule. This
step is explained in detail in the next section.

3 Methodology 15

Figure 3: Example for the discretization of simplices depending on the parameter δ for
systems with N = 2 or N = 3 components.

Step I) and II) can be executed for an arbitrary number of components without a change.
In step III) one has to classify the simplices into homogeneous and heterogeneous. In
[62], a graphical evaluation scheme for this task is provided that distinguishes several
cases and does the decision on a case-by-case basis. The scheme is only presented for up
to four components. An extension to more components would be very cumbersome and
hard to grasp. The number of cases for the heterogeneous simplices increases rapidly
(binary: 1, ternary: 3, quaternary: 8). This problem remains present in step IV)
as one has to define the type of linear split for every possible simplex topology. To
address these challenges, we propose a mathematical framework for the classification of
the heterogeneous simplices that is general and allows the computation of splits for an
arbitrary number of components and phases.

3.1.2.2 Mathematical Framework

We consider a system consisting of N ∈ N components, which is represented by a n-
simplex U in Rn with n = N −1 (e.g., a 3-component system is represented by a triangle
in R2, i.e., a 2-simplex). Given such an n-simplex, we now want to switch easily between
cartesian coordinates (i.e., coordinates in Rn) and molar fractions. This can be done by
using barycentric coordinates. Barycentric coordinates of a point inside a simplex are
coordinates with respect to the vertices of this simplex, which are non-negative and sum
up to 1. As will be seen later on, barycentric coordinates of a point inside a simplex,
which represents the whole composition space, are identical with molar fractions of this

16 3 Methodology

Figure 4: Example for the convex envelope of a ∆gmix graph for a binary system (solid
black and dashed red line segments). The homogeneous simplices are the
black, solid line segments (those simplices connect only points that are di-
rect neighbors in the discretized composition space). The red dashed line
segment is a heterogeneous simplex (it spans over a multiphase region). The
lower part shows the projection of the convex envelope to the discretized
composition space.

3 Methodology 17

Figure 5: Example for the classification of homogeneous (black) and heterogeneous
(red) simplices for a ternary system. The homogeneous simplices connect
neighboring points in the discretization space, while the heterogeneous sim-
plices span over a larger area.

18 3 Methodology

Figure 6: Examples for heterogeneous simplices. The homogeneous line segments are
solid, and the heterogeneous line segments are dashed. The considered feed
compositions are marked with the symbol x. The red lines in the first two
columns show unique, linear splits of feeds inside the simplices. The last
column shows two examples of simplices that cannot be modeled uniquely.

point in the composition space. For a detailed explanation of the simplex geometry used
throughout this work, we refer to the Appendix BI.1.1. Note that the transformation
by barycentric coordinates is linear; thus, the following geometric results should also
work directly in the molar fraction space. We transform the coordinates mainly for
illustration, as we believe some concepts are more straightforward to visualise this way.
If not stated otherwise, we refer from now on to cartesian coordinates. We assume that
the system has been discretized and that the convex envelope of the ∆gmix-graph has
been computed. We start with defining heterogeneous simplices:

Definition 1 (Heterogeneous simplex). Consider a system consisting of N components,
represented by a n-simplex U with n = N − 1, which was discretized with parameter
δ. Let h1, . . . , hN ∈ Rn be points in the discretized space (h1, . . . , hN are the cartesian
coordinates after transformation of the molar fractions), which define a simplex H =

conv({h1, . . . , hN}), originating from step II) in Section 3.1.2.1. We call H heterogeneous
or a heterogeneous simplex if there exist at least two indices i, j ∈ {1, . . . , N} with
i ≠ j so that hi and hj are not neighboring points in the underlying discretization
of the composition space. neighboring points are defined by having a minimal distance
dependent on δ in the discretized space.

3 Methodology 19

From step III) in Section 3.1.2.1, we know that not every heterogeneous simplex is
necessarily feasible for a unique, linearised decanter model. The following definition
provides a subset of heterogeneous simplices, which can be modelled in the desired way
(this will be proven at the end of this section).

Definition 2 (Phase block, isolated simplex). Let H = conv({h1, . . . , hN}) be a het-
erogeneous simplex. A phase block is a subset B ⊆ {h1, . . . , hN} with the following
properties:

I) For all bi, bj ∈ B with bi ≠ bj, it holds that bi and bj are neighboring points in the
underlying discretized composition space.

II) B is maximal w.r.t. property I), i.e., for all h ∈ {h1, . . . , hN} ∖B there is at least
one b ∈ B such that h and b are not neighboring points.

Note that a phase block B = {b1, . . . , bk+1} defines a k-simplex conv(B) which only
consists of neighboring points.
A phase block B is called isolated, if for all h ∈ {h1, . . . , hN} ∖B and all b ∈ B it holds
that h and b are not neighboring points. Note that this is a stricter requirement than
property II).
A heterogeneous simplex H is called isolated if all phase blocks in H are isolated.

Remark 1 (Decomposition property of heterogeneous, isolated simplices). It follows
directly from the definition that any isolated heterogeneous (N − 1) - simplex H =

conv({h1, . . . , hN}) decomposes uniquely into m ≤ N isolated phase blocks B1, . . . , Bm

such that ⋃m
i=1 Bi = {h1, . . . , hN}. Furthermore, Bi∩Bj = ∅ for i ≠ j, and also conv(Bi)∩

conv(Bj) = ∅ as neighboring points have minimal distance in the discretized composition
space.

These definitions can be visualised using Figure 6: the simplices in a)-f) are all hetero-
geneous since they contain at least one heterogeneous line segment. Examples of phase
blocks are the line segment I (a 1-simplex) and the point II (a 0-simplex) in part a) of
Figure 6 (these are also isolated, as the only connections to other phase blocks are het-
erogeneous line segments). Figure 6 part c) shows two phase blocks (the line segments
I and II), which are not isolated as they are connected. Also, those two line segments
do not just form one phase block since a third homogeneous line segment would be
needed to represent a 2-simplex (i.e., a triangle). Note that one could also spare the
classification into homogeneous and heterogeneous simplices, as a homogeneous simplex
can be seen as a simplex consisting of just one phase block. We keep the distinction into

20 3 Methodology

two types of simplices to emphasise the differences: a heterogeneous simplex, contrary
to a homogeneous simplex, models a phase split.

Additionally, note that in Figure 6, the simplices, which can be modelled uniquely, are
precisely the ones that are isolated. Before we can prove that the isolated, heterogeneous
simplices are exactly the ones which can be modelled within a unique, linearised decanter
model, we need to describe a phase split inside a heterogeneous simplex:

Definition 3 (Phase split simplex). Let H = conv({h1, . . . , hN}) ⊂ Rn be a hetero-
geneous, isolated simplex, with isolated phase blocks B1, . . . , Bm. Let x be the molar
fractions of a feed with cartesian coordinates a ∈ Rn so that a lies in H. A split of a

into m phases is defined by a (m− 1)-simplex S = conv({p1, . . . , pm}) ⊆H with vertices
p1, . . . , pm ∈ Rn so that the following properties are fulfilled:

I) We have a ∈ S.

II) For all i ∈ {1, . . . , m}, we have pi ∈ conv(Bi).

We call S a phase split simplex with respect to a. The vertices of S define the com-
positions of the resulting phases, and we call pi a phase. The cartesian coordinates of
the vertices p1, . . . , pm can be transformed to molar fractions (i.e., the compositions of
the resulting phases) via the barycentric coordinates with respect to the simplex which
represents the whole N -component system. Furthermore, the split ratios λ1, . . . , λm are
given exactly by the barycentric coordinates of a with respect to the vertices of S.

For example, a phase split simplex for a given feed for two phases is a 1-simplex and,
therefore, a straight line, which contains the feed and is defined by the compositions
of the resulting phases. The barycentric coordinates of the feed with respect to that
line yield precisely the well-known lever arm rule (for barycentric coordinates λ1, . . . , λm

holds λi ≥ 0 and ∑m
i=1 λi = 1).

Now consider an arbitrary feed composition within an isolated, heterogeneous simplex.
This means that the simplex spans over a multiphase region, and we want to compute
the compositions of the resulting phase split. The following theorem proves, on the one
hand, that for every feed composition within an isolated, heterogeneous simplex exists
a unique linear phase split (i.e., a phase split simplex from Definition 3). On the other
hand, it also provides a formula for the computation of the compositions of the resulting
phases.

3 Methodology 21

Theorem 1. Let x be a feed composition and a ∈ Rn its representation in cartesian coor-
dinates, located in an isolated, heterogeneous (N − 1)-simplex H = conv({h1, . . . , hN}),
with k > 1 phase blocks B1, . . . , Bk. For any phase block Bi, denote by Λi = {j ∈

{1, . . . , N} ∣ hj ∈ Bi} its corresponding index set. Let (λ̃1, . . . , λ̃N) be the barycentric
coordinates of a with respect to H. Furthermore, set λi ∶= ∑j∈Λi

λ̃j.

Then S = conv({p1, . . . , pk}) with pi = ∑j∈Λi
αjhj, where αj =

λ̃j

λi
, is a unique phase

split simplex for a. The split ratios for the phases are given by (λ1, . . . , λk).

Proof. We first show that S is a phase split simplex for a. We certainly have ∑j∈Λi
αj = 1

by definition and αj ≥ 0 as λ̃j ≥ 0. Hence pi ∈ conv(Bi), and we only need to show that
a ∈ S. For this, notice that λi ≥ 0 and

a =
N

∑
j=1

λ̃jhj
(∗)
=

k

∑
i=1
∑
j∈Λi

λ̃jhj =
k

∑
i=1

λi ⋅ ∑
j∈λi

λ̃j

λi

hj =
k

∑
i=1

λipi,

where (∗) follows from the decomposition property of heterogeneous, isolated simplices
(Remark 1). With the same reasoning, obtain

k

∑
i=1

λi =
k

∑
i=1
∑
j∈Λi

λ̃j =
N

∑
j=1

λ̃j = 1,

hence a ∈ S with barycentric coordinates (λ1, . . . , λk). For uniqueness of S, let S′ =

conv({p′1, . . . , p′k}) with p′i = ∑j∈Λi
α′jhj be another phase split simplex for a with

barycentric coordinates (λ′1, . . . , λ′k) (with respect to S′). As

k

∑
i=1
∑
j∈Λi

λ′iα
′
jhj = a =

k

∑
i=1
∑
j∈Λi

λiαjhj,

it must hold that λ′iα
′
j = λiαj for all i ∈ {1, . . . , k} and j ∈ Λi by the uniqueness of the

barycentric coordinates of a with respect to H. Hence,

λ′i = λ′i ∑
j∈Λi

α′j

²
=1

= ∑
j∈Λi

λ′iα
′
j = ∑

j∈Λi

λiαj = λi

so αj = α′j for all i and j ∈ Λi, and it follows S = S′.

With Theorem 1, we know how to model unique, linear phase splits in isolated, hetero-
geneous simplices. Therefore, we propose the following modifications to step III) and

22 3 Methodology

IV) in Section 3.1.2.1:

III) Classification of the simplices of the convex envelope
We check for all heterogeneous simplices, if those are isolated and if so, process
those to step IV). It is easy to check that this classification does not change the
methodology described in [62, 82] for binary, ternary, and quaternary systems.

IV) Computation of phase splits
For a given feed with molar fractions x, we transform x to cartesian coordinates
a and check if a lies within an isolated, heterogeneous simplex H (with k phase
blocks). If this is the case, we use Theorem 1 to obtain the split ratios (λ1, . . . , λk)

and the cartesian coordinates p1, . . . , pk of the resulting phases. Using the inverse
transformation of coordinates that was used to obtain a from x, one can get molar
fractions corresponding to each phase.

We provide qualitative and quantitative results regarding the CEM in Section 4.1. De-
tails on the implementation are provided in the Appendix BI.2. This framework allows
us to model arbitrary liquid phase splits and thus simulate decanters quickly and ro-
bustly.

3.2 Reinforcement Learning Frameworks

3.2.1 General Remarks

This section describes several RL frameworks developed for AFS one after another to
address the challenges listed in Section 2.2. In the first part, we will introduce the Syn-
GameZero approach, which models AFS as a competitive two-player game. This setup
enforces exploration and allows training an agent for AFS within a discrete action space.
In the second part, we describe how to improve the SynGameZero approach’s scalability
by integrating the hierarchical decomposition of the action space. In the third part,
a generalized RL framework for AFS is presented, which is based on several elements
from the SynGameZero approach (e.g., hierarchical decomposition of the action space)
but also adapts and further develops features from recently published RL algorithms.
This allows a transformation back to a single-player game and the integration of hybrid
action spaces.

3 Methodology 23

3.2.2 SynGameZero: Proof of Concept

3.2.2.1 General Idea

Without a doubt, the introduction of AlphaZero [54, 55] marks one of the most impor-
tant points of the last decade for the research field RL. It allows one to train an agent
from scratch the two-player board games chess, shogi, and Go by self-play without using
heuristics. To employ similar RL techniques for AFS, the basic idea of the SynGameZero
approach is to transform flowsheet synthesis into a competitive two-player game. As
AlphaZero was developed for games that only have discrete actions, we restrict flowsheet
synthesis to a discrete action space within this section to show the concept to work.

The SynGameZero approach is explained alongside Figure 7. Both players are given the
same feed stream(s) and try to create a more profitable flowsheet than the opponent.
The game is turn-based, and at each turn, the current player (i.e., player 2 in Figure
7) can take an action (i.e., place a unit operation at an open stream or terminate the
flowsheet synthesis) in its own flowsheet. Both players can always see their own and the
opponent’s flowsheet. The game ends when both players have completed their flowsheets
(either by choosing the terminate action or reaching a maximum number of actions).
The player with the more profitable flowsheet is the winner, measured by some monetary
cost function (e.g., NPV). If the evaluation with the cost function leads to a tied game,
then the player that has completed the synthesis first wins the game. Note that this
prevents player 2 from copying the moves of player 1. The winner obtains the reward
r = 1, the loser r = −1. The agent switches back and forth between the roles of player 1
and player 2 during the game and thus is trained via self-play.

The SynGameZero approach addresses multiple challenges mentioned in Section 2.2.
First, the transformation into a competitive two-player game forces the agent to perma-
nently look for improvements in its current policy, as it will always lose the game in the
role of one player. This may not guarantee convergence to a globally optimal policy, but
at least ensures continuous exploration for better alternatives. Additionally, AlphaZero
was developed for two-player games with sparse rewards, which are only provided at
the end of the game. This feature is beneficial for SynGameZero, as it, therefore, is
suitable for AFS problems. On the environment side, we address the challenges for the
moment by using simplified models for unit operations that always converge and can be
simulated fast. The Appendix CI.1 provides a detailed description of those models.

24 3 Methodology

Figure 7: SynGameZero approach for AFS. The agent plays against itself by switching
between the roles of players 1 and 2.

3.2.2.2 Agent

Agent Structure
Similarly, as in [54, 55], the agent consists of an ANN that interacts with a MCTS
variant. The concept is explained alongside Figure 8.

As input, the agent receives the state of the game, i.e., the flowsheets of both players,
which are represented as flowsheet matrices (a description of the generation of those
is provided within Appendix CI.2). The ANN obtains the state as a vector, which is
constructed as a concatenation of all rows of the flowsheet matrices of the current and
the waiting player. Further, a vector with the length of a row of a flowsheet matrix
is concatenated. It contains either only zeros (the flowsheet of the waiting player is
not completed) or only ones (the flowsheet of the waiting player is completed). The
ANN is an actor-critic network (ACN) [37], which means that it generates two kinds of
outputs: a policy π (generated by the actor, i.e., the policy-head), which is a suggestion
for the next action/decision, and an estimate of the expected reward v (generated by
the critic, i.e., the value-head), which is an evaluation of the performance of the actor.
The entries in π are in the range [0, 1] and sum up to 1. In π, there is exactly one entry
for every possible action for the agent, e.g., place a reactor to stream 2 or terminate the
flowsheet synthesis. For such an action i, πi corresponds to the probability with which
the corresponding action should be executed (suggested by the ACN). Different actions

3 Methodology 25

Figure 8: The agent’s decision process in SynGameZero.

26 3 Methodology

may be feasible at different game stages; for example, when the agent chooses to place
a reactor to stream 1 as the first action, it cannot place any other unit to this stream
in subsequent actions. Therefore, π is filtered. Entries that correspond to infeasible
actions are set to 0. The remaining entries are scaled with a common factor so that the
resulting filtered vector p also sums up to 1. The scalar v is in the range [−1, 1] and
can be interpreted as an estimate of the current player’s reward (by the ACN) at the
end of the game. Details on the implementation and hyperparameters of the ACN are
provided within the Appendix CI.3.

As shown in Figure 8, the outputs of the ANN are used as inputs in a tree search that
imitates a planning process. As in [54, 55], to avoid extensive computations, the tree
search is a variant of MCTS, which is adaptive in depth and does not use a complete
enumeration of all actions. Only promising actions are explored, where the values of
p and v are used to quantify the word promising. The tree search results are used
to train the ANN and choose an action in the game. Afterward, the agent switches
roles, and the same process repeats until both players finish their flowsheets. When one
player finishes its flowsheet (either by choosing the terminate action or by reaching the
maximum number of possible units that the flowsheet matrix can contain), the agent
does not take the role of this player anymore. It just stays in the role of the player with
the uncompleted flowsheet until this is finished as well. The tree search and the action
selection are explained in detail in the following.

MCTS and Action Selection
To improve its performance, the agent does not always select the action with the highest
entry in p. Instead, p and v are used as the basis for a tree search to plan several actions
in advance. The tree search imitates a typical human planning process before finally
deciding on an action. The tree search is explained alongside Figure 9 and an example
in which the agent (for the sake of simplicity) has only three possible actions named
T, D1, and R, say terminating flowsheet synthesis, placing a distillation column on the
first open stream, or placing a reactor on the first open stream. The tree consists of
nodes and branches. The nodes n correspond to the states of the two-player game. The
branches (n, a) correspond to the action a that the current player takes at node n. The
origin of the tree is the root node I. In Figure 9, the root node I corresponds to the
beginning of the game when both players have an empty flowsheet. The current player
is the one who takes the next action. Its flowsheet is shown in the left half of the nodes.
Since the game is turn-based, the order of the two flowsheets is switched after every
action. Each node is either an explored node (e.g., node I in Figure 9) or an unexplored
leaf node (e.g., node III). A node is explored if and only if the corresponding state of
the game is known. To explore an unexplored leaf node, i.e., to obtain its state, the

3 Methodology 27

Figure 9: Example tree search at the beginning of the game (flowsheets of both players
empty) with three possible actions: T, D1, R.

respective action has to be applied to the flowsheet of the current player in the parental
node, and the flowsheet has to be evaluated in the simulation. For example, if node III
in Figure 9 has to be explored, then action D1 (adding a distillation column) has to be
applied to the left flowsheet in node I. Afterward, node III would consist of the updated
flowsheet matrix of the current player of node I and the unaltered flowsheet matrix of
the waiting player of node I. The order of the matrices would also switch, as now it is the
other player’s turn. Whenever a node is explored, it is checked whether it is terminal,
i.e., a node in which both flowsheets are terminated (e.g., node V in Figure 9). The
termination of a flowsheet may be caused either by the action T (terminate) or by a full
flowsheet matrix. The node is not terminal if at least one player has a non-terminated
flowsheet (for example, node VIII). In this case, the branches of all feasible actions and
the corresponding (unexplored) leaf nodes are added to the tree below that node.

Four variables (N(n,a), W(n,a), Q(n,a), P(n,a)) are stored for every branch (n, a) in the
tree. The variable N(n,a) counts how often this branch has been taken during the tree
search. The variable W(n,a) is the sum of all estimated and obtained rewards beneath
that branch, and Q(n,a) is defined as W(n,a)/N(n,a). The values of P(n,a) are set to the
corresponding value of the vector p that is obtained by feeding the state of the node

28 3 Methodology

n into the ANN. These variables are updated while the tree is constructed. They also
guide both the tree extension and the agent’s final decision. A new tree is initialized
only once at the beginning of every game. A root node with the state vector of two
empty flowsheets is placed (node I in Figure 9) and explored. The variables N(n,a),
W(n,a) and Q(n,a) are set to 0 for the resulting branches, while the values of P(n,a) are
obtained as described above. The tree search proceeds then in four steps:

I) Select
The algorithm starts at the root node and runs down one path through the tree
until it arrives at a leaf node or a terminal node nbottom. At each node n, the algo-
rithm greedily selects to follow the branch (n, a) that maximizes Q(n,a)+U(n,a)(α).
U(n,a)(α) is defined as follows:

U(n,a)(α) = P(n,a)

√
∑b∈A N(n,b)
N(n,a) + 1 if Q(n,a) > α, (4)

U(n,a)(α) = 0 if Q(n,a) ≤ α, (5)

where A is the set of all actions at this node. If there are two or more branches
that maximize Q(n,a) + U(n,a)(α), the branch among them with the largest value
of P(n,a) is taken. To enhance exploration, the above greedy selection policy is
replaced during training for the root node (and only the root node) by an ϵ-greedy
policy [37]. With a probability of ϵ, an entirely random (i.e., uniform distribution)
branch is selected. With a probability of 1 − ϵ, the algorithm selects the branch
using the above greedy policy that maximizes Q(n,a) + U(n,a)(α). In the present
work, ϵ is set to 0.2 and α to −0.9.

II) Explore and/or evaluate
If the node nbottom that was found in step I) is an unexplored leaf node, then it
is explored, and the resulting state is stored in nbottom. Two cases might occur:
Case 1: The node nbottom is terminal. The winner of the game is determined by
comparing the NPVs of both flowsheets. The reward is determined for the current
player of the node nbottom and stored in the variable V for step III). Case 2: The
node nbottom is not terminal. In this case, the state of the node nbottom is fed into
the ANN. The value v that the ANN calculates is stored in the variable V for step
III).

III) Backup
Starting at the node nbottom that was found in step I), the algorithm runs back
upwards the tree until the root node. For every branch (ñ, ã) passed on the way,

3 Methodology 29

the following updates are made to the branch variables:

N(ñ,ã) =N(ñ,ã) + 1, (6)

W(ñ,ã) =W(ñ,ã) + tV , (7)

Q(ñ,ã) =W(ñ,ã)/N(ñ,ã). (8)

Herein, V is the value that has been stored in step II). The variable t takes into
account that the agent switches players after every action when playing against
itself. If V has been determined at a node where player 1 is the current player,
then V is added (t = 1) at all branches that represent the actions of player 1.
At the other branches, which represent the actions of player 2, V is subtracted
(t = −1). The opposite is done when V has been determined at a node where
player 2 is the current player.

IV) Play
Steps I)-III) are repeated K times as a loop before the agent finally decides on
an action at the tree’s root node. The decision is based on a probability vector
y with one entry for every feasible action at the root. The entry for action a is
calculated by:

ya =
N(nroot,a)

∑b∈A N(nroot,b)
. (9)

During training, the decision in step IV) is made by randomly selecting an action using
the vector y as a probability distribution. After training, the moves are chosen greedily
by always selecting the action a with the largest N(n,a). If there are two or more
branches that maximize N(n,a), then the algorithm selects the branch among them with
the largest value for P(n,a). The tree is shifted downwards after the action is applied to
the environment. The node that is reached by the selected action becomes the new root
node. The tree is cut off above. The values of the branch variables are retained.

The tree search algorithm is briefly interpreted in the following. The algorithm generally
selects actions with large values of N(n,a). N(n,a) counts how often the branch has been
taken during step I). For the algorithm’s success, selecting promising actions in this
step is crucial. This selection is based substantially on the value of Q(n,a) + U(n,a)(α),
which is an estimate of the value of action a at node n, i.e., the value of the state,
which is reached by selecting a. This value can only be determined at a terminal node.
At other nodes, it is estimated by the ANN (value v). In step III), the best available
guess for this value is backed up along the search path to improve the estimation of
Q(n,a) as it is the average of those guesses. If the path in step I) would only depend

30 3 Methodology

on Q(n,a), then a wrong estimate of Q(n,a) at the beginning of the tree search might
lead to inefficient exploration. Therefore, the function U(n,a)(α) is also considered. This
function is large for actions a that have a large value P(n,a) but a small value N(n,a)
compared to ∑b∈A N(n,b). These actions are favored by the ANN but have not been
explored so far. If these promising actions are not explicitly considered, they might be
overlooked by chance at the beginning of the tree search. Later in the tree search, if
such an action has turned out to be not constructive (the estimate Q(n,a) falls below the
threshold α that is typically chosen rather low, e.g., -0.9), then the exploration function
U(n,a)(α) is no longer considered. This ensures that shortsighted recommendations of
the ANN do not bias the tree search in the long run.

Training Process
The goal of the training process is to adjust the parameters of the ANN so that the
ANN ideally predicts the consequences of a potential action up till the end of the game.
Ideally, the ANN outputs a value v that correctly predicts the chances of the current
player winning the game. The output p should ideally be a sharp distribution with a
maximum at the action that maximizes the chances of winning the game. At the start of
the training process, the ANN is initialized with random weights. In training, the agent
plays a large number of games against itself. The given feed stream(s) in the games are
varied randomly to obtain an agent that can solve a broad class of problems. The search
tree is initialized with the given feed(s) at the beginning of every game. Then, the agent
plays the game until the end (both players terminated their flowsheets). Thereby, every
decision that had been made in step IV) of the tree search is stored (the state s at the
root node, which served as input for the ANN, and the vector y of the decision). After
finishing the game, this data is augmented by the final reward r obtained at the end of
the game. The tuples of the form (s, y, r) are used to train the ANN.

We provide results for the proof of concept for SynGameZero in Section 4.2. Details on
the implementation are provided within the Appendix CI.3.

3.2.3 SynGameZero: Integration of Hierarchical
Reinforcement Learning

3.2.3.1 General Idea

In the original SynGameZero approach, the agent chooses actions from a flat action
space, i.e., the next process unit, its location, and specifications were decided on simul-
taneously. Such a structure of the action space scales poorly when more sophisticated

3 Methodology 31

problems are considered, e.g., flowsheets with recycle streams or continuous process
parameters. The action space would grow exponentially, and the RL problem would
become intractable due to combinatorics.

To prevent this, we integrate hierarchical RL into SynGameZero in this section. Hi-
erarchical RL is an RL subfield with the general idea of splitting the agent’s decisions
into several levels [84, 85]. We have defined a decision hierarchy for flowsheet synthesis
consisting of three levels. At level 1, it is decided whether to terminate or, alternatively,
select an open stream to manipulate. At level 2, it is decided on the unit operation to
add to the flowsheet at the stream identified at level 1. At level 3, the specification of
the chosen unit operation is determined. In this section, the agent sets only discrete
specifications at level 3: the destinations of mixers and recycle streams. Levels 2 and
3 are only evoked if needed. The general concept of SynGameZero, i.e., the two-player
game as shown in Figure 7, is employed on top of this hierarchical structure. The agent
consists of a series of connected ANNs to provide suggestions for the decisions on every
level and a tree search, which is used for planning and decision-making.

The approach is demonstrated by training an agent to design processes for ethyl-tert-
butyl-ether (ETBE) synthesis [62, 64]. This process example displays a significantly
increased level of complexity compared to the problems considered in the original Syn-
GameZero approach, as the agent has to deal with azeotropic behavior, equilibrium
reactions, and recycle streams. To provide a robust and fast simulation environment
(challenges I) and II) on the environment side in Section 2.2), we employ short-cut
models for the unit operations, which always converge, except for recycle streams. The
Appendix DI.1 provides a detailed description of the available unit operations. While
the action space in this example is still purely discrete, the integration of hierarchical RL
provides a starting point to allow the agent to work in a hybrid action space (challenge
III) on the agent side in section 2.2) in a subsequent step.

3.2.3.2 Agent

Agent Structure
The overall structure of the agent accounts for the hierarchical decomposition of the
agent space. It is explained alongside Figure 10. The flowsheet matrices (for details, see
Appendix DI.2) of both players are processed by a convolutional neural network (CNN)
[86]. Each hierarchy level is represented by an ACN, which receives data processed by
the previous networks and information on the decisions at upper hierarchy levels (this
applies only to level 2 and level 3). Each ACN i generates two kinds of outputs πi and

32 3 Methodology

Figure 10: The agent’s hierarchical decision process.

vi, which, similarly as before, represent a suggestion for the decision at this level and
an estimate of the expected reward for the current player, respectively. Those outputs
guide the tree search by exploring promising flowsheet alternatives. As in the original
SynGameZero approach, the final decision on an action is based on the tree search
results.

ANN Architecture
The ANN architecture is shown in Figure 11. The state s consists of the flowsheet
matrices of both players and is processed by a CNN. Its output is mapped into a vector
representation, which serves as input for the subsequent ACNs. At every level i, the
respective ACN outputs πi and vi ∈ [−1, 1], which will be used to guide the tree search.
The entries in πi sum up to one and represent a probability distribution, which can
be interpreted as a suggestion for the decision at level i (the number of entries in πi

depends on the level i, e.g., one entry for every possible unit operation on level 2). The
scalar vi is an estimate of the reward. Before entering the tree search, the vectors πi are
filtered similarly as in the original SynGameZero approach: all entries, which correspond
to infeasible decisions, are set to zero, and the resulting vector is divided by the sum
of its elements so that its entries sum up to one again. It is important to mention that
only decisions impossible to simulate are filtered this way (e.g., placing a reactor to a
stream where already another unit is connected). There is no filter for decisions that
are possible but not useful (e.g., placing a distillation column to a stream, which only
consists of a pure component). The resulting vectors are referred to as pi.

In the vector π1, there is one entry for every possible stream in the flowsheet of the
current player. Additionally, it contains one entry, which represents the termination

3 Methodology 33

Figure 11: Hierarchical ANN structure of the agent.

34 3 Methodology

action. Together with v1, it is used in the tree search to make a decision at level 1.
If termination of the flowsheet synthesis is chosen, there is no requirement for further
evaluation by the subsequent ANNs. Otherwise, the output vector of the shared layers
of the ACN at level 1 is processed to the ACN at level 2. It is concatenated with a
vector s2, an OHE of the stream chosen by the tree search at level 1. In the vector π2,
there is one entry for every possible unit operation. Together with v2, it is used in the
tree search to determine a unit. If a reactor or distillation column is chosen, the action
is fully specified and can be applied to the flowsheet of the current player. If a mixer
or recycle is selected as a unit, level 3 is required to decide where to mix or recycle
the chosen stream. The ACN at level 3 receives an input, which consists of the output
vector of the shared block of the ACN at level 2 concatenated with a vector s3 of the
same length, which indicates whether mixer or recycle was chosen (the vector is either
filled with zeros or ones and provided by the tree search). The entries in π3 represent
a probability distribution, a suggestion, where to admix or recycle the chosen stream,
respectively. Similar as before, π3 and v3 are used to guide the tree search, and based
on its results, a decision at level 3 is determined.

Details on the ANN architecture’s implementation and hyperparameters are provided
in the Appendix DI.3.

MCTS and Action Selection
In general, the tree search concept is quite similar to the original SynGameZero ap-
proach. At the beginning of each game, the tree is initialized with a sole root node and
used by both players to guide their decisions throughout the game. An example of a
tree is shown in Figure 12. For a more straightforward illustration, the example tree
shows flowsheets where only reactors (R) and mixers (M) are available as unit opera-
tions. The tree consists of nodes n and branches (n, a), where a refers to the action
decided on at node n. The root node I represents the current state of the game. Each
node is either explored and thus refers to a state s (the flowsheet of the current player
is always displayed to the left), for example, node II, or it is an unexplored leaf node,
such as node III. If a flowsheet is terminated (T), this player can no longer take any
actions during this game and has to wait until the opponent’s flowsheet is finished. If
both players have finished their flowsheets (node V), a terminal node is reached: no
more nodes are connected below that node. The color of an explored node shows the
respective decision level (red: level 1, blue: level 2, purple: level 3, black: terminal
node, no more actions required). As the state s only changes if a unit is placed to an
open stream or the synthesis is terminated, details are only shown in the nodes at level
1 in Figure 12. A leaf node is explored by evaluating the corresponding decision from
its parental node in the process simulation. This leads either to an actual change in the

3 Methodology 35

Figure 12: Example structure of the search tree with integrated hierarchy levels.

flowsheet of the current player, as can be seen at the transition from node IV to VII,
where the turn changes after the reactor is placed. Or another decision is required to
determine the unit or its specification, as can be seen at the transition from node IV to
VIII (the turn does not switch as the agent has to decide at node VIII where to mix the
chosen stream).

Whenever a leaf node is explored, the corresponding state s is stored there, and it is
checked whether the node is terminal. New branches corresponding to available actions
and leaf nodes are connected if it is not a terminal node. At each branch (n, a) four
variables (N(n,a), W(n,a), Q(n,a), P(n,a)) are stored. N(n,a), W(n,a), and Q(n,a) are initialized
with zero, while P(n,a) is set to the corresponding entry in pi, which is generated with
the ACN at level i. These variables are updated during the tree search and guide the
expansion and ultimate decisions made in the game. The tree search proceeds in four

36 3 Methodology

steps, which are the same as in the original SynGameZero framework, only differing in
the first step: the ϵ-greedy policy [37] is used at every node with ϵ constantly set to 0.1.
The parameter K, which controls the depth of the tree, is set to 30. During the tree
search, the simulation checks if the flowsheet is feasible whenever a leaf node is explored
by placing a recycle stream somewhere in the flowsheet. If the simulation signalizes
divergence, the corresponding node is cut off the tree and deleted. This prevents the
generation of an infeasible flowsheet, as all decisions during the game are based on the
tree search.

After the tree search, a final decision at the current root node is determined using a
probability vector yi (i refers to the level of the root node) with one entry for every
available branch. yi is generated by the tree search algorithm based on the visit counts
N(n,a) of all branches starting from the root. As before, the decision is randomly made
using yi as probability distribution during training. After training, the moves are chosen
greedily by always selecting the largest entry of yi. When the decision has been made,
the tree is shifted downwards. The node reached through the chosen branch becomes
the new root node. The tree is cut off above, while the parts below the new root are
retained. Note that nodes at level 2 or 3 may also become the root node. Details on
the implementation of the training procedure are provided within the Appendix DI.3.

3.2.3.3 Variation of the Hierarchical Framework

In the framework described above, the agent has to distinguish between mixing two open
streams and recycling an open stream to a closed stream at hierarchy level 2. At level
3, the agent decides on the destination of mixers and recycles. Both unit operations
are conceptually the same, as in both cases, an open stream is mixed with another
stream, which is either open or closed. Therefore, we decided to implement a variation
of the hierarchical framework where the process simulation determines automatically
if the chosen action leads to a mixer or a recycle and simulates the respective option.
Compared to the hierarchical framework described before, there are only two differences
in the implementation of this variation. On the one hand, the agent has one option less
to choose from at level 2, as mixer and recycle have been combined into one option. On
the other hand, the ACN at level 3 does not receive the additional input s3, which would
indicate if a mixer or recycle has been chosen at level 2 (as in the original hierarchical
framework).

We provide quantitative and qualitative results for both variations of the hierarchical
framework in Section 4.3.

3 Methodology 37

3.2.4 Single-Player Reinforcement Learning Framework for
Automated Flowsheet Synthesis

3.2.4.1 General Idea

In the previous sections, AFS was reformulated as a two-player game to be able to adapt
powerful RL algorithms [54, 55] for this specific problem class. The case studies were
restricted to discrete action spaces and limited to one chemical system per training pro-
cedure. In this section, we omit this reformulation into a two-player game and propose
a single-player RL framework, which enables training an agent from zero knowledge to
synthesize near-optimal flowsheets for multiple chemical systems, each with varying feed
compositions, each requiring a substantially different conceptual approach. Contrary to
the SynGameZero approach, the agent can choose from a broad range of unit specifi-
cations (continuous ranges are discretized and factorised to cover all possible options).
This is possible due to integrating several features of recently published work on RL
algorithms and ANN architectures.

Similarly, as in the previous sections, the flowsheet is represented as a matrix (details are
provided in Appendix EI.2). The resulting state is encoded by an architecture based on
the MLP-Mixer [87] - diverted from computer vision - which means that we propose to
view flowsheet synthesis encoding as a sequence-to-sequence problem. This architecture
maintains a global receptive field of all streams at all times. It can distill the dynamics
of the environment such that the policy network alone can produce excellent flowsheets.
The agent’s action space is structured similarly to the hierarchical SynGameZero ap-
proach, with the only exception being that level 3 is now separated into several sublevels,
which account for choosing the specifications for the unit operations. The agent’s deci-
sion process is supported by a tree search, which is based on the algorithmic Gumbel
extension [88] of the AlphaZero framework [54, 55].

Due to its complex nature, we take the separation of azeotropic mixtures as an example
task for the agent. The agent is trained simultaneously on several feed compositions
from four chemical systems: acetone – chloroform, ethanol – water, butanol – water,
and pyridine – water. It learns to add solvents, combine them with distillation columns,
decanters, and mixers, and place crucial recycle streams. This way, without prior knowl-
edge, it discovers classical chemical engineering schemes such as azeotropic or entrainer
distillation. Details on the chemical systems and the environment, which bases the
flowsheet simulation as before on short-cut models, are provided within Appendix EI.1.
In summary, the framework presented in this section addresses all the challenges listed
in Section 2.2. To our knowledge, it is the first RL approach that enables training an

38 3 Methodology

agent without prior knowledge to synthesize flowsheets within a hybrid action space for
several chemical systems. Therefore, this framework marks a significant step towards
generality, i.e., an agent that can transfer its learnings from the training process onto
conceptual design problems it has yet to encounter.

3.2.4.2 Agent

Agent Structure
There are three general hierarchy levels conceptually defined similarly to the hierarchical
SynGameZero approach. At level 1, the agent can terminate the flowsheet synthesis
or select an open stream in the current flowsheet. If a stream is selected, the agent
transitions to level 2, where it must choose a unit operation for the selected stream
from a pool of available units. This unit operation is further specified (for mix/recycle
stream) in level 3a or (for continuous specification of distillation columns/add solvent)
in level 3b, which has another sublevel 3c. The unit operations and their specifications
are explained in detail in the Appendix EI.1.

The overall structure of the agent is displayed in Figure 13. In a first step, the flowsheet
matrix is encoded using an MLP-Mixer architecture [87]. This latent representation of
the flowsheet is processed by several policy-heads and a single value-head to generate
πi and v. There is a policy-head for each hierarchy level 1, 2, 3a, and 3b. Note that
policy-head 3b is used to generate π3b and π3c, as those outputs have the same shape
and are elated to each other as will be explained later. As in previous sections, the
entries in πi ∈ [0, 1] sum up to 1 and are interpreted as suggestions for the next action.
v ∈ [0, 1] is an estimate of the expected reward (we norm and clip the final objective so
that it is in the range [0, 1]; for details, see Appendix EI.3). The outputs πi and v guide
the tree search by exploring promising flowsheet alternatives. As in the SynGameZero
approach, the final decision on an action is based on the tree search results.

ANN Architecture
AlphaZero-type algorithms stand and fall with the underlying neural network. In our
case, it must provide the agent with latent embeddings of the flowsheet streams that
capture the essence of the current state and allow the agent to derive accurate policy
and value predictions. Hence, the network always needs to maintain a global view of all
streams and their connections to each other, as choosing to recycle a stream can alter
all present streams simultaneously. Convolutional networks and graph neural networks
generally struggle to capture long-range dependencies. Therefore, we pose the task of
obtaining stream representations as a sequence-to-sequence problem. Using an affine

3 Methodology 39

Figure 13: The agent’s decision process.

embedding, every row of the flowsheet matrix is mapped into some latent space. The
resulting sequence is input for an ANN based on the MLP-Mixer [87], transforming it
into an expressive sequence of latent stream embeddings. Although the MLP-Mixer
might seem an unorthodox choice as it is classically used in computer vision, it has a
global receptive field (as in self-attention based transformers [89]), but with only linear
complexity in the number of matrix rows (as opposed to the quadratic complexity of
transformers). Furthermore, it respects the sequential procedure of placing unit after
unit on the flowsheet. Details on the ANN architecture and implementation are provided
in Appendix EI.3.

MCTS and Action Selection
The tree search works in a similar way as in SynGameZero, but additionally, some
features from the Gumbel extension [88] of the AlphaZero framework [54, 55] were
adapted. Therefore, we provide a brief explanation here and refer to [88] and Appendix
EI.3 for the details. In the search tree, nodes n represent states, and branches represent
actions a. As in AlphaZero, a single search simulation from a root node traverses the tree
until a leaf node is reached, which is evaluated by the neural network (resulting in a value
v), after which the node is expanded using πi (in the same way as in the SynGameZero
approach) and the predicted value v is recursively backed up the trajectory. We store for
all branches the search statistics N(n,a) and Q(n,a), where N(n,a) denotes the visit count
and Q(n,a) is the estimated action value (i.e., accumulated backed up values averaged
over N(n,a)). As explained below, the main difference between Gumbel AlphaZero [88]
and the original AlphaZero [54, 55] framework is the way actions are selected during the
tree search.

40 3 Methodology

Given a root node n (at hierarchy level i), we sample a maximum of m = 16 actions
without replacement from the predicted policy πi using the Gumbel-Top-k trick [90,
91]. We denote by logitπi

(a) the (unnormalized) log-probability of an action a and by
G(a) its sampled Gumbel noise. Using a Sequential Halving [92] procedure, a predefined
budget of simulations is evenly distributed between the sampled actions, and multiple
search simulations are started from each sampled action. After each Sequential Halving
level, the considered root actions are pruned to the top m ← m

2 actions according to
their scores:

G(a) + logitπi
(a) + σ(Q(n,a)), (10)

where σ is the monotonically increasing linear map

σ(Q(n,a)) = (50 +max
b
(N(n,b))) ⋅Q(n,a), (11)

matching the choice in [88]. When the search budget is exhausted, the agent chooses the
action from the remaining unpruned actions that maximizes Equation 10. Throughout
this example, we grant a budget of K = 200 simulations at a root node (during training
and evaluation). With 16 sampled actions, this amounts to four Sequential Halving levels
with 16, 8, 4, and 2 remaining root actions, where each remaining action is allocated 3,
6, 12, and 28 simulations.

The MCTS aims to construct an improved policy π̂i, which supports the agent’s deci-
sion and serves as a training target. It is constructed in a two-step process. First, a
’completed Q-value’ Q̂(n,a) is defined for all actions a by setting

Q̂(n,a) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Q(n,a) if N(n,a) > 0,

v̂(s) else.
(12)

Herein, s refers to the state corresponding to node n and v̂(s) is defined as the inter-
polation

v̂(s) =
1

1 +∑b N(n,b)

⎛

⎝
v(s) +

∑b N(n,b)
∑b, s.t. N(n,b)>0 P(n,b)

∑
b, s.t. N(n,b)>0

P(n,b)Q(n,b)
⎞

⎠
. (13)

Herein, P(n,b) is equal to the entry of πi (policy-head output at the state s of the node
n) that refers to action b. Then, π̂i is constructed by setting

π̂i = softmax(logitπi
(⋅) + σ(Q̂(n,⋅)). (14)

Informally, the improved policy π̂i increases the logit of an action where the search

3 Methodology 41

tells us that it leads on average to higher returns than expected and decreases the logit
otherwise, giving zero advantage to unvisited actions. As in [88], whenever computing
Equation 10 or Equation 14, we normalize the Q-values with a min-max normalization
according to all Q-values encountered in the search so far.

During the search, at a non-root node ñ, we compute π̂i according to Equation 14 and
select an action from

arg min
a
∑
b

(π̂i,b −
N(ñ,b) + 1{a}(b)

1 +∑c N(ñ,c)
)

2

, (15)

where 1{a}(b) = 1 if a = b, and zero otherwise. This deterministic action selection
intentionally chooses the action that shifts the visit count distribution closer to π̂i.

Further details on using the results of the MCTS for the training procedure are provided
within Appendix EI.3.

Pruning Procedure for Diverging Recycles
In flowsheet synthesis, one can generally distinguish between two types of infeasible
actions. First, there are infeasible actions that come directly from the definition of
the environment. Exhaustively, these are all closed streams in hierarchy level 1, ’add
solvent’ in hierarchy level 2 if a solvent has already been added, all closed streams in
hierarchy level 3a when mixing streams (as an open stream can only be mixed with
another open stream) and all open streams in level 3a when recycling a stream (as
an open stream can only be recycled to a closed one). The second type of infeasible
action occurs when the flowsheet simulation does not converge. These actions are not
known upfront and must be simulated during the tree search. As in the case study
for the hierarchical SynGameZero framework, recycles are the only unit operations in
our framework that can lead to a divergent flowsheet simulation. Additionally, recycles
are a unique action when setting up a flowsheet sequentially, as contrary to other unit
operations, they can alter all streams of the process and drastically change its overall
dynamics. Therefore, the challenge is how to teach the agent to avoid placing diverging
recycles without learning to avoid recycles overall.

We solve this problem directly in the MCTS by pruning the corresponding node from the
tree whenever a search simulation reaches a failed flowsheet and continuing the search
from the simulation’s last feasible actions. The main difference to the corresponding
procedure in the hierarchical SynGameZero approach is that the pruning process is
now repeated recursively. Whenever a divergent recycle at a state s on level 3a is
encountered during a search simulation, its logit is set to −∞ and the action selection
at s is repeated, where the improved policy π̂i is recomputed. If all actions at s lead

42 3 Methodology

to a diverging simulation, the node s and its subtree is pruned, and the action from
the parent of s leading to s is set as infeasible, repeating the MCTS procedure from
the parent of s. As the pruning is applied recursively, it only takes a small number of
search simulations such that the agent never chooses to place an infeasible recycle on
the flowsheet.

While this simple procedure leads to longer search times at the beginning of training,
the search tree statistics directly reflect the pruning from which the policy is trained
via Kullback-Leibler divergence [86] using the improved policy π̂i as training target
(details are provided in Appendix EI.3). Furthermore, as divergent actions are directly
reflected in the improved policy, their infeasibility will be recursively accounted for in π̂i

at the root state, so the network is trained to give lower probability to these actions. In
effect, the number of times the tree pruning needs to be executed diminishes as training
progresses, while at the same time not teaching the agent to avoid recycling streams
overall.

Factorised Discretization of Continuous Actions (Level 3b and Level 3c)
As mentioned, the agent chooses continuous unit specifications from factorisation of a
discretized range at the hierarchy levels 3b and 3c. The procedure is explained in the
following.

We discretize continuous actions from an interval [c, d] ⊆ R with a two-step factorisation.
The agent chooses a discrete tuple (m1, m2) ∈ {1, . . . , L1}×{1, . . . , L2}, where L1, L2 ∈ N
are predefined integers. The tuple (m1, m2) translates to the element (which is the unit
specification used for the flowsheet simulation)

c + (m1 − 1) ⋅ d − c

L1
+ (m2 − 1) ⋅ d − c

L1L2
∈ [c, d]. (16)

In particular, the agent chooses (m1, m2) sequentially by first picking m1 at action
hierarchy level 3b and then m2 at level 3c.

This factorisation is appealing as the agent can first make a coarse-grained decision
via m1 and then refine it with m2. Thus, the agent learns more quickly which interval
ranges are suitable instead of choosing from a single discrete distribution of size L1 ⋅L2.
Throughout this example, we set L1 = L2 = 7 everywhere, effectively dividing the interval
[c, d] into 49 evenly spaced actions.

We provide results for the single-player framework in Section 4.4.

4 Results and Discussion 43

4 Results and Discussion

4.1 Modeling of Decanters: Convex Envelope
Method

4.1.1 Qualitative Evaluation

The CEM was already shown to work for ternary and quaternary systems by [62, 82].
Therefore, we show first that the generalized version of the CEM works in the same
way for systems that were examined there. As no numerical data for comparison (feed
streams and resulting phases) is given in [62, 82], we show ternary diagrams constructed
by the generalized CEM for a selection of systems from [62, 82] using the same binary
parameters for the UNIQUAC model [93]. It is difficult to display the phase equilibrium
diagram for a quaternary system in a way that one can get useful information, let alone
compare it to other phase diagrams. Therefore, we omit a graphical evaluation of the
quaternary systems shown in [62, 82] and show later on in a numerical way that our
approach works for systems with more than three components.

Figure 14 shows six ternary systems reported in [62, 82] with various types of liquid
phase equilibria. Note that the systems 1-hexanol – nitro methane – water and water
– nitro methane – nonanol also show a three-phase region enclosed by the two-phase
regions. When comparing Figure 14 to the ternary plots shown in [62, 82], one can see
that the displayed phase equilibria are the same.

4.1.2 Quantitative Evaluation

To evaluate the CEM quantitatively, we will compare its results with experimental
data from several sources [94–98]. All of the listed authors provide binary interaction
parameters for a gE-model (either UNIQUAC or NRTL [93]), experimental data on
occurring phase splits, and the resulting root-mean-square-error (RMSE) of the model
compared to experimental data. Unfortunately, the data points generated by the models

44 4 Results and Discussion

Figure 14: Selection of ternary systems with UNIQUAC parameters from [62, 82] con-
structed with the generalized CEM at atmospheric pressure. The plots dis-
play molar fractions. The transparent red areas in the systems 1-hexanol
– nitro methane – water and water – nitro methane – nonanol display
three-phase regions, all other red areas display two-phase regions (for every
two-phase region, a few example tie lines are plotted in black).

4 Results and Discussion 45

were not reported. But as the RMSE is relatively low (< 0.01 for almost all directly
fitted examples in [94–98]), we compare the CEM to the reported experimental data as
a workaround. We measure the accuracy of the generalized CEM by mean deviation
(MD) to given data:

MD =
∑

N
i=1∑

M
j=1∑

P
k=1 ∣xsource

ijk − xCEM
ijk ∣

NMP
. (17)

N describes the number of components, M the number of examined feed streams and
P the number of phases (in [94–98] only splits into two phases were reported). xsource

refers to the molar fraction reported in the literature.

Detailed results for systems, which were reported in [94–98], containing three, four, five,
and six components are provided in Appendix BI.3. For all examined systems, the CEM
was able to calculate the occurring phase splits with high accuracy. For ternary systems,
our implementation of the CEM constructs phase equilibria in up to 2 seconds with serial
execution of Step III) from Section 3.1.2.1. For systems with more components, Step III)
from Section 3.1.2.1 was executed parallelized (the respective settings for parallelization
are published alongside the code on GitHub). For quaternary systems, computation
time per system is below 1 minute, whereas for systems containing five components,
up to 3 minutes are required. For systems containing six components, constructing the
phase equilibrium takes up to 50 minutes per system.

4.1.3 Analysis of the Impact of the Discretization Parameter δ

To show the impact of the discretization parameter δ on the accuracy of the calculated
phase splits, we plot the MD for two ternary example systems from [94] for various
choices of δ in Figure 15. For low values of δ, the CEM cannot always determine that
there will be a phase split for a given feed stream composition according to the data.
These points in Figure 15 are marked with the symbol x. But as expected, if δ increases,
the MD decreases, and the CEM can correctly calculate phase splits for all given data
points. Also, it can be seen that an accurate calculation of phase splits is already possible
for relatively low values of δ as 16. The residual deviation for large δ originates from the
deviation of the model and the experiments with which we compare us. Figure 16 shows
the heterogeneous simplices (in red) for different choices of δ. As can be seen, when δ

is increased, the boundary of the two-phase region gets smoother and approximates the
shape defined by the non-discretized model.

46 4 Results and Discussion

Figure 15: MD values for several choices for δ for the systems n-hexane – benzene
– sulfolane and n-octane – toluene – sulfolane. MD was calculated using
phase split data and parameters from [94]. Some points in the graph are
marked with the symbol x, which indicates that no phase split was found
for some given feed stream compositions for this choice of δ.

4.1.4 Discussion

The generalization of the CEM [62, 82] generates liquid phase equilibria for systems
with an arbitrary number of components by discretization of the whole composition
space and construction of the convex envelope for the Gibbs energy of mixing graph. In
Sections 3.1.2 and 4.1, a theoretical framework for the extension to an arbitrary number
of components is given, and the approach was proven to work for systems from the
literature with up to six components.

While Theorem 1 gives the possibility to compute phase splits for systems with an arbi-
trary number of components, computational complexity becomes a limiting factor when
systems with more than six components are examined. Particularly, the construction of
the convex envelope is a challenging task. For this, we utilize the package scipy [65],
which bases the construction of the convex envelope on the QuickHull-algorithm [99]
provided by the Qhull library. The Qhull library documentation mentions that com-
plexity increases rapidly with the number of input points (defined by the discretization
of the composition space) and the dimension of the input (defined by the number of
components). For the CEM, we require not only the points that form the convex en-
velope but also the connections between those points, i.e., the facets. According to the
Qhull library documentation, this requires a lot of virtual memory and finally leads to
a rapid decrease in performance. An effective implementation of a parallelized convex
envelope algorithm to approach higher order systems could solve this problem. Theoret-

4 Results and Discussion 47

Figure 16: Variation of δ for the construction of ternary diagrams for the systems n-
hexane – benzene – sulfolane and n-octane – toluene – sulfolane from [94] at
298.15 K and atmospheric pressure. The red triangles are the heterogeneous
simplices (i.e., simplices that span over a phase split region).

48 4 Results and Discussion

ical research focusing on the construction of convex envelopes in a parallelized fashion
is, for example, provided by [100] and [101]. Still, no implementation is available which
could be easily integrated into our framework to compare the resulting performances.
Additionally, it is unclear if those algorithms can construct the convex envelope with
less usage of virtual memory. Other algorithms can solve specific problem classes faster
than the Qhull framework [102], e.g., two-dimensional input and particular topologies.
But to our knowledge, no implementation exists that exceeds the Qhull framework in
terms of generality and effectiveness, as it can handle an arbitrary number of dimensions.
Also, the classification of the heterogeneous simplices (Step III) in Section 3.1.2.1) is a
time-consuming step, but contrary to the construction of the convex envelope, it can be
easily parallelized. The discretization of the composition space and the computation of
∆gmix-graph do not need much computation time compared to the previously mentioned
steps and are negligible.

Throughout this work, the CEM was only employed to construct liquid phase equilibria.
But as already mentioned in [62, 82], the CEM could also be applied to calculate ar-
bitrary phase equilibria (e.g., vapor-liquid and solid-liquid). Integration of this feature
into the present framework is out of the scope of this work but an interesting option for
future research.

The CEM constructs phase equilibria for the whole composition space for fixed tem-
perature and pressure. Therefore, it may not be useful for optimizing temperature in
a decantation process. However, after the phase equilibrium has been constructed, it is
possible to quickly evaluate different feed stream compositions at fixed conditions. As
the construction process of the phase equilibria is robust, the CEM is particularly useful
for modeling decantation processes for RL-based AFS (see challenges on the environment
side in Section 2.2).

4.2 SynGameZero: Proof of Concept

4.2.1 General Remarks

A proof of concept for the SynGameZero approach is provided along the quaternary
system A – B – C – D and the unit operations described in Appendix CI.1. Two
case studies are presented, which differ in the cost function and the number of feed
streams. In both case studies, the compositions of the feed streams are varied randomly
(during training and evaluation) to enable the agent to succeed over a broad range of
problems. After training is completed, the agent designs flowsheets for arbitrary feed

4 Results and Discussion 49

streams (selected inside the training intervals) by playing one game against itself and
returning the flowsheet of the winning player.

To evaluate the flowsheets proposed by the trained agent, we compare them to predefined
benchmark flowsheets. An evaluation set of 1000 feed stream situations is sampled
randomly. The trained agent synthesizes flowsheets for all problems in the evaluation
set. These flowsheets are compared to the benchmark flowsheets using the NPV. The
success rate of the agent is defined using the following metrics:

R1 =
Nsuccess

1000 , (18)

R2 =
1

1000
1000
∑
j=1

NPVagent,j −NPVbenchmark,j

∣NPVbenchmark,j ∣
, (19)

R3 =
1

1000 ⋅R1
∑
j∈Λ

NPVagent,j −NPVbenchmark,j

∣NPVbenchmark,j ∣
, (20)

R4 =
1

1000 ⋅ (1 −R1)
∑
j∈Γ

NPVagent,j −NPVbenchmark,j

∣NPVbenchmark,j ∣
. (21)

Therein, Nsuccess is the number of times the agent proposed a flowsheet that is at least
as good as the best benchmark flowsheet. Thus, R1 ∈ [0, 1] is the overall success rate.
R2 ∈ (−∞,∞) gives the average deviation for the NPVs of the agent’s flowsheet and
the best benchmark flowsheet. R3 ∈ [0,∞) measures this average only in cases Λ when
the agent was at least as good as the benchmark. R4 ∈ (−∞, 0) measures the average
deviation in all other (i.e., unsuccessful) cases Γ.

4.2.2 Case Study 1

In Case Study 1, there is one single feed stream, and all components have the same
prices (details are provided in the Appendix CI.1). Therefore, in this case, a reactor
does not increase the value of a stream (as the sum of stoichiometric coefficients is equal
to 0), and a distillation sequence provides the most profitable process. During training,
random quaternary and ternary feeds out of the following feed stream situations were
selected: (xA, xB, xC, xD), (0, xB, xC, xD), (xA, 0, xC, xD), (xA, xB, 0, xD), (xA, xB, xC, 0).
The mole fractions of the non-zero components were chosen randomly. The total molar
flow rate of the feed was always set to 1 kmol/h. For every feed stream situation listed
above, we defined as a benchmark flowsheet a distillation sequence, which separates the
given feed into pure components (3 distillation columns for the quaternary feed and 2
distillation columns for ternary feeds).

50 4 Results and Discussion

Figure 17: Illustrative example for the evolution of the agent during the training pro-
cess in Case Study 1. Flowsheets proposed by the agent to separate an
equimolar quaternary mixture are shown. Streams that leave the process
without description (e.g., ABC) are empty.

Figure 17 shows examples of the flowsheets proposed by the agent at different stages
during training. The training procedure was repeated five times. Each time, the trained
agent surpassed an overall success rate of R1 = 0.98. This proves that the agent displays
an almost optimal behavior, as in this case study, the benchmark flowsheets already
provide an optimal solution.

4.2.3 Case Study 2

In Case Study 2, the NPV parameters are changed so that A and B have a negative price.
C and D are high-value products. Thus, it is worth to react A and B to C and D (details
are provided in the Appendix CI.1). Four different feed stream situations are consid-
ered. Situation 1 considers two feed streams of the types: (xA, xB, 0, 0), (0, 0, xC, xD).
Situation 2 considers two feed stream situations: (xA, 0, xC, 0), (0, xB, 0, xD). Situation
3 considers one feed stream of the type: (xA, 0, xC, xD). Situation 4 considers one feed
stream of the type: (0, xB, xC, xD). For every game during training, one of the four sit-
uations is selected randomly. The given molar flowrates ṅi for the non-zero components
are sampled randomly out of the interval [0.2, 1.2]kmol/h. The agent’s performance is
evaluated individually for all four feed situations. The flowsheets shown in Figure 18
are defined as the respective benchmark flowsheets.

The training process was repeated five times. Table 1 shows the average of the perfor-
mance metrics. Most of the flowsheets proposed by the agent were quite similar to the

4 Results and Discussion 51

Figure 18: Benchmark flowsheets for Case Study 2.

Table 1: Average performance metrics for Case Study 2.

R1 R2 R3 R4

Situation 1 0.84 0.08 0.12 -0.12
Situation 2 0.99 0.13 0.13 -0.01
Situation 3 1.00 0.00 0.00 -
Situation 4 1.00 0.00 0.00 -

benchmarks shown in Figure 18. In situation 1, the agent meets or beats the benchmark
in 84% of the cases. In the successful cases, the possible gain over the benchmark is 12%.
Although the agent is worse than the benchmark in 16% of the cases, its average NPV
is still slightly better than the benchmark (R2 > 0). In situation 2, the agent almost
always reaches the NPV of the benchmark, and as R4 = −0.01, it seems that it proposes,
in the few cases where it is worse, flowsheets with very similar NPVs as the benchmarks.
In situation 3 and situation 4, there is either A or B missing in the process. Thus, there
is no use for a reactor. The optimal flowsheets are distillation sequences for separating
the ternary mixtures. The trained agent solves the problems in these situations without
any difficulty.

The evolution of the agent during training for feed stream situation 1 (feed streams:
(xA, xB, 0, 0), (0, 0, xC, xD)) is shown in Figure 19. The right column shows examples
of the flowsheets the agent proposed at this stage. The left column shows 3D plots of
three highlighted entries of the vector p (which depends on the ANN’s output π) at
the beginning of the flowsheet synthesis, i.e., the ANN’s suggestions for the very first
action. The data is plotted over possible feed stream flowrates. Since the space of feed

52 4 Results and Discussion

stream flowrates is 4-dimensional in this situation, we restrict ourselves for the sake of
illustration to a 2-dimensional subspace in which ṅA = ṅB holds in the A – B feed stream
and ṅC = ṅD holds in the C – D feed stream. Action 1 refers to mixing both feed streams.
Action 2 refers to placing a distillation column of type D3 at the C – D feed stream.
Action 3 refers to placing a reactor R at the A – B feed stream. At the beginning of
training, the actions of the agent are random. The suggested probabilities of the three
highlighted actions are small as they are not significantly larger than the probabilities of
any other feasible action (there are ten feasible actions for the move). The agent selects
none of the shown actions. After 2000 training steps, the ANN favors as first action,
placing a distillation column that splits C and D at the second feed stream (Action
2). After 6000 training steps, the agent has learned to complete the reaction part of
the flowsheet before distillation is done. In the shown example, the agent prioritizes
mixing (Action 1) before reaction. At the end of training, the agent has learned that
bypassing the reactor with the products C and D yields a higher conversion. C and D
are separated only later together with the reactor outlet.

4.2.4 Discussion

The results shown in Section 4.2 give a proof of concept for the SynGameZero approach,
which enables training an agent to solve basic flowsheet synthesis problems without using
prior knowledge or heuristics via RL. The agent consists of an ANN and a tree search in
which the planning process is modeled within a two-player game. This setting allows the
usage of a modified version of the training algorithm of the SynGameZero framework
[54, 55]. The trained agent succeeds at the given problems by combining discrete actions
to synthesize a flowsheet using systematic generation.

To assess the efficiency of the approach, the total number of possible flowsheets for a fixed
feed composition has to be determined as follows (with a matrix size of Nmatrix = 10).
To the first stream, one could connect three types of distillation columns, one reactor,
or a mixer to one of the streams 2 to 9 (not to stream 10, as this would result in a new
stream 11, which exceeds the size of the flowsheet matrix). Additionally, it is possible
to let the stream leave the process, which results in 13 possibilities; for the second
stream, one arrives at 12 possibilities (as mixing to stream 1 was already counted in
beforehand). This calculation can be continued until stream 8 (6 possibilities). At
stream 9, there is only the possibility of placing a reactor or letting that stream leave
the process (distillation columns are not possible as the state matrix can only contain
one more stream). At stream 10, no unit can be placed. Therefore, this stream leaves
the process. This results in roughly 50 million possible flowsheets to choose from for

4 Results and Discussion 53

Figure 19: Example for the evolution of the agent during the training process for sit-
uation 1, Case Study 2. The 3D plots show the value of three highlighted
actions of the ANN’s policy output over a subset of the composition space
of the feed streams (ṅA = ṅB, ṅC = ṅD) for the first action of the agent. Ac-
tion 1 is mixing both feed streams. Action 2 refers to placing a distillation
column of type D3 at the C – D feed stream. Action 3 refers to placing a
reactor R at the A – B feed stream.

54 4 Results and Discussion

one player and does not even count in that the feed compositions are sampled from a
continuous range. Therefore, the state space for the agent is infinitely big. The tree size
cannot exceed 2 ⋅K ⋅Nmatrix, equal to 800 for Case Study 2. In the case studies, the trees
contained only an average of 200-300 flowsheets, as many were visited multiple times
during the tree search. The number of total distinct flowsheets visited during the tree
search is estimated to be significantly smaller than 4 million. Additionally, the policy
of the agent (parameterized by the ANN) shows explicit learning behavior, as shown
in Figure 19. Thus, it can be concluded that the proposed flowsheets are not found by
luck or through massive enumeration in the tree search.

The unit operations considered in the presented case studies are few and basic in their
modeling. This is enough for a proof of concept for the SynGameZero approach. How-
ever, the examples have several limitations. First, a larger number of process units
and chemical compounds would require a larger flowsheet matrix. This would blow up
both the agents input and the action space. The representation of state (see Appendix
CI.2) and actions (see Section 3.2.2) is most likely not scalable to very large problems.
For example, convolutions for large inputs or a hierarchical decomposition of the action
space could be integrated into the framework. Second, only processes without recycles
were considered. Those pose problems for the environment, as a convergent simulation
can no longer be guaranteed when the agent is allowed to place a recycle at any point
during the game (e.g., recycling the only stream that leaves the process). Therefore, the
action space has to be redesigned so that the agent cannot propose a divergent flowsheet
but is still flexible enough to develop genuinely new designs.

Finally, it is necessary to allow the agent to operate in a hybrid action space (i.e., an
action space containing discrete and continuous actions) to tackle more sophisticated
flowsheet problems by specifying parameters of the unit operations, for example, pres-
sure and temperature. The presented RL algorithm operates in a discrete action space,
so further developments are required. Much RL research focuses on parameterized ac-
tion spaces, as this field has a broad range of applications [58, 59]. However, it is not
straightforward to integrate these methods into the SynGameZero framework.

The main contribution of the SynGameZero approach is modeling flowsheet synthesis
as a two-player game, which is beneficial for two primary reasons. On the one hand, it
eliminates the absolute value of the environment’s native reward function. Additionally,
the SynGameZero framework provides a reward only at the end of the game. As shown
in Section 4.2, it is possible to train the agent successfully with this relatively sparse
reward signal (addressing challenge II) on the agent side in Section 2.2). On the other
hand, the framework has strong exploration abilities (addressing challenge I) on the

4 Results and Discussion 55

agent side in Section 2.2). Especially for player 2, who starts second, there is a strong
motivation to explore novel actions instead of losing the game by just copying the actions
of player 1. This is because player 2 has the systematic disadvantage of losing the game
if it is tied. During the examples shown above, player 2 lost the majority of all games,
as expected, due to this disadvantage. However, it could be often observed that player 2
wins more games during the training phases when new breakthrough actions are learned.
This indicates that these actions were found first by player 2. Player 1 adopts these
actions quickly by observing player 2 and benefits therefore as well. These beneficial
features also make the SynGameZero method attractive for other planning processes
beyond chemical engineering.

4.3 SynGameZero: Integration of Hierarchical
Reinforcement Learning

4.3.1 General Remarks

The hierarchical framework is proven to work along the quaternary system Et – IB –
nBut – ETBE and the process units described in Appendix DI.1. During training, before
every game, two feed streams F1 = (xEt, 0, 0, 0) and F2 = (0, xIB, xnBut, 0) are sampled
randomly and provided to the agent as initial situation. The total molar flowrates are
randomly sampled from the interval [10, 110]kmol/h. After training is completed, the
agent designs flowsheets for arbitrary feed streams (selected inside the training intervals)
by playing one game against itself and returning the flowsheet of the winning player.

Without being aware of the optimal solution for every conceivable combination of feed
streams, we have evaluated the agent’s performance by comparing it to benchmark flow-
sheets based on ETBE processes from the literature [62, 64]. The benchmark flowsheets
are shown in Figure 20. The trained agent is evaluated by designing flowsheets for 1000
randomly sampled feed streams of identical format as during training. For every given
set of feed streams, all benchmark flowsheets are simulated, and the best one will be
compared to the flowsheet proposed by the agent. The performance is evaluated by the
same performance metrics as introduced in Section 4.2.

In the following, we present results for the hierarchical SynGameZero framework and
its variation, described in Section 3.2.3.3.

56 4 Results and Discussion

Figure 20: Benchmark flowsheets designed by the authors for the quaternary system
Et – IB – nBut – ETBE.

4.3.2 Original Hierarchical Framework

In the original hierarchical framework, there is one option for placing a mixer and one
option for placing a recycle in the agent’s action space. As described above, the agent
is trained to construct flowsheets suitable for synthesizing ETBE. The procedures for
training and evaluation were repeated five times. Table 2 lists the resulting performance
metrics. In about 97% of all problems, the agent is at least as good as the benchmarks.
On average, it even surpasses the benchmarks by 23% in the NPV. This is because
the benchmarks only focus on the generation of pure ETBE, while the cost function
also allows profitable flowsheets without even synthesizing ETBE. The margin to the
benchmarks almost vanishes for feed streams where the agent proposes a worse flowsheet.

Table 2: Average performance metrics for the original hierarchical framework (the val-
ues are rounded).

R1 R2 R3 R4

0.97 0.23 0.23 0.00

Flowsheets that outperform the benchmarks are shown in Figure 21 for different feed
streams. Panel a) shows a flowsheet that outperforms the NPV of the best benchmark
(benchmark situation 2) by 19%. This is because excess nBut and IB are separated as
pure streams and sold as products instead of only ETBE. Panel b) shows a problem
with less IB. The NPV of the shown flowsheet surpasses the best benchmark flowsheet
(benchmark situation 2) by 12%. Contrary to the flowsheet in panel a), IB is not present

4 Results and Discussion 57

in excess and has to be recycled to gain a higher yield of ETBE. Panels c) and d) show
further situations in which there is so little Et or IB that it is not profitable anymore to
produce high-purity ETBE. In panel d), the agent decides to separate the feed streams
and sell the educts. In the situation in panel c), the agent puts a reactor and separates
IB afterward but omits to separate pure ETBE with a column of type DH, as the costs
of the distillation column would exceed the benefit of the resulting streams. The best
benchmark (benchmark situation 1) in these cases is outperformed significantly by 52%
(panel c)) and 36% (panel d)).

In Figure 22, it is shown how the trained agent approaches different feed stream com-
binations over a part of the composition space (ṅIB = ṅnBut is assumed). Except for the
equimolar feeds on the diagonal, the agent always uses one of the flowsheets shown in
Figure 21. A dear structure emerges, which has been learned by the agent. It proposes
different flowsheets for the equimolar feeds on the diagonal, similar to the flowsheets a)
and b) in Figure 21. However, they often contain an unnecessary unit (e.g., a distillation
column, which already takes a pure stream as input) or an empty recycle. This is due to
cheap unit operations and the fact that the agent does not often encounter these equimo-
lar feed stream situations during training. For all shown feed stream combinations, the
agent can surpass the benchmarks.

4.3.3 Variation of the Hierarchical Framework

In the variation of the hierarchical framework, the agent decides to admix an open
stream to another stream in the flowsheet, which can either be open or closed. The
environment determines automatically if the chosen configuration leads to a mixer or a
recycle. The agent is trained to construct flowsheets suitable for synthesizing ETBE.
The procedures for training and evaluation were repeated five times. The agent outper-
forms the benchmark flowsheets in almost every case (R1 = 0.9996, it only proposes a
worse process on two occasions). It surpasses the benchmarks on average by 24%, which
is a slight improvement compared to the original hierarchical framework.

To uncover the importance of the two-player game setup, the agent’s performance is
analyzed at different stages during training for a fixed set of feed stream situations.
Note that this analysis could also be conducted for the original hierarchical framework,
yielding similar results.

The molar flowrate of Et is varied between 15 and 95kmol/h. The molar flowrates of
IB and nBut are set equal. They are also varied between 15 and 95kmol/h. Figure
23 illustrates the evolution of the agent during training by showing its behavior after

58 4 Results and Discussion

Figure 21: Examples for flowsheets proposed by the trained agent.

4 Results and Discussion 59

Figure 22: Examples for the agent’s behavior for several feedstream combinations. a),
b), c), and d) refer to the flowsheets shown in Figure 21.

60 4 Results and Discussion

different numbers of training steps. The various feed stream situations are depicted as
cells in the matrix. The winning player of every combination is indicated with a color
code. The winning flowsheet (marked red) is displayed for one feed stream combination.
Without any training (Nsteps = 0), the agent consists of a randomly initialized ANN
and a tree search. The agent’s behavior is the same for all shown combinations of feed
streams. In the role of player 1 it terminates the synthesis right away. In the role of
player 2 it sets up the shown flowsheet and wins the game. After 100 training steps,
player 1 has copied this tactic for all shown feeds and wins all games. After 1000 training
steps, the game is more balanced. Both players can win in some situations. From the
shown flowsheet generated by player 2, it is visible that the agent has learned to use a
reactor to synthesize ETBE, which is clear progress. After 3000 training steps, player 1
is more dominant, and the flowsheets become more sophisticated. This balance change
between players 1 and 2 winning in the game is observed many times during training.
Typically, player 1 is copying (if needed) and using the so-far best-known tactic. Player
2 must avoid a tie and, therefore, explore alternative tactics. It is consequently mainly
player 2 who uncovers novel improved tactics. Player 2 will afterward win more games
than player 1 for a short period during training. Eventually, player 1 acquires the novel
tactic and wins again. The bottom row in Figure 23 shows situations at the late stages
of training. After 5000 steps, the complexity of the flowsheets further increases while the
game is still quite balanced. For equimolar feed rates of IB and Et (i.e., on the diagonal
of the matrix), the agent has learned to generate flowsheets with complete conversion
of IB and Et. The chemical equilibrium is overcome by using a recycle. However, the
design is still not optimal. After 10000 steps, the flowsheets are slightly more improved,
and the training is completed. Player 1 wins all games. Even with further training,
player 2 cannot find a better tactic. Such a constellation signifies that a local or maybe
even global optimum for the performance has been reached.

4.3.4 Discussion

Sections 3.2.3 and 4.3 show how to integrate a hierarchically structured action space into
the SynGameZero approach. At first, the agent chooses a location (i.e., an open stream);
second, the corresponding unit operation, and third, a unit specification, if needed.
The approach is demonstrated by training the agent to set up a process for ETBE
synthesis. Compared to the original SynGameZero approach, this example displays
a significantly increased level of complexity, as the agent has to deal with azeotropic
behavior, equilibrium reactions, and recycle streams. Two variations of the framework,
which differ in how the agent places mixers and recycles, are presented. The agent

4 Results and Discussion 61

Figure 23: Illustration of the agent’s evolution at different stages during training. The
matrix field represents different feed stream combinations. The color code
marks the winning player. The red box shows the winning flowsheet for the
respective feed streams.

62 4 Results and Discussion

succeeds at the given problem in both cases, displaying similar performance metrics.

To assess the efficiency of the approach, one can compare the maximum number of
flowsheets per tree to the number of possible flowsheets for a fixed pair of randomly
sampled feed streams. Similarly, as described in Section 4.2.4, it can be concluded
that the number of possible flowsheets exceeds the size of the tree by many orders of
magnitude. Note that the possibility to place recycles to any destination increases the
action space further compared to the original SynGameZero approach.

While the main contribution of Sections 3.2.3 and 4.3 is integrating the hierarchical
framework, there were further improvements compared to the original SynGameZero
approach. A CNN was introduced to reduce the number of parameters, which captures
the information in the state row by row. Additionally, the way of representing a flowsheet
by a matrix was slightly modified to be more suitable for problems of increased size.
The general idea of the two-player game combined with a tree search is still employed
on top of these features, as it provides excellent exploration properties for the agent.

Looking at the challenges described in Section 2.2, the hierarchical SynGameZero ap-
proach addresses almost all except to work in a hybrid action space. To solve this issue,
Sections 3.2.4 and 4.4 describe a framework that adapts several parts of the hierarchical
SynGameZero approach to finally provide a general RL approach for AFS, which solves
all aforementioned challenges.

4.4 Single-Player Reinforcement Learning
Framework for Automated Flowsheet Synthesis

4.4.1 General Remarks

The agent’s task is to separate a binary feed stream of the chemical systems listed in
Table E1 (see Appendix EI.1) into its pure components. From a chemical engineering
viewpoint, conceptually, quite different approaches are required for solving the separa-
tion tasks. For example, mixtures in system 1 consist of Ac and Ch and can be treated
by entrainer distillation [103]. This means that solvents Be or To can be added as an
entrainer to employ the curvature of the resulting ternary distillation boundaries to
separate the feed stream. Contrary, mixtures in system 2 consist of Et and Wa and
can be separated using (heterogeneous) azeotropic distillation [104]. This means that
adding a solvent, for example, Be, results in a ternary mixture displaying liquid phase
splits, which can be employed in a separation process. With minor modifications, these

4 Results and Discussion 63

techniques can also be used for system 3 and system 4, but there are other options as
well. For example, feed streams in system 3 can be separated without using a solvent
at all.

We train the agent separately with two types of cost functions, which are used to evaluate
the resulting flowsheets. One type is NPV, based on literature about the economic
analysis of chemical processes. The other type is a generic cost function (GCF) that aims
at providing a general cost function for separation processes. It is handy for conceptual
flowsheet synthesis, where the primary goal is not to obtain the most profitable solution
but a feasible one. Note that it is possible to modify or replace the cost function
arbitrarily, e.g., by introducing additional objectives such as sustainability. Both cost
functions are explained in detail in Appendix EI.1.

As the raw values for NPV and GCF may be hard to interpret, we define a performance
ratio R ∈ [0, 1] as a metric to evaluate a flowsheet. R describes how much of the input
(feed and added solvent) the flowsheet separates into pure components. As the main
goal is the perfect separation into pure components, a value of R close to 1 is desirable.
For the definition of R, consider a flowsheet with feed stream (ṅF

1 , ṅF
2 , 0). Let ṅS

3 be the
accumulated amount of a solvent, which was added to the process (note that ṅS

3 can
also be equal to 0). Let L = {l1, . . . , lK} be the set of leaving streams that meet the
specification for pure streams. This means that for all li = (ṅi

1, ṅi
2, ṅi

3) with i = 1, . . . , K
it holds that there exists exactly one j ∈ {1, 2, 3} so that = x

(m)
j > 0.99 (for NPV) or

= x
(n)
j > 0.99 (for GCF). We define R as:

R =
1

ṅF
1 + ṅF

2 + ṅS
3
⋅ (

K

∑
i=1

ṅi
1 + ṅi

2 + ṅi
3). (22)

R measures how much of the input of a process is separated into pure streams (’pure
stream’ is defined by the respective specification of NPV or GCF).

During training, the agent encounters 50000 randomly sampled feed compositions (de-
tails on the sampling process are provided within Appendix EI.3). Finally, the agent is
evaluated on a test set containing 49 feed stream situations for every chemical system
from Table E1. Here, in the i-th situation of a binary system, the molar fraction of the
first component is set to x1 = 0.02 ⋅ i. This way, it is ensured that the agent is evaluated
on the whole range of the binary composition space.

We further assess whether the agent’s performance relies strongly on the computationally
expensive MCTS when designing a flowsheet or whether the neural network alone can
capture most of the flowsheet dynamics independently. To achieve this, we discard the
value network and let the agent use the policy network alone. If the network can truly

64 4 Results and Discussion

grasp the underlying chemical dynamics, then a flowsheet stemming from an action
sequence with high total probability should yield a high outcome. To obtain a set of
high probability sequences from the model, we unroll the policy with beam search (for
a detailed description, see, for example, [91]), which is the de-facto standard sequence
decoding method in natural language processing. Beam search is a pruned breadth-
first search of limited width k, where at each timestep, we expand the (maximum of) k

actions, leading to sequences with the highest total probability.

4.4.2 Overall Performance

Table 3 reports the agent’s performance ratio on the test set covering the full range of
molar fractions. Row 1 and 2 show results for the agent using a simulation budget of
K = 200 during MCTS (same value as during training). On average, the agent achieves
a performance ratio of over 95% for all considered chemical systems. In over 60% of
all test instances, the agent proposes a flowsheet that separates the feed and added
solvent completely into pure streams. While the agent performs almost perfectly in
some cases, it becomes clear that its performance differs from system to system (e.g.,
when comparing system 3 and system 4). A reason for this is the varying difficulty
of the separation task. Feeds from system 3 can often be separated with fewer units
or without the usage of recycles. Contrary, the location of the binary azeotropes in
the other systems usually requires more sophisticated flowsheet designs. A reason for
the performance differences regarding the reward choice is that the specification of a
pure stream differs from NPV (mass fraction greater than 0.99) to GCF (molar fraction
greater than 0.99). Still, the agent proposes flowsheets that separate large parts of the
feed and added solvent into pure streams for all considered cases as R is always greater
than 90%.

Row 3 and 4 in Table 3 show the agent’s results when unrolling the policy network
using a moderate beam width of k = 512. As can be seen, the agent can now master all
situations with an almost perfect performance ratio. Additionally, the number of cases
with complete separation increases for all cases.

These results show the suitability of the MLP-Mixer architecture for flowsheet represen-
tation. Furthermore, beam search allows generating high-quality candidate flowsheets
fast (in contrast to slower MCTS), which has practical advantages, for example, when
an agent proposes the conceptual design of a flowsheet that serves as an initialization
for process optimization.

4 Results and Discussion 65

Table 3: Performance of the agent on the test set for both cost functions NPV and
GCF. The ratio R indicates how much of the input (feed and added solvent)
the agent’s flowsheet separates into pure components. Additionally, we report
how often the agent proposes a flowsheet that separates the feed and added
solvent completely into pure streams (Compl. sep.). Row 1 and 2 show the
results for the agent using MCTS with a simulation budget of K = 200. Row 3
and 4 show the results for unrolling the policy with beam search (beam width
k = 512).

All sys. Ac, Ch Et, Wa Bu, Wa Py, Wa
NPV (MCTS) R 95.9% 97.5% 97.0% 97.5% 91.6%

Compl. sep. 60.5% 84.0% 50.0% 84.0% 24.0%
GCF (MCTS) R 97.4% 98.5% 94.5% 98.8% 97.8%

Compl. sep. 65.5% 70.0% 30.0% 98.0% 64.0%
NPV (beam search) R 98.9% 99.5% 98.1% 99.6% 98.5%

Compl. sep. 77.0% 94.0% 68.0% 88.0% 58.0%
GCF (beam search) R 99.0% 99.3% 97.4% 100.0% 99.4%

Compl. sep. 78.5% 86.0% 60% 98.0% 70.0%

4.4.3 Comparison to Flowsheets from the Literature

For every system from Table E1, we evaluate the agent on a feed stream provided in the
literature [103–106]. In Figure 24, we show the flowsheets constructed by the agent in
those situations (trained with NPV). Similarly to the processes from the literature, the
agent can separate the feed stream and the used solvent entirely in all four cases. In
panel a), the agent adds Be as an entrainer to the Ac – Ch feed to employ the resulting
curvature of the ternary distillation boundaries for the separation of the streams. In
this ternary system, there is no liquid phase split; therefore, the usage of a decanter
does not have an effect on the separation (contrary to the other systems). In panels
b) and d), the agent employs (heterogeneous) azeotropic distillation for the separation
task. In both cases, it adds a solvent that forms binary azeotropes with both feed
components and is immiscible to Wa. This allows the separation by using a decanter
combined with a distillation sequence. In panel c), the agent similarly separates Bu and
Wa without using a solvent. The reason for this is that the binary system Bu – Wa
already displays a liquid phase split, which allows the immediate usage of a decanter
in this case. In all examples shown in Figure 24, the agent uses recycles to enable the
separations and reduce waste streams. As shown in the following section, it even chooses
the continuous specifications of the units so that they only make sense in combination

66 4 Results and Discussion

with those recycles. When the agent encounters different feed stream compositions as
in Figure 24 or is trained with GCF, it slightly adjusts the flowsheet topology and the
specifications of the unit operations.

4.4.4 Evolution of Long-Planned Recycles

Due to the sequential nature of the problem, the agent has to set up the flowsheet
topology and the continuous specifications of the units upfront to make sense when a
recycle is placed. We factorise the ranges for the continuous specifications into two
discrete levels for fine discretization. However, even so, the number of available options
for the continuous specifications is sufficiently larger than at other hierarchy levels (e.g.,
when the agent chooses out of the set of open streams). In the following, we will
analyze how the agent learns to recycle streams and simultaneously set the continuous
specifications to proper values.

During the early stages of the training process, the agent rarely places recycle streams
(it evaluates their implications in the MCTS but never chooses them as final action,
as they often fail). It focuses on learning about the available unit operations and their
continuous specifications. Afterward, we observe that it concentrates on the placement
of recycles. It learns that recycles affect streams added to the flowsheet in the future
and streams that have already been dealt with in the past. It has to adjust the flowsheet
topology and unit specifications to make sense in combination with a recycle stream,
which will be set in the future. This implies that the specifications will only make sense
once the recycle is set.

This will be shown alongside Figure 25, which shows two processes set up by the agent
after being trained with GCF. Figure 25 a) shows a process for the separation of Ac
and Ch using To as entrainer (contrary to Figure 24, where Be was used as entrainer).
Inside this example, the agent set four continuous specifications for the units, i.e., the
solvent ratio and the ratio of distillate to feed for all three distillation columns. The
lower panels visualize these ratios for two of the distillation columns (marked pink and
yellow). To the left, we show the flowsheet without the recycles placed by the agent.
The pink column separates pure To and a binary mixture of Ac and Ch. From this
mixture, it is impossible to separate Ch as a pure product by distillation because of
the azeotrope (the feed is on the wrong side of the azeotrope, as shown in the ternary
diagram). Therefore, no pure Ch leaves the process, and it seems that the agent sets
the continuous specifications in the wrong way. After the agent places two recycle
streams (shown in the right panel of Figure 25 a)), the compositions of all streams

4 Results and Discussion 67

Figure 24: Flowsheets constructed by the trained agent for feed situations given in the
literature [103–106] (training process was carried out using NPV). Flow-
sheet a) shows a process for the separation of Ac and Ch (feed composition:
xAc = 0.5, xCh = 0.5) using Be as solvent. Flowsheet b) shows a process for
the separation of Et and Wa (feed composition: xEt = 0.5, xWa = 0.5) using
solvent Be. Flowsheet c) shows a process for the separation of Bu and Wa
(feed composition: xBu = 0.4, xWa = 0.6). Flowsheet d) shows a process for
the separation of Py and Wa (feed composition: xPy = 0.1, xWa = 0.9) using
To as solvent.

68 4 Results and Discussion

of the flowsheet change drastically. It can be seen in the ternary diagrams that the
previous set ratios led to the desired separation. Figure 25 b) shows a process for the
separation of Wa and Py using To as solvent (also here we see that the agent chose a
different design as in Figure 24). Inside this example, the agent set three continuous
specifications for the units, i.e., the solvent ratio and the ratio of distillate to feed for
both distillation columns. The process is displayed to the left without the later set
recycle stream. The continuous specifications do not yield pure product streams inside
the distillation column. Additionally, the decanter only separates pure Wa, but not pure
To. To the right, the flowsheet is displayed with the chosen recycle. As in Figure 25 a),
the placement of the recycle changes the compositions of all streams of the flowsheet
(visualized in the ternary diagrams) and finally leads to a complete separation into pure
products.

4.4.5 Discussion

The single-player RL framework for AFS introduced in Sections 3.2.4 and 4.4 enables
training an agent from zero knowledge to synthesize near-optimal flowsheets for multiple
chemical systems within a hybrid action space. The framework combines elements from
the hierarchical SynGameZero approach (Sections 3.2.3 and 4.3), Gumbel AlphaZero
[88], and the MLP-Mixer architecture [87]. The trained agent succeeds on a wide range
of problems by constructing similar flowsheets as provided by the literature [103–106].
Furthermore, it was shown that the agent learns strong policies, which can be used
without MCTS by unrolling with beam search.

The original and the hierarchical SynGameZero framework relied on a reformulation into
a two-player game that enforced exploration. In the single-player framework, exploration
is ensured by integrating the action selection proposed in Gumbel AlphaZero [88], which
has two main advantages. On the one hand, the search procedure in AlphaZero does not
guarantee a policy improvement when not all nodes at the root are visited [88]. While
this was not an issue in the case studies used for the SynGameZero approach (original
and hierarchical), it probably would have caused problems in the hybrid action space
when enumerous options are present at the root node. On the other hand, compared to
AlphaZero, Gumbel AlphaZero was shown to work with significantly fewer simulations
during training and evaluation.

The single-player framework addresses all challenges listed in Section 2.2. Nevertheless,
there is room for improvement and further research. For example, the case studies in
Section 4.4 consider only processes with up to three components. For a scale-up, one

4 Results and Discussion 69

Figure 25: Examples for the implications of recycles on the compositions of the
streams, which show the planning capabilities of the trained agent. The
agent constructed the displayed examples after being trained using GCF.
To the left, the flowsheets without recycles are shown (to the right, the
flowsheets with recycles are shown). Inside the ternary diagrams, the feed
stream is marked by a black square, and the output streams are marked
with a brown triangle (connected by a blue line). Panel a) shows a process
for the separation of Ac and Ch using To as entrainer (feed composition:
xAc = 0.74, xCh = 0.26). Panel b) shows a process for the separation of Wa
and Py using To as solvent (feed composition: xWa = 0.04, xPy = 0.96).

70 4 Results and Discussion

would have to develop an approach for modeling VLEs and distillation columns with
∞/∞-analysis for a variable number of components (for LLEs and decanters, this is
already provided by the CEM that was introduced in Section 3.1.2). While Ryll et al.
[62, 63] introduced such an approach for up to four components, it is not clear if further
extensions are feasible in a computationally efficient way. Another possible addition
to the single-player framework would be the integration of different unit operations,
e.g., reactors and crystallizers. This extension would be straightforward, as one has to
implement the respective unit operations into the existing framework. Finally, the most
exciting direction for future research is undoubtedly transfer learning, i.e., evaluating
the trained agent on systems it has not encountered throughout training. However, this
is out of the scope of the present work, as it would require a larger number of systems
than considered in the examples in Section 4.4.

5 Conclusion and Outlook 71

5 Conclusion and Outlook
The present work presents a novel and general RL approach that enables training an
agent from zero knowledge to set up processes for conceptual design problems in chemical
engineering. Inside the RL framework, the agent learns only from interaction with a
flowsheet simulation, i.e., by placing unit operations and deciding on their specifications.
There are two main contributions of this work. On the one hand, a flowsheet simulation
(i.e., the agent’s environment) based on short-cut models is provided. On the other
hand, the stepwise development of the RL framework for AFS is presented.

All implemented unit operations are simulated using short-cut models to ensure a quick
and robust evaluation of the proposed process designs. These short-cut models rely on
phase equilibria, which are constructed by the environment automatically after providing
the necessary interaction parameters of the respective chemical systems. While the
implementation of most of the considered unit operations is based on already existing
theoretical frameworks, a novel methodology for modeling liquid phase equilibria and
decanters, namely the CEM, is developed in this work. A mathematical framework for
calculating liquid phase equilibria for systems with an arbitrary number of components
is provided. The approach is a generalization of a method [62, 82], which has already
been shown to work for systems with up to four components. The generalization of the
CEM is shown to work alongside various examples from the literature with up to six
components. The computational complexity of constructing the convex envelope mainly
limits application to higher order systems. To overcome this issue, further research on
parallelization algorithms and effective virtual memory usage would be needed. As
mentioned in [62, 82], another direction for further research could be the integration of
vapor-liquid or solid-liquid equilibria into the framework.

Three RL frameworks are introduced in the present work, which incrementally address
more and more of the challenges of AFS. The original SynGameZero framework models
flowsheet synthesis as a competitive two-player game, which allows training an agent
from scratch to set up processes using elements from the AlphaZero framework [54,
55] that was originally developed for board games such as Go and chess. Both players
generate a process for the same initial set of feed streams, and the proposed designs
are evaluated in a flowsheet simulation. The winner of the game, which the agent plays

72 5 Conclusion and Outlook

against itself, is determined by comparing the NPV of the resulting flowsheets. The
agent consists of an ACN interacting with an MCTS to determine promising actions. The
approach is shown to work alongside simple flowsheet examples within a discrete action
space. The hierarchical SynGameZero framework decomposes the action space into
three hierarchy levels. This feature is employed on top of the two-player game, and the
trained agent can now approach more sophisticated problem classes by determining unit
specifications and placing recycles. Still, this framework works only in a discrete action
space. The single-player framework combines several features from the hierarchical
SynGameZero approach with recently developed methodologies from the RL research
field, namely the Gumbel AlphaZero framework [88] and the MLP-Mixer [87]. It enables
training the agent from scratch in a hybrid action space to set up processes for multiple
chemical systems all at once. The approach was shown to work by training the agent
to generate flowsheets to separate various azeotropic mixtures.

While the two-player game idea was not employed in the final RL framework, it is still
an exciting option for other discrete planning problems outside of chemical engineering.
For example, it has already been adapted by [107] to approach the traveling salesman
problem and the job-shop scheduling problem. Further research is necessary to assess
if there are more possible applications of the two-player game idea. On the AFS side,
a possible direction for future research is to use the flowsheets generated by the agent
as initialization for process optimization tools. However, the most exciting direction for
future research is transfer learning. This means that the single-player framework could
be used to train an agent on a large set of chemical systems to fulfill some predefined task,
e.g., separating feed streams into pure components. Afterward, the agent is evaluated
on a different set of chemical systems to see if it can transfer its learnings onto problems
it has never encountered before.

In summary, this work shows that it is possible to train an RL agent without prior
knowledge or heuristics to set up flowsheets for conceptual design using a simulation
environment based on linearised thermodynamic models. Additionally, the developed
methodologies pave the road for further research on flowsheet simulation, AFS, and the
usage of RL for planning processes in general.

Bibliography 73

Bibliography

1. Westerberg, A. A retrospective on design and process synthesis. Comput. Chem.
Eng. 28, 447–458 (2004).

2. Siirola, J. Industrial Applications of Chemical Process Synthesis. Adv. Chem. Eng.
23, 1–62 (1996).

3. Harmsen, G. Industrial best practices of conceptual process design. Chem. Eng.
Process.: Process Intensif. 43, 671–675 (2004).

4. O’Young, D. & Natori, Y. Process Synthesis: technology, environment and appli-
cations. Comput. Chem. Eng. 20, 381–387 (1996).

5. Stephanopoulos, G. & Reklaitis, G. Process systems engineering: from solvay
to modern bio- and nano technology. A history of development, successes and
prospects for the future. Chem. Eng. Sci. 66, 4272–4306 (2011).

6. Siirola, J. Strategic process synthesis: advances in the hierarchical approach. Com-
put. Chem. Eng. 20, 1637–1643 (1996).

7. Chen, Q. & Grossmann, I. Recent developments and challenges in optimization-
based process synthesis. Annu. Rev. Chem. Biomol. Eng. 8, 249–283 (2017).

8. Yeomans, H. & Grossmann, I. A systematic modeling framework of superstructure
optimization in process synthesis. Comput. Chem. Eng. 23, 709–731 (1999).

9. Stephanopoulos, G. & Westerberg, A. Studies in process synthesis II, evolutionary
synthesis of optimal process flowsheets. Chem. Eng. Sci. 31, 195–204 (1976).

10. Zhang, T., Sahinidis, N. & Siirola, J. Pattern recognition in chemical process
flowsheets. AIChE J. 65, 592–603 (2019).

11. Gani, R. & O’Connell, J. A knowledge based system for the selection of thermo-
dynamic models. Comput. Chem. Eng. 13, 397–404 (1989).

12. Kirkwood, R., Locke, M. & Douglas, J. A prototype expert system for synthesizing
chemical process flowsheets. Comput. Chem. Eng. 12, 329–343 (1988).

13. Tula, A., Eden, M. & Gani, R. Process synthesis, design and analysis using a
process-group contribution method. Comput. Chem. Eng. 81, 245–259 (2015).

74 Bibliography

14. Daichendt, M. & Grossmann, I. Integration of hierarchical decomposition and
mathematical programming for the synthesis of process flowsheets. Comput. Chem.
Eng. 22, 147–175 (1997).

15. Martin, M. & Adams, T. Challenges and future directions for process and product
synthesis and design. Comput. Chem. Eng. 128, 421–436 (2019).

16. Grossmann, I. & Harjunkoski, I. Process systems engineering: academic and in-
dustrial perspectives. Comput. Chem. Eng. 126, 474–484 (2019).

17. Montastruc, L., Belletante, S., Pagot, A., Negny, S. & Raynal, L. From conceptual
design to process design optimization: a review on flowsheet synthesis. Oil Gas
Sci. Technol. 74 (2019).

18. Mencarelli, L., Chen, Q., Pagot, A. & Grossmann, I. A review on superstructure
optimization approaches in process system engineering. Comput. Chem. Eng. 136
(2020).

19. Stephanopoulos, G. Artificial intelligence in process engineering - current state
and future trends. Comput. Chem. Eng. 14, 1259–1270 (1990).

20. Stephanopoulos, G. & Han, C. Intelligent systems in process engineering: a review.
Comput. Chem. Eng. 20, 143–191 (1996).

21. Dimiduk, D., Holm, E. & Niezgoda, S. Perspectives on the impact of machine
learning, deep learning, and artificial intelligence on materials, processes, and
structures engineering. Integr. Mater. Manuf. I. 7, 157–172 (2018).

22. Lee, J., Shin, J. & Realff, M. Machine learning: overview of the recent progresses
and implications for the process systems engineering field. Comput. Chem. Eng.
114, 111–121 (2018).

23. Venkatasubramanian, V. The promise of artificial intelligence in chemical engi-
neering: is it here, finally? AIChE J. 65, 466–478 (2019).

24. Dobbelaere, M., Plehiers, P., Van de Vijver, R., Stevens, C. & Van Geem, K. Ma-
chine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities,
and Threats. Engineering 7, 1201–1211 (2021).

25. Schweidtmann, A. et al. Machine Learning in Chemical Engineering: A Perspec-
tive. Chem. Ing. Tech. 93, 2029–2039 (2021).

26. Fahmi, I. & Cremaschi, S. Process synthesis of biodiesel production plant using
artificial neural networks as the surrogate models. Comput. Chem. Eng. 46, 105–
123 (2012).

Bibliography 75

27. Moghadam, M. & Asgharzadeh, S. On the application of artificial neural network
for modeling liquid-liquid equilibrium. J. Mol. Liq. 220, 339–345 (2016).

28. Reynel-Avila, H., Bonilla-Petriciolet, A. & Tapia-Picazo, J. An artificial neu-
ral network-based NRTL model for simulating liquid-liquid equilibria of systems
present in biofuels production. Fluid Ph. Equilibria 483, 153–164 (2019).

29. McBride, K. & Sundmacher, K. Overview of Surrogate Modeling in Chemical
Process Engineering. Chem. Ing. Tech. 91, 1–13 (2019).

30. Nentwich, C. & Engell, S. Surrogate modeling of phase equilibrium calculations
using adaptive sampling. Comput. Chem. Eng. 126, 204–217 (2019).

31. Jirasek, F. et al. Machine Learning in Thermodynamics: Prediction of Activity
Coefficients by Matrix Completion. J. Phys. Chem. 11, 981–985 (2020).

32. Yang, K. et al. Analyzing Learned Molecular Representations for Property Pre-
diction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

33. Coley, C. et al. A graph-convolutional neural network model for the prediction of
chemical reactivity. Chem. Sci. 10, 370–377 (2019).

34. Fernandes, F. Optimization of fischer-tropsch synthesis using neural networks.
Chem. Eng. Technol. 29, 449–453 (2006).

35. Eason, J. & Cremaschi, S. Adaptive sequential sampling for surrogate model gen-
eration with artificial neural networks. Comput. Chem. Eng. 68, 220–232 (2014).

36. Schäfer, P., Caspari, A., Kleinhans, K., Mhamdi, A. & Mitsos, A. Reduced dy-
namic modeling approach for rectification columns based on compartmentaliza-
tion and artificial neural networks. AIChE J. 65, e16568 (2019).

37. Sutton, R. & Barto, A. Reinforcement Learning: An Introduction (The MIT Press,
Cambridge, 2018).

38. Shin, J., Badgwell, T., Liu, K. & Lee, J. Reinforcement learning - overview of
recent progress and implications for process control. Comput. Chem. Eng. 127,
282–294 (2019).

39. Nian, R., Liu, J. & Huang, B. A Review on Reinforcement Learning: Introduction
and Applications in Industrial Process Control. Comput. Chem. Eng. 139, 106886
(2020).

40. Zhou, Z., Li, X. & Zare, R. Optimizing chemical reactions with deep reinforcement
learning. ACS Cent. Sci. 3, 1337–1344 (2017).

76 Bibliography

41. Wang, X. et al. Towards efficient discovery of green synthetic pathways with
Monte Carlo tree search and reinforcement learning. Chem. Sci. 11, 10959–10972
(40 2020).

42. Göttl, Q., Grimm, D. & Burger, J. Automated synthesis of steady-state continu-
ous processes using reinforcement learning. Front. Chem. Sci. Eng. 16, 288–302
(2022).

43. Göttl, Q., Grimm, D. & Burger, J. Automated Process Synthesis Using Reinforce-
ment Learning. Comput. Aided Chem. Eng. 50, 209–214 (2021).

44. Göttl, Q., Tönges, Y., Grimm, D. & Burger, J. Automated Flowsheet Synthesis
Using Hierarchical Reinforcement Learning: Proof of Concept. Chem. Ing. Tech.
93, 2010–2018 (2021).

45. Göttl, Q., Grimm, D. & Burger, J. Using Reinforcement Learning in a Game-
like Setup for Automated Process Synthesis without Prior Process Knowledge.
Comput. Aided Chem. Eng. 49, 1555–1560 (2022).

46. Göttl, Q., Pirnay, J., Grimm, D. & Burger, J. Convex Envelope Method for de-
termining liquid multi-phase equilibria in systems with arbitrary number of com-
ponents. Comput. Chem. Eng. 177, 108321 (2023).

47. Göttl, Q., Pirnay, J., Burger, J. & Grimm, D. Deep reinforcement learning uncov-
ers processes for separating azeotropic mixtures without prior knowledge. https:
//doi.org/10.48550/arXiv.2310.06415 (2023).

48. Midgley, L. Deep Reinforcement Learning for Process Synthesis. https://doi.
org/10.48550/arXiv.2009.13265 (2020).

49. Khan, A. & Lapkin, A. Searching for optimal process routes: A reinforcement
learning approach. Comput. Chem. Eng. 141, 107027 (2020).

50. Khan, A. & Lapkin, A. Designing the process designer: Hierarchical reinforcement
learning for optimisation-based process design. Chem. Eng. Process. 180, 108885
(2022).

51. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal Policy
Optimization Algorithms. https://doi.org/10.48550/arXiv.1707.
06347 (2017).

52. Seidenberg, J., Khan, A. & Lapkin, A. Boosting autonomous process design and
intensification with formalized domain knowledge. Comput. Chem. Eng. 169,
108097 (2023).

Bibliography 77

53. Stops, L., Leenhouts, R., Gao, Q. & Schweidtmann, A. Flowsheet generation
through hierarchical reinforcement learning and graph neural networks. AIChE
J. 69, 17938 (2023).

54. Silver, D. et al. Mastering the game of Go without human knowledge. Nature
550, 354–359 (2017).

55. Silver, D. et al. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362, 1140–1144 (2018).

56. Fawzi, A. et al. Discovering faster matrix multiplication algorithms with rein-
forcement learning. Nature 610, 47–53 (2022).

57. Mankowitz, D. et al. Faster sorting algorithms discovered using deep reinforcement
learning. Nature 618, 257–263 (2023).

58. Hausknecht, M. & Stone, P. Deep Reinforcement Learning in Parameterized Ac-
tion Space. ICLR (2016).

59. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575, 350–354 (2019).

60. Biegler, L., Grossmann, I. & Westerberg, A. Systematic Methods of Chemical
Process Design (Prentice Hall PTR, 1997).

61. Bekiaris, N. & Morari, M. Multiple Steady States in Distillation: Inf/Inf Predic-
tions, Extensions, and Implications for Design, Synthesis, and Simulation. Ind.
Eng. Chem. Res. 35, 4264–4280 (1996).

62. Ryll, O. Thermodynamische Analyse gekoppelter Reaktions-Destillations-Prozesse:
konzeptioneller Entwurf, Modellierung, Simulation und experimentelle Validierung
(in German) PhD thesis (University of Stuttgart, Stuttgart, Germany, 2009).

63. Ryll, O., Blagov, S. & Hasse, H. Inf/Inf Analysis of homogeneous distillation
processes. Chem. Eng. Sci. 84, 315–332 (2012).

64. Ryll, O., Blagov, S. & Hasse, H. Thermodynamic analysis of reaction-distillation
processes based on piecewise linear models. Chem. Eng. Sci. 109, 284–295 (2014).

65. Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods 17, 261–272 (2020).

66. Sorensen, J., Magnussen, T., Rasmussen, P. & Fredenslund, A. Liquid-liquid equi-
librium data: Their retrieval, correlation and prediction, Part II: Correlation.
Fluid Ph. Equilibria 3, 47–82 (1979).

67. Swank, D. & Mullins, J. Evaluation of methods for calculating liquid-liquid phase-
splitting. Fluid Ph. Equilibria 30, 101–110 (1986).

78 Bibliography

68. Teh, Y. & Rangaiah, G. A Study of Equation-Solving and Gibbs Free Energy
Minimization Methods for Phase Equilibrium Calculations. Chem. Eng. Res. Des.
80, 759 (2002).

69. Baker, L., Pierce, A. & Luks, K. Gibbs Energy Analysis of Phase Equilibria. Soc.
Pet. Eng. J. 22, 731–742 (1982).

70. Gibbs, J. A method of geometrical representation of the thermodynamic proper-
ties of substances by means of surfaces. Trans. Conn. Acad. Arts Sci. 2, 382–404
(1873).

71. Gibbs, J. On the Equilibrium of Heterogeneous Substances. Trans. Conn. Acad.
Arts Sci. 3, 108–248 (1876).

72. Michelsen, M. The isothermal flash problem. Part I. Stability. Fluid Ph. Equilibria
9, 1–19 (1982).

73. Michelsen, M. The isothermal flash problem. Part II. Phase-split calculation. Fluid
Ph. Equilibria 9, 21–40 (1982).

74. McDonald, C. & Floudas, C. Global optimization for the phase and chemical
equilibrium problem: Application to the NRTL equation. Comput. Chem. Eng.
19, 1111–1139 (1995).

75. McDonald, C. & Floudas, C. Global optimization for the phase stability problem.
AIChE J. 41, 1798–1814 (1995).

76. Mitsos, A. & Barton, P. A dual extremum principle in thermodynamics. AIChE
J. 53, 2131–2147 (2007).

77. Wasylkiewicz, S., Li, Y., Satyro, M. & Wasylkiewicz, M. Application of a global
optimization algorithm to phase stability and liquid–liquid equilibrium calcula-
tions. Fluid Ph. Equilibria 358, 304–318 (2013).

78. Rangaiah, G. Evaluation of genetic algorithms and simulated annealing for phase
equilibrium and stability problems. Fluid Ph. Equilibria 187–188, 83–109 (2001).

79. Bonilla-Petriciolet, A., Rangaiah, G. & Segovia-Hernandez, J. Constrained and
unconstrained Gibbs free energy minimization in reactive systems using genetic
algorithm and differential evolution with tabu list. Fluid Ph. Equilibria 300, 120–
134 (2011).

80. Zhang, H., Bonilla-Petriciolet, A. & Rangaiah, G. A Review on Global Opti-
mization Methods for Phase Equilibrium Modeling and Calculations. The Open
Thermodynamics Journal 5, 71–92 (2011).

Bibliography 79

81. Piro, M. & Simunovic, S. Global optimization algorithms to compute thermo-
dynamic equilibria in large complex systems with performance considerations.
Comput. Mater. Sci. 118, 87–96 (2016).

82. Ryll, O., Blagov, S. & Hasse, H. Convex envelope method for the determination
of fluid phase diagrams. Fluid Ph. Equilibria 324, 108–116 (2012).

83. Rowlinson, J. & Swinton, F. Liquids and Liquid Mixtures (Butterworth-Heinemann,
1982).

84. Barto, A. & Mahadevan, S. Recent Advances in Hierarchical Reinforcement Learn-
ing. Discrete Event Dyn. 13, 341–379 (2003).

85. Russell, S. & Zimdars, A. Q-decomposition for reinforcement learning agents.
ICML, 656–663 (2003).

86. Bishop, C. Pattern Recognition and Machine Learning (Springer, New York,
2006).

87. Tolstikhin, I. et al. MLP-mixer: An all-MLP Architecture for Vision. NeurIPS,
24261–24272 (2021).

88. Danihelka, I., Guez, A., Schrittwieser, J. & Silver, D. Policy improvement by
planning with gumbel. ICLR (2022).

89. Vaswani, A. et al. Attention is all you need. NeurIPS, 5998–6008 (2017).

90. Yellott Jr., J. The relationship between Luce’s choice axiom, Thurstone’s theory of
comparative judgment, and the double exponential distribution. J. Math. Psychol.
15, 109–144 (1977).

91. Kool, W., van Hoof, H. & Welling, M. Stochastic Beams and Where to Find
Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement.
ICML (2019).

92. Karnin, Z., Koren, T. & Somekh, O. Almost Optimal Exploration in Multi-Armed
Bandits. ICML (2013).

93. Prausnitz, J., Lichtenthaler, R. & Azevedo, E. Molecular Thermodynamics of
Fluid-Phase Equilibria (Prentice Hall PTR, 1999).

94. Chen, J., Duan, L., Mi, J., Fei, W. & Li, Z. Liquid–liquid equilibria of multi-
component systems including n-hexane, n-octane, benzene, toluene, xylene and
sulfolane at 298.15 K and atmospheric pressure. Fluid Ph. Equilibria 173, 109–
119 (2000).

80 Bibliography

95. Chen, J., Mi, J., Fei, W. & Li, Z. Liquid-Liquid Equilibria of Quaternary and
Quinary Systems Including Sulfolane at 298.15 K. J. Chem. Eng. Data 46, 169–
171 (2001).

96. Yuan, S., Li, S., Yin, H. & Chen, Z. Liquid-Liquid Equilibria for Systems of
Ethanol + Hexanol + Heptanol + Decane + Undecane + Water at 298.15 K
under Atmospheric Pressure: Experiment and Simulation. J. Chem. Eng. Data
63, 1851–1858 (2018).

97. Yuan, S., Chen, Y., Yin, H. & Chen, Z. Liquid-Liquid Equilibria for Systems of
Ethanol + Octanol + Nonanol + Dodecane + Tridecane + Water at Different
Temperatures under Atmospheric Pressure. J. Chem. Eng. Data 64, 3008–3017
(2019).

98. Yuan, S., Bao, G., Yin, H. & Chen, Z. Liquid-Liquid Equilibrium Data and Process
Simulation for Separating the Mixture of Decanol + Undecanol + Tetradecane +
Pentadecane. J. Chem. Eng. Data 65, 5154–5175 (2020).

99. Barber, C., Dobkin, D. & Huhdanpaa, H. The Quickhull algorithm for convex
hulls. Mathematical Software 22, 469–483 (1996).

100. Amato, N., Goodrich, M. & Ramos, E. Parallel algorithms for higher-dimensional
convex hulls. Proceedings 35th Annual Symposium on Foundations of Computer
Science (1994).

101. Blelloch, G., Gu, Y., Shun, J. & Sun, Y. Randomized Incremental Convex Hull
is Highly Parallel. Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, 103–115 (2020).

102. Chadnov, R. & Skvortsov, A. Convex hull algorithms review. The 8th Russian-
Korean International Symposium on Science and Technology (2004).

103. Wang, Y.-H. & Chien, I.-L. Unique Design Considerations for Maximum-Boiling
Azeotropic Systems via Extractive Distillation: Acetone/Chloroform Separation.
Ind. Eng. Chem. Res. 57, 12884–12894 (2018).

104. Kunnakorn, D. et al. Techno-economic comparison of energy usage between azeotropic
distillation and hybrid system for water-ethanol separation. Renew. Energ. 51,
310–316 (2013).

105. Luyben, W. Control of the Heterogeneous Azeotropic n-Butanol/Water Distilla-
tion System. Energ. Fuel. 22, 4249–4258 (2008).

106. Chen, Y.-C., Li, K.-L., Chen, C.-L. & Chien, I.-L. Design and Control of a Hybrid
Extraction/Distillation System for the Separation of Pyridine and Water. Ind.
Eng. Chem. 54, 7715–7727 (2015).

Bibliography 81

107. Pirnay, J., Göttl, Q., Burger, J. & Grimm, D. Policy-Based Self-Competition for
Planning Problems. ICLR (2023).

108. Petlyuk, F. Distillation Theory and Its Application to Optimal Design of Separa-
tion Units (Cambridge University Press, 2004).

109. Rockafellar, T. R. Convex Analysis (Princeton University Press, 1970).

110. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. https://doi.org/10.48550/arXiv.1603.04467 (2015).

111. Kingma, D. & Ba., J. Adam: A method for stochastic optimization. ICLR (2015).

112. Vila, M., Cunill, F., Izquierdo, J.-F., Tejero, J. & Iborra, M. Equilibrium constants
for ethyl tert-butyl ether liquid-phase synthesis. Chem. Eng. Commun. 124, 223–
232 (1993).

113. Daniel, G. & Jobson, M. Conceptual Design of Equilibrium Reactor-Reactive
Distillation Flowsheets. Ind. Eng. Chem. Res. 46, 559–570 (2007).

114. Domingues, L., Pinheiro, C. & Oliveira, N. Economic comparison of a reactive
distillation-based process with the conventional process for the production of ethyl
tert-butyl ether (ETBE). Comput. Chem. Eng. 100, 9–26 (2017).

115. Towler, R. & Sinnott, G. Chemical Engineering Design: Principles, Practice and
Economics of Plant and Process Design (Butterworth-Heinemann, 2022).

116. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. NeurIPS, 8024–8035 (2019).

117. Aspen Technology Inc. Aspen Plus (version 8.8) 2015.

118. Linstrom, P. & Mallard, W. NIST Chemistry WebBook (National Institute of
Standards and Technology, Gaithersburg MD, 20899, 2023).

119. DDBST GmbH. Dortmund Data Bank 2023. www.ddbst.com.

120. Krey, U. & Owen, A. Basic Theoretical Physics (Springer, Berlin, Heidelberg,
2007).

Appendix 83

Appendix

A Appendix A

AI Modeling of Distillation Columns: ∞/∞-Analysis

Throughout this work, linearised representations for VLEs and distillation lines are
used. This form of representation allows fast and robust modeling of a distillation
column using the ∞/∞-approach [61–63], assuming an infinite number of stages and
total reflux. These assumptions model a thermodynamic limiting case, which has been
shown to display similar behavior as real distillation columns. For a general overview
regarding phase diagrams used to analyse distillation processes, we refer to [108]. For
a detailed description of the ∞/∞-approach, we refer to [62, 63] and outline the basic
concepts in the following for the ternary system shown in Figure A1.

In Figure A1, distillation lines for the ternary system acetone – benzene – chloroform at
1 bar are displayed. The red points indicate singular points, i.e., pure components and
azeotropes. The binary maximum azeotrope and benzene span the distillation boundary,
which separates the composition space into two distillation regions. The arrows indicate
the direction of the distillation lines toward the low-boiler.

Assuming an infinite number of stages and total reflux allows specification of a distilla-
tion column with one parameter: the ratio of distillate to feed flowrate ṅD/ṅF. Given
a feed stream composition, distillate and bottom product can be determined using the
following rules:

I) Feed, distillate, and bottom product are located on one straight line, which satisfies
the lever arm rule and the specified value of ṅD/ṅF.

84 A Appendix A

Figure A1: Topology of the VLE in the ternary system acetone – benzene – chloroform
at 1 bar. The binary azeotrope and benzene span the distillation boundary.
The arrows indicate the direction of the distillation lines toward the low-
boiler.

A Appendix A 85

II) The distillate and bottom product are on the same distillation line. Note that this
implies that the distillate and bottom product are in the same distillation region.

III) One of the following three cases applies: the distillate is the local low-boiler (i.e.,
the low-boiler of this distillation region); the bottom product is the local high-
boiler (i.e., the high-boiler of this distillation region); the distillation line, where
distillate and bottom product are located on, passes a saddle point (i.e., a singular
point, which is neither the low- or high-boiler of this distillation region).

Using this concept, distillation columns can be modelled quickly and robustly, even for
systems that display complicated, azeotropic behavior.

A flowsheet simulation based on the methodology described in [62, 63] was implemented
for the present work. The linearised representations of VLE and corresponding distil-
lation lines are generated in an automated way after providing necessary property data
(e.g., binary interaction parameters for a gE-model as NRTL [93]).

B Appendix B 87

B Appendix B

BI Modeling of Decanters: Convex Envelope
Method

BI.1 Mathematics

BI.1.1 Simplex Geometry

Definition B1 (Convex envelope/hull). Let k, n ∈ N and u1, . . . , uk ∈ Rn. The convex
envelope or convex hull of u1, . . . , uk is the smallest convex set in Rn, which contains
u1, . . . , uk. We refer to it with conv({u1, . . . , uk}).

Definition B2 (k-simplex). Let k, n ∈ N with k ≤ n and u1, . . . , uk+1 ∈ Rn so that
u1−uk+1, . . . , uk−uk+1 are linearly independent. A k-simplex U with vertices u1, . . . , uk+1

is defined as the convex envelope conv({u1, . . . , uk+1}) of the points u1, . . . , uk+1. We
often say U is represented by u1, . . . , uk+1.

Remark B1 (Simplex representation of N -component system). A system consisting of
N ∈ N components can always be interpreted as a n-simplex in Rn with n = N − 1. For
example, a 3-component system can be visualized in R2 as a 2-simplex (e.g., an equilat-
eral triangle). When mixtures in a N -component system are examined, usually molar
fractions are used (e.g., to calculate thermodynamic properties). To use results from
geometry inside the simplex representing the system, one has to transform between mo-
lar fractions and cartesian coordinates. This can be done using barycentric coordinates
(for a proof, see, for example, [109]).

Lemma B1 (Barycentric coordinates). Let k, n ∈ N with k ≤ n and u1, . . . , uk+1 ∈ Rn be
the vertices of a k-simplex U . For every point a ∈ U there exist unique λ1, . . . , λk+1 ∈ [0, 1]
so that

a =
k+1
∑
i=1

λiui and
k+1
∑
i=1

λi = 1. (B1)

λ1, . . . , λk+1 are called barycentric coordinates of a with respect to U .

88 B Appendix B

Remark B2. Consider a N -component system, represented by a n-simplex U with
n = N −1. Barycentric coordinates λ1, . . . , λN of a point a ∈ U just describe the position
of a with respect to the simplex’ vertices. For a possible mixture inside the system,
described by molar fractions (x1, . . . , xN), it holds

N

∑
i=1

xi = 1 (B2)

and xi ≥ 0 for all i = 1, . . . , N . Because of the uniqueness statement in Lemma B1, it
follows immediately that the molar fractions (x1, . . . , xN) are the barycentric coordinates
of a point a ∈ U . This yields a possibility for transformation between molar fractions
and cartesian coordinates by writing Equation B1 in matrix form (and computing the
left-inverse of the left matrix).

BI.1.2 Discretization of the Composition Space

Remark B3. A binary system can be discretized by specifying a minimal distance 1/δ,
with δ ∈ N, for neighboring points. The whole discretization space then contains δ + 1
points. In general, when a system with N ∈ N components is considered, we define the
set of discretization points by

Pδ ∶= {(
p1

δ
, . . . , pN

δ
)∣pi ∈ N for i = 1, . . . , N and

N

∑
i=1

pi = δ}. (B3)

Note that the elements of Pδ are the molar fractions x of the discretized points. As
explained before, molar fractions x ∈ Pδ are identical to barycentric coordinates and
thus can be transformed to cartesian coordinates with the help of Lemma B1. It is easy
to see that every binary subsystem of Pδ consists once again of δ+1 points, but the total
number of points increases exponentially with N . When applying the CEM to a system
with N components, we construct a n-simplex (n = N − 1) with unitary edge length,
representing the whole composition space. This space then is discretized, as explained
above.

BI.2 Implementation

The CEM framework was implemented with the programming language Python. The
convex envelope is found by the usage of the QuickHull-algorithm [99], which is pro-
vided by the Qhull library within the package scipy [65]. An implementation, which
allows execution of step III) from Section 3.1.2.1 parallelized, is published via GitHub:

B Appendix B 89

https://github.com/grimmlab/cem. All results for the CEM were generated on
a machine with an AMD EPYC 7542 32-core (64 threads) processor and 512 GB of
RAM.

BI.3 Detailed Results

Here, we report detailed results obtained for systems containing up to six components
examined in [94–98]. Additionally to MD, we report the computation time (CT) needed
for our implementation of the CEM to construct the respective phase equilibria. For
ternary systems, the classification of the simplices of the convex envelope was executed
serially. For systems containing more than three components, the classification step was
executed parallelized (the respective settings for parallelization are published alongside
the code on GitHub). Table B1 shows results for several ternary systems containing
combinations of n-hexane, benzene, sulfolane, toluene, xylene, and n-octane. NRTL
parameters and experimental data regarding those systems were taken from [94]. As
can be seen, the calculated phase splits match the experimental data quite well. Ta-
ble B2 shows results for quaternary systems from various sources [94–98]. NRTL and
UNIQUAC parameters were used to calculate the occurring phase splits. Compared to
ternary systems, δ was set to a lower value to limit the computational effort. Still, our
approach was able to calculate the experimental data with excellent accuracy. Table B3
shows results for quinary systems from [94, 95] using the NRTL model. The CEM was
able to calculate the occurring phase splits with high accuracy. Table B4 shows results
for systems containing six components, as presented in [96–98]. The discretization pa-
rameter δ was set to a lower value to control computational complexity. Still, the CEM
was able to calculate the occurring phase splits with an acceptable accuracy.

90 B Appendix B

Table B1: Results for ternary systems from [94] at atmospheric pressure. The param-
eter δ was set to 128, and the NRTL model was used for all systems. M
describes the number of feed streams that were examined for the calculation
of the MD.

System T / K M CT / s MD
n-hexane – benzene – sulfolane 298.15 10 1.8 0.005
n-hexane – toluene – sulfolane 298.15 10 1.7 0.004
n-hexane – xylene – sulfolane 298.15 10 1.7 0.006
n-octane – benzene – sulfolane 298.15 10 1.7 0.005
n-octane – toluene – sulfolane 298.15 10 1.7 0.009
n-octane – xylene – sulfolane 298.15 10 1.7 0.005

B Appendix B 91

Table B2: Results for quaternary systems at atmospheric pressure. The parameter δ
was set to 64 for all systems. M describes the number of feed streams that
were examined for the calculation of the MD.

System T / K M gE-model CT / s MD

n-hexane – benzene – xylene –
sulfolane [94]

298.15 5 NRTL 41.6 0.003

n-hexane – n-octane – benzene
– sulfolane [94]

298.15 5 NRTL 39.2 0.005

n-octane – toluene – xylene –
sulfolane [94]

298.15 5 NRTL 41.4 0.004

heptane – benzene – toluene –
sulfolane [95]

298.15 5 NRTL 41.6 0.011

heptane – octane – m-xylene –
sulfolane [95]

298.15 5 NRTL 39.7 0.007

hexane – heptane – toluene –
sulfolane [95]

298.15 5 NRTL 38.2 0.005

ethanol – heptanol – decane –
water [96]

298.15 21 UNIQUAC 49.4 0.007

ethanol – heptanol – undecane
– water [96]

298.15 22 UNIQUAC 50.4 0.008

ethanol – hexanol – decane –
water [96]

298.15 24 UNIQUAC 48.6 0.005

ethanol – hexanol – undecane
– water [96]

298.15 29 UNIQUAC 49.4 0.007

ethanol – nonanol – dodecane
– water [97]

293.15 21 NRTL 49.6 0.016

ethanol – nonanol – dodecane
– water [97]

298.15 13 NRTL 50.5 0.016

ethanol – nonanol – dodecane
– water [97]

303.15 17 NRTL 48.8 0.011

ethanol – nonanol – tridecane
– water [97]

293.15 21 NRTL 49.8 0.009

92 B Appendix B

Table B2 (continued): Results for quaternary systems at atmospheric pressure. The
parameter δ was set to 64 for all systems. M describes the number of feed streams that
were examined for the calculation of the MD.

ethanol – nonanol – tridecane
– water [97]

298.15 18 NRTL 49.7 0.013

ethanol – nonanol – tridecane
– water [97]

303.15 14 NRTL 49.6 0.009

ethanol – octanol – dodecane –
water [97]

293.15 22 NRTL 46.4 0.011

ethanol – octanol – dodecane –
water [97]

298.15 16 NRTL 49.6 0.013

ethanol – octanol – dodecane –
water [97]

303.15 17 NRTL 49.6 0.009

ethanol – octanol – tridecane –
water [97]

293.15 21 NRTL 48.5 0.009

ethanol – octanol – tridecane –
water [97]

298.15 14 NRTL 48.7 0.013

ethanol – octanol – tridecane –
water [97]

303.15 12 NRTL 48.5 0.012

ethanol – decanol – pentade-
cane – water [98]

293.15 23 UNIQUAC 49.7 0.006

ethanol – decanol – pentade-
cane – water [98]

298.15 22 UNIQUAC 49.5 0.006

ethanol – decanol – pentade-
cane – water [98]

303.15 24 UNIQUAC 49.7 0.007

ethanol – decanol – tetrade-
cane – water [98]

293.15 21 UNIQUAC 47.8 0.007

ethanol – decanol – tetrade-
cane – water [98]

298.15 24 UNIQUAC 49.4 0.007

ethanol – decanol – tetrade-
cane – water [98]

303.15 23 UNIQUAC 49.5 0.006

ethanol – undecanol – pentade-
cane – water [98]

293.15 24 UNIQUAC 49.4 0.007

B Appendix B 93

Table B2 (continued): Results for quaternary systems at atmospheric pressure. The
parameter δ was set to 64 for all systems. M describes the number of feed streams that
were examined for the calculation of the MD.

ethanol – undecanol – pentade-
cane – water [98]

298.15 21 UNIQUAC 49.7 0.007

ethanol – undecanol – pentade-
cane – water [98]

303.15 22 UNIQUAC 49.5 0.006

ethanol – undecanol – tetrade-
cane – water [98]

293.15 23 UNIQUAC 49.4 0.006

ethanol – undecanol – tetrade-
cane – water [98]

298.15 23 UNIQUAC 49.1 0.007

ethanol – undecanol – tetrade-
cane – water [98]

303.15 23 UNIQUAC 48.0 0.007

Table B3: Results for quinary systems at atmospheric pressure. The parameter δ was
set to 32, and the NRTL model was used for all systems. M describes the
number of feed streams that were examined for the calculation of the MD.

System T / K M CT / s MD
n-hexane – n-octane – benzene
– toluene – sulfolane [94]

298.15 4 170.4 0.010

heptane – octane – benzene –
m-xylene – sulfolane [95]

298.15 5 161.0 0.012

hexane – heptane – toluene –
m-xylene – sulfolane [95]

298.15 5 165.6 0.015

94 B Appendix B

Table B4: Results for systems containing six components at atmospheric pressure. The
parameter δ was set to 16 for all systems. M describes the number of feed
streams that were examined for the calculation of the MD.

System T / K M gE-model CT / s MD
ethanol – hexanol – heptanol –
decane – undecane – water [96]

298.15 22 UNIQUAC 3019.5 0.032

ethanol – octanol – nonanol –
dodecane – tridecane – water
[97]

293.15 20 NRTL 3000.0 0.036

ethanol – octanol – nonanol –
dodecane – tridecane – water
[97]

298.15 22 NRTL 2960.1 0.028

ethanol – octanol – nonanol –
dodecane – tridecane – water
[97]

303.15 18 NRTL 2884.6 0.029

ethanol – decanol – undecanol
– tetradecane – pentadecane –
water [98]

293.15 20 UNIQUAC 2245.7 0.021

ethanol – decanol – undecanol
– tetradecane – pentadecane –
water [98]

298.15 24 UNIQUAC 2224.7 0.020

ethanol – decanol – undecanol
– tetradecane – pentadecane –
water [98]

303.15 23 UNIQUAC 1438.2 0.020

C Appendix C 95

C Appendix C

CI SynGameZero: Proof of Concept

CI.1 Environment

CI.1.1 Chemical System and Unit Operations

In the following, we provide detailed information on the environment for the proof
of concept for SynGameZero. The environment consists of a steady-state flowsheet
simulation initialized by a set of feed streams. In this example, the processes operate
in a model system of four compounds A – B – C – D (in boiling order). The system is
zeotropic and thus can be separated by distillation only. The following unit operations
are available to the agent:

I) Reactor
If A and B are present in the feed stream of the reactor, the following reaction is
observed:

A +BÐÐ→ C +D. (C1)

The reactor is a continuous stirred tank reactor with the conversion of A given by
a kinetic of first order in A and B:

ṅin
A − ṅout

A = 5 kmol
h xout

A xout
B . (C2)

Therein, ’in’ and ’out’ specify quantities at the reactor inlet and outlet. The
variables ṅi and xi denote component i’s molar flow rate and mole fraction, re-
spectively. The conversion of the other components B, C, and D is calculated by
the stoichiometry of Reaction C1. This unit operation is denoted as R.

II) Distillation column
As mentioned, the distillation columns are modeled using the∞/∞-approach [61–
63]. As the system is zeotropic, it is possible to define perfectly sharp splits. Thus,

96 C Appendix C

the agent has three discrete options denoted as D1 (split A - BCD), D2 (split AB
- CD), and D3 (split ABC - D).

III) Mixer
Place a mixer to mix two streams. This unit operation is denoted as M.

The actions D1, D2, D3, and R can be applied to any single open stream, whereas M
requires two open streams as input.

CI.1.2 Cost Function

The NPV is used to evaluate the obtained processes. Since the degree of detail in its
calculation is not relevant for the presented methodology and the process models are
rather basic, a rather simple scheme is used to calculate the NPV:

NPV = −∑
u∈U

Iu + 10a∑
o∈O

co. (C3)

It combines the investment costs Iu of every unit u with the yearly operational cash flows
co multiplied by ten years (a factor that lumps the depreciation period and interest
rates). The investment costs of the units are assumed flat and independent of size
and operation parameters. The yearly operational cash flows co consider only cost and
revenues from all open material streams o leaving the process. Further operational costs
of the units (e.g., the steam cost for the distillation) are neglected for simplicity. The
cash flows of the open streams are calculated as follows. If a stream contains a pure
component i:

co = ṅi ⋅ pi ⋅ 8000 h
a . (C4)

where ṅi is its molar flowrate in kmol/h and pi is the price of component i. If an open
stream is not pure, then its yearly cash flow is:

co = ∑
i∈{A, B, C, D}

ṅi ⋅min(pi, 0) ⋅ 8000 h
a . (C5)

The minimum function ensures that the cash flow of mixed streams is never positive. If
the stream contains a compound of negative price pi (e.g., a hazardous compound for
which disposal has to be paid), then the cash flow becomes negative. The values/costs of
the feed stream(s) are not considered explicitly in the formulas, as they are constant for
both players and, therefore, have no influence on finding the optimal process. However,
the agent may select the trivial process of placing no process unit. In this case, any feed
is an open stream leaving the process and is included in the determination of the NPV.

C Appendix C 97

Table C1: Iu parameters for Case Study 1 and Case Study 2.

IR / kAC ID / kAC IM / kAC
Case Study 1 10000 10000 1000
Case Study 2 10000 10000 1000

Table C2: Component prices for Case Study 1 and Case Study 2.

pA / AC/kmol pB / AC/kmol pC / AC/kmol pD / AC/kmol
Case Study 1 1 1 1 1
Case Study 2 -0.125 -0.125 1 1

In this case study, two different choices for the parameters Iu (see Table C1) and pi (see
Table C2) are discussed to demonstrate the interchangeability of the cost function.

CI.2 Generation of the Flowsheet Matrix

The state of a flowsheet is stored in the flowsheet matrix F . The construction of F

from the simulation results of the environment is explained in Figure C1. Every stream
in the flowsheet refers to one row of F . F has a fixed number of rows Nmatrix; if there
are less streams in the flowsheet, the remaining rows are filled with zeros. The number
Nmatrix is an upper limit for the size of the flowsheet (i.e., the number of streams). If
the matrix is full, the process synthesis is terminated automatically by the environment.
This limitation is due to technical reasons. In practice, Nmatrix has to be chosen large
enough to accommodate the optimal flowsheet comfortably. For this example, we set it
to Nmatrix = 10.

Every row of F is composed of a set of vectors that are explained along the first row in
Figure C1 for stream 1 (reactor input) of the shown flowsheet. v1 contains the molar
fractions of all compounds followed by the total molar flow rate of stream 1. The vector
u1 is a one hot encoding (OHE) that specifies the process unit at the streams destination.
It has Nunit = 4+Nmatrix entries. The first four entries refer to distillation splits D1, D2,
D3 and reactor R, respectively. The last Nmatrix entries are relevant if the stream is
connected to a mixer. The entry for the corresponding unit is set to 1, and all other
entries are set to 0. In the case of the mixer, the (4+k)th entry is set to one, indicating
that the other stream to the mixer is stream k. For example, u1 in Figure C1 indicates

98 C Appendix C

Figure C1: Construction of the flowsheet matrix F in the SynGameZero approach.
F contains the information of the stream table combined with structural
information on the flowsheet. All entries in the matrix, which are not
needed for now, are set to 0 (0 refers to a vector consisting of as many
entries equal to 0 as required for the width of the respective column).

that stream 1’s destination is a reactor R. If no unit is connected to a stream i, then all
entries of ui are set to 0. The last four vectors of each row contain information on the
subsequent streams that leave the process unit and the streams destination. Let us say
these are streams m and n. The first and the third of the four vectors are copies of vm

and vn, respectively. The second and fourth vectors are OHEs to the numbers m and n,
respectively. They are vectors with Nmatrix entries, all of them 0 but the m-th or n-th
entries, respectively, which are 1. If there is no destination process unit (e.g., streams
3 or 4) or the process unit has only one output stream (e.g., stream 1), all four or the
latter two vectors are filled with zeros, respectively.

CI.3 Implementation and Training Procedure

CI.3.1 Implementation

The framework for SynGameZero was implemented with Python. All parts of the frame-
work that are related to ML were implemented using methods from the Python package
tensorflow (version 1.9.0) [110].

The ACN is a multi-layer perceptron (MLP) [86] with Nlayer fully connected hidden
layers and an actor-critic output [37]. Every hidden layer has Nnode nodes with ReLU
activation. The policy head π consists of one entry for every possible action (as the
flowsheet can theoretically consist of up to Nmatrix open streams and one termination

C Appendix C 99

Table C3: Numerical tuning parameters for Case Study 1 and Case Study 2. The
parameter K specifies the depth of the tree search.

Ngames Nmemory Nbatch Nlayer Nnode K

Case Study 1 5000 256 32 2 32 20
Case Study 2 20000 256 32 2 64 40

action is needed, there are Naction = (Nmatrix ⋅Nunit) + 1 actions). A softmax activation
ensures that the entries in π are in the range [0, 1] and sum up to 1. A tanh activation
ensures that the output of the value-head, v, is in the range [−1, 1].

CI.3.2 Training Procedure

The agent plays Ngames of games against itself during training. The compositions of the
feed stream(s) are randomly varied to obtain an agent that can solve a broad class of
problems. The search tree is initialized with the given feed(s) at the beginning of every
game. Then, the agent plays the game until the end. Thereby, every decision that had
been made in step IV) of the tree search is stored. Stored are the state s at the root
node, which served as input for the ANN, and the vector y, which is based on the tree
search results. After finishing the game, the data is augmented by the final reward,
r, which indicates the winning player. The tuples of the form (s, y, r) are stored in a
memory of size Nmemory. After every game, a batch of Nbatch tuples is sampled randomly
to perform two optimization steps. The first one with respect to the loss function l1 and
the second one with respect to the loss function l2:

l1 =(v − r)2, (C6)

l2 =∑
i

(πi − yi)
2. (C7)

The ANN was trained using Adam [111] as optimizer with a constant learning rate of
10−4. The gradients were clipped to a maximum value of 5 to prevent instabilities during
training. The numerical tuning parameters are listed in Table C3.

D Appendix D 101

D Appendix D

DI SynGameZero: Integration of Hierarchical
Reinforcement Learning

DI.1 Environment

DI.1.1 Chemical System and Unit Operations

In the following, we provide detailed information on the environment for the ETBE
synthesis process example from Section 3.2.3. The processes are set up in a steady-state
flowsheet simulation within a quaternary system consisting of ethanol (Et), isobutene
(IB), n-butane (nBut), and ethyl-tert-butyl-ether (ETBE). Starting from two feed streams
(the first one containing pure Et, the second one a mixture of IB and nBut), the goal is
to synthesize ETBE. Short-cut apparatus models for conceptual design in the spirit of
Ryll et al. [62, 64] provide a robust and rapid simulation of the proposed processes. For
this matter, some simplifying assumptions are made for the available unit operations
(e.g., the temperatures of the streams are not taken into account for the simulation):

I) Reactor
In the reactor, the following reversible reaction takes place [62, 64]:

Et + IB⇌ ETBE. (D1)

It is assumed that the reactor is operated at 50 °C and equilibrium is reached.
Ideal liquid phase behavior is assumed, and the chemical equilibrium constant at
50 °C (Kx = 111.1) is adapted from [112]. This unit operation is denoted as R.

II) Distillation column
The distillation columns are modeled using ∞/∞-analysis (assuming an infinite
number of stages and total reflux) [61–64]. The columns are operated at 8 bar [62,
64]. Two binary minimum azeotropes (in the systems Et – ETBE at xEt = 0.63
mol/mol and Et – nBut at xEt = 0.06 mol/mol) occur in the quaternary system

102 D Appendix D

[113]. The system is separated into two distillation regions as shown in Figure
D1. For the sake of simplicity, it is assumed that the simplex spanned by the
azeotropes and pure IB defines the distillation boundary. To separate mixtures by
distillation, the agent can choose between two different split types: DL refers to
a column that separates the local low-boiler as distillate from the feed stream of
the column with the highest possible yield. The split DH separates the local high-
boiler as bottom product with the highest possible yield. For further information
regarding ∞/∞-analysis, we refer to Appendix AI and [61–63].

III) Mixer
The agent can decide to mix two open streams. M denotes this unit operation.

IV) Recycle
The agent can recycle any open stream to any closed stream in the process. Rec
denotes this unit operation.

In the hierarchically structured action space, the agent chooses an open stream (or the
terminate action) at level 1, and one of the above-listed units (R, DL, DH, M, and Rec)
at level 2. If M or Rec are chosen at level 2, the agent has to select a destination (an
open stream for M and a closed stream for Rec, respectively) at level 3.

DI.1.2 Cost Function

The resulting flowsheets are evaluated using the NPV:

NPV = −∑
u∈U

Iu + 10a(−∑
u∈U

Cop,u +∑
o∈O

co). (D2)

For every process unit u in the set U of all process units present in the flowsheet,
the variables Iu and Cop,u refer to the total investment costs and annualized operating
costs, respectively. For every open stream o out of the set O of all open streams in the
flowsheet, co describes the annualized operational cashflow.

The investment costs are estimated from the feed mass flowrate of the units. For reac-
tors and distillation columns, base values for total investment costs are adapted from
Domingues et al. [114] for a mass flow of ṁ0,u = 9000 kg/h (the base values are listed in
Table D1). For a unit u, scaling to other mass flowrates is done using the power rule
[115]:

Iu = I0,u ⋅ (
ṁu

ṁ0,u
)

0.6
. (D3)

D Appendix D 103

Figure D1: Topology of the VLE in the quaternary system Et – IB – nBut – ETBE at
8 bar. The binary azeotropes and IB span the distillation boundary (gray
surface). The arrows indicate the direction of the distillation lines toward
the low-boiler.

Table D1: Base values for investment costs of the units.

I(0,R) / kAC I(0,D) / kAC I(0,M) / kAC I(0,Rec) / kAC
64 594 0 0

104 D Appendix D

Table D2: Prices for components and steam.

pEt / AC/kg pIB / AC/kg pnBut / AC/kg pETBE / AC/kg psteam / AC/kg
0.75 0.5 0.5 1.27 0.04

Operating costs Cop,u comprise only steam costs for distillation columns. The reboiler
duties of the distillation columns are estimated from the simple assumption that the
distillate has to be evaporated twice:

Q̇Reboiler = 2 ⋅∑
i

ṁi,distillate ⋅∆h
(m)
i,v . (D4)

Therein, ṁi,distillate and ∆h
(m)
i,v are the distillate’s mass flowrate and enthalpy of evapo-

ration of component i ∈ {Et, IB, nBut, ETBE}, respectively. Assuming constant steam
costs, Cop,u follows as:

Cop, distillation column = psteam ⋅
Q̇Reboiler

∆h
(m)
water,v

⋅ 8000 h
a . (D5)

Prices for steam and the components are listed in Table D2 and based on data found
in the literature [114] (an equal price was assumed for IB and nBut). If x

(m)
i > 0.99 for

any component i, co is calculated as:

co = pi ⋅ ṁi ⋅ 8000 h
a . (D6)

Streams with less purity are discounted with a factor of 0.5):

co = 0.5 ⋅∑
i

pi ⋅ ṁi ⋅ 8000 h
a . (D7)

DI.2 Generation of the Flowsheet Matrix

The flowsheet matrix is slightly modified compared to the original SynGameZero ap-
proach (see Appendix CI.2). The concept is explained alongside Figure D2. The flow-
sheet matrix F has a fixed number of rows Nmatrix = 16, as the agent can only process
inputs with a fixed size. All entries in F are initially set to zero and only altered ac-
cording to changes upon flowsheet synthesis. Every row refers to a potential stream in
the flowsheet, and therefore, Nmatrix serves as an upper limit for the size of the flowsheet

D Appendix D 105

Figure D2: Construction of the flowsheet matrix F in the hierarchical SynGameZero
approach. The matrix contains a stream table and information on the
connectivity of the streams in the flowsheet.

(the environment terminates the synthesis automatically if it is exceeded).

Every row of F comprises a set of vectors. The vectors vi and ui work in the same
way as explained in Appendix CI.2. The vector ui has Nunit = 5 entries (available unit
operations: R, DL, DH, M, Rec). The vector di is an OHE of the connectivity of the
output stream(s) of the unit specified in ui. It has Nmatrix entries, and if the output
streams of the corresponding unit are stored in the n-th and m-th row of F , the n-th and
m-th entries of di are set to 1, respectively (this is also done to store the connectivity
of recycle streams). The vector ti has two entries, which are either equal to 0 or 1. The
first entry is set to 1 if the flowsheet synthesis was terminated (marked in every row of
F). The second entry is set to 1 if row i refers to an actual stream in the flowsheet.
This allows the distinction of streams that are part of a flowsheet structure but have no
flowrate yet from unused rows in the matrix.

DI.3 Implementation and Training Procedure

DI.3.1 Implementation

The hierarchical framework and SynGameZero were implemented with Python (pub-
lished via GitHub https://github.com/grimmlab/SynGameZero together with
an implementation of the variant mentioned in Section 3.2.3). All parts of the frame-
work that are related to ML were implemented using methods from the Python package
pytorch (version 1.8.0) [116].

106 D Appendix D

In the following, we explain the ANN architecture implementation, shown in Figure 11.
The CNN consists of two layers of convolutional filters, which use ReLU activations.
The state s is provided in the 3-dimensional shape (2, Nmatrix, Nlength row) (note that
Nlength row = 5 +Nunit +Nmatrix + 2). Since the information in the flowsheet matrices is
stored in a heterogeneous way (flowrates to the left, connectivity to the right), the filters
have to be applied over the rows as a whole. In the first layer, 16 filters (with a shape
of (1, Nlength row)) are applied and create an output of the shape (2, Nmatrix, 16). The
second layer applies eight filters (with a shape of (1, 16)) and generates an output of the
shape (2, Nmatrix, 8). This output is flattened and used as an input vector for the ACN
at level 1. All ACNs have the same structure: 2 fully connected shared layers with 48
nodes and ReLU activations. At every level, the policy-head uses a softmax activation
and the value-head a tanh activation to generate πi and vi, respectively.

DI.3.2 Training Procedure

During training, the agent plays Ngames = 10000 games against itself and stores the fol-
lowing results of the tree search: at each root node, which is passed during a game,
tuples of the form (s, s2, s3, yi, r) are created. s refers to the state at the root node,
while s2 and s3 refer to the additional inputs for the ACNs at levels 2 and 3, respectively.
Similarly, as in the original SynGameZero approach, the vector yi represents the distri-
bution of the visit counts at the root node. The variable r refers to the reward, which
is obtained at the end of the game. For every level i, a memory of size Nmemory = 640 is
created to store these tuples. Batches of size Nbatch = 64 are sampled from the memories
to perform two optimization steps (one for each of the loss functions below).

li,1 =(vi − r)2, (D8)

li,2 =∑
j

(πi,j − yi,j)
2. (D9)

For every level i, the gradients are backpropagated starting at the respective ACN
until the top of the CNN. The ANN was trained using Adam [111] as optimizer with a
constant learning rate of 10−4. After each game, these steps are performed for every level
i that was at least used once during this game. For example, it might be possible that no
mixers or recycles are placed during a game, and therefore no new tuples (s, s2, s3, y3, r)
would be stored for level 3. The optimization steps for level 3 are suspended in this case
to prevent overfitting.

E Appendix E 107

E Appendix E

EI Single-Player Reinforcement Learning
Framework for Automated Flowsheet Synthesis

EI.1 Environment

EI.1.1 Chemical Systems and Unit Operations

In the following, we provide detailed information on the environment of the framework
described in Section 3.2.4. In particular, we consider four chemical example systems from
the literature [103–106], which are listed in Table E1. Some unit operations are simu-
lated based on phase equilibria, which are modeled using the Non-Random-Two-Liquid
(NRTL) gE-model [93]. The NRTL parameters for all considered binary subsystems are
taken from Aspen Plus [117]. Within all of the considered chemical systems, we assume
constant conditions as described in Table E1 (pressure and temperature were chosen to
be located inside the range of the NRTL parameters).

The agent interacts with a steady-state flowsheet simulation, which simulates the chosen
unit operations sequentially. The unit operations are based on short-cut models, which
allow a quick and robust evaluation. Besides, from recycle streams, all models were
chosen to always converge. The following unit operations and specifications are available
as actions to the agent:

I) Distillation column
When a distillation column is chosen at level 2, it has to be further specified at
level 3b (with sublevel 3c) by setting the continuous ratio of distillate flowrate ṅD

to feed flowrate ṅF:
ṅD

ṅF ∈ [0, 1]. (E1)

As in previous examples, this unit operation is modeled using a linearised repre-
sentation of the VLE and∞/∞-analysis (see Appendix AI and [61–64]). This unit
operation is denoted as D.

108 E Appendix E

Table E1: Considered chemical example systems and the available solvents for the
single-player framework. We use the following abbreviations for the compo-
nents: acetone (Ac), benzene (Be), butanol (Bu), chloroform (Ch), ethanol
(Et), pyridine (Py), tetrahydrofuran (Te), toluene (To), water (Wa). The
flowsheet simulation is based on phase equilibria that are constructed assum-
ing constant conditions (temperature and pressure for liquid-liquid equilib-
ria, pressure for vapor-liquid equilibria and distillation boundaries).

System 1 System 2 System 3 System 4
Feed stream compo-
nents

Ac, Ch Et, Wa Bu, Wa Py, Wa

Available solvents Be, To Be, To, Te Ac, Be, To To
Temperature 323.15 K 338.15 K 338.15 K 338.15 K
Pressure 1 bar 1 bar 1 bar 1 bar

II) Decanter
No further specification is required when a decanter is chosen at level 2, as constant
temperature and pressure are assumed throughout the simulation. The decanter
splits the feed stream according to the underlying liquid phase equilibrium, which
is constructed by usage of the CEM (see Section 3.1.2 and [62, 82]). The considered
chemical systems in this example (listed in Table E1) display liquid phase splits
into two phases at most. As mentioned in Section 3.1, the decanter is simulated
as split (with a split ratio of 0.5) if there is no liquid phase split for the given
feed composition. This ensures a constant number of output streams for this unit
operation within the flowsheet simulation. This unit operation is denoted as Dec.

III) Add solvent
Table E1 provides a list of available solvents for the considered chemical example
systems. For the sake of simplicity, the total number of different components per
flowsheet is limited to 3 in this example. Thus, the agent can choose this unit
operation once per flowsheet synthesis process. The solvent is added to the open
stream, chosen at level 1. At level 3b and 3c, one has to specify the continuous
ratio of solvent flowrate ṅS to the flowrate of the open stream ṅF:

ṅS

ṅF ∈ [0, 10]. (E2)

In this example, the ratio is limited to 10, giving ample space to solve the con-
sidered problems. In general, however, larger ratios can be allowed. This unit

E Appendix E 109

operation is denoted as Add.

IV) Mixer
In this case, the open stream chosen at level 1 is mixed with another open stream,
which will be specified at level 3a. Therefore, the specification is a discrete decision.
This unit operation is denoted as M.

V) Recycle stream
In this case, the open stream chosen at level 1 is recycled back. Similarly to
’Mixer’, the (discrete) destination is specified at level 3a. This unit operation is
denoted as Rec.

EI.1.2 Cost Functions

NPV

The NPV is calculated similarly as in Appendix DI.1:

NPV = −∑
u∈U

Iu + 10a(−∑
u∈U

Cop,u +∑
o∈O

co). (E3)

U is the set of all unit operations used in the process. For every unit operation u ∈ U , Iu

describes the total investment costs and Cop,u the annual operating costs, respectively.
For every stream o ∈ O, which leaves the process, co describes the operational yearly
cash flow. Herein, O is the set of all streams which leave the process.

The investment costs are scaled depending on the feed mass flowrate of the unit opera-
tions according to the power rule [115]:

Iu = I0,u ⋅ (
ṁu

ṁ0,u
)

0.6
. (E4)

The base values for the investment costs of the unit operations are taken from [106] (for
a mass flowrate ṁ0 = 25000kg

h). All parameters and prices for the cost function NPV
are provided within Table E2.

The operating costs comprise only steam costs for distillation columns and costs for
added solvents. Steam costs are calculated as follows:

Cop, distillation column = psteam ⋅
Q̇Reboiler

∆h
(m)
water,v

⋅ 8000h
a . (E5)

110 E Appendix E

Table E2: Parameters for the cost function NPV. The base values for the investment
costs of the unit operations are taken from [106] (for a mass flowrate ṁ0 =

25000kg
h). I0,D refers to the base value for the distillation column. I0,Dec refers

to the base value of the decanter. Investment costs for all unit operations
that are not listed are neglected. The prices for steam and components are
chosen similarly as in Appendix DI.1.

I0,D / kAC I0,Dec / kAC psteam / AC/kg pfeed component / AC/kg psolvent / AC/kg
1000 200 0.04 0.5 0.05

Therein, ∆h
(m)
water,v is the enthalpy of evaporation of water. The reboiler duty Q̇Reboiler of

a distillation column is estimated from the simple assumption that the distillate has to
be evaporated twice:

Q̇Reboiler = 2 ⋅∑
i

ṁi,distillate ⋅∆h
(m)
i,v . (E6)

Therein, ṁi,distillate and ∆h
(m)
i,v are the distillate’s mass flowrate and enthalpy of evapora-

tion of component i. For an arbitrary component i, ∆h
(m)
i,v is estimated, by calculating

the energy, which is required to heat component i at ambient conditions (298.15 K,
1 bar), in liquid form, to its boiling point and adding the heat of evaporation. Heat
capacities were taken from [118, 119]. The heat of evaporation was computed using
the Antoine equation (parameters provided within [117]) and the Clausius-Clapeyron
equation [120].

When a solvent is added, one has to pay for the amount of solvent:

Cop, add solvent = psolvent ⋅ ṁsolvent ⋅ 8000h
a . (E7)

Consider a stream o ∈ O, which leaves the process. A positive value for co is assigned
if it is (almost) a pure stream. Therefore, if the mass fraction for some component i is
greater than 0.99, we consider o to be pure and calculate co as:

co = pi ⋅ ṁo ⋅ 8000h
a . (E8)

Therein, pi is the price of the respective component and ṁo the mass flow rate of stream
o. If the defined specification (some component i with a mass fraction greater than 0.99)
is not fulfilled, co is set to 0. Note that the definition of co implies that one can add a
solvent for free if it is entirely separated after using it for separation purposes.

Generic Cost Function (GCF)

E Appendix E 111

GCF is a generic cost function particularly useful for conceptual flowsheet synthesis. It
assigns a score (without a monetary unit) to a given flowsheet according to the primary
goal of separating the feed stream into pure components. Secondary objectives are, for
example, to use as few unit operations as possible and to obtain the added solvent as
pure stream after usage. We use a different notation to prevent any ambiguity between
NPV and GCF.

GCF = −∑
u∈U

Cu −Cadded solvent +∑
o∈O

go. (E9)

U is the set of all unit operations used in the process. For every unit operation u ∈ U , Cu

describes the total costs. We assign constant costs for every unit operation. Contrary
to NPV, we omit scaling of unit costs with size and steam costs for distillation columns.
Cadded solvent refers to the costs for added solvents. For every stream o ∈ O, which leaves
the process, go describes the gain from that stream. Herein, O is the set of all streams
which leave the process.

When a solvent is added, one has to pay for the amount of solvent:

Cadded solvent = wsolvent ⋅ ṅtotal added solvent. (E10)

Similarly, as before, Cadded solvent can be neglected by separating all used solvent as pure
stream.

For a product stream o ∈ O, its gain go is set to a positive value if it is a pure stream.
The specification for a pure stream for GCF is a molar fraction greater than 0.99 for an
arbitrary component i. If component i is a solvent, go is calculated as:

go = wsolvent ⋅ ṁo. (E11)

If i is a feed component, we define:

go = wfeed component ⋅ ṁo. (E12)

All parameters for GCF are provided in Table E3.

EI.2 Generation of the Flowsheet Matrix

The flowsheet matrix is generated in a slightly modified way compared to the Syn-
GameZero approach. The concept is explained alongside Figure E1. Every stream

112 E Appendix E

Table E3: Parameters for GCF (as GCF has no unit, the parameters also have no
units).

CD CDec CAdd CM CRec wfeed component wsolvent

10 5 0.5 0.5 0.5 1000 100

corresponds to a row in the flowsheet matrix and is structured similarly: the vector vi

contains molar fractions, molar flowrate, mass flowrate, and the vector y. y contains
critical temperature, critical pressure, and the acentric factor for every component,
which is present in the flowsheet. Additionally, it contains the activity coefficients at
infinite dilution for each binary subsystem, which is present in the flowsheet. The vector
ui consists of an OHE for the connected unit, a variable for the continuous specification
of this unit, and a binary variable, which marks if this unit requires a continuous specifi-
cation. The vector di is an OHE, which describes the connectivity of the stream(s) that
leave the unit connected in row i. The vector ti consists of three binary variables, which
mark if stream i is a feed stream, if the flowsheet synthesis is terminated, and if this row
is used. Additionally, one could add the temperature and pressure of the streams in the
respective rows. But as those are chosen to be constant within the example systems,
this is omitted for now.

In this example, a flowsheet’s maximum number of units is set to 10. This means
that if the agent does not decide to terminate earlier, the flowsheet synthesis finishes
automatically after placement of 10 unit operations (this limits the size of the flowsheet
matrix automatically to Nmatrix = 21).

EI.3 Implementation and Training Procedure

EI.3.1 General Implementation

The implementation, used to generate all results shown in Section 4.4, is published via
GitHub https://github.com/grimmlab/drl4procsyn, where we refer to for
the details. The agent was trained with an AMD EPYC 7543 32-core processor and two
NVIDIA RTX A5000, each with 24GB of memory. Training from zero knowledge for
Ngames = 50000 episodes takes about one day.

E Appendix E 113

Figure E1: Construction of the flowsheet matrix F in the single-player framework.
The matrix contains a stream table and information on the connectivity of
the streams in the flowsheet.

EI.3.2 Artificial Neural Network Implementation

The neural network takes as input a state and outputs logits for all action hierarchy
levels and the predicted value simultaneously. It consists of two identically structured
MLP-Mixer [87] networks with separate weights (one for the policies, one for the value)
for representing the streams, followed by a total of four separate policy-heads for each
level and a single value-head.

The following describes the input and how it is passed through the network. In this
example, the latent space Rd is of dimension d = 128 everywhere. Let F ∈ RNmatrix×n be
a flowsheet matrix with rows w1, . . . , wNmatrix (by abuse of notation, let n be the length
of wi). We embed each stream w1, . . . , wNmatrix into Rd with two learnable affine maps
Hv, Hπ ∶Rn → Rd.

The two MLP-Mixer [87] networks MLP-Mixerv and MLP-Mixerπ have identical archi-
tectures but different network parameters. The affinely embedded sequence is passed to
the MLP-Mixer networks, transforming the sequence into latent streams:

(w̃v
i)i∈{1,...,Nmatrix} ∶=MLP-Mixerv ((Hv(wi))i∈{1,...,Nmatrix}) ∈ RNmatrix×d (E13)

and analogously

(w̃π
i)i∈{1,...,Nmatrix} ∶=MLP-Mixerπ ((Hπ(wi))i∈{1,...,Nmatrix}) ∈ RNmatrix×d. (E14)

Both MLP-Mixers consist of 5 mixer blocks whose design follows the original architecture
[87]. In each mixer block, we use layer normalization, a hidden dimension of 512 in the

114 E Appendix E

feature mixing MLP, and a hidden dimension of 2 ⋅Nmatrix in the token mixing MLP.

The latent streams are shared with the policy-heads and the value-head. Each head
combines the latent streams to a final vector and enriches it with information from pre-
vious hierarchy levels (and the current objective obtained if terminating the synthesis for
the value head). The resulting vector is passed to a final MLP predicting the probability
distribution over the hierarchical level (in the case of the policy head) or outputting a
scalar value estimation.

EI.3.3 Sampling of Problem Instances during Training

During training and evaluation, we set the molar flowrate of the feed stream for all
instances to a constant value of 1Mmol

h (this value is chosen similarly to the processes
examined in [103–106]). However, we note that the mass flowrate varies from instance
to instance. To generate a (random) problem instance, we sample the chemical system
from {1, 2, 3, 4} with a uniform distribution. To obtain the feed composition, we sample
the molar fraction of the first component x1 with a uniform distribution from (0, 1).
The molar fraction x2 of the second component reduces to x2 = 1 − x1.

EI.3.4 Training Procedure

We train the agent for Ngames = 50000 episodes, where 50 parallel actor processes generate
trajectories with frozen network parameters. After each episode, the actor sends the
trajectory of states, actions, final reward, and improved policies at all states to a replay
buffer process. We normalize and clip NPV and GCF by the profit obtained in a perfect
separation without any costs, such that the observed reward r lies in [0, 1] (where 1 is
an unattainable upper bound).

For each action hierarchy level, a separate network training process samples uniformly
random batches of states of size Nbatch = 128 with replacement from the replay buffer
and performs an optimizer step with respect to the value and policy on the given level.
It ignores a hierarchy level if the number of trajectories containing at least one action
from that level does not exceed a predefined threshold. This avoids overfitting for later
levels at the beginning of training. We experienced that a threshold of 50 is generally
enough. One optimizer step for all hierarchy levels (including skipped ones) constitutes
one training step. All 100 training steps, the updated network parameters are distributed
to the actor process to refresh their frozen network copies. Furthermore, after every 7500
steps, the performance of the current agent is evaluated on a pre-generated random but

E Appendix E 115

fixed validation set of 200 initial states. The best-performing agent on the validation
set is eventually used for testing after training. The training process uses the improved
policy π̂i to update the network’s policy πi using a Kullback-Leibler divergence [86] loss
KL(π̂i∣∣πi), and the value prediction v is updated via the squared error (v − r)2. The
strong advantage of using the improved policy π̂i as a training target for the network
via Kullback-Leibler divergence is that π̂i incorporates rich information from the search,
as opposed to classically training the network to predict the single action which the
agent takes in the environment. We leverage this effect and mask infeasible actions
everywhere they are encountered in the tree by setting their corresponding logit to
−∞ before computing π̂i. Through this, the network learns to reduce the predicted
probability for infeasible actions, better capturing the system’s dynamics. We use the
Adam optimizer [111], and losses and optimizer steps are computed batchwise. The
training process periodically disseminates the updated network parameters back to the
actor processes to use for further episodes.

Student theses 117

Student theses

The following student thesis was prepared under the supervision of the author of the
present doctoral thesis in the frame of his research:

• A. Guellouz: Implementation of a flowsheet simulator for a process for ETBE
synthesis. Bachelor thesis, Laboratory of Chemical Process Engineering (CTV),
Technical University of Munich (2021).

