
Technische Universität München
TUM School of Engineering and Design

Aspects of Algorithmic Information Theory
in Spatial Machine Learning

Gabriel Dax

Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Alessandro Aliakbargolkar

Prüfende der Dissertation:
1. Prof. Dr. rer. nat. Martin Werner
2. Prof. Dr.-Ing. Milos̆ Kristić

Die Dissertation wurde am 24.10.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Engineering and Design am 05.03.2024
angenommen.

Abstract

In spatial computing, data-driven systems are used to process a large amount
of data and to make an assumption about its context. The complexity of the
machine learning algorithms and the increasing size of the datasets leads to the
need to scale the computational hardware. While this enables time-efficient
processing or even the possibility of computing it, this is also connected with
economic consequences in terms of having higher operational costs. Addition-
ally, the real-time availability, accessibility of data, and reproducibility of ex-
periments is becoming a non-trivial challenge. The use of compression is able to
optimize memory and computational efficiency for a data-driven system with-
out the need to scale the hardware. Moreover, especially the compression of
algorithms is necessary for the deployment to edge computing hardware. While
the domain of compression is highly researched for every single element within
the data-driven system, limited research focuses on the domain of spatial com-
puting: the compression of all aspects within the system or the combination
of different technologies. Therefore, it is from importance to investigate the
role of compression in spatial computing. For this purpose, a data-driven sys-
tem and its main components in the context of machine learning are defined.
While the theoretical perspective provides an in-depth analysis of the com-
pression possibilities, the combination, and the impact on the entire system,
the application examples do give a foundation for using compression in spatial
computing. Furthermore, the results showed that compression could be used
to optimize the time and energy efficiency by sacrificing a comparatively small
amount of precision on the computed outcome. Moreover, this enables the de-
ployment of edge computing hardware which is able to compute in constrained
environments, for example onboard processing units in spacecrafts.

i

Zusammenfassung

Um große Datenmengen zu verarbeiten und Annahmen über deren Kontext
zu treffen, werden im Spatial Computing datengesteuerte Systeme eingesetzt.
Bedingt durch die Komplexität der Algorithmen des maschinellen Lernens und
die Größe der Datensätze wird die Skalierung der Rechenhardware notwendig.
Dadurch wird zwar eine (zeiteffiziente) Verarbeitung möglich, jedoch steigen
dadurch die operativen Kosten. Die Echtzeitverfügbarkeit, Zugänglichkeit
und Reproduzierbarkeit von Daten werden zu zusätzlichen komplexen Her-
ausforderungen. Durch den Einsatz von Kompression können die Speicher-
und Recheneffizienz von datengesteuerten Systemen optimiert werden, ohne
die Hardware zu skalieren. Außerdem ist die Komprimierung der Algorith-
men notwendig, um auf Edge-Hardware eingesetzt werden zu können. Die
Forschung widmet sich intensiv der Komprimierung für jedes einzelne Ele-
ment, jedoch nur begrenzt im Bezug zu Spatial Computing, insbesondere die
Komprimierung aller Aspekte innerhalb des Systems, oder der Kombination
verschiedener Technologien. Daher ist es wichtig die Rolle der Kompression
im Spatial Computing zu untersuchen. Im Kontext des maschinellen Lernens
wird zu diesem Zweck ein datengetriebenes System und seine Hauptkomponen-
ten definiert. Die theoretische Perspektive liefert eine eingehende Analyse der
Kompressionsmöglichkeiten, der Kombination und der Auswirkungen auf das
Gesamtsystem, während die Anwendungsbeispiele eine Grundlage für den Ein-
satz der Kompression im Spatial Computing geben. Des Weiteren zeigen die
Ergebnisse, dass die Komprimierung zur Optimierung der Zeit- und Energieef-
fizienz ohne große Verluste der Genauigkeit bei den berechneten Ergebnissen
genutzt werden kann. Zusätzlich wird dadurch der Einsatz von Edge-Hardware
ermöglicht, die in der Lage ist, in extremen Umgebungen, wie beispielsweise
im Weltraum, zu rechnen.

ii

Contents

1 Introduction 1
1.1 Research Questions . 4
1.2 Structure of the Thesis . 5

2 Fundamentals 7
2.1 Information Theory and Information Science 7

2.1.1 Communication Theory and Compression 7
2.1.2 Algorithmic Information Theory 16

2.2 Image Classification and Segmentation 22
2.2.1 Convolutional Neural Networks 24
2.2.2 Classification Architectures 29
2.2.3 Segmentation Architectures 36
2.2.4 Modern Model Compression 38

2.3 Set Similarities for Spatial Data . 41
2.3.1 Distance Metrics for Spatial Data 42
2.3.2 Bloom Filter and Distances 44
2.3.3 Space-Filling Curves . 46
2.3.4 Geohash . 48

2.4 Common Hardware Accelerators 48

3 Analysis of the Data-driven System’s Requirements 51
3.1 Hypotheses . 55
3.2 Compression Scheme . 55
3.3 Compression of the Input . 58

3.3.1 Lossless Compression . 58
3.3.2 Lossy Compression . 60
3.3.3 Quantization . 61
3.3.4 The Impact of Input Data Compression 62

3.4 Compression of the Algorithm . 64
3.4.1 The Impact of Algorithm Compression 67

iii

Contents

3.5 Compression of the Output . 68
3.5.1 The Impact of Output Compression 71

3.6 Computing with Compressed Representations 71
3.6.1 The Impact of Computing with Compressed Representations 73

3.7 The Consequences for the Data-driven System 74
3.7.1 The Role of Compression in Spatial Computing 77

4 Application Experiments and Results 79
4.1 Examples of Input Compression . 79

4.1.1 Genetic Algorithm for Transfer Learning 80
4.1.2 Image Compression for Communication Reduction 87

4.2 Examples of Algorithm Compression 111
4.2.1 Minimal Footprint AI for Space Application 112
4.2.2 Trajectory Similarity using Compression 126

4.3 Example of Output Compression 139
4.3.1 Information-Optimal Abstaining 139

5 Conclusion 155
5.1 Open Problems and Future Work 156

iv

Aknowledgement

First of all, my special thanks to Prof. Dr. Martin Werner, who did not only
give me a chance to do my doctorate but also supported me through all the
years and always had an open ear for me. Additionally, I would like to thank
my colleagues at the professorship for Big Geospatial Data and all over the
department Aerospace, both scientific and administrative. Primarily, Dr. Hao
Li was a significant support for me during the time we worked together.

Last but not least, I want to thank my family, friends, and all other loved ones
who have supported me through the years with their love and understanding.

v

1 Introduction

Artificial intelligence (AI) technologies have increased in importance and is
used in a rising number of domains, such as environmental research like chem-
istry. Furthermore, this technology permeates the workflows of the industry,
where processes are automated, supply chains optimized, or customer services
are done with chatbots. Moreover, during the last few years, the publicity
of AI has increased dramatically because AI reached society in the form of,
for example, chatbots that are able to provide (comparably accurate) domain
knowledge in a wide range of fields. Nevertheless, experts within this domain
said that there are also certain risks regarding the employ and the develop-
ment of especially artificial general intelligence that needs to be considered,
like other societal-scale risks1. Furthermore, next to these consequences that
may lay in the future, the rapid development of current state-of-the-art algo-
rithms faces the issue of requiring a large amount of hardware and economic
resources. Especially when training a deep learning model, large computa-
tional resources are required, for example, when training a machine learning
model that segments the content of images. The increasing complexity of the
designed architectures and sizes of the datasets led to a need to scale the
computational components, either vertically to horizontally. An economic as
well as ecological problem that occurs is that the operation of especially non-
consumer grade hardware can be an investment itself. For example, a recently
published chatbot that uses a large language model, that is globally applied
by a large number of queries each day, has estimated operational costs of a
low to medium three-digit million euro amount each month. All this, leads to
a lack of resources in the future.

The number of fields that apply machine learning to extract knowledge
from data is too large to be covered in general. Therefore it makes sense to
narrow the focus to a single research field, namely spatial computing. One
1Center For AI safety: Statement on AI Risk (https://www.safe.ai/statement-on-
ai-risk) [Accessed on 08.06.2023], The New York Times: What Exactly Are the
Dangers Posed by AI? (https://www.nytimes.com/2023/05/01/technology/ai-problems-
danger-chatgpt.html) [Accessed on 08.06.2023]

1

https://www.safe.ai/statement-on-ai-risk
https://www.safe.ai/statement-on-ai-risk
https://www.nytimes.com/2023/05/01/technology/ai-problems-danger-chatgpt.html
https://www.nytimes.com/2023/05/01/technology/ai-problems-danger-chatgpt.html

1 Introduction

representative of this community is the domain Earth observation, where ma-
chine learning algorithms are used to investigate the content of the data that
has been produced by remote devices. Furthermore, satellites are orbiting the
Earth and are constantly producing data that need to be transferred. Each
time a satellite crosses the visibility window of a base station, data can be
up- and downloaded over the communication channel, which is the bottleneck
in the system due to the limited bandwidth, that is provided as well as the
physical time delay of the transmission. The amount of data that is pro-
duced is massive– in 2018 the German Aerospace Center estimated to reach
180 petabytes of remote sensing data in the year 2023 [1]. This task of trans-
mitting the data to Earth and storing them is not only an economic problem
but also a challenge to keep the data permanently and eminently accessible.
In this particular problem, the utilization of compression could optimize the
workflow of this data-driven system. For example a satellite that monitors the
Earth’s surface to detect wildfires (where this particular event is very rare,
due to the large quantity of scenarios where a fire is unlikely, such as in winter
or non-forest areas). Therefore, the largest part of the data that is transmit-
ted does contain only a small portion of relevant information that is related.
The amount of data that is transmitted down to Earth could be limited by
deploying a machine learning model on board this satellite that determines
whether the lastly sensed scene is suspicious. If this is the case, the product is
selected to be transmitted to the ground. As a consequence, the deployment
of machine learning algorithms in space is able to reduce the communication
amount besides saves resources on Earth.

While this particular problem focuses on a single aspect of such a data-
driven system, the use of compression applied to each element is able to
reduce the computational effort that needs to be invested to reach a specific
target goal. Additionally, the consequences are that the required hardware–
and economic resources are minimized. Therefore the objective of this thesis
is to investigate the role of compression in spatial computing.

When considering the entire data-driven system’s processing pipeline in Earth
observation, there is limited to no research investigating the impact of com-
pression. While the training and inference of deep learning models on edge
computing hardware increase in interest [2], [3] and often require to compress
the model itself. A large number of research projects use the full complexity
of the data [4] including the model [5]. It is questionable which portion of in-

2

formation of each element in the dataset is meaningful and relevant to achieve
a particular program’s output. A data-driven system can be divided into its
main components, namely the input, the operation, and the output, where
each one represents an individual discipline that is not necessarily related to
Earth observation. Moreover, the impact of compression is well-researched for
each individual discipline.

The first part of a data-driven system is the input data itself, which can
have various shapes and structures. While trajectories can be employed to
predict the mobility type, another discipline is to investigate the content of
images. In previous work [6], our group provided an approach to reduce the
memory footprint of Twitter data by embedding them into a probabilistic data
structure. In contrast, the compression of especially computer vision images is
widely established, for example, is the file format JPEG commonly employed
for smartphone cameras. Furthermore, [7] uses this file format to compress
images that serve as a basis to train a machine learning model and investigate
the impact. On the other side, the authors of [8] applied quantization as
well as pruning on images before classification, where aggressive compression
rates have a significant impact on the prediction performance. While there are
projects that focus on the use of compressive file formats, only a portion do
consider the utilization of spatial data. A representative for the latter one is
the Sentinel-2 imagery, which is provided as a ZIP archive including meta data
and the bands as individual JPEG2000 files with 13 bands and a depth of 16
bits per channel [9]. A wide range of remote sensing datasets [10], [4] do store
the bands/scenes using TIFF files.

The second part of a data-driven system is the processing, which can be,
for example, a deep learning model where the weights are the parameters. The
whole complexity of such a model uses a 32-bit floating point number. Com-
pression is categorized into two main categories, quantization, and pruning.
The authors of [11] furnish an algorithm that falls in the first category and
is called Distance-Aware-Quantization, which addresses the weights as well as
the activation. In contrast, [12] states that the quantization error relates to
the accuracy after training. Therefore, a method is proposed that applies a
permutation of the weights to find optimal combinations. While those methods
reduce the complexity that is available to represent a single weight, pruning re-
moves parts of the model that are of less importance for the final classification
result. The authors of [13] provide a method that combines both strategies:
channel-wise pruning selects areas within filters that are then quantized.

3

1 Introduction

The third part of a data-driven system is the output that is generated by
the processing unit. While there are lots of different output types, such as a
generated text or the estimated class of an image, it needs to be determined
whether the outcome is trustworthy or not. The authors of [14] faced the
issue of having a large amount of noise within their label. Therefore they used
abstaining to overcome this issue and provide a model that is more robust
than before with the costs of having less training data.

Considering all the achievements and active research that is currently done in
this domain, spatial computing faces three major challenges: (1) compression
is traditionally applied only on a small number of components within the sys-
tem, leading to ineffective computing and unnecessary scaling of the hardware;
(2) the consideration of the full complexity of the given data can lead to the
problem of taking information into account that is not effectively supporting a
machine learning operation, some information even can have a negative impact
on the outcome itself; (3) the computation in a constrained environment such
as space has limitations in terms of energy consumption and hardware char-
acteristics. Therefore, it is required to scale the model instead of maximizing
the hardware aspects.

Based on these considerations, this thesis provides an investigation of how
compression can be used to optimize the performance of a data-driven system.
Therefore the potential is analyzed from its theoretical perspective to enable
efficient deep learning without the need for hardware scaling. The theoretic
foundations are then proven by real-world application examples to the essential
components. While a data-driven system consists of a large number of aspect
that can be compressed, this thesis focuses on the input, the algorithm, and
the output. Nevertheless, it needs to be mentioned that the compression of the
hardware, the program, and the inter-program communication itself is essential
to investigate.

1.1 Research Questions

To be able to investigate the role of compression in spatial computing
according to the challenges that have been stated before, it is necessary to
define a data-driven system’s pipeline, its components, and requirements.
Beforehand, this dissertation builds the following research questions:

4

1.2 Structure of the Thesis

RQ-1: What is the minimum of the complexity and informational content of
heterogeneous data required for a data-driven system?

RQ-2: What is the potential and limitation of (aggressive) algorithm com-
pression and randomized data structures in an edge computing scenario?

RQ-3: How can abstaining and model ensembles facilitate learning of a
data-driven system?

Next to those questions, some research aspects and directions are important to
mention but are not covered within this thesis because they cross the bound-
aries of this domain. While the first aspect is the compression of the program
itself, it would be interesting to see if the compression of inter-program com-
munication optimizes the entire system’s performance. Additionally, another
field is if the hardware components can be compressed to optimize the per-
formance characteristics of a data-driven system, such as the runtime and the
energy consumption, without losing precision on the outcome.

1.2 Structure of the Thesis

This thesis provides an in-depth investigation of the compression of data-driven
systems and the consequences that arise. More specifically, the compression
of the component of such a system, that are namely the input data, the op-
eration/algorithm, and the output, is analyzed in detail from its theoretic
perspective. This includes the basic mechanisms as well as the impact that is
caused by the more compact representation of the different elements. Further-
more, besides the theoretic investigation, the thesis provides some application
samples for the essential components.

The rest of the thesis is structured as follows: Chapter 2 provides the
theoretical fundamental that is required, which includes an introduction
to Shannon’s information theory, followed by the principles of algorithmic
information theory and the mechanisms for image classification. Additionally,
a short overview of the available hardware accelerators is given. A theoretical
analysis of the research questions is provided in Chapter 3. Furthermore, the
theoretic main principles and investigation that have been created in this part
are proven using application samples in Chapter 4. The thesis is finished by
the discussion in Chapter 5, which summarizes the main findings as well as

5

1 Introduction

the conclusions that can be stated. Figure 1.1 provides a conceptual overview
of the structure of the thesis.

Figure 1.1: Conceptual overview of the structure of the thesis.

6

2 Fundamentals

This chapter discusses the fundamental principles that are necessary for the
following theoretical investigation and practical applications; therefore, three
domains are covered within this part of the thesis. First is the information
theory, covering Shannon’s as well as Kolmogorov’s approach. The second
domain covers the advanced basics in machine learning with a focus on deep
learning especially using convolutional neural networks. Those methods are
the algorithms of interest for most experiments in the application section. The
third domain is the field of computing similarities between spatial data items,
such as trajectories. Additionally, the fundamental principles are followed by
a list of the most commonly used hardware accelerators.

2.1 Information Theory and Information

Science

Shannon’s information theory is a central component in modern computing
and is of importance since it has been investigated. Next to this approach,
another versions has been introduced, such as the algorithmic information
theory. Based on those, the compression of data can be described and used
for tasks such as maximizing the throughput of a channel or the computation
of similarity between two objects. Nevertheless, firstly we describe a classical
notation of information as developed by Shannon based on this analyses of
communication. This includes common compression methods for objects, such
as strings. Secondly, we describe a different approach to information content
following the algorithmic perspective of Kolmogorov.

2.1.1 Communication Theory and Compression

The information theory was first introduced in 1939 by Shannon in [15], ex-
tended in [16]. As [17] states, the theory answers significant problems of mod-
ern information technology. The first one is to determine a valid an precise

7

2 Fundamentals

definition of an compressed version of an given data element. The entropy is
able to provide a proper measure of information that is able to serve an theo-
retic bound for the compression. Second problem is the transition are within
communication systems, which is formulated as the capacity of a transition
channel. Those two questions and answers build the core concepts of Shan-
non’s information theory besides are a basis for intersections to other fields like
computer science or philosophy. For example, the theorem Ocamm’s razor has
another viewpoint to some information theory aspects. The theorem states
that if there are multiple hypotheses about the same theory, the preferred one
should be the simplest, which is the strategy with the least amount of param-
eters [18, p. 580]. Other than that, the algorithmic information theory (see
Section 2.1.2) builds the intersection to computer science. The theory’s core
is the Kolmogorov complexity which is defined as the shortest program that
outputs a defined binary string based on an input string [19].

2.1.1.1 Shannon’s Communication Model

The information theory is based on a communication model that sends a mes-
sage from one point to another. The medium called channel that transmits the
data has a specific amount of noise and therefore causes errors in the message.
The authors of [20] describe that an example of such a channel is an (anal-
ogous) telephone connection, where the message is encoded and decoded by
a digital modem. The transmission using an analog connection can increase
the nose in the receiver system. An equivalent example is an internet connec-
tion of a computer. The message is encoded utilizing a particular layer of the
OSI model and is then transmitted to another device. The physical layer is
nowadays a wireless connection which might add some inferences and nous to
the (send) message. Nevertheless, the goal is to minimize the error possibility
caused by the connection. Among others, this can be solved by changing the
physical characteristics of hardware components or by system design.

The communication model described in [15],[16] consists of several com-
ponents. The first one is the information source and represents a physical
device producing message [21]. As described above, the output can have
various forms and shapes, such as an analogous signal, like our voice. Another
example would be raster-shaped data such as a three-channel image taken
by a random digital camera. The second component is the sender/encoder
and according to [20], [17] it describes the part unit which transfers the
(digital) data item into a form (analogous) that is able to be transmitted

8

2.1 Information Theory and Information Science

Figure 2.1: Schematic representation of Shannon’s communication model,
where an information source creates a massage which is then en-
crypted and sent through a channel to its destination where the
message gets decoded. The channels have a specific error probabil-
ity caused by the noise source. This figure has been adapted from
[15].

over the channel. A form used by, e.g., computers is a binary representation,
which will be discussed in detail below. The third component is the channel,
which is the medium that transfers the signal from the sender/encoder to
the receiver/decoder [15]. An example would be, for example, a wireless or
wired connection. The channel has some amount of noise caused by external
influences. The fourth part is the decoder, which reverses the encoder, so the
received signal is translated into its source format and reaches the destination.
Figure 2.1 provides an schematic visualization of the described communication
system.

The entropy is a measure of information for Shannon’s communication sys-
tem, that transmits a discrete variable X with a given probability P (x) =

P (X = x). In addition the information can be defined as − log(1
p(x)

). Fur-
thermore, as stated above, the encoder translates, for example, a code word
into a binary string {0, 1}∗. In this particular case, each letter within the word
is mapped to a specific binary string. Lets say the character a ∈ S, where
S = {a, b, c, d, e, f, g, h}, is mapped to 0101, formally, f : S → {0, 1}∗. The
optimum length of the binary string depends on the number of elements in S
and the probability of how often an element occurs. The entropy can also be
interpreted as the optimum average count of bits needed to encode a random
element from set S. [21],[20]

Definition 2.1. As provided by [21], let the entropy H be the average amount
of information contained in a transmitted signal x, which is a discrete random

9

2 Fundamentals

variable.
H(x) =

∑
x∈X

p(x) log

(
1

p(x)

)
If the log with base e is used, the entropy produce to natural units (nat). While
the natural logarithm tends to be more often employed in mathematics, the
base two logarithm leads to the unit bits for the entropy. Consequently, the
latter measures how many bits are needed on average to encode a sequence of
elements from a defined set.

A random variable X can be considered as an element from a set S that
has a length of eight items, where the probability of these values are uniformly
distributed. Based on the Definition 2.1, the (binary) entropy of X is

H(X) =
∑
x∈X

1

8
log2

(
1

1/8

)
= 3 bits, (2.1)

which means that 3 bits are needed to encode an event from X. Similar
is the case where the outcome of X is unevenly distributed. The authors
of [17] state the example where the probabilities of the elements of X are
{1
2
, 1
4
, 1
8
, 1
16
, 1
64
, 1
64
, 1
64
, 1
64
}. This leads to an entropy of

H(X) =
X∑
i=1

p(xi) log2

(
1

p(xi)

)
= 2 bits, (2.2)

which means that, on average two bits are needed to encode a possible outcome
from X. Furthermore, one option to encode the elements of X would be 0,
1, 01, 10, 11, 001, 010, 011, which has an average description length of 2.125
where a uniformed distribution would need at least 3 bit.

Definition 2.2. As provided by [20], the conditional entropy H(X | Y) is the
average amount of information of X when Y is given. This is formally defined
as

H(X | Y) =
∑

x,y∈X,Y

p(x, y) log

(
1

p(x | y)

)
,

where the log can be any logarithm. As it is the case for Definition 2.1 the use
of a base two logarithm leads to the unit bit for the entropy.

Definition 2.3. As provided by [21] let I be the mutual information

I(X;Y) = H(X)−H(X | Y),

10

2.1 Information Theory and Information Science

where the x, y are two joint events. The I can be interpreted as the amount
of information of Y , which is contained in X.

Moreover, one needs to mention that the entropy and the conditional en-
tropy do consider only one single probability distribution. Compared to that,
[22] states that the Kullback-Leibler divergence considers multiple distribu-
tions. Defined as

DKL(p || q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
, (2.3)

where p, q are two probability functions. Note that the Kullback-Leibler di-
vergence is not symmetrical, therefore DKL(p || q) ̸= DKL(q || p), except if
p = q.

Furthermore, in Shannon’s communication system the encoded message is
transmitted from a source to a destination over the channel. According to [17],
the capacity depends on the conditional entropy (see Definition 2.2) and the
mutual information (see Definition 2.3). The channel’s capacity considers the
input message X on the source and the message Y on the destination.

Definition 2.4. As provided by [17], [21], the data transition supremum is
known as the capacity C of a channel and is defined by

C = sup
p(X)

I(X;Y),

where X is the input message at the source and Y is the message received and
encoded by the receiving destination. Furthermore, the supremum is over all
possibilities of p(x).

2.1.1.2 Shannon-Fano Code

Shannon created the proposed information theory, more specifically, the defini-
tion of the communication system as the basis of digital communication, which
heavily influenced the development of digital computers. The data compres-
sion part of Shannon’s is the main interest of this work. With the definition of
entropy, H(X) can be interpreted as the average code length needed to encode
an element from X. With the definition of entropy, H(X) provides us a 1-bit
range for the average length of the best code that encodes an element from X.
While this is a Shannon-defined theoretical approach in [15], Fano proposed

11

2 Fundamentals

Table 2.1: An example of a Shannon-Fano code using a given probability for
each element.

Element No. Probability Shannon-Fano Code
1 1/2 0
2 1/4 10
3 1/8 110
4 1/16 111
5 1/64 11100
6 1/64 11101
7 1/64 11110
8 1/64 11111

from [23] an implementation of the theoretical approach, which is nowadays
known as Shannon-Fano encoding.

The coding encrypts an element from a random variable with n possible
outcomes {x1, x2, ..., xn} with the related probabilities {p1, p2, ...pn}, where
each outcome is encoded into a binary sequence {0, 1}∗. Moreover, according
to [17], the expected length L of the code word is H(X) ≤ L ≤ H(X) +

1. Considering the previous definition of variable X with its probabilities
{1
2
, 1
4
, 1
8
, 1
16
, 1
64
, 1
64
, 1
64
, 1
64
} (sorted in descending order) produce H(X) = 2 bit.

The set of probabilities is split into two parts such that the sum of probabilities
is approximately the same, and each side is signed to a single-digit binary
number. When one has only a single element, it is not further split. This
generates the code represented in Table 2.1.

2.1.1.3 Huffman Code

Another method to encode words is the Huffman code introduced by [24], that
tries to assign shorter code words to outcomes of a random variable X, which
has a higher probability of occurring, and longer code words to other outcomes.
While the idea and motivation are similar to the Shannon-Fano code, this
encoding method constructs the code word backward by constructing a tree.

According to [20], two steps are required to construct the Huffman tree. The
first step is to combine the two symbols with the smallest sum of probabilities –
those will have a code word with the same length. The second step is to create
a sub-tree by combining those elements and repeating the process. In this way,
a tree is constructed step-by-step. Let us take again the example from above
where a random variable X has the possible outcomes {A,B,C,D,E, F,G,H}

12

2.1 Information Theory and Information Science

Figure 2.2: The Huffman code generates a binary tree by recursively combining
the two elements with the lowest probability and the edges of the
tree representing either zero or one. The code word is then the
combination of all edges to the target.

with the related probabilities {1
2
, 1
4
, 1
8
, 1
16
, 1
64
, 1
64
, 1
64
, 1
64
} leading to H(X) = 2bit.

While the tree used to create the Huffman code is visualized in Figure 2.2,
Table 2.2 shows the resulting code-words.

2.1.1.4 Quantization of Numbers

The communication channel between components can have various forms where
one example would be the transfer between devices that are not directly con-
nected. Another form of channels are those that are within a single device,

Table 2.2: example of a Huffman code using a given probability for each ele-
ment.

Element Probability Huffman Code
A 1/2 0
B 1/4 10
C 1/8 110
D 1/16 1110
E 1/64 11100
F 1/64 11101
G 1/64 11110
H 1/64 11111

13

2 Fundamentals

such as a bus between the central processing unit (CPU) and the graphical
processing unit (GPU). Especially when working on use cases that are either
time-critical or have constraints related to power consumption, a limiting fac-
tor is usually the capacity of the channel. As a consequence there is a need to
reduce (or compress) the recitation of numerical computation. Quantization
of numbers enables the possibility to reduce the numerical space. Moreover,
another application is used in the electrical engineering field, where an analo-
gous signal is converted into a digital one. Both types of quantization – among
other applications and definitions in different domains – have in common that
a continuous input is transferred to a discrete output. Overall, this method
comes with the downside of being a lossy compression method. For instance,
when processing a continuous analog signal to a digital one, there is always
an error rate caused by factors such as the sampling rate, resulting in losing
information between the taken samples. A similar problem occurs when reduc-
ing the numerical precision, such as when converting an actual number into a
natural number, f : A ∈ Rn → A ∈ Nn, a rounding error occurs. According to
[25], another problem is the possible presence of underfitting and overfitting.
While the first one represents, for example, a division by zero, leading to errors
in some programming languages. Therefore it is preferred to have a division
by a small number is preferred, even if it causes some rounding errors. Overfit-
ting, on the other hand, would be the division with infinite or a buffer overflow.
Therefore it is necessary to consider the size of the data for all computational
problems.

As mentioned above, the analog-digital-converter is able to transfer a con-
tinuous signal, for example, X = sin(x), where x ∈ R, into a discrete form.
However, a digital device is not able to process this signal, therefore, it gets
sampled using a specific rate, for instance, with 50 Hz. This results in a stream
with 50 values per second. Figure 2.3 shows this process, where the blue line
represents the continuous signal and red markers the sampled points and how
long the value is valid. The principle of reducing the precision of numerical
computation works similarly to the analog-digital converter. An example is
the gradient descent algorithm, which represents the central element of the
training phase in deep learning. Figure 2.4 visualizes the structure of a signed
integer with 32-bit and a floating point number (FP) IEEE 754 [26], one can
see the latter one has a reserved area for the digits. When transferring this
number (18.234) to an integer, everything behind the comma gets cut off,
which is caused by the missing space for the fractional part.

14

2.1 Information Theory and Information Science

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

am
pl

itu
de

(V
)

Figure 2.3: Quantization is a process where the values of a continuous, discrete
variable are converted to discrete values. The blue line represents
an analogous continuous input signal and gets sampled with a spe-
cific rate (purple, dash-dotted line). The new sampled digital dis-
crete signal is represented with the solid red line.

Figure 2.4: One numerical type is a floating-point number (FP) using the norm
IEEE 754 [26]. The displayed single precision has a total size of 32
bit, where 1 bit is reserved for the sign, 8 bit for the exponent, and
23 for its mantissa. The bits in the array build the number 18.234.
In contrast to this, the bottom numerical type represents a signed
integer number with a size of 32 bit, including a reserved bit for
the sign. This data type is not able to hold a floating-point value.
Therefore, the set bits sum up to the value of 18.

15

2 Fundamentals

2.1.2 Algorithmic Information Theory

The last section was about the measurement of the absolute information con-
tent of objects like strings with the use of Shennon’s information theory. An
alternative to this model is the algorithmic information theory and its funda-
mental principle, the Kolmogorov complexity, first introduced by [27]. This
complexity enables the possibility of creating a universal distance metric that
measures the distance between two objects and is not computably caused by
its universality [28]. Moreover, as described in [19] an approximation can be
utilized for content-based clustering.

The following provides an overview of the theory of Kolmogorov complex-
ity and the resulting universal metric called Normalized Information Dis-
tance (NID). Additionally, the Normalized Compression Distance (NCD) is
discussed, which is able to approximate the universal metric.

While this summarizes the most essential characteristics of the algorithmic
information distance, [29] is a comprehensive and detailed literature.

2.1.2.1 Kolmogorov Complexity

A central part of the Algorithmic Information Theory is the Kolmogorov com-
plexity, but before going into detail, it is necessary to set up an environment
and its formalities. While the cardinality of an object X is notated as |X|,
the following considers only objects which are binary strings x ∈ {0, 1}∗. Ac-
cording to [28], [30], it is essential that a set S of binary strings is a prefix set,
which has the property that it satisfies the Kraft inequality (see Theorem 2.1).
The length of an binary string is defined as ℓ(x), and ε describes the empty
string.

Theorem 2.1. As provided by [28], [30], a set S of binary strings S = {x ∈
{0, 1}∗} is a prefix set and satisfies the Kraft inequality

∑
x∈S

2−ℓ(x,y) ≤ 1,

where ℓ denotes the length of a binary string and y ∈ {0, 1}∗.

Additionally, [31] describes that a function ϕ : {0, 1}∗ → {0, 1}∗ is partially
recursive and is able to print a string x with its description p, formally notated
as ϕ(p) = x. Furthermore, the function uses descriptive language like C, C++,
or Java. Therefore, the complexity C of x is defined as the shortest version of

16

2.1 Information Theory and Information Science

p, with ϕ. Additionally, a more generalized version can be described with the
utilization of another input string y, so that the function is ϕ(y, p) = x.

Theorem 2.2. As provided by [28], [31], the conditional complexity C, with
respect to a partial recursive function ϕ : {0, 1}∗ → {0, 1}∗, of the binary string
x with an input string y is defined as

Cϕ(x | y) = min{ℓ(p) : ϕ(y, p) = x}.

The unconditional case is similar, with the change that the input string y is
replaced by an empty string ε: formally notated as Cϕ(x) = Cϕ(x | ε).

When analyzing the Definition 2.2, one can see that the complexity only
refers to ϕ. Due to the fact that the binary representation of the function dif-
fers between the languages, compilers, and it is even possible to cross-compile
languages, it is complicated to determine which one leads to the shortest bi-
nary representation [19], [32]. Therefore the ϕ0 is the universal function that
represents the shortest of all binary programs ϕ that fulfills the given task.
Consequently, the function ϕ0 satisfies Cϕ0(x | y) ≤ Cϕ(x | y), where c is a
constant. While in literature one usually refers to Cϕ0 when writing C, the
complexity of the concatenated strings C(xy) is not bounded by C(x) and
C(y). Additionally, not all partial recursive functions are taken into account.
In contrast, this ψ0, which is a partial recursive prefix function, considers all
of them (see Definition 2.5). [28]

Definition 2.5. As provided by [28], ∀x, y ∈ {0, 1}∗ let ψ0 : {0, 1}∗ → {0, 1}∗

the smallest partial recursive prefix function of all ψ, this satisfies

Cψ0(x | y) ≤ Cψ(x | y) + C,

where c is a constant. The unconditional case is similar, with the change
that the input string y is replaced by an empty string ε: formally notated as
Cψ0(x) = Cψ0(x | ε).

A problem of this definition is its uncomputability, consequently this is also
the case for the Kolmogorov complexity itself. The authors of [33] stated that
the problem is that the complexity depends on the function itself rather than
on the input. Consequently, the complexity of the function is C(C(x) | x) = c,
which is not computable. Moreover, according to [28], [34] one can write K
instead of Cψ0 , therefore Definition 2.5 can be rewritten to K(x | y) and

17

2 Fundamentals

K(x | ε). Furthermore, due to the reason that K = Cψ0 , the conditional
Kolmogorov complexity of x is defined as the length-shorted program that
prints a binary string x with a given input string y, where it is possible that
y = ε. The authors of [30] add to this that the amount of information from x

which is contained in y is defined as I(y : x) = K(x) − K(x | y∗), where y∗

represents the shortest binary program. Furthermore, the publication states
that due to the presents of a constant c > 0, the Kolmogorov complexity can
be rephrased to Eq. 2.4, causes again to the problematic I(x : y) = I(y : x)

that K is not computable.

K(x, y) = K(x) +K(y | x∗) = K(y) +K(x | y∗) (2.4)

The Equation 2.4 leads to the characteristics of Kolmogorov complexity that
the conditional complexity is K(x|y) = K(y | x)−K(x) and K(x, y) = K(xy),
where K(xy) is the length of the shortest program of the concatenation of x
and y, without knowing differing between the string objects. This has the
consequence that the conditional complexity is K(x | y) ≈ K(xy) − K(y).
[19], [34]

2.1.2.2 Normalized Information Distance

Before being able to define a universal distance metric with the use of the
Kolmogorov complexity, it is necessary to give a proper definition of a similarity
metric. The authors of [19] defined a set of axioms, represented in Definition 2.6
that needs to be satisfied.

Definition 2.6. As provided by [30], [19], let D a distance function that cal-
culates the similarity on a non-empty set Ω, such that D : Ω× Ω→ R+. The
resulting value is called the distance between x, y ∈ Ω. This is a metric on X

if ∀{x, y, z} ∈ X it satisfies the following equalities.

1. Positivity: D(x, y) = 0 if x = y

2. Symmetry: D(x, y) = D(y, x)

3. Triangle inequality: D(x, y) ≤ D(x, z) +D(y, z)

Positivity: The distance to an object itself is zero, therefore, D(x, y) = 0 of
D(x, y) = 0 if x and y are equal, and otherwise, D(x, y) > 0.
Symmetry: The order of the objects do not have an impact on the resulting
distance.

18

2.1 Information Theory and Information Science

Triangle inequality: The theorem states that the sum of distances from two
individual objects x, y to a third one z is always greater than the distance
between the objects x and y.

The Kolmogorov alone is not suitable for an information distance, among
others, because of its asymmetric properties. For example, in the case of
the conditional complexity of the string x and ε. Therefore, an universal
information distance E(x, y) : x → y is defined: as it is the case for K(x | y)
it represented the length of the shortest binary program that outputs a string
x with a given input y [30], [19]. Moreover, the information distance E for
an universal partial recursive function ψ has the characteristic Eψ0(x, y) ≤
Eψ(x, y) + Cψ, where Cψ is a constant depending only on ψ. [28]

Definition 2.7. As provided by [28], let E0 be a machine-independent infor-
mation distance concerning a universal partial recursive function ψ0 between
the objects x, y

E0(x, y) = min{l(p) : ψ0(p, x) = y and ψ0(p, y) = x}.

Definition 2.8. As provided by [19], let E(x, y) be the maximum information
distance between two objects x, y

E(x, y) = max{K(x | y), K(y | x)}.

As stated in [28], the machine-independent information distance E0 from
Definition 2.7 is equal to the maximum information distance E from Defini-
tion 2.8. Furthermore, [30] argues that an essential characteristic of a distance
function is that the function is admissible.

Theorem 2.3. As provided by [30], let D be a normalized information distance
such that D : Ω × Ω → [0, 1] which fulfills the characteristics of a metric and
is also symmetric for the constant c

|{y : D(x, y) ≤ e ≤ 1}| < 2eK(x)+1

Where D(x, y) satisfies the Kraft theorem

∑
y

2−D(x,y)K(x) ≤ 1.

19

2 Fundamentals

Finally, according to [19], [28], [30], the Normalized Information Distance is
built based on those definitions, which is based on the Kolmogorov complexity.
This metric is also not computable and is defined as

NID(x, y) =
max{K(x | y), K(x | y)}

max{K(x), K(y)}
, (2.5)

, which fulfills the metric equalities.

2.1.2.3 Normalized Compression Distance

Before going into detail about how to approximate the Normalized Information
Distance using compression, it is necessary to give a proper definition of a
normal compressor. The authors of [19] define a set of axioms, represented in
Definition 2.9 that are true for most real-world compressors and are essential
to ensure the key characteristics for the later introduced distance metric.

Definition 2.9. As provided by [19], a compressor C is considered as normal
if the following axioms are fulfilled.

1. Idempotency: C(xx) = C(x) and C({}) = 0

2. Monotonicity: C(x) ≤ C(xy)

3. Summetry: C(xy) = C(yx)

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz)

Idempotency: A normal compressor is able to provide idempotency to a re-
quired precision. In other words, the union of an object A with itself is the
object A ∩ A = A.
Monotonicity: A normal compressor needs to have monotonicity when con-
catenating objects.
Symmetry: The condition of symmetry of means that the order of the com-
pressed objects does not have an impact on the result.
Distributivity: While the Kolmogorov complexity satisfies the stronger dis-
tributivity C(xyz) + C(z) ≤ C(xz) + C(yz), with C = K, the real-world com-
pressors do fulfill only the weaker distributivity C(xy)+C(z) ≤ C(xz)+C(yz).

The Normalized Information Distance defines a universal metric, but the
disadvantage is its uncomputability caused by the Kolmogorov complexity.

20

2.1 Information Theory and Information Science

The Normalized Compression Distance approximates the K with the applica-
tion of normal compressor C and let C(x) be the length of the compressed
object x. Furthermore, as is the case at the conditional Kolmogorov com-
plexity K(x | y), the conditional compression of two objects C(x | y) de-
fines the information of x contained in y. Additionally, the triangle inequality
C(x | y) ≤ C(x | y) + C(z | y) is fulfilled for the conditional compressed
information. The conditional compression is

C(y | x) = C(xy)− C(x), (2.6)

where C(xy) is the length of the compressed concatinated objects x, y. Fur-
thermore, the NCD metric is built upon the NID as defined as

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
, (2.7)

where C(x) is the length of the binary compressed object x employing a normal
compressor such as GZIP or BZ2. The metrics range is 0 ≤ NCD(x, y) ≤ 1+ϵ,
where ϵ is an error rate that is caused by the used compressor. [19], [28], [30],
[34]

While the denominator of Equation 2.7 is equal to the one of Equation 2.5,
the nominator is more non-trivial to understand. As discussed beforehand,
the conditional Kolmogorov complexity is roughly K(x | y) ≈ K(xy)−K(y),
assuming K(x | y) ≈ K(xy). Therefore, the authors of [19] argue that the
nominator of the NID can be reformulated to max{K(xy) − K(y), K(xy) −
K(x)}, in addition to the authors states that this can be approximated with
normal compressors, formally denoted as

min{C(xy), C(yx)} −min{C(x), C(y)}, (2.8)

where min{C(xy), C(yx)} can be replaced by C(xy) caused by its symmetric
characteristics C(xy) ≈ C(yx) leading to the nominator of the NCD (see
Eq. 2.7).

The Normalized Compression Distance is an active research field focusing
on parameter-free feature-fee compression-based clustering in domains like bi-
ological genomes [19] and remote sensing [36]. For example, the authors of [35]
have tiled two remote sensing images into equally sized patches. A distance
matrix has been calculated where each position is the result of the NCD be-
tween two patches from the same position in each image. Each position within

21

2 Fundamentals

Figure 2.5: Visualization of the use of the Normalized Compression distance.
The first two do show remote sensing images before and after a
flood. While the third is the calculated distance matrix, the fourth
represents the threshold distance matrix indicating where a change
is or not (blue: no change, red: change). The figure has first been
published in [35].

this matrix shows the change between the selected images. A threshold can
then decide whether a change is present in a certain location or not. Figure 2.5
represents the results visually.

2.2 Image Classification and Segmentation

Nowadays, artificial intelligence increased in its importance and is applied in
more and more domains. While algorithms are applied to improve, for exam-
ple, supply-chain services, the aerospace industry have also a large interest in
methods that optimize costs, lifetime, and usage of data-producing devices.
Anyways, machine learning is a wide field and can be split into several subdo-
mains, such as deep learning which is the scope of this particular section. More
precisely, the domain of interest are network architectures that use convolu-
tional layers to make a decision about the content of e.g. an image. Therefore
the following gives an insight into the most important concepts, which is the
theory of their functionality, common architectures, and the compression of
them.

Before discussing convolutional neural networks in detail, it is important to
define the two problem families. Patch classification is the first, which is about

22

2.2 Image Classification and Segmentation

predicting the content of an image without determining the spatial location of
a certain object. An example would be that it is possible to say that an image
contains a house with a certain probability without the ability to predict a
(specific) location within the image. The task of patch classification is a cen-
tral task in modern architectures in deep learning. Additionally, the ability to
compute the summation of an object has a major role within the domain of
transfer learning, such as done on the ImageNet dataset , which is commonly
used to pre-train convolutional neural networks, even across the boundaries of
the computer vision field. The second category is pixel classification, which
is about computing the class affiliation of an individual pixel. An example
would be to predict whether an airplane can be as precise as possible located
within a remote sensing image. In this particular scenario, there are two types
of pixels, ship and no ship. Without considering the technology that is used
to classify the pixels, there are several complexity types, object detection, se-
mantic segmentation, and instance segmentation. While the first one draws
bounding boxes around areas where a certain object has been found, the se-
mantic version is only able to detect the class of e.g. a pixel. Compared to
object detection, the semantic strategy is not able to detect how many ob-
jects from one single type are contained within an single frame. This is the
main difference between semantic and instance segmentation, where the latter
is able to detect also the count of how often an object is included.

A problem that comes up when considering the class label for both cate-
gories, patch classification as well as pixel classification, is their form and struc-
ture. While humans label their classes in terms such as ship and no ship or for-
est and burnt area, the algorithms need to transfer those into numerical values
such that ship is represented by zero and no ship by one. The process of one-
hot-encoding solves this exact this issue, where a binary vector is created that
has a length of the number of different labels, where each position represents
a label. Formally described a class set C = {activefire, burntarea, smoke}
and an image is assigned to the class active fire, the transformation function
one-hot-encoding T converts the representation, T : Ci → (1, 0, 0), where i in
the class index which is in this particular case one. This converted label is the
basis for the training of, for instance, convolutional neural networks.

23

2 Fundamentals

2.2.1 Convolutional Neural Networks

The basics of feed-forward neural networks build the backbone of modern ar-
chitectures in deep learning, but when it comes to more complex data, there
is a need for specialized model types. A convolutional neural network (CNN)
is such a structure that focuses on data that have a grid structure, including
spatial dependencies, for local reasons. An example of data like that is an im-
age. It has two grid-structured dimensions and spatial dependencies between
the pixels. With the different color channels, the image is a three-dimensional
input to the CNN. Furthermore, this network type is not limited to images
as input data. Rather they can also be used in natural language processing,
sensors’ time series predictions, and much more. Moreover, images do have
a certain amount of translation invariance – an image put upside down still
shows the same image – and the CNN does create features that have a similar
pattern due to the reason that the features are extracted from local regions.
While earlier layers in the network create low-level features, like edged and
corners, later levels (closer to the top layers) do provide high-level features,
such as objects [25]. Furthermore, a characteristic of CNNs is that the net-
works include at least one convolutional layer. This layer uses a convolutional
operation which is a dot product between the grid-structured input data and
a matrix that holds some trainable weights. [37]

All concepts of the previous section, which describes the feed-forward neural
networks are still the same. Consequently, also the fundamental mechanisms
and activations are still the same. Even when the structure is slightly different,
weights are, in this context, matrix-shaped. As described in [37], next to the
convolutional layer, other common ones are pooling and the (ReLU) activation.

As has been the case for fast-forward neural networks, the convolutional
layer is a combination of several suboperations and steps. The input data of a
CNN is an image of the type h×w×d, where h is the height, w is the width of
the image, and d is the depth. Most commonly, colored images do have three
channels {red, green, blue}; therefore, the depth is d = 3, each corresponds to
a single color. Each convolutional layer has exactly the input shape hq×wq×dq,
where q indicates the layer id. While the input of the first layer is the source
image itself, the matrices are called feature maps or activation maps for layers
q > 1. As it is the case for fast-forward neural network, some parameters have
been introduced, namely the weights. In CNN, those are organized in a matrix
shape and are called filters or also kernels. The size of the kernel is defined

24

2.2 Image Classification and Segmentation

Figure 2.6: Representation of a convolutional layer and its functionality. The
input feature map has a size of 8 × 8 × 1. The kernel of the size
3× 3× 1 is moved over the feature map, and the cross-correlation
is calculated on each position. This leads to the output map with
a sit of 6× 6× 1.

as r × c × d, most commonly r = c and {3, 5}. One can see that the depth
of the filter always matches the layer’s feature map. Nevertheless, this kernel
is placed on each possible position of the image so the kernel fully overlaps.
Between each union of the kernel and feature map, the convolutional operation
is performed – defined as the cross-correlation – and written to a new feature
map. In this way, the single kernel extracts certain features of the input map.
Due to the fact that the kernel needs to fully overlap, there are fewer possible
positions than pixels in the input. So, when performing the convolution on the
q-layer, the feature map for the layer q + 1 has a height of hq+1 = hq − rq + 1

and a width of wq+1 = wq − cq + 1. Therefore one can clearly see that the size
shrinks with the layers. Figure 2.6 visualizes the structure of the convolutional
layer, where the down-sampling is visible on the second layer. Furthermore,
each layer can have several kernels, each one producing a feature map. So,
each of the kernels do create a spatially arranged feature. [38]

The authors of [39] provide an example of the convolutional operation with
a 3× 3 pixel image and a 2× 2 kernel and is as follows:

2 1 1

4 3 5

7 6 0

 ∗(1 −1
1 1

)
=

(
12 11

21 10

)
,

where ∗ represents the convolutional operation. Additionally, a step-by-step
representation is as follows:

25

2 Fundamentals

1 · 2− 1 · 1 + 2 · 4 + 1 · 3 = 12

1 · 1− 1 · 1 + 2 · 3 + 1 · 5 = 11

1 · 4− 1 · 3 + 2 · 7 + 1 · 6 = 21

1 · 3− 1 · 5 + 2 · 6 + 1 · 0 = 10.

In this example, one can see that the kernel is placed in all possible positions
where a complete union is possible in relation to its spatial pixel location.
Practically, the kernel can be seen as a window that is placed on the top
left corner of the feature map, and after computing the cross-correlation, it is
moved horizontally and vertically. Moreover, in the above example covering
the convolutional operation, the kernel uses a step size of one, so the window
gets shifted by one pixel. In order to either decrease the computational costs or
to down-sample the image, there is the need to skip positions [25]. To archive
that, the parameter stride controls the step size of the kernel. [39]

As stated in [39], an activation function Φ is applied after creating the
feature map and generating the activation map. More formally described for a
kernel ω with a fixed size, the matrix X(q), where q indicated the layer, indices
three dimensions, X(q)

i,j,k with 1 ≤ i ≤ hj, 1 ≤ j ≤ hj and 1 ≤ k ≤ d and
represents an output of a layer. A feature map for layer q is then calculated
by

X
(q)
i,j,k = Φ

(∑
s

∑
p

Xq+1
i+p,j+s,kω

(q)
psk + b(q)

)
, (2.9)

where s,p depict the size of the image. Furthermore, b represents the bias for
layer q, therefore the output of one layer is the next layer’s input. Further-
more, [25] proposes that convolutional neural networks do introduce a certain
level of equivariance, which means that if the input feature map changes, the
resulting output changes in the same way. More formally, functions f and g

are equivariant if f(g(x)) = g(f(x)).

Using the current situation, the feature map shrinks with the layer, to con-
trol this factor, we apply method padding.

Given this situation, the feature map would shrink from layer to layer.
Padding can be utilized to avoid the shrinking affect and keep the map size
constant. There are three common methods of padding, where the first one is
called valid and adds no padding to the image (the situation we are phasing

26

2.2 Image Classification and Segmentation

Figure 2.7: Padding avoids the shrinking of the feature map caused by the
convolutional operation. One option is to add zeros to each side
of the map such that the filter can cover every single pixel; this
method is called zero padding or also called same.

right now, Figure 2.6), which leads to the fact that the image is down-sampled.
The second method is called zero-padding (sometimes also same), which adds
enough zeros to the image boundaries such that the size stays the same. There-
fore, the output has the same h×w then the input. The third option results in
up-sampling the output, which is reached by adding more zeroes to the image
boundaries. Usually, the first two padding methods are more widely accepted.
[25]

Another layer type in the convolutional neural network is the pooling layer
[40]–[42], where the structure of the layer is similar to the convolutional one,
but applies a pooling operation. This function does select certainly local fea-
tures and promotes them employing their minima, average, or maxima. Ac-
cording to [25], the pooling adds a certain level of translation invariants to the
layer, which has the benefit of the focus being set on whether a feature is in the
activation map rather than its exact spatial location. Therefore, if a feature is
shifted by a small amount, the output on the activation map does not change.

The functionality of the pooling layer can be imagined somehow, like the
convolutional layer, with some significant differences. In [38] is described that
this layer always produces the same depth dq on the output than on the input.
Furthermore, a window with the size of Pq × Pq is slid over the input feature
map. Then the maximum value within the window is transferred to the new
output map; this process is called max-pooling. Equivalent to this, the average-
pooling takes the mean of the window, and the min-pooling takes the minimum.

27

2 Fundamentals

Figure 2.8: Visualization of the pooling operation. A kernel window with a
fixed size is moved over the feature map, and either the minimum,
average, or maximum value is extracted. In the figure, the window
is moved over the input map, and a max pooling is used with a
stride equal to one and a second time where the stride is equal to
two.

Same as before, the stride parameter controls the step size of the pooling kernel
and is able to downsample the feature map, usually, a default stride of two
with a kernel size of 2 × 2 . Therefore, the pooling layer does reduce the
spatial size of the feature map and is able to reduce it to a small constant
size. Figure 2.8 shows this process visually. Moreover, there are also some
other pooling techniques. For example, global average pooling does not use a
window, instead, this method reduces an entire channel of the input feature
map to a single value by taking its mean [43].

Furthermore, another layer is batch normalization (BN). As described in
[44], most commonly used after convolutional layers to speed up the training
phase by normalizing the input feature map. The BN is formally defined as

x′ = γ
x− µ√
σ2 + ε+ β

, (2.10)

where x is the input value and x′ is the normalized output. Furthermore, γ,
β are trainable parameters, µ represents the mean, σ is the variance, and ε is
a small number to prevent zero values. These values, including γ and β, do
not change during the inference phase. Therefore, it is possible to combine the
kernel with the BN layers, which is called BN folding.

28

2.2 Image Classification and Segmentation

In the case of a multi-layer CNN, the last layers consist of high-level
features such as objects. On top of the convolutional network are one or
more fully connected (FC) layers (also called dense layers), comparable to
the layers in a fast-neural network. The last FC layer does apply a particu-
lar activation, like softmax, which is selected to have a certain output type. [39]

According to [45], fine-tuning of a CNN is used on previously trained models
to recover the accuracy after compression. Moreover, another case is if the
network has been pre-trained on a different dataset. In this case, the network
does already have some trained weights, but they do not match the ideal
values for the focused dataset. Those values are optimized with fine-tuning to
maximize the accuracy rather than training the entire network from scratch.
While the training is relatively computationally expensive, the inference phase
can be performed on edge devices such as an FPGA – some models are to large
to even run the inference phase on edge devices.

All in all, the amount of parameters is controlled by a lot of aspects, next to
the bias, the kernel values are trained. Therefore, they have a large impact on
the total number. Additionally, the more filters are used, the more parameters
are involved in the training process [38].

2.2.2 Classification Architectures

Convolutional neural networks were introduced in the late 80s, and since then,
they have led to several breakthroughs [44], [46], [47], in the domain of com-
puter vision. Among other reasons, the popularity of those networks is caused
by the types of features generated by the layers. While the first layers of
the network cover low-level features, such as boundaries and edges, layers lo-
cated toward the top of the network extract high-level features, like objects
[38]. Nevertheless, CNNs are able to solve computer vision tasks such as scene
classification [48] and segmentation [49].

The dataset ImageNet is one of the standards when it comes to developing
and training convolutional neural architectures. This dataset is part of the IL-
CVRC challenge [50], which was in 2012 with the architecture AlexNet. Since
then, the popularity of those types of networks has raised and deeper archi-
tectures have been published. One example is the neural network structure
VGG, created by [51], which outperformed AlexNet on ImageNet. While the
general structure is similar, VGG is deeper and also includes a larger quantity

29

2 Fundamentals

of parameters. Furthermore, the trend has been to stack layers and create
deeper neural architectures. However, the enhance amount of layers does not
necessarily lead to accurate and better-quality networks, instead, under some
conditions, it is even possible that the error rate can stagnate or even increase
over epochs without being overfitted. Optimizing the error rate in this situa-
tion is a non-trivial problem. Additionally, the raising count of layers towards
a large depth comes with the drawback that the number of hyperparameters
does expend too. This cause computationally expensive training processes.
Consequently, the smaller modes tend to be more efficient in terms of time
consumption. Furthermore, they are also more complex and deeper models
are non-trivial to deploy to end devices for instance an FPGAs. [52]

This leads to the current trend of implementing networks that do not simply
stack layers. However, nowadays, the model architectures are implemented,
which are large but have a technique to speed up the training process. Some
other networks do also focus on the ability to deploy to mobile devices. [53],
[48]

Nevertheless, the training of a CNN is a computationally expensive process.
Even when using non-consumer grade Hardware such as GPU-Servers or other
specialized accelerators, some training does require a large time investment.
Therefore, it is important to optimize the network architectures. [52]

Next to network compressive methods, such as pruning or quantization, a
method to optimize the training is by changing the design, for example, with
the employ of skip connections within the network, e.g. in the residual blocks
of ResNet or InceptionNet. While VGG is easy to implement and modify,
network architectures such as InceptionNet do come with the costs of being
more complex to implement. Some other network architectures are designed
to be deployed to mobile hardware, like a mobile phone or an FPGA [53].

The following is a selection of the most important network architectures
used in this work and gives an overview of their design. Additionally, adding
information to the networks will be given on the basis of training the dataset
ImageNet from the ILCVRC challenge [50].

VGG: According to [51], the architecture includes five convolutional blocks,
which have a kernel size of three, zero padding, and a stride of one. Each block
is separated by a max-pooling layer which has a stride of two. Each hidden
layer das also apply a ReLU activation. The Architecture is summarized in
Table 2.3.

30

2.2 Image Classification and Segmentation

While VGG with 16 layers (VGG16) reaches a top-1 accuracy of 71.3%

on ImageNet (ILCVRC challenge 2012), VGG with 19 layers (VGG19) does
reach a top-1 accuracy of 71.3%.

31

2 Fundamentals

Table 2.3: Summarization of the architecture on ImageNet of selected VGG
networks. The convolutional layer is noted as conv-<number
of filters>-<kernal size> and the dense layer is noted as dense-
<number of filters>. The table has been adapted from [51].

Block 16 layers 19 layers

Input (224× 224× 3)

Block 1
conv-64-3 conv-64-3
conv-64-3 conv-64-3

max pool

Block 2
conv-128-3 conv-128-3
conv-128-3 conv-128-3

max pool

Block 3

conv-256-3 conv-256-3
conv-256-3 conv-256-3
conv-256-3 conv-256-3

conv-256-3
max pool

Block 4

conv-512-3 conv-512-3
conv-512-3 conv-512-3
conv-512-3 conv-512-3

conv-512-3
max pool

Block 5

conv-512-3 conv-512-3
conv-512-3 conv-512-3
conv-512-3 conv-512-3

conv-512-3
max pool
dense-4096
dense-4096
dense-1000
softmax

#param. 138× 106 144× 106

32

2.2 Image Classification and Segmentation

Figure 2.9: Representation of the bottleneck building block used to build ResNet
with 50 and more layers. The convolutional layer is noted as conv-
<number of filters>-<kernal size>. The figure has been adapted
from [48].

ResNet: The convolutional neural network architecture ResNet, which is
short for residual network and has been introduced by [48]. As stated in this
publication, ResNet does use skip connections to help prevent overfitting and
optimize the information flow within the network. Nevertheless, the network
architecture is constructed using building blocks. For configurations with more
than 34 layers, the block-type bottleneck building block is used. This block con-
sists of three convolutional layers, where the last one has a four times larger
filter size than the previous layers. A skip connection does add a shortcut over
the full block. Furthermore, each convolutional layer does have a stride of one
by default and applies zero padding. They are additionally followed by batch
normalization and a ReLU activation. Figure 2.9 visualizes the configuration
of this block.

The architecture consists of four building blocks followed by some top layers.
Every block consists of a count of building blocks with the same configuration,
except the first one. While the following layers are defined as stated before, the
first building block does apply a strait of two. Additionally, another convolu-
tional layer, with the same configuration as the last layer in the building block,
is added to the skip connection. While there are several options for shortcut
connection, this one is supported by the large deep learning frameworks. A
selection of ResNet networks is summarized in Table 2.4. [48]

33

2 Fundamentals

Table 2.4: Summarization of the architecture on ImageNet of selected ResNet
networks. The convolutional layer is noted as conv-<number
of filters>-<kernal size> and the dense layer is noted as dense-
<number of filters>. Furthermore, the bottleneck building block
is stated as bottleneck-<number of filters>. The table has been
adapted from [48].

Block 50 layers 101 layers 152 layers

Input (224× 224× 3)
conv-64-7, stride 2
max pool, stride 2

Block 1 [bottleneck-64]× 3 [bottleneck-64]× 3 [bottleneck-64]× 3

Block 2 [bottleneck-128]× 4 [bottleneck-128]× 4 [bottleneck-128]× 8

Block 3 [bottleneck-256]× 6 [bottleneck-256]× 23 [bottleneck-256]× 36

Block 4 [bottleneck-512]× 3 [bottleneck-512]× 3 [bottleneck-512]× 3

average pool
dense-1000
softmax

#param. 26× 106 45× 106 60× 106

While ResNet with 50 layers (ResNet50) does reach a top-1 accuracy
of 74.9% on ImageNet (ILCVRC challenge 2012), ResNet with 101 layers
(ResNet101) does reach a top-1 accuracy of 76.4%, and lastly, ResNet with152
layers (ResNet152) does reach a top-1 accuracy of 76.6%.

Note that there does exist several versions [54], [46] of ResNet family, this
one is the first introduced architecture.

SqueezeNet: The neural network architecture SquezeNet focuses on model
compression. The more lightweight model is reached by changing the design
of the model architecture. The authors of [55] are given the example that with
SuqezeNet can create an AlexNet-like model with 50 times fewer parameters
than the original architecture. Additionally, the scope is to create models that
are compressed in terms of parameters. Among others, the advantages are that
the training is optimized, and the models are able to be deployed to mobile
hardware accelerators such as an FPGA.

While the work on [55] does also research on applying model quantization
to some SqueezeNet configurations, this section concentrates on the vanilla
version of the model architecture. Nevertheless, the authors do explain that

34

2.2 Image Classification and Segmentation

one problem is that the CNNs are often fed with three-channel images, and
subsequent layers do keep this dimension. Another problem of CNNs is the
dimension of the kernels. For example, the architecture VGG does apply filters
with a size of 3 × 3 at most layers, which is a computationally expensive
operation. All this maximizes the amount of parameters in neural networks.
Consequently, SqueezeNet has three strategies to reduce this quantity, the first
one is to replace all 3 × 3 kernel filters with a dimension of 1 × 1, the second
is the decrease the input channels to the filters, which is done by adding a
squeeze layer consisting of 1 × 1 convolutional filters. The third strategy is
to maximize the activation map with a late down-sampling in the network.
All strategies are applied with a so-called fire module. This block consists of a
squeezing part at the beginning, realized by 1×1 convolutional layers, followed
by an expansion part consisting of a mix of 1×1 and 3×3 convolutional layers.
The final architecture of the SqueezeNet can have several forms, the easiest is
to create an AlexNet or VGG similar architecture, and another option is to
apply skip connections between several fire modules. A SqueezeNet network
is summarized in Table 2.5.

35

2 Fundamentals

Table 2.5: Sample of the architecture SqueezeNet in its basic form based on
AlexNet. The convolutional layer is noted as conv-<number of
filters>-<kernal size> and the fire block is noted as fire-<number
of filters>. The table has been adapted from [55].
Block Basic SquezeNet # bits

Input (224× 224× 3)
Block 1 conv-96-7, stride 2 6
Block 2 max pool, stride 2
Block 3 fire-128 6
Block 4 fire-128 6
Block 5 fire-256 6
Block 6 max pool, stride 2
Block 7 fire-156 6
Block 8 fire-348 6
Block 9 fire-348 6
Block 10 fire-512 6
Block 11 max pool, stride 2
Block 12 fire-512 6
Block 13 conv-1000-1, stride 1 6

average pool

#param. (unpruned) 1.248× 106

#param. (pruned) 421× 103

Compared to AlexNet, which archives a top-1 accuracy of 56% on the Im-
ageNet dataset from the 2012 ILSVRC challenge, this version of SquashNet,
which does not apply pruning or quantization, reaches a top-1 accuracy of
57.2% with five times fewer parameters. When applying other compression
methods to the networks, even dramatically fewer parameters do archive the
same accuracy. [55]

2.2.3 Segmentation Architectures

As mentioned previously, image segmentation is the one of two main category
when it comes to classifying the content of an image. In summary, in this
category, each pixel is classified, rather than before, where a class is assigned
to an entire image. While there are multiple types of pixel classification, see
above, the scope is set on object detection and semantic segmentation. An

36

2.2 Image Classification and Segmentation

Figure 2.10: Representation of the YOLO architecture. The figure has been
first published in [56].

example could be a remote sensing scene, visualizing a forest that needs to
be segmented to detect actively burning wildfires and their affected area. The
main principle follows the same strategy and techniques as described before.

Classical, patch-classifying CNNs have a set of dense layers on top to be
able to compute a vector that indicates the class of the image. The neural
networks architecture YOLO introduced by [56] removes those layers to be
able to compute the bounding boxes of certain trained objects. The top dense
layers flatten the feature map that is generated by its last convolutional layer
to a vector, which is then minimized to a target length which is the number of
classes. When removing those layers, one can compute the location and size of
the bounding boxes on the basis of the last feature map. Figure 2.10 visualizes
the YOLO network architecture.

A commonly state-of-the-art architecture for semantic image segmentation
called U-Net has been introduced by [47]. Figure 2.11 visually represents an
example of such as model, where one can see that the networks consist of two
main components. The first one is the left half is a CNN that scales that
image down to a dense representation. Instead of computing the class using
a prediction layer, the second component, the right side, scales the image up
again. Skip the connection between the different block levels and transmits
information to the up-scaling side to help the classification process and prevent
errors. The two components do not necessarily need to have the same structure,
such as it is done in [49].

Furthermore, the structure of the architecture itself can be freely designed
as it is done with patch classifying CNN. Before, the task of transfer learning
used pre-trained weights for the full network and only fine-tuned the top layers.

37

2 Fundamentals

Figure 2.11: Representation of the U-Net architecture that consists of an en-
coding side (left half) and a side that decodes the image again
(right half). The figure has been first published in [47].

It is non-trivial to use pre-trained weights. Anyways, the encoding left part
of the architecture can be chosen to have, for example, a MobileNet structure,
which opens the possibility to use the weights from ImageNet for this side
of the network. In this case, the fine-tuning needs to compute the optimal
parameter set for the decoding side of the U-Net architecture.

2.2.4 Modern Model Compression

Model quantization aims to reduce the size of the model and the computational
complexity of neural networks. While prunin removes information that does
not significantly contribute to the classification result, quantization reduces
the precision of mostly weights and activation.

The state-of-the-art in the field of quantization includes a variety of meth-
ods and schemes. One is channel-wise quantization. The algorithm proposed
in [57] is such an algorithm is called Distribution-Aware-Quantization, which
aims to quantize the quantization parameters of the networks. Additionally,
the algorithm considers the distinct distribution within each channel of an im-
age. Compared to that, [11] addresses both weights and activation in their
algorithm, called Distance-Aware-Quantization, which handles the problem of
the undifferentiability of rounding functions leading to the problem of having
gradient mismatch. To overcome the mismatch and be able to train the model,

38

2.2 Image Classification and Segmentation

the introduced algorithm consists of a distance-aware soft rounding function
and a control parameter. Furthermore, [12] states that the quantization er-
ror correlates with the accuracy after fine-tuning the model. Because of this
reason, this publication proposes a method that uses the functional charac-
teristics of a neural network by permuting the weights to find combinations
that are more optimal to quantize. Additionally, a final k-means algorithm
can minimize the error caused by the previous steps.

Other publications do focus more on the optimization of training strategies
to be aware of the quantization. For example, the scheme called Quantization-
aware-training introduced in [58] focuses on exactly this problem. The authors
of this publication state that integer arithmetic can be considered as being
more efficient than floating-point operations. Those operations do come with
the drawback of losing precision, therefore, an loss of accuracy can be expected.
Furthermore, the publication proposes a training method that keeps track of
the quantization and provides a trade-off between accuracy and performance
during inference. Another method is introduced by [59] which is called Once
Quantization-aware training (OQAT) and focuses on the stability of the net-
work’s accuracy, especially on lower bit rates. While those training methods
only consider one single precision type within the neural network, the authors
[60] proposed a scheme that is able to train multiple precisions within the same
network, such as 16FP precision at some layers including 32FP for others. The
experiments within the publication showed that the classification accuracy had
been slightly increased compared to a baseline model (ResNet50 with 32FP).
Nevertheless, one needs to mention that the problem with mixed precautions is
to find a balance between the number of bits available to represent weights, ac-
tivations and the efficiency of the quantization process itself [61]. Nevertheless,
the authors of [45] addressed this training method and created an approach
that uses row-wise mixed-Scheme quantization as well as multi-precision. The
authors state that this algorithm is able to preserve accuracy while having
mixed quantization schemes and multiple precision within a layer. Addition-
ally, the authors also tested their algorithm on an FPGA besides received a
speedup of 3.65× in inferencing ResNet18 on ImageNet compared to a 4-bit
fixed-point baseline.

When it comes to very low-precision quantization, one member of this family
is the method introduced in [62], which compresses the weights of 32FP neural
networks with a range of 3 bits {−1, 0, 1}. Experiments showed a minimal loss
of accuracy compared to baseline classifications with a 16 times smaller model

39

2 Fundamentals

besides half of the computational effort. Due to certain constraints, among
others, caused by hardware like FPGAs, there is much research focusing on
model quantization using low-precision such as [63] [64], but also on algorithms
that do focus on precision ranges that are logarithmic, like [65].

As it is the same for quantization, the state-of-the-art in the field of pruning
also includes a wide range of methods and schemes. One example is filter
pruning in convolutional neural networks. The authors of [66] propose such a
method that has a comparatively small contribution to the classification result.
Additionally, this publication states that the importance of filters to the allover
network can be calculated using the L1-norm of weights, where small values
are considered as having a small impact on the network. Other research does
also add complex search algorithms, for example. The authors of [67] created a
method that combines channel pruning with neural architecture search. This
leads to a technique that is able to search for a compressed version of the given
model which meets the given requirements.

Many quantization algorithms have been introduced with a focus on train-
ing, related problems and errors. Also, in pruning exists a wide range of re-
search projects which address the training phase. The authors of [68] propose
a method called dynamic sparse representation, which is about the limitation
of having a high computational cost to reach the point of having fewer pa-
rameters without a significant accuracy loss. The project dynamically adjusts
the sparsity of the neural network during the training phase, which is done by
adding a pruning relevant regularization term to the loss function. In conse-
quence, experiments show that significantly fewer parameters can be reached
compared to previously used pruning methods. Moreover, the proposed meth-
ods can be used to compress. Pre-trained CNNs without a significant accuracy
loss. Other examples that focus directly or indirectly on the training before,
during, or after pruning are [69] or [70].

Furthermore, it is also possible to combine pruning and quantization into
one method. The authors of [13] propose a method that first uses layered
channel pruning to select areas within the filters. The next step is to quantize
the selected layers. Next, all unquantized areas get re-trained. This process
is repeated until every value has been quantized. So, this approach uses the
pruning method as a selection method. Another one is the method proposed
by [71], which compresses the networks without a large decrease in accuracy.
Among other architecture types, these works compress convolutional neural
networks by combining pruning, trained quantization, and a Huffman encod-

40

2.3 Set Similarities for Spatial Data

ing.

2.3 Set Similarities for Spatial Data

Spatial data do come in various shapes as well as forms, and there are many
of them. For example, do the authors of [72] state that this type of data is the
basis for lots of different sciences, such as in the social domain or even in the
engineering world, for example, when working within the aerospace field. But
also in medicine does spatial aspects play an important role, as we saw in 2020
including the following years when the world needed to handle the pandemic
situation caused by COVID-19. One special data type is named geospatial, this
type is able to capture the geometry of an object with respect to its location
in an (Euclidean) space. Anyways, there are roughly two categories that this
type of data can be grouped into that is raster and vector shaped. The former
one does represent data that is matrix shaped, for instance, remote sensing
image that visualizes the surface of the Earth. Considering this example, one
characteristic is that each pixel covers a specific area on the ground (resolu-
tion, like 10m ×10m per pixel and the related coordinates in the metadata),
additionally, each pixel is mapped to a specific location on the Earth’s surface.
Furthermore, the shape of the matrix, as well as the complexity of the content,
can differ between the raster-creating device. For example, provides Sentinel-2
[9] 13 multispectral bands or Sentinel-1 [73] two different polarized radar ma-
trices. An example of raster data is shown in Figure 2.12a, in this case, the
remote sensing image is visualized where parts are affected by a wildfire. On
the other hand, vector data do represent the information in the form of shapes,
for example, it can be used to represent the governmental boundary of a coun-
try or a district. One common format to express vector data is called Well
Known Text (WKT), which covers, among others, three main types that are
point, line, and polygon. One representative is a trajectory that holds the data
of a path that has been tracked, such as the way from home to the working
place. An example of vector data is shown in Figure 2.12b, in this particular
case, the polygon defines the areas that are affected by the burnt area. Es-
pecially trajectories are generated by a large number of people every day by
using their phones for the navigation function for their map applications using
GPS.

All in all, there are three most important characteristics the geospatial
data have. The first one is volume, this defines the amount that is available,

41

2 Fundamentals

(a) Raster data (b) Vector data

Figure 2.12: In the geospatial domain, there are roughly two types of data.
The first is raster which is shaped in the form of a matrix, such as
an image. (a) shows an example and depicts and remote sentinel-2
RGB scene, where one can see at some locations and burnt areas.
Second is vector data, this type rather defines the shape is data,
like the border of a country. An example is visualized in (b),
where the polygon states the precise location of the burnt area
that is visible in the satellite image.

which is usually massive. For example, does the data center from the German
Aerospace Center (DLR) holds approximately more than 60 PB on satellite
data from nine missions [1]. The second characteristic is the velocity, which is
the amount of data that is generated within a certain time period. Considering
this number can be calculated, what would we need to be able to compute the
data in real time. The last in the variety that indicates the diversity of the
data, for example, spatial data can cover geo-referenced social media data, but
also trajectories from ships.

While this section focuses on vector data, this thesis covers both types.

2.3.1 Distance Metrics for Spatial Data

As explained above, geospatial data comes in different shapes, and its volume
is often very large. Therefore, it can be a challenge to calculate the similarity
between two objects. Because of this reason, some distance metrics need to
be mentioned in this work. At the same time, there are information-theoretic
approaches, such as the Normalized Compression Distance mentioned in Sec-
tion 2.1.2.3, that are especially important and commonly used for movement
data like trajectories. One is called Intersection over Union (IoU), alternatively
named Jaccard Index, which states the similarity of two objects by calculat-

42

2.3 Set Similarities for Spatial Data

(a) X ∪ Y (b) X ∩ Y

Figure 2.13: The intersection of two objects can be done by using logical oper-
ators. One example example is to combine two circles X and Y by
X ∪ Y , this combines the two areas whether they are overlapping
or not. On the other hand, if the union is calculated with X ∩ Y ,
only the intersection is taken.

ing the overlap, if the overlap is at its maximum, the objects are considered
equal. Anyways the IoU is also commonly used in object detection as well as
segmentation tasks.

Figure 2.13 visualizes the overlap between two objects. It can be seen
that there are two objects, A, B, while there are many forms the objects can
overlap, there is an inner as well as an outer intersection. The former one is
the overlapping area, and the outer one is the area of the two united objects.
Based on principle, the IoU is defined in Definition 2.10.

Definition 2.10. According to [43] let IoU be the Intersection over Union
(also known as the Jaccard index) that calculates the similarity between two
sets x and y is formally defined as

IoU(x, y) =
| x | ∩ | y |
| x ∪ y |

,

where a the rage is 0 ≤ IoU(x, y) ≤ 1. While zero states the maximal unsimi-
larity of the sets, one states that they are equal.

According to [74], the Jaccard Similarity Djaccard can be defined by subtract-
ing the IoU from one, consequently, the metric can be defined as

Djaccard(x, y) = 1− IoU(x, y), (2.11)

where x and y are two sets.
Another metric that is commonly used for geospatial data, especially for

trajectories, is the Frechét distance. In order to calculate the distance between

43

2 Fundamentals

two trajectories, more precisely, the largest distance between two segments.
More formally, the Frechét distance is defined as

Dfrechet(x, y) = inf
α,β

sub
t∈[0,1]

D(x(α(t)), y(β(t))), (2.12)

where α(t), β(t) : [0, 1]→ [0, 1] are two points on the trajectories x and y. [74]

2.3.2 Bloom Filter and Distances

This section is an excerpt of the text published in [P5].

Bloom filters are probabilistic data structures first provided by [75] and ex-
tended by [76]. The data itself is held within a pre-initialized binary array
where its fixed size can be freely chosen, additionally, the data is embedded
with hash functions. In more detail, the size m if a filter is commonly chosen
in the format of m = 2l, where l ∈ R+. Furthermore, the data is embed-
ded with k-pairwise hash functions that compute k positions within the filter
that are set to one. Practically said, the insertion of an element e into a
filter BF employing k pairwise hash functions h leads to a set of positions
within the array hi(e), i = 1...k, where these positions are set to one such that
BF[hi(e)] = 1, i = 1...k. While this describes the process of embedding an
element, it is necessary to check whether a data item is within a filter. This
is simply done by calculating the positions in the same way using the k hash
functions and testing if values on the positions are one, if not, the element has
not been embedded. An essential characteristic of Bloom filters is that there
is not possibility of receiving false negative alerts. Furthermore, the expected
error rate can be controlled by the length of the filter including the number
of hash functions that are used. Figure 2.14 represents a Bloom filter and the
embedding data process.

One important feature of the Bloom filters is called the fraction of zeros,
which indicates the percentage of zeros within the filter, defined in Defini-
tion 2.11.

Definition 2.11. According to [6], let FOZ be the fraction of zeros of a Bloom
filter allocated with a length m and k hash functions. This is formally defined
as

foz(k,m, n) =

(
1− k

m

)n
≈ e−kn/m,

44

2.3 Set Similarities for Spatial Data

Figure 2.14: The Bloom filter is a binary probabilistic data structure that in-
serts elements using hash functions. Considering two types of
features are generated from trajectories, where one is the segment
orientation encoded into letters and the geohash. For each ele-
ment, the n positions are calculated by n hash functions, which
are then set to one. Nevertheless, the reading of data is the re-
verse operation. If one wants to check if the element "ABC" is in
the filter, the positions, if all positions within the Bloom filter are
set to one, the element is part of the filter.

where n is the number of inserted elements.

In previous work, the group merged in [76] this idea of handling Bloom
filters with the Jaccard distance metric to be able to calculate the similarity
between two filters. Furthermore, they describe that it is needed to adapt
the IoU or Jaccard index to be able to take a meaningful union. Therefore
the amount of elements na that have been embedded into the bloom filter is
calculated using the FOZ based on a filter BFA as follows:

na ≈ −
log(FOZ(BFA))m

k
. (2.13)

Based on this, the authors said that the number of elements that are part of
two filters A and B, can be calculated by logically join them, formally defined
as

Eunion ≈ −
log(foz(BFA∨B))m

k
. (2.14)

Additionally, the authors state that by reformulating the denominator of the
IoU equation (see Definition 2.10) to | x ∪ y |=| A | + | B | − | x ∩ y |, this
leads to Eintersection = nA + nB − Eunion, the adapted Jaccard distance can be
described as follows:

45

2 Fundamentals

Ejaccard = 1− Eintersection

Eunion
. (2.15)

2.3.3 Space-Filling Curves

The motivation for the simplification or compression of high dimensional data
is often to reduce the computational effort, minimize the memory footprint, or
simply reduce the complexity. The space-filling curves do focus on exactly this
task, where this algorithm is used to visit every location within a space with
a given precision and a single non-overlapping line. This technique finds its
application in geographic information systems but also in image compression,
computer graphics, and much more. In geoscience, they are, for example, used
to create more efficient indexing systems for spatial data.

One well-known representative is the Hilbert curve. According to [77] the
algorithm divides the n-dimensional cube [0, 2p)n into 2p per per side. This
results in four locations if p = 1. A line is visiting then each location without
overlapping. In the next iteration, the space is divided into 2p subspaces, p is
increased, and the routine is applied again. Figure 2.15 shows an example of
this proven with three iterations p = 1, 2, 3. The first subfigure from the left
side shows the first iteration with p = 1 and the pattern for the visiting order.
While the middle subfigure has p = 2, the most right is the last iteration using
p = 3.

Another representative is the Z-curve, which works in principle the same as
Hilbert’s curve. An image is divided into a raster with 2p locations per side,
consequently, in the first iteration, an image gets split into four rectangles. In
contrast to the visiting order before, considering the first iteration the non-
overlapping line starts at the top left area and follows a Z-order. Furthermore,
each subarea is assigned to a binary increasing number, following the same
Z-order. The next iterations follow the same principle as before, the space is
further divided, and the algorithm is applied again. This process is shown in
Figure 2.16, where the most left subfigure visualizes the first iteration with
p = 1, furthermore, the right image depicts the second iteration p = 2. One
can see that the most right bottom field in case of p = 2 can be identified using
the binary code 1111. [78]

46

2.3 Set Similarities for Spatial Data

Figure 2.15: This visualizes the process of calculating three iterations of
Hilbert’s curve. The left image shows the first round with the
lowest precision, therefore, the area is divided into four subareas.
Each point within the pace is mapped to one of the positions.
The middle image depicts the second iteration, which tiles the
area into 4 × 4 areas, which provides for each inserted point a
smaller error than before. The right image shows the third it-
eration of this example and therefore provides the smallest error
for points within the space. This is because the mapping of the
source points is more precise by tiling the patch from iteration
one into 16 smaller areas. The figure has been first published in
[78].

Figure 2.16: This visualizes the process of calculating three iterations of the
Z-curve. The left image shows the first round with the lowest
precision, therefore, the area is divided into four subareas. Each
point within the pace is mapped to one of the positions. The
middle image depicts the second iteration, which tiles the area
into 4× 4 areas, which provides for each inserted point a smaller
error than before. The right image shows the third iteration of this
example and therefore provides the smallest error for points within
the space. This is because the mapping of the source points is
more precise by tiling the patch from iteration one into 16 smaller
areas. While the tiling is similar to Hilbert’s curve, each field
is assigned to a binary number, and the path of the numbering
follows a "Z". The figure has been first published in [78].

47

2 Fundamentals

2.3.4 Geohash

In addition to the local geometry features of orientation, we employ a global
geometry feature based on the Geohash string encoding of spatial location. The
Geohash is computed by uniformly splitting space into cells enumerated with
a discrete Z-curve. The index of each cell is encoded using a BASE32 encoding
to form a string. Thereby, longer strings contain more bits per coordinate and
thus refer to a finer grid resolution, as well as prefixes of a string constitute
supersets of the string [79]. It is worth noting that the Z-curve nature allows
to find the string of a neighbor with simple table lookups, a welcome property
for spatial exploration. Figure 2.17 represents a trajectory where the Geohash
area of the points is marked.

Figure 2.17: The Geohash represents a global grid box as a string. We assign
geohashes as the name of the cell a trajectory sample falls in.

2.4 Common Hardware Accelerators

The training of a deep learning model is a computationally expensive task
and time-consuming task, where the choice of used hardware accelerator has a
large influence on the training speed. One aspect which needs to be considered
nowadays is the power consumption of accelerators which has been increasing
in the last decades [52]. Especially when deploying those tasks to specialized
mobile hardware, such as an FPGA mounted into a satellite, it is important to
keep an eye on the power needs because it influences the lifetime, total costs,
efficiency, and much more.

To avoid going into detail about the design, usage, and benchmark of dif-
ferent hardware accelerators, this section focuses on the availability of systems
and their peculiarity when deploying deep learning models. More detailed in-
formation can be taken from [80], [81], [82], which focuses on edge devices,
such as FPGAs.

48

2.4 Common Hardware Accelerators

A deep neural network can be trained on different types of hardware ac-
celerators. The first one is consumer CPUs and GPUs, where training on the
latter option is preferred due to the better performance. Additionally, next
to the consumer versions, there are also data center solutions for instance a
GPU server with, e.g., two Nvidia A100 or even special deep learning server
solutions like an Nvidia DGX-1. While the throughput is higher on data center
solutions, so are the hardware costs. Those accelerators are natively supported
by the major deep learning framework such as PyTorch or TensorFlow. Next
to consumer as well as non-consumer versions of CPU/GPU systems, it is also
possible to deploy the training and inference to embedded devices.

Especially when deploying convolutional neural networks to FPGAs, it is
important to consider that only some layers are supported by the FPGA frame-
works. For example, when using a Xilinx ZCU102 board, some network ar-
chitectures cannot be deployed out of the box. This makes it necessary to
reimplement some models to make the needed changes based on the layers
which are supported by the framework. Furthermore, a quantization followed
by compiling the model to the hardware format is needed. [83]

49

3 Analysis of the Data-driven
System’s Requirements

The previous chapter introduced the fundamental technologies, methods, and
algorithms that are used or required to understand the following sections.
Compared to that, this chapter discusses the theoretical perspective of opti-
mizing a data-driven system such as a machine learning pipeline with the use
of compression. Note that parts of this chapter has been published in [P8]. In
the throughout of this work, the term compression does not only refer to an
algorithm like GZIP or BZ2, instead, it is a mechanism that reduces the size
of the system with respect to a certain scale. For example, to minimize the
number of floating-point operations in a deep learning network to archive a
higher throughput.

Machine learning methods and end-to-end processing pipelines that include
learning algorithms became a common part of spatial computing. Additionally,
data simplification techniques and image manipulation became are commonly
used. Moreover, the current research on the topic includes the deployment
of computer vision mechanisms in energy, resource, and space-constrained en-
vironments, such as on board of satellites in space. Because of the unique
constraints there are several problems that need to be solved, that cover espe-
cially the efficiency of the data-driven systems.

An example of a classical deployment is provided by Figure 3.1 and visu-
alizes the situation in remote sensing. A satellite is orbiting the Earth and
constantly creates data by sensing the surface. Each time a satellite is visible
from the ground station, the produced data can be transmitted. There are two
challenges in collecting data in space: the large amount of data compared to
the small capacity of the downlink and the limited bandwidth of the communi-
cation channel. Therefore there is a trade-off between being able to download
all created data and the number of ground stations. Furthermore, this leads
to a significant investment of resources. While this is a specific challenge for
a particular domain, the same type of problem in handling the amount of

51

3 Analysis of the Data-driven System’s Requirements

Figure 3.1: The transfer of data from a satellite to a ground station is one
representative of classical deployment in geoscience. A satellite is
constantly orbiting the Earth and producing data. The station
can create a downlink to transfer the data to the ground when the
satellite is in the viability window. Unfortunately, there are two
constraints, the limited speed and the time window.

data exists in the geoscience domain in manifold situations. Other examples
would be autonomous devices, such as cars, where the cameras and sensors
produces frequently a large amount of data. Nevertheless, to eliminate the
computational issue is to scale the system horizontally or vertically, or to solve
it by (software) design. Considering the remote sensing example again, one
possibility is to optimize the efficiency of the transmission channel by deciding
whether a scene is relevant (send) or not (drop). This means, a satellite with
the task of detecting wildfire would only transmit suspicious scenes that needs
to be checked. The consideration of only using relevant data leads then to more
efficient usage of the downlink. A more technical perspective to this situation
is depicted in Figure 3.2 showing two main components of Earth observation
systems, the satellite on the left and the data receiving ground station on the
right. One can see that the data is sent to an edge AI chip over a channel
with a large bandwidth, like an onboard bus, and the downlink is the system’s
bottleneck. Consequently, sending only relevant data over this challenge while
still analyzing all observations using onboard computing reduces the amount
of data that is transmitted over the communication channel.

To further illustrate the challenge, let us consider real-world satellite mis-
sions in orbit. The German aerospace centers stated in 2018 that they were
hosting 90 PB of Earth observation data and made the assumption that in
2030 the volume of 185 PB is exceeded [1]. Similar results are reached by
large-scale autonomous driving projects. From the technical point of view,

52

Figure 3.2: In remote sensing, there are two main components. One is the data-
receiving ground station, and the second is the satellites. One can
see that the communication within the satellite is larger than the
wireless connection to the ground. In order to increase the effi-
ciency of the system is to embed an ai chip into the satellite that
is connected to the data-producing component with a large band-
width. The onboard chip could decide whether a scene is relevant
for the defined use case. If the decision is negative, the image is
pruned and does not block important time on the downlink. As a
consequence, the communication is compressed and increases the
efficiency of the entire system.

one option of being even able to process such an amount of data is to scale the
systems hardware, for example, an Nvidia DGX SuperPOD or even to LRZ’s
SuperMUC-NG. Both options lead to high operational costs. While this is
an extreme case, it should visualize the importance of optimizing algorithmic
processes toward maximum efficiency without lowering the accuracy under a
certain level.

Those examples show that an onboard machine learning algorithm, for
example, in space missions can lead to more data-efficient communication.
While this is only one building block of a data-driven that has been considered,
compression can be applied to all components. This optimizes each individual
item and can lead to a maximization of the system’s efficiency in terms
of throughput, power consumption, and time needed for the computation.
Scaling the system’s hardware is still an option, but before it is needed to
scale the system’s performance by the algorithm’s design. Moreover, it is
also necessary to investigate the requirements and objectives for the future of
spatial data science.

Based on the aforementioned examples, we derive the requirements given
in Table 3.1 for a data driven system and derive hypotheses and from it.

53

3 Analysis of the Data-driven System’s Requirements

Table 3.1: Overview of the requirements for the future of spatial computing.
Identifier Requirement
Req-1 The data-driven system should process any incoming data

stream in real-time.
Req-2 The data-driven system’s power consumption should be min-

imized keeping the models accuracy degradation in a small
acceptable range.

Req-3 The amount of data transmitted over the downlink should be
minimized without degrading the performance on the obser-
vational task.

Important to reach them to be able to be prepared for the future in spatial
computing. Therefore is in needed to investigate the potential of compression.

Objectives: As mentioned above, how we treat data and the algorithms need
to be designed more efficiently, because the presented issues are only a selection
of scenarios where the computation of a large amount of data is non-trivial.
This work focuses on optimization by compressing the different building blocks.
Therefore the objective of this work can be summarized as follows:

To research the role of compression in spatial computing.

Furthermore, some questions arise when considering the above stated
objectives. First is which information quality is needed when a data-driven
system is designed, for example, when considering a satellite. The next
question is about the capacity of a communication channel, more explicit
would be the speed of the downlink between the satellite and the ground
station. In alignment with that, the question is whether the processing
pipelines of data-driven systems can be designed to be more energy efficient.
Furthermore, from a more theoretical perspective, how much information
is minimally needed to archive the same result can be asked. For instance,
how much information can be pruned, such as decreasing the resolution or
shrinking the bit depth.

The following section of the chapter states the hypotheses for the thesis and
discusses the role of compression from its theoretical side. While Section 3.2
introduces the data-driven system, the following Sections 3.3-3.6 discuss the
compression of every single aspect of the system. Finally, the consequences for
the data-driven system is discussed in Section 3.7.

54

3.1 Hypotheses

3.1 Hypotheses

The research questions that are stated in Section 1.1 do cover the compres-
sion of each element within a data-driven system. Due to the research that
has already been done in the field of compression (e.g.in computer vision), it
makes sense to concretize the questions to narrow the topic that is addressed.
Therefore the following hypotheses are based on the research questions and
underlying this dissertation.

H1: A complexity reduction of the input data and an adaptation of the in-
formation representation for the systems input can significantly reduce
the computational complexity with limited degradation in functionality.

H2: In Earth observation applications, an image compression with a compa-
rably high information loss has a relatively small negative impact on the
performance of the trained models.

H3: Deep learning on embedded hardware accelerators, is able to reduce the
amount of data that is transmitted over the communication channel and
therefore have an impact on the entire system’s needs, like energy con-
sumption or memory footprint.

H4: Compressing Deep Learning algorithms in the sense of reducing the
number of weights and the connectivity of neurons does significantly
reduce energy consumption and computational complexity with control-
lable amount of quality degradation.

H5: Data-driven systems can be prevented from having a large generalization
error by determining whether the computed outcome is trustworthy.

3.2 Compression Scheme

In this thesis, the topic of compression is formalized as depicted in Figure 3.3.
Data takes a path along a processing pipeline from input data over multiple
processing steps each connected with a communication channel. Note that
these processing steps can be deployed in different locations and thereby the
communication channel can be within a computing device, where it is compa-
rably fast, or over a slow network link. On a different axis, each processing
step is decomposed into an algorithm that acts on the data and a set of param-
eters that influence the behavior of the algorithm. Considering this figure, we

55

3 Analysis of the Data-driven System’s Requirements

Figure 3.3: Schematic overview of the components of a machine learning pro-
cessing pipeline consisting of multiple parts. The first is the input
data that is transported through the channel to the operations
where a specific task is performed, e.g., predicting the content of
a data item. It is necessary to investigate the options to compress
each individual aspect of the full processing chain. Only then is a
statement about the impact and consequences of compression on
the entire system feasible.

consider algorithm compression in the sense of compressing either the input,
the algorithm in terms of the number of operations, the parameters in terms of
their number and size, or the output of a processing step or across a pipeline.

As already mentioned, the input element represents the data that is on the
input without restricting it to a specific type. Therefore, it is irrelevant if the
data, for example, is matrix or vector shaped. The data on the input of the
data-driven system has an repercussion to the entire system – in average the
larger a single data item becomes, the more computational effort is needed
for the process. Furthermore, more data needs also larger resources within
the channel. Furthermore, it is questionable if the entire provided information
contains only highly relevant data. Rather the input includes features of high
higher and lower importance. Consequently, the compression or even pruning
of unimportant aspects leads to higher efficiency of the entire system due to
having only relevant data to process. A practical example would be that images
can be quantized to a lower dimensional space to highlight specific details.
The compression of data leads to a smaller number of bits that requires to be

56

3.2 Compression Scheme

loaded from the disk into the main memory. Additionally, some formats are
more efficient in their ability to be processed than others. Furthermore, this
influences the entire system, considering a convolution neural network that
trains data within batches where the data is too large to be held entirely in
main memory and therefore needs to be read periodically. It can be seen that
input compression has an effect on the entire system by holding out irrelevant
information and therefore decreasing the computational effort.

The operation which processes the data has two important components
which are coming hand in hand and need to be considered together at the same
time, namely the algorithm and its parameters. There is no restriction on the
algorithm type, even when the selected scenarios focus on machine learning
tasks. Nevertheless, the goal is to reduce, on the one hand, the number of
instruction calls that are needed, as well as the minimization of the algorithm’s
memory footprint. Considering a convolutional neural network, the weights of
the model refer to the parameters. The number of floating-point operations
have a direct impact on the performance similar to the number of iterations in a
loop. One way to compress the network and decrease its complexity is to reduce
the depth while still being able to keep the prediction accuracy in the required
performance range. Another option to decrease memory and computational
needs by changing the weights, for example, in the form of weight sharing or
model pruning. Furthermore, the compression of the operation effects the total
energy consumption of the system because there is a saving in time if memory
and instructions call.

The output can have various shapes and differs between the use cases. Gen-
erally, compressing the output can means to provide only data which is relevant
to its use case. For example, a satellite with the task of detecting wildfires does
not necessarily need to transmit data where no affected position is included.
Another example would be the transmission of satellite scenes from multispec-
tral satellites, which are entirely covered by clouds. The filtering of such results
would cause to a reduction only in outputs that are relevant for the following
process or entity. Consequently, output compression has an impact on the
follow-up resources, whether from computational nature or the hardware side.

Beyond compressing the different building blocks of the described data-
driven system, efficiency can be reached on different ways. One is to share the
gathered knowledge between the elements, an example would be a model that
takes constant measures and only communicates/generates an output if there
is a change. More concrete would be to have a satellite with a camera and

57

3 Analysis of the Data-driven System’s Requirements

an AI receiver onboard only transmitting images of detected images if they
are not sending an identification of other unusual behavior occurs. This would
lead in this specific scenario to only transmit data through the channel that is
relevant for the receiver.

3.3 Compression of the Input

Currently, most commonly, we tend to store data in full resolution. For exam-
ple, an image from Sentinel-2 has a storage need of approximately 800 MB,
additionally, the product itself contains a lot of overhead files – from the per-
spective of a computer vision task. With compression, the memory footprint
of a Sentinel-2 product can be reduced to a minimum. Furthermore, this is
not only true for images but also for a wide range of different data, such as
trajectories or texts. Another question is if the information is lost during
compression, this depends highly on the algorithm and parameters. When ap-
plying compression to any data Dx, the goal is to change the representation in
a way such that memory is saved. Therefore, a compressor C can be defined as
a map C : Dx → Dy, where Dy is the compressed version. There are two large
groups of compression algorithms. When x = y after decoding, the details
are fully recovered, this is called lossless compression. On the other hand, if
x ≈ y includes x ̸= y, some aspects cannot be restored, this is called lossy
compression. Typically, some error measure (e.g., bit error rate) needs to be
below a certain limit. In the following common input compression methods
are presented.

3.3.1 Lossless Compression

The goal of lossless compression is to encode the data in a way that the initial
state can be completely restored. A compression algorithm C if it has an
inverse algorithm D such that D(C(x)) = x which holds for all valid inputs.
This includes for example the case that many algorithms are defined only for
certain inputs (e.g., images) where they are lossless, but others are defined for
all data (ZIP) where they are lossless. Figure 3.4 depicts a concrete example of
lossless compression, the left image is the source showing black (255) pixels on
the top half and gray (128) pixels on the bottom half. This matrix-shaped data
is then coded employing e.g. PNG with a compression level of nine (middle
matrix). When reading the data, an algorithm needs to decode the image from

58

3.3 Compression of the Input

Figure 3.4: When using a lossless compressor, the input image is compressed
with, for example, PNG with a compression level of 9 – the max-
imum for this format – and can be uncompressed without losing
information. Consequently, nothing is lost during encoding and
decoding. The visualization displays this process using an 8-bit
grayscale image with a size of 4× 4 pixel. It can be seen that the
left matrix is the same as the right one.

the file to a matrix-shaped data that is understandable for the program. The
right image shows the extracted image, and it can be seen that the result is
the same as the original input. This describes the benefit of having a lossless
compression: not having a change between the original (left) and the recovered
version (right). While this example is about matrix-shaped data, the concept
is the same for vector data such as trajectories or any other types of data.

The impact on the entire system, which is described in Figure 3.3, cannot
be generally said, even not when only considering images. Therefore, let’s
consider the aspects into the types of repercussions: memory footprint, and
time consumption needed for processing. Depending on the compression al-
gorithm and the corresponding parameters, it is expected that the memory
footprint shrinks on average, but one needs to consider that some data is eas-
ier to compress than others. For example, the data visualized in Figure 3.4
is more trivial to compress because it only includes two colors within a de-
fined pattern. Other data which might be harder to compress without losing
information tend to have a larger memory footprint compared to its initial
state. The next aspect is the time consumption, this depends on the number
of bits that need to be read from the disk as well as the computational effort
which is needed to encode the data. Consequently, the two aspects are partly
proportionally dependent on each other. Moreover, it is expected that those
aspects also have an impact on the total energy consumption during reading
and writing, which is mainly caused by the execution time.

59

3 Analysis of the Data-driven System’s Requirements

Figure 3.5: With lossy compression, the size of the image shrinks with the
costs of losing information without the possibility of recovering.
How much is lost depends on the algorithm and on the used pa-
rameters. This is visualized in the figure, where it can be seen that
the matrix has two pixels that have a deviation, particularly pixels
(4, 1) and (1, 4) have slightly different values. In this example, the
encoding employing a lossy compressor leads to the consequence
that those values are changed and are not visible in the decoded
output matrix.

3.3.2 Lossy Compression

Lossy compression is the opposite of the before-discussed method. The goal
is to compress the method to reduce the memory footprint, but it is excepted
that there is an loss that leads to an error between the reconstructed data
and its source. A pair of two algorithms C and D, where C(x) is smaller
than x on average || D(C(x))˘x || is small, where || · || is some measure of
quality. An explicit example is represented in Figure 3.5, which is based on
matrix-shaped data. The left image shows a grayscale that has black (255)
pixels on the top half and gray (128) pixels on the bottom half. Furthermore,
there are two positions with slightly different values, specifically (4, 1) = 50

and (1, 4) = 200. This image gets encoded with an algorithm based on lossy
compression that results in the matrix in the middle. One can see that the
pixels with the unique values have changed, which is caused, in this case, by
their uniqueness. If the image is then decoded, it shows only the compressed
version without the possibility of recovering the unique values, leading to the
fact that aspects has been lost. While this example was about images, the
same concept works for other data types. For instance, one algorithm used
for trajectories is called Douglas Pucker, which simplifies them based on a
threshold. Nevertheless, another difference to the above method is that more
aggressive compression rates can be reached.

60

3.3 Compression of the Input

The impact is similar to the lossless compression with some differences. The
compression rate and the memory footprint depends on the used algorithm and
the corresponding parameter. Additionally due to the partly proportionally
dependency the time shrinks with the needed space with some limitations.
The compression rates can be more extreme, which results in a loss of infor-
mation if this makes a difference within the algorithm, depending on the task.
Considering a convolutional neural network, the decoding time might have a
comparatively small influences than the number of bits that need to be read
but might come with the cost of an increased error rate due to missing details.
Same as before, a faster reading can be explained by the reduced number of
bits which can lead to lower energy consumption during the process.

3.3.3 Quantization

One particular simple and important lossy compression algorithm is quanti-
zation. The individual data items are changed in representation to a smaller
integer by assigning a range of values to each integer, for example instead of
taking a 32-bit floating-point number, an 8-bit integer is used. Often, the
smallest integer (0) and the largest for a given bit width (e.g., 2k−1) are ex-
tending to capture all values larger than the largest value and smaller than
the smallest value for the quantization. Therefore quantization is if the infor-
mation Dx ∈ Rn×n, where n is a positive natural number, is quantized using
Cquantization : Dx → Dy where Dy ∈ Nn×n. One important type of quanti-
zation is uniform.All in all, quantization does not necessarily mean R → N,
quantization is the reduction of representing bits, independent from the type of
numerical space. The Figure 3.6 visualized the quantization process on the ba-
sis of a matrix-shaped input. The image on the left is the same 8-bit grayscale
image as before and is the input source. The destination space has a range of
one single bit to represent a single pixel, therefore, the input gets mapped to a
black (1) and white (0) image. This does not only work for images but also for
different data types, such as signals where a discrete signal gets transformed
into a digital one.

Before, the space dimension to represent a single value did not change,
therefore, it was not necessary to differentiate between space needed on disk
and within the main memory even when there can be a difference but distin-
guishable small. First, let’s take a look at the memory footprint on disk, which
depends on the data format if the data is stored with a lower complexity if so,

61

3 Analysis of the Data-driven System’s Requirements

Figure 3.6: Most commonly, a traditional image has a depth of 8 bits. When
using quantization to compress the data, in this case, a grayscale
image, the depth is reduced. This leads to a loss of information
because mapping an 8-bit color space to a lower dimension. The
visualized example shrinks the input space to 1-bit, which can only
represent either black or white. Consequently, the value of 128 from
the input cannot be probably mapped and causes an irretrievable
loss.

the space shrinks in relation to the target complexity. The size in the main
memory is reduced in theory, which depends on the datatype. Nevertheless,
the behavior changes with respect to the variable type used, therefore, there
is a difference between a 32-bit floating point number and a single bit. When
taking a convolutional neural network – which is a sensitive structure – to
predict the content of an image with a 24-bit RGB image needs a specific time
and computational effort. The reduction space dimension using quantization
can highlight, in certain cases, some specific features, especially edges, and
corners. The more prominent features can help, in theory, to keep increasing
the prediction accuracy by a constant or lower computational time. On the
other hand, when considering machine learning algorithms, very low spaces
can tend to be more overfitting.

3.3.4 The Impact of Input Data Compression

Data comes in different shapes, structures, and facets, like trajectories or Twit-
ter tweets. Similar is the scenario for the compression methods that are de-
signed to compress particular data types. Due to this reason, answering this
question in a generalized form is non-trivial. While it makes sense to focus on a
particular type, the overall message is commonly shared between the domains.

62

3.3 Compression of the Input

In spatial computing, the images are often provided in their uncompressed full
complexity. Such as from the Sentinel mission, which delivers multispectral
data employing JPEG2000 and SAR by using the TIFF format. Similar is the
situation for Earth observation datasets in which are large portion is provided
in a TIFF container without applying an compression algorithm.

The first task of a data-driven system is to read the data from the disk.
Especially for datasets that do not fit into the main memory, this task is done
periodically during runtime and even multiple times per image. Depending
on the programming language, a data item is loaded and embedded into a
pre-defined data structure that does not change during the computation, as-
suming no quantization or pruning is applied. As a consequence, the shape
and complexity of uncompressed data are constant during the full algorithmic
procedure. This situation is similar to images that have a compressed repre-
sentation on disk. While the consequences are that compression does not have
an effect on the large parts of the system’s pipeline, the reading process does
highly depend on the memory footprint on the disk. Inefficient compression
(like uncompressed images) leads to a high wallclock time as the data cannot
be read fast enough from disk and a compression that is computationally com-
plex leads to a larger wallclock time as the reconstruction of the initial state of
the data is consuming CPU time. Even when a compressed image needs to be
encoded, the choice of compression does influence the runtime of the program.
This repercussion directly depends on the size of the selected dataset. On the
contrary, the pruning of information can be a problem for some algorithms,
such as training a deep learning model.

When integrating input data compression into a system, the compression
typically implies among others five effects to the performance of the system.
(1) the wallclock time can be reduced when the system has been bound to the
speed of the I/O subsystem (IObound) by reducing the footprint on disk. (2)
the wallclock time can be increased when the compression takes up CPU time
needed for other processing tasks (CPUbound). (3) the energy consumption
can rise or shrink depending on the actual energy consumption of the sub-
systems and their activity. (4) when adding compression to a fully connected
distributed system, the number of nodes in a distributed system can be reduced
whereby the communication complexity shrinks quadratically. (5) in case of a
ring-based distributed system (e.g., Apache Cassandra), the number of nodes is
reduced whereby the performance of the replication and synchronization along
the ring increases. Therefore, a rigorous benchmark with performance metrics

63

3 Analysis of the Data-driven System’s Requirements

at least including application performance (e.g., accuracy, F1 score, precision,
recall for deep learning), wallclock behavior (e.g., frames per second, etc.), and
energy behavior (e.g., Joule/frame) needs to be conducted.

Compression methods have in common that the memory footprint is lower
compared to the uncompressed source data. The minimization of storage
needs, on disk and within the main memory, leads to the consequence that
fewer bits required to be processed, regardless of whether the task is to read
the data or to perform any other operation. The faster processing conduces
to higher throughput and probably lower total energy consumption. Further-
more, in theory, this means that not all data is provided by the full complexity
essential for the processing to fulfill the given task. If this hypothesis holds
true in practical scenarios needs to be investigated.

3.4 Compression of the Algorithm

The last section was about the compression of the input data, which showed
theoretically that the algorithms could work more efficiently with certain pre-
processing, like removing information whiles less relevant and having a smaller
effect on the result. While those decisions had an impact on the entire system,
the algorithm has not been actively compressed, which is the scope of this
section. The motivation behind that is to get algorithms that ideally only
perform steps and work on data aspects that are absolutely essential to the
end result without affecting its accuracy. The decrease in instruction as such
is performed can lead to two aspects, a lower memory footprint and reaching
a higher efficiency. Thus, to lower needs in time and energy. Additionally, the
compression of an algorithm can enable the possibility to on-board processing.

One technique to compress an algorithm is called loop unrolling. This
method optimizes the loops by replacing the original loop with multiple in-
structions from the body. Let’s consider a simple loop that does n = 1024

iterations and multiplies each entry of an n-long array with a random number.
Instead of iterating over every single step, one can do the given task for i, i+1,
i+ 2, and i+ 3 and then increment the i by four. This leads to a reduction of
cycles within the loop, additionally, the body of the latter loop can be paral-
lelized more easily. Nevertheless, a smaller algorithm in terms of the number
of instructions needed to get the same outcome is reached in multiple ways.
When considering machine learning algorithms, one way to compress them is
to reduce the number of parameters. In neural networks, one technique is to

64

3.4 Compression of the Algorithm

X1

X2

Xn

H2,0

H3,1

Ŷ1

Ŷ2

Ŷn

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Figure 3.7: The visualization shows a pruned feed-forward neural network.
The unpruned version originally had four nodes in each hidden
layer. During pruning removed, some nodes in the hidden lay-
ers were because the contribution to the result was comparatively
small. Therefore, not all information provided by the input is
needed to calculate a prediction for the given task.

cut out neutrons which do have a comparatively small contribution to the final
prediction result. Dropout is a technique that influences locally by considering
only a subset of the network. Therefore, the active impact is restricted to only
a small number of layers. The passive effect has an repercussion on all subse-
quent layers caused by the reduced number of information which is forward.
On the one hand, the neural network does tend less to overfit, on the other
hand, the compression leads to the consequence of having fewer instruction
calls and a smaller memory footprint.

Compared to this locally applied technique, pruning methods act globally.
The pruning algorithm removes nodes within a neural network which does not
largely contribute to the final decision. Figure 3.7 visualizes this process on
an example of a feed-forward neural network but is valid for a large range
of other deep learning architectures. Furthermore, considering the previous
section, which made the assumption that not all information within an image
is relevant, can be seen here again. Theoretically said, if a convolutional neural
network can be pruned without a loss in accuracy, there is information that
where irrelevant to the task. Moreover, the number of instructions or in neural
networks, the number of floating-point operations is reduced, the memory
footprint is minimized.

The discussed regularization and pruning methods do shrink the number of
floating-point operations needed to calculate the values for the output layer.
Another aspect is to compress the feature maps itself to shrink the instruction
calls. Figure 3.8 shows an example where an input map with a size of 8×8×1

65

3 Analysis of the Data-driven System’s Requirements

Figure 3.8: The goal of pooling is to shrink the size of the input feature map
by a given value. The visualization shows at the input a feature
map with a size of 8×8×1 pixels. Considering a convolution layer
that has a single kernel with a size of 3× 3, a stride of 1, and zero
padding, there are 729 floating point operations (FLOPS) needed
to create the output map. The pooling operation described in the
figure shrinks the size of the feature map to 4 × 4 pixels. The
compression leads by the same operation as before to a number of
flops of 225 to create the output map.

is compressed using pooling to 4 × 4 × 1. Considering a convolutional layer
that utilizes a single 3 × 3 kernel, 729 floating point operations (FLOPS) are
esential to compute the output map. Compared to that, after pooling the
map needs for the same procedure 225 FLOPS, which is less than the third
then before. Same as in regularization, it is the active process only locally
within a single layer but influences the entire system in the form of forwarding
less information. Whether it is a neural network or another algorithm, these
methods have in common that the number of instruction calls is reduced. The
decrease leads to higher efficiency in terms of time required and the total energy
to finish the task.

There are two methods that also need to mention, early stopping and en-
sembles of algorithms. While the first one stops the training process under a
certain condition, the latter one is where multiple models with a lower preci-
sion are combined into a single one. For example, the application sample in
Chapter 4.3.1.3 ensembled abstaining models which are specialized to a spe-
cific task, such as detecting if a tweet is related to a building. While the first
method compressed the footprint of a model by preventing it from performing

66

3.4 Compression of the Algorithm

unneeded training steps, the ensemble creates one single algorithm from mul-
tiple ones and supports a generalization. Moreover, there is a wide range of
methods to compress the algorithms to create more efficient models.

3.4.1 The Impact of Algorithm Compression

All in all, the compression of the algorithm led to two consequences, (1) the
smaller number of instruction that is needed to finish the task and (2) the lower
memory footprint on disk and in memory. Those consequences have in common
that the algorithm has a higher efficiency and saves time. Furthermore, the
optimization and savings in time can result in lower energy consumption of
the entire system. From the theoretical perspective, there are two things that
should be investigated using a practical example. First, it is similar to the
hypothesis from Section 3.1, that is, if all data from the full resolution is
relevant. The second perspective is the memory footprint that can lead to an
optimized algorithm in relation to its memory consumption. When considering
a pruning technique, the goal is to remove neurons that do not have a large
contribution to the result, therefore, information provided by the data can be
irrelevant. Also, when considering pooling, which highlights certain features
by taking, for example, the maximum value within a window, it results to the
consequence that the data is compressed to destroy spatial dependencies and
remove unimportant intonation. Tho points lead to the hypothesis that full-
resolution data does provide a smaller amount of information than assumed.
The question is if current baselines can be reached by using efficient models in
terms of their number of instructions.

Both discussed compression perspectives lead to smaller algorithms that
can enable the possibility of more efficient computing and prevent unneeded
scaling of the hardware. Additionally, some models can be deployed in its
compressed format to on-board processors, for instance a mobile device or an
FPGA.

Nevertheless, such as the application samples in Section 4.2.2 provided an
end-to-end system to classify trajectories from handwritten characters and
mobility data. Unfortunately, the most important similarity measures for tra-
jectories, like the Fréchet distance, have quadratic complexity. Using the char-
acteristic that the distance measure approximates the Kolmogorov complexity
with normal compressors, the fixed-sized Bloom filters can serve as lossy com-
pressors where the informal content is empirical evaluated. In addition, simple

67

3 Analysis of the Data-driven System’s Requirements

geometry measures, such as the direction of a single segment can be embedded.
Furthermore, the joint compression is calculated by logical OR operation of
two filters. This reduces the complexity of the algorithm itself by changing the
representation of a trajectory. Furthermore, the metric is evaluated using a
k-nearest neighbor algorithm that reaches the correct baseline of sample data
sets.

While this focuses on trajectory data, another domain is Earth observation
which uses deep learning models to estimate the content of remote sensing
data. The compression of, for example, convolutional neural networks, do
commonly have an impact on the result where the quantity depends on the
method and on the compression rate. While pooling is commonly applied in
a large number of architectures, quantization reduces the complexity that is
available to represent a single weight. On the other hand, pruning removes
nodes that do not form importance for the final prediction results. While the
domain of spatial computing employs this rarely, especially quantization is
often required to train or inference models on edge computing hardware such
as an FPGA. The model’s footprint is significantly reduced. This comes with
the codes of losing accuracy, depending on the method and the compression
rate. Moreover, the pruning has the advantage that the number of floating
point operations is reduced that need to be done during training which leads
to a performance increase. In conclusion, model compression is a trade-off but
enables running models on smaller hardware more efficiently. In addition, the
use of embedded devices increases in importance in, for example, the space
industry. The satellites are constantly producing data that is required to be
transmitted over a downstream to Earth. One constraint is that the channel
has a limited speed and visibility window where it is needed to up and download
all information that is required. This is especially a problem for time-critical
tasks. The utilization of on-board deep learning is able to detect whether a
created information is useful, for example, a sensed scene of a satellite that
detects wildfire. In this way, the channel is optimized by only transmitting
data that is relevant.

3.5 Compression of the Output

The last two sections discussed the importance of input data to create models
that are more efficient in the form of a reduced memory footprint or a reduc-
tion of the computation time. Another aspect that needs to be considered

68

3.5 Compression of the Output

X1

X2

Xn

H1,0

H2,0

H3,0

Hn,0

H1,1

H2,1

H3,1

Hn,1

Ŷ1

Ŷ2

Ŷn

T

Hidden
Layer 1

Hidden
Layer 2

Input
Layer

Output
Layer

Figure 3.9: When performing a classification using a machine learning algo-
rithm, one question is whether a result lacks confidence. The fig-
ure shows a feed-forward neural network that uses abstaining in
the form of an additional node T that indicates if the result can
be trusted or not.

is whether the output of an algorithm is important or irrelevant. Therefore,
in comparison, this method does not have a direct effect on the efficiency of
the result-generating part of the processing chain, rather, the focus is to only
further process data which are relevant to the given task. This can be done in
multiple ways, one is called abstaining, which focuses on the decision whether
a result from an algorithm is trustful. How the decision is dreaded depends
on the use case, for example, one option is to take no action, which results
in a reducing the amount of output data. Figure 3.9 shows abstaining in a
feed-forward neural network. One can see that the structure is quite similar,
with an additional output node T indicating the confidence of the output.

Another strategy is to create an algorithm that determines if the output
has a specific pattern. Based on the outcome of the algorithm can be decided
whether the output is worth it to process further or needs to be traded differ-
ently. Figure 3.10 visualized the result of such an algorithm. A neural network
can be trained to decide if there is a specific pattern within the images, such
as clouds. Due to the reason that clouds do hide certain target objects, those
could be ignored for further processing. More concretely, the neural network
can be deployed onboard a satellite and decides if a scene is transferred down to
Earth. Otherwise, irrelevant images can be ignored and therefore withdrawn.
This leads to compression in the form of only handling important data. On
the other hand, filtering constantly removes data.

69

3 Analysis of the Data-driven System’s Requirements

Figure 3.10: Considering a convolution neural network that detects if a specific
condition is fulfilled and filters the output based on its result, for
example, based on cloud coverage or, as stated in the figure, desert
and urban area. Filtering can be, for instance, applied onboard
a satellite to decide whether a scene is relevant and needs to be
transferred to the base station.

In the domain of remote sensing using satellites, the consequence would be
to reduce the amount of data that is transmitted over the downlink, therefore,
output data compression can be useful to only give relevant data, especially
with respect to direct receiving. But filtering does not only find its application
in space missions, rather, it is worth it to be considered in all areas procuring
a large amount of output. Another example a generative AI model, without
considering a specific scenario, the software always provides an output to an
input. This can be misleading, especially when the input does not contain any
useful information or even a wrong assumption. Consequently, suppressing the
output can optimize the accuracy and performance in some cases.

From the theoretical perspective, one question is the impact on the process-
ing pipeline and the hardware resources of such methods. Taking the memory
footprint into account, compressing or even pruning the output can increase
the performance of follow-up processes, such as the communication channel
between the satellite and the ground station. Furthermore, there is also a save
in time when irrelevant data is not further processed.

70

3.6 Computing with Compressed Representations

3.5.1 The Impact of Output Compression

The output of machine learning models can have various forms and shapes,
such as images and text, in the field of generative artificial intelligence. An-
other possible outcome is the class for either an entire image or an single pixel.
In all cases, the results are sometimes either suspicious or wrong. Due to the
fact that most instances in the dataset did not have a clear label, the machine
learning system had to learn the concept from a very small and heavily im-
balanced dataset. However, the (partial) ability of selected machine learning
models to assess the certainty of their own output can be used to improve
the overall situation. A solution to this problem is to determine whether the
model’s outcome is trustworthy. If this is not the case, the result can be re-
jected. This strategy led to a higher robustness model of the entire system that
has been built and opened the possibility of assigning function types to un-
known buildings. Therefore, it is necessary to verify the outcome and exclude
it from further processing if needed.

3.6 Computing with Compressed

Representations

The first section discussed the compression of the input, still needing a com-
parable large amount of bits to cover the data. Unfortunately, some hardware
has constraints that make the computation of data in its source representation
hard to impossible. For example, while the current state-of-the-art quantum
computer covers 433 qubits [84], an average CPU server can simulate only 16

qubits. An extreme case of input compression is representation learning, where
data is represented employing only a limited number of bits. Representation
learning cannot only be useful for quantum computing but also efficiently pro-
cess data. Considering the example given in Figure 3.11, x represents the input
data, more concretely an image with a size of 64× 64 pixels, with the task to
predict the input with a quantum machine learning (QML) algorithm. Even
the largest quantum computer currently available cannot handle this amount of
data, especially not when simulating on an average CPU/GPU server. Within
the example, an autoencoder can be taken to train a lower representation of the
input image: the encoder vector. From the theoretical perspective, the most
important data is mapped to a small number of bits, which can be the input
for another algorithm. As it is stated in [85], this mapping to a very small

71

3 Analysis of the Data-driven System’s Requirements

Figure 3.11: Nowadays, quantum machine learning is a highly researched field
that needs either special hardware or a large number of com-
putational resources to simulate q-bits. Unfortunately, there is
currently a small number of hardware that is able to compute –
whether simulated or not – with more than 60 bits. This problem
is that lots of data need more than some bits for a single data
item. One solution is representation learning. One way to learn
a smaller version of the data is to take the encoder vector of an
autoencoder as input for a quantum-based machine learning al-
gorithm.

space comes with the costs of losing information that might be relevant to keep
the prediction accuracy as high as the reference baseline. Furthermore, besides
that, another factor is that there is another algorithm needed to compute the
lower denominational representation. On the other hand, the memory foot-
print can be significantly reduced, enabling the possibility of processing data
in real-time. If this sums up, an advantage or disadvantage needs to be con-
sidered for a concrete case. From the theoretical perspective in relation to
quantum computing and image processing, it is questionable if it makes sense
to apply two algorithms with quadratic complexity to be able to use today’s
quantum hardware, even when a feasibility study is essential for research.

In alternative is to lower the dimentional representation by embedding the
data into Bloom filters in linear time. The example in Figure 3.12 shows that
a defined type of data can be embedded into a binary Bloom filter with a fixed
size, in this case, 32 bit. The change of the representation to a fixed, constant
and well-defined way enables to use of the generalized algorithm in different
types of data. Furthermore, it is possible to extract the data by asking whether
a data item is in the filter. While there are no false negatives when extracting

72

3.6 Computing with Compressed Representations

Figure 3.12: A single data item is embedded with of two hash functions setting
certain bits within the Bloom filter. The data structure is able to
hold the data using a lower dimension, additionally, the data can
be represented with constant size.

data from the Bloom filter, there is a risk of having false positives.
Another form of computing with compressed representations is feature-free

data mining. One algorithm which is doing that is the normalized compression
distance (detailed explanation see Section 2.1.2.3), which utilizes normal com-
pressors to represent that data and calculate the similarity based on the length
of the compressed version. An advantage is that it is theoretically possible to
compare two different types of data without changing the algorithm. Similar
to the situation with the autoencoder, compression using normal compressors
is the bottleneck in the process. On the contrary, the described Bloom fil-
ter provides nothing else than a compressed form of data. This would reduce
the complexity of a linear problem, leading to higher efficiency. When replac-
ing the compressor with a Bloom filter, one problem which arises is that the
length of the Bloom filter does not accommodated any information reading to
the comprehensibility of data, and a comparison is useless due to its constant
size. As is has been done in the application sample in Chapter 4.2.2 an solu-
tion would be to use binary operations, such as the union between two Bloom
filters, to measure its similarity. Another option is to compare the entropies
of the two filters. A practical test will be successful if this is possible without
a significant loss in accuracy when comparing types of data.

3.6.1 The Impact of Computing with Compressed
Representations

A small representation can lead to a significantly smaller memory footprint
at the cost of loosing accuracy. If an algorithm still is able to compute the

73

3 Analysis of the Data-driven System’s Requirements

expected result without a large increase in the error rate, it can be deduced
that the provided information either can be compressed to a minimum without
a loss or there is something that is not relevant. Nevertheless, the computation
with compressed representations is able to generalize algorithms, such as when
using abstaining.

3.7 The Consequences for the Data-driven

System

This section answers the three research questions stated in Chapter 1.1
concerning the hypotheses and the investigated current compressive methods
and their impact on the entire data-driven system. Furthermore, the current
state-of-the-art literature servers as an additional foundation for the provided
answers to the questions.

RQ-1: What is the minimum of the complexity and informational content of
heterogeneous data required for a data-driven system?

When it comes to the compression of data, there are several techniques and
methods that have been furnished for a large range of different data types.
For example, JPEG compression for images or Douglas Peuker for trajecto-
ries. Additionally, it provides Shannon’s and Kolmogorov’s information theory
the ability (whether it is computable or not) to make an assumption about the
complexity of information contained in the data. Considering the algorithm
that is used in a data-driven system as a machine learning model, there are
many ways to estimate a corresponding label to the data. The authors of [86]
describes that the two theories focused on the transmission and complexity of
data rather than which amount of information is relevant and meaningful. Ad-
ditionally, the authors state that, in theory, lossy source encoding techniques
based on those theories can be adapted to make an assumption about the rel-
evant content contained in data. One way to compress data is quantization,
while this reduces the complexity that is available to represent a particular
value or area within a given item, the information that is of less importance
and does not contribute to algorithms prediction might be still present is some
cases [86]. Nevertheless, another method to reduce the amount of information,
particularly in images, is by using compression-based file formats. While loss-
less compression does not have an repercussion on the prediction accuracy of

74

3.7 The Consequences for the Data-driven System

the algorithm’s outcome, the compression rates are lower than for lossy meth-
ods. The latter comes with costs and might be unable to provide the best
optimum calculation result. Another method to compress data, especially im-
ages, is to learn the representation with deep learning. While [85] uses, for
example, an autoencoder trained to map a given image to a 16-bit vector, the
authors of [87], [88] employ a deep learning model that learns to remove details
that is less important for the visual representation.

The contributions of this thesis to this research question are outlined in
Chapter 4.1 and can is in relation to two hypotheses: first is if a data-driven
system’s performance can be optimized by reducing the compressing of the
input (H1), and second if this can be done without losing precision on the
outcome (H2). While the algorithm can be clearly optimized by changing the
representation using lossless compression, this does not influence the outcome.
Furthermore, more aggressive methods provide a higher efficiency but with the
costs of losing precision on the algorithm’s result. The application experiment
(Chapter 4.1.2) showed that a moderate compression of data does have either
a positive or no repercussions on the algorithm’s precision on its outcome.
Smaller memory footprints lead to the consequence that the program needs
less time to load the data from the disk to the main memory, which has an
effect on the total system’s runtime. Therefore it is important to prune the
non-meaningful part to optimize the program in terms of its runtime. Besides,
this is a trade-off between the amount of information contained in the data
that are pruned and the ability to run the program without or less impact on
the result.

Therefore, we conclude that the answer to this research question is that the
use of compression does not always significantly impact the precision of the
algorithm’s outcome. Rather the results show that not all information that is
furnished by data, especially remote sensing images, is relevant. Therefore,
the utilization of compression on the input data is relevant to increase the
efficiency of a data-driven system.

RQ-2: What is the potential and limitation of (aggressive) algorithm compres-
sion and randomized data structures in an edge computing scenario?

The theoretical situation is similar to the complexity of heterogeneous data
and consequences for a data-driven system of reducing them. The quantization
of parameters does lead to more efficient architecture in relation to their mem-
ory footprint and the computational effort to compute an optimal parameter

75

3 Analysis of the Data-driven System’s Requirements

set but does not prune parameters with low importance [89]. Furthermore,
deep learning architecture areas that do not significantly contribute to the
prediction result can be removed to create an algorithm with a lower footprint
and fewer instructions (less floating point operations) [37]. Therefore, similar
then the input algorithms/operations such as neural networks contain details
that is not relevant and some that are essential to the output. Furthermore,
there is a range of research that [90], [91], [69] proves either theoretically or
practically that the parts of a deep learning model can be removed with less
to no negative impact on the result. The research field deep learning model
compression addresses this particular scenario – removing elements of an algo-
rithm that are of less importance. Several methods have been introduced that
focus on, for example, channel pruning, layer pruning, and filter pruning, while
all of them have in common that the number of floating point operations has
been reduced. While there is often a trade-off between accuracy and compres-
sion [92], the authors of [93] showed that removing unnecessary information
is able to support the algorithm towards a higher degree of accuracy on the
predicted output. In addition, the [94] states that the compression of mod-
els is especially interesting when deploying models to edge devices that have
limited computing power and memory footprint. In contrast to this approach
to compress the algorithm is by taking randomized data structures, which are
able to suppress the quadratic nature of some algorithms. The probabilistic
data structure Bloom filters are widely used among several domains [95] [96],
[97]. In previous work, the group proposed in [98] an approach to embed tra-
jectory features into those filters and measured their similarity. Additionally,
[6] showed that the filters are able to hold large datasets (like Twitter data) in
the main memory.

The contributions of this thesis to this research question are outlined in
Chapter 4.2 and can is in relation to two hypotheses: if the use of the channel
between a remote device and its base station can be optimized (H3) and if
the compression impacts the total runtime of the entire data-driven system
(H4). A data-driven system in the context of spatial computing has several
constraints that are also caused by the data content’s complexity. The runtime
can be reduced by applying compression but comes with the cost of loss of
precision of the outcome. Nevertheless, the deployment of custom hardware
is essential to reduce hardware needs and increase the efficiency of the systems.

RQ-3: How can abstaining and model ensembles facilitate learning of a data-

76

3.7 The Consequences for the Data-driven System

driven system?
The compression of the output can have several motivations, like rejecting

results that are not trustworthy. As stated above in Section 3.5 and in [99],
[100], abstaining is able to increase the robustness of a deep learning model
against noisy data. An application experiment presented in Chapter 4.3.1 uses
this technique to train a classifier for building function classification based on
Twitter data where only a small portion of the dataset is relevant. Abstaining
is able to determine if the output is meaningful. In contrast to this model,
ensembles combine several small algorithms to reach a generalized model that
maximizes their prediction performance in terms of the quality of the outcome
without increasing the model’s variance. While there are several commonly
employed methods to reach model ensembles, such as boosting, bagging, and
stacking, the authors of [101] describe the combination of models does come
with the costs of the need to search a large parameter space to find the optimal
set. The application experiment in Chapter 4.1.1 various trained models and
created an ensemble using the top-k ones. The proposed approach reached
relatively high accuracies, but comes with the costs of increased computational
effort compared to other methods.

The contributions of this thesis to this research question are outlined in
Chapter 4.3 and can is in relation to one hypothesis, which is about increasing
the robustness of algorithms against data that is suboptimal to train (H5).
The experiment showed that it is possible to use abstaining and ensembles
in a spatial context to train to reach a robust model trained on a large-scale
dataset that consists of a large amount of label noise.

3.7.1 The Role of Compression in Spatial Computing

The investigation provided an analysis of how a data-driven can be compressed
and the resulting impact on the computed. A careful combination can maxi-
mize the performance in relation to the precision of the outcome, runtime, and
energy consumption. The use of moderate input compression (for example, as
it is the case for JPEG quality factor of 75 or PNG with a compression level of
9 in the case of images, see Chapter 4.1.2) causes a marginal form in accuracy
when training a convolutional neural network but provides a trade-off between
the effort that is needed for reading the prediction performance. Additionally,
the energy consumption, especially on edge computing hardware accelerators,

77

3 Analysis of the Data-driven System’s Requirements

is shortened by a large portion, dependent on the size of the dataset and the
main memory. Additionally, if a deep learning model is trained without having
a large generalization error supports the algorithm’s compression with quan-
tization and pruning. While the former is required to minimize the memory
footprint and for the deployment to an FPGA, the latter optimizes the ef-
ficiency by reducing the number of floating point operations. The resulting
model comes with the cost of losing accuracy but has the advantage of being
optimized in relation to computational performance and energy consumption.
Additionally, for some given tasks, this enables even the possibility of perform-
ing the computation without scaling the hardware.

78

4 Application Experiments and
Results

The previous chapter discussed the foundational aspects of the thesis and
defined some requirements. This part provides some samples to the theoretic
chapter and should highlight their importance as well as their feasibility. As
described, a machine learning processing pipeline can be split into several
components, which are input, algorithm, and output. The following provides
some application examples for each of them. The first section investigates the
compression of input data. In line with the theoretic foundation, image data is
compressed employing different forms, such as the manipulation of color spaces
as well as the use of compression algorithms. The following section is about
the complexity reduction of algorithms, which uses two different methods.
On the one hand, the algorithm is compressed by utilizing probabilistic data
structures. On the other hand, an example is given on how the communication
of satellites with their ground station can be reduced. The last section provides
an application example of how to compress the output of the machine learning
operation by determining whether the outcome is trustworthy.

4.1 Examples of Input Compression

The first element from each machine learning pipeline is the complexity and
the volume of the input data. Anyways, the data has a significant impact on
the processing speed of the entire system. When considering the complexity
that is available to represent a single color of a pixel, the memory that is
needed increases with this value. A higher memory demand can also be prob-
lematic when an item is required to be copied or moved (disk ←→ memory)
during the computation of the algorithm. Additionally, another factor is the
representation of the data on disk, for example, some file formats are more
efficient to load than others. One application example shows that if consider-
ing JPEG over TIFF to store a satellite image, there is a notable performance

79

4 Application Experiments and Results

increase during the training phase of a deep learning model. This comes with
the cost of losing accuracy, which is vanishingly small. While this section fo-
cuses on images only, the results are also applicable to different data types,
but the quantity of the impact changes – also, the processing of how the input
of compressed differs.

The following provides two examples of how the input can be compressed
to support the performance. The first uses a genetic algorithm to change the
color space of the training images such that the model that is trained reaches
higher accuracies. The second application example investigates the impact of
images quantization and compression on the time that is needed for training
a deep learning model as well as the accuracy.

4.1.1 Genetic Algorithm for Transfer Learning

This section has been published in our work [P3] and is structured as follows:
An introductional motivation is provided first, followed by methodology in
Section 4.1.1.2. Furthermore, the Section 4.1.1.3 describes the experiments
and results. Finally, a summary is given is Section 4.1.1.4.

4.1.1.1 Motivation

During the last decade, convolutional neural networks have been invented and
quickly become a foundational element of computer vision. These deep learn-
ing methods are consistently outperforming state-of-the-art methods reaching
surprising performance on many computer vision tasks.

One famous dataset to train neural networks, especially CNNs, in the do-
main of classification is ImageNet furnished by ILSVRC 2012 [50]. This set is
constructed by manually labeling 1 200 000 items into 1 000 categories. While
there are also newer versions of the dataset, the 2012 version is still the most
common one to benchmark models in the computer vision domain and is com-
monly used for transfer learning.

A comparable dataset in the domain of earth observation might be
BigEarthNet given by [4], which is a collection of land cover and land use
images from the mission Sentinel-2. The dataset provides nearly 600 000 mul-
tispectral images, which is approximately half of the size of ImageNet, addi-
tionally, a single one can include multiple land use categories. Moreover, the
spatial auto-correlation characteristics add another complexity to the datasets.
Additionally, the images from the Earth’s surface exhibit a higher density of

80

4.1 Examples of Input Compression

structures – a mountain compared to a riverbed – than the different classes
of ImageNet. Due to these constraints, it can be said that the given task for
BigEarthNet is considerably more complex than ImageNet. Other satellite
datasets are available but are not as suitable to train domain specific neural
networks as BigEarthNet.

There are two main components that are given in computer vision leading
to a revolution in image processing that is not given in the field of Earth ob-
servation. The first problem is that the number of available training datasets
is relatively small in relation to the complexity of tasks such as classification
and segmentation. Second is that it is non-trivial to apply the investigated
algorithmic improvements because the deep learning community does not fo-
cus on the computational efficiency of spatial images. Moreover, currently,
datasets are generated to fit the requirements of computer vision algorithms
instead of employing remote sensing requirements. Furthermore, [102] provides
an overview of the deep learning methods that have been applied to the re-
mote sensing community, moreover, authors of [103] discuss information fusion
techniques that have been introduced into the field.

The problems of having a low number of datasets, overlapping labels, and
noise in the classes increase the complexity of training an efficient high, quan-
tified machine learning algorithm in remote sensing. There are mainly two
solutions to those difficulties: (1) reduce the complexity of the algorithm, (2)
transfer learning across domains.

The first option is to reduce the model complexity by pruning parameters
that have a comparatively minor impact. Another example is to lower the
depth of the neural network. Anyways, one needs to know that many transi-
tional clustering methods, e.g. a support vector machine or decision trees, are
capable outperform deep learning methods when the region is either very large
or even global. One example where this happened is when the water surface
has been globally computed. This has been done by only transitional image
analyzation algorithms due to the ability to embed knowledge in an efficient
way. In other words, points on the convex hull in the color space were used to
set the scope of specific features within the data.

The second option to solve the mentioned problems is to utilize transfer
learning across domains, for example, to pre-train a model on ImageNet (or
any other set) and employ the knowledge to predict labels from BigEarthNet.
The scope of this part of this work is to use the transferred knowledge across
domains combined with the idea of using points on convex hulls. In detail, this

81

4 Application Experiments and Results

means while changing the input from the deep neural network by changing the
points that lead to a highlighting of different features, the model’s parameters
stay constant. Consequently, the complexity is reduced due to training only a
small portion of the architecture instead of taking the pre-trained values into
consideration.

4.1.1.2 Methodology

Before going into the definition of the proposed approach, one needs to know
about color space manipulation. Especially for remote sensing data, the num-
ber of channels per image varies, for instance, it does provide Sentinel-2 13
bands. While there are applications that utilize all the provided information,
some use cases create three band combinations to visually highlight specific
areas in the image. One example is wildfire, while Sentinel-2’s {R,G,B}
bands show the smoke, the other band combinations give a details view of
the actively burning areas. Usually, CNNs are pre-trained on well established
computer vision benchmarking datasets and fine-tuned on the data of interest.
Unfortunately, the complexity as well as the color space differ from remote
sensing, this makes it necessary to transform the space of the images to high-
light features and shapes in order to maximize the prediction accuracy. A
practical example is an image of a gray airplane on a landing strip. The colors
are rather monotone than having a large variability, of course, depending on
the season where the snow could change the problem. Therefore the spectrum
of the image in this particular case is relatively small. Nevertheless, CNNs are
sensitive to edges, corners, and textures, but are also to colors, consequently,
a change in the space can increase the performance.

The transformation proposed in this part of the work is based on the
archetypical analysis, which is able to identify extrema in the convex hull of
the color space. Moreover, another characteristic is that all pixels can be
represented by the archetypical values. This representation using extreme
points is able to highlight certain color areas and transforms the image to
highlight certain areas. This leads to an efficient model.

The proposed method is based on color archetypes and the mapping function
archetypal projection, which are defined before presenting the experimental
design.

Definition 4.1. (Color Archetype, see [P3]). Let Dn be the color space with

82

4.1 Examples of Input Compression

n dimensions and A be an archetype that is formally defined as

A = {a : a ∈ R1, a ⪯ a}Dn

, A ̸= ∅,

the number of dimensions can, for example, be the available multispectral chan-
nels provided by a satellite.

Definition 4.2. (Archetype Projection, see [P3]). Let f be an archetypal pro-
jection function that maps an input image with n-dimensional dolor space to
a set of n-dimensional archetypes. Every single pixel is mapped to a set of
distances to the given archetypes. Per default, the Euclidean distance metric
is used, and all values are normalized to an 8-bit range, [0, 255] ∩ N0.

To put things into practice, the task is to not re-train a given pre-trained
neural network, instead, only the top layers are fine-tuned. To maximize the
prediction accuracy, the color space of the input data is modified to make some
features more prominent. Therefore the task is to find a set of archetypes that
can optimally map the pixels to support the model’s performance. This type
of analysis was first introduced by [104] roughly said the authors are describing
the search for the archetypes that are prominent convex combined values that
are able to represent the entire data item such as an image. All in all, the
benefit is that the archetypes are able to estimate a convex hull.

In order to find the best suitable values for the archetypes, to avoid a brute-
force search a genetic algorithm is used, leading to an optimized time efficiency
with the costs of what might not be the globally best values. The initial values
for the algorithm are the archetypes generated by taking some random values
and the original data, in this particular case using the dataset Gaofen [5]. Each
RGB image is represented by three archetypes that are mapped to the channel
with the archetypal projection function. The resulting data is then employed
to fine-tune the top layers of CNN pre-trained on ImageNet, that is, in this
case, a VGG16 model with two top layers. The first one is a fully-connected
layer with 32 units and ReLU activation followed by a softmax prediction layer.
Additionally, a 0.5 dropout has been applied between them. The model has
been fine-tuned for 15 epochs on 50% of the data without any overlap between
the train, validation, and test set. Furthermore, the genetic algorithm has
trained models for approximately eight hours.

The validation dataset is used to calculate the performance of each indi-
vidually generated item of one round of the genetic algorithm. The top-k
archetypes are then selected towards their fitness on the basis of those new

83

4 Application Experiments and Results

Figure 4.1: Visualization of the different identified local extrema, called
archetypes, within the feature space that has been generated during
the genetic algorithm, where it is not visible if there are correla-
tions between the single values. A model that is trained on RGB
images does use three archetypes. The space is large enough to
provide the diversity to might support the model begging. First
published in [P3].

convex combinations that are generated. The new values are created based
on two parents, therefore, k = 2 variables Xk, Xl, and a random variable
α = [0, 1]. In addition an offspring is added to the given archetypes to dis-
tribute the newly generated ones in the space instead of having them in its
origin. This is done with the equation

oj = αak + (1− α)al +N (0, σ), (4.1)

where o is the offspring, and a normal distribution N is used to randomize
the values, with µ = 0 and σ as deviation.

4.1.1.3 Experiments and Results

In contrast to gradient-based training methods, genetic algorithms have the
advantage of being able to track more than a single local maxima. Addition-
ally, also used to avoid brute-force searching algorithms, leading to a possible
decrease in computational complexity. For the proposed basgging method,
it is essential that there is no relation between the models, even when the
archetypes are based on the same parents, only then can the algorithm im-
prove the prediction performance. On the other hand, the recombination of

84

4.1 Examples of Input Compression

Figure 4.2: Visualization of the lifetime of the models in relation to their pre-
diction performance. It can be seen that models generated later in
the time span tend to have higher accuracies. First published in
[P3].

related convex archetypes does lead to a good exploration within the prob-
lem space. Therefore two questions need to be answered: the first one is if
the proposed method is able to provide the flexibility and efficiency to find
more optimal areas within the feature space. Second is if a new generation in
the algorithm identifies better types based on the encoded information of the
previous generation.

Baseline performance: To be able to compare later generated models
with the proposed approach, it is necessary to train a reference that uses
the above described CNN trained on data without manipulation within the
color space. The following experiments utilize the Gaofen dataset that has
been provided by the 2020 Challenge on Automated High-Resolution Earth
Observation Image Interpretation [5]. The model does reach an accuracy of
94.0%.

Stability of Diversity: When dealing with bagging or boosting algo-
rithms, a challenge is that the modes have less diversity in finding the local
minimum. Especially then, the different models do find the same optimal point
within the problem space, a combination does not lead to any performance
increase. The experiments showed that the models do provide the multiplic-
ity to avoid a performance over time. The genetic algorithm is able to find
enough local extrema to support a bagging of models without stagnating in

85

4 Application Experiments and Results

Figure 4.3: Model ensembling is done aggregating the models by their soft-
max’s means. The visualization shows the ensembling of one to
five models. It can be seen that the number of models is inversely
proportional to the accuracy’s variance. First published in [P3].

performance. Figure 4.1 shows the positions of located extreme within the
archetypal space that has been selected for further processing. While the fig-
ure itself does not show the correlation between the individual archetypes, the
models do use different areas within this space. Due to the difference within
the color space, certain features are highlighted, and the pre-trained models
vary from each other. This assumption can result to the possibility that the
models are uncorrelated to each other and increase in performance when using
bagging.

Genetic knowledge exploitation: To be able to interpret the ability of
models to explore the archetype space with linear interpolation, it is necessary
to take investigate the lifetime of the different models. Figure 4.2 does provide
an overview of when a model has been created and when it has been rejected
due to low fitness. Therefore, models with higher performance have longer life
than bad ones. When analyzing the model creation timestamps with respect
to their accuracy, it can be seen that there is a trend of providing better
models over time. The experiments showed that the optimization on a single
GPU (Nvidia RTX 2080 Ti) is able to boost the performance using bagging
and archetypal transformation to 97.5% of a single model. Moreover, the
computational effort to perform the linear equation is comparatively small.

Model bagging performance: One item essential point of bagging is the
aggregation of models, this is done by taking the mean of the softmax layers
outcome. Figure 4.3 provides an overview of the beg performance of one to

86

4.1 Examples of Input Compression

five members. The main archived aspect is that the variance of the accuracy
is indirectly proportional to the number of aggregate models, additionally, the
accuracy has reached over 97.5% on average for considering five models when
considering the unmodified source RGB data.

All in all, it can be stated that the performance and stability increase when
ensembling uncorrelated modes using bagging. This is caused by the diversity
of focusing on different features within the given data item.

4.1.1.4 Summary

This part of the work showed that color space manipulating computer vision
techniques could be used to increase the performance of predictions employing
neural networks that are focused on Earth imagery. The bagging of models
using color space transformation based on extreme points, called archetypes,
was able to push the performance. A following ensemble of multiple models
increased the stability by reducing the variance of the accuracy when testing
the models on the reference data. Additionally, this enables to apply methods
that are designed for three channel images on multi or even hyperspectral data.

There are some directions for future work that are open to be answered
or need to be investigated. First is a benchmark of different, more radical
transformation function and to test the concept to actively prune channels of
multispectral images. The second is to combine the proposed method with
model pruning to prove slimmer models for edge devices.

4.1.2 Image Compression for Communication Reduction

This section has been published in our work [P11] and is structured as follows:
An introductional motivation is provided first, followed by the related work
in Section 4.1.2.2. Furthermore, the Section 4.1.2.3, furnishes a discussion
about the proposed approach and the corresponding fundamental principles.
While Section 4.1.2.4 introduces the relevant datasets, the Experiments are
then evaluated in Section 4.1.2.5 and finally summarized in Section 4.1.2.6.

4.1.2.1 Motivation

Currently, many Earth orbiting satellites are used for different tasks: naviga-
tion, satellite television, to name a few. One of the tasks is the observation
of the surface to detect the impact of disaster events such as wildfires or to
monitor urban development. For those proposes, the satellites are equipped

87

4 Application Experiments and Results

with a wide range of different sensors, multispectral- and hyperspectral, that
generate a large amount of data that serves as the backbone of today’s en-
vironmental research. While the quality of those data, like the resolution of
images, is central for research, the amount of memory that is needed to store
this data makes the accessibility a non-trivial task. Even experiments, as in
urban development, are often done on a selected local spatial area rather than
running global investigations. While self-hosted solutions often face computa-
tional and storage problems in this domain, large companies, e.g. Google and
Amazon, provide hosting solutions that are able to host this amount of data.
This is, done for the Sentinel data that is available on Amazon Web Services.
This comes with the costs that the companies have a vendor lock-in and the
power over the data itself.

Another aspect that is worth it to be considered when it comes to data, es-
pecially data that has been generated from optical devices, is that the majority
does not help to solve a given particular problem. If a scene is from interest
for a specific task, all 13 band provided by Sentinel-2 needs to be downloaded.
On the other hand, the data that is included in this product will be entirely
employ only in rare cases, as it is the case for the classification of land use
and land cover. Additionally, the full complexity of a remote-sensing image is
often ignored by many projects and products.

A lowering of the data’s complexity could reduce the amount of data that
required to be transmitted over the communication channel. Additionally, the
pruning of information minimizes the memory footprint and the energy that is
needed to solve a particular problem. Therefore, this part of the thesis focuses
if compression can be applied to optimize the training and inference phase of a
convolutional neural network in relation to its runtime while having a marginal
loss in accuracy. To investigate the images are firstly quantized to an extensive
range of target bit depths, in addition, embedded into compression-applying
file formats, for instance JPEG. The evaluation of the time that is needed for
the training on GPU and the archived accuracy is based on the deep learning
architectures VGG-16 [51], ResNet [48], and MobileNet [53], which are pre-
trained on ImageNet.

4.1.2.2 Related Work

In this section, we give an overview of the related work as aspects that are
relevant to this work. Therefore the main parts which are discussed are the
state-of-the-art of compression in deep learning and how data is currently

88

4.1 Examples of Input Compression

stored.

Images and the art to store them: When researching in the context
of optimizing the machine learning pipeline for remote sensing images using
compression, there are many dataset types that are essential. One prominent
dataset is ImageNet ILSVRC 2012 which has been introduced in [50] and is
common in transfer learning. Moreover, the most convolutional neural network
are benchmarked on this dataset. Compared to computer vision datasets, the
domain of satellite scenes has many forms, such as radar data from Sentinel-
1. There are even considerably differences between the sensing devices of the
different satellites, for example, comparing Sentinel-1 and TerraSAR-X were
both creating Synthetic Aperture Radar (SAR) images. In this work, we are
focusing on multispectral data, where one contributor is Sentinel-2. Accord-
ing to [9], those satellite provides 13 spectral channels and delivers them using
JPEG2000. The number of bands and the data format differs between the mis-
sions. Another aspect is that satellite scenes are furnished with different stages
of pre-processing. When considering datasets based on Sentinel-2’s multispec-
tral images, one version option is the raw data, another one is with already
applied pre-processed, which can cover steps as tiling and labeling, as it has
been done in [P2]. An extreme case builds hyperspectral images (HSI), which
give a vast count of (multispectral) images. The amount can be challenging
for deep learning models in both cases,especially with respect to its compu-
tational complexity.One dataset is, e.g., BigEarthNet provided by [4], which
includes 590 326 tiles with a depth of 16-bit extracted from Sentinel-2 scenes.
Each one of the 13 bands has been stored as an individual TIFF which leads
to 7 674 238 files. Other datasets stored them using an 8-bit representation
[10] or delivered only the {R,G,B} bands [105]. Other datasets provide more
than three bands, and storing them into one image format [106].

Instead of taking standard formats like TIFF, PNG, or JPEG to store each
image individually in the file system of the operating system, one can use
a hierarchically structured file format. This data structure is able to hold
entire datasets within one single file. Those formats are especially relevant
when the computation is performed on high-performance computing (HPC)
systems. One candidate in this group is the format HDF5 invented by [107],
which is able to hold data in various forms. Furthermore, one advantage of
this data structure is the possibility to chunk the data, which enables it to
define pre-define either batches or even entire subsets. Another representative
is TensorFlow’s TFrecords provided by [108] and is similar to HDF5 with the

89

4 Application Experiments and Results

constrained of not being able to chunk the data, nevertheless, the format is
serialized to feed the deep learning model created by the framework and is also
suitable to be applied on systems with a file limit in a directory as it is the
case for some HPC systems.

One needs to mention that there are lots of other possibilities to store the
data, for instance using databases. An example is Google’s Bigtable [109]
which is a high-performance database specialized in handling vast amounts of
data. Furthermore, without going into detail, it is essential to know that file
systems have a theoretical and practical limit. When considering EX4, the
theoretical limit per directory is four billion in files, while in practice, in some
scenarios, a count of ≤ 100 000 files can already produce problems.

Compression in deep learning: The compression of images is a field that
is heavily investigated from all sides, a reason might be that the use reduces the
footprint of the data and saves on this way resources. Additionally, the reduced
size can also lead to optimized characteristics in computing. Furthermore, this
domain is also present in the field of machine learning, for instance, current
research tries to optimize data compression with deep learning algorithms.
Nevertheless, compression comes with the drawback of having the possibility
of losing information and the creation of artifacts, e.g. blocking, that have a
notably impact on the precision of algorithms. In this part of the work, the
consentration is set on the impact of compression on the classifier in relation
to their performance and accuracy. One option to decrease the footprint of
an image is to apply quantization. The authors of [8] do research in this
direction, more specifically, the experiments focus on quantization and pruning
of details. Before the classification, the authors quantized into several spaces
with different sizes, additionally, information that seems to be less important
has been pruned. Finally, the evaluation of the compression has been done
on CNNs linke VGG16 and ResNet50. While the scope of the described work
is about images, instead in the domain of computer vision and not based on
remote sensing images that cover, e.g. land cover or land use, the data is
compressed with pruning and not on normal compressors such as ZLIB or
file formats like JPEG. On the other hand, the authors of [7] do target on
compression with file formats and their impact on learning algorithms. While
the authors investigated the compression itself, this project direct on machine
learning and its performance itself, which is also the scope of this section. The
limiting factor of their work is that only JPEG is investigated instead of all
common formats.

90

4.1 Examples of Input Compression

Figure 4.4: An end-to-end pipeline is designed to evaluate the impact of com-
pressing the input to a deep neural network. In the beginning, the
data x that consists of images (and the corresponding labels) is
compressed by a function T (·). This function has two steps, first
is to quantize to a lower dimensional color xq = J(·), e.g. by rep-
resenting each pixel color by one bit instead of eight. The second
step is to embed the image into a selected file format. While, PNG
provides a lossless representation, JPEG compresses the images by
removing high frequencies, which can cause artifacts. The last step
of the pipeline is to train a convolutional neural network F (·) and
evaluate its results. The figure has been adapted from [P11].

The methods for image archiving in the domain of remote sensing [110]–[112]
are, for example, based on hashing-based image retrieval. Those methods can
significantly increase the throughput of searching and storing satellite scenes
with full resolution. In contrast, the scope of this work is to investigate the
impact of compression on deep learning models in the training phases as well
as the inference in custom hardware.

4.1.2.3 Proposed Approach

In order to evaluate whether the compression of input images does have an
impact on the CNN in terms of the time needed to train a model and its final
accuracy, an end-to-end pipeline has been defined. The focus is set on two
types, first is the reduction of the color space with the use of quantization, and
the second is the embedding into file formats, where some of them prune infor-
mation permanently. The end-to-end approach is beneficial to automatically
evaluate each configuration pair against each other. The goal is to check if it is
possible to compress the input information to reduce the training time with as
less classification performance loss as possible. This ensures the optimization
of the deep learning pipeline for spatial data without scaling the hardware.

91

4 Application Experiments and Results

The end-to-end pipeline to evaluate the impact of compression on deep
learning models is visualized in Figure 4.4, and will be built during this
section. The first part of the architecture is the input X that is part of the
dataset in its source form. The next phase is the compression Xqc = T (·) that
corresponds of two sub-steps. The first is to quantize the image into a range
of levels such that a target bit depth is reached. Afterward, the image with
the smaller color space is embedded into a set of file formats, where some of
them do apply a lossy compression. The formats TIFF, JPEG, PNG, and
BMP are selected because they are common and nativity supported by the
TensorFlow framework. Each configuration pair is then trained F (·) using
a separate CNN and evaluated against all other possibilities in terms of the
impact of compression on the training time and the classification accuracy.

The problem definition. Dataset d consists of images x and the corresponding
labels y, where each item pair build a set {x, y}. Furthermore, a neural net-
work F with a set of parameters Θ is used as a classifier, formally defined as
FΘ(·). This classifier is able to compute an estimated label ŷ based on a given
input x, formally said ŷ = FΘ(x). Additionally, the neural network is trained
by minimizing the loss function L(y, ŷ), which can be done by the following
function:

Θ∗ = argmin
Θ

∑
(x,y)∈D

L(y,FΘ(T (x, b))), (4.2)

where Θ∗ depicts the optimal set of parameters and T defines the transforma-
tion function that compresses the images to xqc. The first quantized to a target
bit depth 2b and then embedded into a selected file format. In consequence, it
needs to be evaluated how large the impact of T on Θ∗.

In summary, the end-to-end pipeline consists of four parts, quantization,
embedding into file formats, training of the neural networks, and the final
evaluation. In order to investigate the impact of compression following para-
graphs discuss those components in detail.

Image quantization: The first compressive method that is applied on
the architecture from Figure 4.4 is the process of quantization. This takes
an input and reduces the space that is available to represent a pixel of a
channel, formally J : x → xq, where J represents the quantization function,
furthermore, xq ≤ x with respect to their bit depth. Moreover, it is necessary
to differentiate between two compression strategies: lossless and lossy. The

92

4.1 Examples of Input Compression

(a) 8-bit (b) 7-bit (c) 6-bit (d) 5-bit

(e) 4-bit (f) 3-bit (g) 2-bit (h) 1-bit

Figure 4.5: An standard RGB image consists of the common of three channels
that have a total bit depth of 24 bits, so eight bits per layer. When
reducing the space that is available to represent a single pixel from
a channel, also shrinks in size. The images above depict various
quantization levels between eight bit per pixel per layer down to
a single bit. While the eight bit version shows a scene in its full
complexity, the smaller the color space gets, the more are only
edges visible. This figure has been first published in [P11].

former defines methods that are able to change the representation of given data
such that no details are lost. Consequently, the source data can be reproduced
in all its details based on only the compressed version. On the other hand,
lossy methods allow an error between the two representations, such that the
source data cannot be entirely reproduced without differences. While those
strategy archives higher compression rates, it does come with the costs of
pruning information. Image quantization is part of the latter compression
strategy family, which reduces the bit depth by shrinking the color space, and
therefore, information is lost. [113]

All in all, there is an extensive range of quantization algorithms and strate-
gies that are currently used. A primary and classic method is clustering, where
each pixel is assigned to a cluster that represents a color. In this part of the
work, we utilize the k-means algorithm for quantization [114] to decrease the
bit depth of each image.

The k-means clustering algorithm is a rather basic and well-known method.

93

4 Application Experiments and Results

Nevertheless, each data item that is in this case a {R,G,B} pixel, is placed
into the space where all possible distances are computed. This is done utilizing
a similarity measure V , while the Euclidean norm is common, the choice of
the metric depends on the type of the given data as well as on the space
itself. Firstly, k-means initializes k random clusters centers µk. Afterward, the
distances to all centers are calculated for each data item xn within the space
and assigned to the closest µk. Formally defined as

V(xn, µk) =∥ xn − µk ∥2, (4.3)

where ∥ · ∥ donates the Euclidean norm. Furthermore, while each item is now
assigned to a cluster center, the membership of the cluster is stated with the use
of a vector of binary indicators rnk, where rnk = 1 if k = argminj ∥ xn− µj ∥2

and rnk = 1 if j ̸= k. The combination of this with eq 4.3 builds the k-means
clustering algorithm, formally defines as

J (x, k) =
N∑
n=1

K∑
k=1

rnkV(xn, µk), (4.4)

where N is the number of x in D. In this term item, x represents a {R,G,B}
pixel that is assigned to one of the clusters that represent the possible clusters.
Therefore, the amount of clusters control which color is available, practically
said if 64 centers do lead to a bit depth of log2(64) = 6 bit available to represent
one pixel of a single channel. In this way, the values in the images change with
the size of the color space. All in all, the quantization uses two inputs that are
the input x and the number of bits b that are available to represent a single
value. Formally defined as

xq = JRGB(x, 2
b), (4.5)

where xq is the quantized picture that has a bit depth of b. The effects
that are caused by this compression type are visualized in Figure 4.5, which
shows all the quantization levels from eight bit per layer (commonly known
as RGB/sRGB) down to one bit of a three-channel image. [113], [114]

Image compression using file formats: The first compressive method
that is applied in the architecture from Figure 4.4 is to embed the images x
into selected file formats. Typically, those consist of two major parts: the
compressor and the encoding. The former algorithm is utilized to minimize

94

4.1 Examples of Input Compression

the memory footprint to keep the file as small as possible. For example, the
format PNG does apply the ZLIP compressor on the images that come with
several modes that define the degree of compression [115]. In contrast, the
encoded is responsible for changing the representation to embed into the file
format. While some do save the raw matrix, such as a grayscale, other formats
like JPEG do emply more complex methods. Nevertheless, as explained above
in image quantization, there are two compression strategies that find their
application also in file formats. Similar to the previous definition, some formats
can use a lossless compression Clossless, with the goal of being able to reconstruct
the source image without any error from the embedded representation. The
following defines the related formats:

Clossless =

TIFF(x)

PNG(ZLIB(x))

BMP(x).

(4.6)

In contrast to this, the second strategy is to use lossy compressors Clossy that
accept a certain error between the source image and the reconstruction based
on the embedded data. The following defines the related formats:

Clossy =
{
JPEG(DCT(x)). (4.7)

In order to generalize this a set can be defined that includes the listed file
formats from Eq. 4.6 and Eq. 4.7 that defines this type of image compression
C = {Clossless, Clossy}. In summary, the quantized image xq is compressed by
embedding into selected file formats, formally said

xc = C(xq), (4.8)

where xc is the compressed version of the input. The following gives an
overview of the relevant image formats.

Portable Network Graphics (PNG). The first format is PNG, CPNG =

PNG(ZLIB(x)), and part of the lossless compression file formats. Further-
more, it is possible to embed images with up to 8 bit per layer and up to three
color channels {R,G,B} plus an alpha band. The ZLIB compressor does sup-
port a range of compression levels (CL), from zero to nine. While zero indicates
an uncompressed image, a level of one is focused on the performance, and the
concentrate of level nine is set on the maximum compression. The impact of

95

4 Application Experiments and Results

(a) CL 0 (b) CL 1 (c) CL 9

Figure 4.6: The image format PNG is able to hold up to three channels (plus
an alpha band) with a maximum bit depth of 24-bit in total. Addi-
tionally, ZLIB is used to compress the data to reduce the memory
footprint. The compressor has nine levels in total, while the lowers
indicates that no compression is applied, and one sets the con-
centration on the performance. Level nine focuses on maximum
compression. Furthermore, PNG is a lossless image format, there-
fore, the source data can be reproduced by the compressed version
without any error. This is also the reason why there is no visi-
ble difference between the sub-figures. This figure has been first
published in [P11].

the compression levels from ZLIB is depicted in Fig. 4.6, where no significant
difference is visible due to the lossless nature of the file format. [115]

Bitmap (BMP). The bitmaps (BMP) Cbmp = BMP(x) embed the raw pixels
without applying compression, therefore, this file format is at least theoretically
part of the lossless formats. The missing compressor leads to the disadvantage
that items might be stored inefficiently compared to other formats that even
prune parts of the image. Furthermore, bitmaps do support a bit depth up to
24 bit, three-layer pictures {R,G,B} plus an alpha channel. In consequence,
if the image x or its quantized form xq exceeds those limits, whether it is the
number of bands or the bit depth, it is necessary to scale the affected aspect.
[116]

Tagged Image File Format (TIFF). Another format that does not apply
a compressor by default, but has the option, is TIFF Ctiff = TIFF(x), and
therefore also lossless. While the last format was able to hold only images
with up to three plus one channel, this format is more flexible and supports a
wide range of bit depths and the number of layers. Additionally, this format
is often used in the field of remote sensing due to the possibility that it is

96

4.1 Examples of Input Compression

(a) QF 75 (b) QF 10 (c) QF 5 (d) QF 1

Figure 4.7: The image file format JPEG is theoretically able to hold more than
three/four bands and a bit depth of 24 bit per layer. Commonly
the codecs only support embedding three channels (plus an alpha
channel) and 24 bits in total. Furthermore, JPEG applies lossy
compression to the images, which reduces the memory footprint,
this is controlled by a parameter called quality factor (QF). While a
value of 100 is a theoretically uncompressed image, the compression
rate increases by lower values. With lower values, the occurrence
of image artifacts, such as blocking, increases. This figure has been
first published in [P11].

possible to store e.g. all 13 bands of a Sentinel-2 scenes into one single file.
While images with a higher bit depth than 24 bit can be embedded as well,
this work focuses on 24-bit standard {R,G,B} to be able to compare the file
formats against each other. [117]

JPEG (JPG). Compared to all other formats that have been introduced,
JPEG Cjpeg = JPEG(DCT(x)), named after the Joint Photographic Experts
Group, is a lossy compression algorithm. Commonly images with a bit depth
of up to 24 bits are embedded by codecs that have between one (grayscale)
and four ({R,G,B} and an alpha channel) bands. Compared to the common
usage, the JPEG standard also supports images that have a bit depth of
24 bit per channel. Furthermore, the compression factor is controlled by
a parameter called quality factor (QF), where the minimum value of one
represents the maximum compression and 100 is theoretically uncompressed.
The impact of different values is depicted in fig. 4.7, where it is visible that
the image with QF = 75 does only have small to no distortions. On the other
hand, in the case of QF = 1, a large number of artifacts are visible, and even
a loss in color. [118]–[120]

Image classification using a CNN: The next step in the end-to-end
pipeline that is described in Fig. 4.4 is the training and classification using a

97

4 Application Experiments and Results

CNN. Before being able to estimate a label ŷ based on the image xqc, it is
necessary to finalize the compression function T (·) by combining the quanti-
zation with the embedding process. The former applies the described function
JRGB(x, 2

b) that reduces the bit depth to a target value b for every single pixel
of each {R,G,B} channel. While low quantization rates have a more negligible
impact, edge cases lead to a high amount of information such that only the
structures of elements are present. Conversely, the second component is the
embedding into file formats that are done using the function C(x), where the
level of compression and the occurrence of artifacts are based on the format
itself. While PNG is a lossless format that ideally has no impact on the loaded
image, JPEG prunes the high frequencies to a certain defined level which can
cause a high amount of distinctions, for instnace blocking. Anyways, the com-
bination of those components builds the compression transformation function
T , which is formally defined as

T (x, 2b) = C(JRGB(x, 2
b)), (4.9)

where x is the input image, and b the target bit depth.

In addition to the compression, the final step before the evaluation is the
training and classification of the data. Therefore let F(·) be a CNN classifier
and Θ be the parameter set that is used. The task is to compute an estimated
label ŷ utilizing ŷ = FΘ(x) based on an input image x. Additionally, the model
is trained by minimizing the loss function L(y, ŷ), formally defined as

Θ∗ = argmin
Θ

∑
(x,y)∈D

L(y,FΘ(x))), (4.10)

where Θ∗ is the optimal parameter set and (x, y) the image label pair that is
part of the dataset D. The full architecture is the combination of the T with
the compressor C, therefore, the architecture is formally defines as

ŷ = FΘ(T (x, b)) = FΘ(C(JRGB(x, b))). (4.11)

Evaluation: The scope is not to outperform existing state-of-the-art base-
lines, rather to have a reference to compare. The compression of images can
have large manipulating characteristics that affect the color and the complex-
ity available for each pixel. Furthermore, in edge cases where the compression
factor is high, there is also a significant impact on the footprint in memory.
The scope of this work is not to prove that higher accuracies that the current

98

4.1 Examples of Input Compression

Table 4.1: Overview of the datasets. This table has been table published in
[P11].

Name No. Images Source Format Storage Size
AID 10 000 JPEG - QF 100 2 616 MiB
EuroSAT 27 000 TIFF 3 904 MiB
RSI-CB256 24 956 TIFF 4 73 MiB

baselines can be archived, nor to compete with state-of-the-art compression
algorithms. The focus is to investigate the impact of compression on mod-
ern classification algorithms and to check if compressed representations can
improve performance without a significant decrease in accuracy. Therefore,
each image is compressed in two dimensions, one is to reduce the complexity
available for each pixel using quantization, and the second is to embed the
image into various common file formats. The training and inference results
are then compared to each other in terms of time consumption and prediction
performance. Furthermore, selected models are then deployed to an FPGA,
namely an ultrascale+ architecture with a 10 digit number hosted on a Xil-
inx ZCU102 evaluation board, to measure the time and energy consumption
during the inference.

4.1.2.4 Datasets

This section describes the datasets which are used in this part of the work. To
be able to interpret the results from the experiments indispensable to provide
additional details about their file formats, storage size, and other key feature
indicators. The baseline classifications are furnished later in this section. Fur-
thermore, essential information about the datasets is summarized in Table 4.1.

AID: The dataset AID has been provided by [121], and its task is to predict
the land use and land cover type. The images from the dataset are extracted
from Google Earth and are grouped into 30 classes, where a class is, for exam-
ple, Airport. The full set covers 10 000 individuals with on size of 600 × 600

pixels. Furthermore, the images do only given the optical red, green, and blue
bands with a bit depth of 8 bit per channel. Additionally, the dataset is not
geo-referenced. The missing spatial metainformation leads to the problem that
it is not ensured that there is a spatial correlation between the test, train and
validation set. Nevertheless, it is unlikely that this affects the model perfor-
mance in terms of over-estimation, therefore, it does not affect the planned
investigation, which is relevant for this section of the work. Furthermore, the

99

4 Application Experiments and Results

dataset has a total size of 2 616 MiB and is available in JPEG files utilizing
a quality factor of 100. Furthermore, there is also an updated version of this
dataset published in [122] containing 400 000 images within the 30 classes.
Unfortunately, this dataset is not publicly available.

EuroSAT: EuroSAT has been provided by [10], [106] and its task to predict
the land use and land cover type. The dataset consists of 27 000 geo-referenced
images, which are extracted from Sentinel-2. Furthermore, the dataset comes
with all 13 multispectral bands sensed from the satellite, including the red,
green, and blue channels. Within this work, mostly the optical channels red,
green, and blue are considered for the experiments. Each one of the images has
a pixel-wise resolution on the ground of 10 meters and a size of 64× 64 pixels
per patch. The images are labeled and correspond to one of the 10 classes.
The dataset is close to being balanced, where each class contains between 2 000

to 3 000 elements. In addition, the dataset has a total size of 3 904 MiB and
is available in TIFF files with a bit depth of 8 bit per layer. There is a second
version of the dataset, which employs JPEG images with only providing the
optical {R,G,B} bands, which has not been used in this work.

RSI-CB256: RSI-CB has been delivered by [105], and its task is to predict
the land use and land cover type. The dataset exists in two varieties, RSI-
CB128 and RSI-CB256, differing in the size, count of classes, and quantity.
This work considers only the letter one, which consists of 24 000 images with
a size of 256× 256 pixels and corresponding to 35 classes. Furthermore, each
image provides the three optical bands, red, green, and blue, with a bit depth
of 8 bit per channel. Unfortunately, the dataset is not geo-referenced and
therefore leads to the same problems and consequences as with the previous
dataset AID. Moreover, the images are provided taking the format TIFF with
a total size of 4 734 MiB on disk.

4.1.2.5 Classification of Compressed Images

This section evaluates the impact of compression on deep learning with the
architecture introduced above. Therefore, three different convolutional neural
networks have been chosen for training and inference: VGG16, ResNet50,
and MobileNet. Those particular architectures were selected because of their
sensitivity to colors and shapes, their comparable trivial structure, and their
ability to reach high prediction results. While all images from the datasets are
scaled to a size of 224× 224 pixels, all networks are pre-trained on ImageNet
from 2012 [50]. Furthermore, to correctly evaluate the experimental results

100

4.1 Examples of Input Compression

1 2 3 4 5 6 7 8 9 10
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

/L
os

s

Training Accuracy
Validation Accuracy
Training Loss
Validation Loss

Figure 4.8: In order to evaluate the impact of compression on CNNs, it is nec-
essary to create baseline models. The goal is not to outperform
the related current state-of-the-art literature, rather, it is needed
to create robust models the do not tend to have a large general-
ization error. The visualization shows the training process of the
uncompressed dataset RSI-CB256 using VGG16. This figure has
been first published in [P11].

and ensure the arability of comparing these results even with experiments from
other papers, the original top layer configuration defined in the corresponding
papers [51], [48], [53] is employed. Moreover, each model is trained for ten
epochs with a batch size of 128, except for AID@ResNet50, where a 64 was
taken. Additionally, the default learning rate is 10−4, where only AID@VGG16
and AID@ResNet50 used a value of 10−5. Additionally, experiments were done
on two Nvidia A100 GPUs á 80 GB memory.

The following paragraphs focus on defining baseline models to compare
the models against an uncompressed version. In the following, all models are
trained as described above and evaluated with respect to their classification
accuracy. This is then followed by a comparison of the runtime needed to
train each model. While this is done on GPU, another common aspect is
to perform the inference on custom hardware, such as an FPGA. Since the
upcoming of radiation-safe custom hardware, the space industry is interested
in deploying deep learning on satellites which comes with several restrictions.
Later, the models are also deployed to an FPGA, in Section 4.2.1.4, and its
characteristics, like the energy consumption, are investigated.

Classification baseline: The first is to train baseline models to be able
to accurately evaluate the impact of the compression in a spatial context.

101

4 Application Experiments and Results

Table 4.2: Overview of the baseline classification results. This table has been
first published in [P11].

Network RSI-CB256 EuroSAT AID
VGG16 98.00% 94.64% 87.60%
ResNet50 98.82% 96.00% 89.60%
MobileNet 98.27% 93.60% 85.20%

While the intention is not to outperform baselines from current literature,
rather, it is more relevant to create models that are stable and robust
without a tendency for overfitting. This is due to the motivation to reduce
a generalization error to a minimum across the wide span of quantization as
well as compression with image file formats. All baselines are trained with the
scheme defined earlier in this application sample, so pre-trained on ImageNet
and the top layers from the related papers. Additionally, the data is split into
three subsets, where one held-out set is used only for evaluation. Figure 4.8
visualizes the training process of the dataset RSI-CB256 as a sample, the
performances are summarized in Table 4.2.

Evaluation on the basis of the accuracy: The architecture supposes
two options to compress the image, one is quantization, and the other one
is to embedding into file formats. The former focuses on quantizing the
image to a target depth with the k-means clustering algorithm. The first
step is to randomly select a large number of pixels from the dataset to be
able to build the clusters using k = 2b, where b = {1, 2, 3, 4, 5, 6, 7, 8}. While
each cluster defines a color within the space, each pixel gets assigned to one
the nearest, which results in an (new) image that has the targeted depth.
One advantage is that more prominent shapes and colors are highlighted
when transforming the data into a smaller color space. This can emphasize
dominant and high-contrast spatial structures that may support the network
to extract the essential features. The second compression type is to embed
the data into image formats that vary in their encoding strategy. For this
experiment, we have chosen some of the most widely considered image file
formats, including TIFF, BMP, and PNG, using ZLIP and a compression
level CL = 9, as well as JPEG with the quality factors QF = {1, 10, 25, 50, 75}.

When analyzing the results and compare them to the related baselines, it is
expected that higher compression rates cause and decrease in accuracy. On

102

4.1 Examples of Input Compression

1 2 3 4 5 6 7 8
Bit per Channel

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(a) RSI-CB256@VGG16

1 2 3 4 5 6 7 8
Bit per Channel

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(b) RSI-CB256@ResNet50

1 2 3 4 5 6 7 8
Bit per Channel

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(c) RSI-CB256@MobileNet

Figure 4.9: The result of the training from the dataset RSI-CB256 with respect
to the accuracy. This figure has been first published in [P11].

the other hand, moderate rates could support CNN towards reaching the same
or even higher prediction precision. Considering the results from the dataset
RSI-CB256 trained on VGG16 that is represented in Figure 4.9a, one can see
that most of the parameter combinations reach acceptable results. More con-
cretely, the baseline uses the TIFF and requires a size of 4 734 MiB in memory.
While all bit depths do reach high prediction precision, the source of 24-bit
reaches an accuracy on the test set of 98.00%. All over, other compression
parameter configurations do reach comparable results. One example is the
dataset embedded into PNG applying ZLIB, CL = 9, additionally, some bit
depths even reach slightly higher accuracies than the reference model. When
the data is quantized with b = 7, an accuracy of 98.53% is reached, addition-
ally, the memory footprint is reduced to 958 MiB. In the case of JPEG with
QF = 10, the situation is slightly different. While the test set was able to reach
97.24%, which is a decrease of less than one percent, with the advantage that

103

4 Application Experiments and Results

the needs memory shrinks to 107 MiB. This means that the datasets require
only 2.26% of the storage than taking the original configuration. Furthermore,
as expected when considering a stronger compression rate as it is the case for
QF = 1, too many features have been pruned from the image, leading to a
considerable decrease in the performance.

The results for ResNet50 in Figure 4.9b and MobileNet in Figure 4.9c are
quite similar to each other. While it is the same case that more aggressive
compression rates cause lower accuracies, it is also visible that the robustness
of the results decreases. When considering higher bit depths, it can be seen
that the range of the accuracies is relatively narrow. Compared to that, the
higher the compression rates get, the more comprehensive the range of values.

All in all, what can be seen in the case of RSI-CB256 is that higher quan-
tization rates have an impact on the model’s accuracy. On the contrary, all
three network types, the selection of the file format and its parameter caused
a comparable slight loss in accuracy but had the advantage of significantly de-
creasing the memory footprint. Therefore, based on the first dataset, it seems
that some configurations, namely JPEG QF = 75, save a large amount of
memory with the cost of losing some accuracy. While the loss of < 3% accu-
racy is negligible for lots of use cases (especially when considering the variation
of results), some tasks cannot accept this performance drop.

Comparing the results of RSI-CB256 to EuroSAT visualized in the fig-
ures 4.10a–4.10c one can see a schematically slightly similar pattern. While
the different combinations reach high accuracies, JPEG with CF = 1 has a
low performance. As before, this is caused by the JPEG compression algo-
rithm that removes high frequencies from an image and causes, in its extreme
form, image artifacts, therefore, this leads to a loss of spatial details. Even
when the performance drop is significantly more prominent in this example.
Furthermore, another aspect that is more prominent than before is the fact
that lower color spaces tend to have higher accuracy, especially when utilizing
ResNet50 and MobileNet. This can have two reasons, (1) shallow color spaces
tend to have more notable generalization errors, and (2) quantization is able
to highlighter certain features within the images and support the classifier to
reach high performance. We assume that both is the case, while (1) is more
present in aggressive quantization, (2) is more likely to be present in moderate
values. Considering also the results in RSI-CB256, one can see that it is likely
that images are quantizable without a considerable impact on the accuracies.

The AID dataset visualized in Figure 4.11a–4.11c supports these assump-

104

4.1 Examples of Input Compression

1 2 3 4 5 6 7 8
Bit per Channel

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(a) EuroSAT@VGG16

1 2 3 4 5 6 7 8
Bit per Channel

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(b) EuroSAT@ResNet50

1 2 3 4 5 6 7 8
Bit per Channel

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(c) EuroSAT@MobileNet

Figure 4.10: The result of the training from the dataset EuroSAT with respect
to the accuracy. This figure has been first published in [P11].

tions due to the schematically similar pattern while having some different
characteristics. One is that the accuracies are distributed over a larger area,
especially when using high quantization rates, even when the data set is sim-
ilar to the other ones except for the number of images and their sizes. The
results and models are getting more robust when utilizing larger color spaces
for each pixel. While the reference combination, JPEG with QF = 100, creates
a baseline, it is interesting to see that compressed versions such as PNG with
CL = 9 or JPEG with QF = 10 do reach comparable results. Especially latter
supports the assumption that compression can help a neural network to focus
on only relevant features from the images.

Considering all available results, the general pattern is quite similar.
Low compression rates employing the maximum color space lead to good
performances, caused by the fact that the entire complexity is provided.
On the other hand, the higher the compression rate is, whether it is the

105

4 Application Experiments and Results

1 2 3 4 5 6 7 8
Bit per Channel

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
TIFF
Reference

(a) AID@VGG16

1 2 3 4 5 6 7 8
Bit per Channel

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
TIFF
Reference

(b) AID@ResNet50

1 2 3 4 5 6 7 8
Bit per Channel

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
TIFF
Reference

(c) AID@MobileNet

Figure 4.11: The result of the training from the dataset AID with respect to
the accuracy. This figure has been first published in [P11].

compressor of the file format or the reduction of the bit depth, the accuracy
shrinks, namely when considering JPEG with QF = 1, b = 1. Another aspect
that needs to be mentioned is that overfitting is more likely when considering
high compression rates. At the same time, it is clearly visible that some
combinations do reach high-performance values while providing a smaller
amount of information. Consequently, not every detail is relevant that is
processed with the full complexity of the sensed image. While moderate
information pruning reaches similar performances to the baseline, even edge
cases in terms of compression reach performances > 80%. If those techniques
do have an impact on the training and inference time is investigated next.

Evaluation on the basis of the training time: Especially the training
phase in deep learning is computationally expensive and often time-consuming.
This frequently leads to either a horizontal or vertical scaling of the hardware,

106

4.1 Examples of Input Compression

1 2 3 4 5 6 7 8
Bit per Channel

280

300

320

340

360

380

400

420

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(a) RSI-CB256@VGG16

1 2 3 4 5 6 7 8
Bit per Channel

440

450

460

470

480

490

500

510

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(b) RSI-CB256@ResNet50

1 2 3 4 5 6 7 8
Bit per Channel

480

490

500

510

520

530

540

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(c) RSI-CB256@MobileNet

Figure 4.12: The result of the training from the dataset RSI-CB256 with re-
spect to the runtime. This figure has been first published in
[P11].

which can cause high costs. Smaller models reduce the computation time,
therefore, the scope of this part of the work is whether compression of the
input also rescues the time needed for the training. While the time has been
measured for all combinations used before, it is not relevant which hardware
is taken. More important is to compare the length of the relative time frame
against each other. Consequently, the scope is how many percent of the train-
ing time can be saved by simply compressing the images by either quantization
or image file formats.

The measured training time for the datasets RSI-CB256 visualized in Fig-
ure 4.12a–4.12c is again investigated first. Considering the results from
VGG16, one can see that the reference baseline that used the format TIFF
was the slowest for all quantization rates with a needed time between 400s
and 420s. Compared to this, the file format PNG took 350s when b = 1 and

107

4 Application Experiments and Results

1 2 3 4 5 6 7 8
Bit per Channel

350

375

400

425

450

475

500

525

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(a) EuroSAT@VGG16

1 2 3 4 5 6 7 8
Bit per Channel

580

600

620

640

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(b) EuroSAT@ResNet50

1 2 3 4 5 6 7 8
Bit per Channel

620

640

660

680

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
Reference

(c) EuroSAT@MobileNet

Figure 4.13: The result of the training from the dataset EuroSAT with respect
to the runtime. This figure has been first published in [P11].

310s if b = 8. Due to the lossless compression of this file format, it is ex-
pected that the classification results will be similar then to the baseline, but
it is interesting to see that the training time is noticeably lower. While this
does not make a slight difference for a single run, this has a large impact when
training n models with a genetic algorithm or a brute-force method to find
suitable training parameters. Moreover, when analyzing the results for JPEG
(and BMP), one can see that the time has been minimized to a range around
300s, which is a time reduction of ≈ 25% on average. This situation is similar
for ResNet50 and MobileNet, even when the time reduction is smaller than in
the case of VGG16 and the training times differ from each other.

The results for the EuroSAT dataset, visualized in the figures 4.13a–4.13c,
show schematically similar patterns than in the case of RSI-CB256. Consider-
ing VGG16, the reference model that uses TIFF is the slowest, with approxi-
mately 525s on average for the training. It is not surprising that the needed

108

4.1 Examples of Input Compression

time differs from dataset to dataset due to the different specifications. While
PNG CL = 9 reaches a better performance than the baseline, BMP and JPEG
are much faster in all quantization levels, specifically, the training time has the
bounds [350s, 375s]. This situation is similar for the ResNet50 and MobileNet,
even when the time reduction is smaller than in the case of VGG16 and the
training times differ from each other.

The results for the dataset, visualized in the Figures 4.14a–4.14c, underlines
the statements from above with their similar patterns and their differences.
While the other datasets took the TIFF format as a reference, this dataset
has been stored with JPEG with QF = 100 as a baseline that needs 2 616 MiB
on disk. Furthermore, the training took 152s on average over all quantization
levels in the case of VGG16. Additionally, the reference configuration
employed b = 8 reached an accuracy of 90.7%. At the same time, TIFF with
b = 8 reached 90.8% in approximately 240s training time, PNG with CL = 9,
b = 8 landed at 90.13% in 182s, and JPEG using QF = 75, b = 8 ended
up with 90.7% in 139s. Those examples, comparing the results of b = 8,
show that the assumption from above is that not all information still holds.
Moreover, not only the performances reached similar values, the embedding
into compressive file formats reduced the training time by a large factor.
Especially considering the worst-case scenario of TIFF, JPEG with QF = 75
reached a similar accuracy but reduced the training time by ≈ 42%. While
this is similar to MobileNet, The results for ResNet are very unstable; the
reason for this case can only be assumed. Additionally, this is in line with the
results related above, where the accuracies from AID@ResNet50 also showed
unstable patterns.

As a consequence of those results, it can be said that compression can sig-
nificantly reduce the time that is needed to train a model. Especially when
embedding the images into JPEG with high-quality factors maximized the
performance with low to no costs in accuracy. This goes in line with the
comparison based on the accuracy, therefore, this shows that not every piece
of information that is provided by the total complexity is helpful to reach a
good model, instead, with all details leads to a performant training process.
Moreover, the utilize of JPEG with QF = 75 is a compromise between pruning
information with its costs of losing accuracy.

109

4 Application Experiments and Results

1 2 3 4 5 6 7 8
Bit per Channel

140

160

180

200

220

240

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
TIFF
Reference

(a) AID@VGG16

1 2 3 4 5 6 7 8
Bit per Channel

360

380

400

420

440

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
TIFF
Reference

(b) AID@ResNet50

1 2 3 4 5 6 7 8
Bit per Channel

240

250

260

270

280

290

300

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

JPG QF 1
JPG QF 10
JPG QF 25
JPG QF 50
JPG QF 75
PNG CL 95
BMP
TIFF
Reference

(c) AID@MobileNet

Figure 4.14: The result of the training from the dataset AID with respect to
the runtime. This figure has been first published in [P11].

4.1.2.6 Summary

In this part of the work, we have investigated different image compression
methods and the if they impact the training process of CNNs in terms of
time and accuracy. More concretely, the image has been first quantized to
a (smaller) target bit depth, followed by an embedding into (compressive)
file formats. Then we trained multiple CNNs and measured accuracy and
runtime on GPU. Finally, results are compared with respect to the compression
(quantization and file format).

Three CNN types (VGG16, ResNet50, and MobileNet) have been selected
and trained using three different remote sensing datasets. As mentioned
above, the color space has been reduced to a range of target bit depths
with quantization followed by embedding into various file formats (TIFF,
BMP, PNG, JPEG). The benchmark of each combination proved that the

110

4.2 Examples of Algorithm Compression

time needed for the training could be reduced by compressing the images
while paying the costs with accuracy. For example, while TIFF reached high
classification performances, the training process is notably slower than, for
example, taking PNG, which reached a similar accuracy but with shorter
training. Even faster has been JPEG with all considerable quality factors,
while very high compression factors minimize the training time at the expense
of accuracy, it seems that JPEG with moderate compression is a good
computerize due to its performance and nearly no loss classification precision.

It can be said that not every piece of information within an image is relevant
for a classifier such as a CNN. In fact, the compression of an image highlight
more prominent features and characteristics such that they support neural
networks. Moreover, the time needed for the training can be minimized while
losing only a comparatively small percentage in accuracy. In consequence,
a scaling of the hardware might be preventable by pruning the unimportant
information of the image. Additionally, the focus has been set on the training
phase, Section 4.2.1.4 investigates the impact on the power consumption and
performance during inference on an FPGA.

4.2 Examples of Algorithm Compression

The second component of each machine-learning pipeline is the operation that
is applied to the data. While the discussed theoretical foundation is valid for
algorithms in general, the scope in this section is set on machine- and deep
learning models. The goal of this part is to provide samples that show the ad-
vantages and consequences when compressing this component. An application
sample that is provided in the following deals with maximizing the throughput
of a communication channel between a satellite and a ground station. In other
words, a satellite is constantly orbiting the Earth, and its data is employed
to detect wildfires. Due to the fact that a fire can be considered an outlier,
the satellite transmits a large quantity of information that is more or less not
useful. When applying deep learning on-board, a model can decide whether
a sensed scene is relevant or not. In the following, only data is transmitted
which are marked as critical.

The following furnishes two samples of how algorithms can be compressed to
support their performance. The first application is the change of a trajectories
representation during computation which leads to suppression of the quadratic

111

4 Application Experiments and Results

nature of trajectories. The second application sample that is provided is the
above-mentioned example which uses compression to minimize the footprint
of AI space scenarios.

4.2.1 Minimal Footprint AI for Space Application

This section is based on our publications [P11], [P10], [P9], [P6], [P7], [P13],
[P12], [T1], [T3], [T2] and is structured as follows: An introductional motiva-
tion is provided first, followed by the related work in Section 4.2.1.2. Further-
more, Section 4.2.1.3 divides the machine learning in space use cases into sev-
eral scenarios. Section 4.2.1.4 describes then in-depth the scenario Heavy Im-
age Classification and has been published within [P11]. Finally, Section 4.2.1.3
concludes this section with a summary.

4.2.1.1 Motivation

Nowadays, satellites are used for a large about of day-to-day operations that
are common. One employs the navigation of smartphones to reach a particular
place. Other examples are the television or the observation of the Earth’s
surface. While those tasks are common, a problem that occurs when using
satellites is the remote communication that is required to transmit the signal
from orbit down to a ground station. Furthermore, this communication channel
has a limited bandwidth that can be considered. Additionally, the transmission
tasks a specific time and has, therefore, a specific amount of delay that depends
on the height of the satellite’s orbit. This is especially a problem for tasks that
are time critical, whether it is a device intrinsic failure on extrinsic motivation.
The utilization of machine learning onboard satellites can reduce the demand
for manual action it is required, such as navigation, in the case of the risk of
collision with another object. Moreover, in the field of Earth observation, there
is also the need to solve time-critical tasks automatically to enable semi-real-
time data-driven processing. A practical example is the detection of wildfires,
which are near to an outlier when considering the massive amount of entire
produced data. While currently, all the data needs to be transmitted to the
ground station over the speed-limited downlink, the use of machine learning
algorithms on the satellite itself can decide whether a scene is relevant and only
select data from transmission if a suspicious area is detected. In this way, the
amount of data that is required to be transferred and investigated is actively
limited already in orbit, which does lower the resources that are demanded on

112

4.2 Examples of Algorithm Compression

Earth.
When it comes to the deployment of machine learning algorithms on a

satellite in space, the use of FPGAs gets more and more attention, especially
by the industry [2], [3]. Nevertheless, the use of such edge devices has some
challenges that need to be solved. One is the limited memory size and the
processing capability, especially when it comes to inferring deep learning mod-
els. Additionally, the power consumption, as well as the heat production that
is caused by the computation, is essential to be considered as well. More-
over, in terms of deep learning, there is only a tiny portion of datasets that
fulfill the requirement of being non-commercial, non-classified, and accurately
labeled. This is a problem when training models for a specific purpose, as
it is the case in the wildfire demonstration that has been mentioned above.
Furthermore, the task of computing the weights for models can be expensive.
Therefore energy consumption might be a problem for both the training and
inference phase. Another challenge is the constrained computing environment
of a satellite in space, which is the situation that the energy is collected with
solar panels. Additionally, the heat that is generated by the components needs
to be transferred away to avoid overheating. The cooling of the components
is a non-trivial task within a vacuum.

Due to the limited research that has been done, in research as well as in
industrial environments, there is the demand to define requirements that are
needed for deployment but also for the performance evaluation on-device. The
reference implementation is required that is deployable on the most common
hardware devices. The tasks that can be solved using machine learning on
board a satellite are very diverse and cannot be generalized. Therefore, this
section provides the definition of several scenarios, where selected ones are
investigated in detail, namely Image Classification Heavy.

4.2.1.2 Related Work

There is less to no particular research which covers the exact case of deploying
deep learning models on board a satellite that orbits the Earth. However,
when splitting the entire specific scenario into its smaller subareas, each is
either investigated in detail or the attention is rising. Therefore, this part
focuses on the aspect of deploying models on FPGAs and the detection of
specific elements within remote sensing images.

The deployment of deep learning models on FPGAs raises attention and
has some non-trivial challenges to solve. The authors one [2], [3] split the de-

113

4 Application Experiments and Results

ployment into several scenarios, which are related to the computational load
that is on the device itself when performing the computation. This scenario,
namely image classification heavy, split the state-of-the-art convolutional neu-
ral networks into two groups. For example, a representative of the firstly
mentioned group is ResNet50, and MobileNet for the other one. In contrast
to this, the authors of [83] provide a framework that is able to compile deep
learning models that are trained by another framework such that it is able to
run on an FPGA with the use of DPUs. The limitation is that some layers are
not supported, which might require that the architecture is re-implemented.

4.2.1.3 Scenarios

As described above, the deployment of machine learning and deep learning
algorithms to devices that are located in constrained environments, in this
particular case, the computation utilizing on-board hardware on satellites in
space, is needed to consider the problems and costs that come with the envi-
ronment. Therefore this section defines reference use cases for each individual
scenario to split the problem into smaller junks. The reason is that it is
non-trivial to define generalized requirements that fulfill the needs of all cases,
thus the detection of anomalies in telemetry data or the task of segmenting
active fire in remote sensing images. While the ideal case would be that each
scenario type includes a baseline implementation as well as a reference dataset,
the focus is the classification and segmentation of image data. Additionally,
all use cases are deployed to an FPGA, namely a Xilinx Zynq Ultracsale+
MPSoc ZCU102, which has been chosen because of the support of multiple
common hardware acceleration frameworks (VitisAI, FINN, and MATLAB’s
Deep Learning HDL toolbox). If not mentioned differently, each reference
implementation of a baseline is trained on GPU, compiled/deployed with
VitisAI, and inferenced on FPGA. Moreover, to evaluate the performance,
the power consumption of the board, the accuracy of the model, and the net-
work’s throughput are considered. The scenarios are described in the following.

Anomaly Detection – Light: When it comes to space unmanned space
missions as the operation of satellites, a failure of hard- or software systems
can be critical. Additionally, due to the time delay during the transmission
and the channel’s bandwidth, the industry is currently researching to detect
failures as well as anomalies automatically with the consideration of machine
learning algorithms. One type of data that is relevant in this task is the

114

4.2 Examples of Algorithm Compression

telemetry data, which is also the scope of this scenario. A challenge that
occurs when using this type of data is its large quantity, which is caused by the
permanent satellite’s movement in orbit. The authors of [123] describe that
multivariant labeled telemetry data can be classified with the employment of
an LSTM model, which serves as a basis for this scenario. Additionally, the
baseline is created with the NASA Anomaly dataset that contains labeled
data from MSL and SMAP devices.

Radio Classification: Various satellites do send and receive various types
of signals; therefore, one task in machine learning deals with the type
prediction of unknown signals. While this is one example, this use case
is about maximizing the capacity and performance of dynamically shared
channels. For this purpose, different types of neural networks can be taken
to predict the signal’s type and its modulation of a certain channel. During
the MLAB project, the Open RadioML Synthetic Benchmark dataset is
used for the benchmark. The technique to classify the signals is done in line
with the method described in [124], which describes that multiple residual
blocks are connected to a prediction layer with a softmax activation func-
tion. Additionally, the authors of [125] state that when transforming the IQ
plane to a vector representation, deeper layers can be simulated more precisely.

Image Classification – Heavy: This scenario focuses on the task of
detecting whether an object/characteristic is within the image or not. This
class is assigned to an entire image instead of classifying individual pixels, as it
is done in segmentation. A CNN can have different shapes and depths. While
smaller versions, for instance MobileNet, are able to run on edge devices,
large architectures like VGG or DenseNet include a high number of trainable
parameters that leads to a need for higher computational resources. The
focus of this scenario is set on the latter one, which is defined here as heavy
networks in relation to their computational effort required for training and
inference. Additionally, this use case does only consider the three {R,G,B}
color channels.

Image Classification – Light: This scenario is equivalent to the previous
one, with the significant difference that only architectures are taken that are
designed to be applied on edge devices, such as MobileNet. The tiling of
the use cases is done because it is supposed that tiny convolutional natural

115

4 Application Experiments and Results

networks that have a limited number of parameters need fewer computational
resources and, therefore, a diminutive amount of energy.

Image Classification – Multispectral: While the last two scenarios covered
only images with three color channels, this is about to handle multispectral
satellite images, like Sentinel-2, which provides 13 bands. To detect the con-
tent, it is necessary to tile the large images into smaller patches; based on the
last example, an area of 64× 64 pixels would represent an area of 0.4096 km2

on the ground (considering a resolution of 10 m per pixel).
Additionally, the smaller sub-images are then categorized into N classes;

in the case of wildfire, the classes could be fire, burnt area, and smoke. This
dataset is then classified using a convolutional neural network. It needs to be
considered that pre-trained weights from computer vision datasets do often
provide only three channels; therefore, the pre-training is essential to be in
one tile to the constraints. Finally, the class of a certain region within the
source satellite image is defined based on the smaller tiles.

Image Object Detection: The task of object detection is to check if a
dedicated object exists within an image and define its location by placing a
bounding box around it. When considering CNNs, one option is to take the
YOLO architecture, which has been chosen in the experiments described in
[P10] and covers the scenario of the MLAB project. Furthermore, the Airbus
Aircraft dataset has been chosen for this purpose, additionally, the accuracy
is measured in this case with average precision.

Image Segmentation: While object detection places bounding boxes
around, segmentation is about classifying each individual pixel that is as-
signed to a class. Therefore this scenario describes the task of semantic image
segmentation. U-Nets are part of the family of convolutional neural networks
and have been chosen for this task with ResNet50 as a base model. As before,
the Airbus Aircraft dataset is used but with the common intersection over
union (IoU).

Those scenarios serve as a collection of use cases that are considered relevant
when it comes to deploying machine learning and deep learning algorithms to
devices in the space environment. While each of the use cases is important to
investigate, the scope of this section is set especially on image data. Therefore,

116

4.2 Examples of Algorithm Compression

the rest of this section focuses only on a single scenario, namely the Image
Classification Heavy. Those selections do cover the two main classification
problems, that is, a pixel- and patch-based prediction of the class membership.

4.2.1.4 Scenario: Image Classification Heavy

The classification of images tries to predict whether a certain is contained
within an image or not without stating its location. Therefore an image is
labeled based on its content. One example could be the prediction of different
land use or land cover types within a tiled satellite image. The scope of the
heavy classification type is to consider convolutional neural networks with a
large number of parameters that need to be computed during the training
process. Deployment of those models onboard, for example, satellites, can
decrease the information that needs to be transmitted over the channel to
the base station. A use case for this is, for example, the detection of wildfires
where only images are transmitted to the ground, which has a risk of containing
affected regions. Therefore the scope of this scenario is to investigate large-
scale models and their deployment to FPGAs with respect to their prediction
performance as well as their time and energy consumption.

The first step is to train models on different datasets considering a wide
range of networks. To keep things as simple as possible, a dataset is selected
to be investigated in detail. The next step is to quantize the models of the
selected dataset, which is required for the compilation of the target platform.
The last step is to measure the performance and other characteristics on the
FPGA itself

Datasets: The following provides an overview of the datasets that are consid-
ered in this part of the work. While some of the data is already described in
detail in the application sample furnished in Section 4.1.2, this will detailedly
cover only the additional sets. Additionally, Table 4.3 provides all essential
key features from all datasets.

Resisc45 : The Resisc45 dataset has been provided by [126] and covers
the problem of patch classification in the field of land cover and land use
detection. The dataset delivers 31 500 satellite images that have a size of
256 × 256 pixels and are categorized into 45 classes. Moreover, each image
has a bit depth of 24 bits and includes the three {R,G,B} channels. As is
the case for the EuroSAT dataset, the dataset is not geo-referenced, therefore,
a spatial split into subsets cannot be done, which leads to the problem that

117

4 Application Experiments and Results

Table 4.3: Overview of the datasets.
Name No. Images classes
AID 10 000 30
EuroSAT 27 000 10
RSI-CB256 24 956 35
Resisc45 31 500 45

non-overlapping in relation to the spatial position cannot be ensured.

Training on GPU: This part of the work describes the training process,
its result, and the quantization of the neural networks. Anyways the above-
described publicly available datasets, except the wildfire dataset, are consid-
ered within this scenario. Those are trained on a wide range of different
datasets, including the architecture families VGG, ResNet DenseNet, and Mo-
bileNet. Each network is trained without pre-computed weights as well as
using the ones from ImageNet. Furthermore, there is the requirement that
each model needs to have an accuracy > 80%. Otherwise, it’s not considered
and, therefore, not listed in the tables. Additionally, some models are usually
not pre-trained on ImageNet, such as ResNet34 and DenseNet161.

Table 4.4 states the detailed results for all datasets and architecture types.
One can see that in the case of AID, the table only includes a few classifica-
tion results that are above 80% and those very close to the lower boundary. In
contrast to this, the EuroSAT dataset reaches results higher than 90% for half
of the networks in both cases, not pre-trained and using ImageNet weights.
Especially the pre-trained version of the VGG and ResNet family has a high
performance. This is different for the RSI-CB256 dataset. While the Ima-
geNet case has very high accuracies above 97%, the other case does perform
partly poorly in terms of not reaching the required lower bound. The Resisc45
dataset performs even worse, while the not-pre-computed use case has only two
architectures that reach the lower bound. The other case has a performance
that is on average lower than, especially, the one from EuroSAT. All in all,
when considering both cases, with pre-trained weights and not, the EuroSAT
dataset has the most stable performance. On the other hand, the RSI-CB256
dataset performs best when only considering the ImageNet case.

118

4.2 Examples of Algorithm Compression

Ta
bl

e
4.

4:
O

ve
rv

ie
w

of
th

e
ac

cu
ra

cy
of

th
e

da
ta

se
ts

an
d

m
od

el
s

th
at

ha
ve

be
en

tr
ai

ne
d.

D
ue

to
th

e
re

qu
ir

e-
m

en
ts

of
th

e
sc

en
ar

io
he

av
y

im
ag

e
cl

as
si

fic
at

io
n,

on
ly

pr
ed

ic
ti

on
re

su
lt

s
ar

e
in

cl
ud

ed
th

at
re

ac
h

an
ac

cu
ra

cy
ab

ov
e
80
%

.
T

he
ta

bl
e

ha
s

be
en

ad
ap

te
d

fo
rm

[T
2]

.

M
od

el
A

ID
E

ur
oS

A
T

R
SI

-C
B

25
6

R
es

is
c4

5
N

on
e*

Im
ag

eN
et

*
N

on
e*

Im
ag

eN
et

*
N

on
e*

Im
ag

eN
et

*
N

on
e*

Im
ag

eN
et

*
V

G
G

16
–

–
85

.8
5%

96
.0

6%
87

.8
0%

98
.7

0%
–

88
.6

9%
V

G
G

19
–

88
.0

6%
86

.6
4%

95
.1

8%
86

.4
4%

97
.6

2%
–

–
R

es
N

et
50

–
–

88
.6

4%
98

.1
3%

96
.6

0%
99

.2
1%

80
.1

4%
91

.9
4%

R
es

N
et

10
1

–
–

94
.8

3%
98

.1
2%

93
.8

0%
99

.6
2%

–
90

.5
8%

R
es

N
et

15
2

–
–

92
.6

1%
91

.5
3%

96
.0

4%
99

.4
0%

–
92

.2
0%

D
en

se
N

et
12

1
75

.7
3%

86
.3

6%
95

.4
8%

86
.3

6%
–

98
.0

6%
–

84
.6

5%
D

en
se

N
et

16
9

78
.1

3%
87

.2
1%

95
.7

0%
87

.2
1%

–
96

.7
9%

–
82

.7
9%

D
en

se
N

et
20

1
75

.6
0%

85
.2

2%
94

.9
6%

85
.2

2%
–

98
.4

9%
–

86
.8

7%
M

ob
ile

N
et

–
86

.2
9%

93
.0

1%
94

.5
8%

–
97

.8
4%

93
.0

1%
94

.5
8%

(*
)

In
di

ca
te

s
on

w
hi

ch
da

ta
se

t
th

e
m

od
el

ha
s

be
en

pr
e-

tr
ai

ne
d.

119

4 Application Experiments and Results

While the goal is to measure the performance of the networks on FPGA,
this requires the deployment of the models employing two steps. First is the
quantization of the networks, where the models are compressed to ensure a light
weights version, which is required due to the limited resources on the FPGA
and the characteristics of the platform. The second step is the compilation of
the target platform’s source code type. Only then can the FPGA predict the
labels for the data items with the considering of DPUs. The scope is to select
a dataset that performs well across both use cases and all networks. While
the RSI-CB256 dataset is best suitable in the case of using ImageNet weights,
unfortunately, the other case does perform poorly. Therefore, the EuroSAT
dataset is selected to further investigate the impact of the quantization process.

All models from the selected architecture are quantized from their complete
precision to a target complexity of an integer using 8 bits. Table 4.5 states
the prediction performance before and after this process. Similar then before,
only accuracies below 80% are not considered but are listed in the table. One
can see that the performance decreases after quantization, which is because
of the limited complexity which is available to represent a single weight. In
comparison, some networks are quite stable, which as VGG16, which has an
accuracy loss of 1.55%, other networks do lose significantly on performance,
such as ResNet101 without weights, which has a loss of 81.97%, or MobileNet
with ImgeNet weights, which has a loss of 41.36%. Additionally, DenseNet169
with the weights from ImageNet, delivered an error during the deployment
process and, therefore, could not be quantized.

To keep things easier and to avoid unnecessary information, the evaluation
of the FPGA itself is done on a selection of those networks. Additionally,
to be able to compare the results to the ones from the application sam-
ple in Section 4.1.2, only the networks use the pre-trained weights from
ImageNet. Furthermore, the selections should be diverse in their architec-
tural depth but also should differentiate significantly by the number of weights.

Image classification on custom hardware: The performance of a CNN
consists not only of the accuracy of the prediction result; instead, it is neces-
sary to consider other aspects, such as the data throughput within a specified
timeframe and the size of the model. In line with the application sample in
Section 4.1.2, the choice of the compression of an image has a considerable
impact on those aspects. Moreover, next to the speed of the neural network,
the type of hardware accelerator and its features also play a major role in

120

4.2 Examples of Algorithm Compression

Table 4.5: Results from all networks that have been trained on the dataset
EuroSat. Each network has been trained without any weights and
with pre-trained ones from ImageNet. Additionally, the label shows
the results before and after the quantization process that is required
from the deployment to the FPGA hosted on a Xilinx ZCU102 eval-
uation board using VitisAI. Each weight has been quantized to an
integer with eight bits. The table has been adapted form [T2].

Model After Training After Quantization
Not pre-trained* ImageNet* Not pre-trained* ImageNet*

VGG16 85.85% 96.30% 85.95% 94.75%
VGG19 86.64% 97.30% 85.19% 96.96%
ResNet34 94.69% – 64.62% –
ResNet50 88.64% 97.20% 81.68% 94.79%
ResNet101 94.83% 94.46% 12.86% 92.32%
ResNet152 92.61% 93.52% 86.02% 92.84%
DenseNet121 95.48% 95.77% 93.53% 91.14%
DenseNet161 96.69% – 95.80% –
DenseNet169 95.70% 94.35% 94.84% –
DenseNet201 94.96% 93.83% 94.64% 59.09%
MobileNet 93.01% 95.26% 90.20% 53.90%
(*) Indicates on which dataset the neural network has been pre-trained.

the entire system. One form is, for example, the energy and time that is
needed to preprocess the dataset, followed by predicting the labels. While
those measures have an economic impact on computation on consumer and
non-consumer grade GPU devices, the consequences are more relevant when
performing on-board training or inference on satellites or other devices that are
highly constraint. Therefore, the next part focuses on inferencing datasets on
an FPGA, namely an ultrascale+ architecture with a 10 digit number hosted
on a Xilinx ZCU102 evaluation board, to investigate the impact and opportuni-
ties of data compression in line with results from other application experiment
examples. In summary, the objective is to take the results from the given
experiment (on GPU) to evaluate the performance of the FPGA during the
runtime of the end-to-end inferencing program.

To avoid unnecessary complexity, it makes sense to only run the perfor-
mance tests on a single dataset and a small number of configurations (Mo-
bileNet, depth: 8-bit, format: JPEG–QF = 100). The selection is made on
the basis of the listed performances as well as in line with the given results
from the previous experiment. Therefore, while the accuracy of the model still

121

4 Application Experiments and Results

is relevant, it is of interest to make a selection with respect to the robustness of
a model over all available bit depths. Additionally, it is required to maximize
the difference in the time needed for the training between the baseline and
the other tested image formats. This should ensure that the performance im-
pact on FPGA is clearly visible, constant, and stable across multiple inference
sessions. Moreover, a diminutive number of parameters and a smaller depth
should move the spotlight to the data transfer rather than on the computation
of the feature maps. Because of this reason and to be able to compare the
performance to the already available results, it makes sense to focus on the
smallest models from the VGG (VGG16, 153.7M parameters, 16 layer) and
the ResNet family (ResNet50, 25.6M parameters, 107 layer). Furthermore,
considering the listed criteria, the EuroSAT dataset seems to be best suitable
for the evaluation.

Compared to the inference on GPU, the next step is to deploy the selected
models to the FPGA, where the quantization of the models is the first task,
followed by the compiling to the target platform. Anyways the quantization
process using the Xilinx native VitisAI framework requires only the operation
of layers within the models that are supported, which leads to the requirement
to re-implement the networks of interest. In this particular case, the complexity
that is available to represent a single weight after quantization is an integer
with eight bits. This may cause a drop in accuracy before and after this
process. Table 4.5 states the performances before and after the quantization;
for completeness, the accuracies for all implemented models are listed. During
the compilation of the target platform, three DPUs have been configured for
the inference phase. Furthermore, a random set of 1 000 images are selected
from the entire dataset to be referenced on FPGA.

Embedded devices as FPGAs as well as other embedded systems with the
ability to train and inference neural networks, are designed to consume a low
amount of energy. The exact level that is needed to predict a label is also
influenced by the preprocessing steps, but also by the model itself. Moreover,
there are three relevant rails that have the main impact consumption of the
system and therefore need to be taken into account to evaluate the total power
consumption: The first is the consumption of the programmable logic (PL)
components of the FPGA power management, the I/O Rail MGT represents
the consumption from video signals and codecs. The last rail that is relevant
for power measurement is the processor system (PS). The global power of
consumption of the considered components within the FPGA is the sum of

122

4.2 Examples of Algorithm Compression

0 1000 2000 3000 4000 5000
Samples (15ms time-base)

0

2

4

6

8

10

12
Po

we
r (

VV
)

13.425s
Pre-processing

PL Power
PS Power
MGT Power
Total Power

(a) Reference (TIFF)

0 1000 2000 3000 4000 5000
Samples (15ms time-base)

0

2

4

6

8

10

12

Po
we

r (
VV

)

10.680s
Pre-processing

PL Power
PS Power
MGT Power
Total Power

(b) JPEG QF50

Figure 4.15: Visualization of the energy consumption during the inference of
1000 samples from the dataset EuroSAT using VGG16 and a sin-
gle thread on the FPGA. This figure has been first published in
[P11].

the rail’s energy.

The experiments in Section 4.1.2 concluded that the use of JPEG is able to
reduce the training time of GPU. Herefore, the reference file format needs to
be compared with JPEG, and a QF = 50, has a balance between compression
rate and performance, mainly because there is only a small difference between
applying a quality factor of 75 and 25. Additionally, the first case is to investi-
gate the computation with a VGG16 and a single DPU, and one thread. The
total power consumption, as well as the energy level of the single thread, is
visualized in Figure 4.15 samples with 15ms, where the left diagram represents
the baseline with TIFF as a file format. In general, the FPGA has an idle
power which indicates the consumption level without a load and can be seen
in both cases in the first few samples of the line for the total power. After
a few milliseconds, the program is started, which is indicated by the energy
jump to approximately 8.1–8.3W. The first task within the program is to read
all images into its main memory; this is done on the CPU, therefore, the load
of the PS power rises, and the total consumption is above its idle level. The
next step starts with index 995, where the DPU starts to estimate a label for
each image. During this phase, the energy consumption increases significantly
for the PL Power and consequently for the total value. The prediction phase
reaches a total power consumption level of 13.31W on maximum. While each

123

4 Application Experiments and Results

Table 4.6: Runtime on FPGA of the inference program. This table has been
first published in [P11].

Model Threads Pre-processing Time Total Time
TIFF@VGG16 1 13.425s 63.720s
JPEG@VGG16 1 10.680s 60.945s
TIFF@VGG16 4 15.225s 43.575s
JPEG@VGG16 4 12.675s 41.085s
TIFF@ResNet50 1 10.755s 25.830s

rail has different levels, one can see that the MGT power line does only idle,
which is caused by the fact that the program processes images rather than
any video signals. Anyways, considering the results from both file formats,
the power consumption does not notable differ from each other. The reason
is that when the image is read, whether it is from JPEG or TIFF, the com-
plexity and dimension of the resulting matrices are equal. On the other hand,
the energy might still be on the sample level, but when considering the time
essential for the preprocessing, one can see that in the case of TIFF, 13.4s are
needed to read the images, and 10.7s for JPEG. This leads to a time savings of
25.23%, which can have an enormous impact when processing large datasets,
additionally, this is in line with the results from the experiments on GPU. The
runtime and timespan for the preprocessing for all models and use cases are
summarized in Table 4.6.

The use of a single thread leads to inefficiency during the computation,
especially during the prediction phase. When increasing the number of threads
to four, the total inference time is significantly reduced. On the other hand, the
preprocessing time is comparable to the previous case (TIFF: 15.2 s, JPEG:
12.7 s), see Figure 4.16, which results to the fact that the factor for the impact
of JPEG over TIFF increases. As a consequence, the right choice of threads
and image file formats do have a considerable economic and computational
impact on the program in terms of time and energy that needs to be invested.

In both cases, the single and multi-threading inferencing the use of different
file formats did have a comparable considerable impact on the computation
time. As a consequence, it needs to be investigated if the network architecture
has an impact too. While VGG16 is an architecture type that includes 153.7M
parameters, the skip connections of ResNet50 prevent the depth of the model
and lead to only 25.6M. The results in Figure 4.17 depict that the effort needed
for predicting the labels with ResNet50 with a single thread and TIFF is

124

4.2 Examples of Algorithm Compression

0 1000 2000 3000 4000 5000
Samples (15ms time-base)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Po

we
r (

VV
)

15.225s
Pre-processing

PL Power
PS Power
MGT Power
Total Power

(a) Reference (TIFF)

0 1000 2000 3000 4000 5000
Samples (15ms time-base)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Po
we

r (
VV

)

12.675s
Pre-processing

PL Power
PS Power
MGT Power
Total Power

(b) JPEG QF50

Figure 4.16: Visualization of the energy consumption during the inference of
1 000 samples from the dataset EuroSAT with VGG16 and a four
thread on the FPGA. This figure has been first published in
[P11].

lower than using the same configuration with VGG16. This shows that the
architecture choice in terms of their size required to be taken into consideration
when computing on-board.

4.2.1.5 Summary

This part of the work investigated the feasibility of deploying machine learning
and deep learning technologies to devices that operate in constrained environ-
ments, such as satellites in space. Due to the reason the different tasks of
a satellite could not be generalized, several scenarios have been defined that
should serve as a baseline for future operations within this field of interest.
While the use cases are diverse in their domain, the scope of further inves-
tigating the scenarios has been set on the classification and segmentation of
images.

The scenario, namely heavy image classification, focused on convolutional
neural network architectures that have a high number of weights that needs to
be computed during the training phase. First, four datasets were trained on
multiple architectures and then quantized to be able to investigate the impact
of the deployment process on the classification performance of the models.
Afterward, the energy consumption and needed time for the complete inference
phase were analyzed. Additionally, the data has been compressed using the
image file format JPEG. As expected, the switch of the compressive file format

125

4 Application Experiments and Results

0 1000 2000 3000 4000 5000
Samples (15ms time-base)

0

2

4

6

8

10

12

Po
we

r (
VV

)

10.755s

Pre-processing

PL Power
PS Power
MGT Power
Total Power

Figure 4.17: The energy consumption of an FPGA Xilinx ZCU 102 inference
the file format TIFF using ResNet50 and the use of a single thread.
This figure has been first published in [P11].

had no impact on the energy consumption during the inference phase, but the
time to process the images beforehand was reduced by more than 25% at its
peak without losing a large quantity of accuracy.

It is feasible to perform deep learning methods on edge devices as an FPGA,
but with the limitation that the energy consumption of the entire inference
system depends on the model that is selected. Additionally, another aspect for
the energy consumption height is the shape and complexity of the fed data.
While the original source data does provide high accuracies, compression using,
for example, JPEG has a significant impact on the time that is needed to
process the images.

In the future, it is recommended to perform the different scenarios on vari-
ous target platforms. Additionally, it is required to provide a more extensive
investigation of state-of-the-art network architectures.

4.2.2 Trajectory Similarity using Compression

This section has been published in our work [P5] and is structured as fol-
lows: An introductional motivation is provided first, including the related
work, followed by a discussion about trajectory encoding into a sequence of
discrete orientations in Section 4.2.2.2. Furthermore, a metric that is based on
compression is introduced in Section 4.2.2.3 and evaluated in Section 4.2.2.4.
Finally, the section closes with a summary in Section 4.2.2.5.

126

4.2 Examples of Algorithm Compression

4.2.2.1 Motivation

The employ of trajectories is indispensable for modern computations of map
generation [127] and urban analysis [128], but also in fields as biology [129]. An
important task is to compare those trajectories toward their similarity, where
the main computational problem is that the most central distance function,
dynamic time warping [130] and Fréchet distance [131] to name some, have a
non-linear time complexity. While there are some metrics that are optimized to
suppress this problem by ignoring particular from the spatial data because of
its precision, the most common ones are those with a high complexity degree.
Furthermore, the ACM SIGSPATIAL GIS Cup 2017 tried to find a solution to
this problem by focusing on the Fréchet distance only. The best submissions
of this challenge used techniques e.g. simplification [132] or bounding box
representations [133].

This part of the work tries to solve the quadratic complexity issue by taking
compression as a distance metric. Firstly, simple geometry features, namely the
orientation of a single trajectory segment, are generated and then embedded
into a fixed-sized Bloom filter. While the normalized compression distance
utilize normal compressors, like GZIP, to estimate the Kolmogorov complexity,
the created filters serve as a lossy compression where the informational content
is empirically evaluated. Furthermore, the joint Kolmogorov complexity of
two objects is required to be able to compute the similarity of two objects
in the case of the normalized compression distance. It is approximated by
compressing both objects together. In contrast to this method, the proposed
approach with Bloom filters is by uses the logical OR operator. This approach
is evaluated on different trajectory datasets, including real-world GPS data,
and a k-NN algorithm.

The following it is examples of how the geometry features from the tra-
jectories are computed. The next part discussed in-depth the embedding of
the features into the Bloom filters as well as the proposed similarity metric
that is adapted from the normalized compression distance. Furthermore, the
following evaluation provides an analysis and benchmark using four different
datasets that cover, among other fields, GPS data and handwritten characters.
Finally, a summary of the main findings is given.

127

4 Application Experiments and Results

A C

D

E

F

B

Figure 4.18: The local orientation is a feature that represents the trajectory
by a sequence of direction changes. More concretely, each angle
between two segments is calculated and encoded to a letter, for
example, by dividing the unit circle into eight directions. This
adds a rotation-, translation-, and scaling invariance to the data.
The darker regions around sub-positions depict the angle of inter-
est. Figure has been published in [P5].

4.2.2.2 Trajectory Representations as Strings of Discrete Orientations

A trajectory is a sequence of spatial location information within an n-
dimensional space, a representative is, for instance, a GPS signal. Additionally,
some other related characteristics, such as the timestamp for each single point,
can be included as well. Therefore, a trajectory is built of linear interpolated
vectors that can include related attributes. While one option is to sequentially
list all coordinates as a list, another representation form is to remember the
angles between the segments and encode them into letters. This would trans-
fer the trajectory into a string of characters. Depending on the calculation of
the angles and the encoding, this adds a translation-, rotation-, and scaling
invariance to the data. If the size of the trajectory is still relevant, one can
repeat a sequence of letter with respect to the segment length.

There are two options to calculate the angles between two segments that
end up with different characteristics. The first one is to calculate the angles
in a local context. Consequently, this represents the trajectory by a sum of
direction changes, turn left or turn right. As it has been done in [98] reach
trajectory has been discretized using the angle and the distance. The corre-
sponding values have been assigned to a letter by dividing the unit circle into
n elements, where each section is represented by a specific letter. Furthermore,
each letter has been repeated with respect to the length of the segment. In
this way, the representation is no anymore scaling invariant. A sample of this
procedure is represented by Figure 4.18, which visualizes a trajectory and the
letters that correspond to the angles that are relative to the previous segment.

In contrast to the local representation, The global orientation calculates the

128

4.2 Examples of Algorithm Compression

A

B

C

D

E

F

Figure 4.19: The global orientation is a feature that represents a trajectory by a
sequence of directions with respect to the Euclidean space. More
concretely, the angle of each segment is calculated individually
and encoded into a letter. For example, by dividing the unit
circle into eight directions. This adds a translation-, and a scaling
invariance to the data. Compared to the local directions, this is
not rotational invariant due to the encoded global aspect. The
darker regions around sub-positions depict the angle of interest.
Figure has been published in [P5].

angles based on the cartesian coordinate system rather than on the previous
segment. Therefore, each letter represents a direction in space, North or South.
Similar then before, all angles between 0 and 2π are quantized into N equal-
sized parts, each section representing a letter. Figure 4.19 shows the same
trajectory as before but with globally calculated orientations.

4.2.2.3 Compression Distance of Trajectories

This section proposes a method that applies the approach of the algorithmic
information theory, more specifically NCD, to location data. It is a non-trivial
task to find a suitable measure for the complexity of trajectories, especially
not when it comes to joint complexity. While the NCD does apply normal
compressors to compare two objects, this part of the work adopted the Bloom
filter as a lossy compressor. More specifically, a trajectory was converted
to a sequence of features, as their global orientation, and embedded into a
Bloom filter. Instead of embedding a single character after each other, sets of
words (n-gram) are injected into the filter to highlight the direction changes
within the single sequence of location points. The use of this specific data
structure enables the possibility to apply logical operations efficiently, which is
useful when calculating the joint complexity. In detail, the proposed method
can be split into three parts. First is the embedding into the Bloom filters.
Second, to use the filter as a lossy compressor, and finally the adaption of NCD.

Bloom Filter and trajectory features: The first step of the proposed

129

4 Application Experiments and Results

distance measure is to extract features and embed those into a Bloom filter,
acting as a basis for the distance measure. While there are lots of different
feature types that can be generated from trajectories, this work employs two
types, namely the local/global orientation for each segment and the geohashes
from the coordinates. Before actually embedding the features, the former
characteristic is encoded into a set of symbols. When using a probabilistic
data structure, a problem that might occur is information overlay, which is
caused by a trajectory that visits the same grid cell multiple times or folds
multiple segments that are pointing in the same direction. This can lead to
the disadvantage of not providing enough spatial details to accurately measure
the similarity between two trajectories, consequently having a large amount of
miscalculation and, therefore, a bad performance. A solution to this problem
is to take the number of occurrences for each letter into account. By appending
the actual, this incrementing suffix to each letter adds enough information to
prevent a large amount of overlay. For example, consider the trajectory that
has been encoded to the letters AGAH, after adding the suffix, the letters are
transferred into the set {A1, G1, A2, H2}. Note that a second A would have
the suffix two, which allows the embedding of the letters without a loss. This
process of creating the Bloom filters is represented in Algorithm 1.

Algorithm 1: Initialization of the Bloom filters and the embedding of
generated features.
Input: A finite set T = {t1, t2, . . . , tn} of trajectories
Input: bfLen: the size of the Bloom filter
Input: k: the number of hash functions
Output: A set of n Bloom filters

1 for i← 0 to n do
2 filter ← newBloomFilter(bfLen, k)
3 f1 ← geohashes from ti as set {h1, h2, . . . , hj}
4 f2 ← orientations from ti as set {s1, s2, . . . , sj−1}
5 for x← 0 to j do
6 if x < (j − 1) then
7 letter ← addIncrementalSuffixToChar(f2,x)
8 filter.add(letter)

9 end for
10 BloomFilters[i]← filter

11 end for
12 return BloomFilters

The use of Bloom filters to hold data brings some advantages, that is, the

130

4.2 Examples of Algorithm Compression

constant length. The filters are allocated with a length that is independent
of the embedded data, leading to a suppression of the quadratic complexity
of trajectories. Furthermore, due to this characteristic and the binarity logic,
operations can be applied without the overhead. On the other hand, one
needs to consider that the information distribution within filters does matter
and has an impact on the ability to compare the filters.

Compression using Bloom filter: The Normalized Compression Distance
(NCD) has already been explained in detail in Chapter 2.1.2.3, but in sum-
mary, this metric approximates a Kolmogorov complexity K(x) utilizing the
length of the compressed version of an object C(x) that is generated by nor-
mal compressors e.g. GZIP or BZ2. Moreover, the relative complexity of two
objects K(x, y) is defined by jointly compressed objects C(x, y) = C(x ∪ y),
where · ∪ · represents the concatenation of two objects. The calculation of this
metric is computationally expensive because of normal compressors to approx-
imate K. Previous projects namely [P1] did successfully apply this technique
to remote sensing data, but the computational needs do limit the applicability
in real-world scenarios.

A solution to the expensive computing of NCD is to replace the normal
compressors with Bloom filters that are adapted to be considered as lossy
compressors by considering the information distribution within each filter. A
characteristic of the filters is that the number of zeros is inverse-dependent to
the amount of uniquely inserted elements. This leads to a binary array of em-
bedded features, where its information-theoretic complexity can be calculated
with Shannon’s entropy H(x) = −x log2(X)−(1−x) log2(1−x). To be able to
apply the entropy H as a similarity measure B like its done when using normal
compressors, the complexity of x is calculated by B(x) := H(FOZ(BF(x))),
where FOZ (see Definition 2.11) is the fraction of zeros of a Bloom filter BF.

In relation to this definition, it is also necessary to introduce a measure
for the joint complexity to approximate K(x, y). This is done by taking the
union of two Bloom filters, which is directly computable by computing using
the logic OR operation. More formally defined, BF(x ∪ y) = BF(x) ∨ BF(x),
consequently the joint information-theoretic complexity can be calculated by
B(x, y) = H(FOZ(BF(x) ∨ BF(y))). This measure fulfills all necessary defini-
tions as the idempotency, such that B(x, x) = B(x) that is increasing with the
dissimilarity of the two given trajectories, and the symmetry B(x, y) = B(y, x).

An advantage is that only Bloom filters for each individual trajectory are

131

4 Application Experiments and Results

needed to compute the proposed measure. This result to a reduction of the
memory footprint. Additionally, the employ of logic operations to estimate
the joint complexity of K(x, y) and the avoidance of using normal compressors
such as GZIP or BZ2 cause a reduction of the computational complexity.

NCD using Bloom Filter: The definition of the information-theoretic com-
plexity measures B(x) allows the construction of the NCD with Bloom filters
as lossy compressors. There is the limiting factor that the defined measure
B(x) = H(FOZ(BF(x))) is only increasing if the fraction of zeros of the af-
fected Bloom filters is below 0.5. Higher percentages can lead to distortions in
terms of getting negative distance values.

There are three solutions to get rid of this limitation: (1) is to increase the
size of the filters. This has the consequence that it is required to recompute
the filters for all trajectories. This increases the computational effort as well
as the memory footprint, where the motivation is to reach the opposite. (2)
is to directly use the fraction of zeros and skip the calculation of the entropy,
such that B(x) = FOZ(B(x)). While this is not the scope of this work due
to having intentionally faulty units, it cannot be said if this results in good
results. One can see that the metric produce negative distance values if the
union of two filters from individual trajectories leads to a higher number of in-
dividual features than it is for the separated filters. Therefore, (3) is to take the
nominator’s absolute values from the equation, and the Bloom Compression
Distance can be formulated by Definition 4.3.

Definition 4.3. Let NBD be the Normalized Bloom Distance that is built on
top of the NCD. The calcuated by using an information-theoretic approach and
estimates the dissimilarity between two objects x,y where their characteristics
have been embedded into Bloom filters. The distance measure is defined as

NBD(x, y) =
| B(xy)−min{B(x), B(y)} |

max{B(x), B(y)}
,

where the range is 0 ≤ NBD(x, y) ≤ 1+ε. While a value of zero indicates two
similar objects, the dissimilarity increases with the number to its maximum
of one. Furthermore, ε is the error that is caused by sampling problems with
small filters and distribution problems with its origin of using real-world hash
functions with non-uniform collisions. If H(x) = H(Bf(x)) is fulfilled, NBD
approximates the Kolmogorov complexity.

Experiments using the defined NBD showed that (3) improves the results

132

4.2 Examples of Algorithm Compression

compared to the solution (1) and (2), additionally, the performances are im-
proved.

4.2.2.4 Experiments

The classification and clustering of trajectories can be a non-trivial task, where
small changes and characteristics of single segments can have a large impact
on the accuracy of a selected distance metric. The method that is introduced
in Section 4.2.2.3 embeds the features of an individual trajectory into a Bloom
filter that functions as a lossy compressor to approximate the Kolmogorov
complexity. This section applies the proposed metric to classify the trajectories
into categories. The experiment is divided into several tasks, preprocessing,
filter generation, and classification.

Before being able to perform a classification, it is necessary to preprocess the
given data. The first is to assemble the individual coordinates into segments.
Additionally, a Douglas Pucker algorithm is applied to simplify the trajectories
and avoid large jumps. Furthermore, traces that are below a threshold are
removed from the dataset. The next step is to generate a Bloom filter for each
individual trajectory. Therefore the selected features, namely global directions,
that differed from dataset to dataset have been extracted and embedded into
filters. As a result, each trajectory is represented by characteristics that are
embedded into an individual filter. The last step within the processing chain
is the classification itself, where the k-nearest neighbor algorithm is used to
predict the trajectory’s class based on the Bloom filters and the proposed
distance metric. There are several parameters that need to be considered.
Next to the number of neighbors for the k-NN it also the feature generation can
be adjusted, for example, by defining the amount of directions. Additionally,
the size of the Bloom filters does also have a significant impact on the final
result. Therefore, those parameters are found by a permutation of a set of
possibilities.

Several experiments have been performed to evaluate the normalized
Bloom distance and its performance, to be able to rate the descriptive power.
Datasets have been selected that represent different types of trajectories, such
as characters of mobility, but also different problem tasks, like binary- or
multi-class classification.

Results for Prague-Teams: The first dataset that is taken to evaluate the
proposed Normalized Bloom distance is Prague-Teams provided by [98] and

133

4 Application Experiments and Results

1000 500 0 500 1000 1500
X

500

0

500

1000

1500

Y

(a) Prague-Teams

0 50 100 150 200 250
row

0

50

100

150

200

250

co
lu

m
n

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(b) Similarity Map

Figure 4.20: Visualization of the dataset Prague-Teams (left), where the colors
indicate the team membership, and the corresponding similarity
map (right). This figure has been published in [P5].

consists of 273 individual trajectories. The dataset has been generated with
the computer game Urban Terror where five players played the map Prague.
After the spawn of each player, the first 128 location points, which is equivalent
to the first 6.4 seconds of gameplay, are sampled to a single trajectory. The
dataset consists of two classes, corresponding to the team members of each
player, where the distribution is 40/60. In conclusion, the task is to predict
the team members of the trajectories. The dataset is visualized in Figure 4.20a,
where the colors represent the teams.

The Bloom filters are constructed with a length of 256 bit and two hash
functions. Due to the spatial separation of the data, it is necessary to exclude
any location information from the generated features, therefore, the global
directions have been selected using 16 different possible orientations. Those
characteristics lead to a fraction of zeros of 47.51% on average and a memory
footprint of 8 kib for the entire dataset. Consequently, a single coordinate pair
is represented by a 2 bit.

To evaluate the metric, a k-NN classifier has been trained using the
Normalized Bloom Distance and taking 19 neighbors into consideration. This
led to an overall prediction accuracy of 91.59%. While the matrix factorization
approach reached comparable results, the n-gram free version ended up with
81.03% [98]. In addition, the generation of a similarity matrix sorted by team
membership, visualized in Figure 4.20b, shows clearly two separated regions
that correspond with the classes. While a noise pattern is visible, it does not
affect the classification.

134

4.2 Examples of Algorithm Compression

1500 1000 500 0 500 1000 1500
X

500

0

500

1000

1500
Y

(a) Prague Ego-Shooter

0 50 100 150 200
row

0

50

100

150

200

co
lu

m
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Similarity Map

Figure 4.21: Visualization of the dataset Prague Ego-Shooter (left), where the
colors indicate the team membership, and the corresponding sim-
ilarity map (right). This figure has been published in [P5].

Results for Prague Ego-Shooter: The second dataset is called Prague Ego-
Shooter and is created using the same game as before with the difference in its
playing mode. This time several players tried to capture and hold an item on
its position within the game. Additionally, due to the structure of the map,
the generated trajectories are self-redundant. The dataset itself contains 275

trajectories, including 244 675 individual coordinates. Compared to the last
dataset, the trajectory has been sampled using the players traced through each
full lifetime cycle. The dataset is visualized in Figure 4.21a, where the colors
represent the teams.

The configuration of the Bloom filters and the features are equivalent to the
previous experiments, with the difference that each filter has been initialized
with a length of 1 024 bit and three hash functions. Those characteristics lead
to a fraction of zeros of 73.89% on average.

The evaluation of the metric using k-NN and the same scheme as before,
with the difference that 13 neighbors have been taken into account, reached
a prediction accuracy of 90.52%. Moreover, the similarity metric, visualized
in Figure 4.21b, is interesting because it shows, on the one hand, a similar
structure and noise to the last experiment but with significantly smaller
differences between the classes. This might be because of the fact that each
player respawns near the origin, and the target that needs to be captured leads
to trajectories that contain a similarity. This makes the classification problem
harder and, therefore, the similarity metric less intuitive. Furthermore, this
classification task shows that the proposed metric is able to perform well on

135

4 Application Experiments and Results

10

0

10
0

10

20

0

25
0

0 20
20

0

0 25 25 0 0 25
X - Distance [mm]

Y
- D

ist
an

ce
 [m

m
]

(a) Characters

0 500 1000 1500 2000 2500
row

0

500

1000

1500

2000

2500

co
lu

m
n

0.00

0.05

0.10

0.15

0.20

0.25

(b) Similarity Map

Figure 4.22: Visualization of the dataset Characters (left), where the colors
indicate the team membership, and the corresponding similarity
map (right). This figure has been published in [P5].

more complex two-class problems.

Results for Characters: The third dataset to evaluate the proposed metric
is provided by the UCI Machine Learning Repository and is called Characters.
As the authors from [134] state, it consists of the dataset of 2 858 trajectories
that are traced from handwritten characters by only considering letters that
can be written with a single stroke. Consequently, each trajectory is assigned to
one of the 20 provided classes, where each holds between 125 and 175 individual
items. The raw data has been smoothed using a Gaussian filter, therefore, the
preprocessing of this dataset includes an additional step to reversing this step.
A sample for each class is visualized in Figure 4.22a.

The Bloom filters are constructed with a length of 256 bit and two hash
functions. The global orientations of a segment with eight different directions
have been selected as features to be embedded. Those characteristics cause a
fraction of zeros of 74.40% on average.

The evaluation of this dataset is done with k-NN and 15 neighbors that
are considered, causing an accuracy of 81.52%. Surprisingly, the matrix
factorization approach in [98] using the same parameters reaches a prediction
accuracy of 74.2%. Considering the individual letter that is included in the
dataset, one can see that some of them are structurally very similar to each
other, such as V and U . This leads to distortion when predicting the classes
and increases the complexity of this task. These artifacts are reflected in the
corresponding similarity matrix, which is visualized in Figure 4.22b. All in
all, this example shows that the metric is able to handle multi-class problems

136

4.2 Examples of Algorithm Compression

116.2 116.3 116.4 116.5 116.6
Latitude

39.80

39.85

39.90

39.95

40.00

40.05

40.10

Lo
ng

itu
de

(a) Geolife

0 100 200 300 400
row

0

100

200

300

400

co
lu

m
n

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(b) Similarity Map

Figure 4.23: Visualization of the dataset Geolife (left), where the colors indi-
cate the team membership, and the corresponding similarity map
(right). This figure has been published in [P5].

with slightly structurally overlapping patterns.

Results for Geolife: The fourth dataset is called Geolife, provided by [128].
This real-world dataset included mobility data tracked by 182 users equipped
with GPS trackers and was collected between April 2007 and August 2012. Fur-
thermore, the dataset consists of 24.8 million location points that correspond
to 17 621 trajectories that are assigned to 10 classes. Due to its complexity,
this work took a balanced subset of Geolife, specifically, the first 500 trajec-
tories from the classes Bus and Taxi. The Figure 4.23a visualizes the used
subset, where the color represents the class of each trajectory.

While the Bloom filters are constructed with a length of 1 024 bit and two
hash functions, next to the global orientations using 16 possible directions, the
geohash with a length of seven characters has been calculated or each location
of a segment as a feature as well. Those characteristics lead to a fraction of
zeros of 93.11% on average, where the high count related to the number of
features and average trajectory length indicates a possible information overlay
within the filters.

The evaluation with this dataset is similar to the other ones, with the dif-
ference that only four neighbors are considered for the classifier. The configu-
ration leads to an overall accuracy of 82.00% for the subset. A consideration
of the entire dataset could not be successfully performed, where a reason could
be the distribution of the ones within the filter. The computed similarity ma-
trix and sorted by classes, visualized within Figure 4.23a, shows clear patterns

137

4 Application Experiments and Results

representing the different mobility types.

4.2.2.5 Summary

In this part of the work, a similar metric was introduced that is based on
the normalized compression distance. The proposed metric adapted Bloom
filters as lossy compressors to approximate the Kolmogorov complexity. To
evaluate the approach, trajectory features, like encoded segment orientations,
were generated and embedded.

An advantage compared to the normalized compression distance is that it is
sufficient to have only the Bloom filters and, therefore, the data in a compressed
format, which reduces the memory footprint as well as the computational
effort. Especially the fact that the computation of the joint complexity is
done with logic operators on the compressed data directly has a significant
impact on its performance. Due to the nature of the simple features, the
structure of trajectories, and the use of Bloom filters, a single location point
were represented by a low number of bits. Therefore the information-theoretic
metric is effective in classifying real-world trajectory data.

Furthermore, even with simple features namely the orientation of a segment
encoded into a letter were able to reach baseline results from other publica-
tions. Moreover, compared to common trajectory distance measures for in-
stance DTW and Frechet distance that have a quadratic complexity, the Nor-
malized Bloom Distance suppressed this by replacing the normal compressors
with Bloom filters.

The approach of replacing the normal compressors with a probabilistic data
structure opens the possibility of efficiently computing the similarity between
two objects. While the focus has been set on trajectories, it can be assumed
that this is adaptable to a wide range of spatial objects.

The distance measure based on compression reached in the provided ex-
amples comparable results to using the complete available information, con-
sequently, one can assume that the data does contain some details that is
not needed in some scenarios. By removing the boilerplate, the algorithm’s
performance can be increased.

138

4.3 Example of Output Compression

4.3 Example of Output Compression

The third component of a machine learning pipeline is the outcome of the
operational algorithm, for example, the prediction result. Currently used gen-
erative AI models does generate text on the basis of user input, but it is not
able to decline an input because of its incorrectness. Therefore the model gen-
erates an output even when the generated outcome is not trustworthy. This
section focuses on the compression of the output in terms of deciding whether
the result can be trusted or not.

4.3.1 Information-Optimal Abstaining

This section has been first published in our work [P4] and is structured as fol-
lows: An introductional motivation is provided first, including a related work.
Next, Section 4.3.1.2 furnishes a brief summary about the text classification.
Furthermore, abstaining is described in Section 4.3.1.3 and the ensemble of
models in Section 4.3.1.4. In addition, while Section 4.3.1.5 describes how
a dataset consisting of building polygons and Twitter texts are built, Sec-
tion 4.3.1.6 evaluates the dataset using sparse text mining models. Moreover,
the ensembled models have been investigated in Section 4.3.1.7. Finally, the
model is concluded with a summary in Section 4.3.1.8

4.3.1.1 Motivation

Nowadays, the is a tendency that in the future, people will live in cities rather
than in the countryside [135]. Nevertheless, urbanization does bring global
problems and consequences [136]. There are two types of data sources that
are able to monitor the behavior of urban development, namely social media
and remote sensing. The fusion of these data types is a growing research field
[103], where the challenge is to combine highly accurate satellite data and
social media data. Some of the latter mentioned data has a spatial location
attached within its metadata and is processed in the form of tagged photos
[137], social media text [138], and mobility data [139]. When it comes to
monitoring urban areas with the use of those combined data sources is the
determination of a building function. While the remote sensing data provide
parameters such as the footprint of the building, the social media texts can
give insights about the usage. There is a wide range of building types that
can be assigned. Two classes that are essential for society are residential and

139

4 Application Experiments and Results

commercial, which build a large portion of an average city. A problem that
occurs when only considering those two building types is the fact that not
everything fulfills the criteria of being a member of this function type.

This part of the thesis focuses on the challenge of the feasibility of using
a Twitter text collection to assign the function types of residential and com-
mercial buildings. A problem that occurs is that it is expected that only a
tiny portion of the tweets that are near a building has actually related to it.
Therefore it is necessary to propose a classification system that is able to filter
out data that is irrelevant. As a consequence, when it is expected that such a
system filters most of the data, the model needs to be trained on a compara-
tively small portion of the dataset. Another challenge that might be faced is
an unequal class imbalance. While the most significant part of a city consists
of a residential area, it is expected that most tweets are about commercial
buildings. Furthermore, there is research in the field of detecting anomalies
and outliers [140]. Unfortunately, those scenarios do not fit the requirements
of this research, instead, it is needed to understand the minority class.

To solve the issues of overlapping and ambiguity classes and the filtering
of irrelevant data, a technique called abstaining [141] is applied, where the
classifier has the option to decide whether a result is trustworthy. An aspect
that needs to be considered is if the costs of abstaining from a classifier are
tenable and comparable to the cost of misclassification. While this is a trade-
off in cost-sensitive classification [142], the use of probabilistic classifiers can
help to address those challenges without subjective cost settings.

Furthermore, the following demonstrates that the ensemble of ensemble
sparse text-mining models is able to extract labels for a portion of the unlabeled
building with the use of geo-referenced social media data and how those texts
can contribute to building classification.

4.3.1.2 Text Classification

The content that is available on the internet is enormous in all its facets, one
datatype is the textual data that is accessible on webpages, but also in the
form of collections namely Wikipedia, news pages, as well as social media
text blocks. The latter one is the scope within this part of the work, more
specifically, the focus is set on Twitter tweets. Nevertheless, while generative
models focus on the generation of text. The classification aims to categorize its
content. Therefore, features such as language patterns, words, or their number
of occurrences. Due to the short and informal structure of the data, low-level

140

4.3 Example of Output Compression

structural features are used, including words and characters. Additionally,
n-grams of characters are used to be able to cover syllables.

In text classification systems, the first step is to split each document within a
given corpusD into small components, in this case, into words. This processing
step is called tokenization. All words that are included within the documents
are held in a vocabulary, additionally, a vector of natural numbers is created
for each document that shows the amount of occurrences for each word that
is in the vocabulary. Due to the characteristics of the term frequency (TF)
vector, the corpus D can be represented by a sparse matrix S.

The employ of raw frequencies of terms can have the problem of including
information that is not useful for the classification task, those are language-
specific terms filling words for instance we, have, will, are, and for. It is
recommended to remove those types of words from the vocabulary to prevent
the model from learning unimportant information. Conversely, rare words can
lead to sparsity in the dataset, and it is hard to map the meaning by its
context. Therefore, it is essential to build a set of vocabulary that does not
contain stop words and words that are below a threshold of term frequency.
Especially the latter is a trade-off and does not exclude information that might
be important. The combination builds the Term-Frequency Inverse-Document-
Frequency (TF-IDF) that indicates how important a word is, the higher this
value is, the more important a word. This value can be normalized by the
expected frequency the words within a document might have.

A problem that tweets face is their length, which makes a document-word
metric like the TF-IDF partially successful for learning methods. Therefore,
there is a particular risk of overfitting and the use of basic learning methods
e.g. logistic regression and multinational Naïve Bayes. Additionally, due to
the nature of the problem of building function detection and the length of each
text, it is clear that not every post contributes to the decision of the prediction
algorithm; only some of the words that are included within the vocabulary do
contribute to the algorithm’s decision about the function type of a building.

All in all, there are approximately two methods that address the dedicated
text classification problem of having a slight overlap of the words between two
vocabularies. (1) topic mining, where selected elements of a vocabulary are
assigned to a topic group. (2) text embedding, where words are assigned to
a location within a low-dimensional space. The meaning and topic group can
then be computed with a distance metric as the L1 or L2 norm. Anyways,
what the two techniques have in common is the large amount of data that is

141

4 Application Experiments and Results

needed for training and the precise definition of topics over the entire corpus.

4.3.1.3 Abstaining

The data used in this part of the work comes with some problems, for instance
class imbalance. Conversely, there is also a specific risk of having blurred
data, unfortunately, methods for class imbalance that are are not necessarily
designed to handle this type of problem. Nevertheless, the drawback of blurred
data is that sometimes a class cannot be safely assigned to a single data item.
Considering the defined problem, not every building is part of the categories
commercial or residential. At the same time, some buildings can also have
two or more classes at the same time (e.g., apartments and shops), while other
buildings are from different class types, like industrial buildings. Considering
the content of tweets with respect to their location, the situation gets even
more complex. While some texts contain some helpful information that is
related to the function of a building, other tweets within the same area are
totally irrelevant. As a consequence, it cannot be expected that a learning
algorithm is able to perform well overall classes or even being able to predict
certain classes.

A solution to these limitations is abstaining, which has been well studied
from the theoretical point of view by [141] and its applications by [143]. Let
ϕ be a bilistic classifier that assigns as class probability vector to ϕi

Abstaining refers to the strategy of making a prediction when a model is
unsure about the corrective of the output. This method can be beneficial
for enhancing the overall accuracy of the model by preventing it from making
erroneous predictions. More formally said, let ϕ be bilistic classifier that assigns
as class probability vector to ϕi based on an data item xi and an vector of
decision thresholds τ is introduced,

yl = argmax

(
ϕi(xl)

τi

)
, (4.12)

where 0 < τi ≤ 1. Furthermore, this threshold parameter can be used to vary
the weight of each class. While one possibility is to guess the values for τ ,
another way is to apply the mutual information, defined in Theorem 2.3, to
optimize the decision thresholds. When using abstaining in classification tasks,
the equation or rule defined in Eq. 4.12 is extended to cover additional classes
m+ 1. This extension is defined as

142

4.3 Example of Output Compression

X Y
1 2 . . . m m+ 1

1 c11 c12 · · · c1m c1(m+1)

2 c21 c22 · · · c2m c2(m+1)
...

...
...

...
m cm1 cm2 · · · cmm cm(m+1)

Table 4.7: Confusion Matrix. This table has been first published in [P5].

yl =

argmax
(
ϕi(xl)
τi

)
if max

(
ϕi(xl)
τi

)
≥ 1

m+ 1 otherwise
, (4.13)

where m indicated the class. A non-trivial challenge is still to find suitable
values to the vector τ , where one way is to include external expert knowledge.
While this is a subjective choice that differs from case to case, a more objective
strategy that is, for example, based on information theoretics that is compa-
rable to techniques SMOTE introduced by [144] or Chow’s rule from [141].
Another way is to reject based on a geometric mean over a large number of
datasets with different tasks and characteristics, single- and multi-class. Due
to the parameter-free aspects of his approach, it is selected to be used as a
basis and is expended in this part of the work. One traditional way to measure
the relation and dependency between two variables is the normalized mutual
information that is defined within Definition 4.4.

Theorem 4.1. Let H be Shennon’s entropy, formally defined as

H(X) = −
i=1∑
m

P (X = i) log2(P (X = i)),

where X is a random variable.

Definition 4.4. Let NMI be the Normalized Mutual Information, formally
defined as

NMI(T, Y) =
I(T, Y)

H(T)
,

where X and Y are two random variables.

As mentioned above, it is a non-trivial task to optimize the values for τ . One
method that has been introduced by [145] uses mutual information to build a

143

4 Application Experiments and Results

confusion matrix and to solve the optimization problem. Table 4.7 describes a
confusion matrix of X and Y that has an additional column for the abstaining
case m+1. Furthermore, as [146] shows, the mutual information for the entries
of the matrix can be approximated by

I(X, Y) ≈ I(C) = −

∑m
i=1

∑m
j=1 cij log2

(
cij

Ci
∑m

i=1

cij
N

)
∑m

i=1Ci log2
Ci

N

, (4.14)

where N is the total number of samples and Ci is the sum of the i-th row.
By iterating until a m handles the drawback of the mutual information of not
considering rejections, even if this is formally not quite correct compared to
[145].

Optimizing abstaining classifier: As is the case for most learning al-
gorithms, one factor that has a large impact on cost efficiency in terms of
computing power is finding an optimal set of parameters. In this case, Pow-
ell’s grid search algorithm proposed by [147] is used to find good values for the
decision threshold τ and parameters to optimize the model’s performance and
maximize the mutual information, formally said

τ ∗ = argmaxNMI(t, y = ϕτ (x)), (4.15)

where τ ∗ is the optimal set of values and ϕτ represents based on the probability
from a classifier ϕ likewise as it is defined in Eq. 4.16.

4.3.1.4 Ensembling Models

Already in 1984, [148] stated that it is commonly done to take the average of
operations like forecasts; therefore, the task of ensembling classifiers to archive
a higher all-over prediction performance of machine learning models has been
widely accepted. A generic formulation of ensembling is to build many unique
classifiers for a certain problem and build an averaged model on the bases of
the previously created ones. Anyways, the scope in this part of this is set
on basic approaches to increase the performance of the final model. A trivial
approach of combining n probabilistic classifier ϕ is by averaging

ϕ∗(x) =
1

n

∑
i

ϕi(x) (4.16)

where x is the data item that corresponds to a label y, and ϕ is the com-
bined model, which is more robust than each ϕi, where i = 1, . . . , n, by itself.

144

4.3 Example of Output Compression

The performance of the final classifier rises, especially if a single ϕi reaches a
high prediction accuracy. While this method is called model blending, another
approach is model stacking, which creates ϕ∗ by predicting the label y on the
basis of a vector of all ϕi(x). The latter version has the advantage of providing
more stable and complex model combinations.

All in all, there is a large number of options for how to ensemble models. The
proposed methods are chosen to be taken in this application sample because
of their common usage and high archived performance.

4.3.1.5 Datasets

To be able to perform the experiments, a dataset has been created where a
large quantity of Twitter tweets located in Los Angeles has been assigned to
two classes. Therefore tweets are located within a defined area and are mapped
near buildings that are labeled within OpenStreetMap (OSM). The following
gives a detailed insight into the creative process and the dataset itself.

Twitter data preparation: Until recently, it was possible to mine
Twitter tweets using their API in the amount of one percent. During a
certain time period, 4 TB of tweets have been collected for the dataset. This
data has been filtered to only cover tweets that have a precise geolocation.
Furthermore, it is expected that most data do have a relation to their location
that has been addressed by the application. One needs to know that there is
also the possibility to distort the source location of a tweet, such as is done
by some bots, but it is assumed that the number is comparable small such
that they do not impact the classification heavily. Furthermore, the results of
the experiments do confirm this assumption.

OSM buildings: The area of interest is the city of Los Angeles, where
the OSM data contains more than 24 800 polygons that either function as
residential or commercial. Those two classes are the focus of the experiments
that are done in the next section. Additionally, it needs to be mentioned that
it is assumed that label accuracy is high.

Spatial join of tweets and OSM buildings: To join the OSM and the
Twitter data, each tweet is assigned to its nearest building of the selected OSM
polygons. One problem that occurs is that some tweet locations are too far
away from any labeled polygon such that it does have a relation to each other.
To eliminate such data points, a Euclidean distance is used within a WGS84

145

4 Application Experiments and Results

(a) Test-train split and the OSM
buildings marked in black.

(b) Test-train split and the Twitter
tweets marked in red.

Figure 4.24: Visualization of the dataset in the area of Los Angeles. The map
has been taken from Google Maps in 2018. This figure has been
first published in [P5].

coordinate space that measures the distance. In consequence, all Twitter data
is removed from the dataset that is further away than approximately 100m
from the nearest polygon.

Dataset split: In order to be able to evaluate the proposed approach
correctly, it is important to have to spatial overlap between the training
and the test set. On the other hand, it is necessary to have the same class
distribution within both splits to be able to train the classifier optimally.
Therefore, the data is within its amount into two sets but also geographically
into half. Figure 4.24 visualizes the two subsets, where the color indicates the
membership.

Datasets: Los Angeles Tweets: The final dataset contains more than
1 200 000 tweets in the area of Los Angeles that are assigned to OSM build-
ing polygons. All tweets are geo-referenced and collected between November
2017 and May 2018. Additionally, the data has been split geographically into
near-balanced halves. Each split does have two types of classes, nevertheless,
whether they correspond to the western or eastern half of the city. The second
type of class is the building type, these classes are commercial and residen-
tial, where each class contains 16 133 samples. This builds a dataset that does
include tweets where most do have a relation to a building type. Figure 4.25
visualizes the distribution of tweets per building. It can be seen that only
most tweets are related to a small portion of buildings. This means in detail

146

4.3 Example of Output Compression

0 5000 10000 15000 20000 25000

1
10

0
10

00
0

Building

N
um

be
r

of
 T

w
ee

ts
 [l

og
]

Figure 4.25: Distribution of the number of tweets per building. This figure has
been first published in [P5].

that while the average number of tweets per building is 47.33, only 30% of the
buildings do have more than ten assigned tweets. Moreover, only 5.6% of the
buildings do have more than 100 related tweets.

4.3.1.6 Sparse Text Mining Models

The first task is to create baseline models using a wide range of sparse text
mining models. Only then is it formally correctly possible to evaluate the
performance of either information-optimal abstaining and the impact of en-
sembling to models. Therefore it is necessary to create classifiers for the area
of interest that analyze the given data on a tweet basis rather than the tweets
per building. This is due to the expectation that some tweets are abstained due
to missing information about any building, while other tweets are clearly re-
lated. Therefore, as described above in Section 4.3.1.2, a vocabulary is created,
and then the TF-IDF vector using the normalized term frequency. Further-
more, based on this vector, a sparse matrix is calculated that includes 71 994

columns.
To provide a baseline that is representative, a wide range of models

have been trained, that includes the algorithms: Ridge regression, Passive-
aggressive classifier [149], k-NN, random forest (100 trees), support vector
machines (SVM), neural network (including L1 and L2 regularization), as well
as Naïve Bayes. Moreover, an SVM with L1 regression has been taken to ex-
tract features from the tweets that are then trained using an SVM with L2

147

4 Application Experiments and Results

Classifier Training Test
Commercial Residential Commercial Residential

Ridge 0.97 0.97 0.50 0.50
Perceptron 1.00 1.00 0.50 0.48
kNN 0.72 0.79 0.40 0.57
RF 1.00 1.00 0.49 0.53
X-Tree 1.00 1.00 0.50 0.52
SVC-L2 0.99 0.99 0.50 0.50
SVC-L1 0.91 0.91 0.50 0.51
ElasticNet 0.77 0.70 0.54 0.42
MN-NB 0.99 0.99 0.52 0.52
SVC-L1/2 0.94 0.94 0.50 0.50

Table 4.8: Overview of the classification results in case of sparse text repre-
sentation, where the metric is precision. This table has been first
published in [P5].

regression.
The results of the selected classifiers do have poor performance due to over-

fitting and lack of generalization. Even so, it is expected that the introduction
of abstaining and ensembling in Setion 4.3.1.7 is able to increase the perfor-
mance to a large quantity.

Table 4.8 provides an overview of the performance of the models during
training and evaluation. When analyzing the individual prediction accuracies
with respect to each other, one can see that the discrepancy between the
two values is relatively high. Therefore, the models do have the problem
of overfitting, such that the evaluation is near to a random guess. When
considering only the values from the training, it seems that some knowledge
is valid and is extracted from the tweets. As a consequence, the goal is to use
abstaining to use this information. While most data instances do not have
any indicators that allow a conclusion to a function of a close building, the
information collected by the classifiers needs to be selected and used for the
classification process.

The information-optimal abstaining mentioned above is applied to the data
in the next step to finding decision threshold values that support the defined
problem. Furthermore, this is only concerned with classifiers that do provide
from their own probability, this is caused by the fact that only then abstaining
can be applied without any concerns. Anyways, this still requires an additional
subset, which leads to the problem of reducing the amount of data that is

148

4.3 Example of Output Compression

Classifier Abstain-Rate Commercial Residential
Precision Recall Precision Recall

MN-NB1 63% 0.54 0.19 0.57 0.21
MN-NB2 72% 0.53 0.14 0.58 0.17
MN-NB3 89% 0.55 0.04 0.62 0.09
SGD-L2 99% 0.17 0.00 0.83 0.01
SGD-L1 96% 0.56 0.01 0.76 0.04

Table 4.9: verview of the classification results with using abstaining, where the
metric is the precision and recall. This table has been first published
in [P5].

available. In general, while it is unclear if the calibration does work on a
disjoint spatial set, this does lead to the point of having small urban areas for
the tasks. The size of the region doe matter in this case because some districts
of the city most likely only contain one single type of building. Such as, in the
inner city, it is tending to find shops and residential areas rather than industry
buildings.

One characteristic of abstaining is that the precision is increased with the
costs of having a low recall, therefore, the F1-score is replaced by its class-
based components. Anyways the classifier Naïve Bayes are trained with a
selection of smoothing parameters that are MN-B1 = 0.001, MN-B2 = 0.01,
and MN-B3 = 0.1. While those values adjust the probabilities of words of the
test set, this does also affect the abstaining.

Table 4.9 provides an overview of the results of using a more significant
smoothing parameter for Naïve Bayes. It can be seen that this also increases
the abstaining rate. On the other hand, while the recall is decreasing, the
precision increases, leading to a more significant gap between those values.

Figure 4.26 visualizes the impact of the Laplacian smoothing parameter
on the models. One can see that an immense amount of regularization does
increase the performance of the prediction of minority classes. At the same
time, the amount of classified elements shrinks. In conclusion, this leads to
a trade-off between predicting the minority classes or a more conservative
classification.

All in all, it can be said that it is non-trivial to assign functions to a building
based on tweets. In general, the trained classifier dent to overfitting and poor
generalization. Conversely, the use of abstaining showed that there is valuable
information within the large amount of data that contribute to the defined

149

4 Application Experiments and Results

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Laplace Regularization Parameter

P
re

ci
si

on
 o

f R
es

id
en

tia
l /

 C
la

ss
ifi

ca
tio

n
R

at
e

Figure 4.26: Visualization of the impact of Laplacian smoothing. This figure
has been first published in [P5].

problem and enables the possibility to classify correctly more than 80% for
one percent of the unlabeled OSM buildings. This means that 168 buildings
are labeled correctly from the test set. Furthermore, combined with (human)
expert knowledge could increase the performance of mapping buildings in OSM
data.

4.3.1.7 Ensembling Abstaining Models

While the previous section depicted that it is possible to use a comparatively
small amount of information to train a classifier to assign the function to build-
ings, this section focuses on ensembles of models to improve performance. In
more detail, the idea is to train multiple models, each learning a different frac-
tion of the valuable information. The union of those models should lead to
higher robustness and a maximization of the prediction performance. First, it
is necessary to remove words from the building vocabulary that are most tend-
ing not contributing to the task, this is, for example, among others, stop words
and smileys. Therefore, words are reduced that have a probability < 0.1% to
occur in the text but also those who have a higher likelihood, specifically
> 80%. In this way, rare words and frequent words are removed from the
vocabulary and lead to a set of 1 032 words that are considered. Based on this
data, multiple different classifiers, such as SVMs, are trained and evaluated.
An overview of the models and their performance is given in Figure 4.27, where

150

4.3 Example of Output Compression

MN−NB1 MN−NB2 MN−NB3 Ber−NB1 Ber−NB2 Ber−NB3 SGD−L2 SGD−L1 Log. Reg.

Training Precision
Training Recall
Test Precision
Test Recall
Abstained Test Precision
Abstained Test Recall

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.27: Visualization of the performance of the ensembles of the abstained
models. This figure has been first published in [P5].

the naming convention is the same as before. Furthermore, the performance
is depicted for the residential class and over the metrics for all subsets.

Analyzing the image, one can see that the bias is reduced by simply remov-
ing rare and frequent words from the vocabulary. Additionally, the precision
and recall are in the range of 60% to 80% for both the training and the test
set. The increase in precision was reached by abstaining from each classifier
separately. Moreover, an ensemble of all models is built by a weighted aver-
age. The weights for building this new probabilistic classifier are computed
by the precision that is expected from the residential buildings. This is due
to the need to have high correctness when predicting this building function.
This leads to a classifier that correctly labeled 1 937 buildings, which refers to
an accuracy of 85%. For all other cases, the decision was not trustful enough
to make a decision about the functionality based on the given tweets, and
therefore no prediction has been made.

While the focus has been set firmly on the low-represented class residential,
negative effects on the other class commercial have been ignored until now,
nevertheless, the results for this particular class are still relatively high with a
precision of 61% and a recall of 72%, especially, with the taken actions. All in
all, the two classes combined enabled the possibility to label more than 31 000

buildings within the area of interest.

Table 4.10 provides an overview of the prediction performance from the en-
sembled models compared to selected baseline models from the lase section.

151

4 Application Experiments and Results

Classifier Abstain-Rate Training Test
Commercial Residential Commercial Residential

BIRP 54 % 0.60 0.78 0.82 0.26
HRF1 58 % 0.70 0.23 0.75 0.38
AVE - 0.59 0.85 0.73 0.41
AVE-A 16 % 0.61 0.72 0.75 0.37
AVE-F1 - 0.59 0.86 0.74 0.52
AVE-F1-A 16 % 0.61 0.72 0.75 0.37

Table 4.10: Overview of the result from the ensemble classifier. This table has
been first published in [P5].

This includes models with the highest individual residential precision (BIRP)
reached by Naïve Bayes with high smoothing as well as the model with the
highest residential F1-score (HRF1) reached by Naïve Bayes with low smooth-
ing. Compared with the ensemble models with averaging (AVG), averaging
using F1-score (AVG-F1) as well as both models with information-optimal
abstaining.

Each classifier suffers from different trade-offs. For example, do BIRP and
HRF1 have the same problem of high abstaining rates. Conversely, the enabled
versions of these models could improve their performance. Considering all
results, the performances are within a range of [73%, 75%] for the precision of
the residential class and a recall of [37%, 52%]. Furthermore, one can also see
that the F1-score enable versions do provide a generally high value for their
metrics.

4.3.1.8 Summary

In this part of the work, social media data are used to predict the building
functions. The massive amount of tweets brings, on the one hand, a large
amount of data but has the drawback that only a tiny portion of the infor-
mation is engaging for the task, therefore, it is a non-trivial task to locate the
details that largely contributes to the performance of the classifier. In this
work, methods such as abstaining and ensembling models are taken to only
use interesting data. While the models did reach high performances, even with
the mentioned techniques, a generalization has not been reached. A reason for
that is not on the model, instead, it is caused by learning data that is not
relevant to the task.

To evaluate the models for the given problem task a wide range of different

152

4.3 Example of Output Compression

models have been trained that included abstaining and ensembling techniques.
The results show that some of them reach high predictions but with a small
amount of classified buildings, caused by a high number of results that lacked
truthfulness and are therefore abstained. All in all, it can be concluded that
social media data like tweets are not enough to detect the function type of a
building. Conversely, the introduction of ensembling models to this problem
was able to increase the performance of the trained models. In order to in-
vestigate a more extensive set of parameters, it would be necessary to have a
larger set of data.

153

5 Conclusion

In spatial computing, deep learning is employed to discover the content of
data to make predictions about, for example, urban development or land
use. Often, the models that are common, provide the maximum possible
complexity, like large convolutional neural networks using 32-bit floating point
numbers. The same applies for data, such as images, where information is
included that is not relevant or meaningful. The use of the entire complexity
leads to challenges for computational resources, storage systems, and real-time
access to data. This is especially the case for non-governmental institutions.
Reducing the amount of information, that is utilized to solve a particular
problem, can reduce the amount of technological as well as economic resources.

The impact from the technical perspective. The minimum of the
complexity and informational content of heterogeneous data is the point
where only required information is left. Crossing this point and pruning
more information leads to a decrease of the systems outcome’s accuracy.
The theoretical analysis showed that data as well as algorithms do include
information that does not significantly contribute to the final computed
prediction of a data-driven system. More specifically, the information theory
from Shannon focuses on entropy but ignores which portion of an object,
such as an image, is from high relevance. This is the same for the application
examples, where a moderate compression of the input data led to a lower
runtime with similar to slightly higher accuracy values. This also applies to
algorithms where, for instance, deep learning architectures furnish complexity
or even parameters that are not important in terms of reaching a high
quality on the predicted outcome. Especially the use of a lossless compression
methods reduces the memory footprint and time needed to move data from
the disk into the main memory without impacting the algorithm’s accuracy.
Moreover, removing non-meaningful information can emphasize other features
and lead to slightly better predictions of the system’s results. In addition, the
compression including pruning from the generated results are able to increase

155

5 Conclusion

the robustness of the models.

The impact to the society. While this excerpt focuses on the technical per-
spectives, the compression of data-driven systems can also impact the industry
and society. The operational costs of vastly scaled (generative) AI, such as it
has been done with the large language model, are enormous. In addition, does
the increase of machine learning to automate business use cases have an impact
on global energy consumption, therefore those technologies has the potential
to raise the carbon footprint1. Furthermore, the larger complexity of the mod-
els and datasets utilized for training requires scaling the available computing
hardware, which indirectly affects our environment2. Therefore the employ of
compressing the data-driven system, in terms of pruning information that is
from less relevance and meaning, is able to optimize the energy consumption,
required computational hardware resources, and time that needs to be invested
to either train or inference a machine learning program. Thus, the utilization
of compression does also have an impact on operational costs as well as the
carbon footprint.

5.1 Open Problems and Future Work

This thesis provides an investigation of the role of compression in spatial com-
puting, where the scope is rather a feasibility study than the demand in an
industrial context. While the theoretical aspects are followed by application
samples that give a foundation to create more efficient data-driven systems, the
intense focus on satellite images leads to a lack of covering the different types
of spatial data. Furthermore, there are less datasets in Earth observation that
cover either a particular problem or are publicly available, which is a problem,
especially for tasks that are relevant to be performed on board a satellite, for
example, the detection of wildfire. Another limitation of this thesis is that the
investigation on edge computing hardware is only done on one specific FPGA.

Furthermore, there are several research questions that are not answered
within this thesis: (1) Is there an ability to compress the hardware component
itself to optimize the performance characteristics of a data-driven system, such

1Wired: AI Can Do Great Things–if It Does not Burn the Planet
(https://www.wired.com/story/ai-great-things-burn-planet/) [Accessed on 08.06.2023]

2Wired: The Generative AI Race Has a Dirty Secret (https://www.wired.co.uk/article/the-
generative-ai-search-race-has-a-dirty-secret) [Accessed on 08.06.2023]

156

https://www.wired.com/story/ai-great-things-burn-planet/
https://www.wired.co.uk/article/the-generative-ai-search-race-has-a-dirty-secret
https://www.wired.co.uk/article/the-generative-ai-search-race-has-a-dirty-secret

5.1 Open Problems and Future Work

as the runtime and the energy consumption, without losing precision on the
outcome, (2) can the program be compressed, (3) can the compression of inter-
program communication optimize the performance of the entire system. Each
of this question is from relevance but crosses is beyond scope of this work.
Moreover, the creation of datasets and the use of a more diverse set of hardware
accelerators would lead to an overcome of the named limitations. In addition
to this, future research projects should also focus on compressing the result of
machine learning algorithms.

157

Bibliography

[1] R. Unterstein, 60 petabytes for the german satellite data archive d-
sda, German Aerospace Center (DLR), Ed., 2018. [Online]. Available:
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12632/
22039_read-51751.

[2] V. J. Reddi, C. Cheng, D. Kanter, et al., “Mlperf inference benchmark,”
in 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), IEEE, 2020, pp. 446–459, isbn: 978-1-7281-
4661-4. doi: 10.1109/ISCA45697.2020.00045.

[3] Y. Umuroglu, N. J. Fraser, G. Gambardella, et al., “Finn,” in Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, J. Greene and J. H. Anderson, Eds., New
York, NY, USA: ACM, 2017, pp. 65–74, isbn: 9781450343541. doi:
10.1145/3020078.3021744.

[4] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, “Bigearthnet: A
large-scale benchmark archive for remote sensing image understand-
ing,” in IGARSS 2019-2019 IEEE International Geoscience and Remote
Sensing Symposium, IEEE, 2019, pp. 5901–5904.

[5] X.-Y. Tong, G.-S. Xia, Q. Lu, et al., “Land-cover classification with
high-resolution remote sensing images using transferable deep models,”
Remote Sensing of Environment, vol. 237, p. 111 322, 2020, issn: 0034-
4257. doi: https://doi.org/10.1016/j.rse.2019.111322. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0034425719303414.

[6] M. Werner, “Globimaps - a probabilistic data structure for in-memory
processing of global raster datasets,” in 27th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’19), 2019.

159

https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12632/22039_read-51751
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12632/22039_read-51751
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.1145/3020078.3021744
https://doi.org/https://doi.org/10.1016/j.rse.2019.111322
https://www.sciencedirect.com/science/article/pii/S0034425719303414
https://www.sciencedirect.com/science/article/pii/S0034425719303414

Bibliography

[7] J. Tichonov, O. Kurasova, and E. Filatovas, “Image classification for
jpeg compression,” Advances in Science and Technology Research Jour-
nal, vol. 12, pp. 29–34, Jun. 2018.

[8] Q. Qin, J. Ren, J. Yu, et al., “To compress, or not to compress: Char-
acterizing deep learning model compression for embedded inference,” in
2018 IEEE International Conference on Big Data and Cloud Comput-
ing (BdCloud), 2018, pp. 729–736.

[9] European Space Agency, Sentinel-2 user handbook, 2015.

[10] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel
dataset and deep learning benchmark for land use and land cover clas-
sification,” IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019, issn:
1939-1404. doi: 10.1109/JSTARS.2019.2918242.

[11] D. Kim, J. Lee, and B. Ham, “Distance-aware quantization,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV),
IEEE, 2021, pp. 5251–5260, isbn: 978-1-6654-2812-5. doi: 10.1109/
ICCV48922.2021.00522.

[12] J. Martinez, J. Shewakramani, T. Wei Liu, I. Andrei Barsan, W. Zeng,
and R. Urtasun, “Permute, quantize, and fine-tune: Efficient compres-
sion of neural networks,” in 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2021, pp. 15 694–
15 703, isbn: 978-1-6654-4509-2. doi: 10 . 1109 / CVPR46437 . 2021 .
01544.

[13] Y. Fan, W. Pang, and S. Lu, “Hfpq: Deep neural network compres-
sion by hardware-friendly pruning-quantization,” Applied Intelligence,
vol. 51, no. 10, pp. 7016–7028, 2021, issn: 0924-669X. doi: 10.1007/
s10489-020-01968-x.

[14] S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J.
Mohd-Yusof, “Combating label noise in deep learning using abstention,”
arXiv preprint arXiv:1905.10964, 2019.

[15] C. E. Shannon, “A mathematical theory of communication,” Bell Sys-
tem Technical Journal, vol. 27, no. 3, pp. 379–423, 1948, issn: 00058580.
doi: 10.1002/j.1538-7305.1948.tb01338.x.

[16] C. E. Shannon and W. Weaver, The Mathematical Theory of Commu-
nication, 10. printing. Urbana: Univ. of Ill. Press, 1964.

160

https://doi.org/10.1109/JSTARS.2019.2918242
https://doi.org/10.1109/ICCV48922.2021.00522
https://doi.org/10.1109/ICCV48922.2021.00522
https://doi.org/10.1109/CVPR46437.2021.01544
https://doi.org/10.1109/CVPR46437.2021.01544
https://doi.org/10.1007/s10489-020-01968-x
https://doi.org/10.1007/s10489-020-01968-x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Bibliography

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory, Sec-
ond edition. Hoboken, NJ: Wiley-Interscience, 2006, isbn: 0471241954.
[Online]. Available: http://www.loc.gov/catdir/enhancements/
fy0624/2005047799-d.html.

[18] W. Hamilton, Discussions on Philosophy and Literature, Education and
University Reform Chiefly From the Edinburgh Review : Corrected, Vin-
dicated, Enlarged : In Notes and Appendices. Longman, Brown, Green
and Longmans, 1852.

[19] R. Cilibrasi and P. Vitanyi, “Clustering by compression,” IEEE Trans-
actions on information theory, vol. 51, no. 4, pp. 1523–1545, 2005, issn:
0018-9448. doi: 10.1109/TIT.2005.844059.

[20] D. J. C. MacKay, Information Theory, Inference and Learning Al-
gorithms. Cambridge: Cambridge University Press, 2003, isbn: 978-
0-521-64298-9. [Online]. Available: http://www.loc.gov/catdir/
description/cam032/2003055133.html.

[21] R. M. Gray, Entropy and Information Theory. Boston, MA: Springer
US, 2011, isbn: 978-1-4419-7969-8. doi: 10.1007/978-1-4419-7970-
4.

[22] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951, issn:
0003-4851. doi: 10.1214/aoms/1177729694.

[23] R. M. Fano, The Transmission of Information. Massachusetts Institute
of Technology, Research Laboratory of Electronics . . ., 1949, vol. 65.

[24] D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952, issn:
0096-8390. doi: 10.1109/JRPROC.1952.273898.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (Adaptive
computation and machine learning). Cambridge, Massachusetts and
London, England: The MIT Press, 2016, isbn: 9780262035613.

[26] Ieee standard for floating-point arithmetic, Piscataway, NJ, USA. doi:
10.1109/IEEESTD.2019.8766229.

[27] A. N. Kolmogorov, “On tables of random numbers,” Theoretical Com-
puter Science, vol. 207, no. 2, pp. 387–395, 1998, issn: 03043975. doi:
10.1016/S0304-3975(98)00075-9.

161

http://www.loc.gov/catdir/enhancements/fy0624/2005047799-d.html
http://www.loc.gov/catdir/enhancements/fy0624/2005047799-d.html
https://doi.org/10.1109/TIT.2005.844059
http://www.loc.gov/catdir/description/cam032/2003055133.html
http://www.loc.gov/catdir/description/cam032/2003055133.html
https://doi.org/10.1007/978-1-4419-7970-4
https://doi.org/10.1007/978-1-4419-7970-4
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1016/S0304-3975(98)00075-9

Bibliography

[28] P. M. B. Vitányi, F. J. Balbach, R. L. Cilibrasi, and M. Li, “Normalized
information distance,” in Information Theory and Statistical Learning,
F. Emmert-Streib and M. Dehmer, Eds., Boston, MA: Springer US,
2009, pp. 45–82, isbn: 978-0-387-84815-0. doi: 10.1007/978-0-387-
84816-7{\textunderscore}3.

[29] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications. New York, NY: Springer New York, 2008, isbn: 978-
0-387-33998-6. doi: 10.1007/978-0-387-49820-1.

[30] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi, “The similarity metric,”
IEEE Transactions on information theory, vol. 50, no. 12, pp. 3250–
3264, 2004, issn: 0018-9448. doi: 10.1109/TIT.2004.838101.

[31] M. Ferbus-Zanda and S. Grigorieff, “Kolmogorov complexity in per-
spective part i: Information theory and randomness,” in Construc-
tivity and Computability in Historical and Philosophical Perspective,
ser. Logic, Epistemology, and the Unity of Science, J. Dubucs and
M. Bourdeau, Eds., vol. 34, Dordrecht: Springer Netherlands, 2014,
pp. 57–94, isbn: 978-94-017-9216-5. doi: 10.1007/978-94-017-9217-
2{\textunderscore}3.

[32] P. D. Grünwald and P. M. B. Vitanyi, Algorithmic information theory,
2008. doi: 10.48550/arXiv.0809.2754.

[33] P. M. B. Vitányi, “How incomputable is kolmogorov complexity?”
Entropy (Basel, Switzerland), vol. 22, no. 4, 2020. doi: 10 . 3390 /
e22040408.

[34] N. Tran, “The normalized compression distance and image distinguisha-
bility,” in Human Vision and Electronic Imaging XII, B. E. Rogowitz,
T. N. Pappas, and S. J. Daly, Eds., ser. SPIE Proceedings, SPIE, 2007,
p. 64921D. doi: 10.1117/12.704334.

[35] M. Coca, A. Anghel, and M. Datcu, “Normalized compression distance
for sar image change detection,” in IGARSS 2018 - 2018 IEEE In-
ternational Geoscience and Remote Sensing Symposium, IEEE, 2018,
pp. 5784–5787, isbn: 978-1-5386-7150-4. doi: 10.1109/IGARSS.2018.
8518126.

162

https://doi.org/10.1007/978-0-387-84816-7{\textunderscore }3
https://doi.org/10.1007/978-0-387-84816-7{\textunderscore }3
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1007/978-94-017-9217-2{\textunderscore }3
https://doi.org/10.1007/978-94-017-9217-2{\textunderscore }3
https://doi.org/10.48550/arXiv.0809.2754
https://doi.org/10.3390/e22040408
https://doi.org/10.3390/e22040408
https://doi.org/10.1117/12.704334
https://doi.org/10.1109/IGARSS.2018.8518126
https://doi.org/10.1109/IGARSS.2018.8518126

Bibliography

[36] M. Coca, A. Anghel, and M. Datcu, “Unbiased seamless sar image
change detection based on normalized compression distance,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 12, no. 7, pp. 2088–2096, 2019. doi: 10.1109/JSTARS.
2019.2909143.

[37] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and
quantization for deep neural network acceleration: A survey,” Neuro-
computing, vol. 461, pp. 370–403, 2021, issn: 09252312. doi: 10.1016/
j.neucom.2021.07.045.

[38] C. C. Aggarwal, Neural Networks and Deep Learning. Cham: Springer
International Publishing, 2018, isbn: 978-3-319-94462-3. doi: 10.1007/
978-3-319-94463-0.

[39] O. L. Calin, Deep learning architectures: A mathematical approach
(Springer eBook Collection). Cham, Switzerland: Springer, 2020, isbn:
978-3030367237. doi: 10.1007/978-3-030-36721-3.

[40] J. Nagi, F. Ducatelle, G. A. Di Caro, et al., “Max-pooling convolutional
neural networks for vision-based hand gesture recognition,” in 2011
IEEE International Conference on Signal and Image Processing Appli-
cations (ICSIPA), IEEE, 2011, pp. 342–347, isbn: 978-1-4577-0242-6.
doi: 10.1109/ICSIPA.2011.6144164.

[41] R. Nirthika, S. Manivannan, A. Ramanan, and R. Wang, “Pooling in
convolutional neural networks for medical image analysis: A survey and
an empirical study,” Neural computing & applications, vol. 34, no. 7,
pp. 5321–5347, 2022, issn: 0941-0643. doi: 10.1007/s00521- 022-
06953-8.

[42] A. Zafar, M. Aamir, N. Mohd Nawi, et al., “A comparison of pooling
methods for convolutional neural networks,” Applied Sciences, vol. 12,
no. 17, p. 8643, 2022. doi: 10.3390/app12178643.

[43] M. Elgendy, Deep learning for vision systems. Shelter Island, NY: Man-
ning, 2020, isbn: 1617296198.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of
the 32nd International Conference on International Conference on Ma-
chine Learning - Volume 37, ser. ICML’15, Lille, France: JMLR.org,
2015, pp. 448–456.

163

https://doi.org/10.1109/JSTARS.2019.2909143
https://doi.org/10.1109/JSTARS.2019.2909143
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-030-36721-3
https://doi.org/10.1109/ICSIPA.2011.6144164
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.3390/app12178643

Bibliography

[45] S.-E. Chang, Y. Li, M. Sun, et al., “Rmsmp: A novel deep neural net-
work quantization framework with row-wise mixed schemes and multi-
ple precisions,” in 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), IEEE, 2021, pp. 5231–5240, isbn: 978-1-6654-
2812-5. doi: 10.1109/ICCV48922.2021.00520.

[46] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, ser. AAAI’17, AAAI Press, 2017, pp. 4278–4284.

[47] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI 2015, ser. Lecture
Notes in Computer Science, N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi, Eds., vol. 9351, Cham: Springer International Publishing,
2015, pp. 234–241, isbn: 978-3-319-24573-7. doi: 10.1007/978-3-319-
24574-4{\textunderscore}28.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, 2016, pp. 770–778, isbn: 978-1-
4673-8851-1. doi: 10.1109/CVPR.2016.90.

[49] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-
tion with conditional adversarial networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017,
pp. 5967–5976, isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.
632.

[50] Olga Russakovsky, Jia Deng, Hao Su, et al., “Imagenet large scale vi-
sual recognition challenge,” International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-
0816-y.

[51] Karen Simonyan and Andrew Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in International Conference on
Learning Representations, 2015.

[52] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,

164

https://doi.org/10.1109/ICCV48922.2021.00520
https://doi.org/10.1007/978-3-319-24574-4{\textunderscore }28
https://doi.org/10.1007/978-3-319-24574-4{\textunderscore }28
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Bibliography

vol. 105, no. 12, pp. 2295–2329, 2017, issn: 0018-9219. doi: 10.1109/
JPROC.2017.2761740.

[53] A. G. Howard, M. Zhu, B. Chen, et al., Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications, 2017. doi: 10.
48550/arXiv.1704.04861.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep resid-
ual networks,” in Computer Vision – ECCV 2016, ser. Lecture Notes
in Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds., vol. 9908, Cham: Springer International Publishing, 2016, pp. 630–
645, isbn: 978-3-319-46492-3. doi: 10 . 1007 / 978 - 3 - 319 - 46493 -
0{\textunderscore}38.

[55] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and <0.5mb model size, 2016. doi: 10.48550/arXiv.1602.07360.

[56] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.
doi: 10.1109/CVPR.2016.91.

[57] Jonathan Frankle and Michael Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in International Confer-
ence on Learning Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=rJl-b3RcF7.

[58] B. Jacob, S. Kligys, B. Chen, et al., “Quantization and training of
neural networks for efficient integer-arithmetic-only inference,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
IEEE, 2018, pp. 2704–2713, isbn: 978-1-5386-6420-9. doi: 10.1109/
CVPR.2018.00286.

[59] M. Shen, F. Liang, R. Gong, et al., “Once quantization-aware train-
ing: High performance extremely low-bit architecture search,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV),
IEEE, 2021, pp. 5320–5329, isbn: 978-1-6654-2812-5. doi: 10.1109/
ICCV48922.2021.00529.

[60] Paulius Micikevicius, Sharan Narang, Jonah Alben, et al., “Mixed pre-
cision training,” in International Conference on Learning Representa-
tions, 2018.

165

https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1007/978-3-319-46493-0{\textunderscore }38
https://doi.org/10.1007/978-3-319-46493-0{\textunderscore }38
https://doi.org/10.48550/arXiv.1602.07360
https://doi.org/10.1109/CVPR.2016.91
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/ICCV48922.2021.00529
https://doi.org/10.1109/ICCV48922.2021.00529

Bibliography

[61] W. Chen, P. Wang, and J. Cheng, “Towards mixed-precision quan-
tization of neural networks via constrained optimization,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV),
IEEE, 2021, pp. 5330–5339, isbn: 978-1-6654-2812-5. doi: 10.1109/
ICCV48922.2021.00530.

[62] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan, Ternary weight networks,
2016. doi: 10.48550/arXiv.1605.04711.

[63] T. Han, D. Li, J. Liu, L. Tian, and Y. Shan, “Improving low-precision
network quantization via bin regularization,” in 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), IEEE, 2021,
pp. 5241–5250, isbn: 978-1-6654-2812-5. doi: 10.1109/ICCV48922.
2021.00521.

[64] P. Chen, J. Liu, B. Zhuang, M. Tan, and C. Shen, “Aqd: Towards
accurate quantized object detection,” in 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, 2021,
pp. 104–113, isbn: 978-1-6654-4509-2. doi: 10.1109/CVPR46437.2021.
00017.

[65] S. Oh, H. Sim, S. Lee, and J. Lee, “Automated log-scale quantization
for low-cost deep neural networks,” in 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, 2021,
pp. 742–751, isbn: 978-1-6654-4509-2. doi: 10.1109/CVPR46437.2021.
00080.

[66] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf, “Pruning filters for efficient convnets,” in International Confer-
ence on Learning Representations, 2017. [Online]. Available: https:
//openreview.net/forum?id=rJqFGTslg.

[67] Y.-J. Zheng, S.-B. Chen, C. H. Q. Ding, and B. Luo, “Model com-
pression based on differentiable network channel pruning,” IEEE trans-
actions on neural networks and learning systems, vol. PP, 2022. doi:
10.1109/TNNLS.2022.3165123.

[68] H. Mostafa and X. Wang, Parameter efficient training of deep convo-
lutional neural networks by dynamic sparse reparameterization, 2019.
doi: 10.48550/arXiv.1902.05967.

166

https://doi.org/10.1109/ICCV48922.2021.00530
https://doi.org/10.1109/ICCV48922.2021.00530
https://doi.org/10.48550/arXiv.1605.04711
https://doi.org/10.1109/ICCV48922.2021.00521
https://doi.org/10.1109/ICCV48922.2021.00521
https://doi.org/10.1109/CVPR46437.2021.00017
https://doi.org/10.1109/CVPR46437.2021.00017
https://doi.org/10.1109/CVPR46437.2021.00080
https://doi.org/10.1109/CVPR46437.2021.00080
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1109/TNNLS.2022.3165123
https://doi.org/10.48550/arXiv.1902.05967

Bibliography

[69] M. Shen, P. Molchanov, H. Yin, and J. M. Alvarez, “When to prune?
a policy towards early structural pruning,” in 2022 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), IEEE,
2022, pp. 12 237–12 246, isbn: 978-1-6654-6946-3. doi: 10 . 1109 /
CVPR52688.2022.01193.

[70] P. Wimmer, J. Mehnert, and A. Condurache, “Interspace pruning: Us-
ing adaptive filter representations to improve training of sparse cnns,” in
2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), IEEE, 2022, pp. 12 517–12 527, isbn: 978-1-6654-6946-3.
doi: 10.1109/CVPR52688.2022.01220.

[71] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,
2015. doi: 10.48550/arXiv.1510.00149.

[72] M. Werner and Y.-Y. Chiang, Handbook of Big Geospatial Data. Cham:
Springer International Publishing, 2021, isbn: 978-3-030-55461-3. doi:
10.1007/978-3-030-55462-0.

[73] European Space Agency, Sentinel-1: Esa’s radar observatory mission
for gmes operational services, K. Fletcher, Ed., Noordwijk, 2012.

[74] M. Werner, Indoor Location-Based Services. Cham: Springer Interna-
tional Publishing, 2014, isbn: 978-3-319-10698-4. doi: 10.1007/978-
3-319-10699-1.

[75] B. H. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970, issn:
0001-0782. doi: 10.1145/362686.362692. [Online]. Available: https:
//doi.org/10.1145/362686.362692.

[76] M. Werner, “BACR: Set Similarities with Lower Bounds and Applica-
tion to Spatial Trajectories,” in 23rd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (ACM
SIGSPATIAL 2015), 2015.

[77] J. Skilling, “Programming the hilbert curve,” in AIP Conference Pro-
ceedings, AIP, 2004, pp. 381–387. doi: 10.1063/1.1751381.

[78] M. Bader, Space-Filling Curves. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, vol. 9, isbn: 978-3-642-31045-4. doi: 10.1007/978-3-
642-31046-1.

167

https://doi.org/10.1109/CVPR52688.2022.01193
https://doi.org/10.1109/CVPR52688.2022.01193
https://doi.org/10.1109/CVPR52688.2022.01220
https://doi.org/10.48550/arXiv.1510.00149
https://doi.org/10.1007/978-3-030-55462-0
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1007/978-3-319-10699-1
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1063/1.1751381
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1

Bibliography

[79] G. Niemeyer, Geohash, 2008.

[80] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), IEEE, 2014, pp. 10–14, isbn: 978-
1-4799-0920-9. doi: 10.1109/ISSCC.2014.6757323.

[81] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating cnn
inference on fpgas: A survey,” arXiv preprint arXiv:1806.01683, 2018.

[82] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of fpga-
based neural network inference accelerators,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 12, no. 1, Mar. 2019, issn: 1936-7406. doi:
10.1145/3289185. [Online]. Available: https://doi.org/10.1145/
3289185.

[83] AMD Xilinx, Vitisai user guide, 2023.

[84] H. Collins and C. Nay, Ibm unveils 400 qubit-plus quantum processor
and next-generation ibm quantum system two, IBM Newsroom, Ed.,
2022. [Online]. Available: https://newsroom.ibm.com/2022-11-09-
IBM- Unveils- 400- Qubit- Plus- Quantum- Processor- and- Next-
Generation-IBM-Quantum-System-Two.

[85] J. M. Zollner, “Quantum classifiers for remote sensing,” in Proceed-
ings of the 30th International Conference on Advances in Geographic
Information Systems, ser. SIGSPATIAL ’22, Seattle, Washington: As-
sociation for Computing Machinery, 2022, isbn: 9781450395298. doi:
10.1145/3557915.3565537. [Online]. Available: https://doi.org/
10.1145/3557915.3565537.

[86] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint physics/0004057, 2000.

[87] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” in International Conference on Learning Representations,
2017.

[88] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image com-
pression with compressive autoencoders,” in International Conference
on Learning Representations, 2017.

168

https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1145/3289185
https://doi.org/10.1145/3289185
https://doi.org/10.1145/3289185
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://doi.org/10.1145/3557915.3565537
https://doi.org/10.1145/3557915.3565537
https://doi.org/10.1145/3557915.3565537

Bibliography

[89] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” in Low-Power Computer Vision, G. K. Thiruvathukal, Y.-H.
Lu, J. Kim, Y. Chen, and B. Chen, Eds., Boca Raton: Chapman and
Hall/CRC, 2022, pp. 291–326, isbn: 9781003162810. doi: 10.1201/
9781003162810-13.

[90] S. V. Naik, S. K. Majjigudda, S. Naik, et al., “Survey on comparative
study of pruning mechanism on mobilenetv3 model,” in 2021 Interna-
tional Conference on Intelligent Technologies (CONIT), IEEE, 2021,
pp. 1–8, isbn: 978-1-7281-8583-5. doi: 10.1109/CONIT51480.2021.
9498400.

[91] X. Ma, S. Lin, S. Ye, et al., “Non-structured dnn weight pruning—is
it beneficial in any platform?” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 9, pp. 4930–4944, 2022. doi: 10.
1109/TNNLS.2021.3063265.

[92] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[93] S. Babakniya, S. Kundu, S. Prakash, Y. Niu, and S. Avestimehr, “Fed-
erated sparse training: Lottery aware model compression for resource
constrained edge,” in Workshop on Federated Learning: Recent Advances
and New Challenges (in Conjunction with NeurIPS 2022), 2022.

[94] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 126–
136, 2018. doi: 10.1109/MSP.2017.2765695.

[95] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and prac-
tice of bloom filters for distributed systems,” IEEE Communications
Surveys & Tutorials, vol. 14, no. 1, pp. 131–155, 2012. doi: 10.1109/
SURV.2011.031611.00024.

[96] J. Bruck, J. Gao, and A. Jiang, “Weighted bloom filter,” in 2006 IEEE
International Symposium on Information Theory, 2006, pp. 2304–2308.
doi: 10.1109/ISIT.2006.261978.

169

https://doi.org/10.1201/9781003162810-13
https://doi.org/10.1201/9781003162810-13
https://doi.org/10.1109/CONIT51480.2021.9498400
https://doi.org/10.1109/CONIT51480.2021.9498400
https://doi.org/10.1109/TNNLS.2021.3063265
https://doi.org/10.1109/TNNLS.2021.3063265
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/ISIT.2006.261978

Bibliography

[97] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019. doi:
10.1109/COMST.2018.2889329.

[98] M. Werner and M. Kiermeier, “A Low-Dimensional Feature Vector Rep-
resentation for Alignment-Free Spatial Trajectory Analysis,” in Proceed-
ings of the 5th ACM SIGSPATIAL International Workshop on Mobile
Geographic Information Systems (MobiGIS’16), 2016.

[99] M. Ganaie, M. Hu, A. Malik, M. Tanveer, and P. Suganthan, “En-
semble deep learning: A review,” Engineering Applications of Artificial
Intelligence, vol. 115, p. 105 151, 2022, issn: 0952-1976. doi: https:
//doi.org/10.1016/j.engappai.2022.105151. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S095219762200269X.

[100] H. Salman, J. Li, I. Razenshteyn, et al., “Provably robust deep learn-
ing via adversarially trained smoothed classifiers,” in Advances in
Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds.,
vol. 32, Curran Associates, Inc., 2019. [Online]. Available: https :
/ / proceedings . neurips . cc / paper _ files / paper / 2019 / file /
3a24b25a7b092a252166a1641ae953e7-Paper.pdf.

[101] A. Mohammed and R. Kora, “A comprehensive review on ensemble deep
learning: Opportunities and challenges,” Journal of King Saud Univer-
sity - Computer and Information Sciences, vol. 35, no. 2, pp. 757–774,
2023, issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.
2023.01.014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1319157823000228.

[102] T. Hoeser and C. Kuenzer, “Object detection and image segmentation
with deep learning on earth observation data: A review-part i: Evolution
and recent trends,” Remote Sensing, vol. 12, no. 10, p. 1667, 2020.

[103] S. Salcedo-Sanz, P. Ghamisi, M. Piles, et al., “Machine learning infor-
mation fusion in earth observation: A comprehensive review of methods,
applications and data sources,” Information Fusion, vol. 63, pp. 256–
272, 2020.

170

https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/https://doi.org/10.1016/j.engappai.2022.105151
https://www.sciencedirect.com/science/article/pii/S095219762200269X
https://www.sciencedirect.com/science/article/pii/S095219762200269X
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.jksuci.2023.01.014
https://doi.org/https://doi.org/10.1016/j.jksuci.2023.01.014
https://www.sciencedirect.com/science/article/pii/S1319157823000228
https://www.sciencedirect.com/science/article/pii/S1319157823000228

Bibliography

[104] A. Cutler and L. Breiman, “Archetypal analysis,” Technometrics,
vol. 36, no. 4, pp. 338–347, 1994.

[105] H. Li, X. Dou, C. Tao, et al., “Rsi-cb: A large-scale remote sensing im-
age classification benchmark using crowdsourced data,” Sensors (Basel,
Switzerland), vol. 20, no. 6, 2020. doi: 10.3390/s20061594.

[106] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Introducing eurosat: A
novel dataset and deep learning benchmark for land use and land cover
classification,” in IGARSS 2018 - 2018 IEEE International Geoscience
and Remote Sensing Symposium, IEEE, 2018, pp. 204–207, isbn: 978-
1-5386-7150-4. doi: 10.1109/IGARSS.2018.8519248.

[107] The HDF Group. “Hierarchical Data Format, version 5.”
https://www.hdfgroup.org/HDF5/. (1997-2022).

[108] T. Developers, Tensorflow, version v2.8.2, Specific TensorFlow
versions can be found in the "Versions" list on the right side
of this page.
See the full list of authors <a href="htt
ps://github.com/tensorflow/tensorflow/graphs/contr ibutors">on
GitHub., May 2022. doi: 10.5281/zenodo.6574269. [Online].
Available: https://doi.org/10.5281/zenodo.6574269.

[109] F. Chang, J. Dean, S. Ghemawat, et al., “Bigtable: A distributed storage
system for structured data,” ACM Trans. Comput. Syst., vol. 26, no. 2,
Jun. 2008, issn: 0734-2071. doi: 10.1145/1365815.1365816. [Online].
Available: https://doi.org/10.1145/1365815.1365816.

[110] B. Demir and L. Bruzzone, “Hashing-based scalable remote sensing im-
age search and retrieval in large archives,” IEEE transactions on geo-
science and remote sensing, vol. 54, no. 2, pp. 892–904, 2015.

[111] Y. Sun, S. Feng, Y. Ye, et al., “Multisensor fusion and explicit semantic
preserving-based deep hashing for cross-modal remote sensing image re-
trieval,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60,
pp. 1–14, 2022. doi: 10.1109/TGRS.2021.3136641.

[112] Y. Sun, Y. Ye, X. Li, et al., “Unsupervised deep hashing through learn-
ing soft pseudo label for remote sensing image retrieval,” Knowledge-
Based Systems, vol. 239, p. 107 807, 2022, issn: 0950-7051. doi: https:
/ / doi . org / 10 . 1016 / j . knosys . 2021 . 107807. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S095070512101008X.

171

https://doi.org/10.3390/s20061594
https://doi.org/10.1109/IGARSS.2018.8519248
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.5281/zenodo.6574269
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/TGRS.2021.3136641
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107807
https://doi.org/https://doi.org/10.1016/j.knosys.2021.107807
https://www.sciencedirect.com/science/article/pii/S095070512101008X
https://www.sciencedirect.com/science/article/pii/S095070512101008X

Bibliography

[113] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), Softcover reprint of the original 1st edition 2006
(corrected at 8th printing 2009). New York, NY: Springer New York,
2006, isbn: 9781493938438.

[114] G. Cheng and J. Wei, “Color quantization application based on k-means
in remote sensing image processing,” Journal of Physics: Conference
Series, vol. 1213, no. 4, p. 042 012, 2019, issn: 1742-6588. doi: 10.
1088/1742-6596/1213/4/042012.

[115] G. Roelofs, Ed., PNG: The definitive guide ; [creating & programming
portable network graphics, 1. ed. Beijing and Köln: O’Reilly, 1999, isbn:
1-56592-542-4. [Online]. Available: http://www.loc.gov/catdir/
enhancements/fy0915/00702376-b.html.

[116] S. Leonard, Windows image media types, 2016. doi: 10 . 17487 /
RFC7903.

[117] A. D. Association et al., “Tiff revision 6.0,” Adobe Systems Incorporated,
Mountain View, 1992.

[118] E. A. Belyaev, C. Mantel, and S. O. Forchhammer, “High bit depth
infrared image compression via low bit depth codecs,” in Infrared
Remote Sensing and Instrumentation XXV, M. Strojnik and M. S.
Kirk, Eds., SPIE, 6/08/2017 - 10/08/2017, p. 9, isbn: 9781510612631.
doi: 10 . 1117 / 12 . 2275542. [Online]. Available: https : / / www .
spiedigitallibrary . org / conference - proceedings - of - spie /
10403/2275542/High-bit-depth-infrared-image-compression-
via-low-bit-depth/10.1117/12.2275542.full.

[119] G. Hudson, A. Léger, B. Niss, I. Sebestyén, and J. Vaaben, “Jpeg-1
standard 25 years: Past, present, and future reasons for a success,”
Journal of Electronic Imaging, vol. 27, no. 04, p. 1, 2018, issn: 1017-
9909. doi: 10.1117/1.JEI.27.4.040901.

[120] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992, issn: 00983063. doi: 10.1109/30.125072.

[121] G.-S. Xia, J. Hu, F. Hu, et al., “Aid: A benchmark data set for perfor-
mance evaluation of aerial scene classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3965–3981, 2017,
issn: 0196-2892. doi: 10.1109/TGRS.2017.2685945.

172

https://doi.org/10.1088/1742-6596/1213/4/042012
https://doi.org/10.1088/1742-6596/1213/4/042012
http://www.loc.gov/catdir/enhancements/fy0915/00702376-b.html
http://www.loc.gov/catdir/enhancements/fy0915/00702376-b.html
https://doi.org/10.17487/RFC7903
https://doi.org/10.17487/RFC7903
https://doi.org/10.1117/12.2275542
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10403/2275542/High-bit-depth-infrared-image-compression-via-low-bit-depth/10.1117/12.2275542.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10403/2275542/High-bit-depth-infrared-image-compression-via-low-bit-depth/10.1117/12.2275542.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10403/2275542/High-bit-depth-infrared-image-compression-via-low-bit-depth/10.1117/12.2275542.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10403/2275542/High-bit-depth-infrared-image-compression-via-low-bit-depth/10.1117/12.2275542.full
https://doi.org/10.1117/1.JEI.27.4.040901
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/TGRS.2017.2685945

Bibliography

[122] P. Jin, G.-S. Xia, F. Hu, Q. Lu, and L. Zhang, “Aid++: An updated
version of aid on scene classification,” in IGARSS 2018 - 2018 IEEE
International Geoscience and Remote Sensing Symposium, IEEE, 2018,
pp. 4721–4724, isbn: 978-1-5386-7150-4. doi: 10.1109/IGARSS.2018.
8518882.

[123] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-
strom, “Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, ser. KDD
’18, London, United Kingdom: Association for Computing Machinery,
2018, pp. 387–395, isbn: 9781450355520. doi: 10 . 1145 / 3219819 .
3219845. [Online]. Available: https://doi.org/10.1145/3219819.
3219845.

[124] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Dec. 2015, arXiv:1512.03385 [cs]. doi: 10.48550/arXiv.
1512.03385. [Online]. Available: http://arxiv.org/abs/1512.03385.

[125] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning
based radio signal classification,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 168–179, 2018. doi: 10.1109/
JSTSP.2018.2797022.

[126] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classi-
fication: Benchmark and state of the art,” Proceedings of the IEEE,
vol. 105, no. 10, pp. 1865–1883, Oct. 2017, issn: 1558-2256. doi: 10.
1109/jproc.2017.2675998. [Online]. Available: http://dx.doi.org/
10.1109/JPROC.2017.2675998.

[127] T. Alsahfi, M. Almotairi, R. Elmasri, and B. Alshemaimri, “Road
map generation and feature extraction from gps trajectories data,”
in Proceedings of the 12th ACM SIGSPATIAL International Work-
shop on Computational Transportation Science, ser. IWCTS’19,
Chicago, IL, USA: Association for Computing Machinery, 2019, isbn:
9781450369671. doi: 10.1145/3357000.3366140. [Online]. Available:
https://doi.org/10.1145/3357000.3366140.

[128] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social net-
working service among user, location and trajectory,” IEEE Data(base)
Engineering Bulletin, Jun. 2010. [Online]. Available: https://www.

173

https://doi.org/10.1109/IGARSS.2018.8518882
https://doi.org/10.1109/IGARSS.2018.8518882
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/JSTSP.2018.2797022
https://doi.org/10.1109/JSTSP.2018.2797022
https://doi.org/10.1109/jproc.2017.2675998
https://doi.org/10.1109/jproc.2017.2675998
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/JPROC.2017.2675998
https://doi.org/10.1145/3357000.3366140
https://doi.org/10.1145/3357000.3366140
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/

Bibliography

microsoft . com / en - us / research / publication / geolife - a -
collaborative - social - networking - service - among - user -
location-and-trajectory/.

[129] A. Karbalayghareh, U. Braga-Neto, and E. R. Dougherty, “Classifi-
cation of single-cell gene expression trajectories from incomplete and
noisy data,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 16, no. 1, pp. 193–207, 2019.

[130] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580,
Oct. 2007, issn: 1088-467X.

[131] T. Devogele, L. Etienne, M. Esnault, and F. Lardy, “Optimized dis-
crete fréchet distance between trajectories,” in Proceedings of the 6th
ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data,
ser. BigSpatial’17, Redondo Beach, CA, USA: Association for Comput-
ing Machinery, 2017, pp. 11–19, isbn: 9781450354943. doi: 10.1145/
3150919.3150924. [Online]. Available: https://doi.org/10.1145/
3150919.3150924.

[132] K. Buchin, Y. Diez, T. van Diggelen, and W. Meulemans, “Efficient
trajectory queries under the fréchet distance (gis cup),” in Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 2017, pp. 1–4.

[133] F. Dütsch and J. Vahrenhold, “A filter-and-refinement-algorithm for
range queries based on the fréchet distance (gis cup),” in Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2017, pp. 1–4.

[134] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online].
Available: http://archive.ics.uci.edu/ml.

[135] H. Taubenböck and M. Wurm, “Globale urbanisierung–markenzeichen
des 21. jahrhunderts,” in Globale Urbanisierung, Springer, 2015, pp. 5–
10.

[136] B. Cohen, “Urbanization in developing countries: Current trends, fu-
ture projections, and key challenges for sustainability,” Technology in
society, vol. 28, no. 1-2, pp. 63–80, 2006.

174

https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://www.microsoft.com/en-us/research/publication/geolife-a-collaborative-social-networking-service-among-user-location-and-trajectory/
https://doi.org/10.1145/3150919.3150924
https://doi.org/10.1145/3150919.3150924
https://doi.org/10.1145/3150919.3150924
https://doi.org/10.1145/3150919.3150924
http://archive.ics.uci.edu/ml

Bibliography

[137] S. Paldino, I. Bojic, S. Sobolevsky, C. Ratti, and M. C. González, “Ur-
ban magnetism through the lens of geo-tagged photography,” EPJ Data
Science, vol. 4, no. 1, p. 5, 2015.

[138] A. Crooks, A. Croitoru, A. Stefanidis, and J. Radzikowski, “# Earth-
quake: Twitter as a distributed sensor system,” Transactions in GIS,
vol. 17, no. 1, pp. 124–147, 2013.

[139] M. Veloso, S. Phithakkitnukoon, and C. Bento, “Urban mobility study
using taxi traces,” in Proceedings of the 2011 international workshop on
Trajectory data mining and analysis, ACM, 2011, pp. 23–30.

[140] M. Kiermeier, M. Werner, C. Linnhoff-Popien, H. Sauer, and J.
Wieghardt, “Anomaly detection in self-organizing industrial systems
using pathlets,” in Proceedings of the 18th Annual International Con-
ference on Industrial Technology (ICIT), IEEE, 2017, pp. 1226–1231.

[141] C. Chow, “On optimum recognition error and reject tradeoff,” IEEE
Transactions on information theory, vol. 16, no. 1, pp. 41–46, 1970.

[142] C. Elkan, “The foundations of cost-sensitive learning,” in International
joint conference on artificial intelligence, Lawrence Erlbaum Associates
Ltd, vol. 17, 2001, pp. 973–978.

[143] T. Pietraszek, “Classification of intrusion detection alerts using abstain-
ing classifiers,” Intelligent Data Analysis, vol. 11, no. 3, pp. 293–316,
2007.

[144] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of ar-
tificial intelligence research, vol. 16, pp. 321–357, 2002.

[145] B.-G. HU and Y. WANG, “Evaluation criteria based on mutual in-
formation for classifications including rejected class,” Acta Automatica
Sinica, vol. 34, no. 11, pp. 1396–1403, 2008.

[146] H. Bao-Gang, H. Ran, and Y. Xiao-Tong, “Information-theoretic mea-
sures for objective evaluation of classifications,” Acta Automatica
Sinica, vol. 38, no. 7, pp. 1169–1182, 2012.

[147] M. J. Powell, “An efficient method for finding the minimum of a func-
tion of several variables without calculating derivatives,” The computer
journal, vol. 7, no. 2, pp. 155–162, 1964.

175

Bibliography

[148] C. W. Granger and R. Ramanathan, “Improved methods of combining
forecasts,” Journal of Forecasting, vol. 3, no. 2, pp. 197–204, 1984.

[149] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, no. Mar, pp. 551–585, 2006.

176

List of Own Publications

[P1] C. O. Dumitru, G. Dax, G. Schwarz, C. Cazacu, M. C. Adamescu, and
M. Datcu, “Accurate monitoring of the danube delta dynamics using
copernicus data,” in SPIE Remote Sensing, 2019, pp. 1–13. [Online].
Available: https://elib.dlr.de/129121/.

[P2] C. O. Dumitru, G. Schwarz, G. Dax, V. Andrei, D. Ao, and M. Datcu,
“Active and machine learning for earth observation image analysis with
traditional and innovative approaches,” in Principles of Data Science,
ser. Transactions on Computational Science and Computational Intel-
ligence, H. R. Arabnia, K. Daimi, R. Stahlbock, C. Soviany, L. Heilig,
and K. Brüssau, Eds., Cham: Springer International Publishing, 2020,
pp. 207–231, isbn: 978-3-030-43980-4. doi: 10.1007/978- 3- 030-
43981-1_10.

[P3] G. Dax, M. Laass, and M. Werner, “Genetic algorithm for im-
proved transfer learning through bagging color-adjusted models,” in
2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, IEEE, 2021, pp. 2612–2615, isbn: 978-1-6654-0369-6. doi:
10.1109/IGARSS47720.2021.9554380.

[P4] G. Dax and M. Werner, “Information-optimal abstaining for reliable
classification of building functions,” AGILE: GIScience Series, vol. 2,
pp. 1–10, 2021. doi: 10.5194/agile-giss-2-1-2021.

[P5] G. Dax and M. Werner, “Trajectory similarity using compression,” in
2021 22nd IEEE International Conference on Mobile Data Manage-
ment (MDM), IEEE, 2021, pp. 169–174, isbn: 978-1-6654-2845-3. doi:
10.1109/MDM52706.2021.00035.

[P6] M. Ghiglione, A. Raoofy, G. Dax, G. Furano, R. Wiest, C. Trinitis,
M. Werner, M. Schulz, and M. Langer, “Machine learning applica-
tion benchmark for satellite on-board data processing,” in European
Workshop on On-Board Data Processing, 2021. doi: 10.5281/zenodo.
5520877.

177

https://elib.dlr.de/129121/
https://doi.org/10.1007/978-3-030-43981-1_10
https://doi.org/10.1007/978-3-030-43981-1_10
https://doi.org/10.1109/IGARSS47720.2021.9554380
https://doi.org/10.5194/agile-giss-2-1-2021
https://doi.org/10.1109/MDM52706.2021.00035
https://doi.org/10.5281/zenodo.5520877
https://doi.org/10.5281/zenodo.5520877

List of Own Publications

[P7] A. Raoofy, G. Dax, M. Ghiglione, M. Langer, C. Trinitis, M. Werner,
and M. Schulz, “Benchmarking machine learning inference in fpga-
based accelerated space applications,” in Workshop on Benchmarking
Machine Learning Workloads on Emerging Hardware, 2021.

[P8] G. Dax and M. Werner, “The role of compression in spatial comput-
ing,” in PhD Colloquium of the DGK Section on Geoinformatics 2022,
Braunschweig, 2022. [Online]. Available: https://www.geoinfo.uni-
bonn.de/DGKGeoinfo2022/pdf- dokumente/09_DGKGeoinfo2022_
DAX-WERNER_paper_2684.pdf.

[P9] M. Ghiglione, V. Serra, A. Raoofy, G. Dax, C. Trinitis, M. Werner, M.
Schulz, and G. Furano, “Survey of frameworks for inference of neural
networks in space data system,” in DASIA 2022, 2022.

[P10] A. Raoofy, G. Dax, V. Serra, M. Ghiglione, M. Werner, and C. Trinitis,
“Benchmarking and feasibility aspects of machine learning in space
systems,” in Proceedings of the 19th ACM International Conference on
Computing Frontiers, L. Sterpone, A. Bartolini, and A. Butko, Eds.,
New York, NY, USA: ACM, 2022, pp. 225–226, isbn: 9781450393386.
doi: 10.1145/3528416.3530986.

[P11] G. Dax, S. Nagarajan, H. Li, and M. Werner, “Compression supports
spatial deep learning,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 16, pp. 702–713, 2023,
issn: 1939-1404. doi: 10.1109/JSTARS.2022.3226563.

[P12] A. Koch, G. Dax, M. Petry, H. Gomez, U. Raoofy Amir Saroliya, M.
Ghiglione, G. Furano, M. Werner, C. Trinitis, and M. Langer, “Ref-
erence implementations for machine learning application benchmark,”
in European Data Handling and Data Processing Conference (EDHPC
2023), 2023.

[P13] A. Koch, M. Petry, M. Ghiglione, A. Raoofy, G. Dax, G. Furano,
M. Werner, C. Trinitis, and M. Langer, “Machine learning applica-
tion benchmark,” in 20th ACM International Conference on Comput-
ing Frontiers: Special Session on Computer Architectures in Space —
CompSpace ’23, ACM, 2023, isbn: 979-8-4007-0140-5/23/05. doi: 10.
1145/3587135.3592769.

178

https://www.geoinfo.uni-bonn.de/DGKGeoinfo2022/pdf-dokumente/09_DGKGeoinfo2022_DAX-WERNER_paper_2684.pdf
https://www.geoinfo.uni-bonn.de/DGKGeoinfo2022/pdf-dokumente/09_DGKGeoinfo2022_DAX-WERNER_paper_2684.pdf
https://www.geoinfo.uni-bonn.de/DGKGeoinfo2022/pdf-dokumente/09_DGKGeoinfo2022_DAX-WERNER_paper_2684.pdf
https://doi.org/10.1145/3528416.3530986
https://doi.org/10.1109/JSTARS.2022.3226563
https://doi.org/10.1145/3587135.3592769
https://doi.org/10.1145/3587135.3592769

Project Reports

[T1] A. Raoofy, G. Dax, V. Serra, M. Ghiglione, M. Werner, C. Trinitis, R.
Wiest, M. Schulz, and M. Langer, “Project mlab: Dataset and model
selection document,” Airbus, Project Report 1.2, Jan. 2022.

[T2] A. Raoofy, G. Dax, V. Serra, M. Ghiglione, M. Werner, C. Trinitis, R.
Wiest, M. Schulz, and M. Langer, “Project mlab: Ml algorithm submis-
sion description document,” Airbus, Project Report 1, Jun. 2022.

[T3] A. Raoofy, G. Dax, V. Serra, M. Ghiglione, M. Werner, C. Trinitis,
R. Wiest, M. Schulz, and M. Langer, “Project mlab: Ml benchmarking
description document,” Airbus, Project Report 1, Jun. 2022.

179

	Introduction
	Research Questions
	Structure of the Thesis

	Fundamentals
	Information Theory and Information Science
	Communication Theory and Compression
	Algorithmic Information Theory

	Image Classification and Segmentation
	Convolutional Neural Networks
	Classification Architectures
	Segmentation Architectures
	Modern Model Compression

	Set Similarities for Spatial Data
	Distance Metrics for Spatial Data
	Bloom Filter and Distances
	Space-Filling Curves
	Geohash

	Common Hardware Accelerators

	Analysis of the Data-driven System's Requirements
	Hypotheses
	Compression Scheme
	Compression of the Input
	Lossless Compression
	Lossy Compression
	Quantization
	The Impact of Input Data Compression

	Compression of the Algorithm
	The Impact of Algorithm Compression

	Compression of the Output
	The Impact of Output Compression

	Computing with Compressed Representations
	The Impact of Computing with Compressed Representations

	The Consequences for the Data-driven System
	The Role of Compression in Spatial Computing

	Application Experiments and Results
	Examples of Input Compression
	Genetic Algorithm for Transfer Learning
	Image Compression for Communication Reduction

	Examples of Algorithm Compression
	Minimal Footprint AI for Space Application
	Trajectory Similarity using Compression

	Example of Output Compression
	Information-Optimal Abstaining

	Conclusion
	Open Problems and Future Work

