
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

An Analysis of Traffic
Simulations Based on Modifiable

OpenStreetMap Data

Jakob Smretschnig

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

An Analysis of Traffic Simulations Based on
Modifiable OpenStreetMap Data

Eine Analyse von Verkehrssimulationen mit
modifizierbaren OpenStreetMap Daten

Author: Jakob Smretschnig
Supervisor: Prof. Bernd Brügge, Ph.D.
Advisor: Mariana Avezum
Date: 16.09.2019

I assure the single handed composition of this bachelor thesis only supported
by declared resources,

Munich, 16.09.2019 Jakob Smretschnig

f

Acknowledgements

I am using this opportunity to express my gratitude to my advisor Mariana
Avezum, who supported me throughout the course of this thesis. Further-
more, I would like to thank my supervisor Prof. Bernd Brügge, Ph.D. for
the trust he placed in me that made this thesis possible.

I am also grateful to Tobias Schock, head of the Economic Development
of the municipality Kirchheim and his IHK (German: Industrie- und Handel-
skammer) Smart Mobility team who allowed me to work on a real problem.
In addition, I would like to thank Michael Karrasch and Beatrix Winkler,
both responsible for mobility and projects in Kirchheim, for their time and
input throughout the evaluation.

All the assistance and valuable comments received during the course of
this thesis greatly improved the implementation and the manuscript.

Finally, I take this opportunity to express my gratitude to all the members
of the Chair for Applied Software Engineering at TU Munich for their help
and support.

i

Abstract

Urban traffic poses a major challenge for governments and city planners.
Traffic simulation software applications help to meet this challenge of enor-
mous demand on mobility by providing ways to model and understand traffic
flows and hence predict and improve transportation. However, the integra-
tion of OpenStreetMap (OSM) data into traffic simulation applications is
limited, though OSM provides an accurate, up-to-date and open road net-
work basis that covers most of our planet.

This thesis introduces an interactive system that seamlessly integrates
the functionality of modifying OSM street layouts in a specific traffic sim-
ulation software by applying model based software engineering. To extract
knowledge about highly congested areas, temporal traffic load maps are gen-
erated and visualized based on the simulation output. The overall goal of
the system is to enable easy editing and quick simulation of traffic scenarios.
Therefore transportation planning can be made as responsive, dynamic and
agile as required by today’s real world’s necessities of an equally dynamic
and constantly changing urban area.

The local authority of Kirchheim, a small municipality close to Munich,
plans to use the developed system as part of its smart-city program to inves-
tigate novel transportation strategies. Kirchheim has been growing rapidly
over the past years and due to a rising number of vehicles, complaints about
noise, air pollution and traffic jams have become more frequent. Thus, a
congestion-free traffic concept has the potential to improve Kirchheim’s qual-
ity of life in a sustainable way.

Zusammenfassung

Städtischer Verkehr stellt eine der größten Herausforderungen für Politik
und Wissenschaft dar. Verkehrssimulationen helfen dabei dieser Herausforde-
rung entgegen zu treten indem sie Möglichkeiten bereitstellen, Verkehrsflüsse
zu modellieren und zu verstehen und dadurch vorherzusagen und zu verbes-
sern. Dennoch existierten kaum Verkehrssimulationsanwendungen, welche ei-
ne umfangreiche Arbeit mit OpenStreetMap (OSM) Daten unterstützen, ob-
wohl OSM ein genaues, zeitgemäßes und frei verfügbares Straßennetzwerk
der ganzen Welt bereitstellt.

Diese Arbeit präsentiert ein interaktives System, welches die Modifizie-
rung von OSM Straßennetzwerken nahtlos mit einer ausgewählten Verkehrs-
simulationssoftware verknüpft. Dabei wird modellbasierte Softwareentwick-
lung angewendet. Um verkehrsreiche Gegenden und überlastete Straßen zu
identifizieren, werden basierend auf dem Simulationsergebnis Karten mit dem
Straßenverkehrsaufkommen generiert und visualisiert. Ziel des Systems ist es,
einfaches Editieren und Simulieren von Verkehrsszenarien zu ermöglichen.
Dadurch können Verkehrsplanungen möglichst dynamisch und agil durch-
geführt werden, um den heutigen Notwendigkeiten eines ebenso dynamischen
und sich ständig verändernden urbanen Raums zu entsprechen.

Die Gemeinde Kirchheim bei München plant das entwickelte System als
Teil ihrer Smart-City Offensive einzusetzen um neue Transportstrategien
zu erforschen. Kirchheim ist in den vergangenen Jahren stark gewachsen
und durch die steigende Zahl an Autos häufen sich die Beschwerden über
Lärmbelastung, Luftverschmutzung und Verkehrsstau. Ein staufreies Ver-
kehrskonzept birgt daher das Potential, Kirchheims Lebensqualität nachhal-
tig zu verbessern.

ii

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Background . 2

1.3 Objectives . 2

1.3.1 Realistic Traffic Demand 2

1.3.2 Editor Integration . 3

1.3.3 Traffic Flow Visualization 3

1.4 Motivation . 3

1.5 Overview . 4

1.6 Outline . 4

2 Background 5

2.1 Pilot Projects vs. Computer Simulations 5

2.1.1 Computer Simulations 5

2.2 Traffic Simulation Software . 6

2.2.1 Simulation Strategies 6

2.2.2 Multimodal Transport Simulation 6

2.2.3 Simulation Input . 7

2.2.4 SUMO - Simulation of Urban MObility 8

2.2.5 CityMos - City Mobility Simulator 9

2.2.6 MATSim - Multi-Agent Transport Simulation 10

2.3 OpenStreetMap . 10

2.3.1 Attributes . 10

2.3.2 JOSM - Java OpenStreetMap Editor 12

2.4 Modeling Mobility with Open Data 12

2.5 Coordinate Reference Systems 13

2.5.1 GPS Reference System 13

2.5.2 Map Projection . 14

2.6 Scrum . 15

iii

3 Requirements Elicitation 17

3.1 Overview . 17

3.2 Functional Requirements . 17

3.3 Nonfunctional Requirements 18

3.4 Use Case Diagram . 19

3.5 Scenarios . 20

4 System Design 25

4.1 Analysis Object Model . 25

4.1.1 Stereotypes . 27

4.2 Subsystem Decomposition . 27

4.3 Dynamic Behavior . 28

4.4 Graphical User Interface . 30

4.4.1 Simulation Model . 30

4.5 Design Goals . 31

4.5.1 Chosen Traffic Simulation 31

4.5.2 Chosen OpenStreetMap Editor 31

4.5.3 Trade-Offs . 33

4.6 Identify Concurrency . 34

4.7 Hardware/Software Mapping 35

4.7.1 Container Platform . 35

4.8 Persistent Data Management 36

5 Agile City Planning Suite 37

5.1 Overview . 37

5.2 Object Design . 38

5.2.1 Stereotypes . 40

5.2.2 Object Description . 40

5.3 JOSM Container . 42

5.4 TraLAMA Plugin . 42

5.4.1 Filter OSM Elements 43

5.4.2 Communication with SUMO Container 44

5.4.3 Generation of Traffic Load Maps 45

5.4.4 TraLAMA Workflow 45

5.5 SUMO Container . 47

5.5.1 Simulation Controller 47

5.5.2 Route Planner . 50

5.6 TraLAMA Web Service . 53

5.7 User Workflow . 54

iv

6 Evaluation 57
6.1 Objectives . 57
6.2 Methodology . 57
6.3 Simulation Scenarios . 58
6.4 Results . 58

6.4.1 Scenario 1 - Original Road Network 58
6.4.2 Scenario 2 - Bypass Road 59
6.4.3 Scenario 3 - Bicycle Road 60
6.4.4 Usability . 60
6.4.5 Traffic Load Map . 61
6.4.6 Sensor Data . 61
6.4.7 Multimodal Simulations 61
6.4.8 Summary . 61

6.5 Findings and Discussion . 62
6.5.1 Street Classification . 62
6.5.2 Usability . 62
6.5.3 Web Service, Sensors and Bicycles 62

6.6 Reliability . 63

7 Summary 65
7.1 Status . 65

7.1.1 Realized Goals . 65
7.1.2 Open Goals . 68

7.2 Threats to Validity . 68
7.3 Future Work . 69
7.4 Conclusion . 70

A Software Availability 71
A.1 Prerequisites . 71

A.1.1 Windows . 71
A.1.2 macOS . 72

A.2 Installing . 72
A.3 Starting . 72

A.3.1 Windows . 72
A.3.2 macOS . 72

A.4 Additional Information . 73
A.4.1 Ports . 73
A.4.2 Data . 73

A.5 References . 73

Bibliography 82

v

ACPS Agile City Planning Suite

AOM Analysis Object Model

API Application Programming Interface

CSV Comma-Separated Values

DLR German Aerospace Center (German: Deutsches Zentrum für Luft- und
Raumfahrt e.V.)

EPL Eclipse Public License

GIS Geographic Information System

GNSS Global Navigation Satellite Systems

GPL GNU General Public License

GPS Global Positioning System

GPX GPS Exchange Format

GRS Geodetic Reference System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IHK Chamber of Industry and Commerce (German: Industrie- und Han-
delskammer)

IP Internet Protocol

ITRS International Terrestrial Reference System

JOSM Java OpenStreetMap Editor

JSON JavaScript Object Notation

ODbL Open Data Commons Open Database License

OSI Open Systems Interconnection

OSM OpenStreetMap

POI Point Of Interest

vi

REST REpresentational State Transfer

SUMO Simulation of Urban MObility

TAZ Traffic Assignment Zones

TraCI Traffic Control Interface

TraLAMA Traffic LoAd MAp

TUM Technical University of Munich (German: Technische Universität
München)

UML Unified Modeling Language

URL Uniform Resource Locator

UTM Universal Transverse Mercator

WGS World Geodetic System

XML Extensible Markup Language

vii

viii

Chapter 1

Introduction

The number of people moving from rural to urban areas is rising [The18,
Uni18]. The reasons for this range from a lucrative labor market to bet-
ter infrastructure and improved health care [JCG14]. This shift results in
enormous changes in city dynamics and governments and city planners are
challenged in many ways. One major challenge is transportation, since peo-
ple need to fulfill their essential human need of mobility. Historically, the
transport infrastructure was not designed to handle such a large number of
people. For instance, the central suburban line (S-Bahn) in Munich, which
was originally built in 1972 for about 250,000 passengers per day, nowadays
carries up to 840,000 passengers on a business day [Deu17]. The amount of
registered cars in Germany has also increased tremendously: from 1990 to
2019 by more than fifty percent to a total of about 47.1 million today [Sta19].
In other words, more than every second citizen owns a car. As a result, many
citizens suffer from air pollution, noise pollution and a high level of stress
caused by traffic [Wor18].

1.1 Problem Statement

Kirchheim, a small municipality close to Munich, has been growing rapidly
over the past years too and Kirchheim’s streets are typically congested during
rush hour. If the municipality ignores the problem, not only the livability in
Kirchheim gets worse, but also the industrial sector might suffer from a lack
of specialists, who would rather choose a workplace in other regions.

Based on this problem, the goal is to support the municipality of Kirch-
heim in developing a congestion-free traffic concept. Therefore, open data
and freely available traffic simulations are used to analyze the impact of road
network editing on traffic flow. Besides, commuter streams and traffic statis-

1

CHAPTER 1. INTRODUCTION

tics of Kirchheim are considered to model the simulation scenarios as realistic
as possible.

1.2 Background

In fact, the first traffic simulations date back to the 1950s [Tra14]. Thus,
several traffic simulations already exist that allow city and traffic planners
to develop and assess novel transportation strategies. To simulate routes
of vehicles on a given road network, a traffic simulation usually requires
two types of input data: a road network, representing the traffic areas and
junctions and traffic demand, describing the movements of vehicles [Bar10,
BW15]. Both datasets have to be realistic to obtain a meaningful simulation
result.

Road networks could be provided by government agencies. However, the
maintenance is difficult and the networks might be delivered in different file
formats, depending on the authority [ZNN11]. Since millions of hand-held
navigation devices collect high-quality location information nowadays and
thousands of users worldwide who own such a device share their location
information, the collaborative OpenStreetMap (OSM) project was founded
[HW08]. OSM provides an accurate, up-to-date and open road network basis
that covers most of our planet. Soon it emerged as a state-of-the-art data
source to derive suitable road networks for traffic simulations.

1.3 Objectives

1.3.1 Realistic Traffic Demand

Obtaining realistic traffic demand data is complex [BW14]. Therefore, traffic
demand is often generated randomly within a simulation. However, in or-
der to analyze the impact of road network editing on traffic flow, the traffic
demand must not be changed. This means that the origin and destination
locations of all vehicles have to be constant throughout different simulation
scenarios with modified road networks. Within this thesis, tools are imple-
mented to store the traffic demand independently of the traffic simulation
and to reuse the demand data for the calculation of new simulation routes,
based on a modified road network.

2

1.4. MOTIVATION

1.3.2 Editor Integration

In order to edit the road network, for example by adding more lanes, a new
street, traffic lights or traffic signs to it, the traffic simulation SUMO for
instance integrates a tool called NETEDIT1. However, this tool is not as
powerful as external editors such as JOSM (Java OpenStreetMap Editor)2

or GIS (Geographic Information System) applications like QuantumGIS3 or
ArcGIS4 are. To derive benefit of JOSM’s range of functions, its user-friendly
interface and large community, another goal is to integrate the editor and
a specific traffic simulation in order to combine their functionalities. In ad-
dition, by fully automating all required processing steps that are required
for the integration, the entire system can be utilized with basic computer
knowledge.

1.3.3 Traffic Flow Visualization

In order to analyze the impact of road network editing on traffic flow, the
traces of the simulated vehicles should be visualized in the form of a heat map.
These traffic load maps should enable traffic planners to extract knowledge
about highly congested areas in a simple way.

1.4 Motivation

The primary goal of the system is to provide traffic planners with a simple
way of experimenting visionary transportation scenarios based on modified
road networks. Thereby, benefit is derived from accurate and up-to-date
OSM data. Moreover, traffic planners get instant feedback through the tem-
poral traffic load maps and can understand, analyze and optimize the traffic
flow more easily. As a result, novel transportation strategies can be assessed
more efficiently.

Since the system is developed on behalf of the municipality Kirchheim, it
is a small step towards a congestion-free traffic concept that has the potential
to tremendously improve Kirchheim’s quality of life.

1https://sumo.dlr.de/wiki/NETEDIT
2https://josm.openstreetmap.de
3https://www.qgis.org/en/site/
4https://www.esri.com/en-us/arcgis/about-arcgis/overview

3

https://sumo.dlr.de/wiki/NETEDIT
https://josm.openstreetmap.de
https://www.qgis.org/en/site/
https://www.esri.com/en-us/arcgis/about-arcgis/overview

CHAPTER 1. INTRODUCTION

1.5 Overview

Within this Bachelor’s Thesis, the following systems were implemented:

1. Agile City Planning Suite (ACPS)

2. TraLAMA (Traffic LoAd MAp) Plugin

3. TraLAMA Web Service

The Agile City Planning Suite describes the entire system which includes
the TraLAMA plugin, the TraLAMA web service and an additional Open-
StreetMap (OSM) editor as well as a traffic simulation software.

The TraLAMA plugin is a plugin for the OSM editor and allows traffic
planners to use modified OSM data as a road network basis for the traffic
simulation. The plugin further includes optimized traffic demand data of the
municipality Kirchheim to enable more precise simulations of this area than
with randomly generated data. The simulation results can be visualized in
the OSM editor as additional layers and on the web page provided by the
TraLAMA web service, which offers extended styling options.

1.6 Outline

In Chapter 2, the background technologies of traffic simulations and Open-
StreetMap will be discussed. Then the system requirements will be derived
in Chapter 3, based on the problem statement. These requirements will be
later used for the system design in Chapter 4, where they are mapped to
design goals and subsystems. Chapter 5 focuses on the solution domain and
the actual implementation. The subsequent Chapter 6 presents several sim-
ulation scenarios that were tested among municipal employees of Kirchheim.
Lastly, Chapter 7 summarizes open and realized goals of the implemented
systems and draws a conclusion from this thesis.

4

Chapter 2

Background

This chapter provides insight into computer simulations in general (2.1),
state-of-the-art traffic simulation software (2.2) and OpenStreetMap (OSM)
editors (2.3). Existing works about Modeling Mobility with Open Data (2.4)
are discussed and a brief introduction into the agile software development
methodology Scrum is provided (2.6).

2.1 Pilot Projects vs. Computer Simulations

Usually real world pilot projects are expensive to realize and their impact
is difficult to reproduce. That is because pilot projects need large effort for
planning and run for several days, weeks or even months and years. Obvi-
ously, the longer the testing phase, the more accurate are the results. On
the contrary, long testing phases represent the exact opposite of agile de-
velopment, where changes happen frequently and quick response has a high
priority [BD09]. Thus, one could argue that pilot projects are always behind
the real world’s necessities. To measure the impact of a pilot project, one
also needs previous data for the testing area to determine changes, whether
the experiment effects the area with a desirable or an undesirable impact.
Consequently, the required time for the testing phase could increase even
more [KH09].

2.1.1 Computer Simulations

Constant progress in computer architecture and computer processing power
enables the manufacturing of unprecedented high-performance computers,
so-called supercomputers. These supercomputers let scientists solve com-
plex computations within reasonable time. One field of application is the

5

CHAPTER 2. BACKGROUND

computer simulation, a discipline of high relevance in science. With the
aid of intricate computer simulations, experts can test scientific models for
its feasibility and correctness faster and at lower cost than conducting the
experiment in real world [KH09].

2.2 Traffic Simulation Software

Throughout the last centuries, research in the field of mobility and traffic
management got more attention where the simulation of traffic networks to
calculate an optimal workload of the road users has played an important
role [KH09].

2.2.1 Simulation Strategies

Scientists distinguish between three traffic simulation strategies [Bar10,BW15,
KH09]:

• Macroscopic Traffic Simulation: Vehicles are statistically distributed
over the road network

• Microscopic Traffic Simulation: Any road user (e.g. cars, motorbikes,
bicycles), pedestrians and public transport can be modeled explicitly.

• Mesoscopic Traffic Simulation: Represents an intermediate of micro-
and macroscopic simulation strategies. According to Barceló [Bar10],
it is “the simplification that intends to capture the essential points of
the dynamic, while demanding less data and hence is computationally
more efficient than microscopic models”.

Especially the microscopic traffic simulations take advantage of the high-
performance computers. More precise simulations can be modeled that reflect
the dynamic city behavior in a more realistic approach than ever before.
Figure 2.1 illustrates the different traffic simulation strategies.

2.2.2 Multimodal Transport Simulation

Traffic simulations that involve different modes of transport are defined as
multimodal transportation simulations [GD12]. This means that the sim-
ulations are not only based on vehicles, but on a combination of vehicles,
bicycles and pedestrians for instance.

6

2.2. TRAFFIC SIMULATION SOFTWARE

Figure 2.1: Traffic Simulation Strategies: Macroscopic, Mesoscopic, Microscopic

Figure 2.2: Road Network of Kirchheim

2.2.3 Simulation Input

To simulate routes of vehicles on a given road network, a traffic simulation
usually requires two types of input data: the road network and traffic demand
data [Bar10,BW15]. Both datasets have to be realistic to obtain a meaningful
simulation result.

Road Network

The road network represents the road structure within the traffic simulation.
This means it includes the traffic areas and junctions, with additional in-
formation about the number of lanes, speed limits, street types and so on.
Figure 2.2 shows an example of a road network.

7

CHAPTER 2. BACKGROUND

Traffic Demand

Unlike the road network, the traffic demand data usually differs from one
simulation strategy (2.2.1) to another. Given a macroscopic traffic simu-
lation, the traffic demand describes the traffic flows within the simulation.
These flows are often provided by traffic authorities and represented as Orign-
Destination-Matrices [BBEK11]. Whereas on a microscopic level, individual
movements of road users such as vehicles, bicycles or pedestrians are mod-
eled. Using a trip definition, the origin and destination locations are stored
for a specific road user object. An example would be a simple table structure,
with the following columns: Vehicle ID, Start Time, Origin Geo-Coordinate,
Destination Geo-Coordinate.

Typical data sources for the traffic demand are traffic sensors and statis-
tics about the mobility behavior of people [Bar10]. The statistical data is
often estimated based on information about commuter flows, population den-
sity and company locations together with their number of employees.

2.2.4 SUMO - Simulation of Urban MObility

SUMO is a free and open-source traffic simulation suite that allows traffic
planners to run a microscopic or mesoscopic traffic simulation [BBEK11].
The road network itself is a graph that can be either modeled manually or
generated out of existing models, e.g. OSM models using the NETCON-
VERT tool. Besides, SUMO allows the user to perform multimodal traffic
simulations (2.2.2) with vehicles, pedestrians, public transport and many
more [KHRW02, BBEK11, Bar10]. It is licensed under the Eclipse Public
License v2.0 (EPLv2)1.

NETCONVERT

NETCONVERT is a conversion tool that provides traffic planners with an
option to import road networks from different sources [KHRW02]. It is a
command-line application and hence, requires a few basic computer skills.
NETCONVERT takes an OSM file as input data and stores the SUMO road
network in a new file. To customize the conversion process, additional pa-
rameters can be added such as Output Street Names or Junctions Join. With
the former option, the generated SUMO road network includes street names.
The latter option is especially recommended for OSM imports. Often, traffic
lights are modeled several times for one junction because they only repre-
sent their position within the OpenStreetMap platform. SUMO on the other

1https://www.eclipse.org/legal/epl-2.0/

8

https://www.eclipse.org/legal/epl-2.0/

2.2. TRAFFIC SIMULATION SOFTWARE

hand precisely requires one traffic-light element per junction. Therefore, the
Junctions Join option takes care that the traffic lights get synchronized for
an appropriate mapping to the SUMO road network [KHRW02].

NETEDIT

NETEDIT is part of the SUMO package and can be used to create new SUMO
road networks from scratch or modify existing ones. The tool is built on
top of NETCONVERT and features almost the same functionalities. Unlike
NETCONVERT, NETEDIT offers a graphical user interface [KHRW02].

POLYCONVERT

POLYCONVERT is a SUMO tool that parses OSM points of interest (POI)
and additional geometric shapes such as farmlands or buildings for the visu-
alization in SUMO. In order to realize that, a configuration file is needed in
the form of an XML (Extensible Markup Language) document. This doc-
ument represents a schema definition for the parsing of OSM elements into
SUMO elements. It can be customized to let the user decide on how much
additional information is shown in the simulation. POLYCONVERT writes
the result into a SUMO shape file, which can be then read by SUMO as an
additional simulation input file [KHRW02].

Trips and Routes

A SUMO trip describes the starting time, the starting edge and the destina-
tion edge of a vehicle. Notable is that the vehicles do not start from nodes
which would represent precise locations, but are rather placed randomly
along the edges. Random trips can be generated using SUMO’s Random
Trips script. To simulate the vehicle along the streets of the road network,
the trip information has to be complemented by the actual route definition.
DUAROUTER, another command-line application of the SUMO package,
computes the intermediate edges a vehicle will pass when driving from the
given starting edge to its destination edge. For the route calculation, Dijk-
stra’s shortest path algorithm is used per default [KHRW02].

2.2.5 CityMos - City Mobility Simulator

The City Mobility Simulator (CityMos) is another traffic simulation with a
focus on modeling both conventional and autonomous vehicles [ZNKE17].
CityMos is a (sub-)microscopic simulation that considers the components
of the vehicles and even the behavior of the driver. It is not possible to

9

CHAPTER 2. BACKGROUND

import OSM data directly, however there exists a scenario editor with the
functionality to create CityMos networks based on OSM. CityMos is still
under development and not available to the public yet.

2.2.6 MATSim - Multi-Agent Transport Simulation

The MATSim project is an open-source simulation framework to model large-
scale scenarios. Typically, a single day is modeled and simulated. Thereby,
MATSim simulates microscopic agents [HNA16].

2.3 OpenStreetMap

OpenStreetMap (OSM) is a collaborative project that was launched in 2004
where thousands to millions of users share their location information to build
a free and editable worldwide map [HW08]. The founder Steve Coast got the
inspiration to such a volunteered map from the free encyclopedia Wikipedia.
Unlike Wikipedia, where everyone can be an honorary and anonymous au-
thor, only registered users are allowed to edit the OSM maps. Besides the
main web page2 and its online editor, there are several editing tools such as
the JOSM editor, which is described in Section 2.3.2.

OpenStreetMap is licensed under the Open Data Commons Open Database
License (ODbL)3 which means that anybody can copy and adapt OSM data
as long as they give credit to OpenStreetMap and its contributors [Ope19a].

2.3.1 Attributes

There exists no directive how to tag OSM elements correctly, the consensus
evolved by the users themselves [HW08]. Of course there are some guidelines
and best practices, but still anybody can freely add a new key=value pair to
any OSM element. This fact makes it difficult to define a basis between the
OSM data and the traffic simulation software.

Street Types

The main attribute of streets in OSM has the key highway. The keywords
listed in Table 2.1 are relevant for the correct classification of streets [Ope19d].
They are ordered by priority.

2https://www.openstreetmap.org
3https://opendatacommons.org/licenses/odbl/

10

https://www.openstreetmap.org
https://opendatacommons.org/licenses/odbl/

2.3. OPENSTREETMAP

OSM German Description

motorway Autobahn divided highway with restricted access

trunk Kraftfahrstraße
similar to the motorway,

but not always structurally separated

primary Bundesstraße
main transport connection

between large towns

secondary Landesstraße nationwide importance, links towns

tertiary Kreisstraße links smaller towns or villages

unclassified Gemeindestraße usually no center line

residential Wohnstraße provides access to housing

living street
Verkehrsberuhigte

Straße

often called play street,

pedestrians have priority over cars

Table 2.1: Street Type Classification in OpenStreetMap

Attention: The road tag unclassified is not a placeholder. It is a term
that has a historical background in the United Kingdom. If the classification
is unknown, it should be tagged with road.

Junctions

The following values should be used for the OSM attribute junction [Ope19e]:

• roundabout: a circular road junction which always has right of way

• circular: a road junction which does not always have right of way

• jughandle: a road junction including ramps

All three junction types require the additional attribute highway = ∗,
with ∗ representing one of the street types (2.3.1). Otherwise, it is probably
a standalone junction that does not connect highways yet. Such a junction
should be tagged as junction = yes.

An additional tag for a junction could be supervised = yes, representing
a police officer who regulates the traffic.

11

CHAPTER 2. BACKGROUND

2.3.2 JOSM - Java OpenStreetMap Editor

JOSM is an open-source offline editor for OpenStreetMap that supports in-
stant downloading of OSM material from the OpenStreetMap server and
aerial imagery to get a better overview of the scene. JOSM is also capable of
working with GPX (GPS Exchange Format) files and provides a multilayer
functionality. The editor has various built in presets for OSM elements such
as street types, traffic signs and almost any facility one can imagine [HW08].
JOSM is released under the GNU General Public License (GPL)4.

2.4 Modeling Mobility with Open Data

During the second SUMO Conference in Berlin in 2014, participants were
dealing with one specific topic: Modeling Mobility with Open Data [BW14].
The focus of the proceedings of the conference was on free data sources for
traffic simulations. Several applications and projects were presented that are
based on the traffic simulation SUMO.

For instance, the authors of [RSR15] introduced a plugin for JOSM to
enable advanced editing of traffic lights. The proposed Traffic Signals Editor
should make it easier to tag complex intersections appropriately for the reuse
in SUMO. Thereby, the OSM format is extended with a traffic signal rela-
tion and additional attributes are stored as key-value pairs. Unfortunately,
it seems that the developed plugin was not published yet, since it is not
mentioned in the list of all plugins for JOSM5.

Another study by [KP15] presents calibration steps to improve traffic de-
mand gathered through sensor data. In the Austrian states of Salzburg and
Upper Austria, several traffic sensors were installed to measure traffic flow.
However, these sensors do not cover the entire road network. In order to fill
the gaps of traffic demand, the authors use the traffic simulation SUMO to
generate additional demand data. Thereby, the simulation results are com-
pared with the real-time data to adjust the simulation settings automatically.

The contributors of [KBW+15] address air pollution emitted by vehicles.
They implemented two new models for SUMO in order to compute CO, CO2,
NOx and other emissions of simulated vehicles. To calculate these emissions
for each road user individually, a microscopic traffic model was used.

4https://www.gnu.org/licenses/gpl-3.0.en.html
5https://josm.openstreetmap.de/wiki/Plugins

12

https://www.gnu.org/licenses/gpl-3.0.en.html
https://josm.openstreetmap.de/wiki/Plugins

2.5. COORDINATE REFERENCE SYSTEMS

Figure 2.3: WGS84 Ellipsoid Showing the Difference in Elevation

2.5 Coordinate Reference Systems

Coordinate reference systems are used to “determine events in space and
time” [Lan19b]. Therefore, the coordinate reference system is defined through
coordinates with regard to a specific spatial reference system. It is often also
referred to as direct spatial reference. Whereas the indirect spatial reference
uses geocoding: a simple addressing scheme such as Arcisstraße 21, 80333
Munich, which can be then decoded to obtain a direct spatial reference. In
the following, the focus is put on the direct spatial reference only.

To describe the coordinate reference system, three components are nec-
essary:

• Geodetic Reference System: Is defined through the geodetic datum
that approximates the earth with a global or national adapted ellipsoid
and the associated mounting point of this ellipsoid. In Figure 2.3, the
approximation using an ellipsoid is illustrated.

• Reference Frame: Precise definition of fixed points in the earth’s
terrain to realize the reference between the geodetic reference system
and the real world.

• Coordinate System: Different types such as the geocentric Cartesian
coordinates (typically used for satellite orbits), geographic coordinates
(latitude, longitude) or projection coordinates (described in Section
2.5.2) exist.

2.5.1 GPS Reference System

The Global Positioning System (GPS) is the most known Global Navi-
gation Satellite System (GNSS) [Lan19a]. It is properly specified with the
geodetic reference system WGS84 (World Geodetic System 1984) and the

13

CHAPTER 2. BACKGROUND

reference frame WGS84. GPS has almost the same characteristics as the
International Terrestrial Reference System (ITRS), which uses the GRS80
(Geodetic Reference System 1980) ellipsoid and is mounted in the geocen-
tric center of mass of the earth. Besides, GPS data is usually provided in
the form of geographic coordinates. If needed, they can be translated to
three-dimensional Cartesian coordinates, using mathematical operations.

2.5.2 Map Projection

A map projection is used to map three-dimensional points from a curved
surface such as the earth to a two-dimensional plane surface, for instance a
display or a printed map. Therefore, two mapping approaches exist: Peel-
ing, whereby the plane surface is not covered completely and blank areas
occur, and reverse mapping, where for each point of the plane a point of the
three-dimensional object is being assigned. The latter approach is the most
commonly used one, though it leads to distortions [Lan19b].

One example would be the Mercator projection, which is conformal (angle
preserving). However, the size of objects away from the equator is skewed.
Probably anybody who has seen a Mercator world map once has therefore
raised the question whether Greenland has indeed the size of Africa, which
is not the truth.

Another projection type is the equal-area projection by Gall-Peters. The
disadvantage with this projection is that countries and continents away from
the equator are illustrated with wrong angles, giving them an unrealistic
and unusual look. Imagine a navigation system, where a straight highway
appears as a curved line. In brief, each projection type has its limitations
when mapping the surface of a whole sphere onto a plane surface.

Yet, sometimes it is required to only map a certain area of the earth,
such as a state or a country. Therefore, the Universal Transverse Mercator
(UTM) coordinate system was developed. As the Mercator projection, UTM
is a conformal map projection and is based on the global GRS80 ellipsoid.
UTM uses a transversal cylinder to partition the globe into sixty zones of
6 degrees of longitude. Coordinates are indicated using an easting value
and a northing value. In Germany, the authoritative real estate cadastre
(German: Amtliches Liegenschaftskataster) uses the UTM map projection
together with the European Terrestrial Reference System (ETRS89), the Eu-
ropean part of the ITRS.

14

2.6. SCRUM

2.6 Scrum

Scrum is a synonym for agile software development, where the focus is put
on the individuals, a working software, customer collaboration and respond-
ing to change [BD09]. This is relevant for software development because
both requirements and technology may change rapidly. Therefore, the Scrum
methodology is based on little incremental steps and iteration. Another char-
acteristic of Scrum is the fact that not all pieces of work are completely
understood at the beginning.

All these characteristics apply to this work and based on that, the Scrum
methodology was chosen for the development process of this thesis. Thereby,
the three major components Activities, Artifacts and Roles [BD09] were par-
tially incorporated:

• Scrum Activities
Throughout the Sprints (iterations), informal weekly (instead of daily)
Scrum meetings helped to get an overview of the current status of
the project. Discussed issues were previous work, impediments and
promises. After each Sprint, the implemented features were presented
to the customer within the Sprint Review Meeting. These meetings
took place in the city hall of Kirchheim.

• Scrum Artifacts
The two main artifacts of Scrum are the Product Backlog and the
Spring Backlog. The former describes open issues for the whole project,
whereas the latter describes a subset of it for the current Sprint. Through-
out this thesis, both backlogs were used.

• Scrum Roles
The Scrum Master is responsible for the management of the project. In
this case, the advisor. The customer who knows what has to be built is
the Product Owner, which is the municipality Kirchheim. Lastly, there
was only one developer, forming the Scrum Team.

The authors of [AEE15a] have also shown that Scrum is a proper method-
ology for the development of traffic simulation based applications. They used
the Scrum methodology and considered the re-engineering process to develop
tools for the traffic simulation SUMO.

15

CHAPTER 2. BACKGROUND

16

Chapter 3

Requirements Elicitation

Initially, functional (3.2) and nonfunctional (3.3) requirements are derived
from the problem statement (1.1). The subsequent use case diagram (3.4)
illustrates the functional behavior of the system in the UML (Unified Model-
ing Language) notation. The diagram reduces complexity and hence pro-
vides a better communication point among stakeholders involved in this
project [BD09]. The chapter concludes by describing two as-is scenarios
and a visionary scenario (3.5) to summarize the behavior of the system as
seen by a traffic planner.

3.1 Overview

The aim is to develop a system that seamlessly integrates an OpenStreetMap
editor with a traffic simulation platform. The integration should be imple-
mented in such a way that the system is usable by any authority and does not
require advanced computer knowledge. This means that the workflow has to
be intuitive and the simulation results must be represented comprehensibly.

3.2 Functional Requirements

FR1 Load Road Network Data: The system must provide a way to
download and import OpenStreetMap data from the OpenStreetMap
server. This enables a solid starting point for the data processing.

FR2 Modify Road Network Data: There must be an option to modify
OpenStreetMap data, e.g. add new lanes, add traffic lights and other

17

CHAPTER 3. REQUIREMENTS ELICITATION

transportation elements. Hence, various novel traffic strategies can be
modeled.

FR3 Export Road Network Data: There must be a way to convert and
export the modified OpenStreetMap data to the traffic simulation plat-
form so that the novel traffic strategy can be tested.

FR4 Select Traffic Demand: Traffic planners must have the option to
select from temporal different traffic demand data. Thereby, diverse
traffic simulations can be generated using various time periods such as
the morning or evening rush hour.

FR5 Customize Traffic Simulation Settings: The system should im-
plement graphical user interface elements to allow traffic planners to
modify the simulation length and other simulation settings.

FR6 Run Traffic Simulation: There must be a way to run a traffic sim-
ulation to evaluate the novel traffic strategy.

FR7 Visualize Traffic Load Maps: Temporal traffic load maps must be
generated and visualized using the traffic simulation output. These
maps make it easier for traffic planners to extract knowledge about
highly congested areas and calm ones.

FR8 Export Traffic Load Maps: There must be an option to export the
generated traffic load maps as images or in a vector format to share
with stakeholders.

FR9 Show Simulation Statistics: Detailed simulation statistics must be
created and visualized based on the traffic simulation output to provide
insight into the average waiting time of vehicles and other measurable
results.

3.3 Nonfunctional Requirements

NFR1 Accuracy: The road network should be up-to-date, contain the
correct amount of traffic lanes and its directions as well as proper
junctions, e.g. roundabout, traffic light settings. This is important,
since the road network represents the basis of the traffic simulation.

NFR2 Usability: The entry point to the system should be enabled with a
maximum of two clicks to ensure an easy way of starting the appli-
cation.

18

3.4. USE CASE DIAGRAM

NFR3 Usability: The graphical user interface and the traffic load map
should be colorblind safe to include more potential system users.

NFR4 Usability: The interaction between the OpenStreetMap editor and
the traffic simulation should be enabled with one click to ensure an
easy handling.

NFR5 Portability: The system should be platform independent and able
to run on Microsoft Windows and macOS in order that different
workstations are able to execute the system.

NFR6 Supportability: The communication point between the OpenStreetMap
editor and the traffic simulation should be based on the REST
paradigm. This enables scalability and independence between the
client and the server.

NFR7 Response Time: The creation process of the visualization of the
simulation output must not take more than five minutes. Otherwise,
the workflow would be too limited.

NFR8 Packaging (Constraint): The system should be packaged in a
lightweight container. Thereby it can be easily distributed on dif-
ferent workstations without the time-consuming setting up of envi-
ronments that might differ from one computer to another.

NFR9 Legal (Constraint): The system must be free and comply to the
open-source standard to resolve potential anxiety of the corporati-
sation of the community authorities.

NFR10 Interface (Constraint): The system must support the usage of
OpenStreetMap data.

3.4 Use Case Diagram

As shown in Figure 3.1, the traffic planner has the following use cases:

• Import Road Network: The traffic planner is able to import an
existing road network to have a basis to work with.

• Modify Road Network: The traffic planner can add bypass roads,
new lanes, traffic lights, roundabouts and other transportation ele-
ments.

19

CHAPTER 3. REQUIREMENTS ELICITATION

Figure 3.1: UML Use Case Diagram

• Select Traffic Demand: Since there exists different traffic volume
during the morning, noon or evening rush hour, the traffic planner can
select from different traffic demand data.

• Run Simulation: Using the (modified) road network data and the
selected traffic demand information, the traffic planner can start a new
traffic simulation.

• Visualize Traffic Load Map: Based on the simulation output, the
traffic planner can see and review temporal heat maps, showing the
traffic load. However, a traffic load map can only be visualized after
the simulation.

Entry conditions for the use case diagram in Figure 3.1 are a running
road network editor as well as a running traffic simulation platform. Both
have to be connected to each other.

3.5 Scenarios

The following scenarios provide a glimpse into the state-of-the-art software
and visionary scenarios. Table 3.1 describes how a traffic planner can prepare
a novel traffic strategy by modifying the layout of the road network. Table
3.2 explains the workflow of the traffic simulation and Tabl 3.3 presents the
visual output of the traffic simulation in the form of a heat map.

20

3.5. SCENARIOS

Scenario Name Modify the Road Network

Participating Actors Traffic planner Nathalie

Entry Conditions
1. Running map editor

2. Loaded OpenStreetMap data of Kirchheim

Flow of Events

1. Nathalie selects the junction in front of

the Rathaus which includes Münchner Straße

and Heimstettner Straße.

2. She places a traffic light there.

3. She further adds a bypass road to

Heimstettner Straße because in previous

simulations she found out that this street

is highly congested most of the time.

4. Lastly, she performs a data validation to

prove that the novel road network is modeled

appropriately.

Exit Conditions Successful data validation

Special Requirements None

Table 3.1: As-is Scenario 1: Modify the Road Network

21

CHAPTER 3. REQUIREMENTS ELICITATION

Scenario Name Run a Traffic Simulation

Participating Actors Traffic planner Nathalie

Entry Conditions
1. Running traffic simulation software

2. Loaded road network and traffic demand

Flow of Events

1. Nathalie presses the Play button to start

the traffic simulation.

2. She increases the delay up to 170ms to

slow down the simulation speed and be

able to better analyze the traffic flow.

3. Nathalie also colors the vehicles based on

their waiting time and street lanes based on

their current occupancy.

4. Shortly after the last vehicle has reached

its destination, the simulation stops.

5. Nathalie reviews the simulation statistics

and finds out that none of the vehicles was

involved in a collision.

Exit Conditions
All simulated vehicles have reached

their destination.

Special Requirements
The road network file and the traffic

demand file must be given.

Table 3.2: As-is Scenario 2: Run a Traffic Simulation

22

3.5. SCENARIOS

Scenario Name Visualize Traffic Simulation Output

Participating Actors Traffic planner Nathalie

Entry Conditions
1. The map editor is running

2. Running traffic simulation software

Flow of Events

1. Nathalie starts the traffic simulation

by clicking the Play button.

2. When the simulation is done, a new layer

is loaded into the map editor, showing a

traffic load map of all vehicles at all times

throughout the simulation.

3. The map is color-coded in a continuous

rainbow scale, ranging from blue (calm

areas) over green (congested areas) to

red (highly congested areas).

4. Nathalie customizes the map styling

options by decreasing the opacity to 70%

to be able to read the street names.

Exit Conditions
The simulation was successful and

did not cause any errors.

Special Requirements
A traffic demand file must be given for

the simulation.

Table 3.3: Visionary Scenario 1: Visualize Traffic Simulation Output

23

CHAPTER 3. REQUIREMENTS ELICITATION

24

Chapter 4

System Design

In this chapter, the transition from the application domain to the solution
domain is described on the basis of the System Design Activities in [BD09].

First, the Analysis Object Model (4.1) is built to illustrate the structure of
the system. In Section 4.2, subsystems are created to decompose the system
into packages. Then the dynamic behavior of the system is modeled using
the UML activity diagram (4.3). To address three functional requirements,
a graphical user interface is proposed in Section 4.4.

The mapping is further split into the following issues that address sys-
tem design [BD09]: Identify Design Goals (4.5), Identify Concurrency (4.6),
Hardware Software Mapping (4.7) and Persistent Data Management (4.8).

4.1 Analysis Object Model

The Analysis Object Model (AOM) describes the static structure of the
system [BD09] and is shown in Figure 4.1.

The Simulation class has three components: the RoadNetwork, the Traf-
ficDemand and the SimulationOutput. The road network and the traffic
demand together represent the simulation input (2.2.3). The simulation fur-
ther stores simulation settings and a simulation strategy. Traffic planners
have the option to customize these settings and then start a new simula-
tion. During a running simulation, the current step always represents the
simulation progress.

The road network contains edges that describe all streets within the net-
work as geometric edges. The network further contains the road junctions.
The containing connections represent the associations between edges and
junctions, or rather which edges are connected to each other through which
junction. Traffic planners can use the load() method to import or down-

25

CHAPTER 4. SYSTEM DESIGN

Figure 4.1: UML Analysis Object Model

load a road network. Besides, the street layout can be modified by adding
new bypass roads for instance and lastly, the modified road network can be
exported for permanent storage.

Traffic planners can select among static traffic demand for the morning
rush hour, noon and evening rush hour. The traffic demand has many routes,
whereby a Route either represents a StaticRoute or a SimulationRoute. Each
route belongs to a specific vehicle and has a starting time, representing the
time the vehicle is expected to depart within the simulation. A static route
is comparable to the trip in Section 2.2.4 and only has an origin and desti-
nation location. Whereas the simulation route can have many intermediate
waypoints. Therefore, a simulation route represents the path a vehicle should
move along in the simulation.

When the traffic simulation is done, the simulation output can be visual-
ized in the form of a traffic load map or exported for permanent storage. The
simulation output contains simulation statistics and has many vehicle traces,
whereby a Trace is identified by its vehicle ID and built up of at least two
waypoints: the origin and destination locations. The difference compared
to the simulation route is that the trace represents the actual movement of
the vehicle, with one waypoint for each simulation step. Therefore, the time

26

4.2. SUBSYSTEM DECOMPOSITION

stamp is needed, which is not relevant for the simulation route. Based on
the time stamp, the trace indirectly includes the vehicle’s driving speed or
waiting time. For instance, several waypoints at the same location indicate
that the vehicle was standing.

The Waypoint class also contains the geographical latitude and longitude
coordinates for the representation of the vehicle’s location in the real world
and x, y coordinates for the usage within the simulation. Since coordinates
without a point of origin are useless, an additional spatial reference system
(2.5) is added to the waypoint class. Equally important is the map projection
(2.5.2), describing the mapping type from the three-dimensional surface of
the earth to the two-dimensional simulation screen.

4.1.1 Stereotypes

Moreover, all classes can be mapped to stereotypes as follows:

• Boundary Objects: Traffic planners interact with the RoadNetwork
and observe the visualized SimulationOutput.

• Control Objects: The Simulation mediates between boundary and
entity objects.

• Entity Objects: TrafficDemand, Route, StaticRoute and Simulation-
Route, Waypoint and Trace keep persistent information.

4.2 Subsystem Decomposition

To simplify the system defined in Section 4.1, the classes are packed up into
four subsystems [BD09], which are also visualized in Figure 4.2.

1. Simulation Controller: Contains the Simulation class and is respon-
sible for the customization and execution of the simulation. The sub-
system provides a simulation interface and requires the following three
subsystems to get the simulation input and the simulation output.

2. Road Network Editor: Contains the RoadNetwork class and features
an editing service for the modification of the road network. Besides, the
export service provides the simulation controller with the road network,
which is necessary as the first part of the simulation input.

3. Route Planner: Contains the classes: TrafficDemand, Route, Stati-
cRoute and SimulationRoute, Waypoint. The route planner subsystem

27

CHAPTER 4. SYSTEM DESIGN

Figure 4.2: UML Subsystem Decomposition

offers a conversion service to handle the creation of simulation routes
based on static routes. Thereby, the simulation controller can obtain
the second part of the simulation input.

4. Visualization: Contains the SimulationOutput and the Trace class.
The subsystem offers a rendering service to display the simulation out-
put in the form of traffic load maps.

The waypoint class could be also added to the Visualization subsystem,
since both trace and simulation route are associated to this class. However,
the focus was put on the traffic demand and the route planning, where the
waypoints play an important role to differentiate between the static routes
and simulation routes.

4.3 Dynamic Behavior

The Activity Diagram describes the dynamic behavior of the system [BD09]
and is shown in Figure 4.3.

The traffic planner opens the application by double-clicking the applica-
tion icon. Then the road network can be loaded into the road network editor
as a new layer. The traffic planner has the option to modify the road network
as long as wanted, whereby each modification updates the road network layer
by applying the changes to it. When the modification process is finished, the

28

4.3. DYNAMIC BEHAVIOR

simulation settings can be customized. Therefore, the traffic planner can se-
lect among different traffic demand, describing a morning, noon and evening
scenario. Another option is to adjust the simulation length. After the cus-
tomization part, the traffic simulation can be performed. The result of the
simulation is stored in the traffic simulation output, which forms the basis for
the creation of the traffic load maps. The outcome of this creation process
are two visualizations: a map that provides a general overview of the traffic
load and a map that allows detailed insight into the traffic load.

Figure 4.3: UML Activity Diagram of the System’s Workflow

29

CHAPTER 4. SYSTEM DESIGN

4.4 Graphical User Interface

For the implementation of the functional requirements [FR4], [FR5] and
[FR6] (3.2), a graphical user interface (GUI) is proposed. It is illustrated
in Figure 4.4. Using the GUI, traffic planners can select the traffic demand,
customize the simulation settings and start the simulation.

4.4.1 Simulation Model

To save the simulation settings that are modeled as an atomic attribute of
Simulation so far (4.1), an additional Simulation Model is introduced. The
model includes the following attributes:

• showSimulation: Boolean

• simulationLength: Integer

• stepLength: Double

• trafficDemand: String, represents the selected traffic demand. The
options are random or static traffic demand. The latter contains a
sub-selection of a morning, noon and evening scenario.

• autoStart: Boolean

• saveSettings: Boolean

• showStatistics: Boolean

Figure 4.4: Proposed Control Panel

30

4.5. DESIGN GOALS

4.5 Design Goals

This section indicates the direction of the system’s focus points.

4.5.1 Chosen Traffic Simulation

In this thesis, the focus is put on microscopic traffic simulations. The reasons
for this lie in the small population of Kirchheim (around 11,000 inhabitants)
and Kirchheim’s focus on the individuals, trying to persuade them to switch
from their own vehicles to public transport and commuter busses.

Table 4.1 illustrates some of the most popular traffic simulation software
applications. The review follows the comparative analysis in [PMS13] and is
extended with the results of other comparative studies such as [KH09,Zil18,
ZNKE17,BBEK11]. The rows primarily contain the defined requirements.

Table 4.1 highlights that most of the traffic simulations are microscopic
ones and only three of them additionally support mesoscopic simulations.
However, due to the portability requirements [NFR5] of 3.3, where it is stated
that the system must support both Microsoft Windows and Apple’s macOS,
less than half of the simulations will be considered further. Next, after apply-
ing the [NFR9] of 3.3, only freely available and open source simulations will
be taken into account. These platforms are SUMO, MATSim and FreeSim.
Lastly, SUMO with its extensive range of graphical features performs signifi-
cantly better than MATsim (very limited GUI options, no support to create
traffic scenarios) and FreeSim (does not feature a graphical simulation out-
put). Summing up, SUMO is probably the best simulation platform that
meets the defined requirements of 3.3. Besides, SUMO features an option
to convert and import OpenStreetMap data, which is a huge benefit for the
development process of this work.

4.5.2 Chosen OpenStreetMap Editor

There exists a variety of OpenStreetMap editors: online editors, desktop
applications, mobile apps or GIS applications with additional OSM editing
capabilities. However, according to the OpenStreetMap community [Ope19c]
and the authors of [HW08], the most powerful editor is JOSM. So, therefore,
JOSM is chosen as the editor for this thesis. It features offline editing and is
platform independent due to its implementation in Java. However, as JOSM
is implemented in Java, the primary language for any JOSM plugin must be
also Java.

31

CHAPTER 4. SYSTEM DESIGN

X ... supported

O ... not supported

! ... limited support S
U

M
O

M
A

T
S
im

F
re

e
S
im

C
it

y
M

o
s

A
IM

S
U

N

P
T

V
V

is
si

m

P
T

V
V

is
u
m

C
O

R
S
IM

S
im

T
ra

ffi
c

P
a
ra

m
ic

s

T
ra

n
sM

o
d
e
le

r

Characteristics

Microscopic X X X X X X O X X X X

Mesoscopic X O O O X O O O O O X

Macroscopic O O X O X O X O O O X

Portability

Microsoft Windows X X X O X X X X X X X

Apple macOS X X X X X O O O O O O

Linux X X X X X O O O O O O

Legal

Free X X X O O O O O O O O

Open Source X X X O O O O O O O O

Usability

Graphical User Interface X ! ! X X X X X X X X

Interfaces

OpenStreetMap X X ! ! X X X O O O !

Table 4.1: Review of Traffic Simulation Software

32

4.5. DESIGN GOALS

4.5.3 Trade-Offs

When design goals conflict with each other, choices must be made, which
are called trade-offs. The trade-offs within this thesis are reviewed in the
following section and the decisions taken are presented.

Functionality vs. Usability

One of the most common trade-offs within software engineering is the issue
of multiple features and a system that is easy to use. In this case, one such
trade-off is to find a proper number of configuration options for the traffic
simulation.

SUMO and related tools, such as NETCONVERT or DUAROUTER,
provide interfaces with dozens of additional configuration options. These
options are useful for experienced traffic planners, however they might be
redundant for smaller communities. Therefore, the decision was made to
predefine simulation options that are related to common simulation tasks
and only enable the modification of a specific subset of simulation options.

These predefined options include the Join Junctions feature within NET-
CONVERT, which is recommended for the use of OpenStreetMap data, and
several Repair and Depart and Arrival options within DUAROUTER to cor-
rect invalid routes and origin/destination positions of the vehicles.

The options that are open to traffic planners include the simulation mode,
simulation demand, simulation output, simulation length and simulation step
length.

Rapid Development vs. Functionality

Another common trade-off is the implementation of various features within a
limited time frame. Therefore, the functions of 3.2 were ordered by priority
and each iteration of the development process covered the highest ranked
feature first. As a result, the additional simulation statistics [FR9] are still
not implemented.

The simulation settings control panel (4.4) illustrates another issue of the
rapid development/functionality trade-off. Currently, the number of simu-
lation settings is limited, as described in Section 4.5.3. Most notably, the
selection between Static (morning, noon, afternoon) and Random traffic de-
mand is modeled primitively. Traffic planners can either choose static traffic
demand for the municipality of Kirchheim or random traffic demand that
covers the whole world. The decision to model the traffic demand selection
in such a way is based on the importance of realistic traffic demand data for
Kirchheim exclusively, since the municipality is the first possible end-user of

33

CHAPTER 4. SYSTEM DESIGN

the developed system. Only the static traffic demand allows traffic planners
to compare simulation results with meaningful outcomes. Simulations based
on random traffic demand data always produce diverse results, even though
the road network has never changed.

Consequently, the visionary scenarios in Section 7.3 suggest a future im-
plementation that covers extended functionality for the creation and selection
of persistent traffic demand data, applicable to the entire world.

Efficiency vs. Portability

The nonfunctional requirement [NFR8] from 3.3 was mapped to the use of the
Docker engine (more details are covered in Section 4.7.1). Thereby, the focus
was placed on a simplified integration process between the traffic simulation
and the road network editor in addition to an easy distribution of the system.
However, a notable disadvantage of using Docker is the delayed operability
during zooming and the fact that some of the graphical features are displayed
skewed in JOSM.

4.6 Identify Concurrency

The goal is now to identify objects that are inherently concurrent in order to
achieve performance relevant nonfunctional requirements. For each concur-
rent object, a unique thread can be implemented. To figure out threads for
concurrent tasks, the concurrency questions of [BD09] are applied.

First of all, if the system does not support multiple users and only one
control object exists, then we do not need threads. Second, entity objects
that can be executed in parallel are analyzed. Several entity objects were
derived in Section 4.1.1 and decomposed into two subsystems (4.2). Since
both subsystems might contain waypoints, none of the entity objects can be
executed simultaneously.

The last question refers to requests that might be split into multiple
parts and handled in parallel. The only requests that will be relevant in the
system are conversion tasks during the preprocessing of simulation input data
and the post processing of simulation output. These processes are strictly
sequential because they are based on files (see Section 4.8), where a file can
only be appropriately read by the next processing tool after it is closed by
the current one.

In addition, the traffic simulation SUMO does only support mulitple
threads for the route calculation of the vehicles. Per default, the number
of threads for the routing is set to one but can be increased. The SUMO

34

4.7. HARDWARE/SOFTWARE MAPPING

tool DUAROUTER (2.2.4) features exactly the same parallelization options
[Ger19]. However, the traffic simulation itself is always single-threaded. This
could lead to time-consuming computations if the simulation length is several
hours and hundreds to thousands vehicles are included [Pot12,KHRW02].

4.7 Hardware/Software Mapping

Associations between subsystems are mapped to network connections [BD09].
The Simulation Service can be realized with a simple client-server architec-
ture, where the simulation process itself represents the server and the simula-
tion controller represents the client. The client always increments and sends
the current step to the server. Then the server executes the next simula-
tion step, notifies the client about the current status and waits again for the
client-request.

The Routing Service and the Rendering Service can be implemented with
a client-server architecture as well. Both the visualization subsystem and
the route planner subsystem can operate as servers and therefore handle
application layer1 requests that tell the servers what to do.

The services provided by the road network editor are not suitable for
a network connection mapping. The Export Service only saves the road
network layer as a file (see Section 4.8) and the Editing Service presents the
graphical interface to the user of the system, probably the traffic planner.

4.7.1 Container Platform

In order to realize the nonfunctional requirement [NFR8] from 3.3, the de-
cision was made to use the Docker engine. Docker turns the system into a
portable system that can be distributed easily to several machines and plat-
forms [Tur19]. Therefore, a so-called Docker image is created. It consists of
several layers that represent Docker commands. The running instance of a
Docker image is called Docker container. A Docker container takes up more
space than a local installation would need (by a factor of ten for JOSM) but
it is still lightweight compared to virtual machines.

Based on the decomposed subsystems (4.2), two Docker containers are
proposed. One container should primarily include the road network editor
and the visualization subsystem while the other container includes the traffic
simulation and the route planner.

1Application layer = layer 7 of the OSI (Open Systems Interconnection) model

35

CHAPTER 4. SYSTEM DESIGN

4.8 Persistent Data Management

In Section 4.1.1, entity objects were identified. These objects have to be
persistent to store the values of their attributes permanently [BD09]. For
this thesis, the decision was made to follow the file system mechanism for
persistent storage.

The road network editor is the only writer of road network files and
the traffic simulation software is the only writer of the simulation output.
Therefore, there is no need to support multiple writers for the same file as
could be done with a database mechanism. Furthermore, the chosen traffic
simulation software SUMO relies on input data in the form of files [BBEK11].

36

Chapter 5

Agile City Planning Suite

The Agile City Planning Suite (ACPS)1 is the actual implementation of the
system designed in Chapter 4. It consists of three major components:

1. JOSM Container: Includes JOSM and the TraLAMA (Traffic LoAd
MAp) Plugin for JOSM.

2. SUMO Container: Includes SUMO, the Route Planner subsystem
and a RESTful2 API3 to enable communication with them from the
JOSM container.

3. TraLAMA Web Service: Includes another RESTful API for the
visualization of traffic load maps.

ACPS uses the REST paradigm for the communication between the three
components. Besides, Docker serves as a main hub between the two contain-
ers. They are connected using a Docker bridge and share a common volume
for the exchange of data. Both containers are based on the operating system
Linux Ubuntu.

5.1 Overview

In Section 5.2, new solution objects are identified to refine the analysis ob-
ject model. Then the functionalities of each new object are described. In
the subsequent Section 5.3, the overall features of the JOSM container are
presented. Section 5.4 introduces the implemented TraLAMA plugin and its

1ACPS is accessible via https://repobruegge.in.tum.de/scm/dsm/jakobs.git
2REST (REpresentational State Transfer)
3API (Application Programming Interface)

37

https://repobruegge.in.tum.de/scm/dsm/jakobs.git

CHAPTER 5. AGILE CITY PLANNING SUITE

functionalities. The section further provides insight into the communication
process with the SUMO container and finishes with a workflow description.
Then the features of the SUMO container are presented in Section 5.5. In
particular, the focus is on the SimulationController, the network connection
to the traffic simulation SUMO and two route planner tools which are re-
sponsible for the preprocessing of the simulation input data. Section 5.6 is
all about the implemented TraLAMA web service and the provided commu-
nication point. Lastly, Section 5.7 explains the interaction with TraLAMA
from the perspective of traffic planners.

5.2 Object Design

In this section, the developed object model (4.1) and the decomposed sub-
systems (4.2) are refined. Therefore, additional solution objects must be
identified [BD09]. The resulting solution object model is illustrated in Fig-
ure 5.1.

The RoadNetwork object, the only subset of the Road Network Editor
subsystem, can be directly mapped onto the existing system JOSM. Since
JOSM allows traffic planners to modify and export OpenStreetMap data, the
Editing Service and the Export Service of the road network editor subsystem
are already provided.

The entire Visualization subsystem, including the SimulationOutput ob-
ject and the Trace object, were originally mapped to JOSM as well. However,
the styling options were very limited and therefore the decision was made to
realize the visualization subsystem and its Rendering Service with an addi-
tional web service, which will be introduced in detail in Section 5.6.

In Section 4.4, a graphical control panel and a related simulation model
were introduced. For the realization of these objects, the JOSM plugin
TraLAMA is developed. TraLAMA directly extends the object model with
two new classes: TraLAMA and Plugin. TraLAMA represents the entry
point of the JOSM plugin and therefore inherits from the Plugin class that
is provided by JOSM. The Plugin class is drawn in a lighter gray because
it is used without any modifications. Given the TraLAMA plugin, the afore
mentioned control panel and the simulation model can be added to the solu-
tion object model as SettingsView and SimulationModel. The SettingsView
further provides elements to start the traffic simulation (4.4) and hence, the
SimulationService can also be mapped to this object.

The Simulation class, which represents the SimulationController subsys-
tem, is refined into three components: SimulationThread, SimulationInter-
face and SimulationController. That is, because the traffic simulation SUMO

38

5.2. OBJECT DESIGN

Figure 5.1: TraLAMA Object Model

is deployed on a different container than the editor JOSM and TraLAMA
(see Section 4.7). Therefore, the simulation thread creates a new worker
thread that prepares all necessary commands used for the preprocessing of
the simulation input data, the simulation itself and the post processing of the
simulation output. The simulation thread object passes these commands to
the simulation interface, which wraps them up into network packages. These
network packages are then sent to the SUMO container, where the simulation
controller handles the execution of the simulation relevant tasks (detailed de-
scription in Section 5.4.2) and stores the results in files (as defined in Section
4.8). To access these simulation result files, FileIO is introduced.

The entire Route Planner subsystem is mapped onto the SUMO con-
tainer, since all included objects require features provided by the traffic sim-
ulation. Supplementary tools were added to the route planner subsystem to
preprocess the simulation input data and post process the simulation output.
The preprocessing tools can be further mapped to the Routing Service of the

39

CHAPTER 5. AGILE CITY PLANNING SUITE

original route planner subsystem.

5.2.1 Stereotypes

The resulting classes of the solution object model can be assigned with stereo-
types:

• Boundary Objects: Traffic planners interact with the SettingsView.

• Control Objects: TraLAMA, SimulationThread, SimulationInterface
and SimulationController mediate between boundary and entity ob-
jects.

• Entity Objects: FileIO, SimulationModel and all classes within the
Route Planner subsystem keep persistent information.

5.2.2 Object Description

The classes feature the following functionalities:

• TraLAMA: The TraLAMA class needs a constructor that will be in-
voked by JOSM. Besides, the graphical control panel (in the form of a
ToggleDialog) needs to be registered.

• SettingsView: This class represents the graphical control panel. First
of all, listeners are assigned to the control elements to observe and han-
dle performed actions. Based on previously stored simulation settings,
the graphical elements are adjusted. When the traffic planner presses
the Default button, the simulation settings are set to default.

• SimulationModel: The simulation model was already introduced in
Section 4.4.1. It is now extended with the sendToWeb:Boolean at-
tribute because an additional web service is added to the system (see
Section 5.6).

• SimulationThread: The actual worker thread first performs two pre-
processing steps: removing temporary files as well as filtering and writ-
ing the OSM layer using FileIO. The realRun() method represents the
JOSM version of the Java run()4 method and executes all relevant tasks
within a new thread. The execute(String) method passes a new HTTP
(Hypertext Transfer Protocol) request to the SimulationInterface and

4https://docs.oracle.com/javase/tutorial/essential/concurrency/

runthread.html

40

https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html

5.2. OBJECT DESIGN

updates the progress bar, which shows the current task of the process-
ing pipeline. After the thread is finished, the finish() method will be
invoked and the user gets notified with a textual message about the
simulation result. Furthermore, a new thread can always be canceled.

• FileIO: Using FileIO, the currently selected OSM layer can be fil-
tered for unnecessary elements and saved to a file. Another feature
of this class is to import the GPX (GPS Exchange Format) formatted
simulation output and visualize it within JOSM. The CSV (Comma-
Separated Values) formatted output can be imported as well and sent
to the TraLAMA web service. Lastly, FileIO provides a method to
remove all temporary files within a folder. The files which are usu-
ally removed in TraLAMA include simulation input and output files of
previously performed traffic simulations.

• SimulationInterface: This class features the networking capabilities
within TraLAMA. Therefore, a new HTTP connection can be set up to
send HTTP GET and POST requests. The get(String) method requires
a String-URL (Uniform Resource Locator) as a parameter, whereas the
post(String, String) method requires both an URL and an additional
JSON (JavaScript Object Notation) body.

• SimulationController: The simulation controller represents a web
server that is listening to all public IP addresses, incoming at port 4040.
The controller is able to start a new SUMO simulation and perform
NETCONVERT (2.2.4), POLYCONVERT (2.2.4) and DUAROUTER
(2.2.4). Additionally, random SUMO routes can be generated and ve-
hicles within a SUMO simulation can be colored. Using the geoCon-
verter() method, the simulation output can be converted to the GPX
format, representing the traces of the vehicles. The GPX file can be fur-
ther parsed into a CSV file using the gpxConverter() method, though
the information about the individual vehicle gets lost during this pro-
cess.

• StaticRoute: Is a tool that can convert SUMO trips into a CSV file
with geo-coordinates. Details are covered in Section 5.5.2.

• SimulationRoute: Another tool that converts static routes with geo-
coordinates into simulation routes for SUMO. Details are covered in
Section 5.5.2.

41

CHAPTER 5. AGILE CITY PLANNING SUITE

Figure 5.2: Modified OSM Road Network in JOSM

5.3 JOSM Container

The JOSM container includes the newest tested and built JOSM executable
and the TraLAMA plugin. The TraLAMA plugin is connected to JOSM by
inheriting the provided Plugin class of JOSM, which is the recommended
way of integration.

In Figure 5.2, an extract of JOSM is shown that contains a newly added
street called TUM Exzellenzstraße. It is connected to the Heimstettener
Moosweg with a roundabout and to the horizontal street with a traffic light.
JOSM already provides the functionality of adding, modifying or removing
streets and junctions. The aerial imagery used for the background is derived
from the Bavarian Survey Authority (German: Bayerische Vermessungsver-
waltung) and can be easily imported in JOSM.

5.4 TraLAMA Plugin

TraLAMA is a plugin for JOSM that establishes a bridge between the two
existing systems SUMO and JOSM. It allows traffic planners to export mod-
ified OpenStreetMap data, run a traffic simulation in SUMO and view the

42

5.4. TRALAMA PLUGIN

Figure 5.3: TraLAMA Control Panel

results in JOSM as additional traffic load map layers. To make it easier for
traffic planners, TraLAMA implements a resizable graphical control panel
with selectable GUI elements to modify the traffic simulation settings. Such
a panel within JOSM should inherit the ToggleDialog class. In doing so,
the settings panel can be activated and deactivated. In JOSM, all activated
graphical control panels are displayed in a row, right next to the map view.

Figure 5.3 shows the activated control panel of the TraLAMA plugin in
JOSM. It can be used to customize the settings of the traffic simulation and
to start a new simulation. The User Interface (UI) is based on the introduced
control panel in Section 4.4.

TraLAMA is implemented in such a way that a new traffic simulation can
only be started if an OSM layer is selected. Besides, the simulation settings
within the control panel are stored permanently using Java Preferences. It
is further ensured that only one traffic simulation is executed at the same
time.

5.4.1 Filter OSM Elements

The FileIO class implements the method writeOSMLayer(). This method
stores the currently selected OSM layer in a file that can be accessed by the
traffic simulation SUMO. Before the layer is saved, it is filtered for key-value
pairs such as highway=footway or vehicle=no. These keywords emerged as
useful throughout the evaluation (Chapter 6) and remove roads from the
road network which should be inaccessible to the simulated vehicles.

43

CHAPTER 5. AGILE CITY PLANNING SUITE

5.4.2 Communication with SUMO Container

TraLAMA runs within the JOSM container, which is connected to the SUMO
container using a Docker bridge. Since Docker also acts as a nameserver, the
IP (Internet Protocol) addresses of the containers are automatically trans-
lated into the specified names of their provided services. In ACPS, these
services are called josm and sumo, for the JOSM and SUMO container re-
spectively. Concurrently, each Docker container exposes a unique port. The
combination of the service name and its port together build the interface
of the service. For instance, the service sumo, exposed at the port 4040, is
reachable via 5.

The connection between TraLAMA and the SUMO container works as
follows: the SimulationInterface sends HTTP requests to the Simulation-
Controller and receives response messages. The GET requests as well as
the POST requests are encoded with the the URL 6, whereby the command
key must be either sumo, statictrips or randomroutes for POST requests, or
netconvert, polyconvert, duarouter, vehiclecolor, geoconverter, gpxconverter
or xmlconverter for GET requests. All mentioned commands are covered in
detail in Section 5.5.1.

Each POST request is extended with a JSON content body. Inside this
body, additional information is stored in the form of key-value pairs. The
keys are predefined and based on the Simulation Model in Section 4.4.1,
whereas the values are derived from the currently selected simulation settings.
Examples for the JSON contents are illustrated in Listing 5.1, Listing 5.2 and
Listing 5.3.

Listing 5.1: Exemplary JSON Body of the Command statictrips

{
"trafficDemand": "morning",

"simulationLength": 600

}

Listing 5.2: Exemplary JSON Body of the Command randomroutes

{
"simulationLength": 600,

"stepLength": 1.0

}

5http://sumo:4040/
6http://sumo:4040/command

44

http://sumo:4040/
http://sumo:4040/command

5.4. TRALAMA PLUGIN

Listing 5.3: Exemplary JSON Body of the Command sumo

{
"showSimulation": "True",

"simulationLength": 600,

"stepLength": 1.0,

"autoStart": "True",

"showStatistics": "False"

}

5.4.3 Generation of Traffic Load Maps

The simulation output of SUMO contains the traces of all vehicles. Using
the GeoConverter tool of the route planner subsystem, the simulation result
can be converted into a GPX file. TraLAMA prints this GPX file as new
traffic load map layer in JOSM. Therefore, the default JOSM preferences
were adjusted in such a way that the SUMO simulation output is always
rendered in the style of a heat map.

The simulation result is further sent to the TraLAMA web service using
the HTTP POST request. The JSON body of this request contains the traf-
fic simulation settings and an array of geo-coordinates (latitude, longitude)
which represents the traces of the vehicles. Using the TraLAMA web service,
the traffic load map is displayed with additional configurable styling options
(see Section 5.6).

5.4.4 TraLAMA Workflow

As discussed in Section 4.6, TraLAMA operates strictly sequentially because
each processing step depends on a previous step. With regard to the net-
work connection with the SUMO container (5.4.2), concurrent requests are
not allowed. This means that after a request is passed from the Simulation-
Interface to the SimulationController, the interface waits for the response
and does not send further requests during this time. If the controller reports
success, the next request can be sent. Otherwise, TraLAMA immediately
stops the current SimulationThread.

The TraLAMA workflow can be divided into three parts: Preprocessing,
where the simulation input is prepared for the simulation, the traffic simula-
tion itself and post processing, where the simulation results are visualized.

45

CHAPTER 5. AGILE CITY PLANNING SUITE

Preprocessing

When the traffic planner presses the Save and Start button, the currently
selected simulation settings within the control panel are saved and a new
SimulationThread is created. This thread performs a number of functions.

First of all, the thread removes all files within the output-simulation folder
where the simulation results will be stored. This is to ensure that no file
conflicts appear. Then the currently selected OSM layer is filtered (5.4.1) and
stored in a new OSM file. These processing steps represent the foundation
on which the SimulationController of the SUMO container can then operate.

In the next step, the SimulationThread prepares the required URL com-
mands and JSON content bodies as described in Section 5.4.2. First, a GET
request for netconvert is created and sent to the SimulationController to
create a road network. Second, the polyconvert GET request is passed to
the controller to create additional geometrical shapes, but only if the traffic
planner selected the graphical simulation type. Depending on the selection
of the traffic demand, different requests are then necessary. For static traffic
demand, the POST request statictrips with the JSON body of Listing 5.1 is
sent followed by the GET request duarouter. In doing so, simulation routes
are created based on the static traffic demand. If the traffic planner had
chosen random traffic demand, a different POST request with the command
randomroutes and the JSON body of Listing 5.2 would be needed. This cre-
ates random simulation routes. Lastly, the vehiclecolor GET request is sent
to the SimulationController to color the vehicles based on their location of
origin.

Traffic Simulation

Then the SUMO traffic simulation can be started by passing a POST request
with sumo and the JSON body of Listing 5.3 to the SimulationController.

Post Processing

After the simulation is finished, the simulation result needs to be converted
before it can be displayed in the form of a traffic load map. Initially, the
geoconverter GET request is sent to the controller to convert the simulation
output into a GPX file. Then the SimulationThread is able to import this
result file using the importGPXOutput() method within FileIO. If the traffic
planner ticked the Send Simulation Output to Web Server option, another
gpxconverter GET request is created and sent in order to translate the GPX
file into the CSV format. Then the SimulationThread can parse the result-
ing CSV file into a JSON object and transmit it to the TraLAMA Web

46

5.5. SUMO CONTAINER

Service. If the server reports success, the thread notifies the traffic plan-
ner about the successful simulation processes. In the event that TraLAMA
stopped the SimulationThread due to an error, the traffic planner is updated
with a different notification, indicating premature termination.

5.5 SUMO Container

The SUMO container runs the built SUMO traffic simulation software and all
its supplemental tools and libraries such as NETCONVERT (2.2.4), POLY-
CONVERT (2.2.4), DUAROUTER (2.2.4) and TraCI (Traffic Control Inter-
face). TraCI provides a communication point for the setting and receiving of
data and variables between the SUMO simulation and any registered client,
such as the SimulationController in this case.

Figure 5.4 illustrates a running traffic simulation based on a modified
OSM network that was converted using NETCONVERT. Notable is that
the vehicles are driving along the newly created road in spite of the larger
distance. The reason for this is that the maximum allowed speed for this new
road was increased while the speed limit for the original road was lowered.

5.5.1 Simulation Controller

In fact, TraLAMA never directly communicates with the SUMO simulation,
but with the RESTful API, the SimulationController. Since the RESTful
GET interfaces are primitive, TraLAMA can interact with the simulation
controller by just sending a request containing the name of the service to be
executed (see Section 5.4.2). This is possible because most of the services do
not require customized parameters for each request. Thus, we can predefine
executable commands as well as constants with path- and filenames. These
files are all stored and accessible on the shared volume.

Predefined Commands

This section covers all predefined executable commands and their function-
alities. The SimulationController expects additional JSON content bodies
(see Listings 5.1, 5.2 and 5.3) for commands that represent HTTP POST
requests. All commands are either associated with existing SUMO tools or
with newly implemented tools.

1. xmlconverter: Executes the StaticRoute (see Section 5.5.2) tool to
convert a SUMO trip data set that uses road network edge IDs into a

47

CHAPTER 5. AGILE CITY PLANNING SUITE

Figure 5.4: SUMO Simulation Based on a Modified OSM Road Network

CSV file with geo-coordinates. This tool was a prerequisite to generate
the static traffic demand data for Kirchheim.

2. netconvert: Invokes the SUMO tool NETCONVERT to parse the
OSM road network which was saved by TraLAMA into a SUMO road
network. Additional parameters are added to join OSM junctions and
include the street names in the output file.

3. polyconvert: Executes the SUMO tool POLYCONVERT to parse
OSM points of interest (POI) and additional geometric shapes such as
farmlands or buildings for the visualization in SUMO.

4. statictrips (POST): Executes the SimulationRoute (see Section 5.5.2)
tool to convert static routes with geo-coordinates into simulation routes
for SUMO. Therefore, the road network file is required, which was gen-
erated by NETCONVERT. Besides, the trafficDemand and simulation-
Length values from the JSON content body (Listing 5.1) are needed to
select the proper traffic demand scenario. The tool returns the begin

48

5.5. SUMO CONTAINER

and end time of the simulation route and the SimulationController
stores them for the SUMO simulation.

5. duarouter: Calls the SUMO tool DUAROUTER to calculate routes
of vehicles based on the trip file that was generated by SimulationRoute
and the road network file from NETCONVERT.

6. randomroutes (POST): Executes a SUMO tool that generates ran-
dom trips based on the road network from NETCONVERT. After-
wards, DUAROUTER is called to turn these trips into simulation
routes.

7. vehiclecolor: Invokes a tool to color the simulation vehicles based on
their origin. Therefore, the tool is provided with information about
Traffic Assignment Zones (TAZ), where predefined zones in the area
of Kirchheim have assigned colors. Vehicles departing in Kirchheim are
colored orange, those departing from Heimstetten are colored pink and
all other vehicles are visualized in blue.

8. sumo (POST): Performs a new traffic simulation in SUMO. There-
fore, TraCI is used to communicate with the simulation, as illustrated in
Listing 5.4. The SimulationController represents the client and SUMO
acts as the server. Initially, the TraCI library needs to be loaded. Then
a new network connection is established with the sumoCommand as one
parameter and a port for the server as another parameter. The sumo
command is an array that consists of a sumo binary, which can be
either sumo for a background simulation or sumo-gui to start a graph-
ical simulation, and additional simulation settings. These settings and
the sumo binary are derived from the JSON content body (Listing 5.3)
and extended with the begin and end value of statictrips. As long as
the current simulation step is less than the simulationLength, which is
specified in the JSON content body as well, TraCI performs another
SUMO simulation step. Then the current step is incremented. If an
error occurs within SUMO, the SimulationController stops the simula-
tion and returns −1. After the simulation is finished successfully, the
connection is closed. Thereby, the False parameter ensures that the
simulation is closed definitely, even though some vehicles might not
have reached their destination yet.

9. geoconverter: Executes a modified version of the SUMO tool Trace-
Exporter to convert the floating car data simulation output, which is
used within this work, into a GPX track. The difference to the original

49

CHAPTER 5. AGILE CITY PLANNING SUITE

tool is that another time format is used, because SUMO simulations
are based on seconds only. Therefore, the simulation time is extended
with the simulation date and together they are formatted into a hu-
man readable date format which is in accordance with the ISO standard
86017.

10. gpxconverter: This command invokes another tool that converts GPX
tracks into a CSV file. Thereby, information about the individual ve-
hicle gets lost and all traces are merged into one.

Listing 5.4: TraCI Communication Between the SimulationController and
SUMO When Using the sumo Command

1 import t r a c i
2 t r a c i . s t a r t (sumoCommand , 4041)
3 try :
4 s tep = 0
5 while s tep < int (payload [” s imulat ionLength ”]) :
6 t r a c i . s imulat ionStep ()
7 s tep += 1
8 except :
9 return ”−1”

10 t r a c i . c l o s e (Fa l se)

5.5.2 Route Planner

The Route Planner subsystem consists of many tools for the preprocessing
of simulation input data and the post processing of simulation output data.
Each tool provides a command-line interface that takes at least input and
export file names as parameters. This section provides deeper insight into
the two preprocessing tools StaticRoute and SimulationRoute.

Create Static Routes

To analyze the impact of road network editing on traffic flow, static traffic
demand is required. To create such a traffic demand automatically, the
StaticRoute tool was implemented. StaticRoute takes SUMO trips as input
data and creates a CSV file with geo-coordinates as output data.

Within this thesis, three different input files were used, each representing
a different traffic scenario, morning rush hour, noon and evening rush hour.

7ISO Standard 8601 Example: 2019-08-06T04:00:01Z

50

5.5. SUMO CONTAINER

Static Traffic Demand

StartTime OrigLat OrigLon DestLat DestLon

07:42:03 48.174750 11.745215 48.171622 11.746312

Table 5.1: Exemplary CSV Entry for a Static Traffic Demand Trip

The SUMO trips file was generated with DUAROUTER, whereby additional
parameters were added. These parameters primarily include adapted prob-
abilities that are based on commuter statistics of Kirchheim, Kirchheim’s
population density and company locations in Kirchheim, together with the
number of employees at each company. Additionally, the validate option was
used to generate trips where a route can be found. This means that not only
are trips generated, but also routes are created based on these trips. All
valid routes, in other words routes that were accepted by the traffic simula-
tion SUMO, are then converted back to trips again.

Based on the created SUMO trips files, StaticRoute identifies geographic
coordinates for all origin and destination edges within each trips file. There-
fore, the xmlToCsv(net, xml, csv) method needs to extract the origin and
destination edges of each trip within the xml file and pass their IDs to the
edge2XY (edgeID, net) method. Here, net represents the road network object
which is imported using the SUMO module sumolib. This module provides
functions to retrieve nodes and edges of the imported road network. First,
StaticRoute fetches the edge object based on the provided edge ID. Second,
the starting node of this edge is fetched and its SUMO coordinates are ex-
tracted.

Then the retrieved SUMO coordinates for both the origin and destina-
tion edge can be converted to geographic coordinates. For this coordinate
transformation, sumolib provides the convertXY2LonLat(x, y) function that
returns latitude and longitude objects.

The starting time of the vehicle can also be extracted from the current
SUMO trip. Given all these extracted values, a new CSV row that contains
the origin latitude, origin longitude, destination latitude, destination longi-
tude and the starting time is added to the csv file. This process is repeated
for each trip entry within the SUMO trips file. An example of a generated
CSV row is illustrated in Table 5.1.

51

CHAPTER 5. AGILE CITY PLANNING SUITE

Create Simulation Routes

Before a new traffic simulation can be started, the simulation input needs
to be preprocessed. While NETCONVERT prepares the road network, the
SimulationRoute tool is responsible for the preprocessing of the static traffic
demand. The tool parses static trips with geographic coordinates into sim-
ulation trips for SUMO. This means that SimulationRoute features exactly
the opposite functionality of StaticRoute (5.5.2).

Using the csvToXml(net, csv, xml) method, the tool iterates over the
csv file line by line and computes the nearest edges to the given origin and
destination geo-coordinates for each row. Therefore, the nearbyEdges(lat,
lon, net) method is called twice, for both the origin and destination location.
First, this method converts the latitude and longitude parameters to SUMO
coordinates. This coordinate transformation is enabled through the SUMO
module sumolib and its convertLonLat2XY (lon, lat) function. Second, all
neighboring edges within a specified radius are identified, using the sumolib
feature getNeighboringEdges(x, y, radius). Third, the SimulationRoute sorts
the edges and picks the closest one.

In the next step, the edge IDs are derived for the origin and destination
edges using the parseXML(xml) method. Lastly, the SimulationRoute tool
creates a new XML trip entry including an ID, the departure time, origin
and destination edge IDs and appends this entry to the xml file. The ID
starts with 0 and is incremented until it is equal to simulationLength, which
is a general input parameter for this tool. The starting time can be directly
derived from the CSV row without any modifications. An example of such
an entry is illustrated in Listing 5.5. The departure time must be given in
seconds for the simulation with SUMO and represents the time 07:42:03.
The process of creating and appending new entries to the resulting xml file
is repeated for each trip entry within the CSV trips file.

After the entire trips are parsed, SimulationRoute returns the first and
the last starting time values. This information is required for the Simula-
tionController to start the SUMO simulation within a time frame for which
traffic demand exists.

Listing 5.5: Exemplary XML Entry for a SUMO Trip

<trip

id="23" depart ="27723.0"

from="394892651" to="52937834"

/>

52

5.6. TRALAMA WEB SERVICE

5.6 TraLAMA Web Service

The TraLAMA web service provides a HTTP POST interface for TraLAMA
and a HTTP GET interface for traffic planners.

The POST interface expects and only accepts HTTP requests with a
JSON content body. This content body must contain information about the
traffic simulation settings and an array of geo-coordinates (latitude, longi-
tude). The array describes the traces of all vehicles throughout the simula-
tion, which is equivalent to the locations of each vehicle at all times. When
a POST request is registered, the web service splits the settings information
from the geo-coordinates and stores them into two separate files. Listing 5.6
shows an appropriate content body for such a POST request.

Listing 5.6: Exemplary JSON Body for the POST Request to the TraLAMA
Web Service

{
"user": "TraLAMA",

"date": "2019-09-09",

"trafficDemand": "morning",

"simulationLength": 1800,

"stepLength": 1,

"simulationOutput": [

{
"lat": 48.171548,

"lon": 11.754922

},
{

"lat": 48.171569,

"lon": 11.754916

}
]

}

The GET interface requires the afore mentioned files (settings informa-
tion, geo-coordinates) to display a traffic load map and some relevant infor-
mation about the simulation settings. In addition, a control panel is shown
to allow traffic planners to customize the styling options of the map. The
first styling option is to change the threshold of the coloring scheme. By
increasing the value of the threshold, the focus of the map is moved to highly
congested areas. The next styling option is to change the radius for the thick-
ness of the displayed vehicle tracks. Using the blur option, traffic planners
can adjust the coloring to a more discrete scheme. In doing so, congested

53

CHAPTER 5. AGILE CITY PLANNING SUITE

Figure 5.5: Traffic Load Map in the Web View

parts of junctions can be easier identified. Lastly, traffic planners are able to
reduce the opacity for the displayed map to increase a better visibility of the
underlying street names, particularly in highly congested areas.

Figure 5.5 shows an example of a traffic load map that is displayed on
the TraLAMA web page. It is notable that the traffic load map spreads out
over the cropland because the web page uses realistic OSM data whereas the
simulation was based on modified OSM data.

5.7 User Workflow

This section presents the interaction between a traffic planner and ACPS.
The usual workflow repeats the steps two to five to get a comparison between
different road network models.

1. Starting and Loading OSM Data: The traffic planner starts the
Agile City Planning Suite with a double-click on the TraLAMA appli-
cation (macOS) or using Lifeboat8 (Windows). This starts both the
JOSM container and the SUMO container. JOSM and the activated
TraLAMA plugin are rendered in a graphical panel for the interaction
with the traffic planner while the SUMO container only prepares the
SimulationController to listen for incoming TraLAMA requests. Then

8https://uselifeboat.com

54

https://uselifeboat.com

5.7. USER WORKFLOW

the traffic planner can import OSM data from his local drive or via the
web API of JOSM, as illustrated in Figure 5.6. Moreover, the traffic
planner can add aerial imagery.

2. Modify and Validate OSM Data: JOSM provides various tools
for the traffic planner to modify OSM data. For instance, the traffic
planner can add new lanes, exchange traffic lights with roundabouts
and remove unnecessary roads. Furthermore, JOSM includes a con-
trol panel for the traffic planner to validate OSM objects. The data
validation check is used to ensure that the OSM elements are tagged
appropriately. For example, ways must have a positive number of lanes
and unnecessary tags such as duplicated or implicit ones (foot=yes
is useless when the element is already tagged with highway=footway)
should be avoided. If errors occur, the traffic planner can try to fix
them before proceeding to the next step. Figure 5.7 shows the valida-
tion control panel and the tag panel of JOSM. A new way was added
with an inappropriate lanes:forward tag.

3. Modify Simulation Settings: The traffic planner can then use the
control panel of TraLAMA (Figure 5.3) to define customized simula-
tion settings such as the preferred simulation type, traffic demand or
simulation length.

4. Run Simulation: When the traffic planner presses the Save and Start
button, TraLAMA performs all necessary preprocessing steps for the
simulation. Therefore, the defined simulation settings are required.
Then TraLAMA automatically triggers a new SUMO simulation (Fig-
ure 5.4). If the simulation type is set to graphical, the Simulation-
Controller starts SUMO with a GUI parallel to JOSM. The traffic
planner can then observe the simulation by following a specific vehi-
cle, increasing or decreasing the simulation speed and modifying the
coloring schemes for instance.

5. Visualize Simulation Output: When the simulation is finished,
TraLAMA gets notified and the traffic planner can review the visual
simulation results that is displayed as an additional layer in JOSM.
This layer represents the GPX tracks of all vehicles and can be filtered
by the traffic planner to only show a limited time frame. The simu-
lation result is further parsed and sent to the TraLAMA web service,
where the traffic planner can see another version of the simulation re-
sult, the traffic load map (Figure 5.5). In addition, the traffic planner

55

CHAPTER 5. AGILE CITY PLANNING SUITE

Figure 5.6: Download Map Data From OSM Web Server

has several options to customize the styling of this map (see Section
5.6).

Figure 5.7: Validation Result of an Inappropriately Tagged OSM Way

56

Chapter 6

Evaluation

Initially, testing objectives are defined in Section 6.1. The subsequent eval-
uation methodology in Section 6.2 presents the testing environment and the
testing procedure. In Section 6.3, three simulations scenarios are introduced
with their results described in Section 6.4. The interpretation of these results,
obtained findings and proposed solutions are then presented in Section 6.5.
Lastly, arisen problems throughout the evaluation are discussed in Section
6.6.

6.1 Objectives

The aim of this evaluation is to find problems regarding the usability of
TraLAMA. The following usability sub-criteria are derived from [JCB11].

• Understandability: Is the system easily understood?

• Documentation: Is the user manual comprehensible?

• Learnability: Is the learning curve appropriately?

To analyze these criteria, the subsystems (4.2) can be analyzed separately.
The OSM editor JOSM, the developed JOSM plugin TraLAMA, the traffic
simulation SUMO and the TraLAMA web service are evaluated.

6.2 Methodology

Three municipal employees of Kirchheim tested the implemented function-
alities. These employees were responsible for the economic development and
for the sectors ’mobility and projects’ in the municipality Kirchheim.

57

CHAPTER 6. EVALUATION

The testing was performed in the construction and planning department
of Kirchheim. The system was not deployed to their local workstations yet,
but tested on a brought workstation that had been prepared to avoid poten-
tially time-consuming setting up of environments.

Features of ACPS were then introduced and explained to the testers. This
was an interactive process, where the testers raised questions and proposed
new testing scenarios. Together we modeled two requested scenarios (see
Section 6.3) using the JOSM editor. Then one tester modeled the third
scenario by himself.

6.3 Simulation Scenarios

Different simulation scenarios within Kirchheim and Heimstetten were mod-
eled and tested. The traffic demand for all simulations was the morning
data.

• Scenario 1: Original road network data from OSM, no modifications

• Scenario 2: Added a new bypass road from Kirchheim to Heimstetten

• Scenario 3: Added a new bicycle road in Kirchheim

6.4 Results

6.4.1 Scenario 1 - Original Road Network

After simulating the first scenario, one tester discovered a road that was
used by the simulation even though it should be inaccessible to cars. The
simulation result is illustrated in Figure 6.1, where the dashed line represents
the falsely used road. The road was tagged as follows:

• highway = track

• surface = dirt

• tracktype = grade3

Another important finding by the testers was that the simulation did not
consider street types (2.3.1) for the calculation of shortest routes. Thus,
the residential highway Dorfstraße was preferred over the tertiary highway
Erdinger Straße because it led to a shorter travel time. According to the
road traffic regulations, residential highways should be accessible to local
residents only. They are not appropriate for transit purposes.

58

6.4. RESULTS

Figure 6.1: Simulating Vehicles Along Inaccessible Roads

6.4.2 Scenario 2 - Bypass Road

The second simulation was based on an additional bypass road. The simula-
tion result of this scenario is illustrated in Figure 6.2. During the modeling
process, one tester raised the question about the junction type used as the
default junction in the simulation when no OSM tag is defined. As an em-
pirical analysis showed, the simulation interprets junctions without a tag as
right-over-left. However, this behavior is not stated in the documentation of
the traffic simulation.

The result of the tested scenario was that the traffic did flow as expected
through the newly created bypass road, since the road represented a shortcut
from Kirchheim to Heimstetten. In addition, the testers easily understood the
creation tool for adding new OSM ways to the road network. Furthermore,
they could utilize the highway and junction presets and tag the new bypass
road appropriately. During the simulation of the scenario, the testers were
able to analyze the altered traffic flow.

59

CHAPTER 6. EVALUATION

Figure 6.2: Bypass Road from Kirchheim to Heimstetten

6.4.3 Scenario 3 - Bicycle Road

For the third simulation, a tester modeled a bicycle road. As in scenario 1
(6.4.1), the simulation allowed cars to move along the newly created bicycle
road, even though the road should be inaccessible to cars.

During the modeling process, the tester tried the different working modes
in the Edit Toolbar of JOSM. He was able to add a new way, connect it to
existing ones and assign bicycle tags to it. In addition, the tester customized
the simulation settings by decreasing the simulation length and selecting
random traffic demand. After he started the simulation, he reviewed the
newly created bicycle road. As mentioned in the beginning, he discovered
vehicles driving along this road.

6.4.4 Usability

Based on the input from the testers, the learning curve for TraLAMA ap-
peared to be satisfactory. However, the testers also requested a user manual.
The editing tools of the OSM editor to create new points or lines and as-
sign tags to them worked properly. Only the zooming feature within the

60

6.4. RESULTS

editor was criticized as slightly difficult to use. One tester further requested
multi-language support (German and English).

6.4.5 Traffic Load Map

Additionally, a tester asked for an improved integration of the TraLAMA web
service functionality into the local application. The tester mentioned that a
side-by-side comparison of the traffic load maps or a layered structure as in
the OpenStreetMap editor would help them to better compare the simulation
results.

6.4.6 Sensor Data

Besides, one tester presented an idea to improve the traffic demand data.
Kirchheim could provide sensor data about the number of vehicles driving
on four streets within the municipality.

6.4.7 Multimodal Simulations

Lastly, the testers wished the integration of multimodal traffic scenarios, in
particular the inclusion of bicycle agents. Their goal is to find out the number
of potential commuters who might swap their car for a bike when new cycle
highways are introduced.

6.4.8 Summary

The overall feedback of the testers was positive. Two of them shared the
opinion that TraLAMA has potential to analyze the immediate impact of
road network editing on traffic flow. The third tester criticized the sense of
purpose of TraLAMA for both city and traffic planners. The person argued
that the modeling of new roads and junctions is too time consuming and
that the municipality would need additional personnel to develop and assess
novel transportation strategies using TraLAMA. On the contrary, one tester
expressed deeper interest in TraLAMA and desired to have a portable version
of it to play around with bypass roads during the evenings after work.

61

CHAPTER 6. EVALUATION

6.5 Findings and Discussion

6.5.1 Street Classification

To begin with, the results of the tested scenarios one and three (6.4) all
refer to the route calculation of the vehicles to be simulated. The fact
that routes were created which included roads that should be inaccessi-
ble to cars was shown to be an undesirable behavior. As well as the case
where residential streets were preferred over tertiary ones. Therefore, to-
gether with the testers we propose the integration of already existing OSM
tags [Ope19b,Ope19f,Ope19g] for highways such as vehicle, surface or track-
type into the route calculation. The first tag can be set to the value no and
hence explicitly exclude vehicles. Using the second tag, an order can be de-
fined that prioritizes surfaces such as asphalt, concrete or paving stones over
dirt, earth and grass. The third tag represents dirt roads and forest tracks
and can be specified as grade{i} with i ∈ {1, 2, 3, 4, 5}, where the grading
indicates its carrying capacity. One represents the highest and five the lowest
capacity.

Besides, we suggest the integration of street types into the route calcu-
lation using the OSM highway tags, since it is equally important that main
roads are preferred over residential or living streets.

6.5.2 Usability

The requested user manual was provided in the final stages of this thesis and
multi-language support was implemented too. The delayed editing within
the OSM editor can be partially attributed to the OSM editor itself and
partially to the container platform Docker. However, no further time was
spent in trying to improve the editing usability, since it was already a trade-
off in Section 4.5.3.

6.5.3 Web Service, Sensors and Bicycles

The requested integration of the website was added to the product backlog
but could not be implemented within the given time frame of this thesis.
One has to mention that initially, the web service was not planned at all and
was a way to overcome the limitations of trace styling options within JOSM.
Therefore, the task was given low priority and later added to future work.

The vehicle count sensor data cannot be used for improved traffic demand
at the moment because the traffic demand data used in TraLAMA is based
on geographic origin-destination coordinates.

62

6.6. RELIABILITY

The integration of bicycle agents cannot be implemented either in a real-
istic way, since no statistical data about cyclists in Kirchheim is available at
present.

6.6 Reliability

During the evaluation with the testers of Kirchheim, the web service did not
work appropriately. TraLAMA sent the simulation result to the TraLAMA
web service, but the web server could only extract the meta information
of the simulation. As a result, the web view visualized an obsolete traffic
load map with the meta information of the new simulation. Fortunately, the
problem could be fixed directly on-site with a simple restart of TraLAMA.

Later it emerged that the JSON content body was too large for the server
to handle. In order to enable simulation lengths of up to three hours, the
implementation was updated to split large requests for the TraLAMA web
service into multiple parts.

63

CHAPTER 6. EVALUATION

64

Chapter 7

Summary

This chapter reviews the final status (7.1) of this work. It presents the
implemented functionalities as well as open goals for further development.
The subsequent Section 7.2 describes limitations and their impact on the
implementation and evaluation. Section 7.3 provides an outlook into possible
future work. Lastly, Section 7.4 draws a conclusion and summarizes the
contribution of this thesis.

7.1 Status

The system supports the import, modification and export of OpenStreetMap
data. Moreover, static traffic demand could be generated and stored in such
a way that traffic planners are able to select among different traffic scenarios.
Additionally, the system integrates a traffic simulation and traffic planners
can customize the simulation settings and review the simulation output in
a visual illustration. Details about the implemented and open requirements
are covered in the following.

7.1.1 Realized Goals

Table 7.1 shows the current status of the functional requirements and Table
7.2 illustrates the status of the nonfunctional requirements. Realized require-
ments are marked with X, partially implemented requirements with ! and
requirements that were not implemented yet and therefore represent open
goals are indicated with X.

65

CHAPTER 7. SUMMARY

Name Description Status

[FR1] - Load

Road Network

The system must provide a way to

download and import OpenStreetMap

data from the OpenStreetMap server.

X

[FR2] - Modify

Road Network

There must be an option to modify

OpenStreetMap data, e.g. add new lanes,

add traffic lights and traffic signs.

X

[FR3] - Export

Road Network

There must be a way to convert and

export the modified OpenStreetMap data

to the traffic simulation platform.

X

[FR4] - Select

Traffic Demand

Traffic planners must have the option to

select from temporal traffic demand data.
X

[FR5] - Customize

Simulation

Settings

The system should implement a graphical

user interface to allow traffic planners to

modify the simulation settings.

X

[FR6] - Run

Traffic Simulation

There must be a way to run a

traffic simulation.
X

[FR7] - Visualize

Traffic Load Maps

Temporal traffic load maps must be

generated and visualized using the

traffic simulation output.

X

[FR8] - Export

Traffic Load Maps

There must be an option to export the

generated traffic load maps.
X

[FR9] - Show

Simulation

Statistics

Detailed simulation statistics must be

created and visualized based on the

traffic simulation output.

X

Table 7.1: Status of Functional Requirements

66

7.1. STATUS

Name Description Status

[NFR1]

Accuracy

The road network should be up-to-date

and contain proper junctions.
X

[NFR2]

Usability

The entry point to the system should be

enabled with a maximum of two clicks.
!

[NFR3]

Usability

The graphical user interface and the

traffic load map should be colorblind safe.
X

[NFR4]

Usability

The interaction between the OpenStreetMap

editor and the traffic simulation should be

enabled with one click.

X

[NFR5]

Portability

The system should be platform independent

and able to run on Windows and macOS.
X

[NFR6]

Supportability

The communication point between the

OSM editor and the traffic simulation

should be based on the REST paradigm.

X

[NFR7]

Response Time

The creation process of the visualization

of the simulation output must not take

more than five minutes.

!

[NFR8]

Packaging

(Constraint)

The system should be packaged in a

lightweight container.
X

[NFR9] Legal

(Constraint)

The system must be free and comply

to the open-source standard.
X

[NFR10]

Interface

(Constraint)

The system must support the usage of

OpenStreetMap data.
X

Table 7.2: Status of Nonfunctional Requirements

67

CHAPTER 7. SUMMARY

7.1.2 Open Goals

The following requirements are either not implemented or partially imple-
mented at present. The reasons for this are discussed now.

FR9 Show Simulation Statistics: Detailed simulation statistics were given
low priority throughout the course of this work because a subset of the
statistics can already be reviewed during the running simulation in
SUMO. As a result, the feature is still not implemented.

NFR2 Usability: Unexpected security issues occurred while trying to use a
web application as the entry point for the system. The Docker Com-
pose1 tool is required to start ACPS and apparently, it cannot be exe-
cuted with JavaScript due to issues in creating a child process.

NFR7 Response Time: The conversion process of parsing GPX traces into a
simple CSV file can take several minutes, depending on the simulation
length and the number of simulated vehicles. However, this process is
necessary to visualize the traffic load map in the TraLAMA web view.

7.2 Threats to Validity

Several issues occurred throughout the implementation process of this work.
Some of them could be bypassed or evaluated as additional trade-offs, whereas
other limitations still affect the system at present.

• Simulation Correctness: The evaluation (Chapter 6) shows that
although OSM mostly provides an accurate and appropriately classified
road network, the transition to the traffic simulation has to be revised
and improved. Otherwise, simulation agents such as vehicles, cyclists
or pedestrians are routed along roads that should be inaccessible to
them. This could lead to many cases that deviate from the reality.

• Website as Starting Point: As described in the previous section
(7.1.2), security issues occurred while trying to execute a shell command
from the web service, such as docker-compose up to start the system.
Due to this fact, the decision was made to implement a different entry
point for the system. Unfortunately, the adapted entry point differs
from macOS to Windows.

1https://docs.docker.com/compose/

68

https://docs.docker.com/compose/

7.3. FUTURE WORK

• JOSM Heat Map Styling: The options to customize the styling
of GPX layers in JOSM were limited at implementation time and did
not allow sufficient modification so that the results would have met the
defined requirements. As a result, an additional web service was created
that displays the traffic simulation output as a clearly recognizable
traffic load map. The web service also features more styling options so
that traffic planners can derive more valuable information of it.

• Non Reachable Edges: Another issue that occurred throughout the
course of this work describes simulation routes which are discarded by
the traffic simulation. This should not be the case since DUAROUTER
was set to only create validated trips which are then used by the Sim-
ulationRoute tool. It is suspected that small deviations within the
conversion processes between static and simulation routes (see Section
5.5.2) cause these non reachable edges, as they are defined by the traffic
simulation.

• Maximum File Upload Size: In Section 6.6, it could be discovered
that simulations with a length of more than 30 minutes and around
1000 vehicle agents usually cause simulation outputs in a size (at least
30 Megabytes) that is too large for an average HTTP POST request.
To address this issue, the implementation was updated to split the
JSON content body into multiple parts and send one HTTP request
for each part.

7.3 Future Work

There are a number of features that could be still implemented. The following
enumeration shows the most relevant ideas ordered by priority.

1. Create and Reuse Persistent Traffic Demand Data: The first
goal is to let traffic planners create their own traffic demand. In doing
so, static traffic demand could be generated to compare the impact
of road network editing on traffic flows all over the world, not only
in Kirchheim. To refine the traffic demand, population descriptions2

could be further added to the generation process.

2. Implement Multimodal Traffic Demand: The second goal de-
scribes traffic simulations that include different road users as well, such
as pedestrians, cyclists and public transport. In order to realize these

2https://sumo.dlr.de/wiki/Demand/Activity-based_Demand_Generation

69

https://sumo.dlr.de/wiki/Demand/Activity-based_Demand_Generation

CHAPTER 7. SUMMARY

multimodal traffic scenarios, the afore mentioned creation of persistent
traffic demand has to be extended.

3. Further Integration with SmartHeim2: Simultaneously to this
thesis, the SmartHeim2 team was working on real-time traffic demand
data for Kirchheim. Therefore, four vehicle count sensors were installed
in the municipality to measure traffic flow. These sensors are placed
along the main roads that cross the Kirchheim. Consequently, another
great feature would be the integration of this real-time data into the
developed system.

7.4 Conclusion

The Agile City Planning Suite enables traffic planners to easily edit and
simulate traffic scenarios. By using OpenStreetMap data, which offers an
intuitive way to modify the road network, and by providing visual feedback
in the form of traffic load maps, the suite makes transportation planning
more comprehensible.

Based on the static traffic demand for Kirchheim, traffic planners of the
municipality can now analyze the impact of extended roads, bypass roads or
adapted road junctions on traffic flow. As a result, the Agile City Planning
Suite can be seen as a small step towards a congestion-free Kirchheim.

Besides, it seems reasonable that the TraLAMA plugin has a positive side
effect on the OpenStreetMap platform. By encouraging traffic planners to
directly work on OSM data instead of traffic simulation-specific road net-
works, incorrect and invalid OSM entries be found more easily and hence,
complemented. This means that OpenStreetMap gets even more accurate,
remains up-to-date and we all can use it further on, whether for looking up
directions or navigation purposes.

70

Appendix A

Software Availability

The source code for the developed system can be downloaded using
git clone https://repobruegge.in.tum.de/scm/dsm/jakobs.git

• Compatibility: macOS Mojave and Microsoft Windows 10

• Licenses:

– josm-img: GPLv3

– sumo-img: EPLv2

A.1 Prerequisites

Docker1 - Enterprise Container Platform for High-Velocity Innovation

A.1.1 Windows

• XLaunch2 - X Server

• Lifeboat3 - Lifeboat

• Prepare XLaunch on Windows
Start XLaunch and select Multiple windows, Display number -1, Start
no client and tick all Extra Settings. Then save the configuration file.
This has to be done only once.

1https://www.docker.com
2https://sourceforge.net/projects/vcxsrv/
3https://electronjs.org/apps/lifeboat

71

https://repobruegge.in.tum.de/scm/dsm/jakobs.git
https://www.docker.com
https://sourceforge.net/projects/vcxsrv/
https://electronjs.org/apps/lifeboat

APPENDIX A. SOFTWARE AVAILABILITY

A.1.2 macOS

• XQuartz4 - X11

• TraLAMA.app - Can be found within the repository

A.2 Installing

1. Start Docker

2. Inside the josm-docker folder, build the JOSM image with
docker build . -t josm-img

3. Inside the sumo-docker folder, build the SUMO image with
docker build . -t sumo-img

The building of the SUMO image might take several minutes.

A.3 Starting

A.3.1 Windows

1. Start Docker

2. Remove the commands /tmp/.X11-unix:/tmp/.X11-unix:rw within
the docker-compose.yml file. This has to be done only once.

3. Change the IP-address within the docker-compose.yml file to the IP
address of your workstation.

4. Open Lifeboat, select the docker-compose.yml file and click the Play
button on the upper right.

A.3.2 macOS

1. Prepare XQuartz on macOS
When starting ACPS for the first time, go to the XQuartz settings
and make sure to activate the Allow connections from network clients
option. Then restart ACPS. This has to be done only once.

4https://www.xquartz.org

72

/tmp/.X11-unix:/tmp/.X11-unix:rw
https://www.xquartz.org

A.4. ADDITIONAL INFORMATION

2. Double-Click the TraLAMA.app to automatically start Docker, XQuartz
and ACPS. Attention: Docker usually needs some time to enter the
running state. Just open TraLAMA.app again.

Note: The application requires the xhost executable within 5 and the
docker-compose executable within 6.

A.4 Additional Information

DO NOT upload changes that do not represent the real world to the Open-
StreetMap server. For example if you add a new traffic light for simulation
purposes, an upload would cause falsified information for OpenStreetMap
users unless the traffic authority places a real traffic light at this position.

A.4.1 Ports

JOSM Docker: Port 3030
SUMO Docker: Port 4040

A.4.2 Data

Network Data

OpenStreetMap data of Kirchheim can be found in ./data/.

Demand Data

Static demand data for Kirchheim can be found in ./data/input-simulation/

demand/.

Output Data

Simulation output data can be found in ./data/output-simulation/.

A.5 References

The implemented Docker files and the TraLAMA plugin are partially based
on the following projects.

5/opt/X11/bin/
6/Applications/Docker.app/Contents/Resources/bin/

73

./data/
./data/input-simulation/demand/
./data/input-simulation/demand/
./data/output-simulation/
/opt/X11/bin/
/Applications/Docker.app/Contents/Resources/bin/

APPENDIX A. SOFTWARE AVAILABILITY

• docker-sumo7 - Bo Gao

• docker-josm8 - Young Hahn

• sumoconvert9 - Ignacio Palermo, Julio Rivera

Data prepared by the SmartHeim2 team is always marked with an i-prefix.

7https://github.com/bogaotory/docker-sumo
8https://github.com/mapbox/docker-josm-linux
9https://github.com/openstreetmap/josm-plugins/tree/master/sumoconvert

74

https://github.com/bogaotory/docker-sumo
https://github.com/mapbox/docker-josm-linux
https://github.com/openstreetmap/josm-plugins/tree/master/sumoconvert

List of Figures

2.1 Traffic Simulation Strategies: Macroscopic, Mesoscopic, Mi-
croscopic . 7

2.2 Road Network of Kirchheim 7
2.3 WGS84 Ellipsoid Showing the Difference in Elevation 13

3.1 UML Use Case Diagram . 20

4.1 UML Analysis Object Model 26
4.2 UML Subsystem Decomposition 28
4.3 UML Activity Diagram of the System’s Workflow 29
4.4 Proposed Control Panel . 30

5.1 TraLAMA Object Model . 39
5.2 Modified OSM Road Network in JOSM 42
5.3 TraLAMA Control Panel . 43
5.4 SUMO Simulation Based on a Modified OSM Road Network . 48
5.5 Traffic Load Map in the Web View 54
5.6 Download Map Data From OSM Web Server 56
5.7 Validation Result of an Inappropriately Tagged OSM Way . . 56

6.1 Simulating Vehicles Along Inaccessible Roads 59
6.2 Bypass Road from Kirchheim to Heimstetten 60

75

LIST OF FIGURES

76

List of Tables

2.1 Street Type Classification in OpenStreetMap 11

3.1 As-is Scenario 1: Modify the Road Network 21
3.2 As-is Scenario 2: Run a Traffic Simulation 22
3.3 Visionary Scenario 1: Visualize Traffic Simulation Output . . 23

4.1 Review of Traffic Simulation Software 32

5.1 Exemplary CSV Entry for a Static Traffic Demand Trip 51

7.1 Status of Functional Requirements 66
7.2 Status of Nonfunctional Requirements 67

77

LIST OF TABLES

78

Bibliography

[AEE15a] Andrés F. Acosta, Jairo Espinosa, and Jorge E. Espinosa. De-
veloping Tools for Building Simulation Scenarios for SUMO Based
on the SCRUM Methodology. Proceedings of the 3rd SUMO User
Conference, (May):23–35, 2015.

[AEE15b] Andrés F. Acosta, Jorge E. Espinosa, and Jairo Espinosa.
TraCI4Matlab: Enabling the Integration of the SUMO Road Traf-
fic Simulator and Matlab R© Through a Software Re-engineering
Process. In Modeling Mobility with Open Data, pages 155–170.
Springer, Cham, 2015.

[Bar10] Jaume Barceló. Fundamentals of Traffic Simulation, volume 145
of International Series in Operations Research & Management Sci-
ence. Springer, New York, NY, 2010.

[BBEK11] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Kra-
jzewicz. SUMO – Simulation of Urban MObility - An Overview. In
Proceedings of SIMUL 2011, The Third International Conference
on Advances in System Simulation, Berlin, 2011. ThinkMind.

[BD09] Bernd Bruegge and Allen H Dutoit. Object Oriented Software En-
gineering Using UML, Patterns, and Java. Prentice Hall, 2009.

[BKM+15] Laura Bieker, Daniel Krajzewicz, Antonio Pio Morra, Carlo
Michelacci, and Fabio Cartolano. Traffic simulation for all: A
real world traffic scenario from the city of Bologna. In Modeling
Mobility with Open Data, pages 47–60. Springer, Cham, 2015.

[BW14] Michael Behrisch and Melanie Weber. Modeling Mobility with Open
Data: 2nd SUMO Conference 2014. Springer, Berlin, Germany,
2014.

[BW15] Michael Behrisch and Melanie Weber. Simulating Urban Traffic
Scenarios: 3rd SUMO Conference 2015. Springer, Berlin, 2015.

79

BIBLIOGRAPHY

[Deu17] Deutsche Bahn AG. Faktenblatt: Die S-Bahn München und ihr
Streckennetz, dec 2017.

[GD12] Daniel Marques Gomes de Morais and Luciano Antonio Digiampi-
etri. A review about multimodal traffic simulation techniques. The
Revista de Sistemas de Informação da FSMA, 10:2–9, 2012.

[Ger19] German Aerospace Center (DLR) and others. FAQ - SUMO Doc-
umentation, 2019.

[HNA16] Andreas Horni, Kai Nagel, and Kay W. Axhausen. Introducing
MATSim. In The Multi-Agent Transport Simulation MATSim,
pages 3–8. London: Ubiquity Press, 2016.

[HW08] Mordechai Haklay and Patrick Weber. OpenStreetMap: User-
Generated Street Maps. IEEE Pervasive Computing, 7(4):12–18,
oct 2008.

[JCB11] Mike Jackson, Steve Crouch, and Rob Baxter. Software Evalua-
tion: Criteria-based Assessment. Software Sustainability Institute,
pages 1–13, 2011.

[JCG14] Remi Jedwab, Luc Christiaensen, and Marina Gindelsky. Rural
Push, Urban Pull and... Urban Push? New Historical Evidence
from Developing Countries. The George Washington University,
Institute for International Economic Policy Working Papers, 4.,
(January):45, 2014.

[KBW+15] Daniel Krajzewicz, Michael Behrisch, Peter Wagner, Raphael
Luz, and Mario Krumnow. Second generation of pollutant emission
models for SUMO. In Modeling Mobility with Open Data, pages
203–221. Springer, Cham, 2015.

[KH09] Gligor Kotusevski and Ken A. Hawick. A Review of Traffic Sim-
ulation Software. Research Letters in the Information and Mathe-
matical Sciences, 13:35–54, 2009.

[KHRW02] Daniel Krajzewicz, Georg Hertkorn, Christian Rössel, and Peter
Wagner. SUMO (Simulation of Urban MObility) - an Open-Source
Traffic Simulation. Proceedings of the 4th Middle East Symposium
on Simulation and Modelling (MESM20002), pages 183–187, 2002.

[KP15] Karl Heinz Kastner and Petru Pau. TOMS—traffic online mon-
itoring system for ITS Austria west. In Modeling Mobility with
Open Data, pages 189–201. Springer, Cham, 2015.

80

BIBLIOGRAPHY

[Lan19a] Landesamt für Geoinformation und Landentwicklung Baden-
Württemberg. GNSS, 2019.

[Lan19b] Landesamt für Geoinformation und Landentwicklung Baden-
Württemberg. Koordinatenref.system, 2019.

[Ope19a] OpenStreetMap Foundation. Copyright and License, 2019.

[Ope19b] OpenStreetMap Wiki contributors. Attributierung von Straßen in
Deutschland, 2019.

[Ope19c] OpenStreetMap Wiki contributors. Comparison of editors, 2019.

[Ope19d] OpenStreetMap Wiki contributors. Key:highway, 2019.

[Ope19e] OpenStreetMap Wiki contributors. Key:junction, 2019.

[Ope19f] OpenStreetMap Wiki contributors. Key:surface, 2019.

[Ope19g] OpenStreetMap Wiki contributors. Key:tracktype, 2019.

[PMS13] A. Pell, A. Meingast, and O. Schauer. Comparison Study of Soft-
ware Tools for Online Traffic Simulation Supporting Real-time
Traffic Management of Road Networks. In Proceedings of 20th
ITS World Congress, number January, Tokyo, Japan, 2013.

[Pot12] Tomas Potuzak. Distributed-Parallel Road Traffic Simulator for
Clusters of Multi-core Computers. In 2012 IEEE/ACM 16th In-
ternational Symposium on Distributed Simulation and Real Time
Applications, pages 195–201, Dublin, oct 2012. IEEE.

[RSR15] David Rieck, Björn Schünemann, and Ilja Radusch. Advanced
traffic light information in openstreetmap for traffic simulations. In
Modeling Mobility with Open Data, pages 25–34. Springer, Cham,
2015.

[Sta19] Statista GmbH. Anzahl der gemeldeten Pkw in Deutschland -
PKW-Bestand bis 2019, 2019.

[The18] The World Bank. Urban population (% of total population), 2018.

[Tra14] Transportation Research Circular. Looking Back and Looking
Ahead: Celebrating 50 Years of Traffic Flow Theory, A Workshop.
Traffic and Transport Simulation, (April), 2014.

81

BIBLIOGRAPHY

[Tur19] James Turnbull. The Docker Book: Containerization is the new
virtualization. James Turnbull, 2019.

[Uni18] United Nations. 68% of the world population projected to live in
urban areas by 2050, 2018.

[Wor18] World Health Organization. Ambient (outdoor) air quality and
health, 2018.

[Zil18] Michael Zilske. Transparent and versatile traffic simulation: Supply
data, demand data, and software architecture. Doctoral thesis,
Technische Universität Berlin, 2018.

[ZNKE17] Daniel Zehe, Suraj Nair, Alois Knoll, and David Eckhoff. Towards
CityMoS: A Coupled City-Scale Mobility Simulation Framework.
In 5th GI/ITG KuVS Fachgespräch Inter-Vehicle Communication
(FG-IVC 2017), Erlangen, Germany, apr 2017. FAU Erlangen-
Nuremberg.

[ZNN11] Michael Zilske, Andreas Neumann, and Kai Nagel. OpenStreetMap
For Traffic Simulation. M. Schmidt, G. Gartner (Eds.), Proceed-
ings of the 1st European State of the Map – OpenStreetMap con-
ference, no. 11-10, pages 126–134, 2011.

82

	Introduction
	Problem Statement
	Background
	Objectives
	Realistic Traffic Demand
	Editor Integration
	Traffic Flow Visualization

	Motivation
	Overview
	Outline

	Background
	Pilot Projects vs. Computer Simulations
	Computer Simulations

	Traffic Simulation Software
	Simulation Strategies
	Multimodal Transport Simulation
	Simulation Input
	SUMO - Simulation of Urban MObility
	CityMos - City Mobility Simulator
	MATSim - Multi-Agent Transport Simulation

	OpenStreetMap
	Attributes
	JOSM - Java OpenStreetMap Editor

	Modeling Mobility with Open Data
	Coordinate Reference Systems
	GPS Reference System
	Map Projection

	Scrum

	Requirements Elicitation
	Overview
	Functional Requirements
	Nonfunctional Requirements
	Use Case Diagram
	Scenarios

	System Design
	Analysis Object Model
	Stereotypes

	Subsystem Decomposition
	Dynamic Behavior
	Graphical User Interface
	Simulation Model

	Design Goals
	Chosen Traffic Simulation
	Chosen OpenStreetMap Editor
	Trade-Offs

	Identify Concurrency
	Hardware/Software Mapping
	Container Platform

	Persistent Data Management

	Agile City Planning Suite
	Overview
	Object Design
	Stereotypes
	Object Description

	JOSM Container
	TraLAMA Plugin
	Filter OSM Elements
	Communication with SUMO Container
	Generation of Traffic Load Maps
	TraLAMA Workflow

	SUMO Container
	Simulation Controller
	Route Planner

	TraLAMA Web Service
	User Workflow

	Evaluation
	Objectives
	Methodology
	Simulation Scenarios
	Results
	Scenario 1 - Original Road Network
	Scenario 2 - Bypass Road
	Scenario 3 - Bicycle Road
	Usability
	Traffic Load Map
	Sensor Data
	Multimodal Simulations
	Summary

	Findings and Discussion
	Street Classification
	Usability
	Web Service, Sensors and Bicycles

	Reliability

	Summary
	Status
	Realized Goals
	Open Goals

	Threats to Validity
	Future Work
	Conclusion

	Software Availability
	Prerequisites
	Windows
	macOS

	Installing
	Starting
	Windows
	macOS

	Additional Information
	Ports
	Data

	References

	Bibliography

