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Abstract

Synapses and neuronal properties in the brain are not static; instead, they are con-
stantly modified by various plasticity mechanisms operating at different timescales.
Over the past decades, extensive experimental studies have identified and character-
ized these plasticity mechanisms. Yet, understanding their functional implications
purely experimentally is challenging due to their complex interplay, and the com-
plexity induced by the diversity of cell types.

In my dissertation, I take a complementary approach by combining theoreti-
cal analysis and computational modeling, and investigate how different plasticity
mechanisms operating at different timescales shape cortical computations. In col-
laboration with the Gina Turrigiano lab, we studied how neural circuits use various
homeostatic mechanisms to maintain stability in response to sensory perturbations.
We found that functional correlations are subject to homeostatic regulation, and
different homeostatic mechanisms can regulate distinct aspects of neural dynam-
ics. Using analytical calculations, I demonstrated how neuronal nonlinearities and
short-term plasticity affect inhibition stabilization, the paradoxical effect, and the
relationship between the two. In collaboration with Dr. Friedemann Zenke, we in-
vestigated the underlying mechanism of stimulus-evoked transient neural dynamics
in sensory systems, and examined the functional benefits of co-tuned inhibition and
transient onset responses. In collaboration with Christoph Miehl, we reviewed the
recent literature on inhibitory plasticity and its functional implications. In collab-
oration with Felix Waitzmann, we studied a nonlinear phenomenon in canonical
cortical circuits, whereby depending on the presence of visual input, top-down
modulation via VIP affects SST response oppositely, known as response reversal.
We demonstrated that experimentally identified inhibitory short-term plasticity
can generate response reversal of SST, and revealed the relationship between re-
sponse reversal, cell-type-specific inhibition stabilization, and paradoxical effects.
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Taken together, my work highlights the important role of plasticity mechanisms
in shaping cortical computations.
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Zusammenfassung

Synapsen und neuronale Eigenschaften im Gehirn sind nicht statisch, sondern wer-
den durch verschiedene Plastizitätsmechanismen, die auf unterschiedlichen Zeit-
skalen wirken, ständig verändert. In den letzten Jahrzehnten haben umfangreiche
experimentelle Studien diese Plastizitätsmechanismen identifiziert und charakter-
isiert. Ihre funktionellen Auswirkungen rein experimentell zu verstehen, ist jedoch
aufgrund ihres komplexen Zusammenspiels und der Komplexität, die durch die
Vielfalt von Zelltypen entsteht, eine Herausforderung.

In meiner Dissertation verfolge ich einen komplementären Ansatz, indem ich
theoretische Analysen und Computermodellierung kombiniere und untersuche,
wie verschiedene Plastizitätsmechanismen, die auf unterschiedlichen Zeitskalen ar-
beiten, kortikale Berechnungen beeinflussen. In Zusammenarbeit mit dem La-
bor von Gina Turrigiano haben wir untersucht, wie neuronale Schaltkreise ver-
schiedene homöostatische Mechanismen nutzen, um als Reaktion auf sensorische
Störungen stabil zu bleiben. Wir fanden heraus, dass funktionale Korrelationen
einer homöostatischen Regulierung unterliegen und dass verschiedene homöo-
statische Mechanismen unterschiedliche Aspekte der neuronalen Dynamik reg-
ulieren können. Mithilfe analytischer Berechnungen habe ich gezeigt, wie neu-
ronale Nichtlinearitäten und kurzfristige Plastizität die Stabilisierung durch In-
hibition, den paradoxen Effekt und die Beziehung zwischen beiden beeinflussen.
In Zusammenarbeit mit Dr. Friedemann Zenke untersuchten wir den zugrun-
deliegenden Mechanismus der durch Reize ausgelösten transienten neuronalen Dy-
namik in sensorischen Systemen und untersuchten den funktionellen Nutzen von
aufeinander abgestimmter Inhibition und der unmittelbar folgenden neuronalen
Dynamik. In Zusammenarbeit mit Christoph Miehl haben wir die aktuelle Lit-
eratur zur inhibitorischen Plastizität und ihren funktionellen Implikationen unter-
sucht. In Zusammenarbeit mit Felix Waitzmann untersuchten wir ein nichtlineares
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Phänomen in kanonischen kortikalen Schaltkreisen, bei dem je nach Vorhanden-
sein eines visuellen Inputs eine Top-down-Modulation über VIP das Verhalten der
SST-Aktivität entgegengesetzt beeinflusst, was als Antwortumkehr bekannt ist.
Wir haben gezeigt, dass experimentell identifizierte Kurzzeitplastizität der Inhi-
bition eine Umkehrung der SST-Antwort bewirken kann. Darüber hinaus haben
wir die Beziehung zwischen der Umkehrung der Antwort, der zelltypspezifischen
Stabilisierung durch Inhibition und den paradoxen Effekten aufgezeigt. Insgesamt
unterstreicht meine Arbeit die wichtige Rolle von Plastizitätsmechanismen bei der
Gestaltung kortikaler Berechnungen.
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1 Introduction

When looking at an apple, an image of the apple projects on the retina, and visual
information from the retina is then relayed via the lateral geniculate nucleus of the
thalamus to the primary visual cortex (Kandel, 2013; Seabrook et al., 2017). When
smelling fragrant flowers, odorants enter the nose and activate olfactory receptor
neurons (Malnic et al., 1999), after which olfactory information passed through the
olfactory bulb to the olfactory cortex (Kandel, 2013; Uchida et al., 2014). When lis-
tening to music, sound waves enter the ear, and auditory information is then passed
via the auditory thalamus to the auditory cortex (Jones, 2012; Kandel, 2013; Lee,
2013). Different sensory information processed by different sensory cortices then
propagates to other brain areas including the prefrontal cortex and the motor cortex
generating decisions and behaviors (Ebbesen & Brecht, 2017; Euston et al., 2012;
Kandel, 2013). To perception and behavior, of particular importance is patterned
neural activity in the brain generated by interacting units, called neurons.

Neuron

Neurons are the fundamental units of the brain that receive, process, and trans-
fer information via electrical and chemical signals. A neuron typically consists of
three parts: a cell body or soma, housing the cell’s nucleus and sustaining its vi-
tality; dendrites, which are branching fibers responsible for collecting input from
other cells and transmitting it to the soma; and an elongated fiber known as the
axon, responsible for transmitting information from the cell body to other neu-
rons, muscles, or glands (Fig. 1.1). Neurons transmit signals through specialized
connections known as synapses, which can be categorized into two distinct types:
chemical synapses and electrical synapses. At a chemical synapse, the electrical
activity of the presynaptic neuron triggers the release of neurotransmitters that
bind to receptors situated in the postsynaptic membrane. At an electrical synapse,
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1 Introduction

the presynaptic and postsynaptic cell membranes are connected by special chan-
nels called gap junctions that are capable of passing electric currents between neu-
rons. Neurons can be broadly divided into excitatory neurons or inhibitory neu-
rons. Excitatory neurons increase the action potential generation probability of
postsynaptic neurons, whereas inhibitory neurons tend to decrease the likelihood
of a postsynaptic action potential occurring. Excitatory neurons typically contain
glutamatergic neurotransmitter, which binds to 𝛼-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors and N-methyl-D-aspartate (NMDA)
receptors in the postsynaptic membrane, whereas inhibitory neurons usually con-
tain gamma-aminobutyric acid-ergic (GABAergic) neurotransmitter, which binds
to postsynaptic GABA𝐴 receptors.

Figure 1.1: Schematic of a neuron. A neuron typically is composed of three parts: a cell
body or soma, dendrites, and an axon. Figure created with BioRender.com.

Network connectivity and neural computations

To generate appropriate neural activity that enables cognitive functions and flexible
behaviors, connections between neurons have to be set up properly. Proper net-
work connectivity is essential to achieve the balance of excitation and inhibition
(E/I balance), and to generate asynchronous irregular activity, a hallmark of spon-
taneous cortical activity (Renart et al., 2010; van Vreeswijk & Sompolinsky, 1996;
van Vreeswijk & Sompolinsky, 1998). Networks with improper connectivity tend
to exhibit abnormal neural activity associated with various brain disorders (Monday
et al., 2023).

Network connectivity exerts a great influence on the ability of neural circuits to
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carry out different computations. For instance, strong excitatory to excitatory con-
nection strength can generate persistent activity which is considered to under-
lie working memory (Wong & Wang, 2006). Multisynaptic connectivity motifs
that mediate reciprocal inhibition between excitatory neurons with similar tun-
ing enable the olfactory bulb to perform ‘whitening’, a fundamental computation
that decorrelates activity patterns and facilitates pattern classification (Wanner &
Friedrich, 2020).

The establishment of appropriate synaptic connectivity in neural circuits is rather
complex. It involves activity-independent processes determined by genetic pro-
grams like axon guidance during early development (McLaughlin & O’Leary,
2005), as well as activity-dependent processes like activity-dependent plasticity
(Thompson et al., 2017). Multiple activity-dependent plasticity mechanisms oper-
ating in the brain greatly shape synaptic connections and neuronal properties at dif-
ferent timescales. On a timescale from hundreds of milliseconds to seconds, synapses
can change due to short-term plasticity (Regehr, 2012; Tsodyks & Markram, 1997).
On a timescale from minutes to hours, synapses are modified by long-term plas-
ticity, which is considered as the neural substrate of learning and memory (Bi &
Poo, 1998; D’amour & Froemke, 2015; Martin et al., 2000; Sjöström et al., 2001).
On an even slower timescale from hours to days, there are slow homeostatic mech-
anisms like synaptic scaling and intrinsic plasticity (Desai et al., 1999; Turrigiano
et al., 1998).

Short-term synaptic plasticity

Repetitive presynaptic stimulation can lead to changes in synaptic strength occur-
ring on a timescale from hundreds of milliseconds to seconds, termed short-term
synaptic plasticity (Markram et al., 2015; Regehr, 2012; Tsodyks & Markram, 1997).
Experimentally, short-term synaptic plasticity is measured by paired-pulse ratio
(PPR), which is defined as the ratio of the amplitude of the second response to that
of the first. A PPR smaller than 1 indicates short-term depression, whereas a PPR
larger than 1 suggests short-term facilitation. Mechanistically, short-term plastic-
ity can involve both presynaptic and postsynaptic changes (Regehr, 2012). Since
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1 Introduction

studies on short-term plasticity primarily focused on the presynaptic factors, an
overview of the major presynaptic factors is provided below.

Short-term depression

Short-term depression can be attributed to several presynaptic factors including
vesicle depletion, inactivation of release sites and calcium channels (Fioravante &
Regehr, 2011; Regehr, 2012; Zucker & Regehr, 2002).

Vesicle depletion
Typically, at small central nervous system synapses, there are hundreds of vesicles
in a presynaptic terminal (Rizzoli & Betz, 2005). They reside in three different
pools: the readily releasable pool, the recycling pool, and the reserve pool (Fig. 1.2;
Rizzoli & Betz, 2005). The readily releasable pool consists of synaptic vesicles that
are immediately available on presynaptic stimulation and typically about less than
5% of all vesicles. The recycling pool is a pool of vesicles which recycle upon
moderate stimulation, and about 15% of the total vesicles. The reserve pool contains
approximately 80% of all vesicles. The vesicles in the reserve pool are reluctant to
release, and their release is triggered only upon intense stimulation. Vesicles in the
readily releasable pool associate with a synaptic active zone that is the principal site
of neurotransmitter release (Rizzoli & Betz, 2005). Depending on the size of the
readily releasable pool of vesicles, however, usually only a small fraction of these
vesicles are available for immediate release by an action potential (Rizzoli & Betz,
2005). Since the number of vesicles in the readily releasable pool is limited, if a large
fraction of vesicles in the readily releasable pool is released by an action potential,
fewer vesicles will get released by the subsequent action potential (Fig. 1.2). The
depletion of vesicles caused by action potentials can lead to short-term synaptic
depression until vesicles from a recycling pool replenish the readily releasable pool
(Fioravante & Regehr, 2011; Zucker & Regehr, 2002).

Inactivation of release sites
For the release of neurotransmitter, a synaptic vesicle first fuses with the plasma
membrane of the presynaptic axon terminal and then releases its contents into the
synaptic cleft, a process called exocytosis (Stevens, 2003). Synaptic vesicle fusion
at a release site can inhibit the occurrence of subsequent fusion events at that site
(Neher & Sakaba, 2008). The release site inactivation can take for seconds follow-
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ing exocytosis and lead to short-term synaptic depression (Fioravante & Regehr,
2011; Neher & Sakaba, 2008). Furthermore, short-term depression is also affected
by endocytosis, a process by which the plasma membrane at the presynaptic axon
terminal invaginates to form synaptic vesicles (Hosoi et al., 2009). More specifically,
blocking endocytosis enhances short-term synaptic depression (Hosoi et al., 2009;
Hua et al., 2013).

Inactivation of calcium channels
At the calyx of Held, a brainstem giant synapse, inactivation of calcium chan-
nels results in a decrease in calcium influx, contributing to short-term depression
(Forsythe et al., 1998; Xu & Wu, 2005).

Figure 1.2: Short-term depression. Synaptic vesciles reside in three different pools: the
reserve pool (blue), the recycling pool (orange), and the readily releasable pool (green).
Presynaptic action potentials trigger the release of vesicles in the readily releasable pool,
resulting in vesicle depletion and less vesicles in the readily releasable pool, therefore, short-
term depression. Figure adapted from (Rizzoli & Betz, 2005).

Short-term facilitation

Short-term facilitation is thought to depend on increased calcium at the presynap-
tic axon terminal caused by the presynaptic action potential. The increased calcium
level will increase the release probability of neurotransmitters, therefore leading to
short-term facilitation (Fioravante & Regehr, 2011; Regehr, 2012). More specifi-
cally, a presynaptic action potential initiates a local calcium signal that triggers the
release of neurotransmitter. Despite being at a low level, calcium persists within the
presynaptic bouton. If the residual calcium signal constitutes a substantial portion of
the local calcium signal responsible for driving the release, the residual calcium can
enhance the release probability of neurotransmitters and thus lead to short-term
facilitation (Katz & Miledi, 1968; Regehr, 2012). Furthermore, short-term facili-
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1 Introduction

tation can arise due to the local saturation of rapid endogenous Ca2+ buffers within
the terminal during a series of action potentials, therefore leading to a gradual ele-
vation in the Ca2+ concentration at the release site (Blatow et al., 2003; Rozov et al.,
2001).

Long-term synaptic plasticity

On a timescale from minutes to hours, synaptic strength can undergo potentiation
or depression as a result of long-term synaptic plasticity (Martin et al., 2000). Long-
term synaptic plasticity is widely considered to be the neural substrate of learning
and memory (Lamprecht & LeDoux, 2004; Martin et al., 2000). It was postulated
by Donald Hebb that coactivation of presynaptic and postsynaptic neurons causes
long-term plasticity (Hebb, 1949). Over the last three decades, extensive experi-
mental studies have been conducted to quantify how plasticity at different types of
synapses depends on different features of neural activity including firing rates and
spike timing (Bi & Poo, 1998; Caporale & Dan, 2008; D’amour & Froemke, 2015;
Kirkwood et al., 1993; Sjöström et al., 2001).

Excitatory synaptic plasticity

Early studies have examined the dependency of synaptic plasticity at excitatory
synapses on afferent stimulation rates, and have shown that low stimulation rates
lead to depression whereas high stimulation rates cause potentiation (Fig. 1.3A;
Dudek & Bear, 1992; Kirkwood et al., 1993). Later, the impact of spike timing on
synaptic plasticity has been investigated by pairing presynaptic spikes with postsy-
naptic spikes within a time window of tens of milliseconds (Bi & Poo, 1998). In hip-
pocampus, long-term potentiation occurs when presynaptic spikes precede postsy-
naptic spikes, whereas long-term depression occurs when presynaptic spikes follow
postsynaptic spikes (Fig. 1.3B; Bi & Poo, 1998). Similar spike timing-dependent
plasticity (STDP) rules for excitatory synapses have also been observed in the cor-
tex (Feldman, 2000; Markram et al., 1997; Sjöström et al., 2001). Biophysically,
the induction of long-term excitatory plasticity normally includes the activation of
NMDA receptors (Lüscher & Malenka, 2012). The expression of excitatory plas-
ticity typically involves modifications of the number and the properties of AMPA
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receptors (Diering & Huganir, 2018; Huganir & Nicoll, 2013; Makino & Malinow,
2009; Malinow & Malenka, 2002).

Figure 1.3: Excitatory synaptic plasticity. A. Change in excitatory synaptic strength
(Δ𝑤𝐸𝐸) as a function of afferent stimulation frequency. Low stimulation rates produce de-
pression (Δ𝑤𝐸𝐸 < 0) whereas high stimulation rates cause potentiation (Δ𝑤𝐸𝐸 > 0). Fig-
ure adapted from (Kirkwood et al., 1993). B. Change in excitatory synaptic strength as a
function of the timing difference between pre- and postsynaptic spikes (Δ𝑡 ). Long-term
potentiation (Δ𝑤𝐸𝐸 > 0) takes place when presynaptic spikes precede postsynaptic spikes
(Δ𝑡 > 0), whereas long-term depression (Δ𝑤𝐸𝐸 < 0) occurs when presynaptic spikes suc-
ceed postsynaptic spikes (Δ𝑡 < 0). Figure adapted from (Bi & Poo, 1998).

Inhibitory synaptic plasticity

Accumulating evidence has also demonstrated long-term plasticity at inhibitory
synapses (Capogna et al., 2021; Castillo et al., 2011; McFarlan et al., 2023). In con-
trast to excitatory synaptic plasticity, inhibitory synaptic plasticity is more diverse.
Different types of inhibitory STDP curves have been reported in different brain re-
gions (D’amour & Froemke, 2015; Haas et al., 2006; Vickers et al., 2018; Woodin et
al., 2003). For instance, irrespective of the temporal order of pre- and postsynaptic
spikes, coincident pre- and postsynaptic activity leads to potentiation at inhibitory
synapses onto layer 5 pyramidal neurons in the auditory cortex (Fig. 1.4A; D’amour
& Froemke, 2015) but leads to depression at inhibitory synapses onto layer 4 prin-
cipal neurons in the auditory cortex (Fig. 1.4B; Vickers et al., 2018). In some other
brain regions, the temporal order of the pre- and postsynaptic spikes is however
crucial, and determines the sign of plasticity at inhibitory synapses onto excitatory
neurons. For instance, in the entorhinal cortex, pre-before-post pairing produces
potentiation whereas post-before-pre pairing induces depression (Fig. 1.4C; Haas
et al., 2006). In contrast, in the hippocampus, to obtain the same effects in the
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1 Introduction

change of inhibitory synapses, the orders of pre- and postsynaptic spikes are re-
versed (Fig. 1.4D; Woodin et al., 2003). The induction of long-term inhibitory
plasticity is commonly mediated by retrograde signaling following repetitive ac-
tivation of nearby excitatory synapses (Capogna et al., 2021). The expression of
long-term inhibitory plasticity involves changes in the presynaptic GABA release,
and modifications of the number and the function of postsynaptic GABA𝐴 receptors
(Chiu et al., 2019; Luscher et al., 2011).

Figure 1.4: Inhibitory synaptic plasticity. Different spike timing dependent plasticity
curves for inhibitory synapses. A. Symmetric Hebbian learning rule characterized by a
symmetric function of the difference in spike times of pre- and postsynaptic neurons, and
potentiation induced by coincident pre- and postsynaptic activity (D’amour & Froemke,
2015). B. Symmetric anti-Hebbian learning rule in which depression induced by coinci-
dent pre- and postsynaptic activity (Vickers et al., 2018). C. Asymmetric Hebbian learn-
ing rule characterized by an asymmetric function of the difference in spike times of pre-
and postsynaptic neurons, and potentiation induced by pre-before-post pairing (Haas et al.,
2006). D. Asymmetric anti-Hebbian learning rule in which depression induced by pre-
before-post pairing (Woodin et al., 2003). Figure adapted from (Wu et al., 2022).
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Heterosynaptic plasticity

Pairing pre- and postsynaptic activity does not only induce plastic changes in
synapses between paired neurons, but also plasticity of nearby synapses associated
with unpaired presynaptic neurons, known as heterosynaptic plasticity (Chater &
Goda, 2021; Chistiakova et al., 2015; Field et al., 2020; Lynch et al., 1977; Oh et al.,
2015; Royer & Paré, 2003). Compared to homosynaptic Hebbian-type plasticity,
heterosynaptic plasticity imposes an opposite effect on changes in synaptic weights,
suggesting a homeostatic role of heterosynaptic plasticity in synaptic weight sta-
bilization (Chistiakova et al., 2015). Heterosynaptic plasticity has been observed at
both excitatory and inhibitory synapses (Field et al., 2020).

Metaplasticity

Synaptic activity can change synaptic strengths due to synaptic plasticity. Synaptic
plasticity can be also affected by prior synaptic activity, a phenomenon known as
metaplasticity (Abraham, 2008; Abraham & Bear, 1996). For instance, the thresh-
old for LTP and LTD at which stimulation frequency leads to no change in synaptic
strength can vary depending on the history of synaptic activity. Direct experimen-
tal evidence has been obtained by comparing the learning curves in the visual cortex
of rats in the dark-rearing condition with that in the control condition (Kirkwood
et al., 1996). In the dark-rearing condition, LTP is enhanced, LTD is suppressed,
and the LTP/LTD threshold shifts to a lower frequency, indicating that a stim-
ulation frequency normally induces LTD now can induce LTP instead (Fig. 1.5;
Kirkwood et al., 1996).

Synaptic scaling

To maintain proper functioning of neural circuits when confronted with exter-
nal perturbations, synapses can regulate neural dynamics by upscaling or down-
scaling synaptic strengths, known as synaptic scaling (Fig. 1.6; Turrigiano, 2011;
Turrigiano et al., 1998). In comparison with long-term plasticity, synaptic scaling
is relatively slow and operating on a timescale from hours to days (Turrigiano et
al., 1998). In culture, abolishing neural activity using tetrodotoxin (TTX) for 48
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1 Introduction

Figure 1.5: Metaplasticity. Metaplasticity leads to different plasticity curves in the control
condition (blue) and in the dark-rearing condition (red). Compared to the control condi-
tion, the LTP/LTD threshold marked by circles in the dark-reading condition shifts to the
left, making LTP induction easier and LTD induction harder. Figure adapted from (Kirk-
wood et al., 1996).

hours leads to upscaling of excitatory synapses, therefore, an increase in the am-
plitude of miniature excitatory postsynaptic currents (mEPSCs) (Turrigiano et al.,
1998). Overexcited neural activity induced by applying bicucullin, a GABA𝐴 re-
ceptor antagonist, results in downscaling of excitatory synapses, thus, a decrease
of mEPSCs (Turrigiano et al., 1998). As synaptic scaling attempts to counteract
deviations from normal activity level of neurons, it has been considered as one of
the important homeostatic mechanisms (Desai et al., 2002; Ibata et al., 2008; Keck
et al., 2013). Furthermore, the scaling of synaptic strength is found to be multiplica-
tive (Turrigiano et al., 1998). In other words, originally stronger synapses undergo
more substantial changes than initially weaker synapses. Multiplicative synaptic
scaling can preserve the relative differences in synaptic strengths. Mechanistically,
synaptic scaling is realized by regulating AMPA receptors at the postsynaptic sites
(Turrigiano, 2008).

Intrinsic plasticity

In addition to synaptic homeostatic mechanisms, neurons can bidirectionally adjust
intrinsic excitability to regulate their activity (Daoudal & Debanne, 2003; Debanne
et al., 2019; Desai et al., 1999). The change in excitability is measured experimentally
by the frequency-current curve (f-I curve). To counteract the decreased activity,
neurons can increase their excitability, resulting in a higher firing compared to the
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Figure 1.6: Synaptic scaling. A. Synaptic downscaling compensates for the overexcited
activity induced by LTP. B. Synaptic upscaling counteracts the reduced activity induced by
LTD. Note that synaptic strengths are scaled in a multiplicative manner, so that the relative
strength of the synapses remains unchanged. Figure adapted from (Turrigiano, 2008).

control condition when injecting the same amount of current (Fig. 1.7; Desai et
al., 1999). To compensate for increased activity, neurons decrease their excitabil-
ity. Consequently, the same amount of current leads to a lower firing than that in
the control condition (Fig. 1.7; Fan et al., 2005). Biophysically, intrinsic plasticity
involves changes in axon initial segments (Grubb & Burrone, 2010; Jamann et al.,
2021).

Figure 1.7: Intrinsic plasticity. Neuronal excitability is typically measured by the
frequency-current curve (f-I curve). Increased excitability indicated by a higher firing
rate in response to the same amount of current injection compensates for decreased activ-
ity, whereas decreased excitability counteracts overexcited activity. Figure adapted from
(Desai et al., 1999; Fan et al., 2005).
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1 Introduction

Interneuron diversity and interneuron-specific plasticity

The complexity of neural circuits does not only arise from various plasticity mech-
anisms interacting with each other, but also from the enormous diversity of cell
types. In contrast to excitatory neurons, inhibitory interneurons are highly diverse
in terms of anatomy, electrophysiology and functions (Jiang et al., 2015; Tremblay
et al., 2016). In the mouse neocortex, three major classes of interneurons express-
ing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP)
make up more than 80% of GABAergic interneurons (Tremblay et al., 2016). Dis-
tinct interneuron subtypes selectively innervate specific compartments of pyramidal
cells. PV neurons tend to target perisomatic regions of pyramidal neurons, while
SST neurons preferentially target distal dendritic regions of pyramidal neurons.
(Tremblay et al., 2016). Together with excitatory neurons, they form a canonical
microcircuit. Previous experimental studies have identified common features of the
connectivity structure of this circuit (Fig. 1.8). For instance, SST and VIP mutu-
ally inhibit each other, and inhibitory connections between SST, and between VIP
are rare (Pfeffer et al., 2013). Diverse interneuron subtypes are relevant for various
computations and cognitive functions, such as locomotion-induced gain modula-
tion (Fu et al., 2014), selective attention (Zhang et al., 2014), context-dependent
modulation (Keller et al., 2020; Kuchibhotla et al., 2017), predictive processing (At-
tinger et al., 2017; Keller & Mrsic-Flogel, 2018), novelty detection (Garrett et al.,
2020), regulating global coherence (Veit et al., 2017, 2022), and gating of synap-
tic plasticity (Canto-Bustos et al., 2022; Krabbe et al., 2019; Williams & Holtmaat,
2019).

Figure 1.8: Schematic of a canonical cortical circuit. The canonical cortical circuit con-
sists of one excitatory (E, blue) population and three distinct inhibitory populations includ-
ing PV (orange), SST (green), and VIP (red). Network connectivity and figure adapted
from (Pfeffer et al., 2013).
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Interneuron-specific short-term plasticity

Synapses between different types of neurons can exhibit distinct short-term dy-
namics. Quantitative measurements of cell-type specific short-term plasticity have
recently been conducted by the Allen Institute (Campagnola et al., 2022). Several
types of synapses exhibit significant short-term dynamics (Fig. 1.9). For instance,
synapses from PV to E, from PV to PV, and from PV to VIP undergo consider-
able short-term depression, whereas synapses from SST to VIP display pronounced
short-term facilitation.

Figure 1.9: Short-term plasticity in the canonical cortical circuit with multiple in-
terneuron subtypes. Left: Different degrees of short-term facilitation (STF, red) and de-
pression (STD, blue) at different synapses measured by the Allen Institute (Campagnola et
al., 2022). Green boxes denote the four most pronounced short-term dynamic connections.
Red crosses indicate connections that are weak as reported in (Pfeffer et al., 2013). Right:
Network schematic incorporating the four most pronounced STD (gray) and STF (purple)
mechanisms. Figure adapted from (Campagnola et al., 2022; Pfeffer et al., 2013; Waitzmann
et al., 2023).

Interneuron-specific long-term plasticity

Synapses from different inhibitory cell types also exhibit different long-term plas-
ticity (Lagzi et al., 2021; Song et al., 2022; Udakis et al., 2020; Yap et al., 2021). Re-
cent studies have examined spike timing-dependent plasticity of inhibitory synapses
from different types of interneurons in hippocampus (Udakis et al., 2020). By pair-
ing single IPSCs with a burst of action potentials of excitatory neurons, it has been
revealed that PV synapses onto excitatory neurons in CA1 only undergo long-
term depression whereas SST synapses can undergo both long-term depression and
long-term potentiation depending on the precise spike timing of pre- and postsy-
naptic spikes (Fig. 1.10A). More specifically, small intervals between presynaptic
and postsynaptic spikes lead to long-term potentiation of SST synapses whereas
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1 Introduction

large intervals result in long-term depression. In the layer 2/3 of the orbitofrontal
cortex, PV and SST exhibit different forms of spike timing-dependent plasticity
(Fig. 1.10B; Lagzi et al., 2021). Regardless of the temporal order of pre- and postsy-
naptic spikes, PV synapses to excitatory neurons get potentiated by small intervals
between presynaptic and postsynaptic spikes and get depressed by large intervals. In
contrast, for SST synapses to excitatory neurons, pre-before-post pairing produces
potentiation whereas post-before-pre pairing induces depression.

Figure 1.10: Interneuron-specific synaptic plasticity. Different spike timing dependent
plasticity curves for different types of inhibitory synapses in different brain regions. A.
Symmetric anti-Hebbian learning rule for PV-to-E synapses whereas symmetric Hebbian
learning rule for SST-to-E synapses observed in hippocampus. Figure adapted from (Udakis
et al., 2020). B. Symmetric Hebbian learning rule for PV-to-E synapses whereas asymmetric
Hebbian learning rule for SST-to-E synapses observed in the orbitofrontal cortex. Figure
adapted from (Lagzi et al., 2021).
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Computational implications of plasticity mechanisms

Based on experimental measurements of various plasticity mechanisms, theorists
have built phenomenological models to investigate the functional implications of
plasticity on neural computations (Abbott & Regehr, 2004; Abbott et al., 1997;
Clopath et al., 2010; Vogels et al., 2011).

Computational studies have shown that recurrent networks equipped with short-
term depression are able to carry out complex computations on time varying inputs
and generate temporally synchronous activity, resembling information processing
in the auditory cortex (Loebel et al., 2007; Loebel & Tsodyks, 2002). Inspired by the
significant short-term facilitation of excitatory synapses observed in the prefrontal
cortex (Wang et al., 2006), theoretical work has suggested that working memory
can be maintained via short-term synaptic facilitation (Mongillo et al., 2008).

Multiple modeling studies have investigated how different long-term plasticity
mechanisms interact with each other to form certain network structures like as-
semblies (Litwin-Kumar & Doiron, 2014; Miehl & Gjorgjieva, 2022; Zenke et al.,
2015) and chain-like structures (Maes et al., 2021, 2020). Specific network structures
enable networks to carry out particular computations. For instance, assemblies, a
group of strongly interconnected neurons, are thought to underlie the encoding
of memories (Buzsáki, 2010). Networks with chain-like structures can generate
sequences resembling hippocampal replay that is important for memory consolida-
tion (Carr et al., 2011). Importantly, in plastic networks, inhibitory plasticity plays
an important role in the establishment of E/I balance (Miehl & Gjorgjieva, 2022;
Sprekeler, 2017; Vogels et al., 2011).

Multiple theoretical studies have investigated plasticity mechanisms operat-
ing at a slow timescale. The classical model of metaplasticity is Bienen-
stock–Cooper–Munro (BCM) synaptic learning rule (Bienenstock et al., 1982).
The model has suggested that metaplasticity can serve as a homeostatic mechanism
to stabilize weight dynamics. Several computational studies have examined the
functional implications on synaptic scaling, and demonstrated that slow synaptic
scaling mechanisms may be important for memory stabilization (Tetzlaff et al.,
2013), and the allocation of multiple memory representations without interference
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(Auth et al., 2020). In addition, intrinsic excitability mechanisms can contribute to
the formation of neuronal ensembles (Alejandre-García et al., 2022).
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In this dissertation, I investigate how different plasticity mechanisms operating at
different timescales shape cortical computations. In particular, I introduce four dis-
tinct projects on

1. homeostatic regulation of cortical circuit dynamics (Wu et al., 2020),

2. the effect of short-term plasticity on inhibition stabilization and paradoxical
effects in recurrent neural networks (Wu & Gjorgjieva, 2023),

3. rapid sensory processing in recurrent neural networks with short-term plasticity
(Wu & Zenke, 2021),

4. the impact of inhibitory short-term plasticity on top-down modulation in
canonical cortical circuits (Waitzmann et al., 2023).

To highlight commonalities among these projects, I first introduce the mathemat-
ical frameworks applied throughout. Finally, I discuss several future research di-
rections related to this topic. Taken together, the work in my dissertation provides
mechanistic insight on how different plasticity mechanisms shape cortical compu-
tations by organizing network connectivity, and makes concrete experimentally
testable predictions.
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2 Methods and mathematical
framework

In computational neuroscience, models can be built with different levels of detail
to answer different kinds of research questions. For instance, single neuron models
with complex morphologies and multiple ion channels allow us to investigate how
single neurons integrate their inputs and the computational power of single neu-
rons (Beniaguev et al., 2021; Poirazi et al., 2003). Hodgkin–Huxley neuron models
enable us to study how different types of ion channels affect the firing properties
of single neurons (Hodgkin & Huxley, 1952; Izhikevich, 2007). In my PhD, to
investigate how different plasticity mechanisms shape neural dynamics and com-
putations, I mainly built two types of models: rate-based population models and
spiking neural network models. Despite ignoring biophysical details of single neu-
rons, rate-based population models allow us to study how network connectivity
modified by plasticity mechanisms affects the emergence of network behaviors in
a broad parameter range and how different parameters affect the emergent features
systematically. In contrast, spiking neural network models contain more realis-
tic spiking neurons and allow us to study functional consequences of spike-timing
dependent plasticity mechanisms and more direct comparisons with electrophysi-
ological data.
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2 Methods and mathematical framework

Rate-based models and short-term plasticity mechanisms

In rate-based population models, the dynamics of a network consisting of an exci-
tatory (E) and an inhibitory (I) population are given by (Wilson & Cowan, 1972):

𝜏𝐸
𝑑𝑟𝐸

𝑑𝑡
= −𝑟𝐸 +

[
𝐽𝐸𝐸𝑟𝐸 − 𝐽𝐸𝐼𝑟𝐼 + 𝑔𝐸

]𝛼𝐸

+
, (2.1)

𝜏𝐼
𝑑𝑟𝐼

𝑑𝑡
= −𝑟𝐼 +

[
𝐽𝐼𝐸𝑟𝐸 − 𝐽𝐼 𝐼𝑟𝐼 + 𝑔𝐼

]𝛼𝐼

+
(2.2)

where 𝑟𝐸 and 𝑟𝐼 are the firing rates of the excitatory and inhibitory population;
𝜏𝐸 and 𝜏𝐼 represent the corresponding time constants; 𝐽𝐴𝐵 denotes the connection
strength from population 𝐵 to population 𝐴, where 𝐴, 𝐵 ∈ {𝐸, 𝐼 }; 𝑔𝐸 and 𝑔𝐼 repre-
sent the external inputs to the respective populations; and 𝛼𝐸 and 𝛼𝐼 denote the ex-
ponents of the respective input-output functions. Note that 𝛼 determines neuronal
nonlinearities with 𝛼𝐸 = 𝛼𝐼 = 1 for threshold-linear networks and 𝛼𝐸 = 𝛼𝐼 > 1 for
supralinear networks.

Short-term plasticity

Modeling short-term plasticity was introduced by Tsodyks and Markram (Tsodyks
& Markram, 1997). Based on the Tsodyks and Markram model, the dynamics of
the network with short-term plasticity become as follows:

𝜏𝐸
𝑑𝑟𝐸

𝑑𝑡
= −𝑟𝐸 +

[
𝑝𝐸𝐸 𝐽𝐸𝐸𝑟𝐸 − 𝑝𝐸𝐼 𝐽𝐸𝐼𝑟𝐼 + 𝑔𝐸

]𝛼𝐸

+
, (2.3)

𝜏𝐼
𝑑𝑟𝐼

𝑑𝑡
= −𝑟𝐼 +

[
𝑝𝐼𝐸 𝐽𝐼𝐸𝑟𝐸 − 𝑝𝐼 𝐼 𝐽𝐼 𝐼𝑟𝐼 + 𝑔𝐼

]𝛼𝐼

+
(2.4)

where 𝑝𝐴𝐵 is the short-term plasticity variable from population 𝐵 to population 𝐴.

For short-term depression (STD), we replaced 𝑝𝐴𝐵 by 𝑥𝐴𝐵 and expressed the STD
dynamics as follows:

𝑑𝑥𝐴𝐵

𝑑𝑡
=

1 − 𝑥𝐴𝐵
𝜏𝑥

−𝑈𝑑𝑥𝐴𝐵𝑟𝐵, (2.5)

where 𝑥𝐴𝐵 represents a short-term depression variable that is constrained to the
interval (0,1] for the connection from population B to population A. Biophysically,
the short-term depression variable 𝑥 represents the fraction of vesicles available for
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release, 𝜏𝑥 is the time constant of STD, and𝑈𝑑 represents the depression factor that
controls the degree of depression induced by the presynaptic activity.

For short-term facilitation (STF), we replaced 𝑝𝐴𝐵 by 𝑢𝐴𝐵 and described the STF
dynamics as follows:

𝑑𝑢𝐴𝐵

𝑑𝑡
=

1 − 𝑢𝐴𝐵
𝜏𝑢

+𝑈𝑓 (𝑈𝑚𝑎𝑥 − 𝑢𝐴𝐵)𝑟𝐵, (2.6)

where𝑢𝐴𝐵 represents a short-term facilitation variable that is limited to the interval
[1,𝑈𝑚𝑎𝑥 ) for the connection from population B to population A. Biophysically, the
short-term facilitation variable𝑢 represents the ability to release neurotransmitters,
𝜏𝑢 is the time constant of STF, 𝑈𝑓 represents the facilitation factor that controls
the degree of facilitation induced by the presynaptic activity, and𝑈𝑚𝑎𝑥 denotes the
maximal facilitation value.

Spiking neural network models and plasticity
mechanisms

In spiking neural network models, single neurons are modeled as leaky integrate-
and-fire with membrane potential of neuron 𝑖,𝑈𝑖 , given by (Dayan & Abbott, 2005;
Gerstner et al., 2014):

𝜏𝑚
𝑑𝑈𝑖

𝑑𝑡
= (𝑈 rest −𝑈𝑖) + 𝑔ext

𝑖 (𝑡) (𝑈 exc −𝑈𝑖) + 𝑔inh
𝑖 (𝑡) (𝑈 inh −𝑈𝑖) (2.7)

Here, 𝜏𝑚 is the membrane time constant, 𝑈 rest is the resting potential, 𝑈 exc is the
excitatory reversal potential, 𝑈 inh is the inhibitory reversal potential, 𝑔ext

𝑖 and 𝑔inh
𝑖

are the excitatory and inhibitory conductance, respectively. The neuron elicits a
spike when its membrane potential reaches a spiking threshold which is typically
around -50mV. After a spike, the membrane potential is reset to 𝑈 rest, and the
neuron has a refractory period in which no spikes are permitted. Inhibitory neurons
also follow the same integrate-and-fire formalism, but with a shorter membrane
time constant.

In the model, excitatory synapses contain a fast AMPA component and a slow
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2 Methods and mathematical framework

NMDA component. Dynamics of excitatory conductances are given by:

𝜏 ampa𝑑𝑔
ampa
𝑖

𝑑𝑡
= −𝑔ampa

𝑖
+

∑︁
𝑗∈exc

𝐽𝑖 𝑗𝑆 𝑗 (𝑡) (2.8)

𝜏nmda𝑑𝑔
nmda
𝑖

𝑑𝑡
= −𝑔nmda

𝑖 + 𝑔ampa
𝑖

(2.9)

𝑔exc
𝑖 (𝑡) = 𝛽𝑔

ampa
𝑖
(𝑡) + (1 − 𝛽)𝑔nmda

𝑖 (𝑡) (2.10)

Here, 𝜏 ampa is the AMPA decay time constant, 𝜏nmda is the NMDA decay time
constant, and 𝐽𝑖 𝑗 is the synaptic strength from neuron 𝑗 to neuron 𝑖. 𝑆 𝑗 (𝑡) is the
spike train of neuron 𝑗 , which is defined as 𝑆 𝑗 (𝑡) =

∑
𝑘 𝛿 (𝑡 − 𝑡𝑘𝑗 ), where 𝛿 is the

Dirac delta function 𝑡𝑘𝑗 are the spikes times 𝑘 of neuron j. Finally, 𝛽 is a weighting
parameter.

Dynamics of inhibitory conductances are given by:

𝜏gaba𝑑𝑔
inh
𝑖

𝑑𝑡
= −𝑔inh

𝑖 +
∑︁
𝑗∈inh

𝐽𝑖 𝑗𝑆 𝑗 (𝑡) (2.11)

where 𝜏gaba is the GABA decay time constant.

Excitatory plasticity

Classical pairwise STDP of excitatory synapses onto excitatory neurons can be eas-
ily formulated mathematically. However, standard pair-based STDP models fail to
capture several frequency-dependent aspects of synaptic plasticity observed exper-
imentally. These aspects include no potentiation for pre-post pairing at low stimu-
lation frequency and increased potentiation with increasing stimulation frequency.
To address these problems, a STDP rule based on triplet of spikes was proposed
(Pfister & Gerstner, 2006). According to the triplet STDP rule, the dynamics of
synaptic strength from excitatory neuron 𝑗 to excitatory neuron 𝑖 follow

𝑑 𝐽𝑖 𝑗

𝑑𝑡
= −𝑧−𝑖 (𝑡)𝐴−𝑆 𝑗 (𝑡) + 𝑧+𝑗 (𝑡)𝐴+𝑧slow

𝑖 (𝑡 − 𝜖)𝑆𝑖 (𝑡) (2.12)

Here, 𝐴− and 𝐴+ are the amplitude of the weight change induced by a post-pre
pair or a post-pre-post triplet of spikes. 𝜖 is a small positive constant. The synaptic
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traces 𝑧+𝑛 (𝑡), 𝑧−𝑛 (𝑡) and 𝑧slow
𝑛 (𝑡) evolve according to

𝑑𝑧𝑚𝑛

𝑑𝑡
= −𝑧

𝑚
𝑛

𝜏𝑚
+ 𝑆𝑛 (𝑡),𝑚 ∈ {+,−, slow}, 𝑛 ∈ {𝑖, 𝑗} (2.13)

with different time constants 𝜏𝑚.

Inhibitory plasticity

The STDP of inhibitory synapses onto excitatory neurons, known as inhibitory
STDP (iSTDP), is formulated as follows (Vogels et al., 2011):

Δ𝑤𝑖 𝑗 = [ iSTDP(𝑥𝑖 − 2𝑟 0𝑖 𝜏
iSTDP)𝑆 𝑗 (𝑡) + [ iSTDP𝑥 𝑗𝑆𝑖 (𝑡) (2.14)

𝑑𝑥𝑛

𝑑𝑡
= − 𝑥𝑛

𝜏 iSTDP + 𝑆𝑛 (𝑡) (2.15)

where Δ𝑤𝑖 𝑗 is the change in strength of inhibitory synapses onto excitatory neu-
rons, 𝑥𝑖 and 𝑥 𝑗 are the synaptic traces of the postsynaptic excitatory and presynaptic
inhibitory neuron, 𝑟 0𝑖 is the target firing rate of excitatory neuron 𝑖, 𝜏 iSTDP is the
time constant of the synaptic trace, and [ iSTDP denotes the learning rate of iSTDP.

Heterosynaptic plasticity

To ensure that the sum of all incoming excitatory synaptic weights at each postsy-
naptic excitatory neuron is kept below a target (Fiete et al., 2010), heterosynaptic
plasticity is modelled as follows:

𝐽𝐸𝐸𝑖 𝑗 (𝑡) ← 𝐽𝐸𝐸𝑖 𝑗 (𝑡) −
(∑︁

𝑗

𝐽𝐸𝐸𝑖 𝑗 (𝑡) − 𝛾
∑︁
𝑗

𝐽𝐸𝐸𝑖 𝑗 (0)
)
/𝑁 𝐸

𝑖 (2.16)

where 𝑁 𝐸
𝑖 is the number of excitatory synaptic connections to excitatory neuron 𝑖.

And 𝛾 is a factor which makes the maximal 𝐽𝑖 𝑗 allowed by heterosynaptic plasticity
approximately the same as the hard upper bound of 𝐽𝐸𝐸 . Heterosynaptic plasticity
is implemented every 1 s, and only affects synaptic weights when the

∑
𝑗 𝐽

𝐸𝐸
𝑖 𝑗 (𝑡) is

larger than 𝛾
∑

𝑗 𝐽
𝐸𝐸
𝑖 𝑗 (0).
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2 Methods and mathematical framework

Metaplasticity

Previous studies have shown that the triplet STDP can be mapped to the BCM
learning rule and the LTP/LTD threshold can change by varying the LTD am-
plitude 𝐴− (Pfister & Gerstner, 2006). Based on these findings, metaplasticity is
implemented by having an adaptive LTD amplitude as follows:

𝐴−𝑖 ← 𝐴−𝑖
𝑥est
𝑖

𝜏est𝑟 0
𝑖

(2.17)

with
𝑑𝑥est

𝑖

𝑑𝑡
= −

𝑥est
𝑖

𝜏est + 𝑆𝑖 (𝑡) (2.18)

where 𝑥est
𝑖 is a firing rate estimator for excitatory neuron 𝑖, and 𝜏est is the time

constant of the firing rate estimator. If the firing rate of a neuron is close to its
target, 𝑟 0𝑖 , then 𝑥est

𝑖

𝜏est𝑟 0
𝑖

≈ 1. Metaplasticity is implemented every 30 s.

Synaptic scaling

The change in synapse strength from excitatory neuron 𝑗 to excitatory neuron 𝑖

governed by synaptic scaling is given by (van Rossum et al., 2000):

𝜏𝑠𝑠
𝑑 𝐽𝑖 𝑗

𝑑𝑡
= 𝐽𝑖 𝑗

(
1 −

𝑥est
𝑖

𝜏est𝑟 0
𝑖

)
(2.19)

where 𝜏𝑠𝑠 is the time constant of synaptic scaling.

Intrinsic plasticity

Intrinsic plasticity is implemented by dynamically adjusting the firing threshold of
a neuron according to its activity (Lazar et al., 2009). The firing threshold of neuron
𝑖 regulated by intrinsic plasticity is given by:

𝑑𝑈 thr
𝑖

𝑑𝑡
= [ ip

(
𝑥est
𝑖

𝜏est − 𝑟
0
𝑖

)
(2.20)

where[ ip is the learning rate of intrinsic plasticity. Initial firing threshold is -50mV.
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3 Results

During my PhD, using analytical and numerical methods, I investigated how short-
and long-term plasticity shape cortical computations. I have contributed to five
peer-reviewed journal articles and one preprint that is currently under review. I
am the first or co-first author of five of these articles (Waitzmann et al., 2023; Wu
& Gjorgjieva, 2023; Wu et al., 2020, 2022; Wu & Zenke, 2021), and I am a con-
tributing author of the other one (Pacheco et al., 2019). In the following, I provide
a summary for each article, indicate my contribution, and reproduce the full text
in the Appendix.
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3 Results

3.1 Homeostatic mechanisms regulate distinct aspects of
cortical circuit dynamics

In Wu et al. (2020), we analyze extensive datasets of electrophysiological recordings
over 9 days of the collective activity of multiple cells in the monocular region of
primary visual cortex in freely behaving rodents during normal development 2-3
weeks after eye opening, and after monocular deprivation. We examine higher-
order network properties during normal development and prolonged monocular
deprivation. We further investigate how the network exploits various homeostatic
mechanisms to restore normal dynamics following monocular deprivation by using
a plastic recurrent spiking network model. We find that:

1. Functional correlations are subject to homeostatic regulations.

2. Different homeostatic mechanisms can regulate distinct aspects of cortical dy-
namics.

3. Synaptic scaling promotes the recovery of correlations and network structure.

4. Intrinsic plasticity greatly contributes to the rebound of firing rates.

The work was completed with experimental collaborators Dr. Keith Hengen and
Prof. Gina Turrigiano, as well as my supervisor Prof. Dr. Julijana Gjorgjieva. My
contributions to the article include designing research, performing research, cre-
ating new reagents/analytic tools, analyzing data, and writing the paper. The full
article was published on Septmeber 11th, 2020 in PNAS and is reproduced in Ap-
pendix I. Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics under
Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0.
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3.2 Inhibition stabilization and paradoxical effects in recurrent neural networks with short-term plasticity

3.2 Inhibition stabilization and paradoxical effects in
recurrent neural networks with short-term plasticity

In Wu & Gjorgjieva (2023), we investigate how neuronal nonlinearity and short-
term plasticity affect inhibition stabilization, the paradoxical effect, and the rela-
tionship between the two. We find that:

1. Regardless of the neuronal nonlinearity, in networks with excitatory-to-
excitatory short-term depression, inhibition stabilization does not necessar-
ily imply the paradoxical effect, but the paradoxical effect implies inhibition
stabilization.

2. In networks with static connectivity or networks with other short-term plas-
ticity mechanisms instead of excitatory-to-excitatory short-term depression,
inhibition stabilization and the paradoxical effect imply each other.

3. When neuronal nonlinearities and excitatory-to-excitatory short-term
depression coexist, monotonically increasing excitatory activity can lead
to nonmonotonic transitions between noninhibition-stabilization and
inhibition-stabilization, as well as between nonparadoxically-responding
and paradoxically-responding regimes.

4. Our results of the relationship between inhibition stabilization and the para-
doxical effect can be generalized to more complex scenarios including net-
works with multiple interneuron subtypes and any monotonically increasing
neuronal nonlinearities.

The work was completed with my supervisor Prof. Dr. Julijana Gjorgjieva. My
contributions to the article include designing research, performing research, and
writing the paper. The full article was published on July 12th, 2023 in Physi-
cal Review Research and is reproduced in Appendix II. Inhibition stabilization and
paradoxical effects in recurrent neural networks with short-term plasticity under Creative
Commons Attribution 4.0 International License.

37



3 Results

3.3 Regulation of circuit organization and function
through inhibitory synaptic plasticity

In Wu et al. (2022), we review the recent literature on inhibitory plasticity. We:

1. provide an overview of the evolution of inhibition over development.

2. review literature on how inhibitory plasticity controls excitation at different
spatiotemporal scales.

3. review existing research related to how inhibition and inhibitory plasticity
affect excitatory plasticity.

4. review studies on the role of inhibitory plasticity in the formation of structured
networks and resulting computations.

5. review recent findings on interneuron-specific plasticity mechanisms and
their functional implications.

The work was completed together with my co-author Christoph Miehl and my su-
pervisor Prof. Dr. Julijana Gjorgjieva. My contributions to the article include con-
ceptualization, visualization, and writing the paper. The full article was published
on 28 October 2022 in Trends in Neurosciences and is reproduced in Appendix III.
Regulation of circuit organization and function through inhibitory synaptic plasticity under
Creative Commons Attribution 4.0 International License.
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3.4 Nonlinear transient amplification in recurrent neural networks with short-term plasticity

3.4 Nonlinear transient amplification in recurrent neural
networks with short-term plasticity

In Wu & Zenke (2021), we investigate the underlying mechanism of stimulus-
evoked transient neural dynamics in sensory systems, and examine the functional
benefits of co-tuned inhibition and transient onset responses. We find that:

1. Transient neural dynamics can be generated via a nonlinear transient ampli-
fication mechanism, in which neuronal ensembles can rapidly, nonlinearly,
and transiently amplify inputs by briefly switching from stable to unstable
dynamics before being re-stabilized through short-term plasticity.

2. Co-tuned inhibition broadens the parameter regime in which nonlinear tran-
sient amplification is possible while avoiding persistent activity.

3. Transient onset responses are advantageous for neural computations like pat-
tern completion and pattern separation.

The work was completed with Dr. Friedemann Zenke. My contributions to the
article include formal analysis, investigation, methodology, software, visualization,
writing – original draft, writing – review and editing. The full article was published
on December 13th, 2021 in eLife and is reproduced in Appendix IV. Nonlinear tran-
sient amplification in recurrent neural networks with short-term plasticity under Creative
Commons Attribution 4.0 International License.
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3 Results

3.5 Rapid and active stabilization of visual cortical firing
rates across light-dark transitions

In Pacheco et al. (2019), we investigate how light-dark transitions affect firing on
rapid timescales by analyzing datasets of electrophysiological recordings from neu-
rons in primary visual cortex of freely behaving rodents. We find that:

1. Expected light-dark transitions have only a modest effect on the mean firing
rates of neurons in primary visual cortex.

2. Functional correlations of neural activity are significantly stronger during the
light than in darkness.

3. Unexpected light-dark transitions lead to a significant increase in the firing
across the majority of neurons in primary visual cortex.

The work was completed with experimental collaborators Alejandro Torrado
Pacheco, Elizabeth I. Tilden, Sophie M. Grutzner, Brian J. Lane, Dr. Keith Hengen
and Prof. Gina Turrigiano, as well as my supervisor Prof. Dr. Julijana Gjorgjieva.
My contributions to the article include analyzing data and writing the paper. The
full article was published on Septmeber 11th, 2020 in PNAS and is reproduced in
Appendix V. Rapid and active stabilization of visual cortical firing rates across light–dark
transitions under the PNAS License.
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3.6 Top-down modulation in canonical cortical circuits
with inhibitory short-term plasticity

In Waitzmann et al. (2023), we study the emergence of nonlinear phenomena in
canonical cortical circuits consisting of multiple interneuron subtypes. We focuse
on a counterintuitive nonlinear phenomenon, in which locomotion-induced top-
down modulation via vasoactive intestinal peptide (VIP)-expressing interneurons
affects the response of somatostatin (SST)-expressing interneurons in opposite di-
rections depending on the sensory stimulation condition, is referred to as response
reversal. We find that:

1. Response reversal can be generated through experimentally identified in-
hibitory short-term plasticity.

2. While not directly impacting SST and VIP activity, the short-term depres-
sion between parvalbumin (PV)-expressing interneurons to excitatory neu-
rons plays a decisive role in generating response reversal.

3. Response reversal is tightly liked to interneuron-specific stabilization and the
paradoxical effect.

The work was completed together with my co-author Felix Waitzmann and my
supervisor Prof. Dr. Julijana Gjorgjieva. My contributions to the article include
conceptualization, visualization, and writing the paper. The full article is currently
under revision, is available on bioRxiv, and is reproduced in Appendix VI. Top-
down modulation in canonical cortical circuits with inhibitory short-term plasticity under
Creative Commons Attribution 4.0 International License.
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4 Discussion

Extensive discussions have been provided in discussion sections of the published
articles. In this section below, I will mainly discuss aspects that have not been men-
tioned previously and highlight some interesting future directions.

Cell-type-specific synaptic scaling mechanisms in associative learning

In Wu et al., 2020, I investigated the role of synaptic scaling in regulating network
dynamics in the context of sensory perturbations. Recent experimental studies have
examined how excitatory synaptic scaling contributes to associative learning (Wu et
al., 2021). By applying a conditioned taste aversion learning paradigm, the authors
found that pairing a conditioned tastant with an unconditioned aversive stimulus
leads to an overgeneralization of this aversion to other novel tastants at 4 hours af-
ter the pairing (Wu et al., 2021). At 24 hours, this overgeneralization disappears
and the specificity of associative memories emerges (Wu et al., 2021). Blocking
excitatory synaptic scaling prolongs the conditioned taste aversion-induced over-
generalization up to more than 24 hours, suggesting an important role of excitatory
synaptic scaling in associative learning (Wu et al., 2021). Interestingly, another re-
cent study has revealed that inhibitory synapses onto excitatory neurons exhibit
different scaling rules in a target-dependent manner (Prestigio et al., 2021). More
specifically, hyperactivity of excitatory neurons leads to upscaling of perisomatic
inhibition but downscaling of dendritic inhibition (Prestigio et al., 2021). How dif-
ferent synaptic scaling mechanisms interact with Hebbian plasticity and achieve
memory specificity in associative learning is unclear. Together with my colleague,
Ayça Kepçe, we are currently investigating this problem using a computational
model. As PV neurons preferentially target perisomatic regions of excitatory neu-
rons whereas SST neurons mainly target dendritic regions, we postulate that the
target-dependent inhibitory synaptic scaling can be attributed to cell-type-specific
synaptic scaling mechanisms. Namely, hyperactivity of excitatory neurons results
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in upscaling of PV synapses but downscaling of SST synapses. Based on this as-
sumption, we built a rate-based model consisting of two subnetworks. Each subnet-
work contains one E, one PV, and one SST population. To mimic the experimental
paradigm, the entire simulation in the computational model is separated into one
conditioning period and one testing period. During the conditioning period, the
E and PV population in the subnetwork 1 receive additional inputs corresponding
to the stimulation of the conditioned stimulus in the experiments, and excitatory
to excitatory weights evolve according to a three-factor Hebbian plasticity rule, in
which the third factor serves as a control signal for Hebbian learning resembling
the presence of the unconditioned aversive stimulus. While Hebbian learning is
controlled by the third factor and thus only active during the conditioning period,
synaptic scaling is active both during the conditioning period and the testing pe-
riod. We tested overgeneralization by stimulating E and PV in the subnetwork 2 at
three different time points (early, intermediate, and late) during the testing period,
resembling 4h, 24h, and 48h after pairing in the experiments. We demonstrated
that after conditioning, long-term potentiation induced by Hebbian plasticity re-
sults in overgeneralization to novel stimuli, in other words, elevated activity of the
subnetwork 2 at the early stage of the testing period. The overgeneralization is
subsequently eliminated by synaptic scaling mechanisms at the intermediate stage
of the testing period resembling the disappearance of overgeneralization at 24h in
the experiments. Blocking all synaptic scaling mechanisms leads to the persistence
of overgeneralization and prevents the establishment of memory specificity over
the entire testing period, suggesting that synaptic scaling is necessary for achieving
memory specificity. Blocking excitatory synaptic scaling alone leads to a prolonged
overgeneralization but memory specificity emerges at the late stage of the testing
period, suggesting that inhibitory synaptic scaling mechanisms can rescue memory
specificity in the absence of excitatory synaptic scaling. We further found that E-to-
E scaling and PV-to-E scaling synergistically promote memory specificity, whereas
SST-to-E scaling has an antagonistic effect. Furthermore, as other brain regions
can exert top-down influence on SST via VIP that inhibits SST, we investigated
the top-down modulation effect on memory specificity by changing the inputs to
SST. We found that top-down inputs can greatly regulate the system towards either
overgeneralization or memory specificity, suggesting a powerful control of inter-
nal states on associative memories. In summary, our work makes predictions on
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the role of individual scaling mechanisms as well as their joint effects in associative
learning.

Computational implication of response reversal

In Waitzmann et al., 2023, we showed that experimentally identified inhibitory
short-term plasticity mechanisms can generate response reversal of SST. What
does response reversal imply computationally? We unveiled the correspondence
between the transition from a either PV or SST stabilized regime to a SST only
stabilized regime and the occurrence of response reversal. And we found that in the
network simulations, the excitatory population receives more inhibition from SST
than PV once SST response is reversed. In the predictive processing framework,
neurons integrate sensory inputs from the external world with internally generated
predictive signals. Layer 2/3 in the cortex is recognized as a key site where predic-
tive processing occurs (Keller & Mrsic-Flogel, 2018). In sensory cortices, excitatory
neurons in layer 2/3 receive bottom-up sensory inputs at their basal dendrites from
excitatory neurons in layer 4 (Petreanu et al., 2009). Excitatory neurons in layer 2/3
receive top-down inputs at their distal dendrites from higher cortical areas (Zhang
et al., 2014). As PV neurons preferentially target perisomatic regions of excitatory
neurons, whereas SST neurons predominantly target the distal dendritic regions
of pyramidal neurons (Tremblay et al., 2016), different sources of inhibition can
gate different information flow. We therefore postulate that in darkness, weaker
inhibition provided by SST than PV can permit top-down influence, thereby al-
lowing the system to rely more heavily on the internal model in environments with
high uncertainty, such as in darkness. In contrast, in the presence of visual stimu-
lus, weaker inhibition provided by PV than SST favors bottom-up information over
top-down predictive information. This bias towards bottom-up information allows
the system to rely more effectively on the incoming sensory inputs, particularly in
environments with low uncertainty. Therefore, the shift in interneuron-specific
dominance occurring concurrently with the response reversal of SST could regu-
late information flow and might play an important role in predictive processing.

Distinguish neuronal nonlinearities and synaptic nonlinearities

Previous computational studies have suggested that response reversal can be gen-
erated by supralinear-like neuronal nonlinearities (Garcia Del Molino et al., 2017).
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In Waitzmann et al., 2023, we demonstrated that synaptic nonlinearities could un-
derlie the generation of response reversal. How can we experimentally distinguish
these two hypotheses given the fact that both of them exhibit the same phenom-
ena? One possibility is that they might have different phase transitions in terms
of interneuron-specific stabilization. In Garcia Del Molino et al., 2017, the au-
thors stated that neuronal nonlinearity-dependent response reversal is associated
with a network transition from a non-inhibition stabilized regime to an inhibi-
tion stabilized regime. Despite not directly shown in Garcia Del Molino et al.,
2017, it is straightforward to prove that in the presence of neuronal nonlineari-
ties, in the inhibition stabilized regime in which top-down modulation via VIP
increases SST activity, the network is stabilized by SST only. In contrast, for
synaptic nonlinearties-dependent response reversal, network can transition from
a PV-only stabilized regime to a either PV or SST-stabilized regime to a SST-
only stabilized regime. As a result, in the regime in which top-down modulation
via VIP decreases SST activity, networks with synaptic nonlinearities might ex-
hibit richer phase transitions than networks with neuronal nonlinearities in terms
of interneuron-specific stabilization. These transitions can be experimentally tested
by examining paradoxical effects using optogenetic tools. More specifically, in the
PV-only stabilized regime, the network should display paradoxical response of PV.
In the either PV or SST stabilized regime, the network would exhibit neither para-
doxical response of PV nor of SST. In the SST-only stabilized regime, the net-
work would show paradoxical response of SST. Therefore, the phase transitions in
interneuron-specific stabilization and paradoxical effects could potentially help to
distinguish these two hypotheses.

Interplay between neuronal nonlinearities and synaptic nonlinearities

In Wu et al., 2020, we have shown how interesting computations can emerge due
to the presence of both neuronal nonlinearities and synaptic nonlinearities in net-
works with excitatory and inhibitory populations. In Waitzmann et al., 2023, we
have demonstrated how synaptic nonlinearities can generate response reversal in
networks with multiple interneuron subtypes in the absence of neuronal nonlinear-
ities. Various computations in the brain involve multiple interneuron subtypes. At
the timescale of perception, synaptic nonlinearities can greatly affect neural activity.
It is therefore interesting for future research to investigate how neuronal nonlin-
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earities and synaptic nonlinearities interact in networks with multiple interneuron
subtypes, how the interplay between them co-shapes neural dynamics and affects
computations involving diverse types of interneurons. In particular, do neuronal
and synaptic nonlinearities work in an antagonistic or cooperative manner? How
does the working mode of these nonlinearities depend on the network operating
regimes? Which computations require the co-existence of both nonlinearities?

Learning in networks with multiple interneuron subtypes

To be able to perform different computations in the brain, the connectivity of neu-
ral circuits needs to be set up properly. Activity-dependent plasticity mechanisms
play a crucial role in establishing appropriate network connectivity. With recent
advances in experimental techniques, studies have started to reveal plasticity rules
at different types of inhibitory synapses onto excitatory neurons. Of particular in-
terest for future studies is characterizing and formulating plasticity rules between
different types of synapses to provide a comprehensive plasticitome, investigating
how these plasticity mechanisms interact with each other in networks with multiple
interneuron subtypes, and how they shape connectivity structures and computa-
tions. It is worth noting that inhibitory plasticity rules of the same types of synapses
identified molecularly on excitatory neurons can even differ across brain regions.
In the interconnected brain network, changes in the connectivity of one brain re-
gion can alter local neural activity and thus affect other regions. To ensure proper
neural activity in downstream brain areas that control behaviors, different brain re-
gions have to coordinate with each other. Future studies are required to understand
how neural circuits achieve this coordination in the presence of heterogeneity of
plasticity rules.

Alternative approaches for studying learning in biological systems

Major classical computational studies use bottom-up approaches by incorporating
phenomenological yet biologically plausible learning rules, and examine the func-
tional implications of these learning rules. These learning rules are typically char-
acterized in vitro, which can be very different from in vivo. In realistic settings,
when animals are learning new tasks, multiple factors like attention and behav-
ioral states are involved. These factors are typically associated with neuromodu-
lators, which can dramatically change the learning rules. A few studies attempted
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to infer learning rules from distributions of firing rates in vivo but only assuming
that excitatory-to-excitatory connections are plastic (Lim et al., 2015). In contrast,
learning can involve complex cell-type-specific reorganization of inhibition (Poort
et al., 2022). To understand how biological circuits evolve during learning, it would
be interesting to infer learning rules using in vivo data in networks with multiple
interneuron subtypes. Furthermore, to narrow down possible learning rules, other
constraints like capturing temporal dynamics of single neurons could be imposed.

In addition, recent works start to apply top-down approaches to study synaptic
plasticity (Confavreux et al., 2020; Jordan et al., 2021). In the top-down approaches,
synaptic plasticity rules are identified by minimizing a loss function that relates
to the desired functionality of the network. How to define those functional loss
functions and how to efficiently optimize them are active research topics. As a
complement to bottom-up approaches, top-down approaches could be useful to
explain how biological systems can achieve robust function in the presence of noisy
plasticity rules, and how and why different biological systems use different plasticity
rules to implement the same function.

Final remarks

By combining analytical and numerical methods, my PhD work provides insight
into how different plasticity mechanisms operating over different time scales af-
fect neural dynamics and computations. With the advances in neurotechnologies,
we are now able to record many different types of neurons simultaneously for a
long time while animals learn new tasks. All of these bring new challenges and
opportunities for developing new theories and synthesizing data and knowledge to
understand plasticity and neural computations.
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Homeostasis is indispensable to counteract the destabiliz-
ing effects of Hebbian plasticity. Although it is commonly
assumed that homeostasis modulates synaptic strength, mem-
brane excitability, and firing rates, its role at the neural circuit
and network level is unknown. Here, we identify changes in
higher-order network properties of freely behaving rodents dur-
ing prolonged visual deprivation. Strikingly, our data reveal that
functional pairwise correlations and their structure are subject to
homeostatic regulation. Using a computational model, we demon-
strate that the interplay of different plasticity and homeostatic
mechanisms can capture the initial drop and delayed recovery of
firing rates and correlations observed experimentally. Moreover,
our model indicates that synaptic scaling is crucial for the recov-
ery of correlations and network structure, while intrinsic plasticity
is essential for the rebound of firing rates, suggesting that synap-
tic scaling and intrinsic plasticity can serve distinct functions in
homeostatically regulating network dynamics.

homeostasis | cortical circuits | functional correlation | synaptic scaling |
intrinsic plasticity

Neural circuits are faced with a fundamental problem: how
to allow experience to alter and refine network connectivity

during learning and experience-dependent plasticity, while still
maintaining stability of function. Generating a neural system that
is both stable and flexible is a nontrivial challenge and requires a
prolonged period of development when multiple mechanisms at
the level of single neurons and networks of neurons interact. Two
powerful and fundamentally different forms of plasticity involved
in this process are Hebbian mechanisms, which alter synap-
tic connectivity in a synapse-specific manner, and homeostatic
mechanisms that maintain stable function by globally adjusting
overall synaptic weights and neuronal excitability.

The development and refinement of visual response properties
in the primary visual cortex (V1) involves classic synapse-specific
mechanisms implementing the bidirectional form of Hebbian
plasticity, such as long-term potentiation (LTP) and long-term
depression (LTD), considered to be the cellular substrate for
learning and memory (1). Associative Hebbian plasticity, how-
ever, drives positive feedback processes that lead to unstable
network dynamics, and some form of homeostasis is needed to
compensate for this inherent instability (2, 3). A large body of
evidence shows that various homeostatic plasticity mechanisms,
including synaptic scaling and intrinsic plasticity (4, 5), operate in
the brain to maintain stability despite various internal and exter-
nal perturbations. More specifically, homeostatic plasticity can
elevate neural activity in response to sensory deprivation (6, 7)
and suppress activity under conditions of overexcitation (8, 9).

Despite great efforts to describe homeostatic mechanisms at
the single cell level, how network properties are homeostatically
regulated is largely unknown. While Hebbian and homeostatic
mechanisms operate at different timescales and can be induced
by distinct cues (10–13), how they interact within complex, highly
recurrent microcircuits, as those found in the cortex, to refine
and maintain circuit function has remained elusive. A critical

challenge has been the lack of detailed measurements of individ-
ual synaptic strengths and their potential impact on large-scale
network dynamics, especially in a highly recurrent network like
the cortex.

Here, we investigate two main questions. First, which aspects
of network function are under homeostatic control? Second, why
are there so many homeostatic mechanisms, and do they serve
redundant or unique functions? To address these questions, we
combine analysis of in vivo electrophysiological data during sen-
sory deprivation in the rodent visual cortex and computational
modeling of cortical synaptic plasticity and network dynamics.
First, we analyzed the collective activity of multiple neurons in
the monocular region of the primary visual cortex (V1m) dur-
ing a classic monocular deprivation (MD) paradigm (lid suture)
in freely behaving rats over 9 d during the critical period (14).
Earlier work demonstrated that MD induces an initial drop in
firing followed by the rates’ homeostatic recovery despite long-
lasting deprivation (14). Here, we reanalyzed these datasets to
characterize the temporal evolution of higher-order network
properties over the same 9-d period. Individual pairwise correla-
tions, including correlation structure, weakened during brief MD
but recovered during prolonged MD. Second, to understand how
the cortical network exploits diverse homeostatic mechanisms to
return firing rates and correlations to baseline (BL) after pro-
longed MD, we took advantage of a plastic spiking recurrent
network model equipped with known plasticity and homeostatic
mechanisms. Our work suggests that synaptic scaling is crucial

Significance

Despite decades of intense studies on homeostasis, network
properties undergoing homeostatic regulation remain elusive.
Furthermore, whether diverse forms of homeostatic plastic-
ity are simply redundant or serve distinct functions is unclear.
Here, our data show that functional correlations are subject
to homeostatic regulation, both in terms of average amplitude
and their structure. A computational model demonstrates that
synaptic scaling is essential for the restoration of correla-
tions and network structure, whereas intrinsic plasticity is
crucial for the recovery of firing rates after perturbations, sug-
gesting that synaptic scaling and intrinsic plasticity distinctly
contribute to homeostatic regulation.
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Fig. 1. MD induces an initial drop in correlations followed by their homeostatic recovery. (A) The average firing rates of 80 neurons from 5 control
hemispheres (Top) and 104 neurons from 5 deprived hemispheres (Bottom) normalized to the firing rates at P26 in the light (horizontal dashed line). (B)
The average pairwise correlations of 970 pairs from 5 control hemispheres (Top) and 2,455 pairs from 5 deprived hemispheres (Bottom) normalized to
the correlations at P26 in the light (horizontal dashed line). (C) Correlation comparisons between BL and early MD (Left), between early MD and late MD
(Middle), and between BL and late MD (Right) at the single cell-pair level of one control hemisphere. Different colors represent the correlations between
different neuron types. Dashed lines are fitted regression lines crossing the origin. Upper left histograms indicate the distributions of correlation differences.
***P < 0.001 (Wilcoxon signed-rank test). (D) Same as C but for one deprived hemisphere. Here, for two hemispheres, we used MD3, and for the other
three hemispheres, we used MD2, as early MD because different animals showed the biggest drop in correlations at different times. ***P < 0.001 (Wilcoxon
signed-rank test). (E) Slopes of fitted regression lines for the correlation comparisons as in C and D for five control and five deprived hemispheres. (F) Change
in the average normalized correlations between MD3 and MD5. Each data point denotes one hemisphere. Hemispheres from the same animals are marked
with square or triangle symbols and connected by a dashed line. Data are shown as means ± SEM.

for the recovery of correlations and network structure, whereas
intrinsic plasticity is essential for the rebound of firing rates.
These results indicate that different homeostatic mechanisms act
in the brain to independently regulate distinct network features.

Results
Pairwise Correlations during the Critical Period and in Response to
MD. We first confirmed previous analysis of individual neurons
recorded in vivo in the primary visual cortex during the criti-
cal period of plasticity (postnatal day [P]24 to P32). In these
experiments, MD was performed after 3 d of BL activity and
continued for the rest of the recordings. While firing rates
of individual neurons remained relatively stable during normal
development (Fig. 1A, Top), brief 2-d MD caused the firing
rates to decrease to 40% of their BL values (Fig. 1A, Bottom)
(6, 14). However, despite prolonged MD, over the next 3 to
4 d, firing rates gradually recovered to BL after an initial over-

shoot (Fig. 1A, Bottom) (6, 14). These effects were not only
observed at the population level but also at the level of indi-
vidual neurons (14). Here, we investigated higher-order network
properties during normal development and following prolonged
MD by calculating the next statistical moment beyond the firing
rates, namely the pairwise spiking correlations between different
neuron types (Methods). Specifically, we quantified the tempo-
ral evolution of the correlation coefficient of individual neuron
pairs and of the average correlations across all pairs both during
normal development and after perturbing visual input through
MD. In control hemispheres, correlations, unlike firing rates,
increased slightly as a function of age (n = 5 animals; Fig. 1B,
Top). By contrast, in deprived hemispheres, correlations initially
dropped over the first 2 d and then gradually rebounded to
predeprivation levels (n = 5 animals; Fig. 1B, Bottom), display-
ing a similar pattern as the firing rates (Fig. 1A). As previously
reported, we observed light–dark oscillations in the correlation
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amplitudes, with higher correlations in the light and lower
correlations in the dark (15).

To assess the degree to which correlations of individual neuron
pairs changed beyond the population level, we evaluated single
cell-pair correlations on different days. As in the earlier analy-
sis, neurons were separated into putative parvalbumin-positive
(PV+) fast-spiking units (pFS) or regular-spiking units (RSUs)
based on waveform and spiking characteristics (6, 14). Specif-
ically, we focused on three different 12-h periods recorded in
the light: 1) BL corresponding to P26; 2) a period that we called
“early MD” when the largest drop of firing rates and correlations
occurred, typically 2 or 3 d after BL (i.e., P28 or P29); and 3) a
period that we called “late MD” corresponding to the time when
the firing rates and correlations nearly recovered to BL (i.e.,
P31). As observed already for the average correlations, when
combining all neuron pairs and animals, single cell-pair corre-
lations increased during normal development covering the 6-d
period during which recordings were performed. The increase
between BL and early MD was small (n = 435 pairs; Fig. 1C, Left)
(r =0.97; P < 10−21 [Wilcoxon signed-rank test]). Correlations
at late MD were significantly greater than at early MD (n = 253
pairs; Fig. 1C, Middle) (r =0.93; P < 10−28 [Wilcoxon signed-
rank test]). The developmental increase in correlations during
the critical period became most obvious when we compared
BL versus late MD (n = 253 pairs; Fig. 1C, Right) (r =0.92;
P < 10−37 [Wilcoxon signed-rank test]). We did not observe any
obvious differences in correlations among different cell types
in that they all showed similar patterns of temporal evolution.
Moreover, almost all neuronal pairs in a control hemisphere
demonstrated an increase in correlation (Fig. 1C, Right).

Conversely, in deprived hemispheres, correlations of the
majority of individual cell pairs, independent of their type,
underwent a significant drop during early MD (n = 190 pairs;
Fig. 1D, Left) (r =0.90; P < 10−24 [Wilcoxon signed-rank
test]), followed by an increase during late MD (n = 231 pairs;
Fig. 1D, Middle) (r =0.87; P < 10−27 [Wilcoxon signed-rank
test]). The correlations during late MD recovered to a higher
level than BL (n = 190 pairs; Fig. 1D, Right) (r =0.78; P <

10−4 [Wilcoxon signed-rank test]). We summarized the gradual
increase of correlations in control hemispheres and the drop fol-
lowed by recovery in deprived hemispheres by the slopes of the
fitted regression lines of the individual pair data for each animal
(Fig. 1E). Remarkably, despite a degree of variability across ani-
mals, the drop and recovery of correlations induced by MD were
ubiquitous (SI Appendix, Fig. S1).

There are several possible mechanisms for the recovery of cor-
relations during late MD in deprived hemispheres. First, it is
possible that the correlations in the cortex simply follow the firing
rates (16), which are homeostatically regulated. However, this
scenario assumes a feedforward framework of signal transmis-
sion in which input correlations are fixed. In our experiments,
input correlations under conditions of normal vision consist
of a combination of signal and noise correlations. Closure of
the eye during MD destroys signal correlations, thus decreas-
ing overall input correlations, even though thalamic firing rates
do not change during MD (17). Therefore, the only source of
input correlations during prolonged MD is noise correlations.
Under normal vision, cortical correlations in the dark (driven
by noise input correlations) are approximately two-thirds of the
correlations in the light (driven by intact signal input correla-
tions) (15) (Fig. 1B). Combining these two results supports the
conclusion that the homeostatic recovery of firing rates cannot
explain the full recovery of cortical correlations and that network
mechanisms are likely involved.

A second possibility suggests that the increase of correlations
in deprived hemispheres could arise from the same underlying,
possibly developmental, mechanism as in control hemispheres.

To investigate this, we compared the increase in the average
correlations between early MD, when the largest drop in the
correlations occurs, and late MD, when the correlations have
mostly recovered. We found that the increase of correlations
in deprived hemispheres was consistently higher than in con-
trol hemispheres (Fig. 1F). This suggests that the increase of
correlations in deprived hemispheres does not only have a devel-
opmental, age-dependent component but also a homeostatic
recovery component in response to prolonged MD. We further
found that the correlation changes between two adjacent 12-h
light periods, as quantified by the slopes of the fitted regression
lines, were different in the deprived from the control hemisphere
in the same animals (SI Appendix, Fig. S2). This indicates that the
increase in correlations between P29 and P31, the period cor-
responding to late MD, follows different temporal dynamics in
control and deprived hemispheres.

Taken together, our results demonstrate an increase of cor-
relations in deprived hemispheres during prolonged MD that is
larger than the developmental increase of correlations in con-
trol hemispheres during normal development. Excluding other
mechanisms such as coregulation with firing rates and age depen-
dence, we propose that the recovery of correlations in deprived
hemispheres during prolonged MD is due to homeostatic mech-
anisms, which are well known to operate in response to such
perturbations (4, 5).

Network Structure after MD. While correlations at the single cell-
pair level recovered during late MD, the difference between
correlations at late MD and BL (Fig. 1D, Right) raised the
possibility that the recovered network might have a different
structure after recovery. To examine the evolution of network
structure during normal development over the critical period
and during prolonged MD, we examined the correlation matri-
ces on different days. An example experiment shows that in
the control hemisphere, the structure of the correlation matrix
remained consistent over time (n = 11 neurons; Fig. 2A),
whereas in the deprived hemisphere, the correlation structure
initially weakened and recovered to a similar structure as BL
(n = 14 neurons; Fig. 2B). MD induced heterogeneous changes
in correlation structure across animals, despite an overall ini-
tial decrease and subsequent recovery (SI Appendix, Fig. S3). To
quantify the similarity between the structure of correlation matri-
ces at distinct time points, we calculated the L1 distance between
correlations (Methods), which measures the absolute difference
between them. Combining multiple animals revealed that in both
control and deprived hemispheres, the correlation matrix at BL
is more similar to the correlation matrix at early MD relative to
randomly shuffling the latter for control (n = 609 pairs; Fig. 2C,
Left) (P< 10−58 [Wilcoxon signed-rank test]) and deprived hemi-
spheres (n = 505 pairs; Fig. 2D, Left) (P < 10−33 [Wilcoxon
signed-rank test]). Additionally, the correlation structures at BL
and late MD are more similar than chance level for control
(n = 609 pairs; Fig. 2C, Right) (P < 10−28 [Wilcoxon signed-rank
test]) and deprived hemispheres (n = 505 pairs; Fig. 2D, Right)
(P < 10−30 [Wilcoxon signed-rank test]). These results suggest
that despite a decrease in the correlation amplitude during early
MD, the correlation structure is maintained throughout MD;
hence, the network does not reorganize as correlations recover
during late MD. In line with this finding, we found that the dis-
tance between BL and early MD in deprived hemispheres was
not significantly different from that between BL and late MD
(n = 505 pairs; Fig. 2D) (P = 0.771 [Wilcoxon signed-rank test]).
However, for control hemispheres, the distance between BL and
late MD was significantly higher than that between BL and early
MD (n = 609 pairs; Fig. 2C) (P < 10−46 [Wilcoxon signed-rank
test]), due to the large increase in correlation amplitude during
development (Fig. 1C). Interestingly, the correlation matrices
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Fig. 2. Structure of correlation matrices is maintained after recovery. (A) Example correlation matrix of 11 neurons from 1 control hemisphere at 3 different
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are composed of several assemblies—groups of neurons exhibit-
ing strong pairwise correlations (Fig. 2 A and B)—reminiscent
of the clustered network structure reported in previous studies
(18–21).

In conclusion, our analysis of V1 cortical activity recorded in
vivo demonstrates that the pairwise correlations, in amplitude
and structure, of these networks are homeostatically regulated
following prolonged perturbation of normal sensory experience.

Formation of Structured Connectivity Assemblies during Training in
a Recurrent Network Model. We next asked what mechanisms
underlie the observed neuronal- and network-level changes dur-
ing normal development and following a perturbation like MD.
To understand how neural circuits exploit various synaptic plas-
ticity and homeostatic mechanisms to first decrease and then
recover both firing rates and correlations during MD, we built
a plastic recurrent network model consisting of randomly con-
nected excitatory and inhibitory spiking neurons (Methods).
Model neurons received thalamic inputs, with thalamocortical
synaptic efficacy onto inhibitory neurons set higher than onto
excitatory neurons, consistent with previous experimental stud-
ies (22–24). Neuronal and network parameters were chosen to
generate in vivo-like firing rates, with excitatory neurons firing at
5 Hz and inhibitory neurons firing at 13 Hz (6).

To generate the experimentally observed clustered correla-
tion structure (Fig. 2 A and B), we included several exper-
imentally characterized plasticity mechanisms (25) (Methods).
We first tasked the network with the imprinting of connec-
tivity assemblies starting from an initially random connectivity
(Fig. 3A, Left). In contrast to previous models that used ran-
dom, uncorrelated Poisson inputs (25) and in line with our
observation that the networks show stronger pairwise correla-
tions in the light than in the dark (15), we postulated that input
correlations—as would be generated during natural vision—
matter for the generation of clustered connections. Therefore,
we trained the recurrent network by stimulating excitatory neu-
rons with thalamocortical Poisson spiking inputs that had identi-
cal firing rates but differed in their correlation structures. For
the training, excitatory neurons were randomly grouped into
four identical assemblies, thereby simplifying network struc-
ture despite known heterogeneities in the data (SI Appendix,
Fig. S3).

Before training with correlated inputs, the initial synaptic con-
nections in the entire network were weak and identical between
any pair of neurons of the same type (Fig. 3A, Left), result-
ing in asynchronous irregular network activity (Fig. 3A, Middle)
and low correlations without clustered structure (Fig. 3A, Right).
During training, excitatory neurons within a targeted assembly
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received correlated inputs (Methods), which strengthened con-
nectivity between them through Hebbian plasticity. After train-
ing, the excitatory subnetwork became structured with stronger
synaptic connections between excitatory neurons within assem-
blies, while inhibitory neurons remained unstructured whereby
inhibition is global and nonspecifically connects to all excita-
tory neurons (Fig. 3B, Left). As a result of this structure, the
network no longer exhibited asynchronous irregular activity but
rather blocks of activity in the excitatory neurons defined as
occasional periods of high firing rate (Fig. 3B, Middle). The
structured connectivity and block activity selectively generated
high correlations between excitatory neurons within assemblies
(Fig. 3B, Right).

A Model with Persistent Hebbian LTD and Homeostatic Plasticity Can-
not Recover Correlations after MD. Using the structured model
network as a baseline following normal cortical development
after eye opening, we next wanted to investigate how this net-
work responds to a sensory perturbation resembling MD. To
achieve this, we needed to know how the inputs to the network
are modified during MD. Previous experimental studies have
reported that MD induces no change in the average firing rates
of LGN, the visual area of the thalamus (17). Therefore, to sim-
ulate MD in our model network, we kept the firing rates of LGN
inputs identical to that at BL but assumed that eye closure during
MD considerably diminished input correlations. In the model,
the excitatory neurons received uncorrelated Poisson inputs to
denote the start of MD (Fig. 4A).

In addition to these changes in input correlations, recent
experiments have revealed that brief MD (2 d) induces LTD at
thalamocortical synapses onto excitatory and inhibitory neurons,
with thalamocortical synapses onto inhibitory neurons depress-
ing more than synapses onto excitatory neurons (24). The process
of LTD is not instantaneous, so we assumed that synaptic con-

nections from the thalamus to excitatory and inhibitory neurons
undergo a linear decrease during the first 2 d of MD. To match
experimental findings, the decrease in thalamocortical connec-
tions onto inhibitory neurons was larger (Fig. 4A and Methods).
It is currently unknown when during MD this thalamocorti-
cal depression saturates, but since deprived-eye responsiveness
reaches its minimum 2 to 3 d after the onset of MD (26),
we assumed that the feedforward connections did not further
decrease after this point, while keeping the inputs uncorrelated
for the entire MD (Fig. 4A).

How does the recurrent network respond to these changes in
input correlation structure and depression of feedforward con-
nectivity strength that occur following MD? Although there are
potentially multiple ways to achieve network stability and reg-
ulate network function, there are two fundamentally different
mechanisms that have been well characterized experimentally:
homeostatic adjustment of synaptic strengths and of intrinsic
excitability (3, 27, 28). Excitatory neurons can regulate their
activity by scaling incoming synaptic strengths in response to
perturbations—a process known as synaptic scaling (4). This
scaling is bidirectional in that it can increase and decrease
synaptic strengths; it is global and operates in a multiplicative
manner. In addition to synaptic scaling, neurons can alter the
number of different ion channels to adjust intrinsic excitability,
and consequently modify their firing thresholds, in response to
perturbations (5, 13, 29).

Based on these experimental findings, in addition to Hebbian
plasticity during training, we modeled these two distinct home-
ostatic mechanisms following MD: 1) synaptic scaling, which
acts only on excitatory synapses (4, 6); and 2) intrinsic plastic-
ity, which modifies the intrinsic excitability of both excitatory
and inhibitory neurons (29, 30) (Methods). In the presence of
persistent thalamocortical LTD, as during training, and both
homeostatic mechanisms, the average firing rates of excitatory
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and inhibitory neurons in the model network first decreased to
40% of BL, because slow homeostatic mechanisms could not
overcome the feedforward synaptic depression and input decor-
relation to recover firing rates. At the time that feedforward LTD
saturated, firing rates started to increase due to homeostatic plas-
ticity, resembling the recovery to BL observed experimentally
during late MD (Fig. 4B; compare with Fig. 1A, Bottom).

Next, we investigated the evolution of higher-order aspects of
network dynamics. Similar to the analysis of our data, we focused
on two key time points after MD onset in the model: early
MD, corresponding to the largest drop of firing rates (Fig. 4B,
orange); and late MD, corresponding to the time when the fir-
ing rates recovered close to BL (Fig. 4B, yellow). The network
showed irregular spiking dynamics with different firing rates
during these two periods (Fig. 4 C and D, Left). The corre-
lations between excitatory neurons first decreased during the
period modeling early MD, as observed experimentally (Fig. 4C,
Right; compare with Fig. 2B, Middle), but did not recover during
the period corresponding to late MD (Fig. 4D, Right; compare
with Fig. 2B, Right). We speculated that this failure to recover
the correlations in the model network, despite the recovery of
firing rates, could be the result of perturbing the structured
connectivity between excitatory neurons within assemblies gen-
erated through training (Fig. 3B). Indeed, the average weights
between excitatory neurons within an assembly depressed during
the period corresponding to late MD (SI Appendix, Fig. S4).

To reveal the origin of this depression in the model network,
we investigated the specific contribution of Hebbian plasticity
and synaptic scaling to the average excitatory weight change
within assemblies. Despite the overall potentiation of excita-
tory weights within assemblies induced by synaptic scaling during
the period corresponding to early MD, continued LTD from
Hebbian plasticity dominated over homeostatic plasticity,
depressing all excitatory weights within assemblies and pre-
venting the recovery of excitatory-to-excitatory correlations (SI
Appendix, Fig. S5). In conclusion, this dominance of depres-
sion after MD prevents the recovery of structured connectivity,
and consequently correlations, between excitatory neurons in a

model with persistent Hebbian LTD despite homeostatic plas-
ticity. This suggests that the relative timing and resulting com-
petition between the two homeostatic mechanisms and ongoing
Hebbian plasticity could be important for recovering different
aspects of network dynamics.

The Attenuation of Hebbian LTD Together with Homeostatic Mecha-
nisms Restores Firing Rates and Correlations during Prolonged MD.
Previous work involving ocular dominance plasticity has shown
that blocking Hebbian plasticity under normal rearing or after
6 d of MD does not cause any significant change in the response
strength in the binocular region of V1, suggesting that the effects
of Hebbian and homeostatic plasticity are negligible at each
of the two steady states. These experiments also argued that
the total effect of Hebbian plasticity in the deprived eye dur-
ing the recovery phase is dominated by LTD but gradually
approaches zero when homeostatic plasticity reaches its steady
state (31). Motivated by these findings, we asked whether the
recovery of excitatory correlations during the period correspond-
ing to late MD in the model can be rescued by reducing the
effect of Hebbian LTD. We proposed that the attenuation of
Hebbian plasticity might occur through a metaplastic process
where the amplitude of LTD dynamically adapts to the history
of neuronal activity (Methods) (32, 33). Implementing meta-
plastic LTD preserved the recovery of average firing rates of
both excitatory and inhibitory neurons (Fig. 5A). Similarly, the
spiking rasters during the period corresponding to early MD
showed asynchronous irregular activity (Fig. 5B, Left). In con-
trast to the model with persistent LTD, however, the metaplastic
reduction in LTD enabled the return of structured excitatory
activity during late MD (Fig. 5C, Left). Importantly, the excita-
tory correlation structure in the model during late MD home-
ostatically recovered after its initial dilution during early MD
(Fig. 5B and Fig. 5C, Right; compare with Fig. 2B, Middle and
Right). The decrease and recovery of correlations was the same
across all neuron pairs within assemblies in our model because
the trained assemblies were identical, unlike the heterogene-
ity in the data where the correlations of different neuron pairs
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Fig. 5. The model with attenuated LTD recovers excitatory and inhibitory firing rates and excitatory correlations during MD. (A) The average normalized
firing rates of excitatory (blue) and inhibitory (red) neurons. The vertical dashed line indicates the onset of MD. The horizontal dashed line indicates a
normalized firing rate of 1.0. (B, Left) Spontaneous activity of excitatory (blue) and inhibitory (red) neurons during early MD. (B, Right) Correlation matrix
during early MD indicated by the orange region in A. (C) Same as B but during late MD indicated by the yellow region in A. (D) Average excitatory-to-
excitatory weights for each assembly and across assemblies. (E) Average inhibitory-to-excitatory weights that target all excitatory neurons independent of
assembly membership. (F) Average firing thresholds of excitatory (blue) and inhibitory (red) neurons. The horizontal dashed line indicates the initial firing
threshold.

Wu et al. PNAS | September 29, 2020 | vol. 117 | no. 39 | 24519

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
38

.2
46

.3
.1

91
 o

n 
Ju

ly
 2

7,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
8.

24
6.

3.
19

1.



underwent a varying degree of decrease and recovery (SI
Appendix, Fig. S3). Adding heterogeneity to the model
assemblies—for instance, by diversifying synaptic strengths, con-
nectivity probabilities, or sizes—might be necessary to capture
the diverse changes in correlation structures in the data. The
metaplastic down-regulation of LTD in our model shifted the
network from an LTD-dominant regime during early MD to an
LTP/LTD-balanced regime during the recovery phase. Although
this regime differs from previous studies in which the network
remains in an LTD-dominant regime during most of the recov-
ery phase (31), firing rates and correlations will recover provided
that homeostatic plasticity greatly dominates over Hebbian LTD
during the recovery phase.

We further investigated what other properties of the net-
work changed as we modeled MD. Along with firing rates and
excitatory correlations, the average excitatory weights within
assemblies manifested the same pattern of drop and rebound
(Fig. 5D), in contrast to the corresponding weights in the ini-
tial model with persistent LTD (SI Appendix, Fig. S4). Average
inhibitory onto excitatory weights also decreased during early
MD in the model (Fig. 5E), suggesting that the network reduced
the amount of inhibition to elevate the decreased firing rates
of excitatory neurons. During the period corresponding to late
MD, overall inhibition increased to balance the gradually recov-
ered excitation, keeping excitatory–inhibitory balance and avoid-
ing winner-take-all dynamics where a single strongly connected
assembly dominates the entire network (25). Furthermore, the
average firing thresholds of excitatory and inhibitory neurons in
the model network decreased as we modeled prolonged MD and
reached a steady state as the firing rates approached their BL
values (Fig. 5F).

Our experimental analysis revealed that, despite a decrease in
the correlation amplitude during early MD, correlation structure
is maintained throughout MD (Fig. 2D). Consistent with this, if
network structure is completely erased during early MD in our
model (as in the scenario without metaplastic LTD; Fig. 4), then
homeostatic synaptic scaling during late MD cannot recover exci-
tatory correlations because the backbone of recurrent circuitry
from which to rebuild them has been lost. Otherwise, synap-
tic scaling can still rescue correlations even when the intensity
or duration of LTD at thalamocortical synapses increases (SI
Appendix, Fig. S6). In particular, we found that the intensity and
duration of feedforward LTD have a different impact on the exci-
tatory synaptic weights within assemblies, which shape excitatory
correlation structure in the model. More intense and prolonged
LTD causes a larger decrease in the firing rates, enabling the
fast upscaling of excitatory synaptic weights within assemblies
that recover correlations well before firing rates (SI Appendix,
Fig. S6). Only prolonging feedforward LTD without affecting its
intensity does not decrease firing rates as much (SI Appendix,
Fig. S6), due to the lower firing thresholds of the neurons (SI
Appendix, Fig. S7). The smaller drop in firing rates constrains
the amount of synaptic upscaling, resulting in weaker excitatory
correlation structure during the recovery phase. Consequently,
network connectivity and correlations recover later than firing
rates (SI Appendix, Fig. S6). These results suggest that correla-
tion changes do not necessarily follow firing rate changes but
are the product of interacting homeostatic mechanisms at the
network level.

In summary, metaplastic regulation of LTD, together with
synaptic scaling and intrinsic plasticity, is sufficient to capture
both the recovery of excitatory and inhibitory firing rates and
excitatory correlations during MD. Maintaining network struc-
ture during early MD is necessary for synaptic scaling to recover
correlation structure during late MD. Hence, homeostatic mod-
ifications of overall synaptic weights and intrinsic excitability
cooperate with Hebbian LTD to recover several aspects of
network function following input perturbations.

Individual Homeostatic Mechanisms Have Different Functionality dur-
ing MD. To determine the distinct contributions of the different
homeostatic mechanisms for the recovery of firing rates and
correlations during prolonged MD, we selectively eliminated
each mechanism. When deactivating synaptic scaling during the
entire period of MD in the model, we found that excitatory
and inhibitory firing rates still recovered (Fig. 6A), whereas the
excitatory correlations did not (Fig. 6C). Since synaptic scaling
affects excitatory synaptic strengths, we hypothesized that the
correlations failed to recover due to the inability of the net-
work to recover its structured excitatory connectivity. Indeed, the
average weights between excitatory neurons within assemblies
remained low in the absence of synaptic scaling (SI Appendix,
Fig. S8), eliminating structured block activity (Fig. 6B) and pre-
venting the recovery of excitatory correlation structure during
late MD (Fig. 6C). This suggests that synaptic scaling on exci-
tatory synapses is indispensable for the recovery of excitatory
correlations.

Similarly, without intrinsic plasticity during the entire MD
period, neither excitatory nor inhibitory firing rates in the model
recovered (Fig. 6D). This result was independent of the recov-
ery of correlations. When the overall excitatory drive received by
a single neuron within the same assembly was weak, low firing
rates were accompanied by a poor degree of synchrony within
assemblies (Fig. 6E), resulting in weak correlations (Fig. 6F).
Increasing the overall excitation to a neuron, for instance, by
increasing the connectivity probability within assemblies, could
still generate structured block activity resulting in high corre-
lations within assemblies but without recovering firing rates,
especially for inhibitory neurons.

In conclusion, we demonstrated that two important forms of
homeostatic plasticity, synaptic scaling and intrinsic homeostatic
plasticity, are able to regulate distinct aspects of network activity.

Recovery of Inhibitory Correlations Requires Cotuning of Excitation
and Inhibition. So far, we have focused on the recovery of exci-
tatory and inhibitory firing rates through intrinsic plasticity and
correlations between excitatory neurons through synaptic scaling
on excitatory synapses. However, our results in Fig. 1 indicate
that the other types of correlations that involve the inhibitory
neurons undergo the same temporal profile during prolonged
MD, with a drop during early MD and a recovery during late
MD. Here, we investigated if the same homeostatic mechanisms
identified above have different functionality during MD by mini-
mally modifying our network architecture. In our network, the
action of inhibition is global, where inhibitory neurons non-
specifically connect to all excitatory neurons. Hence, inhibitory
neurons activate together with any excitatory assembly, result-
ing in weak excitatory–inhibitory and inhibitory–inhibitory cor-
relations. Rather than considering global inhibition, we next
modeled inhibition as cotuned with excitation where individual
assemblies of inhibitory neurons connect exclusively to individual
assemblies of excitatory neurons (Methods), inspired by recent
experiments in the visual cortex (34). Due to this cotuning of
inhibition with excitation, correlated structure emerged across
all types of neurons. The excitatory–inhibitory and inhibitory–
inhibitory correlations were high as the block activity generated
by a given cortical excitatory assembly provides a major drive to
inhibitory neurons (SI Appendix, Fig. S9).

Implementing the same protocol for inducing MD in our
model, with depression of the feedforward weights and decor-
relation of thalamocortical input, generated the same drop and
recovery of firing rates and correlations, now involving both exci-
tatory and inhibitory neurons (SI Appendix, Fig. S9). Notably,
the same two forms of homeostatic plasticity, synaptic scaling
and intrinsic homeostatic plasticity, successfully regulate distinct
aspects of network activity also in these cotuned networks (SI
Appendix, Fig. S10). Taken together, our result that homeostatic

24520 | www.pnas.org/cgi/doi/10.1073/pnas.1918368117 Wu et al.
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Fig. 6. Individual homeostatic mechanisms have different functionality during MD. (A and D) The average normalized firing rates of excitatory (blue) and
inhibitory (red) neurons without synaptic scaling (A) or without intrinsic plasticity (D). The vertical dashed line indicates the onset of MD. The horizontal
dashed line indicates a normalized firing rate of 1.0. (B and E) Spontaneous activity of excitatory (blue) and inhibitory (red) neurons during late MD without
synaptic scaling (B) or without intrinsic plasticity (E). (C and F) Correlation matrix during late MD indicated by the yellow region in A and D, without synaptic
scaling (C) or without intrinsic plasticity (F).

mechanisms regulate distinct aspects of cortical circuit dynamics
applies also to different network architectures, suggesting that
synaptic scaling and intrinsic plasticity quite generally influence
different aspects of network function.

Discussion
A key question in the field of homeostatic plasticity is which
aspects of neuronal activity are under homeostatic control.
Recent studies have shown that, despite a high degree of synap-
tic plasticity during the critical period (35), firing rates of
individual neurons remain remarkably constant during normal
development (6) and when perturbed by sensory deprivation,
rebound back to an individual set point despite continued depri-
vation (14). Here, we used in vivo data in rodent visual cortex
to investigate whether higher-order cortical network proper-
ties are under homeostatic control. We found that—distinct
from firing rates—correlations in control hemispheres increased
slightly during early development. In contrast, correlations in
deprived hemispheres initially decreased over the first 2–3 d
and then gradually recovered to predeprivation levels, including
in their structure. This recovery of correlations was indepen-
dent of the recovery of firing rates and had a homeostatic
component beyond the developmental increase of correlations.
Modeling of this process revealed that this restoration of cor-
relation structure could be accomplished through synaptic scal-
ing, while firing rate homeostasis was dependent on intrinsic
homeostatic plasticity. Together, these findings provide evidence
that functional correlation structures are subject to homeostatic
regulation.

Recovery of stimulus preference at the single cell level, as well
as network correlation structure, has also been reported dur-
ing repeated episodes of MD in the binocular region of visual
cortex, each followed by eye reopening (36). However, in these
ocular dominance plasticity studies, recovery occurring following
eye reopening is TrkB-dependent and mediated by Hebbian LTP
(37). This is mechanistically distinct from our work where recov-

ery is governed by homeostatic mechanisms and where there is
no competition between the closed and open eye.

Our modeling results suggest that the difference in the visual
input from the thalamus at MD compared to BL does not seem
to be important for cortical correlations. A proper experimental
verification of this result would require the measurement of cor-
relations in the thalamus during BL and during MD. Although
these data are currently unavailable, there are data to indirectly
verify this. Our analysis revealed that cortical correlations in
deprived hemispheres recover to their BL level after 5 to 6 d
of MD (Fig. 1B), regardless of possible correlation changes in
the thalamus. In addition, we have previously shown that correla-
tions in the dark are approximately two-thirds of the correlations
in the light when the animals are in the awake behavioral state
(15). These results suggest that correlated visual inputs only
have a modest impact on the amplitude of cortical correlations,
while recurrent connections might be the dominant contribu-
tor. Hence, following the elimination of visual input during MD,
homeostatic mechanisms such as synaptic scaling can recover
cortical correlations.

What might be the purpose of the recovered network correla-
tions? Following lid suture to induce MD, the transmitted light
through the closed eye lids is relatively weaker compared to the
predeprivation condition. Therefore, we propose that the net-
work’s homeostatic recovery of correlations might be a way to
amplify weak signals, promoting successful signal propagation to
other cortical regions (38), which is essential for the animals’ per-
ception of the sensory environment (39). We predict that the
recovery of correlation structure also has important functional
implications for information transmission across cortical hier-
archies. For instance, neurons in layer 2/3 process inputs from
neurons in layer 4 and are highly influenced by its connectivity.
If the recovered network in one layer undergoes a profound
remodeling and ends up having a completely different correla-
tion structure, adjustments in successive layers would be needed
to keep the cortical network functional.

Wu et al. PNAS | September 29, 2020 | vol. 117 | no. 39 | 24521

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
38

.2
46

.3
.1

91
 o

n 
Ju

ly
 2

7,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
8.

24
6.

3.
19

1.



We cannot conclude from our data whether neurons with
higher correlations are more strongly connected. However, as
previously shown, functionally correlated neurons are more
likely to be connected and more strongly if so (18, 19). We
therefore assume that correlation strength is indicative of con-
nection strength. In that sense, the identified clusters with
strong correlations come from strongly connected assemblies
consistent with previous experimental work (18, 19, 40). How-
ever, this is only the case for excitatory neurons (identified
RSUs); since the number of sorted pFS cells was significantly
lower than RSUs, we could not investigate their correlation
structure.

To dissect the role of various homeostatic mechanisms to
restore firing rates and correlations to BL despite prolonged
MD, we built and analyzed a computational model with spiking
neurons and biologically realistic plasticity rules. Upon training
with correlated input patterns (41), imitating the BL condi-
tion in which animals receive normal visual inputs, the net-
work exhibited structured spontaneous activity and developed
stronger correlations within assemblies. Our model showed that
decreasing thalamocortical connection strength (24) and decor-
relating input patterns during MD degraded synaptic weights and
decreased firing rates and correlations. This was accompanied
by a depression in excitatory synaptic weights within assemblies
and overall inhibitory synaptic weights in the model. Although
experiments have not found significant changes in the strength
of recurrent excitation within layer 4 (42), in layer 2/3, there
is a general depression of excitatory input (28); a more sys-
tematic analysis that includes measurements within and across
assemblies would be necessary to reveal selective depression of
some connections.

Other modeling studies have investigated the interaction
between Hebbian and homeostatic plasticity for the stable for-
mation and maintenance of Hebbian assemblies in the con-
text of memory storage and recall (43–45), which are different
from the sensory deprivation paradigm studied here. Interest-
ingly, a recent modeling framework for the homeostatic recovery
from visual deprivation proposed that the disinhibitory effect of
inhibitory plasticity, rather than synaptic scaling, can drive the
recovery of firing rates and correlations in specific subnetworks
of excitatory neurons (46), based on experimental results (40).
We did not observe such specificity in our data, and inhibitory
plasticity in our model was insufficient to recover either firing
rates or correlations, necessitating instead intrinsic plasticity and
synaptic scaling.

Our modeling results indicated that attenuating the depres-
sion effect of Hebbian plasticity was required to maintain clus-
tered network structure during the process of recovery. This
suggests that the effect of Hebbian plasticity becomes atten-
uated during prolonged MD, which then allows homeostatic
plasticity to “catch up” and restore network properties. This
is consistent with several experimental findings. For example,
brief MD leads to occlusion of LTD in layer 4 in the pri-
mary visual cortex (24, 47), while homeostatic strengthening of
CA1 synapses in the hippocampus is accompanied by a reduced
ability of synapses to exhibit LTP (48). Furthermore, during
MD, the effects of Hebbian plasticity, which is originally LTD-
dominant, become negligible as homeostatic plasticity reaches its
steady state (31).

Importantly, in the face of ongoing plasticity, we found that
two different forms of homeostatic plasticity can serve dis-
tinct functions in recovering network function. First, intrin-
sic plasticity as a mechanism that affects individual neuron
properties, such as the firing threshold, is essential for the
rebound of firing rates. Since it does not act directly on the
synaptic weights, it has no significant impact on the recov-
ery of correlations. We implemented intrinsic plasticity by
adjusting the firing threshold, which effectively shifts the neu-

ronal input–output function to keep the model sufficiently gen-
eral. Biophysically, intrinsic plasticity can be implemented by
changes in the density and function of voltage-gated channels
(5, 49, 50).

Unlike intrinsic plasticity, synaptic scaling regulates synaptic
strengths directly and is crucial for the recovery of correlation
and network structure in the model. Mechanistically, this reg-
ulation is fundamentally distinct from Hebbian plasticity. The
regulating process involves an enhanced accumulation of
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptor (AMPAR) in the postsynaptic membrane, which can
be mediated by the proinflammatory cytokine tumor-necrosis
factor-α (TNF-α) produced by glia (10), the immediate-early
gene Arc (11), β3 integrins (51), and other molecules. Crucially,
the scaling is bidirectional, global, and operates in a multiplica-
tive manner (4), although there is some evidence for dendritic
branch-specific scaling in some neocortical cell types (52). Dur-
ing recovery, multiplicative scaling potentiates synaptic weights
within assemblies more than across assemblies in our model, pre-
serving the relative strength of synaptic inputs and enabling the
recovery of correlation structure.

The distinct functional roles fulfilled by synaptic scaling and
intrinsic plasticity apply in the context of the present constella-
tion of plasticity rules. We found that synaptic scaling alone is
insufficient to recover the firing rates in our model, especially
inhibitory firing rates. The critical model assumption that derives
this conclusion is that excitatory and inhibitory connections onto
inhibitory neurons do not change during MD (SI Appendix, Sup-
plementary Text). However, increasing synaptic strengths also
boosts neuronal responses, which raises the possibility that
synaptic scaling alone might be able to recover firing rates with
a different combination of plasticity rules. One straightforward
possibility to recover the firing rates of inhibitory neurons is
either to increase the total excitation to inhibitory neurons,
for example, by upscaling the excitatory-to-inhibitory connec-
tions, or to decrease the total inhibition to inhibitory neurons,
for example, by downscaling the inhibitory-to-inhibitory connec-
tions. Interestingly, synaptic scaling onto inhibitory neurons was
recently found to organize model recurrent networks around
criticality, independently of firing rates (53). This suggests that
homeostatic plasticity in excitatory elements might be important
for the recovery of firing rates and correlations, while plasticity in
inhibitory elements for the recovery of criticality. It still remains
to be tested whether and how excitatory and inhibitory connec-
tions onto inhibitory neurons change in the context of home-
ostatic regulation in vivo. We highlight that including spiking
neurons in our model and training the BL network with corre-
lated inputs enabled us to study the emergence, dilution, and
recovery of correlation structure during prolonged MD, which
is not possible in the unstructured randomly connected networks
studied in other models (53), even if firing rates recover. Further-
more, our implementation of Hebbian and homeostatic plasticity
with appropriate biologically motivated timescales suggests a
nontrivial cooperation between Hebbian and homeostatic plas-
ticity, with the first being attenuated while the latter is in full
operation.

In conclusion, our analysis reveals an important, previously
unidentified network feature that is homeostatically regulated
during perturbation of normal circuit dynamics in the visual
cortex. The finding that not only the average correlations but
also the correlation structure recover has interesting implica-
tions for the recovery of computations in these circuits that might
be encoded in nonrandom connectivity patterns. Moreover, our
network model with spiking neurons and experimentally charac-
terized homeostatic mechanisms allowed us to dissect the role
of each on different aspects of network dynamics, suggesting
that different homeostatic mechanisms serve unique, rather than
redundant, functions.

24522 | www.pnas.org/cgi/doi/10.1073/pnas.1918368117 Wu et al.
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Table 1. Neuron model parameters

Symbol Value Unit Description

Urest −70 mV Resting membrane potential
Uexc 0 mV Excitatory reversal potential
Uinh −80 mV Inhibitory reversal potential
τ ref 5 ms Duration of refractory period
τm

exc 20 ms Membrane time constant of excitatory neurons
τm

inh 10 ms Membrane time constant of inhibitory neurons
τampa 5 ms AMPA decay time constant
τgaba 10 ms GABA decay time constant
τnmda 100 ms NMDA decay time constant
α 0.5 - Receptor weighting factor

-, no units.

Methods
Firing Rates. To obtain the normalized firing rate evolution for different
animals, the firing rates of each animal were normalized to the average
firing rate at P26 during the light period. Note that, here, the analysis
of firing rates was restricted to MD5 because for the higher-order net-
work feature analysis (the pairwise correlations), the number of available,
continuously recorded cells beyond this period was insufficient. Therefore,
although the firing rates still seem to be above BL at MD5—a trend identi-
cal to that reported in the previous study (14)—they eventually return to BL
by MD6 (14).

Pairwise Correlations. Each spike train was binned into spike counts of bin
size 100 ms, generating a vector of spike counts for each cell. The spike-
count correlation coefficient ρ for a pair of neurons was computed in 30-min
episodes using a sliding window of 5 min. We averaged these values for each
pair every single half day (12 h), thus computing the correlation coefficient
for light and dark conditions separately:

ρX,Y =
E[(X−µX )(Y −µY )]

σXσY
,

where X and Y represent the spike-count vectors of two cells, respectively;
µX and µY are the means of X and Y ; σX and σY denote the standard devia-
tions of X and Y ; E is the expectation. This produced the matrices of pairwise
spike-count correlations on different half days. Just like the firing rates, to
generate the normalized correlation curve across animals, the correlations
of each animal were normalized to the average correlations at P26 during
the light period.

The correlation matrices in Fig. 2 A and B were clustered using hierarchi-
cal clustering during BL, and the same neuron order was preserved at later
time points.

Quantification of Changes in Correlation Structure. We first generated a shuf-
fled matrix A′ by redistributing the off-diagonal entries of the original
matrix A while keeping the matrix A′ symmetric. Then, we computed the
absolute difference between the shuffled matrix A′ and the correlation
matrix at BL B:

M = |A′− B|.

The elements of the upper triangular part of M were used to form a vector
of the absolute difference, known as the L1 distance, between correlations.
Vectors from different animals were then concatenated into a single vector.
During shuffling, only the elements corresponding to a given animal were
shuffled, i.e., animal identity was preserved.

Neuron and Network Model. Single neurons were modeled as leaky
integrate-and-fire with membrane potential of neuron i, Ui , given by (54):

τ
m dUi

dt
= (Urest−Ui) + gext

i (t)(Uexc−Ui) + ginh
i (t)(Uinh−Ui),

where τm is the membrane time constant, and Urest is the resting potential.
The neuron elicited a spike when its membrane potential reached the spik-
ing threshold Uthr. After a spike, the membrane potential was reset to Urest.
The neuron also had a refractory period τ ref after a spike. Inhibitory neu-
rons also followed the same integrate-and-fire formalism but with a shorter

membrane time constant. The values of all neuron model parameters are
listed in Table 1.

The network model consisted of 800 excitatory and 200 inhibitory
leaky integrate-and-fire neurons, which were randomly connected with a
probability of 20%. Excitatory neurons were randomly grouped into four
nonoverlapping groups. Each excitatory and inhibitory neuron received
external excitatory input from 1,000 neurons firing with Poisson statistics
at an average firing rate of 5 Hz, with synaptic strength Jext→E and Jext→I,
respectively.

Excitatory synapses have a fast AMPA component and a slow N-methyl-D-
aspartic acid (NMDA) component. Dynamics of excitatory conductances are
given by:

τ
ampa dgampa

i

dt
=−gampa

i +
∑

j∈exc

JijSj(t),

τ
nmda dgnmda

i

dt
=−gnmda

i + gampa
i ,

gexc
i (t) =αgampa

i (t) + (1−α)gnmda
i (t).

Here, Jij is the synaptic strength from neuron j to neuron i. If the connection
does not exist, Jij was set to 0. Sj(t) is the spike train of neuron j, which is
defined as Sj(t) =

∑
k δ(t− tk

j ), where δ is the Dirac delta function and tk
j ,

the spikes times k of neuron j. α is a weighting parameter. Dynamics of
inhibitory conductances are given by:

τ
gaba dginh

i

dt
=−ginh

i +
∑

j∈inh

JijSj(t).

The values of all network parameters are listed in Table 2.

Training Procedure. We implemented the network in three stages: initial-
ization stage, a training stage, and an MD stage. All plasticity except
for excitatory-to-excitatory plasticity was present in the first 100 s of the
simulation to initialize the network and obtain network activity before
training.

Subsequently, the training process started. During training, correlated
stimuli were presented sequentially to each assembly for 1 s, with 3-s gaps
in between stimulus activations. While correlated stimuli were presented
to 1 assembly, the remaining neurons received inputs from 1,000 indepen-
dent neurons firing with Poisson statistics at an average firing rate of 5 Hz.
The firing rate of the correlated inputs was also 5 Hz. Correlated inputs for
the training were generated following previous studies (33, 55). Specifically,
we used a copying probability of 0.4 from individual uncorrelated Pois-
son source trains and a copying probability of 0.6 from a common Poisson
source, all with the same firing rates.

The weight matrix obtained after training was used to induce MD in
the simulations. MD simulations started with 3 s without plasticity when
inhibitory spike timing-dependent plasticity (iSTDP) was activated, while
other plasticity and homeostatic mechanisms were activated at 10 s. At the
same time, the feedforward connections onto excitatory and inhibitory neu-
rons linearly decreased by 8 and 15% from 10 to 210 s and, afterward, were
kept fixed.

Table 2. Network model parameters

Symbol Value Unit Description

NE 800 - Number of excitatory neurons
NI 200 - Number of inhibitory neurons
p 0.2 - Connectivity probability
JEE 0.2 - Initial E-to-E connection weight
JEI 2.0 - Initial I-to-E connection weight
JIE 0.2 - E-to-I connection weight
JII 2.0 - I-to-I connection weight
JEE
min 0.0 - Minimal E-to-E connection weight

JEE
max 1.2 - Maximal E-to-E connection weight

JEI
min 0.0 - Minimal I-to-E connection weight

JEI
max 6.0 - Maximal I-to-E connection weight

Jext→E 0.78 - Initial external-to-E connection weight
Jext→I 0.85 - Initial external-to-I connection weight

E, excitatory; I, inhibitory. -, no units.
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Table 3. Plasticity model parameters

Symbol Value Unit Description

rE
0 5 Hz Target firing rate of excitatory neurons

rI
0 13 Hz Target firing rate of inhibitory neurons
τ+ 16.8 ms Time constant of presynaptic detector
τ− 33.7 ms Time constant of faster postsynaptic detector
τ slow 114 ms Time constant of slower postsynaptic detector
A− 0.0071 - Amplitude of LTD
A+ 0.0065 - Amplitude of LTP
τ iSTDP 0.02 s Time constant of synaptic trace for iSTDP
ηiSTDP 1 - Learning rate of iSTDP
τest 20 s Time constant of firing rate estimator
τ ss 200 s Time constant of synaptic scaling
ηip 0.00125 mV/s Learning rate of intrinsic plasticity

-, no units.

Plasticity. To form the clustered correlation structure observed experimen-
tally, we followed previous modeling studies (25) and modeled the plasticity
of excitatory-to-excitatory synapses using triplet STDP (32) of inhibitory-to-
excitatory synapses using iSTDP (56, 57) and also included heterosynaptic
plasticity operating on excitatory-to-excitatory synapses.

The triplet STDP rule describes synaptic plasticity based on triplets of
spikes and captures experiments where the rate of pre- and postsynaptic
neurons varies (58). The triplet STDP rule enables the formation of bidirec-
tional connections, a necessity for the formation of clustered architectures
(41, 59). According to this rule, the synaptic strength from excitatory neuron
j to excitatory neuron i follows:

dJEE
ij

dt
=−z−i (t)A−Sj(t) + z+j (t)A+zslow

i (t− ε)Si(t).

Here, A− and A+ are the amplitude of the weight change induced by a
post–pre pair or a post–pre–post triplet of spikes. ε is a small positive con-
stant. The synaptic traces for neuron i (and similarly for neuron j) z+i (t),

z−i (t), and zslow
i (t) evolve according to

dzn
i

dt =− zn
i

τn + Si(t) with different time
constants τn, where n = {+,−, slow}.

According to iSTDP, the synaptic strength from inhibitory neuron j to
excitatory neuron i follows:

dJEI
ij

dt
= η

iSTDP(xi − 2r0
i τ

iSTDP)Sj(t) + η
iSTDPxjSi(t),

where xi and xj are the synaptic traces of the postsynaptic excitatory neu-

ron i and presynaptic inhibitory neuron j, which are described by
dxi
dt =

− xi
τ iSTDP + Si(t), with r0

i , τ iSTDP, and η denoting the target firing rate of neu-
ron i (and similarly for neuron j), the time constant of the synaptic trace and
the learning rate of iSTDP, respectively.

Excitatory-to-inhibitory connections and inhibitory-to-inhibitory connec-
tions were nonplastic since their plasticity has been much less investigated
experimentally and computationally. All plastic weights were subject to
upper bounds.
Heterosynaptic plasticity. We also modeled normalization in the form of
heterosynaptic plasticity, which ensures that the sum of all incoming excita-
tory synaptic weights at each postsynaptic excitatory neuron is kept below
a target (60). This form of normalization has been found to be essen-
tial in maintaining clustered structures upon their formation (25). Hence,
the synaptic strength from excitatory neuron j to excitatory neuron i was
modified according to heterosynaptic plasticity as follows:

JEE
ij (t)← JEE

ij (t)− 1

NE
i


∑

j

JEE
ij (t)− β

∑

j

JEE
ij (0)


,

where NE
i is the number of nonzero elements. As heterosynaptic plasticity

also imposed a constraint on the excitatory-to-excitatory synaptic weight,
β was set to 1.08 so that JEE

ij becomes approximately JEE
max . Heterosynaptic

plasticity was implemented every 1 s and only acting when the
∑

j JEE
ij (t)

was larger than β
∑

j JEE
ij (0).

Metaplasticity. The amplitude of LTD for neuron i, A−i , follows:

A−i ←A−i
xest

i

τestr0
i

.

Here, xest
i denotes the firing-rate estimator defined as

dxest
i

dt =− xest
i

τest + Si(t),

with τest being the integration time constant of xest
i . If the firing rate of

a neuron was close to its target, r0
i , then

xest
i

τestr0
i
≈ 1. Metaplasticity was

implemented every 30 s. Furthermore, A−i was bounded below by 15% of
its initial value to ensure that the effect of Hebbian plasticity eventually
becomes negligible, as shown previously (31).
Homeostatic mechanisms: synaptic scaling and intrinsic plasticity. The evo-
lution of synaptic strength from excitatory neuron j to excitatory neuron i
via synaptic scaling is given by:

τ
ss dJEE

ij

dt
= JEE

ij

(
1− xest

i

τestr0
i

)
,

where τ ss represents the time constant of synaptic scaling.
The firing threshold of neuron i regulated by intrinsic plasticity is

given by:
dUthr

i

dt
= η

ip

(
xest

i

τest
− r0

i

)
,

where ηip is the learning rate of intrinsic plasticity. Initial firing threshold
was set to −50 mV.

The values of all plasticity parameters are listed in Table 3.

Cotuned Network. The cotuned network model consisted of 800 excitatory
and 200 inhibitory neurons. Excitatory and inhibitory neurons were divided
into four nonoverlapping groups. The connectivity probability within the
same groups is 20%. Inhibitory neurons exclusively connected with excita-
tory neurons in the same group. The simulations started with 3 s without
plasticity when iSTDP was activated, while other plasticity and homeostatic
mechanisms were inactivated for the first 210 s. After that, other plasticity
and homeostatic mechanisms were activated. The feedforward connections
onto excitatory and inhibitory neurons linearly decreased by 4 and 8% from
210 to 410 s. From 410 s onward, feedforward connections were kept fixed.
For the sake of simplicity, we implemented metaplasticity differently from
the original model. Instead of dynamically modifying the LTD amplitude,
here, we disabled Hebbian plasticity at 410 s. Parameters used in cotuned
network models, which are different from the original model, are listed in
SI Appendix, Table S1.

Simulations. Data analysis and numerical simulations were performed in
Python and Julia. All differential equations were implemented by Euler
integration with a time step of 0.1 ms.

Data Availability. The code used for data analysis and model simulations
is available at GitHub (https://github.com/comp-neural-circuits/homeostasis).
The data is available at Figshare (https://figshare.com/projects/Homeostasis/
80936).
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Inhibition stabilization is considered a ubiquitous property of cortical networks, whereby inhibition con-
trols network activity in the presence of strong recurrent excitation. In networks with fixed connectivity,
an identifying characteristic of inhibition stabilization is that increasing (decreasing) excitatory input to the
inhibitory population leads to a decrease (increase) in inhibitory firing, known as the paradoxical effect. However,
population responses to stimulation are highly nonlinear, and drastic changes in synaptic strengths induced by
short-term plasticity (STP) can occur on the timescale of perception. How neuronal nonlinearities and STP affect
inhibition stabilization and the paradoxical effect is unclear. Using analytical calculations, we demonstrate that
in networks with STP the paradoxical effect implies inhibition stabilization, but inhibition stabilization does
not imply the paradoxical effect. Interestingly, networks with neuronal nonlinearities and STP can transition
nonmonotonically between inhibition-stabilization and noninhibition-stabilization, and between paradoxically-
and nonparadoxically-responding regimes with increasing excitatory activity. Furthermore, we generalize our
results to more complex scenarios including networks with multiple interneuron subtypes and any monotonically
increasing neuronal nonlinearities. In summary, our work reveals the relationship between inhibition stabilization
and the paradoxical effect in the presence of neuronal nonlinearity and STP, yielding several testable predictions.

DOI: 10.1103/PhysRevResearch.5.033023

I. INTRODUCTION

Cortical networks are typically characterized by inhibi-
tion stabilization, where inhibition is needed to keep network
activity levels in biologically realistic ranges despite the pres-
ence of strong recurrent excitation [1]. Networks operating
in the inhibition-stabilized regime are capable of performing
various computations, including input amplification, response
normalization, and network multistability [2–6]. In networks
with fixed connectivity, a hallmark of inhibition stabilization
is the paradoxical effect: An increase or a decrease of excita-
tory input to the inhibitory population respectively decreases
or increases the inhibitory firing [7]. Over the past decade,
much effort has been made to identify the operating regime of
cortical networks based on the paradoxical effect [1,8,9].

Yet, various aspects ranging from the network to the synap-
tic level can considerably affect network dynamics and the
operating regime. First, if individual neurons in the network
receive large excitatory and inhibitory currents which pre-
cisely cancel each other, the network operates in a balanced

*kris.wu@tum.de
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Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
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state characterized by a linear population response [10–12].
Recent work has argued that neuronal input-output func-
tions are better characterized by supralinear functions, and
networks with this type of nonlinearity can exhibit various
nonlinear phenomena as observed in biology [13–15]. Sec-
ond, synapses in the brain are highly dynamic as a result of
different STP mechanisms, operating on a timescale of mil-
liseconds to seconds [16,17]. Upon presynaptic stimulation,
postsynaptic responses can either get depressed subject to
short-term depression (STD) or facilitated subject to short-
term facilitation (STF). While short-term synaptic dynamics
are widely observed in biological circuits, it is unclear how
they interact with the neuronal nonlinearity to jointly deter-
mine the network operating regime. Here we ask how the
neuronal nonlinearity and STP affect inhibition stabilization
and the paradoxical effect.

To address this question, we determine the conditions for
inhibition stabilization and the paradoxical effect in networks
of excitatory and inhibitory neurons in the presence of STP
with linear and supralinear population response functions.
We find that, irrespective of the neuronal nonlinearity, in
networks with excitatory-to-excitatory (E-to-E) STD, inhibi-
tion stabilization does not necessarily imply the paradoxical
effect, but the paradoxical effect implies inhibition stabi-
lization. In contrast, in networks with static connectivity or
networks with other STP mechanisms, inhibition stabilization
and the paradoxical effect imply each other. Interestingly,
neuronal nonlinearities and STP endow the network with
unconventional behaviors. More specifically, in the presence
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of a neuronal nonlinearity and E-to-E STD, monotonically
increasing excitatory activity can lead to nonmonotonic
transitions between noninhibition-stabilization and inhibition-
stabilization, as well as between nonparadoxically-responding
and paradoxically-responding regimes. Furthermore, we
generalize our results to more complex scenarios including
networks with multiple interneuron subtypes and any mono-
tonically increasing neuronal nonlinearities. In conclusion,
our work reveals the impact of neuronal nonlinearities and
STP on inhibition stabilization and the paradoxical effect, and
makes several predictions for future experiments.

II. RESULTS

To understand the relationship between inhibition stabiliza-
tion and the paradoxical effect in recurrent neural networks
with STP, we studied rate-based population models consisting
of an excitatory (E) and an inhibitory (I) population. The
dynamics of the network are given by

τE
drE

dt
= −rE + [pEE JEE rE − pEI JEI rI + gE ]αE+ , (1)

τI
drI

dt
= −rI + [pIE JIE rE − pII JII rI + gI ]

αI+ , (2)

where rE and rI denote the firing rates of the excitatory and
inhibitory population; τE and τI are the corresponding time
constants; JAB represents the synaptic strength from popula-
tion B to population A, where A, B ∈ {E , I}; gE and gI are
the external inputs to the respective populations; and αE and
αI are the exponents of the respective input-output functions.
Finally, pAB represents the short-term plasticity variable from
population B to population A. We implemented short-term
plasticity mechanisms based on the Tsodyks and Markram
model [16]. For STD, we replaced pAB with xAB and described
the STD dynamics as follows:

dxAB

dt
= 1 − xAB

τx
− Ud xABrB, (3)

where xAB is a short-term depression variable that is limited to
the interval (0,1] for the synaptic connection from population
B to population A. Biophysically, the short-term depression
variable x represents the fraction of vesicles available for re-
lease, τx is the time constant of STD, and Ud is the depression
factor controlling the degree of depression induced by the
presynaptic activity.

For STF, we replaced pAB by uAB and expressed the STF
dynamics as follows:

duAB

dt
= 1 − uAB

τu
+ Uf (Umax − uAB)rB, (4)

where uAB is a short-term facilitation variable that is
constrained to the interval [1, Umax) for the synaptic
connection from population B to population A. Biophysically,
the short-term facilitation variable u represents the ability of
releasing neurotransmitter, τu is the time constant of STF, Uf

is the facilitation factor controlling the degree of facilitation
induced by the presynaptic activity, and Umax is the maximal
facilitation value.

To investigate the impact of neuronal nonlinearities
on inhibition stabilization and the paradoxical effect, we

considered both threshold-linear networks (αE = αI = 1) as
well as supralinear networks (αE = αI > 1). In the regime
of positive rE and rI , threshold-linear networks behave as
linear networks. In the following, we thus call them linear
networks. Furthermore, while we keep our analysis for supra-
linear networks in a general form, we use αE = αI = 2 for
the numerical simulations. Note that the neuronal nonlinearity
in our study refers to the nonlinearity of population-averaged
responses to input when no STP mechanisms are taken into
account, which is fully determined by αE and αI .

In addition, for the sake of analytical tractability, we in-
cluded one STP mechanism at a time. To investigate how
inhibition stabilization is affected by the neuronal nonlinearity
and STP, we computed the real part of the leading eigen-
value of the Jacobian matrix of the excitatory-to-excitatory
subnetwork incorporating STP, and refer to it as the “In-
hibition Stabilization index” (IS index) (see Supplemental
Material [18]). A positive (negative) IS index implies that the
network is in the IS (non-IS) regime. To reveal how inhibi-
tion stabilization changes with network activity and network
connectivity, we investigated how the IS index changes with
the excitatory activity rE and the excitatory to excitatory
connection strength JEE . These two quantities, rE and JEE ,
are directly involved in the definition of the IS index (see
Supplemental Material [18]).

A. Inhibition stabilization in recurrent neural networks with
short-term depression at E-to-E synapses

We first examined inhibition stabilization for networks
with E-to-E STD, evaluated at the fixed point of the system
[Fig. 1(a)]. The distinction between non-IS and IS is reflected
in network responses to perturbations induced by injecting
additional excitatory currents into excitatory neurons while
inhibition is fixed. Networks initially in the non-IS regime
return back to their initial activity level after a small transient
perturbation to the excitatory activity when inhibition is fixed,
whereas networks initially in the IS regime deviate from their
initial activity (Fig. S1). For linear networks with E-to-E STD,
if JEE is less than one, the network is always in the non-IS
regime regardless of rE [Fig. 1(b)]. If JEE is greater than one,
the network transitions from IS to non-IS with increasing rE

[Fig. 1(b)]. In contrast, supralinear networks with E-to-E STD
manifest different behaviors. When JEE is large, the network
first transitions from non-IS to IS, and then back to non-IS
with increasing rE [Figs. 1(c) and S1]. When JEE is small, the
supralinear network stays in the non-IS regime for all values
of rE [Fig. 1(c)].

To better understand the transition between non-IS and IS
in the presence of neuronal nonlinearities and E-to-E STD,
we investigated how the boundary between non-IS and IS,
defined as “IS boundary,” changes with rE (see Fig. S2; Sup-
plemental Material [18]). Mathematically, the IS boundary is
determined by the recurrent excitatory-to-excitatory connec-
tion strength for different rE at which the IS index is zero,
denoted by JIS

EE . By computing the derivative of JIS
EE with

respect to rE (see Supplemental Material [18]), we found
that the derivative is always positive for linear networks with
E-to-E STD, suggesting that the IS boundary increases with
increasing rE [Fig. 1(d)]. Therefore, for networks with large
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FIG. 1. Inhibition stabilization in recurrent neural networks with E-to-E short-term depression. (a) Top: Schematic of the recurrent network
model consisting of an excitatory (blue) and an inhibitory population (red) with E-to-E STD. Bottom: Different nonlinearities of population-
averaged responses to input. Linear (gray) and supralinear (black) input-output function given by a rectified power law with exponent α = 1
and α = 2 [cf. Eqs. (1)and (2)], respectively. (b) Left: IS index as a function of excitatory firing rate rE and excitatory-to-excitatory connection
strength JEE for linear networks with E-to-E STD. The non-IS and IS regime are marked in blue and red, respectively. Right: Zoomed-in
version of (b) left. Here, the depression factor Ud is 1.0, the firing rate rE is plotted in a biologically realistic range from 0 to 150 Hz. (c) Same
as (b) but for supralinear networks with E-to-E STD. Here, the depression factor Ud is 1.0. (d) IS boundary for linear networks with E-to-E
STD, defined as the corresponding excitatory-to-excitatory connection strength JIS

EE for different rE at which the IS index is zero. Different
colors represent the IS boundary for different values of depression factor Ud . (e) Same as (d) but for supralinear networks with E-to-E STD.
Here, τx is 200 ms in (b)–(e).

JEE , as rE increases, only the transition from IS to non-IS
is possible [Figs. 1(b) and 1(d)]. In contrast, for supralin-
ear networks with E-to-E STD, the derivative changes from
negative to positive with increasing rE (see Supplemental Ma-
terial [18]), implying that the IS boundary first decreases and
then increases as rE increases [Fig. 1(e)]. As a result, networks
can undergo nonmonotonic transitions between non-IS and
IS with increasing rE . More specifically, networks can switch
from non-IS to IS, and then back to non-IS with increasing rE

[Figs. 1(c) and 1(e); Fig. S1]. The nonmonotonic transitions
arise from the competition between the increasing neuronal
gain due to the supralinear neuronal input-output function and
the decreasing synaptic strength due to STD. Despite high
firing rates in the large rE limit, E-to-E synaptic strengths
are significantly depressed and STD effectively decouples
excitatory neurons, rendering the network non-inhibition sta-
bilized. Furthermore, the turning point of the IS boundary
appears when Ud xEE rE is of order one (see Supplemental
Material [18]). Increasing the depression factor Ud or the STD
time constant τx shifts the turning point to the upper left in
the (rE , JEE ) coordinate system (see Fig. S3; Supplemental
Material [18]). We also found that these nonmonotonic transi-
tions cannot be observed in networks with static connectivity
(see Fig. S4; Supplemental Material [18]). Taken together, our
results suggest that E-to-E STD can nontrivially affect the
inhibition stabilization property, especially in the presence of
neuronal nonlinearities.

B. Inhibition stabilization in recurrent neural networks with
short-term facilitation at E-to-E synapses

To determine if the observed effects are specific to the type
of STP at E-to-E synapses, we next examined networks with
E-to-E STF [Fig. 2(a)]. Unlike the scenario with STD, for both
linear networks or supralinear networks, only a monotonic
transition from non-IS to IS is possible with increasing rE in
the presence of E-to-E STF [Figs. 2(b) and 2(c)]. In contrast
to supralinear networks, linear networks with JEE larger than
one are always in the IS regime regardless of rE . In both cases,
the parameter regime of JEE and rE which supports IS is much
larger than in the corresponding network with STD (Fig. 2).
Furthermore, independent of the neuronal nonlinearity, the
derivative of JIS

EE with respect to rE is always negative (see
Supplemental Material [18]), indicating that the IS boundary
decreases as rE increases [Figs. 2(d) and 2(e)]. These results
indicate that E-to-E STF exerts a more intuitive influence on
the inhibition stabilization property than E-to-E STD even in
the presence of neuronal nonlinearities.

C. Inhibition stabilization in recurrent neural networks with
short-term plasticity at other synapses

Finally, we performed the same analyses for networks
with different types of STP at all synapses other than
E-to-E, including E-to-I STD/STF, I-to-E STD/STF, and
I-to-I STD/STF, respectively [see Fig. 3(a); Supplemental
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FIG. 2. Inhibition stabilization in recurrent neural networks with E-to-E short-term facilitation. (a) Schematic of the recurrent network
model consisting of an excitatory (blue) and an inhibitory population (red) with E-to-E STF. (b) Left: IS index as a function of excitatory firing
rate rE and excitatory-to-excitatory connection strength JEE for linear networks with E-to-E STF. The non-IS and IS regime are marked in blue
and red, respectively. Right: Zoomed-in version of (b) left. Here, the facilitation factor Uf is 1.0, and the maximal facilitation value Umax is 6.0.
(c) Same as (b) but for supralinear networks with E-to-E STF. Here, the facilitation factor Uf is 1.0, and Umax is 6.0. (d) IS boundary for linear
networks with E-to-E STF, defined as the corresponding excitatory-to-excitatory connection strength JIS

EE for different rE at which the IS index
is zero. Different colors represent the IS boundary for different values of Umax. (e) Same as (d) but for supralinear networks with E-to-E STF.
Here, τu is 200 ms in (b)–(e).

Material [18]]. Including these STP mechanisms does not
change the IS condition relative to networks with fixed con-
nectivity (see Supplemental Material [18]). For networks with
a linear input-output function, the IS boundary does not
change with rE [Figs. 3(b) and 3(d); Supplemental Mate-
rial [18]], and JEE completely determines whether the network
is non-IS or IS. In contrast, for networks with a supralinear
input-output function, the derivative of JIS

EE with respect to rE

is always negative, suggesting that the IS boundary decreases
with increasing rE [see Figs. 3(c) and 3(e); Supplemental
Material [18]]. Therefore, the transition from non-IS to IS
with increasing rE in static supralinear networks or supra-
linear networks with STP at all synapses other than E-to-E
can only happen for large JEE [Figs. 3(c) and 3(e); Fig. S4].
No transition between non-IS and IS can occur in the biolog-
ical realistic firing regime from 0 to 150 Hz for small JEE

[Figs. 3(c) and 3(e)].
In summary, by considering all possible STP mechanisms,

our results demonstrate a nontrivial influence of the neuronal
nonlinearity and STP on inhibition stabilization. Specifically,
we revealed how inhibition stabilization changes with exci-
tatory activity and network connectivity when considering
neuronal nonlinearities and STP.

D. Paradoxical effects in recurrent neural networks with
short-term plasticity

Previous theoretical studies have suggested that in exci-
tatory and inhibitory networks with static connectivity, one
identifying characteristic of inhibition stabilization is that in-
jecting excitatory (inhibitory) current into inhibitory neurons

decreases (increases) inhibitory firing rates, known as the
paradoxical effect [4,7]. Here, we sought to identify the con-
ditions under which a paradoxical effect can arise in recurrent
neural networks with STP. We assumed that the system is
stable locally around the fixed point, in other words, a small
transient perturbation to the system will not lead to deviation
from the initial fixed point over time. Furthermore, the pertur-
bation used to probe the paradoxical effect (e.g., the excitatory
current injected to the inhibitory population) is small enough
that it will not lead to a transition between non-IS and IS. To
determine the conditions for the presence of the paradoxical
effect under these assumptions, we considered the phase plane
of the excitatory (abscissa) and inhibitory (ordinate) firing
rate dynamics. The first condition involves a larger slope of
the inhibitory nullcline than of the excitatory nullcline locally
around the fixed point in the phase plane, while the second
condition involves a positive slope of the excitatory nullcline
around the fixed point (see Ref. [7]; Fig. S5; Supplemental
Material [18]). We compared the above two conditions for
the presence of the paradoxical effect with the conditions to
be in the IS regime. We found that irrespective of the shape
of the neuronal nonlinearity, in networks with E-to-E STD,
the paradoxical effect implies inhibition stabilization, whereas
inhibition stabilization does not imply the paradoxical effect
[see Fig. 4(a); Supplemental Material [18]]. In contrast, for
networks with E-to-E STF, E-to-I STD/STF, I-to-I STD/STF,
and I-to-I STD/STF, inhibition stabilization and the para-
doxical effect imply each other [see Fig. 4(a); Supplemental
Material [18]]. To highlight the difference between inhibi-
tion stabilization and the paradoxical effect in networks with
E-to-E STD [Fig. 4(b)], we plotted the paradoxical effect
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FIG. 3. Inhibition stabilization in recurrent neural networks with E-to-I short-term depression/facilitation, I-to-E short-term
depression/facilitation, or I-to-I short-term depression/facilitation. (a) Schematic of the recurrent network model consisting of an excitatory
(blue) and an inhibitory population (red) with E-to-I STD/STF (top), with I-to-E STD/STF (middle), or with I-to-I STD/STF (bottom).
(b) Left: IS index as a function of excitatory firing rate rE and excitatory-to-excitatory connection strength JEE for linear networks with E-to-I
STD/STF, with I-to-E STD/STF, or with I-to-I STD/STF. The non-IS and IS regime are marked in blue and red, respectively. Right: Zoomed-in
version of (b) left. (c) Same as (b) but for supralinear networks with E-to-I STD/STF, with I-to-E STD/STF, or with I-to-I STD/STF.
(d) IS boundary for linear networks with E-to-I STD/STF, with I-to-E STD/STF, or with I-to-I STD/STF, defined as the corresponding
excitatory-to-excitatory connection strength JIS

EE for different rE at which the IS index is zero. (e) Same as (d) but for supralinear networks with
E-to-I STD/STF, with I-to-E STD/STF, or with I-to-I STD/STF.

boundary that separates the paradoxically-responding and
the nonparadoxically-responding regime together with the IS
boundary for both linear networks and supralinear networks
with E-to-E STD [Figs. 4(c)–4(f)]. In the two dimensional
rE -JEE plane, the parameter regime for the paradoxical effect
is much narrower than the IS regime, suggesting that there is a
large parameter space, in which inhibition-stabilized networks
do not exhibit the paradoxical effect [Figs. 4(c)–4(f)]. It is
noteworthy that in the presence of E-to-E STD, networks in
which dynamic STD regulation is required to ensure stability,
as studied in [19,20], are a subset of networks which do not
exhibit paradoxical effects (see Supplemental Material [18]).
For inhibition stabilized networks which do not exhibit para-
doxical effects, the corresponding excitatory subnetwork with
dynamical short-term plasticity variables is unstable.

Furthermore, by analyzing how the paradoxical effect
boundary changes with rE , we found that it exhibits a similar
trend to the IS boundary (see Supplemental Material [18]).
In particular, the paradoxical effect boundary of supralinear
networks with E-to-E STD is also a nonmonotonic function
of rE . Therefore, in this case, networks can undergo non-
monotonic transitions between the paradoxically-responding
regime and nonparadoxically-responding regime with mono-
tonically changing excitatory activity rE .

E. Generalization to networks with a mixture of STP
mechanisms and multiple interneuron subtypes

So far, we only considered individual STP mechanisms one
at a time. Here, we generalized our findings to four more com-
plex and biologically realistic scenarios. First, our results can

be generalized to networks with a mixture of STP mechanisms
at other types of synapses except E-to-E synapses where we
assume only STD or STF (see Supplemental Material [18]).
More specifically, the conditions and results derived for net-
works with either E-to-E STD or STF alone are the same for
networks with either E-to-E STD or STF and a mixture of STP
mechanisms at other types of synapses.

Second, by incorporating both STD and STF at E-to-E
synapses, we found that the paradoxical effect implies inhi-
bition stabilization, whereas inhibition stabilization does not
necessarily imply the paradoxical effect (see Supplemental
Material [18]).

Third, inhibitory neurons in the cortex are highly diverse
in terms of anatomy, electrophysiology, and function [21–23].
Recent studies have investigated the relationship between in-
hibition stabilization and the paradoxical effect in networks
with multiple interneuron subtypes in the absence of STP
[24–28]. Yet, synapses between different interneuron subtypes
exhibit considerable short-term dynamics [29]. We then ex-
tended the analysis to networks with multiple interneuron
subtypes. Theoretical studies have shown that in networks
with static connectivity, if the excitatory subnetwork is non-IS
(IS), then the sign of the change in the firing rate of the
excitatory population and of the change in the total inhibitory
current to the excitatory population are opposite (the same)
[24]. We found that in the presence of E-to-E STD, if the
network is IS, the sign of the change in the firing rate of
the excitatory population and of the change in the total in-
hibitory current to the excitatory population are the same
(see Supplemental Material [18]). However, the same sign
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I-to-I STD/STF, inhibition stabilization and the paradoxical effect imply each other indicated by the bidirectional green arrows. (b) Schematic
of the recurrent network model consisting of an excitatory (blue) and an inhibitory population (red) with E-to-E STD. (c) An example of the
paradoxical effect boundary (dashed line) and the inhibition stabilization boundary (solid line) as a function of excitatory firing rate rE for
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Methods). (d) Same as (c) but for supralinear networks with E-to-E STD. Right: Zoomed-in version of (d) left. (e), (f) Same as (c), (d) but the
depression factor Ud 1.0. Here, τx is 200 ms in (c)–(f).

of the change in the firing rate of the excitatory population
and of the change in the total inhibitory current to the exci-
tatory population does not imply that the network is IS (see
Supplemental Material [18]). In the presence of E-to-E STF
and STP at other types of synapses, inhibition stabilization
and the same sign change in the firing rate of the excitatory
population and of the change in the total inhibitory current to
the excitatory population imply each other (see Supplemental
Material [18]).

Finally, the derived relationship between inhibition stabi-
lization and the paradoxical effect is independent from the
power of the power-law input-output function. Therefore, the
derived relationship holds for any monotonically increasing
neuronal nonlinearities including sublinear (see Fig. S6; Sup-
plemental Material [18]), despite the fact that sublinear net-
works have different IS transitions from supralinear networks
(see Fig. S7; Supplemental Material [18]). Taken together, our

results indicate that the relationship between inhibition stabi-
lization and paradoxical effect in networks with STP becomes
nontrivial in the presence of short-term plasticity.

III. DISCUSSION

In this study, we combined analytical and numerical meth-
ods to reveal the effects of neuronal nonlinearities and STP
on inhibition stabilization, the paradoxical effect, and the re-
lationship between them. Including STD at E-to-E synapses,
in contrast to other types of STP and other synapse types,
generates the most surprising results. Under these conditions,
the paradoxical effect implies inhibition stabilization, whereas
inhibition stabilization does not imply the paradoxical effect.
For networks with other STP mechanisms and networks with
static connectivity, inhibition stabilization and the paradoxical
effect imply each other. Additionally, in the presence of a neu-

033023-6



INHIBITION STABILIZATION AND PARADOXICAL … PHYSICAL REVIEW RESEARCH 5, 033023 (2023)

ronal nonlinearity and E-to-E STD, a nonmonotonic transition
between different regimes can occur when excitatory activity
changes monotonically.

Network models applied to neural circuit development
have previously investigated inhibition stabilization in the
presence of STP [30]. Recent studies have examined inhibi-
tion stabilization and the paradoxical effect in threshold-linear
networks with E-to-E STP to demonstrate that inhibition sta-
bilization can be probed by the paradoxical effect [1]. Recent
work has conducted similar analysis for supralinear networks
with short-term plasticity on specific synapses [31]. Here,
we systematically analyzed networks with all forms of STP
mechanisms, for both linear networks and supralinear net-
works. By mathematically defining the IS boundary and the
paradoxical effect boundary, we further demonstrated how
network activity and connectivity affect the inhibition stabi-
lization property and the paradoxical effect. Importantly, we
generalized our results to several more complex scenarios
including networks with a mixture of STP mechanisms, net-
works with both E-to-E STD and STF, networks with multiple
interneuron subtypes, and any monotonically increasing neu-
ronal nonlinearities.

In this work, we assumed that the network activity has
reached a fixed point, and we did not consider scenar-
ios like multistability or oscillations that could arise from
neuronal nonlinearities or STP [15,32,33]. While multi-
stability and oscillations have been observed in the brain
[34,35], the single stable fixed point assumed in our study
is believed to be a reasonable approximation of awake
sensory cortex [36].

Our model makes several predictions that can be tested
in optogenetic experiments. Across cortical layers and across
brain regions, synaptic strengths can differ by an order of
magnitude [37]. Furthermore, the degrees of balance between
excitation and inhibition may also vary [38,39], resulting in
different neuronal nonlinearities [11,13,39]. Therefore, differ-
ent behaviors predicted by our analysis may be observable
in different neural circuits. For example, in the presence of
E-to-E STD, our model shows that networks with weak exci-
tatory to excitatory connection strength JEE are always non-IS
in the biologically realistic activity regime and therefore ex-
hibit no paradoxical effects. In contrast, with E-to-E STD
and strong JEE , network models with a linear population-
averaged response function can undergo the transition from
IS to non-IS with increasing excitatory activity rE . Different
from linear networks, our model predicts that nonmono-
tonic transitions between non-IS and IS can be found in
supralinear networks. More specifically, supralinear networks
can switch from non-IS to IS, and then from IS to non-
IS with increasing rE . Although inhibition stabilization does
not imply the paradoxical effect in the presence of E-to-E
STD, the transition between paradoxically-responding and
nonparadoxically-responding regime is also nonmonotonic
with increasing rE in supralinear networks, whereas in linear
networks, only transitions from the paradoxically-responding

to the nonparadoxically-responding regime with increasing rE

is possible. Therefore, depending on the excitation-inhibition
balance, and the specific short term plasticity mechanisms
operating in different brain regions, our work proposes that
the circuits will exhibit different properties when interrogated
with common experimental techniques.

Second, in the presence of STF on E-to-E synapses or STP
on other synapses, our results demonstrate that inhibition sta-
bilization and the paradoxical effect imply each other. Linear
network models with JEE larger than one that have E-to-E
STF are always IS and thus exhibit the paradoxical effect. In
linear network models with STP on other synapses, activity
does not affect inhibition stabilization and the paradoxical
effect. In contrast, regardless of the strength of JEE , supralin-
ear networks with E-to-E STF or STP on other synapses can
switch from non-IS to IS with increasing rE . This transition
from non-IS and IS can be directly tested experimentally
by probing the paradoxical effect, because of the equiva-
lence of inhibition stabilization and the paradoxical effect
found in network models with E-to-E STF or STP on other
synapses.

Last, our analysis shows that in most cases substantially
altering either JEE or rE can switch the network operating
regime. Multiple factors can modify JEE and rE experimen-
tally. On a short timescale, the strength of sensory stimulation,
and behavioral states like arousal [40], attention [41], and
locomotion [42] can dramatically change activity levels rE .
Regime switching may therefore be experimentally observ-
able across different stimulation conditions and different
behavioral states. On a long timescale, JEE or rE can be mod-
ified by long term plasticity mechanisms [43,44]. In this case,
regime switching could be experimentally detectable across
different developmental stages.

Taken together, our theoretical framework provides a sys-
tematic analysis of how short-term synaptic plasticity and
response nonlinearities interact to determine the network op-
erating regime, revealing unexpected relationships and their
signatures as a guide for future experimental studies.

The code used for model simulations is available at GitHub
[45]. All simulation parameters are listed in Supplemental
Material.
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Regulation of circuit organization and function
through inhibitory synaptic plasticity

Yue Kris Wu ,1,2,3 Christoph Miehl ,1,2,3 and Julijana Gjorgjieva 1,2,*

Diverse inhibitory neurons in themammalian brain shape circuit connectivity and
dynamics throughmechanisms of synaptic plasticity. Inhibitory plasticity can es-
tablish excitation/inhibition (E/I) balance, control neuronal firing, and affect local
calcium concentration, hence regulating neuronal activity at the network, single
neuron, and dendritic level. Computational models can synthesize multiple ex-
perimental results and provide insight into how inhibitory plasticity controls cir-
cuit dynamics and sculpts connectivity by identifying phenomenological
learning rules amenable to mathematical analysis. We highlight recent studies
on the role of inhibitory plasticity in modulating excitatory plasticity, forming
structured networks underlying memory formation and recall, and implementing
adaptive phenomena and novelty detection. We conclude with experimental and
modeling progress on the role of interneuron-specific plasticity in circuit compu-
tation and context-dependent learning.

Inhibition throughout development and adulthood
Long-term synaptic plasticity is widely considered to underlie circuit assembly and connectivity
refinement during early postnatal development, as well as learning and memory in adulthood
[1]. Over the past few decades, extensive studies have characterized the plasticity of synapses
between excitatory neurons [2–5]. Consistent with Hebbian principles, coincident pre- and post-
synaptic activity potentiates synaptic strength, which enhances the correlation between pre- and
postsynaptic activity and further potentiates synaptic strength, potentially leading to runaway
synaptic growth and abnormal seizure-like activity [6]. To prevent excessive excitation and main-
tain stable activity levels, neural circuits employ various mechanisms to dynamically coordinate
changes in excitation and inhibition [7,8]. The modulation of inhibitory synapses onto excitatory
neurons, called inhibitory plasticity (see Glossary), is one such mechanism encountered in dif-
ferent regions of the mammalian brain [9–14] (Box 1). Yet, understanding inhibitory plasticity and
its functional implications in shaping network connectivity and dynamics remains challenging be-
cause of the different roles inhibitory plasticity might play, depending on the varying demands
across an animal’s lifetime, as well as the considerable anatomical, electrophysiological, and
functional diversity of interneurons, which can undergo different forms of plasticity [15–17].

During early development, it has long been thought that themain inhibitory neurotransmitter in the
adult, gamma-aminobutyric acid (GABA), is depolarizing [18,19]. The early excitatory action of
GABA has been implicated in the activity-dependent growth and differentiation of neurons and
the establishment of neural circuits [20,21]. However, while GABA depolarizes immature cortical
neurons in vivo, its action at the network level (at least in the neocortex) appears to be inhibitory
[22–24]. The maturation of GABAergic synaptic transmission triggers the onset of a critical period
in which sensory circuits are highly plastic and sensitive to perturbations [25]. During develop-
ment and early life, the plasticity of inhibitory GABAergic synapses interacts with excitatory
plasticity [10]. Multiple computational studies have demonstrated that this interaction shapes
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network structures and establishes the appropriate network connectivity driven by developmen-
tal patterns of spontaneous activity and sensory experience [26–28]. Following sensory depriva-
tion, especially during the critical period, inhibitory plasticity can regulate the balance of excitation
and inhibition (E/I balance) and contribute to firing rate homeostasis [29,30]. To adapt to more
complex environments, inhibitory plasticity continues to shape learning and network dynamics
throughout adulthood. For example, different interneuron subtypes and interneuron-specific
plasticity support diverse computations from context-dependent information processing to pre-
dictive coding [16,31–34]. Therefore, through plasticity, inhibition can adjust to the needs of the
organism at various stages from development to adulthood.

Here, we present recent experimental and theoretical advances on inhibitory plasticity and the
control it exerts on circuit connectivity and dynamics. We outline how inhibitory plasticity controls
network firing rates and correlations, as well as the plasticity of excitatory connections. We
discuss how the interaction of excitatory and inhibitory plasticity can influence the formation of

Box 1. Inhibitory plasticity in experiments and models

Inhibitory plasticity has been observed in different regions of the mammalian brain [9–12,35]. Experimentally, inhibitory
plasticity can be induced by concurrent presynaptic hyperpolarization and postsynaptic depolarization [16,36–39], for in-
stance, via high-frequency stimulation of input pathways [40,41] or pairing of pre- and postsynaptic spikes [16,36,42–44]
(see [13] for an extensive summary of experimental studies on inhibitory plasticity).

In computational models, inhibitory plasticity is implemented by phenomenological learning rules, which simplify the
underlying complex molecular and biochemical processes [13,14]. In these models, inhibitory synaptic change can
depend on firing rates, precise spike times, or membrane potential based on the induction protocol used experimentally
[45–49]. A commonly used inhibitory learning rule, which depends on spikes [also called inhibitory spike-timing-
dependent plasticity (iSTDP)], is the symmetric Hebbian learning rule (see Figure I in Box 1). It has a symmetric
window as a function of the time difference between pre- and postsynaptic spikes. Spikes near each other in time,
independent of their order, lead to inhibitory long-term potentiation (LTP) , whereas pre- and postsynaptic spikes far
from each other lead to inhibitory long-term depression (LTD) [45]. A similar symmetric iSTDP window has been found
experimentally in the auditory cortex [44], in the orbitofrontal cortex [50], and in the hippocampus [16]. To account for the
diversity of experimentally observed iSTDP windows, computational models have also investigated other learning window
shapes, including asymmetric Hebbian, where pre-post spike pairs lead to LTP and post-pre spike pairs lead to LTD
[51,52], as observed in entorhinal cortex [43]; asymmetric anti-Hebbian, where pre-post spike pairs lead to LTD and
post-pre spike pairs lead to LTP [52]; and symmetric anti-Hebbian window, where spikes near each other in time lead
to LTD, while spikes far from each other lead to LTP [53], as observed in hippocampus [36] (see Figure I in Box 1).

pre - I

post - E
Asymmetric anti-HebbianAsymmetric Hebbian Symmetric Hebbian Symmetric anti-Hebbian

 < 0

Depression
Potentiation
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Figure I. Different learning windows of inhibitory spike-timing-dependent plasticity. Inhibitory plasticity can be
parameterized into different idealized learning windows as a function of the timing difference between pre- and
postsynaptic spikes Δt, leading to either inhibitory long-term potentiation (ΔwEI > 0, green) or inhibitory long-term
depression (ΔwEI < 0, orange): asymmetric Hebbian [51,52], asymmetric anti-Hebbian [52], symmetric Hebbian [45],
and symmetric anti-Hebbian [53].
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Glossary
Anti-Hebbian learning rule: a learning
rule in which long-term depression is
induced by presynaptic followed by
postsynaptic spikes, the opposite of
Hebb’s principle.
AsymmetricHebbian learning rule: a
learning rule that is an asymmetric
function of the difference in spike times
of pre- and postsynaptic neurons. For
asymmetric learning rules, pre-post
spike pairs have the opposite impact on
the weight change to that of post-pre
spike pairs.
Disinhibition: loss or reduction of
inhibition. Disinhibition can be induced in
multiple ways, for example, via
neuromodulators that reduce GABA
release from inhibitory neurons onto
excitatory neurons, or via increasing
inhibition onto inhibitory neurons that
target excitatory neurons.
Excitatory plasticity: the plasticity of
synapses from an excitatory to another
excitatory neuron.
Gamma-aminobutyric acid (GABA):
a major inhibitory neurotransmitter in the
adult brain.
Hebbian learning rule: a learning rule
in which long-term potentiation is
induced by presynaptic followed by
postsynaptic spikes, in agreement with
Hebb’s principle.
Inhibition-stabilized network (ISN): a
network consisting of excitatory and
inhibitory neurons with strong recurrent
excitation, which is stabilized by strong
feedback inhibition generated in the
circuit.
Inhibitory plasticity: the plasticity of
synapses from an inhibitory to an
excitatory neuron.
Inhibitory spike-timing-dependent
plasticity (iSTDP): a process that
adjusts the (inhibitory) synaptic strength
based on the timing of presynaptic and
postsynaptic spikes.
Long-term depression (LTD): a
process involving the weakening of
synapses between neurons.
Long-term potentiation (LTP): a
process involving the
strengthening of synapses between
neurons.
Symmetric Hebbian learning rule: a
learning rule that is a symmetric function
of the difference in spike times of
pre- and postsynaptic neurons. For
symmetric learning rules, pre-post spike
pairs have the same impact on the
weight change to that of post-pre spike
pairs.



different network connectivity structures, including, but not limited to, receptive fields and assem-
blies, modulate these structures during learning and memory formation, and generate adapted
and novelty responses. Based on experimental evidence of different interneuron subtypes and
their connectivity profiles, we also present modeling studies that explore differences in the plasticity
at these synapses. Throughout, a picture emerges that highlights inhibition and inhibitory plasticity as
key factors that control circuit dynamics, ensure appropriate circuit function, and provide a substrate
for flexible and complex computations driving behavior throughout the entire life of an organism.

Inhibitory plasticity controls excitation at different spatiotemporal scales
To maintain stable activity levels, inhibitory plasticity can dynamically adjust the amount of inhibi-
tion at different spatial and temporal scales during both normal circuit operation and perturbation
(Figure 1). At the network level, inhibition is thought to maintain healthy firing rates to prevent run-
away dynamics leading to epileptic activity or decreases leading to complete silence (Figure 1A).
However, in heavily interconnected neural circuits, the relationship between inhibition and net-
work dynamics is more complicated. In such recurrently dominated networks, strong feedback
inhibition generated by the circuit is needed to balance strong recurrent excitation. Both theoret-
ical and experimental studies have put forward such inhibition stabilization as an essential prop-
erty of cortical networks [54,55]. Inhibition-stabilized networks (ISNs) can perform various
computations, including input amplification, response normalization, and network multistability
[56–58]. A signature of inhibition stabilization is widely considered to be the paradoxical effect,
whereby injecting excitatory currents into inhibitory neurons (e.g., via optogenetic stimulation of
inhibitory neurons) decreases inhibitory firing [59]. Several circuit aspects, including recurrent ex-
citatory-to-excitatory connection strengths and network activity, can dynamically shape inhibition
stabilization [57,60]. For example, in networks where neuronal dynamics are nonlinear, changing
the connection from inhibitory to excitatory neurons affects network activity and puts the network
in different inhibition-stabilized regimes, as evaluated by the presence of the paradoxical effect
(Figure 1B, [57,58,60]). Yet, detecting ISNs via the paradoxical effect is experimentally challenging
due to the sensitivity of optogenetic stimulation strength [61] and the complexity introduced by
multiple interneuron subtypes [62]. While inhibition stabilization is necessary for various computa-
tions, it is still unclear how it can be maintained in the presence of synaptic plasticity, for example,
during learning, though recent work addresses this question in the context of balanced excitatory
and inhibitory receptive field formation [63].

More broadly, inhibitory plasticity can operate as a homeostatic process and control network
activity following perturbation [64,65]. A classical paradigm to explore this process experimentally
is elevating or suppressing the activity of cultured neurons, which triggers the potentiation or
depression of spontaneous inhibitory synaptic currents into the perturbed neurons [66,67]. In
the living animal, a perturbation may involve sensory deprivation, for example, the removal of
whiskers in the somatosensory system or the closure of an eye in the visual system [68,69].
Here, inhibitory plasticity could be involved both during the initial circuit response leading to the
decrease in network firing rates, as well as later on during their recovery. Initially, the strong
potentiation of recurrent inhibition onto excitatory neurons could contribute to the early decrease
of network firing rates [30,70,71]. The subsequent gradual upregulation of firing rates could be
triggered by the loss of inhibitory synapses onto excitatory neurons [72,73], or the decreased
spontaneous inhibitory current frequency [74,75] and amplitude [64,68]. In sum, inhibitory plasticity
could act as a common driver behind the homeostatic regulation of network activity immediately
after or during a prolonged period following sensory perturbation across sensory cortices.

How could inhibitory plasticity achieve this homeostatic regulation of excitatory firing rates? One
answer lies in the concept of E/I balance, which inhibitory plasticity can establish and maintain at

Trends in Neurosciences
OPEN ACCESS

886 Trends in Neurosciences, December 2022, Vol. 45, No. 12



the network, cellular, and subcellular level, with different computational implications for circuit pro-
cessing (Box 2) [29,74–78]. E/I balance is typically quantified by the E/I ratio, defined as the ratio
of excitatory to inhibitory input currents. The E/I ratio can in return also affect the amount of inhib-
itory plasticity, with high initial E/I ratios resulting in stronger inhibitory potentiation, as shown in the
mouse auditory cortex [44,79].

Various inhibitory plasticity rules have been proposed to regulate E/I balance in computational
models [45,51,52,80–82]. The best-studied model of inhibitory plasticity, which has a symmetric
Hebbian learning window (see Figure I in Box 1), can establish a precise E/I balance at the single-
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Figure 1. Inhibitory control of excitation at different scales. (A) At the network level (top), inhibition (Inh) affects
excitatory population activity (bottom). Excessive inhibition can silence excitatory activity, insufficient inhibition can lead to
the explosion of excitatory activity, while the appropriate amount of inhibition stabilizes network dynamics and maintains
excitatory activity at a modest level. (B) Left: Assessing inhibition stabilization via the paradoxical effect by perturbing the
inhibitory population. Middle: For weak inhibitory weights (wEI), network activity is high and the network is in the inhibition-
stabilized network (ISN) regime. Injecting additional excitatory currents into inhibitory neurons (‘perturb Inh’) leads to a
paradoxical decrease of the inhibitory population response. Right: For strong wEI, network activity is low and the network
is in the non-ISN regime. Injecting additional excitatory currents into inhibitory neurons (‘perturb Inh’) does not generate a
paradoxical response. (C)At the single neuron level (top), inhibition affects somatic firing (bottom). Excessive inhibition
generates very little spiking, insufficient inhibition leads to high levels of spiking, while appropriate amount of inhibition
leads to appropriate spiking levels. (D) At the dendritic level (top), inhibition influences the local calcium level (bottom).
Excessive inhibition leads to extremely low calcium level locally on the dendrite, insufficient inhibition leads to extraordinarily
high local calcium level, while the appropriate amount of inhibition leads to an appropriate local calcium level.

Trends in Neurosciences
OPEN ACCESS

Trends in Neurosciences, December 2022, Vol. 45, No. 12 887



neuron level on a millisecond timescale [45,83]. The learning rule achieves the balance by a neg-
ative feedback mechanism, which increases inhibitory synaptic strength for high postsynaptic fir-
ing rates and decreases inhibitory strength for low firing rates to counteract deviations from a
target firing rate (Figure 1C), therefore maintaining a firing rate set-point for each individual neuron.
How such a negative feedback mechanism might be implemented biologically remains an open
question (see [14] for a discussion of the molecular mechanisms underlying inhibitory plasticity).
Due to the resulting robust homeostatic properties, this rule is commonly used in recurrent net-
work models [28,45]. Computational work has proposed several alternatives, including an
input-dependent inhibitory plasticity rule [84], or a voltage-dependent plasticity rule [49], both of
which can achieve firing rate heterogeneity as observed experimentally [69,85]. One caveat of
all these inhibitory plasticity rules is the mismatch between timescales assumed in models and
timescales measured in experiments. Most computational models rely on fast inhibitory plasticity

Box 2. Different types of E/I balance

Neural circuits are known to maintain E/I balance [7,10]. E/I balance generally refers to the coregulation of excitation and
inhibition and is typically measured by the ratio of excitatory and inhibitory inputs [10]. When excitation and inhibition are
balanced at the population level but not necessarily at the single neuron level, the E/I balance is known as global balance
[95,102]. Global balance can be achieved via input-dependent inhibitory plasticity rules [84]. If excitatory and inhibitory in-
put currents onto a single neuron are balanced, or co-tuned, across the stimulus space, this is referred to as detailed bal-
ance [76–78,103]. Detailed balance can be established via inhibitory plasticity rules, which maintain a target firing rate at
the single neuron level [45]. Additionally, when excitatory and inhibitory inputs are balanced also on amillisecond timescale,
as observed experimentally [104,105], the E/I balance is known as tight balance, and loose balance otherwise [106]. The
coexistence of tight and detailed balance is referred to as precise E/I balance and has been observed in several circuits,
such as the zebrafish homolog of olfactory cortex [107] andmammalian hippocampus [108], where it is involved in efficient
memory storage, millisecond-range input gating, and subthreshold gain control.
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Figure I. Different types of excitation/inhibition (E/I) balance. (A) Global balance is characterized by a high degree of
correlation between excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) at the
population level but a low degree of correlation for individual neurons across stimuli. Each dot represents a neuron–
stimulus pair. Data for different neurons are marked in different colors. (B) Detailed balance is characterized by a high
degree of correlation between EPSCs and IPSCs at the individual neuron level across stimuli. (C) Loose balance is
characterized by a low degree of correlation between EPSCs and IPSCs over time. (D) Tight balance is characterized by
tightly correlated EPSCs and IPSCs on a millisecond timescale. Panels (A) and (B) are adapted from [107].
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to guarantee homeostasis and establish an E/I balance [48,65]; however, it takes several tens of
minutes to reach a stable baseline of inhibitory synaptic strength following plasticity induction in
the mouse auditory cortex [44,76,78].

Recent experimental evidence suggests that E/I balance can even extend to local dendritic
segments of single neurons [86] (Figure 1D). Inhibitory synapses form and change in strength
to complement the dendritic organization of excitatory synaptic inputs, which often form local
clusters based on coactivation [87,88], to regulate excitatory synaptic dynamics and plasticity
[86,89,90]. For example, in the hippocampus, stimulating clustered excitatory synapses has
been shown to trigger the de novo formation of inhibitory synapses [91], and a push–pull plasticity
mechanism has been found to maintain the balance of local dendritic excitatory and inhibitory
strength [92]. Also, inhibitory synapses in the neocortex remain stable if located in the proximity
of excitatory synapses during normal visual experience [72]. Thus, while the presence of E/I
balance on local stretches of dendrites is supported by experimental data, how it emerges during
early postnatal development and how it is maintained during learning and perturbations remains
an open question.

Besides regulating E/I balance and firing rates, inhibitory plasticity plays a more nuanced role in
controlling the firing patterns of single neurons. By regulating the precise arrival of inhibitory inputs
relative to excitatory inputs, experiments in the hippocampus have showed that inhibition can
close or open the time window in which a spike is triggered [93]. Inhibitory plasticity can therefore
dramatically affect the spike generation properties and spiking statistics of excitatory neurons,
including neuronal input–output functions [94], pairwise spike correlations and spiking regularity
[95,96], and criticality [97,98]. Both experimental and modeling work have showed that potenti-
ating inhibition can decorrelate network activity [24,99,100] and switch network firing regimes
[95] from oscillatory states supporting memory consolidation [101] to asynchronous irregular
states supporting high memory capacity, despite the presence of noise [81]. Such switching
could occur at different behavioral state transitions (e.g., from sleep to wake). Yet, direct evidence
of inhibitory plasticity contributing to a dynamical switching between network firing regimes
remains to be examined experimentally.

Inhibitory control of excitatory plasticity
Experimental evidence has revealed that excitatory plasticity is jointly determined by factors like pre-
and postsynaptic firing rates [2,4], spike timing [3,4], and dendritic calcium levels [5]. Since inhibition
can influence all of these factors, it naturally also affects excitatory plasticity [12,109–111].

In experiments, the frequency of presynaptic stimulation can determine the sign of excitatory
synaptic plasticity, with low-frequency stimulation favoring excitatory LTDand high-frequency
stimulation inducing excitatory LTP [2]. Decreasing inhibition decreases the excitatory LTD/LTP
threshold, making LTP induction easier, while increasing inhibition increases the LTD/LTP thresh-
old and makes LTP induction more difficult [112] (Figure 2A). Based on these results, computa-
tional studies have demonstrated that a change of the inhibitory input (e.g., via inhibitory
plasticity) can shift the threshold between LTP and LTD [47,48]. By keeping the firing rates exactly
at the LTD/LTP threshold, inhibitory plasticity has been suggested as a mechanism to effectively
switch excitatory plasticity off [48] (Figure 2A). Any deviation of the firing rates (e.g., via
disinhibition) can then turn on excitatory plasticity. Such gating of excitatory plasticity has also
been modeled at the level of individual inhibitory inputs on dendritic trees by affecting the
amplitude of backpropagating action potentials and calcium spikes [113,114] (Figure 2B).
Therefore, changes in inhibition can switch excitatory plasticity on or off, regulate how much
plasticity is induced, or even dictate the sign of excitatory plasticity [38,115].
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Multiple experimental studies have suggested disinhibition as a mechanism for the gating of
excitatory plasticity [116]. Disinhibition can be induced by neuromodulators, including but not
limited to acetylcholine, noradrenalin, and oxytocin [10,76], or by disinhibitory pathways involving
multiple interneuron subtypes [117,118] (Box 3). For instance, elevated activity in vasoactive
intestinal peptide (VIP)-expressing inhibitory neurons receiving top-down inputs can suppress
activity in somatostatin (SST)-expressing inhibitory neurons and, as a result, disinhibit excitatory
neurons and control excitatory plasticity [111,117–120].

At the dendritic level, inhibitory input onto the dendrite can affect postsynaptic calcium concen-
tration at nearby excitatory spines [111,121] and, therefore, influence local excitatory plasticity
[122,123]. Computational models have proposed that the dynamic local balancing of excitation
by inhibition can change the shape of the learning rule for excitatory synapses [124–126]. For
example, blocking inhibitory inputs can flip the spike-timing-dependency of excitatory plasticity
[125], consistent with previous experimental findings [115] (Figure 2C). Furthermore, local
changes in excitatory and inhibitory synapses are coordinated with each other via crosstalk,
giving rise to the codependence of excitatory and inhibitory plasticity [7,8]. While these works
clearly show that inhibitory synapses can control excitatory plasticity at multiple spatial scales,
how this control is used during learning and its impact on behavior remains to be explored.

Inhibitory plasticity in the formation of structured networks and resulting
computation
Non-random structure is a hallmark of biological networks. Multiple computational studies have
demonstrated that various network structures can form from the coordinated interaction between
excitatory and inhibitory plasticity. This includes the emergence of receptive fields [45,47,48],
place fields [27], and grid fields [27] through the refinement of feedforward excitatory and inhibi-
tory connectivity, typically in settings with a single postsynaptic neuron based on input statistics
[51–53]. In recurrent circuits, inhibitory plasticity also shapes neuronal assemblies [26,48]
and chain-like structure [127,128], as well as ensuing tuning diversity and efficient sensory
representation [100].
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Figure 2. Inhibitory control of excitatory plasticity. (A) The level of inhibition (Inh), modulated by inhibitory weights (wEI) or
inhibitory firing rates, controls excitatory plasticity (ΔwEE). Higher (lower) level of inhibition leads to higher (lower) long-term
depression (LTD)/long-term potentiation (LTP) threshold of excitatory plasticity as a function of the presynaptic stimulation
frequency. Different dots represent corresponding LTD/LTP thresholds that separate the depression (ΔwEE< 0) and
potentiation (ΔwEE> 0) of excitatory synapses onto excitatory neurons. Different grays represent different levels of
inhibition. Panel (A) is adapted from [48,112]. (B) Strong inhibitory input can switch excitatory plasticity on or off via gating
of a backpropagating action potential (bAP). In the absence of inhibition, the bAP propagates into the dendrite and spike-
timing-dependent plasticity at the excitatory synapse is induced (green). By contrast, in the presence of inhibition, the bAP
is suppressed and no synaptic plasticity is induced (purple). Panel (B) is adapted from [113]. C. (C) Local inhibitory input
can affect calcium concentration in the dendritic spine and flip the excitatory spike-timing-dependent plasticity. Panel (C) is
adapted from [115,125].
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Strongly interconnected groups of excitatory neurons form assemblies, which have been
proposed to be the basis of associative memory [129,130]. Inhibition can influence excitatory
assemblies in two distinct ways. First, inhibitory neurons may be nonspecific and nonpreferentially
target different excitatory assemblies, known as ‘blanket of inhibition’ [131] (Figure 3A). Second,
inhibition may be stimulus-specific if distinct inhibitory neurons receive stimulus-specific feedforward
drive, or if excitatory and inhibitory neurons with a similar stimulus tuning connect more strongly and
form E/I assemblies, known as stimulus-specific feedback inhibition [132] (Figure 3B).

While many mechanisms are involved in the formation of excitatory assemblies [133], computa-
tional models have proposed an important role of inhibitory plasticity in preventing runaway exci-
tation that results from the assemblies’ repeated coactivation and preventing winner-take-all
dynamics whereby a single assembly is always active [26,28,48]. Specific to forming E/I assem-
blies, both inhibitory synapses onto excitatory neurons and excitatory synapses onto inhibitory
neurons need to be plastic in the recurrent circuit [63,134]. The resulting co-tuned feedback inhi-
bition in networks with E/I assemblies can support network stability [60,132], changes in neuronal
variability [135], and decision making in the presence of noise [136].

Irrespective of whether inhibition is unspecific or specific, modeling studies suggest that the
plasticity of lateral inhibitory connections across assemblies can ensure that different memories
encoded by different assemblies are easily discriminated [50,137]. Concurrently, multiple
experimental studies have found evidence for the role of inhibition in memory recall. For instance,
inactive memories can be unmasked by suppressing inhibitory neurons [138]. Using E/I
assemblies as a model for associative memories, the inactive memories seem to remain in the
quiescent state until being recalled by disinhibition [138,139]. Recent work in the human
neocortex has further suggested that specific inhibition can avoid inappropriate interference of
overlapping memories and permit continual learning [140,141].

The activation of E/I assemblies shaped by inhibitory plasticity has also been hypothesized to
underlie the adaptation of behavioral responses to repeated stimulation (i.e., ‘habituation’)
[139,142]. The ability to adapt to repeated stimuli, detect unexpected stimuli in the environment,
and identify their relevance to execute appropriate behavioral reactions is important for survival.
Inhibitory plasticity has been suggested to be important in shaping adaptation to repeated re-
sponses also at the cellular level in the mouse auditory cortex [143]. A recent computational
study has provided a mechanistic insight on how inhibitory plasticity can shape the responses
to repeated and novel stimuli [144]. While the repeated presentation of a stimulus evokes initially
high activity of the excitatory assembly representing the stimulus, the subsequent increase of

Box 3. Interneuron diversity

Interneurons exhibit high anatomical, electrophysiological, and functional diversity [157,158]. In the mouse neocortex,
three major classes of interneurons expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide
(VIP) constitute more than 80% of GABAergic interneurons [15]. Distinct interneuron subtypes target different domains
of pyramidal cells. More specifically, PV neurons preferentially target perisomatic regions of pyramidal neurons, whereas
SST neurons target distal dendritic regions of pyramidal neurons that also receive inhibition from neuron-derived
neurotrophic factor (NDNF)-expressing interneurons in layer 1 [15,159].

The multiplicity of interneuron subtypes is implicated in diverse computations and cognitive functions, such as locomotion-
induced gain modulation [160], selective attention [127], context-dependent modulation [31,33], predictive processing
[32,161], and gating of synaptic plasticity [117,120]. For instance, long-range cortico-cortical projections activating
upstream VIP neurons in the primary visual cortex exert spatially specific top-down modulation of visual processing,
resembling selective attention [127]. In predictive processing framework, mismatches between sensory inputs and
internally generated predictive signals evoke the activity of prediction-error neurons [32]. In the layer 2/3 of the primary
visual cortex, prediction-error neurons balance inhibitory visual input mediated by SST against excitatory motor-related
predictive input targeting VIP [161].
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inhibitory synaptic strengths suppresses the ensuing responses upon stimulus repetition. By
contrast, a novel stimulus evokes a high response of its corresponding excitatory assembly
since the inhibitory synapses onto the assembly do not potentiate ( Figure 3C). While both blanket
and stimulus-specific inhibition can capture adapted and elevated responses to repeated and
novel stimuli, stimulus-specific inhibition is necessary for other adaptive phenomena [144]. This
includes stimulus-specific adaptation, whereby excitatory neurons that are equally driven by
two stimuli exhibit a higher response to the rarely presented stimulus, but a lower response to
the frequently presented stimulus [145].

Interneuron-specific plasticity and its functional implications
Inhibitory neurons can be divided into multiple distinct subtypes based on their electrophysiolog-
ical, morphological, and transcriptomic properties (Box 3). Accumulating evidence also suggests
that synapses from and to different interneuron subtypes undergo distinct forms of synaptic plas-
ticity [16,17,37,146,147]. Computational models have capitalized on these experimental results
of interneuron-specific plasticity and explored its role in different settings. In feedforward net-
works, modeling work has showed that the receptive field of a neuron may not be solely deter-
mined by the feedforward excitatory weight profiles, but is heavily modulated by inhibition from
different pathways [53]. By exploring several candidate plasticity rules for the different inhibitory
pathways, the authors found that the neuron’s receptive field strongly depends on the
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Figure 3. Unspecific versus specific inhibitory connectivity and the generation of adaptive and novelty
responses. (A) Network with unspecific inhibition, in which different excitatory assemblies are inhibited by a single
inhibitory population. (B) Network with stimulus-specific feedback inhibition, in which distinct excitatory assemblies are
inhibited by non-overlapping inhibitory subpopulations. (C)The repeated and novel stimuli activate distinct excitatory
assemblies, E1 and E2, respectively (activation marked with bold circles). Repeated presentation of the same stimulus
leads to an increase of specific inhibitory synaptic strength onto the E1 assembly and a reduction of the evoked response
(blue), while presenting the novel stimulus triggers a high response due to the weak inhibitory synaptic strength onto the
E2 assembly (green).
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modulatory state of inhibition as an example of context-dependence [53].

Recent studies in the rodent hippocampus have identified learning rules describing the LTD of
parvalbumin (PV) synapses and the LTP of SST synapses onto excitatory pyramidal neurons in
CA1 during physiological activity patterns [16]. As PV and SST mainly target perisomatic regions
receiving inputs from CA3 and distal dendritic regions receiving inputs from pyramidal neurons in
entorhinal cortex, respectively, both experiments and modeling suggest that interneuron-specific
plasticity might prioritize inputs from one pathway over another [16] (Figure 4A). As stronger inhi-
bition resulting from the potentiation of SST synapses onto excitatory neurons can limit excitatory
plasticity [120], modeling has suggested that interneuron-specific plasticity can promote the
stability of place cells [16]. Recent experiments in CA1 suggest that even synapses from different
interneurons targeting the same perisomatic regions of excitatory neurons can undergo opposite
changes when animals explore novel environments [17] (Figure 4B). Since these two types of
interneurons preferentially receiving different inputs fire at different phases of network theta rhythms
associated with memory encoding and retrieval [148], the opposite regulation of interneuron-
specific plasticity may impact memory formation and maintenance. Future computational models
could help uncover how the opposing plasticity mechanisms support long-term memories.

In addition to hippocampus, interneuron-specific plasticity rules based on spike timing have been
reported in layer 2/3 of mouse orbitofrontal cortex and implicated in assembly formation in
recurrent network models [50]. More specifically, PV synapses onto excitatory neurons follow a
symmetric Hebbian learning rule and appear to be important for network stability; by contrast,
SST synapses onto excitatory neurons follow an asymmetric Hebbian learning rule and appear
to enhance competition between assemblies [50] (Box 1). Although a learning rule has not yet
been characterized for neuron-derived neurotrophic factor (NDNF)-expressing interneurons,
experimental studies have revealed that inhibition mediated by NDNF interneurons in layer 1 of the
auditory cortex changes after associative auditory fear conditioning , and have suggested that
NDNF interneurons and their plasticity are involved in the formation of associative memories [149].

While significantly less studied, recent work has begun to explore synapses between inhibitory
neurons, including their impact on E/I balance in recent connectomic studies [150], on generating
long neuronal timescales that support working memory, and on memory storage in computa-
tional models [151,152]. Yet, little is known about the plasticity of these inhibitory-to-inhibitory
connections experimentally. Computational models here play an important role in revealing the
functional consequences of this type of plasticity. For instance, a two-stage model showed that
an initial stage of SST to PV plasticity guides the subsequent plasticity of excitatory-to-excitatory
connections in a recurrent network underlying visual stimulus selectivity [153]. Recent modeling
work has also begun investigating recurrent network models where multiple synapse types are
simultaneously plastic and found that experimentally observed dynamics and computations
can emerge from the complex interplay of many plasticity mechanisms. Given the high-
dimensional space of learning rule parameters, when such models succeed in finding stable
regimes, they can provide predictions for the learning mechanisms in real biological circuits.
Deriving learning rules via optimizing a desired function has provided a new promising
approach to study plasticity [154,155]. In an elegant example, recent studies derived plasticity
rules from the perspective of optimizing a loss function to achieve firing rate set-points; the
emergent networks could then generate self-sustained, inhibition-stabilized dynamics [156] and
stimulus-specific feedback inhibition [134]. Even without deriving novel learning rules, combining
classical Hebbian plasticity with synapse-type-specific competition for synaptic resources can
yield novel dynamics such as the development of stimulus selectivity, E/I balance, decorrelated
neural activity, assembly structures, and response normalization [63].
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Concluding remarks and future perspectives
Over the past two decades, our understanding of the inhibitory control of circuit organization and
dynamics, as well as the potential to modulate this control via plastic inhibition, has significantly
grown. Inhibitory synapses in the brain are highly dynamic and regulated by various plasticity
mechanisms, including short-term plasticity operating at the timescale of milliseconds to seconds
[162] as well as long-term plasticity acting at the timescale of minutes to hours [44]. Here, we
summarized studies on the long-term plasticity of inhibitory-to-excitatory synapses, referred to
as inhibitory plasticity. As discussed in this review, abundant evidence suggests that inhibitory
plasticity is important for establishing and maintaining E/I balance, achieving firing rate homeosta-
sis, controlling excitatory plasticity, and shaping network connectivity throughout the entire life of an
organism. Nonetheless, it remains unclear if the learning rules that characterize inhibitory plasticity
in development are the same as those operating in adulthood (see Outstanding questions).
Complementary to the growing number of experimental studies on inhibitory plasticity, theoretical
and computational approaches have played an important role in synthesizing the available data to
reveal how inhibition regulates various aspects of circuit function. This has generated mechanistic
insights into the function of inhibitory plasticity at several spatial scales, from the local dendritic
regulation of E/I balance, to the cellular control of spiking properties, and the maintenance of stable
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Figure 4. Interneuron-specific plasticity. (A) Inhibitory synapses from parvalbumin (PV)- (red) and somatostatin (SST)-
(orange) expressing neurons onto hippocampal CA1 pyramidal neurons (blue) are weakened and enhanced, respectively,
during physiological firing patterns [16]. This interneuron-specific plasticity can prioritize proximal input from CA3 over
distal input from entorhinal cortex. (B) Perisomatic inhibitory synapses from PV- (red) and cholecystokinin (CCK)-
expressing (brown) neurons onto recently activated hippocampal CA1 pyramidal neurons (blue) undergo long-term
potentiation and long-term depression, respectively when animals are engaged in novel environments [17].
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Outstanding questions
Neuronal activity during development
is typically generated spontaneously
in the absence of sensory experience.
This activity operates on much slower
timescales (hundreds of milliseconds)
compared with the sensory-driven
activity patterns (few to tens of
milliseconds) in adulthood. Do the
activity-dependent learning rules that
characterize inhibitory plasticity
integrate activity at different timescales
in development and adulthood?

The phenomenological learning rules
that determine how inhibitory
plasticity depends on rates and
spike timing can be modulated by
various external factors. How do
different neuromodulators, behavioral
states, and environmental perturbations
affect inhibitory plasticity rules?

How are phenomenological descriptions
of inhibitory plasticity implemented with
the biological machinery of molecular
interactions?

Distinct forms of E/I balance might be
beneficial for different demands in
development versus adulthood. How
are different types of E/I balance
dynamically regulated by inhibitory
plasticity over multiple timescales to
serve specific goals?

E/I balance also exists at different
spatial scales. Are there shared
principles underlying the establishment
of E/I balance across these different
scales? What are the functional
implications of breaking E/I balance at
some spatial scales but not others?

Interneurons come in diverse subtypes,
receive inputs from different pathways,
and target excitatory neurons in
different locations (e.g., cell body
versus dendrite). This diversity is also
reflected in the types of plasticity rules
experienced at the synapses. How
can interneuron-specific plasticity rules
be described as a function of firing
rates, spike timing, and calcium level?

Inhibitory plasticity rules might also
differ across brain regions. How do
different brain regions coordinate the
potentially different forms of inhibitory
plasticity they express to maintain
biologically reasonable activity levels
and process information?



activity patterns and connectivity structures at the network level. At the same time, we have
highlighted that inhibitory control also occurs at multiple temporal scales from the regulation of
fast spiking to the slower calcium dynamics and even slower timescales at which measurable
changes in synaptic strength can be observed.

Despite this progress, many open challenges remain due to the high diversity of inhibitory
neurons and the interneuron-specific plasticity at different synapse types. Experimentally, the
development of transgenic and recording techniques opens new possibilities to record activity
from multiple interneuron subtypes simultaneously and probe the rules that govern synaptic
plasticity. Concurrently, computational models and theories are becoming paramount. First, they
are essential to understand the complex interactions of different plasticity mechanisms, especially
in highly recurrent circuits with non-intuitive dynamics. Second, models can explore candidate
plasticity mechanisms and study their functional implications. Last, theoretical work also enables
the exploration of more abstract concepts, like inhibition-stabilization, as general frameworks for
circuit processing, which can be established and modulated through inhibitory plasticity.
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Nonlinear transient amplification in 
recurrent neural networks with short- 
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Abstract To rapidly process information, neural circuits have to amplify specific activity patterns 
transiently. How the brain performs this nonlinear operation remains elusive. Hebbian assemblies are 
one possibility whereby strong recurrent excitatory connections boost neuronal activity. However, 
such Hebbian amplification is often associated with dynamical slowing of network dynamics, non- 
transient attractor states, and pathological run- away activity. Feedback inhibition can alleviate these 
effects but typically linearizes responses and reduces amplification gain. Here, we study nonlinear 
transient amplification (NTA), a plausible alternative mechanism that reconciles strong recurrent 
excitation with rapid amplification while avoiding the above issues. NTA has two distinct temporal 
phases. Initially, positive feedback excitation selectively amplifies inputs that exceed a critical 
threshold. Subsequently, short- term plasticity quenches the run- away dynamics into an inhibition- 
stabilized network state. By characterizing NTA in supralinear network models, we establish that the 
resulting onset transients are stimulus selective and well- suited for speedy information processing. 
Further, we find that excitatory- inhibitory co- tuning widens the parameter regime in which NTA is 
possible in the absence of persistent activity. In summary, NTA provides a parsimonious explanation 
for how excitatory- inhibitory co- tuning and short- term plasticity collaborate in recurrent networks to 
achieve transient amplification.

Editor's evaluation
Many brain circuits, particularly those found in mammalian sensory cortices, need to respond rapidly 
to stimuli while at the same time avoiding pathological, runaway excitation. Over several years, 
many theoretical studies have attempted to explain how cortical circuits achieve these goals through 
interactions between inhibitory and excitatory cells. This study adds to this literature by showing 
how synaptic short- term depression can stabilise strong positive feedback in a circuit under a variety 
of plausible scenarios, allowing strong, rapid and stimulus- specific responses.

Introduction
Perception in the brain is reliable and strikingly fast. Recognizing a familiar face or locating an animal 
in a picture only takes a split second (Thorpe et al., 1996). This pace of processing is truly remarkable 
since it involves several recurrently connected brain areas each of which has to selectively amplify or 
suppress specific signals before propagating them further. This processing is mediated through circuits 
with several intriguing properties. First, excitatory- inhibitory (EI) currents into individual neurons are 
commonly correlated in time and co- tuned in stimulus space (Wehr and Zador, 2003; Froemke et al., 

ReSeaRch aRTIcLe

*For correspondence: 
friedemann.zenke@fmi.ch

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 30

Preprinted: 10 June 2021
Received: 14 June 2021
Accepted: 10 December 2021
Published: 13 December 2021

Reviewing Editor: Timothy 
O'Leary, University of 
Cambridge, United Kingdom

   Copyright Wu and Zenke. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.



 Research article Neuroscience

Wu and Zenke. eLife 2021;10:e71263. DOI: https://doi.org/10.7554/eLife.71263  2 of 43

2007; Okun and Lampl, 2008; Hennequin et al., 2017; Rupprecht and Friedrich, 2018; Znamenskiy 
et al., 2018). Second, neural responses to stimulation are shaped through diverse forms of short- term 
plasticity (STP) (Tsodyks and Markram, 1997; Markram et al., 1998; Zucker and Regehr, 2002; Pala 
and Petersen, 2015). Finally, mounting evidence suggests that amplification rests on neuronal ensem-
bles with strong recurrent excitation (Marshel et al., 2019; Peron et al., 2020), whereby excitatory 
neurons with similar tuning preferentially form reciprocal connections (Ko et al., 2011; Cossell et al., 
2015). Such predominantly symmetric connectivity between excitatory cells is consistent with the notion 
of Hebbian cell assemblies (Hebb, 1949), which are considered an essential component of neural circuits 
and the putative basis of associative memory (Harris, 2005; Josselyn and Tonegawa, 2020). Compu-
tationally, Hebbian cell assemblies can amplify specific activity patterns through positive feedback, also 
referred to as Hebbian amplification. Based on these principles, several studies have shown that Hebbian 
amplification can drive persistent activity that outlasts a preceding stimulus (Hopfield, 1982; Amit and 
Brunel, 1997; Yakovlev et al., 1998; Wong and Wang, 2006; Zenke et al., 2015; Gillary et al., 2017), 
comparable to selective delay activity observed in the prefrontal cortex when animals are engaged in 
working memory tasks (Funahashi et al., 1989; Romo et al., 1999).

However, in most brain areas, evoked responses are transient and sensory neurons typically exhibit 
pronounced stimulus onset responses, after which the circuit dynamics settle into a low- activity 
steady- state even when the stimulus is still present (DeWeese et  al., 2003; Mazor and Laurent, 
2005; Bolding and Franks, 2018). Preventing run- away excitation and multi- stable attractor dynamics 
in recurrent networks requires powerful and often finely tuned feedback inhibition resulting in EI 
balance (Amit and Brunel, 1997; Compte et al., 2000; Litwin- Kumar and Doiron, 2012; Ponce- 
Alvarez et al., 2013; Mazzucato et al., 2019), However, strong feedback inhibition tends to linearize 
steady- state activity (van Vreeswijk and Sompolinsky, 1996; Baker et al., 2020). Murphy and Miller, 
2009 proposed balanced amplification which reconciles transient amplification with strong recurrent 
excitation by tightly balancing recurrent excitation with strong feedback inhibition (Goldman, 2009; 
Hennequin et al., 2012; Hennequin et al., 2014; Bondanelli and Ostojic, 2020; Gillett et al., 2020). 
Importantly, balanced amplification was formulated for linear network models of excitatory and inhib-
itory neurons. Due to linearity, it intrinsically lacks the ability to nonlinearly amplify stimuli which limits 
its capabilities for pattern completion and pattern separation. Further, how balanced amplification 
relates to nonlinear neuronal activation functions and nonlinear synaptic transmission as, for instance, 
mediated by STP (Tsodyks and Markram, 1997; Markram et al., 1998; Zucker and Regehr, 2002; 
Pala and Petersen, 2015), remains elusive. This begs the question of whether there are alterna-
tive nonlinear amplification mechanisms and how they relate to existing theories of recurrent neural 
network processing.

Here, we address this question by studying an alternative mechanism for the emergence of tran-
sient dynamics that relies on recurrent excitation, supralinear neuronal activation functions, and STP. 
Specifically, we build on the notion of ensemble synchronization in recurrent networks with STP (Loebel 
and Tsodyks, 2002; Loebel et al., 2007) and study this phenomenon in analytically tractable network 
models with rectified quadratic activation functions (Ahmadian et  al., 2013; Rubin et  al., 2015; 
Hennequin et al., 2018; Kraynyukova and Tchumatchenko, 2018) and STP. We first characterize the 
conditions under which individual neuronal ensembles with supralinear activation functions and recur-
rent excitatory connectivity succumb to explosive run- away activity in response to external stimulation. 
We then show how STP effectively mitigates this instability by re- stabilizing ensemble dynamics in an 
inhibition- stabilized network (ISN) state, but only after generating a pronounced stimulus- triggered 
onset transient. We call this mechanism NTA and show that it yields selective onset responses that 
carry more relevant stimulus information than the subsequent steady- state. Finally, we characterize 
the functional benefits of inhibitory co- tuning, a feature that is widely observed in the brain (Wehr and 
Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich, 2018) and 
readily emerges in computational models endowed with activity- dependent plasticity of inhibitory 
synapses (Vogels et al., 2011). We find that co- tuning prevents persistent attractor states but does 
not preclude NTA from occurring. Importantly, NTA purports that, following transient amplification, 
neuronal ensembles settle into a stable ISN state, consistent with recent studies suggesting that inhi-
bition stabilization is a ubiquitous feature of cortical networks (Sanzeni et al., 2020). In summary, our 
work indicates that NTA is ideally suited to amplify stimuli rapidly through the interaction of strong 
recurrent excitation with STP.
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Results
To understand the emergence of transient responses in recurrent neural networks, we studied rate- 
based population models with a supralinear, power law input- output function (Figure  1A and B; 
Ahmadian et al., 2013; Hennequin et al., 2018), which captures essential aspects of neuronal acti-
vation (Priebe et al., 2004), while also being analytically tractable. We first considered an isolated 
neuronal ensemble consisting of one excitatory (E) and one inhibitory (I) population (Figure 1A).

The dynamics of this network are given by

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+
,
  

(1)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+
,
  

(2)

where  rE  and  rI   are the firing rates of the excitatory and inhibitory population,  τE  and  τI   represent 
the corresponding time constants,  JXY   denotes the synaptic strength from the population  Y   to the 
population  X  , where   X, Y ∈ {E, I} ,  gE  and  gI   are the external inputs to the respective populations. 
Finally,  αE  and  αI  , the exponents of the respective input- output functions, are fixed at two unless 
mentioned otherwise. For ease of notation, we further define the weight matrix  J  of the compound 
system as follows:

 

J =


JEE −JEI

JIE −JII


 .

  
(3)

Figure 1. Neuronal ensembles nonlinearly amplify inputs above a critical threshold. (A) Schematic of the recurrent ensemble model consisting of 
an excitatory (blue) and an inhibitory population (red). (B) Supralinear input- output function given by a rectified power law with exponent  α = 2 . 
(C) Firing rates of the excitatory (blue) and inhibitory population (red) in response to external stimulation during the interval from 2 to 4  s (gray bar). 
The stimulation was implemented by temporarily increasing the input  gE . (D) Phase portrait of the system before stimulation (left; C orange) and 
during stimulation (right; C green). (E) Characteristic function  F(z)  for varying input strength  gE . Note that the function loses its zero crossings, which 
correspond to fixed points of the system for increasing external input. (F) Heat map showing the evoked firing rate of the excitatory population for 
different parameter combinations  JEE  and  gE . The gray region corresponds to the parameter regime with unstable dynamics.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Unstable ensemble dynamics can be triggered by additional stimulation in supralinear networks with negative determinant even 
in the presence of substantial feedforward inhibition.
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We were specifically interested in networks with strong recurrent excitation that can generate 
positive feedback dynamics in response to external inputs  gE . Therefore, we studied networks with

 det(J) = −JEEJII + JIEJEI < 0 .  (4)

In contrast, networks in which recurrent excitation is met by strong feedback inhibition such that 

 det(J) > 0  are unable to generate positive feedback dynamics provided that inhibition is fast enough 
(Ahmadian et  al., 2013). Importantly, we assumed that most inhibition originates from recurrent 
connections (Franks et al., 2011; Large et al., 2016) and, hence, we kept the input to the inhibitory 
population  gI   fixed unless mentioned otherwise.

Nonlinear amplification of inputs above a critical threshold
We initialized the network in a stable low- activity state in the absence of external stimulation, consis-
tent with spontaneous activity in cortical networks (Figure 1C). However, an input  gE  of sufficient 
strength, destabilized the network (Figure 1C). Importantly, this behavior is distinct from linear network 
models in which the network stability is independent of inputs (Materials and methods). The transition 
from stable to unstable dynamics can be understood by examining the phase portrait of the system 
(Figure 1D). Before stimulation, the system has a stable and an unstable fixed point (Figure 1D, left). 
However, both fixed points disappear for an input  gE  above a critical stimulus strength (Figure 1D, 
right).

To further understand the system’s bifurcation structure, we consider the characteristic function

 
F(z) = JEE

[
z
]αE

+
− JEI

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE ,

  
(5)

where  z  denotes the total current into the excitatory population and  det(J)  represents the deter-
minant of the weight matrix (Kraynyukova and Tchumatchenko, 2018; Materials and methods). The 
characteristic function reduces the original two- dimensional system to one dimension, whereby the 
zero crossings of the characteristic function correspond to the fixed points of the original system (Eq. 
(1)- (2)). We use this correspondence to visualize how the fixed points of the system change with the 
input  gE . Increasing  gE  shifts  F(z)  upwards, which eventually leads to all zero crossings disappearing 
and the ensuing unstable dynamics (Figure 1E; Materials and methods). Importantly, for any weight 
matrix  J  with negative determinant, there exists a critical input  gE  at which all fixed points disappear 
(Materials and methods). While for weak recurrent E- to- E connection strength  JEE , the transition from 
stable dynamics to unstable is gradual, in that it happens at higher firing rates (Figure 1F), it becomes 
more abrupt for stronger  JEE . Thus, our analysis demonstrates that individual neuronal ensembles 
with negative determinant  det(J)  nonlinearly amplify inputs above a critical threshold by switching 
from initially stable to unstable dynamics.

Short-term plasticity, but not spike-frequency adaptation, can re-
stabilize ensemble dynamics
Since unstable dynamics are not observed in neurobiology, we wondered whether neuronal spike 
frequency adaptation (SFA) or STP could re- stabilize the ensemble dynamics while keeping the 
nonlinear amplification character of the system. Specifically, we considered SFA of excitatory neurons, 
E- to- E short- term depression (STD), and E- to- I short- term facilitation (STF). We focused on these 
particular mechanisms because they are ubiquitously observed in the brain. Most pyramidal cells 
exhibit SFA (Barkai and Hasselmo, 1994) and most synapses show some form of STP (Markram 
et al., 1998; Zucker and Regehr, 2002; Pala and Petersen, 2015). Moreover, the time scales of 
these mechanisms are well- matched to typical timescales of perception, ranging from milliseconds to 
seconds (Tsodyks and Markram, 1997; Fairhall et al., 2001; Pozzorini et al., 2013).

When we simulated our model with SFA (Eqs. (21)–(23)), we observed different network behav-
iors depending on the adaptation strength. When adaptation strength was weak, SFA was unable to 
stabilize run- away excitation (Figure 2A; Materials and methods). Increasing the adaptation strength 
eventually prevented run- away excitation, but to give way to oscillatory ensemble activity (Figure 2—
figure supplement 1). Finally, we confirmed analytically that SFA cannot stabilize excitatory run- away 
dynamics at a stable fixed point (Materials and methods). In particular, while the input is present, 
strong SFA creates a stable limit cycle with associated oscillatory ensemble activity (Figure 2—figure 
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Figure 2. Short- term plasticity, but not spike- frequency adaptation, re- stabilizes ensemble dynamics. (A) Firing rates of the excitatory (blue) and 
inhibitory population (red) in the presence of spike- frequency adaptation (SFA). During stimulation (gray bar) additional input is injected into the 
excitatory population. The inset shows a cartoon of how SFA affects spiking neuronal dynamics in response to a step current input. (B) Left: Same as 
(A) but in the presence of E- to- E short- term depression (STD). Right: Same as left but inactivating inhibition in the period marked in purple. (C) 3D plot 
of the excitatory activity  rE , inhibitory activity  rI  , and the STD variable  x  of the network in B left. The orange and green points mark the fixed points 
before/after and during stimulation. (D) Characteristic function  F(z)  in networks with E- to- E STD. Different brightness levels correspond to different time 
points in B left. (E) Same as (B) but in the presence of E- to- I short- term facilitation (STF). (F) Inhibition- stabilized network (ISN) index, which corresponds 
to the largest real part of the eigenvalues of the Jacobian matrix of the E- E subnetwork with STD, as a function of time for the network with E- to- E STD 
in B left. For values above zero (dashed line), the ensemble is an ISN. (G) Analytical solution of non- ISN (magenta), ISN (green), paradoxical, and non- 
paradoxical regions for different parameter combinations  JEE  and the STD variable  x . The solid line separates the non- ISN and ISN regions, whereas 
the dashed line separates the non- paradoxical and paradoxical regions. (H) The normalized firing rates of the excitatory (blue) and inhibitory population 
(red) when injecting additional excitatory current into the inhibitory population before stimulation (left; orange bar in B), and during stimulation (right; 
green bar in B). Initially, the ensemble is in the non- ISN regime and injecting excitatory current into the inhibitory population increases its firing rate. 
During stimulation, however, the ensemble is an ISN. In this case, excitatory current injection into the inhibitory population results in a reduction of its 
firing rate, also known as the paradoxical effect.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Ensemble dynamics in supralinear networks with strong SFA.

Figure supplement 2. Dependence of peak amplitude and fixed point activity on input gE and E- to- E connection strength JEE.

Figure 2 continued on next page
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supplement 1; Materials and methods), which was also shown in previous modeling studies (van 
Vreeswijk and Hansel, 2001), but is not typically observed in sensory systems (DeWeese et al., 2003; 
Rupprecht and Friedrich, 2018).

Next, we considered STP, which is capable of saturating the effective neuronal input- output func-
tion (Mongillo et al., 2012; Zenke et al., 2015; Eqs. (37)–(39), Eqs. (41)–(43)). We first analyzed 
the stimulus- evoked network dynamics when we added STD to the recurrent E- to- E connections. 
Strong depression of synaptic efficacy resulted in a brief onset transient after which the ensemble 
dynamics quickly settled into a stimulus- evoked steady- state with slightly higher activity than the 
baseline (Figure 2B, left). After stimulus removal, the ensemble activity returned back to its baseline 
level (Figure 2B, left; Figure 2C). Notably, the ensemble dynamics settled at a stable steady state with 
a much higher firing rate, when inhibition was inactivated during stimulus presentation (Figure 2B, 
right). This shows that STP is capable of creating a stable high- activity fixed point, which is fundamen-
tally different from the SFA dynamics discussed above. This difference in ensemble dynamics can be 
readily understood by analyzing the stability of the three- dimensional dynamical system (Materials 
and methods). We can gain a more intuitive understanding by considering self- consistent solutions 
of the characteristic function  F(z) . Initially, the ensemble is at the stable low activity fixed point. But 
the stimulus causes this fixed point to disappear, thus giving way to positive feedback which creates 
the leading edge of the onset transient (Figure 2B). However, because E- to- E synaptic transmission 
is rapidly reduced by STD, the curvature of  F(z)  changes and a stable fixed point is created, thereby 
allowing excitatory run- away dynamics to terminate and the ensemble dynamics settle into a steady- 
state at low activity levels (Figure 2D). We found that E- to- I STF leads to similar dynamics (Figure 2E, 
left; Appendix 1) with the only difference that this configuration requires inhibition for network stability 
(Figure 2E, right), whereas E- to- E STD stabilizes activity even without inhibition, albeit at physiolog-
ically implausibly high activity levels. Importantly, the re- stabilization through either form of STP did 
not impair an ensemble’s ability to amplify stimuli during the initial onset phase.

Crucially, transient amplification in supralinear networks with STP occurs above a critical threshold 
(Figure  2—figure supplement 2), and requires recurrent excitation  JEE  to be sufficiently strong 
(Figure 2—figure supplement 2C, D). To quantify the amplification ability of these networks, we 
calculated the ratio of the evoked peak firing rate to the input strength, henceforth called the ‘Ampli-
fication index’. We found that amplification in STP- stabilized supralinear networks can be orders of 
magnitude larger than in linear networks with equivalent weights and comparable stabilized supra-
linear networks (SSNs) without STP (Figure 2—figure supplement 3). We stress that the resulting 
firing rates are parameter- dependent (Figure  2—figure supplement 4) and their absolute value 
can be high due to the high temporal precision of the onset peak and its short duration. In experi-
ments, such high rates manifest themselves as precisely time- locked spikes with millisecond resolution 
(DeWeese et al., 2003; Wehr and Zador, 2003; Bolding and Franks, 2018; Gjoni et al., 2018).

Recent studies suggest that cortical networks operate as inhibition- stabilized networks (ISNs) 
(Sanzeni et al., 2020; Sadeh and Clopath, 2021), in which the excitatory network is unstable in the 
absence of feedback inhibition (Tsodyks et al., 1997; Ozeki et al., 2009). To that end, we investi-
gated how ensemble re- stabilization relates to the network operating regime at baseline and during 
stimulation. Whether a network is an ISN or not is mathematically determined by the real part of the 

Figure supplement 3. Comparisons of amplification ability between NTA and linear networks, and between NTA and SSNs.

Figure supplement 4. Dependence of peak amplitude and fixed point activity on STP parameters.

Figure supplement 5. Networks initially in the ISN regime can exhibit strong NTA.

Figure supplement 6. ISN index and paradoxical effect test for networks with E- to- I STF.

Figure supplement 7. Inhibition stabilization does not imply paradoxical response in networks with E- to- E STD.

Figure supplement 8. Transition from non- ISN to ISN indicating by frozen inhibition test.

Figure supplement 9. Similar qualitative behavior in rate- based models with maximal firing rate capped at 300 Hz.

Figure supplement 10. Similar qualitative behavior in spiking neural networks.

Figure supplement 11. Unstable dynamics can emerge in supralinear networks with positive determinant and slow inhibition.

Figure supplement 12. Networks with substantial feedforward inhibition can exhibit strong NTA.

Figure 2 continued



 Research article Neuroscience

Wu and Zenke. eLife 2021;10:e71263. DOI: https://doi.org/10.7554/eLife.71263  7 of 43

leading eigenvalue of the Jacobian of the excitatory- to- excitatory subnetwork (Tsodyks et al., 1997). 
We computed the leading eigenvalue in our model incorporating STP and referred to it as ‘ISN index’ 
(Materials and methods; Appendix 2). We found that in networks with STP the ISN index can switch 
sign from negative to positive during external stimulation, indicating that the ensemble can transition 
from a non- ISN to an ISN (Figure 2F). Notably, this behavior is distinct from linear network models in 
which the network operating regime is independent of the input (Materials and methods). Whether 
this switch between non- ISN to ISN occurred, however, was parameter dependent and we also found 
network configurations that were already in the ISN regime at baseline and remained ISNs during 
stimulation (Figure  2—figure supplement 5). Thus, re- stabilization was largely unaffected by the 
network state and consistent with experimentally observed ISN states (Sanzeni et al., 2020).

Theoretical studies have shown that one defining characteristic of ISNs in static excitatory and 
inhibitory networks is that injecting excitatory (inhibitory) current into inhibitory neurons decreases 
(increases) inhibitory firing rates, which is also known as the paradoxical effect (Tsodyks et al., 1997; 
Miller and Palmigiano, 2020). Yet, it is unclear whether in networks with STP, inhibitory stabiliza-
tion implies paradoxical response and vice versa. We therefore analyzed the condition of being an 
ISN and the condition of having paradoxical response in networks with STP (Materials and methods; 
Appendix 2; Appendix 3). Interestingly, we found that in networks with E- to- E STD, the paradox-
ical effect implies inhibitory stabilization, whereas inhibitory stabilization does not necessarily imply 
paradoxical response (Figure 2G; Materials and methods), suggesting that having paradoxical effect 
is a sufficient but not necessary condition for being an ISN. In contrast, in networks with E- to- I STF, 
inhibitory stabilization and paradoxical effect imply each other (Appendix 2; Appendix 3). Therefore, 
paradoxical effect can be exploited as a proxy for inhibition stabilization for networks with STP we 
considered here. By injecting excitatory current into the inhibitory population, we found that the 
network did not exhibit the paradoxical effect before stimulation (Figure 2H, left; Figure 2—figure 
supplement 6). In contrast, injecting excitatory inputs into the inhibitory population during stimula-
tion reduced their activity (Figure 2H, right; Figure 2—figure supplement 6). As demonstrated in our 
analysis, non- paradoxical response does not imply non- ISN (Figure 2—figure supplement 7; Mate-
rials and methods). We therefore examined the inhibition stabilization property of the ensemble by 
probing the ensemble behavior when a small transient perturbation to excitatory population activity 
is introduced while inhibition is frozen before stimulation and during stimulation. Before stimulation, 
the firing rate of the excitatory population slightly increases and then returns to its baseline after the 
transient perturbation (Figure 2—figure supplement 8). During stimulation, however, the transient 
perturbation leads to a transient explosion of the excitatory firing rate (Figure 2—figure supplement 
8). These results further confirm that the ensemble shown in our example is initially a non- ISN before 
stimulation and can transition to an ISN with stimulation. By elevating the input level at the baseline in 
the model, the ensemble can be initially an ISN (Figure 2—figure supplement 5), resembling recent 
studies revealing that cortical circuits in the mouse V1 operate as ISNs in the absence of sensory stim-
ulation (Sanzeni et al., 2020).

Despite the fact that the supralinear input- output function of our framework captures some aspects 
of intracellular recordings (Priebe et al., 2004), it is unbounded and thus allows infinitely high firing 
rates. This is in contrast to neurobiology where firing rates are bounded due to neuronal refractory 
effects. While this assumption permitted us to analytically study the system and therefore to gain a 
deeper understanding of the underlying ensemble dynamics, we wondered whether our main conclu-
sions were also valid when we limited the maximum firing rates. To that end, we carried out the same 
simulations while capping the firing rate at 300  Hz. In the absence of additional SFA or STP mecha-
nisms, the firing rate saturation introduced a stable high- activity state in the ensemble dynamics which 
replaced the unstable dynamics in the uncapped model. As above, the ensemble entered this high- 
activity steady- state when stimulated with an external input above a critical threshold and exhibited 
persistent activity after stimulus removal (Figure 2—figure supplement 9). While weak SFA did not 
change this behavior, strong SFA resulted in oscillatory behavior during stimulation consistent with 
previous analytical work (Figure 2—figure supplement 9, van Vreeswijk and Hansel, 2001), but did 
not in stable steady- states commonly observed in biological circuits. In the presence of E- to- E STD 
or E- to- I STF, however, the ensemble exhibited transient evoked activity at stimulation onset that was 
comparable to the uncapped case. Importantly, the ensemble did not show persistent activity after 
the stimulation (Figure 2—figure supplement 9). Finally, we confirmed that all of these findings were 
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qualitatively similar in a realistic spiking neural network model (Figure 2—figure supplement 10; 
Materials and methods).

In summary, we found that neuronal ensembles can rapidly, nonlinearly, and transiently amplify 
inputs by briefly switching from stable to unstable dynamics before being re- stabilized through STP 
mechanisms. We call this mechanism nonlinear transient amplification (NTA) which, in contrast to 
balanced amplification (Murphy and Miller, 2009; Hennequin et al., 2012), arises from population 
dynamics with supralinear neuronal activation functions interacting with STP. While we acknowledge 
that there may be other nonlinear transient amplification mechanisms, in this article we restrict our 
analysis to the definition above. NTA is characterized by a large onset response, a subsequent ISN 
steady- state while the stimulus persists, and a return to a unique baseline activity state after the 
stimulus is removed. Thus, NTA is ideally suited to rapidly and nonlinearly amplify sensory inputs 
through recurrent excitation, like reported experimentally (Ko et  al., 2011; Cossell et  al., 2015), 
while avoiding persistent activity.

Figure 3. Co- tuned inhibition broadens the parameter regime of NTA in the absence of persistent activity. (A) 
Schematic of two neuronal ensembles with global inhibition (left) and with co- tuned inhibition (right). (B) Firing 
rate dynamics of bi/multi- stable ensemble dynamics (left) and uni- stable (right). In both cases, additional excitatory 
inputs are injected into excitatory ensemble E1 during the period marked in gray. (C) Analytical solution of uni- 
and bi/multi- stability regions for global inhibition (left) and co- tuned inhibition (right). Co- tuning results in a larger 
parameter regime of uni- stability. The triangles correspond to the two examples in B.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ensembles with co- tuned inhibition exhibit weaker — but still strong — NTA in comparison 
to ensembles with global inhibition.
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Co-tuned inhibition broadens the parameter regime of NTA in the 
absence of persistent activity
Up to now, we have focused on a single neuronal ensemble. However, to process information in the 
brain, several ensembles with different stimulus selectivity presumably coexist and interact in the same 
circuit. This coexistence creates potential problems. It can lead to multi- stable persistent attractor 
dynamics, which are not commonly observed and could have adverse effects on the processing of 
subsequent stimuli. One solution to this issue could be EI co- tuning, which arises in network models 
with plastic inhibitory synapses (Vogels et al., 2011) and has been observed experimentally in several 
sensory systems (Wehr and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht 
and Friedrich, 2018).

To characterize the conditions under which neuronal ensembles nonlinearly amplify stimuli without 
persistent activity, we analyzed the case of two interacting ensembles. More specifically, we consid-
ered networks with two excitatory ensembles and distinguished between global and co- tuned inhi-
bition (Figure 3A). In the case of global inhibition, one inhibitory population non- specifically inhibits 
both excitatory populations (Figure 3A, left). In contrast, in networks with co- tuned inhibition, each 
ensemble is formed by a dedicated pair of an excitatory and an inhibitory population which can have 
cross- over connections, for instance, due to overlapping ensembles (Figure 3A, right).

Global inhibition supports winner- take- all competition and is therefore often associated with multi- 
stable attractor dynamics (Wong and Wang, 2006; Mongillo et al., 2008). We first illustrated this 
effect in a network model with global inhibition. When the recurrent excitatory connections within 
each ensemble were sufficiently strong, small amounts of noise in the initial condition led to one of 
the ensembles spontaneously activating at elevated firing rates, while the other ensemble’s activity 
remained low (Figure 3B, left). A specific external stimulation could trigger a switch from one state 
to the other in which the other ensemble was active at a high firing rate. Importantly, this change 
persisted even after the stimulus had been removed, a hallmark of multi- stable dynamics. In contrast, 
uni- stable systems have a global symmetric state in which both ensembles have the same activity in 
the absence of stimulation. While the stimulated ensemble showed elevated firing rates in response to 
the stimulus, its activity returned to the baseline level after the stimulus is removed (Figure 3B, right), 
consistent with experimental observations (DeWeese et al., 2003; Rupprecht and Friedrich, 2018; 
Bolding and Franks, 2018). Note that the only difference between these two models is that  JEE  is 
larger in the multi- stable example than in the uni- stable one.

Symmetric baseline activity is most consistent with activity observed in sensory areas. Hence, we 
sought to understand which inhibitory connectivity would be most conducive to maintain it. To that 
end, we analytically identified the uni- stability conditions, which are determined by the leading eigen-
value of the Jacobian matrix of the system, for networks with varying degrees of EI co- tuning (Mate-
rials and methods). We found that a broader parameter regime underlies uni- stability in networks with 
co- tuned inhibition than global inhibition (Figure 3C). Notably, this conclusion is general and extends 
to networks with an arbitrary number of ensembles (Materials and methods). In comparison to the 
ensemble with global inhibition, the ensemble with co- tuned inhibition exhibits weaker — but still 
strong — NTA (Figure 3—figure supplement 1). Thus, co- tuned inhibition broadens the parameter 
regime in which NTA is possible while simultaneously avoiding persistent attractor dynamics.

NTA provides better pattern completion than fixed points while 
retaining stimulus selectivity
Neural circuits are capable of generating stereotypical activity patterns in response to partial cues and 
forming distinct representations in response to different stimuli (Carrillo- Reid et al., 2016; Marshel 
et al., 2019; Bolding et al., 2020; Vinje and Gallant, 2000; Cayco- Gajic and Silver, 2019). To test 
whether NTA achieves pattern completion while retaining stimulus selectivity, we analyzed the tran-
sient onset activity in our models and compared it to the fixed point activity.

To investigate pattern completion and stimulus selectivity in our model, we considered a co- tuned 
network with E- to- E STD and two distinct excitatory ensembles  E1  and  E2 . We gave additional input 

 gE1  to a Subset 1, consisting of 75% of the neurons in ensemble  E1  (Figure 4A). We then measured 
the evoked activity in the remaining 25% of the excitatory neurons in  E1  to quantify pattern comple-
tion. To assess stimulus selectivity, we injected additional input  gE1  into the entire  E1  ensemble during 
the second stimulation phase (Figure 4A) while measuring the activity of  E2 . We found that neurons 
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in Subset 2, which did not receive additional input, showed large onset responses, their steady- state 
activity was largely suppressed (Figure 4B). Despite the fact that inputs to  E1  caused increased tran-
sient onset responses in  E2 , the amount of increase was orders of magnitude smaller than in  E1  
(Figure 4B). To quantify pattern completion, we defined the

 
Association index = 1 + rE12−rE11

rE12 +rE11
.
  (6)

Here,  rE11  and  rE12  correspond to the subpopulation activities of  E1 , respectively. By definition, 
the Association index ranges from zero to one, with larger values indicating stronger associativity. In 
addition, to quantify the selectivity between  E1  and  E2 , we considered a symmetric binary classifier 
(Figure 4A, inset) and measured the distance to the decision boundary (Materials and methods). Note 
that the Association index was computed during Phase one and the distance to the decision boundary 
during Phase two in this simulation paradigm (Figure 4B).

With these definitions, we ran simulations with different input strengths  gE1 . We found that the 
onset peaks showed stronger association than the fixed point activity (Figure  4C). Note that the 
Association index at the fixed point remained zero, a direct consequence of  rE12  being suppressed to 
zero. Furthermore, we found that the distance between the transient onset response and the decision 
boundary was always greater than for the fixed point activity (Figure 4D) showing that onset responses 
retain stimulus selectivity. While the fixed point activity of the unstimulated co- tuned neurons is zero 
in the given example, stimulating a subset of neurons in one ensemble can lead to an increase in 

Figure 4. NTA yields stronger pattern completion than fixed points while retaining stimulus selectivity. (A) Schematic of the network setup used to 
probe pattern completion and stimulus selectivity. To assess the effect on pattern completion, 75% of the neurons (Subset 1) in ensemble E1 received 
additional input gE1 during Phase one (2–4 s), while we recorded the firing rate of the remaining 25% (Subset 2) in the excitatory ensemble E1. To 
evaluate the impact on stimulus selectivity, all neurons in E1 received additional inputs gE1 in Phase two (6–8 s) while the firing rate of E2 was measured. 
A downstream neuron’s ability to discriminate between E1 or E2 being active depends on whether their activity is well separated by a symmetric 
decision boundary (inset). (B) Examples of firing rates of Subset 2 of E1 (left, blue) and E2 (right, green) with E- to- E STD. (C) Association index as a 
function of input gE1 for the onset peak amplitude (magenta solid line) and fixed point activity (gray dashed line) for E- to- E STD. (D) Distance to the 
decision boundary (see panel A, inset) as a function of input gE1 for the onset peak amplitude (magenta solid line) and fixed point activity (gray dashed 
line) for E- to- E STD. (E and F) Same as C and D but as a function of β, which controls the inner- and inter- ensemble connection strength.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Change in steady state activity for unstimulated co- tuned neurons in the rate- based model.

Figure supplement 2. Quantification of pattern completion and stimulus selectivity in networks with E- to- I STF.
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the fixed point activity of the unstimulated neurons in the same ensemble under certain conditions 
(Figure 4—figure supplement 1; Appendix 4), which is consistent with pattern completion experi-
ments (Carrillo- Reid et al., 2016; Marshel et al., 2019) showing that unstimulated neurons from the 
same ensemble can remain active throughout the whole stimulation period.

To investigate how the recurrent excitatory connectivity affects both pattern completion and stim-
ulus selectivity, we introduced the parameter  β  which controls recurrent excitatory tuning by trading off 
within- ensemble E- to- E strength  JEE  relative to the inter- ensemble strength  J

′
EE  (Figure 4A) such that 

 JEE = βJtot  and  J
′
EE = (1 − β)Jtot . These definitions ensure that the total weight  Jtot = JEE + J

′
EE  remains 

constant for any choice of  β . Notably, the overall recurrent excitation strength within an ensemble  JEE  
increases with increasing  β . When  β  is larger than 0.5, the excitatory connection strength within the 
ensemble  JEE  exceeds the one between ensembles  J

′
EE .

We found that pattern completion ability monotonically increases with  β  with a pronounced onset 
for  β > 0.6  where NTA takes hold (Figure 4E). Moreover, in this regime the two stimulus representa-
tions are well separated (Figure 4F) which ensures stimulus selectivity also during onset transients. 
Together, these findings recapitulate the point that recurrent excitatory tuning is a key determinant of 
network dynamics. Finally, we confirmed that our findings were also valid in networks with E- to- I STF 
(Figure 4—figure supplement 2), which is commonly observed in the brain (Markram et al., 1998; 
Zucker and Regehr, 2002; Pala and Petersen, 2015). In summary, NTA’s transient onset responses 
maintain stimulus selectivity and result in overall better pattern completion than fixed point activity.

Figure 5. NTA provides stronger amplification and pattern separation in morphing experiments than fixed point activity. (A) Schematic of the morphing 
stimulation paradigm. The fraction of the additional inputs into the two excitatory ensembles is controlled by the parameter p. (B) Peak amplitude of 
E1 (blue) and E2 (green) as a function of p for E- to- E STD. Brightness levels represent different recurrent E- to- E connection strengths JEE . (C) Same as in 
B but for fixed point activity. (D) Distance to the decision boundary as a function of p for the peak onset response (magenta solid line) and fixed point 
activity (gray dashed line) for E- to- E STD in a network with J’IE = 0.4. (E) Same as D but with different E- to- I connection strengths J’IE across ensembles 
for a network with JEE = 1.2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Quantification of pattern separation in morphing experiments using a normalized measure.

Figure supplement 2. Quantification of pattern separation in morphing experiments for networks with E- to- I STF.
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NTA provides higher amplification and pattern separation in morphing 
experiments
So far, we only considered input to one ensemble. To examine how representations in our model are 
affected by ambiguous inputs to several ensembles, we performed additional morphing experiments 
(Freedman et al., 2001; Niessing and Friedrich, 2010). To that end, we introduced the parameter  p  
which interpolates between two input stimuli which target  E1  and  E2  respectively. When  p  is zero, all 
additional input is injected into  E1 . For  p  equal to one, all additional input is injected into  E2 . Finally, 

 p  equal to 0.5 corresponds to the symmetric case in which  E1  and  E2  receive the same amount of 
additional input (Figure 5A).

First, we investigated how the recurrent excitatory connection strength within each ensemble  JEE  
affects the onset peak amplitude and fixed point activity. We found that the peak amplitudes depend 
strongly on  JEE , whereas the fixed point activity was only weakly dependent on  JEE  (Figure 5B and C). 
When we disconnected the ensembles by completely eliminating all recurrent excitatory connections, 
activity was noticeably decreased (Figure 5B and C). This illustrates, that recurrent excitation does 
play an important role in selectively amplifying specific stimuli similar to experimental observations 
(Marshel et al., 2019; Peron et al., 2020), but that amplification is highest at the onset.

Further, we examined the impact of competition through lateral inhibition as a function of the E- to- I 
inter- ensemble strength  J

′
IE  (Materials and methods). As above, we quantified its impact by measuring 

the representational distance to the decision boundary for the transient onset responses and fixed 
point activity. We found that regardless of the specific STP mechanism, the distance was larger for the 
onset responses than for the fixed point activity, consistent with the notion that the onset dynamics 
separate stimulus identity reliably (Figure 5D and E). Since the absolute activity levels between onset 
and fixed point differed substantially, we further computed the relative pattern Separation index 

 (rE2 − rE1)/(rE1 + rE2)  and found that the onset transient provides better pattern separation ability 
for ambiguous stimuli with  p  close to 0.5 (Figure 5—figure supplement 1) provided that the E- to- I 
connection strength across ensembles  J

′
IE  is strong enough. All the while separability for the onset 

transient was slightly decreased for distinct inputs with  p ∈ {0, 1}  in comparison to the fixed point. In 
contrast, fixed points clearly separated such pure stimuli while providing weaker pattern separation 
for ambiguous input combinations. Importantly, these findings qualitatively held for networks with 
NTA mediated by E- to- I STF (Figure 5—figure supplement 2). Thus, NTA provides stronger amplifi-
cation and pattern separation than fixed point activity in response to ambiguous stimuli.

NTA in spiking neural networks
Thus far, our analysis relied on power law neuronal input- output functions in the interest of analytical 
tractability. To test whether our findings also qualitatively apply to more realistic network models, we 
built a spiking neural network consisting of randomly connected 800 excitatory and 200 inhibitory 
neurons, in which the E- to- E synaptic connections were subject to STD (Materials and methods). Here, 
we defined five overlapping ensembles, each corresponding to 200 randomly selected excitatory 
neurons. During an initial simulation phase (0–22 s), we consecutively stimulated each ensemble by 
giving additional input to their excitatory neurons, whereas the input to other neurons remained 
unchanged (Figure 6A). In addition, we also tested pattern completion by stimulating only 75% (Subset 
1) of the neurons belonging to Ensemble 5 (22–24   s; Figure 6A). We quantified each ensemble’s 
activity by calculating the population firing rate of the ensemble (Materials and methods). As in the 
case of the rate- based model, the neuronal ensembles in the spiking model generated pronounced 
transient onset responses. We then measured the difference of peak ensemble activity and fixed point 
activity between the stimulated ensemble and the remaining unstimulated ensembles (Materials and 
methods). As for the rate- based networks, this difference was consistently larger for the onset peak 
than for the fixed point (Figure 6B and C). Thus, transient onset responses allow better stimulus sepa-
ration than fixed points also in spiking neural network models.

Finally, to visualize the neural activity, we projected the binned spiking activity during the first 10  s 
of our simulation onto its first two principal components. Notably, the PC trajectory does not exhibit a 
pronounced rotational component (Figure 6D) as activity is confined to one specific ensemble, consis-
tent with experiments (Marshel et al., 2019). Furthermore, we computed the fifth ensemble’s activity 
for Subset 1 and 2 during the time interval 16–26  s. In agreement with our rate models, neurons in 
Subset 2 which did not receive additional inputs showed a strong response at the onset (Figure 6E), 
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but not at the fixed point, suggesting that the strongest pattern completion occurs during the initial 
amplification phase. Finally, we also observed higher- than- baseline fixed point activity in unstimulated 
neurons of Subset 2 in spiking neural networks (Figure 6—figure supplement 1). Thus, the key char-
acteristics of NTA are preserved across rate- based and more realistic spiking neural network models.

Discussion
In this study, we demonstrated that neuronal ensemble models with recurrent excitation and suit-
able forms of STP exhibit nonlinear transient amplification (NTA), a putative mechanism underlying 
selective amplification in recurrent circuits. NTA combines a supralinear neuronal transfer function, 
recurrent excitation between neurons with similar tuning, and pronounced STP. Using analytical and 
numerical methods, we showed that NTA generates rapid transient onset responses during which 
optimal stimulus separation occurs rather than at steady- states. Additionally, we showed that co- tuned 
inhibition is conducive to prevent the emergence of persistent activity, which could otherwise inter-
fere with processing subsequent stimuli. In contrast to balanced amplification (Murphy and Miller, 
2009), NTA is an intrinsically nonlinear mechanism for which only stimuli above a critical threshold are 

Figure 6. Spiking neural network simulations qualitatively reproduce NTA dynamics of rate models. (A) Spiking activity of excitatory (blue) and inhibitory 
(red) neurons in a spiking neural network. From 2 to 20 s, Ensembles 1–5 individually received additional input for 2 s each (colored bars). From 22 to 24 
s, 75% of Ensemble 5 neurons (Subset 1) received additional input, whereas the rest 25% of Ensemble 5 neurons (Subset 2) did not receive additional 
input. The symbols at the top designate the different simulation phases of baseline activity, the onset transients, and the fixed point activity. Different 
colors correspond to the distinct stimulation periods. (B) Ensemble activity (colors). (C) Difference in ensemble activity between the stimulated ensemble 
with the remaining ensembles for the transient onset peak and the fixed point. Points correspond to the different stimulation periods. (D) Spiking 
activity during the interval 0–10 s represented in the PCA basis spanned by the first two principal components which captured approximately 40% of the 
total variance. The colored lines represent the PC trajectories of the first two stimuli shown in A and B. Triangles, points and crosses correspond to the 
onset peak, fixed point, and baseline activity, respectively. (E) Ensemble activity of Subset 1 (purple) and Subset 2 (gray) of Ensemble 5 from 16 to 26 s. 
Onset peaks are marked by triangles.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Change in steady state activity for unstimulated co- tuned neurons in spiking neural networks.
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amplified effectively. While the precise threshold value is parameter- dependent, it can be arbitrarily 
low provided the excitatory recurrent connections are sufficiently strong (Figure  1F). Importantly, 
such a critical activation threshold offers a possible explanation for sensory perception experiments 
which show similar threshold behavior (Marshel et al., 2019; Peron et al., 2020). Following transient 
amplification, ensemble dynamics are inhibition- stabilized, which renders our model compatible with 
existing work on SSNs (Ahmadian et al., 2013; Rubin et al., 2015; Hennequin et al., 2018; Kray-
nyukova and Tchumatchenko, 2018; Echeveste et al., 2020). Thus, NTA provides a parsimonious 
explanation for why sensory systems may rely upon neuronal ensembles with recurrent excitation in 
combination with EI co- tuning, and pronounced STP dynamics.

Several theoretical studies approached the problem of transient amplification in recurrent neural 
network models. Loebel and Tsodyks, 2002 have described an NTA- like mechanism as a driver for 
powerful ensemble synchronization in rate- based networks and in spiking neural network models of 
auditory cortex (Loebel et al., 2007). Here, we generalized this work to both E- to- E STD and E- to- I STF 
and provide an in- depth characterization of its amplification capabilities, pattern completion proper-
ties, and the resulting network states with regard to their inhibition- stabilization properties. Moreover, 
we showed that SFA cannot provide similar network stabilization and explored how EI co- tuning inter-
acts with NTA. Finally, we contrasted NTA to alternative transient amplification mechanisms. Balanced 
amplification is a particularly well- studied transient amplification mechanism (Murphy and Miller, 
2009; Goldman, 2009; Hennequin et al., 2014; Bondanelli and Ostojic, 2020; Gillett et al., 2020; 
Christodoulou et al., 2021) that relies on non- normality of the connectivity matrix to selectively and 
rapidly amplify stimuli. Importantly, balanced amplification occurs in networks in which strong recur-
rent excitation is appropriately balanced by strong recurrent inhibition. It is capable of generating rich 
transient activity in linear network models (Hennequin et al., 2014), and selectively amplifies specific 
activity patterns, but without a specific activation threshold. In addition, in spiking neural networks, 
strong input can induce synchronous firing at the population level which is subsequently stabilized by 
strong feedback inhibition without the requirement for STP mechanisms (Stern et al., 2018). These 
properties contrast with NTA, which has a nonlinear activation threshold and intrinsically relies on 
STP to stabilize otherwise unstable run- away dynamics. Due to the switch of the network’s dynamical 
state, NTA’s amplification can be orders of magnitudes larger than balanced amplification (Figure 2—
figure supplement 3). Interestingly, after the transient amplification phase, ensemble dynamics settle 
in an inhibitory- stabilized state, which renders NTA compatible with previous work on SSNs but in 
the presence of STP. Finally, although NTA and balanced amplification rely on different amplification 
mechanisms, they are not mutually exclusive and could, in principle, co- exist in biological networks.

NTA’s requirement to generate positive feedback dynamics through recurrent excitation, motivated 
our focus on networks with  det(J) < 0 . As demonstrated in previous work (Ahmadian et al., 2013), 
supralinear networks with  det(J) > 0  and instantaneous inhibition ( τI/τE → 0 ) are always stable for any 
given input, they are thus unable to generate positive feedback dynamics. In addition, networks with 

 det(J) > 0  can exhibit a range of interesting behaviors, for example, oscillatory dynamics and persistent 
activity (Kraynyukova and Tchumatchenko, 2018). It is worth noting, however, that for delayed or 
slow inhibition, stimulation can still lead to unstable network dynamics in networks with  det(J) > 0 . 
Nevertheless, our simulations suggest that our main conclusions about the stabilization mechanisms 
still hold (Figure 2—figure supplement 11).

NTA shares some properties with the notion of network criticality in the brain, like synchronous 
activation of cell ensembles (Plenz and Thiagarajan, 2007) and STP which can tune networks to 
a critical state (Levina et al., 2007). However, in contrast to most models of criticality, in NTA an 
ensemble briefly transitions to supercritical dynamics in a controlled, stimulus- dependent manner 
rather than spontaneously. Yet, how the two paradigms are connected at a more fundamental level, is 
an intriguing question left for future work. Furthermore, recurrent co- tuned inhibition is essential for 
NTA to ensure uni- stability and selectivity through the suppression of ensembles with different tuning. 
This requirement is similar in flavor to semi- balanced networks characterized by excess inhibition to 
some excitatory ensembles while others are balanced (Baker et al., 2020). However, the theory of 
semi- balanced networks has, so far, only been applied to steady- state dynamics while ignoring tran-
sients and STP. EI co- tuning prominently features in several models and was shown to support network 
stability (Vogels et al., 2011; Hennequin et al., 2017; Znamenskiy et al., 2018), efficient coding 
(Denève and Machens, 2016), novelty detection (Schulz et al., 2021), changes in neuronal variability 
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(Hennequin et al., 2018; Rost et al., 2018), and correlation structure (Wu et al., 2020). Moreover, 
some studies have argued that EI balance and co- tuning could increase robustness to noise in the 
brain (Rubin et al., 2017). The present work mainly highlights its importance for preventing multi- 
stability and delay activity in circuits not requiring such long- timescale dynamics.

NTA is consistent with several experimental findings. First, our model recapitulates the key find-
ings of Shew et al., 2015 who showed ex vivo that strong sensory inputs cause a transient shift to 
a supercritical state, after which adaptive changes rapidly tune the network to criticality. Second, 
NTA requires strong recurrent excitatory connectivity between neurons with similar tuning, which 
has been reported in experiments (Ko et al., 2011; Cossell et al., 2015; Peron et al., 2020). Third, 
ensemble activation in our model depends on a critical stimulus strength in line with recent all- optical 
experiments in the visual cortex, which further link ensemble activation with a perceptual threshold 
(Marshel et al., 2019). Fourth, sensory networks are uni- stable in that they return to a non- selective 
activity state after the removal of the stimulus and usually do not show persistent activity (DeWeese 
et al., 2003; Mazor and Laurent, 2005; Rupprecht and Friedrich, 2018). Fifth, our work shows that 
NTA’s onset responses encode stimulus identity better than the fixed point activity, consistent with 
experiments in the locust antennal lobe (Mazor and Laurent, 2005) and research supporting that the 
brain relies on coactivity on short timescales to represent information (Stopfer et al., 1997; Engel 
et al., 2001; Harris et al., 2003; El- Gaby et al., 2021). Yet, it remains to be seen whether these 
findings are also coherent with data on the temporal evolution in other sensory systems. Finally, EI 
co- tuning, which is conducive for NTA, has been found ubiquitously in different sensory circuits (Wehr 
and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich, 2018; 
Znamenskiy et al., 2018).

In our model, we made several simplifying assumptions. For instance, we kept the input to inhib-
itory neurons fixed and only varied the input to the excitatory population. This step was motivated 
by experiments in the piriform cortex where the total inhibition is dominated by feedback inhibition 
(Franks et al., 2011). Nevertheless, significant feedforward inhibition was observed in other areas 
(Bissière et al., 2003; Cruikshank et al., 2007; Ji et al., 2016; Miska et al., 2018). While an in- depth 
comparison for different origins of inhibition was beyond the scope of the present study, we found 
that increasing the inputs to the excitatory population and inhibitory population by the same amount 
can still lead to NTA (Figure 1—figure supplement 1; Figure 2—figure supplement 12; Materials 
and methods), suggesting that our main findings can remain unaffected in the presence of substantial 
feedforward inhibition. In addition, we limited our analysis to only a few overlapping ensembles. It will 
be interesting future work to study NTA in the case of many interacting and potentially overlapping 
ensembles and to determine the maximum storage capacity above which performance degrades. 
Finally, we anticipate that temporal differences in excitatory and inhibitory synaptic transmission may 
be important to preserve NTA’s stimuli selectivity.

Our model makes several predictions. In contrast to balanced amplification, in which the network 
operating regime depends solely on the connectivity, an ensemble involved in NTA can transition from 
a non- ISN to an ISN state. Such a transition is consistent with noise variability observed in sensory 
cortices (Hennequin et al., 2018) and could be tested experimentally by probing the paradoxical 
effect under different stimulation conditions (Figure 2G–H; Figure 2—figure supplement 6). More-
over, NTA predicts that onset activity provides a better stimulus encoding and its activity is correlated 
with the fixed point activity. This signature is different from purely non- normal amplification mecha-
nisms which would involve a wave of neuronal activity across several distinct ensembles similar to a 
synfire chain (Abeles, 1991). The difference should be clearly discernible in data. Since NTA relies 
on recurrent excitation between ensemble neurons, it suggests normal dynamics in which distinct 
ensembles first activate and then inactivate. The resulting dynamics have weak rotational components 
(Figure 6D) as seen in some experiments (Marshel et al., 2019). Strong non- normal amplification, 
on the other hand, relies on sequential activation associated with pronounced rotational dynamics 
(Hennequin et al., 2014; Gillett et al., 2020), as for instance observed in motor areas (Churchland 
et al., 2012). Although both non- normal mechanisms and NTA are likely to co- exist in the brain, we 
speculate that strong NTA is best suited for, and thus most like to be found in, sensory systems.

In summary, we introduced a general theoretical framework of selective transient signal ampli-
fication in recurrent networks. Our approach derives from the minimal assumptions of a nonlinear 
neuronal transfer function, recurrent excitation within neuronal ensembles, and STP. Importantly, our 
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analysis revealed the functional benefits of STP and EI co- tuning, both pervasively found in sensory 
circuits. Finally, our work suggests that transient onset responses rather than steady- state activity are 
ideally suited for coactivity- based stimulus encoding and provides several testable predictions.

Materials and methods
Stability conditions for supralinear networks
The dynamics of a neuronal ensemble consisting of one excitatory and one inhibitory population with 
a supralinear, power law input- output function can be described as follows:

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+   
(7)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+   
(8)

The Jacobian  M  of the system is given by

 

M =



τ−1

E (JEEαEr
αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I )



  

(9)

To ensure that the system is stable, the product of  M ’s eigenvalues  λ1λ2 , which is equivalent to 
the determinant of  M , has to be positive. In addition, the sum of the two eigenvalues  λ1 + λ2 , which 
corresponds to  tr(M) , has to be negative. We therefore obtained the following two stability conditions

 λ1λ2 = −τ−1
E τ−1

I (JEEαEr
αE−1
αE

E − 1)(1 + JIIαIr
αI−1
αI

I ) + τ−1
E τ−1

I JEIαEr
αE−1
αE

E JIEαIr
αI−1
αI

I > 0  (10)

 λ1 + λ2 = τ−1
E (JEEαEr

αE−1
αE

E − 1) − τ−1
I (1 + JIIαIr

αI−1
αI

I ) < 0  (11)

Notably, the stability conditions depend on the firing rate of the excitatory population  rE  and the 
inhibitory population  rI  . Since firing rates are input- dependent, the stability of supralinear networks is 
input- dependent. In contrast, in linear networks in which  αE = αI = 1 , the conditions can be simplified 
to

 λ1λ2 = −τ−1
E τ−1

I (JEE − 1)(1 + JII) + τ−1
E τ−1

I JEIJIE > 0  (12)

 λ1 + λ2 = τ−1
E (JEE − 1) − τ−1

I (1 + JII) < 0  (13)

and are thus input- independent.

ISN index for supralinear networks
If an ensemble is unstable without feedback inhibition, then the ensemble is an ISN (Tsodyks et al., 
1997). To determine whether a given system is an ISN, we analyzed the stability of the E- E subnetwork, 
which is determined by the real part of the leading eigenvalue of the Jacobian of the E- E subnetwork. 
In the following, we call this leading eigenvalue the ‘ISN index’, which is defined as follows:

 ISN index = τ−1
E (JEEαEr

αE−1
αE

E − 1)  (14)

A positive ISN index indicates the system is an ISN. Otherwise, the system is non- ISN. For supra-
linear networks in which  αE > 1 , the ISN index depends on the firing rates, inputs can therefore switch 
the network from non- ISN to ISN. In contrast,  αE = 1  for linear networks which renders the ISN index 
firing rate independent.

Characteristic function
To investigate how network stability changes with input, we trace the steps of Kraynyukova and 
Tchumatchenko, 2018 and define the characteristic function  F(z)  as follows:

 
F(z) = JEE

[
z
]αE

+
− JEI

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
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+
− z + gE  (15)
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where

 z = JEErE − JEIrI + gE  (16)

is the current into the excitatory population. The characteristic function simplifies the original two- 
dimensional system to a one- dimensional system, and the zero crossings of  F(z)  correspond to the 
fixed points of the original system. For  z ≥ 0 , we note:

 
dF(z)

dz
= JEEαEr

αE−1
αE

E − JEIαI

(
det(J) · J−1

EI αEr
αE−1
αE

E + J−1
EI JII

)
r
αI−1
αI

I − 1 = −τEτIλ1λ2  
(17)

Therefore, if the derivative of  F(z)  evaluated at one of its roots is positive, the corresponding fixed 
point is a saddle point. Note that as  rE  and  rI   increase, the term in parenthesis becomes dominant. To 
ensure that  λ1λ2  is negative also for large  rE  and  rI  , the determinant of the weight matrix  det(J)  has 
to be positive. Therefore,  det(J)  has a decisive impact on the curvature of  F(z) . In systems with nega-
tive determinant,  F(z)  bends upwards for large  z . In contrast,  F(z)  asymptotically bends downwards 
in systems with positive determinant. Hence, the high- activity steady- state of systems with negative 
determinant is unstable. In addition, we can simplify the above condition to the determinant of the 
weight matrix which is a necessary condition for network stability at any firing rate:

 det(J) = −JEEJII + JIEJEI > 0  (18)

To investigate how the network stability changes with input  gE , we examined how  F(z)  varies with 
changing input  gE  by calculating the derivative of  F(z)  with respect to  gE ,
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(19)

Since  
dF(z)
dgE   is positive, increasing  gE  always shifts  F(z)  upwards, eventually leading to the vanishing 

of all roots and, thus, unstable dynamics in supralinear networks with negative  det(J) . In scenarios in 
which feedforward input to the inhibitory population also changes, we have

 

dF(z)
dt

=∂F(z)
∂gE

dgE
dt

+ ∂F(z)
∂gI

dgI
dt

=
(
αIJII

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
+ 1

)
∆gE

− αIJEI

[
det(J) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
∆gI   

(20)

When the change in stimulation strength into the excitatory ( ∆gE ) and the inhibitory population 
( ∆gI  ) are the same,  

dF(z)
dt   is always positive provided  JII   is greater than  JEI  . Hence, depending on the 

value of  
JII
JEI  , stimulation can lead to unstable network dynamics even when the input to the inhibitory 

population increases more than to the excitatory population.

Spike-frequency adaptation (SFA)
We modeled SFA of excitatory neurons as an activity- dependent negative feedback current (Benda 
and Herz, 2003; Brette and Gerstner, 2005):

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+
− a

  
(21)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+   
(22)

 
τa

da
dt

= −a + brE  
(23)

where  a  is the adaptation variable,  τa  is the adaptation time constant, and  b  is the adaptation 
strength.

Stability conditions in networks with SFA
The Jacobian  MSFA  of the system with SFA is given by
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MSFA =




τ−1
E (JEEαEr

αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E −τ−1
E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I ) 0

τ−1
a b 0 −τ−1

a



  

(24)

The characteristic polynomial of the system with SFA can be written as follows (Horn and Johnson, 
1985):

 λ3 − tr(MSFA)λ2 + (A11 + A22 + A33)λ− det(MSFA) = 0  (25)

where  tr(MSFA)  and  det(MSFA)  are the trace and the determinant of the Jacobian matrix  MSFA , A11, 
A22, and A33 are the matrix cofactors. More specifically,

 tr(MSFA) = τ−1
E (JEEαEr

αE−1
αE

E − 1) − τ−1
I (1 + JIIαIr

αI−1
αI

I ) − τ−1
a   (26)

 
A11 =

∣∣∣∣
−τ−1

I (1 + JIIαIr
αI−1
αI

I ) 0

0 −τ−1
a

∣∣∣∣ = τ−1
I (1 + JIIαIr

αI−1
αI

I )τ−1
a

  
(27)

 
A22 =

∣∣∣∣
τ−1

E (JEEαEr
αE−1
αE

E − 1) −τ−1
E

τ−1
a b −τ−1

a

∣∣∣∣ = −τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
a + τ−1

a bτ−1
E

  
(28)

 

A33 =
∣∣∣∣
τ−1

E (JEEαEr
αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I )

∣∣∣∣

= − τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I ) + τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I   

(29)

 

A11 + A22 + A33 =τ−1
I (1 + JIIαIr

αI−1
αI

I )τ−1
a − τ−1

E (JEEαEr
αE−1
αE

E − 1)τ−1
a + τ−1

a bτ−1
E

− τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I ) + τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I   

(30)

 

det(MSFA) =τ−1
E (JEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I )τ−1
a

− τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I τ−1
a − τ−1

a bτ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )  

(31)

To ensure that the dynamics of the system are stable, the real parts of the eigenvalues of the Jaco-
bian at the fixed point, and thus all roots of the characteristic polynomial have to be negative. Since 
the product of the roots is equal to  det(MSFA) ,  −det(MSFA)  has to be positive. We then have

 

b >
αEr

αE−1
αE

E (JEE − det(J) · αIr
αI−1
αI

I )

1 + JIIαIr
αI−1
αI

I

− 1

  

(32)

Since SFA does not modify the synaptic connections, the term  JEE − det(J) · αIr
αI−1
αI

I   is positive for 
networks with  det(J) < 0 .

In the large  rE  limit, if  b  is small such that the above condition cannot be fulfilled,  det(MSFA)  is 
then positive, suggesting that the Jacobian of the system has always at least one positive eigenvalue. 
Therefore, the dynamics of the system cannot be stabilized in the presence of small  b .

In addition,  A11 + A22 + A33  is equal to  λ1λ2 + λ2λ3 + λ1λ3 , with the roots of the characteristic poly-
nomial  λ1 ,  λ2 , and  λ3 . If all roots are real and negative,  A11 + A22 + A33  has to be positive. If one root is 
real and negative and two other roots are complex conjugates, to ensure that all roots have negative 
real parts, one necessary condition is  A11 + A22 + A33 > 0 . From the  tr(MSFA)  and  det(MSFA)  conditions, 
we have

 A11 + A22 + A33 > τ−1
a (−τ−1

a + bτ−1
E ) − bτ−1

E τ−1
I (1 + JIIαIr

αI−1
αI

I )  (33)
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As a result, if  τ
−1
a (−τ−1

a + bτ−1
E ) − bτ−1

E τ−1
I (1 + JIIαIr

αI−1
αI

I ) > 0 ,  A11 + A22 + A33  is guaranteed to be 
positive. We therefore have

 b[τ−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )] > τ−2
a   (34)

Note that  τa  has to be small, in other words, SFA has to be fast, so that  τ
−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )  

is positive for arbitrary  rI  . For positive  τ
−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I ) , we have

 

b > τ−2
a

τ−1
a τ−1

E − τ−1
E τ−1

I (1 + JIIαIr
αI−1
αI

I )  
(35)

Since  τa  has to be small, the above condition cannot be satisfied for small  b .
Next, we consider the system with large  b . Suppose that the firing rate  rE  and  rI   in the initial network 

are of order 1, and  b  is of order  K  , where  K   is a large number. We therefore have  −tr(MSFA) ∼ O(1) , 
 A11 + A22 + A33 ∼ O(K) , and  −det(MSFA) ∼ O(K) . The discriminant of the characteristic polynomial is

 

(−tr(MSFA))2(A11 + A22 + A33)2 − 4(A11 + A22 + A33)3 − 4(−tr(MSFA))3(−det(MSFA))

−27(−det(MSFA))2 + 18(−tr(MSFA))(A11 + A22 + A33)(−det(MSFA))

= (A11 + A22 + A33)3[ (−tr(MSFA))2

A11 + A22 + A33
− 4 − 4(−tr(MSFA))3(−det(MSFA))

(A11 + A22 + A33)3

− 27(−det(MSFA))2

(A11 + A22 + A33)3 + 18(−tr(MSFA))(−det(MSFA))
(A11 + A22 + A33)2 ]

  

(36)

Clearly, in the large  b  limit, the discriminant is negative, suggesting that the characteristic polyno-
mial has one real root and two complex conjugate roots (Irving, 2004).

As the input  gE  increases, the complex conjugate eigenvalues cross the imaginary axis when 

 tr(MSFA)(A11 + A22 + A33)  equals  det(MSFA) . As a result, the system undergoes a supercritical Hopf 
bifurcation. We numerically confirmed that the resulting limit cycle is stable (Figure 2—figure supple-
ment 1), consistent with previous work (van Vreeswijk and Hansel, 2001). Thus, the system shows 
oscillatory behavior instead of stable steady state.

Short-term plasticity (STP)
We modeled E- to- E STD following previous work (Tsodyks and Markram, 1997; Varela et al., 1997):

 
τE

drE
dt

= −rE +
[
xJEErE − JEIrI + gE

]αE

+   
(37)

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+   
(38)

 
dx
dt

= 1 − x
τx

− UdxrE
  

(39)

where  x  is the depression variable, which is limited to the interval  (0, 1) ,  τx  is the depression time 
constant, and  Ud  is the depression rate. The steady- state solution  x∗  is given by

 x∗ = 1
1+UdrEτx   (40)

Similarly, we modeled E- to- I STF as

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+   
(41)

 
τI

drI
dt

= −rI +
[
uJIErE − JIIrI + gI

]αI

+   
(42)

 
du
dt

= 1 − u
τu

+ Uf(Umax − u)rE
  

(43)
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where  u  is the facilitation variable constrained to the interval  (1, Umax)  ,  Umax  is the maximal facili-
tation value,  τu  is the time constant of STF, and  Uf   is the facilitation rate. The steady- state solution  u∗  
is given by

 u∗ = 1+UfUmaxrEτu
1+UfrEτu   (44)

Stability conditions for networks with E-to-E STD
The Jacobian  MSTD  of the system with E- to- E STD is given by

 

MSTD =




τ−1
E (xJEEαEr

αE−1
αE

E − 1) −τ−1
E JEIαEr

αE−1
αE

E τ−1
E JEEαEr

2αE−1
αE

E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I ) 0

−Udx 0 −τ−1
x − UdrE



  

(45)

and the characteristic polynomial can be written as follows:

 λ3 − tr(MSTD)λ2 + (A11 + A22 + A33)λ− det(MSTD) = 0  (46)

where  tr(MSTD)  and  det(MSTD)  are the trace and the determinant of the Jacobian matrix  MSTD , A11, 
A22, and A33 are the matrix cofactors. More specifically,

 tr(MSTD) = τ−1
E (xJEEαEr

αE−1
αE

E − 1) − τ−1
I (1 + JIIαIr

αI−1
αI

I ) − τ−1
x − UdrE  (47)

In the case of unstable dynamics,  rE  goes to infinity due to run- away excitation. However, the 
depression variable  x  approaches zero in this limit, as  limrE→∞ x = limrE→∞ 1

1+UdrEτx
= 0 . Therefore, in 

the large  rE  limit,  −tr(MSTD)  is positive.

 

A11 + A22 + A33 =τ−1
I (1 + JIIαIr

αI−1
αI

I )(τ−1
x + UdrE)

+ τ−1
E (xJEEαEr

αE−1
αE

E − 1)(−τ−1
x − UdrE) − τ−1

E JEEαEr
2αE−1

αE
E (−Udx)

− τ−1
E (xJEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I ) + τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I   

(48)

Similarly, in the large  rE  limit,  A11 + A22 + A33  is positive.

 

det(MSTD) =τ−1
E (xJEEαEr

αE−1
αE

E − 1)τ−1
I (1 + JIIαIr

αI−1
αI

I )(τ−1
x + UdrE)

− τ−1
E JEIαEr

αE−1
αE

E τ−1
I JIEαIr

αI−1
αI

I (τ−1
x + UdrE) − τ−1

E JEEαEr
2αE−1

αE
E Udxτ−1

I (1 + JIIαIr
αI−1
αI

I ) 
 (49)

Similarly, in the large  rE  limit,  −det(MSTD)  is positive.
According to the Descartes’ rule of signs, the number of positive roots is at most the number of 

sign changes in the sequences of polynomial’s coefficients. Therefore, there are no positive roots for 
the above characteristic polynomial and the network dynamics can be stabilized by E- to- E STD.

Characteristic function approximation for networks with E-to-E STD
As demonstrated above, E- to- E STD is able to restabilize the system, there exists a stable steady state 
for which the STD variable  x  is constant  x = x∗ . Because  x  changes slowly compared to the neuronal 
dynamics, we can approximate it as constant which results in a natural reduction to a 2D system in 
which the weights with STD are modified. The stability of this 2D system can be readily characterized 
by the characteristic function  F(z)  (Kraynyukova and Tchumatchenko, 2018), which depends on the 
previous steady state value of  x . The characteristic function approximation with E- to- E STD can there-
fore be written as follows:

 
F(z) = xJEE

[
z
]αE

+
− JEI

[
det(JSTD) · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE  

(50)
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where

 
det(JSTD) =

∣∣∣∣
xJEE −JEI

JIE −JII

∣∣∣∣ = −xJEEJII + JIEJEI
  

(51)

Note that  det(JSTD)  can now change its sign due to E- to- E STD, the characteristic function can 
therefore change its bending shape. We used this relation to visualize how E- to- E STD effectively 
changes the network stability of the reduced system in Figure 2D.

Conditions for ISN in networks with E-to-E STD
Here, we identify the condition of being in the ISN regime in supralinear networks with E- to- E STD. 
When the level of inhibition is frozen, the Jacobian of the system reduces to the following:

 

M1 =


τ

−1
E (xJEEαEr

αE−1
αE

E − 1) τ−1
E JEEαEr

2αE−1
αE

E

−Udx −τ−1
x − UdrE



  

(52)

For the system with frozen inhibition, the dynamics are stable if

 tr(M1) = τ−1
E (xJEEαEr

αE−1
αE

E − 1) − τ−1
x − UdrE < 0  (53)

and

 det(M1) = τ−1
E (xJEEαEr

αE−1
αE

E − 1)(−τ−1
x − UdrE) + τ−1

E JEEαEr
2αE−1

αE
E Udx > 0  (54)

Therefore, if the network is an ISN at the fixed point, the following condition has to be satisfied:

 

x > min



√

1

JEEαEr
αE−1
αE

E

, τx+τE+τEτxUdrE

τxJEEαEr
αE−1
αE

E




  

(55)

Furthermore, we define the largest real part of the eigenvalues of  M1  as the ISN index for networks 
with E- to- E STD. More specifically,

 

ISN index = Re



τ−1

E (xJEEαEr
αE−1
αE

E − 1) − τ−1
x − UdrE

2
+

√√√√ 1

4
(τ−1

E (xJEEαEr
αE−1
αE

E − 1) + τ−1
x + UdrE)2 − τ−1

E JEEαEr
2αE−1

αE
E Udx




  
(56)

Conditions for paradoxical response in networks with E-to-E STD
Next, we identify the condition of having the paradoxical effect in supralinear networks with E- to- E 
STD. To that end, we exploit a separation of timescales between the fast neural activity and the slow 
STP variable. Therefore, set the depression variable to its value at the fixed point corresponding to 
the fixed point value of  rE . The excitatory nullcline is defined as follows

 
τE

drE
dt

= −rE +
[ 1

1 + τxUdrE
JEErE − JEIrI + gE

]αE

+
= 0

  
(57)

For  rE,I > 0 , we have

 
rI =

1
1+τxUdrE

JEErE − r
1

αE
E + gE

JEI   
(58)

The slope of the excitatory nullcline in the  rE/rI   plane where  x  axis is  rE  and  y  axis is  rI   can be 
written as follows

 
kE

STD = 1
JEI

(
− JEE

(1 + τxUdrE)2 τxUdrE + JEE
1 + τxUdrE

− 1
αE

r
1

αE
−1

E

)

  
(59)
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Note that the slope of the excitatory nullcline is nonlinear. To have paradoxical effect, the slope of 
the excitatory nullcline at the fixed point of the system has to be positive. Therefore, the STD variable 
 x  at the fixed point has to satisfy the following condition

 

x >
√

1

JEEαEr
αE−1
αE

E   
(60)

The inhibitory nullcline can be written as follows

 
τI

drI
dt

= −rI +
[
JIErE − JIIrI + gI

]αI

+
= 0

  
(61)

In the region of rates  rE,I > 0 , we have

 
rI =

JIErE − r
1
αI
I + gI

JII   
(62)

The slope of the inhibitory nullcline can be written as follows

 

kI
STD = JIE

JII + 1
αI

r
1−αI
αI

I   
(63)

In addition to the positive slope of the excitatory nullcline, the slope of the inhibitory nullcline at 
the fixed point of the system has to be larger than the slope of the excitatory nullcline. We therefore 
have

 
JEIαEr

αE−1
αE

E JIEαIr

αI−1
αI

I
(
τ
−1
x + UdrE

)
>


1 + JIIαIr

αI−1
αI

I





−

JEEUdrE

1 + τxUdrE
αEr

αE−1
αE

E +
JEE

1 + τxUdrE
αEr

αE−1
αE

E (τ−1
x + UdrE ) − (τ−1

x + UdrE )



 

 (64)

The above condition is the same as the stability condition of the determinant of the Jacobian of 
the system with E- to- E STD (Eq. (49)). Therefore, the condition is always satisfied when the system 
with E- to- E STD is stable.

Based on the condition of being ISN shown in Eq. (55) and the condition of having paradoxical 
effect shown in Eq. (60), we therefore can conclude that in supralinear networks with E- to- E STD, the 
paradoxical effect implies inhibitory stabilization, whereas inhibitory stabilization does not necessarily 
imply paradoxical responses. This is consistent with recent work by Sanzeni et al., 2020, in which 
threshold- linear networks with STP have been studied. Here, we showed analytically that the conclu-
sion holds for any rectified power- law activation function with positive  α .

To visualize the conditions in a two- dimensional plane, we reduced the conditions into a function 
of  JEE  and  x . For Figure 2G,  rE = 1 . In Figure 2—figure supplement 5 and Figure 2—figure supple-
ment 8, the depression variable thresholds above which the network exhibits the paradoxical effect 
were calculated based on Eq. (60).

Uni-stability conditions
The system is said to be ‘uni- stable’, when it has a single stable fixed point. We first identified the uni- 
stability condition for networks with global inhibition. To that end, we considered a general network 
with  N   excitatory populations and  N   inhibitory populations. To treat this problem analytically, we did 
not take STP into account in our analysis. The Jacobian matrix of networks with global inhibition  Q , 
can be written as follows,

 

Q =


JE←E JE←I

JI←E JI←I



  

(65)

where  JE←E ,  JE←I  ,  JI←E , and  JI←I   are  N   by  N   block matrices defined below.
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JE←E =




a − e ka · · · ka

ka a − e · · · ka
...

...
. . .

...

ka ka · · · a − e



  

(66)

 JE←I = −bJN,N   (67)

 JI←E = cJN,N   (68)

 

JI←I =




−d − f −d · · · −d

−d −d − f · · · −d
...

...
. . .

...

−d −d · · · −d − f



  

(69)

where  a = τ−1
E JEEαE[zE]αE−1

+  ,  b = τ−1
E JEIαE[zE]αE−1

+  ,  c = τ−1
I JIEαI[zI]αI−1

+  ,  d = τ−1
I JIIαI[zI]αI−1

+  , 

 e = τ−1
E  , and  f = τ−1

I  . Here,  zE  and  zI   denote the total current into the excitatory and inhibitory popu-
lation, respectively. Note that all these parameters are non- negative. Parameter  k  controls the excit-
atory connection strength across different populations.  JN,N   is a  N   by  N   matrix of ones.

The eigenvalues of the Jacobian  Q  are roots of its characteristic polynomial,

 det((JE←E − λ1)(JI←I − λ1) − JE←IJI←E) = 0  (70)

where  1  represents the identity matrix of size  N  . The characteristic polynomial can be expanded to:

 

[
(a − e − ka − λ)(−f − λ)

]N−1[
(a − e + (N − 1)ka − λ)(−Nd − f − λ) + N2bc

]
= 0

  
(71)

We therefore had four distinct eigenvalues:

 λ1 = a − e − ka  (72)

 λ2 = −f   (73)

and

 
λ3/4 =

1

2

[
(a − e − f − Nd + (N − 1)ka) ±

√
(a − e − f − Nd + (N − 1)ka)2 − 4((−af + ef + kaf) − N(a − e)d − Nkaf − N(N − 1)kad + N2bc)

]

 
 (74)

Note that the eigenvalues  λ1  and  λ2  have an algebraic and geometric multiplicity of ( N  –1), whereas 
the eigenvalues  λ3  and  λ4  have an algebraic and geometric multiplicity of 1.

In analogy to networks with global inhibition, the Jacobian matrix of networks with co- tuned inhi-
bition  R , can be written as

 

R =


JE←E JE←I

JI←E JI←I



  

(75)

where  JE←E ,  JE←I  ,  JI←E , and  JI←I   are  N   by  N   block matrices defined as follows:

 

JE←E =




a − e ka · · · ka

ka a − e · · · ka
...

...
. . .

...

ka ka · · · a − e



  

(76)
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JE←I =




−Nb + (N − 1)mb −mb · · · −mb

−mb −Nb + (N − 1)mb · · · −mb
...

...
. . .

...

−mb −mb · · · −Nb + (N − 1)mb



  

(77)

 

JI←E =




Nc − (N − 1)mc mc · · · mc

mc Nc − (N − 1)mc · · · mc
...

...
. . .

...

mc mc · · · Nc − (N − 1)mc



  

(78)

 

JI←I =




−Nd + (N − 1)md − f −md · · · −md

−md −Nd + (N − 1)md − f · · · −md
...

...
. . .

...

−md −md · · · −Nd + (N − 1)md − f



  

(79)

where  m  controls the degree of co- tuning in the network. If  m = 0 , the network decouples into  N   
independent ensembles and inhibition is perfectly co- tuned with excitation. In the case  m = 1 , inhibi-
tion is global and the block matrices become identical to the above case of global inhibition.

The eigenvalues of the matrix  R  are given as the roots of the characteristic polynomial defined by:

 det((JE←E − λ1)(JI←I − λ1) − JE←IJI←E) = 0  (80)

which yields the following expression:

 

[
λ2 − (a − e − ka − Nd + Nmd − f)λ− (a − e − ka)(Nd − Nmd − f)

+ N2bc(1 − m)2
]N−1[

(a − e + (N − 1)ka − λ)(−Nd − f − λ) + N2bc
]

= 0
  

(81)

We therefore had four distinct eigenvalues:

 
λ

′
1/2 = 1

2

[
(a − e − ka − Nd + Nmd − f) ±

√
(a − e − ka + Nd − Nmd + f)2 − 4N2bc(1 − m)2

]

  
(82)

 
λ
′
3/4 =

1

2

[
(a − e − f − Nd + (N − 1)ka) ±

√
(a − e − f − Nd + (N − 1)ka)2 − 4((−af + ef + kaf) − N(a − e)d − Nkaf − N(N − 1)kad + N2bc)

]

 
 (83)

The eigenvalues  λ
′
1  and  λ

′
2  have an algebraic and geometric multiplicity of ( N  –1), whereas the 

eigenvalues  λ
′
3  and  λ

′
4  have an algebraic and geometric multiplicity of 1. We noted that  λ3 = λ

′
3 , 

 λ4 = λ
′
4 .

To compare under which conditions networks with different structures are uni- stable, we examined 
the different eigenvalues derived above. As  λ2 < 0 , and  λ

′
1 > λ

′
2 , we only had to compare  λ

′
1  to  λ1 . For 

networks with co- tuned inhibition, we have  m < 1 ,

 

λ
′
1 = 1

2

[
(a − e − ka − Nd + Nmd − f) +

√
(a − e − ka + Nd − Nmd + f)2 − 4N2bc(1 − m)2

]

< 1
2

[
(a − e − ka − Nd + Nmd − f) +

√
(a − e − ka + Nd − Nmd + f)2

]
= a − e − ka = λ1

  

(84)

The inequality,  λ
′
1 < λ1 , indicates that networks with co- tuned inhibition have a broad parameter 

regime in which they are uni- stable than networks with global inhibition. Note that in the absence of a 
saturating nonlinearity of the input- output function and in the absence of any additional stabilization 
mechanisms, systems with positive eigenvalues of the Jacobian are unstable. In this case, networks 
with co- tuned inhibition have a broad parameter regime of being stable than networks with global 
inhibition.
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To visualize the conditions in a two- dimensional plane, we reduced the conditions into a function 
of  a  and  d . For Figure 3C,  k = 0.1 ,  m = 0.5  and  bc = 0.9ad .

Distance to the decision boundary
To calculate the distance to the decision boundary in Figures 4 and 5, Figure 4—figure supplement 
2 and Figure 5—figure supplement 2, we first projected the excitatory activity in Phase two onto 
a two- dimensional Cartesian coordinate system in which the horizontal axis is the activity of the first 
excitatory ensemble  rE1  and the vertical axis is the activity of the second excitatory ensemble  rE2 . We 
denote the location of the projected data point in the Cartesian coordinate system by ( x ,  y ), where 
 x  and  y  equal  rE1  and  rE2 , respectively. The distance  L  between the projected data and the deci-
sion boundary which corresponds to the diagonal line in the coordinate system can be expressed as 
follows:

 
L =

√
x2 + y2sin(|45o − arcsin( x√

x2+y2
)|)

  (85)

Note that the inverse trigonometric function arcsin gives the value of the angle in degrees.

Inhibitory feedback pathways for suppressing unwanted neural 
activation
To identify the important neural pathways for the suppression of unwanted neural activation, we 
analyzed how the activity of the second excitatory ensemble  rE2  changes with the input to the first 
excitatory ensemble  gE1 . To that end, we considered a general weight matrix for networks with two 
interacting ensembles

 

J =




JE1E1 JE1E2 −JE1I1 −JE1I2

JE2E1 JE2E2 −JE2I1 −JE2I2

JI1E1 JI1E2 −JI1I1 −JI1I2

JI2E1 JI2E2 −JI2I1 −JI2I2



  

(86)

We can write the change in firing rate of the excitatory population in the second ensemble  δrE2  as 
a function of the change in the input to the other  δgE1 :

 

δrE2 =
1

det(1 − FJ)

[
(−f

′
E2JE2E1)f

′
I1JI1I2f

′
I2JI2I1 + f

′
E2JE2I1(−f

′
I1JI1E1)(1 + f

′
I2JI2I2) + f

′
E2JE2I2(1 + f

′
I1JI1I1)(−f

′
I2JI2E1)

− (−f
′
E2JE2E1)(1 + f

′
I1JI1I1)(1 + f

′
I2JI2I2) −f

′
E2JE2I1f

′
I1JI1I2(−f

′
I2JI2E1) − f

′
E2JE2I2(−f

′
I1JI1E1)f

′
I2JI2I1

]
f
′
E1δgE1   

(87)

where  1  is the identity matrix. And  F  is given by

 

F =




f
′
E1 0 0 0

0 f
′
E2 0 0

0 0 f
′
I1 0

0 0 0 f
′
I2



  

(88)

where  f
′
E1 ,  f

′
E2 ,  f

′
I1  and  f

′
I2  are the derivatives of the input- output functions evaluated at the fixed 

point.
Assuming that  JE1E1 = JE2E2 = JEE ,  JI1E1 = JI2E2 = JIE ,  JE1I1 = JE2I2 = JEI  ,  JI1I1 = JI2I2 = JII  , 

 JE1E2 = JE2E1 = J
′
EE ,  JI1E2 = JI2E1 = J

′
IE ,  JE1I2 = JE2I1 = J

′
EI   and  JI1I2 = JI2I1 = J

′
II  , we find

 

δrE2 = 1
det(1 − FJ)

[
(−f

′
E2J

′
EE)f

′
I1J

′
IIf

′
I2J

′
II + f

′
E2J

′
EI(−f

′
I1JIE)(1 + f

′
I2JII) + f

′
E2JEI(1 + f

′
I1JII)(−f

′
I2J

′
IE)

− (−f
′
E2J

′
EE)(1 + f

′
I1JII)(1 + f

′
I2JII) −f

′
E2J

′
EIf

′
I1J

′
II(−f

′
I2J

′
IE) − f

′
E2JEI(−f

′
I1JIE)f

′
I2J

′
II

]
f
′
E1δgE1   

(89)

By further assuming that the weight strengths across ensembles are weak and ignoring the corre-
sponding higher- order terms, we get
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δrE2 ≈ 1
det(1 − FJ)

[
f
′
E2J

′
EI(−f

′
I1JIE)(1 + f

′
I2JII) + f

′
E2JEI(1 + f

′
I1JII)(−f

′
I2J

′
IE)

−(−f
′
E2J

′
EE)(1 + f

′
I1JII)(1 + f

′
I2JII) − f

′
E2JEI(−f

′
I1JIE)f

′
I2J

′
II

]
f
′
E1δgE1

= 1
det(1 − FJ)

[(
J
′
II

J′
EI

f
′
I2 − ( 1

JEI
+ f

′
I2

JII
JEI

)

)
J
′
EIJEIJIEf

′
E2f

′
I1

+

(
J
′
EE

J′
IE

(1 + JIIf
′
I2) − JEIf

′
I2

)
J
′
IEf

′
E2(1 + f

′
I1JII)

]
f
′
E1δgE1

  

(90)

Note that 
 
J
′
EE

J′IE  
 and 

 
J
′
II

J′EI  
 are terms regulating the respective excitatory and inhibitory input from one 

ensemble to the excitatory and inhibitory population in another ensemble. The term  det(1 − FJ)  is 
positive to ensure the stability of the system.

To suppress the activity of the excitatory population in the second ensemble  rE2 , in other words, to 
ensure that  δrE2 < 0 ,  J

′
IE  or/and  J

′
EI   have to be large. Therefore, we identified  J

′
IE  and  J

′
EI   as important 

synaptic connections which lead to suppression of the unwanted neural activation, suggesting that 
inhibition can be provided via  J

′
IE  through the  E1 - I2 - E2  pathway or via  J

′
EI   through the  E1 - I1 - E2  

pathway.
For Figures 4 and 5, the rate- based model consists of two ensembles, each of which is composed 

of 100 excitatory and 25 inhibitory neurons with all- to- all connectivity.

Spiking neural network model
The spiking neural network model was composed of  NE  excitatory and  NI   inhibitory leaky integrate- 
and- fire neurons. Neurons were randomly connected with probability of 20%. The dynamics of 
membrane potential of neuron i,  Ui , as defined by Zenke et al., 2015:

 τm dUi
dt = (Urest − Ui) + gext

i (t)(Uexc − Ui) + ginh
i (t)(Uinh − Ui)  (91)

Here,  τm  is the membrane time constant and  Urest  is the resting potential. Spikes are triggered when 
the membrane potential reaches the spiking threshold  Uthr . After a spike is emitted, the membrane 
potential is reset to  Urest  and the neuron enters a refractory period of  τ ref  . Inhibitory neurons obeyed 
the same integrate- and- fire formalism but with a shorter membrane time constant.

Excitatory synapses contain a fast AMPA component and a slow NMDA component. The dynamics 
of the excitatory conductance are described by:

 
τ ampa dgampa

i
dt

= −gampa
i +

∑

j∈exc
JijSj(t)

  
(92)

 
τnmda dgnmda

i
dt

= −gnmda
i + gampa

i   
(93)

 gexc
i (t) = ξgampa

i (t) + (1 − ξ)gnmda
i (t)  (94)

Here,  Jij  denotes the synaptic strength from neuron  j  to neuron i. If the connection does not exist, 

 Jij  was set to 0.  Sj(t)  is the spike train of neuron  j , which is defined as  Sj(t) =
∑

k δ(t − tkj ) , where  δ  is the 
Dirac delta function and  t

k
j   the spikes times  k  of neuron  j .  ξ  is a weighting parameter. The dynamics 

of inhibitory conductances are governed by:

 
τgaba dginh

i
dt = −ginh

i +
∑

j∈inh
JijSj(t)

  
(95)

In the spiking neural network models, SFA of excitatory neurons is modeled as follows,

 
τm dUi

dt
= (Urest − Ui) + gext

i (t)(Uexc − Ui) + (ginh
i (t) + ai(t))(Uinh − Ui)  (96)

 
dai
dt

= − ai
τa

+ bSi(t)
  

(97)
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where i is the index of excitatory neurons.
The dynamics of E- to- E STD are given by

 

dxij
dt

=
1 − xij
τx

− UdxijSj(t)
  

(98)

 
τ ampa dgampa

i
dt

= −gampa
i +

∑

j∈exc
xijJijSj(t)

  
(99)

where i represents the index of excitatory neurons.
The dynamics of E- to- I STF are governed by

 

duij
dt

=
1 − uij
τu

+ Uf(Umax − uij)Sj(t)
  

(100)

 
τ ampa dgampa

i
dt

= −gampa
i +

∑

j∈exc
uijJijSj(t)

  
(101)

where i denotes the index of inhibitory neurons.
For Figure 6, each excitatory and inhibitory neuron received external excitatory input from 300 

neurons firing with Poisson statistics at an average firing rate of 0.1 Hz at baseline. During stimulation, 
the excitatory neurons corresponding to the activated ensemble received external excitatory input 
from 300 neurons firing with Poisson statistics at an average firing rate of 0.5 Hz. The ensemble activity 
is computed from the instantaneous firing rates of the respective ensembles with 10ms bin size. 
The difference in ensemble activity for the peak amplitude is calculated by subtracting the average 
maximal ensemble activity of the unstimulated ensembles from the maximal ensemble activity of the 
activated ensemble. Similarly, the difference in ensemble activity for the fixed point is calculated by 
subtracting the average ensemble activity of the unstimulated ensembles at the fixed point from the 
ensemble activity of the activated ensemble at the fixed point. Fixed point activity is computed by 
averaging the activity of the middle 1 second within the 2- second stimulation period.

For Figure  2—figure supplement 10, each excitatory and inhibitory neuron received external 
excitatory input from 300 neurons firing with Poisson statistics at an average firing rate of 0.1 Hz at 

Table 1. Parameters for Figure 1C–E.

Symbol Value Unit Description

 JEE 1.8 - E- to- E connection strength

 JIE 1.0 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  0.6 - I- to- I connection strength

 αE 2 - Power of excitatory input- output function

 αI  2 - Power of inhibitory input- output function

 τE 20 ms Time constant of excitatory firing dynamics

 τI  10 ms Time constant of inhibitory firing dynamics

 g
bs
E  1.55 - Input to the E population at baseline

 g
stim
E  3.0 - Input to the E population during stimulation

 gI  2.0 - Input to the I population

Parameters for Figure 1F

 JIE 0.45 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  1.5 - I- to- I connection strength
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the baseline. During stimulation, each excitatory neuron received external excitatory input from 300 
neurons firing with Poisson statistics at an average firing rate of 0.3 Hz.

For Figure 6—figure supplement 1, the firing rates of 300 neurons are varying from  4/15  Hz to 
 7/15  Hz.

Simulations
Simulations were performed in Python and Mathematica. All differential equations were implemented 
by Euler integration with a time step of 0.1 ms. All simulation parameters are listed in Tables 1–5 and 
Appendix 5—Tables 1–10. The simulation source code to reproduce the figures is publicly available 
at https://github.com/fmi-basel/gzenke-nonlinear-transient-amplification (Wu, 2021 copy archived at 
swh:1:rev:6ff6ff10b9f4994a0f948a987a66cc82f98451e1).

Table 2. Parameters for Figure 2.

Symbol Value Unit Description

 τa 200 ms Time constant of SFA

 b 1.0 - Strength of SFA

 τx 200 ms Time constant of STD

 Ud  1.0 - Depression rate

 τu 200 ms Time constant of STF

 Uf  1.0 - Facilitation rate

 Umax 6.0 - Maximal facilitation value

Note that these values are also applied elsewhere unless mentioned otherwise.

Table 3. Parameters for Figure 3 bi/multi- stable example.

Symbol Value Unit Description

 JEE 1.4 - Within- ensemble E- to- E connection strength

 JIE 0.6 - Within- ensemble E- to- I connection strength

 JEI  1.0 - Within- ensemble I- to- E connection strength

 JII  0.6 - Within- ensemble I- to- I connection strength

 J
′
EE 0.14 - Inter- ensemble E- to- E connection strength

 J
′
IE 0.6 - Inter- ensemble E- to- I connection strength

 J
′
EI  1.0 - Inter- ensemble I- to- E connection strength

 J
′
II  0.6 - Inter- ensemble I- to- I connection strength

 g
bs
E1 2.2 - Input to the E1 population at baseline

 g
stim
E1  3.0 - Input to the E1 population during stimulation

 gE2 2.2 - Input to the E2 population

 gI  2.0 - Input to the I population

Parameters for Figure 3 uni- stable example

 JEE 1.3 - Within- ensemble E- to- E connection strength

 J
′
EE 0.13 - Inter- ensemble E- to- E connection strength
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Table 4. Parameters for Figures 4 and 5.

Symbol Value Unit Description

 NE 200 - Number of excitatory neurons

 NI  50 - Number of inhibitory neurons

 N  2 - Number of ensembles

 JEE  1.2/(NE/2 − 1) - Within- ensemble E- to- E connection strength

 JIE  1.0/(NE/2) - Within- ensemble E- to- I connection strength

 JEI   1.0/(NI/2) - Within- ensemble I- to- E connection strength

 JII   1.0/(NI/2 − 1) - Within- ensemble I- to- I connection strength

 J
′
EE  0.36/(NE/2 − 1) - Inter- ensemble E- to- E connection strength

 J
′
IE  0.4/(NE/2) - Inter- ensemble E- to- I connection strength

 J
′
EI   0.1/(NI/2) - Inter- ensemble I- to- E connection strength

 J
′
II   0.1/(NI/2) - Inter- ensemble I- to- I connection strength

 gI  2.0 - Input to the I population

Parameters for Figure 4

 g
bs
E1 1.35 - Input to the E1 population

 g
stim
E1  4.0 - Input to the E1 population during stimulation

 gE2 1.35 - Input to the E2 population

Parameters for Figure 5

 g
bs
E1 1.35 - Input to the E1 population at baseline

 g
stim
E1  1.35 + (4.0–1.35) (1- p ) - Input to the E1 population during stimulation

 g
bs
E2 1.35 - Input to the E2 population at baseline

 g
stim
E2  1.35 + (4.0–1.35) p - Input to the E2 population during stimulation

Here, p is a parameter between 0 and 1 controlling the additional inputs to E1 and E2.
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Table 5. Parameters for Figure 6.

Symbol Value Unit Description

 NE 400 - Number of excitatory neurons

 NI  100 - Number of inhibitory neurons

 Urest –70 mV Resting membrane potential

 Uexc 0 mV Excitatory reversal potential

 Uinh –80 mV Inhibitory reversal potential

 τ ref  3 ms Duration of refractory period

 τ
m
exc 20 ms Membrane time constant of excitatory neurons

 τ
m
inh 10 ms Membrane time constant of inhibitory neurons

 τ ampa 5 ms Time constant of AMPA receptor

 τgaba 10 ms Time constant of GABA receptor

 τnmda 100 ms Time constant of NMDA receptor

 ξ 0.5 - Receptor weighting factor

 JEE 0.19 - Within- ensemble E- to- E connection strength

 JIE 0.10 - Within- ensemble E- to- I connection strength

 JEI  0.10 - Within- ensemble I- to- E connection strength

 JII  0.06 - Within- ensemble I- to- I connection strength

 J
′
EE 0.019 - Inter- ensemble E- to- E connection strength

 J
′
IE 0.05 - Inter- ensemble E- to- I connection strength

 J
′
EI  0.04 - Inter- ensemble I- to- E connection strength

 J
′
II  0.006 - Inter- ensemble I- to- I connection strength
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Appendix 1
Stability conditions in networks with E-to-I STF
The dynamics of supralinear networks with E- to- I STF can be described as follows:
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drE
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(104)

The Jacobian  MSTF  of the system with E- to- I STF is given by:
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The characteristic polynomial for the system with E- to- I STF can be written as follows:

 λ3 − tr(MSTF)λ2 + (A11 + A22 + A33)λ− det(MSTF) = 0  (106)

where  tr(MSTF)  and  det(MSTF)  are the trace and the determinant of the Jacobian matrix  MSFA  , 
A11, A22, and A33 are the matrix cofactors. More specifically,
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Assuming that  αE = αI = α , we then have
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Substituting the firing rates with the current into excitatory population  z , we then have
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det (JSTF) =
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(110)

In the large  rE  limit,  z  is large,  limrE→∞ u = limrE→∞
1+UfUmaxrEτu

1+UfrEτu
≈ Umax . Therefore, we can 

guarantee that  det (JSTF)  becomes positive for sufficiently large  Umax . Since the denominator 

 det (JSTF) · J−1
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EI JIIgE + gI   grows faster than the numerator for  z ≫ 1 ,  tr(MSTF)  

becomes negative for large  rE .
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Similarly, in the large  rE  limit,  A11 + A22 + A33  is positive.
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Similarly, in the large  rE  limit,  det(MSTF)  is negative.
Therefore, similar to E- to- E STD, networks dynamics can also be stabilized by E- to- I STF.
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Appendix 2
Conditions for ISN in networks with E-to-I STF
Here, we identify the condition of being ISN in supralinear networks with E- to- I STF. If inhibition 
is frozen, in other words, if feedback inhibition is absent, the Jacobian of the system becomes as 
follows:

 

M2 =


τ
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E (JEEαEr
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u − UfrE



  

(113)

For the system with frozen inhibition, the dynamics are stable if

 tr(M2) = τ−1
E (JEEαEr
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E − 1) − τ−1
u − UfrE < 0  (114)

and

 det(M2) = τ−1
E (JEEαEr
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u − UfrE) > 0  (115)

Therefore, if the network is an ISN at the fixed point, the following condition has to be satisfied:

 τ−1
E (JEEαEr

αE−1
αE

E − 1) > 0  (116)

Note that this condition is independent of the facilitation variable  u  of E- to- I STF. We further 
define the ISN index for the system with E- to- I STF as follows:

 ISN index = τ−1
E (JEEαEr

αE−1
αE

E − 1)  (117)
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Appendix 3
Conditions for paradoxical response in networks with E-to-I STF
Next, we identify the condition of having the paradoxical effect in supralinear networks with E- to- I 
STF. The excitatory nullcline is defined by

 
τE

drE
dt

= −rE +
[
JEErE − JEIrI + gE

]αE

+
= 0

  
(118)

For  rE,I > 0 , we have

 
rI =

JEErE − r
1

αE
E + gE

JEI   
(119)

The slope of the excitatory nullcline in the  rE/rI   plane where  x  axis is  rE  and  y  axis is  rI   can be 
written as follows

 
kE

STF =
JEE − 1

αE
r

1
αE

−1
E

JEI   
(120)

Note that the slope of the excitatory nullcline is nonlinear. To have paradoxical effect, the slope 
of the excitatory nullcline at the fixed point of the system has to be positive. We therefore have

 JEEαEr
αE−1
αE

E − 1 > 0  (121)

We exploit a separation of timescales between fast neural activity and slow short- term plasticity 
variable, we therefore set the facilitation variable to the value at its fixed point corresponding to 
the dynamical value of  rE . Then we can write the inhibitory nullcline as follows

 
τI

drI
dt

= −rI +
[1 + UfUmaxrEτu

1 + UfrEτu
JIErE − JIIrI + gI

]αI

+
= 0

  
(122)

In the region of rates  rE,I > 0 , we have

 
rI =

1+UfUmaxrEτu
1+UfrEτu

JIErE − r
1
αI
I + gI

JII   
(123)

The slope of the inhibitory nullcline can be written as follows

 

kI
STF =

1+UfUmaxrEτu
1+UfrEτu

JIE + UfUmaxτu−Ufτu
(1+UfrEτu)2 JIErE

JII + 1
αI

r
1−αI
αI

I   

(124)

In addition to the positive slope of the excitatory nullcline, the slope of the inhibitory nullcline 
at the fixed point of the system has to be larger than the slope of the excitatory nullcline. We 
therefore have

 

−(JEEαEr
αE−1
αE

E − 1)(1 + JIIαIr
αI−1
αI

I ) + JIEαEr
αE−1
αE

E
1 + UfUmaxrEτu

1 + UfrEτu
JEIαIr

αI−1
αI

I

+JIEαEr
αE−1
αE

E
UfUmaxτu − Ufτu

(1 + UfrEτu)2 JEIαIr
αI−1
αI

I rE > 0
  

(125)

The above condition is the same as the stability condition of the determinant of the Jacobian of 
the system with E- to- I STF (Eq. (112)). Therefore, the condition is always satisfied when the system 
with E- to- I STF is stable.

Note that the condition of being ISN shown in Eq. (116) is identical to the condition of having 
paradoxical effect shown in Eq. (121). Therefore, in networks with E- to- I STF alone, paradoxical 
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effect implies ISN and ISN implies paradoxical effect. We thus use paradoxical effect as a proxy for 
inhibitory stabilization.



 Research article Neuroscience

Wu and Zenke. eLife 2021;10:e71263. DOI: https://doi.org/10.7554/eLife.71263  40 of 43

Appendix 4
Change in steady-state activity of unstimulated co-tuned neurons
To analyze the pattern completion in supralinear networks, we considered a network with one 
excitatory population and one inhibitory population. Neurons in the excitatory population are co- 
tuned to the same stimulus feature and are separated into two subsets denoting by E11 and E12. 
The dynamics of the system can be described as follows:

 
τE

drE11

dt
= −rE11 +

[
JE11E11 rE11 + JE11E12 rE12 − JE11IrI + gE11

]αE

+   
(126)

 
τE

drE12

dt
= −rE12 +

[
JE12E11 rE11 + JE12E12 rE12 − JE12IrI + gE12

]αE

+   
(127)

 
τI

drI
dt

= −rI +
[
JIE11 rE11 + JIE12 rE12 − JIIrI + gI

]αI

+   
(128)

The change in the firing rate of the Subset 2 in the excitatory population  δrE12  can be written as 
a function of the change in the input to the Subset 1  δgE11 :

 

δrE12 = 1
det(1 − FJ)

[−f
′
E12 JE12If

′
IJIE11 − (−f

′
E12 JE12E11 )(1 + f

′
IJII)]f

′
E11δgE11

= 1
det(1 − FJ)

[JE12E11 + JE12E11 JIIf
′
I − JE12IJIE11 f

′
I]f

′
E11 f

′
E12δgE11   

(129)

where  1  is the identity matrix. And  F  is given by

 

F =




f
′
E11 0 0

0 f
′
E12 0

0 0 f
′
I



  

(130)

where  f
′
E11 ,  f

′
E12 , and  f

′
I   are the derivatives of the input- output functions evaluated at the fixed 

point. The term  det(1 − FJ)  is positive to ensure the stability of the system.
Clearly, if the term  JE12E11 + JE12E11 JIIf

′
I − JE12IJIE11 f

′
I   is positive (negative), increasing the input 

to the Subset 1 leads to an increase (a decrease) in the activity of neurons in the Subset 2. As 
the input to the Subset 1 increases, the firing rate of the inhibitory population  rI   and also  f

′
I   will 

increase. In the presence of E- to- E STD or E- to- I STF,  JE12E11  or  JIE11  will decrease or increase 
with the input to the Subset 1. As a result, the sign of  JE12E11 + JE12E11 JIIf

′
I − JE12IJIE11 f

′
I   can switch 

from positive to negative as the input to the Subset 1 increases, indicating that the effect on the 
activity of the co- tuned unstimulated neurons in the same ensemble can switch from potentiation 
to suppression. Note that this behavior is different from linear networks in which the change is 
independent of the input or firing rates.
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Appendix 5

Appendix 5—table 1. Parameters for Figure 1—figure supplement 1.

Symbol Value Unit Description

 JEE 0.5 - E- to- E connection strength

 JIE 0.45 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  1.5 - I- to- I connection strength

 g
bs
E  0.5 - Input to the E population at baseline

 g
bs
I  1.5 - Input to the I population at baseline

Appendix 5—table 2. Parameters for Figure 2—figure supplement 2.

Symbol Value Unit Description

 g
stim
E  2.0 - Input to the E population during stimulation

Note that values of the unlisted parameters are the same as Tables 1–2.

Appendix 5—table 3. Parameters for Figure 2—figure supplement 3 SSN example.

Symbol Value Unit Description

 JEE 1.8 - E- to- E connection strength

 JIE 2.0 - E- to- I connection strength

 JEI  1.0 - I- to- E connection strength

 JII  1.0 - I- to- I connection strength

Appendix 5—table 4. Parameters for Figure 2—figure supplement 5.

Symbol Value Unit Description

 g
bs
E  1.8 - Input to the E population at baseline

Note that values of the unlisted parameters are the same as Tables 1–2.

Appendix 5—table 5. Parameters for Figure 2—figure supplement 10.

Symbol Value Unit Description

 NE 400 - Number of excitatory neurons

 NI  100 - Number of inhibitory neurons

 JEE 0.05 - E- to- E connection strength

 JIE 0.02 - E- to- I connection strength

 JEI  0.05 - I- to- E connection strength

 JII  0.03 - I- to- I connection strength

Appendix 5—table 6. Parameters for Figure 2—figure supplement 11.

Symbol Value Unit Description

 JEE 0.9 - E- to- E connection strength

 JIE 1.2 - E- to- I connection strength

Appendix 5—table 6 Continued on next page
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Symbol Value Unit Description

 JEI  0.5 - I- to- E connection strength

 JII  0.5 - I- to- I connection strength

 τE 20 ms Time constant of excitatory firing dynamics

 τI  60 ms Time constant of inhibitory firing dynamics

 g
bs
E  1.0 - Input to the E population at baseline

 g
stim
E  2.0 -

Input to the E population during 
stimulation

 gI  2.0 - Input to the I population

Note that values of the unlisted parameters are the same as Tables 1–2.

Appendix 5—table 7. Parameters for Figure 2—figure supplement 12.

Symbol Value Unit Description

 JEE 1.0 - E- to- E connection strength

 JIE 1.2 - E- to- I connection strength

 JEI  0.5 - I- to- E connection strength

 JII  1.0 - I- to- I connection strength

 g
bs
E  0.5 - Input to the E population at baseline

 g
bs
I  1.0 - Input to the I population at baseline

Appendix 5—table 8. Parameters for Figure 3—figure supplement 1 global inhibition example.

Symbol Value Unit Description

 JEE 1.6 - Within- ensemble E- to- E connection strength

 JIE 1.0 - Within- ensemble E- to- I connection strength

 JEI  1.0 - Within- ensemble I- to- E connection strength

 JII  1.2 - Within- ensemble I- to- I connection strength

 J
′
EE 0.16 - Inter- ensemble E- to- E connection strength

 J
′
IE 1.0 - Inter- ensemble E- to- I connection strength

 J
′
EI  1.0 - Inter- ensemble I- to- E connection strength

 J
′
II  1.2 - Inter- ensemble I- to- I connection strength

 g
bs
E1 1.5 - Input to the E1 population at baseline

 gE2 1.5 - Input to the E2 population

 gI1 2.5 - Input to the I1 population

 gI2 2.5 - Input to the I2 population

Parameters for Figure 3—figure supplement 1 co- tuned example

 JIE 1.0 * (4/3) - Within- ensemble E- to- I connection strength

 JEI  1.0 * (4/3) - Within- ensemble I- to- E connection strength

 JII  1.2 * (4/3) - Within- ensemble I- to- I connection strength

Appendix 5—table 6 Continued

Appendix 5—table 8 Continued on next page
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Symbol Value Unit Description

 J
′
IE 1.0 * (2/3) - Inter- ensemble E- to- I connection strength

 J
′
EI  1.0 * (2/3) - Inter- ensemble I- to- E connection strength

 J
′
II  1.2 * (2/3) - Inter- ensemble I- to- I connection strength

Appendix 5—table 9. Parameters for Figure 4—figure supplement 1.

Symbol Value Unit Description

 JEE  1.5/(NE/2 − 1) - Within- ensemble E- to- E connection strength

 JIE  1.0/(NE/2) - Within- ensemble E- to- I connection strength

 JEI   1.0/(NI/2) - Within- ensemble I- to- E connection strength

 JII   1.0/(NI/2 − 1) - Within- ensemble I- to- I connection strength

 J
′
EE  0.1/(NE/2 − 1) - Inter- ensemble E- to- E connection strength

 J
′
IE  0.3/(NE/2) - Inter- ensemble E- to- I connection strength

 J
′
EI   0.3/(NI/2) - Inter- ensemble I- to- E connection strength

 J
′
II   0.1/(NI/2) - Inter- ensemble I- to- I connection strength

 g
bs
E1 1.5 - Input to the E1 population at baseline

 gE2 1.5 - Input to the E2 population

 gI  2.0 - Input to the I population

Appendix 5—table 10. Parameters for Figure 6—figure supplement 1.

Symbol Value Unit Description

 JEE 0.20 - Within- ensemble E- to- E connection strength

 JIE 0.09 - Within- ensemble E- to- I connection strength

 JEI  0.10 - Within- ensemble I- to- E connection strength

 JII  0.10 - Within- ensemble I- to- I connection strength

 J
′
EE 0.02 - Inter- ensemble E- to- E connection strength

 J
′
IE 0.054 - Inter- ensemble E- to- I connection strength

 J
′
EI  0.07 - Inter- ensemble I- to- E connection strength

 J
′
II  0.01 - Inter- ensemble I- to- I connection strength

Note that values of the unlisted parameters are the same as Table 5.

Appendix 5—table 8 Continued
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The dynamics of neuronal firing during natural vision are poorly
understood. Surprisingly, mean firing rates of neurons in primary
visual cortex (V1) of freely behaving rodents are similar during
prolonged periods of light and darkness, but it is unknown whether
this reflects a slow adaptation to changes in natural visual input or
insensitivity to rapid changes in visual drive. Here, we use chronic
electrophysiology in freely behaving rats to follow individual
V1 neurons across many dark–light (D-L) and light–dark (L-D) transi-
tions. We show that, even on rapid timescales (1 s to 10 min), neuro-
nal activity was only weakly modulated by transitions that coincided
with the expected 12-/12-h L-D cycle. In contrast, a larger subset of
V1 neurons consistently responded to unexpected L-D and D-L tran-
sitions, and disruption of the regular L-D cycle with 60 h of complete
darkness induced a robust increase in V1 firing on reintroduction of
visual input. Thus, V1 neurons fire at similar rates in the presence or
absence of natural stimuli, and significant changes in activity arise
only transiently in response to unexpected changes in the visual en-
vironment. Furthermore, although mean rates were similar in light
and darkness, pairwise correlations were significantly stronger during
natural vision, suggesting that information about natural scenes in
V1 may be more strongly reflected in correlations than individual
firing rates. Together, our findings show that V1 firing rates are rap-
idly and actively stabilized during expected changes in visual input
and are remarkably stable at both short and long timescales.

visual experience | rodent vision | visual cortex | firing-rate stability

Neurons in the cerebral cortex are spontaneously active, but
the function of this internally generated activity is largely

unexplained. Ongoing activity has been proposed to be noise due
to random fluctuations (1–3). However, other experiments have
shown that spontaneous activity possesses coherent spatiotem-
poral structure (4–6), suggesting that it may play an important
role in the processing of natural sensory stimuli (4, 7–11). In
primary visual cortex (V1), spontaneous activity observed in
complete darkness is similar to that evoked by visual stimulation
with random noise stimuli and is only subtly modulated by nat-
ural scene viewing (8, 12). Recently, we showed that individual
V1 neurons have very stable mean firing rates in freely behaving
rodents and that these mean rates are indistinguishable in light
and dark when averaged across many hours (13). How V1 firing
can be stable across such drastic changes in the visual environ-
ment while still meaningfully encoding sensory stimuli and
whether this stability is actively maintained or simply arises from
intrinsic circuit dynamics remain unknown.
Regulation of individual firing rates around a stable set point

is thought to be essential for proper functioning of cortical cir-
cuits in the face of developmental or experience-dependent
perturbations to connectivity (14, 15). Long-term stability of in-
dividual mean firing rates has now been observed in rodent V1
(13, 16, 17) and primary motor cortex (18), suggesting that it is a
general feature of neocortical networks; furthermore, perturbing
V1 firing rates through prolonged sensory deprivation results in a
slow but precise homeostatic regulation of firing back to an in-
dividual set point, showing that neurons actively maintain these
set points over long timescales (13). This stability in mean firing

rates, even across periods of light and dark, raises the question of
how natural visual input is encoded by V1 activity in freely be-
having animals. One possibility is that changes in visual drive
result in rapid fluctuations in mean firing rates that operate over
seconds to minutes. Another possibility is that firing rates are
stabilized even over these short timescales, and visual information
is primarily encoded in higher-order network dynamics.
To generate insight into these questions, we followed firing of

individual neurons in V1 of freely behaving young rats over
several days as animals experienced normal light–dark (L-D) and
dark–light (D-L) transitions or transitions that were un-
expectedly imposed. We found that expected transitions had a
very modest effect on firing rates of both excitatory and in-
hibitory neurons, even when examined immediately around the
time of the transition. Population activity did not change sig-
nificantly across these transitions; when examined at the level of
individual neurons, only a small subset (∼15%) of putative ex-
citatory neurons consistently responded and then, only during D-
L transitions when animals were awake. Interestingly, randomly
timed transitions throughout the L-D cycle elicited more con-
sistent responses across sleep–wake states and at both D-L and
L-D transitions, and robust and widespread responses to D-L
transitions could be unmasked by exposing animals to pro-
longed darkness for 60 h. These results suggest that the stability
normally observed at expected (circadian) L-D and D-L transi-
tions reflects an active process of stabilization. Finally, although
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The firing dynamics of neurons in primary visual cortex (V1) are
poorly understood. Indeed, V1 neurons of freely behaving rats
fire at the same mean rate in light and darkness. It is unclear
how this stability is maintained and whether it is important for
sensory processing. We find that transitions between light and
darkness happening at expected times have only modest ef-
fects on V1 activity. In contrast, both unexpected transitions
and light reexposure after extended darkness robustly increase
V1 firing. Finally, pairwise correlations in neuronal spiking are
significantly higher during the light when natural vision is oc-
curring. These data show that V1 firing rates are actively sta-
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changes in correlations between neurons.
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mean rates were very similar in light and dark, the pairwise cor-
relations between simultaneously recorded neurons were signifi-
cantly higher in the light than in the dark, even when controlling
for behavioral state. Together, our findings show that firing rates
in V1 are actively stabilized as animals navigate dramatic changes
in the visual environment. This is in contrast to the correlational
structure of V1 activity, which more closely tracks visual drive.

Results
Neurons in V1 maintain remarkably similar mean firing rates during
extended periods of light and dark, but how L-D transitions affect
firing on more rapid timescales in freely viewing and behaving an-
imals is unclear. Here, we use chronic in vivo electrophysiological
recordings from freely behaving rats to closely examine the activity
of V1 neurons at D-L and L-D transitions in regular (12/12 h) and
manipulated L-D cycles and during unexpected transitions. Using
previously established methods (13), we follow individual neurons
over time and across multiple light transitions. This approach allows
us to analyze the dynamics of neuronal activity at different time-
scales in response to the appearance or disappearance of natural
visual stimuli.

The Appearance or Disappearance of Natural Visual Stimuli Has only a
Modest Effect on the Mean Firing Rates of V1 Neurons. The firing
rates of V1 neurons recorded in freely behaving young rats in
light and dark are very similar when averaged in 12-h periods
(13). Here, we combine previously and newly acquired datasets
and set out to analyze the activity of V1 neurons around the
transition from presence to absence of visual input (L-D) and
vice versa (D-L) (Fig. 1A). Recorded neurons were classified as

regular spiking units (RSUs; n = 96) or fast-spiking (FS) cells
(n = 32) based on waveform shape and according to established
criteria (Fig. 1B) (16, 19). These populations are mostly com-
posed of excitatory pyramidal neurons (RSU) and inhibitory
parvalbumin-containing interneurons (FS) (20, 21).
As rats experience L-D or D-L transitions, most neurons

showed little change in firing (Fig. 1C). We treated each tran-
sition as a separate trial and estimated the firing rate for each
cell as the average of the perievent time histogram centered on
the transition. We first aimed to compare activity at the pop-
ulation level in different stimulus conditions. To this end, we
determined whether the distributions of mean firing rates aver-
aged over 10 min on either side of the L-D and D-L transitions
were similar to each other. Cumulative distributions in light and
dark were indistinguishable for both RSU and FS cells in all
conditions (Fig. 1 D and E) (2-sample Kolmogorov–Smirnov
test; RSU, L-D: P = 0.88; D-L: P = 0.99; FS, L-D: P = 0.99; D-L:
P = 1.0). Similarly, when we compared the distributions using a
Wilcoxon rank sum test, we found no difference between the
distributions of mean firing rates before vs. after the transitions
(Wilcoxon rank sum test; RSU, L-D: P = 0.677; D-L: P = 0.655;
FS, L-D: P = 0.905; D-L: P = 0.827).
Next, we took advantage of our ability to follow individual

neurons across transitions to examine the data in a paired manner,
where the firing rate of each neuron was compared before and
after the transition. For each neuron, we computed mean firing
rate in the 10 min before and after the transition time and aver-
aged across transitions of the same type to estimate the average
effect on individual neuronal firing. This analysis revealed a
small but consistent change in mean RSU firing rates across both
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Fig. 1. V1 firing rates are largely stable across circadian L-D and D-L transitions. (A) Experimental protocol. Single-unit recordings were obtained from
juvenile rats for a continuous 9-d period (P24 to P32). Throughout this period, animals were kept in a regular 12-/12-h L-D cycle and thus, underwent L-D
(purple arrows) and D-L (yellow arrows) transitions at regular 12-h intervals. (B, Left) Average waveform for each continuously recorded unit identified as RSU
(red) or FS cell (blue). (B, Right) Plot of trough-to-peak time vs. waveform slope 0.4 ms after trough reveals the bimodal distribution used to classify recorded
units as RSU or FS. (C) Example raster plot of spiking activity for a recorded unit across several days, showing 20 min of activity centered on the L-D (Upper)
and D-L (Lower) transitions. Dark bars represent the perievent time histogram obtained by averaging across days. (D) Cumulative distributions of RSU firing
rates averaged over the 10 min of light (solid lines) or dark (dashed lines) around the transitions for L-D (Left) and D-L (Right) transitions (L-D, P = 0.875; D-L,
P = 0.99; 2-sample Kolmogorov–Smirnov test). (E) As in D but for FS units (L-D, P = 0.99; D-L, P = 1.0; 2-sample Kolmogorov–Smirnov test). (F) Mean firing rate
for each RSU averaged across all transitions experienced by that neuron in L-D (Left) and D-L (Right) transitions. Paired data indicate that the average FR is for
the same neuron. Distributions were not significantly different (L-D, P = 0.677; D-L, P = 0.655; Wilcoxon rank sum test), but individual neurons across the
whole distribution showed consistent changes at the transitions. ***P = 0.0002; ****P < 0.0001 (Wilcoxon signed rank test). (G) As in F but for FS units.
Distributions were not different (L-D, P = 0.905; D-L, P = 0.827; Wilcoxon rank sum test), but individual FS units changed their firing consistently at D-L but not
L-D transitions (L-D, P = 0.318). *P = 0.026 (Wilcoxon signed rank test). (H) Percentage of change in firing rate across transition for RSUs (L-D, −7.09 ± 1.99%;
D-L, 15.60 ± 4.00%; Wilcoxon signed rank test). ****P = 0.0001. (I) As in H for FS units. Percentage of change in FR was different from 0 in the D-L but not the
L-D condition (L-D, −2.75 ± 3.80%, P = 0.410; D-L: 9.73 ± 5.12%; Wilcoxon signed rank test). *P = 0.017.
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L-D and D-L transitions (Fig. 1F) (Wilcoxon signed rank test;
L-D: P = 0.0002; D-L: P = 0.0001), while the activity of FS cells
only changed significantly at D-L transitions (Fig. 1G) (Wilcoxon
signed rank test; L-D: P = 0.318; D-L: P = 0.026). The magnitude
of these effects was small: on the order of 7 to 15% for RSUs
(Fig. 1 H and I) (RSU, L-D: −7.09 ± 1.99%, P = 0.0001; D-L:
15.60 ± 4.00%, P < 0.0001; FS, L-D: −2.75 ± 3.80%, P = 0.410;
D-L: 9.73 ± 5.12%, P = 0.017; Wilcoxon signed rank test).
These data show that, surprisingly, dramatic changes in visual

input cause very minor changes in V1 firing rates. The distri-
butions of mean rates in the presence and absence of natural
visual stimuli are identical in the proximity of transitions. Anal-
ysis of many transitions shows that RSU firing rates are consis-
tently affected when the visual environment changes, but this
modulation is decidedly modest.

Behavioral State Affects Sensitivity of Firing Rates to Visual Stimuli.
As rats were freely behaving throughout, we considered whether
their alertness state at the light transitions could affect the activity
of V1 neurons. Local field potential (LFP), electromyography
(EMG), and video data were collected and used to score animals’
behavioral state into either asleep or awake (13). For each animal,
20-min periods centered on the L-D and D-L transitions were
considered. Only periods during which the animal remained in the
same behavioral state for the entire time were analyzed. For each
neuron, we plotted the mean firing rate before the transition
against the mean rate after the transition. The activities of neurons
proved to be strikingly similar across all transitions regardless of
whether the animals were awake or asleep (Fig. 2 A and B). In
either behavioral state, firing rates in light and dark were very
strongly correlated, and the slope of the regression line was close
to 1 (RSU, wake, L-D: slope = 0.959, r = 0.966, P < 10−43; D-L:
slope = 0.960, r = 0.991, P < 10−48; FS, wake, L-D: slope = 1.113,
r = 0.964, P < 10−13; D-L: slope = 0.976, r = 0.990, P < 10−18;
RSU, sleep, L-D: slope = 1.147, r = 0.941, P < 10−12; D-L: slope =
0.990, r = 0.996, P < 10−13; FS, sleep, L-D: slope = 1.093, r =
0.987, P < 10−13; D-L: slope = 1.003, r = 0.996, P < 10−11).

We again looked at the data in paired form by comparing a
neuron’s average firing rate on either side of an L-D transition.
The mean activity of RSUs in V1 changed consistently across
transitions when animals were awake (Fig. 2C) (L-D: P = 0.0001;
D-L: P = 0.0457; Wilcoxon signed rank test) but not when they
were asleep (Fig. 2D) (L-D: P = 0.656; D-L: P = 0.925; Wilcoxon
signed rank test). We observed a similar pattern in FS cells, al-
though the data in the wake condition were not significant for
L-D transitions (Fig. 2 E and F) (wake, L-D: P = 0.689; D-L: P =
0.039; sleep, L-D: 0.557; D-L: P = 0.638; Wilcoxon signed rank
test). Once again, these effects were of small magnitude (7 to
12%). Thus, V1 neurons do not respond to expected (circadian)
changes in the visual environment when animals are asleep and
respond only modestly when animals are awake.

A Subpopulation of RSUs Is Consistently Responsive to D-L Transitions.
While we only detected small changes at the population level (and
no change in the population distribution), we occasionally observed
neurons with activity that appeared to be consistently modulated by
visual stimuli. The majority of neurons showed no spiking modu-
lation across multiple transitions (Fig. 3A), but a subset of neurons
showed higher activity on 1 side of the transition (Fig. 3B). Occa-
sionally, neurons responded to both L-D and D-L transitions (Fig.
3B), but more often, neurons were only responsive to one or the
other. To quantify these observations, we treated each transition
independently for each neuron, averaged firing rates for 10 min
before and after lights on/off, and identified neurons that changed
their firing rate consistently across transitions using a paired t test.
Because neuronal firing rates are variable, we presumed that

some of these apparent responses were spurious. To estimate the
false positive rate, we performed a bootstrap analysis using
random time points as dummy “transitions.” We chose 9 transi-
tion points 24 h apart from each other (to match circadian
transitions) and analyzed mean firing rates for each neuron as
above but using these dummy transition points. This process was
repeated 100 times to arrive at an estimate of the mean and 95%
confidence interval (95% CI) for the percentage of responsive
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around the transitions in L-D and D-L transitions when the animal was awake for the whole 20 min. Activity in light and dark was strongly correlated for both
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across all transitions during which animals were awake. Neuronal activity changed consistently at the transitions (***P = 0.0001; *P = 0.0457; Wilcoxon signed
rank test). (D) As in C but for transitions during which animals were asleep. No significant change was observed (L-D, P = 0.656; D-L, P = 0.925; Wilcoxon signed
rank test). (E) As in C for FS units. Cells’ activity only changed significantly at D-L transitions (L-D, P = 0.689; D-L, *P = 0.039; Wilcoxon signed rank test). (F) As in
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cells (mean [95% CI], RSU, L-D: 3.55% [0 to 12.62%]; D-L:
3.09% [0 to 9.91%]; n = 64).
The proportion of cells that we found to be transition responsive

was within the range expected by chance for all conditions except
for RSUs in D-L transitions (Fig. 3C). We found that 14% of
RSUs in our experimental condition had significantly changing
firing rates from dark to light, well outside the range expected by
chance (95% CI for this group: 0 to 9.91%). In addition, most of
these neurons (88.9%) showed an increase in firing rate at the
onset of light, while in the bootstrap control, neurons were found
to have an equal probability of increasing or decreasing their ac-
tivity at a given transition point (51.8% of neurons increasing).
Finally, we examined the temporal dynamics of firing-rate

changes for the subset of RSUs that were consistently responsive
to D-L transitions. We plotted the mean activity within 1 h of the
transition, across all transitions, and across neurons for this
subpopulation (Fig. 3D). On average, the change in firing rate
was short lived (on the order of ∼10 min) and of moderate size
(∼25% increase). This analysis shows that a small subset of ex-
citatory pyramidal neurons in V1 consistently modulates their
activity in response to the expected appearance of visual input
after a circadian 12-h period of darkness. This change is transient,
with firing rates returning to pretransition levels within minutes.

Light Transitions Have No Effect on Average Interspike Intervals over
Short Timescales.Our analysis so far shows that, on a timescale of
tens of minutes, few V1 neurons show significant firing-rate
modulation to the appearance or disappearance of natural visual
stimuli. One possible explanation for this apparent lack of re-
sponsiveness is that these dramatic sensory changes trigger a
rapid adaptation mechanism that quickly restores average
V1 activity back to baseline. Such adaptation mechanisms within
V1 have been well described and can operate on a timescale of
hundreds of milliseconds to many minutes (22–24). To address
this possibility, we examined neuronal firing in 1-, 10-, and 30-s

intervals around L-D and D-L transitions for RSUs in our
dataset. Spiking in these short time windows was sparse and
variable across days (Fig. 4 A and B). We averaged the mean
interspike interval (ISI) across days for each cell and compared
averages in the 10 s before and after transitions. To ensure that
we were not missing effects on even shorter timeframes, we also
computed the mean ISI in 1-s windows around the transitions.
For both the 1- and 10-s cases, we found no statistically signifi-
cant effect (Fig. 4 C, 1 s, L-D: P = 0.27; D-L: P = 0.36; and D,
10 s, L-D: P = 0.97; D-L: P = 0.31; Wilcoxon signed rank test).
Similar results were obtained when this analysis was carried out
with 5- and 30-s intervals. This indicates that the stability of firing
across transitions is not due to a short-term adaptation process
that rapidly restores firing to baseline.

Pairwise Correlations in V1 Are Significantly Higher in Light than in
the Dark. To investigate whether higher-order network properties
are modified by the presence or absence of natural visual stimuli,
we examined the structure of pairwise correlations in light and in
dark (Fig. 5) (n = 5 animals). Plotting the correlation matrices of
1 animal at postnatal day 27 (P27) revealed that these correla-
tions were higher in the light (calculated over the 12-h period at
P27) than in the dark (calculated over the 12-h period at P27.5)
(Fig. 5A). We then plotted the average correlation computed
continuously over 4 d (normalized to the average correlation of
each animal at P26 in light) (Fig. 5B). The normalized pairwise
correlation showed a pronounced oscillation across light and
dark periods and was consistently higher in the light. To assess
the degree to which correlation of individual pairs changed, we
compared the correlation of 922 pairs in light vs. dark computed
for spike counts with bin sizes of 5 or 100 ms, respectively. We
found that correlations in light were higher than in the dark for
both bin sizes (Fig. 5 C, Left, 5 ms: P < 10−70 and Right, 100 ms:
P < 10−125; Wilcoxon signed rank test). To ensure that the ob-
served difference of correlations between light and dark was not
caused by disproportionate time spent in wake or sleep, we
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restricted the analysis to periods of wake and again computed
the average correlation. Consistent with our previous analysis,
correlations in wake during light were significantly greater than
in wake during dark (Fig. 5 D, Left, 5 ms: P < 10−55 and Right,
100 ms: P < 10−110; Wilcoxon signed rank test). These results
indicate that the presence of natural visual stimuli increases
pairwise correlations in V1.

Noncircadian, Unexpected L-D Transitions Are More Likely to Perturb
V1 Firing Rates. All of our data so far suggest that dramatic
changes in visual input at circadian L-D transitions have very
subtle effects on V1 firing. We wondered if this might be due to
circadian entrainment (i.e., that when L-D and D-L transitions
happen at regular times, they are expected, and the response of
neurons to otherwise salient stimuli is attenuated). To test this,
we examined neuronal responses to stimulus transitions occur-
ring at random points in the circadian cycle.
We recorded single-unit activity in V1 in a different subset of

animals while turning the lights off (or on) for 10 min during the
light (or dark) cycle (Fig. 6A) (n = 6 animals). We then calculated
the number of neurons that consistently and significantly changed
their firing at these unexpected transitions and again, used a
bootstrap analysis to calculate the false positive rate. In marked
contrast to expected transitions (Fig. 3D), we found that both L-D
and D-L unexpected transitions caused a subset of RSUs to
consistently modulate their spiking (Fig. 6 B and C). This effect
was seen regardless of behavioral state (significantly changing
RSUs, sleep, L-D: 21.9%, n = 64; D-L: 13.4%, n = 67; wake, L-D:
17.6%, n = 91; D-L: 12.7%, n = 55), and the proportion of sig-
nificantly changing neurons was higher than expected by chance in
most conditions (bootstrap mean [95% CI]; RSU, sleep, L-D:
4.42% [0 to 8.95%]; D-L: 4.31% [0 to 9.38%]; RSU, wake, L-D:
4.22% [0 to 8.79%]; D-L: 4.33% [0 to 9.09%]). These results show
that more neurons respond consistently to L-D and D-L transi-
tions when these do not line up with the circadian cycle that the
animals are entrained on. However, even during these unexpected
transitions, only a minority (12 to 20%) of neurons consistently
changed their firing rate in response to the appearance or disap-
pearance of natural visual stimuli.
To further examine the nature of these responses, we averaged

and plotted the activity of the subpopulation of responsive units
for each combination of behavioral state and transition type (Fig.
6 D and E). In the wake state, there was a net decrease in firing
during L-D transitions and vice versa for D-L (Fig. 6E), whereas
there was little net change during sleep (Fig. 6D). This is likely due
to averaging over changes in opposite directions during sleep, as
4 of 14 cells (29%) increased their FR in L-D transitions and 5 of
9 cells (55%) increased their FR in D-L transitions. However,
even in wake, these firing-rate changes were on the order of 10 to

25%, indicating that, even under the most permissive conditions,
firing is only subtly modulated by brief L-D transitions.

Prolonged Dark Exposure Enhances the Responsiveness of V1 Neurons
to Natural Visual Input.Our data show that reexposure to light after
12 h of darkness has only modest effects on V1 firing; in contrast,
reexposing animals to light after a period of prolonged darkness is
a standard paradigm for increasing activity-dependent gene ex-
pression in V1 (refs. 25–27; reviewed in ref. 28). We, therefore,
wondered whether prolonged dark exposure might unmask robust
responses to the sudden onset of visual stimuli within V1.
We began by using expression of the immediate early gene c-

fos, which is driven by enhanced calcium influx during elevated
activity (refs. 29 and 30; reviewed in ref. 31). After prolonged
darkness, brief light exposure induces widespread c-fos expres-
sion in V1 of cats and rodents (25, 32–34). To replicate this, we
placed P26 rats in the dark for 60 h (12 h + 2 d) and then, ex-
posed them to light for 1 h before immunostaining for the c-fos
protein (light exposed, n = 28 slices, 5 animals). We used age-
matched animals either exposed to 1 h of light after a regular 12-/
12-h cycle (regular control, n = 22 slices, 4 animals) or kept in
the dark for 60 h but killed before lights on (dark control, n =
23 slices, 4 animals) as controls (Fig. 7 A and B). Animals in the
light exposure condition showed an elevated percentage of c-fos–
positive cells (Fig. 7 C, Upper) (regular control: 11.4 ± 1.6%;
dark control: 6.1 ± 0.8%; light exposed: 16.8 ± 1.7%; light ex-
posed vs. regular control P = 0.032; light exposed vs. dark control
P = 0.001; 1-way ANOVA with Tukey post hoc test) as well as
increased total staining intensity (Fig. 7 C, Lower) (normalized to
regular control; regular control: 1.00 ± 0.06; dark control: 0.79 ±
0.05; light exposed: 1.31 ± 0.09; light exposed vs. regular control
P = 0.011; light exposed vs. dark control P = 0.001; 1-way
ANOVA with Tukey post hoc test). These data confirm that a
60-h period of prolonged darkness is sufficient to up-regulate c-
fos in rodent V1 on light reexposure.
Next, we asked whether elevated c-fos expression was corre-

lated with increased firing. We used the same paradigm as above
but recorded continuously from V1 during the baseline, dark
exposure, and light reexposure periods (n = 4 animals). On light
reexposure, both RSUs and FS cells showed a substantial tran-
sient increase in firing rate at the time of lights on (Fig. 7D)
(RSU: n = 32; FS: n = 12). We compared average firing rates
10 min before and after the transition for each cell. Both FS and
RSU populations showed a significant increase in firing rate
after light reexposure (Fig. 7 F and G) (RSU: P < 10−5; FS: P =
0.034; Wilcoxon signed rank test). The percentage change in
firing rate across the transition was also significantly different
from 0 (Fig. 7E) (all cells: 87.1 ± 13.5%, P < 10−7; RSU: 80.7 ±
14.9%, P < 10−5; FS: 104.3 ± 29.8%, P = 0.005; 1-sample t test),
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and the majority of neurons increased their activity at lights on
(RSU: 31 of 32 neurons; FS: 10 of 12 neurons).
One possible cause of enhanced responsiveness at salient

unexpected transitions (i.e., those happening after prolonged
darkness or at noncircadian times) (Fig. 6) is that responses are
normally suppressed when transitions are anticipated. If so, we
would expect to see an opposite effect on firing when an
expected transition does not occur. To look for such an effect,
we examined firing rates during prolonged dark exposure at the
times when expected (circadian) L-D transitions did not occur
(Fig. 8 A and B, “missing” transitions). We found a non-
significant trend toward reduced firing across the population at
missing D-L transitions (Fig. 8 A, Lower Right) and a small but
significant increase in firing at missing L-D transitions (Fig. 8 B,
Lower Right). Because we had only 2 repetitions of each tran-
sition, we could not quantify the fraction of neurons that
responded consistently to expected transitions that did not
occur.
Finally, it has been reported that prolonged dark exposure in-

creases firing rates in rodent V1 (35), suggesting that enhanced
responsiveness to light reexposure might arise from increased ex-
citability of V1 circuitry. To examine this, we asked how prolonged
dark exposure affected RSU firing rates in freely behaving animals
before light reexposure. When we compared the distribution of
RSU firing rates during the first and last 12 h of the 60-h-long
period of prolonged darkness, rather than an increase, we found
a small but significant decrease in firing rates (Fig. 8C) (mean ±
SEM; first 12 h: 4.00 ± 0.97 Hz, last 12 h: 2.27 ± 0.57 Hz; median;
first 12 h: 1.18 Hz; last 12 h: 0.85 Hz; P = 0.044; Wilcoxon rank sum
test). Thus, the enhanced responsiveness to restoration of natural
visual stimuli is unlikely to be due to a simple global increase in
circuit excitability.
In summary, these data indicate that prolonged dark exposure

disrupts the normal stability of V1 firing across D-L transitions
and suggest that the maintenance of this stability is dependent on
visual experience.

Discussion
How internal and external factors influence the long-term dy-
namics of neuronal firing in V1 is poorly understood. Here, we
recorded from ensembles of single units over a period of several
days in freely viewing and behaving animals and found that firing
rates of both excitatory and inhibitory V1 neurons were re-
markably stable even when sensory input changed abruptly and
dramatically. During expected circadian L-D transitions, very
few V1 neurons significantly changed their firing. A larger subset
of V1 neurons was consistently responsive to unexpected L-D
transitions, and disruption of the regular L-D cycle with 2 d of
complete darkness induced a widespread and robust increase in
V1 firing on subsequent reintroduction of visual input. These
data show that most V1 neurons fire at similar rates in the
presence or absence of natural visual stimuli and that significant
changes in mean activity arise only in response to unexpected
changes in the visual environment. While mean firing rates were
not different in light and dark, pairwise correlations were sig-
nificantly stronger in the light in the presence of natural visual
stimuli, even when controlling for behavioral state. Taken to-
gether, our findings are consistent with a process of rapid and
active stabilization of firing rates during expected changes in
visual input and demonstrate that firing rates in V1 are re-
markably stable at both short and long timescales.
The near absence of firing-rate modulation in response to the

appearance (or disappearance) of natural visual stimuli may
seem surprising, as there is a rich literature supporting the idea
that V1 neurons respond to optimal stimuli by increasing their
spiking (36–44). Many of these studies used anesthetized prep-
arations, making comparisons with our results difficult, but our
data are consistent with previous reports of small differences in
overall activity between natural vision and complete darkness in
awake animals (8) and sparse modulation of spiking in response
to natural scene viewing (12, 45–47). In general, our data support
the view that mean firing rates in V1 can be stabilized over both
long (13) and short timescales without interfering with visual
coding, which may arise through very sparse modulation of
spiking and/or higher-order population dynamics (46, 48, 49).
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Despite the lack of robust changes in firing rates across the
population at D-L transitions, we did observe a small subset of
neurons that transiently increased their firing specifically at the
appearance of visual input (Fig. 3). Interestingly, many layer 4
(L4) neurons (which account for 34% of our dataset) did not
show this kind of transient response at D-L transitions. The
subset of responsive neurons included cells from L4 but also, all
other layers of V1. Since this occurred in freely viewing animals,
it is unlikely that these neurons were responding to the same
specific visual stimuli on successive days. A more parsimonious
explanation is that these neurons are activated by luminance
changes at most D-L transitions. One possible source of drive to
these neurons is from intrinsically photosensitive retinal ganglion
cells (ipRGCs), which are known to exhibit prolonged changes in
firing on changes in luminance (50–52). Some classes of ipRGCs
have been shown to project to the dorsolateral geniculate nu-
cleus (dLGN) of mice, where they modulate the firing of ∼20 to
30% of dLGN neurons (53–55) and thus, can influence activity in
V1 (53). The firing of V1 neurons activated by L-D transitions
adapted over the first several minutes, but whether all ipRGC
firing adapts over a similar timescale is not known (53–55).
There is evidence that the ipRGCs of the M1 class can produce
persistent responses, resulting in temporal integration over sev-
eral minutes (56). It is at least plausible that the activity of these
cells is contributing to the coding of light levels in V1. Un-
fortunately, it is difficult to directly test the role of ipRGCs in
V1 responses in rats, as transgenic animals that would allow the
selective activation of ipRGCs without activating rods or cones
(as for mouse) (54, 55, 57) are not currently available. While it is
possible that this small subset of responsive neurons represents
sparse coding for the transition event, it is equally possible that
this is a simple reflection of upstream changes in activity and that
V1 does not explicitly code for sharp light transitions.
Interestingly, we detected a greater proportion of transition-

responsive cells when light transitions happened randomly

throughout the L-D cycle, including a population of neurons that
transiently responded to noncircadian L-D transitions by de-
creasing their firing rate (Fig. 6). Thus, unexpected changes in
visual drive unmask robust and bidirectional changes in firing in
a small subset (15 to 20%) of V1 neurons. We observed a similar
effect when expected L-D transitions did not occur, which
unmasked an increase in firing. There are several potential ex-
planations for this effect. It is possible that the responsive neu-
rons are specialized to represent this “unexpectedness” as an
error signal, such as has been proposed in some models of pre-
dictive coding (58, 59). Alternatively, it could be the result of
modulation by other brain areas that encode the surprise signal,
akin to that seen in response to attention or reward cues (60, 61)
or during modulation of V1 by locomotion (62).
We were able to disrupt the normal conservation of firing rates

across D-L transitions even more dramatically by using a pro-
longed dark-exposure paradigm, which induced a network-wide
enhancement of firing on light reexposure. This paradigm is
thought to induce metaplastic changes within V1 that increase
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
quantal amplitude onto L2/3 pyramidal neurons (35, 63, 64), but
the impact of these changes on overall V1 function and excitation/
inhibition balance is unclear. A previous study in anesthetized
animals found that several days of dark exposure increased firing
rates in V1, raising the possibility that prolonged dark exposure
increases overall V1 excitability (35); however, here we found a
small but significant reduction in mean firing rate across the
population in freely behaving animals, suggesting that circuit ex-
citability is, if anything, reduced by 60 h of dark exposure. In-
terestingly, this change in firing rate (FR) does not seem to trigger
a homeostatic compensation in the opposite direction. This could
be because a slow and gradual shift in neuronal FR set points
occurs during darkness, or perhaps, we are simply reintroducing
light before homeostatic changes have a chance to influence FRs.
Although the circuit mechanism by which dark exposure unmasks
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*P = 0.034 (Wilcoxon signed rank test).

18074 | www.pnas.org/cgi/doi/10.1073/pnas.1906595116 Torrado Pacheco et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
38

.2
46

.3
.1

91
 o

n 
Ju

ly
 2

7,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
8.

24
6.

3.
19

1.



robust responses to D-L transitions is unclear, these experiments
suggest that normal visual experience is necessary to maintain the
ability of V1 circuits to stabilize their firing across these transitions.
In contrast to our observations on the stability of firing rates,

we found that pairwise correlations in visual cortex were mark-
edly higher in the light phase than in the dark phase (Fig. 5). This
is consistent with previous reports that ongoing spontaneous
activity in the dark is less correlated than activity elicited by
natural scene stimuli (8, 65). Correlations are dependent on the
degree of synchrony within neuronal circuits (66, 67) and are
higher during anesthesia (68), raising the possibility that this is a
simple reflection of time spent in different behavioral states
during the light and dark phase. However, we observed the same
increased correlation in light when only analyzing periods when
animals were awake, ruling out this possibility. Thus, we con-
clude that, in freely behaving and viewing animals, sensory input
can shift visual cortical circuits to more correlated dynamical
states, even in a condition of low synchrony when animals are
awake. It should be noted that these correlations may simply
reflect the timing of shared visual input to neurons with similar
tuning and thus, might not provide additional information above
that carried by the timing of individual neuronal responses.
Our results add to a growing body of work suggesting that on-

going activity in mammalian V1 plays an important role in mod-
ulating sensory responses as well as in integrating other sensory,
motor, and motivational signals (5, 8, 10, 11, 48, 58, 59, 62, 69–75).
Our results also show that firing rates of most V1 neurons are
remarkably stable over both long and short timescales and in the
presence and absence of visual information, suggesting that most
visual information during natural viewing is not encoded by
changes in firing rates. Instead, our data suggest that perturbations
in firing primarily occur during unexpected changes in visual input,
indicating an effect of entrainment/expectation and the existence of

an active mechanism for stabilization of activity. This may be of
particular importance given the observation that pairwise correlations
are increased when animals are exposed to visual input, as global
fluctuations in firing rate can strongly affect the strength of correla-
tions between pairs of neurons (66). Thus, it is possible that stable
firing rates enable changes in correlations to reflect differences in
sensory input and hence, to promote effective sensory processing.

Methods
All surgical and experimental procedures were approved by the Animal Care and
UseCommitteeofBrandeisUniversity and compliedwith theguidelinesof theNIH.

Surgery and In Vivo Electrophysiology Experiments. The data analyzed in this
study were collected in previous electrophysiological experiments (13; n =
7 rats) as well as from a new set of animals (n = 14 rats; n = 21 rats total). All
surgical procedures were as described previously (16). Briefly, Long–Evans
rats of either sex were bilaterally implanted with custom 16-channel, 33-μm
tungsten microelectrode arrays (Tucker–Davis Technologies) into monocular
primary visual cortex (V1m) on P21. Location was confirmed post hoc via
histological reconstruction. Two EMG wires were implanted deep in the
nuchal muscle. Animals were allowed to recover for 2 full days postsurgery
in transparent plastic cages with ad libitum access to food and water. Re-
cording began on the third day after surgery. The recording chamber (a 12- ×
12-inch Plexiglas cage with walls lined with high contrast square wave
gratings with spatial frequency of 0.3 to 1 cycles/cm) was lined with 1.5 inches
of bedding and housed 2 rats. Animals had ad libitum food and water and
were separated by a clear plastic divider with 1-inch holes to allow for tactile
and olfactory interaction while preventing jostling of headcaps and arrays.
Electrodes were connected to commutators (TDT) to allow animals to freely
behave throughout the recordings. Novel toys were introduced every 24 h to
promote activity and exploration and provide additional visual stimulation.
Lighting and temperature were kept constant (L-D 12:12, lights on at 7:30 AM,
21 °C, humidity 25 to 55%). Light levels during light and dark were obtained
by measuring irradiance at the cage floor using an optical energy meter
(ThorLabs PM100D). Irradiance values were 48.0 μW/m2 (light) and less than
0.0001 μW/m2 (dark) for incident light with a wavelength of 510 nm. Data
were collected continuously for 9 to 11 d (200 to 240 h). Some animals (n =
11 rats) underwent a lid suture and/or eye reopening procedure on the third
day of recording; in this study, we only analyzed data collected from the
control hemisphere ipsilateral to the manipulated eye. For dark exposure ex-
periments, animals were kept in the dark starting on days 4 and 5 of the re-
cording (i.e., starting at the time of lights off on day 3 from P26 to P28). Lights
came on at the regular time (7:30 AM) on day 6 (P29).

Electrophysiological Recordings. In vivo electrophysiological recordings were
performed as previously described (13). Briefly, data were acquired at
25 kHz, digitized, and streamed to disk for offline processing using a Tucker–
Davis Technologies Neurophysiology Workstation and Data Streamer. Spike
extraction and sorting were performed using custom MATLAB code. Spikes
were detected as threshold crossings (−4 SD from mean signal) and resam-
pled at 3 times the original rate. Each wire’s waveforms were then subjected
to principal component analysis, and the first 4 principal components were
used for clustering using KlustaKwik (76). Clusters were merged or trimmed
as described previously (13). Spike sorting was done using custom MATLAB
code relying on a random forest classifier trained on a manually scored
dataset of 1,200 clusters. For each cluster identified from the output of
KlustaKwik, we extracted a set of 19 features, including ISI contamination
(percentage of ISIs < 3 ms), similarity to RSU and FS waveform templates, 60-
Hz noise contamination, rise and decay times and slope of the mean
waveform, waveform amplitude, and width. Cluster quality was also en-
sured by thresholding of L-ratio and isolation distance (77). The random
forest algorithm classified clusters as noise, multiunit, or single unit. Only
single units with a clear refractory period were used for additional analysis.
Units were classified as RSU or FS based on the time between the negative
peak and the first subsequent positive peak of the mean waveform (Fig. 1B).
Clusters were classified as RSUs if this value was >0.39 ms and as FS otherwise
(19), with a lower threshold of 0.19 ms to eliminate noise. We used pre-
viously established criteria and methods to select neurons that we could
reliably follow over time (13). Briefly, we considered neurons to be contin-
uously recorded if they satisfied the following criteria: (i) waveforms con-
stituting an isolatable cluster, (ii) presence of absolute refractory period, (iii)
minimal change in spike shape across recording days assessed by computing
the sum of squared errors between daily average waveforms, (iv) high
signal-to-noise ratio, and (v) stability of firing rate (no continuous increase or
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decrease). Only neurons that could be recorded for at least 48 consecutive
hours were used for analysis of L-D transitions. For extended dark experiments,
we analyzed all neurons that were online for at least 1 h preceding and 1 h
following the time of light reexposure. For estimates of mean firing during the
extended dark phase, we analyzed the activity of all cells that could be
recorded in the first and last 12-h periods during the 60 h of darkness.

Behavioral-State Classification. The behavioral state of animals was classified
using a combination of LFP, EMG, and estimate of locomotion based on video
analysis (13). LFPs were extracted from 3 separate recorded channels, resam-
pled at 200 Hz, and averaged. The power spectral density was computed in
10-s bins using a fast Fourier transform method (MATLAB “spectrogram”

function) using frequency steps of 0.1 Hz from 0.3 to 15 Hz. Power in the delta
(0.3 to 4 Hz) and theta (6 to 9 Hz) bands was computed as a fraction of total
power in each time bin. A custom algorithm was used to score each 10-s bin and
assign 1 of 4 behavioral codes based on the power in each frequency band as
well as EMG andmovement activity: active wake (high EMG andmovement, low
delta and theta), quiet wake (low EMG and movement, low delta and theta),
rapid eye movement (REM) sleep (very low EMG, no movement, low delta, high
theta), and non-rapid eye movement (NREM) sleep (low EMG and movement,
high delta, low theta). For each animal, each hour of data was scored separately.
The first 10 h were scored manually and used as an initial training set for a
random forest classifier (implemented in Python). The classifier was then used to
score each successive hour, with manual corrections performed as needed. The
classifier was retrained after every hour scored, with a maximum number of
10,000 bins used for training (using only the most recent 10,000 bins).

Extended Darkness, Immunostaining, and Image Analysis. For analysis of c-fos
protein after extended darkness, we transferred animals (n = 13 rats) to a
custom dark box on P21. A light timer was set up to allow for complete
control of the L-D cycle inside the box. When animals were P26, lights were
allowed to turn off at the regular time (7:30 PM) and set up to not turn back
on. Animals were in complete darkness for 60 h from the night of P26 until
the night of P28 (ages matched with electrophysiological recordings). On the
morning of P29, lights were allowed to turn back on at 7:30 AM. Animals
were allowed to experience 1 h of light before being deeply anesthetized
and transcardially perfused. Control animals were either not exposed to
darkness but kept on a regular 12-h cycle or anesthetized at 7:30 AM on P29
(before lights on) in the dark using infrared night vision goggles and then
immediately perfused. Brains were fixed in 3.7% formaldehyde, and 60-μm
coronal slices of V1m were taken on a vibratome (Leica VT1000S). Slices were
immersed in a solution of phosphate-buffered saline (PBS) and NaN3 and
stored for immunostaining. To ensure consistent results between groups, all
conditions were run in parallel. Slices were incubated in a primary antibody
solution (1:1,000; rabbit anti–c-fos; Cell Signaling Technologies) at room tem-
perature for 24 h. They were then rinsed and incubated for 2 h with a sec-
ondary antibody (anti-rabbit Alexa Fluor 568; 1:400; Thermofisher). Sections
were mounted on microscope slides with a DAPI-containing medium (DAPI
Fluoromount-G; Southern Biotech), coverslipped, and allowed to dry for 24 h
before imaging. Imaging was performed on a confocal microscope (Zeiss Laser
Scanning Microscope 880). A 10× objective was used to take z stacks of V1m in
the DAPI and c-fos channels. Imaging settings were optimized for each
staining/imaging session and kept constant across conditions; all conditions
were imaged on a given session. Images were imported into Metamorph
software for analysis. A granularity analysis was used to determine locations of
cell bodies, and colocalized DAPI- and c-fos–positive granules were counted as
c-fos–positive neurons. For each slice, we analyzed the whole field of view,
excluding the slice edges, as they displayed DAPI staining artifacts.

Analysis of Electrophysiological Data. All electrophysiology data were ana-
lyzed using a custom code package written in Python. The precise time of
lights on/off was determined by analysis of video recordings or using a light-
sensitive resistor. All analyses were performed on the 10min before and after
transitions. Perievent time histograms were obtained by binning data in
0.25-s bins and normalizing data to the pretransition period. Firing rates were
estimated by sliding a 1- or 2-min window in 20-s steps. Mean and SEM were
estimated by averaging across days. To compare population data across
transitions, we calculated the average firing rate in the 10 min before and
after the transition without binning. For analysis restricted to a given be-

havioral state, we only considered transitions during which the animal was in
that state for the whole 20 min (10 min before and after the transition). To
estimate the number of individual neurons that consistently changed their
firing rate in response to L-D and D-L transitions, we used a paired t test to
determine whether the neuron’s firing followed a consistent pattern of
change across multiple transitions. We used a bootstrap method to estimate
the number of cells expected to pass our significance threshold by chance;
for each iteration of the bootstrap, we chose a random time point within the
first 24 h. We then created dummy transition times at 12-h intervals from
that starting time point and used these dummy transition points to repeat
the above analysis for each cell. This procedure was repeated 100 times (i.e.,
with 100 different dummy transition points) to obtain 100 values for the
percentage of significantly changing cells. We used this dataset to estimate
the mean and 95% CIs for this parameter. Only neurons that were followed
through at least 4 transitions were used for analysis of circadian transitions.
For noncircadian transitions, we analyzed neurons that experienced at
least 6 transitions.

Pairwise Correlations. Each spike train was binned into spike counts of bin size
100 ms, generating a vector of spike counts for each cell. The spike count
correlation coefficient ρ for a pair of neurons was computed in 30-min ep-
isodes using a sliding window of 5 min. This produced 139 values for each
neuron pair on every single half day (12 h of light and 12 h of darkness). The
average of these values then determined the correlation value of each pair
for every single half day:

ρX,Y =
E½ðX − μX ÞðY − μY Þ�

σXσY
,

where X and Y represent the spike count vectors of 2 cells, respectively; μX
and μY are the means of X and Y, respectively; σX and σY denote the SDs of X
and Y, respectively; and E is the expectation. This produced the matrices of
pairwise spike count correlations on different half days. To generate the
normalized correlation curve, correlations were normalized to the average
correlation of each animal at P26 during the light period. Correlations in
mixed behavioral states were computed with the above-stated method us-
ing the entire 12-h periods of light or dark, while correlations in wake only
took into account the wake episodes. Results with bin size of 5 ms followed
the same approach.

Experimental Design. Long–Evans rats of both sexes were used throughout all
experiments. To estimate the effect of D-L and L-D transitions on firing rates
of V1 neurons, we pooled data from previous experiments (13; n = 7) as well
as newly performed experiments (n = 4 rats). Experimental design and
timeline were the same across all of these experiments. This dataset was
used to produce Figs. 1, 2, 3, and 4. For ISI analyses, we excluded 2 animals
for which the precise transition times were known with uncertainty greater
than 0.25 s. To analyze the effect of unexpected transitions (n = 6 rats) as
well as for prolonged darkness experiments (n = 4 rats), we used datasets
obtained from rats of a similar age (P24 to P35) as those used in analysis of
circadian transitions. Electrophysiological data were acquired using the same
electrode arrays and recording system in all experiments. For immunohis-
tochemistry experiments, all rats (n = 13 animals) were age matched to
electrophysiological recordings, and all staining procedures were conducted
in parallel across conditions to minimize variability. Slices from all conditions
were imaged in every imaging session.

Statistical Analyses. To compare means of 2 populations, we used Wilcoxon
rank sum tests. For paired data, both for firing rates and spike count cor-
relations, comparisons were done using a Wilcoxon signed rank test. To
compare a populationmean to a given value (e.g., 0), we used 1-sample t tests
for normally distributed data and Wilcoxon signed rank tests for nonnormal
distributions. Normality was tested using D’Agostino’s K2 test. To compare
cumulative distributions, we used Kolmogorov–Smirnov tests. Data are
represented as mean ± SEM. Box plots represent median ± interquartile
range, with whiskers extending to the rest of the distribution.

Code Accessibility. All code used for analysis is available from the authors
on request.
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Abstract

Cortical dynamics and computations are strongly influenced by diverse GABAergic interneurons,

including those expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal pep-

tide (VIP). Together with excitatory (E) neurons, they form a canonical microcircuit and exhibit

counterintuitive nonlinear phenomena. One instance of such phenomena is response reversal,

whereby SST neurons show opposite responses to top-down modulation via VIP depending on the

presence of bottom-up sensory input, indicating that the network may function in different regimes

under different stimulation conditions. Combining analytical and computational approaches, we

demonstrate that model networks with multiple interneuron subtypes and experimentally identi-

fied short-term plasticity mechanisms can implement response reversal. Surprisingly, despite not

directly affecting SST and VIP activity, PV-to-E short-term depression has a decisive impact on

SST response reversal. We show how response reversal relates to inhibition stabilization and the

paradoxical effect in the presence of several short-term plasticity mechanisms demonstrating that

response reversal coincides with a change in the indispensability of SST for network stabilization.

In summary, our work suggests a role of short-term plasticity mechanisms in generating nonlin-

ear phenomena in networks with multiple interneuron subtypes and makes several experimentally

testable predictions.

Introduction

Inhibitory neurons in the cortex are highly diverse in anatomy, electrophysiology, and function

(Pfeffer et al., 2013; Kepecs and Fishell, 2014; Jiang et al., 2015; Tremblay et al., 2016). In

the mouse cortex, three major classes of interneurons expressing parvalbumin (PV), somatostatin

(SST), and vasoactive intestinal peptide (VIP) make up more than 80% of GABAergic interneurons

(Tremblay et al., 2016). Together with excitatory (E) neurons, they form a canonical microcircuit

relevant for various cortical computations, including locomotion-induced gain modulation (Fu et al.,
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2014), selective attention (Zhang et al., 2014), context-dependent modulation (Kuchibhotla et al.,

2017; Keller et al., 2020), predictive processing (Keller et al., 2012; Attinger et al., 2017), novelty

detection (Garrett et al., 2020, 2023), flexible routing of information flow (Yang et al., 2016; Wang

and Yang, 2018), regulating global coherence (Veit et al., 2017, 2022), and gating of synaptic

plasticity (Canto-Bustos et al., 2022). Interactions between different cell types in the canonical

microcircuit can give rise to counterintuitive nonlinear phenomena. More specifically, in darkness,

locomotion-induced top-down modulation via VIP decreases the activity of SST neurons in layer

2/3 of mouse primary visual cortex (Fu et al., 2014; Fig. 1). In contrast, when animals receive

visual stimuli, locomotion leads to an increase in SST activity (Pakan et al., 2016; Dipoppa et al.,

2018; Fig. 1). This phenomenon in which the same locomotion-induced top-down modulation via

VIP affects SST response oppositely depending on the visual stimulation condition is known as

response reversal (Garcia del Molino et al., 2017).

Stationary Locomotion
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Fig. 1. Schematic diagrams illustrating that under different stimulus conditions, locomotion-induced modulatory input
via VIP affects SST response oppositely. Top: in darkness, locomotion-induced top-down modulation increases VIP
activity but decreases SST activity (Fu et al., 2014). Bottom: in the presence of visual stimulation, locomotion-induced
top-down modulation increases both VIP and SST activity (Pakan et al., 2016; Dipoppa et al., 2018).

Previous computational work has shown that networks with nonlinear neuronal input-output func-

tions can generate response reversal (Garcia del Molino et al., 2017). However, cortical neu-

rons exhibit highly irregular spiking (Shadlen and Newsome, 1998) and heterogeneous firing rates

(Roxin et al., 2011; Buzsáki and Mizuseki, 2014) that are hallmarks of tightly balanced networks

in which population-averaged responses are linear in the input (van Vreeswijk and Sompolinsky,

1998). This raises the possibility that other factors, such as dynamically changing synapses, may

contribute to nonlinear population responses like response reversal. On a perceptually and be-

haviorally relevant timescale from milliseconds to seconds, synapses are subject to short-term

plasticity (STP) (Zucker and Regehr, 2002; Markram et al., 2015). Different types of synapses

can experience different degrees of short-term depression (STD) or short-term facilitation (STF)

(Zucker and Regehr, 2002). In particular, inhibitory synapses exhibit more pronounced short-term

dynamics than excitatory synapses, and synapses from different interneuron subtypes can un-

dergo different short-term plastic changes (Campagnola et al., 2022). However, little is known

about how these experimentally identified short-term plasticity mechanisms shape network dy-
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namics and computations in recurrent neural circuits of multiple interneuron subtypes.

Response reversal of SST induced by the same top-down modulation may suggest that the net-

work operates in different regimes under different stimulation conditions. Increasing evidence

suggests that cortical networks operate in an inhibition-stabilized regime, in which feedback inhi-

bition generated by the network is imperative to stabilize excitatory activity (Tsodyks et al., 1997;

Sanzeni et al., 2020). In networks with one excitatory and one inhibitory population and fixed

connectivity, an identifying characteristic of inhibition stabilization is that increasing (decreasing)

excitatory input to the inhibitory population decreases (increases) inhibitory firing, known as the

paradoxical effect (Tsodyks et al., 1997; Li et al., 2019; Miller and Palmigiano, 2020). Yet, it is un-

clear whether response reversal can be linked to inhibition stabilization and whether there exists

a relationship between response reversal and the paradoxical effect. In addition, how short-term

plasticity shapes inhibition stabilization in networks with multiple interneuron subtypes, particu-

larly how specific interneuron subtypes contribute to network stabilization (which we refer to as

interneuron-specific stabilization), is unknown.

Here, we use analytical calculations and numerical simulations to demonstrate that inhibitory

short-term plasticity enables response reversal without requiring neuronal nonlinearities. We find

that despite not directly affecting SST and VIP activity, PV-to-E STD has a crucial influence on

response reversal. We further reveal the relationship between response reversal, the paradoxical

effect, and the interneuron-specific stabilization property of the network. Interestingly, when the

SST response to top-down modulation switches from suppression to enhancement, the network

undergoes an interneuron-specific change in stabilization, and SST is required for network stabi-

lization. In summary, our model suggests that inhibitory short-term plasticity enables the network

to perform nonlinear computations and makes several experimentally testable predictions.

Results

To study how response reversal emerges in canonical cortical circuits, we used rate-based pop-

ulation models consisting of one excitatory (E) and three different inhibitory (PV, SST, VIP) pop-

ulations with network connectivity constrained by previous experimental studies (Fig. 2A; Pfeffer

et al., 2013). This type of model allows for a trade-off between sufficient biological detail and math-

ematical analysis and has previously been used with great success to study cortical computations

(Murphy and Miller, 2009; Litwin-Kumar et al., 2016; Garcia del Molino et al., 2017; Mahrach et al.,

2020; Richter and Gjorgjieva, 2022). Consistent with experimental work (Sanzeni et al., 2020),

network connectivity was chosen so that the network operates in an inhibition-stabilized regime

defined as the regime where feedback inhibition generated by the network is needed to stabilize

recurrent excitation (Tsodyks et al., 1997). As proposed by influential modeling work on cortical

dynamics (van Vreeswijk and Sompolinsky, 1996, 1998), the network’s population-averaged re-
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sponses can be approximated by a rectified linear function of the input (Fig. 2A, inset). To account

for activity-dependent changes in network connectivity on a perceptually and behaviorally relevant

timescale, we modeled short-term plasticity based on recent experimental work from the Allen In-

stitute (Campagnola et al., 2022). We incorporated the four most pronounced short-term plasticity

mechanisms: PV-to-E short-term depression (STD), PV-to-PV STD, PV-to-VIP STD, and SST-to-

VIP short-term facilitation (STF) (Fig. 2A; Fig. S1). Since all the prominent synapses undergoing

short-term plasticity are inhibitory, we refer to the plasticity mechanisms as inhibitory short-term

plasticity (iSTP). The dynamics of the network with iSTP can be described as follows:

τE
drE

dt
= −rE + [JEE rE − xEP JEP rP − JES rS + gE + α]+ , (1)

τP
drP

dt
= −rP + [JPE rE − xPP JPP rP − JPS rS + gP + α]+ , (2)

τS
drS

dt
= −rS + [JSE rE − JSV rV + gS]+ , (3)

τV
drV

dt
= −rV + [JVE rE − xVP JVP rP − uVS JVS rS + gV + c]+ , (4)

for the rates ri of excitatory, PV, SST, and VIP populations with i ∈ {E , P, S, V} and [·]+ denotes

linear rectification. τi represents the corresponding time constant of the rate dynamics, Jij denotes

the synaptic strength from population j to population i , and gi is the individual background input.

Importantly, we distinguish between bottom-up input to E and PV to represent different stimulation

conditions, denoted as α, and top-down input to VIP mimicking locomotion-induced top-down

modulation, denoted as c (Fig. 2A).

Short-term plasticity mechanisms are implemented based on the Tsodyks-Markram model (Tsodyks

et al., 1998):
dxEP

dt
=

1 − xEP

τx
− UdxEPrP , (5)

dxPP

dt
=

1 − xPP

τx
− UdxPPrP , (6)

dxVP

dt
=

1 − xVP

τx
− UdxVPrP , (7)

duVS

dt
=

1 − uVS

τu
+ Uf (Umax − uVS)rS, (8)

where xij is a short-term depression variable limited to the interval (0,1] for the synaptic connection

from population j to population i . Biophysically, the short-term depression variable x represents the

fraction of vesicles available for release. τx is the time constant of STD, and Ud is the depression

factor controlling the degree of depression induced by the presynaptic activity. Similarly, uij is

a short-term facilitation variable constrained to the interval [1, Umax ) for the synaptic connection

from population j to population i . Unlike short-term depression, the short-term facilitation variable

u biophysically represents the ability to release neurotransmitters. τu is the time constant of STF,

Uf is the facilitation factor controlling the degree of facilitation induced by the presynaptic activity,

and Umax is the maximal facilitation value.
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iSTP enables response reversal of SST

To represent different stimulus conditions (e.g., darkness vs. visual stimulation), we varied the

bottom-up input α to E and PV. Increasing α leads to a supralinear increase in the baseline activity

in all populations (Fig. S2). We modeled the effect of locomotion-induced top-down modulation on

network activity by increasing the input to VIP by a positive value c. In our network model with

iSTP, for a low α, corresponding to low baseline activity in the absence of bottom-up input, top-

down modulation via additional excitatory input to VIP decreases SST activity (Fig. 2B). In contrast,

for a high α corresponding to high baseline activity, the same top-down modulation leads to an

increase in SST activity and, thus, response reversal (Fig. 2C). Our modeling results suggest that

under different stimulus conditions regulated by bottom-up inputs, identical top-down modulation

reversely affects the change of SST activity (Fig. 2D), consistent with previous experiments (Fu

et al., 2014; Pakan et al., 2016; Dipoppa et al., 2018).

To highlight the role of iSTP in generating response reversal of SST activity, we further simulated

the same network while disabling iSTP (Fig. 2E, F). In contrast to networks with iSTP, the change

of SST activity is largely unaffected for different values of α when iSTP is disabled (Fig. 2G). In-

terestingly, in our model, for a high α during the stimulation period, despite the increased activity

of all inhibitory populations, the steady state of excitatory activity also increases (Fig. 2C). This

observation appears to differ from what would be predicted by a classical disinhibition mechanism

in which reducing inhibition increases excitatory activity. We confirm this by plotting the amount

of recurrent excitation, recurrent inhibition, and the sum of recurrent excitation and inhibition that

the excitatory population receives during the simulation(Fig. 2H, I). Surprisingly, even for a low α,

despite decreased SST activity, top-down modulation via VIP increases the total inhibition to the

excitatory population at the steady state (Fig. 2H). Enhanced inhibition to the excitatory popula-

tion at the steady state during top-down modulation is also observed for a high α (Fig. 2I). We

systematically investigated the change in the input to the excitatory population due to top-down

modulation at different levels of bottom-up input α. We found that top-down modulation always

increases the amount of inhibition to the excitatory population irrespective of whether it increases

or decreases the activity of the SST population as α changes (Fig. 2J). These results suggest

that rather than the decrease in the total inhibition, the increase in the recurrent excitation con-

tributes to the elevated excitatory activity (Fig. 2H-J). Importantly, a joint increase in the excitation

and inhibition of the excitatory population is a distinctive feature in inhibition-stabilized networks

(Litwin-Kumar et al., 2016; Miller and Palmigiano, 2020; Wu and Gjorgjieva, 2023). In contrast,

non-inhibition-stabilized networks do not exhibit an increase in the total inhibitory inputs to the

excitatory population (Fig. S3).

Taken together, our numerical simulation results reveal that experimentally identified forms of iSTP

enable response reversal, a nonlinear computation observed in cortical circuits.
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Theoretical analysis

To better understand how iSTP enables our model network to perform response reversal of SST

activity, we sought to mathematically analyze how top-down modulation affects SST activity. Locomotion-

induced top-down modulation can be considered a form of perturbation to the VIP population.

Investigating how top-down modulation inversely affects SST activity under different stimulus con-

ditions can therefore be mathematically formulated as how perturbations to VIP affect SST activity

under varying levels of α. To this end, we extended previous studies on static networks (Garcia

del Molino et al., 2017; Palmigiano et al., 2023) and developed a general theoretical framework for

networks with iSTP. More specifically, we derived how the steady state response of any population

changes with a perturbation of the external input to a given population while including iSTP (see

Methods). Using this approach, we formulated the change of SST activity induced by top-down

modulation via the change of the input to VIP, RSV , as follows:

RSV = D KSV δgV . (9)

Here, D is a positive quantity for any stable network (see Methods, Fig. S4A), δgV represents the

perturbation of the VIP population’s input which is a positive number c in our network setting, and

KSV is the response factor which is given by:

KSV = (x∗
PP + x∗′

PPrP − 1)(JEE − 1)JPPJSV

− (x∗
EP + x∗′

EPrP − 1)JSV JPEJEP

+ (JEE − 1)(JPPJSV + JSV ) − JSV JPEJEP , (10)

with x∗
ij the short-term plasticity variable from population j to population i at steady state before

perturbation, and x∗′
ij the derivative of the short-term plasticity variable with respect to the activity

of population j , evaluated at the steady state (see SI Text).

A negative (positive) RSV denotes a decrease (increase) in SST activity caused by top-down mod-

ulation. To have response reversal, RSV must switch its sign for different values of α, correspond-

ing to different stimulus conditions. More specifically, when animals perceive no visual stimulus in

darkness, i.e., when α is low, top-down modulation via VIP decreases SST activity. Therefore, RSV

is expected to be negative for a low α. In contrast, when animals receive a visual stimulus, namely

when α is high, top-down modulation via VIP increases SST activity. Thus, RSV is expected to be

positive for a high α.
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Fig. 2. Inhibitory short-term plasticity enables response reversal of SST induced by top-down modulation via VIP. (A)
Schematic of network model with one excitatory (E) population and three distinct inhibitory populations, including PV,
SST, and VIP. Short-term depressing (STD) and short-term facilitating (STF) connections are indicated by the dashed
lines. Each population receives a background input g. E and PV receive bottom-up input α depending on sensory
stimulation, and VIP receives top-down input c during locomotion. Top right: rectified linear input-output function; Bottom
right: cartoons showing how inhibitory connection strength changes with presynaptic stimulation under STD and STF.
(B) Network responses to top-down modulation without any bottom-up input (α = 0), corresponding to darkness without
sensory stimulation. Top-down modulation via VIP is applied during the interval from 2 to 4 s (gray bar). Different colors
denote the activity of different populations. The dashed line represents the initial activity level of SST. (C) Same as B
but at α = 15 corresponding to sensory stimulation. (D) Change in SST response induced by top-down modulation to
VIP as a function of bottom-up input α in networks with iSTP. (E) Same as B but for networks without iSTP. (F) Same
as C but for networks without iSTP. (G) Same as D but for networks without iSTP. (H) Input to the E population at α = 0.
Different colors indicate different sources: input from the E population, input from the I populations, and the sum of
the inputs from the E and I populations. (I) Same as E but at α = 15. (J) Change in different sources of recurrent
inputs to the E population measured between baseline and at steady state during top-down modulation as a function of
bottom-up input α.

In agreement with our simulation results (Fig. 2B, C), we observed that RSV changes its sign

when calculated at different values of α (Fig. 3). As our theoretical framework is based on the

linearization of the network dynamics around the steady state and higher order terms are ignored

(see Methods), the computed RSV agrees well with the numerical simulation results for small

perturbations (Fig. 3A) and diverges for large perturbations (Fig. 3B). Yet, it qualitatively captures

the key aspect of modeling behaviors: the sign switch of the change in SST activity induced

by top-down modulation with different values of α. Note that while here we are interested in how

neural activity changes in response to a given perturbation, several other studies have investigated

the contributions of higher-order motifs to the perturbation-induced change of neural activity in

excitatory and inhibitory networks (Pernice et al., 2011; Sadeh and Clopath, 2020).

As shown in Eq. 9, since D and δgV are positive, KSV is the only term that can change the sign

of RSV . To further investigate the influence of the iSTP mechanisms on response reversal, we

rewrote KSV as a sum of a short-term plasticity-dependent and a short-term plasticity-independent

term:

KSV = KSTP
SV + KnonSTP

SV , (11)

where

KSTP
SV = (x∗

PP + x∗′
PPrP − 1)(JEE − 1)JPPJSV

− (x∗
EP + x∗′

EPrP − 1)JSV JPEJEP , (12)

and

KnonSTP
SV = (JEE − 1)(JPPJSV + JSV ) − JSV JPEJEP . (13)

Analogously to KSV , we have:

RSV = RSTP
SV + RnonSTP

SV = D KSTP
SV δgV + D KnonSTP

SV δgV . (14)
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Fig. 3. Comparison between analytical predictions and numerical simulations on the change in SST activity and identi-
fication of PV-to-E STD as the crucial STP mechanism for the generation of response reversal. (A) Analytical prediction
of the change in SST population response induced by the perturbation to VIP (RSV ) matches closely with numerical
simulation for a small perturbation. (B) Same as A but with a large perturbation. (C) Analytical contributions of the STP-
dependent term RSTP

SV and the STP-independent term RnonSTP
SV to the change in SST activity as a function of bottom-up

input α for a small perturbation. (D) Same as C but with a large perturbation. (E) Analytical contributions of the PV-to-E
STD-dependent term RPED

SV , the PV-to-PV STD-dependent term RPPD
SV , and the overall STD-dependent term RSTP

SV to the
change in SST activity as a function of bottom-up input α for a small perturbation. (F) Change in SST response induced
by top-down modulation to VIP as a function of bottom-up input α with a large perturbation for different network config-
urations marked with different colors. Here, for small perturbations δgV = 0.1 and for large perturbations δgV = 3.
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As the short-term plasticity-independent term KnonSTP
SV is governed by the static network weights, it

is constant over the entire range of change in bottom-up input, i.e., KnonSTP
SV does not change with

α. Note that because of Eq. 9 and since D is always positive but subject to change in magnitude

(Fig. S4A), RnonSTP
SV changes in magnitude as well (Fig. 3B). To match recent experimental findings

that the network is inhibition stabilized when animals receive no stimulus in darkness (Sanzeni

et al., 2020), we set JEE to be larger than 1. In this case, the short-term plasticity-independent

term KnonSTP
SV is always negative, which implies that RnonSTP

SV is also always negative. Thus, the

short-term plasticity-dependent term KSTP
SV , and as a result, RSTP

SV too, is the only part that can

influence the sign of RSV and enable the network to perform response reversal of SST activity

(Fig. 3C, D).

In conclusion, our theoretical framework enables us to analyze how perturbations affect the activity

of individual populations and hence reveals how iSTP enables response reversal of SST activity.

PV-to-E STD plays a key role in the generation of response reversal

Next, we sought to dissect the role of individual iSTP mechanisms in response reversal. To this

end, we separated the short-term plasticity-dependent term KSTP
SV (Eq. 12) into a PV-to-PV STD-

dependent part KPPD
SV and a PV-to-E STD-dependent part KPED

SV as follows:

KSTP
SV = (x∗

PP + x∗′
PPrP − 1)(JEE − 1)JPPJSV︸ ︷︷ ︸

KPPD
SV

−(x∗
EP + x∗′

EPrP − 1)JSV JPEJEP︸ ︷︷ ︸
KPED

SV

. (15)

Since both x∗
PP + x∗′

PPrP − 1 and x∗
EP + x∗′

EPrP − 1 are always negative (see Methods, Fig. S4B),

the PV-to-PV STD-dependent part KPPD
SV is always negative and the PV-to-E STD-dependent part

KPED
SV is always positive. Importantly, KPPD

SV decreases with increasing bottom-up input α, whereas

KPED
SV increases with increasing bottom-up input α (see SI Text, Fig. S4C).

Similarly, we can write:

RSTP
SV = RPPD

SV + RPED
SV = D KPPD

SV δgV + D KPED
SV δgV . (16)

RPPD
SV and RPED

SV show similar changes as KPPD
SV and KPED

SV , respectively (Fig. 3E). Therefore, when

bottom-up input α increases from a low to a high level (e.g., switching from darkness to visual

stimulation condition), to display response reversal RSTP
SV must overcome in magnitude the negative

RnonSTP
SV , resulting in an overall switch of RSV from negative to positive. The increasing PV-to-

E STD-dependent term rather than the decreasing PV-to-PV STD-dependent term is imperative

for this switch (Fig. 3E). As no terms directly associated with PV-to-VIP STD and SST-to-VIP

STF appear in Eq. 15, our analysis shows that these two mechanisms are unimportant for the

generation of response reversal.

We performed the same simulations as with the intact network while inactivating specific iSTP

mechanisms to confirm our analysis. The inactivation of particular mechanisms was implemented
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by freezing the respective plasticity variables at their baseline values when bottom-up input is high,

ensuring that the steady-state activities of all populations are positive at the baseline and during

the top-down modulation period. We then varied the bottom-up inputs from high to low and found

that SST response reversal still occurs despite inactivating PV-to-PV STD, PV-to-VIP STD, or SST-

to-VIP STF. Such networks show similar patterns to networks with intact iSTP (Fig. 3F). In contrast,

when PV-to-E STD is inactivated, the change of SST activity manifests an opposite trend from that

in networks with intact iSTP (Fig. 3F). Furthermore, we found that PV-to-E STD is crucial for

generating the effective supralinear input-output relation observed in the baseline state for varying

bottom-up input α (Fig. S2). Inactivating PV-to-E STD completely diminished the supralinearity of

the effective input-output relations in contrast to inactivating other iSTP mechanisms (Fig. S5A). In

addition, as bottom-up input increases, the resulting inhibitory current from PV to E is suppressed

by PV-to-E STD (Fig. S5B). This suppression is greater for stronger bottom-up inputs leading to a

sublinear increase in PV current, which is important for the generation of the effective supralinear

input-output relation (Fig. S5B).

Taken together, our analysis and numerical simulations reveal that PV-to-E STD is the determining

mechanism for generating response reversal. In contrast, the effects of PV-to-PV STD, PV-to-VIP

STD, and SST-to-VIP STF on response reversal are negligible.

Relationship between response reversal and the paradoxical effect

Locomotion-induced top-down modulation excites VIP and effectively inhibits SST due to the mu-

tually inhibitory connections between VIP and SST. However, when animals receive visual stimuli

at a high baseline activity state (high α), additional VIP inhibition induced by top-down modulation

increases the activity of SST. This phenomenon is reminiscent of the paradoxical effect (Tsodyks

et al., 1997; Ozeki et al., 2009). We thus sought to identify the relationship between response

reversal and the paradoxical effect. To this end, we derived the change of SST activity induced by

a change in the input to SST itself, RSS, as follows:

RSS = D KSS δgS, (17)

where

KSS = −
[
(x∗

PP + x∗′
PPrP − 1)(JEE − 1)JPP

− (x∗
EP + x∗′

EPrP − 1)JPEJEP

+ (JEE − 1)(JPP + 1) − JPEJEP

]

= −KSV/JSV , (18)

and δgS represents the change of input to SST. Furthermore,

RSS = − δgS

JSV δgV
RSV . (19)
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Fig. 4. Relationship between response reversal and paradoxical response of SST. (A) Analytical predictions of the
change in SST response induced by an excitatory perturbation (δgS) to SST, RSS , and change in SST response induced
by an excitatory perturbation (δgV ) to VIP, RSV , as a function of bottom-up input α. Here, δgV = δgS = 3. (B) Left:
Normalized activity when injecting additional excitatory current into SST at a low baseline state corresponding to α = 0
marked with triangular in A. SST does not show a paradoxical response. Right: Same as left but at a high baseline
state corresponding to α = 15 marked with a dot in A. SST shows a paradoxical response.

When δgS is positive, to obtain a paradoxical response of SST (i.e., to have a negative RSS),

KSS has to be negative. As KSS is equal to −KSV/JSV , for low α corresponding to the darkness

condition (KSV and RSV are negative), KSS and RSS are positive, hence, no paradoxical response

is observed (Fig. 4A, B left). In contrast, for high α corresponding to the visual stimulation condition

(KSV and RSV are positive), KSS and RSS are negative. Therefore, SST exhibits a paradoxical

response (Fig. 4A, B right).

We have mathematically proven a correspondence between response reversal and the paradoxical

response of SST. More specifically, the SST population will not show a paradoxical response when

top-down modulation via VIP decreases SST activity, but will respond paradoxically when top-down

modulation via VIP increases SST activity.

Relationship between response reversal, the paradoxical effect, and interneuron-
specific stabilization

The paradoxical effect is a defining characteristic of inhibition stabilization in networks with fixed

connectivity (Tsodyks et al., 1997). We, therefore, sought to investigate the relationship between
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response reversal and inhibition stabilization. Identifying the relationship may shed light on how

response reversal relates to other cortical functions as inhibition-stabilized networks can perform

a variety of computations (Sadeh and Clopath, 2021). As the network in our study consists of

three different inhibitory populations, the network can, in principle, be stabilized by any type of

interneuron. Beyond identifying inhibition stabilization, we particularly aimed to ascertain the spe-

cific interneuron subtype that stabilizes the model networks in different stimulation conditions.

To this end, we computed the leading eigenvalue of the Jacobian of individual subnetworks with

the corresponding firing rates and short-term plasticity dynamics while excluding specific interneu-

ron subtypes. Such eigenvalues can be used to determine the stability of the subnetwork. A

negative leading eigenvalue implies that the fixed point of the network dynamics is stable and a

transient perturbation to the system does not result in a deviation from the original fixed point.

In contrast, a positive leading eigenvalue means that the fixed point is unstable, and a transient

perturbation causes a deviation from the original fixed point. We found that the leading eigenvalue

of the Jacobian of the E subnetwork in the model (defined as the network without any interneu-

rons) is positive for all values of α, suggesting that the E subnetwork is unstable and the network

is inhibition-stabilized for all stimulation conditions (Fig. S6). Furthermore, we found that the E

subnetwork being unstable (i.e. JEE > 1) at the high bottom-up input is a necessary condition to

observe response reversal (see SI Text). VIP does not stabilize the network, as the leading eigen-

value of the Jacobian of the E-VIP subnetwork (the network without PV and SST interneurons) is

always positive (Fig. S6). By computing the leading eigenvalue of the Jacobian of the E-PV-VIP

subnetwork (the network without SST interneurons), we found that the eigenvalue switches from

negative to positive when the response of SST to top-down modulation is reversed (Fig. 5A), indi-

cating that SST is required for network stabilization when top-down modulation via VIP increases

SST activity. Furthermore, the leading negative eigenvalue of the Jacobian of the E-PV-VIP sub-

network for low α suggests that in the regime in which top-down modulation via VIP decreases

SST activity, the network does not require SST for stabilization and can be stabilized by PV. To de-

termine whether PV could be the only interneuron subtype stabilizing the network in that regime,

we calculated the leading eigenvalue of the Jacobian of the E-SST-VIP subnetwork (the network

without PV interneurons). We found that this eigenvalue is always negative in the current model

(Fig. 5A), suggesting that SST can serve the stabilization role in that regime as well as PV.

We confirmed these results by injecting a transient excitatory perturbation into the excitatory popu-

lation while clamping the activity of either PV or SST. We found that when clamping PV activity, the

fixed point in the given network is stable to perturbations over the entire range of α and reaches

the same fixed point after the transient perturbation (Fig. 5B). In contrast, when clamping SST

activity, while the fixed point at low α is stable to perturbations, a transient perturbation at high α

leads to unstable dynamics (Fig. 5C).

Consistent with the change in the requirement of SST for network stabilization, we observed a

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2024. ; https://doi.org/10.1101/2023.06.13.544791doi: bioRxiv preprint 



transition in the prevalence of inhibition received by the excitatory population from PV to SST

with increasing α (Fig. S7). More specifically, at the low baseline state, the excitatory population

receives more inhibition from PV than SST (Fig. S7A). Top-down modulation via VIP leads to in-

creases in the overall inhibition and the inhibition from PV at the steady state but a decrease in

the inhibition from SST (Fig. S7A). In contrast, at the high baseline state, the excitatory population

receives more inhibition from SST than PV (Fig. S7B). Top-down modulation increases the over-

all inhibition at the steady state as well as the inhibition from both PV and SST (Fig. S7B). This

increase in total inhibition at the steady state observed during top-down modulation is a unique

characteristic of inhibition-stabilized networks in contrast to non-inhibition-stabilization networks

(Fig. S3; Litwin-Kumar et al., 2016; Miller and Palmigiano, 2020; Wu and Gjorgjieva, 2023). In

inhibition-stabilized networks with iSTP, top-down modulation induces a transient disinhibition en-

abling the growth of recurrent excitation and increasing excitation and inhibition to the excitatory

population at the steady state.

To systematically investigate how response reversal and paradoxical effects of SST relate to

interneuron-specific stabilization, we conducted mathematical analyses and found that KSV and

KSS are linked to the determinant of the Jacobian of the E-PV-VIP network, det(ME-PV-VIP) (see

SI Text). In the network we considered here, because of the short-term plasticity mechanisms,

the Jacobian of the E-PV-VIP subnetwork is a 6-by-6 matrix. When KSV is positive (i.e., top-down

modulation increases SST activity), KSS is negative (i.e., the network exhibits paradoxical effects

of SST), and det(ME-PV-VIP) is negative. Note that in high-dimensional systems, the determinant

of the Jacobian matrix alone is not sufficient to determine network stability. For a six-dimensional

system, a negative det(ME-PV-VIP) implies an odd number of positive eigenvalues corresponding to

unstable eigenvectors/modes and thus the necessity for SST stabilization. However, the network

can also require SST for stabilization in the presence of a positive det(ME-PV-VIP), for instance,

when the Jacobian of the E-PV-VIP subnetwork has an even number of unstable modes. To con-

firm the change in the number of unstable modes, we examined the second-largest eigenvalue of

the E-PV-VIP subnetwork and found that the second-largest eigenvalue is always negative in the

given network (Fig. 5D). As a result, the number of unstable modes changes from even to odd

(Fig. 5E) when the SST response reverses from suppression to enhancement, and the network

exhibits the paradoxical effect in the response of SST. Note that we did not find a direct mathe-

matical relationship between PV stabilization and response reversal of SST (see SI Text). In other

words, response reversal does not imply a change in PV stabilization. Consequently, PV stabi-

lization and how it changes with bottom-up inputs, as presented in our study, are contingent on

specific parameters.

Taken together, these results suggest that with increasing bottom-up input, representing a change

in stimulation condition, the impact of top-down modulation on SST activity transitions from sup-

pression to enhancement, the network exhibits a paradoxical response of SST, requires SST for
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Fig. 5. The network undergoes a change in the indispensability of SST for network stabilization with increasing bottom-
up input. (A) Leading eigenvalues of the E-PV-VIP subnetwork and the E-SST-VIP subnetwork as a function of bottom-
up input α. The response reversal boundary extracted from analytical calculations (RSV = 0) is indicated by the vertical
dashed line. (B) Left: Normalized activity when injecting an additional transient excitatory current into E while freezing
PV for networks at a low baseline state corresponding to α = 0 marked with a triangle in A. The small transient excitatory
input is introduced at the time marked with arrows. The periods in which PV is frozen are marked with the gray bar.
Right: Same as left but for networks at a high baseline state corresponding to α = 15 marked with a dot in A. (C) Similar
to B but with frozen SST. (D) Same as A but for the second largest eigenvalue. (E) Parity of the number of unstable
modes in the E-PV-VIP subnetwork as a function of bottom-up input α. Numbers indicate the amount of unstable
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stabilization, and the E-PV-VIP subnetwork has an odd number of unstable modes (Figs. 4A, 5A,

6).
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top-down modulation
SST 
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SST ▼

no paradoxical 
response of SST

increasing bottom-up input

Fig. 6. The relationship between response reversal, paradoxical effect, and inhibition stabilization. At low bottom-
up input, top-down modulation decreases SST activity, and the network does not exhibit a paradoxical response of
SST such that SST may not be required for stabilization, or SST may be required for stabilization, but the E-PV-
VIP subnetwork has an even number of unstable modes. As demonstrated in Fig. 5, in this regime, the network is
inhibition stabilized and stabilized by either PV or SST. With increasing bottom-up input, the response of SST induced
by top-down modulation is reversed from suppression to enhancement, the network exhibits a paradoxical response
of SST and requires SST for stabilization with an odd number of unstable modes in the E-PV-VIP subnetwork. As
demonstrated in Fig. 5, in this regime, the network is inhibition stabilized and stabilized by SST but not PV. Note that
while the relationship between response reversal, paradoxical effects, and inhibition stabilization marked in blue boxes
does not depend on the choice of parameters, the possible interneuron-specific stabilization regimes shaded in gray
are contingent on specific parameters (see SI Text).

Modeling results are robust to variations in short-term plasticity mechanisms, in-
puts, and network connectivity

To demonstrate that our results are valid for a variety of perturbations, we performed different

sensitivity analyses on short-term plasticity mechanisms, inputs, and network connectivity.

We first investigated if additional short-term plasticity mechanisms affect our results. In this study,

we used a rate-based population model, ignoring the large number of connections between in-

dividual neurons on a microscopic level. Given the dominant number of excitatory neurons in

the cortex, we might have underestimated the effective depression of the E-to-E connection and

facilitation of the E-to-SST connection compared to real circuits (Campagnola et al., 2022). We

therefore sought to examine their influence on our results by analyzing how they might affect the

analytical expression of KSV and network simulations. We found that the response reversal of

SST from suppression to enhancement with increasing bottom-up input, as reported experimen-

tally, is preserved in the presence of E-to-E STD (Fig. 7A). However, the change in SST activity
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evolves non-monotonically with increasing bottom-up input, starting to decrease and eventually

being reversed from enhancement to suppression at high α (Fig. 7A). Due to E-to-E STD, the

effective excitatory-to-excitatory coupling decreases, resulting in a stable E subnetwork, and the

network eventually becomes a non-inhibition-stabilized network (non-ISN) as demonstrated by the

leading eigenvalues of the E subnetwork and E-VIP subnetwork switching from positive to neg-

ative with increasing bottom-up input (Fig. 7B). Interestingly, the response reversal of SST from

enhancement to suppression does not occur at the same time as the network transitions from ISN

to non-ISN. We proved that being an ISN is a necessary but not a sufficient condition to generate

enhanced SST activity induced by top-down modulation, and non-ISNs cannot generate enhanced

SST activity induced by top-down modulation (see SI Text). Consistent with our previous results,

in the presence of E-to-E STD, the paradoxical response of SST is also linked to the change in

SST activity induced by top-down modulation (Fig. 7C). More specifically, the network exhibits

(no) paradoxical response of SST when top-down modulation increases (decreases) SST activity

(Fig. 7C).

Different from networks without E-to-E STD, by examining the leading eigenvalue of the E-PV-VIP

and E-SST-VIP subnetwork (Fig. 7D), we observed a repertoire of interneuron-specific stabiliza-

tion regimes and some novel regime transitions (Fig. 8). For instance, we observed a transition

from being stabilized by PV but not SST (as reflected by a leading positive eigenvalue of the E-

SST-VIP subnetwork and a leading negative eigenvalue of the E-PV-VIP subnetwork) to being

stabilized by both PV and SST (as reflected by leading positive eigenvalues of the E-PV-VIP and

E-SST-VIP subnetwork). We also observed a transition from being stabilized by SST but not PV

(as reflected by a leading positive eigenvalue of the E-PV-VIP subnetwork and a leading negative

eigenvalue of the E-SST-VIP subnetwork) to being stabilized by either PV or SST (as reflected by

leading negative eigenvalues of the E-PV-VIP and E-SST-VIP subnetwork) (Fig. 7D, 8). We further

confirmed these distinct regimes by injecting a transient excitatory perturbation into the excitatory

population while clamping the activity of PV, or SST, or both PV and SST (Fig. S8). Despite novel

regimes observed in the presence of E-to-E STD, the link between response reversal, paradoxical

effects of SST, and the parity of unstable modes in the E-PV-VIP subnetwork remains unchanged

(Fig. 7C-F). When top-down modulation decreases SST activity, the network exhibits no para-

doxical response of SST, and the E-PV-VIP subnetwork has an even number of unstable modes.

When top-down modulation increases SST activity, the network exhibits a paradoxical response

of SST, and the E-PV-VIP subnetwork has an odd number of unstable modes implying that SST is

required for network stabilization (Fig. 8).

In the presence of E-to-SST STF, the analytical expression of KSV (Eq. 10), dictating the sign of

the change of SST induced by top-down modulation, remains unchanged. It does not contain any

E-to-SST dependent terms, suggesting that the emergence of response reversal is unaffected by

E-to-SST STF (Fig. S9A). Consistent with the analysis, our simulation results show that adding
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Fig. 7. Modeling results are robust in the presence of E-to-E STD. (A) Change in SST activity as a function of bottom-
up input α for networks also including E-to-E STD, showing numerical results and analytical predictions. The response
reversal boundaries extracted from analytical calculations (RSV = 0) are indicated by the vertical dashed lines. Here,
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dot represents the α level at which the leading eigenvalues are zero. (C) Relationship between response reversal
and the paradoxical response of SST. Analytical predictions of the change in SST response induced by an excitatory
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E-to-SST STF does not alter the dynamics and the generation of response reversal (Fig. S9B, C).

Given the omnipresence of short-term plasticity mechanisms in the mouse visual cortex amongst

various populations and the centrality of SST to response reversal, we further incorporated short-

term plasticity mechanisms in all connections considered in our model. These simulations show

that response reversal can still be observed (Fig. S10). In addition, we examined how different

inputs and network connectivity affect our results and found that response reversal is preserved in

networks with varying inputs and connectivity strengths (Figs. S11, S12).

In conclusion, through multiple sensitivity analyses, we demonstrated the robustness of our find-

ings to variations in short-term plasticity mechanisms, inputs, and network connectivity.
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Fig. 8. The relationship between response reversal, inhibition stabilization, and paradoxical response in networks also
including E-to-E STD. At the low bottom-up input, top-down modulation decreases SST activity, and the network does
not exhibit a paradoxical response of SST; thus, SST may not be required for stabilization, or SST may be required
for stabilization, but the E-PV-VIP subnetwork has an even number of unstable modes. As demonstrated in Fig. 7, in
this regime, the network is inhibition stabilized and stabilized by PV but not SST. With increasing bottom-up input, the
response of SST induced by top-down modulation is reversed from suppression to enhancement. The network further
exhibits the paradoxical effect in the response of SST and requires SST for stabilization with an odd number of unstable
modes in the E-PV-VIP subnetwork. As demonstrated in Fig. 7, in this regime, the network is inhibition stabilized and
stabilized by both PV of SST and then transitions into being stabilized by SST but not PV. Further increasing bottom-up
input, the response of SST induced by top-down modulation is reversed from enhancement to suppression, and the
network does not exhibit a paradoxical response of SST: thus, SST may not be required for stabilization, or SST may
be required for stabilization, but the E-PV-VIP subnetwork has an even number of unstable modes. As demonstrated
in Fig. 7, in this regime, the network is inhibition stabilized and stabilized by either PV or SST and finally transitions into
a non-ISN. Note that while the relationship between response reversal, paradoxical effects, and inhibition stabilization
marked in blue boxes does not depend on the choice of parameters, the possible interneuron-specific stabilization
regimes shaded in gray are contingent on specific parameters.
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Discussion

In this paper, we investigated how experimentally measured inhibitory short-term plasticity (iSTP)

mechanisms enable model networks with one excitatory and three types of interneuron popula-

tions to perform a nonlinear computation known as response reversal. Using analytical calcula-

tions and numerical simulations, we identified that PV-to-E short-term depression (STD) is the

iSTP mechanism critical for generating response reversal. We further clarified the relationship

between response reversal, the paradoxical response of SST, and the interneuron-specific stabi-

lization property of the network, making important links between well-known operating regimes of

cortical network dynamics.

We made several assumptions that enabled us to analytically understand response reversal. First,

we studied responses in the presence of bottom-up and top-down inputs relative to a baseline

state, assuming that the network activity has reached a fixed point, and we did not consider sce-

narios like multistability (Hertäg and Sprekeler, 2019; Pietras et al., 2022) or oscillations (Veit et al.,

2022). While multistability and oscillations have been observed in the brain (Wang, 2001; Buzsáki

and Draguhn, 2004), the single stable fixed point assumed here is considered to be a realistic

approximation of the awake sensory cortex (Miller, 2016).

Concerning the modeled short-term plasticity mechanisms, our analysis primarily focused on PV-

to-E STD, PV-to-PV STD, PV-to-VIP STD, and SST-to-VIP STF. Additional simulations of networks

also including E-to-E STD, or E-to-SST STF, or STP mechanisms in all existing synapses demon-

strated the robust occurrence of response reversal in SST. In addition to the incorporated short-

term plasticity mechanisms, substantial PV-to-SST STD has also been reported (Campagnola

et al., 2022). However, experimental studies demonstrated negligible inhibition from PV to SST

(Pfeffer et al., 2013), and hence we did not consider PV-to-SST STD.

Furthermore, our work models the neural input-output function as a rectified linear function, a

characteristic feature of tightly balanced networks (van Vreeswijk and Sompolinsky, 1996, 1998).

Without iSTP, our model network behaves like a linear network when all populations have positive

activity. In addition to iSTP proposed in our study, several other factors can induce nonlinearities in

the population response and, therefore, could contribute to the studied response reversal. Recent

studies have suggested that cortical networks may operate in a loosely balanced regime, resulting

in a supralinear input-output function (Ahmadian et al., 2013; Hennequin et al., 2018; Ahmadian

and Miller, 2021; Ekelmans et al., 2023). Response reversal can also be generated by such a

nonlinear input-output function (Garcia del Molino et al., 2017).

Finally, we modeled neurons of the same type as a homogeneous population governed by the

same dynamics. In contrast, even within the same cell type, biological neurons have highly hetero-

geneous time constants and firing thresholds (Allen Institute for Brain Science, 2019; Cembrowski

and Spruston, 2019). Such heterogeneity can theoretically also give rise to nonlinear population

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2024. ; https://doi.org/10.1101/2023.06.13.544791doi: bioRxiv preprint 



responses (Landau et al., 2016; Vegué and Roxin, 2019). Moreover, biological neurons possess

complex morphologies (Jiang et al., 2015; Peng et al., 2021) and manifest nonlinear dendritic in-

tegrations (Poirazi et al., 2003; London and Häusser, 2005; Larkum et al., 2009; Tzilivaki et al.,

2019). This suggests that the complete set of underlying mechanisms behind response reversal

can be even richer and remains to be examined experimentally.

Our study makes several predictions. First, during top-down modulation, along with decreased

SST activity, we also observed that the inhibition of the excitatory population increased at the

steady state. Top-down modulation via VIP induces transient disinhibition, facilitating the growth

of recurrent excitation and resulting in increased excitatory activity. This increased recurrent ex-

citation is balanced by the concurrent increase in inhibition, which is a characteristic of inhibition-

stabilized networks. This prediction can be tested experimentally by measuring excitatory and

inhibitory currents to the excitatory neurons during top-down modulation.

Second, due to iSTP, locomotion-induced top-down modulation via VIP can reversely regulate SST

response under different stimulus conditions. Although PV-to-E STD does not directly affect SST

and VIP activity, surprisingly, our analysis suggests that PV-to-E STD is the determining mecha-

nism underlying the generation of response reversal. Theoretical studies have demonstrated that

inhibitory-to-inhibitory connections have the dominant impact on cortical dynamics, memory ca-

pacity, and working memory maintenance (Mongillo et al., 2018; Kim and Sejnowski, 2021). Here,

our work suggests that the dynamics of inhibitory to excitatory synapses can be more important

than those of inhibitory to inhibitory synapses to generate certain nonlinear phenomena.

Third, our theory reveals a correspondence between response reversal and a paradoxical re-

sponse of SST in the presence of iSTP. More specifically, when the bottom-up stimulation condi-

tion switches from darkness to visual input, the impact of locomotion-induced top-down modulation

via VIP on SST activity changes from suppression to enhancement. Once SST activity induced

by top-down modulation gets elevated, the network exhibits a paradoxical response of SST. This

correspondence can therefore be tested directly in future optogenetic experiments to see whether

injecting excitatory (inhibitory) currents into the SST population indeed decreases (increases) its

activity.

Fourth, our analysis shows that response reversal is tightly linked to the indispensability of SST

for network stabilization. In darkness, when top-down modulation decreases SST activity, SST

may not be required for network stabilization (i.e., solely PV can stabilize the network). In contrast,

in the presence of visual stimuli, top-down modulation increases SST activity, and the network

stabilization requires SST, and the E-PV-VIP subnetwork has an odd number of unstable modes.

It is worth noting that when the network requires SST for stabilization, the network can require

only SST but not PV (Fig. 5, S8) or both PV and SST for stabilization (Fig. S8). The novel ob-

servation that the network requires both PV and SST for stabilization is interesting and will re-

quire further investigation. Consistent with recent studies (Sanzeni et al., 2020), the network is
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inhibition-stabilized in all bottom-up stimulation conditions, even in darkness without visual stimuli.

However, contrary to recent studies suggesting that PV is positioned to stabilize network activity

(Bos et al., 2020), our work suggests that the specific inhibitory cell type stabilizing the network

can change dynamically depending on the stimulation condition. As SST primarily targets den-

drites of excitatory neurons (Kubota, 2014; Tremblay et al., 2016), stabilization through SST can

be mechanistically realized via establishing a spatially precise E/I balance within individual den-

dritic segments. Recent experimental observations support the existence of such localized E/I

balance at the dendritic segment level (Iascone et al., 2020), and SST is ideal for establishing the

dendritic E/I balance and thus can provide an important source of stabilization. Furthermore, our

results suggest a shift in inhibition source from PV to SST, typically accompanied by the occur-

rence of response reversal. Exploring the computational implications of this interneuron-specific

inhibition shift and response reversal raises intriguing questions. Since PV neurons preferentially

target perisomatic regions of excitatory neurons, whereas SST neurons target distal dendritic re-

gions of excitatory neurons, the switch of dominant inhibition from soma to dendrite might prioritize

inputs to perisomatic regions over inputs to distal dendritic regions and thus could be important

for gating information (Udakis et al., 2020). Furthermore, inhibition also plays an important role

in controlling plasticity (Letzkus et al., 2015). The redistribution of inhibition sources might imply

different abilities of distinct interneurons to control plasticity in different regimes.

Last, for the network connectivity and the set of short-term plasticity mechanisms considered here,

our results show that when SST is required for network stabilization and the E-PV-VIP subnetwork

has an odd number of unstable modes, the network exhibits a paradoxical response of SST. Sev-

eral studies have investigated the relationship between inhibition stabilization and the paradoxical

effect in networks with multiple interneuron subtypes (Litwin-Kumar et al., 2016; Mahrach et al.,

2020; Richter and Gjorgjieva, 2022; Palmigiano et al., 2023), in networks with short-term plas-

ticity while ignoring different cell types (Sanzeni et al., 2020; Wu and Zenke, 2021), as well as

in networks with multiple interneuron subtypes and short-term plasticity while ignoring cell type

specificity (Wu and Gjorgjieva, 2023). How paradoxical effects of a given cell type relate to the

number of unstable modes in subnetworks excluding that cell type has been studied in networks

without short-term plasticity in a recent theoretical study (Miller and Palmigiano, 2020). Here,

we revealed the relationship between interneuron-specific stabilization and the paradoxical effect

in networks with multiple interneuron subtypes in the presence of a set of short-term plasticity

mechanisms.

Taken together, our work sheds light on how experimentally identified iSTP mechanisms can gen-

erate response reversal, reveals the roles of individual iSTP mechanisms in response reversal,

and uncovers the relationship between response reversal, the paradoxical effect, and interneuron-

specific stabilization properties.
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Methods

Response matrix

To investigate how the input to one particular population affects the response of any given popu-

lation in the presence of short-term plasticity, we developed a general theoretical framework using

linear perturbation theory. Using the separation of time scales for the rate dynamics and the short-

term plasticity dynamics, we can write the system of equations introduced before (Eqs. 1 to 4)

in matrix form while replacing the short-term plasticity variables with their steady-state values, as

follows:

T
d
dt

r = −r + f(P ◦ Jr + g), (20)

where T is a diagonal matrix of time constants of the firing rate dynamics, r a vector of firing rates

of different populations, f(x) a vector of the rectified linear input-output function of the respective

populations, P a matrix of the short-term plasticity variables, J the connectivity matrix, and g a

vector of inputs to different populations. ◦ denotes the element-wise product. The steady states of

the short-term plasticity variables are obtained by setting the Eqs. 5 to 8 to 0. Note that since the

steady states of the short-term plasticity variables are determined by the presynaptic activity, x∗
EP ,

x∗
PP , and x∗

VP are the same. If short-term plasticity is not present on the synapses from j to i , the

corresponding element Pij is 1 (for further details, see SI Text). By linearizing about the fixed point

and ignoring higher-order terms, we obtain the following equation:

T
d
dt

δr = −δr + F(P ◦ J)δr + F(P′ ◦ J diag(r))δr + Fδg. (21)

Here, δr is a vector containing the deviations of firing rates from their fixed point values. F is a diag-

onal matrix containing the derivatives of the input-output functions evaluated at the fixed point. P′

is a matrix containing the derivative of the short-term plasticity variables with respect to the corre-

sponding presynaptic firing rate, evaluated at the fixed point. diag(r) is a diagonal matrix containing

the firing rates of different populations. And δg is a vector containing the changes/perturbations of

external inputs to different populations.

The fixed point solution of Eq. 21 quantifies the change in population rates δr to an input perturba-

tion δg:

δr =
(

1 − F (P ◦ J) − F
(
P′ ◦ J diag(r)

))−1
F δg

=
1

det(L)
adj(L) F δg, (22)

with

L = 1 − F(P ◦ J) − F
(
P′ ◦ J diag(r)

)
, (23)

where 1 denotes the identity matrix, and ‘det’ and ‘adj’ represent the matrix’s determinant and

adjugate, respectively.
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By replacing δg with a diagonal matrix δG whose diagonal elements are δg, we can obtain a

response matrix R as follows:

R =
1

det L
adj(L) F δG. (24)

Importantly, the element Rij provides the change in the steady-state rate response of population i

caused by an input perturbation δGjj to population j .

We further define a scalar D and a response factor matrix K as follows:

D =
1

det(L)
=

1
det(1 − F(P ◦ J) − F(P′ ◦ J diag(r)))

(25)

and

K = adj (L) = adj (1 − F(P ◦ J) − F(P′ ◦ J diag(r)))F. (26)

Then the response matrix R can be expressed as:

R = D K δG. (27)

Note that if the network is stable, all eigenvalues of the Jacobian T−1(−1+F(P ◦ J)+F(P′ ◦ J diag(r)))
have negative real parts. Therefore, all eigenvalues of L have positive real parts, and D is always

positive (Fig. S4A).

To investigate how top-down modulation via VIP affects SST response in networks with iSTP, we

can apply the theoretical framework introduced above and write the change of SST activity as a

function of the change of the input to VIP. Since the derivatives of the rectified linear input-output

functions are 1 in regimes where all cell populations have positive firing rates, we have

RSV = D KSV δgV (28)

with

KSV = (x∗
PP + x∗′

PPrP)(JEE − 1)JPPJSV

− (x∗
EP + x∗′

EPrP)JSV JPEJEP + (JEE − 1)JSV . (29)

Simulations

Simulations were performed in Python. All differential equations were implemented by Euler inte-

gration with a time step of 0.1 ms. The simulation duration was 9 seconds for each experiment.

Top-down modulation was applied in the interval of 5 to 7 seconds. Networks were initialized using

the parameters in the Supplementary Tables. Short-term plasticity variables were initially set to 1

and reached their steady-state values within the first second. Figures depict 6 seconds of network

activity following 3 seconds of relaxation after initialization. Bottom-up input α was modeled in the

interval [0, 20] with a step size of 0.5 unless stated otherwise. All simulation parameters are listed

in the Supplementary Tables.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2024. ; https://doi.org/10.1101/2023.06.13.544791doi: bioRxiv preprint 



Data Availability

The code used for model simulations is available on GitHub https://github.com/comp-neural-circuits/

top-down-modulation-with-iSTP.
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Supporting Information

Supporting Information Text

Response matrix

To investigate how the input to one particular population affects the response of any given popu-

lation in the presence of short-term plasticity, we developed a general theoretical framework using

linear perturbation theory. Using the separation of time scales for the rate dynamics and the short-

term plasticity dynamics, we can write the system of equations introduced before (Eqs. 1 to 4)

in matrix form while replacing the short-term plasticity variables with their steady-state values, as

follows:

T
d
dt

r = −r + f(P ◦ Jr + g), (S1)

where T is a diagonal matrix of time constants of the firing rate dynamics, r a vector of firing rates

of different populations, f(x) a vector of the rectified linear input-output function of the respective

populations, P a matrix of the short-term plasticity variables, J the connectivity matrix, and g a

vector of inputs to different populations. ◦ denotes the element-wise product:

T =




τE 0 0 0

0 τP 0 0

0 0 τS 0

0 0 0 τV




, r =




rE

rP

rS

rV




, f(x) =




fE (x1)

fP(x2)

fS(x3)

fV (x4)




, P =




1 x∗
EP 1 1

1 x∗
PP 1 1

1 1 1 1

1 x∗
VP u∗

VS 1




,

J =




JEE −JEP −JES 0

JPE −JPP −JPS 0

JSE 0 0 −JSV

JVE −JVP −JVS 0




, g =




gE + α

gP + α

gS

gV




. (S2)

The steady states of the short-term plasticity variables are obtained by setting the Eqs. 5 to 8 to 0

and given by:

x∗
EP = x∗

PP = x∗
VP =

1
1 + Ud rPτx

, (S3)

u∗
VS =

1 + Uf UmaxrSτu

1 + Uf rSτu
. (S4)

Note that since the steady states of the short-term plasticity variables are determined by the presy-

naptic activity, x∗
EP , x∗

PP , and x∗
VP are the same. If short-term plasticity is not present on the

synapses from j to i , the corresponding element Pij is 1.

By linearizing about the fixed point and ignoring higher-order terms, we obtain the following equa-

tion:

T
d
dt

δr = −δr + F(P ◦ J)δr + F(P′ ◦ J diag(r))δr + Fδg. (S5)
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Here, δr is a vector containing the deviations of firing rates from their fixed point values. F is a diag-

onal matrix containing the derivatives of the input-output functions evaluated at the fixed point. P′

is a matrix containing the derivative of the short-term plasticity variables with respect to the corre-

sponding presynaptic firing rate, evaluated at the fixed point. diag(r) is a diagonal matrix containing

the firing rates of different populations. And δg is a vector containing the changes/perturbations of

external inputs to different populations:

δr =




δrE

δrP

δrS

δrV




, F =




f ′E 0 0 0

0 f ′P 0 0

0 0 f ′S 0

0 0 0 f ′V




, P′ =




0 x∗′
EP 0 0

0 x∗′
PP 0 0

0 0 0 0

0 x∗′
VP u∗′

VS 0




=




0 − Udτx
(1+Udτx rP )2 0 0

0 − Udτx
(1+Udτx rP )2 0 0

0 0 0 0

0 − Udτx
(1+Udτx rP )2

Uf (Umax−1)τu
(1+Uf τurS)2 0




,

diag(r) =




rE 0 0 0

0 rP 0 0

0 0 rS 0

0 0 0 rV




, δg =




δgE

δgP

δgS

δgV




. (S6)

The fixed point solution of Eq. S5 quantifies the change in population rates δr to an input pertur-

bation δg:

δr =
(

1 − F(P ◦ J) − F(P′ ◦ J diag(r))
)−1

F δg

=
1

det (1 − F(P ◦ J) − F(P′ ◦ J diag(r)))
adj (1 − F(P ◦ J) − F(P′ ◦ J diag(r)))F δg, (S7)

where 1 denotes the identity matrix, and ‘det’ and ‘adj’ represent the matrix’s determinant and

adjugate, respectively. By replacing δg with a diagonal matrix δG whose diagonal elements are

δg, we can obtain a response matrix R as follows:

R =
1

det (1 − F(P ◦ J) − F(P′ ◦ J diag(r)))
adj (1 − F(P ◦ J) − F(P′ ◦ J diag(r)))F δG (S8)

with

δG =




δgE 0 0 0

0 δgP 0 0

0 0 δgS 0

0 0 0 δgV




. (S9)

Importantly, the element Rij provides the change in the steady-state rate response of population i

caused by an input perturbation δGjj to population j . We further define a scalar D and a response

factor matrix K as follows:

D =
1

det(1 − F(P ◦ J) − F(P′ ◦ J diag(r)))
(S10)

and

K = adj (1 − F(P ◦ J) − F(P′ ◦ J diag(r)))F. (S11)
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Then the response matrix R can be expressed as:

R = D K δG. (S12)

Note that if the network is stable, all eigenvalues of the Jacobian T−1(−1+F(P ◦ J)+F(P′ ◦ J diag(r)))
have negative real parts. Therefore, all eigenvalues of 1−F(P ◦ J)−F(P′ ◦ J diag(r)) have positive

real parts and D is always positive (Fig. S4A).

To investigate how top-down modulation via VIP affects SST response in networks with iSTP, we

can apply the theoretical framework introduced above and write the change of SST activity as a

function of the change of the input to VIP:

RSV = D KSV δgV (S13)

with

KSV =
(

(x∗
PP + x∗′

PPrP)JEEJPPJSV − (x∗
EP + x∗′

EPrP)JSV JPEJEP

)
f ′E f ′P f ′Sf ′V

− (x∗
PP + x∗′

PPrP)JPPJSV f ′P f ′Sf ′V + JEEJSV f ′E f ′Sf ′V − JSV f ′Sf ′V . (S14)

To have response reversal of SST from suppression to enhancement, we need the change of SST

activity induced by top-down modulation via VIP to switch from negative to positive as bottom-up

input increases. In other words, we need a sign change of RSV from negative to positive as the

bottom-up input increases. Since D and δgV are positive, KSV is the only term that can switch the

sign of RSV .

In the regime where all cell populations have positive firing rates, the derivatives of the rectified

linear input-output functions are 1. Therefore, KSV can be simplified to:

KSV = (x∗
PP + x∗′

PPrP)JEEJPPJSV − (x∗
EP + x∗′

EPrP)JSV JPEJEP

− (x∗
PP + x∗′

PPrP)JPPJSV + JEEJSV − JSV . (S15)

We can further separate KSV into an STP-dependent part KSTP
SV and a non-STP-dependent part

KnonSTP
SV :

KSV = KSTP
SV + KnonSTP

SV (S16)

with

KSTP
SV = (x∗

PP + x∗′
PPrP − 1)(JEE − 1)JPPJSV − (x∗

EP + x∗′
EPrP − 1)JSV JPEJEP , (S17)

and

KnonSTP
SV = (JEE − 1)(JPPJSV + JSV ) − JSV JPEJEP . (S18)

The STP-dependent part KSTP
SV can be expressed as a sum of a PV-to-E STD-dependent term

KPED
SV and a PV-to-PV STD-dependent term KPPD

SV :

KSTP
SV = KPPD

SV + KPED
SV (S19)
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with

KPPD
SV = −(1 − x∗

PP − x∗′
PPrP)(JEE − 1)JPPJSV (S20)

and

KPED
SV = (1 − x∗

EP − x∗′
EPrP)JSV JPEJEP . (S21)

Furthermore,

1 − x∗
EP − x∗′

EPrP = 1 − x∗
PP − x∗′

PPrP

= 1 − x∗
PP +

Udτx

(1 + Udτx rP)2 rP

= 1 − 1 + Udτx rP

(1 + Udτx rP)2 +
Udτx rP

(1 + Udτx rP)2

= 1 − 1
(1 + Udτx rP)2

> 0. (S22)

The PV-to-E STD-dependent term KPED
SV , therefore, is always positive. Consistent with recent ex-

perimental studies (Sanzeni et al., 2020), the network is initialized in an inhibition-stabilized regime

when the animal receives no stimulus in darkness. In other words, JEE is greater than 1 (see sec-

tion ‘Interneuron-specific stabilization property’), resulting in the PV-to-PV STD-dependent term

KPPD
SV being always negative. Taking the derivative of Eq. S22 with respect to rP , we get:

d
drP

(1 − x∗
EP − x∗′

EPrP) =
d

drP
(1 − x∗

PP − x∗′
PPrP)

=
d

drP

(
1 − 1

(1 + Udτx rP)2

)

=
2Udτx

(1 + Udτx rP)3

> 0, (S23)

resulting in a continuous increase (decrease) in KPED
SV and a continuous decrease (increase) in

KPPD
SV with increasing (decreasing) rate of PV. Since PV activity rP increases (decreases) with

greater (smaller) bottom-up input α (Fig. S2), KPED
SV increases (decreases) while KPPD

SV decreases

(increases) (Fig. S4C). For response reversal of SST from negative to positive with increasing α,

KSV needs to switch from negative to positive. Therefore, KPED
SV , rather than KPPD

SV , is the critical

short-term plasticity term for response reversal from suppression to enhancement.
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Interneuron-specific stabilization property

Network stabilization can be determined by the leading eigenvalue of the Jacobian of the system.

The Jacobian of our network with iSTP is given by:

M =




JEE−1
τE

−x∗
EPJEP
τE

−JES
τE

−JEV
τE

−JEP rP
τE

0 0 0
JPE
τP

−1−x∗
PPJPP

τP
−JPS

τP
−JPV

τP
0 −JPP rP

τP
0 0

JSE
τS

− JSP
τS

−JSS−1
τS

−JSV
τS

0 0 0 0
JVE
τV

−x∗
VPJVP
τV

−u∗
VSJVS
τV

−JVV−1
τV

0 0 − JVP rP
τV

−JVSrS
τV

0 −Udx∗
EP 0 0 − 1

τx
− Ud rP 0 0 0

0 −Udx∗
PP 0 0 0 − 1

τx
− Ud rP 0 0

0 −Udx∗
VP 0 0 0 0 − 1

τx
− Ud rP 0

0 0 Uf (Umax − u∗
VS) 0 0 0 0 − 1

τu
− Uf rS




.

(S24)

A positive leading eigenvalue implies that the fixed point is unstable. In other words, a transient

perturbation to the system leads to a deviation from the original fixed point. In contrast, a negative

leading eigenvalue implies that the fixed point is stable. Namely, the system will return to the

original fixed point after transient perturbation.

To identify if the network is inhibition stabilized, we computed the leading eigenvalue of the Jaco-

bian of the E subnetwork. In this case, all inhibitory populations and their related STP variables are

omitted. The leading eigenvalue of the Jacobian of the E subnetwork is JEE−1
τE

. Therefore, when

JEE is larger than 1, the excitatory subnetwork is unstable, and the network is inhibition stabilized,

i.e. in the ISN regime. In alignment with recent experimental studies showing that in darkness,

when animals receive no stimulus, the network is inhibition stabilized (Sanzeni et al., 2020), we

thus set JEE to be larger than 1.

Since

x∗
EP + x∗′

EPrP = x∗
PP + x∗′

PPrP

=
1 + Udτx rP

(1 + Udτx rP)2 − Udτx rP

(1 + Udτx rP)2

=
1

(1 + Udτx rP)2

> 0, (S25)

it is easy to see that KSV (Eq. 29) is negative when JEE − 1 < 0. This implies that for any

network whose E subnetwork is stable (i.e., the entire network is not inhibition stabilized), top-

down modulation via VIP decreases SST activity. The network, therefore, needs to be inhibition

stabilized, i.e. the E subnetwork has to be unstable, to obtain an enhanced effect of SST response

induced by top-down modulation.
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To identify if the network is inhibition stabilized by a specific interneuron subtype, we compute the

leading eigenvalue of the subnetwork in which a specific interneuron subtype and the correspond-

ing STP mechanisms are omitted. If the leading eigenvalue is positive (negative), the subnetwork

without this interneuron population is unstable (stable), suggesting the omitted interneuron sub-

type is required (not required) for stabilization. This interneuron-specific stabilization property can

also be probed by, at the same time, freezing the respective inhibitory population, transiently per-

turbing the excitatory population and observing potential changes in the fixed point dynamics.

To reveal the relationship between the response reversal of SST, the paradoxical effect, and

interneuron-specific stabilization, we compute the Jacobian for the E-PV-VIP subnetwork in which

the SST population and its related STP variable are omitted. The Jacobian of the E-PV-VIP sub-

network is given by:

ME-PV-VIP =




JEE−1
τE

−x∗
EPJEP
τE

− JEV
τE

−JEP rP
τE

0 0
JPE
τP

−1−x∗
PPJPP

τP
− JPV

τP
0 − JPP rP

τP
0

JVE
τV

−x∗
VPJVP
τV

−JVV−1
τV

0 0 −JVP rP
τV

0 −Udx∗
EP 0 − 1

τx
− Ud rP 0 0

0 −Udx∗
PP 0 0 − 1

τx
− Ud rP 0

0 −Udx∗
VP 0 0 0 − 1

τx
− Ud rP




. (S26)

Therefore, the determinant of the Jacobian is given by

det(ME-PV-VIP) =
(

JEE − 1
τE

)(−1 − x∗
PPJPP

τP

)(−1
τV

)(
− 1
τx

− Ud rP

)(
− 1
τx

− Ud rP

)(
− 1
τx

− Ud rP

)

−
(

JEE − 1
τE

)(
−JPPrP

τP

)(−1
τV

)(
− 1
τx

− Ud rP

)(
−Udx∗

PP
)(

− 1
τx

− Ud rP

)

−
(
−x∗

EPJEP

τE

)(
JPE

τP

)(−1
τV

)(
− 1
τx

− Ud rP

)(
− 1
τx

− Ud rP

)(
− 1
τx

− Ud rP

)

+
(
−JEPrP

τE

)(
JPE

τP

)(−1
τV

)(
− 1
τx

− Ud rP

)(
− 1
τx

− Ud rP

)(
− 1
τx

− Ud rP

)
,

(S27)

which becomes:

det(ME-PV-VIP) =
1

τEτPτV

(
− 1
τxx∗

PP

)3 [
(x∗

PP + x∗′
PPrP − 1)(JEE − 1)JPP − (x∗

EP + x∗′
EPrP − 1)JEPJPE

+ (JEE − 1)(JPP + 1) − JPEJEP

]

= − 1
τEτPτV

(
− 1
τxx∗

PP

)3

KSS

=
1

τEτPτV

(
− 1
τxx∗

PP

)3 KSV

JSV
. (S28)
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In the network we considered here, because of the short-term plasticity mechanisms, the Jacobian

of the E-PV-VIP subnetwork is a 6-by-6 matrix. Since det(ME-PV-VIP) is the product of the eigenval-

ues of the Jacobian for the E-PV-VIP subnetwork, a negative det(ME-PV-VIP) implies an odd number

of positive eigenvalues and consequently an odd number of unstable eigenvectors/modes in the

E-PV-VIP subnetwork, suggesting that SST is required for network stabilization. However, the

network may also require SST for stabilization if det(ME-PV-VIP) is positive, for instance, when the

Jacobian of the E-PV-VIP subnetwork has an even number of unstable modes. At the same time,

an odd number of unstable modes in the E-PV-VIP subnetwork also implies a negative KSS and

a positive KSV , suggesting that SST responds paradoxically, and top-down modulation via VIP in-

creases SST activity. In contrast, an even number of unstable modes in the E-PV-VIP subnetwork

implies a negative KSS and a positive KSV .

Further, to investigate the relationship between PV stabilization and response reversal of SST, we

compute the Jacobian for the E-SST-VIP subnetwork, which is given by:

ME-SST-VIP =




JEE−1
τE

−JES
τE

−JEV
τE

0
JSE
τS

− JSS−1
τS

−JSV
τS

0
JVE
τV

−u∗
VSJVS
τV

−JVV−1
τV

0

0 −Uf (Umax − u∗
VS) 0 − 1

τu
− Uf rS




. (S29)

Its determinant is then given by

det(ME-SST-VIP) = − 1
τEτPτV

(
1
τu

− Uf rs

)[
(JEE − 1)(1 − JSV u∗

VSJVS) + JEV JSEu∗
VSJVS

+ JESJSE + JESJVE − JEV JVE

]
. (S30)

We found no relation between the determinant of the E-SST-VIP subnetwork det(ME-SST-VIP) and

the response reversal condition KSV . The determinant can switch its sign independent of the re-

sponse of SST and vice versa. This implies that the requirement of PV for network stabilization

cannot be linked to the response reversal condition of SST. As a result, the PV stabilization prop-

erty can change independently with different bottom-up inputs and is thus parameter-dependent.

Networks also including E-to-E STD

In the presence of E-to-E STD, we have

KSV = (x∗
PP + x∗′

PPrP − 1)JPP
[
(x∗

EE + x∗′
EE rE )JEE − 1

]
JSV − (x∗

EP + x∗′
EPrP − 1)JSV JPEJEP

+
[
(x∗

EE + x∗′
EE rE )JEE − 1

]
(JPPJSV + JSV ) − JSV JPEJEP . (S31)

with

x∗
EE =

1
1 + τxUd rE

(S32)
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and

x∗′
EE = − Udτx

(1 + Udτx rE )2 . (S33)

Furthermore, we have

KSS = −
[
(x∗

PP + x∗′
PPrP − 1)JPP

[
(x∗

EE + x∗′
EE rE )JEE − 1

]
− (x∗

EP + x∗′
EPrP − 1)JPEJEP

+
[
(x∗

EE + x∗′
EE rE )JEE − 1

]
(JPP + 1) − JPEJEP

]

= −KSV/JSV . (S34)

Note that in the presence of E-to-E STD, we still have

RSV = D KSV δgV , (S35)

RSS = D KSS δgS, (S36)

RSS = − δgS

JSV δgV
RSV . (S37)

Despite the fact that E-to-E STD affects the amplitude of D, the relationship between RSV and RSS

remains unchanged.

To investigate how KSV relates to inhibition stabilization, we analyzed the Jacobian of the E-to-E

subnetwork now including E-to-E STD, MEE , given by:

MEE =

[
xJEE − 1 JEE rE

−Udx −1+τx Ud rE
τx

]
. (S38)

If the E subnetwork is stable (i.e., the entire network is not inhibition stabilized), the determinant of

the Jacobian det(MEE ) is positive, namely,

det(MEE ) = (xJEE − 1)(−1 + τxUd rE

τx
) − JEE rE (−Udx) > 0. (S39)

At the steady state, the above equation can be written as follows

(x∗
EE + x∗′

EE rE )JEE − 1 < 0. (S40)

Since x∗
PP + x∗′

PPrP − 1 and x∗
EP + x∗′

EPrP − 1 are positive (Eq. S22), it is easy to see that when

(x∗
EE +x∗′

EE rE )JEE −1 < 0 (for instance, when the network is not inhibition stabilized), KSV (Eq. S31)

is always negative. Therefore, to have increased SST activity induced by top-down modulation

(i.e., KSV > 0), the network has to be inhibition stabilized.

Furthermore, as bottom-up input increases, rE also increases. Since

(x∗
EE + x∗′

EE rE )JEE − 1 =
JEE

(1 + τxUd rE )2 − 1, (S41)
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to generate elevated SST activity by top-down modulation at a high level of bottom-up input,
JEE

(1+τx Ud rE )2 − 1 needs to be positive. As a result, JEE has to be large and/or τxUd has to be small.

Note that as shown in Eq. (S32), greater τxUd implies a stronger depression of E-to-E connection

strength.

The Response Reversal Index

In the exploration of the robustness of our findings under various perturbations, we conducted

sensitivity analyses encompassing inputs, network connectivity, and short-term plasticity mecha-

nisms. For a concise evaluation of the transition in SST response from suppression to enhance-

ment induced by top-down modulation and the consequent emergence of response reversal, we

introduce the Response Reversal Index (RRI) as follows:

RRI =





∆rα=20
SST −∆rα=0

SST , if (∆rα=0
SST ·∆rα=20

SST < 0)&(∆rα=20
SST −∆rα=0

SST > 0), response reversal

0, no response reversal

−2, if at least one population is silent

−4, if network is unstable

,

(S42)

where ∆rα=i
SST represents the change in SST response induced by top-down modulation at the

bottom-up input i . Note that a positive RRI indicates a response reversal of SST from negative to

positive.

Sensitivity analysis to background inputs and connectivity matrix

We tested whether our results were sensitive to the choices of background inputs g and the ratio

of g and top-down modulatory input c. We varied the mean background input ḡ (i.e., the average

background input to four different populations) by randomly and independently sampling the cor-

responding background inputs to individual populations from a uniform distribution (see Methods).

We found that response reversal is observed at different levels of background input (Fig. S11A).

Furthermore, we covaried the top-down modulatory input c and found that our results are robust

for a wide range of ratios between background input and top-down modulatory input (Fig. S11B).

These results suggest that our results remain robust across a wide range of bottom-up and top-

down inputs.

Although our initial network connectivity is constrained by previous experimental studies (Pfef-

fer et al., 2013), strengths of individual synapses have huge variability. We therefore examined

whether our results hold for a variety of networks with different connectivity strengths. We varied

the excitatory to excitatory connectivity strength JEE and found that non-inhibition stabilized net-

works (i.e., the E subnetwork is stable) are unable to generate response reversal (Fig. S12A).
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We mathematically proved that the network needs to be inhibition stabilized (i.e. the E subnet-

work has to be unstable) to obtain an enhanced effect on SST response induced by top-down

modulation (see Methods). For various JEE , the inhibition-stabilized network can exhibit response

reversal (Fig. S12A). Further increasing JEE eventually leads to unstable networks, which can

be prevented by increasing inhibitory weights. This also rescues response reversal (Fig. S12B).

As our model suggests a shift in the primary source of inhibition from PV to SST when response

reversal is observed, we examined how the ratio between JEP and JES affects our conclusions. We

found that a large fraction of the sampled inhibition-stabilized networks with a wide range of ratios

between JEP and JES are capable of generating response reversal (Fig. S12C, D). As the PV-to-E

connection is subject to short-term depression, we then examined how the effective ratio between

JEP and JES affects response reversal. We, therefore, multiplied JEP with the corresponding short-

term plasticity variable xEP . Response reversal is observed for effective ratios larger than 1 as

well as smaller than 1 (Fig. S12E). This is also the case for a wide range of connection strengths

between E and PV (Fig. S12F), between E and SST (Fig. S12G), as well as JSE and JPE (Fig.

S12H). These findings indicate the robustness of our results across inhibition-stabilized networks

with varying connectivity strengths.
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Supplementary Figures
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Fig. S1. Short-term plasticity mechanisms included in the network model. Left: Different degrees of short-term facil-
itation (STF) and depression (STD) at different synapses measured by the Allen Institute (Campagnola et al., 2022).
Green boxes indicate the four most pronounced mechanisms, the only ones included in the model. Red crosses de-
note weak connections, as reported in (Pfeffer et al., 2013). Therefore, not considered in the model. Right: Network
schematic including the four most pronounced STD and STF mechanisms.
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Fig. S2. Network activity as a function of bottom-up input α to E and PV.
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Fig. S3. Non-inhibition-stabilized networks (non-ISNs) do not show elevated total inhibitory inputs to the excitatory
population. (A) Input to the E population at α = 0 corresponding to darkness, i.e., no sensory stimulation. Top-down
modulation via VIP is applied during the interval from 2 to 4 s (gray bar). Different colors indicate different sources: input
from the E population, input from the I populations, and the sum of the inputs from the E and I populations. (B) Same
as A but at α = 15 corresponding to sensory stimulation. (C) Change in different sources of recurrent inputs to the
E population measured between baseline and at steady state during top-down modulation as a function of bottom-up
input α.
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Fig. S7. Bottom-up inputs shift the prevalence of inhibition received by the excitatory population (E) from PV to SST. (A)
Input to the E population at α = 0 corresponding to darkness, i.e., without sensory stimulation. Top-down modulation
via VIP is applied during the interval from 2 to 4 s (gray bar). Different colors indicate different sources: input from the
E population, input from the PV population, input from the SST population (green), I populations, and the sum of the
inputs from the E and I populations. (B) Same as A but at α = 15 corresponding to sensory stimulation. (C) The ratio of
SST to PV inhibition received by the E population at baseline as a function of bottom-up input α.
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Fig. S8. Responses of networks also including E-to-E STD to transient perturbations to the excitatory population while
freezing corresponding inhibition at different baseline states, indicated in Fig. 7D. (A) Normalized activity when injecting
additional excitatory current into E while freezing SST, or PV, or both, respectively, for a bottom-up input of α = 0. A
small transient excitatory perturbation to the excitatory population is introduced at the time point marked with arrows.
The periods in which inhibition is frozen are marked with the gray bar. The network is inhibition stabilized and stabilized
by PV but not SST. Only freezing PV or both PV and SST causes a deviation from the original fixed point. (B) Similar
to A but for a bottom-up input α = 5. The network is inhibition stabilized and requires SST and PV for stabilization, as
a transient perturbation leads to a deviation from the original fixed point in all freezing experiments. (C) Similar to A
but for a bottom-up input α = 15. The network is inhibition stabilized and stabilized by SST but not PV. Only freezing
SST or both PV and SST causes a deviation from the original fixed point. (D) Similar to A but for a bottom-up input
α = 77. The network is inhibition stabilized and stabilized by either PV or SST. Only freezing both PV and SST causes
a deviation from the original fixed point. (E) Similar to A but for a bottom-up input α = 90. The network is no longer
inhibition stabilized. Despite frozen inhibition, a transient perturbation does not result in a deviation from the original
fixed point.
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Fig. S9. Response reversal in networks also including E-to-SST STF. (A) In networks also including E-to-SST STF,
analytical prediction of the change in SST population response induced by the perturbation to VIP (RSV , Eq. 10)
qualitatively match with numerical simulation for a large perturbation (δgV = 3). (B) Network responses, including E-
to-SST STF, to top-down modulation without any bottom-up input (α = 0) corresponding to darkness without sensory
stimulation. Top-down modulation via VIP is applied during the interval from 2 to 4 s (gray bar). Different colors denote
the activity of different populations. The dashed line represents the initial activity level of SST. (C) Similar to B but
at α = 15 corresponding to sensory stimulation. Simulations were performed with top-down modulation c = 3 and
USE

max = 2.
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Fig. S10. Networks with multiple additional short-term plasticity mechanisms are able to generate response rever-
sal. (A) Network responses, including all short-term mechanisms observed in (Campagnola et al., 2022), on existing
connections, to top-down modulation without any bottom-up input (α = 0) corresponding to darkness without sensory
stimulation. Top-down modulation via VIP is applied during the interval from 2 to 4 s (gray bar). The dashed line repre-
sents the initial activity level of SST. (B) Same as A but at α = 15 corresponding to sensory stimulation. (C) Change in
SST response induced by top-down modulation to VIP as a function of bottom-up input α in networks with short-term
plasticity on all existing connections. Simulations were performed with top-down modulation δgV = 3.
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Fig. S11. Response reversal is observed for a wide range of background and bottom-up inputs. (A) Left: Response Re-
versal Index (RRI) as a function of the mean background input ḡ. Background inputs were randomly and independently
sampled from the ranges gE , gPV , gVIP ∈ [3, 5], and gSST ∈ [2, 4], each with a step size of 0.1. The mean background
input ḡ is calculated by averaging the sampled background inputs to different populations. Simulations were performed
for n = 500 random choices. A positive RRI indicates a response reversal of SST from negative to positive, whereas a
zero RRI represents no response reversal. A negative RRI indicates partially silent networks (i.e., at least one popula-
tion activity is zero) or unstable networks (i.e., network activity explodes). Middle: Histogram of RRI distribution. Right:
Counts of different simulation results. (B) Similar to A, but for the relationship between RRI and the ratio of the mean
background input ḡ to the top-down modulatory input c. Additionally, c was randomly drawn from 2 to 4 with a step
size of 0.1. Simulations were performed for n = 1000 random choices. All simulations were performed with top-down
modulation c = 3.
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Fig. S12. Response reversal is observed for a wide range of network connectivity. (A) Left: Response Reversal Index
(RRI) as a function of initial weights JEE . A positive RRI indicates a response reversal of SST from negative to positive,
whereas a zero RRI represents no response reversal. A negative RRI indicates partially silent networks (i.e., at least
one population activity is zero) or unstable networks (i.e., network activity explodes). The vertical dashed line indicates
JEE = 1. Middle: Histogram of RRI distribution. Right: Counts of different simulation results. (B) Similar to A but with
higher inhibitory weights (see Tab. S5). (C) Similar to A but for the ratio of the JEP/JES weights. The vertical dashed
line indicates a ratio of 1. The initial values of JEP and JES are taken from 0.9 to 1.7 with a stepsize of 0.05. (D) RRI
for different initial combinations of JEP and JES . (E) Similar to C, but as a function of the effective ratio between JEP and
JES by multiplying the short-term depression variable xEP with JEP . Here, xEP is determined by its steady-state value
before top-down modulation at the low bottom-up input (α = 0). (F) RRI for different initial weights of JPE and JEP . (G)
Similar to F but for different initial weights of JES and JSE . (H) Similar to F but for different initial weights of JPE and JSE .
All simulations were performed with top-down modulation c = 3.
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Table S1: Parameters for networks with iSTP.

Network dynamics and network connectivity

Symbol Value Unit Description

τE 20 ms time constant of E rate dynamics
τP 10 ms time constant of PV rate dynamics
τS 10 ms time constant of SST rate dynamics
τV 10 ms time constant of VIP rate dynamics
JEE 1.3 a.u. connection strength from E to E
JEP 1.6 a.u. connection strength from PV to E
JES 1.0 a.u. connection strength from SST to E
JPE 1.0 a.u. connection strength from E to PV
JPP 1.3 a.u. connection strength from PV to PV
JPS 0.8 a.u. connection strength from SST to PV
JSE 0.8 a.u. connection strength from E to SST
JSV 0.6 a.u. connection strength from VIP to SST
JVE 1.1 a.u. connection strength from E to VIP
JVP 0.4 a.u. connection strength from PV to VIP
JVS 0.4 a.u. connection strength from SST to VIP

Short-term plasticity

τx 100 ms time constant of short-term depression
Ud 1 a.u. depression factor
τu 400 ms time constant of short-term facilitation
Uf 1 a.u. facilitation factor
Umax 3 a.u. maximum value of the facilitation variable

Inputs

gE 4 a.u. background input to E
gP 4 a.u. background input to PV
gS 3 a.u. background input to SST
gV 4 a.u. background input to VIP
c 3 a.u. top-down input to VIP

These values are used elsewhere unless specifically stated otherwise.
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Table S2: Parameters for networks also including E-to-E STD.

Network dynamics and network connectivity

Symbol Value Unit Description

τE 20 ms time constant of E rate dynamics
τP 10 ms time constant of PV rate dynamics
τS 10 ms time constant of SST rate dynamics
τV 10 ms time constant of VIP rate dynamics
JEE 1.8 a.u. connection strength from E to E
JEP 2.0 a.u. connection strength from PV to E
JES 1.0 a.u. connection strength from SST to E
JPE 1.4 a.u. connection strength from E to PV
JPP 1.3 a.u. connection strength from PV to PV
JPS 0.8 a.u. connection strength from SST to PV
JSE 0.9 a.u. connection strength from E to SST
JSV 0.6 a.u. connection strength from VIP to SST
JVE 1.1 a.u. connection strength from E to VIP
JVP 0.4 a.u. connection strength from PV to VIP
JVS 0.4 a.u. connection strength from SST to VIP

Short-term plasticity

τx 100 ms time constant of short-term depression
τEE

x 10 ms time constant of E-to-E short-term depression
Ud 1 a.u. depression factor
UEE

d 0.3 a.u. E-to-E depression factor
τu 400 ms time constant of short-term facilitation
Uf 1 a.u. facilitation factor
Umax 3 a.u. maximum value of the facilitation variable

Inputs

gE 7 a.u. background input to E
gP 7 a.u. background input to PV
gS 5 a.u. background input to SST
gV 7 a.u. background input to VIP
c 3 a.u. top-down input to VIP
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Table S3: Parameters for networks also including E-to-SST STF.

Network dynamics and network connectivity

Symbol Value Unit Description

τE 20 ms time constant of E rate dynamics
τP 10 ms time constant of PV rate dynamics
τS 10 ms time constant of SST rate dynamics
τV 10 ms time constant of VIP rate dynamics
JEE 1.3 a.u. connection strength from E to E
JEP 1.5 a.u. connection strength from PV to E
JES 0.9 a.u. connection strength from SST to E
JPE 1.1 a.u. connection strength from E to PV
JPP 1.3 a.u. connection strength from PV to PV
JPS 0.8 a.u. connection strength from SST to PV
JSE 0.5 a.u. connection strength from E to SST
JSV 0.6 a.u. connection strength from VIP to SST
JVE 1.1 a.u. connection strength from E to VIP
JVP 0.3 a.u. connection strength from PV to VIP
JVS 0.2 a.u. connection strength from SST to VIP

Short-term plasticity

τx 100 ms time constant of short-term depression
Ud 1 a.u. depression factor
τu 400 ms time constant of short-term facilitation
Uf 1 a.u. facilitation factor
Umax 3 a.u. maximum value of the facilitation variable
USE

max 2 a.u. maximum value of the E-to-SST facilitation variable
Inputs

gE 4 a.u. background input to E
gP 4 a.u. background input to PV
gS 3 a.u. background input to SST
gV 4 a.u. background input to VIP
c 3 a.u. top-down input to VIP
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Table S4: Parameters for networks with short-term plasticity on all existing connections.

Network dynamics and network connectivity

Symbol Value Unit Description

τE 20 ms time constant of E rate dynamics
τP 10 ms time constant of PV rate dynamics
τS 10 ms time constant of SST rate dynamics
τV 10 ms time constant of VIP rate dynamics
JEE 1.7 a.u. connection strength from E to E
JEP 2.1 a.u. connection strength from PV to E
JES 1.5 a.u. connection strength from SST to E
JPE 1.0 a.u. connection strength from E to PV
JPP 1.2 a.u. connection strength from PV to PV
JPS 1.3 a.u. connection strength from SST to PV
JSE 0.7 a.u. connection strength from E to SST
JSV 0.4 a.u. connection strength from VIP to SST
JVE 0.9 a.u. connection strength from E to VIP
JVP 0.5 a.u. connection strength from PV to VIP
JVS 0.4 a.u. connection strength from SST to VIP

Short-term plasticity

τx 100 ms time constant of short-term depression
τEE

x 10 ms time constant of E-to-E short-term depression
UEE

d 0.19 a.u. E-to-E depression factor
UEP

d 0.49 a.u. PV-to-E depression factor
UES

d 0.12 a.u. SST-to-E depression factor
UPE

d 0.04 a.u. E-to-PV depression factor
UPP

d 0.5 a.u. PV-to-PV depression factor
UPS

d 0.11 a.u. SST-to-PV depression factor
UVP

d 0.37 a.u. PV-to-VIP depression factor
τu 400 ms time constant of short-term facilitation
USE

f 0.18 a.u. E-to-SST facilitation factor
UVE

f 0.03 a.u. E-to-VIP facilitation factor
UVS

f 0.28 a.u. SST-to-VIP facilitation factor
USV

f 0.05 a.u. VIP-to-SST facilitation factor
Umax 3 a.u. maximum value of the facilitation variable
USE

max 2 a.u. maximum value of the E-to-SST facilitation variable
Inputs

gE 5 a.u. background input to E
gP 5 a.u. background input to PV
gS 3 a.u. background input to SST
gV 5 a.u. background input to VIP
c 3 a.u. top-down input to VIP
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Table S5: Parameters for sensitivity analysis of network connectivity.

Network dynamics and network connectivity

Symbol Value Unit Description

τE 20 ms time constant of E rate dynamics
τP 10 ms time constant of PV rate dynamics
τS 10 ms time constant of SST rate dynamics
τV 10 ms time constant of VIP rate dynamics
JEE [1.2, 2.2] a.u. connection strength from E to E
JEP 1.7 a.u. connection strength from PV to E
JES 1.4 a.u. connection strength from SST to E
JPE 2.2 a.u. connection strength from E to PV
JPP 1.6 a.u. connection strength from PV to PV
JPS 1.1 a.u. connection strength from SST to PV
JSE 1.0 a.u. connection strength from E to SST
JSV 0.6 a.u. connection strength from VIP to SST
JVE 1.3 a.u. connection strength from E to VIP
JVP 0.4 a.u. connection strength from PV to VIP
JVS 0.4 a.u. connection strength from SST to VIP

Short-term plasticity

τx 100 ms time constant of short-term depression
Ud 1 a.u. depression factor
τu 400 ms time constant of short-term facilitation
Uf 1 a.u. facilitation factor
Umax 3 a.u. maximum value of the facilitation variable

Inputs

gE 4 a.u. background input to E
gP 4 a.u. background input to PV
gS 3 a.u. background input to SST
gV 4 a.u. background input to VIP
c 3 a.u. top-down input to VIP
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