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Abstract

The thesis at hand deals with advanced model predictive control (MPC) schemes for electrical
drive systems, which is gaining an ever-increasing genuine interest within the power electronics
and electrical drives community. MPC is an uprising control method that has been shown to
exhibit superior dynamic performance in comparison to the incumbent classical state-of-the-art
control techniques typically used in electrical drive applications. Nevertheless, MPC possesses
its own set of challenges, mainly: identifying the accurate mathematical models that accurately
represent the nonlinear plants under control, and tackling its computational complexity.

As the name implies, the control performance of MPC schemes is highly dependant on the
mathematical model used to predict the system’s response to a given input. The content of this
dissertation is twofold, including modelling and control. On the one hand, it starts with de-
riving a thorough nonlinear model of the electrical drive system including the inverter and the
electrical machine based on the conventional approaches and physical laws. This is followed by
presenting data-driven modelling techniques as an alternative, however, purely from measure-
ments and without bringing physical knowledge. The latter proposal is mainly motivated by two
factors: its advantageous less dependency on a prior knowledge, which makes it useful in cap-
turing the hard-to-model or even unmodelled dynamics by first-principles and physical laws, as
well as the hope that it yields a better prediction accuracy in comparison with the conventional
modelling approaches.

On the other hand, the obtained models are incorporated to design predictive controllers.
This part starts with illustrating the concept of predictive control in the context of electrical
drive applications and its direct and indirect variants (i.e. without or with a modulator, respec-
tively), with developing appropriate computationally-efficient solvers to allow real-time imple-
mentation of the different predictive control schemes. Throughout this part, the characteristics,
benefits and challenges of each variant are highlighted. Moreover, the effects of modelling mis-
matches in the closed-loop MPC performance are pinpointed with a comprehensive literature
survey regarding the most known methods to mitigate these effects in the control of electrical
drive systems. Moreover, an offset-free MPC scheme is presented by using the incremental
state-space formulation of the constrained optimal control problem (OCP), which embeds an
error integrating functionality to the control scheme. Furthermore, a novel learning-based MPC
scheme that incorporates a data-driven model is proposed. Finally, the use of artificial intelli-
gence (AI) algorithms to mimic the beneficial, but computationally complex MPC polices in
a computationally-implementable manner is proposed. Whether the computational complexity
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is caused by the nature of the optimization problem as in the case of the mixed-integer long-
horizon direct MPC problem or caused by the use of complex nonlinear models as the case
with the learning-based indirect MPC scheme, computationally-implementable neural network
(NN)s proved to capture these control polices in real-time-capable manner. By this, the use of
AI algorithms to alleviate some of the MPC’s shortcomings for electrical drive applications is
outlined.
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CHAPTER 1

Introduction

“The beginning is the most important part of the work.”

Plato

This chapter is meant to establish the base of this dissertation from both the method as well
as the application side. In a first step, an overview about the basic theoretical concept behind
model predictive control (MPC), and a run-through regarding its development over the past four
decades are given. After that, an insight about the nature and characteristics of power electronic
systems, their needs and requirements which have to be fulfilled by the chosen control strategy
are provided. Subsequently, the reasons that make MPC an appealing control strategy for power
electronic and electrical drive applications are addressed, and the benefits that MPC could bring
in contrast to the state-of-the-art methods are highlighted. Moreover, the most recent active
research areas associated with MPC in the field of power electronics and electrical drives are
reviewed, and the contributions of this dissertation are pointed out. In a nutshell, this chapter
deals with the following points:

• What is MPC? definition and a historical overview

• What makes MPC fit power electronic systems more than conventional methods?

• Who did MPC first in the power electronics community?

• What are the challenges associated with MPC in power electronic applications, and what
are the current active research areas?

Once having these foundations established, the contributions throughout this thesis to ad-
vance the existing body of knowledge are summarized.
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1.1 What is MPC? definition and a historical overview.

“When you make predictions, either you are lucky or wrong.”

Niels Bohr

MPC makes an explicit use of a mathematical model that represents the plant under control
in order to predict the states of the system as a response to a given input trajectory. In MPC,
a finite-horizon open-loop optimal control problem (OCP) subject to the corresponding system
dynamics, constraints, and initial conditions is formulated. Typically, the solution of the OCP is
determined in real-time at each sampling interval using advanced numerical optimization meth-
ods. The solution yields the predicted parameterized optimal control input sequence. Applying
only the first control input from that sequence to the plant, and repeating the optimization with
the new obtained measurements in a receding horizon manner, assures a feedback loop to adapt
to changes in the process or system behaviour [1, 2]. To this end, MPC combines features from
the state feedback regulators, advanced numerical optimization methods, and optimal control
theory. From the first, it takes the advantage of having a feedback loop, and hence, the ability
to counteract disturbances. From the latter, it takes the ability to foresee, consider, and conse-
quently optimize the system response in advance.

The general concept of discrete-time MPC is depicted in Fig. 1.1 at three consecutive discrete
time instants k, k + 1, and k + 2. Due to the inevitable modelling errors, perturbations, and
disturbances that act on the dynamical system, a discrepancy between the most recent system
output at the beginning of each sampling interval k, and its most recent prediction made at k−1,
occurs.

FuturePast

FuturePast

FuturePast

*
*

**
* *

*Control input sequence obtained at k

Control input sequence obtained at k+1

Control input sequence obtained at k+2

Predicted output trajectory at k

Predicted output trajectory at k+1

Predicted output trajectory at k+2

Measured output

Error between the initial measured

state and its most recent prediction

𝑘 𝑘 + 1 𝑘 + 𝑁

𝑘 𝑘 + 1 𝑘 + 𝑁

𝑘 𝑘 + 1 𝑘 + 𝑁

Prediction window

Prediction window

Prediction window

Time
𝑘 𝑘 + 1 𝑘 + 2

Reference output

Figure 1.1: The general concept of discrete-time model predictive control with a prediction horizon
length N .

Consider u ∈ RNu representing the inputs of the system, x ∈ RNx , and y ∈ RNy denoting
the states and outputs, respectively, with Nu, Nx, and Ny as the number of inputs, states, and
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outputs, respectively. The nonlinear continuous-time state-space model can be expressed in the
general form as

dx(t)

dt
= fc(x(t),u(t)), x(0) = x̃0 (1.1a)

y(t) = hc(x(t)), (1.1b)

where x̃0 is the initial state, fc(.) and hc(.) are the continuous-time system dynamics and out-
put functions, respectively, and t denotes the time. For digital implementation of the control
schemes in power electronic and electrical drive applications, a discretized version of the model
is to be used. By far the mostly used discretization method in these fields is the explicit Euler
forward discretization method, in which for sufficiently small sampling period Ts, the time-
derivative of the system dynamics is approximated as

dx(t)

dt
=
xk+1 − xk

Ts
, (1.2)

with the discrete time index k representing the current discrete time instant as tk = kTs. The use
of this simple discretization method in the community is driven by its acceptable accuracy with
the beneficial low computational complexity that suit this class of applications, even though that
more complex discretization methods do provide better accuracy [3, 4]. To obtain the discrete-
time state-space model, this discretization method is simply applied by integrating the system
dynamics from t = kTs to t = (k + 1)Ts, and by keeping the continuous-time input value
u(t) constant over the sampling period and equals to its value at the beginning of the sampling
interval uk. The general nonlinear discrete-time state-space model can be expressed as

xk+1 = f(xk,uk), x0 = x̃0, (1.3a)
yk = h(xk), (1.3b)

with f(.) and h(.) as the discrete-time system dynamics and output functions, respectively. In
MPC, the following general dynamic optimization problem is to be solved

min
Uk

J(U) =
1

2

N−1∑
i=0

(yk+1+i − rk+1+i)
⊤Q(yk+1+i − rk+1+i) (1.4a)

+ (uk+i − uk+i−1)
⊤R(uk+i − uk+i−1),

s.t. 1.3, (1.4b)
xmin ≤ xk+1+i ≤ xmax,∀i ∈ {0, . . . , N − 1}, (1.4c)
umin ≤ uk+i ≤ umax, ∀i ∈ {0, . . . , N − 1}, (1.4d)

whereUk = (u⊤
k , ...,u

⊤
k+N−1)

⊤,Q = Q⊤ ⪰ 0 is the weighting matrix to penalize the deviation
of the outputs from their references, R = R⊤ ≻ 0 is the weighting matrix to penalize the rate
of change of the control inputs, rk is the vector that contains the reference outputs, and N
represents the prediction horizon length.

In industrial applications, the very first implementations of MPC have emerged in the refin-
ing and chemical process industries [5, 6]. In 1979, engineers from Shell Oil Company have
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published their unconstrained multi-variable control algorithm, which they called at that time
dynamic matrix control (DMC) as proposed in [7,8]. Work regarding the internal model control
followed in 1982 [9]. In late 1980s, MPC has been successfully used in many other different
industrial applications as in [10, 11], where it has been applied to a cement mill, a spray drying
tower, and a compliant robotic arm (with the shortest sampling frequency in the latter ranging
from 30 to 100 Hz). In [11], even though sample intervals of the different applications had
a range factor of 10,000:1, the performance was consistently good. The application area has
been drastically expanded to include many other applications, such as: robotics [12], regulating
patient’s anesthetic state [13], and many other industrial applications [14]. Here, it is worth
mentioning that a common property of these applications is the relatively long sampling times
when compared to those needed in power electronic applications.

In the last 50 years, a steep improvement of the computational abilities of the digital micro-
processors has occurred. Consequently, advanced control techniques has piqued the interest to
be applied in the field of power electronics and electrical drives, as the new microprocessors
and field programmable gate arrays (FPGAs) can provide the needed computational power to
solve an OCP within some tens and even sub-ten of microseconds. On the methodological side,
MPC has undergone extensive investigation and gradual improvements to be considered as a
very convenient alternative to the state-of-the-art field-oriented control based on proportional-
integral controllers (PI-FOC) for electrical drive applications [15–21].

1.2 What makes MPC fit power electronic systems more than
conventional methods?

The degree of matching between what the method can provide, and what the application
requires and needs is of an essential importance in engineering research. This becomes even
more crucial when proposing an alternative to a well-functioning state-of-the-art method, such
as the classical proportional-integral (PI) regulators to control power electronic systems and
electrical machines.

The intention behind this section is to point out the motivation of using MPC for electrical
drive applications, and to point out plainly where it can outperform the conventional methods
such as PI-FOC and direct torque control (DTC).

1.2.1 The characteristics and limitations of the conventional control meth-
ods

“You can disagree without being disagreeable.”

Ruth Bader Ginsburg

PI-FOC has been considered as the leading state-of-the-art control method for electrical drive
systems till more advanced and convenient control approaches appeared to compete and even
outperform it in some aspects, among others are the DTC [22, 23] and MPC [15, 16, 18]. The
PI-FOC control is characterized as a simple and linear control, however; applied on nonlin-
ear systems. Taking the simultaneous speed and current control of an electrical machine as
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an example, the controller structure must be in a cascaded form when using the conventional
single-input single-output (SISO) PI controllers. The cascaded structure obligates the inner
control loop to be much faster than the outer loop in order to achieve an acceptable dynamic
behaviour, where this is physically not required. A typical cascaded structure for the speed
and current control of an ac machine is depicted in Fig. 1.2(a). Furthermore, it necessitates the
linearization of the system model, and it needs to be combined with anti-windup schemes.

+-
+-

(a)

(b)

Figure 1.2: (a) Typical cascaded control structure of an electrical machine (b) cascade-free alternative
using model-based predictive control.

1.2.2 The advantageous characteristics of MPC
Taking a high-level look to the basic characteristics of MPC with respect to the needs and

requirements while controlling power electronic systems, and by considering the progress made
in academia as well as in industry in this regard, the main arguments to use MPC in the field of
power electronics and electrical drives are the following:

1. The straight forward consideration of any foreknowledge or nonlinearities, and their di-
rect inclusion within the control design. Here one needs to distinguish where do these
relatively complex models are to be included:

❏ In the cost function: as in the case of the nonlinear models that are used in prediction
because they better represent the plant behaviour. Whether a direct 1 or an indirect
MPC scheme is used, the use of more complex nonlinear models yield an increase
in the computational demand, however, with different extents. In direct MPC, the
optimization problem is solved by an enumeration approach, in which the number
of iterations of the solver is directly correlated to the number of possible control in-
puts (i.e. voltage vector (VV)s) for a given prediction horizon length. Hereof, once
parallel computing is used, the impact of using nonlinear models is mild. For the
indirect deadbeat model predictive control (DB-MPC), using a complex nonlinear

1The term direct control is used in the power electronics literature to describe control methods in which the
semi-conducting devices are being directly controlled with the absence of a modulator. In contrary, the term
indirect control is used for methods in which the control input is found by means of continuous control and then is
realized by a modulation scheme.
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prediction model does not significantly affect the computational complexity as the
deadbeat MPC solution is computed analytically. In contrary, incorporating com-
plex nonlinear models within the numerical constrained indirect MPC has a direct
impact on increasing the computational complexity, and thus, it directly affects the
length of the achievable prediction horizon for a given sampling time and computa-
tional power.

❏ Outside the cost function: which may come in the form of compensation lookup
table (LUT)s such as the inverter phase-voltage drop or any other nonlinearity that
can be compensated for in a feedforward manner, or dealing with delays (i.e. due
to the digital implementation) within the control design. This can be included in all
classes of MPC schemes with the same degree of simplicity.

2. The use of a multi-objective cost function, which facilitates reaching multi control ob-
jectives simultaneously. In the realm of power electronics and electrical drives, several
innovative and advantageous applications of this property have came to light, such as:

❏ The simultaneous control of the current and speed of an electrical machine. This, as
previously mentioned, makes the cascaded control structure not a must as illustrated
in Fig. 1.2(b), in contrary to the traditional PI-FOC.

❏ An improved acoustic behaviour of the drive system by directly penalizing acoustic
properties in the cost function [24].

❏ Obtaining less switching losses of the inverter at same total harmonic distortion
(THD) content of the machine’s stator current, in comparison with the state-of-the-
art PI-FOC [25].

❏ Implementing sensorless control by adding a high frequency voltage reference in
the cost functional [26].

❏ Achieving an active balancing of the neutral point voltage of a 3-levels neutral point
clamped (NPC) inverter [27].

Nevertheless, the use of a multi-objective cost function yields one of the still unsolved
issues of MPC, which is the choice of weighting factors [28].

3. The direct fulfilment of the states and inputs constraints, which allows to operate the
system at its physical limit while protecting the different hardware components, such as
the motor windings, the battery, and the semi-conducting devices. Depending on the
nature of the MPC variant, the complexity of fulfilling the constraints is different, such as

❏ In direct MPC: the input constraints are fulfilled automatically be limiting the op-
timal solution to one out of the discrete VVs of the inverter. The common way to
ensure that states’ constraints are satisfied is to directly penalize violations of the
constraints in the cost function by a barrier function approach.

❏ In indirect MPC: for the DB-MPC variant, typically the inputs and states constraints
are fulfilled using the projection method, which is known to be a sub-optimal method
especially in field-weakening (FW) operation. For the continuous control set model
predictive control (CCS-MPC) variant, the inputs and states constraints are typically
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formulated as inequality constraints while formulating the OCP, which is typically
solved by a standard approach such as interior-point (IP) or sequential quadratic
programming (SQP) methods [29].

4. High-dynamic performance in transients without or with minimal over- or under-shootings,
which makes MPC advantageous in applications where high dynamic performance is
needed. However, to achieve this, the availability of an accurate mathematical model that
represents the plant is essential.

5. Better reaction against load variation.

6. Intuitiveness of tuning, which enhances its acceptance.

7. Unified framework: which makes MPC with its direct and indirect variants an attractive
control strategy to a wide range of applications with different needs and requirements.
This makes it easier to standardize.

Combining some of these advantageous characteristics can lead to a more optimized design. For
instance, operating the drive system at its maximum physical capacity can enable downsizing
of the drive system or some of its components. Another example is the even distribution of
switching events across the different switches in a power converter, resulting in a more evenly
distributed thermal stress on each individual switch. These are direct measurable enhancement
on important key performance indices (KPIs), such as: cost reduction, reliability and extended
life span.

1.3 Who did MPC first in the power electronics community?

In this section, a historical overview of the development of predictive controllers specifically
in the power electronics community is given in a chronological order. Afterwards, a conceptual
classification of these predictive controllers is made.

In the year 1983, the first successful implementation of a controller that uses a mathematical
prediction model for power converters was reported in [30,31]. The aim of the presented method
was to minimize the switching frequency, or to take the steepest current gradient in transients,
if needed. This was done by maintaining the current switching state of the converter until
a predicted hysteresis is crossed, in which so called hysteresis-based predictive control. The
optimization criteria was the maximum on-time until the error boundary is being touched, and
this inherently ensures the lowest possible switching frequency.

Few months later, parallel work concerning predictive control in the field of power electronics
got published [32–34], where a microcomputer-based predictive current control strategy with
the corresponding theoretical and implementation aspects was presented. The potential of pre-
dictive control in this field, i.e. fast transient behaviour and the possible inclusion of the system
nonlinearities was pointed out. The proposals in [30–34] eliminate the need of space vector
modulators as well as dynamic decoupling systems, as the switching devices are being directly
controlled.

In the following five years, another class of predictive controllers in the field of electrical
drives has appeared, which is the trajectory-based predictive controllers. Despite the absence
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of the word predictive in this class of controllers, in fact, they do rely on pre-calculating tra-
jectories of the controlled variables. In this class, the VVs of the inverter are classified in a
way such that, whether they will increase or decrease the value of the controlled variables. The
power switches are directly switched based on the digital signal coming out of hysteresis con-
trollers (comparators, e.g. Schmitt Trigger), which compare the actual values of the controlled
variables to their reference values. The very first successful validations of the idea of trajectory-
based predictive controllers are the direct self control (DSC) [35], and the DTC [22, 23].

After that, the number of contributions regarding predictive control within the power elec-
tronics community in the following decade was very limited. Mainly, because of the high
computational burden at short sampling periods in order to gain performance at relatively high
switching frequencies.

Due to the significant advancements of the computational resources and microprocessors,
a new re-call of predictive control within the power electronics community was made in the
beginning of the new millennium [17–19]. This class of predictive controllers is known in the
literature as generalized predictive control (GPC) or model-based predictive control (MBPC),
and is inherently different from the previous hysteresis-based and trajectory-based predictive
controllers, as the system response is predicted not only over the next switching cycle, but
over a finite prediction horizon. Based on this prediction, the control input that will force the
system output toward its reference is chosen, normally by optimizing a quadratic cost function.
Ever since, this class of MPC schemes has considerably piqued a gradual interest within the
community [15, 16, 21, 36–42].

For a historical family tree of predictive control proposals within the power electronics and
electrical drives community, the reader is referred to [17], and for an overview about the most
recent sub-categories of MBPC, the reader is referred to [43].

1.4 Challenges and active research areas

Generally, MPC is facing the following main challenges in its way to be the future state-of-
the-art in the field of electrical drives and power electronic systems:

• Computational expense: was the main challenge facing MPC in the field of power elec-
tronic systems since its very early proposals [31–34] until the re-call made at the begin-
ning of the new millennium, once significant developments of the computational power
have been made [17, 18]. Developing computationally efficient algorithms was and still
is an active research direction in the community, with the following directions:

❏ One-step finite control set model predictive control (FCS-MPC): faster methods
were proposed to find, and if necessary, to project the unconstrained solution of
the OCP back to the voltage constraints, then to evaluate only the adjacent VVs in-
stead of all possible ones [44–46]. Currently, the required computations can already
be executed with the traditional FCS-MPC approach that evaluates the cost function
for all possible voltage vectors (VVs) of the power converter for short prediction
horizons. Even though the execution time reduction using this computationally ef-
ficient approach might seem minor (i.e. 1-2 µs for a 2-levels voltage source inverter
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(VSI) fed machines) at the first glance, the inherent importance of this approach can
be found in two applications:

❍ For power converters with high number of VVs as in the case for multi-level in-
verters, this approach makes the implementation of FCS-MPC possible, where
evaluating all possible VVs in the traditional method is exhaustive.

❍ For power converters with low number of VVs as in the case of 2-levels VSI,
executing the algorithm in 3 µs instead of 4.5 µs allows going for 50% higher
switching frequency, and hence, superior steady-state performance.

❏ Long-horizon FCS-MPC: in which the exponential increase of the computational
expense makes the optimization problem intractable [47]. Branch-and-bound meth-
ods (e.g. sphere decoding) have proved their effectiveness with successful real-time
implementations [25, 48–52].

❏ Constrained CCS-MPC: for which different numerical solvers have been proposed
and achieved successful real-time realization with prediction horizons from one up
to four steps [53–57].

• Model dependency: the accuracy of predictions is directly dependent on the used math-
ematical model of the plant, thus, model uncertainties as well as mismatches will neg-
atively affect the control performance in both steady-state as well as in transients. The
negative effect can be in a form of offsets, higher ripples, and over or under-shootings in
transients. In severe cases, this may lead to control deterioration and instability. Differ-
ent approaches have been proposed in the literature to counteract these effects, such as
online parameter estimation, embedding discrete time integrators within the MPC control
design, using offline-obtained nonlinear models either based on physical laws or obtained
purely from data in a black box identification fashion.

• Weighting factors: finding the optimal choice of weighting factors in multi-objective MPC
is a challenging task due to the different dynamics of the terms present in the cost function,
their varying and different control priority, scales, and units. For MPC in power electronic
applications, and in particular, for FCS-MPC, various approaches have been proposed to
ease the choice of the weighting factors, such as: following empirical design guidelines
[58], using a ranking-based strategy [59], relying on algebraic design guidelines [60],
enumerating the cost function sequentially in sequential MPC as proposed in [61] and in
Even-handed sequential MPC [62], or by the use of NNs [63,64]. In [65], a recent review
of the different methods proposed in the power electronics literature to overcome the
challenge of weighting factors design was made. Insightful counter-intuitive observations
about the choices of the weighting factors have been reported in [28] (e.g. increasing the
weighting factor of one term does not necessarily mean a minimization of its cost).

• Stability: it has been proved when assuming linear time-invariant (LTI) systems [66, 67].
However, it is not straight forward to prove it considering nonlinear models, and any proof
needs to refer to the cost function.
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1.5 Motivation and contributions

The contributions made throughout this dissertation are mainly motivated by the aim to con-
tribute into alleviating some of the previously reviewed MPC challenges. These are listed in the
following:

• Simulative and experimental quantification of the closed-loop control performance loss
resulting from the model mismatch between the real plant and the model used in MPC →
partially published in [46] and [56].

• Detailed and comprehensive nonlinear modelling of the permanent magnet synchronous
motor (PMSM) drive system is presented, which is essential for optimal performance of
model-based control. This includes the parameters identification of the nonlinear electri-
cal machine model based on the physical laws, the VSI nonlinearity compensation, the
inevitable angle delay compensation, and the voltage and current measurement synchro-
nization → partially published in [68] and [57].

• The proposal of using data-driven nonlinear modelling approaches to model the 2-levels
VSI nonlinearity and the current dynamics of the PMSMs. Among other methods, NNs
proved to be the most convenient choice as they do not require foreknowledge of the plant
as priory, provided excellent prediction accuracy, and they do scale manageably with the
data set size → partially published in [68] and [69].

• Comprehensive literature survey of integral action approaches with MPC schemes for the
control of electrical drives → partially published in [57].

• Proposing a computationally-efficient one-step FCS-MPC algorithm that yields similar
performance of the conventional method with one third less computational demand ap-
plied on a PMSM drive fed by a 2-levels VSI → partially published in [46].

• Proposing the use of NNs to mimic the long-horizon beneficial FCS-MPC policy in a
real-time-capable manner for PMSM drives → partially published in [47].

• Developing an efficient numerical solver based on the primal-dual IP method for the use in
real-time implementation of the constrained linear and nonlinear CCS-MPC schemes. It
has been tested in real-time on a surface-mounted permanent magnet synchronous motor
(SMPMSM) and an interior permanent magnet synchronous motor (IPMSM), and it can
be adjusted to other constrained optimization problems for electrical drive applications
→ partially published in [56] and [57].

• Proposing an offset-free linear CCS-MPC scheme for PMSM drives based on the δu for-
mulation, that uses the input increments as decision variables instead of the relative inputs,
which has proved to ensure robust current control performance → partially published in
[56].

• Experimental quantification of the performance of nonlinear CCS-MPC for an IPMSM
drive with optimal dynamical response and constraints fulfilment in real-time → partially
published in [57].
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• Proposing an explicit-like learning-based framework to incorporate generic data-driven
models with MPC for electrical drive applications. The proposed algorithm is tested on
an IPMSM drive with a neural data-driven model as an example and is benchmarked
experimentally with the physics-based MPC → partially published in [69].
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CHAPTER 2

Conventional modelling of an electrical drive

“All models are wrong, but some are useful.”

George Box

In this chapter, an overview about the well-known physics-based first-principles linear and non-
linear models1of a PMSM drive, as a base example, particularly for the use in model-based
control is given. The modelling section is preceded by a brief introduction that provides the
primary components of an electrical drive, the fundamental coordinate transformation, and es-
sential pre-knowledge needed to be incorporated in the control design of electrical drive sys-
tems. This includes: the VSI nonlinearity, the angle delay due to the digital implementation of
control schemes, as well as the synchronization of the current and voltage measurements. To
this end, the physics-based model is derived and the parameters of a real IPMSM are obtained
at the test bench. This chapter is intended to give the reader a comprehensive illustration of
the conventional modelling procedure to do model-base control, to be benchmarked with the
proposed data-driven modelling techniques in the next chapter in terms of model complexity
and accuracy, the needed computational time, and the needed effort to obtain.

2.1 Components of an electrical drive system

An electrical drive system is a system that uses power electronics components and control
techniques to convert electrical energy into mechanical energy. Electrical drive systems typi-
cally contain the following components:

1- Power supply: that provides the input electrical energy in the form required by the used
electrical machine, whether ac or dc.

1The term first-principles model is used throughout the thesis to call the electrical machine model derived from
the physical laws governing the functionality of the synchronous motor, whether it is the mostly used LTI model
or the nonlinear model with the inductance/flux current-dependent maps.
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2- Inverter/converter: that outputs the energy in the needed form to drive the electrical ma-
chine with respect to the power supply. Commonly, VSIs are used, in which the number of
levels reflects the number of possible output VVs that the inverter can provide. Based on the
topology and the number of semi-conducting modules used, different number of output VVs
such as 8, 27, 64 or many others can be achieved.

3- Electric motor: whether it is a brushed or a bruschless dc motor, a synchronous or an
asynchronous ac motor, the electric motor is the main component of an electrical drive system
that converts the electrical energy into mechanical energy to drive the load.

4- Sensors: are needed to convey the needed real-time information to control the states of the
drive system at which the energy is being stored, which are the current, the position and the
speed. For closed-loop control, measurement of phase-voltages, phase-currents, rotor position
and angular speed are needed. To minimize costs, enough information could be derived by
having only one input voltage sensor from which the phase-voltages can be derived by knowing
the inverter switching state, two current sensors from which the third phase current can be
computed assuming balanced three-phase system, and a position sensor from which the speed
can be derived. The latter can be dispensable when a sensorless control algorithm is employed.

5- Controller: to process the measurements, to compute the control law, and to generate the
control signals. These include microcontrollers (MCUs) and FPGAs.

6- Mechanical load: that is to be mechanically driven by the electric motor. For characteriz-
ing the motor under control, the mechanical load is typically emulated by coupling with another
electrical machine. In the following sections, the basic coordinate transformation, the modelling
of the 2-levels VSI and the three-phase PMSM, which are used in the base example throughout
this thesis, are presented.

2.2 Coordinate transformation

Typically, the three-phase quantities of an electrical drive system are mathematically trans-
formed into the stationary α− β plane, in which a classical control task is to control a rotating
vector that represents the steady-state operation. To further simplify the control of ac machines,
the quantities are typically further transformed into the rotating d − q frame, in which the
d − axis is aligned with the rotor’s axis of symmetry in which the magnetic field rotates, and
the q − axis is perpendicular to it. This allows the instantaneous and separate control of the
machine’s flux and torque.

In order to convert any arbitrary three phase quantity from the stator-fixed abc reference frame
to the stationary α−β frame, amplitude-invariant Clarke transformation is used as in Eq. 2.1(a),
where ζabc =

(
ζa ζb ζc

)⊤ is an arbitrary variable vector in the abc frame. To further transform
the quantities to the rotating d − q frame, Park transformation is employed as in Eq. 2.1(b), in
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which the reference frame itself is rotating with θ as the electrical angle of rotation [70].(
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ζβ
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[
1 −1
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√
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2

−
√
3
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(
ζd

ζq

)
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cos(θ) sin(θ)

− sin(θ) cos(θ)

](
ζα

ζβ

)
. (2.1b)

The three coordinate systems are depicted in Fig. 2.1, with an example of a steady-state
current vector that has an amplitude of 1A being depicted in the reference frames in Fig. 2.2.

Figure 2.1: Coordinate systems: (a) the abc reference frame, (b) the stationary α − β frame, (c) the
rotating d− q frame.

Figure 2.2: An example of a current vector in a typical steady-state operation: (a) in the abc frame, (b)
the transformed current in the stationary α − β frame, (c) the equivalent current in the rotating d − q
frame, (d) one cycle of the rotating vector in the α− β plane.

In a standard steady-state operation of an electrical drive, the machine has to be fed with
an alternating three-phase voltage that rotates at a constant frequency. This is equivalent to a
rotating VV in the α−β frame, and is equivalent to a constant vector in the rotating d−q frame.
Such a VV can be generated by the interplay of the discrete VVs of the power converter, while
its maximum possible amplitude is defined with respect to the input side dc voltage.
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2.3 Generic model of a 2-levels inverter

The most commonly used dc to ac inverter especially in low-to-medium power applications is
the 2-levels inverter, which consists of six switches with parallel free wheeling diodes [71]. The
input side consists of the dc-link, which has a specific dc input voltage that will be modulated
to form the output three-phase ac voltage to drive the electric machine. The gates of the upper
and lower switches of each leg of the inverter must have complementary driving signals. Their
transition states are shifted with appropriate dead times to avoid short circuit on the input side
[71]. The instantaneous phase-to-phase voltage ufptp on the output of the inverter is expressed
in terms of dc-link voltage udc(t) and the switching states vector:

sabc =

sasb
sc

 ∈ ∼ :=

{1

1

1

 ,

1

0

0

 ,

1

1

0

 ,

0

1

0

 ,

0

1

1

 ,

0

0

1

 ,

1

0

1

 ,

0

0

0

} as

ufptp(t) =

u
f
ab(t)

ufbc(t)

ufca(t)

 = udc(t)Tptpsabc(t), (2.2)

and the three-phase stator voltages are defined as

ufabc(t) =

u
f
a(t)

ufb (t)

ufc (t)

 =
udc(t)

3
Tabcsabc(t), (2.3)

where Tptp and Tabc are coefficient matrices, such as

Tptp =

 1 −1 0

0 1 −1

−1 0 1

 , (2.4a) Tabc =

 2 −1 −1

−1 2 −1

−1 −1 2

 , (2.4b)

and hence, uf(.)(t) ∈ {0, udc(t)
3
, 2udc(t)

3
, −udc(t)

3
, −2udc(t)

3
}, for (.) ∈ {a, b, c}.

The finite output VVs of a 2-levels VSI with an illustration of the symmetrical space vector
modulation (SVM) using both zero vectors that is typically used in indirect control of electrical
drives are depicted in Fig. 2.3. In case that the continuous-time VV is not identical to one of the
base vectors, and as the base vectors have fixed magnitude with respect to the dc-link voltage
level, any continuous-time VV that lies within the hexagon needs to be masked as an average by
using the adjacent vectors in the sector where it lies in combination with the zero vectors with
corresponding timings in each sampling period, in which so-called SVM. In case the hexagonal
constraints are considered, a higher utilization of the dc-link voltage is achieved, however, at
the expense of distorting the phase currents while operating in the over-modulation region. The
control input vector elements are determined from a finite-set of possible output VVs

uk ∈ {u1, ...,uNV V s}, (2.5)

where NV V s is the number of VVs of the power converter, and is = 8 for 2-levels inverters. To
this end, the output VVs of the 2-levels inverter are summarized in Table 2.1 in the abc reference
frame, and in Table 2.2 in the α− β reference frame.
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Figure 2.3: 2-levels VSI and its output VVs in the stationary α − β plane with an illustration of the
symmetrical SVM.

Table 2.1: Output VVs of a 2-levels VSI in the
three-phase abc reference frame.

sabc ufa ufb ufc

000 0 0 0
100 2

3
udc −1

3
udc −1

3
udc

110 1
3
udc

1
3
udc −2

3
udc

010 −1
3
udc

2
3
udc −1

3
udc

011 −2
3
udc

1
3
udc

1
3
udc

001 −1
3
udc −1

3
udc

2
3
udc

101 1
3
udc −2

3
udc

1
3
udc

111 0 0 0

Table 2.2: Output VVs of a 2-levels inverter in the
stationary α− β reference frame.

sabc ufα ufβ

000 0 0
100 2

3
udc 0

110 1
3
udc

√
3
3
udc

010 −1
3
udc

√
3
3
udc

011 −2
3
udc 0

001 −1
3
udc −

√
3
3
udc

101 1
3
udc −

√
3
3
udc

111 0 0

In general, the control schemes of electrical drives are classified into direct and indirect con-
trol. In direct methods, the switching states of each phase of the power converter are switched
once and are fixed over the sampling period, where indirect methods incorporate the use of a
modulator to the real-valued control inputs, and hence, allowing each phase to flip the compli-
mentary gating signals at dedicated timing defined by the corresponding duty cycles in order
to realize, as an average, the intended continuous-time VV. The general structure of direct and
indirect controllers is depicted in Fig. 2.4.

For simulation purposes, a crucial aspect that must be taken into consideration is the mod-
elling of the SVM scheme in the simulation environment. The sampling time needs to be small
enough to detect the complete current evolution at each transition edge within each pulse width
modulation (PWM)/sampling period. This is illustrated for an arbitrary current tracking exam-
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Figure 2.4: Direct and indirect control structure for electrical drives: (a) direct control, (b) indirect
control, with r as the reference vector.

ple in the α−β plane in Fig. 2.5(a), and the corresponding three-phase currents in the abc frame
are shown in Fig. 2.5(b) for an ideal inverter. Considering this ripple is essential, especially to
make a fair performance comparison between direct and indirect control methods in terms of
ripple amplitudes and THD content.

(a) One complete rotation in the α− β plane. (b) The equivalent three-phase currents.

Figure 2.5: Example illustrating the difference between measuring the current only once at the middle
of each symmetrical pulsation SVM period and at each switching transition within the sampling period
assuming an ideal inverter.

2.4 Pre-modelling

In this section, essential pre-modelling knowledge for the design of model-based control is
discussed. Firstly, the mismatch effect between the commanded and the real phase voltages is
addressed, and the conventional compensation method is implemented. Secondly, the inevitable
angle delay caused by the needed time to execute the mathematical operations on digital plat-
forms is presented with the standard method that is typically used to counteract this effect.
Finally, the section is concluded by the needed synchronization between the different time in-
stants at which the voltages are being applied and the currents are being measured.
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2.4.1 Inverter nonlinearity compensation: conventional method

2.4.1.1 Problem statement

Due to various sources of output voltage deterioration of VSIs, such as: safety dead times of
the switches on the same leg to prevent short-circuiting of the voltage source, varying turn on
and turn off times of each semiconductor as a function of the phase current and temperature,
voltage drop during the conducting state of the semi conductive device, zero-current clamping
phenomena, and others, the output voltage of the VSI is not identical to the commanded voltage.
For model-based control, accurate knowledge of the phase voltages of the electrical machine is
essential. Typically, only current sensors and a dc-link voltage sensor are equipped to minimize
the overall cost of the drive system. Therefore, an appropriate compensation method is needed
to match the real output voltage with the commanded one.

2.4.1.2 Experimental investigation of the VSI nonlinear effects

The state-of-the-art procedure to observe as well as to compensate for the 3-phase VSI non-
linearity is to lock the rotor shaft, and to inject phase current gradually from the maximum
negative to positive polarity in an ascending profile for one phase, while the second phase takes
the same amplitude of the first phase current with an opposite polarity, and the third phase is
kept on zero current, in which so called the two-phase configuration as described in [72]. In this
setup, with the shaft being locked, the machine model simplifies to

u(.) = Rsi(.) (2.6)

∀(.) ∈ {a, b, c}. The phase resistance Rs is measured via an ohmmeter before performing
the test, and it has a value of 38.5mΩ for the motor in the test bench shown in Fig. B.1 in
Appendix B. The phase current is measured, and hence the phase voltage can be calculated
accurately. By comparing the calculated phase voltages with the commanded ones, a mismatch
is observed due to the effects mentioned at the beginning of the subsection. This standstill test
was repeated at the three possible combinations by keeping one phase at 0V while exciting
the other two phases, and the results are shown in Fig. 2.6(a)-(c). To illustrate the effect in the
complete α− β plane, a fine grid of commanded VVs are given to the inverter, and their corre-
sponding reference currents are calculated and compared with the measured ones as illustrated
in Fig. 2.6(d).

2.4.1.3 Feedforward inverter nonlinearity compensation

The state-of-the-art procedure to compensate for the non-ideal behaviour of the VSI in a
feedforward approach is done by measuring the difference between the commanded voltage
and the measured2 one as described in [72]. The obtained current-dependent phase voltage
curves of the three phases are shown in Fig. 2.7.

2In this test procedure, the voltage is not measured by a phase voltage sensor but computed from the measured
phase currents and the known resistance.
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Figure 2.6: Standstill test results to investigate the VSI nonlinearity effect: (a)-(c) ascending reference
profile to one phase, descending reference profile to the other while keeping the third phase at 0V, (d)
fine grid of current vectors in the complete α− β plane.
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Figure 2.7: VSI missing voltage curves as a function of the phase currents.
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2.4.1.4 Validation of the obtained compensation curves

In this subsection, the same two-phase configuration test is repeated by sending the same
commanded reference voltages to the inverter while adding to it the feedforward missing voltage
shown in Fig. 2.7. The measured currents are compared with their references in Fig. 2.8(a)-(c),
and the fine grid test results covering the complete α − β plane with 928 reference current
vectors are shown in Fig. 2.8(d).
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Figure 2.8: Validation of the feedforward compensation of the VSI non-ideal behaviour at standstill:
(a)-(c) two-phase configuration test results, (d) fine grid test results in the α− β plane.

In order to validate the above mentioned compensation method in the α−β plane in a similar
scenario to the normal operation while driving an electrical machine, a spiral reference current
trajectory3 is sent to the inverter, and it is compared to the measured current in Fig. 2.9(a)-(c).
Lastly, rotating circular reference trajectories with different amplitudes in the α− β plane were
tested and the results are shown in Fig. 2.9(d). These results prove that this simple compensation
method is effective in mitigating the voltage drop effect of the VSI.

3By means of reference voltage and known resistance.
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(a) Spiral reference current trajectory in the station-
ary α− β plane.
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Figure 2.9: Spiral and circular validation tests of the feedforward state-of-the-art compensation method
of a 2-levels VSI: (a)-(c) spiral reference trajectory, (d) circular reference current trajectories with differ-
ent amplitudes.

2.4.2 Angle delay compensation
The inevitable time delay between signal processing and execution in digital implementation

of current regulation schemes yields an undesirable output voltage mismatch [73]. This mis-
match is translated into a rotating speed-dependent error VV in the rotating d − q frame. To
investigate this phenomena, the reference current of the main motor is set to 0A, where the ro-
tor speed is increased linearly via the load machine from standstill to 1400 rpm, and the needed
voltage of a PI current regulator to maintain 0 current of the main motor is recorded. The con-
trol inputs are compared with the needed theoretical voltage to keep zero current, which can
be computed by setting the currents and their derivatives in the model that governs the current
dynamics of a synchronous motor to zero, such as

urefd = Rs�
�7
0

id + Ld
�
�
��7
0

did
dt

− ωelLq�
�7
0

iq = 0, (2.7a)

urefq = Rs�
�7
0

iq + Lq
�
�
��7
0

diq
dt

+ ωelLd��7
0

id + ωelψp = ωelψp. (2.7b)
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This effect is more significant in the d axis as can be seen in Fig. 2.10(a), with the stator
current corresponding to this test shown in Fig. 2.10(c). The conventional approach to imple-
ment the angle delay compensation (ADC) is to add a speed-dependent angle compensation
term of 1.5Tsωel while converting the commanded VV from the control scheme to the inverter
duty cycles. This approach is known in the literature as phase advancing compensation [73].
The results of the same test scenario while using this additive compensation term where the
computed voltages got aligned with their references is shown in Fig. 2.10(b), and the measured
stator current is shown in Fig. 2.10(d).

(a) Without ADC. (b) With ADC.

(c) Without ADC. (d) With ADC.

Figure 2.10: Injecting zero current while increasing the shaft speed via the load machine: (a) stator
voltages and their references and the measured speed without ADC, (b) stator voltages and their refer-
ences and the measured speed with ADC, (c) and (d) contains the stator current without and with ADC,
respectively.

2.4.3 Measurement synchronization
The three-phase current measurements are being collected at the middle of each sampling

period Ts, while the control inputs (i.e. the voltages) are being applied at the end of one sam-
pling period/beginning of the upcoming one. This misalignment between the time instant at
which the computed voltage is applied and the instant at which the current is measured must be
compensated for, in prediction for control as well as in parameters estimation and model iden-
tification. For the first case of prediction in control, this comes in the form of initial condition
correction of the states. This is done by predicting the values of the states half a cycle ahead,
such as

xk = x̃k +
Ts
2
ẋ, (2.8)

with the system dynamics vector ẋ defined as

ẋ =
dx

dt
=

(
−Rsid
Ld

+ Lqωeliq
Ld

+ ud
Ld

−Rsiq
Lq

− Ldωelid
Lq

+ uq
Lq

− ωelψp
Lq

)
. (2.9)
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By this, the effect of applying uk−1 for the upcoming half sampling period since the current
was measured is compensated for. Such a compensation for real-time MPC applications was
proposed in [74]. This is illustrated in Fig. 2.11(a). This method is used in the MPC schemes
proposed in this dissertation. In the other case when the system dynamics are to be learned
solely from collected data, a simple correction of the control inputs is sufficient to yield aligned
quantities, such as

uk =
1

2
ũk−1 +

1

2
ũk, (2.10)

and as depicted in Fig. 2.11(b).
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(a) Aligning the current measurement with the com-
puted voltage by predicting its value half a cycle
ahead, and using the predicted value as an initial
state in the MPC scheme.
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(b) Aligning the computed voltages with the mea-
sured current by averaging the voltages between two
consecutive sampling periods. This synchronization
is essential while learning the system dynamics.

Figure 2.11: Voltage and current measurement synchronization: (a) correction of the initial states for
control, (b) correction of the control inputs, which is useful in online parameters estimation or while
learning the system dynamics.

An alternative method was proposed and used by computing the continuous-time Koopman
operator (KO) from the obtained discrete-time KO from measurements sampled at equidistant
intervals (i.e. fixed sampling time), and then re-computing the discrete-time KO at the desired
sampling (i.e. in this case Ts

2
) to be used for the initial conditions correction [75].
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2.5 Generic model of PMSMs based on physical laws

In this section, the nonlinear mathematical model of PMSMs based on the well-known phys-
ical laws is derived, and the model parameters are obtained for the motor shown in Fig. B.1
in Appendix B. Moreover, the linearized model with constant parameters (i.e. an LTI model)
that is mostly used with MPC schemes within the power electronics community is presented.
These models are to be used in the following chapter to design different direct and indirect
model-based predictive controllers (i.e. FCS-MPC, DB-MPC and CCS-MPC schemes).

2.5.1 Model derivation
The mathematical model of a three-phase PMSM in the rotating d − q reference frame is

expressed as [76]

ud = Rsid +
dψ

(id,iq)
d

dt
− ωelψ

(id,iq)
q , (2.11a)

uq = Rsiq +
dψ

(id,iq)
q

dt
+ ωelψ

(id,iq)
d , (2.11b)

with
ψ

(id,iq)
d = ψ(iq)

p + L
(id,iq)
d id, (2.12a)

ψ(id,iq)
q = L(id,iq)

q iq, (2.12b)
dψd
dt

=
dψp
dt

+ L
(id,iq)
dd

did
dt

+ L
(id,iq)
dq

diq
dt
, (2.12c)

dψq
dt

= L(id,iq)
qq

diq
dt

+ L
(id,iq)
qd

did
dt
, (2.12d)

where id and iq are the stator currents (in A), ud and uq are the stator voltages (in V), Ldd and
Lqq are the self differential inductances, Ldq and Lqd are the mutual differential inductances, Ld
and Lq are the absolute inductances (all inductances are in H), Rs is the stator resistance (in Ω),
ψd and ψq are the flux components, ψp equals to ψ(id=0,iq)

d is the permanent-magnet flux linkage
(all fluxes are in Wb), ωel is the electrical angular speed (in rad s−1), and ωel = npωme, where
np is the number of pole pairs, and ωme is the mechanical rotor speed (in rad s−1).

The absolute and differential inductances are current-dependent, and therefore, they must be
identified in the whole current operating range. The absolute inductances are defined as

L
(id,iq)
d =

ψ
(id,iq)
d − ψ

(iq)
p

id
, (2.13a) L(id,iq)

q =
ψ

(id,iq)
q

iq
, (2.13b)

where the differential inductances are defined as the partial derivatives of the fluxes along the
currents

L
(id,iq)
dd =

∂ψd
∂id

, (2.14a) L
(id,iq)
dq =

∂ψd
∂iq

, (2.14b)

L
(id,iq)
qd =

∂ψq
∂id

, (2.14c) L(id,iq)
qq =

∂ψq
∂iq

. (2.14d)
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To this end, substituting Eq. 2.12 in Eq. 2.11 and discretizing the system model using the
explicit Euler discretization method with the sampling time Ts yields the nonlinear current
prediction model that can be used within the different MPC schemes, such as:

(
id,k+1

iq,k+1

)
=

(
id,k

iq,k

)
+ Ts

[
L
(id,iq)
dd,k L

(id,iq)
dq,k

L
(id,iq)
qd,k L

(id,iq)
qq,k

]−1

j

with

j =

((
ud,k

uq,k

)
−

[
Rs −ωel,kL(id,iq)

q,k

ωel,kL
(id,iq)
d,k Rs

](
id,k

iq,k

)
−

(
0

ωel,kψ
(id,iq)
p

))
.

(2.15)

The standard procedure to identify the current-dependent electrical parameters in the model in
Eq. 2.15 is to control the motor shaft speed via a load motor4, and to inject reference steady-state
currents in the complete id− iq plane with an appropriate grid resolution. A simple PI controller
is used to drive the stator currents to each steady-state setpoint, and the stator resistance is to
be measured and assumed to be constant throughout the parameters identification procedure.
Then, the fluxes can be computed at each steady-state point as

ψd =
uq −Rsiq

ωel
, (2.16a) ψq = −ud −Rsid

ωel
, (2.16b)

and then the absolute inductances can be calculated as in Eq. 2.13. For the IPMSM used in
the experimental validation throughout this dissertation, shown in Appendix B, the parameters
are identified using the aforementioned procedure at ωme = 500 rpm with a grid resolution
of 0.5A. The obtained parameters maps are smoothed with the splines interpolation method
[77], and are depicted in Fig. 2.12. From a computational perspective, utilizing the nonlinear
model in Eq. 2.15 in the different MPC schemes differs as following: in DB-MPC, it does
not complicate the real-time implementation as the solution is to be found analytically. In
FCS-MPC and CCS-MPC, computing the inverse of the differential inductances matrix at each
iteration of the solver makes utilizing this model challenging in the submillisecond sampling
time range. In FCS-MPC, the problem is solved by enumeration, and thus, the number of
iterations is fixed based on three factors: the number of VVs, the prediction horizon length, and
the number of the states. In CCS-MPC, the number of iterations is correlated to the prediction
horizon length and the number of the states, but it is not affected by the number of VVs of the
power converter. Particularly with respect to the increase in the length of the prediction horizon,
CCS-MPC scales better than FCS-MPC due to the different nature of the optimization problem.

4This procedure is typically to be done at a speed that lies in the base operating speed range of the motor under
consideration. For machines that operate at a very wide speed range, the parameters can be obtained at different
speeds, and then a 3-dimensional LUT is to be used, i.e. letting the parameters to be functions of id, iq , and ωme.
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(a) ψd, ψp is marked in red. (b) ψq .

(c) Ld. (d) Lq . (e) Ldd.

(f) Ldq . (g) Lqd. (h) Lqq .

Figure 2.12: The identified and smoothed nonlinear model parameters.

Therefore, for the nonlinear CCS-MPC scheme that is proposed in the upcoming chapter, the
following approximations are made in order to simplify the model5:

• The time derivative of the permanent magnet flux linkage dψp
dt

is set to zero [76].

• The cross-saturation is to be neglected. Hence, the mutual differential inductances Ldq
and Lqd tend to zero [78]. This has a minor effect in prediction as their values are typically
one order of magnitude less than the self differential inductances Ldd and Lqq [79].

• The self differential inductances Ldd and Lqq are highly correlated to the absolute induc-
tances Ld and Lq [76]. Slight differences occur only at high motor speeds. Thus, it is
assumed that Ldd ≈ Ld and Lqq ≈ Lq [54].

5To validate these assumptions for the IPMSM used in the experimental validation in this dissertation, a
nonlinear analytical DB-MPC was designed and tested while incorporating both the complete nonlinear model
shown in Eq. 2.15, and the simplified nonlinear model in Eq. 2.17, and only minor closed-loop performance
enhancement was observed in transients when using the detailed one, therefore, the simplified nonlinear model is
further considered in this work.
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With these three simplifications, the simplified nonlinear dynamic model of PMSMs can be
stated in the form

ud =Rsid + L
(id,iq)
d

did
dt

− ωelL
(id,iq)
q iq, (2.17a)

uq =Rsiq + L(id,iq)
q

diq
dt

+ ωelL
(id,iq)
d id + ωelψ

(iq)
p , (2.17b)

which can be efficiently used in CCS-MPC schemes as will be shown in the following chapter.
On the contrary to this, the vast majority of the published predictive control schemes in the

literature, whether its direct or indirect control for PMSMs, consider the use of simple LTI mod-
els (i.e. the model in Eq. 2.17 with constant parameters) [56, 80–84]. This choice is typically
based on the abstract fact that such models are easy to obtain, and cheap to be used online from
a computational perspective. This choice necessitates the use of online parameter estimators,
disturbance observers, or the use of an integral loop with MPC schemes to compensate for the
effects that yield from the discrepancy between this linear model and the real nonlinear plant.
Despite the fact that such complementary choices enhance the steady-state performance of the
controller and may achieve an offset-free tracking, the use of nonlinear models is essential for
the optimal MPC transient performance, as long as such a model is available and implementable
from computational point of view.

One of the main objectives of this dissertation is to motivate the use of nonlinear models as
well as any knowledge available about the drive system as explained in the section of the inverter
nonlinear effects, as well as the voltage and current measurement synchronization. Doing this
in practice is a necessity to show the full potential of MPC schemes.

Nevertheless, it has to be noted that the use of error integrating functionalities will still be
needed even when using nonlinear models. This assures an offset-free tracking performance
in case of disturbances or parameters change over time due to various reasons such as compo-
nents’ aging or temperature dependencies.

2.5.2 Validation of the nonlinear PMSM model based on the physical laws

In order to validate the model accuracy, the prediction function based on the model in Eq. 2.15
was deployed on the dSPACE to run in parallel with the current controller6. Steps of the refer-
ence id current from −8A to −4A and then to −12A, and of the reference iq current from 8A
to 4A, and then to 12A were made at three different motor speeds of 250 rpm, 500 rpm, and
1000 rpm, and the results are depicted in Fig. 2.13, Fig. 2.14, and Fig. 2.15 for the three speeds,
respectively.

6In the results used here, the machine was being controlled via a DB-MPC controller. However, it can be
validated with any other controller, for example, the model was tested to predict in parallel with a PI controller,
and same conclusions were observed.
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From these experimental results, it is clearly observed that the model can accurately predict
the change of the currents for a given control input, and hence, it can be used for the purpose of
designing a model-based current controller.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 2.13: Experimental validation results of the nonlinear physics-based model at 250 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 2.14: Experimental validation results of the nonlinear physics-based model at 500 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 2.15: Experimental validation results of the nonlinear physics-based model at 1000 rpm.
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CHAPTER 3

Data-driven modelling

“What gets measured, gets managed.”

Peter Drucker

In this chapter, the use of data-driven methods is proposed for the modelling task of a PMSM
drive system as an alternative to the conventional modelling techniques introduced in the pre-
vious chapter. The chapter starts with a brief overview of the main motives behind the ongoing
increasing interest in industry and academia in this regard, and a brief review regarding the
most used data-driven modelling techniques specially for the use with MPC schemes. Fol-
lowing, an alternative data-driven inverter nonlinearity compensation approach is proposed by
using a simple feedforward neural network (FNN) that learns the missing voltage as a function
of the phase current for a given dead-time setup. The proposed data-driven inverter nonlinearity
compensation approach has successfully mitigated these effects with less identification effort in
comparison with the state-of-the-art method. After that, the rest of this chapter deals with the
data-driven modelling of the current dynamics of synchronous machines, including a brief state-
ment of the problem formulation and the design of the experiment to generate a proper training
data set that is to be used for the data-driven modelling techniques. In particular, the use of
long-short term memory (LSTM) NNs is proposed to purely model the current dynamics of
the IPMSM from collected measurements and without prior knowledge, and it yields prediction
results which have significantly outperformed the conventional LTI physics-based model and
are in line with the prediction results from the nonlinear physics-based conventional model. For
completeness, other data-driven modelling methods are reviewed for this application and their
pros and cons in comparison with the chosen approach by using LSTM NNs are highlighted.

3.1 Motivation and related work

Recently, genuine interest within the control and systems theory community has developed
toward the use of data-driven methods in combination with MPC schemes [85], as an alter-



32 CHAPTER 3. DATA-DRIVEN MODELLING

native to the conventional modelling approaches that is typically based on physical laws and
first-principles. This interest is appealing and of high importance as these approaches address
important issues in many industrial and real-life applications, some of which are:

• Saving time and exhausting modelling efforts, and in some cases costs.

• Having a better representation than the conventional models of real plants prone to noise,
and hard-to-model- or even unmodelled dynamics by first-principles and physical laws.

• Requiring less domain expertise and pre-knowledge.

• Aiming for better scalability.

• Improving pre-defined performance indices in repetitive tasks by using a stochastic ap-
proaches to handle uncertainty with MPC schemes [86].

Motivated by one or more of the aforementioned motives, the following methods have been
receiving increasing attention to be used for the modelling task purely from measured data while
being applied to a wide set of applications:

• AI and machine learning (ML): approaches have been used for modelling complex dy-
namics in different domains and applications due to their characteristcs as universal func-
tions approximators. The range of applications in which these methods have been used
for modelling include thermal modelling [87], modelling of quadrotor dynamics [88],
modelling of vehicle dynamics for automated driving [89] as well as modelling the tire
dynamics for the use in MPC [90], and as a generic black-box identification method
[91–95].

• Gaussian process (GP)s: as an augmentation of a nominal dynamical model that aims to
model the residual model mismatch/uncertainty applied to a racing car [96, 97], to model
the aerodynamic effects for the control of quadrotors as presented in [98], and in [99] a GP
model incorporating expert knowledge was proposed to design an air pressure controller
of a diesel engine.

• KO: is a method in which the nonlinear dynamics are lifted into a higher dimensional
space, where the states evolution is approximated linearly, which allows the use of the
well-established linear model-based control methods [100]. This identification method
was applied to soft robots as presented in [101], to electric power systems in [102], and
was applied on nonlinear flows in [103].

These methods differ from each other conceptually, and therefore, a careful investigation with
respect to the needs, requirements, and characteristics of the application have to be carried out
in order to check suitability. Factors such as training feasibility on large data sets, the degree
of matching between the needed and available amount of prior knowledge about the system
under identification, the computational complexity and model quality are essential in tipping the
balance in favour of one method over the others. For the base data-driven modelling example
considered in this dissertation that deals with learning the current dynamics of an IPMSM,
these methods are considered. In the upcoming sections, the details regarding the challenges
and benefits of using each of these methods are identified.
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3.2 Data-driven inverter nonlinearity compensation

NNs are inspired with analogy to the biological neural system [104]. They are composed of
connected artificial neurons that form a layer, where the stacked layers form together a NN.
The artificial neuron is represented as a function that takes an arbitrary number of weighted and
biased inputs, and its output can be mathematically expressed as

yi = σ(ai) = σ(
n∑
j=1

Wijxj + bi) (3.1)

with an ith neuron in a layer and a jth feature input to that specific neuron, σ denotes any
arbitrary activation function, and n is the number of neurons in the previous layer (i.e. the
number of input features in case of the input layer). In this section, a FNN approach is presented
to approximate a function that compensates for the non-ideal behaviour of the 2-levels VSI. The
motivation behind this choice is to have less modelling effort with the hope that only one test is
needed to generate enough data to approximate the function, and hopefully, to take advantage
of the ever-increasing development of efficient real-time execution of NNs [105]. To decide the
inputs and outputs of the NN and in which reference frame, different representations for the
same objective are to be visualized. In Fig. 3.1, the missing phase voltage is plotted against its
phase current for all the points from the test in Fig. 2.6(d), and in Fig. 3.2 the missing phase
duty cycle is plotted instead for the same measurements. From these two visualizations, it is
observed that the functions are not unique with respect to the corresponding phase current over
the whole α− β plane as shown in the test in Fig. 2.6(d).
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Figure 3.1: Correction phase voltages per the individual phase current.
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Figure 3.2: Correction duty cycles per the individual phase current.
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For this reason, a four-dimensional visualization for the correction phase voltage as a function
of the three-phase currents is shown in Fig. 3.3, and for the correction duty cycle as a function
of the three-phase currents in Fig. 3.4. Here it becomes clear that the functions are unique, and
hence, this measurements can theoretically be used to train a FNN to approximate it. However,
in the α − β plane, the number of inputs can be reduced from three to two. A visualization
of the correction duty cycles as a function of the phase currents in the α − β plane is shown
in Fig. 3.5. Taking this choice, the NN will have three outputs (i.e. the three correction duty
cycles). However, the most optimal choice from computational perspective would be to have
the phase currents as inputs and the correction phase voltages as outputs, all in the α− β plane.
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Figure 3.3: Correction phase voltages as functions of the three-phase currents.
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Figure 3.4: Correction phase duty cycles as functions of the three-phase currents.
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Figure 3.5: Correction phase duty cycles as functions of the α− β currents.
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Two trials to approximate the α and β correction voltages as functions of the phase current
iαβ were investigated: the first is to approximate them individually by two separate uni-output
NNs, and the second is to use a bi-output NN to approximate both functions simultaneously.
The chosen architecture of the uni-output NNs was identical to each other and consists of 2-
32-16-8-4-1 neurons, and is depicted in Fig. 3.6, where the bi-output NN has an architecture
of 2-48-24-12-6-4-2 neurons, and is depicted in Fig. 3.7. The functions to be approximated are
shown in Fig. 3.8(a) and Fig. 3.9(a), respectively. The FNNs are trained using KERAS [106]
in Python with TensorFlow backend [107]. The used loss function while training the regressor
was mean squared error (MSE), and the optimizer is adam. The used activation function in all
layers is rectified linear unit (ReLu). After the training, the outputs of both NNs are shown
in Fig. 3.8(b)-(c) for the α-axis correction voltage, and in Fig. 3.9(b)-(c) for the β-axis. In
Fig. 3.8(d)-(e) and Fig. 3.9(d)-(e), the errors between the NNs outputs and the real measured
functions are depicted. In both cases, the maximum approximation error was within 4%, which
proves the effectiveness of the use of FNNs to approximate the correction voltage of the 2-
levels VSI that is supposed to counteract the effects of its non-ideal switching behaviour. The
proposed method might be beneficial in applications where an automatic correction method is
needed, where the voltage deterioration effects do change over time (e.g. due to aging), and
hence, repeating the training process with new collected measurements can be automated.
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Figure 3.6: Uni-output NN architecture to fit the function of the inverter nonlinearity compensation.
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Figure 3.7: Bi-output NN architecture to fit the function of the inverter nonlinearity compensation.
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Figure 3.8: Missing α− axis voltage as a function of iαβ .
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Conclusion: The proposed data-driven method to learn the compensation of the non-ideal
switching behaviour of a 2-levels VSI via a simple FNN with ReLu activation functions has
shown excellent function approximation accuracy of > 96% with respect to the conventional
compensation method. The proposed data-driven method requires only one test to generate the
training data set that covers the whole operation range of the currents in the α− β plane, where
the conventional method requires three tests to best capture the average compensation curve.
Future investigations may include:

• The dependency on the dc-link voltage variation.

• Applying the proposed method to multi-level inverters with different topologies.

• Applying the proposed method to inverters with wide-bandgap semiconducting devices.

3.3 Problem statement of data-driven model identification

The model identification problem of discrete-time nonlinear dynamic systems can be stated
to learn the dynamics in the general discrete-time state-space form

xk+1 = xk + f(uk,uk−1, ...,uk−nu,max ,xk,xk−1, ...,xk−nx,max),︸ ︷︷ ︸
δxk+1: to be learned from data

(3.2a)

yk = h(uk,xk), (3.2b)

from measured data at dedicated persistent excitations, where f(·) represents the system dy-
namics function, h(·) is the output function, xk is the states vector, yk is the outputs vector,
and uk is the vector of the control inputs, with nu,max and nx,max as the maximum number of
lagged inputs and states, respectively. For the example considered in this chapter by learning the
current dynamics of synchronous machines, the currents and the speed (i.e. the states) are mea-
sured via the corresponding sensors, and the commanded voltages from the controller represent
the real phase voltages (i.e. the control inputs) once the inverter nonlinearity is compensated
properly. Therefore, all of the variables here are known.

Once a data-driven model is obtained/learned, it can then be used within an MPC frame-
work. Typically, a trade-off between model complexity and its prediction accuracy is to be
made. Whenever the available sampling time is long enough, an approximate solution of the
formulated constrained optimization problem is to be found online. Nevertheless, this becomes
challenging when the demand on high switching frequencies (i.e. short sampling times) is im-
posed concurrently with the need to incorporate complex nonlinear models. In such cases, it is
proposed in this dissertation to solve the optimization problem offline while incorporating an
accurate, but computationally-expensive nonlinear model in order to generate a data set that rep-
resents the mapping between corresponding initial system states and the optimal control input
that drives the system to a desired end state, and then to learn this mapping via a computationally
implementable NN in a similar fashion as in explicit MPC [108, 109].
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3.4 Design of identification experiment

The objective of this section is to present the used procedure to generate a training data set
that represents the PMSM current dynamics in the rotating d− q reference frame to be used to
train data-driven models from real measurements taken from the test bench shown in Fig. B.1
in Appendix B. The motor to be identified is excited by chirp and random steps reference sig-
nals using a PI current controller without the use of prior physical knowledge at a sampling
frequency of 10 kHz, while the shaft speed was regulated via the load motor. The setup of the
excitation test is sketched in Fig. 3.10.

Main machine
(To be identified)

Chirp and random steps 

excitation signals for the 

currents, while the 

machine is controlled by 

simple PI controllers.

Load machine
(Speed regulated)

Figure 3.10: The setup of generating the excitation data set for the model identification task.

The excitation consists of the following four sections:

1. Firstly, the d − axis is excited with step reference values in the range from −10A to
+10A with 1A increments, while each step has a time duration of Tstep = 5 s. During
each step duration, the q − axis is excited with a chirp reference with an amplitude of
10A and frequency range from 2.5 kHz going down exponentially to 10Hz.

2. In the second section, the excitation references between the d and q axes are swapped.

3. Thirdly, with the same step reference profile given in point (1) for the d−axis, the q−axis
is excited with limited random amplitude references instead of the chirp reference.

4. In the last section, the profile illustrated in (3) is swapped between the two axes again.

The above mentioned procedure is repeated at three motor speeds of 1000 rpm, 500 rpm,
and 100 rpm. In total, this yields an excitation data set that consists of 12.6 million sample
points, which is equivalent to 21min of excitation sampled at 10 kHz. This excitation profile is
graphically illustrated in Fig. 3.11.

After the above illustrated identification test is conducted on the test bench, the measurements
are collected and processed. The first step in processing the data is to align the measurements
of the currents with the commanded voltages at each time step as explained in Sec. 2.4.3 in
Fig. 2.11(b). Once this compensation is performed, the data is to be formed in an input-output
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Figure 3.11: Sketch to depict the reference excitation signals of the motor to be identified.

form that represents the correct discrete-time current dynamics of PMSMs. The outputs are
the measured changes of the stator current between each two consecutive discrete-time instants
(i.e. idq,k+1 - idq,k), where the inputs are the stator currents and voltages as well as the shaft
mechanical speed at the current discrete time instant k backward in time till k − n, with n
as the number of the maximum needed discrete-time delayed steps. As the different inputs and
outputs consists of different physical quantities and they range on different scales, normalization
of all inputs and outputs helps for a faster convergence while training the data-driven model.
Therefore, the inputs and outputs are normalized using the min-max normalization, such as

ξ′ = ℓl +
(ξ −min(ξ))(ℓu − ℓl)

max(ξ)−min(ξ)
, (3.3)

…

Figure 3.12: Sketch to illustrate the resulting processed data
set in an input-output form, to be used for the data-driven
modelling.

where ξ represents the original mea-
sured value to be normalized, ξ′ is the
scaled value, min(ξ) and max(ξ) are
the minimum and maximum values of
any arbitrary vector ξ to be normal-
ized, ℓl and ℓu are the scaling lower
and upper bounds, and are equal to -1
and 1, respectively.

By this, the processed data is ready
to be used for the different data-driven
modelling techniques, such as: NNs,
GPs, and KO theory. A sketch that
represents the training data for the
learning task of PMSM current dy-
namics is depicted in Fig. 3.12.
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3.5 Data-driven modelling of PMSMs via LSTM NNs

In this section, the use of LSTM1 NNs to model the current dynamics of three-phase PMSMs
is proposed. The model is to be obtained purely from real collected measurements from the test
bench without prior physical knowledge. The LSTM NNs have been broadly used in different
applications, such as speech recognition [111], handwriting recognition [112], and learning
dynamical systems [93,94]. For the latter, once an LSTM model is trained, the learning abilities
of the network structure is utilized to make system output predictions from given states and
control inputs. An LSTM unit consists of three gates that govern the flow of information to
the next unit in a stacked LSTM architecture, namely an input, a forget, and an output gate.
Mathematically, the output of a stacked LSTM network is obtained by the manipulation of the
inputs with the weights and biases obtained after the training process, such as

iiik = σg(Wixxx k + Zihhhk−1 + bbbi), (3.4a)
fff k = σg(Wfxxx k + Zfhhhk−1 + bbbf ), (3.4b)
oook = σg(Woxxx k + Zohhhk−1 + bbbo), (3.4c)
c̃cck = σh(Wcxxx k + Zchhhk−1 + bbbc), (3.4d)
ccck = fff k ◦ ccck−1 + iiik ◦ c̃cck, (3.4e)
hhhk = oook ◦ σh(ccck), (3.4f)

with xxx representing the input vector to the network, hhh as the hidden state/LSTM cell output
vector (which goes as an input to the next layer), and ccc representing the cell state vector. The
vectors iii , fff , and ooo are the input gate, forget gate, and output gate activation vectors, respectively,
and the cell input activation vector is c̃cc. The functions σg and σh represent a sigmoid and
a tangent hyperbolic activation functions, respectively. The operator ◦ means element-wise
multiplication. Once the model training process is performed, the optimized NN parameters are
fixed. These parameters are all the weighting matrices Z∗ and W∗, and the bias vectors bbb∗ for
∗ ∈ {i, f, c, o} corresponding to input, forget, cell, and output, respectively.

Using real measurements obtained from the test bench and formed in an input-output data
set as depicted in Fig. 3.12, an LSTM neural model is trained in KERAS [106] with Tensor-
Flow backend [107] and with adam [113] as an optimizer. The training data set was divided
into training, validation, and testing sets with percentages of 60%, 20%, and 20%, respectively,
and a batch size of 56 was used for the training. Different models with different architec-
tures were trained and tested, and have yielded excellent current prediction accuracy in both
steady-state and transients. However, to facilitate the real-time implementation of the model
to make predictions online, the most compact architecture found that yielded excellent pre-
diction accuracy is selected. The chosen model consists of 3 LSTM layers with 5, 2, and 2
hidden units, respectively, followed by a dense layer with a linear activation function. In ad-
dition, the input features at the current and only one previous discrete time step (i.e. k and

1In general, other types of NNs can also be used for the modelling task of nonlinear dynamical systems, such
as multilayer perceptron (MLP), where the time delayed inputs are fed as additional inputs to the network. This
will result in a different architecture, and consequently, different computational complexity of the obtained model.
However, for applications with noisy measurements this choice did not show a superior performance [110].
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Figure 3.13: The architecture of the LSTM neural model.

k − 1) are fed to the network to mini-
mize the execution time, as it is propor-
tional to the number of previous discrete
time steps to be fed to the network. An
illustration of the used NN architecture
is depicted in Fig. 3.13, with an illustra-
tion of all corresponding inputs and out-
puts, and depicting the mathematical op-
erations within an LSTM unit.

For the real-time implementation of
the LSTM NN on the dSPACE MicroAu-
tobox II platform in order to make one-
step currents’ prediction, all the weights
and biases are exported from python to
MATLAB, and a self-written MATLAB
function that emulates the LSTM net-
work with the imported weights and bi-
ases is deployed on the dSPACE plat-
form. This function runs in parallel to the
current controller and its current predic-
tions are recorded and compared with the
real measured currents at the next sam-
pling period k+1. The execution time of
the self-written LSTM MATLAB func-
tion on the dSPACE is recorded over time period of 30 s and it ranges from 24.2 µs to 25.5 µs
as shown in Fig. 3.14. This is sufficient for using the neural model to make one-step current
predictions in real-time within the submillisecond sampling time range with the needed time for
sensors reading, processing, and controller execution. However, it is computationally expensive
to be used as a model for online numerical optimization (i.e. online CCS-MPC schemes).

0 5 10 15 20 25 30
24

24.5

25

25.5

Figure 3.14: The execution time of the LSTM NN on the dSPACE MicroAutobox II platform.

3.5.1 Validation of the LSTM neural model

Similar to the validation presented in Sec. 2.5.2, the aforementioned LSTM neural model is
similarly tested and the results are shown in Fig. 3.15, Fig. 3.16, and Fig. 3.17.
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Similar prediction accuracy on both axes of the current and at the three different tested motor
speeds is obtained. This is verified through the maximum error and the root-mean-squared error
(RMSE) values in each set of results as shown in the figures.
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(b) Step changes of the q − axis current.

Figure 3.15: Experimental validation results of the LSTM model at 250 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 3.16: Experimental validation results of the LSTM model at 500 rpm.
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Figure 3.17: Experimental validation results of the LSTM model at 1000 rpm.
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3.6 Other potential data-driven modelling techniques

In this section, other data-driven modelling techniques for predictive control are briefly pre-
sented with application notes to power electronic and electrical drive systems. Among others,
GPs and KO theory are investigated through the co-supervision of the Master Theses 1 and 2 in
Appendix A.4, respectively, for the modelling task of the IPMSM.

3.6.1 Data-driven modelling of PMSMs via GPs

Considering a training data set D = {X,y} with the input X ∈ RL×D, and y ∈ RL×1 denoting
its output, with the data set length L and input dimension D, a non-parametric GP model can
be completely defined by a mean function µ(x) calculated at an input x and a covariance func-
tion k(xp,xq) between two arbitrary points xp and xq [114]. One of the most used covariance
functions is the squared exponential kernel

k(xp,xq) = σ2se
−1

2ℓ2
D

||xp−xq ||22
+ σ2nδp,q, (3.5)

with the signal variance σ2s, the measurement noise variance σ2n, the length-scale ℓD, and the
Kronecker delta

δp,q =

{
0 if p ̸= q,

1 if p = q.
(3.6)

If the input space does not contain information about the uncertainty, σ2n becomes zero, and
the signal variance σ2s does not affect the predictions [115]. Therefore, the squared exponential
kernel simplifies to

k(xp,xq) = e
−1

2ℓ2
D

||xp−xq ||22
. (3.7)

For more details regarding possible covariance functions, the reader is referred to [116].
To this end, in order to predict an output y ∈ R at a given new input x ∈ RD, the joint normal

distribution N (.) between (X,y) and the new input x[
y
y

]
≈ N

(
µ(x),

[
k(X,X) k(X,x)
k(x,X) k(x,x)

])
, (3.8)

is used. A typical choice of the mean function µ(x) is either zero or a polynomial that fits the
data via linear regression. Alternatively, foreknowledge about the function to be learned can be
included by a proper choice of µ(x). The covariance matrices are defined as

k(X,X) =


k(x1,x1) k(x1,x2) · · · k(x1,xL)
k(x2,x1) k(x2,x2) · · · k(x2,xL)

...
... . . . ...

k(xL,x1) k(xL,x2) · · · k(xL,xL)

 ∈ RL×L, (3.9)

and
k(x,X) = (k(x,x1), k(x,x2), · · · , k(x,xL)) ∈ R1×L, (3.10)
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and k(X,x) = k(x,X)⊤. The output y≈N (E(x),Var(x)) at a given arbitrary input x can then
be computed by the conditional distribution

E(x) = µ(x) + k(x,X)(k(X,X))−1(y − µ(X)), (3.11a)
Var(x) = k(x,x)− k(x,X)(k(X,X))−1k(X,x). (3.11b)

The expectation E(x) (i.e. the predicted mean) is the predicted estimation of the output at
the given arbitrary input x with uncertainty represented by the variance E(x). For more details
regarding the use of GPs for modelling, the reader is referred to [114].

From a computational perspective, training a standard GP model to optimize its hyper pa-
rameters requires the inversion and determinant of the covariance matrix of the training data
set, which scales in O(L3) with the length of the data set L. Furthermore, computing predic-
tions with the obtained GP model using Eq. 3.11 with pre-computing the inverse of the training
data set covariance matrix (k(X,X))−1 would still scale in O(L) for the mean and in O(L3)
for the variance [117]. This poor scalability with the length/size of the training data set, not to
mention the needed high memory requirements, hinders the applicability of GPs in their stan-
dard form on large data sets, and makes it only applicable for data sets with size of up to 104

samples [117]. To overcome this shortcoming while retaining the desired model approximation
accuracy, different approaches were proposed in the literature [118]. One of these methods
is to obtain an approximate GP model with inducing points that reflect the original data via
variational inference, where the size of the approximate GP model and the corresponding com-
putational complexity are defined by the reduced number of the inducing points [119]. In the
Master Thesis 1 in Appendix A.4, an approximate GP model of the training data used to model
the current dynamics of the IPMSM is investigated, where a reduced number of representative
data points from the original big data set is selected via a greedy algorithm, that aims to max-
imize the sampling coverage of the original data set with respect to size of the new data set.
Once a subset of the original data set with the size ≈ 104 is chosen, an approximate GP model
is trained using the software package GPyTorch with GPU acceleration [120]. The investiga-
tion made throughout this Master Thesis yielded that choosing 104 samples as a representative
subset of the original training data set presented in Sec. 3.4, and then using the concept of in-
ducing points to get an approximate GP model would require 0.63ms for 1000 inducing points
and 1.25ms for 2000 inducing points to make one prediction once the approximate model is
deployed on the dSpace MicroAutoBox II. Despite the significant approximations made, one
evaluation of this data-driven model requires execution time in one order of magnitude higher
than the available sampling time of 100 µs, which hinders its use within a real-time capable nu-
merical optimization framework. Nonetheless, such a model can still be used in an explicit-like
MPC design by solving the MPC problem offline while incorporating this model, and learning
the obtained control policy in an approximated computationally-implementable manner. The
obtained approximate GP model is validated on the same data set on which the first-principles
and the LSTM neural models were validated, and the results are shown in Fig. 3.18, Fig. 3.19,
and Fig. 3.20. Despite the satisfactory prediction accuracy in terms of a maximum prediction
error and the RMSE value, the approximate GP did not outperform neither the first-principles
nor the data-driven model based on LSTM NN. In the light of this outcome while considering
the computational challenges associated with this method, it is excluded in the further use of
data-driven modelling for model-based control design in this dissertation.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 3.18: Validation results of the approximate GP model at 250 rpm.
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(b) Step changes of the q − axis current.

Figure 3.19: Validation results of the approximate GP model at 500 rpm.
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Figure 3.20: Validation results of the approximate GP model at 1000 rpm.

The following settings were chosen while training the approximate GP model in GPyTorch,
with the voltages, currents, and rotor speed at the current discrete time instant k as inputs, and
the change of the current (one model for δid,k+1, and one model for δiq,k+1) as an output:
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• Mean function: ’ConstantMean’

• Kernel: ’RBFKernel’

• Variational strategy: ’IndependentMultitaskVariationalStrategy’

• Variational distribution: ’CholeskyVariationalDistribution’

• Optimizer: ’Adam’

• Learn inducing points locations: ’True’

• Learning rate: ’0.05’

• Iterations: ’200’

3.6.2 Data-driven modelling of PMSMs using KO theory

The basic concept behind using the KO theory as a modelling technique of nonlinear dy-
namical systems is to lift the nonlinear dynamics to a higher dimensional space, in which the
states’ evolution is approximately linear [121]. The KO K is an infinite-dimensional linear
operator corresponds to the dynamics of scalar observable functions (i.e. called observables)
of the nonlinear dynamical system [122]. A finite-dimensional approximation of K acting on
finite-dimensional subspace of the observables can be used to predict the state variables which
lie in the subspace of functions that the operator is truncated on [121].

Considering a classical state-space discrete-time dynamical system with xk+1 = f(xk,uk),
and a vector of scalar observables as nonlinear functions of its states and inputs, such as

ψ(x,u) = (ψ1(x,u), ψ2(x,u), · · · , ψnψ(x,u))⊤, (3.12)

the action of the KO K on the vector of observables is given by

[Kψ](x,u) = ψ(f(xk,uk)) = ψ(xk+1), (3.13)

which propagates the observables vector, and hence, the system output forward [123]. To
this end, having chosen a set of observables and having a training data set available, a finite-
dimensional approximation of the infinite-dimensional KO K can be computed by stating
Eq. 3.13 as

ψ(xk+1,uk+1) = KKKψ(xk,uk) + ρk (3.14)

where the matrix KKK with the size of nψ × nψ represents a finite-dimensional approximation of
the KO, and the vector of residuals ρ represents the approximation error. Common approaches
to compute the matrix KKK include dynamic mode decomposition (DMD) [124] and extended dy-
namic mode decomposition (EDMD) [125]. In the EDMD, two snapshot matrices representing
the vector of observables computed at consecutively equidistant discrete-time sampling with
one sampling time step difference between the two matrices are defined, such as
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Π =

 | | | |
ψ1 ψ2 · · · ψL−1

| | | |

 , (3.15a) Π̃ =

 | | | |
ψ2 ψ3 · · · ψL

| | | |

 , (3.15b)

and then KKK can be approximated by solving a least-squares problem that minimizes the approx-
imation error/residuals as

min
KKK

||Π̃ −KKK Π ||2F , (3.16)

where ||.||2F denoting the Frobenius norm. The minimization problem has the analytical solution
KKK = Π̃Π †, in which the (.†) denotes the Moore-Penrose pseudo-inverse [126].

This approach was investigated within the co-supervised Master Thesis 2 in Appendix A.4,
and for more details, the reader is referred to the followed cooperative work in [75], where
the KO theory was applied for the identification and real-time capable CCS-MPC design of
PMSMs. It was shown in [75] that leveraging the physical knowledge when choosing the ob-
servables is advantageous in yielding a competitive approximation accuracy, and consequently,
a good closed-loop MPC performance.

3.7 Conclusion

The investigation made in this chapter has highlighted the efficacy of data-driven modelling
techniques in accurately capturing the current dynamics of IPMSMs. The results have demon-
strated that these models can achieve prediction accuracy comparable to that of the nonlinear
physics-based model. Among the investigated methods, LSTM NNs appear to be the most
suitable approach for further consideration in designing model-based predictive controllers.
This choice is based on the fact that the LSTM NN model did not require any prior physical
knowledge, unlike the KO and GPs approaches where it is advantageous to incorporate phys-
ical knowledge. This suggests that the potential of LSTM NNs extends beyond IPMSMs, and
can be utilized for modelling other power electronic and electrical drive applications where the
dynamics are difficult to be captured using physical laws. Moreover, LSTM NNs exhibit scala-
bility with large data sets from a computational perspective, which is a significant constraint for
GPs. The obtained LSTM neural model will be leveraged to design a learning-based predictive
current controller. The detailed discussion of this topic is presented in Ch. 5.
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CHAPTER 4

First-principles model predictive control

“The beauty and elegance of the physical laws themselves are only apparent when expressed in
the appropriate mathematical framework.”

Melvin Schwartz

In this chapter, conventional and advanced predictive control techniques based on the linear and
the nonlinear physics-based models1 for electrical drive applications are thoroughly investi-
gated. The conceptual differences between predictive control and conventional control methods
are highlighted. Moreover, methods to overcome the typical shortcomings of predictive con-
trollers, such as model mismatch effects and the high computational demand are proposed.

In predictive control, the cost function is designed to simultaneously serve multi control ob-
jectives (normally tracking a given reference, but in principle it can include any other objective
such as limiting the switching frequency, improving the acoustic behaviour, and/or any other).
Once an accurate model that describes the dynamics of the plant is available, the parameterized
optimal control sequence that yields from a predictive controller is computed with respect to
the constraints of the system states and the control inputs. On the one hand, fulfilling the input
constraints with a long-enough prediction horizon is beneficial in guaranteeing an optimal dy-
namic operation of electrical drive systems with respect to the available energy, and allows the
operation on the physical limit (e.g. in field-weakening operation). On the other hand, electrical
drive systems do impose states constraints which must be fulfilled. Typically, these come in a
form of a maximum allowable current for safe operation of the different system components
(i.e. batteries, motors, and active or passive components).

1For the direct MPC section, the linear model is used in all simulations and experiments, where in the indirect
MPC section both the linear and the nonlinear models are used, and the results of both are benchmarked.
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4.1 Direct model predictive control

Direct MPC schemes rely on the discrete nature of power converters/inverters. In this class of
control schemes for electrical drive systems, the optimal control input to be found and applied
to the plant is one out of the finite number of possible VVs of the inverter used to feed the
plant, and is typically applied for a complete sampling interval Ts2, as the case with DSC,
DTC, and hysteresis-based predictive controller. Therefore, the OCP is typically solved by a
combinatorial approach.

Recalling that u ∈ RNu , x ∈ RNx , and y ∈ RNy are considered to be the inputs, states
and outputs of the system, respectively, with Nu, Nx, and Ny as number of inputs, states, and
outputs, respectively, the LTI continuous-time model is stated as

dx(t)

dt
= Acx(t) +Bcu(t) +Dcv(t), x(0) = x̃0 (4.1a)

y(t) = Ccx(t), (4.1b)

where x̃0 is the initial state,Ac∈ RNx×Nx ,Bc∈ RNx×Nu , andCc∈ RNy×Nx are the continuous-
time state-space system matrices. The vector v represents a measured disturbance with an
additional matrix Dc in order to incorporate the effect of this disturbance in the model. In
discrete-time, the LTI model can be stated in the following representation

xk+1 = Axk +Buk +Dvk, x0 = x̃0, (4.2a)
yk = Cxk, (4.2b)

whereA,B, C, andD are the discrete-time system matrices, and are defined as

A = I +AcTs, (4.3a) B = BcTs, (4.3b)
C = Cc, (4.3c) D =DcTs, (4.3d)

with I as the identity matrix.
In FCS-MPC, all possible system transitions (i.e. based on all possible switching states) are

evaluated over a prediction horizon in the cost function, and then the first switching state of the
optimal sequence which minimizes the cost function is chosen to be applied at the following
complete sampling period (at equidistant time intervals) [21, 127].

For the considered base example in this dissertation of controlling the current of synchronous
machines in the d− q frame, the optimization problem of the traditional FCS-MPC is stated as

2To overcome the cons of having relatively high steady-state ripples on the tracked variables caused by the lack
of a modulator (i.e. applying only one VV at a complete sampling interval Ts), derivatives of direct MPC schemes
were proposed in the literature by applying the optimal VV not at equidistant time intervals but at a variable point
in time in which so called variable switching point model predictive control (VSP-MPC), or by applying more than
one vector in which so called multiple vector model predictive control (MV-MPC).
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min
Uabc,k

J1(Uabc,k) (4.4a)

s.t. xk+1 = Axk +BPkuabc,k +Dvk, x(0) = x̃0 (4.4b)
yk = Cxk, (4.4c)
xmin ≤ xk+i ≤ xmax,∀i ∈ {1, . . . , N}, (4.4d)
uk+i ∈ {u1,u2,u3,u4,u5,u6,u7,u8}∀i ∈ {0, . . . , N − 1}, (4.4e)

with the system vectors and matrices being defined as

A =

[
1− TsRs

Ld

Lq
Ld
Tsωel,k

−Ld
Lq
Tsωel,k 1− TsRs

Lq

]
,B =

[
Ts
Ld

0

0 Ts
Lq

]
,C =

[
1 0

0 1

]
,

D =

[
0 0

0 −Tsψp
Lq

]
,Pk =

udc
3

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
2
3

−1
3

−1
3

0 1√
3

−1√
3

]
Tabc, (4.5)

xk =

(
id,k

iq,k

)
,uabc,k =

sa,ksb,k

sc,k

 ,vk =

(
0

ωel,k

)
.

The cost function J1 is defined as

J1 =
N−1∑
i=0

(1− λu)
∥∥∥yk+1+i|k − rk+1+i|k

∥∥∥2
2
+ λu

∥∥∥∆uabc,k+i|k∥∥∥2
2
+ γk+1+i|k, (4.6)

where 0 ≤ λu ≤ 1 is a scalar weighting term to balance the priority between the tracking
objective and limiting the energy/switching effort. The variable p ∈ {1, 2} is used to distinguish
the possible use of either the ℓ1 or the ℓ2 norms, which are defined for any arbitrary vector
ν =

(
ν1 ν2 ν3 ... νn

)⊤ as

ℓ1 : ∥ν∥1 = |ν1|+ |ν2|+ |ν3|+ ...+ |νn| (4.7a)

ℓ2 : ∥ν∥22 = ν⊤ν = ν21 + ν22 + ν23 + ...+ ν2n, (4.7b)

where |.| denotes the absolute value of a scalar. This penalty on the change of the control inputs
∆uabc (i.e. in this case it is directly on the switching states transition), is used to limit/regularize
the average switching frequency fsw,avg. This is essential especially when prediction horizons
longer than one are utilized. When having a sole tracking objective beside the regularization
of the change of the control inputs, using a scalar weighting factor as introduced in Eq. 4.6 is
typically sufficient.

It has been reported in the literature that the use of the ℓ2 norm is recommended over the ℓ1
norm despite the slight increase of the computational expense, as it yields a significantly better
closed-loop control performance in terms of stability [128]. This is in particular recommended
when operating at relatively low switching frequencies, where the ℓ1 was reported to yield
a deteriorated closed-loop control performance. Furthermore, the use of the ℓ2 norm yields
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significantly better THD at the same average switching frequency in comparison with the ℓ1
norm as reported in [129], especially for high-order systems and systems that operate at low
frequency.

The term γ in Eq. 4.6 represents the soft constraints, and is defined for the case of current
tracking as:

γk+1+i|k =

{
0, if

√
i2d,k+1+i|k + i2q,k+1+i|k ≤ Imax,

∞, otherwise,
(4.8)

with
√
i2d,k+1+i|k + i2q,k+1+i|k as the amplitude of the stator current at the corresponding future

sampling period Ik+1+i, and Imax denotes the maximum allowed current amplitude value. Con-
straints of any other output (i.e. torque) depending on the control objective, can be formulated
similar-wise.

Conceptually, FCS-MPC controllers in their simplest form consider the prediction for only
one step ahead, and the objective of the cost function aims to minimize the tracking error of
the system outputs to given references while simultaneously limiting the control effort without
violating the states constraints. To this end, this describes the simplest form of direct pre-
dictive controllers in the field of electrical drives by controlling only one physical quantity
(e.g. the current), and with/without penalizing the control effort while fulfilling the constraints.
More advanced forms of direct predictive controllers that exploit more potential of the ability
to forecast the system response are for example those which utilize long prediction horizons,
while simultaneously penalizing the switching effort, hence, optimizing the current trajectory
over the prediction horizon with respect to a given amount of switching effort/frequency. Ob-
viously, it is by now clear that direct predictive controllers are fundamentally different from
direct self/torque controllers, which aim to regulate the states to within pre-defined bounds in a
hysteresis/bang-bang manner.

In order to visualize the concept of the simplest form of FCS-MPC controllers, a simulation of
an FCS-MPC controller with the sole objective of tracking constant-amplitude stator current of a
synchronous machine is carried out at a constant rotational speed and assuming an ideal inverter
behaviour. The reference current (in black dashed red), the current constraint represented by the
circle inscribed within the hexagon (in red), the possible current transitions (in green) with the
optimal transition (i.e. closest to the reference) marked in dark orange, as well as the measured
current trajectory (in blue dashed magenta) with the initial current measurement at each time
step marked as × are visualized step by step for 50 consecutive sampling intervals in Fig. 4.1
to illustrate the controller behaviour.

It worth to be mentioned that increasing the prediction horizon without adding a penalty on
the control effort (i.e. limiting the switching frequency) will yield the exact same solution as the
one-step FCS-MPC as reported in [129], and hence, does not improve the closed-loop control
performance.

This visualization manifests the intrinsic characteristics of the direct variant of MPC in power
electronic and electrical drive applications, such as

• The logic behind the controller aims to minimize the tracking error, and therefore, it takes
the fastest possible way to the reference.
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• The switching frequency is variable (unless measures are taken to fix its average by proper
tuning of the corresponding weighting factor).

• The fulfilment of the input constraints is inherently included without the need of any extra
limitation or projection.

• The states constraints can be easily included in the cost function, and therefore, can be
straightforwardly fulfilled as long as an accurate states prediction model is available.

• The computational demand is directly proportional to the number of VVs of the inverter.
Only the terms which are functions of the control inputs have to be computed for each
VV, where all other terms in the prediction equation need to be computed only once. This
makes this control strategy benefit from computing platforms in which parallel computing
is used.

• The ripple is directly proportional to the sampling time and inversely proportional to the
switching frequency.
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Figure 4.1: Visualization of the operation concept of the one-step FCS-MPC for an example of current
tracking of synchronous machines.
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4.1.1 One-step FCS-MPC
In this subsection, the conventional FCS-MPC controller for the current control task of syn-

chronous machines is briefly introduced, and a computationally-efficient algorithm that yields
similar performance in one-third less computational time is proposed. Experimental results on
the SMPMSM shown in Fig. B.2 in Appendix B are provided for validation of both algorithms
under same test scenarios.

4.1.1.1 Conventional one-step FCS-MPC

Conventionally, the discrete-time current prediction model is used to predict all possible cur-
rent values at the upcoming sampling period corresponding to the finite-set of possible VVs.
The LTI current prediction model of synchronous machines in the d − q reference frame is
stated as

id,k+1 =(1− TsRs

Ld
)id,k +

Lq
Ld
Tsωel,kiq,k +

Ts
Ld
ud,k, (4.9a)

iq,k+1 =(1− TsRs

Lq
)iq,k −

Ld
Lq
Tsωel,kid,k +

Ts
Lq
uq,k −

Tsωel,kψp
Lq

. (4.9b)

Using this model, seven predictions of each current are to be made corresponding to the
seven unique switching states of the 2-levels VSI. For the current control task, the output vector
is y =

(
id iq

)⊤, and the reference vector is r =
(
irefd irefq

)⊤3. By this, the cost function in
Eq. 4.6 is to be evaluated seven times for all the predictions, and the VV that is associated to
the prediction that yields the minimum cost is to be applied at the discrete time instant k.

Figure 4.2: Conventional FCS-MPCC scheme for synchronous machines.

3As the focus throughout this dissertation concerns the current loop, the generation of the optimal reference
current is out of the scope. For more details in that regard, the reader is referred to [130–132], and the references
therein.
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4.1.1.2 Computationally-efficient one-step FCS-MPC

Even though that with the available computational power nowadays most of the one-step
FCS-MPC algorithms can be already executed in real-time, especially for inverters with rela-
tively low number of VVs as the case with the 2-levels VSI, still, the reduction of the needed
execution time can be beneficial. The main motivation behind this is that, the reduction of
the needed execution time allows operating at higher sampling frequencies, and hence, getting
higher average switching frequency that would yield less current ripple, and consequently, less
THD values.

Using continuous formulation of the traditional FCS-MPC stated in Eq. 4.4 and subjected to
the continuous input constraint

|uk| ≤ umax (4.10)

with umax being determined typically in the d − q as well as in the α − β frames with respect
to the dc-link voltage as: umax = udc√

3
, instead of the constraint in Eq. 4.4e, it is possible to

determine a continues-time optimal VV that is to be realized as an average over a sampling
period via a modulation scheme. This continuous-time optimal reference VV is to be computed
analytically by substituting the predicted currents in Eq. 4.9 with their reference values in a
deadbeat fashion, and then re-arranging the equation to solve for the reference VV that will
drive the currents to their references4

urefd,k =Rsid,k +
Ld
Ts

(irefd,k+1 − id,k)− Lqωel,kiq,k, (4.11a)

urefq,k =Rsiq,k +
Lq
Ts

(irefq,k+1 − iq,k) + Ldωel,kid,k + ωel,kψp. (4.11b)

In order to fulfill the constraints on the analytically-computed continuous-time optimal VV
in Eq. 4.10, the computed VV in Eq. 4.11b is to be projected to within the circular constraints
by scaling its magnitude, which is defined as

umag,k =
√

(urefd,k )
2 + (urefq,k )

2, (4.12)

by the corresponding scaling [134], such as

urefd,k =

u
ref
d,k umag,k ≤ umax

udc√
3

urefd,k

||urefdq,k||
umag,k > umax

, urefq,k =

u
ref
q,k umag,k ≤ umax

udc√
3

urefq,k

||urefdq,k||
umag,k > umax

. (4.13)

One possibility here that has been proposed in literature [44, 45, 135, 136] is to locate the
sector in which urefdq,k lies in the stationary α-β frame after applying inverse park transformation,
after computing its angle as

ϕrefk = tan-1(
urefβ,k

urefα,k
). (4.14)

4An alternative expression that considers the one-step delay compensation as in [133], and an incremental
state-space model is proposed in details in [46].
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VV. As an example, if urefαβ,k is found to be lo-
cated as shown in Fig. 4.3, it lies in Sector I that
is defined by the switching state vectors: 100,
110, and either one of the zero vectors. The
proposed computationally efficient finite con-
trol set model predictive current control (FCS-
MPCC) scheme is illustrated in Fig. 4.4.

Algorithm 1: Sector Determination

Sector Determination (ϕrefk )
Step I: Ratio between β and α components
of urefαβ

Ratio=
urefβ

urefα
Step II: Quadrant and Sector
Determination

if urefβ >= 0 then
if urefα >= 0 then

if Ratio<=
√
3 (=tan(60°)) then

uk ∈ {u1/8,u2,u3} ;
else

uk ∈ {u1/8,u3,u4};
end

else
if Ratio<= -

√
3 then

uk ∈ {u1/8,u3,u4} ;
else

uk ∈ {u1/8,u4,u5} ;
end

end
else

if urefα <= 0 then
if Ratio<=

√
3 then

uk ∈ {u1/8,u5,u6} ;
else

uk ∈ {u1/8,u6,u7};
end

else
if Ratio<= -

√
3 then

uk ∈ {u1/8,u6,u7} ;
else

uk ∈ {u1/8,u7,u2} ;
end

end
end

However, the computation of tan-1 is de-
manding in real-time, and therefore, this con-
tradicts with the main motivation and inten-
tion behind reducing the computational com-
plexity of the traditional one-step FCS-MPC
schemes, especially for 2-levels power con-
verters. In the following, a simpler rule-based
geometrical algorithm is proposed to locate
the sector in which ths analytically-computed
reference VV lies without the need to com-
pute tan-1. The sector allocation algorithm is
presented in Algorithm 1.

Once the sector is determined, only three
evaluations of a modified cost function

J2 =
1

2
(urefα,k − urια,k)

2 +
1

2
(urefα,k − urια,k)

2

+ γk+1, (4.15)

with ι ∈ {1, 2, 3}, and subjected to the re-
duced set of VVs

uk ∈ {ur1 ,ur2 ,ur3}. (4.16)

are required. The vectors ur1 , ur2 , and ur3
contain always the two active VVs and either
one of the zero vectors, that together form one
out of the six sectors in the α − β frame, and
they are dynamically defined based on the lo-
cation of the analytically-computed reference

Figure 4.3: Example of locating the reference VV
in the α− β frame.
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v

v

Figure 4.4: The Proposed computationally-efficient FCS-MPCC for synchronous machines.

4.1.1.3 Experimental results and observations

In this section, the conventional as well as the proposed computationally-efficient one-step
FCS-MPCC are experimentally validated on the SMPMSM shown in Fig. B.2 in Appendix B.
Both methods are tested under same conditions and test scenario: the shaft speed was regulated
via the load machine at 90 rad s−1, and a step of the reference torque-producing current irefq from
0A to 10A is made while irefd is kept at 0A. The steady-state reference and measured currents
are shown for the traditional FCS-MPCC scheme in Fig. 4.5(a), and the same is shown for the
proposed computationally-efficient FCS-MPCC scheme in Fig. 4.5(b). The transient instants of
these two measurements are zoomed-in in Fig. 4.5(c) and Fig. 4.5(d) for the traditional and the
computationally-efficient schemes, respectively. The control schemes were executed at same
sampling frequency of 10 kHz, and the execution times of the control functions of both schemes
are recorded on the dSPACE DS1007 platform in Fig. 4.5(e) and Fig. 4.5(f), respectively. From
these results, the following is observed:

• The results show the general characteristics of FCS-MPC controllers of providing fast dy-
namical response and high current ripples, albeit with switching considerably less than in-
direct control schemes that use a modulator once sampled at the same sampling frequency.
The high current ripples make direct control schemes not suitable for low-inductance ma-
chines and applications with strict THD limitations, unless it is sampled at very high
sampling frequencies.

• The proposed computationally-efficient scheme provides similar performance with exe-
cution time of 3.1 µs instead of 4.5 µs for the traditional scheme. Even though this 31.1%
reduction of the execution time might not be solving an issue while having a sampling
period of 100 µs, it can significantly push the maximum possible sampling frequency es-
pecially when the FCS-MPC schemes are deployed on FPGAs with sampling times of the
sub-ten microseconds range. Sampling at such high frequencies will contribute in solving
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Figure 4.5: Experimental results of the conventional and computationally-efficient FCS-MPCC schemes
applied to control the SMPMSM in Appendix B.2.

the high-ripple issue with direct MPC methods [25,137]. Moreover, the needed execution
time of the proposed method is not dependent on the number of VVs of the used inverter
as the case of the traditional FCS-MPC method, which makes the reduction of the execu-
tion time by the proposed method with respect to the traditional one even more significant
for multi-level inverters.

• The proposed method is not supposed to outperform the traditional one in terms of perfor-
mance such as providing better THD or less ripples when both methods incorporate the
same model. To compensate for modelling mismatches and to provide offset-free tracking
performance, an integral term can be add to the reference VV before the evaluations of
the modified cost function in the proposed method as in [138], as an alternative of having
a disturbance observer with the traditional scheme.
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4.1.1.4 Multiple-vector one-step FCS-MPC

Driven by the intention to reduce the high steady-state ripples that yield from applying only
one VV at each sampling interval (i.e. the lack of a modulator) without increasing the sampling
frequency, multiple-vector FCS-MPC methods have emerged under different names in the lit-
erature, such as: two- or three-vectors FCS-MPC, MPC based on virtual VVs, or modulated
FCS-MPC [139–143]. The two-vectors FCS-MPC is typically employed by adding a zero VV
within the duty cycle to damp the current gradients (i.e. to reduce the ripples), or generally by
combining any two vectors. To reduce the current ripples of the computationally-efficient FCS-
MPCC proposed in the previous subsection, the length of the active VVs is reduced by 50% by
injecting a null VV at the first and last 25% of the sampling period, after adjusting the algorithm
accordingly. As can be seen in Fig. 4.6(a), the current ripple is reduced by around 34%, while
keeping the fast transient performance as shown in the zoom-in in Fig. 4.6(b). However, in
multiple-vector FCS-MPC methods, two critical aspects should be noted:

• Switching effort: by applying more than one VV, will the switching effort be less than
using a modulator? if not, then the motivation to use such a method instead of the well-
known modulation schemes [144] with an indirect MPC (either DB-MPC or CCS-MPC)
is questionable, if any. For example, in the method that proposes the use of null vector
with the optimal active VV symmetrically by applying the active vector at the middle
of the duty cycle, the switching sequence in case of 110 as an optimal vector would be:
000 → 110 → 000. The switching effort to yield the resultant VV in this case is more
than the one needed in SVM using asymmetric pulsation with one zero vector, same as in
SVM using symmetric pulsation with either one of the zero vectors, and slightly less than
in SVM using symmetric pulsation with using both zero vectors.

• Optimality: must be revised. Once a second VV is to be added to the first optimal VV
sequentially, global optimality of the first VV is not maintained, as it will not be applied
to the sampling period Ts that it has been chosen optimal for.
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Figure 4.6: Experimental results of the
computationally-efficient FCS-MPCC scheme
with applying null vector applied to the
SMPMSM in Appendix B.2.

From this discussion, the following questions
arise: if the objective is to do modulation, is it
meaningful to start with the optimal discrete-time
VV out of the possible vectors within the finite-set
of the power converter? In other words, is FCS-
MPC a good starting point if the semi-conducting
devices of each phase are to be switched more than
once within a sampling period? How is it com-
pared to CCS-MPC with a dedicated modulation
scheme in that regard?

To achieve the objective of reducing the high
steady-state ripples of FCS-MPC schemes, sam-
pling at ultra high frequencies or using VSP-MPC
methods seem to be more conceptually promising.
For these reasons, the multiple-vector FCS-MPC
methods are excluded from further investigations
within this dissertation.
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4.1.2 Long-horizon FCS-MPC

4.1.2.1 Benefits of long-horizon FCS-MPC and the computational barrier

Utilizing long prediction horizons while limiting the average switching frequency proved to
be beneficial in comparison with the one-step FCS-MPC at a given average switching frequency
fsw,avg [129, 145]. The steady-state performance enhancement associated with long horizon
FCS-MPC schemes typically comes in the form of reduced current THD at a given fsw,avg
[145], and that it enhances the closed-loop system stability [146]. These enhancements become
excessively remarkable for drive systems that operate at low switching frequencies (i.e. in the
sub kHz range) [145], and for high-order systems [129]. Examples to prove these benefits were
reported in [49, 147] for variable-speed drives with a 3-levels NPC-VSI.

Unfortunately, the computational demand to solve the mixed-integer OCP of FCS-MPC
schemes increases exponentially with the length of the prediction horizon, which hinders the
real-time implementation of long-horizon FCS-MPC schemes with the exhaustive-search com-
binatorial optimization. The number of the needed computations within a sampling period to
find the optimal solution of FCS-MPC schemes as a function of the length of the prediction
horizon N is expressed as

NCPSP = nx ×
N∑
i=1

N i
V V s︸ ︷︷ ︸

prediction of states

+ NN
V V s︸ ︷︷ ︸

cost function

, (4.17)

where NCPSP is the number of computations per each sampling period, nx is the number of
states, and NV V s is the number of all possible VVs of the used converter to feed the plant.
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Figure 4.7: Required computations per each sampling pe-
riod as a function of the prediction horizon N for FCS-MPC
schemes for a system with two states.

To visualize how the needed
computations exponentially in-
crease with the prediction horizon,
an example for a system with two
states fed by the conventional 2-
levels VSI is depicted in Fig. 4.7
with the needed computations for
prediction horizons from 1 to 10
steps. Strategies to achieve long-
prediction horizons with real-time
implementation for power elec-
tronic systems, mainly based on
branch and bound methods, were
proposed in the literature with a de-
tailed review in [48].

It has to be noted that the switch-
ing effort must be penalized in the
cost function, otherwise, the one-step and the long-horizon FCS-MPC schemes will provide the
exact same solution [129]. To visualize the benefit of long-horizon FCS-MPC over the one-
step, a simulation study for the current control task of an IPMSM with the parameters shown in
Table. 4.1 is carried out. Three controllers with prediction horizons of 1, 5, 8 steps were tuned
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Table 4.1: Parameters of the IPMSM used for the simulation
study in this section.

Name Nomenclature Value

dc-link voltage udc 200V

Maximum current Imax 150A

Stator resistance Rs 12mΩ

d− axis inductance Ld 180 µH

q − axis inductance Lq 400 µH

Sampling frequency fs 50 kHz

Flux linkage ψp 50mWb

to yield almost the same average
switching frequency while being
tested under same initial conditions
of id = 0A and iq = 0A, to track
a constant reference current of irefd
= 0A and irefq = 95A at a constant
motor speed of 2000 rpm. For a
better visualization, the first cycle
of the three controllers in the sta-
tionary α − β plane is depicted in
Fig. 4.8. Visually, it can already
be observed that the controllers with
longer prediction horizons of 5 and
8 steps yield a more-in-harmony
current than the one-step controller
that seems to surge, in contrary to
the controllers with longer prediction horizons that seem to plan the switching beforehand.

Figure 4.8: Steady-state comparison for one cycle of three FCS-MPC controllers with different predic-
tion horizons of: (a) N = 1, (b) N = 5, (c) N = 8.

Translating this into an indicating evaluation metric, the reduction of the current THD with
respect to the one obtained with the one-step controller is taken. This reduction can be measured
via the relative current THD, which is defined as [129]

ITHD,rel =

∣∣∣∣ITHD,long−horizon − ITHD,one−step
ITHD,one−step

∣∣∣∣. (4.18)

The current THD value for each controller in the α− β frame is recorded in Table. 4.2, with
the switching frequency of each phase as well as the average switching frequency recorded over
10 steady-state cycles. From these results it can be observed that at the same average switch-
ing frequency fsw,avg, the controllers which utilized longer prediction horizons have achieved
relative current THD improvement in the range from 10.6% to 15.1%. Despite that the overall
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Table 4.2: Resultant THD and fsw,avg of FCS-MPC controllers with different prediction horizons.

Prediction horizon THD of iα THD of iβ fsw,a fsw,b fsw,c fsw,avg

N= 1 7.08 % 7.19 % 3800Hz 2950Hz 3916Hz 3555Hz

N= 5 6.01 % 6.41 % 3500Hz 3650Hz 3500Hz 3533Hz

N= 8 6.33 % 6.11 % 3500Hz 3575Hz 3516Hz 3530Hz

current THD content of the N = 8 controller is not better than the one with the N = 5 con-
troller (i.e. better in the β direction but worse in the α direction), its switching effort is better
distributed over the three legs of the inverter, which is advantageous from derating perspective.

4.1.2.2 Computationally-implementable approximated long-horizon FCS-MPC based on
NNs

Motivation and proposal To benefit from the computationally-exhausting but beneficial op-
timal MPC control laws in real-time applications, explicit model predictive control (EMPC)
is typically used. In EMPC, the control law is computed offline by solving a multiparametric
programming problem for all system states using powerful computational resources without
limiting sampling time constraints, then the optimal control policy is saved into a LUT that
takes the current system states as its argument to provide the optimal control input [148]. In
the electrical drives and power electronics community, this has been proposed with real-time
implementation for a PWM inverter with an LCL filter in [149], and for the current control of
an induction machine (IM) in [150]. However, this class of predictive controllers is associated
with having a high memory footprint because the number of polyhedral regions is exponentially
proportional to the number of constraints as well as the length of the prediction horizon [151].
An emerging approach to approximate MPC control laws to facilitate their real-time implemen-
tation is done by utilizing the ability of NNs as general function approximators, and hence, to
mimic optimal control policies [152, 153].

In this subsection, the mixed-integer OCP stated in Eq. 4.4, and associated with the FCS-
MPCC for synchronous machines is solved offline for a prediction horizon of N = 5 for a
range of operating points of interest, and then the first solution of the obtained optimal sequence
is learned via a FNN with the hope to mimic the long-horizon controller with its beneficial
performance in a computationally-implementable manner for electrical drive applications. An
illustration of the training process of a NN controller that is aimed to mimic the long-horizon
FCS-MPC performance is depicted in Fig. 4.9.

The VVs are classified as either voltage-increasing or voltage-decreasing for each phase [35].
From this perspective, the direct control problem can be seen as a multiclass classification prob-
lem with a finite-set of VVs representing the different classes. Based on the initial conditions,
and whether the states need to have a positive or a negative slope to better follow their ref-
erences at each discrete time step, a reduced finite-set of candidates can be applied as can be
clearly seen from the possible phase voltages in the abc frame in Table 2.1. The proposal in
this section is based on solving the long-horizon FCS-MPC problem for a proper excitation that
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Figure 4.9: Training a NN to mimic the N = 5 FCS-MPC controller.

covers the operating range of interest offline in order to generate a training data set for a FNN,
that is aimed to approximate this control policy in a computationally-implementable manner,
and that runs online as a controller in closed-loop. The chosen architecture for the case men-
tioned here consists of an input layer, one hidden layer, and an output layer. As the proposed
NN controller is meant to be a direct controller, the number of neurons in the output layer is
chosen to be equivalent to the number of VVs of the power converter, and hence, 8 neurons are
used. A suitable choice for the activation function of the output layer is the softmax activation
function, which squashes the outputs of the NN to probabilistic values that sum up to one. The
neuron in the output layer that has the highest probability takes the binary value of 1, and every
other neuron gets 0. By this, the one-hot neuron represents the suggested VV to be applied to
the load according to the definition in Table 4.3.

sabc Class One-hot encoding

000 1 10000000

100 2 01000000

110 3 00100000

010 4 00010000

011 5 00001000

001 6 00000100

101 7 00000010

111 8 00000001

Table 4.3: Classification of the discrete VVs of a 2-levels inverter with one-hot encoding.
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The softmax activation is defined as

σ(zi) =
ezi

n∑
ι=1

ezι

, (4.19)

where zzz = (z1, ..., zn)
⊤, and n representing the number of inputs to each neuron of the output

layer. Therefore, the output of the FNN becomes an absolute probability distribution.
Regarding the input layer, it consists of 9 neurons, 3 for the previous switching state/control

input uabc,k−1, and the other six neurons are for the error between the measured currents and
reference currents at the current and the previous time instants k and k − 1 in the abc frame.
The error vector at time instant k is defined as

eabc,k =

ia,k − irefa,k

ib,k − irefb,k

ic,k − irefc,k

 , (4.20)

and likewise for k − 1. For the hidden layer, 25 neurons have yielded excellent classification
accuracy, and the further increase of the number of neurons in the hidden layer or even having
more than one hidden layer did not noticeably yield a better accuracy. The used activation
function here is the sigmoid activation function, where

yi =
1

1 + eai
. (4.21)

Once the training process is completed, the weights and biases corresponding to the chosen
architecture are optimized, and the network is validated, it can then be deployed on embedded
platforms such as dSPACE MicroAutobox as a current controller of the PMSM in closed-loop,
with the aim that it captures the performance benefits of long-horizon FCS-MPC. The proposed
control scheme based on a FNN that learns the N = 5 FCS-MPC is depicted in Fig. 4.10.

0

1

The one-hot neuron 

represents the 

optimal VV 

(i.e. class).

Figure 4.10: The proposed long-horizon FCS-MPC control scheme based on NNs.
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In order to generate the training data set of the NN, numerical simulations with a rich ex-
citation reference current of the IPMSM with the parameters shown in Table. 4.1 were used,
while the currents of the machine were controlled by a long-horizon FCS-MPC controller with
N = 5 steps. For the training task of the NN model, the NNs toolbox from MATLAB is used.
Generating the training data set as well as training the NN were both done on a supercomputer
at IAV GmbH. The simulations included different shaft speeds within the range of interest that
the obtained network is to be tested within.

Concerning the constraints fulfilment, input constraints are naturally fulfilled as the output of
the NN is one out of the possible VVs of the converter as the case with direct control schemes.
However, for the current constraints, if the suggested VV by the NN controller would result in
exceeding the maximum allowed current once substituted in the current prediction model, then
it gets excluded. The rest of the VVs are evaluated in a descending probability order until one
does not violate the current constraints is found and applied.

Evaluation metrics: The following metrics are used to evaluate the proposed controller:

• Confusion matrix: is a typical measure of the classification accuracy of a supervised ML
algorithm. Each class occupies a box in each axis of the matrix, and the intersection
of each class with itself in the other axis gives the correct prediction/classification of
that class (i.e. the green diagonal in Fig. 4.11), where the intersection of each class
horizontally shows the miss-classification with the other classes. The confusion matrix
of an example NN that has learned the solution of long-horizon FCS-MPC with N = 5 at
fsw,avg = 3.5 kHz is shown in Fig. 4.11, which yields that the NN has a prediction accuracy
of 86.9%. It also shows that, the NN has almost never confused an active VV that has
a magnitude phase voltage of 2

3
udc with any class that has an opposite phase polarity on

that phase. Taking class number 2 as an example, which has the switching state 100 and
has a voltage magnitude on phase a of ua = 2

3
udc, it has a zero confusion with all of the

classes/VVs which will produce a negative voltage on that phase, which are classes 4, 5,
and 6 (refereeing to switching states of 010, 011, and 001, respectively). This generalizes
to all of the other active VVs. Moreover, the two zero vectors 000 and 111 are also almost
never confused with each other as can be seen in the top right and bottom left red boxes in
the confusion matrix. This helps for a better regularization and mimicking of the average
switching frequency of the control policy to be learned.

• THD Vs. fsw,avg: is a typical performance measure in the field of electrical drives. It
has been reported in the literature that utilizing long prediction horizon with FCS-MPC
schemes yield significantly better regularization of the switching patterns, and hence,
yields a better THD content of the currents at a given input energy/switching effort, es-
pecially for high-order power electronic systems and for systems that operate at low fun-
damental frequency [129, 145]. For the case considered in this subsection of the current
control task of the IPMSM with the parameters summarized in Table. 4.1, the THD Vs.
fsw,avg curve is plotted in Fig. 4.12 at the rated torque and ωme = 2000 rpm with a fixed
sampling frequency of 50 kHz for three controllers: FCS-MPC with N = 1 (plotted in
red), FCS-MPC withN = 5 (plotted in green), and the NN controllers which have learned
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the N = 5 long-horizon control policy (plotted in blue). All of theses controllers have
been tested on the same scenario, and the average switching frequency fsw,avg is adjusted
by the gradual increment of the penalty on the control effort in the FCS-MPC controllers
with N = 1 and N = 5, as well as for the N = 5 controller that was used to generate
the training data set for the NN controllers. It can be observed from Fig. 4.12 that the NN
controllers have produced a similar THD content and they also have inherently learned
the fsw,avg of the long-horizon FCS-MPC that was used to generate their training data set.

• Computational demand: as its reduction while maintaining the performance enhance-
ment of long-horizon FCS-MPC is considered as the sole motivation of this proposal. For
comparison, hardware-in-the-loop (HIL) tests were performed. One of the NNs with the
architecture of 9−25−8 neurons is deployed on the dSPACE MicroAutoBox II 1513/1514
platform and its needed execution time was recorded, once with exact computation of the
sigmoid function and once with a LUT approximation of it as in [154]. Moreover, the
needed execution time for the FCS-MPC schemes with prediction horizons of N = 1 up
to N = 5 with exhaustive search are recorded and summarized in Table. 4.4. The NN
needs only 15.84 µs with the exact sigmoid activation function or 14.96 µs with the LUT
approximation, which makes it implementable in real-time within the sampling frequen-
cies typically used within the field of power electronic systems and electrical drives, in
contrary to the N > 2 FCS-MPC schemes with exhaustive search.
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Figure 4.11: The confusion matrix of the pro-
posed NN with the architecture of 9−25−8 neu-
rons that aims to mimic the long-horizon FCS-
MPC with N = 5 at fsw,avg = 3.5 kHz.

Figure 4.12: The THD Vs. fsw,avg curve ofN =
1 and N = 5 FCS-MPC schemes, and NN con-
trollers that have learned the long-horizon FCS-
MPC with N = 5 at different fsw,avg.
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Table 4.4: Comparison of the computational demand of FCS-MPC controllers with prediction horizons
from N = 1 to N = 5 steps with the proposed NN control scheme with an architecture of 9 − 25 − 8
using a sigmoid activation function on the hidden layer and a softmax activation function on the output
layer, tested on dSpace MicroAutoBox II 1513/1514 platform.

Controller FCS-MPC NN schemes

N = 1 N = 2 N = 3 N = 4 N = 5 sigmoid sigmoid LUT

Execution time 5.04 µs 13.16 µs 74.76 µs 1.33ms 11.826ms 15.84 µs 14.96 µs

Simulation results: In the following, the proposed NN controller is simulatively compared
with the long-horizon FCS-MPC with N = 5 controller that was used to generate its training
data set. The steady-state performance at the rated torque of 70N · m and shaft speed of ω =
2000 rpm is shown in Fig. 4.13(a), where the FCS-MPC with N = 5 controller was used to
control the currents of the machine until t=0.1 s, and then the NN controller took over. The
electromagnetic torque driving the electrical machine is defined as

Te =
3

2
np(ψpiq − (Lq − Ld)idiq). (4.22)

It can be observed that the NN controller has mimicked almost the same average switching
frequency and has produced very close THD value for the stator current of the long-horizon
FCS-MPC controller that was used to generate its training data set. The dynamic performance
of the obtained NN controller is tested for a step-up change from zero to full load and step-down
again to zero at a constant shaft speed regulated via a load machine, and the results are depicted
in Fig. 4.13(b) for both controllers. This test shows that the NN controller has also learned and
mimicked a very similar dynamic performance to the long-horizon FCS-MPC. Moreover, dif-
ferent current steps were made to test both controllers on generating different reference torques
and the results are shown in Fig. 4.13(c) for the NN controller, and in Fig. 4.13(d) for the
FCS-MPC controller with N = 5. These results validate the NN controller in a wide range
of operation. In order to test the current constraints fulfilment capability of the proposed NN
controller, a step-up of the reference current amplitude from 70A to 100A was made, where
Imax was set to 95A and the result is shown Fig. 4.13(e), where it is shown that the current
constraints are fulfilled.

Extensions and future work: Following the publication of this proposal in [47], NNs started
to get the attention for similar objectives in power electronic and electrical drive applications:
in [155], the use of NNs to mimic the long-horizon MPC policies is extended to long-horizon
CCS-MPC with experimental verification. In [156], an extension to mimic the direct MPC
solution for multilevel converters was presented and validated in a HIL environment.

It will be of interest to extend this proposal not to only mimic long-horizon direct MPC
problems but to even mimic optimal pulse pattern (OPP)s. The lack of the ability to tune the
average switching frequency during operation is a limiting factor of this approach, and methods
to overcome this limitation are of interest for future research.
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Figure 4.13: Simulative results comparing the steady-state and the dynamic performance of the proposed
NN current controller with the long-horizon FCS-MPC controller with N = 5 that was used to generate
its training data set, including steady-state operation, torque step change, torque dynamics, and a test of
the current constraints fulfilment.
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4.2 Indirect MPC

In this section, indirect MPC methods are extensively investigated for the current control
task of synchronous machines, as an example. Firstly, the inherent similarities and differences,
advantages and disadvantages, as well as costs and benefits of using indirect MPC methods over
direct MPC are presented. Following that, a thorough examination of CCS-MPC is conducted.
In a first step, the real-time implementation of a CCS-MPC scheme based on a simple LTI
model is presented, while observing the suboptimal closed-loop control performance caused
by the modelling mismatch. Following that, it is proposed to use the δu formulation in order
to obtain an offset-free tracking performance with the linear model. Thereafter, the nonlinear
current-dependent physics-based model is used within a constrained nonlinear first-principles
continuous control set model predictive control (NL-FP-CCS-MPC) scheme. Finally, and for
the sake of completeness and comparison, the analytical variant of indirect MPC using the dead-
beat principle is presented with both the linear and nonlinear models. These results serve as base
for the comparison with the proposal of using the nonlinear data-driven LSTM neural model to
design a real-time data-driven CCS-MPC as presented in the next chapter. In Appendix C, the
state-of-the-art PI-FOC is tested on similar test scenarios for benchmarking.

4.2.1 Indirect MPC: conceptual differences to direct MPC
Indirect MPC is based on using a modulation scheme to realize a continuous-time optimal

VV as an average within the sampling period by the interplay of the switches of the inverter.
The optimal VV is typically computed either numerically by minimizing a cost function over a
pre-defined prediction horizon in the CCS-MPC variant, or analytically by utilizing a deadbeat
function over the upcoming sampling period in DB-MPC. Specifically in the case of CCS-MPC,
the key characteristics of predictive control are kept, such as the incorporation of nonlinear
models, the fast dynamic response in transients, the states and inputs constraints fulfilment,
and above all, the presence of the cost function that facilitates multi-objective optimization.
This is achieved while obtaining a favorable steady-state performance. The inherent conceptual
differences between direct (FCS) and indirect (CCS) MPC schemes can be summarized in the
following:

1) The computational complexity scales linearly with the prediction horizon for CCS-MPC,
where it scales exponentially for FCS-MPC.

2) When the sampling frequency of both schemes is kept the same, CCS-MPC yields sig-
nificantly favorable steady-state performance in terms of less ripples on the tracked states in
comparison with FCS-MPC, albeit that this comes at the expense of having more switching
losses due to the use of a modulator [157].

3) Even though that when the system is reachable in transients, indirect MPC schemes can
reach the new reference state at the end of only one sampling step Ts, direct MPC schemes
can provide faster dynamic response, however, when sampled at significantly higher sampling
frequencies. This is due to the fact that the nature of the direct MPC problem as a mixed-integer
problem which is typically solved by enumeration approaches makes it possible to achieve
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(a) FCS-MPC with fs = 100 kHz, and the current is mea-
sured once at the beginning of each sampling interval.

(b) CCS-MPC with fs = 10 kHz, and the current is mea-
sured 8 times at each transition within a PWM cycle within
each sampling period.

(c) CCS-MPC with fs = 10 kHz, and the current is mea-
sured only once at the middle of each sampling period.
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Figure 4.14: An example to illustrate the conceptual
difference in transients and steady-state ripple between
FCS-MPC and CCS-MPC applied for the current con-
trol of a synchronous machine [57].

extremely fast sampling frequencies for
short prediction horizons in contrary to
CCS-MPC, especially when using paral-
lel computations capabilities by using FP-
GAs. For a comprehensive understanding
of this fact, the resolution of current mea-
surements need to be high enough to de-
tect the complete state’s evolution within
one sampling period corresponding to each
switching transition. This can be easily
done in simulation, however, in practice,
the current is mostly measured only once
at the middle of the sampling period, as
the case in all of the experimental results
throughout this dissertation.

In order to shed light on the second and
third points, a CCS-MPC and an FCS-
MPC current controllers are simulated
both with a prediction horizon of N = 1
and with no penalty on the switching ef-
fort for the current tracking of an IPMSM.
The FCS-MPC controller is sampled with
fs = 100 kHz, where the CCS-MPC con-
troller is sampled at fs = 10 kHz. The re-
sults are shown in Fig. 4.14(a) for the FCS-
MPC controller where the current is mea-
sured once at the beginning of each sam-
pling period, in Fig. 4.14(b) for the CCS-
MPC controller with eight current mea-
surements within each sampling period at
each switching state transition for the used
SVM scheme, and in Fig. 4.14(c) for the
CCS-MPC with only one current measure-
ment at the middle of each sampling in-
terval, which is the most practical choice.
Here it can be observed that in spite of be-
ing sampled at ten times higher frequency,
the FCS-MPC scheme has yielded signif-
icantly higher current ripples. Regarding
the dynamical response, it can be seen
that the new reference current could be
reached within only one sampling interval
Ts = 100 µs using the CCS-MPC scheme,
whereas it has been reached in only 40 µs
using the FCS-MPC scheme, despite in four sampling periods.
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Having the fastest possible response in transients with respect to the available energy and
physical limits of the system under control simultaneously while having an optimal steady-state
performance in terms of minimal ripples and THD content is an ultimate objective for the clas-
sical control of electrical drives. Methods along these two lines were proposed in the literature,
such as model predictive pulse pattern control (MP3C) [15, 158], which is characterized by
having fast dynamic response as in deadbeat controllers while offering an optimal steady-state
performance that yields from pre-computed OPPs [159]. However, the fact that the pulse pat-
terns are pre-computed offline leads to a loss of accountability regarding unseen disturbances,
faults, and model mismatches. Alternatively, the VSP-MPC [127, 160, 161] goes into the same
objective by applying the optimal discrete VV at a variable switching point in time, and not at
equidistant intervals as the case conventionally in direct MPC. By doing this, the steady-state
ripples are reduced while maintaining the fast transient response of direct control methods.
Nevertheless, despite that the ripples are reduced, they are still not minimal, and hence, the
THD content in steady-state can be still theoretically further improved.

To this end, indirect MPC (CCS-MPC in particular) is an attractive advanced control strat-
egy that comprises several advantages, and will be further investigated in the following sec-
tions. The investigation in the following will focus on the effect of the presence of an accurate
mathematical prediction model on the overall closed-loop control performance, the problem
formulation as well as the real-time implementation by an efficient numerical solver.

4.2.2 First-principles CCS-MPC
In the following, the general problem formulation of the CCS-MPC scheme while incorporat-

ing the first-principles model of the PMSM based on physical laws for the base example within
this dissertation of the current control is presented. Next, the proposed numerical solver based
on a slack formulation of the primal-dual IP method, which is used and deployed on the dSpace
platform for the experimental validation of the linear and nonlinear CCS-MPC schemes within
this dissertation is illustrated in details. Afterwards, experimental validation of the following
CCS-MPC schemes is presented, which include:

• linear first-principles continuous control set model predictive control (L-FP-CCS-MPC)
(i.e. incorporating an LTI model of the machine) applied to a 0.5 kW IPMSM, where the
control performance degradation caused by the model mismatch is pointed out.

• Offset-free linear CCS-MPC by the proposal of using the δu formulation, applied to the
same IPMSM.

• Linear CCS-MPC applied to a 14.5 kW SMPMSM.

• Nonlinear CCS-MPC that incorporates the current-dependent parameters of the IPMSM,
with pointing out the closed-loop performance gains of using the nonlinear model.

The scenarios of the experiments are chosen with the intention to show the effects of modelling
mismatches on the control performance under various points of transient as well as steady-state
operation.
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4.2.2.1 Problem formulation and model-based controller architecture

As the name suggests, the optimal control input in CCS-MPC is not limited anymore to
the finite-set of the inverter discrete VVs, but can lie anywhere within the hexagonal voltage
constraints in the α − β and d − q planes. In this work, the control input constraints are ap-
proximated by the inner circle inscribed within the hexagon, such that the following holds at
each discrete-time instant k:

√
u2d,k + u2q,k ≤ udc,k√

3
, where udc,k√

3
represents the radius of the cir-

cle inscribed in the hexagonal constraints. It worth to be mentioned that in case the hexagonal
constraints are considered (i.e. box constraints in the abc reference frame), a higher utilization
of the dc-link voltage is achieved, however, at the expense of distorting the phase currents while
operating in the over-modulation region. The optimization problem of the CCS-MPC for the
current tracking task of synchronous machines is stated as

min
U

J(U) (4.23a)

s.t. xk+1 = Akxk +Bkuk +Dkvk, (4.23b)
yk = Cxk, (4.23c)
xmin ≤ xk+i ≤ xmax, ∀i ∈ {1, . . . , N}, (4.23d)
umin ≤ uk+i ≤ umax,∀i ∈ {0, . . . , N − 1}, (4.23e)
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and J is defined in Eq. 1.4.(a). The model-based predictive current controller of PMSMs which
can be used for numerical or analytical, linear or nonlinear indirect MPC is depicted in Fig. 4.15.

Figure 4.15: Indirect model-based predictive current controller for synchronous machines.
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4.2.2.2 Numerical solver

Finding an approximate solution of the OCP in Eq. 4.23 in real-time is computationally chal-
lenging with respect to the available sampling times typically used in electrical drive applica-
tions. For this reason, the real-time implementations of CCS-MPC schemes were limited and
the FCS-MPC schemes have dominated the vast majority of the MPC publications within the
power electronics and electrical drives community. Nonlinear constrained CCS-MPC controller
using the Lagrangian method together with a real-time gradient method using the framework
grampc was applied on an IPMSM drive with a sampling time of 500 µs in [54], and on an
induction machine in [162]. Linear constrained CCS-MPC based on an active-set solver was
proposed in [81, 82] with a sampling time of 300 µs. Recently, the framework acado was used
for a real-time implementation of a nonlinear CCS-MPC for the current control of synchronous
reluctance machines with sampling time of 250 µs [163].

In this dissertation, a numerical solver based on a slack formulation of the primal-dual IP
method [164] is used to simplify and find an approximate solution of the stated optimization
problem in Eq. 4.23 in real-time for a prediction horizon of up toN = 2 within 100 µs and 125 µs
sampling times for the two synchronous machines used in the experimental validation. In the
following, the solver is presented in details, and in a general form to make it applicable to other
electrical drive applications. The symbols O and I represent the zero and identity matrices,
with their dimensions explicitly defined. For an efficient implementation, the barrier parameter
τ is fixed as in [165]. Furthermore, the maximum number of line search evaluations as well as
the number of the solver iterations are limited. These values are tuned until the expected perfor-
mance in real-time is achieved within the available sampling time. The solver starts iteratively
at the beginning of each discrete sampling period Ts with an initial guess of the decision vari-
ables vector ηk (i.e. primal variables vector) to repeatedly build up the Karush–Kuhn–Tucker
(KKT) system of equations with µk and υk as the vectors of the dual variables, and sssk is the
vector of the slack variables. Once the KKT system of equations is solved, a Newton direction
is decided and a line-search is performed to assure a reasonable reduction in each iteration. The
scaling factor ϵ is reduced within the line-search loop until the inequality constraints elements
of the dual variables or the slack variables are positive. Once ϵ is determined and fixed, a scaled
Newton update is done, and the updated decision variables vector ηk is computed and returned
as an output of the algorithm.

The algorithm is generically presented in Algorithm 2 in order to make it applicable for any
other optimization problems for other power electronic or electrical drive systems, where ndv,
ninq and neq represent the number of the decision variables, the number of the inequality and
equality constraints, respectively. The Lagrangian is denoted as L, and is defined as

L = J(η) + υ⊤ggg(η) + µ⊤eee(η), (4.25)

where its Hessian is denoted with H . The equality constraints are denoted by ggg , where the
inequality constraints are denoted by eee. The ◦ operation denotes element-wise multiplication.
For future work, a further speedup of the execution time of the algorithm can be made by solving
the KKT system in a more computationally-efficient manner based on the approach and results
reported in [166].
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Algorithm 2: Primal-dual IP solver
Input: ηk
Initialize τ , µk = I(ninq, 1), sssk = I(ninq, 1), υk = I(neq, 1)
for i = 1 to MaxIter do

> EvaluateH , ggg , eee, ∇ggg , ∇eee, ∇J , and rT
> Build the KKT system of equations

H(ηk,µk,υk) ∇ggg(ηk) ∇eee(ηk) O(ndv, ninq)

∇ggg(ηk)⊤ O(neq, neq) O(neq, ninq) O(neq, ninq)

∇eee(ηk)⊤ O(ninq, neq) O(ninq, ninq) I(ninq, ninq)

O(ninq, ndv) O(ninq, neq) diag(sss) diag(µ)



∆η

∆υ

∆µ

∆sss

 = −rrr T ,

with

rrr T =


∇J(ηk) +∇ggg(ηk)υk +∇eee(ηk)µk

ggg(ηk)
eee(ηk) + sssk
µk ◦ sssk − τ


> Solve the KKT system of equations, and obtain a Newton direction[
∆η ∆υ ∆µ ∆sss

]⊤.
> Compute the scaling factor ϵ ∈]0, 1] by line search.
> Initialize ϵ = 1, and its reduction scaler 0 < κls < 1
for j = 1 to MaxIterLineSearch do

> Compute an iterative step:

µt = µk + ϵ∆µ,

sss t = sssk + ϵ∆sss ;

Check if µt > 0 and sss t > 0 then
break; (fix ϵ)

end
> Decrease ϵ:

ϵ = ϵκls

end
> Compute a Newton step:

ηk = ηk + ϵ∆η,

υk = υk + ϵ∆υ,

µk = µk + ϵ∆µ,

sssk = sssk + ϵ∆sss ;

if ||rrr T ||2 ≤ threshold then
break; (an approximate solution is found)

end
end
Output: ηk



76 CHAPTER 4. FIRST-PRINCIPLES MODEL PREDICTIVE CONTROL

4.2.2.3 L-FP-CCS-MPC for an IPMSM

In this subsection, the CCS-MPC scheme is implemented for the current control of the
IPMSM shown in Fig. B.1 in Appendix B based on the control scheme shown in Fig. 4.15,
using an LTI model with fixed parameters as written in the motor data-sheet, and with a predic-
tion horizon of N = 1 step. In Fig. 4.16(a), irefq is kept constant at 5A where step changes of
irefd from −10A to 0A were made at a shaft mechanical speed of ωme = 500 rpm regulated via
the load machine. In Fig. 4.16(c), irefd is kept constant at 0A, where step changes of irefq be-
tween 15A and 5A were applied at the same speed. In both of these tests shown in Fig. 4.16(a)
and Fig. 4.16(c), the voltage drop on the inverter was not compensated for. The same tests were
repeated while including the feedforward inverter nonlinearity compensation and the results
are shown in Fig. 4.16(b) and Fig. 4.16(d), respectively. Furthermore, and to show the results
on different speeds, the reference currents of the IPMSM under control were kept constant at
irefd = −2A and irefq = 10A, where the shaft speed is stepped up and down between 500 rpm
and 1500 rpm, and the results are depicted in Fig. 4.16(e)-(f). From these results, the effects
of modelling mismatch between the mathematical model incorporated within the MPC and the
real plant can be observed. Particularly for the current control task, these effects can be in the
form of one or more of the following effects:

• Higher ripples

• Slower dynamics

• Over/under shooting

• Variant steady-state deviations (offsets)

• In severe cases, it leads to instability

4.2.2.4 L-FP-CCS-MPC for a SMPMSM

For further validation, the control scheme is implemented on the 14.5 kW SMPMSM shown
in Fig. B.2 in Appendix B, incorporating fixed-parameters LTI model, and a prediction horizon
of N = 2 steps is used. The execution time Tex is measured and depicted in Fig. 4.17. The
controller is tested with step changes of the torque-producing current irefq from 12A to 24A

at irefd = 0A and ωme = 120 rad s−1. Firstly, the currents are tracked via the linear CCS-MPC
scheme solely, and secondly, while using a discrete-time integral action as an additive control
input to compensate for the modelling mismatch. The results are depicted in Fig. 4.18. Slight
persistent offsets can be observed in Fig. 4.18(a), where they are mitigated once an additive
integrating control input is added to the MPC control input as can be seen in Fig. 4.18(b). The
further results are meant to show the dynamic performance as well as the steady-state offset
of the linear CCS-MPC controller with and without the additive discrete-time integral action
while fulfilling the input constraints. For this purpose, the voltage amplitude is limited to 200V
while the torque-producing current irefq is stepped-up from 0A to 15A at ωme = 120 rad s−1.
In Fig. 4.18(c), the results are shown for the CCS-MPC scheme without an error integrating
functionality with the voltage amplitude and its constraint depicted in Fig. 4.18(d). The same
test was repeated while including the discrete-time integral action, and the results are shown
in Fig. 4.18(e) and Fig. 4.18(f), respectively. The expense of using a simple fixed-parameters
LTI model appears again as can be seen from the overshoot in the q − axis current tracking
as well as the slight offset in the d − axis current as shown in Fig. 4.18(c). Once adding a



4.2. INDIRECT MPC 77

discrete-time integral action beside the MPC control input, an offset-free tracking is obtained
as seen in Fig. 4.18(e), however, on the expense of having more fluctuations, and the overshoot
in the q − axis current persist to occur.

0 5 10 15 20 25 30 35 40
Time / s

-15

-10

-5

0

5

10

St
at

or
 c

ur
re

nt
 / 

A

(a) Step changes of irefd at constant irefq and ωme

of 500 rpm - without inverter nonlinearity compen-
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(b) Step changes of irefd at constant irefq and ωme of
500 rpm - with inverter nonlinearity compensation.
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(c) Step changes of irefq at constant irefd and ωme

of 500 rpm - without inverter nonlinearity compen-
sation.
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(d) Step changes of irefq at constant irefd and ωme of
500 rpm - with inverter nonlinearity compensation.
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(e) Speed variation test - without inverter nonlin-
earity compensation.
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(f) Speed variation test - with inverter nonlinearity
compensation.

Figure 4.16: Step current changes and speed variation test using CCS-MPC with an LTI model, with
and without inverter nonlinearity compensation.
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Figure 4.17: The measured execution time Tex of the CCS-MPC scheme with N = 2 measured on the
dSPACE DS1007 platform of the SMPMSM test bench.

Figure 4.18: Experimental validation of the CCS-MPC scheme applied on the SMPMSM with an LTI
first-principles model: (a) tracking results without any integral action functionality, (b) tracking results
with an additive discrete-time integral action term, (c) transient of the torque-producing current irefq
from 0A to 15A at ωme = 120 rad s−1 without integral action with its corresponding voltage constraint
fulfilment shown in (d), and in (e) and (f) the same step change was made with the additive discrete-time
integral action.

4.2.2.5 Mitigation of modelling mismatch via integral action and parameters estimation: a
review

In the literature, different methods have been proposed to enhance the robustness of model-
based control schemes, and to mitigate the expense of using simple to obtain, and easy to eval-
uate LTI models for the control task of electrical machines. In this section, a review of the most
used model mismatch compensation techniques with MPC in the field of power electronics and
the control of electrical machines is made. These methods can be categorized in the following:

• Discrete-time integrator: in which an additive control input uintk is added to the MPC
control in order to obtain an offset mitigation performance. The integral control input is
computed from a feedback loop with the measured outputs and their set points, such as

uintk =
k∑
i=0

I(yi − ri), (4.26)
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where I = diag
(
Id Iq

)
is the integral gains diagonal matrix, and for the current control

problem of PMSMs y =
(
id iq

)⊤ and r =
(
irefd irefq

)⊤
. Within indirect MPC, this

additive term is added to the control inputs yielded from the MPC controller, either by
minimizing the corresponding cost functional in CCS-MPC or analytically by using a
deadbeat function in DB-MPC [56]. The VV that is applied to the plant in these cases is
then the summation of these two vectors, such as

ui−ccsmpck =uccsmpck + uintk , (4.27a)

ui−dbmpck =udbmpck + uintk , (4.27b)

for discrete-time integral CCS-MPC and for discrete-time integral DB-MPC, respectively.
The input constraints are maintained in this method by the projection method after adding
the integral term. An extension of this method to FCS-MPC was proposed in [138], where
after computing the continuous-time VV that includes both the MPC term and the integral
term, the optimal VV is transferred into the α − β plane, and the three adjacent discrete
inverter VVs are evaluated in a cost function by an enumeration approach. This method
and its application with CCS-MPC, DB-MPC, and FCS-MPC is depicted in Fig. 4.19(a).

• δu formulation: which is based on using the input increments δu as decision variables
for the optimization problem instead of the absolute control inputs u. The actual inputs
to the plant are then obtained by integrating the input increments as in Eq. 4.33. This
method is in favour to be used for offset compensation in practice in problems where
the number of the measured states does not exceed the number of the manipulated control
inputs in the vectoru [167], which is the case for the current control task of PMSM drives.
Accordingly, the states and inputs constraints need to be reformulated in terms of their
increments. An experimental validation of this method with CCS-MPC was presented
in [56]. An incremental model combined with an inductance observer was proposed in
[168] using FCS-MPC scheme, and in [169] using a DB-MPC scheme. An illustration of
this method is shown in Fig. 4.19(b).

• State-space model augmentation: with a disturbance or integral state d. The model aug-
mentation can be in the form of discrete-time integrators [170], or the most common
choice of a fictitious integrating disturbance model [167, 171–173]. The disturbance can
then be estimated with a Kalman filter or a Luenberger observer. This approach has the
advantage in the direct constraints fulfilment within the optimizer in contrary to the ad-
ditive control input in the first approach, where the projection method is needed. Such
an inclusion of the accumulative error in the cost function with the one-step FCS-MPC
was proposed in [174,175]. A model augmentation with a disturbance model with a con-
strained nonlinear CCS-MPC was presented in [163], and with an unconstrained CCS-
MPC in [176]. A recent review of disturbance observers for MPC in electrical drive
applications is made in [177]. This approach is illustrated in Fig. 4.19(c).

• Persistence step disturbance compensation: is the conventional method for MPC schemes
to deal with incorrect steady-state gains yielded from the difference between the real
model and the one used in the MPC formulation from the feedback loop. It is based on
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shifting the reference trajectory by a slight modification of the cost function, such as

J (U) =
N−1∑
i=0

||yk+1+i|k − (ek|k + rk|k)︸ ︷︷ ︸
r∗
k|k

||2Q + ||∆uk+i|k||2R, (4.28)

where ek|k represents the discrepancy between the latest predicted values for the current
time step at the previous step ỹk|k−1 and the most recent measured output yk|k, such as

ek|k = ỹk|k−1︸ ︷︷ ︸
predicted at k − 1

− yk|k︸︷︷︸
measured at k

. (4.29)

By subtracting this discrepancy from the reference trajectory, an offset-free performance
can be obtained for asymptotically stable systems [178]. This approach was applied with
a CCS-MPC controller in [81]. This method is depicted in Fig. 4.19(d).

• Online parameters estimation: is a common approach to enhance the robustness of
model-based controllers by estimating the parameters of the fixed-structure model used
in the controller online. For this purpose, different estimation techniques were proposed,
such as recursive least squares (RLS), extended and unscented Kalman filters (EKF)
and (UKF), respectively, and moving horizon estimation (MHE), to mention a few. A
detailed overview of these parameters estimation approaches for PMSMs can be found in
[179–181], and the references therein. A general schematic of the parameter estimation
approach in conjunction with MPC is shown in Fig. 4.19(e). The speed of convergence as
well as the stability of such approaches are sensitive to tuning parameters such as weights
and initial values, and thus, they may not yield an optimal performance especially in tran-
sients of high dynamic drives. Moreover, it has to be noted that at steady-state operation,
the observability matrix of the IPMSM system is ranked deficient when considering any
combination of three or all of the four parameters (Ld, Lq, Rs, and ψp) as system states,
and thus, these can not be simultaneously estimated. Only one or a combination of two
(with some restrictions, for more details the reader is referred to [180]) can theoretically
be estimated at the same time. Besides the well-known optimal parameters and state esti-
mation methods, the author has proposed in [46] a novel online model-based inductance
estimation approach in which the measured and known states and inputs are used to find
an estimate of the parameters (i.e. in that case the inducatnces Ld and Lq) by minimizing
the error between the current measurement and its predicted value at the previous time
step consecutively, such that the following quadratic optimization problem

min
Ld,Lq

∥∥∥xk − f(xk−1,uk−1)
∥∥∥2
2

(4.30)

is solved for the inductances Ld and Lq. The estimated values yielded from solving
this optimization problem are the ones which minimize the error between the measured
current and its expression in terms of one previous current measurement and the other
model parameters, therefore, this approach is highly dependent on the accuracy of the
measurements and how accurate the other model parameters are with respect to their true
values. The estimated parameters can then be fed back to the MPC algorithm and used
for states prediction. This approach can be adjusted to any other combination of two out
of the four electrical parameters of the machine model.
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Figure 4.19: An overview about the different model mismatch compensation approaches typically used
within linear MPC frameworks in electrical drives, and their integration with CCS-MPC, DB-MPC, and
FCS-MPC: (a) additive integrating control input, (b) δu formulation, (c) state-space model augmentation,
(d) persistent step disturbance compensation, and (e) online parameters estimation.

4.2.2.6 Offset-free linear CCS-MPC

To improve the robustness of the linear CCS-MPC scheme against modelling mismatches
and uncertainty, an incremental formulation of the OCP (also referred to as δu formulation) is
used in order to embed error integrating functionality that ensures an offset-free current tracking
performance. Revising the discrete-time state-space LTI model (i.e. constant inductances and
flux linkage of the permanent magnet) that represents the current dynamics of the machine,
and considering that ωel to be constant between two consecutive time instants, such as ωel,k ≈
ωel,k−1 would yield that vk ≈ vk−1, and hence, the incremental states vector is stated as:

∆xk+1 = xk+1 − xk = A∆xk +B∆uk, (4.31a)
∆uk = uk − uk−1. (4.31b)

To this end, the states prediction model can be stated in the following incremental form
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xk+1 = xk +A∆xk +B∆uk, (4.32)

where this form is devoid from the non-zero constant disturbance vk that appears in the typical
state-space representation presented in Eq. 4.23b. Taking the control input increments ∆uk as
the decision variables of the OCP, the control input being applied to the plant is expressed as

uk = ∆uk + uk−1, (4.33)

which is the addition of the computed optimal control input increment to the previous optimal
control input. In the considered case in the base example, the outputs and states vectors are
identical, and hence, a state observer is not needed, and the states can be predicted using the
current and previously measured states as well as the previous known/measured control inputs
and the model parameters. The use of the incremental state-space model to formulate the OCP,
and by considering the input increments as the decision variables benefit the closed-loop control
performance by an embedded error integration functionality that guarantees a zero steady-state
current tracking error [182]. The optimization problem is the same as stated in Eq. 4.23, with the
exception that the time-varying model in Eq. 4.23b is replaced with the incremental LTI states
prediction model in Eq. 4.32, and the used input constraints in Eq. 4.23e are to be reformulated
in terms of input increments

∆umin ≤ ∆uk+i ≤ ∆umax, ∀i ∈ {0, . . . , N − 1}, (4.34)

and is solved in real-time for a prediction horizon of N = 2. The architecture of the proposed
offset-free linear CCS-MPC scheme for the current control of PMSMs is depicted in Fig. 4.20.

For validation purposes, the controller is tested with fixed parameters with mismatches in
the inductances, resistance, and the flux linkage. Moreover, neither a compensation for the
inverter nonlinearity nor the angle delay are considered. Different step changes of both axes
currents were applied at a rotor mechanical speed of ωme = 500 rpm and the results are shown in
Fig. 4.21. It is clear that this formulation guaranteed an offset-free performance. Furthermore,

Figure 4.20: The proposed offset-free CCS-MPC for current control of synchronous machines.
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Figure 4.21: Different current tracking steps
using the proposed offset-free linear CCS-
MPC scheme.
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Figure 4.22: Steady current tracking with load
speed variation using the proposed offset-free
linear CCS-MPC scheme.

Figure 4.23: Performance comparison under a step change of irefq from 3A to 7A at a fixed irefd current
of 2A and ωme was kept at 500 rpm: (a) and (c) belong to the proposed offset-free linear CCS-MPC,
and the results in (b) and (d) belong to the classical PI-FOC for comparison.

the stator reference currents are kept at irefq = 4A and irefd =−2A, and the shaft mechanical
speed is stepped up from 400 rpm to 700 rpm and then stepped down to 200 rpm as shown
in Fig. 4.22, which manifest the robustness of the proposed scheme. Lastly, ωme was kept at
500 rpm and irefd = 2A, and a step-up change of the torque-producing current irefq from 3A to
7A is made. The results are shown in Fig. 4.23(a) for the proposed offset-free linear CCS-MPC
scheme, and the currents are filtered by taking the mean value of each 50 measurements and is
depicted in Fig. 4.23(c). The same test and measurements with using the classical PI-FOC are
shown in Fig. 4.23(b) and (d) for comparison. It is clear that the offset-free MPC controller has
a superior decoupling performance, however with a similar transient overshoot.
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4.2.2.7 NL-FP-CCS-MPC for an IPMSM

In the previous sections, it is shown that using simple LTI models for the design of MPC
controllers yield a sub-optimal closed-loop control performance. Despite that an offset-free
performance could be achieved by adding a discrete-time integrator or using the proposed δu
formulation, improving the dynamical response and minimizing current ripples would require
the use of a more accurate, sophisticated, and probably nonlinear models. To test and show the
performance gains of using the current-dependent inductances in Fig. 2.12(c) and (d), as well
as the current-dependent permanent magnet flux linkage marked in red in Fig. 2.12(a), they are
incorporated in the NL-FP-CCS-MPC scheme. The constrained optimization problem is solved
as before using the IP numerical solver presented in Algorithm. 2 for a horizon of N = 1, and
the compensation for the inverter nonlinearity as well as the inevitable angle delay is considered.

To test the steady-state current tracking performance, irefd steps from −10A to 0A at a con-
stant irefq of 5A, and then irefq steps from 15A to 5A at a constant irefd of 0A are done at
three different speeds of 250 rpm, 500 rpm, and 1000 rpm in Fig. 4.24, Fig. 4.25, and Fig. 4.26,
respectively. From these results, the benefit of using the current-dependent nonlinear model ap-
pears in terms of an offset-free tracking in both current axes without using any error integrating
functionality, as well as in terms of minimal ripples on the currents in comparison with using an
LTI model. However, at 1000 rpm (which is double the speed at which the model parameters
were obtained at), a slight offset in id is observed as seen in Fig. 4.26(a). Therefore, and for a
more accurate tracking in the whole speed range of the machine, it is recommended to obtain
the parameter maps at different speeds and to interpolate in between. Moreover, having a sim-
ple steady-state integral action functionality in the model-based control design is a necessity
to assure an offset-free performance over the whole speed range, even while using a nonlinear
model.

An expected key performance gain of using the nonlinear model of the machine is to have the
fastest possible dynamic performance of the current control with respect to the available control
input (i.e. the voltage) without over/undershoots. To investigate this, a step change of the refer-
ence torque-producing current irefq from 1A to 17A is made, and the tracking results are shown
in Fig. 4.27(a) with the used voltage amplitude and its constraint for this test case depicted in
Fig. 4.27(b). The same test is repeated at ωme = 1500 rpm, and the corresponding results are
shown in Fig. 4.27(c)-(d), respectively. Bearing in mind that the current measurements are being
obtained at the middle of the sampling period as illustrated in Fig. 2.11, and while fulfilling the
control input constraints, it is clear that the NL-FP-CCS-MPC scheme is characterized by hav-
ing fast dynamic response with minimal over/undershoot while fulfilling the input constraints.
For the d − axis current, a step of irefd from 0A to −12A is made at ωme = 500 rpm and the
results are shown in Fig. 4.27(e), and the same is repeated at 1500 rpm in Fig. 4.27(g), with their
corresponding voltage amplitudes shown in Fig. 4.27(f) and Fig. 4.27(h), respectively. Again,
the same conclusion regarding the fast dynamic performance are drawn.

Showing the robustness of the steady current tracking at load speed variation, constant refer-
ence currents of irefq = 10A and irefd = −2A are given while the shaft speed is stepped up and
down between 500 rpm and 1500 rpm, and the results are presented in Fig. 4.28. It is noticed
that the current tracking is decoupled from the speed variation. The higher current ripple at
1500 rpm in comparison with the current ripple at 500 rpm is because that the model param-
eters were obtained at 500 rpm. For machines that operate at a way higher speed range, the
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motor parameters maps have to be obtained at different speeds with the same procedure, and
it is recommended to consider the operating-dependent parameters to be functions of the speed
ωme beside the currents id, iq in a 3D LUT.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.24: Experimental current tracking steady-state results of the NL-FP-CCS-MPC at 250 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.25: Experimental current tracking steady-state results of the NL-FP-CCS-MPC at 500 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.26: Experimental current tracking steady-state results of the NL-FP-CCS-MPC at 1000 rpm.
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Figure 4.27: High dynamic test of the IPMSM using the NL-FP-CCS-MPC scheme.
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Figure 4.28: Steady current tracking with load speed variation using the NL-FP-CCS-MPC scheme.

Finally, a test scenario is made to validate the current constraints fulfilment. Firstly, the
current constraints fed to the numerical solver is set to Imax =

√
i2d + i2q = 10A and the shaft

speed is regulated via the load machine to ωme = 1000 rpm. Initially, the reference current
of the main machine is set to irefd = 0A and irefq = 0A. At time instant t = 1.5 s, irefq is
stepped up to 15A. As can be seen in the results depicted in Fig. 4.29(a), the stator current is
successfully constrained to the mean value of 10A. It is observed that the current constraints are
held as a mean value, therefore, and for applications where the absolute current value must not
be exceeded, it is recommended to subtract half of the expected ripple peak-to-peak value to the
current constraint in order to end-up with the intended limit. The same test scenario is repeated
with the current constraints being set back to their original value of 17A, and the results are
shown in Fig. 4.29(b). It is here clear that the step up in the stator current is normally achieved.

The fulfilment of the voltage and current constraints is in particular of interest for an optimal
operation of the machine with respect to its physical limit in the different operating strategies,
such as maximum torque per ampere (MTPA), maximum torque per volt (MTPV), maximum
torque per flux (MTPF), and for the FW operation [130].
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(a) Current constraints set to 10A.
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(b) Current constraints set to 17A.

Figure 4.29: Current constraints fulfilment using the NL-FP-CCS-MPC.

4.2.3 First-principles DB-MPC
An analytical alternative to solving the OCP numerically in CCS-MPC is the DB-MPC. Re-

vising the current prediction model in Eq. 2.15, and assuming that the ultimate control objective
is to be met by the end of the upcoming sampling interval k + 1, the predicted current values
will be equal to their references, such that(

id,k+1

iq,k+1

)
=

(
irefd,k+1

irefq,k+1

)
, (4.35)

hence, substituting idq,k+1 with irefdq,k+1 and solving Eq. 2.15 for udq,k would yield a VV that
minimizes the current tracking error. The controller architecture stays within the indirect model-
based current control framework depicted in Fig. 4.15. On the one side, deadbeat predictive
controllers are characterized by their very fast dynamic response, the relatively low steady-state
ripples due to the use of a modulation scheme, and the very low computational demand. On
the other side, the limitation to only one-step prediction, the absence of the cost function, and
the sub-optimal constraints fulfilment by the projection method5 are considerable drawbacks in
comparison with the numerical indirect CCS-MPC. For validation, and also to show the effect
of proper modelling in the closed-loop performance, the DB-MPC controller is tested for the
steady-state current tracking test case once with using the LTI model, and again with using the
current-dependent nonlinear model.

4.2.3.1 Linear DB-MPC

In Fig. 4.30, Fig. 4.31, and Fig. 4.32, the experimental results of the DB-MPC using a simple
LTI model at three different motor speeds of 250 rpm, 500 rpm, and 1000 rpm, respectively,
are shown. As expected, and similar to the L-FP-CCS-MPC, the modelling mismatch effects
of high current ripples and coupling, slower dynamics, and offsets did appear with different
extents depending on the operating point of the machine.

5This is important in particular for drives which operate at their maximum available input voltage (e.g. in the
FW operation), where the normalized scaling of the deadbeat solution to the voltage constraints circle might not
be optimal, as the d− axis direction needs to be prioritized.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.30: Experimental current tracking steady-state results of the linear DB-MPC at 250 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.31: Experimental current tracking steady-state results of the linear DB-MPC at 500 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.32: Experimental current tracking steady-state results of the linear DB-MPC at 1000 rpm.

4.2.3.2 Nonlinear DB-MPC

Here, the same test was repeated while using the current-dependent inductances and flux
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linkage in the DB-MPC scheme, and the results are shown in Fig. 4.33, Fig. 4.34, and Fig. 4.35.
The tracking is almost offset-free in a wide operating range with minimal ripples and coupling
effects as the case with the previously presented NL-FP-CCS-MPC.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 4.33: Experimental current tracking steady-state results of the nonlinear DB-MPC at 250 rpm.
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(b) Step changes of the q − axis current.

Figure 4.34: Experimental current tracking steady-state results of the nonlinear DB-MPC at 500 rpm.
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(b) Step changes of the q − axis current.

Figure 4.35: Experimental current tracking steady-state results of the nonlinear DB-MPC at 1000 rpm.
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Finally, to show the difference between using the LTI model and the nonlinear model in
the transient state of the DB-MPC scheme, a step-down of irefd from 0A to −10A is made at
a constant irefq of 5A and ωme = 500 rpm for the controllers with both models as shown in
Fig. 4.36(a). Moreover, a step-up of irefq from 5A to 15A at a constant irefd of 0A is made at
the same speed, and the results are shown in Fig. 4.36(b). As expected, using the LTI model
has yielded a significantly slower dynamics than the nonlinear model in both axes due to the
modelling mismatch.
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(a) Step change of irefd at a constant irefq .
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(b) Step change of irefq at a constant irefd .

Figure 4.36: Experimental comparison in transient states while using the LTI and the nonlinear models
within DB-MPC scheme.
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CHAPTER 5

Learning-based model predictive control

“Learn continually. There’s always “one more thing” to learn.”

Steve Jobs

This chapter is intended to investigate how the data-driven models of the current dynamics of
the PMSM can be used for the design of a closed-loop learning-based continuous control set
model predictive control (LB-CCS-MPC) scheme for the current control task, with the focus
on using the obtained data-driven LSTM model in Section 3.5 as an example, but in general
other data-driven models can be used similarly. Moreover, it deals with the practical challenges
of the real-time implementation of such an LB-CCS-MPC scheme within the submillisecond
sampling times typically used in electrical drive applications.

5.1 LB-CCS-MPC using the LSTM model

5.1.1 Controller design and implementation
The data-driven model based on the LSTM NN presented in Section 3.5 shows an excellent

prediction accuracy in the testing data set, which motivates its use within a model-based control
scheme. However, despite that model architecture is chosen as compact as possible to allow its
real-time implementation, one evaluation of the model requires 25 µs. This hinders the use of
this neural model in an iterative numerical optimization in the available 100 µs sampling time
for the current control loop of the IPMSM. Moreover, it is not possible to invert the neural
model in order to obtain an analytical solution for the optimal control input for a desired change
of the states. The NN that acts as a model of the current dynamics of the synchronous machine
receives the currents, voltages, and motor speed at the current and finite previous discrete time
instants as inputs, and provides the change of the currents at the upcoming discrete time instant
k + 1 as an output. On the flip side, a NN that acts as a current controller has to provide the
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Figure 5.1: Sketch illustrating the use of NNs either as a model of the current dynamics of synchronous
machines (on the left), or as a current controller (on the right) with the corresponding inputs and outputs.

optimal voltages ud,k and uq,k as an output while receiving the desired change of the currents in
the upcoming sampling interval δid,k+1 and δiq,k+1 besides the currents and the electrical speed
as inputs. An illustration of these two different uses is sketched in Fig. 5.1.

To this end, it is here proposed to solve the MPC problem offline in an explicit-like manner
while incorporating the LSTM neural model to generate a data set that represents the mapping
between the initial states and optimal control inputs for a desired evolution of the states. For
this purpose, the excitation data set presented in Section 3.4 is used here again as different
initial conditions for the constrained LB-CCS-MPC problem to be solved for limited randomly
chosen desired δidq,k+1 while using the LSTM neural model as a prediction model. For most
of the low-order power electronics and electrical machines applications, a one-step prediction
is sufficient. Therefore, the following OCP is formulated

min
ud,k,uq,k

J3 =
1

2
(δid,k+1 + (id,k − irefd,k ))

2 +
1

2
(δiq,k+1 + (iq,k − irefq,k ))

2 (5.1a)

s.t. δidq,k+1 = f(udq,k,udq,k−1, idq,k, idq,k−1, ωme,k, ωme,k−1), (5.1b)
xmin ≤ xk+1 ≤ xmax, (5.1c)
umin ≤ uk ≤ umax, (5.1d)

where δid,k+1 and δiq,k+1 are provided by the LSTM NN. The data set contains 12.6 million
data points representing different initial conditions and different desired evolution. To make the
implementation computationally efficient, the symbolic expression of the NN output is provided
via a self-written C function implemented using CasADi [183]. The optimization problem is
then solved in parallel on a CPU with 28 cores 1 using the open source software package IPOPT
(Interior Point Optimizer) [184]. With this setup, solving the MPC with the LSTM neural model

1Provided by IAV GmbH
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1 2 3

Figure 5.2: Indirect data-driven predictive current controller for synchronous machines.

for the 12.6 million different trajectories takes ≈ 6 hours to compute the optimal solutions. By
this, a data set which represents the MPC control policy is generated. After that, this mapping
is to be learned via a computationally implementable NN that approximate this control policy
in a real-time implementable manner. For this purpose, an LSTM NN with three hidden layers
is trained, with the following inputs and outputs:
Inputs: ud,k−1, uq,k−1, id,k−1, iq,k−1, id,k, iq,k, ωme,k, ωme,k−1, δid,k+1, δiq,k+1.
Outputs: ud,k, uq,k.

Once the NN is trained, fine-tuned, and it exhibits excellent approximation accuracy, all
the weights and biases are exported from python to MATLAB, and a MATLAB function that
provides the NN output is written and deployed on the dSPACE platform as a current controller
of the IPMSM. The desired changes of the currents at the upcoming sampling instant k + 1
which are fed to the NN controller are defined in a deadbeat-like way, such as:

δid,k+1 = irefd,k − id,k, (5.2a) δiq,k+1 = irefq,k − iq,k. (5.2b)

In this implementation, if the VV that the NN provides has an amplitude which lies outside of
the input circular constraints, it is projected back to within the circular constraints using the
projection method. The proposed LB-CCS-MPC scheme for synchronous machines with the
three design steps is depicted in Fig. 5.2.

5.1.2 Experimental results
The proposed LB-CCS-MPC scheme is deployed on the dSpace MicroAutoBox II to be tested

as a current controller of the IPMSM machine shown in Fig. B.1. In the following, the proposed
method is to be experimentally validated, and its steady-state and dynamic performance as
well as its robustness against speed variation are to be highlighted. The steady-state current
tracking scenarios are tested at the same three different speeds of 250, 500, and 1000 rpm, and
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the results are depicted in Fig. 5.3, Fig. 5.4, and Fig. 5.5, respectively. The proposed control
scheme exhibits excellent steady-state performance in terms of an offset-free tracking without
including an error-integrating functionality, minimal current ripples and a good decoupling.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure 5.3: Experimental steady-state tracking results of the nonlinear LB-CCS-MPC at 250 rpm.
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(b) Step changes of the q − axis current.

Figure 5.4: Experimental steady-state tracking results of the nonlinear LB-CCS-MPC at 500 rpm.
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(b) Step changes of the q − axis current.

Figure 5.5: Experimental steady-state tracking results of the nonlinear LB-CCS-MPC at 1000 rpm.
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The transient performance is tested by making a step-up of irefq from 0A to 17A at a con-
stant irefd , and a step-down of irefd from 0A to −12A at a constant irefq at two different speeds
of 500 rpm and 1000 rpm. The measured currents with their references as well as the com-
manded voltages from the proposed controller with their constraint are presented in Fig. 5.6.
It is clear that the proposed LB-CCS-MPC provides a very fast dynamic performance with
minimal overshooting and while fulfilling the input constraints. This is valid in transients in
both current axes. In Fig. 5.7, the robustness of the controller against speed variation is proved
while injecting constant currents. Finally, the execution time of the proposed control scheme
is recorded on the dSpace MicroAutoBox II platform, and is depicted in Fig. 5.8. Taking only
40 µs makes this approach by approximating beneficial MPC control policy via a NN appealing,
and computationally-implementable for other power electronic systems.

Figure 5.6: Dynamic response using the proposed LB-CCS-MPC scheme for a step-up change of irefq
from 0A to 17A at 500 rpm is shown in (a) with the stator voltage amplitude and its constraint shown
for that test in (b), the same test was repeated at 1000 rpm and the results are shown in (c) and (d), a
step-down change of irefd from 0A to −12A at 500 rpm is shown in (e) with its stator voltage in (f), and
in (g) and (h) the same results are shown for the same step change at 1000 rpm.
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Figure 5.7: Steady current tracking with load
speed variation using the nonlinear LB-CCS-MPC
scheme.
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Figure 5.8: The measured execution time Tex
of the proposed LB-CCS-MPC scheme, mea-
sured on the dSPACE MicroAutoBox II plat-
form of the IPMSM test bench.
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5.1.3 Benchmarking against the first-principles MPC
In the following, the closed-loop performance of the proposed LB-CCS-MPC scheme based

on the LSTM neural model is benchmarked against the linear and nonlinear first-principles
CCS-MPC schemes, both in steady-state and in transients.

5.1.3.1 Steady-state operation

The three controllers are tested under the same test scenario by controlling the shaft speed
to 500 rpm via the load motor and injecting constant reference current value to one axis while
stepping the other axis reference current each 5 s. The tests are carried out at the IPMSM test
bench shown in Fig. B.1, and the experimental results are shown in Fig. 5.9 for the three control
schemes. The upper sub-figures represent the test where irefq is fixed at 5A and irefd is stepped
repeatedly between −10A and 0A, where the bottom sub-figures represent the test in which irefd
is fixed at 0A and irefq is stepped repeatedly between 15A and 5A. The measurements using
the L-FP-CCS-MPC scheme are shown in orange, and using the NL-FP-CCS-MPC are shown
in black, where the ones obtained using the proposed nonlinear LB-CCS-MPC are shown in
green. These results show that the propsed novel LB-CCS-MPC exhibits a similar steady-state
tracking performance to the NL-FP-CCS-MPC in terms of offset-free tracking and miminal
current ripples, with a slightly superior decoupling performance. The two nonlinear schemes
which incorporate nonlinear models of the machine whether by first-principles (NL-FP-CCS-
MPC) or data-driven (LB-CCS-MPC) are clearly superior to the simple L-FP-CCS-MPC in the
aspects of ripples amplitude, offsets, and decoupling.

Figure 5.9: Benchmarking of the proposed nonlinear LB-CCS-MPC against the L-FP-CCS-MPC and the
NL-FP-CCS-MPC schemes in steady-state current tracking operation at 500 rpm: (a) irefq at 5A and irefd
is stepped up and down between −10A to 0A with 5A increments using the L-FP-CCS-MPC scheme,
(b) irefd at 5A and irefq is stepped up and down between 15A to 5A with 5A increments using the
L-FP-CCS-MPC scheme, (c) and (d) are for the same test scenario using the NL-FP-CCS-MPC scheme,
(e) and (f) are obtained using the proposed LB-CCS-MPC scheme with the LSTM neural model.

Reference signals, L-FP-CCS-MPC, NL-FP-CCS-MPC, LB-CCS-MPC.
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5.1.3.2 Transient operation

The aim of this subsection is to highlight the performance enhancement in transient operation
of using a nonlinear modelling approach (either data-driven or physics-based) against the by-far
widely used LTI models for model-based control schemes for the current control loop in electric
drive applications. For this purpose, a step up and a step down of irefq between 2A and 10A and
of irefd between −2A and −10A were made at ωme of 750 rpm, and the results of the proposed
LB-CCS-MPC as well as the NL-FP-CCS-MPC and the L-FP-CCS-MPC schemes are shown in
Fig. 5.10 with a zoom-in at the transient instants. Recalling the fact that the currents are being
measured at the middle of each sampling period, and considering that the current evolution
will continue with the same slope in the second half of the sampling period as within the first
half, it is shown that the proposed novel LB-CCS-MPC controller with the nonlinear LSTM
data-driven model of the machine and the physics-based NL-FP-CCS-MPC scheme take the
fastest possible way to the new references, unlike the slow L-FP-CCS-MPC that incorporates a
simple LTI model of the machine with fixed parameters. Modelling discrepancy between real
plants and the obtained models persist to occur to an extent, even when complex and nonlinear
models are obtained. Temperature variation and components aging may also lead to a modelling
mismatch. Therefore, it is a necessity for robust control to have an error integrating functionality
that compensates for modelling mismatch. Recently, an offset-free formulation with an error
integrating state for controllers based on NNs is proposed in [185], which is essential future
research direction.

Figure 5.10: Comparison of the proposed LB-CCS-MPC scheme (in green) with the L-FP-CCS-MPC
(in orange) and the NL-FP-CCS-MPC (in black) in transients at 750 rpm: (a) an ascending step in irefd ,
(b) a descending step in irefd , (c) an ascending step in irefq , (d) a descending step in irefq .
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CHAPTER 6

Conclusion and outlook

6.1 Conclusion

“Life is the art of drawing sufficient conclusions from insufficient premises.”

Samuel Butler

This dissertation has thoroughly dealt with MPC for electrical drive applications, taking the
current control loop of PMSMs as a base example. The possible use of AI methods to alle-
viate some of MPC shortcomings is investigated. Two use cases are found to be potentially
promising when the AI methods are used as an identification tool to obtain data-driven models
from collected measurements without the necessity to bring foreknowledge about the plant to
be controlled, or when used to approximate beneficial but computationally challenging control
laws, whether the computational difficulty comes from the nature of the optimization problem
or from the complexity of the incorporated model.

The foundation of the thesis is laid by defining the concept of MPC and thoroughly reviewing
the literature regarding the use of MPC for power electronic and electrical drive applications in
a chronological order, and highlighting the most recent active research areas in this domain of
research. After that, the modelling part is preceded by calling attention to the importance of the
pre-modelling foreknowledge in terms of inverter nonlinearity and angle delay compensation,
as well as the needed synchronization between the applied voltages and measured currents. The
importance of considering these effects for modelling and for model-based control is empha-
sized.

Following, the conventional and well-known nonlinear current dynamics model of the PMSM
based on the physical laws that govern the functionality of the machine was derived, and its
current-dependent parameters were obtained and smoothed via the splines interpolation method
for efficient real-time implementation within model-based control schemes. The model was val-
idated on real measurements from the test bench at different operating points, and it has shown
excellent prediction accuracy, and hence, it can be used within different MPC schemes. Along
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the modelling task, data-driven modelling is proposed as an appealing alternative, motivated by
the hope for a less modelling effort without the necessity to bring detailed physical knowledge
about the plant, along with better representation of the plant in terms of prediction accuracy.
In particular, a simple FNN was able to learn the inverter nonlinearity from the measurements
generated from one test that covers the α − β plane, and to provide the needed feedforward
compensation voltage as a function of the phase current with an accuracy close to 95% in com-
parison with the conventional LUT-based method which reacquires 3 tests and a slightly more
effort to obtain the compensation curves. Moreover, an LSTM neural model was trained to
capture the current dynamics of PMSMs purely from collected measurements using a simple PI
controller to generate an identification data set without bringing any physical knowledge about
the plant under control, and hence the obtained neural model is purely data-driven. It has shown
an excellent prediction accuracy that motivates its suitability for the use within model-based
predictive control. Remarks on a proper design of experiment to generate the identification data
set from which a data-driven model of the machine under identification can be learned are given.

Among other data-driven modelling methods revisited from the literature, the chosen mod-
elling approach via LSTM NNs features manageable computational and memory demand for
the training process of the relatively large training data set in contrary to the GP regression
modelling, as well as that it does not rely on bringing physical knowledge about the system to
be identified in contrary to the KO-based identification in which bringing the known physical
knowledge about the current dynamics proved to be advantageous in choosing the observable
functions. In addition, the prediction accuracy of the LSTM NN in terms of maximum absolute
prediction accuracy and RMSE value was the best among the other methods. For these reasons,
the neural model is chosen for further incorporation within the proposed learning-based predic-
tive control framework. By this, the conventional modelling approach based on the pysical laws
as well as the proposed data-driven model via an LSTM NN are derived, optimized, validated,
and ready for the use to design MPC control schemes.

On the control side, the general formulation of MPC is stated, and it is classified according to
whether a modulator is used or not into direct and indirect MPC. In the direct MPC, the general
concept in its simplest form of current tracking is illustrated as an example showing its intuitive-
ness, simplicity, and suitability for electrical drive applications. Next, the conventional direct
MPC scheme with a one-step prediction horizon is applied for current control of PMSMs. Ow-
ing the high current ripples due to applying only one VV at the sampling period, the necessity
to shrink the computational demand of the algorithm arises in order to achieve high sampling
frequencies, and consequently switching frequencies that would reduce the current ripples. Mo-
tivated by this, a computationally-efficient one-step direct MPC scheme for the current control
is proposed, which reduces the computational demand by 31.1%, and consequently, allows for
sampling at higher switching frequencies. After that, it is justified why multiple-vector direct
MPC is excluded from further investigation within this dissertation, and that it is recommended
to go for an indirect MPC alternative with an appropriate modulation scheme in case more than
one VV are to be applied within a sampling period to minimize ripples. The impact of extend-
ing the prediction horizon is analyzed and it is found that for a synchronous machine drive, it
yields an improved THD content at a given average switching frequency fsw,avg as well as a
better distribution of the switching events over the three phases at a given THD content. Due to
the computational intractability of the underlying mixed-integer optimization problem in long-
horizon direct MPC, which originates from the exponential increase of the needed computations
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with the increase in the prediction horizon length, it is proposed to solve the optimization prob-
lem offline on a powerful computing platform for sufficient trajectories that cover the operation
range of interest, and then to learn the optimal solution via a computationally-implementable
NN that runs in real-time as a controller with the aim to mimic the benefecial performance
characteristics of the long-horizon direct MPC that it has learned. This proposal is applied in
simulation on an IPMSM drive system to mimic the direct MPC with prediction horizon of
N = 5 steps, and the proposed NN has achieved a prediction accuracy of 85− 90% in compar-
ison to the long-horizon direct MPC that it has learned, significantly outperformed the one-step
direct MPC, and it is capable of running in real-time for power electronic and electrical drive
systems as the HIL test has revealed that it requires only ≈15 µs.

The indirect variant of MPC took the center of attention of this dissertation with the objec-
tives of evaluating the performance gain of using the derived and obtained nonlinear models,
whether by physical laws or data-driven, in comparison with the by-far most used LTI model of
the machine, as well as the real-time implementation of the indirect MPC schemes in the sub-
millisecond range, and thus, tackling the main argument against the numerical indirect MPC
for electrical drive applications. To facilitate the implementation of the numerical indirect MPC
(i.e. CCS-MPC), a numerical solver based on a slack formulation of the primal-dual IP method
is proposed and used to find an approximate solution of the associated constrained optimization
problem while incorporating the linear or nonlinear first-principles models of the machine, and
fulfilling the states and inputs constraints. The proposed solver was deployed on two dSPACE
platforms and experimentally tested for the current control loop of a SMPMSM and an IPMSM
with sampling frequencies of 8 kHz and 10 kHz, respectively, and it can be directly modified
to be used for other electrical drive systems. To evaluate the modelling effect on the closed-
loop performance, the simple LTI model of the IPMSM is firstly incorporated in a CCS-MPC
scheme with and without compensating the inverter nonlinearity. The experimental results have
suffered from remarkable tracking offsets and higher ripples on the current with poor dynamic
performance in transients. Still, these effects persists to occur with having the inverter nonlin-
earity compensated while using the LTI model of the machine. To mitigate the offsets, it is
proposed to embed an error integrating functionality within the MPC formulation by using the
input increments δu as decision variables instead of the absolute inputs u. This has been im-
plemented and tested experimentally, and has proved to guarantee an offset-free performance,
however, as expected it did not improve the performance in transients and overshooting has oc-
curred. After that, the nonlinear current-dependent model is incorporated, and it has shown an
offset-free tracking with minimal current ripples, and it has provided the fastest possible tran-
sient performance with respect to the system constraints. However, having an error-integration
functionality such as the proposed δu formulation is necessary even while using the nonlin-
ear model in order to enhance the robustness of model-based control against slight modelling
mismatches and disturbances. Moreover, the proposed CCS-MPC scheme fulfills the states
constraints which is beneficial to protect the machine and the inverter, and the input constraints
which makes the machine operates at its physical limit. This makes the proposed CCS-MPC
in particular an interesting approach especially in FW operation. From the computational per-
spective, the proposed solver has tackled the underlying optimization problem of the CCS-MPC
with either the linear or the nonlinear first principles models and with prediction horizon up to 2
steps within 70 µs. Along the lines of indirect MPC, its analytical variant (i.e. DB-MPC) that is
characterized by its significantly low computational demand and model-dependent transient and
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steady-state performance is investigated and tested. Same conclusions regarding the modelling
effects on the control performance were drawn. However, the way of tackling the constraints by
the projection method is sub-optimal, and the lack of having a cost function and consequently
multi-objective optimization are drawbacks which make the CCS-MPC the favorable indirect
variant from a design and performance perspectives, especially when multi control objectives
are simultaneously required.

Closing the loop, the possibility to incorporate the proposed data-driven model based on the
LSTM NN within a CCS-MPC scheme was investigated. One evaluation of the model takes
≈25 µs, thus, using this model in an iterative manner to solve the CCS-MPC problem is un-
manageable within the used sampling frequency of 10 kHz. Therefore, an explicit-like MPC
approach is proposed. The proposed approach is based on solving the problem offline while
covering the span of operating points of interest to generate the mapping between initial condi-
tions and desired evolution of the states to the optimal control input computed by solving the
CCS-MPC problem while using the LSTM neural model to make the current predictions. Once
a data set that represents this mapping is generated, a NN is trained to learn this mapping/control
policy in a computationally-implementable way to be deployed as a controller in real-time.
This proposal was implemented and the yielded LB-CCS-MPC was experimentally tested and
benchmarked against the CCS-MPC schemes with the linear and nonlinear physics-based mod-
els. The excellent closed-loop performance it has shown by significantly outperforming the
classical PI-FOC and the L-FP-CCS-MPC, and exhibiting similar performance in comparison
with the NL-FP-CCS-MPC, have cemented the benefit of the two use cases of AI methods with
MPC in the area of power electronic and electrical drive systems, these are: modelling purely
from the measurements without the necessity for prior physical knowledge, and approximat-
ing beneficial but computationally-complex control laws in a computationally-implementable
manner.

6.2 Potential future research directions

The following research directions are from the author’s point of view attractive, and needed
for further advancement of MPC in the domain of power electronic and electrical drive applica-
tions:

• Extending the application of data-driven modelling further than the current dynamics to
address specific KPIs. One possibility in this direction is to benefit from data-driven mod-
elling to enhance the acoustic modelling of the machine to improve the noise, vibration,
and harshness (NVH) behaviour of the drive.

• Developing dedicated efficient numerical solvers for the nonlinear CCS-MPC to facilitate
the use of longer prediction horizons and complex nonlinear models. This step is crucial
in motivating and widening its applicability and benefit especially for high-order systems.

• Applying the proposed data-driven methods for other power electronic and electrical drive
applications where nonlinearities are harder to model via first-principles and physical
laws. For instance, modelling the current dynamics of synchronous reluctance machines
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as well as the nonlinearity of multilevel inverters/ inverters based on wide-bandgap semi-
conductors are foreseen potential examples, where data-driven modelling might outper-
form first-principles modelling.

• For the proposed NN-based controllers, the constraints fulfilment via the projection
method is considered sub-optimal, and is a direction for further investigation. Moreover,
the lack of possibility to adjust the priorities of different control objectives (e.g. to adjust
the average sampling frequency in case of NN-based direct MPC) is yet a substantial
limitation.

• Elegant error integrating functionalities with the data-driven MPC would enhance its
robustness against modelling mismatch due to aging, temperature variation and distur-
bances.

• Extending the use of NNs not only to mimic MPC polices based on complex nonlinear
models or long prediction horizons, but to mimic OPPs.
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A.5 List of symbols

R Real numbers
d
dt

Time derivative
∂f
∂x

Partial derivative of f with respect to x
abc Referring to quantities represented in the three-phase system
αβ Referring to quantities represented in the stationary two-phase

frame
dq Referring to quantities represented in the rotary two-phase frame
δ,∆ Delta operator
∇ Gradient operator
◦ Element-wise multiplication
σ Arbitrary activation function
σg Sigmoid activation function
σh Tangent hyperbolic activation function
σ
2
s Signal variance
σ
2
n Measurement noise variance
ℓ1, ℓ2 The absolute value and the Euclidean norms
ℓl, ℓu Lower and upper scaling bounds used in normalization
ℓD Length scale
δp,q The Kronecker delta
⊤ Transpose of a vector
i, j, ι Symbols used as counters
E Expectation
Var Variance
† Moore-Penrose pseudo-inverse
||.||2F The Frobenius norm
∥.∥pp Norm
|.| Absolute value of a scalar

a Weighted and biased sum of a neuron to be activated
Ac Continuous LTI state-space system matrix
A Discrete time-invariant state-space system matrix
Ak Discrete time-varying state-space system matrix, which contains

parameters as functions of the states

b Bias
bbb Bias vector
Bc Continuous LTI state-space system matrix
B Discrete time-invariant state-space system matrix
Bk Discrete time-varying state-space system matrix, which contains

parameters as functions of the states

ccc LSTM cell state vector
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c̃cc LSTM cell input activation vector
Cc Continuous LTI state-space system matrix
C Discrete time-invariant state-space system matrix

D Inputs dimension of the training data set
dMissing
a Faulty duty cycle in phase a due to the VSI nonlinear effect
dMissing
b Faulty duty cycle in phase b due to the VSI nonlinear effect
dMissing
c Faulty duty cycle in phase c due to the VSI nonlinear effect
d Disturbance or integral state vector
D Training data set
Dc Continuous LTI state-space system matrix
D Discrete time-invariant state-space system matrix

errmax Maximum absolute error in the current prediction
e / e Error signal or error vector as explicitly defined in the context
eee Inequality constraints vector

fsw,avg Average switching frequency
fsw,a, fsw,b, fsw,c Switching frequency of phases a, b, and c, respectively
fs Sampling frequency
fff LSTM forget gate activation vector
fc Continuous-time general nonlinear system dynamics function
f Discrete-time general nonlinear system dynamics function

ggg Equality constraints vector

hhh LSTM hidden state/LSTM cell output vector
hc Continuous-time general nonlinear output function
h Discrete-time general nonlinear output function
H The Heassian of the Lagrangian

I Amplitude of the stator current
Imax Maximum allowed current amplitude
ITHD Total harmonic distortion of the stator current
ITHD,rel Relative current THD
id d− axis stator current
iq q − axis stator current
irefd d− axis reference stator current
irefq q − axis reference stator current
iMeasured
d Measured d− axis current
iMeasured
q Measured q − axis current
iPredicted−FPd Predicted d− axis current using the physics-based first-principles

model
iPredicted−FPq Predicted q − axis current using the physics-based first-principles

model
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iPredicted−NNd Predicted d− axis current using the LSTM neural model
iPredicted−NNq Predicted q − axis current using the LSTM neural model
iPredicted−GPd Predicted d− axis current using the GP model
iPredicted−GPq Predicted q − axis current using the GP model
ifild Filtered d− axis current
ifilq Filtered q − axis current
i, iabc, iαβ , idq Stator current
irated Rated stator current
iii LSTM input gate activation vector
I Identity matrix
I Integral gains diagonal matrix

J The general cost function definition
J The general cost function formulation with persistence

step disturbance compensation
J1 The cost function used for FCS-MPC
J2 The cost function used for the proposed computationally-efficient

FCS-MPCC scheme
J3 The cost function used for the LB-CCS-MPC
j Vector containing manipulation terms used in the current prediction

equation of IPMSMs.

k Discrete time index
k(xp,xq) Covariance (also called kernel) function evaluated at xp and xq
K The Koopman operator
KKK Matrix representing a finite-dimensional approximation of the KO

Ld, Lq Absolute inductances
Ldd, Lqq Self differential inductances
Ldq, Lqd Mutual differential inductances
L Length of the data set (number of sampling instants)
L The Lagrangian

mref
m Reference mechanical torque

mm Mechanical torque

N Length of the prediction horizon
Nu, Nx, Ny Number of inputs, states, and outputs, respectively
np Number of pole pairs
nu,max, nx,max Maximum number of discrete-time delays on the inputs and states
n Maximum number of discrete-time delays of the inputs of a neural

network/ a symbol denoting the last entry of a vector
n Number of neurons in the previous layer of a neural network
NCPSP Number of computations per sampling period
NV V s Number of output voltage vectors of a power converter
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neq Number of the equality constraints for the IP solver
ninq Number of the inequality constraints for the IP solver
ndv Number of the decision variables for the IP solver
nψ Number of observable functions
N (µ,K) Gaussian (normal) distribution with mean vector µ and covariance

matrix K

ooo LSTM output gate activation vector
O(.) Notation the computational complexity of an algorithm
O Zero matrix

p Variable to define which norm is being used
P Power
Pk Transformation matrix to facilitate the direct use of the switching

states as control inputs in the state-space representation for direct
MPC design

Q Weighting matrix

Rs Stator resistance
r Output’s reference vector
r∗ Shifted output’s reference vector by the most recent prediction error
rrr T The residuals used within the IP numerical solver
R Weighting matrix

sabc Switching states vector
sssk Slack variables vector for the IP numerical solver

t Time
Ts Sampling time/ period
Tstep Time duration of each segment in the excitation data set
Tex Execution time
Te Electromagnetic torque
T refe Reference electromagnetic torque
Tptp, Tabc Coefficient matrices

udc dc-link voltage
umax Voltage constraint
umag Magnitude of the reference stator voltage vector
ud d− axis stator voltage
uq q − axis stator voltage
urefd d− axis reference stator voltage
urefq q − axis reference stator voltage
uMissing
a Voltage drop in phase a due to the VSI nonlinear effect
uMissing
b Voltage drop in phase b due to the VSI nonlinear effect



A.5. LIST OF SYMBOLS 111

uMissing
c Voltage drop in phase c due to the VSI nonlinear effect
uMissing
α α− axis component of the voltage drop due to the VSI nonlinear

effect
uMissing
β β − axis component of the voltage drop due to the VSI nonlinear

effect
uErrorα α− axis component of the voltage error between the NN output

and the real inverter nonlinearity function
uErrorβ β − axis component of the voltage error between the NN output

and the real inverter nonlinearity function
ufptp Phase-to-phase voltage of the inverter
ufabc Inverter output voltage vector
u Inputs vector
ũ Inputs vector at the beginning of a sampling period on a digital

platform
uabc, uαβ , udq Stator voltage
umin,umax Lower and upper bounds of the inputs constraints
uabc Inputs vector defined by the switching state of the power converter
urefαβ Reference stator voltage vector in the α− β frame
urefdq Reference stator voltage vector in the d− q frame
u1, . . . ,u8 The discrete VVs of a 2-levels VSI
ur1 ,ur2 ,ur3 Dynamically defined 3 discrete VVs that define the sector in which

the reference VV lies.
uinvabc Three-phase feedforward voltage compensation of the inverter

nonlinearity
∆uk Vector of control inputs increments
ui−ccsmpck Summation of the integral and the CCS-MPC control inputs
ui−dbmpck Summation of the integral and the DB-MPC control inputs
uintk Additive integral control input
U Control input sequence

v Measured disturbance vector

W Weight of a neuron
W Weighting matrix for the LSTM NN

x Input feature of a neuron
x States vector
ẋ System dynamics vector
x̃0 Initial state/ the states measurement/observations at the beginning

of the prediction period
x̃ States vector measured at the middle of a sampling period on

a digital platform
xmin,xmax Lower and upper bounds of the states constraints
xxx Input vector to the neural network
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∆xk Vector of states increments
X Input of the training data set for the Gaussian process

y Output of a neuron
y Outputs vector
ỹk|k−1 Most recent output predictions at time instant k made at k − 1
yyy Output vector of the neural network
y Output of the training data set for the Gaussian process

zzz Vector that contains the summed weighted inputs of the output
layer of a neural network

Z Weighting matrix for the LSTM NN

γ Term to represent soft states constraints

ϵ Scaling parameter in the IP numerical solver

ζ Arbitrary vector used to define vector transformation

η Decision variables vector for the IP numerical solver

θ Electrical angle of rotation

κls Reduction parameter in the IP numerical solver

λu Scalar weighting term

µk, Dual variable vector for the IP numerical solver
µ(x) Mean function of a Gaussian process

ν Arbitrary vector used to define norms
ξ Arbitrary vector used to define normalization

Π , Π̃ Two snapshot matrices representing the observables vector
computed at consecutively equidistant discrete-time sampling
with one sampling time step difference between Π and Π̃

ρ Vector of residuals/ approximation errors

τ The barrier parameter in the IP numerical solver

υk Dual variable vector for the IP numerical solver

ϕrefk Angle of the reference stator voltage vector computed by the
deadbeat principle
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ψd, ψq Flux components
ψp Permanent magnet flux linkage
ψ Vector containing the user-defined scalar observable functions

ωel Electrical angular speed
ωratedel Rated electrical speed
ωme Mechanical angular speed
ωrefme Reference mechanical angular speed
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A.6 List of abbreviations

ac Alternating current
ADC Angle delay compensation
AI Artificial intelligence
CCS-MPC Continuous control set model predictive control
CPSP Computations per sampling period
DB-MPC Deadbeat model predictive control
dc Direct current
DFIM Doubly fed induction machine
DMC Dynamic matrix control
DMD Dynamic mode decomposition
DSC Direct self control
DTC Direct torque control
EDMD Extended dynamic mode decomposition
EKF Extended Kalman filter
EMPC Explicit model predictive control
FCS-MPC Finite control set model predictive control
FCS-MPCC Finite control set model predictive current control
FNN Feedforward neural network
FOC Field oriented control
FPGAs Field programmable gate arrays
FW Field-weakening
GP Gaussian process
GPC Generalized predictive control
HIL Hardware-in-the-loop
I-CCS-MPC Integral continuous control set model predictive control
I-DB-MPC Integral deadbeat model predictive control
I-FCS-MPC Integral finite control set model predictive control
IM Induction machine
IP Interior-point
IPMSM Interior permanent magnet synchronous motor
KKT Karush–Kuhn–Tucker
KO Koopman operator
KPI Key performance index
LB-CCS-MPC Learning-based continuous control set model predictive control
LCL Inductive-capacitive-inductive
L-FP-CCS-MPC Linear first-principles continuous control set model predictive

control
LSTM Long-short term memory
LTI Linear time-invariant
LUT Lookup table
MBPC Model-based predictive control
MCUs Microcontrollers
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MHE Moving horizon estimation
ML Machine learning
MLP Multilayer perceptron
MPC Model predictive control
MP3C Model predictive pulse pattern control
MSE Mean-squared error
MTPA Maximum torque per ampere
MTPF Maximum torque per flux
MTPV Maximum torque per volt
MV-MPC Multiple vector model predictive control
NL-FP-CCS-MPC Nonlinear first-principles continuous control set model predictive

control
NN Neural network
NPC Neutral point clamped
NVH Noise, vibration, and harshness
OCP Optimal control problem
OPP Optimal pulse pattern
PI Proportional-integral
PI-FOC Field oriented control based on proportional-integral controllers
PMSM Permanent magnet synchronous motor
PWM Pulse width modulation
ReLu Rectified linear unit
RLS Recursive least squares
RMSE Root-mean-squared error
SISO Single-input single-output
SMPMSM Surface-mounted permanent magnet synchronous motor
SQP Sequential quadratic programming
SVM Space vector modulation
THD Total harmonic distortion
UKF Unscented Kalman filter
VSI Voltage source inverter
VSP-MPC Variable switching point model predictive control
VV Voltage vector
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APPENDIX B

Test benches

In this appendix, the test benches that were used to experimentally validate the proposed mod-
elling and control methods throughout this dissertation are introduced, with the corresponding
real-time platforms, power converters, and measurement systems. The first test bench was built
at IAV GmbH in Gifhorn, Germany, and it has been used as the main test bench were most of
the methods have been validated. The second test bench is at the Laboratory for Mechatronic
and Renewable Energy Systems (LMRES) in Munich University of Applied Sciences, Munich,
Germany, and it has been used minorly to validate the direct control techniques1, and to validate
the CCS-MPC algorithm on the other kind of synchronous machines (i.e. SMPMSM).

B.1 Test bench of the IPMSM

This test bench consists of two IPMSMs equipped with incremental encoder (WEDL/
WEDS5541(1000CPR)) manufactured by Nanotec Electronic GmbH & Co KG in Germany,
and coupled via a torque sensor. The main motor used for the experimental part to validate the
modelling and control contributions of this dissertation is the one on the right, and it is fed by
a 2-levels VSI within a DRV830x Kit from Texas Instruments. The three-phase currents are
measured using three LEM current sensors, and the dc-link voltage is measured using a LEM
voltage sensor as well. The current and voltage measurements are processed using a separate
measurements board designed internally at IAV GmbH. The load machine is speed-regulated.
The speed control of the load machine is done via a commercial drive controller (Ott Box
AMI1018-01) from Ott GmbH & Co. KG in Germany. The control algorithms of the main
motor are developed on MATLAB/Simulink, and the models are deployed to a dSPACE Mi-
croAutoBox II 1513/1514. The motors are supplied by a dc power supply that can provide up to
30A. The test bench is depicted in Fig. B.1, and the parameters of both motors are summarized

1As the motors in the first test bench have very low inductances, and hence, direct control methods are not
suitable for them at normal sampling frequencies.
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in Table B.1.

12

3

4 56

Figure B.1: IPMSM test bench: (1) main motor, (2) load machine, (3) torque sensor, (4) dSPACE
MicroAutoBox II 1513/1514, (5) 2-levels VSI with the phase currents and dc-link voltage sensors and
their corresponding measurements board, (6) Speed regulator for the load machine from Ott GmbH.

Table B.1: Parameters of the IPMSMs shown in Fig. B.1.

Name Nomenclature Value

dc-link voltage udc 48V

Maximum current irated 17A

Stator resistance Rs 38.5mΩ

d− axis inductance Ld 50 µH

q − axis inductance Lq 65 µH

Sampling frequency fs 10 kHz

Flux linkage ψp 0.02Wb

B.2 Test bench of the SMPMSM

This test bench consists of a SMPMSM as a main machine where the proposed control al-
gorithms are to be tested and deployed, and a doubly fed induction machine (DFIM) as a load
machine. A ROD 486 incremental encoder from DR. JOHANNES HEIDENHAIN GmbH with
2048 pulses per revolution is equipped to the SMPMSM and is connected to a DS3002 board.
The currents and dc-link voltage measurements are processed by the controller via DS2004
analog to digital converter board. The inverter gate signals are being sent via a DS5104 PWM
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board. The control algorithms are deployed on a dSPACE DS1007 platform, and the motor is
fed by a conventional 2-levels VSI from SEW-Eurodrive GmbH & Co KG. The test bench is
depicted in Fig. B.2, and the parameters of the SMPMSM are summarized in Table B.2, where
the parameters of the load machine are summarized in Table B.3.

1 23

5

4

Figure B.2: SMPMSM test bench: (1) main motor (SMPMSM), (2) load machine (DFIM), (3) torque
sensor, (4) dSPACE DS1007 platform, (5) 2-levels VSI from SEW-Eurodrive GmbH & Co KG.

Table B.2: Parameters of the SMPMSM shown in Fig. B.2.

Name Nomenclature Value

dc-link voltage udc 560V

Power P 14.5 kW

Rated speed ωratedel 209 rad s−1

Stator resistance Rs 0.15Ω

d− axis inductance Ld 3.4mH

q − axis inductance Lq 3.4mH

Sampling frequency fs 8 kHz

Flux linkage ψp 0.375Wb
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Table B.3: Parameters of the DFIM shown in Fig. B.2.

Name Value

dc-link voltage 560V

Stator line-line voltage 400V

Power 10 kW

Rated speed 157 rad s−1

Stator resistance 0.72Ω

Rotor resistance 0.55Ω

Stator inductance 73.5mH

Rotor inductance 86mH

Mutual inductance 60mH

Sampling frequency 8 kHz
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APPENDIX C

Classical PI-FOC

In this appendix, the state-of-the-art classical field oriented control (FOC) with proportional-
integral controllers is briefly presented, and results for the test scenarios used to validate the
different predictive controllers throughout the dissertation are obtained here with the PI-FOC
scheme for benchmarking. This control is based on the instantaneous decoupling of the direct
and quadrature components of the electrical machine’s current in order to permit the separate
control of the torque and flux of the machine. Often, it is combined with a feedforward decou-
pling network to allow the independent current control of each axis in the d− q reference frame
[186]. The schematic diagram of the classical PI-FOC for the current control of synchronous
machines is depicted in Fig. C.1.

Figure C.1: Indirect proportional-integral field-oriented current controller for synchronous machines.
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The steady-state current tracking results of both axes using the classical PI-FOC scheme are
shown for the three mechanical speeds of 250 rpm, 500 rpm, and 1000 rpm in Fig. C.2, Fig. C.3,
and Fig. C.4, respectively, as used as a steady-state test scenario with the predictive controllers.
Obviously, the currents do suffer from coupling and overshoots.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure C.2: Experimental steady-state results of the PI-FOC at 250 rpm.

0 5 10 15 20 25 30 35 40
Time / s

-15

-10

-5

0

5

10

St
at

or
 c

ur
re

nt
 / 

A

(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure C.3: Experimental steady-state results of the PI-FOC at 500 rpm.
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(a) Step changes of the d− axis current.
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(b) Step changes of the q − axis current.

Figure C.4: Experimental steady-state results of the PI-FOC at 1000 rpm.
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For benchmarking, the high-dynamic test of stepping irefq from 1A to 17A and irefd from
0A to −12A at two different speeds of 500 rpm and 1500 rpm is repeated while the machine
is controlled via the classical PI-FOC scheme. The tracking results with the corresponding
voltages are shown in Fig. C.5.

Figure C.5: Dynamic response using the classical PI-FOC scheme for a step-up change of irefq from 1A
to 17A at 500 rpm is shown in (a) with the stator voltage amplitude and its constraint shown for that
test in (b), the same test was repeated at 1500 rpm and the results are shown in (c) and (d), a step-down
change of irefd from 0A to −12A at 500 rpm is shown in (e) with its stator voltage in (f), and in (g) and
(h) the same results are shown for the same step change at 1500 rpm.

Finally, the classical PI-FOC was tested to maintain constant reference currents while chang-
ing the speed via the load motor, and the results are shown in Fig. C.6. The decoupling can
be better tuned by using the identified inductances instead of the ones mentioned in the motor
data-sheet.
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Figure C.6: Reaction of the classical PI-FOC for constant current control against speed variation.
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