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Automated Geometric Digital Twinning of Bridges from Segmented

Point Clouds by Parametric Prototype Models

M. Saeed Mafipour, Simon Vilgertshofer, André Borrmann

• A reverse engineering approach is proposed for the parametric modeling

of bridges.

• Parametric Prototype Models (PPMs) are introduced to describe bridge

point clouds.

• Local and global optimization problems are defined to adjust and assemble

PPMs.

• Metaheuristic optimization algorithms are utilized to derive parameter

values.

• The method is validated with the point cloud of six bridges in Bavaria,

Germany.
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Abstract

Digital Twins (DTs) provide a promising solution for the maintenance and oper-

ation of bridges, thanks to their ability to mirror physical/structural conditions.

A bridge DT generally consists of a geometric-semantic model whose creation,

however, requires extensive manual effort. This paper presents an automated

framework to generate the parametric model of bridges from their segmented

point clouds. Following the concept of reverse engineering with parametric mod-

eling, Parametric Prototype Models (PPMs) are proposed as tools to extract

parameter values from point clouds. A local and global optimization problem is

defined to adjust and assemble PPMs into an integrated model. The proposed

approach has been validated by applying it to the point cloud of bridge com-

ponents as well as point clouds captured from six concrete bridges in Bavaria,

Germany. The results show that the proposed approach can generate the para-

metric model of bridges with a mean absolute error (MAE) of 8.71 cm.
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1. Introduction1

The transportation system of countries generally relies on road infrastruc-2

ture, including bridges that have often been constructed decades ago. To enable3

the long-term operation of bridges, the National Bridge Inspection Standards4

(NBIS) require transportation agencies to evaluate the status of bridges over5

their service life [1]. In current practice, condition assessment and bridge evalu-6

ation are primarily conducted manually, which, in turn, increases the operation7

and management costs. The current ASCE report card [2] asserts the deteriora-8

tion rate of existing bridges has exceeded the rate of repair and rehabilitation as9

the conventional methods cannot adequately provide a mechanism for efficient10

coverage of all bridges. To reduce the costs associated with the maintenance,11

management, and operation of bridges, the conventional methods for bridge12

evaluation and quality assurance can be supported by digital methods [3, 4].13

Building Information Modeling (BIM) plays a prominent role in the Ar-14

chitecture, Engineering, and Construction (AEC) industry by providing the15

geometric-semantic representation of assets. In the infrastructure domain, bridges,16

as critical structures, have been widely investigated for developing bridge infor-17

mation modeling (BrIM) in the as-designed, as-built, and as-is phases [5, 6, 7].18

BrIM provides a comprehensive 3D demonstration for Accelerated Bridge Con-19

struction (ABC), Virtual Design and Construction (VDC), and structural anal-20

ysis. A detailed comparison by Kumar et al. [8] illustrated the significant advan-21

tage of using BrIM over conventional approaches by implementing three bridge22

projects by spending five times less time. In addition to the as-designed and23

as-built phases of bridges, BrIM has been highly beneficial in the as-is phase for24

the inspection and structural health monitoring (SHM) [9, 10]. BrIM facilitates25

the identification of the exact location of sensors and enables automated sensor26

data inventory into the model [11, 12]. It presents a connector to systematically27

interpret and visualize SHM data on a 3D model that can be used appropriately28

for the instant analysis of the structure. The same applies to manual inspec-29

tions and the localization of identified defects and damages. Compared with30
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traditional 2D drawings, BrIM provides a more comprehensive representation31

in a 3D environment with the capability of continuous semantic enrichment at32

various levels. This model can be shared with the involved teams in the project33

and is used for more accurate decision-making on the possible rehabilitation of34

the structure.35

Most recently, bridge information models have been extended to the concept36

of ”Digital Twin” (DT) models [13]. The DT concept, established originally in37

the manufacturing industry [14], promises a substantial improvement in extend-38

ing the life cycle of bridges by providing a coherent digital replica mirroring the39

physical reality, including the current status of the actual asset [15]. A DT is40

defined purposefully based on its anticipated applications, serving the use cases41

and requirements that generate a DT for a specific domain. The prominent fea-42

ture of a DT is its capability to be linked with the actual asset through an access43

point to handle bidirectional updates. The interval of these updates might differ44

depending on the asset type and the desired use cases [15].45

Nonetheless, a DT must be capable of receiving and handling the required46

updates to provide an up-to-date representation of the actual asset. A bridge47

DT can be as simple as a 2D map representing the general but up-to-date infor-48

mation of the bridge or as complicated as a 3D geometric model that includes49

all the cracks and spalling on the structure, as well as the state of the inte-50

rior systems, such as pre-spanning cables. The DT will typically inherit all the51

features of BrIM, is linked with the Bridge Management System (BMS), and52

reflects the impact of the external factors on the structure [16]. All these fea-53

tures enable DT to perform as an efficient digital representation for supporting54

and facilitating the operation and maintenance of bridges.55

Photogrammetry and Terrestrial Laser Scanning (TLS) are two primary56

geodetic techniques commonly used to capture existing bridges due to the low57

manual effort required. Both techniques produce point cloud data (PCD), how-58

ever, with varying levels of accuracy and density. A comparative analysis of59

accuracy and reliability by Mohammadi et al. [17] demonstrated the capability60

of both methods in the digital twinning of bridges. TLS can generate PCD61
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Figure 1: Proposed pipeline for geometric digital twinning of bridges.

of bridges with very high measurement accuracy and level of density. At the62

same time, aerial photogrammetry is more cost-effective and appropriate for63

capturing hard-to-reach or unreachable areas of an asset.64

Despite the significant benefits of bridge DTs, the manual PCD-based cre-65

ation of the required geometric model is labor-intensive and error-prone. To66

handle this challenge, this paper presents an automated framework, as shown67

in Figure 1, to generate the parametric model of existing bridges from their seg-68

mented PCD. Following a reverse engineering approach with parametric model-69

ing, Parametric Prototype Models (PPMs) are proposed to represent the bridge70

or the bridge component geometry. These dummy models are created based71

on a set of parameters as well as constraints and fed by analyzing the bridge72

point clouds. PPMs are constant in type; however, their geometry can be ad-73

justed/updated based on the input value of parameters. They are created pur-74

posefully to end up with the anticipated geometric DT model at the start of the75

process. Leveraging the parametric design of PPMs, a list of candidates is gen-76

erated and adjusted through a local metaheuristic optimization to fit them into77

the point cloud of bridge elements. To assemble the fitted PPMs, the extracted78

parameters from the pieces are integrated through a global metaheuristic opti-79

mization. To generate the model of the entire bridge, the extracted parameter80

values are injected into the 3D PPM of the bridge. As a result, an inherently81
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consistent geometric-semantic model is obtained that not only resembles the82

input bridge point cloud but also preserves all the relations and dependencies83

between the bridge components. The prospected benefit of this approach for84

end users is the massive reduction of the effort to create the geometric model of85

the bridge from PCD.86

The key contributions are highlighted as follows:87

• The proposal of PPMs as tools to extract the value of parameters from88

bridge components that cannot be defined simply in a closed-form formu-89

lation.90

• The definition of local and global optimization problems over the PPMs91

to handle the model-fitting problem even in cases with large occlusion.92

• The introduction of metaheuristic/evolutionary algorithms as techniques93

to solve the model-to-cloud fitting optimization problems.94

• The description of a framework for the parametric assembly of bridge95

elements to achieve a parametric and highly flexible model for handling96

geometric updates and further refinements.97

This paper is structured as follows: Section 2 outlines related works in the98

scope of geometric digital twinning or modeling bridges and the theoretical99

background of the proposed method. Section 3 describes a novel method for100

the piece-wise parametric modeling of bridge elements from PCD. This section101

further addresses the assembly problem for geometric digital twinning of the102

entire bridge. Section 4 develops the required algorithms to process segmented103

point clouds and proposes a metaheuristic algorithm to solve the model-to-cloud104

fitting problem. Section 5 demonstrates the real-world applications of the pro-105

posed approach and quantifies its precision in the parametric modeling of six106

single-span bridges as well as other bridge components. Section 6 compares the107

proposed method with other existing methods and evaluates its performance108

in point clouds with occlusion. This section also demonstrates the editability109

of the model for further refinements. The paper finally ends with a conclusion110
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in Section 7 discussing the development of our research, the significant find-111

ings, including known limitations, possible generalizations, and topics for future112

research.113

2. Background and related research114

This section presents an overview of the techniques used to create a para-115

metric prototype model (PPM) as a basis for model fitting. Furthermore, a116

summary of various existing methods to automate the generation of 3D geom-117

etry and parametric models from PCD is provided. On this basis, the novelty118

of the presented approach is highlighted in comparison to similar methods.119

2.1. Parametric and procedural modeling120

Parametric modeling is a solid modeling approach used in creating geometric121

models. This concept was developed in the 1990s [18] to capture design intent122

based on a set of features and constraints. While applied primarily in mechanical123

engineering, the concept has also been increasingly used to create adaptable124

models of infrastructure facilities [19, 16]. Two-dimensional parametric sketches125

form the basis of a parametric model. They are composed of geometric objects126

and parametric constraints. In a parametric model, particular dimensions such127

as positions, heights, and widths are defined using variables instead of fixed128

numerical values. This feature aids designers in altering a design or exploring129

different variants immediately, as shown in Figure 2. The set of parametric130

constraints that all major constraint solvers implement is defined as the standard131

geometric constraint language [20]. It comprises the dimensional constraints for132

distances and angles and geometric constraints to preserve the geometric shape.133

The core concept of procedural modeling is to store not only the outcome134

of a modeling process but also the sequence of creating sketches and modeling135

operations, called the model construction history. Models created this way are136

called procedural models or construction history models. They use the concept137

of parametric modeling to create flexible 2D sketches. These sketches form the138
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Parameter Control

Figure 2: Adjusting parameters value of a parametric model.

basis for the procedural operations that generate 3D geometry by Extrusions,139

Sweeps, Lofts, or Boolean operations [21].140

2.2. Reverse engineering in CAD141

Reverse engineering is the process of dismantling a system or model to re-142

alize how it accomplishes a task. In computer-aided design (CAD), reverse143

engineering has been a fundamental problem addressed with various techniques144

over the years [22, 23]. All reverse engineering processes consist of three basic145

steps: Information Extraction, Modeling, and Review. Information extraction146

is the process of gathering information from the desired system. Modeling is147

acquiring and combining data to create the geometry, and review is the testing148

process of the resulting model. Reverse engineering can facilitate the model149

creation process from scanned data through parametric modeling. Depending150

on the model type the scan data represents, the parametric model of the object151

can be created. Due to the parametric design of the model, it can be compared152

(reviewed) with the scanned data and be further altered to reach a higher level153

of similarity. Recently, this CAD approach has also been of interest to leverage154

prior knowledge about the topological and existing rules in PCD to model the155

geometry of objects [24, 25].156

2.3. Metaheuristic and evolutionary optimization157

Metaheuristic and evolutionary computation is a sub-field of artificial in-158

telligence and soft computing to solve optimization problems, especially with159

incomplete or imperfect data information [26]. The evolution of biological160
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and natural systems has inspired most metaheuristic algorithms [27, 28]. Con-161

trary to gradient-based optimization algorithms, metaheuristic algorithms are162

derivative-free and not dependent on the closed-form formulation of the objec-163

tive function. This feature enables them to optimize nonlinear, multi-modal,164

and multivariate functions whose derivatives are not computable. Metaheuris-165

tic algorithms, similarly to other optimization techniques, require an objec-166

tive/fitness function to evaluate the quality of the model. Most metaheuristic167

algorithms such as Particle Swarm Optimization (PSO) [29], Genetic Algorithm168

(GA) [30], Teaching Learning Based Optimization (TLBO)[31], Grey Wolf Opti-169

mizer (GWO) [32], and Firefly Algorithm (FA) [33] are population-based. This170

means a list of solutions/candidates is proposed initially based on the problem171

space (discrete or continuous) and the ranges of the parameters. This list is172

further improved by considering the fitness function value and the algorithm173

strategy. Finally, the best solution is reported as the global optimum location174

in the space of the problem.175

2.4. State of the Art176

Various methods have been proposed to model the geometry of three-dimensional177

bodies from PCD automatically or semi-automatically. The proposed approaches178

generally provide the inputs for solid modeling approaches to represent a geom-179

etry with a desired level of abstraction or details. Leveraging the closed-form180

description of primitive shapes and providing an objective function to evalu-181

ate the closeness of primitives to points, various techniques have been proposed182

to address the model-to-cloud fitting problem. On top of them, the RAN-183

dom SAmple Consensus (RANSAC) algorithm [34], Hough transform [35], and184

least squared optimization algorithms [36] can be mentioned. Most recently,185

deep learning models have also been capable of using the objective function of186

primitive shapes to automate the simultaneous semantic segmentation and geo-187

metric modeling of primitive shapes [37]. B-rep methods have also been used to188

construct low-semantic and generic models such as meshes/patches from point189

clouds to address the emerging challenges of modeling more complex shapes190
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whose description by a closed-form formula is cumbersome. To reduce the un-191

wanted complexity of meshes in modeling and storing the geometry, bounding192

hulls such as convex hull [38], α-shape [39], x-hull [40], concave hull [41], crust193

[42], etc. have been introduced as well. These methods generally result in the194

explicit representation of the boundary points. They can illustrate the geometry195

of complicated shapes solely or in combination with CAD functionalities such as196

extrude, loft, rotate, and sweep. They, however, cannot simply/directly provide197

meaningful information about the required parameters to create a volumetric198

model.199

Lu and Brilakis [43] created the geometric digital twin of bridges from point200

clouds using a 2D ConcaveHull α-shape method [41] and generated 3D shapes201

using Industry Foundation Classes (IFC). Zhang et al. [44] detected the planar202

patches from noisy point clouds and determined the boundaries of each patch203

by the α-shaped algorithm. Wang et al. [45] employed the M-estimator SAm-204

ple Consensus (MSAC) algorithm to detect the planar faces and extracted the205

value of parameters from regular and irregular shapes through a line detection206

algorithm. Yang et al. [46] employed the principal component analysis (PCA)207

algorithm to detect the alignment of elements and extracted the value of pa-208

rameters using the RANSAC algorithm [47]. Dimitrov et al. [48] proposed an209

approach for successively fitting uniform B-Spline curves to the two-dimensional210

cross-section of point clouds. Kwon et al. [49] described a heuristic method for211

extracting the value of parameters from primitive shapes such as cuboids and212

cylinders. Justo et al. [50] generated the IFC model of truss bridges using bound-213

ing boxes of instance-segmented point clouds and collision of elements. Valero214

et al. [51] detected the planer surfaces in the point clouds and determined the215

value of parameters by measuring the distance between planes. Oesau et al.216

[52] proposed a rough feature preserving multi-scale line fitting and a graph-217

cut formulation to reconstruct a building point cloud into a mesh-based model.218

Rabbani [36] proposed a method based on least-squared optimization to model219

a piping system from its point cloud. Patil et al. [53] suggested an area-based220

adaptive hough transform to estimate single and multiple cylinder orientations221
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and reconstructed piping networks by finding the connection relationships be-222

tween pipes. Walsh et al. [54] segmented the point cloud of structural elements223

using features such as normal vectors, curvature, and connectivity of points and224

extracted the value of parameters from primitive shapes using a least-squares225

optimization algorithm. Laefer and Truong-Hong [55] proposed a kernel den-226

sity estimation (KDE) algorithm to detect the density signal of steel profiles227

and match them with the standard sections in a catalog. Yan and Hajjar [56]228

employed the RANSAC algorithm to detect the plane surfaces of steel profiles229

and model the super-structure components of bridges. Kim et al. [25] presented230

an approach based on reverse engineering for the segmentation of pipe point231

clouds through deep learning models and employed a 3D matching system to232

reconstruct 3D plant models. Li et al. [37] described a deep learning model233

to segment and estimate the parameter values of primitive shapes from point234

clouds. Barazzetti [57] proposed an approach for the parametric as-built model235

generation of complex shapes from point clouds using NURBS curves and sur-236

faces.237

2.5. Research gaps238

Despite the impressive progress in the geometric digital twinning of bridges,239

several research gaps still exist. Some of the limitations and the parts requiring240

further investigation are mentioned below:241

• Modeling complicated geometries in bridges, such as the deck, abutment,242

and parapet, has not been addressed parametrically.243

• The proposed algorithms have been mostly following a bottom-up ap-244

proach. They, thus, require many problem-specific thresholds, and their245

performance is affected by occlusion.246

• The final 3D model is not a parametric model in most similar works, i.e.,247

the model cannot receive geometric updates while this is the core feature248

of a geometric DT.249

10

Pre-
pri

nt



• It has not been adequately investigated how the elements are assembled250

into a coherent model. This aspect is even more relevant when the com-251

ponents are parametric, and the final model must preserve its parametric252

consistency.253

This paper addresses these research gaps by proposing a reverse engineering254

approach to creating PPMs and optimizing them to achieve the desired model255

of the entire bridge.256

3. Methodology257

Reverse engineering with parametric modeling is a technique commonly used258

in the industry to convert scanned data to a CAD model. Reverse engineering259

proposes the desired final model to achieve at the beginning of the process,260

while parametric modeling keeps the model adjustable for the required reviews.261

Through these techniques, the initial model can be compared and become closer262

in shape to the scanned data by adjusting the value of parameters. Consider-263

ing the desired model of the bridge, parametric prototype models (PPMs) are264

designed in this section and used to extract the value of parameters from point265

clouds. The optimized PPMs are then assembled, and the resulting parameters266

are imported into the initial model to generate the parametric model of the267

entire bridge.268

3.1. Parametric prototype model269

A parametric model includes several parameters through which it can be270

altered. Also, it comprises a set of constraints that control and preserve the271

object’s shape while being updated. In 3D modeling software, the parametric272

modeling process is started mainly by drawing 2D sketches on reference/working273

planes. These 2D sketches are refined and used by functionalities such as ex-274

trude, sweep, loft, and rotation to create a volumetric 3D model. Inspired275

by this process, we define a Parametric Prototype Model (PPM) as a dummy276

model comprising human-definable parameters and constraints that can update277
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Figure 3: Various examples of PPMs.

the shape. Figure 3 shows three typical PPMs constructed by a set of param-278

eters and constraints describing the geometric shapes. Parameters include the279

coordinate of origin, length of the edges, and angles, while geometric constraints280

might consist of horizontal, vertical, perpendicular, coincident, etc., constraints281

to restrict the geometry.282

In particular, a PPM has three features. It contains a finite number of283

parameters and constraints, has a specific object type, and is a function of284

parameter values. For instance, a 2D rectangular PPM must be described with285

only four parameters, including the coordinate of origin (Ox, Oy), length, and286

width, as this object type has these parameters in the definition. It must also287

be a function of the parameter values, i.e., it can update its shape with new288

values of a parameter, such as width.289

Contrary to the conventional model fitting methods, PPMs pave the way to290

fitting into not only the point cloud of simple geometries but also more compli-291

cated geometries that commonly exist in bridges. The programming process of292

a PPM is started from an origin and extended to other vertices based on the293

value of parameters. Concurrently, constraints such as parallelism, connectivity,294

perpendicularity, and symmetry are implicitly applied to the prototype model.295

Using Object-Oriented Programming (OOP) as an analogy, the PPM of an ele-296

ment is the instance of a class containing attributes such as dimensional values297

(i.e., parameter values) and constraints. Objects generated from the class will298

have different parameter values.299

Figure 4 shows the PPM of a typical bridge deck described by a set of300

parameters. As can be seen, any change in the value of parameters leads to301
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Figure 4: PPM of a typical bridge deck.

an instance of the bridge deck class with new dimensions. Considering a point302

cloud associated with this bridge deck, a list of candidates/solutions can be303

created and proposed for the value of dimensions the point cloud represents.304

To determine the value of parameters through a PPM, each candidate needs305

to be quantified based on its similarity to the point cloud. To this end, a306

fitness function is defined in the next section and optimized by a metaheuristic307

algorithm.308

3.2. Model-to-cloud fitting309

A PPM is defined numerically based on a set of parameters and constraints.310

Therefore, the mathematical model of the PPM cannot be expressed and derived311

simply by a gradient-based algorithm. To address this issue, metaheuristic312

algorithms can be employed to adjust PPMs and fit them into the point cloud of313

elements. To instantiate a PPM, random values can be generated in predefined314

ranges inspired by bridge engineering knowledge. To fit a PPM, the shortest315

Euclidean distance of the edges to the point cloud must be minimized.316

Considering a set of points S = {si|i = 1, ..., n}, where si ∈ R2, and a317

2D PPM described by a set of parameters X = {xr|r = 1, ...,m} with the318

lower bound lr and upper bound ur, in which xr ∈ [lr, ur], the following objec-319

tive/fitness function can be defined in the term of mean absolute error (MAE):320

F (x1, ..., xm) =
1

n

n∑
i=1

ei, (1)
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where ei is a positive value describing the shortest distance of the ith point to321

the edges and vertices of the PPM.322

A PPM can typically have any position with respect to points set in the323

space of the problem. The aforementioned function is capable of minimizing324

the distance of points to the edges of the PPM. However, it cannot guarantee325

all the edges are fitted into the point cloud. This is because some edges might326

not find any point in their vicinity. Thus, no point exists to apply a value of327

error to such edges, and the corresponding parameters to the location of these328

edges cannot be adjusted during the optimization process. In other words, these329

edges have a redundant degree(s) of freedom that must be closed.330

This case is even intensified in occluded point clouds in which some parts331

are empty of points. To improve the performance of the optimization algorithm332

and enable it to handle occlusion, the concept of active and passive edges is333

proposed.334

Definition: An edge is called active when it has at least one of the following335

conditions: 1. It possesses at least two points, or 2. It possesses at least a point336

and has a slope constraint. In any other conditions, the edge is called passive as337

it does not have enough points or constraints to contribute to the optimization338

process.339

To activate the passive edges of a PPM with the number of k edges, a new340

penalty term (λje
′
j) is defined for each edge j and added to the previous fitness341

function as follows:342

F (x1, ..., xm) =
1

n

n∑
i=1

ei +
1

k

k∑
j=1

λje
′
j , (2)

where λj is a binary value controlling the activity of edges, i.e., 0 for active343

edges and 1 for passive edges, and e′j is the value of error required to activate344

the passive edges.345

Considering the shortest distance of points to the edges, subsets of points can346

be created and assigned to each edge. Thus, the first term of the fitness function347

can be rewritten for the edges, and the following simplified fitness function is348
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achieved:349

F (x1, ..., xm) =
1

k

k∑
j=1

(ej + λje
′
j), (3)

where ej is the total distance of the edge j to its nearest points.350

To determine whether an edge is active or passive, the number of points as-351

signed to the edge must be counted during the optimization process; this number352

might vary as the PPM moves onto the plane and updates its shape. Also, the353

slope constraints of the edge, such as vertical and horizontal constraints, must354

be controlled; these constraints are constant. Using such information and con-355

sidering the definition of the active edges, the passive edges can be detected and356

activated.357

To activate a passive edge, the two neighboring edges of the passive edge are358

considered, and the value of e′j is calculated accordingly. Figure 5 shows a PPM359

with four edges in different model-fitting scenarios. Assume the edges of the360

PPM have been assigned the index j = {1, 2, 3, 4} from the left edge in clockwise361

order. Figure 5a depicts a rectangular PPM as all the edges of the PPM have362

horizontal or vertical constraints. As can be seen, there is a point close to363

each edge of the PPM; thus, the edges possess a point. Considering the relative364

position of points with respect to the edges and constraints controlling the slope365

(one point and a slope constraint), all the edges are active, and the value of error366

is only the shortest distance of edges to the points, i.e., no additional value of367

error (penalty) is required to be added (λj = 0). Figure 5b shows another368

scenario in which the left edge has no point and only has a vertical constraint.369

Since this edge has only a constraint and no point, it cannot be involved in the370

optimization process (a passive edge).371

To activate this edge and close its translational degree of freedom, a single372

point needs to be assigned to this edge from the neighboring edges to meet373

the condition of one point and a slope constraint. As both neighboring edges374

have a point and the edge has a vertical constraint, a value of error equal to375

the minimum distance of the left edge (passive edge) to the closest point of the376
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Figure 5: Various scenarios of fitting a typical PPM into a set of points.

neighboring edges is added (e′1 = min(e′11, e
′
12)). Figure 5c illustrates another377

case in which the bottom and left edges are passive. However, they both have at378

least a neighboring edge with a point through which they can be activated (one379

point and a slope constraint). In Figure 5d, the left, top, and right edges have380

no points; however, the bottom edge, the right endpoint of the top edge, and the381

top endpoint of the right edge possess a point. In this case, the point belonging382

to the endpoints can activate the corresponding edges, i.e., the top and right383

edges are still active. Nonetheless, this point cannot be used for activating the384

neighboring edges. Thus, the left edge is only activated based on the point385

belonging to the bottom edge.386

Figure 5e demonstrates a PPM in which the left edge has no slope constraint.387

Even though this edge possesses a point, it is still passive, as it needs one more388

point to satisfy the condition of two points. This edge can be activated by adding389
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the mean value of errors (e′1 = mean(e′11, e
′
12)). Figure 5f also illustrates a PPM390

in which the left and bottom edges are passive due to a lack of points. Although391

the bottom edge has a constraint and only a point from the neighboring edge392

is sufficient to activate it, the left edge has neither a constraint nor two points393

from each neighboring edge to reach the activity condition of two points. Thus,394

model fitting is impossible in this case, as the slope of the left edge cannot be395

recognized. As a result, a high error value (e′1 = 10e3) is added to decrease the396

selection probability of this PPM.397

Figure 5g illustrates a PPM whose left and top edges are passive. Even398

though the top edge only needs a point to reach the condition of a point and399

a constraint, the left edge cannot find two points from each neighboring edge400

to become activated. In the next case (Figure 5h), the left and top edges both401

have no constraint, and they are passive. The top edge already has a point,402

and it needs only a point from the neighboring edges to be activated. The left403

edge, however, has no point and needs two points, each one from a neighboring404

edge. As can be seen, the neighboring edges can give a point to this edge; thus,405

it can be activated as well. The last case shown in Figure 5i is similar to the406

previous case, while the left and top edges can only take a point from one of the407

neighboring edges. Therefore, model-fitting, in this case, is impossible as well.408

While Equation 3 is capable of model-fitting and handling occlusion to a409

large extent, it cannot ensure the equal contribution of edges to the optimiza-410

tion process. The current definition of the objective function is based on the411

distribution of points across the edges of the PPM. This distribution might vary412

from a slight bias to a severe imbalance where some edges have one point, and413

others have hundreds of points. This results in a lack of sensitivity to the move-414

ment of edges with a lower number of points. To address this challenge, the415

weighted summation of errors resulting from each edge is calculated.416

Considering a point cloud with n points and a PPM with a number of k417

edges whose edge j possesses tj points, the edge weight ωj can be calculated as418

follows:419
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∀j : 1 ≤ j ≤ k → αj =
tj
n

& ωj =
1

αj + β
, (4)

where 1 ≤ tj ≤ n,
∑k

j=1 tj = n, and β is a constant value (0.02) preventing a420

zero denominator.421

The weighted fitness function of the problem can also be rewritten, and an

optimization/minimization problem is defined for fitting a PPM into a point

cloud as below:

To minimize: F (x1, ..., xm) =
1

k

k∑
j=1

ωj(ej + λje
′
j),

Subjected to: lr ≤ xr ≤ ur

(5)

After the initialization process, a list of candidates (population) is randomly422

generated from a PPM by a metaheuristic optimization algorithm. This list will423

be then improved by adjusting the initial value of parameters and minimizing424

the value of error resulting from Equation 5. As can be seen in Figure 6, this425

optimization process leads to a PPM that resembles the input point cloud, and426

its value of parameters is a close approximation of the values the point cloud427

represents.428

The approach presented here provides an element-wise model-fitting, i.e.,429

each PPM can extract the value of parameters from a single component (face/cross-430

section). In the next section, a global optimization problem is defined to assem-431

(a) (b) (c)

Figure 6: PPM of a typical bridge deck during the optimization process: (a) iteration 1; (b)

iteration 20; (c) iteration 100.
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ble and integrate all the pieces and create the parametric model of the entire432

bridge.433

3.3. Parametric assembly434

The model-fitting process through PPMs leads to a list of parameters rep-435

resenting the point cloud of elements. To create the parametric model of the436

entire bridge, these components must be assembled consistently, e.g., dimensions437

of shared edges and faces must be equal.438

For this purpose, snapping algorithms have been generally proposed to con-439

nect and integrate pieces [58, 59]. These algorithms discover matches between440

polygons and search for adjacent vertices considering various conditions. The441

neighboring vertices are then replaced with a new vertex representing all the442

vertices. Snapping algorithms can be practical for model reconstruction and443

3D representation of bridges. However, the model cannot stay parametric in444

those algorithms as the location of vertices is a function of parameters, and this445

function needs to meet a set of constraints. Furthermore, snapping algorithms446

generally follow a bottom-up approach, starting from vertices and edges, and447

mostly require setting problem-specific thresholds. To handle this challenge, a448

top-down approach is proposed, and a global optimization problem is defined449

to assemble the bridge components.450

Figure 7 illustrates the point cloud of an abutment comprising two wing451

walls and a retaining wall. Following the proposed method in Section 3.2, a set452

of parameters can be obtained for each face/cross-section by solving element-453

wise optimization problems associated with the 2D PPMs. Herein, the value of454

parameters has been shown by xij , where i and j are indices devoted to the face455

and parameter number, respectively. In a parametric assembly problem, sets456

containing common parameters among components can be found that logically457

need to be represented by a single parameter. For instance, A2 = {x13, x24, x33}458

is a set including the values of height resulting from the initial model-fitting pro-459

cess. Considering a top-down approach, the 3D PPM of an abutment can be460

created with a group of unique parameters, among which there is only a sin-461
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Figure 7: Assembly process of a typical abutment.

gle parameter, such as p2 controlling the height of the abutment. To integrate462

PPMs, a representative value must be generated from the set A2 and applied463

to the parameter p2. Although averaging the set A2 can provide a single repre-464

sentative value, it cannot lead to a permanent solution.465

This results from the fact that a parametric model generally contains com-466

plicated dependencies and relations, and it is not apparent how the dependent467

parameters are affected by the average function. Considering the results of the468

initial element-wise model-fitting, each member of the set A2 can be a proper469

candidate for the parameter p2. The discrete set A2 can be converted to a470

continuous interval by using the min and max functions, and each value in this471

range is considered a possible value for p2 as well (min(A2) ≤ p2 ≤ max(A2)).472

Conversely, the value of the parameter p2 should apply to the PPMs as-473

sociated with the set A2 and still retain them as close as possible to their474

corresponding point clouds. To satisfy these conditions, random values of the475

parameter p2 can be generated in the interval resulting from the initial model-476

fitting, and their impact is evaluated on all the involved PPMs. In doing so,477

the value leading to the best fitting of all the PPMs can be approximated. This478

top-down method is only dependent on the proposed list of candidates for a479

parameter. This example can be extended and is expressed as an optimization480
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problem for the parametric modeling of the entire bridge.481

Let X = {xi|i = 1, ..., n} be the set of all the possible parameter values result-482

ing from fitting several PPMs into their corresponding point clouds. Following483

the reverse engineering (top-down) approach, assume P = {pj |j = 1, ...,m} is484

also the target set of parameter values required to create the parametric model485

of the entire bridge. Considering the label of parameters, the initial set X can486

be divided into smaller sets of parameters that need to be assembled. Thus,487

a family of sets is obtained A = {Aj |j = 1, ...,m}, where Aj ⊆ X and con-488

tains all the possible candidate values for the corresponding parameter pj . The489

parametric assembly process of the number of h PPMs can be described as an490

optimization/minimization problem as follows:491

To minimize: G(p1, ..., pm) =
1

h

h∑
v=1

ωvFv,

Subjected to: min(Aj) ≤ pj ≤ max(Aj)

(6)

where Fv is the fitness function described in Equation 5 and ωv is the weight492

assigned to each PPM to balance the model-fitting errors. The value of ωv can493

be calculated using Equation 4 based on the total number of points and the494

number of assigned points to each PPM.495

This objective function receives a set of parameter values, randomly gener-496

ated in ranges obtained by the initial element-wise model-fitting. It adjusts all497

the involved PPMs and fits them into the point cloud of the entire bridge.498

3.4. Model generation499

The proposed algorithms in the previous sections extract the value of param-500

eters following a reverse engineering paradigm to achieve a 3D model satisfying501

the expected applications in practice. The 2D PPMs have also been set up to502

generate the final model after assembly. To deduct the design features of model-503

ing the entire bridge, the 3D PPM can be created based on a set of parameters.504

End users can define these parameters following a level of detail (LoD) satisfying505

the anticipated applications from the model.506
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List of parameters

Figure 8: 3D PPM of a single-span concrete bridge created following reverse engineering.

This user-dependent definition of the model is highly close to the definition507

of a bridge DT as it is also created based on a set of desired use cases and508

requirements. Figure 8 demonstrates the 3D PPM of a single-span RC bridge509

created through a set of parameters to meet a desired LoD. This 3D PPM is510

completely parametric and dependent on the value of parameters. This model511

can be defined in most of the existing BIM-authoring tools. To create the512

model of the entire bridge from the bridge point cloud, the value of parameters513

extracted by the optimization algorithms after assembly can be imported into514

this model. As a result, a 3D PPM is generated that resembles the point cloud515

of the entire bridge.516

4. Developed algorithms for processing bridge point clouds517

Various algorithms are required to process segmented bridge point clouds518

and prepare them for applying PPMs. This section introduces these techniques519

and provides more details about them. In the next section, the application of520

each part is shown in the geometric digital twinning of bridge point clouds.521

4.1. Clustering and de-noising522

Multiple instances generally exist in the segmented point cloud of classes523

such as railings and abutments. To enable piece-wise model-fitting, the point524

cloud of these classes needs to be further clustered and de-noised. Density Based525

Spatial Clustering of Applications with Noise (DBSCAN) [60] is an automatic526
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clustering algorithm proposed for discovering clusters in large spatial databases.527

This algorithm starts from a random point and expands the region based on the528

local density of data points. DBSCAN can be used to cluster and refine points529

in bridges [61].530

However, setting a threshold value for density in bridges is challenging, es-531

pecially in bridge point clouds with different resolutions. Also, it is compu-532

tationally expensive and slow to process large datasets, which is common in533

bridges. To address these issues, a modified version of DBSCAN is proposed to534

cluster and de-noise segmented point clouds of bridges. As shown in Algorithm535

1, this clustering method starts from a random query point and expands the536

region based on the connectivity of points. To reduce the complexity order of537

DBSCAN from O(n2) to O(k log(n)), kd-tree is used as a data structure, and538

the neighboring points are obtained by KNN search. Any neighbor of the query539

Algorithm 1 Clustering & de-noising algorithm

Input pc: point cloud; n: number of clusters (1 for the de-noising task); r: radius;

k: number of neighbors; label: points label, initially undefined; KNN : K-nearest

neighbors search; Dist: function to calculate Manhattan distance

1: foreach p ∈ pc do

2: if label(p) undefined then

3: next cluster label← c

4: label(p)← c

5: Neighbors N← KNN(K, pc)

6: Neighbors of the query point Q← N/{p}

7: foreach q ∈ Q do

8: if label(q) undefined then

9: Distance d← Dist(q,p)

10: if d < r then

11: label(q)← c

12: Neighbors of the neighboring point S← N/{q}

13: Q← S ∪Q

14: return label
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point located within a predefined distance (radius) is added to the cluster of540

the query point, and its neighbors are also added to the list of the query point541

neighbors.542

This process is repeated for any neighboring point in the list and continues543

until all the points are evaluated and assigned to a cluster. Similarly to DB-544

SCAN, this clustering method might result in many clusters in each of which545

the connectivity conditions have been satisfied. This algorithm is used in two546

applications: clustering and de-noising. In the clustering task, the largest n547

clusters are selected as the smaller clusters are more likely to represent noise548

clusters. In the de-noising task, the first largest cluster is only extracted as the549

points in this cluster satisfy the connectivity conditions and are far from the550

points belonging to other clusters.551

4.2. Boundary points detection552

A point cloud represents the external surfaces of objects in a scene. It553

also implicitly contains semantic and geometric information about the objects.554

Depending on the use case, a point cloud can be abstracted, simplified, and555

purposefully represented with a lower number of points. In a model-fitting556

process, boundary points mostly contain the geometric information of elements.557

Hence, the detection of these points seems necessary for fitting PPMs.558

Boundary points generally have different features than interior points. Mean559

shift is one of those features proposed for detecting boundary points [62]. This560

point-level feature is expressed as each point’s distance to its neighboring points’561

mean point. In general, boundary points show a higher shift value toward their562

mean point as they cannot find neighboring points all around their vicinity. To563

detect these points, a threshold has been defined in [62], which is based on the564

distance of the query point to its nearest neighbor. However, setting the value565

of this threshold is difficult, especially in point clouds with different resolutions.566

To address this problem, a Fuzzy C-Means (FCM) algorithm is employed to567

automate the detection process of boundary points. FCM is an unsupervised568

clustering algorithm and an extension of the K-means algorithm in which the569
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(a) (b) (c)

Figure 9: Boundary points detection by FCM clustering in 3D/2D: (a) an abutment; (b) a

retaining wall; (c) a wing wall.

membership degree of data samples to clusters is expressed by fuzzy logic [63].570

Considering the value of the mean shift, points can be divided into two clusters571

with sharp features (boundary points) and points with soft features (interior572

points). To detect boundary points, the nearest neighbors of each point are573

obtained by applying KD-tree and KNN search, and the value of the mean shift574

is computed. This feature is then passed through an FCM with two clusters.575

Since the value of the mean shift is higher for boundary points, the resulting576

cluster with the higher mean value is selected as boundary points. As a result,577

the proposed threshold can be eliminated, and the required points to fit PPMs578

are detected automatically, as shown in Figure 9.579

4.3. Selection of PPMs580

Given the point cloud of a bridge component (face/cross-section), a proper581

PPM needs to be selected to describe the input sample. For instance, the582

PPM of a bridge deck cannot be used for deriving the parameter values from583

an abutment point cloud as these elements are different in type. To address584

this problem, a library/catalog of bridge elements is created in which various585

types of PPMs exist. To select the appropriate PPM, the similarity of the586

input point cloud to all the PPMs is checked. For this purpose, two methods,587

called supervised and unsupervised selection, are proposed to determine the588

PPM required for model fitting. As shown in Figure 10, both of the methods589
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(a) (b)

Figure 10: Selection of PPMs based on the input point cloud: (a) supervised selection; (b)

unsupervised selection.

are classifiers, however, with different levels of supervision.590

The supervised selection method requires a machine/deep learning model to591

be trained on the point cloud of the existing bridge elements in the catalog.592

There are many models in the literature that can be used as a point cloud593

classifier [64, 65, 66, 67]. The trained model can receive the point cloud of594

bridge elements and determine the type of PPM required for model fitting. This595

approach needs a large dataset of point clouds as well as an annotation process.596

However, the trained model can instantly select and call the appropriate PPM597

from the catalog.598

The unsupervised selection method fits each existing PPM in the library/catalog599

to the input point clouds by solving a piece-wise optimization problem. Each600

model-fitting process leads to a value of model-fitting error describing the simi-601

larity of the input point cloud to the PPM. At the end of the process, the PPM602

with the lowest value of error is selected as it is more likely to represent the603

input point cloud. In comparison with the supervised selection, this method604

does not require a dataset for training and can directly classify the point cloud605

of bridge components. However, it requires more time to test each PPM on606

the input point cloud. The supervised and unsupervised selection methods can607

both be used interchangeably for the selection of PPMs.608

26

Pre-
pri

nt



4.4. Selection of the metaheuristic algorithm609

Various metaheuristic algorithms can be used for fitting PPMs into point610

clouds. To evaluate the impact of the algorithms on the performance of the611

model, ten different metaheuristic algorithms, including Particle Swarm Op-612

timization (PSO) [29], Genetic Algorithm (GA) [30], Harmony Search (HS)613

[68], Differential Evolution (DE) [69], Invasive Weed Optimization (IWO) [70],614

Shuffled Frog Leaping Algorithm (SFLA) [71], Teaching Learning Based Opti-615

mization (TLBO) [31], Firefly Algorithm (FA) [33], Simulated Annealing (SA)616

[72], and hybrid PSO-GA [73] are tested.617

Each algorithm is run ten times to fit an I-shaped beam PPM into a point618

cloud, and the resulting mean convergence diagrams, as well as the average619

time required for model fitting, are presented. The hyperparameters of each620

algorithm have been tuned such that the best results are achieved for a spe-621

cific number of iterations in a reasonable time interval. Figure 11a shows the622

obtained convergence diagrams from the metaheuristic algorithms in a logarith-623

mic scale. As can be seen, three algorithms of PSO-GA, TLBO, and FA have624

been capable of gaining the lowest model-fitting errors, respectively. Figure 11b625

also illustrates the average required time for fitting the PPMs in which the HS626

algorithm has achieved the lowest modeling time.627

(a) (b)

Figure 11: Comparing the performance of 10 different metaheuristic algorithms in a PPM-to-

cloud fitting task: (a) Convergence diagram; (b) Convergence time.
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Comparing the results of PSO-GA, TLBO, and FA in terms of time demon-628

strates the faster performance of TLBO in the model-fitting task. Among629

these three algorithms, TLBO only needs one hyperparameter (number of parti-630

cles/population) and stopping criteria, while the two other algorithms have more631

problem-dependent hyperparameters for tuning. Therefore, TLBO can provide632

a higher level of automation with minimal user intervention. Considering the633

algorithm’s stability in convergence, the required time for model-fitting, and the634

number of hyperparameters, TLBO is selected while all other algorithms can635

also be utilized.636

5. Experiments with real-world data637

This section employs the techniques introduced in the previous sections and638

evaluates the performance of the proposed method in creating the geometric639

model of six single-span concrete bridges as well as other components that gen-640

erally exist in multi-span bridges.641

5.1. Experiment 1: Geometric modeling of six single-span concrete bridges642

The point cloud data of six single-span reinforced concrete (RC) highway643

bridges in Bavaria, Germany, is used for evaluation and model reconstruction.644

This dataset has been acquired through aerial photogrammetry by flying a drone645

around the structure and underneath the bridge deck to take photographs from646

various angles to meet a minimum 75% frontal and 60% side overlap. All the647

captured images have the same resolution of 5472 × 3078. This dataset has648

been processed by Agisoft based on Structure from Motion (SfM) to generate649

the point cloud of the structure. All the bridge samples have been subsampled650

by the uniform grid subsampling method with a grid size of 5 cm to decrease651

the processing load of the algorithms. This step led to point clouds with an652

average density of 252 points/m2 and around 2 million points per sample. As653

shown in Figure 12, the samples comprise a bridge deck, abutments (retaining654

walls and wing walls), railings, and background.655
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(a) (b) (c)

(d) (e) (f)

Figure 12: Photogrammetric PCD of six single-span RC bridges. (a-f) shows the bride sample

01-06 with a density of 246, 250, 254, 252, 251, and 257 points/m2, respectively.

Bridge point clouds need to be prepared prior to applying the PPMs and656

deriving the value of parameters. Figure 13 depicts the required preprocessing657

steps, including semantic segmentation, transformation, instance segmentation658

(clustering), and face/cross-section detection.659

Semantic segmentation is the initial step in enriching the input raw bridge660

point clouds, as shown in Figure 13a. This step separates the input point cloud661

into the point cloud of bridge elements such as abutments, bridge deck, and662

railings, as well as the background, by predicting a class label for each point.663

Semantic segmentation narrows down the initial problem from the entire bridge664

point cloud to the point cloud of bridge elements and determines the type of665

each component from which the type of the PPM can be recognized as well. This666

step has not been covered in the paper as its focus is on parametric modeling of667

bridges. However, there are various methods for semantic segmentation of point668

clouds, such as bottom-up [74, 75, 76], top-down [77, 78, 79], or deep learning-669

based [61, 80, 64]. All these research works, as well as the previous work by the670

authors of this paper [81], can be used.671

The raw bridge point clouds are not generally along the x-axis and have672

some degrees of rotation around the z-axis. For bridge point clouds with a673

straight deck (without a large horizontal curvature), it is more suitable to ro-674
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(a)

(b)

(c)

(d)

Figure 13: Required preprocessing steps for the proposed pipeline: (a) semantic segmenta-

tion; (b) transformation; (c) clustering (instance segmentation); (d) cross-section/face and

boundary points detection.

tate the point cloud around the z-axis and make it along the x-axis. Thus,675

transformation (translation and rotation) of the segmented point clouds is the676

next preprocessing step, as shown in Figure 13b. As the variance of points along677

the length of the bridge deck is significantly higher than in the other directions,678
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principal component analysis (PCA) is employed to detect the alignment of the679

bridge. To this end, the point cloud of the bridge deck is projected onto the680

xy plane, and a uniform grid subsampling is applied to remove the impact of681

overlying points resulting from the projection. Then, PCA is executed, and the682

segmented point clouds are translated and rotated around the z-axis as much683

as the angle between the principal component obtained by PCA and the x-axis.684

There is generally more than one point cloud instance in the classes of abut-685

ments and railings. Also, abutments consist of sub-elements, including a re-686

taining wall and two wing walls. Therefore, these classes need to be further687

segmented/clustered, as shown in Figure 13c. To this end, the clustering algo-688

rithm described in Section 4.1 is employed to detect the two instances in each689

class. As mentioned, this algorithm clusters the point cloud instances following690

the connectivity rules. As the point cloud instances, such as abutments and691

railings, generally stand far from each other, a connectivity radius of r = 1 m is692

considered for the instance segmentation. In order to detect the point cloud of693

the retaining wall and the wing walls, the RANSAC algorithm is employed. As694

the number of existing faces in each abutment point cloud is known (two wing695

walls and a retaining wall), the number of existing thresholds in RANSAC is696

reduced and limited to only a distance threshold from the planes that can be697

reasonably selected (herein 10 cm), over a number of iterations (herein 300) for698

each plane instance.699

The last remaining step is the detection of cross-section or boundary points700

of faces, which are required for fitting PPMs. For this purpose, a combination701

of projection, de-noising, FCM clustering, and subsampling functions/methods702

is employed, as shown in Figure 13d. The point cloud of wing walls and re-703

taining walls is projected onto 2D planes using their normal vectors detected704

by the RANSAC algorithm in the previous step. The boundary points are then705

detected by the FCM clustering algorithm proposed in Section 4.2. As the706

bridge deck point cloud is the part between the retaining walls, it is clipped and707

projected onto the yz plane. The railing point clouds are also projected onto708

the xz plane, and their boundary points are detected using the FCM clustering709
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algorithm. All these point clouds are de-noised after projection, as described in710

Section 4.1, and subsampled by uniform grid subsampling (grid size ≃ 5 to 20711

cm). In all the steps, the subsampling module is optional and can be eliminated.712

This module has been only used to decrease the processing loads of the algo-713

rithms and remove the impact of overlying points due to the projection. The714

de-noising module also checks the connectivity rules to ensure no point exists715

far from the target points.716

To derive the value of parameters, the corresponding PPM to each prepro-717

cessed point cluster is selected. As shown in Figure 13, the semantic segmen-718

tation and the clustering modules generally determine the type of the required719

PPMs for model fitting. However, in scenarios where the type of PPMs is not720

known, the supervised and unsupervised selection methods (Section 4.3) can be721

employed.722

Figure 14 shows the details of PPMs used for model fitting all the bridge723

samples. These PPMs include a bridge deck, wing wall, retaining wall, and724

railing obtained by analyzing the bridge point cloud samples to reach a desired725

LoD. All the PPMs have been initialized only once and used for the geometric726

digital twinning of all the bridge samples, i.e., no user intervention is applied to727

the PPMs from sample to sample. Most of the parameter intervals have been728

obtained by analyzing a large number of bridge data provided by the German729

bridge database ”SIB-Bauwerke” as well as empirical knowledge. For parameters730

such as the origin or width of the bridge deck that might largely vary in bridges,731

the axis-aligned bounding box (AABB) of the point clouds, with the lower left732

corner (ll) and upper right corner (ur), has been used to relatively set the initial733

values. All these intervals have also been shown in Figure 14.734

To adjust the instantiated PPMs and fit them into their corresponding point735

clouds, TLBO is employed as it showed promising performance in Section 4.4.736

This algorithm only needs a number of population/particles (75 particles) and a737

stopping criteria (300 iterations). Piece-wise optimization problems are solved738

by TLBO for each point cluster representing a bridge element. Each optimiza-739

tion process starts with a list of candidates randomly generated by the opti-740
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p5 p3

p9

p4
p6

p8p13

p7

(p1, p2)

p10

p11

p14

Bridge Deck

p12

p1: x-origin ∈ [xll, xur]

p2: y-origin ∈ [yll, yur]

p3: deck depth ∈ [0.05, 1.30]

p4: cantilever width ∈ [0.10, 1.80]

p5: cantilever slope ∈ [5◦, 75◦]

p6: parapet bottom width ∈

[0.05, 1.00]

p7: parapet bottom slope ∈

[−45◦, 0◦]

p8: parapet height ∈ [0.05, 1.20]

p9: parapet top width ∈

[0.50, 3.50]

p10: parapet top slope ∈ [−45◦, 0◦]

p11: deck width ∈ [4.00, xur − xll]

p12: deck right slope ∈ [−5◦, 5◦]

p13: deck left slope ∈ [−5◦, 5◦]

p14: deck inclination ∈ [−10◦, 10◦]
(a)

p3

p4

p5

p1, p2

Wing Wall

p1: x-origin ∈ [xll, xur]

p2: y-origin ∈ [yll, yur]

p3: width ∈ [0.30, xur − xll]

p4: slope ∈ [30◦, 80◦]

p5: height ∈ [2.00, yur − yll]

(b)

p1, p2

p3

p4

Railing

p1: x-origin ∈ [xll, xur]

p2: y-origin ∈ [yll, yur]

p3: height ∈ [0.50, 1.80]

p4: length

∈ [0.80× (xur − xll), xur − xll]

(c)
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p5

p4

p3

p1, p2 Retaining Wall

p1: x-origin ∈ [xll, xur]

p2: y-origin ∈ [yll, yur]

p3: height ∈ [2.00, yur − yll]

p4: length

∈ [0.80× (xur − xll), xur − xll]

p5: slope ∈ [−10◦, 10◦]

(d)

Figure 14: List of PPMs used for geometric digital twinning of the bridge point clouds: (a)

bridge deck; (b) wing wall; (c) railing; (d) retaining wall. xur, yur and xll, yll are the x-

and y− coordinate of the upper right and lower left corner of the axis-aligned bounding box

(AABB) surrounding the input point cloud. xur − xll and yur − yll are also the length and

the height of the AABB, respectively. The dimensions of the AABB are used for the relative

initialization of PPMs. All values are in meter (m).

mization algorithm. This list is further refined by TLBO such that the PPMs741

can be fitted into the point cloud. This process leads to a close approximation of742

the parameter values after optimization. Considering the number of four wing743

walls, two retaining walls, two railings, and a bridge deck that exists in each744

bridge point cloud, the optimization algorithm must be capable of extracting745

the value of 52 parameters. To evaluate the accuracy of the resulting models,746

the mean absolute error (MAE) of PPMs is calculated by Equation 1 that shows747

the distance of points to PPMs.748

Table 1 illustrates the MAE of PPMs after the model fitting process. Av-749

eraging the resulting values of error from the bridge samples shows that TLBO750

has been capable of modeling bridges with an MAE of 8.71 cm. Note that noises751

and other imperfections in the entire pipeline have been considered in the calcu-752

lation of MAE. Therefore, these error values show the worst case in which some753

noises or wrongly classified points still exist in the problem space. In addition,754

no external intervention has been made in the modeling process of bridges from755

the point clouds. This table also demonstrates a class-wise comparison of each756

element’s error value. As can be seen, the class Retaining Wall (RW) has re-757
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Table 1: MAE of the fitted PPMs into the point cluster of bridge elements (cm).

Sample Wing Wall (WW) Retaining Wall (RW) Railing (R) Deck Mean

WW1 WW2 WW3 WW4 RW1 RW2 R1 R2

Bridge 01 1.87 2.65 2.26 2.45 11.73 9.76 6.00 5.65 13.00 6.15

Bridge 02 6.67 5.48 8.08 5.75 35.26 37.06 7.89 9.91 12.97 14.34

Bridge 03 6.30 6.71 6.63 6.19 12.82 15.19 15.71 17.86 7.61 10.56

Bridge 04 3.28 3.28 4.83 4.83 4.74 9.65 17.84 17.85 8.05 8.26

Bridge 05 2.94 2.94 3.15 2.88 7.03 7.54 16.09 7.99 15.51 7.34

Bridge 06 2.82 2.37 2.39 3.07 9.05 4.25 10.32 9.95 5.98 5.58

Mean 4.16 13.67 11.92 10.52 8.71

sulted in the highest value of MAE. Figure 15 shows the fitted model to the758

retaining wall of Bridge 02 after optimization. As can be seen, the bottom and759

vertical edges of the PPM have horizontal and vertical constraints, thus pre-760

venting them from rotating and becoming closer to the points. This instance761

shows that the governing reverse engineering approach and the injected bridge762

engineering knowledge enforce the algorithm to generate PPMs that necessar-763

ily end up with the anticipated 3D model. Although the rotational degrees764

of freedom can be given to such edges, the 3D model must also be capable of765

accepting these new parameters as the process has been started from the final766

model. In this example, our presumption has been to generate a bridge model767

whose retaining walls have constraints on the bottom and lateral edges.768

Figure 15: Fitted retaining wall of Bridge 02 by the PPM.
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To generate the 3D model of the entire bridge, all the extracted parameters769

have been assembled by solving another optimization problem as described in770

Section 3.3. In this process, all the involved PPMs are refined again so that the771

common parameters among elements are integrated, and the PPMs still remain772

as close as possible to their corresponding point cloud.773

Figure 16 depicts the histogram of each bridge sample after the geometric774

modeling process. The vertical axis of the diagram shows the number of points775

assigned to all the involved PPMs, and the horizontal axis shows the distance776

of points to the PPMs in terms of MAE. As can be seen, a large portion of777

points has a distance of less than 5 cm from the fitted PPMs in all the samples.778

However, in samples Bridge 02 (Figure 16b) and Bridge 03 (Figure 16c), the vari-779

ation range of MAE is larger than a sample such as Bridge 06 (Figure 16f). This780

observation is also compatible with Table 1 in which the value of MAE is higher781

in Bridges 02 and 03. Comparing the point cloud of these two samples with782

(a) (b) (c)

(d) (e) (f)

Figure 16: Histogram of fitted bridges into the point clouds. a-f show the bridge samples

01-06, respectively.
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other samples shows that Bridges 02 and 03 have more differences in type with783

respect to the desired model. Hence, the generated PPMs from the model at784

the beginning of the process have not been able to completely describe/capture785

differences beyond the imposed presumptions/restrictions. This means the four786

PPMs used for modeling all the bridge components of the six samples have been787

more compatible in type (not dimensions; the same setup/initialization has been788

used for all the samples) with the point cloud of samples 01 and 04-06. As a789

result, in Bridges 03 and 04, the edges and vertices of the PPMs have not been790

able to move closer to the bridge point cloud, which, in turn, has led to a higher791

value of error.792

Table 2 shows the overall time required for preprocessing segmented point793

clouds, extracting the value of parameters, and assembling them into an inte-794

grated model. As can be seen, the modeling time of all the samples with around795

2 million points is less than 370 sec (6.16 min). This shows the massive reduction796

of the modeling time in comparison with the manual modeling processes, which797

usually take several days. To visualize the 3D model of each bridge sample,798

the parameter values are imported into the 3D PPM of the bridge according to799

Section 3.4. This process leads to the 3D geometric model of each bridge sample800

as shown in Figure 17.801

Table 2: Required time for modeling bridges from point clouds.

Sample Bridge 01 Bridge 02 Bridge 03 Bridge 04 Bridge 05 Bridge 06

Time (sec) 285.41 367.07 328.16 311.76 350.18 305.01
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Figure 17: Point cloud of bridges and their corresponding fitted geometric model. Each row

shows a bridge sample (01-06).

5.2. Experiment 2: Bridge elements802

Contrary to single-span bridges, multi-span bridges have a longer deck sup-803

ported by piers. The deck of multi-span bridges generally has vertical and804

horizontal curvatures and cannot be described properly by a single extrude805

function.806
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Figure 18: Modeling process of a typical multi-span bridge deck.

Figure 18 shows the process of modeling the deck of a typical multi-span807

bridge. To capture the curvature and changes of such bridges, the alignment808

of the deck needs to be detected in the initial step. The alignment of straight809

bridges/decks can be recognized using the PCA algorithm similar to Experiment810

1. In the case of bridges with horizontal curvature, a polynomial can be fitted811

to the deck point cloud after projection onto the xy plane. Using the bridge812

alignment, the deck point cloud can be split into smaller segments, each of which813

is placed between two planes/sections in a pre-defined distance (∆) (see Figure814

18). These segmented point clouds can be projected onto a 2D plane and fitted815

using a PPM by solving multiple piece-wise optimization problems. Note that816

a single PPM with the same initialization is used for fitting all the slices of the817

bridge deck point cloud. This model-fitting process leads to a list of parameters818

obtained from each slice. Sweeping/connecting all the PPMs along the length of819

the bridge deck results in the 3D model of the deck. However, this model might820

not be smoothed as the extracted values from PPMs have differences along the821

length of the bridge deck (Figure 18). To address this issue, the values of each822

parameter are regularized separately in three steps. First, assuming a normal823

distribution for parameter values, the outliers are removed by calculating the824

mean value (µ) of the parameter and its standard deviation (σ). Second, a825

polynomial is fitted to the values. Third, the value of the parameter is read826

from the fitted polynomial using its location.827

To clarify, assume a deck point cloud with a starting point at x = 0 and an828
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endpoint at x = 3. Considering four sections at locations such as x = {0, 1, 2, 3},829

three segments of the point cloud can be obtained and fitted by a PPM. Let830

p = {2.40, 2.50, 2.60} be the extracted values for a parameter such as the parapet831

width by fitting the three sequential PPMs. After removing outliers from the832

set p, for ex., values more and less than µ±σ (68% of data), a polynomial, such833

as ax2 + bx+ c, can be fitted to the values of the set p. Using this polynomial834

whose coefficients are known after fitting, regularized values of the parameter835

can be extracted by inserting the values of the set x into the fitted polynomial836

(Figure 18).837

Figure 19a shows the results of applying PPMs in the parametric model-838

ing of two multi-span bridges. The first bridge sample is Bridge 01 from the839

Cambridge bridge point cloud dataset [77], which shows a concrete bridge point840

cloud acquired by laser scanning. As the bridge deck is straight, PCA can be841

applied to this sample similarly to the single-span bridges. To generate the842

geometric model, the bridge deck is split into intervals of 2 m, and a PPM is843

fitted to each segment of the point cloud. The PPM of this sample is similar844

to the PPM used for the deck of single-span bridges. After extracting the value845

of parameters, outliers are removed, and a polynomial of degree two is fitted.846

As can be seen in Figure 19a, the model has been fitted into the point cloud847

completely. Calculating the distance of points to the PPMs along the length848

of the bridge deck shows an MAE of 1.67 cm/m, while noises have also been849

considered in calculating the value of error; thus, the computed value shows850

the worst case. Figure 19b also demonstrates the application of PPMs in the851

geometric modeling of another multi-span bridge captured in Munich, Germany.852

Contrary to Experiment 1, this sample has been acquired through laser scan-853

ning. In comparison with the previous bridge sample, this bridge deck is more854

complicated in shape as it has four T-shaped concrete girders. To select the855

appropriate type of PPM for describing the point cloud sample, the unsuper-856

vised selection method proposed in Section 4.3 has been used, and T-shaped857

bridge decks with 3-6 girders are tested. As the value of MAE resulting from858

PPM with four girders has been lower, this type of PPM is selected. This PPM859
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(a)

(b)

Figure 19: Parametric modeling of two bridge decks from their point clouds: (a) first sample;

(b) second sample.

can also be initialized similarly to the deck of single-span bridges. The only860

difference is the existence of girders whose dimensions can be logically set up861

based on bridge engineering knowledge. In this example, a width of [0.1, 1.5]862

and a depth of [0.2, 1.5] have been considered for the girders. Also, they have863

a distance of [0.5, 3] with respect to each other, half of which belongs to the864

flange of a girder. The flange can also have a value of slope in the range of [-3◦,865
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3◦]. This bridge deck point cloud has a length of around 80 m, and it has been866

sliced every 2.5 m. This means 80/2.5 = 32 distinct optimization problems that867

need to be solved to model this bridge deck. As can be seen in Figure 19b, a868

single PPM has been capable of deriving the parameter values from all the slices869

and generating the 3D model of the deck. Averaging the values of MAE over870

the length of this bridge shows a value of 1.05 cm/m while noises still exist in871

the problem.872

Various types of piers can be seen in bridges. A common type of bridge873

pier is shown in Figure 20, which consists of a pier cap and two pier columns.874

This pier can be modeled by PPMs if the pier cap is separated from the pier875

column. To this end, an FCM clustering algorithm is used for two clusters (pier876

cap and pier column). As the feature vector of the FCM, three features are877

calculated that represent differences between these two elements. First, the pier878

cap is generally over the pier columns; thus, its points have higher values of879

z-coordinate. Second, the pier cap is a horizontal element while the pier column880

is vertical; therefore, the z-component of the points’ normal vector is higher for881

the pier cap. Third, if the pier is projected onto the xy plane, the 2D density882

of the points belonging to the pier column is higher as it is a vertical element.883

The 2D density can be calculated by counting the number of neighboring points884

placed within a circle with a predefined radius. Using these three features, the885

point cloud can be segmented.886

Figure 20: Modeling process of a typical bridge pier.

To extract the value of parameters from the pier column, the points of each887
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pier are projected, and a circular PPM is fitted. Note that a circle is a primitive888

shape; however, it can still be represented with three parameters, a center (x, y)889

and a radius (r), and its distance to the points is minimized by a metaheuristic890

algorithm. The pier cap can also be modeled by a rectangular PPM. As can891

be seen in Figure 20, the pier cap has occlusion and some noise; however, the892

PPM can still perform properly. After extracting the value of parameters, the893

elements can be assembled, and the 3D model of the pier is obtained. Averaging894

the value of MAE from fitting the pier columns and the pier cap shows an MAE895

of 1.43 cm.896

6. Discussion897

The performance of the proposed method can be evaluated in various scenar-898

ios and compared with other existing algorithms. This section further discusses899

the model fitting process by PPMs and highlights its advantages in geometric900

modeling.901

6.1. Comparison with other methods902

For comparison, the point clouds of an I-shaped beam and a bridge deck are903

fitted by PPMs, α-Concave hull [82], and RANSAC algorithm [82]. Figure 21904

visually compares these methods after applying each algorithm.905

As can be seen, PPMs have been more successful in model-fitting, thanks906

to the reverse engineering strategy governing the optimization algorithm. The907

other two methods cannot provide an exact number of parameters after model908

fitting and require another heuristic algorithm to refine their results. Therefore,909

these methods cannot directly provide a meaningful parametric model without910

any post-processing step. The proposed algorithm, however, results in a finite911

number of parameters with a close approximation of their values. It also pre-912

serves constraints such as orthogonality, parallelism, and symmetry in model913

fitting to meet the anticipated requirements.914

Table 3 compares the proposed method with the most recent methods [56,915

55, 43] in the geometric modeling of bridges or structural elements. Each column916
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(a) (b) (c)

Figure 21: Comparison the results of the model fitting approaches: (a) α-Concave hull [82];

(b) RANSAC [47]; (c) PPM (ours).

of the table represents a feature that can be a basis for comparison. The second917

column demonstrates the bridge components addressed by the methods. As can918

be seen, the two first methods are limited in covering all the components that919

generally exist in bridges and have mainly focused on steel profiles/sections,920

while the third method, in addition to steel girders, covers piers and the bridge921

deck. The third column in the table shows the core model-fitting algorithm used922

to model the geometry from point clouds.923

The first method utilizes the RANSAC algorithm for estimating the dimen-924

sions of steel profiles, while the second method uses a kernel density estimation925

(KDE) algorithm to detect the type of cross-section from a catalog. The third926

method also employs α-concave hull for more complicated geometries, such as927

the bridge deck, and a density estimation algorithm to detect the type of gird-928

ers from a catalog. The column named ”Modeling Level” shows the coverage929

level of the proposed approaches. The two first methods have been limited to930

modeling bridge components, while the next two methods have generated the931

entire model of the bridge. The Assembly column demonstrates whether the932

assembly process of elements has been described or not. As can be seen, none of933
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the other methods have addressed this problem. The next column (Accessibil-934

ity to Dimensions) represents whether the value of parameters/dimensions has935

been extracted from point clouds. The first two methods have been capable of936

obtaining the value of parameters. However, these methods have only covered937

steel sections such as girders or cross-frames. The third method has also been938

limited and only extracted the value of parameters for circular pier columns939

and steel girders. This method uses the α-concave hull for describing the more940

complicated geometries, and as discussed in Figure 21, this algorithm cannot941

solely result in the parameter values. The last column also shows whether the942

resulting model is parametric and can accept geometric updates. As can be943

seen, none of the other methods have included this feature in the geometric944

modeling.945

6.2. Occlusion resistant model-fitting946

The proposed concept of active and passive edges can improve the algo-947

rithm’s performance in fitting PPMs into occluded point clouds. This new948

fitness function definition can generate results at a competitive level with hu-949

man recognition in modeling. Figure 22 shows the results of the model fitting950

a rectangular and a trapezoidal PPM into the occluded point clouds. In some951

cases, the edges of the PPMs cannot find any point in their vicinity. Nonethe-952

less, these edges can still be fitted into the point clouds. Note that a simple953

fitness function definition such as Equation 1 cannot provide meaningful results954

in these cases as the optimization algorithm cannot realize the correct placement955

of the passive edges.956

6.3. Editability of the resulting model957

One of the advantages of the proposed approach is the editability of the958

resulting model, which is required to enable design work in the frame of reha-959

bilitation or modification measures. This feature enables users to modify each960

element by adjusting the value of parameters as shown in Figure 23. Note that a961
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(a)

(b)

Figure 22: Performance of the algorithm in sustaining a large amount of occlusion: (a) a

rectangular PPM; (b) a trapezoidal PPM.

point cloud only represents the object’s outer shell. For instance, it cannot pro-962

vide any information about the foundation of abutments or the inner thickness963

of the bridge deck. Therefore, external resources are still required from which964

the related parameters can be extracted and imported into the model. The965

resulting model of the defined pipeline preserves all the existing relationships966

and dependencies between elements, thanks to its parametric design. Also, all967

the existing parameters can be adjusted or unchanged during optimization. For968

example, a default value for the depth of the foundation can be assumed and969

remained unchanged throughout the optimization process. After optimization,970

this parameter can be read or extracted from structural drawings and imported971

into the model separately. The resulting model can also be connected to various972

algorithms for further enrichment. This is highly compatible with the definition973

of geometric DTs, which need to stay connected to the actual asset for handling974

bidirectional updates.975
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(a)

(b)

Figure 23: Editability of the model: (a) the resulting model; (b) edited model with a new

span length and foundation depth.

7. Conclusions976

This paper presents an automated approach to creating the geometric dig-977

ital twin (DT) of concrete bridges from segmented point clouds. Parametric978

prototype models (PPMs) have been introduced as tools to extract the value979

of parameters from point clouds. The PPM of bridge elements can be created980

following a reverse engineering approach and the desired model to achieve from981

the bridge point cloud. PPMs can be instantiated with random values and fitted982

into the point cloud of elements through an optimization problem solvable by983

metaheuristic algorithms.984

To improve the model-fitting accuracy and enable the model to handle a985

large amount of occlusion, new fitness/cost functions have been introduced.986

Each PPM after optimization/adjustment results in a list of parameters whose987

values show the parameter values the point cloud represents. To generate the988

parametric model of the entire bridge, the resulting PPMs from the piece-wise989

model-fitting problems need to be assembled. A global optimization problem990

has been defined to integrate PPMs and generate a list of parameters compatible991
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with the anticipated model. Following the reverse engineering approach, these992

parameter values are finally injected into the 3D PPM of the bridge to create993

the geometric digital twin model reflecting the input point cloud.994

The results of testing the proposed pipeline on the point cloud of six single-995

span concrete bridges as well as bridge components show that the proposed996

approach can generate the model of bridges with a mean absolute error (MAE)997

of 8.71 cm. The resulting model from this method still stays connected to the998

actual asset in reality through an access point and is still editable for any further999

refinement or enrichment.1000

Considering the results of the paper, the digital twinning process of the1001

existing bridges can be automated to a large extent. However, the proposed1002

algorithm is still limited in covering more complicated bridge types, even though1003

most of the algorithms in the paper are extendable to such bridges.1004

Apart from that, the proposed pipeline requires bridge engineering knowl-1005

edge and statistical study for setting the range of parameters that might make1006

the algorithm limited in modeling highly complicated/arbitrary shapes that are1007

too diverse in shape. Sing-span bridges form a large portion of the existing1008

bridges in Germany (more than 50 %, according to a database received from1009

the Federal Highway Research Institute). The ultimate goal is to have a library1010

of parametric bridge models, including single-span, multi-span, etc., and a clas-1011

sifier to select the desired model from the library in the initial step. This can1012

be achieved using a deep learning model that receives the input point cloud and1013

calls the desired model from the library. However, this remains future research.1014

In future works, the proposed pipeline will be tested on more samples of bridges,1015

and the resulting models will be connected to other resources, such as technical1016

drawings, for further geometric-semantic enrichment.1017
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