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Abstract

In finance, obtaining a precise estimation of the risk measures of the investment portfolio is
crucial for achieving good performance.

This thesis compares three methods for estimating the value at risk (VaR) and expected
shortfall (ES), the most important risk measures in portfolio analysis. Two of the methods
capture cross-sectional and serial dependence, while the third one uses the first four moments of
the portfolio assets and ignores serial and cross-sectional dependencies. The first model uses an
ARMA-GARCH vine copula model utilising the software developed by Sommer (2022). In the
first step it models the serial dependence with ARMA-GARCH models for each asset, separately.
In a second step R-vine copulas are used to quantify cross-sectional dependence. The second
method uses S-vine copulas proposed by Nagler et al. (2022) for modelling both dependencies at
the same time based on translation invariance. For the last method Fleishman’s transformation
introduced in Fleishman (1978) is used for estimating the risk measures. For all the methods,
the estimation of risk measures is performed using Monte Carlo on the portfolio’s log returns.
To conduct a time varying analysis, it is applied within a rolling window. The research includes
several evaluation measures and backtests to compare the methods.

A case study is conducted representing the BVK portfolio, composed of private equity, equity,
fixed income, real estate and hedge fund indices. Two markets with 15 and 7 assets each, and
three portfolios (equal weighted, market capitalization, and BVK) are considered in the study
over a time period of 2005 to 2022. This comprehensive analysis helps us discover the strengths
and weaknesses of each method.
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1 Introduction

The modern landscape of financial markets is characterised by increasing complexity and glob-
alisation, which has amplified the need for effective risk management strategies. In this context,
financial risk measures play a crucial role in assessing and quantifying the potential risks associ-
ated with various financial instruments, portfolios, and investment strategies. Accurate estima-
tion of risk measures is essential for making informed investment decisions, optimising portfolios,
and safeguarding against adverse market conditions.

These measures are typically calculated to assess the probability of incurring losses and,
if they occur, quantifying them. Therefore, the most widely used risk measures in the world
of finance are the Value at Risk (VaR) and the Expected Shortfall (ES). Historically, different
methods have been developed and used to calculate these. In general, we can highlight estimation
through observed historical returns or through the use of Monte Carlo simulation. However,
these methods are based solely on past observations without taking into account the temporal
dependency or serial dependence between the observations. Therefore, in this thesis, we present
two methods for estimating these risk measures by allowing for serial dependence modelling and
compare them with a third method that does not model it.

Thus, considering a portfolio composed of multiple assets, we aim to model the dependence
that arises over time between the returns for each asset, known as serial dependence, as well as
the dependence between the assets that make up the portfolio at each moment in time, known
as cross-sectional dependence. The first approach in the study is based on Maarouf (2021). In
a first step it models the serial dependence using ARMA-GARCH models for each asset. These
models, introduced by Box and Jenkins (1976) and Engle (1982) respectively, capture the trend
and volatility of each series through a linear regression based on previous observations. In a
second step, cross sectional dependence is captured using vine copula models Czado (2019).
These methods are based on modelling the joint dependence of multiple variables using the vine
structure, which enables measuring pairwise dependence.

The second method is based on Nagler et al. (2022), a special class of vine copulas to simul-
taneously model serial and cross-sectional dependence. These models, known as stationary vine
copulas, model the serial dependence by assuming that the time series are stationary.

As this work is conducted in collaboration with Bayerische Versorgungskammer, the method
employed by the company is also introduced in the study. This method does not model serial
or cross-sectional dependence, nor does it assume any distribution in the returns. Based on
Fleishman (1978), this method utilises the first four moments of the assets forming the portfolio
to estimate the risk measures.

The comparison of the methods is carried out in the case study. For this purpose, we consider a
market consisting of 15 indices representing the BVK portfolio over 17 years, to include periods
of high and low volatility. Due to the lack of convergence of the Fleishman’s transformation
method, a reduced study with 7 indices is also conducted. The results obtained in the study
show that the ARMA-GARCH model combined with vine copulas provides the best estimation
of the risk measures. Both stationary vine copulas and Fleishman’s transformation show similar
results. However, Fleishman’s transformation convergence is not always ensured.

The thesis is divided into two parts: theoretical and practical. In the theoretical part, we
introduce all the necessary concepts and models to implement the methods, covering Sections
2 to 10. We begin by introducing some basic concepts and notation used throughout the work.
In Section 3, we briefly define the main characteristics of financial series. Risk measures are
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explained in Section 4, where we establish the foundation of the theory since the objective of the
work is to obtain the best estimation of these measures. Once all the background is introduced,
we develop all the necessary models for the different estimation methods. In Section 5, we
develop the ARMA-GARCH models to model univariate financial series. We continue in Section
6 by presenting vine copulas, and in Section 7, we extend them to stationary vine copulas. In
Section 8, we introduce the Fleishman’s transformation. Moving on to Section 9, we introduce
measures and backtests to assess and compare the risk measures we want to estimate. Finally,
in Section 10, we describe the methods employed using the described models and explain how
to estimate the risk measures. In the practical part, we apply the methods developed earlier to
a database introduced in Section 11. Three portfolios are considered, all composed of the same
assets, which are the main components of BVK’s investment portfolio. Due to the limitations
of the Fleishman’s transformation method, a reduced portfolio is also employed. In Section 12,
we estimate the risk measures for the complete portfolio. Subsequently, in Section 13, we do the
same for the reduced portfolio.
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2 General notation and background

Definition 2.1. Let FX : R → [0, 1] be the distribution function of a random variable X, i.e.
FX(x) := P(X ≤ x) for all x ∈ R. Then

F←X : (0, 1) → R
y 7→ inf{x ∈ R : FX(x) ≥ y}

is the generalised inverse or quantile function.

Definition 2.2. Let X1, ...,Xn be i.i.d. random variables with distribution function F and
x1,n ≤ x2,n ≤ . . . ≤ xn,n the corresponding order statistics. Then,

• the empirical distribution function is given by

Fn(x) =
1

n

n∑
k=1

1{xk≤x} x ∈ R,

i.e. Fn(x) = k/n for xk,n ≤ x ≤ xk+1,n.

• the empirical quantile function is given by

F←n (y) = inf{x ∈ R : Fn(x) ≥ y} = x[yn],n y ∈ [0, 1], (2.1)

where [z] = inf{x ∈ Z : z ≤ x}.

Proposition 2.1. Let X be a random variable with distribution function FX and quantile func-
tion F←X . Then:

i) Let U ∼ U(0, 1), then F←X (U) = X

ii) FX = U ⇔ F is continuous.

Proof. Proof is found in Angus (1994)
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3 Financial time series

In this section we introduce the most important characteristics of financial time series. This
term refers to the time series used in finance for individual assets prices and returns, but also for
portfolio prices and return values.

For years, many studies have been done for forecasting financial prices. However it is very
difficult to predict their movement, since it depends on many variables, including human factors.
Also, the use of different currencies makes it difficult to compare assets. To solve these problems
usually financial time series are compared at the return scale. Thus, given a time series pt, which
represent the price of any asset at time t, we define the log returns as follow:

rt = ln

(
pt

pt−1

)
(3.2)

considering that pt takes only positive values. Since, financial prices changes constantly over
time, this is not a big restriction. However, a discrete version of the log returns can also be used
rt =

pt−pt−1

pt−1
.

Most of return time series show similar characteristics. Cont (2001) summarises the most im-
portant characteristics or stylised facts of financial asset returns introduced in Mandelbrot (1963):

• Absence of autocorrelations. Linear autocorrelations of asset returns are often small
or insignificant. We look at it in more depth in Section 5.

• Heavy tails. Returns distributions usually show a non Gaussian behaviour with kurtosis
greater then three, K > 3. However the precise forms of the tails is difficult to determine.

• Gain/loss asymmetry. Stock markets usually shows larger draw downs in stock prices
than upward movements.

• Volatility clustering. The volatility of returns usually show clustering. This means,
high volatility periods are follow by high volatility periods and the same for low volatility
periods.

• Autocorrelation on the squared returns. While returns show near zero autocorrela-
tion, absolute and squared returns show significant autocorrelations. Check Section 5.2.

• Leverage effect. Volatility is affected differently by positive and negative returns. Usually
negative returns increases volatility over positive returns. Most time series show negative
skewness , sk < 0.

Figure 3.1 show the returns time series of Microsoft as an example of a financial time series. In
this case, we have the daily closing price from 23/04/2018 until 19/04/2023. Some of the stylized
facts are observed directly, the volatility clustering is very clear since high and low volatility is
observed along different periods. It is also observable that the mean of the log returns is around
zero. Heavy tails and leverage effects are not so visible in Figure 3.1, however estimating kurtosis
and skewness we obtain k̂ = 7.1 and ŝk = −0.28 respectively.

Considering a market with N assets we can combine them linearly to obtain a portfolio.
Thus, considering δi the amount of money invested in asset i with the corresponding price pi,t
at time t, the value of the portfolio V ∗t at time t is:
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Figure 3.1: Microsoft returns time series between 23/04/2018 - 19/04/2023.

V ∗t =

N∑
i=1

δipi,t (3.3)

The value of the portfolio can also be written using the weight scale, defining the weight of
asset i in portfolio P , wP

i = δi∑N
i=1 δi

, such that
∑N

i=1 w
P
i = 1. Equivalent to (3.3) we can write

the value of the portfolio using the weights as follow:

Vt =

N∑
i=1

wip
i
t (3.4)

Then, using (3.2) we obtain the returns of the portfolio rVt = ln Vt

Vt−1
.
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4 Risk measures

In this chapter we define the different risk measures and their characteristics. First we introduce
some background definitions on financial theory.

Definition 4.1. The triplet (Ω, F , P) is called a probability space if:

• the sample space, Ω, is a non-empty set.

• a σ − algebra, F , on Ω is a system of subsets of Ω satisfying:

1. Ω ∈ F .

2. A ∈ F ⇒ Ac := Ω \A ∈ F .

3. For each sequence {An}n∈N, with An ∈ F for all n ∈ N it holds that (
⋃

n∈N An) ∈ F .

• a probability measure, P, on the measurable space, (Ω, F) is a map P : F → [0,∞]
with P(∅) = 0, P(Ω) = 1 and each sequence of {An}n∈N of disjoint sets from F satisfies
P(
⋃

n∈N An) =
∑

n∈N P(An).

Definition 4.2. A financial position is a mapping X : Ω → R, being Ω a sample space. X(ω)
is the discounted net worth of the financial position, for ω ∈ Ω. Moreover, X ∈ X , the space
of financial positions.

In our case Ω represents the set of all possible scenarios, including market conditions, regu-
lations, etc. Also, the discounted net worth is the profit and losses of the position at the end of
the trading period.

Definition 4.3. Let (Ω, F , P) be a probability space and X be a non-empty set of F-measurable
real-valued random variables. Then any mapping ρ : X → R ∪ {∞} is called a risk measure.

Definition 4.4. Given a risk measure ρ : X → R ∪ {∞} we introduce some possible properties
for ρ:

1. Monotonicity. For all X and Y ∈ X , X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).

Monotonicity means that for two different financial positions X and Y ∈ X . If the profits
and losses of X(ω) ≤ Y (ω) ∀ω ∈ Ω then the risk of financial position X is higher than the
risk of financial position Y .

2. Translation invariance. For all X ∈ X and all real numbers m ∈ R, we have ρ(X+m) =
ρ(X)−m.

Translation invariance axiom means that adding a cash amount of m to the initial position,
simply decreases (resp. increases) the risk measure by m.

3. Convexity. For all X and Y ∈ X and λ ∈ [0, 1], ρ(λX+(1−λ)Y ) ≤ λρ(X)+(1−λ)ρ(Y ).

Convexity refers that diversification reduce risks.

4. Positive homogeneity. For all X ∈ X and λ ≥ 0, ρ(λX) = λρ(X).

Positive homogeneity refers to the size of the financial position. The size of the position
does not affect on the risk.
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5. Subadditivity. For all X and Y ∈ X , ρ(X + Y ) ≤ ρ(X) + ρ(Y )

Subadditivity stated that a merger does not create extra risk.

Then, ρ is called a:

• monetary risk measure, if it fulfils monotonicity and translation invariance.

• convex risk measure, if it fulfils monotonicity, translation invariance and convexity.

• coherent risk measure, if it fulfils monotonicity, translation invariance, convexity and pos-
itive homogeneity.

Definition 4.5. Let ρ be a monetary risk measure. Then the acceptance set of ρ is defined
as:

Aρ := {X ∈ X : ρ(X) ≤ 0}.

4.1 Value at risk

Definition 4.6. Consider the probability space (Ω, F , P) and X = L0(Ω, F , P) the set of all
random variables corresponding to the probability space, which are P − a.s. finite, i.e. P(X <
∞) = 1. We define the value at risk at level α on the financial position X ∈ X (V aRα(X))
as follow:

V aRα(X) := inf{m ∈ R : P(m+X < 0) ≤ α}.

By definition V aRα(X) is the smallest amount of capital m which, if added to X and invested
into the risk free asset, keeps the probability of a negative outcome below the level α.

From Definition 4.6 and Definition 2.1 we obtain:

V aRα(X) := inf{m ∈ R : P(m+X < 0) ≤ α}
= inf{m ∈ R : P(X < −m) ≤ α}
= inf{m ∈ R : P(X ≥ −m) ≥ 1− α}
= inf{m ∈ R : P(−X ≤ m) ≥ 1− α} = F←−X(1− α)

(4.5)

Proposition 4.1. Value at risk is a monetary risk measure on X and it is positively homoge-
neous.

The VaR can be estimated using the theoretical distribution of X as shown in Equation
(4.5). Also, a Monte Carlo approach is utilised using the empirical quantile function. Consid-
ering x1, x2, . . . , xn sample obtained from the random variable X ∈ X , we obtain the following
empirical VaR estimation:

qα(X) := V̂ aRα(X) = F←−n(1− α) (4.6)

where F←−n represents the empirical loss quantile function of −xn,n ≤ −xn−1,n ≤ . . . ≤ −x1,n

defined in Equation (2.1).
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Criticism on VaR

Value at risk is well known and used in the finances. However, it shows some limitations. The
main limitations are :

• VaR only controls the probability of a loss, but it does not capture the size of such a loss
if it occurs.

• The acceptance set of VaR is typically not convex, hence VaR is not a convex risk measure.
As a consequence, VaR may penalise diversification as shown in Artzner et al. (1999)

For solving this limitations we also introduce another risk measure, the expected shortfall.

4.2 Expected shortfall
As we have seen, value at risk can not control the size of the loss in case of occurring. For
measuring the loss we introduce now the concept of expected shortfall.

Definition 4.7. We define average value at risk at level α ∈ (0, 1) of a financial position
X ∈ X , AV aRα(X), as follow

AV aRα(X) :=
1

α

∫ α

0

V aRγ(X) dγ

The expected shortfall at level α ∈ (0, 1) on the financial position X ∈ X is defined
by

ESα(X) := E[−X| −X ≥ V aRα(X)]

Then, the expected shortfall measures the loss, being calculated as the expected loss when it
happens.

Proposition 4.2. If X ∈ X has a continuous distribution function, then for α ∈ (0, 1):

AV aRα(X) = ESα(X) := E[−X| −X ≥ V aRα(X)] =
1

α

∫ α

0

V aRγ(X) dγ ≥ V aRα(X)

Proof. First we should remark that being U a uniform variable, then U |U ≥ 1− α is a uniform
distribution on [1 − α, 1]. Thus it density is given by fU |U≥1−α(u) = 1

1−(1−α)1[1−α,1](u) =
1
α1[1−α,1](u). Then, we have from the definition of expected shortfall and using Proposition 2.1
i):

ESα(X) = E[−X| −X ≥ V aRα(X)]

= E[F←−X(U)|F←−X(U) ≥ F←−X(1− α)]

= E[F←−X(U)|U ≥ 1− α]

=

∫ 1

1−α
F←−X(x)

1

α
dx

=
1

α

∫ α

0

F←−X(1− x) dx

=
1

α

∫ α

0

V aRα(x) dx = AV aRα(X)
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Embrechts and Wang (2015) prove using several approaches that the expected shortfall is a
coherent risk measure. Then, expected shortfall fulfils convexity and positive homogeneity, which
implies that portfolio diversification reduce the expected shortfall.

Expected shortfall estimation is usually done with a Monte Carlo approach. Using V aR value,
we estimate ES as the mean of the loss empirical distributions which are higher than V aR at
level α. Then, given the observed sample x1, x2 . . . , xn from the random variable X ∈ X , we
estimate the expected shortfall:

ÊSα(X) =
1

#{xt| − xt ≥ V aRα(X)}
∑

t∈{1,...,T}|−xt≥V aRα(X)

−xt (4.7)
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5 ARMA-GARCH models

In this section we give a short introduction to ARMA-GARCH models. These are used to model
univariate time series. ARMA models the mean part of the time series are introduced in Section
5.1, while GARCH models the variance are in Section 5.2. Before developing ARMA-GARCH
models we introduce some notions related to the time series.

A time series {rt, t ∈ T} is considered as an specific realisation of the stochastic process
{Rt, t ∈ T}, where the index t usually represents time. Since we only have one observation per
time point, we introduce stationarity.

Definition 5.1. A process {Rt, t ∈ T} is strictly stationary if the joint distribution of all
sizes does not change over time:

F (Rt1 , Rt2 , ..., Rti) = F (Rt1+k, Rt2+k, ..., Rti+k) ∀i, k

Due to the lack of information for checking the strictly stationarity in observed time series
we define a weaker version of stationarity used throughout this section.

Definition 5.2. A process {Rt, t ∈ T} is weakly stationary if both the mean of Rt and the
covariance between Rt and Rt−k are time invariant, where k is an arbitrary integer. More
specifically we have:

E[Rt] = µ constant

Cov(Rt, Rt−k) = γk
(5.8)

In Equation (5.8), we assume that the first two moments of Rt are finite. Also, the γk =
Cov(Rt, Rt−k) is called the lag-l autocovariance of Rt. It has the properties that γ0 =
V ar(Rt) and γ−k = γk. In the finance literature, it is common to assume that a return series,
{rt, t ∈ T}, is weakly stationary.

An important characteristic of stationary processes is that they are closed under linear com-
bination, i.e. the linear combination of stationary processes is also stationary.

For modelling using ARMA-GARCH models we also need the concepts of white noise, auto-
correlation function and partial autocorrelation function.

Definition 5.3. A time series process At is called a white noise if {At, t ∈ T} is a sequence
of independent and identically distributed with finite mean and variance:

1) E[At] = 0 ∀t.
2) V ar(At) = σ2

A ∀t.
3) Cov(At, At+k) = 0 ∀t, k.

Definition 5.4. Consider a weakly stationary time series process {Rt, t ∈ T}. The autocorre-
lation function (ACF) is the correlation coefficients ρk between Rt and Rt−k for all k. For
each k, the correlation is called lag-k autocorrelation of Rt and it is obtained as follow:

ρk =
Cov(Rt, Rt−k)√
V ar(Rt)V ar(Rt−l)

=
Cov(Rt, Rt−k)

V ar(Rt)
=

γk
γ0

From the definition we obtain that ρk meets the following characteristics:

• ρk = ρ−k
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• −1 ≤ ρk ≤ 1

• ρ0 = 1

Definition 5.5. Given a weakly stationary time series process {Rt, t ∈ T}. The partial cor-
relation coefficient of order k, ρpkk is the correlation coefficient between Rt and Rt−k, after
the effect of the intermediate variables Rt−1, ..., Rt−(k−1) are accounted for:

ρpkk = Corr(Rt, Rt−k|Rt−1, ..., Rt−(k−1)),

Wei (2005) shows that the partial correlation between Rt and Rt−k can also be obtained as
the regression coefficient associated with Rt−k when regressing Rt on its k lagged variables
Rt−1, ..., Rt−k as follow:

Rt = αk1Rt−1 + αk2Rt−2 + ...+ αkkRt−k +At

with ρpkk = αkk and At being a white noise.

We define the partial autocorrelation function (PACF) of order k to the first k partial
correlation coefficients.

In Wei (2005) it is shown that PACF can be obtained as follow:

ρp11 = ρ1 (5.9)

ρp22 =

∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣ (5.10)

...

ρpll =

∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2 · · · ρl−2 ρ1
ρ1 1 ρ1 · · · ρl−3 ρ2
...

...
...

. . .
...

...
ρl−1 ρl−2 ρl−3 · · · ρ1 ρl

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2 · · · ρl−2 ρl−1
ρ1 1 ρ1 · · · ρl−3 ρl−2
...

...
...

. . .
...

...
ρl−1 ρl−2 ρl−3 · · · ρ1 1

∣∣∣∣∣∣∣∣∣

(5.11)

being ρi the lag-i autocorrelation of rt.

5.1 ARMA models

ARMA models were introduced in Box and Jenkins (1976) for modelling the mean of univariate
time series. These models are divided in two parts, MA given in Section 5.1.1, and AR in Section
5.1.2. In Section 5.1.3 we define ARMA models as a combination of MA and AR. Finally, in
Sections 5.1.4 and 5.1.5 we give the estimation and forecast method for ARMA models.
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5.1.1 Moving average models (MA)

Moving average (MA) models were introduced by Box and Jenkins (1976). These models explain
the corresponding time series process Rt as a linear combination of the previous errors. The
order of the model is given by the number of lagged error terms used in the model. Then we can
define a moving average model of order q MA(q):

Rt = µ+At − θ1At−1 − ...− θqAt−q (5.12)

being µ the mean of the time series Rt, θi parameters ∀i and At−j white noise ∀j. From Equation
(5.12) we have that MA processes are stationary, since they are a linear combination of stationary
processes, At−i i ∈ {0, 1, ..., q}.

Using the backshift operator BjRt = Rt−j , the MA(q) model is rewritten:

Rt = µ+ (1− θ1B − ...− θqB
q)At = µ+ θ(B)At

with θq(B) = (1− θ1B − ...− θqB
q).

We say that a moving average model, Rt = θq(B)At is invertible if Rt can be written as a
linear combination of their past observations, Rt−1, Rt−2, .... Box and Jenkins (1976) showed
that a MA process is invertible if the roots of θq(B) = 0 lie outside of the unit circle.

To get a better idea of moving average models we show the characteristics of MA(1) process
with µ = 0. Thus, from Equation (5.12) we have Rt = At − θ1At−1 = (1 − θ1B)At, which is
invertible for |θ1| < 1. The mean of the process is E[Rt] = E[At]− θ1E[At−1] = 0.

The autocovariance function is given by:

γk = Cov(Rt, Rt−k) = Cov(At − θ1At−1, At−k − θ1At−(k+1))

= E[(At − θ1At−1)(At−k − θ1At−(k+1))]

= E[AtAt−k]− θ1E[At−1At−k]− θ1E[AtAt−(k+1)] + θ21E[At−1At−(k+1)]

hence, the autocovariance of the process are:

γk =


(1 + θ21)σ

2
A, k = 0

−θ1σ
2
A, k = 1

0, k > 1

with autocorrelation functions:

ρk =

{
−θ1
1+θ2

1
, k = 1

0, k > 1

In case of the PACF we obtain from (5.9)-(5.11):

ρpkk =
−θk1 (1− θ21)

1− θ
2(k+1)
1

̸= 0, k ≥ 1

In general, a MA(q) process has only the first q − lag autocorrelations different from zero,
and not null partial autocorrelations for all ρpkk with k ∈ N. Then, to identify the correct order
of a moving average model we check the empirical ACF and PACF.
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5.1.2 Autoregressive models (AR)

The autoregressive model (AR) were also introduced in Box and Jenkins (1976), they explain
each time point of the time series process, Rt as a linear combination of the last p time points of
the time series, Rt−1, ..., Rt−p; being p the order of the model. Then, we write an autoregressive
model of order p, AR(p):

Rt = c+ ϕ1Rt−1 + ...+ ϕpRt−p +At (5.13)

with At being a white noise and c a constant. Also, the model can be rewritten using the
backshift operator:

ϕp(B)Rt = c+At

where ϕp(B) = (1− ϕ1B− ...− ϕpB
p). Considering a weak stationary autoregressive time series

process, the mean is given by:

µ = E[Rt] = c+ ϕ1E[Rt−1] + ...+ ϕpE[Rt−p] + E[At] = c+ ϕ1µ+ ...+ ϕpµ (5.14)

⇒ E[Rt] = µ =
c∑p

j=1 ϕj

By definition we see that AR models are written in their invertible process. Box and Jenk-
ins (1976) showed that every autoregressive model can be written as a MA(∞) process, since∑p

j=1 |ϕj | < ∞. Moreover, to be stationary the roots of ϕp(B) = 0 must lie outside of the unit
circle.

As we did with MA processes we check the characteristics of AR(1) process with c = 0 to have
a better understanding of the autoregressive models. We start calculating the autocovariance
function:

γk = Cov(Rt, Rt−k) = E[RtRt−k] = E[ϕ1Rt−1Rt−k] + E[AtRt−k]

⇒ γk = ϕ1γk−1, k ≥ 1

and the autocorrelation function becomes

ρk =
γk
γ0

= ϕ1
γk−1
γ0

= ϕ1ρk−1 = ϕk
1 , k ≥ 1

Hence, when |ϕ1| < 1 the process is stationary and the absolute value of ACF decays exponen-
tially.

From Equations (5.9)-(5.11) we calculate the PACF:

ρpkk =



ρ1 = ϕ1, k = 1∣∣∣∣∣∣∣
1 ϕ1

ϕ1 ϕ2
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ϕ1

ϕ1 1

∣∣∣∣∣∣∣
= 0, k = 2

0, k > 3

Hence, the PACF of the AR(1) shows a non-zero spike at lag 1, and then cuts off.
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In general, we have that an AR(p) process shows infinitely many non zero spikes in the ACF.
However, the PACF is vanished after lag p. This property is useful for identifying an AR model
and the corresponding order p.

5.1.3 Autoregressive moving average models (ARMA)

Autoregressive moving average models or ARMA(p,q) are defined as a combination of autore-
gressive models and moving average models introduced in Sections 5.1.2 and 5.1.1 respectively.
Then, using ARMA models the time series process Rt are explained as a linear combination
of the previous time points Rt−1, ..., Rt−p and the previous errors At−1, ..., At−q. We define an
autoregressive moving average model of orders p and q, ARMA(p,q):

Rt = c+ ϕ1Rt−1 + ...+ ϕpRt−p +At − θ1At−1 − ...− θqAt−q (5.15)

The model defined in Equation (5.15) can be rewritten using the backshift operator as follow:

ϕp(B)Rt = c+ θq(B)At

being ϕp(B) = (1− ϕ1B − ...− ϕpB
p) and θq(B) = (1− θ1B − ...− θqB

q). For the process to be
invertible, we require that the roots of θq(B) = 0 lie outside the unit circle. To be stationary, we
require that the roots of ϕp(B) = 0 lie outside the unit circle. Also, we assume that θq(B) = 0
and ϕp(B) = 0 share no common roots. Using the same methodology than in Equation (5.14)
and using E[At−i] = 0 ∀i ∈ {0, 1, ..., q} we obtain the mean of the process:

E[Rt] = µ =
c∑p

j=1 ϕj

Wei (2005) proved the main characteristics of the basic ARMA(1,1) model with µ = 0. Then
variance and ACF are given by:

V ar(Rt) = γ0 =
(1 + θ21 − 2ϕ1θ1)

(1− phi21)
σ2
A

ρk =

{
(ϕ1−θ1)(1−ϕ1θ1)

1+θ2
1−2ϕ1θ1

, k = 1

ϕ1ρk−1, k ≥ 2

Note that the autocorrelation function of ARMA(1,1) model combines characteristics of
AR(1) and MA(1) models, following the same pattern as the autocorrelation function of an
AR(1). Turning to the PACF, one can show that the PACF of an ARMA(1,1) model does not
cut off at any finite lag either. It behaves very much like PACF of an MA(1) model.

This characteristics can be extended to the general ARMA(p,q) model. In Wei (2005) it is
shown that ACF and PACF of ARMA(p,q) models have infinitely many non zero spikes. To
properly select the order of an ARMA model, it is recommended to start with low orders and
analyse the ACF and PACF of the residuals, at, and increment the orders until obtain a white
noise for the residuals is plausible.

ARIMA or autoregressive integrated moving average models are an extension of
ARMA models. These models were defined in Box and Jenkins (1976) and characterised by not
being stationary but being prone to becoming stationary with the transformation (1 − B)Rt.
This correspond to have one root of ϕp(B) = 0 in the unit circle. Then, the ARIMA(p,1,q) is
given by
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ϕp(B)(1−B)Rt = c+ θq(B)At (5.16)

Identification of these models is also done with ACF and PACF, which have infinitely many non
zero spikes, then equivalent method to ARMA should be done.

5.1.4 ARMA models estimation

Once we have chosen the best model and order for fitting the available data r = (r1, ..., rT )
we calculate the corresponding parameter estimation. The objective is to obtain the best val-
ues of {ĉ, ϕ̂1, ..., ϕ̂p, θ̂1, ..., θ̂q, σ̂A} for a general ARMA(p,q) model. Also, a distribution for the
residuals time series, {at, t ∈ T}, should be chosen. The most common are normal or t-Student
distributions. In this case, normal distribution is considered during the section.

Following Wei (2005) three different methods can be used for parameter estimation. The
method of moments use the sample moments to obtain the Yule-Walker equations, this
method is useful for AR models. Also, conditional and unconditional maximum likeli-
hood methods are introduced. The difference between them is the assumption of known initial
values a∗ = (a1−q, ..., a−1, a0) and r̂∗ = (r̂1−p, ..., r̂−1, r̂0) which could also be obtained with a
backward model.

Then, we show the conditional maximum likelihood method on a general ARMA(p,q) model
with normal residuals. Thus, the joint probability density of a = (a1, ..., aT ) is given by

P (a|ϕ, µ, θ, σ2
A) = (2πσ2

A)
−T/2exp

[
−1

2σ2
A

T∑
i=1

a2i

]
Defining r̄t = rt − µ and using Equation (5.15) we obtain:

at = θ1at−1 + ...+ θqat−q + r̄t − ϕ1r̄t−1 − ...− ϕpr̄t−p

Thus, using the already introduced the known initial values, a∗ and r̂∗, join with the observed
values, r; the conditional log-likelihood function is

ln(L∗(ϕ, µ,θ, σ
2
A)) = −T

2
ln(2πσ2

A)−
S∗(ϕ, µ, θ)

2σ2
A

where

S∗(ϕ, µ,θ) =

T∑
i=1

a2i (ϕ, µ, θ|r̂∗, r,a∗)

is the conditional sum of squares function. The values ϕ̂, µ̂ and θ̂ which maximise ln(L∗(ϕ, µ,θ, σ2
A))

also minimise the conditional sum of squares function, S∗(ϕ, µ,θ).

Once that ϕ̂, µ̂ and θ̂ have been calculated we estimate the variance of the residuals, σ̂2
A

σ̂2
A =

S∗(ϕ̂, µ̂, θ̂)

degree of freedom

where the degree of freedom is the number of terms used in S∗(ϕ̂, µ̂, θ̂) minus the number of
parameters estimated. In our case the degree of freedom is T − (p+ q+1). After estimating the
parameters we are ready to forecast from the estimated model.
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5.1.5 ARMA models forecasting

When we talk about forecasting we pretend to predict the values of the time series using the info
available until that moment. Then for forecasting an ARMA(p,q) model we use the observed
data, r1, ..., rT ; and the corresponding estimated parameters, ĉ, ϕ̂1..., ϕ̂p, θ̂1, ..., θ̂q. With this
information we calculate the 1-step ahead forecast, µ̂t+1:

µ̂T+1 = ĉ+

p∑
i=1

ϕ̂irT+1−i −
q∑

j=1

θ̂j(rT+1−i − µ̂T+1−i) (5.17)

where we have estimated the errors in MA part with the corresponding forecast ât = rt − µ̂t.
Considering also k-steps ahead, we forecast:

µ̂T+k = ĉ+

p∑
i=1

ϕ̂iµ̂T+k−i −
q∑

j=1

θ̂j âT+k−i

being µ̂T+k−i = rT+k−i if k − i ≥ 0 and âT+k−i = 0 if k − i > 0. Since we have stationary
models, the long term forecasts tend to the estimated mean of the model, µ̂.

5.2 GARCH models

In this section we describe the generalised autoregressive conditional heteroscedasticity models.
These models were developed to model the volatility of time series, which make them very useful
for financial time series. The basic model was introduced by Engle (1982), to model a white
noise process with conditional variance effects. Considering a time series of returns, {rt, t ∈ T},
after fitting the corresponding ARMA model we obtain the residual time series, {at, t ∈ T}, such
that from Equation (5.15) at = rt − c − ϕ1rt−1 − ... − ϕprt−p + θ1at−1 + ... + θqat−q = rt − µt.
Then, as shown in Section 5.1 {at, t ∈ T} is a white noise, moreover they usually show volatility
clustering and autocorrelation on the squared returns, introduced in Section 3.

To include all these characteristics Engle (1982) modelled a white noise process {At, t ∈ T}
as follow:

At = σtϵt (5.18)

being {σt, t ∈ T} a stationary stochastic process; and {ϵt, t ∈ T} a Gaussian standardised
independent white noise process, such that E(ϵt) = 0 and V ar(ϵt) = 1 ∀t. Moreover, σt and
ϵt are also independent. Since At are white noise, from Definition 5.3 we have E(At) = 0 and
V ar(At) = σ2

A.

Given Ft, the σ − algebra Ft = σ(Ai|i < t), the main characteristics of (5.18) are:

E(At) = E(σt)E(ϵt) = 0 (5.19)

E(At|Ft−1) = E(σt|Ft)E(ϵt) = 0 (5.20)

V ar(At) = E(A2
t )− E(At)

2 = E(ϵ2tσ
2
t ) = E(ϵ2t )E(σ2

t ) = E(σ2
t ) = σ2

A (5.21)

V ar(At|Ft−1) = E(ϵ2t )E(σ2
t |Ft−1) = σ2

t (5.22)

where {σ2
t , t ∈ T} represents the conditional variance or volatility of the time series. Being σt

and ϵt independent and ϵt independent process, we calculate the autocovariance of the process
{A2

t , t ∈ T}:
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E(AtAt−k) = E(σtϵtσt−kϵt−k) = E(ϵtϵt−k)E(σtσt−k) = 0 (5.23)

These characteristics show the model proposed by Engle (1982) meets the characteristics
introduced in Section 3. Then we continue modelling the conditional variance using ARCH and
GARCH models in Sections 5.2.1 and 5.2.2 respectively.

5.2.1 Autoregressive conditional heteroscedasticity models (ARCH)

In this section the define the autoregressive conditional heteroscedasticity models, which were
introduced in Engle (1982). In these models the volatility, σ2

t , is explained as a linear regression
of the squared white noise, A2

t .

Then, given a process of white noise, {At, t ∈ T} we write an autoregressive conditional
heteroscedasticity model of order r, ARCH(r) as follow:

At = σtϵt

σ2
t = α0 + α1A

2
t−1 + ...+ αrA

2
t−r (5.24)

with α0 > 0 and α1, ..., αr non negative parameters to ensure that the volatility is positive. Since
an {At, t ∈ T} ARCH(r) process is stationary, E(A2

t ) = E(A2
t−k) = σ2

A ∀k, using Equation (5.22)
and V ar(At|Ft−1) = E(A2

t |Ft−1)−E(At|Ft−1)
2 = E(A2

t |Ft−1) = σ2
t from Equation (5.20); then

the marginal variance of the process is given by:

σ2
A = V ar(At) = E(A2

t ) = E(E(A2
t |Ft−1)) = α0 +

r∑
i=1

αiE(A2
t−i) = α0 +

r∑
i=1

αiσ
2
A

⇒ σ2
A =

α0

1− α1 − ...− αr

having
∑r

i=1 αi < 1 for being consistent.

5.2.2 Generalised autoregressive conditional heteroscedasticity models (GARCH)

Bollerslev (1986) extended ARCH models into generalised autoregressive conditional heteroscedas-
ticity models. In this case the volatility, σ2

t is given as a linear regression over the previous
volatilities and squared white noise, A2

t . This extension is equivalent of the ARMA models on
AR models described in Section 5.1.

Considering {At, t ∈ T} be a white noise process, then we write a generalised autoregres-
sive conditional heteroscedasticity model of orders r and s, GARCH(r,s):

At = σtϵt

σ2
t = α0 +

r∑
i=1

αiA
2
t−i +

s∑
j=1

βjσ
2
t−j (5.25)

with α0 > 0, αi ≥ 0 for 1 ≥ i ≥ r, and βj ≥ 0 for 1 ≥ j ≥ s. Tsay (2010) showed that the
marginal variance of a GARCH(r,s) process is:

V ar(A2
t ) = σ2

A =
α0

1−
∑max{r,s}

i=1 (αi + βi)
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being
∑max{r,s}

i=1 (αi + βi) < 1.

Another important characteristic of GARCH processes is that can be rewritten as a ARMA
process in terms of A2

t , given a GARCH(r,s) process, then we rewrite:

A2
t = α0 +

max{r,s}∑
i=1

(αi + βi)A
2
t−i + υt −

s∑
j=1

βjυt−j

for υt = A2
t − σ2

t white noise.

This characteristic is important for the proper model and orders identification. Boller-
slev (1986) showed that by using the autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the squared white noises, A2

t , the correct order is selected using the same
method that for ARMA models developed by Box and Jenkins (1976) and described in Section
5.1. Then, we select an ARCH(r) model when we observe infinity non zero spikes in the ACF of
A2

t , but only the first r spikes of the PACF are different from zero. In case of the GARCH(r,s)
models both ACF and PACF show infinity non null spikes, being recommended to start with
small orders and increase until obtain a residual white noise.

Equivalent to ARIMA models, Bollerslev (1986) also considered the option of having a uni-
tary root on the GARCH model. This leads to integrated generalised autoregressive con-
ditional heterocedasticity model or IGARCH. The basic model is given by IGARCH(1,1),
which is characterised by α1 + β1 = 1. Then the IGARCH(1,1) is defined as follow

At = σtϵt

σ2
t = α0 + (1− β1)A

2
t−1 + β1σ

2
t−1 (5.26)

IGARCH models are the non stationary version of GARCH models, but are also prone to become
stationary.

5.2.3 Estimation and forecasting

As we have shown GARCH models can be rewritten as ARMA process, which is useful for
parameter estimation. Then, considering the observed squared residuals of the ARMA process
â2t = (rt − µ̂t)

2 the parameters are estimated with the maximum likelihood method, using the
ARMA estimator µ̂t given in Equation (5.17).

For forecasting, we also obtain equivalent results to ARMA models. Using the estimated
parameters, α̂0, ..., α̂r, β̂1, ..., β̂s, the one step ahead volatility, σ̂2

T+1 of a GARCH(r,s) process is
obtained

σ̂2
T+1 = α̂0 +

r∑
i=1

α̂iâ
2
T+1−i +

s∑
j=1

β̂j σ̂
2
T+1−j

5.3 Diagnostic checking

In this section we use different tools for checking the chosen model and estimated parameters. For
this we analyse the standardised residuals, ϵt. As we called in Section 5.2 we have ât = rt − µ̂t,
where µ̂t represents the forecast ARMA(p,q) model at time t given in Equation (5.17); join with
Equation (5.18) we obtain the estimated standardised residuals
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ϵ̂t =
ât
σ̂t

=
rt − µ̂t

σ̂t
(5.27)

To have a correct model assessment the standardised residuals should be white noise, with
null autocorrelations, and fitting the used distribution density. Also, the autocorrelations effects
on the squared of the standardised residuals ϵ2t should disappear.

To check the distribution choice Q-Q plots are an useful tool. A Q-Q plot is a scatter plot of
the empirical sample quantiles versus the theoretical ones. A good fit would be obtained when
the points obtained follow the 45 degree line x = y. We continue checking that the standardised
residuals are white noise; null mean and unitary variance is easily assessed plotting the obtain
time series {ϵ̂t, t ∈ T}, which should fluctuate around zero in a band with width [−3, 3].

Finally, autocorrelations of ϵ̂t and ϵ̂2t can be assessed using the sample autocorrelation function
(ACF) from Definition 5.4 or the Ljung-Box test.

In case of using the sample ACF is expected to be no significantly different from zero, the
values are obtained

ρ̂k =
γ̂k
γ̂0

=

∑T−k
i=1 (ϵ̂i − ϵ̄)(ϵ̂i+k − ϵ̄)∑T

i=1(ϵ̂i − ϵ̄)2

where ϵ̄ = 1
T

∑T
i=1 ϵ̂i. Bartlett (1946) proved that the 95% confidence interval for the autocorre-

lation of a Gaussian white noise is:

CI0.05(ρk) =

(
−1.96√

N
,
1.96√
N

)
∀k

being N the sample size.

To check for zero autocorrelations the Ljung-Box test is a useful tool. The test compares
under the null hypothesis that the first K autocorrelations are zero, H0 : ρ1 = ... = ρK = 0
versus H1 : notH0. The Ljung −Box− PierceQ− statistic is given by

Q(K) = T (T + 2)

K∑
k=1

ρ̂k
T − k

We have under H0 that Q(K) ∼ χ2
K . Thus, the null hypothesis, H0, is rejected when Q(K)

exceed the (1− λ)− quantile of the χ2
K .

In this section we have modelled and forecast stationary univariate time series using ARMA-
GARCH models. In the next section we introduce vine copulas models to measure and model
multivariate dependence between univariate time series, very useful to forecast the log returns
of a portfolio composed of several financial time series.
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6 Vine copula

In this section we introduce vine copulas. These models are used to model the dependence and
tail asymmetries of multivariate variables. The main idea is to construct multivariate copulas
using bivariate copulas. For this section we mainly follow Czado (2019). In Section 6.1 we define
the bivariate copula with their characteristics. We continue generalising to higher dimensions
with R-, D- and C-vine copulas in Section 6.2. Finally, in Sections 6.3 and 6.4 we introduce the
model selection, parameter estimation and simulation for vine copula models. We begin defining
a copula.

Definition 6.1. A d-dimensional copula, C, is a multivariate distribution function on the
d-dimensional hypercube [0, 1]d with uniformly distributed marginals. Also, the corresponding
copula density, c, for an absolutely continuous copula can be obtained by partial differentiation,
i.e., c(u1, ...ud) :=

∂d

∂u1...∂ud
C(u1, ..., ud) for all u in [0, 1]d.

The basic idea of copulas is to transform the univariate variables to the uniform scale using
their corresponding marginal distribution function for characterising the dependence. This allows
to model multivariate variables with different marginal distributions. This idea was introduced
in Sklar (1959) with the following theorem.

Theorem 6.1. Let X be a d-dimensional random vector with joint distribution function F and
marginal distribution functions Fi, i = 1, ..., d then the joint distribution function can be expressed
as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (6.28)

with associated density or probability mass function

f(x1, ..., xd) = C(F1(x1), ..., Fd(xd))f1(x1)...fd(xd). (6.29)

for some d-dimensional copula C with copula density c. For absolutely continuous distributions,
the copula C is unique.

The inverse also holds, the copula corresponding to a multivariate distribution function F
with marginal distribution functions Fi, i = 1, ...d can be expressed as

C(u1, ..., ud) = F (F−11 (u1), ..., F
−1
d (ud)). (6.30)

and its copula density or probability mass function is determined by

c(u1, ..., ud) =
f(F−11 (u1), ..., F

−1
d (ud))

f1(F
−1
1 (u1))...fd(F

−1
d (ud))

. (6.31)

Proof. Proofs can be found in Nelsen (2006).

6.1 Bivariate copula

The use of bivariate copulas is important in the later extension in vine copulas for higher di-
mensional variables, since the vine copula construction is based in a copula construction. Thus,
in this section we introduce some definitions, characteristics and the most used bivariate copula
families. Considering a bivariate variable X = (X1, X2) and using Theorem 6.1 we obtain the
conditional density and distribution functions as follow
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f1|2(x1|x2) = c12(F1(x1), F2(x2))f2(x2).

F1|2(x1|x2) =
∂

∂u2
C12(F1(x1), u2)|u2=F2(x2) =

∂

∂F2(x2)
C12(F1(x1), F2(x2)).

We can also obtain the conditional distribution function of a bivariate copula distribution.
These are called h-functions and are given by

h1|2(u1|u2) :=
∂

∂u2
C12(u1, u2). (6.32)

h2|1(u2|u1) :=
∂

∂u1
C12(u1, u2). (6.33)

Moreover, we introduce the tail dependence coefficients which measure the extreme de-
pendence values. For a given a bivariate variable with copula C we define the upper tail
dependence coefficient

λupper = lim
t→1−

P(X2 > F−12 (t)|X1 > F−11 (t)) = lim
t→1−

1− 2t+ C(t, t)

1− t
.

Similarly, we define the lower tail dependence coefficient

λlower = lim
t→0+

P(X2 ≤ F−12 (t)|X1 ≤ F−11 (t)) = lim
t→0+

C(t, t)

t
.

We continue introducing the main bivariate copula families. Thus, the simplest bivariate
copula is the independence copula, which has no parameters and is given by

C(u1, u2) = u1u2.

From elliptical distributions we define elliptical copulas using the Sklar’s theorem. The main
representatives are the Gaussian and Student’s copulas. The bivariate Gaussian copula using
a bivariate normal distribution with zero mean vector, unit variances, Φ, and correlation ρ is

C(u1, u2; ρ) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ).

where Φ2 is the bivariate normal distribution. In case of the bivariate Student’s copula we
have

C(u1, u2;R, ν) = TR,ν(T
−1
ν (u1), T

−1
ν (u2)).

where TR,ν is the bivariate standard Student’s t distribution with scale parameter matrix R ∈
[−1, 1]2x2 and ν > 0 degree of freedom. T−1ν denotes the inverse of the univariate standard
Student’s t distribution with ν degree of freedom.

The set of bivariate Archimedian copulas defined in Czado (2019) represent a family of
parametric copulas which use the same structure

C(u1, u2) = φ[−1](φ(u1) + φ(u2)).

with φ a continuous, strictly monotone decreasing and convex function with φ(1) = 0, and

φ[−1](t) :=

{
φ−1(t) , 0 ≤ t ≤ φ(0)

0 , φ(0) ≤ t ≤ ∞
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The most important bivariate Archimedian copulas with a single parameter are resume in Table
6.1.

Family Copula Parameter Tail dependence
Clayton (u−δ1 + u−δ2 − 1)−

1
δ 0 < δ < ∞ Lower

Gumbel exp[−{(−ln u1)
δ + (−ln u2)

δ} 1
δ ] δ ≥ 1 Upper

Frank − 1
δ ln

(
1

1−e−δ [(1− e−δ)− (1− e−δu1)(1− e−δu2)]
)

δ ∈ [−∞,∞]\{0} None

Joe 1−
(
(1− u1)

δ + (1− u2)
δ − (1− u1)

δ(1− u2)
δ
) 1

δ δ ≥ 1 Upper

Table 6.1: Bivariate Archimedian copulas with single parameter

Also, some rotations of the copula are usually considered to accommodate larger ranges of
dependence

• 90º: c90(u1, u2) := c(1− u2, u1)

• 180º: c180(u1, u2) := c(1− u1, 1− u2)

• 270º: c270(u1, u2) := c(u2, 1− u1)

6.2 R-, D- and C-vine copula
In this section we want to generalise the bivariate copula theory to higher dimensions. To obtain
the joint distribution a pair copula decomposition is used. In case of the three dimensions,
Czado (2019) proved using Theorem 6.1 that the density function is

f(x1, x2, x3) =c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)

c23(F2(x2), F3(x3)) c12(F1(x1), F2(x2))

f3(x3)f2(x2)f1(x1)

where c13;2(·, ·;x2) is the bivariate copula associated to (X1, X3) given X2 = x2.The correspond-
ing three dimensional copula is given by

c(u1, u2, u3) =c13;2(C1|2(u1|u2), C3|2(u3|u2);x2)

c23(u2, u3)c12(u1, u2)

Generalising to d random variables (X1, ..., Xd). Being D = {1, ..., d} excluding i and j, the
copula associated with the bivariate conditional distribution (Xi, Xj) is denoted Cij;D(·, ·;xxxD)
for XXXD = xxxD. Also, we introduce the abbreviation ci,j;D := ci,j;D(Fi|D(xi|xxxD), Fj|D(xj |xxxD);xxxD)
for i < j.

We continue introducing two common structures used in vine copulas. We define a drawable
vine (D-vine) density if the joint density f1,...,d can be constructed as

f1,...,d(x1, ..., xd) =

d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

[ d∏
k=1

fk(xk)

]
Also, we define a canonical vine (C-vine) density when the joint density can be decom-

posed
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f1,...,d(x1, ..., xd) =

d−1∏
j=1

d−j∏
i=1

cj,(i+j);1,...,(j−1)

[ d∏
k=1

fk(xk)

]
In general a vine density can be specified by a set of linked graphs. We define a graph as a

pair G = (N,E), such that E ⊆ {{x, y} : x, y ∈ N} are called edges of the graphs, and N are
the nodes. The number of neighbours of a node υ ∈ N is the degree of υ, denoted by d(υ).
Given a graph is called path if we have P = {N,E} with nodes N = {υ0, υ1, ..., υk} and edges
E = {{υ0, υ1}, {υ1, υ2}, ..., {υk−1, υk}}. A cycle is a path with υ0 = υk. Then, we say that
T = (N,E) is a tree if any two nodes of T are connected by a unique path in T, which means
that every node has at least one connection to some node and there is not any cycle.

From this concepts we define a regular vine (R-vine) tree sequence as a set of trees
V = (T1, ..., Td−1) on d elements if:

• Each tree Tj = (Nj , Ej) is connected, i.e. for all nodes a, b ∈ Tj , j = 1, ..., d− 1, there exist
a path n1, ..., nk ⊂ Nj with a = n1, b = nk.

• T1 is a tree with node set N1 = {1, ..., d} and edge set Ej .

• For j ≥ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej .

• Proximity condition. For j = 2, ..., d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1.

Figure 6.2: Example of R-vine tree sequence with five elements.

We introduce some notation related to the vine tree structure. For any edge e ∈ Ei we define
the complete union AeAeAe as the set

Ae := {j ∈ N1|∃e1 ∈ E1, ..., ei−1 ∈ Ei−1 such that j ∈ e1 ∈ ... ∈ ei−1 ∈ e}

The conditioning set DeDeDe of an edge e = {a, b} is De := Aa

⋂
Ab. Then the edge is abbreviated

to e = (ea, eb;De), with ea := Aa\De and eb := Ab\De.
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Also, D-vine and C-vine can be characterised in terms of their tree sequence. Thus, given a
tree sequence V = (T1, ..., Td−1) is called

• D-vine tree sequence if for each node n ∈ Ni we have |{e ∈ Ei|n ∈ e}| ≤ 2.

• C-vine tree sequence if for each tree Ti there is one node n ∈ Ni such that |{e ∈ Ei|n ∈
e}| = d− i. Such a node is called the root node of tree Ti.

Figure 6.3: Example of D-vine tree sequence with five elements.

Figure 6.4: Example of C-vine tree sequence with five elements.

In general, considering F the joint distribution for the d dimensional random vector XXX =
(X1, ..., Xd) has a regular vine distribution, if we can specify a triplet (F ,V,B) such that:

1. Marginal distributions: F = (F1, ..., Fd) is a vector of continuous invertible marginal dis-
tribution functions.
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2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.

3. Bivariate copulas: The set B = {Ce|e ∈ Ei; i = 1, .., d − 1}, where Ce is a symmetric
bivariate copula with density.

After defining the different classes of vine copulas and how are they constructed we continue
with the vine copula tree selection and parameter estimation from data.

6.3 Selection and parameter estimation of vine copula

In this section we introduce a process to select the best vine model. We focus in the general case
of a regular vine. The selection is done using the Dißmann algorithm based on the top-down
selection, introduced in Dißmann et al. (2013).

The method is based in maximising the pair weights for each tree, starting with T1. Then
for each tree the algorithm is based in different steps.

1. First we calculate the weight Wi,j for all possible index pairs {i, j}, 1 ≤ i < j ≤ n. The
first tree is arbitrary but the following trees should also fulfil the proximity condition.

2. We select the maximum spanning tree and estimate the corresponding parameters for the
selected copula, Cae,be .

3. Generate pseudo observations Cae|be(uk,be , θ̂̂θ̂θae,be) and Cbe|ae
(uk,ae

, θ̂̂θ̂θae,be) for k = 1, ...n.

4. Finally, we use the generated pseudo observations for determining the following tree edges
weight wae,be;De .

To estimate the parameters θθθe for edge e = (ae, be;De) in tree Ti is based on the pseudo-
observations. In particular, θθθe is estimated by maximising

n∏
k=1

cae,be;De(uk,ae|De,θ̂̂θ̂θ(T1,...,i−1)
; θe) (6.34)

To compare the possible models information criteria are used. Akaike (1973) and Schwarz (1978)
defined the Akaike (AIC) and Bayesian (BIC) information criteria, respectively. This well known
model information criteria use the log-likelihood, penalising the number of parameter used. Then,
considering a R-vine (V,B) with parameter vector θθθ and sample uuu of size n the information cri-
teria are given by

AICRV = −2

n∑
k=1

ln(lk(θ̂̂θ̂θ;uuuk)) + 2K

BICRV = −2

n∑
k=1

ln(lk(θ̂̂θ̂θ;uuuk)) + ln(n)K

where K is the number of model parameters and lk(θ̂̂θ̂θ;uuuk) is the corresponding likelihood of the
R-vine

lk(θθθ;uuuk) :=

d−1∏
i=1

∏
e∈Ei

cae,be;De(Cae|De
(uk,ae |uuuk,De), Cbe|De

(uk,be |uuuk,De))
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Apart from the above information criteria, Vuong (1989) proposed the Vuong test for com-
paring different models. These tests compares the likelihood of the two competing statistical
models. Then, the null hypothesis is H0 : E0[lnf1(XXX|θθθ1)] = E0[lnf2(XXX|θθθ2)] versus H1 : not H0.

Given i.i.d. observations xxxk, k = 1, ..., n from the true density h0 with θ̂θθj , j = 1, 2 param-
eter estimates resulting from fitting the two models. Then we define the log-likelihood ratio
contribution

mk(xxxk) := ln

[
f1(xkxkxk|θ̂θθ1)
f2(xkxkxk|θ̂θθ2)

]
k = 1, ..., n

and the likelihood ratio statistic is

LRn(θ̂θθ1, θ̂θθ2)(xxx1, ...,xxxn) :=

n∑
k=1

mk(xxxk)

Then under the null hypothesis it holds that

v(XXX1, ...,XXXn) :=
LRn(θ̂θθ1, θ̂θθ2)(XXX1, ...,XXXn)√

nω̂(XXX1, ...,XXXn)
→ N(0, 1)

being ω̂(XXX1, ...,XXXn) the empirical variance of the likelihood ratio statistics LRn(θ̂θθ1, θ̂θθ2)(XXX1, ...,XXXn).

We reject H0 if and only if |v(xxx1, ...,xxxn)| > Φ−1(1 − α
2 ). Then, we select model 1 if

v(xxx1, ...,xxxn) > Φ−1(1− α
2 ) and select model 2 if v(xxx1, ...,xxxn) < −Φ−1(1− α

2 ).

6.4 Simulating from vine copula
Here we give the general procedure to simulate from a general R-vine copula. In case of being
a C- or D-vine the approach is similar, but can be found in Czado (2019). The idea is to
recursively simulate using the univariate conditional distributions derived from the joint R-vine
copula. Then, a sample u1, ..., ud is obtained as follow

First : Sample i.i.d. wj ∼ U [0, 1], j = 1, ..., d

Then : u1 := w1

u2 := C−12|1(w2|u1)

...

ud := C−1d|d−1,...,1(wd|ud−1, ..., u1)

(6.35)

The univariate conditional copula distribution are generalised from Equations (6.32) and
(6.33) to higher orders

Cea|eb;De
(w1|w2; θea,eb;De

) :=
∂

∂w2
Cea,eb;De

(w1, w2; θea,eb;De
) (6.36)

Ceb|ea;De
(w2|w1; θea,eb;De

) :=
∂

∂w1
Cea,eb;De(w1, w2; θea,eb;De) (6.37)

depending also on the estimated pair copula parameters.
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7 Stationary vine copula

In this section we introduce the class of stationary vine copula models, which model the cross-
sectional and temporal dependence together using vine copula based approach. Most of this
section follows Nagler et al. (2022). We begin in Section 7.1 with the translation invariance,
needed for S-vines. We continue defining the stationary vine copulas in Section 7.2. In Section
7.3 is given the Markov property and Section 7.4 is the parameter estimation and simulation for
stationary vine models.

In contrast to the previous ARMA-GARCH and vine copula models the stationary vine
copula includes the time dependence in vine copula. Since copulas work on the u-scale we first
need to transform the original time series process, {Rt,i, t ∈ T} ∀i ∈ {1, ..., d}. To transform
the series we assume strict stationarity as defined in Definition 5.1. Thus, given the marginal
distributions F1, ..., Fd we obtain the u-scale time series process {Ut,i, t ∈ T} ∀i ∈ {1, ...d} such
that Ut,i = Fi(Rt,i). In this case we have two sub-indices in each random variable Ut,i, the first
refers to the time index and i to the variable. From now, in this section we use the notation (t, i)
referred to the random variable Ut,i. Therefore we consider a vine structure on T ×d dimensions.

The idea to model the multivariate time series with stationary vine copulas is to use a vine
for capturing the cross-sectional dependence of UUU t ∈ Rd for all time points t. The cross-sectional
structure are linked by one edge connecting a vertex from the structure at t with a vertex of the
structure at t+ 1. Since we are assuming stationary time series, it is reasonable to assume that
the cross-sectional structure and the linked edge are time invariant. There are three different
models depending the cross sectional structures and linked edges:

• D-vine for multivariate stationary vines introduced in Smith (2015). The cross-sectional
structure is a D-vine and two cross-sectional structures are connected with border vertices
generating a big D-vine structure through cross-sectional and time dependence structures.

• M-vine introduced in Beare and Seo (2015). In this case the cross-sectional structure is
also a D-vine. However, they are connected at one vertex that lies on the same border of
the D-vine.

• COPAR introduced in Brechmann and Czado (2015). The cross-sectional structure is a
C-vine and the first trees of two C-vines at time points t and t + 1 are connected at the
root node.
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Figure 7.5: Example of the first tree of a four dimensional D-vine for multivariate stationary
vines on three time points.

Figure 7.6: Example of the first tree of a four dimensional M-vine on three time points.

Figure 7.7: Example of the first tree of a four dimensional COPAR on three time points.

7.1 Translation invariance
We have assumed strict stationarity on the original univariate time series {Rt,i, t ∈ T} ∀i ∈
{1, ..., d}. However, this concept should be extended to the joint distribution. Then, we say that
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the time seriesUUU1, ...,UUUT ∈ Rd is strictly stationary if and only ifUUU t1 , ...,UUU tm andUUU t1+τ , ...,UUU tm+τ

have the same joint distribution for all 1 ≤ t1 < t2 < ... < tm ≤ T, 1 ≤ τ ≤ T −maxm
j=1tj , and

1 ≤ m ≤ T . This condition is included in the vine copula model with the translation invariance
concept.

Definition 7.1. Given a vine copula (F ,V,B) on the set of nodes V1 = {1, ...T} × {1, ..., d} is
translation invariant if cae,be;De = cae′ ,be′ ;De′ holds for all edges e, e′ ∈ ∪Td−1

k=1 Ek for which
there exist τ ∈ Z such that

ae = ae′ + (τ, 0), be = be′ + (τ, 0), De = De′ + (τ, 0) (7.38)

with De = {υ + (τ, 0) : υ ∈ De′}.

By definition translation invariance is a necessary condition for stationarity. However, in
general it is not a sufficient condition for stationarity. Hence, the useful vine structures are those
that translation invariance is a sufficient condition. Figure 7.8 shows the effect of the translation
invariance. In the figure, the labels with same colour in the same tree represent the same pair
copula.
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Figure 7.8: Example of the first three trees of a three dimensional M-vine on three time points.

7.2 Stationary vine
Before defining a stationary vine we need to introduce a couple of concepts.

Definition 7.2. Consider a vine sequence V = (Vk, Ek)
Td−1
k=1 on {1, ...T} × {1, ..., d} and V ′1 =

{t, ...t + m} × {1, ..., d} for some t,m with 1 ≤ t ≤ T , 0 ≤ m ≤ T − t. Given
(

V ′
k
2

)
the set

of all nodes of the tree k. Thus, we define E′k = Ek ∩
(

V ′
k
2

)
and V ′k+1 = E′k for all k ≥ 1.

Then the sequence of graphs Vt,t+m = (V ′k, E
′
k)

(m+1)d−1
k=1 is called restriction of VVV on the points

t, ..., t+m.

A vine restriction refers to delete all edges and vertices where the time indices in the range
[t, t +m] does not appear. A restriction of vine, V, is not always a vine. For example consider
the vine (1, i)− (3, i)− (2, i); the restriction on {1, 2}×{i} is given by the two single nodes (1, i)
and (2, i). This is not a vine for being disconnected.
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Figure 7.9: First three trees of the M-vine given in Figure 7.8 restricted to {1, 2} × {1, 2, 3}.

The first tree of the restriction of a vine V is composed by all vertices in V ′1 and the corre-
sponding edges. In the remaining trees, edges and vertices are affected by the deletion in the
previous trees. Figure 7.9 shows an example of restriction vine plot in Figure 7.8.

Definition 7.3. Let m ≥ 0, and V = (Vk, Ek)
(m+1)d−1
k=1 be a vine on {t, ..., t+m}×{1, ..., d} and

V ′ = (V ′k, E
′
k)

(m+1)d−1
k=1 be a vine on {s, ..., s +m} × {1, ..., d}. We say that VVV is a translation

of V ′V ′V ′ (denoted by V ∼ V ′) if for all k = 1, ..., d − 1 and edges e ∈ Ek, there is an edge e′ ∈ E′k
such that e = e′ + (t− s, 0).

The translation of a vine V is obtained by shifting all the vertices and edges in time. An
example is shown in Figure 7.10, which represents a translation from {1, 2}×{1, 2, 3} to {5, 6}×
{1, 2, 3}.

Theorem 7.1. Let V be a vine on the set V1 = {1, ..., T} × {1, ..., d}. Then the following
statements are equivalent:

1. The vine copula model (F ,V,B) is stationary for all translation invariant choices of B.

2. There are vines V(m),m = 0, ...T − 1, defined on {1, ...,m+1}×{1, ..., d}, such that for all
m = 0, ..., T − 1, 1 ≤ t ≤ T −m,

Vt,t+m ∼ V(m)

Definition 7.4. A vine V on the set V1 = {1, ..., T} × {1, ..., d} is stationary if it satisfies
condition 2 of Theorem 7.1.
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Figure 7.10: Vine translation of M-vine Figure 7.9 from {1, 2} × {1, 2, 3} to {5, 6} × {1, 2, 3}.

The S-vines are characterised by V(0) which contains the cross-sectional structure of V. V(1)

correspond to two nested V(0) structures. In general, V(m) is the structure of V(m−1) with a
new cross-sectional structure and the corresponding edge between them. Nagler et al. (2022)
show that M-vines and D-vines for multivariate stationary vine copulas are stationary, but CO-
PAR model is not. However, S-vines do not require the cross-sectional structure to be D-vines,
moreover we have some degree of freedom in how we connect variables across time points.

7.3 Markovian models
Stationarity is very useful and necessary to estimate the model since it reduces the model com-
plexity. While a general vine copula model on UUU1, ...,UUUT ∈ [0, 1]d requires Td(Td − 1)/2 =
O(T 2d2) pair copulas; the number of pair copulas is reduced to (T − 1)d2+ d(d− 1)/2 = O(Td2)
when they are translation invariance. Usually time series are also constrained with the Markov
property.

Definition 7.5. A time series UUU1, ...,UUUT ∈ [0, 1]d is called a Markov process of order p if,
for all uuu ∈ Rd, it fulfils

P(UUU t ≤ uuu|UUU t−1, ...,UUU1) = P(UUU t ≤ uuu|UUU t−1, ...,UUU t−p)

A vine copula (F ,V,B) on a stationary vine V is Markov of order p if and only if ce ≡ 1 for
all e /∈ Vt,t+p, t = 1, ..., T − p.

Then, the number of pair copula needed for a stationary vine copula model with Markov
order p is reduced to pd2+ d(d− 1)/2 = O(pd2). In the example shown in Figure 7.8 with T = 3
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and d = 3 the general vine model without constrains needs 3∗3(3∗3−1)
2 = 36 pair copulas. In

case of being translation invariant the number of copulas correspond with the sum of number of
different colours in each tree, in this case (3− 1)32 + 3(3−1)

2 = 21 pair copulas in total. Finally,
if we consider the vine copula to be stationary with Markov order 1, the number of pair copula
is the sum of the different colours of vine represented in Figure 7.9, in total 1 ∗ 32 + 3(3−1)

2 = 12
pair copulas.

7.4 Parameter estimation and model simulation
The method used for the model selection and parameter estimation is equivalent to the one
defined in Section 6.3 having to account for the stationarity of the vine copulas and the Markov
order. In this case the parameters θθθ[e] are also obtained by maximising the log-likelihood function,
which is similar to Equation (6.34); being [e] the class of edges with the same copula. In this case
the maximum likelihood depends on the pair copulas and parameters estimated in the previous
trees, so their values are obtained recursively.

Model selection is done with an algorithm similar to Dißmann et al. (2013) described in Section
6.3. Here, we first focus on cross-sectional structure selecting the strongest dependencies as the
algorithm describes using the copula weights. Then, the following trees related to cross-sectional
structure are selected using the proximity condition. Also, M- and D- vines structures can be
imposed to simplify the structure selection. Finally, the Markov order is selecting comparing
different models with the criteria information selection, AIC and BIC described in Section 6.3,
which are computed from the maximal pair copula log-likelihood.

Finally, for simulating from a stationary vine the conditional copula distribution and its
inverse are used. The method is equivalent to the one described in Section 6.4. Given a inde-
pendent identically distributed uniform variables the copula sample is obtained recursively with
the univariate conditional distributions from Equations (6.36) and (6.37).
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8 Fleishman’s transformation

Throughout this section we discuss the current method used by BVK for estimating the portfolio
risk measures. The method was introduce in Vale and Maurelli (1983), which samples portfolio
values based on the first four moments of each time series as described in Fleishman (1978).

The method described in this section uses the mean, variance-covariance matrix, skewness
and kurtosis for generate multivariate non-normal samples. The general idea of the method is to
obtain multivariate non-normal samples from multivariate standard normal samples. Non-normal
samples with the desired correlation matrix are generated using the Fleishman’s transformation
using normal variables with a specific Rx correlation matrix.

The univariate Fleishman’s transformation generates a univariate non-normal random vari-
able, Y , as a linear combination of the first three powers of a standard normal random variable
X. Consider Y to be standardised non-normal variable, i.e. E(Y ) = 0 and V ar(Y ) = 1. The
transformation from a standard normal variable X is given by:

Y = a+ bX + cX2 + dX3 (8.39)

where a, b, c and d are chosen to provide Y with E(Y ) = 0, V ar(Y ) = 1, Skew(Y ) = γ1 and
Kurt(Y ) = γ2. To determine the constants, Fleishman expanded Equation (8.39) to express
the first four moments of the non-normal variable Y in terms of the first fourteen moments of
X. Since X is standard normally distributed, the first fourteen moments are known constants.
Fleishman was able to represent the solution to the constants of Equation (8.39) as a system of
nonlinear equations. For a standardised distribution for Y , the constants a, b, c and d are found
by solving:

b2 + 6bd+ 2c2 + 15d2 − 1 = 0 (8.40)

2c(b2 + 24bd+ 105d2 + 2)− γ1 = 0 (8.41)

24[bd+ c2(1 + b2 + 28bd) + d2(12 + 48bd+ 141c2 + 225d2)]− γ2 = 0 (8.42)

a = −c (8.43)

with γ1 and γ2 being the desired skew and kurtosis respectively of Y .

For the generalisation for the multivariate case, we first calculate the univariate coefficients ai,
bi, ci and di, ∀i ∈ {1, . . . , d} where d is the number of variables. We use X1, ..., Xd independent
standard normal random variables in the Fleishman univariate method.

The idea is to generate multivariate normal variables which transformed individually with
Equation (8.39) the variables Y are obtained with the desired correlations. To obtain the de-
sired final correlations we calculate an intermediate correlation matrix for the standard normal
variables X.

The intermediate correlation matrix for the associated normal random variable is calculated
pairwise. For each pair of variables, consider Y1 and Y2, we have standard normal X1, X2

associated such that

Yi = w′iPi i = {1, 2} (8.44)

where w′i = [ai, bi, ci, di] and P′i = [1, Xi, X
2
i , X

3
i ].
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Letting rY1,Y2 be the desired correlation between two non-normal variables, Y1 and Y2 associ-
ated with the normal variables X1 and X2, and noting that, since the variables are standardised,
the correlation between Y1 and Y2 is their expected cross product:

rY1,Y2
= E[Y1Y2] = E[w′1P1P

′
2w2] = w′1R1,2w2 (8.45)

where R1,2 is the expected matrix product of P1 and P′2.

R1,2 = E(P1P
′
2) =


1 0 1 0
0 ρX1,X2

0 3ρX1,X2

1 0 2ρ2X1,X2
+ 1 0

0 3ρX1,X2
0 6ρ3X1,X2

+ 9ρX1,X2

 (8.46)

Collecting terms, and using the relationship between a and c given in Equation (8.43), a
third-degree polynomial in ρX1,X2

, the correlation between the normal variables X1 and X2,
results:

rY1,Y2 = w′1R1,2w2 = ρX1,X2(b1b2 + 3b1d2 + 9d1d2) + ρ2X1,X2
(2c1c2) + ρ3X1,X2

(6d1d2) (8.47)

Solving this polynomial for ρX1,X2 provides the pairwise correlation between the two vari-
ables X1 and X2 required to provide the desired post-transformation correlation rY1,Y2 . These
correlations can then be assembled into a intermediate correlation matrix. Then, for the desired
correlation matrix RY of YYY = (Y1, ..., Yd)

t with elements rY1,Y2
determine ρX1,X2

as in Equation
(8.47) and the corresponding wi = (ai, bi, ci, di)t and wj = (aj , bj , cj , dj).

In a second step a matrix decomposition procedure is used to generate multivariate normal
variables ZZZ with zero mean vector, unit variances and the desire correlation matrix of dimension
d, R, from multivariate uncorrelated population XXX with zero mean vector and variances one:

ZZZ = FXXX (8.48)

being F the principal components of R, given by F = V D; V being the matrix formed by the
eigenvectors of R associated to the eigenvalues, λ. D is the diagonal matrix with the singular
values of R,

√
λ, in the diagonal. Then, ZZZ ∼ Nd(0, R).

Finally, the non-normal standardised dependent random vector ỸYY = (Y1, ..., Yd)
t are de-

termined individually using Equation (8.39) with the correlated normal random vector Z̃ZZ =
(Z1, ..., Zd) as follow:

Ŷi = ai + biZi + ciZ
2
i + diZ

3
i i = 1, ..., d (8.49)

By construction, R is not guaranteed to be a positive definite matrix, since it is obtained
pairwise.
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9 Backtesting

To check and compare the estimated risk measures with the different methods, we define in
this section some measures and backtests. The measures are estimations of the level used for
calculating the VaR and ES. Using them also in a rolling window setup allows to analyse in which
circumstances the risk measures are better forecasted for the three approaches. Backtesting the
results give us also some feedback on the forecast and models with different hypothesis tests. In
Section 9.1 we define the VaR backtests, while Section 9.2 are the ES backtests. The backtests
have been implemented in R using the packages GAS Catania et al. (2022) and esback Bayer
and Dimitriadis (2020).

We begin estimating the empirical VaR level, α̂, V aRα(Rt) over a time window. It can be
calculated for the whole forecast period or uses a rolling window setup. For this, we first define
a binary random variable Lt at time t as follows

Lα
t =

{
1 V aRα(Rt) < −Rt

0 V aRα(Rt) ≥ −Rt
(9.50)

From Definition 4.6 and continuity of {Rt, t ∈ T} we have

E(Lα
t ) = P(V aRα(Rt) < −Rt) = P(inf{m ∈ R : P(m < −Rt) ≤ α} < −Rt) = α

Then, Lα
t is estimated by

lαt =

{
1 V̂ aRα(rt) < −rt

0 V̂ aRα(rt) ≥ −rt
(9.51)

and the estimated alpha level, α̂, is

α̂ :=
1

T

T∑
t=1

lαt . (9.52)

By definition Lt is a Bernoulli variable for each t with success probability α. Assuming that
they are independent we construct a confidence interval for α at λ-level as follow

CIλ(α) = α̂± z1−λ/2

√
α̂(1− α̂)

n
(9.53)

where z1−λ/2 is the standard normal (1− λ/2)− quantile.

McNeil and Frey (2000) introduce a similar measure for the expected shortfall. From Defini-
tion 4.7 the expected shortfall is the expectation of the returns that exceed the VaR. Then, we
define a measure βα of the expected shortfall

βα := E[rt − ÊSα(rt)|rt > V̂ aRα(rt)] ∀t ∈ {1, ..., T} (9.54)

Since Equation (9.54) only consider the returns that exceed the value at risk at level α, the
expected shortfall is well estimated when the expected value of rt − ÊSα(rt) is zero. From
Definition 4.7 we have that the expected value measure the expected lost in case of exceeding
the VaR.

In this case a rolling window and confidence interval is not calculated because β depends on
the V aR, so the length of the rolling window would not be the same through the time period.
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Apart of the measures which helps to have an idea of the estimated measures, we describe
some backtests for checking the forecasted risk measures. In general, we obtain a well fitted
model when the null hypothesis H0 : ”The risk measures estimation procedure is correct” is not
rejected with a certain confidence level.

9.1 VaR Backtesting
In this section we follow Christoffersen (1998), who introduce two backtests for the value at
risk. These test are the unconditional and conditional likelihood ratio tests. The conditional
likelihood ratio tests the VaR including a test for the independence of the risk measures at each
time point t. The likelihood ratio tests use Equation (9.51) for comparing with the α-VaR level.

Definition 9.1. Given the process {Lα
t , t ∈ T} for the log returns Rt and estimated risk measure

V̂ aRα(Rt) being independent. Then the likelihood ratio test of unconditional coverage,
LRucLRucLRuc, tests the hypothesis:

H0 : E[Lα
t ] = α (9.55)

H1 : E[Lα
t ] ̸= α (9.56)

The likelihood obtained under the null hypothesis is given by

L0(α; l
α
1 , ..., l

α
T ) = (1− α)

∑T
t=1(1−l

α
t )α

∑T
t=1 lαt

and under the alternative

L1(π; l
α
1 , ..., l

α
T ) = (1− π)

∑T
t=1(1−l

α
t )π

∑T
t=1 lαt

The likelihood ratio test is

LRα
uc = −2log

(
L0(α; l

α
1 , ..., l

α
T )

L1(π̂; lα1 , ..., l
α
T )

)
∼ χ2(1) under H0

with the maximum likelihood estimator π̂ given in Equation (9.52) being 1
T

∑T
t=1 l

α
t . Then, we

reject the null hypothesis at level γ if LRα
uc > χ2

γ(1).

As we have previously indicated this test assume independence of the variables lαt . However,
this can be included in the test introducing an independent test. Here the time dependence is
modelled by a stationary first order Markov Chain. Christoffersen (1998) defined the likelihood
ratio test of independence as follow.

Definition 9.2. The likelihood ratio independence test, LRindLRindLRind, compares the following
hypothesis

Hind
0 : P(Lα

t = 0|Lα
t−1 = 1) = P(Lα

t = 1|Lα
t−1 = 1) ∀t

Hind
1 : P(Lα

t = 0|Lα
t−1 = 1) ̸= P(Lα

t = 1|Lα
t−1 = 1) ∀t

Since Lα
t is binary we obtain a binary first-order Markov chain. Assumed to be stationary with

transition probability matrix

Π1 =

[
1− π01 π01

1− π11 π11

]
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where πij = P(lαt = j|lαt−1 = i). The likelihood function under the null hypothesis is

L1(Π1; l
α
1 , ..., l

α
T ) = (1− π01)

n00πn01
01 (1− π11)

n10πn11
11

with nij being the number of observed transition from state i to state j. Then, the maximum
likelihood estimator for Π1, Π̂1, is

Π̂1 =

[ n00

n00+n01

n01

n00+n01
n10

n10+n11

n11

n10+n11

]
Under the null hypothesis the transition matrix is

Π0 =

[
1− π0 π0

1− π0 π0

]
with π0 = P(Lα

t = 0|lαt−1 = 1) = P(Lα
t = 1|lαt−1 = 1). The likelihood under the null hypothesis is

L0(Π0; l
α
1 , ..., l

α
T ) = (1− π0)

(n00+n10)π
(n01+n11)
0

and the ML estimate π̂0 = (n01+n11)/(n00+n10+n01+n11) given Π̂0 =

[
1− π̂0 π̂0

1− π̂0 π̂0

]
. Finally,

the statistic for the test is given by

LRα
ind = −2log

(
L0(Π̂0; l

α
1 , ..., l

α
T )

L1(Π̂1; lα1 , ..., l
α
T )

)
∼ χ2(1) under Hind

0

We reject the null hypotheses at level γ if LRα
ind > χ2

γ(1), being χ2
γ(1) the γ quantile of χ2(1).

Further, both test can be combined to obtain the conditional coverage test. The likelihood
ratio with conditional coverage, LRccLRccLRcc tests the same hypothesis given in Equations (9.55)
and (9.56) join with the independence of lαt . The statistic for the test is

LRα
cc = LRα

uc + LRα
ind ∼ χ2(2) under H0 and Hind

0

for the process {lαt , t ∈ T} being α the level of the value at risk. We reject the null hypothesis
at level γ if LRα

cc > χ2
γ(2), where χ2

γ(2) is the γ quantile of χ2(2).

9.2 ES Backtesting

In case of the expected shortfall we define two backtests, the exceedance residual test and the
conditional calibrated test. From Definition 4.7 we have that expected shortfall depends on value
at risk.

The exceedance residual test, ER, was developed in McNeil and Frey (2000). They
introduce the measure given in Equation (9.54) which is expected to have zero mean. Then they
proposed the following hypothesis test

H0 : E[rt − ÊSα(rt)|rt > V̂ aRα(rt)] = 0

H1 : E[rt − ÊSα(rt)|rt > V̂ aRα(rt)] ̸= 0

To test the hypothesis a bootstrap test from Efron and Tibshirani (1993) is utilised.
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The conditional calibration test, CC, was defined in Nolde and Ziegel (2017). This test
compares value at risk and expected shortfall at the same time. Considering the vector of risk
measures (V aRα, ESα) at level α, they consider the identification function

VVV ((V aRα, ESα), x) =

(
α− 1{x > V aRα}

V aRα − ESα − 1
α1{x > V aRα}(V aRα − x)

)
Then, given a series of risk measures estimation, (V̂ aRα(Xt), ÊSα(Xt)) on {Xt, t ∈ T} is

said calibrated for (V aRα(Xt), ESα(Xt)) on average if

E[V ((V̂ aRα(Xt), ÊSα(Xt)), Xt)] = 000 ∀t ∈ T

Also, it is said to be conditional calibrated if

E[V ((V̂ aRα(Xt), ÊSα(Xt)), Xt)|Ft−1] = 000

being Ft−1 the σ-algebra containing all the information until time t− 1.

Since conditional calibration is stronger notion than average calibration, a traditional backtest
is developed with null hypothesis

H0 : The sequence of predictions (V̂ aRα(Xt), ÊSα(Xt)) is
conditional calibrated for (V aRα(Xt), ESα(Xt))

Nolde and Ziegel (2017) showed that E[VVV ((V̂ aRα(Xt), ÊSα(Xt)), Xt)|Ft−1] = 000 is equivalent
to E[h′th

′
th
′
tV ((V̂ aRα(Xt), ÊSα(Xt)), Xt)] = 000 for all Ft−1-measurable R2-valued functions hththt. The

simple conditional calibrated test is obtained with hththt = (1, 1), which give us the Wald-type test
statistic

T1 = T

(
1

T

T∑
t=1

hththtVVV ((V̂ aRα(Xt), ÊSα(Xt)), Xt)

)
Ω̂−1T

(
1

T

T∑
t=1

hththtVVV ((V̂ aRα(Xt), ÊSα(Xt)), Xt)

)

where

Ω̂−1T =
1

T

T∑
t=1

(hththtVVV ((V̂ aRα(Xt), ÊSα(Xt)), Xt))
2

They showed that under the null hypothesis T1
d−→ χ2(1) as T → ∞.
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10 Methods description

In this section we put together the theory from Sections 5, 6, 7 and 8 to describe the different
method used for estimating the risk measures. The three methods follow the same structure,
forecasting or sampling the portfolio value for calculating the VaR and ES using Equations (4.6)
and (4.7). We also define the method used for forecasting in a rolling window.

ARMA-GARCH with copula vine method is described in Figure 10.11. This method
models the serial and the cross sectional dependence separately. The serial dependence, which
refers to the dependence created in each time series, is model first using the ARMA model for the
mean of each portfolio component and GARCH models for each volatility. Once we have removed
the serial dependence, we estimate a vine copula model on the u-scale residuals of the GARCH
model for the cross sectional dependence, which refers to the dependence between the assets
that compose the portfolio. Once we have select the best model and estimate the corresponding
parameters we are able to sample from the copula model and transform to the return scale with
ARMA-GARCH models. Once, we have a sample of size N for each portfolio asset we obtain
the portfolio value using the weights in Equation (3.4).

Stationary vine (S-vine) copula method from Figure 10.12 models serial and cross
sectional dependence together. For this, stationary vine copula models are used. To include the
serial dependence the translation invariance defined in Section 7.1 is essential. Also, with the
Markov order selected, we reduce the model calculations. Then, since copula models work in
the u-scale, we should first select and apply marginal distribution for each portfolio component.
Once we have transform the data from return to u-scale we model with stationary vine copula
and estimate the parameters. Next, we sample from it an transform back to the return scale
with the estimated marginal models. Finally, as we do with ARMA-GARCH and copula method
we obtain the portfolio values to estimate the risk measures.

Fleishman’s transformation method is showed in Figure 10.13. This method is the one
used nowadays by BVK for estimating the risk measures. In this case, we do not model the
dependence between the time series. The method uses the first four moments of the components
of the portfolio for sampling the portfolio values. The base of this method is to calculate a
sample of size N for each asset of the portfolio using Equation (8.39) transformation, from
normal variables with the corresponding correlation. With this method we are able to easily
sample the individual component of the portfolio with the desire mean, variance, skewness and
kurtosis and also the corresponding correlation matrix. Once we have those values we use the
weights to calculate the portfolio values and estimate value at risk and expected shortfall.

To forecast from the methods described in Figures 10.11, 10.12 and 10.13 we use a rolling
window structure illustrated in Figure 10.14. The method is based on the division of the time
period T in several windows of size d. Each window uses the same model, but the parameters
are recalculated every h observations corresponding to the refit size. Since in each window the
forecast size is also h, then we obtain a forecast for each risk measure for each point in time. For
being consistent we need T−d

h to be an integer.
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Figure 10.11: Risk measures estimation one step ahead using ARMA-GARCH models with R-
vine copula method for a portfolio with d assets.44
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Figure 10.12: Risk measures estimation p steps ahead using stationary copula models with
Markov order p for a portfolio with d assets.

45



r11 · · · r1T
...

. . .
...

rd1 · · · rdT

 Standardise the log
returns yit =

rit−µi

σi

y11 · · · y1T
...

. . .
...

yd1 · · · ydT


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Figure 10.13: Risk measures estimation one step ahead using Fleishman’s transformation method
for a portfolio with d assets.
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Figure 10.14: Example risk measures estimation structure with a rolling window of size d. The
forecasting and parameter recalculation is done every h time points.
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11 Data description

In the BVK database we analyse 15 indices used as benchmarks for different strategies in the
company. The time series considered run from 20/06/2005 until 11/11/2022 in daily basis,
4340 observation for each time series. The indices can be classified depending on the type of
assets that they are benchmarking. Table 11.2 shows the classification by department with the
corresponding abbreviation:

Department Index Name Abbreviation
1 Hedge Fund HFRX ED: Merger Arbitrage HF Merger
2 Hedge Fund SG CTA Index HF CTA
3 Real Estate MSCI US REIT Index REITS MSCI
4 Real Estate REITS Europe REITS Eur
5 Private Equity MSCI World Infrastructure Infrastructure
6 Private Equity Russell 2000 Russell 2000
7 Private Equity Russell 3000 Russell 3000
8 Equity MSCI Europe large cap MSCI EUR LC
9 Equity MSCI Emerging Markets MSCI EM

10 Equity MSCI US Small Cap Growth MSCI US SC
11 Equity MSCI EUR Small Cap Net Return MSCI EUR SC
12 Equity MSCI ACWI MSCI ACWI
13 Fixed Income Global Aggregate Corporate Total Return FI Global Agg
14 Fixed Income Global Capital Securities Total Return FI Global Cap
15 Fixed Income ICE BofA BB-B Rated Developed Markets FI ICE

Table 11.2: Department, name and abbreviation of the indices used in the case study.

The daily closing price has been downloaded from Bloomberg (2023), to assess the different
risk measures, we consider an equivalent BVK portfolio, an equal weighted portfolio and a
portfolio based on the market capitalisation. The market capitalisation (Market cap) proxies the
size of each index. With respect to the currency, we have downloaded each index in its original
currency, to not have a currency bias.

Since we have indices from different regions, the calendar day also differ. To have a common
calendar, when there is an empty value in some index, the day is deleted for all the time series.

In Table 11.3 we have a general description of the different indices, including the currency or
market capitalisation.

For a better understanding of each index, in the following section we summarise the charac-
teristics of each index.
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Index Currency
Market

Capitalisation
(Millions)

Number
Constituents

1 HF Merger USD 2000 Na
2 HF CTA USD 10000 20
3 REITS MSCI USD 984849.54 131
4 REITS Eur EUR 111404 46
5 Infrastructure USD 3357282.11 125
6 Russell 2000 USD 2806774.78 1954
7 Russell 3000 USD 40787893.59 2963
8 MSCI EUR LC EUR 8753553.38 200
9 MSCI EM USD 17316534.49 1384

10 MSCI US SC USD 4729267.87 1950
11 MSCI EUR SC EUR 1591259.16 1023
12 MSCI ACWI USD 71570677.53 2891
13 FI Global Agg EUR 10123263.92 15231
14 FI Global Cap EUR 672419.84 886
15 FI ICE USD 1549652.87 Na

Table 11.3: Currency, market capitalisation and number of constituents at 15/11/2022.

11.1 Indices description

In this section we describe the indices briefly, including the geographical and sector distribution.
The constituents are not publicly available for some indices.

HFRX ED: Merger Arbitrage

Merger Arbitrage strategies employ an investment process focused on opportunities in equity
and equity related instruments of companies which are currently engaged in a corporate transac-
tion. Merger Arbitrage involves primarily announced transactions, typically with limited or no
exposure to situations in which no formal announcement is expected to occur. Opportunities are
frequently presented in cross border, collared and international transactions which incorporate
multiple geographic regulatory institutions, with typically involve minimal exposure to corporate
credits.

SG CTA Index

The SG CTA Index calculates the net daily rate of return for a group of 20 Commodity Trading
Advisors (CTAs) selected from the largest managers open to new investment. The SG CTA
Index is equal-weighted and reconstituted annually with re-balancing on January 1st.

MSCI US REIT Index

The MSCI US REIT Index is comprised of equity Real Estate Investment Trusts (REITs). The
Index is based on the MSCI USA Investable Market Index (IMI) which captures the large, mid
and small cap segments of the USA market. With 129 constituents, it represents about 99%
of the US REIT universe and securities are classified under the Equity REITs Industry. The
MSCI US REIT is a free float-adjusted market capitalisation weighted index. This means that
the market capitalisation is calculated using the free float shares of the market.
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REITS Europe

The constituents of the Euronext IEIF Europe Index are a selection of the most representative
Real Estate Investment Trusts (REITs) in Europe, chosen for their market capitalisation and
liquidity. The Euronext IEIF Europe Index selects companies whose market capitalisation is
more than 0.4% of the Universe (Property companies listed on European regulated markets
that have opted for a tax-transparency regime), with a minimum free float of 20% and with a
minimum daily average turnover representing 0.2%.

Figure 11.15: Geographic distribution of REIT Eur.

Apart from United Kingdom with 50% of the Index, the REIT Europe is distributed in the
main European countries. Respect to the sector, all constituents belongs to Real Estate.

MSCI World Infrastructure

The MSCI Infra Index is a free float -adjusted market cap weighted index. Its members are
infrastructure owners and operators who tend to demonstrate highly inelastic demand patterns,
stable, predictable returns and inflation-linked pricing power. Includes companies in the telecom,
utilities, energy, transportation and social infrastructure sector.

Figure 11.16: Geographic distribution of Infrastructure.
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Russell 3000

The Russell 3000 is composed of 3000 large U.S. companies, as determined by market capital-
isation. This portfolio of securities represents approximately 98% of the investable U.S. equity
market. The Russell 3000 Index is constructed to provide a comprehensive, unbiased and sta-
ble barometer of the broad market and is completely reconstituted annually to ensure new and
growing equities are included.

(a) Sector distribution of Russell 3000. (b) Geographic distribution of Russell 3000.

Figure 11.17: Sector and geographic distribution of Russell 3000.

Figure 11.17a shows the main U.S. equity market is widely distributed across different sectors.
The main ones are Health Care, Financial and Industrial.

Russell 2000

The Russell 2000 Index is comprised of the smallest 2000 companies in the Russell 3000 Index
based on a combination of their market cap and current index membership, representing ap-
proximately 8% of the Russell 3000 total market capitalisation. The Russell 2000 is constructed
to provide a comprehensive and unbiased small-cap barometer and is completely reconstituted
annually.

(a) Sector distribution of Russell 2000. (b) Geographic distribution of Russell 2000.

Figure 11.18: Sector and geographic distribution of Russell 2000.
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We get similar results to the Russell 3000 with large distribution between the sectors. The
biggest sectors are again Health Care, Financial and Industrial.

MSCI Europe Large Cap

The MSCI Europe Large Cap Index captures large cap representation across 15 Developed Mar-
kets countries in Europe. With 199 constituents, the index covers approximately 70% of the free
float-adjusted market capitalisation across European Developed Markets equity universe.

(a) Sector distribution of MSCI Eur LC. (b) Geographic distribution of MSCI Eur LC.

Figure 11.19: Sector and geographic distribution of MSCI Eur LC.

We find a wide variety on sector and countries. The most important sectors are Financial,
Industrial and Consumer Staples. Respect to the countries, the biggest are United Kingdom,
Germany and Switzerland.

MSCI Emerging Markets

The MSCI EM (Emerging Markets) Index is a free-float weighted equity index that captures large
and mid cap representation across 24 Emerging Markets countries. With 1377 constituents, the
index covers approximately 85% of the free float-adjusted market capitalisation in each country.

(a) Sector distribution of MSCI EM. (b) Geographic distribution of MSCI EM.

Figure 11.20: Sector and geographic distribution of MSCI EM.

In this case we should remark the size of China, with almost 50% of the Index. In terms
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of the sector, is more distributed, the most important are Financial, Materials and Information
Technology.

MSCI US Small Cap Growth

The MSCI USA Small Cap Index is designed to measure the performance of the small cap
segments of the US market. With 1938 constituents, the index covers approximately 14% of the
free float-adjusted market capitalisation in the US.

(a) Sector distribution of MSCI US SC. (b) Geographic distribution of MSCI US SC.

Figure 11.21: Sector and geographic distribution of MSCI US SC.

The main sectors are Health Care, Industrial and Financial.

MSCI EUR Small Cap Net Return

The MSCI Europe Small Cap is a free float-adjusted market capitalisation weighted index that
is designed to measure the equity market performance of the small cap size segment in the MSCI
Europe Investable Market Index (IMI). With 991 constituents, the index covers approximately
14% of the free float-adjusted market capitalisation in the European equity universe.

(a) Sector distribution of MSCI Eur SC. (b) Geographic distribution of MSCI Eur SC.

Figure 11.22: Sector and geographic distribution of MSCI Eur SC.
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The most important small cap sectors in Europe are Industrial, Consumer Discretionary and
Financial; similar to the US small cap market. By country United Kingdom stands out with
28%.

MSCI ACWI

The MSCI ACWI Index is designed to represent performance of the full opportunity set of large
and mid cap stocks across 23 developed and 24 emerging markets. It covers more than 2933
constituents across 11 sectors and approximately 85% of the free float-adjusted market capital-
isation in each market. The index is built taking into account variations reflecting conditions
across regions, market cap sizes, sectors, style segments and combinations.

(a) Sector distribution of MSCI ACWI. (b) Geographic distribution of MSCI ACWI.

Figure 11.23: Sector and geographic distribution of MSCI ACWI.

We must highlight two main countries which are China and United Estates, followed by
Japan. Sectors are more spread out, the main ones being Financial and Information Technology.

Global Aggregate Corporate Total Return

The Bloomberg Global Aggregate-Corporate Index is a flagship measure of global investment
grade, fixed-rate corporate debt. This multi-currency benchmark includes bonds from developed
and emerging markets issuers within the industrial, utility and financial sectors.

Global Capital Securities Total Return

The investment objective of the fund is to maximise total returns over the long term. The fund
invests primarily in global investment grade bonds. The fund also invests in high yield bonds and
other fixed income securities including mortgage backed securities and asset backed securities.

ICE BofA BB-B Rated Developed Markets

The index includes original issue zero coupon bonds, Eurodollar bonds, 144 securities and pay-
in-kind securities with BB-B rated and have a developed markets country of risk.Developed
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markets is defined as an FX-G10 member, a Western European nation, or a territory of the
US. The FX-G10 includes all Euro members, the US, Japan, the UK, Canada, Australia, New
Zealand, Switzerland, Norway and Sweden. Index constituents are capitalisation-weighted, based
on their current amount outstanding.

11.2 Data analysis

In this section we explore the data available. We want to examine the joint data behaviour. For
this, we start plotting the prices and log returns of the time series and portfolios considered.

Figure 11.24: Prices from the 15 indices of Table 11.2.

Figure 11.24 shows most of the time series have a similar evolution, with a stable growth
and some important falls. However, there are some indices with different performance, the most
remarkable are the REITS Eur and MSCI EM (Emerging Markets).

In general, we observe in Figure 11.25 some periods with higher volatility around 2008 due to
the financial crisis and 2020 due to the COVID-19. Also, conditional heteroscedasticity (GARCH)
effects are observed in the graphs. While the mean of the time series is around zero, the volatility
is grouped by periods of high and low values. This is a typical characteristic of financial time
series. For modelling these effects we can use ARMA-GARCH models or include in a stationary
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Figure 11.25: Returns from the 15 indices of Table 11.2.

copula model. In the following section we try to capture those effects with different models for
a better VaR and ES forecast.

In the next sections we apply marginal and copula models, stationary vine copula models
and the Fleishman approximation to three portfolios composed of the indices in Table 11.2 to
sample the portfolio returns and forecast the VaR and ES. The portfolios are an equal weighted
portfolio (EW), a portfolio based on the BVK currently strategy (BVK) and market capitalisation
portfolio (MC).

When applying the Fleishman approximation in a rolling window to the three portfolios we
obtain some window where the method does not converge. Then, the study is split in two cases
with three portfolios each. In Section 12 we apply marginal and copula models and stationary
vine copula models to the complete portfolios, including a comparison of the results obtained.
Afterwards in Section 13 we sample the reduced portfolios using the three methods.
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12 Complete portfolio

As we mention in the previous section, in this section we select the best model for marginal
and copula models and stationary vine copula models; using them in a rolling window setup for
forecasting the risk measures of the portfolios considered in Table 12.4.

Index BVK Weight Market Cap
Weight

Equal
Weight

1 HF Merger 0.023964676 1.216790e-05 0.0666666
2 HF CTA 0.044415709 6.083952e-05 0.0666666
3 REITS MSCI 0.159135120 5.991778e-03 0.0666666
4 REITS Eur 0.159135120 6.777766e-04 0.0666666
5 Infrastructure 0.053570032 2.042554e-02 0.0666666
6 Russell 2000 0.054959743 1.707628e-02 0.0666666
7 Russell 3000 0.054959743 2.481516e-01 0.0666666
8 MSCI EUR LC 0.056061704 5.325620e-02 0.0666666
9 MSCI EM 0.045708941 1.053530e-01 0.0666666

10 MSCI US SC 0.029519269 2.877264e-02 0.0666666
11 MSCI EUR SC 0.029519269 9.681145e-03 0.0666666
12 MSCI ACWI 0.049542248 4.354326e-01 0.0666666
13 FI Global Agg 0.057876476 6.158946e-02 0.0666666
14 FI Global Cap 0.047896057 4.090970e-03 0.0666666
15 FI ICE 0.133735893 9.428014e-03 0.0666666

Table 12.4: Currency, market capitalisation, number of constituents, and weights in equal
weighted, BVK and market capitalisation portfolios of the indices used in the complete study.

The portfolios prices and returns from Table 12.4 are shown in Figure 12.26.

Figure 12.26: Prices and returns of BVK, equal weighted and market capitalisation portfolios
described in Table 12.4.

Figure 12.26 shows the prices behave similar to most of the indices prices shown in Figure
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11.24. Also, the GARCH effects are inherited from the indices GARCH effects that compose the
portfolio.

In Sections 12.1 and 12.2 we develop the ARMA-GARCH with vine copula models and
stationary vine copula models respectively for the portfolios in Table 12.4. Finally, in Section
12.3 we compare the results obtain between both methods.

12.1 Marginal and copula models
In this section we fit ARMA-GARCH and copula models to the data in Table 12.4 and then to be
used for sampling portfolio returns and forecasting the risk measures. In this approach we should
first apply univariate ARMA-GARCH models to each time series for removing serial dependence
in Section 12.1.1 and then, use a vine copula model for assessing the cross sectional dependence
in Section 12.1.2. Before implementing the method we determine the ARMA-GARCH order for
each index. Then, we choose the best vine copula model and forecast the different risk measures
on the portfolio level.

12.1.1 Marginal model analysis

In this section we select the models that better fit the univariate time series data. Then, we
should select appropriate ARMA and GARCH orders and the innovation distribution which
better model the data adequately.

In finance, the returns series are usually modelled with ARMA(1,1)-GARCH(1,1). Also,
Skewed-Student innovations are often considered, since it is heavy tailed and non symmetric.
Then, we check if this model fit the univariate time series adequately.

Therefore, we check if the ARMA(1,1)-GARCH(1,1) model with Skewed-Student innovations
fit the returns data using the QQ-plots, defined in Section 5.3, for the residual distribution in
Figure 12.27 and the Ljung-Box test, described in Section 5.3, for the ARMA-GARCH order in
Figure 12.29.

In the Figure 12.27 we observe the tails of HF Merger, HF CTA, REITS Eur, Infrastructure,
Russell 2000, Russell 3000, MSCI Eur LC, MSCI US SC, MSCI Eur SC, MSCI ACWI, FI Global
Agg, FI Global Cap and FI ICE are not correctly fitted. To select the best distribution we
compare the QQ-plots of the standardised residuals for different innovation distributions. The
distribution compared are the Normal Inverse Gaussian distribution (nig), Generalised Hyper-
bolic (ghyp), Johnson’s SU distribution (jsu) and Skewed-Student (sstd). The t-Student (std)
and skew-normal distribution (snorm) have been also considered but do not fit well, which is to
be expected with Skewed student being more generic.

We take REITS Eur as an example of the univariate time series. The others univariate time
series QQ-plots are in Appendix A. We select the innovation distribution which better fits the
diagonal line in the QQ-plot which is ghyp innovation distribution. In Table 12.5 we present the
chosen innovation distributions after this exercise.

We continue the analysis with the ARMA and GARCH orders for the univariate time series.
We first check the most common model ARMA(1,1)-GARCH(1,1) applying the Ljung-Box test
to the standardised residuals of each index.

The grey colours in Figure 12.29 represent a p−value < 0.05. This means there are significant
autocorrelation effects of the corresponding lag on the standardised residuals.
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Figure 12.27: QQ-plots of the standardised residuals after fitting an ARMA(1,1)-GARCH(1,1)
model with Skewed-Student innovations to each of the 15 time series.
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Figure 12.28: REITS Eur standardised residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions.
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Index Innovation
distribution

1 HF Merger nig
2 HF CTA ghyp
3 REITS MSCI sstd
4 REITS Eur ghyp
5 Infrastructure sstd
6 Russell 2000 ghyp
7 Russell 3000 ghyp
8 MSCI EUR LC nig
9 MSCI EM sstd

10 MSCI US SC ghyp
11 MSCI EUR SC sstd
12 MSCI ACWI nig
13 FI Global Agg ghyp
14 FI Global Cap nig
15 FI ICE nig

Table 12.5: Chosen innovation distributions for each index in a ARMA(1,1)-GARCH(1,1) setup.
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Figure 12.29: P-values of the Ljung-Box test statistics for different lags after fitting an
ARMA(1,1)-GARCH(1,1) model for each index with innovation distributions specified in Ta-
ble 12.5.
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We have some index time series with non zero autocorrelation effects on the standardised
residuals. Therefore, we should correct the orders selected. We now review the ARMA orders of
the following time series: REITS Eur, Russell 2000, Russell 3000, MSCI Eur LC, MSCI US SC,
MSCI Eur SC, FI Global Cap and FI ICE.

We base the choice of the order on the autocorrelation function (ACF), the partial autocor-
relation function (PACF) and the Bayesian Information Criterion (BIC) after fitting different
ARMA(p,q) models without GARCH effects using the innovation distributions of Table 12.5.

Figure 12.30: Performance of different ARMA orders for REITS Eur’s returns with Generalised
Hyperbolic innovations and ACF and PACF of REITS Eur’s returns.

Similar as for the innovation distribution choice, we focus our ARMA and GARCH order
selection study on REITS Eur. We then use the same order selection arguments for the remaining
indices. The corresponding plots considered for the selection of the ARMA order are in Appendix
B.

In case of the REITS Eur, from Figure 12.30 we select the model with lower BIC. The ACF
and PACF mainly have the first lag being significant. Then the ARMA(0,1) model corrects this
autocorrelation effect.

The selected ARMA orders for all indices are given in Table 12.6.

We continue choosing the best GARCH orders. For this we utilise theoretical properties of
GARCH models. The GARCH order study is done on the squared residuals after fitting the
ARMA model of Table 12.6. From Section 5.2.2 we know GARCH models can be rewritten as
a ARMA model for the squared residuals A2

t . Then, can be proved that these can be rewritten
for:
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Index Innovation
distribution Model

1 HF Merger nig ARMA(1,1)
2 HF CTA ghyp ARMA(1,1)
3 REITS MSCI sstd ARMA(1,1)
4 REITS Eur ghyp ARMA(0,1)
5 Infrastructure sstd ARMA(1,1)
6 Russell 2000 ghyp ARMA(0,1)
7 Russell 3000 ghyp ARMA(1,0)
8 MSCI EUR LC nig ARMA(0,1)
9 MSCI EM sstd ARMA(1,1)

10 MSCI US SC ghyp ARMA(0,1)
11 MSCI EUR SC sstd ARMA(0,1)
12 MSCI ACWI nig ARMA(1,1)
13 FI Global Agg ghyp ARMA(1,1)
14 FI Global Cap nig ARMA(2,1)
15 FI ICE nig ARMA(1,1)

Table 12.6: Selected ARMA orders and innovation distributions for each index of Table 11.2.

− GARCH(p, q) as an ARMA(r, q) model using r = max(p, q).

− IGARCH(1, 1) as an ARIMA(0, 1, 1).

− IGARCH(p, q) as an ARMA(r, q) model using r = max(p, q), q > 0 and p+ q > 1.

Therefore, we base the GARCH order selection on the ACF and PACF of the squared resid-
uals, the BIC of different ARIMA(p,i,q) orders applied on the squared residuals after applying
ARMA models in Table 12.6, and the Ljung-Box test.
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Figure 12.31: Performance of different ARMA orders for REITS Eur’s squared residuals after
fitting ARMA(0,1) with Generalised Hyperbolic innovations. ACF and PACF of REITS Eur’s
squared residuals after fitting ARMA(0,1) with Generalised Hyperbolic innovations.
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From Figure 12.31 we select model GARCH(1,1) for REITS Eur since we have many sig-
nificant lags in the ACF and PACF. We could consider the ARIMA(0,1,1), corresponding to
IGARCH(1,1), or ARIMA(1,0,1) corresponding to GARCH(1,1). Since both of them have sim-
ilar BIC as we see in Figure 12.31, we finally choose GARCH(1,1) based on the Ljung-Box
test.

Appendix C shows the corresponding graphs used for the selection of the GARCH order of
the remaining univariate time series. It should be remarked that in general, we observe the
models with lowest BIC not include GARCH effects (ARIMA(0,1,0)). However, we have seen in
Figure 11.25 the existence of those effects in all univariate time series.

Finally, Table 12.7 summarise the chosen marginal time series models for the indices of Table
11.2.

Index Innovation
distribution Model

1 HF Merger nig ARMA(1,1)-GARCH(1,1)
2 HF CTA ghyp ARMA(1,1)-GARCH(1,1)
3 REITS MSCI sstd ARMA(1,1)-GARCH(1,1)
4 REITS Eur ghyp ARMA(0,1)-GARCH(1,1)
5 Infrastructure sstd ARMA(1,1)-GARCH(1,1)
6 Russell 2000 ghyp ARMA(0,1)-GARCH(1,1)
7 Russell 3000 ghyp ARMA(1,0)-GARCH(1,1)
8 MSCI EUR LC nig ARMA(0,1)-GARCH(1,1)
9 MSCI EM sstd ARMA(1,1)-GARCH(1,1)

10 MSCI US SC ghyp ARMA(0,1)-GARCH(1,1)
11 MSCI EUR SC sstd ARMA(0,1)-GARCH(1,1)
12 MSCI ACWI nig ARMA(1,1)-GARCH(1,1)
13 FI Global Agg ghyp ARMA(1,1)-GARCH(1,1)
14 FI Global Cap nig ARMA(2,1)-GARCH(1,2)
15 FI ICE nig ARMA(1,1)-GARCH(2,1)

Table 12.7: Selected ARMA and GARCH orders and innovation distributions for each index.

We plot again in Figure 12.32 the p-values corresponding to Ljung-Box test after applying
the models specified in Table 12.7.

We still observe some significant autocorrelation dependence. The time series with higher
autocorrelation are MSCI Eur SC, FI Global Cap and FI ICE. Since the Ljung-Box test compares
in the null hypotheses having the first i lags independent, then some null hypotheses are rejected
because of the effect of previous lags. We can check it with the AFC.

Figure 12.33 shows most of the lags are not significant. However, the effect of the first
significant lags is carried over the following Ljung-Box test. Therefore, we maintain the ARMA-
GARCH orders selected in Table 12.7.

In Figure 12.34 we show that the standardised residuals behave like white noise. Despite of
having GARCH effects removed, we still observe some outlier. The largest one is in HF Merger.
The outliers observed are usually caused due to some important price movement during a low
volatility period. In case of the HF Merger the outlier occurs on the 28/02/2019 when the price
drops from 1842,57 to 1780,54 (−3, 37%), during a period of very low volatility.
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Index AR(1) AR(2) MA(1) GARCH(1) GARCH(2) ARCH(1) ARCH(2)
HF Merger -0.121 0.079 0.181 0.818
HF CTA -0.092 0.174 0.060 0.886
REITS MSCI 0.782 -0.816 0.099 0.898
REITS Eur 0.048 0.109 0.885
Infrastructure -0.234 0.305 0.096 0.889
Russell 2000 -0.061 0.089 0.903
Russell 3000 -0.067 0.128 0.869
MSCI EUR LC -0.034 0.126 0.864
MSCI EM 0.1005 0.069 0.089 0.898
MSCI US SC -0.045 0.097 0.896
MSCI EUR SC 0.058 0.143 0.849
MSCI ACWI -0.073 0.198 0.115 0.880
FI Global Agg 0.986 -0.972 0.057 0.937
FI Global Cap 1.061 -0.101 -0.899 0.113 0.540 0.331
FI ICE 0.6116 -0.341 0.130 0.005 0.862

Table 12.8: Estimated parameters for ARMA-GARCH models selected in Table 12.7 for each
index.

Once we have selected the best marginal models we continue in Section 12.1.2 with choosing
the best vine structure.
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Figure 12.32: P-values of Ljung-Box test statistics for different lags on standardised residuals
after fitting the models specified on Table 12.7 for each index of Table 11.2.
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Figure 12.33: ACF of standardised residuals after fitting the models of Table 12.7 corresponding
to MSCI Eur SC, FI Global Cap, FI ICE.
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Figure 12.34: Standardised residual time series after fitting the univariate ARMA-GARCH mod-
els specified in Table 12.7.
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12.1.2 Vine copula based analysis

Once that we have remove the serial dependence we can analyse the cross sectional dependence
with the copula analysis. We start transforming the data to u-scale.

Figure 12.35: Marginal histograms of the pseudo copula data of the standardised residuals after
fitting the models specified in Table 12.7 to the returns of the indices in Table 11.2.

Once that we have transformed the data to the u-scale we can analyse the cross sectional
dependence. First, we check the dependence between the variables, by showing the marginally
normalised contours for each pair of variables in the lower triangular panel of Figure 12.36, in the
diagonal we have the histograms of the residuals on the u-scale, and finally, in the upper triangular
panels we give the pairwise scatter plots of the pseudo copula data with the corresponding
empirical Kendall’s τ .

Figure 12.36 shows different type of dependence between the variables. Some of them show
a high dependence, like Russell 2000 and MSCI US SC, or Russell 3000 and MSCI US SC.
Most of the contours look symmetrical, could be modelled by Gaussian copula (MSCI EM and
Infrastructure); or Student’s t copula, if they show symmetric tail dependence and diamond
shape, for example, MSCI ACWI and Russell 3000.

In financial series usually left tails are bigger than right ones, also we should expect a higher
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lower tail dependence, because people react more to crisis and bearish markets than to bullish
markets. In our case, most of the pairs have not lower tail dependence, this is cause that we
are considering large indices based on many assets. Therefore, they are more difficult to be
influenced by the markets. In addition, some indices consist on totally different types of assets,
so we could expect them to be not highly dependent. This shows that lower tail dependence
structures are also plausible for this data set.

Before analysing the copula model, we select the best vine copula structure. In the following
table we compare the AIC, BIC and log likelihood for the R-vine, C-vine and D-vine structures:

Type AIC BIC LogLik Number of
parameters

R-vine -77169.70 -76175.46 38740.85 156
C-vine -76618.58 -75592.47 38470.29 161
D-vine -76713.76 -75662.16 38521.88 165

Table 12.9: AIC, BIC, LogLik and number of parameters of R-, C- and D-vine copulas estimated
on transformed standardised residuals after fitting models of Table 12.7.

Table 12.9 shows that the best fitting vine structure is the R-vine based on AIC, BIC or
log-likelihood of the three models fitted. Anyway, we apply the Vuong test to check that R-vine
is significantly better than C- and D-vine structures. Since different number of parameters have
been estimated in the three vine copula structures, we apply the Voung test with Akaike and
Schwarz corrections. Results are in Table 12.10.

Test Akaike Statistic Akaike p-value Schwarz Statistic Schwarz p-value
R-vine vs C-vine 7.044 1.87e-12 7.46 8.94e-14
R-vine vs D-vine 6.299 3.00e-10 7.14 9.53e-13
C-vine vs D-vine -1.194 0.232 -0.93 0.354

Table 12.10: P-value and statistics of Vuong test with Akaike and Schwarz corrections for com-
paring R-, C- and D-vine copulas fitted in Table 12.9.

Table 12.10 confirms R-vine as the best vine copula structure. The p-values obtained are
lower than 0.05 when comparing R-vine against C- or D-vine.

We now investigate the fitted R-vine used in Table 12.9 in more detail.

The first R-vine tree shows that MSCI ACWI and MSCI US SC are the most important
indices, by showing high correlations with several indices. Also, we remark that, apart from
Fixed Income and Equity, the indices related to the same department are not close in R-vine
tree, as we might have expected.

From Table 12.11 we obtain that most of the fitted copula distributions are symmetric with
both tail dependence different from zero, the case of Student’s t and BB1 copula. Also, we
remark that there are more lower tail dependence estimated than upper tail dependence.

Now we estimate the value at risk and expected shortfall in a 2 years rolling window setup
for the portfolios described in Table 12.4 in Section 12.1.3.
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Family Usage Tail dependence
1 Gaussian 7 None
2 t-Student 44 Both
3 Clayton (rot 0) 4 Lower
4 Joe (rot 0) 0 Upper
5 Frank 8 None
6 Gumbel (rot 0) 1 Upper
7 BB1 13 Both
8 BB7 1 Both
9 BB8 4 None

10 Independent 10 None
11 Clayton (rot 180) 2 Upper
12 Joe (rot 180) 2 Lower
13 Gumbel (rot 180) 4 Lower

Table 12.11: Usage and type of tail dependence of the different family distribution implemented
in the R-vine copula fitted in Table 12.9.
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Figure 12.36: Marginally normalised contours for each pair of variables in the lower triangular.
Histograms of the standardised residuals after fitting models given in Table 12.7 on the u-scale in
the diagonal. Pairwise scatter plots of the pseudo copula data with the corresponding empirical
Kendall’s τ in the upper triangular.
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Figure 12.37: First R-vine tree of the R-vine copula fitted in Table 12.9.
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12.1.3 Risk measures forecast

In this section we finally forecast the different risk measures. For the final implementation of the
model we use all the model characteristic analysed in the previous study in Sections 12.1.1-12.1.2.
Then, we sample portfolios values from estimated variables of ARMA-GARCH marginal models
displayed in Table 12.7 and the fitted R-vine modelling the dependence for each window. For
the estimation we use a 2 year rolling window (500 observations) for the marginal models and
the copula model, obtaining around 15 years estimation. We refit the model parameters every 2
months (40 observations), for marginal and vine copula models. Also, we use a daily portfolio
sample size of 5000 for the quantile VaR and ES estimations.

Figure 12.38: Estimated value at risk (VaR) at levels 0.05 and 0.01 of equal weighted, BVK and
market capitalisation portfolios in Table 12.4 using the vine copula model specified in Section 6
together with ARMA-GARCH margins specified in Table 12.7.

The risk measures estimated for the three portfolios show good results. In Figures 12.38 and
12.39 we observe how VaR and ES move similar to the observed returns time series. Also, the
estimated confidence interval in Figure 12.40 adjust the volatility to the observed one.
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Figure 12.39: Estimated expected shortfalls (ES) at levels 0.05 and 0.01 of equal weighted, BVK
and market capitalisation portfolios in Table 12.4 using the vine copula model specified in Section
6 together with ARMA-GARCH margins specified in Table 12.7.
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Figure 12.40: Observed, estimated and 90% confidence level returns of equal weighted, BVK and
market capitalisation portfolio in Table 12.4 using the vine copula model specified in Section 6
together with ARMA-GARCH margins specified in Table 12.7.
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12.2 Stationary vine copula models

With the stationary vine copula we model the serial and cross sectional dependence at the same
time. In this section we apply the stationary vine copulas to capture the whole dependence
structure. The model is applied for the three original portfolios BVK port, EW port and MC
port given in Table 12.4.

First of all, we transform the original returns data to the u-scale for each time series. To
select the best distribution for each return time series we compare Skewed-Student, Generalised
Hyperbolic, Normal Inverse Gaussian and Johnson´s SU with QQ-plots for each time series.

Figure 12.41: REITS Eur returns QQ-plots with sstd, ghyp, nig and jsu distributions.

Figure 12.41 shows the QQ-plots for REITS Eur. Generalised Hyperbolic and Johnson´s SU
show similar results, being the best choices, we select the Generalised Hyperbolic in this case.
For the remaining time series, QQ-plots are shown in Appendix D.

The chosen returns distribution for each time series are summarised in Table 12.12.

We check the distribution selection with the u-scale histograms shown in Figure 12.42.

Once we have the data in u-scale we select the best cross sectional structure of the vine
copula. Thus we distinguish:
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Index Return
distribution

1 HF Merger ghyp
2 HF CTA sstd
3 REITS MSCI nig
4 REITS Eur ghyp
5 Infrastructure jsu
6 Russell 2000 ghyp
7 Russell 3000 ghyp
8 MSCI EUR LC ghyp
9 MSCI EM nig

10 MSCI US SC ghyp
11 MSCI EUR SC ghyp
12 MSCI ACWI jsu
13 FI Global Agg ghyp
14 FI Global Cap ghyp
15 FI ICE ghyp

Table 12.12: Chosen return distributions for each index.

− S − vine. Arbitrary R-vine structure is allowed for the cross sectional model.

− D−vine. The cross sectional structure is a D-vine. Each cross sectional structure is joined
to the following one by the end of the D-vine. Finally we obtain a long D-vine over the
time as shown in Figure 7.5.

− M − vine. The cross sectional structure is a D-vine too. In this case, D-vine are joined
together by the initial point of the D-vines. We don´t obtain a D-vine structure over all.
Check Figure 7.6.

Table 12.13 give the AIC, BIC and log-likelihood of each model considered.

Type AIC BIC LogLik Number of
parameters

S-vine -94438.68 -91435.76 47690.34 472
D-vine -93658.36 -90508.78 47323.18 504
M-vine -93879.68 -90781.12 47425.84 479

Table 12.13: AIC, BIC and LogLik of S-, D- and M-vine copulas estimated on transformed data
with return distributions of Table 12.12.

From Table 12.13 we obtain the best model structure is the S-vine for the three measures
considered. We continue the analysis showing the characteristics of the S-vine copula estimated
in Table 12.13.

Figure 12.43 shows the dependence structure at two contiguous points in time. The first time
point is represented with blue edges, while the second time moment is marked with red labels.
The same R-vine copula structure is model for each cross sectional time point. Similar to Figure
12.37 we have fixed income indices together; while hedge funds, real estate, private equity and
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Figure 12.42: Histograms of the u-scale returns after transforming with return distributions of
Table 12.12.

equity are not together in the S-vine tree, similar to the marginal and copula method show in
Figure 12.37. Also we should remark the serial dependence is model with a bivariate copula
between Russell 3000 and MSCI EM represented with a green edge between both nodes.

Table 12.14 shows the most used family is the t-Student which is symmetric, having lower
and upper tail dependence. Similar number of lower tail dependence and upper tail dependence
are model.
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Figure 12.43: First S-vine tree of the S-vine copula estimated in Table 12.13.

Family Usage Tail dependence
1 Gaussian 9 None
2 t-Student 160 Both
3 Clayton (rot 0) 9 Lower
4 Joe (rot 0) 11 Upper
5 Frank 19 None
6 Gumbel (rot 0) 5 Upper
7 BB1 4 Both
8 BB7 10 Both
9 BB8 15 None

10 Independent 48 None
11 Clayton (rot 180) 7 Upper
12 Joe (rot 180) 8 Lower
13 Gumbel (rot 180) 5 Lower

Table 12.14: Usage and type of tail dependence of the different family distribution implemented
in the S-vine copula fitted in Table 12.13.
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12.2.1 Risk measures forecast

In this section we present the results obtained when applying the stationary vine copula models
to the three portfolios in Table 12.4. For portfolio sampling and risk measures forecast we use
the same specifications as in Section 12.1.3. We apply a 2 year rolling window (500 observation)
for the S-vine copula model estimation, refitting the model parameters of the S-vine every 40
observations (2 months). For each date we sample 5000 values of each of the three portfolios.

Figure 12.44: Estimated value at risk (VaR) at 0.05 and 0.01 levels of equal weighted, BVK and
market capitalisation portfolios in Table 12.4 using S-vine copula models.

The results estimated with the stationary vine copula method show the importance of the
window size selected. In Figure 12.44 we observe the estimated VaR take coherent values but
does not follow the observed returns like ARMA-GARCH vine copula approach shown in Figure
12.38. The window size affects the estimation of the marginal parameter distribution, which are
used to move from the estimated u-scale copula to the return scale. With respect to the expected
shortfall, Figure 12.45 shows big outliers at the same time point for the three portfolios. This
extreme values are observed during a period of low volatility, but the effect of COVID-19 in
2020 with high volatility is still reflected in the estimations of the marginal parameters. Finally,
Figure 12.46 show similar results as the VaR in Figure 12.44, plotting smoother estimations than
ARMA-GARCH vine copula approach, because of the effect of marginal distributions.
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Figure 12.45: Estimated expected shortfall (ES) at 0.05 and 0.01 levels of equal weighted, BVK
and market capitalisation portfolios in Table 12.4 using S-vine copula models.

Figure 12.46: Observed, estimated and 90% confidence level returns of equal weighted, BVK and
market capitalisation portfolios in Table 12.4 using S-vine copula models.
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12.3 Models comparison
In this section we compare the result obtained for the complete portfolio using the ARMA-
GARCH model join with the vine copula and the stationary vine copula approach. We first
compare the estimated VaR and ES in Figures 12.47 and 12.48. The results obtained for the
VaR show similar results, where the stationary vine is smoother than ARMA-GARCH vine
copula. In case of the ES the effect of the extreme values estimated with stationary vine copula
makes difficult to compare. Apart of this outliers, both method show values near to zero.

Figure 12.47: Forecasted VaR at 0.05 and 0.01 levels of equal weighted, BVK and market capital-
isation portfolios described in Table 12.4 with ARMA-GARCH vine copula approach and S-vine
copula approach.

Figures 12.49 and 12.50 show the estimated VaR level, α̂, in a 100 rolling window with the
corresponding confidence interval, using (9.53). Figures 12.49 and 12.50 show equivalent results
for the three portfolios. The ARMA-GARCH vine copula shows smoother results around the
α-level. In general, both methods underestimate the VaR during high volatility periods and
overestimate it in low volatility moments. This effect is easily observable in Figure 12.50 during
the 2008 and COVID-19 crisis where the α̂ values are much higher than the theoretical one, 0.01.
Also, since stationary copula vines are smoother we expect them to be more underestimated
than ARMA-GARCH with R-vine copula during high volatility periods, because the proportion
of returns exceeding the estimated VaR is higher.
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Figure 12.48: Forecasted ES at 0.05 and 0.01 levels of equal weighted, BVK and market capital-
isation portfolio described in Table 12.4 with ARMA-GARCH vine copula approach and S-vine
copula approach.

88



In Table 12.15 we resume the statistical measures introduce in Section 9 during the whole pe-
riod, from 06/2007 to 11/2022. The table shows both methods underestimate the VaR level,
which is risky during high volatility market periods. However, despite of underestimating,
ARMA-GARCH vine copula approach estimate the VaR better, with a higher percentage of
α̂ in the corresponding confidence interval. With respect to the expected shortfall, we obtain
similar results for both methods, having values of β near to zero for all the portfolios. Since ex-
pected shortfall depends on the value at risk is more difficult to obtain good conclusions. Since
bold values represent best value for each measure, we obtain better results for ARMA-GARCH
vine copula approaches.

Figure 12.49: In the graphs above we show the estimated α̂ at 0.05 VaR level using ARMA-
GARCH vine copula and S-vine copula in a 100 observation rolling window of the equal weighted,
BVK and market capitalisation portfolios described in Table 12.4. The rows show the equal
weighted, BVK and market capitalisation portfolio returns specified in Table 12.4.

We also assess the used models with the backtests described in Section 9.1 and 9.2. Table
12.16 presents the p-values for the corresponding hypothesis tests. Bold values correspond to
accepted H0 null hypothesis. As we observe more S-vine test accept the hypothesis null of well
risk measure assessment, specially for expected shortfall. This could be because the ES depends
on VaR.
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Figure 12.50: In the graphs above we show the estimated α̂ at 0.01 VaR level using ARMA-
GARCH vine copula and S-vine copula in a 100 observation rolling window of the equal weighted,
BVK and market capitalisation portfolios described in Table 12.4. The rows show the equal
weighted, BVK and market capitalisation portfolio returns.
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Portfolio Level α Measure ARMA-GARCH/
vine copula S-vine

α̂ 0.06145 0.06588
β -0.000769 0.000309

% of α̂ in CI0.05(α) 90.05 42.40
α̂ 0.01562 0.018229
β -0.00166 -0.00226

% of α̂ in CI0.05(α) 72.19 37.35
α̂ 0.08177 0.08020
β -0.00112 -0.00116

% of α̂ in CI0.05(α) 83.47 44.35
α̂ 0.021093 0.02526
β -0.0024 -0.00297

% of α̂ in CI0.05(α) 82.16 38.77
α̂ 0.06953 0.07786
β -0.00116 -0.000826

% of α̂ in CI0.05(α) 95.42 40.45
α̂ 0.019010 0.02578
β -0.00112 -0.00169

% of α̂ in CI0.05(α) 86.52 42.86

Equal
weighted

0.05

0.01

BVK

0.05

0.01

Market
capitalisation

0.05

0.01

Table 12.15: Estimated α̂ and β estimations at 0.05 and 0.01 levels between 13/11/2007 and
11/11/2022 using ARMA-GARCH vine copula, and S-vine copula on equal weighted, BVK
and market capitalisation portfolios described in Table 13.18. Also, the percentage of α̂ ∈
CI0.05(α) estimated in a 100 rolling window in Figures 12.49 and 12.50 for α = 0.05 and α = 0.01
respectively. Bold numbers represent the best value of each row comparing ARMA-GARCH vine
copulas and S-vines.
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Since the estimated period is very long we divide it in 7 different periods of equal length,
around 2 years and 2 months. The results are shown in Figures 12.51 and 12.52 for 0.05 and
0.01 α-values for the risk measures calculations. As we define in Section 9 the backtests LRuc

and LRcc correspond to VaR and ER and CC to ES or both. In Figures 12.51 and 12.52 the
red circles correspond to the portfolios obtained with ARMA-GARCH join with the vine copula
method, while the green ones are the S-vine portfolio. Since the circles are the p-values obtained
in the backtest, considering a α 0.05 test level for all hypothesis test we accept the null hypothesis
of good risk measures assessment for those which are above the 0.05 line. From the figures we
remark that the models estimated in the period 06/2018-09/2020 are not good, this period is
characterised because of the start of the COVID-19, when we pass from low volatility period to
a high volatility one. In general, most of the models used estimate well the risk measures, there
is not a big different between the ARMA-GARCH vine copula and S-vine models. The 7 period
analysis also shows that the performance of the backtests depends on the time windows selected.

Portfolio Level α Backtest ARMA-GARCH/
vine copula S-vine

LRuc 0.001 4.7e-04
LRcc 4.0e-06 9.2e-09
ER 0.031 0.879
CC 0.011 0.321
LRuc 0.036 0.025
LRcc 0.012 2.7e-04
ER 0.008 0.840
CC 0.053 0.624
LRuc 7.7e-16 3.6e-15
LRcc 0.00 0.003
ER 0.02 0.424
CC 2.6e-07 0.445
LRuc 8.1e-10 3.8e-09
LRcc 6.3e-09 5.6e-12
ER 0.002 0.832
CC 0.001 0.790
LRuc 1.4e-09 1.2e-11
LRcc 6.5e-12 0.000
ER 0.003 0.820
CC 4.3e-06 0.663
LRuc 1.5e-07 1.1e-06
LRcc 2.1e-07 2.5e-10
ER 0.033 0.97
CC 0.0042 0.751

Equal
weighted

0.05

0.01

BVK

0.05

0.01

Market
capitalisation

0.05

0.01

Table 12.16: P-values for LR unconditional and conditional test, exceedance residual test and con-
ditional calibration test for VaR and ES at 0.05 and 0.01 levels estimated using ARMA-GARCH
vine copula and stationary vine copula for equal weighted, BVK and market capitalisation port-
folios showed in Table 12.4.
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Figure 12.51: P-values corresponding to the backtests developed in Sections 9.1 and 9.2 for VaR
and ES at 0.05 level estimated using ARMA-GARCH vine copula and S-vine copula for portfolios
described in Table 12.4 during the periods described in the graph.
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Figure 12.52: P-values corresponding to the backtests developed in Sections 9.1 and 9.2 for VaR
and ES at 0.01 level estimated using ARMA-GARCH vine copula and S-vine copula for portfolios
described in Table 12.4 during the periods described in the graph.
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13 Reduced portfolio

In this section we perform an equivalent study than the Section 12 but now including the Fleish-
man’s transformation method. Since Fleishman’s transformation method does not converge in
some rolling window when applying it to the whole portfolio, we consider a reduced portfolio.
Then, we follow a similar study, beginning with marginal and copula method in Section 13.1,
we continue with the study and forecast of stationary vine copula method in Section 13.2, in
Section 13.3 we introduce and model the Fleishman’s transformation and, finally, we compare
the obtained results in Section 13.4.

The reduced portfolio used throughout this section have been selected from indices in Table
11.2. We try to maintain at least one representative of each sector in Table 11.2. As in the
Section 12, we build an equal weighted portfolio, other based on BVK strategy and a market
capitalisation portfolio. The indices selected for the reduced portfolio join with the corresponding
weights are shown in Tables 13.17 and 13.18.

Department Index Currency
Market

Capitalisation
(Millions)

1 Hedge Fund HF CTA USD 10000
2 Real Estate REITS MSCI USD 984849.54
3 Real Estate REITS Eur EUR 111404.00
4 Private Equity Russell 2000 USD 2806774.78
5 Private Equity Russell 3000 USD 40787893.59
6 Equity MSCI US SC USD 4729267.87
7 Fixed Income FI ICE USD 1549652.87

Table 13.17: Department, indices, currency and market capitalisation of the indices used in the
reduced portfolio study.

Index BVK Weight Market Cap
Weight

Equal
Weight

1 HF CTA 0.06838039 0.000196156 0.1428571
2 REITS MSCI 0.15913512 0.019318411 0.1428571
3 REITS Eur 0.15913512 0.002185256 0.1428571
4 Russell 2000 0.08174476 0.055056560 0.1428571
5 Russell 3000 0.08174476 0.800078844 0.1428571
6 MSCI US SC 0.21035143 0.092767408 0.1428571
7 FI ICE 0.23950843 0.030397365 0.1428571

Table 13.18: BVK, Market cap and Equal weighted portfolios considered in the study.

Figure 13.53 shows similar behave of the three portfolios, including GARCH effects and
similar periods of high volatility around 2008 and 2020.

13.1 Marginal and copula models
In this section we select the best ARMA-GARCH and vine copula model for fitting the data
corresponding to Table 13.18. We begin with the marginal model selection in Section 13.1.1,
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Figure 13.53: Prices and returns of BVK, equal weighted and market cap described in Table
13.18.

then we choose the best copula model in Section 13.1.2 and we finally forecast the VaR and ES
in Section 13.1.3.

13.1.1 Marginal model analysis

In this section we fit the best ARMA-GARCH order to each index in Table 13.18. Since the
analysis is individual for each index we obtain the same results as in Section 12.1.1. Then, taken
the chosen model from Table 12.7 we fit the models of Table 13.19.

Index Innovation
distribution Model

1 HF CTA ghyp ARMA(1,1)-GARCH(1,1)
2 REITS MSCI sstd ARMA(1,1)-GARCH(1,1)
3 REITS Eur ghyp ARMA(0,1)-GARCH(1,1)
4 Russell 2000 ghyp ARMA(0,1)-GARCH(1,1)
5 Russell 3000 ghyp ARMA(1,0)-GARCH(1,1)
6 MSCI US SC ghyp ARMA(0,1)-GARCH(1,1)
7 FI ICE nig ARMA(1,1)-GARCH(2,1)

Table 13.19: Selected ARMA and GARCH orders and innovation distributions for each index in
Table 13.18.

13.1.2 Vine copula based analysis

In this section we select the best vine copula model for the standardised residuals after fitting
model describe in Table 13.19.

In Figure 13.54 we have different kind of dependence between the variables. Some of them are
really high correlated, like Russell 2000, Russell 3000 and MSCI US. However, we also observe
that the FI ICE is almost uncorrelated with the rest of the indices.
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To select the best vine structure we compare the different criteria selection in Table 13.20.
The R-vine fitted model has the best statistics values. However, we perform the Vuong test from
Section 6.3 to check it.

Type AIC BIC LogLik Number of
parameters

R-vine -33210.51 -32968.33 16643.26 38
C-vine -33192.56 -32937.62 16636.28 40
D-vine -33178.15 -32929.59 16628.07 39

Table 13.20: AIC, BIC, LogLik and number of parameters of Regular, C- and D-vine copulas
estimated on transformed standardised residuals after fitting models of Table 13.19.

Test Akaike Statistic Akaike p-value Schwarz Statistic Schwarz p-value
R-vine vs C-vine 1.33 0.18 2.27 0.02
R-vine vs D-vine 1.20 0.23 1.43 0.15
C-vine vs D-vine 0.54 0.59 0.30 0.76

Table 13.21: P-value and statistics of Vuong test with Akaike and Schwarz corrections for com-
paring R-, C- and D-vine copulas fitted in Table 13.20.

Table 13.21 shows that using Akaike criteria, for a p − value = 0.05 the three models are
equivalent, since we have Akaike p − values > 0.05 for the three tests. Therefore, the null
hypotheses is accepted. Considering the Schwarz criteria, we have similar results as Akaike
criteria, the only difference is comparing R- and C-vine, where the Schwarz p− value = 0.023 <
0.05, indicating that R-vine model is better than C-vine model. Then in this situation we could
choose between fitting an R- or D-vine, we select R-vine because is more general and shows
better statistics in Table 13.20.

From the tree shown in Figure 13.55 we deduce that Russell 3000 and MSCI US SC are the
most important indices, being directly model with three and four indices. Also, private equity
and real estate indices are not directly modelled.

Family Usage Tail dependence
1 t-Student 13 Both
2 BB1 4 Both
3 Joe (rot 180) 1 Lower

Table 13.22: Usage and tail dependence of the different family distribution implemented in the R-
vine copula estimated on u-scale transformed data from the standardised residuals after applying
models in Table 13.19.

In this case the number of fitted copulas are mostly from t-Student family. In the following
section we show the predicted risk measures for the three portfolios.
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Figure 13.54: Marginally normalised contours for each pair of variables in the lower triangular.
Histograms of the standardised residuals after fitting models given in Table 13.19 on the u-scale in
the diagonal. Pairwise scatter plots of the pseudo copula data with the corresponding empirical
Kendall’s τ in the upper triangular.
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Figure 13.55: First R-vine tree of the R-vine copula estimated in Table 13.20.
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13.1.3 Risk measures forecast

In this section we forecast the VaR and ES of the portfolios described in Table 13.18. We also
consider the same rolling window characteristics as in Section 12. Then, we use a 500 observation
rolling window, refitting the model parameters every 40 observations. Sampling 5000 portfolio
values for each time moment, which are used for forecasting the risk measures.

Figure 13.56: Estimated value at risk at 0.05 and 0.01 levels of equal weighted, BVK and market
capitalisation portfolios in Table 13.18 using the R-vine copula model specified in Section 6
together with ARMA-GARCH margins specified in Table 13.19.

The figures in this section show equivalent results to the ones obtained for the complete
portfolio in Section 12.1.3. Figures 13.56 and 13.57 show the VaR and ES forecast which describe
the movement of the observed returns for the three portfolios. Also, Figure 13.58 show a good
estimation of the confidence interval of the returns, showing a well estimation of the evolution
of the time series.
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Figure 13.57: Estimated expected shortfall at 0.05 and 0.01 levels of equal weighted, BVK and
market capitalisation portfolios in Table 13.18 using the R-vine copula model specified in Section
6 together with ARMA-GARCH margins specified in Table 13.19.
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Figure 13.58: Observed, estimated and 90% confidence level returns of equal weighted, BVK and
market capitalisation portfolios in Table 13.18 using the R-vine copula model specified in Section
6 together with ARMA-GARCH margins specified in Table 13.19.
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13.2 Stationary vine copula models

We continue the study of the reduced portfolio introducing the stationary vine copula models.
In this section we work in a equivalent way to Section 12.2. Then, we start transforming the
original returns time series to the u-scale with the return distributions of Table 12.12.

Figure 13.59: Histograms of the u-scale transformed data with innovations distributions of Table
12.12.

Once we have the u-scale data, we compare the three possible vine structure models, S-, D-,
and M-vine. Table 13.23 shows the best fitted model is S-vine for the Akaike information criteria,
Bayesian information criteria and log-likelihood.

Figure 13.60 plots the first vine tree corresponding to the S-vine copula fitted. The cross
sectional R-vine structure is similar to the structure in the R-vine copula obtained in Section
13.1.2, being Russell 3000 and MSCI US SC the main indices. In this case, the serial dependence
is modelled with a bivariate copula between MSCI US SC and FI ICE represented with the green
label in the graph.

The S-vine copula fitted shows in Table 13.24 similar results as the previous vine copula
fitted, being the t-Student the most used distribution.

We continue in the next Section forecasting the risk measures using a S-vine rolling window
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Type AIC BIC LogLik
S-Vine -40403.54 -39714.97 20309.77
D-Vine -40254.33 -39508.38 20244.16
M-Vine -40238.56 -39486.23 20237.28

Table 13.23: AIC, BIC and log-likelihood of S-, D- and M-vine copulas estimated on the u-scale
transformed data with return distributions of Table 12.12.

Family Usage Tail dependence
1 Gaussian 1 None
2 t-Student 40 Both
4 Joe (rot 0) 1 Upper
5 Frank 3 None
6 Gumbel (rot 0) 1 Upper
8 BB7 4 Both
9 BB8 3 None

10 Independent 9 None
12 Joe (rot 180) 1 Lower

Table 13.24: Usage and type of tail dependence of the different family distribution implemented
in the S-vine copula fitted in Table 13.23.

on the reduced portfolios described in Table 13.18.
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Figure 13.60: First vine tree of the S-vine copula fitted in Table 13.23.

13.2.1 Risk measure forecast

In this section we plot different graphs to show the forecasted risk measures. The previous
analysis includes forecast has been made on a 500 rolling window, refitting the model parameters
every 40 observations and sampling 5000 portfolio values at each time point.

The results plotted in Figures 13.61 and 13.62 show that VaR values are conditioned by the
length on the window considered, affecting to the marginal estimations. In case of the ES, Figure
13.62 we do not observe as extreme values as in Section 12.2.1 but the moments with higher losses
do not correspond to the moments with higher volatility. Also, we observe in these figures the
effect of the window size in the three portfolios.
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Figure 13.61: Estimated value at risk at 0.05 and 0.01 levels of equal weighted, BVK and market
capitalisation portfolio in Table 13.18 using S-vine copula models.

Figure 13.62: Estimated expected shortfall at 0.05 and 0.01 levels of equal weighted, BVK and
market capitalisation portfolio in Table 13.18 using S-vine copula models.
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Figure 13.63: Observed, estimated and 90% confidence level returns of equal weighted, BVK and
market capitalisation portfolios in Table 13.18 using S-vine copula models.
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13.3 Fleishman’s transformation method
Throughout this section we apply the Fleishman’s transformation method introduced in Section 8
to the reduced portfolios from Table 13.17 to sampling the portfolio returns values and estimating
the risk measures. In this case we use similar conditions as for the previous methods. We estimate
the risk measures in a two years rolling window (500 observations). However, since we can not
forecast for not being time dependent method, we always refit the data in the training rolling
window. As we do with the previous methods we use a sample size of 5000 for the risk measure
estimation.

13.3.1 Risk measure forecast

Figure 13.64: Estimated value at risk at 0.05 and 0.01 levels of equal weighted, BVK and market
capitalisation portfolios in Table 13.18 using Fleishman’s transformation specified in Section 8.

The risk measures estimated with Fleishman’s transformation are also restricted by the chosen
window size. Figure 13.64 shows smooth VaR estimations. The window size affects on the results
overestimating the risk measure during low volatility periods. Expected shortfall in Figure 13.65
show also smooth results, with some periods of higher estimated lost because of the 2008 or
COVID-19 crisis.

Figure 13.66 shows the confidence interval estimated for the returns observed for each port-
folio. We observe some periods of lower and higher volatility but they do not correspond exactly
with the original returns time series.

In the next section we make a better comparison of all the methods for all reduced portfolios
considered.
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Figure 13.65: Estimated expected shortfall at 0.05 and 0.01 levels of equal weighted, BVK and
market capitalisation portfolios in Table 13.18 using Fleishman’s transformation specified in
Section 8.
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Figure 13.66: Observed, estimated and 90% confidence level returns of equal weighted, BVK
and market capitalisation portfolios in Table 13.18 using Fleishman’s transformation specified in
Section 8.
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13.4 Models comparison
In this section use the measures and backtests introduced in Section 9 to compare the ARMA-
GARCH with vine copula, stationary copula and the Fleishman’s transformation methods.

We begin comparing the VaR forecasted in Sections 13.1.3, 13.2.1 and 13.3.1 for the three
methods, which is plotted in Figure 13.67. First, we remark that the results obtained from
Fleishman’s method and stationary copulas are very similar for both α-levels considered, being
smoother than for the ARMA-GARCH vine copula approach. In case of the expected shortfall,
Figure 13.68 shows some concrete extreme values estimated by stationary vine copulas during
periods where the other two methods estimate small losses. Despite of showing similar results,
stationary vine copulas model forecasts more extreme loses than Fleishman’s transformation
approach.

Figure 13.67: Forecasted VaR at 0.05 and 0.01 levels of equal weighted, BVK and market cap-
italisation portfolios described in Table 13.18 with ARMA-GARCH vine copula, Fleishman’s
transformation, and S-vine copulas.

We continue evaluating the performance of the methods estimating the VaR level, α̂, using
Equation (9.52) in a 100 length rolling window. Figure 13.69 shows the α rolling window at level
0.05 and Figure 13.70 for α = 0.01, both of them in a 95% confidence interval. Similarly to the
complete portfolio, the VaR is underestimated during high volatility periods. In general we also
observe a similar evolution of α̂ for Fleishman and stationary vine copulas, with similar values
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Figure 13.68: Forecasted ES at 0.05 and 0.01 levels of equal weighted, BVK and market cap-
italisation portfolio described in Table 13.18 with ARMA-GARCH vine copula, Fleishman’s
transformation, and S-vine copulas.

during the whole period. Here ARMA-GARCH with vine copula is more stable, moving around
the theoretical values.
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Table 13.25 resume the measures from Section 9 calculated for the three portfolios. Bold
numbers represent the best value of the row. Clearly the model which better estimates the rolling
window is the ARMA-GARCH vine copula, having the highest percentage of theoretical α-levels
in the 95%confidence interval. Stationary vine copulas show better results than Fleishman,
but not very far, both methods tends to under and overestimate during high and low volatility
periods. With respect to the estimated α̂ in the whole period we have some differences between
the portfolios; for equal weighted portfolio all methods estimate α̂ better than for BVK and
market capitalisation portfolios, anyway the VaR is underestimated for the three portfolios at
α = 0.05 and α = 0.01 levels. In case of the β given in Equation (9.54) all the values are very
near to zero, showing the ARMA-GARCH models with vine copulas the model with lower |β|
values.

Portfolio Level α Measure ARMA-GARCH/
vine copula S-vine Fleishman

α̂ 0.053645 0.05625 0.05
β -0.000647 -0.000157 -0.002138

% of α̂ in CI0.05(α) 85,61 50,99 43,53
α̂ 0.013281 0.015625 0.016145
β -0.000805 -0.002403 -0.0040374

% of α̂ in CI0.05(α) 65,64 40,24 40,29
α̂ 0.06510 0.06796 0.06458
β -0.000958 -0.00151 -0.00294

% of α̂ in CI0.05(α) 89.14 41.25 40.48
α̂ 0.01796 0.02005 0.02213
β -0.00141 -0.00257 -0.00479

% of α̂ in CI0.05(α) 79.55 38.88 40.29
α̂ 0.063541 0.07031 0.06510
β -0.00043 0.000709 -0.0031080

% of α̂ in CI0.05(α) 94.54 38.48 39.49
α̂ 0.01875 0.02291 0.0234
β 0.000984 -0.000252 -0.002577

% of α̂ in CI0.05(α) 82.62 31.10 37.22

Equal
weighted

0.05

0.01

BVK

0.05

0.01

Market
capitalisation

0.05

0.01

Table 13.25: α̂ and β estimations at 0.05 and 0.01 levels between 13/11/2007 and 11/11/2022
using ARMA-GARCH vine copula, Fleishman’s transformation and S-vine copula on equal
weighted, BVK and market capitalisation portfolios described in Table 13.18. Also, the per-
centage of α̂ ∈ CI0.05(α) estimated in a rolling window in Figures 13.69 and 13.70 for α = 0.05
and α = 0.01 respectively.
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Figure 13.69: In the graphs above we show the estimated α̂ in a 0.05 VaR level and the corre-
sponding 95% confidence interval. α̂ is obtained from V aR estimated with ARMA-GARCH vine
copula, Fleishman’s transformation and S-vine copula in a 100 observation rolling window of the
equal weighted, BVK and market capitalisation portfolios described in Table 13.18 using 9.53.
The rows show the equal weighted, BVK and market capitalisation portfolio returns specified in
Table 13.18.
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Figure 13.70: In the graphs above we show the estimated α̂ in a 0.01 VaR level and the corre-
sponding 95% confidence interval. α̂ is obtained from V aR estimated with ARMA-GARCH vine
copula, Fleishman’s transformation and S-vine copula in a 100 observation rolling window of the
equal weighted, BVK and market capitalisation portfolios described in Table 13.18 using 9.53.
The rows show the equal weighted, BVK and market capitalisation portfolio returns specified in
Table 13.18.
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After calculating different measures for the estimated VaR and ES, we check the backtest
of Sections 9.1 and 9.2. In Table 13.26 are shown the p-values of the performed tests for the
three considered methods and portfolios defined in Table 13.18. The p-values are calculated for
all the forecast period, from 06/2007 to 11/2022. Considering a 95% test level we accept the
null hypothesis for those test with p − value > 0.05 representing a good model estimation. In
general, we have the risk measures are better estimated when using ARMA-GARCH vine copula
approach. However, most of the tests reject the null hypothesis, especially for BVK and market
capitalisation portfolios. This could happen because those portfolios are less diversified than the
equal weighted portfolio, which could imply more changes of volatility making it more difficult
to estimate. This is checked in Table 13.18 were Russell 3000 accumulates more than the 80%
of the total portfolio weight. Also, since we are analysing a long time period the wellness of risk
measures estimation change over the time. To check it we consider the same backtests for shorter
periods.

Portfolio Level α Backtest ARMA-GARCH/
vine copula S-vine Fleishman

LRuc 0.941 0.081 0.766
LRcc 0.019 3.9e-11 0.000
ER 0.107 0.854 0.002
CC 0.934 0.008 0.740
LRuc 0.464 0.001 4.4e-04
LRcc 0.615 9.1e-08 5.9e-08
ER 0.148 0.093 0.008
CC 0.606 0.001 0.010
LRuc 9.3e-05 4.3e-07 6.1e-04
LRcc 2.9e-06 2.8e-15 2.1e-12
ER 0.012 0.198 0.000
CC 6.6e-04 5.0e-06 0.001
LRuc 0.005 1.5e-04 1.6e-10
LRcc 0.019 2.2e-06 1.5e-15
ER 0.013 0.093 0.000
CC 0.025 3.05e-04 0.025
LRuc 7.0e-05 1.2e-06 7.0e-05
LRcc 1.6e-04 1.5e-08 4.2e-08
ER 0.034 0.001 0.000
CC 7.8e-04 5.8e-07 4.9e-04
LRuc 4.3e-06 4.4e-04 3.2e-11
LRcc 2.2e-05 4.4e-06 1.6e-13
ER 0.435 0.009 0.324
CC 0.05 2.7e-10 1.5e-06

Equal
weighted

0.05

0.01

BVK

0.05

0.01

Market
capitalisation

0.05

0.01

Table 13.26: P-values for LR unconditional and conditional test, exceedance residual test and
conditional calibration test for VaR and ES at 0.05 and 0.01 levels estimated using ARMA-
GARCH vine copula, stationary vine copula and Fleishman approaches for equal weighted, BVK
and market capitalisation portfolios showed in Table 13.18.

Figures 13.71 and 13.72 collect the p-values of the backtests from Sections 9.1 and 9.2 calcu-
lated on the estimated risk measures for a period of two years and two months, obtained after
dividing the whole estimation period in seven parts. The methods are represented on differ-
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ent colours which are expected to be above the 0.05 line, representing the wellness of the risk
measures estimations.

Figure 13.71: P-values corresponding to the backtests developed in Sections 9.1 and 9.2 for VaR
and ES at 0.05 level estimated using ARMA-GARCH vine copula, S-vine copula and Fleishman’s
transformation for portfolios described in Table 13.18 during the periods described in the graph.
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Figure 13.72: P-values corresponding to the backtests developed in Sections 9.1 and 9.2 for VaR
and ES at 0.01 level estimated using ARMA-GARCH vine copula, S-vine copula and Fleishman’s
transformation for portfolios described in Table 13.18 during the periods described in the graph.
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14 Conclusion

In this master thesis, we have compared three methods for estimating the VaR and the expected
shortfall. To do so, we considered two markets composed of 15 and 7 assets respectively, over
a period of more than 17 years, from 06/2005 to 11/2022. This period includes times of high
volatility, such as the 2008 financial crisis and the COVID-19 pandemic in 2020, as well as periods
of lower volatility. Due to this variety, we have a comprehensive study.

For each market, we considered three portfolios: equal weighted, BVK, and market capi-
talisation. The risk measures were estimated using a rolling window of 500 observations. The
parameters were recalculated every 40 observations in the case of ARMA-GARCH with vine
copulas and stationary vine. In the case of Fleishman, the parameters were recalculated on a
daily basis due to the non-predictive nature of the method.

Although the backtests do not show good results when analysing the entire 15-year period,
jointly backtesting the results every two years does demonstrate a good estimation of the risk
measures with all three methods. As mentioned before, the period 06/2018-09/2020 shows the
worst estimation due to the sudden change in volatility. In these cases, it may be worth consid-
ering refitting the complete model instead of just reestimating the parameters.

Furthermore, we have observed that all methods tend to underestimate the risk measures
during periods of higher volatility, which should be taken into account since it can lead to great
losses.

Regarding the models, we have observed clear differences between them. The model that
best estimates the risk measures is the ARMA-GARCH margins combined with vine copulas.
The other methods produce smoother results for VaR. Additionally, stationary vine copulas show
some outliers during periods of volatility change, which can lead to a poor evaluation of expected
shortfall. In general, the ranking for the approaches are ARMA-GARCH margins together with
vine copulas, followed by stationary vine and then the Fleishman’s approach.

Regarding the different portfolios, we also observe some clear differences. These differences
are more significant in the case of the reduced portfolios. We see that the equal-weighted portfolio
achieves better results, as it is less volatile than the others. In the case of the market capitalisation
portfolio, we show that it is influenced by specific assets, leading to higher volatility and poorer
estimation. The BVK portfolio falls somewhere in between. This leads us to believe that greater
diversification helps us obtain better estimates of the risk measures. One area where we do not
see many differences is in relation to the two markets. Despite one market being composed of
eight more assets than the other, the results are similar.

In addition to the results shown by each approach, there are other unobserved variables
that must be taken into account when choosing the most suitable method. In ARMA-GARCH
marginal models, the choice of marginal distributions and the model order is crucial. In the case
of vine copulas, the selection of the best structure is important. For stationary vine copulas, we
also need to select the marginal distributions, cross-sectional structure, and the Markov order.
In contrast, for the Fleishman method, no prior analysis is required as it is based on the first
four moments of observed log returns.

Another difference is the estimation and sampling time, although it has not been measured.
ARMA-GARCH with vine copulas is the most time and resource-consuming method to compute,
followed by stationary vine copulas and the Fleishman’s transformation method. Although the
latter needs to be recalculated for each observation. It must be added that the reduced portfolio
has been considered due to the limitations of the Fleishman method, which does not always
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converge. Therefore, in portfolios with a large number of assets, its implementation might be
infeasible.

For future research, the methods can be compared under different scenarios or more specific
markets. Additionally, other methods can be introduced in the study. For example, estimating
risk measures with stress scenarios or including conditioned vine copulas to account for different
market conditions.
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A Innovation distributions QQ-plots

Figure A.73: HF Merger standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.74: HF CTA standardized residuals QQ-plots after fitting an ARMA(1,1)-GARCH(1,1)
with different innovation distributions

ii



Figure A.75: Infrastructure standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.76: Russell 2000 standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.77: Russell 3000 standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.78: MSCI Eur LC standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.79: MSCI US SC standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.80: MSCI Eur SC standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.81: MSCI ACWI standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.82: FI Global Agg standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.83: FI Global Cap standardized residuals QQ-plots after fitting an ARMA(1,1)-
GARCH(1,1) with different innovation distributions
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Figure A.84: FI ICE standardized residuals QQ-plots after fitting an ARMA(1,1)-GARCH(1,1)
with different innovation distributions
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B Performance of different ARMA orders of returns for
ARMA selection

Figure B.85: Performance of different ARMA orders for Russell 2000’s returns with Generalized
Hyperbolic innovations and ACF and PACF of Russell 2000’s returns
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Figure B.86: Performance of different ARMA orders for Russell 3000’s returns with Generalized
Hyperbolic innovations and ACF and PACF of Russell 3000’s returns
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Figure B.87: Performance of different ARMA orders for MSCI Eur LC’s returns with Normal
Inverse Gaussian innovations and ACF and PACF of MSCI Eur LC’s returns
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Figure B.88: Performance of different ARMA orders for MSCI US SC’s returns with Generalized
Hyperbolic innovations and ACF and PACF of MSCI US SC’s returns
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Figure B.89: Performance of different ARMA orders for MSCI Eur SC’s returns with Skewed-
Student innovations and ACF and PACF of MSCI Eur SC’s returns

xvii



Figure B.90: Performance of different ARMA orders for FI Global Cap’s returns with Normal
Inverse Gaussian innovations and ACF and PACF of FI Global Cap’s returns
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Figure B.91: Performance of different ARMA orders for FI ICE’s returns with Normal Inverse
Gaussian innovations and ACF and PACF of FI ICE’s returns
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C Performance of different ARMA orders of ARMA models
residuals for GARCH selection

Figure C.92: Performance of different ARMA orders for Russell 2000’s squared residuals after
fitting ARMA(0,1) with Generalized Hyperbolic innovations. ACF and PACF of Russell 2000’s
squared residuals after fitting ARMA(0,1) with Generalized Hyperbolic innovations

xxi



Figure C.93: Performance of different ARMA orders for Russell 3000’s squared residuals after
fitting ARMA(1,0) with Generalized Hyperbolic innovations. ACF and PACF of Russell 3000’s
squared residuals after fitting ARMA(1,0) with Generalized Hyperbolic innovations
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Figure C.94: Performance of different ARMA orders for MSCI Eur LC’s squared residuals after
fitting ARMA(0,1) with Normal Inverse Gaussian innovations. ACF and PACF of MSCI Eur
LC’s squared residuals after fitting ARMA(0,1) with Normal Inverse Gaussian innovations
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Figure C.95: Performance of different ARMA orders for MSCI US SC’s squared residuals after
fitting ARMA(0,1) with Generalized Hyperbolic innovations. ACF and PACF of MSCI US SC’s
squared residuals after fitting ARMA(0,1) with Generalized Hyperbolic innovations

xxiv



Figure C.96: Performance of different ARMA orders for MSCI Eur SC’s squared residuals after
fitting ARMA(0,1) with Skewed-Student innovations. ACF and PACF of MSCI Eur SC’s squared
residuals after fitting ARMA(0,1) with Skewed-Student innovations

xxv



Figure C.97: Performance of different ARMA orders for FI Global Cap’s squared residuals after
fitting ARMA(2,1) with Normal Inverse Gaussian innovations. ACF and PACF of FI Global
Cap’s squared residuals after fitting ARMA(2,1) with Normal Inverse Gaussian innovations

xxvi



Figure C.98: Performance of different ARMA orders for FI ICE’s squared residuals after fitting
ARMA(1,1) with Normal Inverse Gaussian innovations. ACF and PACF of FI ICE’s squared
residuals after fitting ARMA(1,1) with Normal Inverse Gaussian innovations

xxvii
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D Marginal return distribution selection with QQ-plots

Figure D.99: HF Merger returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.100: HF CTA returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.101: REITS MSCI returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.102: Infrastructure returns QQ-plots with sstd, ghyp, nig and jsu distributions.

xxxii



Figure D.103: Russell 2000 returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.104: Russell 3000 returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.105: MSCI Eur LC returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.106: MSCI EM returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.107: MSCI US SC returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.108: MSCI Eur SC returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.109: MSCI ACWI returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.110: FI Global Agg returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.111: FI Global Cap returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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Figure D.112: FI ICE returns QQ-plots with sstd, ghyp, nig and jsu distributions.
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