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Zusammenfassung

Das graphische stetige Lyapunov-Modell ist ein neuer Ansatz zur statistischen Model-
lierung von Abhängigkeitsstrukturen in multivariaten Daten, wobei die Strukturen Rück-
kopplungsschleifen enthalten können. Die Kovarianzmatrizen der Verteilungen in einem
solchen Modell werden als Lösungen der stetigen Lyapunov-Gleichung über geeignete
Drift- und Volatilitätsmatrizen parametrisiert, die aus einem multivariaten Ornstein-
Uhlenbeck-Prozess stammen. Es wurde kürzlich gezeigt, dass zwei Variablen im Lyapunov-
Modell unabhängig sind, wenn die entsprechenden Knoten im Graphen nicht durch
einen Treck verbunden sind. Wir vermuten, dass auch die umgekehrte Implikation gilt,
d.h. wenn zwei Knoten durch einen Treck im Graphen verbunden sind, können die
entsprechenden Variablen im Lyapunov-Modell nicht bedingt unabhängig sein. In dieser
Arbeit beginnen wir die Untersuchung der Hypothese mit der Betrachtung des Lyapunov-
Modells eines gerichteten Pfades beliebiger Länge. Wir beweisen, dass im Pfadmodell
keine bedingten Unabhängigkeiten gelten, die höchstens 100 konditionierende Variablen
zwischen den beiden betrachteten Knoten beinhalten. Darüber hinaus entwickeln wir
eine Methode, um jedes Gegenbeispiel für die Aussage, dass der erste und letzte Knoten
des Pfades bedingt unabhägig gegeben alle Zwischenknoten sind, zu Gegenbeispielen für
solche Aussagen auf jedem längeren Pfad zu erweitern. Zusätzlich illustrieren wir die
Herausforderungen im Umgang mit singulären Kovarianzmatrizen, die auf dem Weg zu
einem vollständigen Beweis der Vermutung für das Pfadmodell auftreten.

Abstract

The graphical continuous Lyapunov model is a new approach to statistically model de-
pendence structures that may include feedback loops in multivariate data. The covariance
matrices of the distributions in such a model are parametrized as solutions of the con-
tinuous Lyapunov equation via suitable drift and volatility matrices that stem from a
multivariate Ornstein-Uhlenbeck process. It was recently shown that two variables are
independent in the Lyapunov model if the corresponding nodes in the graph are not
connected by a trek. We conjecture that the opposite implication also holds, meaning
that if two nodes are connected by a trek in the graph, then the corresponding variables
cannot be conditionally independent in the Lyapunov model. In this thesis, we start the
investigation of the conjecture by considering the Lyapunov model of a directed path
of arbitrary length. We prove that no conditional independence statements that involve
at most 100 conditioning variables between the two considered nodes hold in the path
model. We further devise a way to extend any counterexample for the statement where
the first and last node of the path are conditionally independent given all intermediate
nodes to counterexamples for statements on any longer path. Additionally, we illustrate
the challenges of working with singular covariance matrices that arise on the way to a
full proof of the conjecture for the path model.
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1 Introduction

Discovering causal relationships and understanding the underlying structures in complex
systems is one of the main objectives in science. Graphical models are a powerful tool to
model, infer, and interpret these relationships (Pearl, 2009). They allow us to compactly
encode multivariate distributions by means of a graph-based representation (Koller and
Friedman, 2009). In such a graphical representation, every node in the graph represents a
variable of the distribution while the edges model the dependence structure between the
variables. A graphical model is then a set of probability distributions whose independence
pattern fits the graph.

Directed graphs provide a natural representation for many types of real-world applications
from medicine to economics. A directed graph is defined as an ordered pair G = (V ,E)
of a set of vertices V = {1, . . . , p} = [p] and an edge set E ✓ V ⇥ V , where (i, j) 2 E

denotes the directed edge i ! j. Note that this definition allows for self-loops, i.e.,
edges of the form i ! i for i 2 V can occur in G. If we restrict the edge set to
E ✓ V ⇥ V \ {(i, i) | i 2 V } and additionally impose the condition that the graph does
not have any directed cycles, G is a directed acyclic graph, short DAG.

Assume that we have a random vector X = (X1, . . . ,Xp)
T of jointly continuous random

variables. Then we can use a DAG G = (V ,E) to model the joint distribution of the
random variables by associating every node with a random variable and by requiring that
the joint density of X factorizes with respect to the edge structure of the graph. It is
useful to work with a DAG, as the acyclicity assumption makes the model easy to handle
and to interpret.

One main aspect of graphical models based on DAGs is encoding the conditional inde-
pendence patterns that all distributions in the model adhere to. Two random variables
X and Y are conditionally independent given a third random variable Z if they are in-
dependent in the conditional distribution given Z. In the following, we denote this by
X ?? Y | Z. In a slight abuse of notation, we will often refer to random variables by their
indices and therefore by their corresponding nodes. Hence, ”1 ?? p | 2” is a short notation
for ”X1 ?? Xp | X2”. The conditional independence properties of the distributions in a
graphical model can be exploited, for example, in structure learning algorithms that infer
the graphical structure from data.

However, in many applications, the acyclicity assumption cannot be made confidently:
from complex biological systems to models of supply and demand, feedback loops occur
in many structures describing parts of our world. Fitch (2019) and Varando and Hansen
(2020) recently introduced a new type of graphical model – the graphical continuous Lya-
punov model. Similar to the structural equation model, the Lyapunov model parametrizes
the covariance matrix ⌃ of a multivariate Gaussian variable via an equation – here the
continuous Lyapunov equation

M⌃+ ⌃MT + C = 0

with the matricesM ,C 2 Rp⇥p as parameters. By assuming a random vector to arise from
a dynamic process in equilibrium, namely the Ornstein-Uhlenbeck process, we include a
temporal perspective in the model that allows the modeling and interpretation of feedback
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1 Introduction

loops. While some properties of the Lyapunov model such as the identifiability and
estimation of parameters have already been considered by Fitch (2019), Varando and
Hansen (2020), and Dettling et al. (2022a,b), the question of the conditional independence
structure of the Lyapunov model is still open.

For our further considerations, we require the notion of a trek. A trek from node i to
node j is a walk in a graph consisting of two directed walks starting at the same node,
one ending in i and the other one in j (Varando and Hansen, 2020). These directed walks
can be each of length zero, so a directed path or even a single directed edge is also a trek.
Varando and Hansen (2020) found that, if there is no trek from i to j in a graph G, then
Xi and Xj are marginally independent in all distributions in the Lyapunov model of G.
We conjecture that these independencies – as well as all conditional independencies they
induce – are the only conditional independencies that hold in the graphical continuous
Lyapunov model. In other words, we conjecture that if two nodes i and j are connected
by a trek, then Xi and Xj cannot be conditionally independent. Our goal is to establish
a universal way of constructing distributions in the Lyapunov model as counterexamples
to contradict all such conditional independence statements of nodes that are connected
by a trek.

With this thesis, we start the investigation by considering directed paths – the simplest
substructure of a directed graph. The directed path of length p 2 N>0 with self-loops is
given by Gp := (Vp,Ep) where Vp := [p] and Ep := {(i, j) 2 Vp ⇥ Vp | j = i or j = i+ 1}.
We are interested in conditional independence statements such as

2 ?? 5 | 1, 3 (1)

in the path model on five nodes illustrated in Figure 1. We conjecture that no such
conditional independence statements hold in the model.

1 2 3 4 5

Figure 1: Directed path G5 with self-loops on p = 5 nodes. The nodes are colored
according to the conditional independence statement (1): the conditioning nodes (nodes
1,3) are marked in light blue and the node not appearing in the statement (node 4) is
grey.

For the path model, we can formulate our conjecture and the overarching goal more
formally.

Conjecture. Assume p 2 N�2. Let i, j 2 Vp, i < j, and S ✓ Vp \ {i, j}. Then, there is
no conditional independence statement of the form

i ?? j | S (2)

that holds for all distributions in the Lyapunov model of the directed path of
length p.

Goal. For every such statement as (2), find a counterexample, i.e., a distribution in the
model, where the statement does not hold.

2
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1 Introduction

The complexity of the task at hand is evident: we will see that the number Np of potential
conditional independence relations with S 6= ; is exponential in the number of nodes p.
In lower-dimensional settings, this is still manageable. For instance, for p = 3 and p = 4,
there are N3 = 3 and N4 = 18 statements, respectively, for which we require counterex-
amples. However, for p = 10, there are already N10 = 11475 conditional independence
statements that we want to contradict. In this thesis, we aim to find a way to generate
counterexamples that generalize to varying numbers of nodes and di↵erent conditional
independence patterns in the Lyapunov model of the directed path.

The thesis is structured as follows. In Chapter 2, we illustrate the limitations of the classi-
cal directed Gaussian graphical model when it comes to cyclic graphs, present the thought
process leading to the new model, and formally introduce the graphical continuous Lya-
punov model. Additionally, the chapter contains an excursion into the world of stochastic
processes for readers who are not familiar with the subject. In Chapter 3, we recap the for
our purposes relevant aspects of conditional independence in multivariate normal distri-
butions. We formally define the path model and present a few low-dimensional examples
of conditional independence relationships as well as first counterexamples.

Chapter 4 constitutes the main contribution of this thesis. We provide the theoretical
foundation to construct a counterexample for (2) in the Lyapunov model of the path of
length p by extending a counterexample for the statement

1 ?? q | 2, . . . , q � 1 (3)

in the Lyapunov model of the path of length q, where q < p is suitably chosen. Using
these results, we prove the conjecture postulated above for the subset of statements (2)
with at most 100 conditioning variables occurring between i and j. In Chapter 5, we
illustrate the challenges of working with singular covariance matrices that arise on the
way to proving the conjecture for any number of conditioning variables occurring between
i and j. We provide a first approach toward a general proof of the conjecture by aiming
to construct a counterexample for (3).

3
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2 The Lyapunov model

In this chapter, we give an introduction to the graphical continuous Lyapunov model.
We start by revisiting the classical directed Gaussian graphical model and discussing its
limitations regarding cyclic graphs. Then, we retrace the thought process in previous
works to extend the model. To gain the required vocabulary and understanding of the
mathematical background for the extended model, we take a short excursion into the
world of stochastic processes.

Notation. First, we establish some notation and basic definitions. For easier notation,
we denote vectors by bold letters; for example, X = (X1, . . . ,Xp)T is a p-dimensional
random vector.

Let
RE := {M := (mij) 2 Rp⇥p | mji = 0 if (i, j) /2 E}

be the space of matrices whose sparsity patterns are given by a graph G = (V ,E). In
other words, a non-zero entry mji of M indicates an edge i ! j in the graph. We can
interpret the entries of M as the edge weights in the graph G. This definition allows for
zero edge weights, i.e., we can have (i, j) 2 E even though mji = 0. When we consider
the matrix of edge weights B 2 RE of a DAG G, we can always permute the nodes
in a topological order such that B is a strictly lower triangular matrix (Drton, 2018).
Additionally, we define D+ := {⌦ 2 Rp⇥p | ⌦ diagonal ,⌦ii > 0 8i 2 [p]}.

Further, we write PDp for the set of positive definite p⇥ p matrices. They are symmetric
by definition. It can be shown that the closure of PDp is the set of positive semi-definite
p⇥ p matrices, which is convex and forms a cone (Boyd and Vandenberghe, 2004). As its
interior, the set PDp is often called the cone of positive definite matrices in literature.

2.1 The classical directed Gaussian graphical model

Let X = (X1, . . . ,Xp)
T be a random vector consisting of jointly continuous random

variables and let G = (V ,E) be a directed graph with V = [p]. Without loss of generality,
we assume that X has mean zero. A convenient way to model the distribution of X is via
a structural equation model. A structural equation model associated with the graph G

models each variable as a function of its parents in the graph G together with a random
noise component. Here, we assume that X is the solution of a system of linear structural
equations

X = BX+ " (4)

with B 2 RE and " ⇠ Np(0,⌦) for some ⌦ 2 D+. The structural equations are given
by the edge weights of G and by the noise variables "i that model noise as independent
Gaussian errors with mean zero.

If G is a DAG, the matrix B can always be permuted to be lower-triangular with zeros on
the diagonal. Then, the matrix Ip �B is lower-triangular with only ones on the diagonal
and thus invertible. Consequently, we can rewrite (4) to

X = (Ip � B)�1" ⇠ Np(0, (Ip � B)�1⌦(Ip � B)�T ).

4
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2 The Lyapunov model

Since we assume the error vector " to be Gaussian, the random vector X follows a
multivariate normal distribution as well. The covariance matrix ofX is the unique matrix
⌃ that solves the matrix equation

(Ip � B)⌃(Ip � B)T = ⌦. (5)

It depends only on the matrix of edge weights given by the graph G and the covariance
matrix ⌦ of the Gaussian error terms. These deliberations give rise to the following
formal definition (Drton, 2018).

Definition 2.1. The directed Gaussian graphical model given by a DAG G = (V ,E) is
the family of all multivariate normal distributions N (0,⌃) with covariance matrix ⌃ in
the set

MG = {⌃ | (Ip � B)⌃(Ip � B)T = ⌦ with B 2 RE, ⌦ 2 D+}.

From the definition, it is clear that we can identify the model with the set MG of covari-
ance matrices of distributions belonging to the model. Thus, we also refer to MG as the
model (Drton, 2018).

The acyclicity assumption on the graph G induces many favorable properties of the model
MG. First, the acyclic structure of the graph admits a natural causal interpretation (Dr-
ton and Maathuis, 2017). Moreover, the density of a distribution in the model permits a
convenient factorization into a product of conditional densities involving only subsets of
the variables. This renders the distribution much more tractable and enables the estima-
tion of the parameters of the model (Koller and Friedman, 2009; Drton and Maathuis,
2017; Maathuis et al., 2019). The factorization property can as well be reformulated in
terms of a relationship between the conditional independence characteristics of the dis-
tribution and separation properties of the graph – the so-called global Markov property
(Lauritzen, 1996). In other words, the graph G encodes the conditional independence
pattern of the distributions in the model MG. This property is exploited in many appli-
cations, for example, structure learning algorithms like the PC algorithm that can infer a
causal structure based on conditional independence properties of the given data (Spirtes
et al., 2000).

2.2 Allowing directed cycles

The classical directed Gaussian graphical model does not allow directed cycles in the asso-
ciated graphical representation. In practice, however, there is an abundance of problems
and corresponding data sets that entail feedback loops among the variables and therefore
directed cycles in a corresponding graph. Can we model them in a similar way? We start
with an example.

Example 2.2. We consider a graph on three nodes that includes a cycle given by the
following edge weight matrix

B =

0

@
0 0 1
1 0 0
0 1 0

1

A .

5
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2 The Lyapunov model

Then the matrix

I3 � B =

0

@
1 0 �1
�1 1 0
0 �1 1

1

A

has determinant det(I3�B) = 1+(�1) = 0, so there is no unique solution ⌃ to equation
(5). Thus, a direct extension of the model is complicated by the fact that the structural
equations need not always have a unique solution.

Another aspect to consider apart from the missing density factorization properties is the
matter of interpretation (Dettling et al., 2022a). In the acyclic case, the variables can be
brought into a topological order that can be interpreted as a causal or at least temporal
order for some variables. In the cyclic case, this is not possible since there is no universal
starting point of the cycle. Both cases are depicted in Figure 2 for a graph on two nodes
XA and XB.

XA XB

(a) Acyclic graph.

XA XB

(b) Cyclic graph with self-loops.

Figure 2: Two versions of a directed graph on two nodes XA and XB.

Assume for instance thatXA encodes the supply of a product andXB encodes the demand
for this product. The acyclic graph assigns a clear temporal and possibly causal order
to the variables: there was first supply of the product and afterward demand, perhaps
created by the novelty of the product. The demand does not influence the supply in
this model. The cyclic graph on the right, however, incorporates both supply influencing
demand, demand influencing supply, as well as both variables influencing themselves.

It is obvious that in many applications, the cyclic model on the right is much more
realistic. The causal reasoning is, however, much harder, since we cannot resort to a
topological order of the variables – like in the classic “chicken-or-egg” problem we do
not know what came first. A one-time measurement of XA cannot simultaneously be
taken before and after a measurement of XB. This problem arises in scenarios where
the changes occur on a much faster time scale than the measurements. For example,
supply and demand are usually averaged over a certain time period (Hyttinen et al.,
2012). Similar examples arise in the medical or biological context, where measurements
of vitals like blood pressure and heart rate change on a fast time scale.

It is intuitively clear that a cause always precedes its e↵ect, so the true causal structure
has to be acyclic over time (Hyttinen et al., 2012). This consideration gives rise to the
idea of unrolling the cyclic graph into an acyclic graph of the variables at di↵erent discrete
time points t as depicted in Figure 3.

6
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2 The Lyapunov model

. . . XA(t) XA(t+ 1) . . .

. . . XB(t) XB(t+ 1) . . .

Figure 3: Cyclic graph with self-loops on two nodes XA and XB unrolled as an acyclic
graph.

Following this way of interpretation, we adapt the model as proposed by Hyttinen et al.
(2012). Given some initial values X(0), adapting (4) to include a temporal perspective
results in

X(t) : = BX(t� 1) + "

= B
t
X(0) +

t�1X

i=0

B
i", (6)

where we recursively inserted X(t� 1) into the equation. The sequence Bt as well as the
series

Pt�1
i=0 B

i converge for t ! 1 if and only if the spectral radius of B is smaller than
1. Then, assuming that the eigenvalues of B have absolute value smaller than 1, the first
term of (6) converges to zero due to B

t ! 0 for t ! 1. Under the same assumption,
the partial sum

Pt�1
i=0 B

i converges to (Ip � B)�1 for t ! 1 yielding

X(t)
t!1���! X := (Ip � B)�1".

In other words, X(t) converges to an equilibrium, where the value of X is fully determined
by B and " and is independent of X(0). Note that the matrix Ip � B is invertible due
to the restriction on the eigenvalues of B. Given a fixed value ", the equilibrium is
deterministic. When considering a graph without cycles, this new interpretation coincides
with the interpretation of the classical Gaussian graphical model via structural equations
in the previous section.

We can extend the model by assuming the error terms " ⇠ N (0,⌦) to be time-dependent
as well, i.e., let "(t) ⇠ N (0,⌦) be independent and identically distributed. The resulting
equation that defines the model is then

X(t) := BX(t� 1) + "(t).

This is now a process with stochastic dynamics that no longer has a deterministic equilib-
rium. We can interpret it as a VAR(1) model (Young et al., 2019), which is a first-order
vector auto-regressive model for multivariate time series data with independent errors.
It generalizes the first-order univariate auto-regressive model AR(1).

Still assuming that the spectral radius of B is smaller than 1, recursive computation of
the covariance matrix yields

Var(X(t)) = BVar(X(t� 1))BT + ⌦ = . . . =
tX

i=0

B
i⌦(Bi)

T !
1X

i=0

B
i⌦(Bi)

T
=: ⌃

7
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2 The Lyapunov model

for t ! 1. Consequently, we have the equilibrium distribution

X ⇠ N (0,⌃)

with equilibrium covariance matrix ⌃ (Hyttinen et al., 2012; Young et al., 2019).

In equilibrium, the variance is independent of the time t, so we can give a recursive
equation for ⌃ as

⌃ = B⌃BT + ⌦. (7)

Note that ⌦ itself is a covariance matrix and therefore symmetric. Equation (7) is called
the discrete Lyapunov equation. Thus, the equilibrium covariance matrix of the VAR(1)
model solves the discrete Lyapunov equation. Young et al. (2019) derive some first
identifyability results for a specific subset of VAR(1) models. However, they still need to
impose the acyclicity constraint for asymptotic results.

Taking on a more general perspective, stochastic processes in discrete time t = 0, 1, 2, . . .
are often of the form

X(t+ 1) = f(X(t), s(t)) + "(t).

That is, the next state of the process depends on the current state X(t) and other
varying parameters s(t) through a function f and is perturbed by an additional noise
term "(t). Analyzing such a model can be facilitated by passing to an analogous di↵usion
or stochastic di↵erential equation model. They are often more tractable while retaining
the same relevant information (Karlin and Taylor, 1981). This gives rise to the idea –
first proposed by Fitch (2019), then further developed by (Varando and Hansen, 2020) –
of employing a more general continuous-time model to accommodate for directed cycles
in a graphical model.

2.3 Stochastic processes

Before we introduce the new model, we take a brief detour into the area of stochastic
processes to establish the needed vocabulary and mathematical concepts. This overview
is mainly based on the comprehensive works by Karlin and Taylor (1975), Karlin and
Taylor (1981), Parzen (1999), and Lawler (2006) as well as the lecture notes by Borghini
(2012).

A stochastic process is a collection {X(t) | t 2 T} of random variables where the index
set T is either discrete, for example T = N0, yielding a discrete time process, or otherwise
an uncountable subset of R, for example T = R�0, yielding a continuous time process.
The set of possible values of X(t) is called the state space of the stochastic process. If the
state space is finite or countable, it is called discrete, otherwise continuous. The values
may be one-dimensional or multidimensional.

2.3.1 General properties

A way of describing a stochastic process is to specify the joint distribution of

X(t1), . . . ,X(tn)

for all n 2 N and for all t1, . . . , tn 2 T . One example are Gaussian processes.

8
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2 The Lyapunov model

Definition 2.3. A Gaussian process is a stochastic process for which, for every n 2 N
and for every finite set {t1, . . . , tn} of time points, the random vector

(X(t1), . . . ,X(tn))
T

has a multivariate normal distribution.

Another way of describing a stochastic process is to give a formula for X(t) at each time
point t in terms of a family of random variables with known probability distribution.
Stochastic processes can also arise as solutions to stochastic di↵erential equations.

There are many properties that characterize and distinguish stochastic processes; one of
them is stationarity.

Definition 2.4. A stochastic process {X(t) | t 2 T} is said to be stationary if for any
n 2 N, h > 0, and any points t1, . . . , tn 2 T where ti + h 2 T for all i 2 [n], the joint
distribution of

X(t1), . . . ,X(tn)

coincides with the joint distribution of

X(t1 + h), . . . ,X(tn + h).

That means the unconditional probability distribution is invariant under an arbitrary shift
of all considered time points. This implies that the random mechanism of the process
remains the same as time progresses. It implies in particular that the distribution of X(t)
is the same for all t.

2.3.2 Markov processes in general

An important subset of stochastic processes are so-called Markov processes. A Markov
process is a stochastic process where the change at a time t is only determined by the
value X(t) of the process at this time and not by any values before t.

Definition 2.5. A process is Markov if for any set of n time points t1 < · · · < tn 2 T

and any values x1, . . . , xn 2 R

P (X(tn)  xn | X(t1) = x1, . . . ,X(tn�1) = xn�1) = P (X(tn)  xn | X(tn�1) = xn�1)

holds.

In other words, the conditional distribution of X(tn) given some previous known values
depends only on the most recent one. Then the probability of any future event depends
only on the present state and is not altered by additional knowledge of past behavior.

Both discrete and continuous time processes can be Markov. For discrete-time processes,
we assume that T = N0; and for continuous processes, we assume T = R�0. If the state
space is finite or countable, the process is called a Markov chain. We assume that the
state space S of a Markov chain is either S = {0, 1, . . . ,N} or S = N0. A continuous
time Markov process where every sample path X(t) is a continuous function in t is called
a di↵usion process.
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2 The Lyapunov model

A Markov process is fully determined by its initial unconditional distribution at t = 0 and
the transition probability function P (X(t) 2 E | X(t0) = s) specifying the conditional
probability that the state of the system at time t is in a set E, given that at a time t0 < t

it is in state s. If the transition probability function depends only through t� t0 on t and
t0, the process is said to have time-homogeneous transition probabilities.

2.3.3 Markov chains

The probability of a discrete-time Markov chain changing from a state X(n) = i to a
state X(n+ 1) = j in one time step at time n

P
(n,n+1)
ij := P (X(n+ 1) = j | X(n) = i)

is called the one-step transition probability. For simplicity, we assume from now on that
these probabilities are time-homogeneous, i.e., independent of the time parameter n so
that we can write Pij := P

(n,n+1)
ij . The theory can, however, be easily extended to the more

general non-homogeneous case. The one-step transition probabilities can be arranged in
a (possibly infinite) transition probability matrix

P := (Pij)i,j=0,1,....

The i-th row of P is the probability distribution of the values of X(n + 1) given that
X(n) = i. Therefore, the sum of all entries in each row is 1. The probability distribution
of a Markov chain with time-homogeneous transition probabilities is fully determined by
the initial distribution of the values of X(0) given by pi := P (X(0) = i) for every i 2 S

together with the one-step transition probabilities Pij for all i, j 2 S.

Taking this idea further, we define the n-step transition probabilities

P
(n)
ij := P (X(m+ n) = j | X(m) = i),

i.e., the probability of the process changing from state i to state j in n steps. Due to
the time-homogeneous transition probabilities, we can form the (possibly infinite) n-step
transition probability matrix

P
(n) := (P (n)

ij )ij=0,1,....

It can be shown that the Chapman Kolmogorov equation

P
(n)
ij =

X

k2S

P
(r)
ik P

(s)
kj (8)

holds for any i, j 2 S and any r, s 2 N0 with r + s = n and P
(0)
ij = �ij (Klenke, 2014).

Then, we have P
(1) = P . The probability of the process being in state j at time point n

is
p
(n)
j := P (X(n) = j) =

X

i2S

piP
(n)
ij .
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2 The Lyapunov model

If the state space S of the considered Markov chain is finite, the matrices P
(n) are fi-

nite as well. Consequently, we can rewrite the previous statements in terms of matrix
multiplication. We obtain

P
(n) = P

n,

so the n-step transition probability P
(n)
ij = (P n)ij is the (i, j)-th entry of the n-th power

of the one-step transition probability matrix. With the initial probability distribution
given by a vector p = (p0, p1, . . . , pN), the unconditional distribution of X(n) is given by

p
(n) = pP

(n).

The concepts we have seen so far can also be extended to continuous time Markov chains
where T = R�0. Again, we can define transition probabilities

P
(s,s+t)
ij := P (X(s+ t) = j | X(s) = i)

for times s < s+ t 2 T and states i, j 2 S. We assume the transition probabilities to be
time-homogeneous so that we can write P (t)

ij . As before, the theory can be easily extended
to the general case.

We assume that the transition probabilities are continuous at t = 0 with limt!0 P
(t)
ij = �ij.

It can be shown that they satisfy the Chapman-Kolmogorov equation (8) as in the
discrete-time case and that they are uniformly continuous as functions of t > 0. The
one-step transition probabilities we defined for discrete-time Markov chains are replaced
by their infinitesimal analogs that are defined through the derivatives of the transition
probability functions at zero.

2.3.4 Stationary distributions

A point of interest is the asymptotic behavior of a Markov chain and the influence of
the initial state of the process over time. We still assume the considered chains to have
time-homogeneous transition probabilities. A discrete-time Markov chain is said to have
a limiting distribution or long-run distribution if there is a probability distribution ⇡ such
that for every i, j 2 S we have

lim
n!1

P
(n)
ij = ⇡j,

where the limit is independent of i. This implies

lim
n!1

p
(n)
j = lim

n!1

X

i2S

piP
(n)
ij =

X

i2S

pi⇡j = ⇡j,

so the unconditional probability p
(n)
j of the chain being in state j at time point n converges

to a probability ⇡j regardless of the chosen initial unconditional distribution. Note that
limiting distributions exist only in specific cases.

Definition 2.6 (Lawler (2006)). A discrete time Markov chain has a stationary, equilib-
rium, steady-state, or invariant probability distribution if there exists a probability vector
⇡ such hat for every j 2 S we have

⇡j =
X

i2S

⇡iPij.
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2 The Lyapunov model

If S is finite, this equation is equivalent to ⇡ = ⇡P in matrix notation. The notation
shows that a stationary probability distribution of a finite state space Markov chain is a
left eigenvector to the eigenvalue 1 of the transition probability matrix. A stationary dis-
tribution need not exist nor be unique (Klenke, 2014). The following example illustrates
that a stationary distribution is not necessarily a limiting distribution.

Example 2.7. A chain that periodically alternates between two states with transition
probability matrix

P =

✓
0 1
1 0

◆

has ⇡ = (12 ,
1
2) as a stationary distribution but P (n) = P

n does not converge. Therefore,
no limiting distribution exists (Parzen, 1999; Lawler, 2006).

For a finite state space S, it is easy to see that a stationary distribution ⇡ satisfies

⇡ = ⇡P = (⇡P )P = ⇡P 2 = · · · = ⇡P n = ⇡P (n)

for every n 2 N>0 as well. Choosing a stationary distribution ⇡ as the initial distribution
at time point n = 0 yields the unconditional distribution

p
(n) = ⇡P (n) = ⇡,

in the case that S is finite. This equation implies that the unconditional distribution of
the Markov chain is the same at each time step n – in other words, it is stationary.

It can be shown that a time-homogeneous discrete-time Markov chain is stationary if and
only if its initial distribution is a stationary distribution (Karlin and Taylor, 1975). If a
limiting distribution ⇡ exists, it is also a stationary distribution as

⇡ = lim
n!1

P
(n) = ( lim

n!1
P

(n�1))P = ⇡P

shows for finite state space S (Lawler, 2006). These arguments can be extended to chains
with countable state space S as well.

2.3.5 Di↵usion processes

We now introduce an example of a Markov process where both the index set and the
state space are continuous. A di↵usion process is a continuous time Markov process
where additionally every sample path X(t) is continuous in t. We assume that T = R�0

and S = R if not otherwise indicated. This section as well as the following sections are
mainly based on the work by Karlin and Taylor (1981).

A central example of di↵usion processes is the so-called Wiener process. It is also referred
to as Brownian Motion since it models random continuous motion such as the displace-
ment X(t) of a particle in a fluid at time t given that X(0) = 0. It plays a fundamental
role in the theory of stochastic processes and has many applications across di↵erent fields
like economics or biology (Karlin and Taylor, 1975).
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2 The Lyapunov model

Definition 2.8. A Wiener process or Brownian motion is a stochastic process
{X(t) | t 2 R�0} taking values in S = R such that

(i) X(0) = 0,

(ii) it has stationary independent increments,

(iii) the increments X(s + t) � X(s) for s + t > s � 0 are normally distributed with
mean 0 and variance �2

t where the variance parameter � is fixed,

(iv) the paths are continuous, i.e., the maps t 7! X(t) are continuous.

A d-dimensional Wiener process is a vector valued stochastic process

X(t) = (X1(t), . . . ,Xd(t))
T

on the state space S = Rd where each component is a Wiener process itself and the
component Wiener processes are independent.

If the variance parameter �2 = 1, the process is called standard Brownian motion. From
now on if not otherwise indicated we only consider Wiener processes with �2 = 1, since
any Wiener process can be scaled by 1

� and therefore reduced to standard Brownian
motion.

Since the considered stochastic processes are now continuous, the distribution of the
process at time t can no longer be specified by a (possibly infinite) probability vector but
by a probability density. The transition probability density p(x, t|x0) of a particle being
at a position with x-coordinate X(t0 + t) at time t0 + t given that X(t0) = x0 can be
shown to satisfy the following partial di↵erential equation

@p

@t
=

1

2

@
2
p

@x2
,

a variant of the so-called di↵usion equation. Under suitable boundary conditions it is
uniquely solved by

p(x, t|x0) =
1p
2⇡t

exp

✓
�(x� x0)2

2t

◆
. (9)

This transition density satisfies the continuous version of the Chapman-Kolmogorov equa-
tion (8)

p(y, s+ t|x) =
Z

S

p(z, s|x)p(y, t|z)dz.

Combining the transition density with a suitable initial distribution yields the probability
density of the process at time t as

p(x, t) =
1p
2⇡t

exp

✓
�x

2

2t

◆
(10)

(Karlin and Taylor, 1975; Borghini, 2012).

A Wiener process has time-homogeneous transition probabilities, but it is not a stationary
process. The unconditional density p(x, t) shows that the variance and therefore the
distribution of X(t) depends on t.
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2 The Lyapunov model

So far, we considered the case E[X(t)] = 0, i.e., the case where there is no drift to
the process. A process that drifts away from the origin in a direction µ, that is, with
E[X(t)] = µt, can be defined similarly to Definition 2.8.

Definition 2.9. Let X̃(t) be a d-dimensional Wiener process (where d = 1 is possible)
with variance parameter (matrix) �2. Let µ 2 Rd. The stochastic process

X(t) = X̃(t) + µt

is called d-dimensional Wiener process with drift. The constant µ is called the drift
parameter.

It can be shown that such a process fulfills the conditions in Definition 2.8 with the only
di↵erence that the mean of the increments is µt instead of zero. The formula for the
transition density (9) as well as the unconditional density (10) of one component can be
extended accordingly (Karlin and Taylor, 1975; Lawler, 2006).

There are di↵erent alternative characterizations of di↵usion processes. One way is to
characterize a di↵usion process by two conditions, namely the existence of the two limits

lim
h#0

E[X(t+ h)�X(t)|X(t) = x]

h
=: µ(x, t)

and lim
h#0

E[(X(t+ h)�X(t))2|X(t) = x]

h
=: �2(x, t).

They describe the mean and variance of the infinitesimal displacements in a one-dimen-
sional di↵usion process. The function µ is called drift parameter or infinitesimal mean
and the function �

2 is called di↵usion parameter or infinitesimal variance. We assume
that these infinitesimal parameters are continuous in x and t and that �2(x, t) > 0. If the
process is time-homogeneous, they are both independent of the time t and we can write
µ(x, t) = µ(x) and �2(x, t) = �

2(x).

The concept can also be extended to multidimensional di↵usion processes. Then, the
drift µ is a vector-valued function with

µi(x, t) = lim
h#0

1

h
E[Xi(t+ h)�Xi(t)|X(t) = x]

and �2 is a matrix-valued function with

�
2
ij(x, t) = lim

h#0

1

h
E[(Xi(t+ h)�Xi(t))(Xj(t+ h)�Xj(t))|X(t) = x]

such that �2(x, t) is positive definite.

Example 2.10. A Wiener process is a di↵usion process with drift parameter µ(x) = 0
and di↵usion parameter �2(x) = �

2 where �2 is a constant. A Wiener process with drift
µ has drift parameter µ(x) = µ and di↵usion parameter �2(x) = �

2 where µ and �2 are
both constants.
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2 The Lyapunov model

We can also extend the concept of stationary or equilibrium distribution and limiting
distribution to di↵usion processes. If existent, a stationary density  satisfies

 (y) =

Z
 (x)p(y, t|x)dx

for all t > 0. Under suitable conditions, a stationary density  defines also a limiting
distribution, i.e., it satisfies

lim
t!1

p(y, t|x) =  (y).

2.3.6 Stochastic di↵erential equations

A di↵erent way to characterize a di↵usion process is in terms of a stochastic di↵erential
equation, i.e., a di↵erential equation where at least one of the terms and therefore also
the solution is a stochastic process. For example, we can reformulate the Wiener process
with drift and arbitrary variance as a stochastic di↵erential equation in terms of standard
Brownian motion.

We revisit the example of the x-coordinate of the position X(t) of a particle suspended
in a fluid. The particle’s motion is driven by two principal forces: a deterministic motion
induced by the nature of the fluid and possible external forces on the system as well
as a random movement caused by collisions and interactions with other particles. The
latter can be described over short time durations by a standard Brownian motion W (t).
Then the displacement of the particle along the x-axis after a short period of time �t is
approximated by

�X(t) := X(t+�t)�X(t) ⇡ m(x, t)�t+ s(x, t)�W (t),

where �W (t) = W (t +�t)�W (t) and x = X(t). Further, m(x, t) is the instantaneous
velocity of the particle, and s(x, t) > 0 is the instantaneous variance associated with
collisions. The first part of the approximation is deterministic while the second component
is random.

Assuming that m(x, t) and s(x, t) are su�ciently continuous deterministic functions, we
can infer that X(t) is a di↵usion process. Computing the infinitesimal mean and variance
of the process yields µ(x, t) = m(x, t) and �2(x, t) = s

2(x, t). However, we cannot directly
evaluate the limit of �X(t)

�t as it does not converge due to W (t) not being di↵erentiable
(Lawler, 2006). Therefore, it is not possible to deduce

“dX(t)

dt

”
= µ(x, t) + �(x, t)

“dW (t)

dt

”
(11)

as “dW (t)/dt” is not well-defined.

It can be shown that the analog of “dW (t)/dt” in discrete time would be a sequence of
independent normal random variables with mean zero and unit variance often referred to
as white noise. A continuous time white noise process whose values at all time points are
independent is di�cult to realize so we have to resort to a more abstract way of handling
“dW (t)/dt” (Karlin and Taylor, 1981).
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2 The Lyapunov model

An extended version of standard di↵erential calculus allows us to rewrite (11) as

dX(t) = µ(X(t), t)dt+ �(X(t), t)dW (t) (12)

in di↵erential notation. Such an extension is provided by the so-called Ito calculus that
stretches the notion of the classical Riemann-Integral to stochastic processes by intro-
ducing the Ito integral – a stochastic integral. We will not go further into detail on the
exact specifications of Ito calculus.

Equation (12) is the general form of a stochastic di↵erential equation modeling a di↵usion
process X(t) with infinitesimal drift and variance µ(x, t) and �2(x, t), respectively. We
can interpret the equation as follows: if X(t) is for instance the process representing the
x-coordinate of a particle in a fluid, it looks at time t like a Wiener process with drift
µ(X(t), t) and variance �2(X(t), t) (Lawler, 2006).

Rewriting Equation (12) in integral notation yields

X(t) = X(0) +

Z t

0

µ(X(u), u)du+

Z t

0

�(X(u), u)dW (u),

where the first integral term is a standard Lebesgue integral. Under specific assumptions
on growth and smoothness, this equation admits a unique solution on a chosen time
interval where the initial condition is specified. The solution also satisfies the Markov
property (Gardiner, 1985). For our purposes, it will be su�cient to interpret the second
integral term, i.e., the Ito integral with respect to a standard Brownian motion process
W (u), as a random noise term. In general, we can view such a di↵usion process as a
process determined by a deterministic force and a random force.

Equation (12) can also be extended to d-dimensional stochastic processes. Then we have

dX(t) = µ(X(t), t)dt+ �(X(t), t)dW(t),

where X(t) is a d-dimensional stochastic process, µ(X(t), t) a d-dimensional vector, W(t)
a n-dimensional standard Brownian motion, and �2(X(t), t) a d⇥n matrix (Vatiwutipong
and Phewchean, 2019).

If the considered process is time-homogeneous, equation (12) reduces to

dX(t) = µ(X(t))dt+ �(X(t))dW (t),

where W (t) is a standard Wiener process.

Example 2.11. The Wiener process with drift µ 2 R and di↵usion parameter �2
> 0 is

defined by the stochastic di↵erential equation

dX(t) = µdt+ �dW (t).

2.3.7 The Ornstein-Uhlenbeck process

The Wiener process can be used to model the position of a particle, so naturally its
derivative should represent the velocity of the particle. However, a central result in the
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2 The Lyapunov model

theory of di↵usion processes is that the path of a Wiener process W (t) is nowhere dif-
ferentiable. This limitation of the Wiener process is overcome by the Ornstein-Uhlenbeck
process. It directly models the particle’s velocity as a function of time.

The one-dimensional Ornstein-Uhlenbeck process is defined by the stochastic di↵erential
equation

dX(t) = �↵X(t)dt+ �dW (t)

with infinitesimal drift and di↵usion parameters given by µ(x) = �↵x with ↵ > 0 and
�
2(x) = �

2. The intuition behind the drift parameter is that the frictional resistance of
the surrounding medium, e.g. a fluid, is assumed to proportionally reduce the velocity:
the farther the particle is away from the origin (or the long-term mean), the slower it
becomes.

It can be shown that a one-dimensional Ornstein-Uhlenbeck process is uniquely given by

X(t) = X(0)e�↵t + �

Z t

0

e
�↵(t�s)

dW (s).

If X(0) is deterministic or Gaussian distributed (and independent of the white noise for
t > 0), the process is a Gaussian process with mean and variance

E[X(t)] = E[X(0)]e�↵t and

Var(X(t)) = Var(X(0))e�2↵t + �

Z t

0

e
�2↵(t�s)

ds =

✓
Var(X(0))� �

2

2↵

◆
e
�2↵t +

�
2

2↵

(Gardiner, 1985). For a deterministic initial condition X(0) = x0 for instance, it is a
Gaussian process with

E[X(t)] = xe
�↵t and Var(X(t)) =

✓
��

2

2↵

◆
e
�2↵t +

�
2

2↵
=

(1� e
�2↵t)�2

2↵
.

For t ! 1, the mean and variance approach values that are independent of t, thereby
giving the limiting distribution N (0, �

2

2↵). Choosing this distribution as the initial dis-
tribution yields a stationary solution X(t) of the stochastic di↵erential equation with
X(t) ⇠ N (0, �

2

2↵) for all t � 0 (Arnold, 1974; Gardiner, 1985). Given an appropriate
initial condition, the Ornstein-Uhlenbeck process is in fact the only non-trivial Markov
process that is Gaussian and stationary (Borghini, 2012). Intuitively, the process admits
a stationary distribution due to the drift term being dependent on the current value at
time t and thereby in a way balancing out the values around the long-term mean, in our
case zero (Vatiwutipong and Phewchean, 2019).

The definition of the Ornstein-Uhlenbeck process generalizes to multiple dimensions as
follows.

Definition 2.12 (Gardiner (1985)). The p-dimensional Ornstein-Uhlenbeck process is
defined by the stochastic di↵erential equation

dX(t) = MX(t)dt+D · dW(t), (13)

where W(t) is a p-dimensional standard Wiener process and M ,D 2 Rp⇥p are constant
matrices.
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The resulting process is a Gaussian process with mean and covariance matrix

E[X(t)] = E[(X(0)]eMt and

Var(X(t)) = e
MtVar(X(0))eMt +

Z t

0

e
M(t�s)

DD
T
e
MT (t�s)

ds

(Gardiner, 1985).

In the one-dimensional case, we required the parameter ↵ to be positive such that the
factor �↵ in the drift function µ(x) = �↵x is negative. The equivalent in multiple
dimensions is a restriction on the eigenvalues of M . It can be shown that if the real parts
of the eigenvalues ofM are negative, a stationary Gaussian process solving (13) exists. Its
stationary distribution has mean E[X(t)] = 0 and the covariance matrix ⌃ := Var(X(t))
satisfies

M⌃+ ⌃MT = �C

with C := DD
T (Arnold, 1974). This equation is called the continuous Lyapunov equa-

tion. The matrix M encoding the interactions of the coordinates of X(t) is called drift
matrix, while the matrix C is often referred to as volatility matrix.

Remark 2.13. It may seem odd that we dropped the minus sign of the drift term in
Definition 2.12. A similar definition can of course be made by adding the minus sign
in front of all occurrences of M and requiring all eigenvalues of M to have positive real
part to ensure a stationary solution (Gardiner, 1985). We chose the notation without
minus sign here to adhere to the definition proposed by Varando and Hansen (2020) and
Dettling et al. (2022a).

Remark 2.14. Definition 2.12 only covers the special case where the long-term mean of the
process is zero. The drift parameter µ(X(t)) = MX(t) can more generally be specified
as µ(X(t)) = M(X(t) � µ) where µ 2 Rd is a fixed value giving the long-term mean of
the process (Vatiwutipong and Phewchean, 2019). We restrict ourselves to the case with
µ = 0, i.e., we assume that the observations are centered.

2.4 Introducing the Lyapunov model

After a detour in the area of stochastic processes, we take the newly learned concepts
and apply them to the process we want to model. The discrete-time VAR(1) process we
encountered in Section 2.2 is a Markov process. Its continuous-time analog is the multi-
variate Ornstein-Uhlenbeck process, being a multivariate continuous-time auto-regressive
process. Thus, it is a natural next step to replace the discrete process developed from
the classical directed Gaussian graphical model by the Ornstein-Uhlenbeck process. This
approach was first proposed by Fitch (2019) and then further refined and extended by
Varando and Hansen (2020) and Dettling et al. (2022a,b).

To incorporate the temporal perspective without having to rely on time-series data, we
view a single multivariate observation X = (X1, . . . ,Xp)

T as a one-time snapshot of
a multivariate dynamic process in equilibrium (Dettling et al., 2022a). This implicit
introduction of a temporal context allows the modeling of feedback loops and the inference
of information about cycles in the network (Young et al., 2019).
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It is especially useful to reason about the equilibrium of a process instead of the process
itself when the measurements are too slow or too imprecise and thus feedback loops
cannot be unrolled into the actual dynamical process they depict. The original graph
can then be interpreted as a shorthand notation of the change in variables at each step
(Shalizi, 2013).

Therefore, we assume a random vector X to arise from the multivariate Ornstein-
Uhlenbeck process in equilibrium. The covariance matrix of this equilibrium and thus
of X satisfies the continuous Lyapunov equation (Dettling et al., 2022a). As discussed
above, the Ornstein-Uhlenbeck process admits a stationary or equilibrium distribution if
the eigenvalues of the drift matrix M have negative real part. We formalize this property
in the following definition.

Definition 2.15. A matrix is said to be stable if all its eigenvalues have a strictly negative
real part. We denote by Stab(p) the set of stable p⇥ p matrices. By

Stab(E) := Stab(p) \ RE,

we denote the subset of stable matrices with zero-pattern given by E.

Remark 2.16. In the special case of triangular matrices, the eigenvalues are precisely the
diagonal entries. Since we only consider matrices with real entries, a triangular matrix in
our setting lies in Stab(p) if and only if all its diagonal entries are negative. This provides
us with a simple criterion for deciding whether a real-valued triangular matrix is stable.

It can be shown that the continuous Lyapunov equation has a positive definite solution
⌃ given a positive definite volatility matrix C if and only if the drift matrix M is stable
(Bhaya et al., 2003). The solution ⌃ is unique provided that M is stable (Varando and
Hansen, 2020). Consequently, we can define the graphical continuous Lyapunov model as
the set of all multivariate normal distributions with mean zero whose covariance matrix
solves the continuous Lyapunov equation for a fixed positive definite volatility matrix C

and an arbitrary stable drift matrix M .

Definition 2.17. Let Gp = (V ,E) be a directed graph with vertex set V := [p] and edge
set E that includes all self-loops i ! i, i 2 [p]. The graphical continuous Lyapunov model
of G given a fixed C 2 PDp is the family of all multivariate normal distributions N (0,⌃)
with covariance matrix ⌃ in the set

MG,C = {⌃ 2 PDp | 9M 2 Stab(E) : M⌃+ ⌃MT + C = 0}.

Again, we identify the model with the set MG,C of covariance matrices of distributions
belonging to the model and consequently refer to MG,C as the Lyapunov model.

Remark 2.18. The more general definition of the Lyapunov model by Dettling et al.
(2022b) uses the requirement M 2 RE in Definition 2.17 above. As noted by Bhaya et al.
(2003), the Lyapunov equation has a positive definite solution ⌃ for some C 2 PDp if and
only if the matrix M is stable. Therefore, we directly use the condition M 2 Stab(E) as
proposed by Dettling et al. (2022b).

Before giving a first example of a Lyapunov model, we briefly analyze some properties
of such a covariance matrix ⌃. The matrix C = DD

T arising from the di↵usion term
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2 The Lyapunov model

of the Ornstein-Uhlenbeck process is symmetric. Thus, any solution ⌃ of the Lyapunov
equation for a stable matrix M given a positive definite matrix C is also symmetric: since

0 = M⌃+ ⌃MT + C () 0 = (M⌃+ ⌃MT + C)
T
= M⌃T + ⌃T

M
T + C

holds, the uniqueness of the solution implies ⌃ = ⌃T . Further, ⌃ is invariant under
rescaling of M and C, as

(�M)⌃+ ⌃(�M)T = ��C () M⌃+ ⌃MT = �C

holds for any � 6= 0.

Example 2.19. Let p = 3 and consider the graph G = (V ,E) with V = [p] depicted in
Figure 4.

1

2

3

Figure 4: Graph G with self-loops on three nodes that includes a directed cycle.

Any drift matrix M 2 RE is of the form

M =

0

@
m11 0 m13

m21 m22 0
0 m32 m33

1

A ,

i.e., it encodes the zero pattern of the graph G. The entries of M can be viewed as
the edge weights. Assuming that M is stable, the induced Lyapunov equation has a
unique solution. Then, the graphical continuous Lyapunov model of the directed cycle
on three nodes, given a volatility matrix C, is given by the family of multivariate normal
distributions with mean zero whose covariance matrix solves the Lyapunov equation for
such a matrix M . As stated in the introduction, we will consider the Lyapunov model of
the directed path in the following.
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3 First examples of conditional independence

In this chapter, we start by reviewing the concept of conditional independence – in
particular for the multivariate normal distribution. Then, we explore as first examples
the Lyapunov model of the directed path on two, three, and four nodes and investigate
the conditional independence properties.

Notation. For a subset S ✓ [p] with more than one element, we write XS := ((Xv)v2S)
T .

When indexing subvectors of random vectors or submatrices of covariance matrices, we
leave out set brackets and union signs. For example, let i, j 2 [p] and S,Z ✓ [p]. For
the subvector of all variables with index in ijSZ := {i, j} [ S [ Z in the given order we
write XijSZ . For a submatrix of a covariance matrix ⌃, we again index with the rows
and columns belonging to the respective variables; for example, we write ⌃iS,jS for the
submatrix of rows in iS := {i}[S and columns in jS := {j}[S of ⌃. If S = ;, we have
⌃iS,jS = ⌃ij.

When considering a random vector or matrix, the expectation is taken component-wise.
For a random vector X 2 Rp, we write

E[X] = (E[X1], . . . ,E[Xp])
T

for its expectation and

Var(X) = E[(X� E[X])(X� E[X])T ] = (Cov(Xi,Xj))i,j=1,...,p

for its covariance matrix. Note that the covariance matrix is symmetric and positive
semi-definite: for all i, j 2 [p], we have Cov(Xi,Xj) = Cov(Xj,Xi) and for any vector
z 2 Rp, we have

z
TVar(X)z = E[zT (X� E[X])(X� E[X])T z] = E[v2] � 0

with v := z
T (X� E[X]) = v

T 2 R.

3.1 Conditional independence

Consider a probability space (⌦,B,P ) with probability measure P . Two events A and B

are independent if P (A \B) = P (A)P (B). For P (B) > 0, we can define the conditional
probabilities P (A | B) := P (A\B)

P (B) . Note that the set function

P ( · | B) : B ! [0, 1], A 7! P (A | B)

again defines a probability measure, called the conditional probability measure given B.
As a result, two events A and B with P (B) > 0 are statistically independent if and only
if P (A | B) = P (A) (Rao, 1973; Koller and Friedman, 2009).

A more common scenario is that two events are only independent given a third event.
For example, if a patient has a fever, it is very likely they also have a cough. However, if
we know that the patient has the flu, it is not necessary to additionally know that they
also have a fever. The flu diagnosis already tells us that the patient most likely also has a
cough. In mathematical terms, having a fever and having a cough are independent events
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3 First examples of conditional independence

given that the patient is diagnosed with the flu. Similarly as above, we say that two events
A and B are conditionally independent given a third event C if they are independent in
the conditional probability distribution given C, i.e., if for P (C) > 0, we have P (A\B |
C) = P (A | C)P (B | C). Then again, two events A and B with P (B \ C) > 0 are
conditionally independent given an event C if and only if P (A | B \ C) = P (A | C)
(Koller and Friedman, 2009).

These notions generalize to random variables as well, as, for example, described by Lau-
ritzen (1996), Koller and Friedman (2009), and Edwards (2012). Let X and Y be contin-
uous random vectors with joint density fXY and marginal densities fX, fY. Then X and
Y are (marginally) independent if fXY(x,y) = fX(x)fY(y) for all x and y. Conditional
densities can be defined analogously to conditional probability measures. Then, as above,
the condition for independence can be reformulated in terms of the conditional density as
fX|Y=y(x | y) = fX(x). We reach the following definition for conditional independence
of random variables.

Definition 3.1. Let X, Y, and Z be continuous random vectors with joint density fXYZ.
Then X is conditionally independent of Y given Z if

fXY|Z=z(x,y | z) = fX|Z=z(x | z)fY|Z=z(y | z)

holds for all x,y, z such that fZ(z) > 0. We use the notation

X ?? Y | Z.

To extend the notation to Z = ;, we write X ?? Y if X and Y are marginally independent.

In other words, X and Y are conditionally independent given Z if for each value z of Z,
X and Y are independent in the conditional distribution given Z = z (Højsgaard et al.,
2012). Note that the density equations only have to hold almost surely with respect to
the corresponding product measure.

3.2 The multivariate normal distribution

We give a short overview on the multivariate normal distribution as in (Rao, 1973, Chap-
ter 8).

Definition 3.2. A p-dimensional random variable X = (X1, . . . ,Xp)
T in Rp follows a

multivariate normal distribution Np if every linear function of X follows a univariate
normal distribution.

Remark 3.3. An equivalent definition can be given as follows: a p-dimensional random
variable X in Rp follows a multivariate normal distribution Np if there exists a k ⇥ 1
vector of independent univariate standard normal variables such that X can be expressed
in the form X = AY + b, where A 2 Rk⇥p and b 2 Rp.

By definition, the marginal distribution of any subset of q components of X is again
a q-variate normal distribution. Further, the components Xi are univariate normal, so
E[Xi] and Var(Xi) exist for i = 1 . . . , p. Since Var(Xi) < 1 for all i = 1 . . . , p, due to
the Cauchy-Schwarz inequality, the covariances Cov(Xi,Xj) exist as well. Therefore, we
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3 First examples of conditional independence

can define µ := E[X] and ⌃ := Var(X). The p-variate normal distribution is then fully
specified by µ and ⌃.

Definition 3.4. Let µ 2 Rp and let ⌃ 2 Rp⇥p be a positive semi-definite matrix. Then
the multivariate normal distribution Np(µ,⌃) is the p-variate normal distribution with
mean vector µ and covariance matrix ⌃.

This definition includes distributions whose covariance matrices are singular and therefore
have zero as eigenvalue and are consequently not positive definite. In the case that ⌃ is
positive definite, the distribution has the usual multivariate normal density fµ,⌃. In the
singular case, the distribution has no density. To investigate conditional independence in
both cases, we need the following definition.

Remember that a generalized inverse of a matrix A is any matrix A
� satisfying

A = AA
�
A.

For further details, see for example Ben-Israel and Greville (2003) and Zhang (2006).

Definition 3.5. For a positive semi-definite matrix

⌃ =

✓
⌃11 ⌃12

⌃21 ⌃22

◆
,

we define the generalized Schur complement

⌃11·2 := ⌃11 � ⌃12⌃
�
22⌃21

of ⌃11 where ⌃�
22 is a generalized inverse of ⌃22. If ⌃22 is invertible, then ⌃�

22 = ⌃�1
22 , so

replacing ⌃�
22 with the true inverse ⌃�1

22 in the formula yields the Schur complement of
⌃11.

Similar definitions can be given for ⌃22·1 by exchanging the indices 1 and 2 in the above
formula. Note that Definition 3.5 is independent of the choice of generalized inverse ⌃�

11

(Zhang, 2006).

Since ⌃ is positive semi-definite, ⌃11 and ⌃22 are positive semi-definite as well. It can be
shown that the respective Schur complements are also positive semi-definite. The same
statement holds if we replace ”positive semi-definite” with ”positive definite” (Zhang,
2006). If ⌃ is positive definite and ⌃22 is therefore invertible, we have that ⌃�

22 = ⌃�1
22 .

Now, we turn our attention to the conditional independence properties of the multivariate
normal distribution. We know that for positive definite covariance matrices, the normal
distribution is closed under marginalization and conditioning, i.e., any marginal or con-
ditional distribution of a normal distribution is again normal Maathuis et al. (2019).
The same holds in the general case for multivariate normal distributions with positive
semi-definite covariance matrices.
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3 First examples of conditional independence

Proposition 3.6 (Rao (1973)). Consider a random vector X ⇠ Np(µ,⌃) where

X =

✓
X1

X2

◆
⇠ Np

✓✓
µ1

µ2

◆
,

✓
⌃11 ⌃12

⌃21 ⌃22

◆◆

with X1,µ1 2 Rd1 and X2,µ2 2 Rd2, as well as ⌃11 2 Rd1⇥d1 ,⌃22 2 Rd2⇥d2, and ⌃21 =
⌃T

12 2 Rd2⇥d1 such that d1 + d2 = p and ⌃ positive semi-definite.

Then, the marginal distribution of X1 is Nd1(µ1,⌃11) and the conditional distribution of
X1 given X2 is

Nd1

�
µ1 + ⌃12⌃

�
22(X2 � µ2),⌃11·2

�
,

where ⌃11·2 is the generalized Schur complement of ⌃11.

In this general setting, we derive results for independence and conditional independence.

Corollary 3.7. Consider the same setup as in Proposition 3.6 with positive semi-definite
covariance matrix ⌃. Then, X1 ?? X2 if and only if ⌃12 = 0.

Proof. If X1 and X2 are independent, their covariance ⌃12 is zero. If ⌃12 = 0, the random
variable X1 given X2 is normally distributed with mean µ1 + ⌃12⌃

�
22(X2 � µ2) = µ1 and

covariance ⌃11�⌃12⌃
�
22⌃21 = ⌃11 by Proposition 3.6. Since the mean and covariance are

the same as for X1, we conclude that they follow the same normal distribution; therefore
X1 ?? X2. This argument is based on the reasoning in (Maathuis et al., 2019, Chapter
9). An alternative argument relying on characteristic functions is given in (Rao, 1973,
Chapter 8).

Remark 3.8. Let X = (X1, . . . ,Xp)
T ⇠ Np(µ,⌃) be a random vector with positive semi-

definite covariance matrix ⌃ and let i, j 2 [p], i 6= j be indices. It is a well-known fact
that

Xi ?? Xj () ⌃ij = 0.

This result can be deduced by first applying Proposition 3.6 to obtain the marginal
distribution of (Xi,Xj) and then applying Corollary 3.7 to this distribution. It motivates
the following Lemma.

Lemma 3.9. Consider X = (X1, . . . ,Xp)
T ⇠ Np(µ,⌃) with ⌃ positive semi-definite. Let

i, j 2 [p], i 6= j, and S ✓ [p] \ {i, j} with S 6= ;.

(a) Then, the conditional distribution of Xij = (Xi,Xj)T given XS is normal with
covariance matrix

⌃ij,ij·S := ⌃ij,ij � ⌃ij,S⌃
�
S,S⌃S,ij 2 R2⇥2.

The conditional covariance of Xi and Xj given XS is

(⌃ij,ij·S)12 = ⌃ij � ⌃i,S⌃
�
S,S⌃S,j.

(b) Moreover, the following statements are equivalent:

(i) Xi ?? Xj | XS;

(ii) (⌃ij,ij·S)12 = 0.
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3 First examples of conditional independence

Proof. Following the notation in Proposition 3.6, we consider X1 := Xij and X2 := XS

and reorder and partition the covariance matrix ⌃ accordingly.
(a) From Proposition 3.6, we know that the considered conditional distribution of X1

given X2 is normal with covariance matrix

⌃11·2 = ⌃11 � ⌃12⌃
�
22⌃21 = ⌃ij,ij � ⌃ij,S⌃

�
S,S⌃S,ij = ⌃ij,ij·S 2 R2⇥2

as defined above. The conditional covariance of Xi and Xj given XS is the o↵-diagonal
entry of the 2⇥ 2 covariance matrix ⌃11·2, i.e.,

(⌃11·2)12 = (⌃ij,ij·S)12 = (⌃ij,ij)12 � (⌃ij,S⌃
�
S,S⌃S,ij)12 = ⌃ij � ⌃i,S⌃

�
S,S⌃S,j.

(b) The second statement follows directly by applying Corollary 3.7 to the conditional
distribution of (Xi,Xj) | XS.

Assume we have a p-dimensional vector X following a multivariate normal distribution
Np(µ,⌃) with ⌃ positive semi-definite. We are, for example, interested in the statement
X1 ?? Xp | X2, . . . ,Xp�1. Then, we need to partition X into X1p = (X1,Xp)

T and
XS = (X2, . . . ,Xp�1)

T while reordering and partitioning ⌃ accordingly as well. The
conditional covariance ofX1 andXp givenXS is given by (⌃1p,1p·S)12 = ⌃1,p�⌃1,S⌃

�
S,S⌃S,p

– the o↵-diagonal entry in the 2 ⇥ 2 conditional covariance matrix ⌃1p,1p·S of X1p given
XS.

If the covariance matrix ⌃ of a multivariate normal distribution is positive definite and
therefore not singular, we can rely on a criterion that is even easier to check.

Lemma 3.10 (Maathuis et al. (2019)). Consider X = (X1, . . . ,Xp)
T ⇠ Np(µ,⌃) with ⌃

positive definite. Let i, j 2 [p], i 6= j, and S ✓ [p] \ {i, j}. Then the following statements
are equivalent:

(i) Xi ?? Xj | XS;

(ii) det⌃iS,jS = 0.

Consequently, if the covariance matrix ⌃ in the example above is positive definite, we can
simply check the condition det⌃1S,pS = 0 to determine whether X1 ?? Xp | XS holds.

3.3 The directed path model

Having established the necessary theory for conditional independence in the multivariate
normal distribution, we begin our investigation by considering some first examples. We
are interested in the conditional independence properties of the Lyapunov model of the
directed path Gp = (Vp,Ep) on p nodes with self-loops as defined in the introduction.
The corresponding graphical continuous Lyapunov model is given by

MGp,Cp = {⌃ 2 PDp | 9M 2 Stab(Ep) : M⌃+ ⌃MT + Cp = 0}.

We fix Cp := 2 · Ip for the remainder of this thesis. The Lyapunov model of the directed
path of length p, or short “(directed) path model”, is then the set of all p-variate normal
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3 First examples of conditional independence

distributions with mean zero and covariance matrix in MGp,Cp . Remember that we also
refer to MGp,Cp as the model itself. To gain intuition on the path model and conditional
independence relations in the model, we consider a few examples.

The directed path on three nodes

We start by considering the directed path with self-loops on three nodes in Figure 5.

1 2 3

Figure 5: Directed path G with self-loops on three nodes.

The corresponding graphical continuous Lyapunov model is given by

MG3,C3 = {⌃ 2 PD3 | 9M 2 Stab(E3) : M⌃+ ⌃MT + C3 = 0},

that is the set of all 3⇥3 positive definite, real matrices that fulfill the Lyapunov equation
for a stable 3⇥ 3 drift matrix M and the volatility matrix C3.

In the introduction, we postulated the conjecture that for two nodes i, j 2 V3 with i < j,
and a set of nodes S ✓ V3 \ {i, j}, no conditional independence statement of the form

i ?? j | S

holds in the Lyapunov model of the directed path of length 3. To prove this for p = 3,
we want to find a counterexample, i.e., for every such statement, we want to find a
distribution in the model where the statement does not hold. That means we have to
check for any candidate distribution whether the condition in Lemma 3.9 is fulfilled. A
convenient way to do this in the case of a positive definite covariance matrix ⌃ is via
Lemma 3.10: we want to show that there is a ⌃ 2 MG3,C3 such that det⌃iS,jS 6= 0. In
other words, the goal is to verify that this determinant is not the zero polynomial. Thus,
we aim to find a matrix M 2 Stab(E3) such that the resulting ⌃ has det⌃iS,jS 6= 0.

A matrix M 2 RE3 is of the form

M =

0

@
d1 0 0
m21 d2 0
0 m32 d3

1

A

with diagonal entries di 2 R, i = 1, 2, 3 and edge weights m21,m32 2 R. Then, we have
M 2 Stab(E3) if and only if d1, d2, d3 < 0.

We focus on the case S 6= ; and investigate the three possible conditional independence
statements

(a) 1 ?? 2 | 3,

(b) 1 ?? 3 | 2,

(c) 2 ?? 3 | 1,
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none of which we suspect to hold true in the path model on three nodes. The correspond-
ing determinants of interest are

(a) det⌃13,23,

(b) det⌃12,32,

(c) det⌃21,31.

We consider di↵erent examples for M in the three-node case and investigate whether
examples can even exist such that one of the determinants of interest vanishes.

Example 3.11. The following simple matrix

M =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A 2 Stab(E3)

yields the covariance matrix

⌃ =

0

B@
1 1

2
1
4

1
2

3
2

7
8

1
4

7
8

15
8

1

CA

as the solution of the Lyapunov equation. The resulting determinants are

(a) det⌃13,23 =
1
2 ·

15
8 � 1

4 ·
7
8 = 23

32 6= 0,

(b) det⌃12,32 =
1
4 ·

3
2 �

1
2 ·

7
8 = � 1

16 6= 0,

(c) det⌃21,31 = 1 · 7
8 �

1
4 ·

1
2 = 3

4 6= 0.

None of these determinants is zero for this drift matrix M ; consequently, neither can be
the zero polynomial. Note that the marginal independence statements 1 ?? 2, 2 ?? 3,
and 1 ?? 3 do also not hold in MG3,C3 , as the corresponding entries of the covariance
matrix, i.e., ⌃12, ⌃23, and ⌃13, are all non-zero.

From this example, we can already see that none of the three possible conditional inde-
pendencies (a), (b), or (c), nor any marginal independencies hold in the path model on
three nodes MG3,C3 . However, it might still be instructive to find examples where one
of the determinants of interest is zero, i.e., to find specific distributions where one of the
conditional independence statements actually holds.

Example 3.12. We want to find examples where one of the determinants of interest is
zero. First, we set the entries on the diagonal to a constant d 2 R \ {0} and consider the
matrix

M =

0

@
d 0 0

m21 d 0
0 m32 d

1

A 2 RE3

yielding

⌃ =

0

BB@

�1
d

m21
2d2 �m21m32

4d3

m21
2d2 �1

d �
m2

21
2d3

m32
2d2 + 3m2

21m32

8d4

�m21m32
4d3

m32
2d2 + 3m2

21m32

8d4 �1
d �

m2
32

2d3 � 3m2
21m

2
32

8d5

1

CCA
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as the corresponding solution of the Lyapunov equation. The determinants of interest
evaluate to

(a) det⌃13,23 = �m21
2d3 � m21m2

32
8d5 � 3m3

21m
2
32

32d7 = 0 () m21 = 0 or (m21 = ±2
p

�4d4�d2m2
32p

3m2
32

and m32 6= 0),

(b) det⌃12,32 = �m3
21m32

16d6 = 0 () m21 = 0 or m32 = 0,

(c) det⌃21,31 = �m32
2d3 � m2

21m32

4d5 = 0 () m32 = 0 or m21 = ±i
p
2d.

The only values for the entries of M resulting in zero determinants are either zero values
or specific values in C \ R.

Thus, if we only consider matricesM with non-zero real edge weights and diagonal entries,
the considered determinants are always non-zero for a matrix M with constant diagonal.
Otherwise, we can, for example, choose

M =

0

@
d 0 0
m d 0
0 0 d

1

A 2 RE3

with m 2 R \ {0} yielding

⌃ =

0

B@

�1
d

m
2d2 0

m
2d2 �1

d �
m2

2d3 0

0 0 �1
d

1

CA

as the covariance matrix. Then, the first determinant is non-zero, while the other two
determinants are zero. This is obvious since 1 ?? 3 and 2 ?? 3 holds in the distribution
induced by ⌃.

If we allow possibly distinct values d1, d2, d3 2 R \ {0} on the diagonal, there exist cases
where the Lyapunov equation has no solution.

Example 3.13. For instance, any matrix

M =

0

@
�1 0 0
m21 1 0
0 m32 �1

1

A 2 RE3

does not yield a solution ⌃ of the Lyapunov equation as M is not stable.

Example 3.14. The matrix

M =

0

@
�1 0 0
m21 �2 0
0 m32 �1

1

A 2 Stab(E3),

however, leads to the matrix

⌃ =

0

BB@

1 m21
3

m21m32
6

m21
3

1
2 +

m21
2

6
m32
6 + m2

21m32

9

m21m32
6

m32
6 + m2

21m32

9 1 + m2
32
6 + m2

21m
2
32

9

1

CCA
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as the solution of the Lyapunov equation. The three determinants are

(a) det⌃13,23 =
m21
3 + m21m2

32
36 + m3

21m
2
32

54 = 0 () m21 = 0 or (m21 = ±
p

�3(12+m2
32)p

2m2
32

and

m32 6= 0),

(b) det⌃12,32 =
m21m32

36 � m3
21m32

108 = 0 () m21 = 0 or m32 = 0 or m21 = ±
p
3,

(c) det⌃21,31 =
m32
6 + m2

21m32

18 = 0 () m32 = 0 or m21 = ±i
p
3.

For determinants (a) and (c), we clearly have no real and non-zero solutions for the edge
weights that would result in a zero determinant. Determinant (b) is zero, for instance,
with

M =

0

@
�1 0 0p
3 �2 0
0 1 �1

1

A 2 Stab(E3).

A similar result can be reached by setting d3 = �3: the matrix

M =

0

@
�1 0 0p
3 �2 0
0 1 �3

1

A

also renders determinant (b) zero, whereas both other determinants are non-zero for
any real non-zero edge weights. A di↵erent order of the diagonal entries, however, gives
di↵erent results. For instance, with d1 = �2, d2 = �1, d3 = �1, as well as d1 = �1,
d2 = �1, d3 = �2, or d1 = �3, d2 = �2, d3 = �1, there are no real non-zero values for
the subdiagonal of M that would render one of the determinants zero.

We successfully constructed examples where the second determinant (b) is zero, but we
have not yet found examples of matrices M such that determinants (a) or (c) become
zero without setting the edge weights m21 or m32 to zero.

Example 3.15. We consider the general case with arbitrary real non-zero diagonal entries
and edge weights. The drift matrix

M =

0

@
d1 0 0
m21 d2 0
0 m32 d3

1

A 2 RE3

yields a symmetric covariance matrix

⌃ =

0

BB@

� 1
d1

m21
d1(d1+d2)

� m21m32
d1(d1+d2)(d1+d3)

⇤ � 1
d2

� m21
2

d1d2(d1+d2)
(d1(d1+d2)(d1+d3)+(d1+d2+d3)m2

21)m32

d1d2(d1+d2)(d1+d3)(d2+d3)

⇤ ⇤ � 1
d3

� (d1(d1+d2)(d1+d3)+(d1+d2+d3)m2
21)m

2
32

d1d2d3(d1+d2)(d1+d3)(d2+d3)

1

CCA .

For a unique solution ⌃ to exist, we require d1 + d2 6= 0, d2 + d3 6= 0, and d1 + d3 6= 0.
This holds, for example, for a stable matrix. The resulting determinants are

(a) det⌃13,23 = 0 () m21 = 0 or (m21 = ±i

p
(d1+d2)(d1+d3)

p
d2(d1+d3)(d2+d3)+d1m2

32p
(d1+d2+d3)m2

32

and

m32 6= 0) or (d3 = �(d1 + d2) and m32 = ±id2),
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(b) det⌃12,32 = 0 () m21 = 0 or m32 = 0 or m21 = ±
p
�d

2
1 + d

2
2,

(c) det⌃21,31 = 0 () m32 = 0 or m21 = ±i

p
d3+d1(d1+d2)p
d1+2d2+d3

.

For the first determinant to be zero, we have three conditions one of which has to be
fulfilled. If we want to find an example with non-zero edge weights m21 and m32, the
second and third conditions are of particular interest. Fulfilling the third condition would
imply that m32 is non-real, which we are not interested in. Only, meeting the second
condition might lead to a drift matrixM with real and non-zero edge weights and diagonal
entries.

In the second condition, however, form21 to be real, we need that either all three radicands
are negative or exactly one radicand is negative while the other two are positive. In all
four of those cases, the condition implies that there have to be positive and negative
entries on the diagonal, meaning the matrix M cannot be chosen stable to render the
first determinant zero. Thus, we cannot find a matrix ⌃ 2 MG3,C3 with non-zero edge
weights such that the first determinant is zero. An example with m21 = 0 is given by the
drift matrix

M =

0

@
�1 0 0
0 �1 0
0 1 �1

1

A 2 Stab(E3)

yielding the matrix

⌃ =

0

B@
1 0 0

0 1 1
2

0 1
2

3
2

1

CA

with det⌃13,23 = 0.

For the second determinant, m21 is non-zero, real, and fulfills the solution condition if
and only if |d1| < |d2|. To get a zero determinant, we can choose arbitrary non-zero, real
diagonal entries satisfying |d1| < |d2| and thereby specify two possibilities for m21. The
remaining edge weight m32 and diagonal entry d3 can be set to arbitrary (non-zero) real
values. We have already found such a matrix M in example Example 3.14.

The third determinant is zero if either m32 is zero or if we find a value for m21 that fulfills
the condition while being non-zero and real. The entry m21 is real and non-zero if and
only if (d1 + d3 > 0 and d1 + 2d2 + d3 < 0) or (d1 + d3 < 0 and d1 + 2d2 + d3 > 0). Note
that this entry cannot be real for either only positive or only negative diagonal entries.
It is non-zero if and only if d3 6= �d1 and d2 6= �d1. For instance, the drift matrix

M =

0

@
�1 0 0
4 3 0
0 1 �2

1

A 2 RE3

yields

⌃ =

0

B@
1 �1 �1

3

�1 1
3

1
3

�1
3

1
3

2
3

1

CA
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3 First examples of conditional independence

as the solution of the Lyapunov equation. While determinant (c) is zero in this example,
the matrix M is not stable and, consequently, ⌃ is not in the model MG3,C3 .

Apparently, it is not trivial to find distributions in the Lyapunov model where the deter-
minants of interest are zero without resorting to zero edge weights on the subdiagonal.
After having investigated conditional independence in the path model on three nodes, we
consider a few more examples with varying numbers of nodes.

Marginal independence on the directed path

For completeness, we also consider the case S = ;, i.e., the case of marginal independence.

Example 3.16. On the directed path of length p = 2, we naturally have S = ;. Consider
MG2,C2 and let

M =

✓
d1 0
m21 d2

◆
2 RE2 .

The Lyapunov equation is

0 = M⌃+ ⌃MT + 2I2 =

 
2d1⌃11 + 2 ⌃12(d1 + d2) + ⌃11m21

⌃21(d1 + d2) + ⌃11m21 2d2⌃22 +m21(⌃12 + ⌃21) + 2

!
.

By solving the equations given by the four entries, we obtain

⌃11 = � 1

d1
,

⌃12 = ⌃21 =
m21

d1(d1 + d2)
,

and

⌃22 = � 1

d2
(

m
2
21

d1(d1 + d2)
+ 1) = � 1

d2
� m

2
21

d1d2(d1 + d2)
.

For a unique solution ⌃ to exist, we require d1 + d2 6= 0. This is fulfilled if M is stable.
We can directly see that

1 ?? 2 () ⌃12 = 0 () m21 = 0.

Thus, any stable 2 ⇥ 2 matrix M with non-zero edge weight and diagonal entries yields
a valid counterexample to the statement. One such matrix is – not surprisingly –

M =

✓
�1 0
1 �1

◆
2 Stab(E2).

To construct a distribution in the model where 1 ?? 2 actually holds, we have to set
m21 = 0. Such a drift matrix is, for example, given by M = �I2. The resulting covariance
matrix is ⌃ = I2.

Example 3.17. On the directed path on p = 3 nodes, we can as well find examples
of distributions in the Lyapunov model where the marginal independencies do hold. By
setting the edge weightsm21 andm32 to zero and the diagonal entries ofM to -1 as before,
we have M = �I3, yielding ⌃ = I3. In the corresponding distribution, all variables are
pairwise independent.
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3 First examples of conditional independence

Remark 3.18. We can extend this reasoning to construct a distribution with pairwise
independency of any two nodes on the directed path of length p. Consider the statement

i ?? j

in the model MGp,Cp . By setting all edge weights to zero, we remove any influence
between the nodes. The corresponding drift matrix M = �Ip is the negative of the
identity matrix, reducing the Lyapunov equation to

�2⌃+ 2Ip = 0.

In the distribution defined by the solution ⌃ = Ip, all nodes are pairwise independent.

Longer directed paths

By extending the first simple counterexample we found in Example 3.11, we can also
construct counterexamples to conditional independence statements on longer paths.

Example 3.19. Consider the Lyapunov model MG4,C4 of the directed path on 4 nodes.
We have

⌃ =

0

BBBB@

1 1
2

1
4

1
8

1
2

3
2

7
8

1
2

1
4

7
8

15
8

19
16

1
8

1
2

19
16

15
16

1

CCCCA
2 MG4,C4 ,

since it solves the Lyapunov equation given by the drift matrix

M =

0

BB@

�1 0 0 0
1 �1 0 0
0 1 �1 0
0 0 1 �1

1

CCA 2 Stab(E4).

For example, the statement
2 ?? 4 | 1, 3

does not hold in the model, as

det⌃213,413 = � 19

256
6= 0.

Comparing this covariance matrix to the covariance matrix in Example 3.11, we see that
the 3⇥ 3 covariance matrix is a leading principal submatrix of this 4⇥ 4 matrix. Let us
take a closer look at the corresponding Lyapunov equation of the model on four nodes.
Solving it in terms of the entries of ⌃, we obtain the following recursive representation

⌃ =

0

BBBB@

1 ⌃11
2

⌃12
2

⌃13
2

⇤ ⌃12+⌃21
2

⌃22+⌃13
2

⌃23+⌃14
2

⇤ ⇤ ⌃23+⌃32
2

⌃33+⌃24
2

⇤ ⇤ ⇤ ⌃34+⌃43
2

1

CCCCA
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3 First examples of conditional independence

of the symmetric covariance matrix ⌃. Starting in the second row and column, every
entry is the arithmetic mean of the entry on the left and the entry above. The entries in
the first row and column are powers of 1

2 . By increasing the size of M and ⌃ accordingly,
this pattern propagates through ⌃. Thus, if we add another row and column to M with
1 on the first subdiagonal and -1 on the diagonal, the first four rows and columns of the
resulting covariance matrix are the same as for the path on four nodes but with a fifth
row and column added according to this pattern.

Example 3.20. Consider the directed path with self-loops on five nodes. Based on the
observations above, we know that

⌃ =

0

BBBBBB@

1 1
2

1
4

1
8

1
16

1
2

3
2

7
8

1
2

9
32

1
4

7
8

15
8

19
16

47
64

1
8

1
2

19
16

15
16

107
128

1
16

9
32

47
64

107
128

235
128

1

CCCCCCA

lies in MG5,C5 , as it is the solution of the Lyapunov equation induced by

M =

0

BBBB@

�1 0 0 0 0
1 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 1 �1

1

CCCCA
2 Stab(E5).

In this distribution, the conditional independence statement 2 ?? 4 | 1, 3 does not hold
either. The corresponding determinant is the same as in the previous example, where we
already saw that the determinant is non-zero.

This observation provides an e�cient way to solve the Lyapunov equation for this specific
drift matrix M in higher dimensions. If we know the solution ⌃ in lower dimensions, we
only need to compute the entries in the additional rows and columns. This finding is
especially helpful for simulations with computer algebra systems such as Mathematica,
as it significantly increases the speed of computation of ⌃.

Now, we have constructed a few low-dimensional examples of distributions in the Lya-
punov model of the directed path. We saw that it is possible to construct counterexam-
ples for all possible conditional or marginal independence statements on the path on three
nodes. Further, we found that it is not straightforward to construct distributions where
some of the conditional independence statements hold, such that these distributions are
actually in the model. These observations motivate us in the following chapter to find
a general way to construct distributions in the Lyapunov model as counterexamples to
conditional independence statements.
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4 Conditional independence in the path model

This chapter marks the main contribution of the thesis. We propose a theorem that
verifies the conjecture postulated in the introduction for conditional independence state-
ments up to a certain number of variables. In order to prove the theorem, we develop
several lemmas to reduce a general conditional independence statement to a standard
form. Then, we combine these lemmas and prove the theorem.

As introduced in the previous chapter, the Lyapunov model of the directed path of length
p is formally given by

MGp,Cp = {⌃ 2 PDp | 9 M 2 Stab(Ep) : M⌃+ ⌃MT + Cp = 0},

where we fix Cp := 2 · Ip. Remember that the matrices M 2 Stab(Ep) are lower triangular
matrices with negative diagonal entries, arbitrary entries on the first subdiagonal and
zero entries everywhere else.

As stated in the introduction, we aim to show that no conditional independence relations
hold in the path model. Note that when we say that a conditional independence state-
ment does not hold in the Lyapunov model, we mean that there exists a distribution in
the Lyapunov model such that the statement does not hold in this distribution. The con-
ditional independence statement can still hold for some distributions in the model. We
saw in the previous examples that it is convenient to employ the determinant condition in
Lemma 3.10 to check whether the condition for conditional independence in Lemma 3.9
is fulfilled. Therefore, we reformulate the conjecture and overarching goal accordingly.

Conjecture Assume p 2 N�2. Let i, j 2 Vp, i < j, and S ✓ Vp \ {i, j}. Then, there is
no conditional independence statement of the form

i ?? j | S (14)

that holds for all distributions in the Lyapunov model of the directed path of length
p, i.e., there is always a matrix ⌃ 2 MGp,Cp such that det⌃iS,jS 6= 0.

Goal For every such statement as (14), find a matrix M 2 Stab(Ep) such that the
resulting solution of the Lyapunov equation ⌃ 2 MGp,Cp has

det⌃iS,jS 6= 0.

4.1 Approach

Proving the conjecture is a complex endeavor as the number Np of potential conditional
independence relations with S 6= ; is exponential in the number of nodes p. This can be
shown with a short combinatorial argument: if we first pick i and j such that i < j (i.e.,
counting i ?? j | S and j ?? i | S as one statement) and then form S by picking l nodes
for every possible l from the remaining p� 2 nodes such that s1 < · · · < sl, we reach

Np =
p�2X

l=1

p(p� 1)

2

✓
p� 2

l

◆
=

p(p� 1)

2

 
p�2X

l=0

✓
p� 2

l

◆
1l � 1

!
=

p(p� 1)

2
(2p�2 � 1)

34

Mobile User



4 Conditional independence in the path model

as the number of potential conditional independence statements for p nodes. Therefore,
we aim to find a way to extend known counterexamples as seen in the previous chapter
to varying numbers of nodes and di↵erent conditional independence patterns.

The following theorem is the main result of this thesis. It states that any conditional
independence statement that involves at most 100 conditioning variables occurring be-
tween i and j does not hold in the directed path model, thus proving the conjecture for
a restricted set of conditional independence relations.

Theorem 4.1. Consider the Lyapunov model on the directed path MGp,Cp with p � 2.
Let i, j 2 Vp such that i < j and let S ✓ Vp \ {i, j} be a set of nodes. Define

Z := S \ {i, . . . , j}

as the subset of S containing all conditioning variables that lie between i and j.
If |Z|  100, the conditional independence statement

i ?? j | S

does not hold for all distributions in the model MGp,Cp.

Before verifying the statement rigorously, we sketch the main ideas behind the proof.

Example 4.2. Assume we want to prove that the statement

2 ?? 6 | 1, 4

does not hold in the Lyapunov model on p = 7 nodes. We already know that the
covariance matrix

⌃ =

0

B@
1 1

2
1
4

1
2

3
2

7
8

1
4

7
8

15
8

1

CA with drift matrix M =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A

defines a counterexample to the statement 1 ?? 3 | 2 on a three-node directed path. The
idea is now to extend this example to a counterexample for statement (14) on seven nodes
by adding nodes to the model accordingly while preserving the conditional independence
structure of the nodes in the smaller example.

How can we achieve this? There are two main strategies we follow: to an existing
counterexample we add nodes that are independent from all existing nodes and nodes
that are perfectly correlated with existing nodes. Both types of added nodes do not or
do only slightly change the conditional independence structure of the original example.
In the above example this means adding an independent node before the first and after
the last node of the example on three nodes. Additionally, we need to add a node that is
perfectly correlated with node 1 and one that is perfectly correlated with node 2 in the
example on three nodes. That is, nodes that behave exactly like the existing nodes and
therefore do not change the conditional independence structure.

Adding nodes in this example means extending the given distribution on three nodes to
a distribution on seven nodes. Note that we cannot simply add rows and columns to
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4 Conditional independence in the path model

⌃⇤ 2 MG3,C3 to create a ⌃ 2 MGp,Cp since the model MGp,Cp is parametrized via stable
matrices M that fulfill the Lyapunov equation together with ⌃. Therefore, we have to
construct drift matrices M that yield suitable covariance matrices ⌃ as solutions to the
Lyapunov equation. These covariance matrices then contain the rows and columns of a
covariance matrix of a counterexample on fewer nodes as a submatrix.

If we change our perspective by taking a path of length p as a starting point for our
deliberations, we can also formulate the idea as follows: we construct a counterexample
on the longer path of length p in such a way that crossing out rows and corresponding
columns of the covariance matrix ⌃ 2 MGp,Cp yields a covariance matrix ⌃⇤ 2 MGp⇤ ,Cp⇤

that now induces a distribution of the model on the shorter path of length p
⇤
< p. We

formalize the idea of embedding a smaller counterexample into a larger counterexample
as a projection onto a submatrix.

Definition 4.3. Let p � 2, ; 6= K ✓ [p], and p
⇤ := |K|. Define the projection map

⇧K : MGp,Cp ! R(p⇤)⇥(p⇤),

⌃ = (⌃ij)i,j=1,...,p 7! (⌃ij)i,j2K = ⌃K,K

that gives the submatrix of ⌃ with rows and columns in K.

If K = [p] \ {k} = {k}C for some k 2 [p], we write ⇧(�k) := ⇧[p]\{k} for the map that
removes the k-th row and column from a matrix.

The projection ⇧(�k) can be used to “cross out” the k-th node of the directed path
on p nodes by applying it to a suitable covariance matrix. When extending a known
counterexample to a counterexample on more nodes, we want the extension to be defined
in such a way that applying a suitable projection map to the newly constructed example
yields the existing smaller example.

It is important to note that not for every ⌃ 2 MGp,Cp , we have ⇧(�k)(⌃) 2 MGp�1,Cp�1 .
Not every distribution in the Lyapunov model on the directed path on p nodes results
in a new distribution in the Lyapunov model on the directed path of p � 1 nodes when
crossing out one node, as illustrated in the following example.

Example 4.4. Consider the path model on four nodes. We saw in Example 3.19 that
the drift matrix M 2 Stab(E4) with only �1 on the diagonal and only 1 on the first
subdiagonal induces a covariance matrix ⌃ 2 MG4,C4 . Crossing out the third row and
column of ⌃ yields the 3⇥ 3 matrix

⌃⇤ := ⇧(�3)(⌃) =

0

B@
1 1

2
1
8

1
2

3
2

1
2

1
8

1
2

35
16

1

CA .

This matrix, however, lies not in MG3,C3 since there is no M
⇤ 2 Stab(E3) solving the

induced Lyapunov equation

M
⇤⌃⇤ + ⌃⇤(M⇤)T + C3 = 0.
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4 Conditional independence in the path model

For instance, if we require a solution M
⇤ to be a lower triangular matrix, the resulting

unique solution of the Lyapunov equation is

M
⇤ =

0

@
�1 0 0
1 �1 0

� 9
323

575
1292 �180

323

1

A ,

which is stable but not in RE3 . Therefore, ⌃⇤ is not in the model MG3,C3 of the three
node sub-path.

4.2 Constructing independent nodes

Since we already found suitable counterexamples for conditional independence statements
on two, three, and four nodes, it is a natural question to ask whether we can use those
examples to construct suitable counterexamples on a longer path.

4.2.1 Independent nodes not in the statement

We start by illustrating a simple way to embed a counterexample on a shorter path into
a new counterexample on a longer path.

Example 4.5. Let p = 5 in the Lyapunov model of the directed path. Does 2 ?? 4 | 3
hold in this model? The variables involved in the statement correspond to nodes on the
sub-path from node 2 to 4, while the nodes 1 and 5 do not appear. This observation
motivates the following construction. We have already seen that the matrix

M
⇤ =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A

defines a suitable counterexample for the corresponding statement 1 ?? 3 | 2 on a three-
node path since the resulting covariance matrix ⌃⇤ has det⌃⇤

12,32 6= 0. If we extend this
drift matrix to five nodes by adding �1 on the diagonal and setting the remaining entries
to zero, the resulting matrix

M =

0

BBBB@

�1 0 0 0 0
0 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 0 �1

1

CCCCA
=

0

BBBB@

�1 0 0 0 0
0

M
⇤

0
0 0
0 0
0 0 0 0 �1

1

CCCCA

is again stable, and yields

⌃ =

0

BBBBBB@

1 0 0 0 0

0 1 1
2

1
4 0

0 1
2

3
2

7
8 0

0 1
4

7
8

15
8 0

0 0 0 0 1

1

CCCCCCA
=

0

BBBBBB@

1 0 0 0 0

0
⌃⇤

0

0 0

0 0

0 0 0 0 1

1

CCCCCCA
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4 Conditional independence in the path model

as the solution of the Lyapunov equation. Calculating the determinant of interest

det⌃23,43 = � det

✓
⌃23 ⌃24

⌃33 ⌃34

◆
= � det

✓
⌃⇤

12 ⌃⇤
13

⌃⇤
22 ⌃⇤

23

◆
= � 1

16
6= 0

then boils down to calculating the same determinant on the covariance matrix of the
three-node example, which we already know to be non-zero.

The resulting covariance matrix in the example shows that by setting the edge weights
between nodes 1 and 2 as well as 4 and 5 to zero, the first and the last nodes become
independent from all other nodes. This is consistent with the intuition that by setting
the edge weights to zero, we remove any influence of either the first node on the follow-
ing nodes or the first four nodes on the last node. Consequently, in Example 4.5, we
constructed a distribution on the path of length 5 by adding a new independent variable
each at the beginning and end of the path, thereby extending the existing distribution
on the path of length 3.

This observation gives rise to a general approach of embedding a distribution of the
Lyapunov model on a shorter path into a distribution of the Lyapunov model on a longer
path by adding independent variables.

Consider two nodes a and b with a < b on the path of length p and let p⇤ := b�a+1 < p.
We want to extend a p

⇤-dimensional distribution in the Lyapunov model MGp⇤ ,Cp⇤ on the
path from a to b to a p-dimensional distribution in the Lyapunov model of the full path
of length p. In some cases, searching for a counterexample to a conditional independence
statement on the full path can be reduced to searching for a counterexample to the
corresponding statement on a shorter path with a and b suitably defined.

We follow the same strategy as in the example by extending the drift matrix of the p
⇤-

dimensional model with �1 entries on the diagonal and 0 entries on the first subdiagonal.
To map the relevant indices of the path of length p to a shorter path of length p

⇤, we
define a suitable bijection.

Definition 4.6. For a, b 2 N>0 with a < b, we define the index map

'a,b : {a, . . . , b} ! {1, . . . , b� a+ 1}, x 7! x� a+ 1.

Before we formalize the idea in a lemma, we give a short example.

Example 4.7. Consider the statement 2 ?? 4 | 3 on p = 5 nodes. Let a = 2 and b = 4
with ' := 'a,b and p

⇤ = 3. We obtain '(2) = 1, '(3) = 2, and '(4) = 3. In Example 4.5,
we saw that 2 ?? 4 | 3 does not hold in the model on five nodes if 1 ?? 3 | 2 does not
hold in the model on three nodes.

Lemma 4.8. Let p � 2 and a, b 2 [p] such that a < b. Define K := {a, . . . , b} ⇢ [p] and
p
⇤ := b� a+ 1. Let ⌃⇤ 2 MGp⇤ ,Cp⇤ . Then, there is a matrix ⌃ 2 MGp,Cp such that

⇧K(⌃) = ⌃⇤,

and
⇧KC (⌃) = Ip�p⇤ ,

and all other entries of ⌃ are zero.
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4 Conditional independence in the path model

Proof. Since for a = 1 and b = p there is nothing to prove, we only consider the case
where K ( [p], so a > 1 or b < p. We define ' := 'a,b as in Definition 4.6.

Let ⌃⇤ 2 MGp⇤ ,Cp⇤ . Then, there is a stable matrix M
⇤ := (m⇤

kl) 2 Rp⇤⇥p⇤ such that the
Lyapunov equation

M
⇤⌃⇤ + ⌃⇤(M⇤)T + Cp⇤ = 0

is fulfilled.

First, we consider the case 1 < a and b < p. Let

M := (mkl) =

0

@
�Ia�1 0 0

0 M
⇤ 0

0 0 �Ip�b

1

A 2 Rp⇥p,

so we have

mkl =

8
><

>:

�1, if k = l < a or k = l > b;

m
⇤
'(k)'(l), if a  k, l  b;

0, else.

Thereby, we extend the matrix M
⇤ with �1 on the diagonal and 0 on the first sub-

diagonal and fill the remaining entries with zeros. Note that since M
⇤ is stable and the

added diagonal entries are negative, M is again stable.

In the following, we leave out the specific dimensions of the identity matrices for better
readability. Computing the left-hand side of the Lyapunov equation by block matrix
multiplication with

⌃ =

0

@
A B C

D E F

G H J

1

A 2 Rp⇥p,

where A 2 R(a�1)⇥(a�1), E 2 Rp⇤⇥p⇤ , and J 2 R(p�b)⇥(p�b), now yields

M⌃+ ⌃MT + Cp

=

0

@
�I 0 0
0 M

⇤ 0
0 0 �I

1

A

0

@
A B C

D E F

G H J

1

A+

0

@
A B C

D E F

G H J

1

A

0

@
�I 0 0
0 (M⇤)T 0
0 0 �I

1

A+ Cp

=

0

@
�2A+ 2I B(M⇤ � I)T �2C
(M⇤ � I)D M

⇤
E + E(M⇤)T + Cp⇤ (M⇤ � I)F

�2G H(M⇤ � I)T �2I + 2J

1

A . (15)

Setting (15) to zero and solving for the block partitions of ⌃ directly gives A = Ia�1,
J = Ip�b, C = G

T = 0, and E = ⌃⇤. The remaining equations to solve are

(M⇤ � I)D = 0 and (M⇤ � I)BT = 0 for D,BT 2 Rp⇤⇥(a�1) and

(M⇤ � I)F = 0 and (M⇤ � I)HT = 0 for F ,HT 2 Rp⇤⇥(p�b).

We already see BT = D andH
T = F due to the symmetry of the Lyapunov equation. The

matrix M
⇤ is a lower triangular matrix. Since the matrix is stable, all its diagonal entries
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4 Conditional independence in the path model

are strictly negative, so M
⇤� I has non-zero entries only on the diagonal. Therefore, the

kernel of M⇤ � I contains only zero, hence B
T = D = 0 and H

T = F = 0. Then,

⌃ =

0

@
Ia�1 0 0
0 ⌃⇤ 0
0 0 Ip�b

1

A , i.e., ⌃kl =

8
><

>:

1, if k = l < a or k = l > b;

⌃⇤
'(k)'(l), if a  k, l  b;

0, else.

Thus, ⇧K(⌃) = ⌃K,K = ⌃⇤, ⇧KC (⌃) = ⌃KC ,KC = Ip�p⇤ , and all other entries of ⌃ are
zero.

Now consider the case where either a = 1 or b = p. Here, we can perform the same
calculations as above by leaving out the corresponding parts of the matrices. If a = 1,
we leave out the corresponding rows and columns of the first block of the inverse identity
matrix in the definition of M and compute the left-hand side of the Lyapunov equation
with

M =

✓
M

⇤ 0
0 �Ip�b

◆
and ⌃ =

✓
E F

H J

◆
.

This yields the covariance matrix

⌃ =

✓
⌃⇤ 0
0 Ip�b

◆

with ⌃k,l = ⌃⇤
'(k),'(l) for all k, l  b, so ⇧K(⌃) = ⌃⇤, ⇧KC (⌃) = Ip�b, and all other entries

of ⌃ are zero.

If b = p, the same holds with

M =

✓
�Ia�1 0

0 M
⇤

◆
and ⌃ =

✓
A B

D E

◆
=

✓
Ia�1 0
0 ⌃⇤

◆
,

where ⌃k,l = ⌃⇤
'(k),'(l) for all k, l � a, so ⇧K(⌃) = ⌃⇤, ⇧KC (⌃) = Ia�1, and all other

entries of ⌃ are zero.

Remark 4.9. Let K ( [p] and p
⇤ := |K|. Then, Lemma 4.8 says that for every matrix

⌃⇤ 2 MGp⇤ ,Cp⇤ , we find a ⌃ 2 MGp,Cp with ⇧K(⌃) = ⌃⇤. This can be reformulated as

MGp⇤ ,Cp⇤ ✓ ⇧K(MGp,Cp).

Now we employ the lemma to show that any counterexample for the statement (14) can
be extended to a counterexample for the same statement on a longer path by adding
independent nodes at the start and end of the path.

Corollary 4.10. Consider the conditional independence statement (14) in the model
MGp,Cp with p � 2. Let a := min({i}[S) and b := max({j}[S). Define p

⇤ := b� a+1
and ' := 'a,b. If there exists a distribution in the model MGp⇤ ,Cp⇤ such that

'(i) ?? '(j) | '(S)

does not hold in this distribution, then there exists a distribution in MGp,Cp for which

i ?? j | S

does not hold.
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4 Conditional independence in the path model

Proof. If p = 2, we are done. We assume from now on that p � 3.

Assume that there exists a distribution in the model MGp⇤ ,Cp⇤ such that the conditional
independence statement '(i) ?? '(j) | '(S) does not hold in this distribution. In other
words, the statement does not hold in the Lyapunov model of the path of length p

⇤.
Hence, there exists ⌃⇤ 2 MGp⇤ ,Cp⇤ with

det⌃⇤
'(i)'(S),'(j)'(S) 6= 0.

Let K := {a, . . . , b} ✓ [p]. Due to Lemma 4.8, there is ⌃ 2 MGp,Cp such that

⇧K(⌃) = ⌃⇤. (16)

The submatrix ⌃iS,jS selects only rows of ⌃ with indices in {i}[S and only columns with
indices in {j}[S. So for all entries ⌃kl of ⌃ occurring in the determinant of interest, we
have a  k, l  b and therefore k, l 2 K. Thus, due to (16), the determinant evaluates
to

det⌃iS,jS = det(⇧K(⌃))'(i)'(S),'(j)'(S) = det⌃⇤
'(i)'(S),'(j)'(S) 6= 0.

Using the criterion in Lemma 3.10, we deduce that i ?? j | S does not hold in the
distribution defined by ⌃. Therefore, we have found a distribution in the model MGp,Cp

for which i ?? j | S does not hold.

4.2.2 Independent nodes in the statement

Our next goal is to be able to ignore all remaining nodes that occur before i and after
j on the path – regardless of whether they are conditioning variables in S or not. To
achieve this, we follow the same strategy as before and construct them as nodes that are
independent of all other nodes. First, we consider a few examples to gain intuition on
how this works. Then, we formulate a statement that extends Corollary 4.10 to nodes
before i and after j that do not occur in the statement.

Example 4.11. Suppose we want to contradict the statement 1 ?? 2 | 3 on the directed
path of length three. If this statement holds and if additionally 2 ?? 3 holds, the contrac-
tion axiom, one of the rules of conditional independence (see for example Pearl (2009)),
implies 1 ?? 2. The contrapositive of this rule says that if we can find a distribution
where 2 ?? 3 holds while 1 6?? 2, then also 1 6?? 2 | 3. The easiest way to achieve this is
again by setting the edge weight m32 between the nodes 2 and 3 to zero while keeping the
edge weight m21 between node 1 and 2 non-zero. A possible drift matrix is then given by

M =

0

@
�1 0 0
1 �1 0
0 0 �1

1

A

which yields the covariance matrix

⌃ =

0

B@
1 1

2 0
1
2

3
2 0

0 0 1

1

CA .
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4 Conditional independence in the path model

We see that 2 ?? 3 holds in this example, since ⌃32 = 0, while 1 6?? 2, since ⌃21 =
1
2 6= 0.

Due to the contraction axiom, we can conclude 1 6?? 2 | 3. The same argument works
with 1 ?? 3 instead of 2 ?? 3, since ⌃31 = 0 is also implied by setting m32 = 0. Checking
the determinant of interest gives the same result. By computing

det⌃13,23 = det

✓
⌃12 ⌃13

⌃32 ⌃33

◆
= ⌃12⌃33 � ⌃13⌃32 = ⌃12 · 1� 0 = ⌃12

and specifically

det⌃13,23 = det

 
1
2 0

0 1

!
=

1

2
6= 0,

we see that the determinant is non-zero if 1 6?? 2 and at least one of 1 ?? 3 and 2 ?? 3
hold, assuming that ⌃33 6= 0.

In the previous example, only one conditioning variable s occurred after j, so we reduced
the search for a counterexample to the statement i ?? j | s to finding a counterexample
for i ?? j on a shorter path and setting the remaining edge weight to zero. We discover in
the following two examples that the same strategy can be applied if conditioning variables
occur both before i and after j as well as in between i and j on the directed path. In this
case, we set all edge weights occurring before i and after j to zero.

Example 4.12. Let p = 4 and consider the statement 2 ?? 3 | 1, 4 in the path model. If
we want to set both edge weights between the nodes 1 and 2 as well as 3 and 4 to zero
while keeping the edge weight m32 non-zero, one possible drift matrix is given by

M =

0

BB@

�1 0 0 0
0 �1 0 0
0 1 �1 0
0 0 0 �1

1

CCA .

Solving the Lyapunov equation yields the covariance matrix

⌃ =

0

BBBB@

1 0 0 0

0 1 1
2 0

0 1
2

3
2 0

0 0 0 1

1

CCCCA
,

where we can already see that 1 ?? 2, 1 ?? 3, and 1 ?? 4 hold as well as 4 ?? 3 and
4 ?? 2, whereas 2 6?? 3. Computing the determinant corresponding to the conditional
independence statement results in

det⌃214,314 = (�1)2 det⌃124,134 = det

0

B@
1 0 0

0 1
2 0

0 0 1

1

CA =
1

2
6= 0.

The same strategy can be used if we additionally have conditioning variables s with
i < s < j, and we only want to eliminate the conditioning variables that occur before i

and after j.
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4 Conditional independence in the path model

Example 4.13. Let p = 5 and consider the conditional independence statement

2 ?? 4 | 1, 3, 5

in the path model. We want to reduce the statement to the case where conditioning nodes
before i and after j do not occur. In this example, it means removing the nodes 1 and
5 from the statement and therefore reducing to the statement 1 ?? 3 | 2 on three nodes,
where we already know a valid counterexample such that the determinant of interest is
non-zero, namely

M
⇤ =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A .

If we then extend this matrix to five nodes by keeping the missing diagonal entries as -1
and setting the missing edge weights to zero, we have the drift matrix

M =

0

BBBB@

�1 0 0 0 0
0 �1 0 0 0
0 1 �1 0 0
0 0 1 �1 0
0 0 0 0 �1

1

CCCCA
=

0

BBBB@

�1 0 0 0 0
0

M
⇤

0
0 0
0 0
0 0 0 0 �1

1

CCCCA
.

Solving the Lyapunov equation for ⌃ yields

⌃ =

0

BBBBBB@

1 0 0 0 0

0 1 1
2

1
4 0

0 1
2

3
2

7
8 0

0 1
4

7
8

15
8 0

0 0 0 0 1

1

CCCCCCA
=

0

BBBBBB@

1 0 0 0 0

0
⌃⇤

0

0 0

0 0

0 0 0 0 1

1

CCCCCCA
,

where ⌃⇤ is the covariance matrix corresponding to M
⇤. Computing the determinant of

interest then boils down to computing

det⌃2135,4135 = (�1)3 det⌃1235,1345 = � det

0

BBBB@

1 0 0 0

0 1
2

1
4 0

0 3
2

7
8 0

0 0 0 1

1

CCCCA
= �1 · 1 · det

 
1
2

1
4

3
2

7
8

!
· 1

= � det⌃⇤
12,23 = det⌃⇤

12,32 6= 0,

which we know to be non-zero in this example.

Comparing this example to Example 4.5 shows that we performed the exact same calcula-
tions – in Example 4.5 for nodes appearing before i and after j that are not conditioning
nodes and now for nodes before i and after j that are conditioning nodes in the considered
statements. Therefore, we can combine both operations into one step: remove all nodes
before a := i and after b := j from the path by setting the corresponding edge weights to
zero. We achieve this by applying Lemma 4.8 with the index map 'a,b = 'i,j defined as
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4 Conditional independence in the path model

in Definition 4.6 and the projection map ⇧K with K := {i, . . . , j} defined accordingly as
in Definition 4.3.

For computing the determinant in the independence criterion, we need all rows and
columns of the covariance matrix with indices in S[{i, j}. The corresponding condition-
ing nodes can occur everywhere on the path, but we only want to keep the ones between
i and j in the statement. Therefore, if S 6= ;, we partition the conditioning set

S = U [̇ Z [̇ W

in three disjoint ordered sets U = {u1, . . . , ulu}, Z = {z1, . . . , zlz}, andW = {w1, . . . ,wlw}
such that

u1 < · · · < ulu < i < z1 < · · · < zlz < j < w1 < · · · < wlw .

We can also write Z = S \K. If Z = ;, the conditioning variables only occur before i or
after j on the path.

Corollary 4.14. Consider the conditional independence statement (14) in the model
MGp,Cp with p � 2. Define p⇤ := j�i+1 and ' := 'i,j. Further, let K := {i, . . . , j} ✓ [p]
and U , W , and Z as above. If there exists a distribution in the model MGp⇤ ,Cp⇤ such that

1 ?? p
⇤ | '(Z)

does not hold in this distribution, then there exists a distribution in MGp,Cp for which

i ?? j | S

does not hold.

Proof. The proof is similar to Corollary 4.10; we only have to exercise caution with the
computation of the determinant. If S = ;, we have already proven the statement in
Corollary 4.10. Thus, we assume that S 6= ;.

Assume that there exists a distribution in the model MGp⇤ ,Cp⇤ such that 1 ?? p
⇤ | '(Z)

does not hold. Note that 1 = '(i) and p
⇤ = '(j), so, in other words, there is a matrix

⌃⇤ 2 MGp⇤ ,Cp⇤ with det⌃⇤
'(i)'(Z),'(j)'(Z) 6= 0. Due to Lemma 4.8, there exists ⌃ 2 MGp,Cp

such that

⇧K(⌃) = ⌃⇤, (17)

⇧KC (⌃) = Ip�p⇤ , (18)

and all other entries of ⌃ are zero.

Since {i, j} [ Z ✓ {i, . . . , j} = K, equation (17) implies

⌃iZ,Zj = ⌃⇤
'(i)'(Z),'(Z)'(j). (19)

Further, equation (18) implies that

⌃U ,U = Ilu and ⌃W ,W = Ilw (20)

since U ,W ✓ K
C .
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4 Conditional independence in the path model

We need to compute the determinant of the submatrix of ⌃ with rows in {i} [ S and
columns in {j} [ S. To clarify the computation, we reorder the rows and columns and
thereby the indices from smallest to largest, and partition ⌃ in the respective block
matrices.

If both U = ; and W = ;, we are already done, as this case is covered by Corollary 4.10.
Therefore, we first assume U 6= ; and W 6= ;. Due to (19) and (20), the resulting
determinant is

det⌃iS,jS = det⌃iUZW ,jUZW

= (�1)2lu+lz det⌃UiZW ,UZjW

= (�1)lz det

0

BBBBB@

⌃U ,U ⌃U ,Z ⌃U ,j ⌃U ,W

⌃i,U ⌃i,Z ⌃i,j ⌃i,W

⌃Z,U ⌃Z,Z ⌃Z,j ⌃Z,W

⌃W ,U ⌃W ,Z ⌃W ,j ⌃W ,W

1

CCCCCA

= (�1)lz det

0

BBB@

Ilu 0 0 0

0 0
0

⌃iZ,Zj 0

0 0 0 Ilw

1

CCCA

= (�1)lz det

0

BBB@

Ilu 0 0 0

0 0
0

⌃⇤
'(i)'(Z),'(Z)'(j) 0

0 0 0 Ilw

1

CCCA

= det(Ilu) det(Ilw)(�1)lz det⌃⇤
'(i)'(Z),'(Z)'(j)

= det⌃⇤
'(i)'(Z),'(j)'(Z) 6= 0.

(21)

In the last equality, we switched back the order of the columns in the considered submatrix
of ⌃⇤.

If either U = ; or W = ;, the computation of the determinant can be performed similarly
by leaving out all blocks with indices in either U or W , respectively, in the calculation
(21) above. Similarly, if Z = ;, we leave out all blocks with indices in Z.

Using the criterion in Lemma 3.10, we infer that i ?? j | S does not hold in the distribution
defined by ⌃. Thus, we have found a distribution in the modelMGp,Cp for which i ?? j | S
does not hold.

4.3 Constructing perfectly correlated nodes

Due to Corollary 4.14, all that remains is to consider statements of the form

1 ?? p | S, where S ✓ {2, . . . , p� 1}, (22)
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4 Conditional independence in the path model

in the model MGp,Cp . Note that the set S of conditioning nodes occurring between the
nodes 1 and p is allowed to be empty. Our next goal is to construct the nodes between 1
and p that do not occur in S in such a way that we can ignore them when considering the
conditional independence statement (22). In other words, we want to be able to “cross
out” any node between the first and last node that does not occur in the conditioning set
S and then use an existing counterexample on p� 1 nodes. If we can do this repeatedly
for all such nodes not occurring in S, it su�ces in the end to find counterexamples to the
statement

1 ?? p | 2, . . . , p� 1 (23)

in the model MGp,Cp . Thus, we want to find a way to extend counterexamples for (23)
to counterexamples for (22).

We start again by looking at examples.

Example 4.15. While a first intuition might be to follow the same strategy of adding
independent nodes between i and j as before, it becomes clear that we need a di↵erent
approach. Let p = 4 and consider the conditional independence statement 1 ?? 4 | 2 in
the path model. We already know a counterexample to 1 ?? 3 | 2 on three nodes with
drift matrix

M
⇤ =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A .

Following our previous strategy would mean extending M
⇤ to

M =

0

BB@

�1 0 0 0
1 �1 0 0
0 0 �1 0
0 0 1 �1

1

CCA .

The resulting covariance matrix is then

⌃ =

0

BBBB@

1 1
2 0 0

1
2

3
2 0 0

0 0 1 1
2

0 0 1
2

3
2

1

CCCCA
.

Computing the determinant of interest yields

det⌃12,42 = � det⌃12,24 = � det

 
1
2 0
3
2 0

!
= 0,

so 1 ?? 4 | 2 holds in this distribution. Taking a closer look at the covariance matrix ⌃
tells us why: by inserting a node that is independent of all existing nodes on the path,
we get in particular ⌃14 = ⌃24 = 0. Thus, the nodes 1 and 2 are both independent of
node 4. The weak union axiom (see again Pearl (2009)) then implies 1 ?? 4 | 2.

46

Mobile User



4 Conditional independence in the path model

The choice of entries of M in the example does not yield a counterexample to the state-
ment, so we have to find a di↵erent way of extending the drift matrix M

⇤. We start with
the structure

M =

0

BB@

�1 0 0 0
1 �1 0 0
0 ? ? 0
0 0 1 �1

1

CCA ,

where nodes 1 and 2 of the smaller example correspond to nodes 1 and 2 of the larger
example. The last node, i.e., node 3 of the smaller example, corresponds to the last
node, i.e., node 4 of the extended example. The edge weight and the diagonal entry of M
marked with “?” belong to the node to be constructed at index 3. This node now gives
rise to an additional row and column at index 3 in the 4⇥ 4 covariance matrix ⌃. Since
we only need the rows and columns of ⌃ for the computation of the determinant that
correspond to the nodes in {i, j}[S = {1, 2, 4}, we would ideally like to keep these rows
and columns as the respective rows and columns of ⌃⇤ where we know said determinant
to be non-zero.

How can we choose the entries in M to achieve this? Intuitively, we want the added node
to behave exactly like one of its neighbors – here, for instance, node 2 – while preserving
all existing dependence relations among the nodes 1, 2, and 4. Then, nodes 2 and 3 in the
extended example can essentially be viewed as one node, and we are back at the smaller
example. With respect to the covariance matrix ⌃, this means that we want the third
row and column to be duplicates of the second row and column, i.e., we want ⌃ to take
on the form

⌃ =

0

BB@

⌃⇤
11 ⌃⇤

12 ⌃⇤
12 ⌃⇤

13

⌃⇤
21 ⌃⇤

22 ⌃⇤
22 ⌃⇤

23

⌃⇤
21 ⌃⇤

22 ⌃⇤
22 ⌃⇤

23

⌃⇤
31 ⌃⇤

32 ⌃⇤
32 ⌃⇤

33

1

CCA . (24)

Then, we have, for example, correlation ⇢(X2,X3) =
⌃⇤

22p
⌃⇤

22

p
⌃⇤

22

= 1. Therefore, we aim

to find an edge weight m32 and a diagonal entry m33 for M such that this ⌃ is the solution
of the corresponding Lyapunov equation.

We start by setting m32 := m for some m 2 N>0. Remember that M is the drift matrix
of an Ornstein-Uhlenbeck process in equilibrium. As presented in Section 2.3.5, the drift
term of a di↵usion process stems from the infinitesimal transition from one state to the
next. It describes the interaction of the coordinates of the process at the transition.
Therefore, the larger the entry m32 is in comparison to the corresponding noise term, the
stronger the influence of node 2 on node 3. Thus, we are interested in drift matrices M
where m is large.

It is clear that the diagonal entry m33 has to be negative for M to be stable. If we again
make the obvious choice of m33 = �1 as diagonal entry, the matrix is stable. However,
in terms of self-regulation, node 3 does not behave exactly like node 2. The proportion
of the change from node 2 to 3 and the decay at node 3 is not balanced as in the case
of node 2. There, the diagonal entry is the negative of the edge weight from node 1 to
2. To replicate this behavior at node 3, we set the diagonal entry m33 := �m. Thus, we
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define drift matrices of the form

M
(m) :=

0

BB@

�1 0 0 0
1 �1 0 0
0 m �m 0
0 0 1 �1

1

CCA

with m 2 N>0. The corresponding model is illustrated in Figure 6.

1 2 3
1 1

-1 -1 -1

(a) The directed graph G3 with exam-
ple edge weights.

1 2 3 4
1 m 1

-1 -1 -m -1

(b) Extended example on G4 after in-
serting one node that is highly corre-
lated with node 2 for large m.

Figure 6: Embedding of an example on three nodes into an example on four nodes.

Solving the resulting Lyapunov equation yields the symmetric covariance matrix

⌃(m) =

0

BBBBBB@

1 1
2

1
2

m
1+m

1
4

m
1+m

⇤ 3
2

m
2

4+3m
(1+m)2

m
8

9+7m
(1+m)2

⇤ ⇤ 2+4m+6m2+3m3

2m(1+m)2
8+16m+24m2+21m3+7m4

8m(1+m)3

⇤ ⇤ ⇤ 8+24m+48m2+45m3+15m4

8m(1+m)3

1

CCCCCCA
.

If we now let m go to infinity, we find

lim
m!1

⌃(m) =

0

BBBB@

1 1
2

1
2

1
4

1
2

3
2

3
2

7
8

1
2

3
2

3
2

7
8

1
4

7
8

7
8

15
8

1

CCCCA
=: ⌃,

where the third row and column are a copy of the second row and column, respectively.
All other entries are the same as in ⌃⇤, with indices shifted accordingly. Therefore, we
can construct a sequence of distributions such that the sequence of covariance matrices
⌃(m) solving the Lyapunov equation converges to the matrix ⌃ for m ! 1.

The idea of embedding a smaller example into a larger example such that the additional
nodes are perfectly correlated with an existing node can be formulated via a projection
that removes one node at an index k as in Definition 4.3. A corresponding index map that
maps the original indices of the directed path of length p to the corresponding indices of
the directed path where the k-th node has been removed can be defined as follows. It
shifts all indices larger than k down by one.

Definition 4.16. For k 2 N>0, we define the index map

 �k : N \ {k} ! N, x 7!
(
x if x < k;

x� 1 if x > k.
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Now we extend the argument to arbitrary dimensions. Given a matrix ⌃ that solves the
Lyapunov equation, we want to construct a node at index k that is perfectly correlated
with the node at index k� 1. That means shifting all rows and columns of ⌃ with index
starting at k one index higher and inserting a new k-th row and column at index k as the
exact duplicate of the (k � 1)-th row and column, respectively. We can approximately
achieve this by setting the (k� 1)-th edge weight mk,k�1 := m for a large value m 2 N>0,
while defining the diagonal entry as mkk := �m and shifting the entries with higher
indices up by one index. Again, we formalize this approach in a lemma.

Lemma 4.17. Let p � 3, k 2 {2, . . . , p� 1}, and let ⌃⇤ 2 MGp�1,Cp�1. Then, there is a
matrix ⌃ 2 MGp,Cp such that

⇧(�k)(⌃) = ⌃⇤ (25)

and
⌃k,j = ⌃k�1,j as well as ⌃j,k = ⌃j,k�1 for all j 2 [p]. (26)

Proof. The proof is similar to the proof of Lemma 4.8 in the sense that we define an
appropriate matrix M and then solve the Lyapunov equation for ⌃. Assume we have
⌃⇤ 2 MGp�1,Cp�1 . Then, there is a stable matrix M

⇤ := (m⇤
ij) 2 R(p�1)⇥(p�1) such that

the Lyapunov equation
M

⇤⌃⇤ + ⌃⇤
M

⇤T + Cp�1 = 0 (27)

is fulfilled.

We want to extend this model by inserting a node at index k. Let U := {1, . . . , k�1} and
V := {k + 1, . . . , p} and define  :=  �k as in Definition 4.16. Then, we have  (U) = U

and  (V ) = {k, . . . , p� 1}. We can partition

⌃⇤ =

0

BB@
⌃⇤

U ,U ⌃⇤
U , (V )

⌃⇤
 (V ),U ⌃ (V ), (V )

1

CCA

as well as

M
⇤ =

0

BB@
M

⇤
U ,U 0

M
⇤
 (V ),U M

⇤
 (V ), (V )

1

CCA , where M
⇤
 (V ),U =

0

BBB@

0 · · · 0 m
⇤
k,k�1

0

0
...
0

1

CCCA
.

For better readability, we write ⌃⇤
U := ⌃⇤

U ,U and ⌃⇤
 (V ) := ⌃⇤

 (V ), (V ); similarly for M
⇤.

Considering (27) block-wise results in the following four equations

(a) M
⇤
U⌃

⇤
U + ⌃⇤

UM
⇤
U
T + 2Ik�1 = 0,

(b) M
⇤
U⌃

⇤
U , (V ) + ⌃⇤

U , (V )M
⇤
 (V )

T + ⌃⇤
UM

⇤
 (V ),U

T = 0,

(c) M
⇤
 (V )⌃

⇤
 (V ) + ⌃⇤

 (V )M
⇤
 (V )

T + 2Ip�k +M
⇤
 (V ),U⌃

⇤
U , (V ) + ⌃⇤

 (V ),UM
⇤
 (V ),U

T = 0,

(d) M
⇤
 (V )⌃

⇤
 (V ),U + ⌃⇤

 (V ),UM
⇤
U
T +M

⇤
 (V ),U⌃

⇤
U = 0

() M
⇤
U⌃

⇤
 (V ),U

T + ⌃⇤
 (V ),U

T
M

⇤
 (V )

T + ⌃⇤
UM

⇤
 (V ),U

T = 0.
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Given the stable matrix M
⇤, these equations are uniquely fulfilled by the corresponding

submatrices of ⌃⇤.

Now let m 2 N>0 and define

M
(m) := (m(m)

ij ) =

0

BBBBBBBBB@

M
⇤
U 0 0

0 m �m 0

0
m

⇤
k,k�1

M
⇤
 (V )

0

1

CCCCCCCCCA

2 Rp⇥p,

i.e., we have

m
(m)
ij =

8
>>>>>><

>>>>>>:

m
⇤
ij, if i, j  k � 1 or i, j � k + 1;

m, if i = k, j = k � 1;

�m, if i = j = k;

m
⇤
k,k�1, if i = k + 1, j = k;

0 else.

Let

⌃(m) =

0

BBBBBBBBB@

⌃(m)
U ⌃(m)

U ,k ⌃(m)
U ,V

⌃(m)
k,U ⌃(m)

k,k ⌃(m)
k,V

⌃(m)
V ,U ⌃(m)

V ,k ⌃(m)
V

1

CCCCCCCCCA

2 Rp⇥p

be the solution of the Lyapunov equation

M
(m)⌃(m) + ⌃(m)

M
(m)T + Cp = 0

induced by M
(m). We use the same abbreviations of the form ⌃(m)

U := ⌃(m)
U ,U as above.

Due to the symmetry of the Lyapunov equation, any unique solution is symmetric. Since
M

(m) is stable, the solution ⌃(m) is unique and therefore symmetric, so we only have to
solve the following six matrix equations:

(A) M
⇤
U⌃

(m)
U + ⌃(m)

U M
⇤
U
T + 2Ik�1 = 0

This equation is solved by ⌃(m)
U = ⌃⇤

U due to (a).

(B) M
⇤
U⌃

(m)
U ,k +m⌃(m)

U ,k�1 �m⌃(m)
U ,k = 0

This equation can be rewritten to
✓

1

m
M

⇤
U � Ik�1

◆
⌃(m)

U ,k = �⌃(m)
U ,k�1.
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4 Conditional independence in the path model

The matrix 1
mM

⇤
U � Ik�1 is stable and thus invertible, so solving for ⌃(m)

U ,k yields

⌃(m)
U ,k = �

✓
1

m
M

⇤
U � Ik�1

◆�1

⌃(m)
U ,k�1

(A)
= �

✓
1

m
M

⇤
U � Ik�1

◆�1

⌃⇤
U ,k�1 ���!m!1

� (0� Ik�1)
�1 ⌃⇤

U ,k�1 = ⌃⇤
U ,k�1,

where we used that k � 1 2 U and that matrix inversion is continuous. We deduce
that limm!1 ⌃(m)

U ,k = ⌃⇤
U ,k�1.

(C) M
⇤
U⌃

(m)
U ,V + ⌃(m)

U ,VM
⇤
 (V )

T + ⌃(m)
U ,k(m

⇤
k,k�1, 0, . . . , 0) = 0

Taking the limit of the left-hand side for m ! 1 yields

M
⇤
U⌃

(m)
U ,V + ⌃(m)

U ,VM
⇤
 (V )

T + ⌃(m)
U ,k(m

⇤
k,k�1, 0, . . . , 0)

(B)���!
m!1

M
⇤
U

⇣
lim

m!1
⌃(m)

U ,V

⌘
+
⇣
lim

m!1
⌃(m)

U ,V

⌘
M

⇤
 (V )

T + ⌃⇤
U ,k�1(m

⇤
k,k�1, 0, . . . , 0),

where we employed (B) in the last summand. This last summand can be rewritten
further as

⌃⇤
U ,k�1(m

⇤
k,k�1, 0, . . . , 0) = ⌃⇤

UM
⇤
 (V ),U

T

by attaching a (k� 2)⇥ (k� 1) zero matrix to the existing row vector and thereby
extending it to M

⇤
 (V ),U

T . Setting the limit to zero yields equation (b) which is

solved by ⌃⇤
U , (V ). This gives us limm!1 ⌃(m)

U ,V = ⌃⇤
U , (V ).

(D) 2� 2m⌃(m)
k,k +m

⇣
⌃(m)

k,k�1 + ⌃(m)
k�1,k

⌘
= 0

Solving for ⌃(m)
k,k yields

⌃(m)
k,k =

1

m
+

⌃(m)
k,k�1 + ⌃(m)

k�1,k

2

(B)���!
m!1

⌃⇤
k�1,k�1 + ⌃⇤

k�1,k�1

2
= ⌃⇤

k�1,k�1,

where we used ⌃(m)
k,k�1 ! ⌃⇤

k�1,k�1 for m ! 1 due to (B). We conclude that

limm!1 ⌃(m)
k,k = ⌃⇤

k�1,k�1.

(E) m⌃(m)
k�1,V �m⌃(m)

k,V + ⌃(m)
k,k (m

⇤
k,k�1, 0, . . . , 0) + ⌃(m)

k,V M
⇤
 (V )

T = 0

Rewriting the equation yields

⌃(m)
k,V

✓
� 1

m
M

⇤
 (V )

T + Ip�k

◆
= ⌃(m)

k�1,V +
1

m
⌃(m)

k,k (m
⇤
k,k�1, 0, . . . , 0)

() ⌃(m)
k,V =

✓
⌃(m)

k�1,V +
1

m
⌃(m)

k,k (m
⇤
k,k�1, 0, . . . , 0)

◆✓
� 1

m
M

⇤
 (V )

T + Ip�k

◆�1

(C),(D)����!
m!1

(⌃⇤
k�1, (V ) + 0)(0 + Ip�k)

�1 = ⌃⇤
k�1, (V ).

Here, we used (C) together with k� 1 2 U in the limit. Due to (D), ⌃(m)
k,k converges

to a constant and therefore 1
m⌃(m)

k,k ! 0. Additionally, the inverted matrix is sta-
ble and therefore invertible, and matrix inversion is continuous. We deduce that
limm!1 ⌃(m)

k,V = ⌃⇤
k�1, (V ).
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(F) M
⇤
 (V )⌃

(m)
V +⌃(m)

V M
⇤
 (V )

T+2Ip�k+(m⇤
k,k�1, 0, . . . , 0)

T⌃(m)
k,V +⌃(m)

V ,k(m
⇤
k,k�1, 0, . . . , 0) = 0

We use that ⌃(m)
k,V ! ⌃⇤

k�1, (V ) as well as ⌃
(m)
V ,k ! ⌃⇤

 (V ),k�1 for m ! 1 due to (E)
and take the limit on both sides. This yields for the left-hand side

M
⇤
 (V )⌃

(m)
V + ⌃(m)

V M
⇤
 (V )

T + 2Ip�k

+ (m⇤
k,k�1, 0, . . . , 0)

T⌃(m)
k,V + ⌃(m)

V ,k(m
⇤
k,k�1, 0, . . . , 0)

(E)���!
m!1

M
⇤
 (V )

⇣
lim

m!1
⌃(m)

V

⌘
+
⇣
lim

m!1
⌃(m)

V

⌘
M

⇤
 (V )

T + 2Ip�k

+ (m⇤
k,k�1, 0, . . . , 0)

T⌃⇤
k�1, (V ) + ⌃⇤

 (V ),k�1(m
⇤
k,k�1, 0, . . . , 0)

= M
⇤
 (V )

⇣
lim

m!1
⌃(m)

V

⌘
+
⇣
lim

m!1
⌃(m)

V

⌘
M

⇤
 (V )

T + 2Ip�k

+M
⇤
 (V ),U⌃

⇤
U , (V ) + ⌃⇤

 (V ),UM
⇤
 (V ),U

T ,

where we employed the same trick of rewriting the last two summands as for (C).
Setting the limit to zero yields equation (c) that is solved by ⌃⇤

 (V ). We conclude

limm!1 ⌃(m)
V = ⌃⇤

 (V ).

Combining these results, we have

lim
m!1

⌃(m) =

0

BBBBBBBBBB@

⌃⇤
U ⌃⇤

U ,k�1 ⌃⇤
U , (V )

⌃⇤
k�1,U ⌃⇤

k�1,k�1 ⌃⇤
k�1, (V )

⌃⇤
 (V ),U ⌃⇤

 (V ),k�1 ⌃⇤
 (V )

1

CCCCCCCCCCA

=: ⌃ 2 Rp⇥p

with

⌃ij =

8
>>>><

>>>>:

⌃⇤
 (i), (j), if i, j 6= k;

⌃⇤
k�1, (j), if i = k, j 6= k;

⌃⇤
 (i),k�1, if i 6= k, j = k;

⌃⇤
k�1,k�1, if i = j = k.

Note that ⌃ is now a copy of ⌃⇤ with one row and one column added at index k where
we duplicated and inserted the k � 1-th row and column of ⌃⇤, which are the k � 1-th
row and column of ⌃. Thus, ⌃k,j = ⌃k�1,j as well as ⌃j,k = ⌃j,k�1 for all j 2 [p], so (25)
and (26) hold.

The lemma implies that any covariance matrix of a distribution in the model on p � 1
nodes can be embedded into a covariance matrix of a distribution in the closure of the
model on p nodes by inserting a copy of the (k � 1)-th row and column, respectively, at
index k.
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4 Conditional independence in the path model

Remark 4.18. The first conclusion (25) in Lemma 4.17 can be reformulated as

MGp�1,Cp�1 ✓ ⇧(�k)(MGp,Cp),

since for ⌃⇤ 2 MGp�1,Cp�1 , this is equivalent to the existence of ⌃ 2 MGp,Cp with

⌃⇤ = ⇧(�k)(⌃).

The limit operation is performed element-wise on the matrices, and the projection does
not change the values themselves. Thus, by interchanging the limit operation and the
projection we obtain

MGp�1,Cp�1 ✓ ⇧(�k)(MGp,Cp).

Now we have everything in place to return to the statement

1 ?? p | S with S ( {2, . . . , p� 1}.

Assume that k 2 {2, . . . , p� 1} \S. Our goal is to extend a counterexample ⌃⇤ 2 MGp�1

for 1 ?? p � 1 |  (S) to a counterexample ⌃ 2 MGp for 1 ?? p | S. So we start with a
matrix ⌃⇤ where det⌃⇤

1 (S),(p�1) (S) 6= 0. Then, we create a new row and column at index
k in ⌃⇤ via a suitable drift matrix M such that det⌃1S,pS 6= 0.

Ideally, as in (24), we would like to shift all rows and columns with index starting at k
one index higher and insert a new k-th row and column at index k as the exact duplicate
of the (k � 1)-th row and column, respectively. Then, both determinants would be the
same: due to k /2 S, the k-th row and column do not occur in the computation of the
determinant while all other entries stay as in ⌃⇤.

We first formulate the technical aspect of the statement with respect to non-zero deter-
minants and then formulate it in terms of conditional independence statements. The
di�culty lies in the fact that any matrix we construct via Lemma 4.17 is in the closure
of the path model on p nodes but not necessarily in the model. Consequently, we cannot
take such a matrix itself as a counterexample for the conditional independence statement
1 ?? p | S in MGp,Cp .

Corollary 4.19. Let p � 3, S ( {2, . . . , p � 1}, and k 2 {2, . . . , p � 1} \ S. Define
 :=  �k as above. Then, the following holds: If there is

⌃⇤ 2 MGp�1,Cp�1 such that det⌃⇤
1 (S),(p�1) (S) 6= 0,

then there is
⌃ 2 MGp,Cp such that det⌃1S,pS 6= 0.

Proof. We split the proof into two parts. First, we apply Lemma 4.17 to construct such
a matrix with non-zero determinant of interest on the boundary of the model. In the
second step, we exploit the continuity of the determinant to find a covariance matrix with
non-zero determinant in the model.

Assume we have ⌃⇤ 2 MGp�1,Cp�1 with det⌃⇤
1 (S),(p�1) (S) 6= 0. We want to show that

there is

(i) b⌃ 2 MGp,Cp such that det b⌃1S,pS 6= 0 and therefore there is

(ii) ⌃ 2 MGp,Cp such that det⌃1S,pS 6= 0.
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We first show (i). Due to Lemma 4.17, there is a sequence

b⌃(m) 2 MGp,Cp with lim
m!1

b⌃(m) =: b⌃ 2 MGp,Cp such that ⇧(�k)(b⌃) = ⌃⇤.

Since k /2 {1, p} [ S, all entries b⌃ij occurring in the computation of the determinant

det b⌃1S,pS fulfill b⌃ij = ⌃⇤
 (i), (j). Computing the determinant then yields

det b⌃1S,pS = det⌃⇤
 (1) (S), (p) (S) = det⌃⇤

1 (S),(p�1) (S) 6= 0.

For (ii), we observe that, due to Lemma 4.17, b⌃ has a duplicated row and column and is
therefore singular. This implies that it is not positive definite and thus b⌃ /2 MGp,Cp .

Since b⌃ 2 MGp,Cp \MGp,Cp holds, the matrix b⌃ is an element of the boundary of MGp,Cp

with det b⌃1S,jS 6= 0. Since the determinant is a continuous function on Rp⇥p, there

is a neighborhood U around b⌃ where this determinant is non-zero as well. Then, for
any ⌃ 2 U \ MGp,Cp , we have det⌃1S,jS 6= 0. Therefore, we can choose any matrix
⌃ 2 U \MGp,Cp .

Corollary 4.20. Consider the conditional independence statement (22) in the model
MGp,Cp with p � 3. Let S ( {2, . . . , p� 1} and k 2 {2, . . . , p� 1} \ S. Define  :=  �k

as above. If there exists a distribution in the model MGp�1,Cp�1 such that

1 ?? p� 1 |  (S)

does not hold in this distribution, then there exists a distribution in MGp,Cp for which

1 ?? p | S

does not hold.

Proof. Assume that there exists a distribution in the modelMGp�1,Cp�1 on p�1 nodes such
that 1 ?? p� 1 |  (S) does not hold in this distribution. Then there is ⌃⇤ 2 MGp�1,Cp�1

with det⌃⇤
1 (S),(p�1) (S) 6= 0. Due to Corollary 4.19, there is a matrix ⌃ 2 MGp,Cp such

that det⌃1S,pS 6= 0. This implies that 1 ?? p | S does not hold in the distribution defined
by ⌃. Therefore, we have found a distribution in the model MGp,Cp for which 1 ?? p | S
does not hold.

By applying this corollary consecutively, we can extend any counterexample for the con-
ditional independence statement 1 ?? p

⇤ | 2, . . . , p⇤ � 1 on p
⇤ nodes with p

⇤
< p to a

counterexample for 1 ?? p | S with S ( {2, . . . , p� 1}.

4.4 Proving the theorem

We now have established the necessary tools to prove the main result. The proof combines
the results of Corollary 4.14 and Corollary 4.20 with some additional direct calculations.
First, we summarize the rather technical results of the chapter in the following proposi-
tion. The proposition is applicable for statements with an arbitrary number of variables
occurring between the nodes i and j on paths of arbitrary length.
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4 Conditional independence in the path model

Proposition 4.21. Consider the Lyapunov model on the directed path MGp,Cp with p � 2.
Let i, j 2 Vp such that i < j and let S ✓ Vp \ {i, j}. Define

Z := S \ {i, . . . , j} and q := |Z|+ 2

as the subset of S containing all conditioning variables that lie between i and j, and the
number of these variables including i and j, respectively. If there exists a distribution in
the model MGq ,Cq such that

1 ?? q | 2, . . . , q � 1 (or 1 ?? 2 if q = 2)

does not hold in this distribution, then there exists a distribution in MGp,Cp for which

i ?? j | S

does not hold.

Proof. If p = 2, we are done. Therefore, we assume p � 3.

We again define the bijective index map ' := 'i,j as in Definition 4.6. Let p⇤ := '(j) =
j� i+1 and Z

⇤ := '(Z) ✓ {2, . . . , p⇤�1}. Thereby, we consider the sub-path from node
i to node j as a shorter path of length p

⇤.

The following proof consists of two steps. First, we apply Corollary 4.20, which means
adding highly correlated nodes to an existing counterexample distribution. Then, we
apply Corollary 4.14 which allows us to further add independent nodes at the start and
end of the path in the existing counterexample distribution.

Assume that there exists a distribution in the model MGq ,Cq for which

1 ?? q | 2, . . . , q � 1 (or 1 ?? 2 if q = 2) (28)

does not hold.

Step 1. We show that there is a distribution in MGp⇤ ,Cp⇤ for which 1 ?? p
⇤ | Z⇤ does

not hold.

Let K := {2, . . . , p⇤ � 1} \ Z⇤, so

{2, . . . , p⇤ � 1} = Z
⇤ [̇ K.

The nodes in Z
⇤ correspond to the conditioning nodes 2, . . . , q � 1 that are already in

the statement. The elements of K are the nodes between 1 and p
⇤ that are not in

the conditioning set. We insert them consecutively at the correct indices by applying
Corollary 4.20 |K| times.

If Z⇤ = {2, . . . , p⇤ � 1} and therefore q = p
⇤ and K = ;, we are already done. Thus, we

assume Z
⇤ ( {2, . . . , p⇤ � 1} in the following. Then, we have q < p

⇤ and K 6= ;.

If Z⇤ = ;, i.e. q = 2, we have K = {2, . . . , p⇤ � 1}. In that case, we apply Corollary 4.20
p
⇤ � 2 times. We know that there is a distribution in the model MG2,C2 for which

1 ?? 2 | ;
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does not hold. We can rewrite this statement to

1 ?? 2 |  �k(;)

for any k 2 K using Definition 4.16 of the index map. Then, Corollary 4.20 implies that
there is a distribution in the model MG3,C3 for which

1 ?? 3 | ;

does not hold. We can perform this step for every k 2 K until we reach the statement
that there is a distribution in the model MGp⇤ ,Cp⇤ for which

1 ?? p
⇤ | ;

does not hold. Note that due to the empty conditioning sets the position of the newly
added nodes between the first and last node is irrelevant. Therefore, the argument works
regardless of the order of the elements in K.

If Z⇤ 6= ; and K 6= ;, the reasoning is not as straightforward, as we have to shift the
conditioning nodes to their correct indices to construct the nodes in the given order. Let
k1 := minK. To show by contradiction that k1 2 {2, . . . , q}, assume k1 /2 {2, . . . , q}.
This implies k1 > q, i.e., the minimal element of K is larger than q, so {2, . . . , q} ✓ Z

⇤.
Then, we have |Z⇤| � q� 1 which is a contradiction as |Z⇤| = q� 2. Thus, we can write

{2, . . . , q � 1} =  �k1({2, . . . , q} \ {k1}),

as the map  �k1 shifts all values larger than k1 down by one. This allows us to rewrite
(28) in the case q > 2 as

1 ?? q |  �k1({2, . . . , q} \ {k1}).

With Corollary 4.20, we conclude that there exists a distribution in the model MGq+1,Cq+1

such that
1 ?? q + 1 | {2, . . . , q} \ {k1} (29)

does not hold in this distribution.

Now let k2 := min(K\{k1}). With the same argument as above, we show by contradiction
that k2 2 {2, . . . , q + 1} \ {k1}. Assume that k2 /2 {2, . . . , q + 1} \ {k1}. This implies
k2 > q + 1, so {2, . . . , q + 1} \ {k1} ✓ Z

⇤. Then, we again have |Z⇤| � q � 1, a
contradiction. Thus, we can write as above

{2, . . . , q} \ {k1} =  �k2({2, . . . , q + 1} \ {k1, k2}),

so (29) can in turn be rewritten as

1 ?? q + 1 |  �k2({2, . . . , q + 1} \ {k1, k2}).

Again, Corollary 4.20 implies that there exists a distribution in the model MGq+2,Cq+2 for
which

1 ?? q + 2 | {2, . . . , q + 1} \ {k1, k2}
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does not hold. We can continue this chain of reasoning until we conclude that there exists
a distribution in the model MGq+|K|,Cq+|K| for which

1 ?? q + |K| | {2, . . . , q + |K|� 1} \K (30)

does not hold. We have q + |K| = 2 + |Z|+ |K| = 2 + p
⇤ � 2 = p

⇤ and

{2, . . . , q + |K|� 1} \K = Z
⇤,

so (30) not holding for a distribution in the model MGp⇤ ,Cp⇤ is equivalent to

1 ?? p
⇤ | Z⇤

not holding for a distribution in the model MGp⇤ ,Cp⇤ , which is what we wanted to show.

Step 2. We show that there exists a distribution in the modelMGp,Cp for which i ?? j | S
does not hold.

This is exactly the claim of Corollary 4.14, which we have already proven.

Now we use Proposition 4.21 to prove Theorem 4.1.

Proof of Theorem 4.1. First, we show that there is a distribution in the model MG2,C2

for which 1 ?? 2 does not hold and that for q = 3, . . . , 102, there is a distribution in the
model MGq ,Cq for which 1 ?? q | 2, . . . , q � 1 does not hold. Let 2  q  102 and define

M :=

0

BBB@

�1
1 �1

. . . . . .
1 �1

1

CCCA
2 Rq⇥q

to be the q ⇥ q matrix with -1 on the diagonal, 1 on the first subdiagonal, and 0 in all
other entries. We solve the Lyapunov equation

M⌃+ ⌃MT + Cq = 0

with the computer algebra system Mathematica (Wolfram Research, Inc.) employing the
e�cient way of computation explained in section 3.3. Computing the determinant of
interest yields

det⌃1...q�1,2...q 6= 0

for 2  q  102. Thus, there exists a distribution in the model MGq ,Cq such that the
conditional independence statement 1 ?? q | 2, . . . , q � 1 (or 1 ?? 2 for q = 2) does not
hold in this distribution. The code for the calculations can be found in the additional
material.

Now let q := |Z| + 2 and assume that |Z|  100. Then, we have 2  q  102, so there
exists a distribution in the model MGq ,Cq for which

1 ?? q | 2, . . . , q � 1 (or 1 ?? 2 if q = 2)
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does not hold. Applying Proposition 4.21 then implies that there is a distribution in the
model MGp,Cp such that

i ?? j | S

does not hold in this distribution.

We close this chapter by returning to Example 4.2.

Example 4.22 (continuation of Example 4.2). We want to show that the conditional
independence statement

2 ?? 6 | 1, 4 (31)

does not hold in the Lyapunov model MG7,C7 of the directed path of length p = 7. Using
the terminology from Proposition 4.21 and Theorem 4.1, we have S = {1, 4} and Z = {4}.
Thus, we define q := |Z|+ 2 = 3. Proposition 4.21 states that (31) does not hold (for all
distributions) in MG7,C7 if

1 ?? 3 | 2 (32)

does not hold (for all distributions) in the model MG3,C3 . We apply the two steps of
the proof of Proposition 4.21 to construct the covariance matrix of a counterexample
distribution.

We know that the drift matrix

M
⇤⇤ =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A

induces a distribution in the Lyapunov model where (32) does not hold. The first step
of the proof of Proposition 4.21 is the consecutive application of Corollary 4.20: we
construct a node between node 1 and 2 that is highly correlated with node 1 as well
as a node between node 2 and 3 that is highly correlated with node 2. The resulting
distribution contradicts the statement

1 ?? 5 | 3

in the model MG5,C5 on p
⇤ = 5 nodes. In the proof of Corollary 4.20, we choose the

final covariance matrix that is used as a counterexample from a neighborhood of the
occurring limit. Consequently, we cannot write down the actual drift matrix that induces
the counterexample. We denote this new 5⇥ 5 drift matrix with M

⇤.

Applying Corollary 4.14 constitutes the second step of the proof of Proposition 4.21: we
construct nodes occurring before the first node and after the last node, each independent
from all other nodes. We do this by adding -1 on the diagonal and 0 entries on the
subdiagonal of the extended drift matrix, regardless of whether the added nodes are part
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of the conditioning set S. The resulting drift matrix

M =

0

BBBBBBBB@

�1 0 0 0 0 0 0
0

M
⇤

0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 �1

1

CCCCCCCCA

then yields a counterexample to (31). We illustrate the steps of extending a distribution
in the Lyapunov model to a distribution on a longer path in Figure 7.

1 2 3

(a) Path with q = 3 nodes. We know that we can contradict statement (32) with a
suitable distribution in the model.

1 2 3 4 5

(b) Path with p⇤ = 5 nodes. We extend the distribution to five nodes by adding two
nodes before and after the conditioning node and shifting the indices accordingly. The
added nodes are constructed so that they are highly correlated with existing nodes,
thereby preserving the dependence structure.

1 2 3 4 5 6 7

(c) Path with p = 7 nodes. We extend the distribution to seven nodes by adding
an independent conditioning node at the start and an independent node that does
not appear in the statement at the end of the path. Indices are shifted accordingly.
The dependence structure is preserved as well, so we constructed a counterexample
for (31).

Figure 7: The two steps of proving Proposition 4.21 illustrated by an example. The
conditioning nodes are marked light blue, and the newly constructed nodes are marked
grey. For better readability, we do not draw the self-loops.
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In the previous chapter, we gave a proof verifying our conjecture for a subset of condi-
tional independence statements (14) in the path model, namely by restricting the number
of conditioning variables between i and j appearing in the statement. We now consider
potential strategies for expanding Theorem 4.1 to a general statement proving the con-
jecture while illustrating the arising challenges.

The crucial point in verifying the conjecture is the first part of the proof of Theorem 4.1,
where we calculated determinants manually. The second part of the proof, where we
applied Proposition 4.21, works for any number of variables in the statement if a valid
counterexample exists showing that

1 ?? p | 2, . . . , p� 1 (33)

does not hold in MGp,Cp for a suitable value p 2 N�2. Thus, finding a way to generate
a counterexample to (33), i.e., a ⌃ 2 MGp,Cp where the determinant det⌃1...p�1,2...p is
non-zero, for any p 2 N�2 would imply that we can prove the conjecture.

5.1 Computing determinants

We saw in the proof of Theorem 4.1 that the distribution induced by a drift matrix
M 2 Stab(Ep) with -1 on the diagonal, 1 on the first subdiagonal, and 0 everywhere else
is a valid counterexample for p = 2, . . . , 102. Can we extend this example to arbitrary
dimensions?

To determine independence, we computed the determinant of the upper right (p � 1) ⇥
(p � 1) submatrix of ⌃ that arises as a solution of the Lyapunov equation defined by
M . The values of the computed determinants start to notably diverge away from zero at
around p = 50. For instance, while the determinant of interest is 0.0025 for p = 10 and
�0.9994 for p = 50, it already reaches values like 2.4637⇥109 for p = 100 and 6.6458⇥109

for p = 102. Performing the same computation for some randomly chosen larger values
of p also yields non-zero determinants, indicating that the distribution induced by such
a matrix M might be a valid counterexample for any p.

In these computations, we can observe that there is no recognizable pattern of the sign of
the calculated determinants, in particular, the computed determinants are not exclusively
positive or negative. Instead, the determinants are negative or positive in irregular fre-
quencies, thereby oscillating around zero with increasing absolute value for larger values
p.

Taking a closer look at the entries of such a covariance matrix ⌃ reveals that the matrix
entries become smaller and smaller along its rows and columns. Consequently, the values
of the entries are close together, which complicates the estimation of a bound away from
zero for the determinant. One solution could be to construct the drift matrices in a way
that the entries of ⌃ grow in such a manner along its rows and columns that determining
a bound between zero and the determinant is possible.

One way to construct growing entries in ⌃ is by keeping the entries of the diagonal of
M fixed at -1 as before and defining the entries on the subdiagonal as an ascending se-
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quence, for example with mi+1,i = 2i or mi+1,i = 10i. In principle, we could use Gaussian
elimination on the submatrix ⌃1...p�1,2...p to bring it in a diagonal form. Then we can
determine whether its determinant is non-zero: it is non-zero if and only if all of the
resulting diagonal entries are non-zero. However, a general proof is not straightforward
because simulations show that such a matrix ⌃ still produces positive and negative de-
terminants of the submatrix ⌃1...p�1,2...p depending on the number of nodes p. Therefore,
bounding the determinant away from zero is still a challenge.

A similar way to construct growing entries in ⌃ is by keeping the subdiagonal entries
fixed at 1 and defining the diagonal entries as a descending sequence, for example with
mi,i = 2�i. Simulations suggest that in this case, the determinant of interest stays positive
in every dimension p. However, we are still left with the issue of computing a bound on
the determinant asserting that the determinant always stays positive. It becomes clear
that the approach of computing the determinant directly would require a tractable way
of computing the determinant of the desired submatrix of ⌃ in any dimension p allowing
us to bound the determinant away from zero. Thus, it might be more sensible to find
a di↵erent approach that does not require the computation of a determinant that is not
easily tractable in arbitrary dimensions.

5.2 Constructing independent conditioning nodes

We saw in Section 4.3 that we are able to add nodes between 1 and p such that they
behave approximately like existing nodes in the model. In the proof of Theorem 4.1, we
used this way of constructing nodes only for nodes not occurring in the conditioning set.
Pursuing this idea further naturally leads to the idea of making the conditioning nodes
highly correlated with each other: the conditioning nodes 2, . . . , p � 1 then e↵ectively
behave as one node as in the path model with three nodes. Thus, we would only need
to prove that (33) does not hold for q = 3, which we already have. At first glance, this
strategy seems straightforward. However, it creates a new set of challenges.

5.2.1 The candidate matrix

We start with the three-node counterexample with drift and covariance matrices

M
⇤ =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A 2 Stab(E3) and ⌃⇤ =

0

B@
1 1

2
1
4

1
2

3
2

7
8

1
4

7
8

15
8

1

CA 2 MG3,C3 ,

respectively. Now let p 2 N>3. Can we follow a similar strategy as in Section 4.3 to
construct a matrix ⌃ on the boundary of the model MGp,Cp such that the statement (33)
does not hold in the distribution induced by ⌃? If so, we can aim to show that there is
also a matrix in the model where the statement does not hold.
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5 Towards a general statement

Let p 2 N�3. The case p = 2 is considered in Chapter 3. Consider the matrix

⌃ :=

0

BBBBBBB@

1 1
2 · · · 1

2
1
4

1
2

3
2 · · · 3

2
7
8

...
...

. . .
...

...
1
2

3
2 · · · 3

2
7
8

1
4

7
8 · · · 7

8
15
8

1

CCCCCCCA

2 Rp⇥p (34)

where all middle rows and columns are duplicates of each other. Following our delib-
erations above, we suspect that (33) does not hold in the distribution defined by this
matrix.

To prove this, our first instinct might be to apply the determinant criterion in Lemma 3.10.
However, the matrix ⌃ is only positive semi-definite for p > 3 and the submatrix ⌃1...p�1,...p

is singular for p > 3. The criterion on the determinant only applies to multivariate nor-
mal distributions with positive definite covariance matrix. As a consequence, we have
to resort back to the elementary condition for conditional independence in Lemma 3.9
based on the covariance matrix of the conditional distribution of (X1,Xp)

T |X2, . . . ,Xp�1.

Let S := {2, . . . , p� 1}. We want to show that the conditional covariance

(⌃1p,1p·S)12 = ⌃1,p � ⌃1,S(⌃S,S)
�⌃S,p (35)

of X1 and Xp given XS is non-zero in the distribution defined by ⌃.

As the generalized inverse (⌃S,S)� in the formula (35), we choose the Moore-Penrose
inverse denoted by (⌃S,S)+ since it can be easily computed via the singular value decom-
position of the matrix ⌃S,S.

Lemma 5.1. We have
(⌃1p,1p·S)12 6= 0,

i.e., 1 ?? p | 2, . . . , p� 1 does not hold for X = (X1, . . . ,Xp)
T ⇠ Np(0,⌃).

Proof. Let X follow the multivariate normal distribution Np(0,⌃). If p = 3, the matrix
⌃ is positive definite. Then we can apply the determinant criterion where we already
know that the determinant is non-zero.

Thus, we assume from now on that p > 3. Then, the matrix ⌃ is positive semi-definite.
Following Lemma 3.9, the conditional covariance of X1 and Xp given XS is given by the
Schur complement (35). Let n := p� 2. Hence, we have

⌃1,p =
1

4
, ⌃1,S =

1

2
(1, . . . , 1) 2 R1⇥n, and ⌃S,p =

7

8

0

B@
1
...
1

1

CA 2 Rn⇥1.

The only thing left to compute is the generalized inverse of

⌃S,S =
3

2

0

B@
1 · · · 1
...

. . .
...

1 · · · 1

1

CA 2 Rn⇥n.
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The Moore-Penrose inverse (⌃S,S)+ can be computed via the singular value decomposition
⌃S,S = U�V

T with U ,V 2 Rn⇥n orthonormal and � 2 Rn⇥n diagonal. The columns

of U are the eigenvectors of ⌃S,S⌃S,S
T
and the columns of V are the eigenvectors of

⌃S,S
T
⌃S,S, while the diagonal entries of � are the square roots of the corresponding

eigenvalues. Since ⌃S,S
T
= ⌃S,S, we have U = V and therefore only need to compute the

eigenvectors and eigenvalues of (⌃S,S)2.

We have

(⌃S,S)
2 =

9

4

0

B@
n · · · n

...
. . .

...
n · · · n

1

CA =
9

4
n

0

B@
1 · · · 1
...

. . .
...

1 · · · 1

1

CA 2 Rn⇥n.

The eigenvalues are �1 =
9
4n

2 and �2 = · · · = �n = 0. A corresponding set of eigenvectors
is formed by

ẽ1 =

0

BBBBB@

1

...

1

1

CCCCCA
, ẽ2 =

0

BBBBB@

�1
0
...
0
1

1

CCCCCA
, . . . , ẽn =

0

BBBBB@

�1
1
0
...
0

1

CCCCCA
.

Since the matrix is symmetric, we know that the eigenspaces corresponding to the eigen-
values 9

4n
2 and 0 are orthogonal to each other. Therefore, we normalize ẽ1 and then apply

the Gram-Schmidt process to the eigenvectors ẽ2, . . . , ẽn yielding an orthonormal basis
e1, . . . , en of Rn. Thus,

U = V =

0

@
| | |
e1 e2 · · · en

| | |

1

A and � = diag

✓
3

2
n, 0 . . . , 0

◆
.

The Moore-Penrose inverse of ⌃S,S with

�+ = diag

✓
2

3n
, 0, . . . , 0

◆

is then

(⌃S,S)
+ = V�+

U
T =

2

3n
e1 · e1T =

2

3n

0

B@
1 · · · 1
...

. . .
...

1 · · · 1

1

CA 2 Rn⇥n.

Therefore,

(⌃1p,1p·S)12 = ⌃1,p � ⌃1,S⌃
�
S,S⌃S,p =

1

4
� 7

16

2

3n2
n
2 =

1

4
� 7

24
= � 1

24
6= 0,

which implies that 1 ?? p | 2, . . . , p� 1 does not hold in this distribution.

We have found the covariance matrix of a distribution where the conditional independence
statement (33) does not hold. In this distribution, the nodes 2 to p � 1 are perfectly
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correlated. It is obvious that the matrix ⌃ is singular and therefore not positive definite.
Consequently, it cannot lie in the model MGp,Cp . Instead, we show in the following that
the matrix is an element of the closure MGp,Cp of the model.

Lemma 5.2. Let p � 3 and define ⌃ 2 Rp⇥p as above. Then we have

⌃ 2 MGp,Cp ,

i.e., there is a sequence (⌃(m))m2N>0 in MGp,Cp such that

lim
m!1

⌃(m) = ⌃.

Proof. We prove this fact by induction. The idea is to repeatedly apply Lemma 4.17 to a
specific distribution on three nodes and thereby repeatedly duplicating the middle node.
To be able to specify the matrix ⌃ in di↵erent dimensions, we indicate the dimension of
the respective matrices via a subscript by writing ⌃(3) 2 R3⇥3, ⌃(p�1) 2 R(p�1)⇥(p�1), and
⌃(p) 2 Rp⇥p.

We start with the case p = 3 by considering the distribution induced by the drift matrix

M =

0

@
�1 0 0
1 �1 0
0 1 �1

1

A 2 Stab(E3).

In Example 3.11, we saw that the Lyapunov equation

M⌃+ ⌃MT + C3 = 0

is solved by the covariance matrix ⌃ = ⌃(3), so ⌃(3) 2 MG3,C3 ✓ MG3,C3 . We can further
set ⌃(m) := ⌃(3) for all m 2 N>0.

For the induction step, let p 2 N>3 and consider

⌃(p�1) =

0

BBBBBBBB@

1 1
2 · · · 1

2
1
4

1
2

3
2 · · · 3

2
7
8

...
...

. . .
...

...
1
2

3
2 · · · 3

2
7
8

1
4

7
8 · · · 7

8
15
8

1

CCCCCCCCA

2 R(p�1)⇥(p�1).

We assume that ⌃(p�1) 2 MGp�1,Cp�1 . Then, there is a sequence

(⌃(n)
(p�1))n2N>0 in MGp�1,Cp�1

such that
lim
n!1

⌃(n)
(p�1) = ⌃(p�1).

We cannot directly apply Lemma 4.17 to ⌃(p�1), as the matrix that we want to extend
has to be in the model MGp�1,Cp�1 . Instead, we can apply Lemma 4.17 to the elements

⌃(n)
(p�1) of the matrix sequence.
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Due to Lemma 4.17, for every n 2 N>0, there is a p⇥ p matrix �(n) 2 MGp,Cp such that

⇧(�(p�1))(�
(n)) = ⌃(n)

(p�1)

and

(�(n))p�1,j = (�(n))p�2,j as well as (�
(n))j,p�1 = (�(n))j,p�2 for all j 2 1, . . . , p.

Thus, the matrix �(n) is constructed from ⌃(n)
(p�1) by inserting a row and column at index

p� 1 such that the (p� 1)-th row and column are a duplicate of the (p� 2)-th row and
column. This gives us a sequence of singular matrices in MGp,Cp \MGp,Cp .

Define � := limn!1 �(n). Since MGp,Cp is closed, we have � 2 MGp,Cp . Note that the
limit operation is applied element-wise to the matrices and that the projection map does
not change the values of the remaining entries. Therefore, we have

⇧(�(p�1))(�) = ⇧(�(p�1))( lim
n!1

�(n)) = lim
n!1

⇧(�(p�1))(�
(n)) = lim

n!1
⌃(n)

(p�1) = ⌃(p�1)

as well as

�p�1,j = ( lim
n!1

�(n))p�1,j = lim
n!1

(�(n))p�1,j = lim
n!1

(�(n))p�2,j = ( lim
n!1

�(n))p�2,j = �p�2,j

for all j 2 1, . . . , p, where the same holds for columns. This implies

� =

0

BBBBBBBBBB@

1 1
2 · · · 1

2
1
2

1
4

1
2

3
2 · · · 3

2
3
2

7
8

...
...

. . .
...

...
...

1
2

3
2 · · · 3

2
3
2

7
8

1
2

3
2 · · · 3

2
3
2

7
8

1
4

7
8 · · · 7

8
7
8

15
8

1

CCCCCCCCCCA

2 Rp⇥p,

so � = ⌃(p) and consequently ⌃(p) 2 MGp,Cp . We conclude that there is a sequence

(⌃(m)
(p) )m2N>0 in MGp,Cp such that

lim
m!1

⌃(m)
(p) = ⌃(p).

Remark 5.3. It is important to note here that we only showed the existence of a se-
quence in MGp,Cp converging to ⌃(p), not an explicit construction of such a sequence.
Consequently, we do not know what the matrices in the sequence look like. For the
considerations presented in the following, the existence of such a sequence is su�cient.
However, especially for simulations, it is useful to be able to explicitly construct a se-
quence. We claim that such a construction is possible by solving the Lyapunov equation
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for a sequence of drift matrices

M
(m) :=

0

BBBBBBB@

�1
1 �1

m �m

. . . . . .
m �m

1 �1

1

CCCCCCCA

2 Stab(Ep)

for m 2 N>0. The resulting sequence of covariance matrices ⌃(m) then converges to the
matrix ⌃ 2 MGp,Cp defined in (34). The proof is similar to the proof of Lemma 4.17. We
partition the matrices M (m) and ⌃(m) in nine block partitions and then solve, due to the
symmetry of the equation, the resulting six unique equations of the block partitions by
consecutively taking the limits and inserting the results from the equations solved before.
We do not give a rigorous proof of this fact, as we do not necessarily require the result
for the remainder of this thesis.

Combining the result of Lemma 5.1 and Lemma 5.2 shows that the independence state-
ment

1 ?? p | 2, . . . , p� 1 (36)

does not hold in the closureMGp,Cp of the model. All that remains is to find a distribution
that is actually in the path model MGp,Cp , such that (36) does not hold either in this
distribution.

5.2.2 Continuity and the Schur complement

In the proof of Corollary 4.20, we were faced with a similar task – the only di↵erence
being that the submatrix of interest of the covariance matrix in the proof of Corollary 4.20
was non-singular so that the determinant criterion could be applied. There, we solved
the boundary issue by exploiting the continuity of the determinant: if the determinant is
non-zero on the model’s boundary, then there is a matrix ⌃ in the interior and therefore
in the model with non-zero determinant.

This strategy, however, is not applicable here as the submatrix ⌃2...p,1...p�1 is singular,
so we have to compute the conditional covariance directly as seen in Lemma 5.1. Now
we face the challenge that, unlike the actual inverse, a generalized inverse is in general
not continuous (Stewart, 1969; Ben-Israel and Greville, 2003). As a consequence, the
conditional covariance that is defined as the Schur complement of a submatrix of ⌃ is in
general not continuous either. Can we still prove convergence of the Schur complement
in our specific example?

We keep the notation from Lemma 5.1 and Lemma 5.2 and assume that p 2 N>3. We
consider a sequence of positive definite covariance matrices ⌃(m) in the model MGp,Cp

converging to the positive semi-definite but not positive definite covariance matrix ⌃ in
the closure MGp,Cp of the model, that is

⌃(m) ! ⌃ for m ! 1.
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The conditional covariance of X1 and Xp given XS obtained through the Schur comple-
ment is

⌃(m)
cond := (⌃(m)

1p,1p·S)12 = ⌃(m)
1,p � ⌃(m)

1,S (⌃
(m)
S,S )

�1⌃(m)
S,p 2 R

for every ⌃(m) and

⌃cond := (⌃1p,1p·S)12 = ⌃1,p � ⌃1,S(⌃S,S)
+⌃S,p 2 R

for ⌃. Given that ⌃(m) ! ⌃, the question is now whether

⌃(m)
cond ! ⌃cond for m ! 1.

For easier notation, we set n := p� 2 and we define

v
(m) := ⌃(m)

1,S

T
and v := ⌃1,S

T
=

1

2
1n,

w
(m) := ⌃(m)

S,p and w := ⌃S,p =
7

8
1n,

A
(m) := ⌃(m)

S,S and A := ⌃S,S =
3

2
1n⇥n.

Then we have v = limm!1 v
(m), w = limm!1 w

(m), and A = limm!1 A
(m). We can

illustrate these definitions in matrix notation as

⌃(m) =

0

BBBBBBB@

⇤ v
(m)T ⌃(m)

1,p

⇤ A
(m)

w
(m)

⇤ ⇤ ⇤

1

CCCCCCCA

m!1���!

0

BBBBBB@

⇤ v
T ⌃1,p

⇤ A w

⇤ ⇤ ⇤

1

CCCCCCA
= ⌃. (37)

The first summand of ⌃(m)
cond, i.e., ⌃

(m)
1,p , is an entry of ⌃(m) so we know that it is convergent.

The second part of the term is the inverse of ⌃(m)
S,S multiplied with two vectors that are sub-

matrices of ⌃(m) – in the newly introduced notation it is the product v(m)T (A(m))�1
w

(m).
The following example suggests that this product might be convergent as well.

Example 5.4. We consider the case p = 4, where we have

⌃ =

0

BBBB@

1 1
2

1
2

1
4

1
2

3
2

3
2

7
8

1
2

3
2

3
2

7
8

1
4

7
8

7
8

15
8

1

CCCCA

and

⌃(m) =

0

BBBBB@

1 1
2

1
2

m
1+m

1
4

m
1+m

1
2

3
2

4m+3m2

2(1+m)2
9m+7m2

8(1+m)2

1
2

m
1+m

4m+3m2

2(1+m)2
2+4m+6m2+3m3

2m(1+m)2
8+16m+24m2+21m3+7m4

8m(1+m)3

1
4

m
1+m

9m+7m2

8(1+m)2
8+16m+24m2+21m3+7m4

8m(1+m)3
8+24m+48m2+45m3+15m4

8m(1+m)3

1

CCCCCA

67

Mobile User



5 Towards a general statement

constructed via Lemma 4.17 through a sequence of drift matrices

M
(m) =

0

BB@

�1 0 0 0
1 �1 0 0
0 m �m 0
0 0 1 �1

1

CCA .

This implies S = {2, 3} and n = 2. We further define v
(m), w(m), A(m), as well as the

corresponding limits v, w, and A as above in (37).

Observe that for every m 2 N>0, we have

detA(m) =
6 + 24m+ 48m2 + 41m3 + 12m4

4m(1 +m)4
> 0,

so the matrix A
(m) is invertible with

(A(m))+ = (A(m))�1 =

 
2(1+m)2(2+4m+6m2+3m3)
6+24m+48m2+41m3+12m4 � 2m2(1+m)2(4+3m)

6+24m+48m2+41m3+12m4

� 2m2(1+m)2(4+3m)
6+24m+48m2+41m3+12m4

6m(1+m)4

6+24m+48m2+41m3+12m4

!
.

On the contrary, A is not invertible – due to its linearly dependent rows and columns.
The Moore-Penrose inverse of A computed via the singular value decomposition as in
Lemma 5.1 is

A
+ =

2

3
· 1

22

✓
1 1
1 1

◆
=

1

6

✓
1 1
1 1

◆
=

1

9
A.

Unfortunately, we have

lim
m!1

(A(m))+ = lim
m!1

(A(m))�1 =

✓
1 �1
�1 1

◆
6= A

+,

so we cannot interchange taking the limit and forming the Moore-Penrose inverse. This
example illustrates that the Moore-Penrose inverse is in general not continuous.

Remark 5.5. There exist special cases where continuity holds (Stewart, 1969; Ben-Israel
and Greville, 2003). For example, under specific conditions on the error, a sequence of
matrices converges in the Moore-Penrose inverse if and only if the rank of the matrices
converges as well. In general terms, convergence of the Moore-Penrose inverse of A(m) is
equivalent to the existence of m0 2 N such that rank(A(m)) = rank(A) for all m > m0.
This is not the case in our example, as the matrices in the sequence all have full rank
while rank(A) = 1.

We turn our attention to the product (v(m))
T
A

(m)
w

(m) that we suspect to converge to the
product vTAw in this setting.

Example 5.6 (continuation of Example 5.4). We make the following observation:

(A(m))�1

✓
1
1

◆
=
��
1 1

�
(A(m))�1

�T
=

 
4(1+m)4

6+24m+48m2+41m3+12m4

2m(1+m)2(3+2m)
6+24m+48m2+41m3+12m4

!
m!1���!

 
1
3

1
3

!
.
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Therefore, we have

v
T (A(m))�1 m!1���! 1

2

�
1
3

1
3

�
=
�
1
6

1
6

�

and

(A(m))�1
w

m!1���! 7

8

 
1
3

1
3

!
=

 
7
24

7
24

!
.

Computing the full bilinear form yields

v
T (A(m))�1

w ! 7

24
.

The products (v(m))
T
A

(m), A(m)
w

(m), and (v(m))
T
A

(m)
w

(m) converge to these values as
well. Thus, the Moore Penrose inverse of A(m) seems to converge when multiplied with
specific vectors, for example, the vectors v and w.

Since they are symmetric, the matrices A and A
(m) are diagonalizable. The matrices A

and A
+ have rank 1, so they have exactly one non-zero eigenvalue. For both matrices,

the eigenvector generating the eigenspace of the non-zero eigenvalue is
0

B@
1
...
1

1

CA 2 Rn.

Note that v,w 2 Rn are both eigenvectors from this eigenspace. We did observe in
Example 5.6 that the bilinear form

(v(m))T (A(m))�1
w

(m) (38)

converges and we know that v(m) converges to the eigenvector v and w
(m) to the eigenvec-

tor w. The matrix-vector products (v(m))T (A(m))�1 and (A(m))�1
w

(m) converge as well.
Do these observations with respect to eigenvectors hold in general?

Example 5.7. The convergence of the bilinear form (38) observed in Example 5.6 does
not necessarily hold in a general example. Assume

A =

0

BBB@

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

1

CCCA
2 Rn⇥n and A

(m) =

0

BBB@

1 0 · · · 0
0 "

(m) · · · 0
...

...
. . .

...
0 0 · · · "

(m)

1

CCCA
2 Rn⇥n

such that "(m) ! 0 for m ! 1. Further, let

v = w =

0

BBB@

1
0
...
0

1

CCCA
2 Rn and v

(m) = w
(m) =

0

BBB@

1
⌘
(m)

...
⌘
(m)

1

CCCA
2 Rn
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5 Towards a general statement

such that ⌘(m) ! 0 for m ! 1. Then, we have A
(m) ! A, v(m) ! v, and w

(m) ! w for
m ! 1. The vectors v and w are eigenvectors of A (and of A(m)). The inverse of the
diagonal matrix A

(m) is

(A(m))�1 =

0

BBB@

1 0 · · · 0
0 ("(m))�1 · · · 0
...

...
. . .

...
0 0 · · · ("(m))�1

1

CCCA
2 Rn⇥n.

Computing the vector-matrix product yields

(A(m))�1
w

(m) =

0

BBB@

1
⌘
(m)("(m))�1

...
⌘
(m)("(m))�1

1

CCCA
.

For example, with ⌘
(m) = 1

m and "
(m) = 1

m2 , we have ⌘(m)("(m))�1 = m ! 1, so the
inverse does not converge along w

(m) for m ! 1. Computing the bilinear form yields

(v(m))T (A(m))�1
w

(m) = 1 + (n� 1)(⌘(m))2("(m))�1.

With, for example, ⌘(m) = 1
m and "(m) = 1

m3 , we have ⌘(m)("(m))�1 = m ! 1. Then the
bilinear form does not converge.

The example shows that it is not possible to show convergence of the conditional co-
variance matrix ⌃(m)

cond based on the fact that v = ⌃1,S and w = ⌃S,p are eigenvectors of
A = ⌃S,S. Instead, stronger assumptions are required.

5.3 Continuity of diagonalization

Since we already diagonalized A in order to compute its Moore-Penrose inverse, the idea
to diagonalize the sequence elements A(m) as well presents itself naturally. Then we can
investigate the convergence properties of the diagonal matrices and the change-of-basis
matrices separately.

Remember that each matrix A
(m) in the sequence is real, symmetric, and positive definite,

so it can be diagonalized by an orthogonal matrix U
(m) 2 Rn⇥n such that

D
(m) := (U (m))TA(m)

U
(m)

is a diagonal matrix with real non-negative entries. Consequently, we have

A
(m) = U

(m)
D

(m)(U (m))T .

Note that all eigenvalues of A(m) are real and positive. Since A
(m) is invertible, we can

write
(A(m))�1 = U

(m)(D(m))�1(U (m))T

or equivalently
(D(m))�1 = (U (m))T (A(m))�1

U
(m).
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5 Towards a general statement

Since A is real and symmetric as well, we can perform a similar diagonalization for A

with an orthogonal matrix U 2 Rn⇥n such that

D := U
T
AU

is a diagonal matrix where the eigenvalues of A are on the diagonal.

Without loss of generality, we assume that the diagonal entries of D(m) and D are in
descending order. Since A has rank 1, we know that the diagonal of D consists of one
non-zero entry followed by n� 1 zero entries.

5.3.1 Eigenvalues

First, we study the convergence properties of the diagonal matrix D
(m). Its diagonal

consists of the n eigenvalues of A(m). These eigenvalues are real since A
(m) is symmetric

with real entries for all m 2 N>0 and they are positive since A
(m) is positive definite for

all m 2 N>0.

We denote the i-th largest eigenvalue of a symmetric real matrix B as �i(B) 2 R for
i 2 [n], so we have

�1(B) � · · · � �n(B).

Weyl’s perturbation theorem states that two hermitian matrices B and C fulfill

max
i

|�i(B)� �i(C)|  kB � Ck

if the eigenvalues are ordered in a descending manner where k · k denotes the operator
norm. The statement can be extended to

kdiag(�1(B), . . . ,�n(B))� diag(�1(C), . . . ,�n(C))k  kB � Ck. (39)

Note that this holds not only for the operator norm but any unitarily invariant norm. In
other words, the eigenvalues are continuous functions on the space of hermitian matrices
(Bhatia, 1997).

We can enumerate the eigenvalues of A(m) for every m 2 N>0 in descending order

�1(A
(m)) � · · · � �n(A

(m))

as well. A similar enumeration can be done for A. Since A
(m) and A are symmetric real

matrices, statement (39) above implies

kD(m) �Dk  kA(m) � Ak

for all m 2 N>0. We conclude that if A
(m) converges to A for m ! 1, then D

(m)

converges to D for m ! 1.

Remark 5.8. An alternative argument for symmetric real matrices can be given as follows.
The eigenvalues of a matrix B are the roots of the characteristic polynomial of B. The
coe�cients of the characteristic polynomial are continuous functions in the entries of
B and therefore in B itself. The roots of the polynomial are continuous functions in
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5 Towards a general statement

the coe�cients of the characteristic polynomial and therefore also in B (Bhatia, 1997).
Combining these results, we have that the set of eigenvalues of B is continuous in B

(Kato, 1995). Choosing the maximum element of a finite set is also continuous, so by
ordering the eigenvalues of A(m) for every m 2 N>0 in descending order as above we can
parametrize them as continuous functions in A

(m) (Kato, 1995). Then, if A(m) converges
to A for m ! 1, each eigenvalue of A(m) converges to a corresponding eigenvalue of A.

We know that the matrix A has two distinct eigenvalues, � := �1(A) =
3
2n with multi-

plicity 1 and �2(A) = · · · = �n(A) = 0 with multiplicity n� 1. Denoting the eigenvalues

of A(m) by �(m)
i := �i(A(m)) for i 2 [n], we have due to their ordering

D
(m) =

0

BBB@

�
(m)
1

�
(m)
2

. . .

�
(m)
n

1

CCCA
m!1���!

0

BBB@

3
2n

0
. . .

0

1

CCCA
= D.

5.3.2 Eigenvectors

As a next step, we study the convergence of eigenvectors. First, we revisit Example 5.4.

Example 5.9 (continuation of Example 5.4). If we diagonalize the matrices A(m) and A

as proposed, we have diagonal matrices

D
(m)

=

0

@
2+7m+12m2+6m3+

p
4+4m+m2+64m4+96m5+36m6

4m(1+m)2 0

0 2+7m+12m2+6m3�
p
4+4m+m2+64m4+96m5+36m6

4m(1+m)2

1

A

and

D =

✓
3 0
0 0

◆
.

We form the orthogonal matrix U
(m) by choosing corresponding orthonormal eigenvectors

of A(m). In this example, simulations show that the resulting change-of-basis matrix U
(m)

actually converges to an orthogonal matrix that can be chosen as the change-of-basis
matrix U for diagonalizing A.

Can we in general choose the eigenvectors that form U
(m) in a way such that U

(m)

converges to U? This task is not as straightforward as establishing the convergence
of the eigenvalues. The eigenspaces behave in a way more singular than the eigenvalues.
To illustrate this fact, we study an example.

Example 5.10. For x 2 R, consider the matrix function

B(x) =

8
>>>><

>>>>:

 
1 x

x 1

!
, if x � 0;

 
1 + x 0

0 1� x

!
, if x < 0;

.
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Note that we have

B(0) =

✓
1 0
0 1

◆
,

so B(x) is continuous in x. The eigenvalues of B(x) are given by 1+x and 1�x for x 2 R,
so they are distinct for x 6= 0. Thus, the eigenvectors of B(x) are uniquely determined
up to multiplicity for x 6= 0 . For x > 0, they are, for example, given by the orthonormal
vectors v1 = (1, 0)T and v2 = (0, 1)T . For x < 0, they are, for instance, given by the
orthonormal vectors w1 = 1p

2
(1, 1)T and w2 = 1p

2
(1,�1)T . At x = 0, the matrix B(x)

only has eigenvalue 1, so the eigenvectors can be chosen as any, possibly orthonormal,
basis of R2. It is clear that regardless of what we choose as eigenvectors for B(0), the
eigenvectors for x > 0 and x < 0 stay apart. In other words, it is not possible to choose
orthonormal eigenvectors of B(x) continuously in x (Bhatia, 1997).

The example shows that given a matrix function B(x) depending on a real parameter x,
continuity in x of said function is not su�cient to ensure the existence of orthonormal
eigenvectors continuous in x. There are further examples that illustrate that even if
the matrix function is infinitely di↵erentiable for real x, the eigenvectors might not be
continuous (Kato, 1995). Therefore, stronger assumptions on the function B(x) are
needed. We recap the required notions as follows.

A complex function defined on an open set V is holomorphic in V if it is complex dif-
ferentiable at every point of its domain V (Freitag and Busam, 2009). The function is
called holomorphic at a point x0 if it is holomorphic in a neighborhood of x0 and it is
called holomorphic on a non-open set X if it is holomorphic at every point of X. If a
function is holomorphic, it can be shown that it is infinitely complex di↵erentiable at
every point of the domain (Freitag and Busam, 2009). This does not hold the other way
around when restricting to a point (Conway, 1995): if a function is infinitely complex
di↵erentiable at a point, this does not imply that it is di↵erentiable at any other point
in an open neighborhood. Thus, being holomorphic is a stronger property than being
infinitely (complex) di↵erentiable. Note that the notion of analytic functions, i.e., func-
tions that can locally be represented by convergent power series, is closely related as it
can be shown that complex analytic functions are equivalent to holomorphic functions
(Conway, 1995; Krantz and Parks, 2002). Consequently, the term analytic is often used
in literature instead of holomorphic.

Given a family of symmetric operators A(x) with x 2 C for some open set C 2 C inter-
secting with the real axis, we know that for each real x 2 C there is an orthonormal basis
of eigenvectors {ui(x)}i2[n]. Kato (1995) shows that if A(x) is holomorphic in x, the or-
thonormal eigenvectors can be chosen as holomorphic and therefore continuous functions
in x as well for every real x. In other words, the function A(x) being holomorphic and
symmetric is su�cient for the existence of an orthonormal basis that depends smoothly
on x.

Let A(m) := A
(m) for m 2 N>0. We define the matrix function A(x) by continuously

extending A(m) to the positive real line by replacing the parameter m with positive real
values x, i.e., we define the map

A : (0,1) ! Rn⇥n, x 7! A(x) := A
(x)
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for x 2 R>0. Note that the entries of A(x) are quotients of polynomials in x. In particular,
the coe�cients of the polynomials in the denominator of each entry of A(x) are all positive
due to the recursive construction of A(m) by solving the Lyapunov equation. Thus, the
polynomials in the denominators do not have roots in R>0.

Polynomials are holomorphic functions in C. Quotients of holomorphic functions away
from the roots of the denominator are holomorphic as well (Conway, 1995). Therefore,
A(x) is holomorphic on the complement C ✓ C of the roots of the denominators of all
matrix entries of A(x). The set C is open and it contains R>0, so we obtain that A(x) is
holomorphic on R>0.

Thus, we can conclude that there is an orthonormal basis {ui(x)}i2[n] that depends con-
tinuously on x and consist of eigenvectors of A(x). We choose these vectors as the

columns of the change-of-basis matrix U
(m) by setting u

(m)
i := ui(m) ordered such that

they correspond to the correct eigenvalues. Then, we can write

U
(m) :=

0

@
| | |

u
(m)
1 u

(m)
2 . . . u

(m)
n

| | |

1

A .

As A
(m) goes to A for m ! 1, the holomorphically chosen eigenvectors u

(m)
i of A(m)

converge to eigenvectors ui of A, so we can choose

U :=

0

@
| | |
u1 u2 . . . un

| | |

1

A .

5.4 Challenges

We recapitulate the progress we made so far. Remember that we want to show that

(v(m))T U
(m)(D(m))�1(U (m))T| {z }

(Am)�1

w
(m) m!1���! v

T
UD

+
U

T
| {z }

A+

w, (40)

in other words that the Moore-Penrose inverse of A(m) converges in this bilinear form
multiplied with v

(m) and w
(m) to the Moore-Penrose inverse of A multiplied with v and w.

This would imply convergence of the conditional covariances ⌃(m)
cond ! ⌃cond for m ! 1.

We collect everything we know about the convergence of the variables in the statement:

• The invertible diagonal matrix D
(m) converges to the singular diagonal matrix D

(see Section 5.3.1).

• The orthogonal matrix U
(m) converges to the orthogonal matrix U (both defined in

Section 5.3.2).

• The vectors v
(m) and w

(m) converge to the vectors v and w, respectively (as they
are subvectors of ⌃(m) and ⌃).
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The Moore-Penrose inverse of the diagonal matrix D
(m) does not converge by itself due

to some eigenvalues converging to zero, so we need to consider the product as a whole.
Further note that v and w are in the eigenspace belonging to the non-zero eigenvalue � of
A. Therefore, they are orthogonal to all columns of U except for the first column. Thus,
we have u

T
i v = 0 for 2  i  n.

Both vector-matrix products

(v(m))TU (m) ! v
T
U and (U (m))Tw(m) ! U

T
w

converge since their factors converge themselves. Then, it is enough to prove the conver-
gence of either ((v(m))TU (m))(D(m))�1 or (D(m))�1(U (m)

w
(m)) in (40), as the respective

other factors already converge. Thus, we aim to prove that

((v(m))TU (m))(D(m))�1 ! (vTU)D+

for m ! 1.

Writing out the definitions yields

((v(m))TU (m))(D(m))�1 =

0

BBBBB@

(u(m)
1 )Tv(m)

(u(m)
2 )Tv(m)

...

(u(m)
n )Tv(m)

1

CCCCCA

T

(D(m))�1 =

0

BBBBBBB@

(u
(m)
1 )T v(m)

�
(m)
1

(u
(m)
2 )T v(m)

�
(m)
2
...

(u
(m)
n )T v(m)

�
(m)
n

1

CCCCCCCA

T

and

(vTU)D+ =

0

BBB@

(u1)T v
�

0
...
0

1

CCCA

T

.

Since one eigenvalue of A(m) converges to � 6= 0 and n� 1 eigenvalues converge to 0, we
need to distinguish two cases. We have to show that the quotients

q
(m)
i :=

(u(m)
i )Tv(m)

�
(m)
i

, i 2 [n],

converge to (u1)T v
� for i = 1 and to 0 for 2  i  n when m ! 1. The case i = 1 is

straightforward since �(m)
1 converges to � 6= 0. The numerator (u(m)

1 )Tv(m) converges to

u
T
1 v, so q

(m)
1 converges as well for m ! 1.

The case 2  i  n is not as straightforward, as the eigenvalue �(m)
i converges to zero. The

numerator (u(m)
i )Tv(m) converges to u

T
i v = 0 as well, so we have to show that (u(m)

i )Tv(m)

goes to zero faster than the eigenvalue itself. If we can prove that

q
(m)
i

m!1���! 0 (41)
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for 2  i  n, then we can conclude that the conditional covariance ⌃(m)
cond converges to

⌃cond for m ! 1. Since we already know that ⌃cond 6= 0, we can then find a ⌃̂ 2 MGp,Cp

in a neighborhood of ⌃cond such that the conditional independence is non-zero in this
distribution as well. Proving (41) lies beyond the scope of this thesis. We conclude the
chapter by formulating the challenges that remain on the way to a proof of (41), and we
present some initial ideas on how to address these challenges.

Rate of convergence. Let 2  i  n. We want to show that the q
(m)
i converge to

zero or, in other words, that the denominators of the q
(m)
i converge more slowly to zero

than the numerators of the q
(m)
i . That means we have to relate the convergence of the

numerators (u(m)
i )

T
v
(m) to the convergence of the eigenvalues �(m)

i . This marks the main
challenge on the way to a proof.

As a first idea, we can infer

|(u(m)
i )Tv(m) � 0| = |(u(m)

i )Tv(m) � u
T
i v|

= |(u(m)
i )Tv(m) � (u(m)

i )Tv + (u(m)
i )Tv � u

T
i v|

= |(u(m)
i )T (v(m) � v) + (u(m)

i � ui)
T
v|

 |(u(m)
i )T (v(m) � v)|+ |(u(m)

i � ui)
T
v|

 ku(m)
i k2kv(m) � vk2 + ku(m)

i � uik2kvk2

= kv(m) � vk2 +
p
n

2
ku(m)

i � uik2
m!1���! 0,

where we use the triangle inequality, the Cauchy-Schwarz inequality, and eventually the
convergence of v

(m) and u
(m)
i . This result allows us to trace the convergence of the

product back to the convergence of its factors v
(m) and u

(m)
i . We do not, however,

have any information on the rate of convergence of the continuously chosen orthonormal
eigenvectors u(m)

i as well as the eigenvalues �(m) that go to zero.

Tractable formula. The deliberations in Section 5.3.2 only verified the existence, not
the construction of the continuously chosen orthonormal eigenvectors. Therefore, we do
not have any formula for the entries of the eigenvectors u

(m)
i dependent on ⌃(m) that

we could use to determine the rate of convergence. Using the explicit construction of
⌃(m) described in Remark 5.3 would not solve this issue, as the eigenvectors are then still
chosen as described in Section 5.3.2.

The eigenvalues are obtained by solving the characteristic polynomial of A(m). Due to the
construction of ⌃(m) via Lemma 5.2, we do not have an explicit formula for the entries
of A(m) as well. Even if we had such a formula, for example, obtained by following the
strategy described in Remark 5.3, the eigenvalues cannot be formulated as a function
of the entries of A(m) in a general way that might be helpful to determine the rate of
convergence. As seen in Example 5.6, the eigenvalues are already rather complicated for
n = 2.
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To summarize, it is not immediately helpful to resort to the direct construction of ⌃(m)

described in Remark 5.3. However, an explicit construction might allow the direct com-
putation of the error E

(m) := A
(m) � A. Simulations suggest that the error E

(m) goes
to zero with 1

m2 . This information, in turn, could be beneficial when considering the
convergence rate of the eigenvectors. We conclude that these considerations could be a
starting point for future work.
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6 Conclusion and outlook

In this thesis, we investigated the conditional independence properties of directed paths in
the recently proposed graphical continuous Lyapunov model. The model parametrizes the
covariance matrices of its distributions as solutions of the continuous Lyapunov equation
via appropriate drift and volatility matrices. The Lyapunov equation is induced by the
Ornstein-Uhlenbeck process, a multivariate di↵usion process that models, for example,
the movement of particles in a fluid. By assuming a random vector to arise from the
Ornstein-Uhlenbeck process in equilibrium, a temporal perspective is incorporated in the
model that allows the modeling of cycles and thus feedback loops.

After laying out the theoretical foundation for the Lyapunov model as well as the concept
of conditional independence in the multivariate normal distribution, we presented first
examples of the Lyapunov model on the directed path of lengths 2, 3, and 4. In particular,
for the path of length 3, we constructed a counterexample to all possible conditional
independence statements in the model, i.e., a distribution in the model where none of
these statements hold. Furthermore, we found that at least for some of the conditional
independence statements, it is not easy to construct example distributions where the
statements do hold.

Our main contribution is twofold. First, we devised a way to reduce finding a counterex-
ample to any statement i ?? j | S on the path of length p to finding a counterexample to
the statement 1 ?? q | 2, . . . , q � 1 for a suitably chosen q < p. Then, we used this result
to verify our conjecture of no conditional independence in the path model for a specific
subset of statements i ?? j | S, namely for all such statements where less than 100 of the
nodes between i and j are conditioning variables.

We achieved the first step, given a suitable counterexample for a corresponding state-
ment on a shorter path, by constructing independent nodes at the beginning and end
of the path and highly correlated nodes in between. The independent nodes were con-
structed by extending the drift matrices with �1 on the diagonal and zero everywhere
else. We consecutively constructed highly correlated nodes by letting the newly inserted
diagonal entry of the drift matrix go to �1 and the corresponding subdiagonal entry
to 1. One caveat was that the resulting covariance matrix is singular and therefore not
positive definite. Thus, a positive definite counterexample had to be chosen in a suitable
neighborhood of this singular matrix. The second result was verified by an additional
calculation with the computer algebra system Mathematica.

Lastly, we discussed the challenges arising on the way to proving that 1 ?? p | 2, . . . , p�1
does not hold in the model MGp,Cp . First, we illustrated the di�culty of a straightfor-
ward computation of the determinant of interest. Then, we introduced an approach to
construct the nodes 2, . . . , p � 1 as highly correlated nodes via a sequence of matrices.
Due to the singularity of the involved matrices, the conditional covariance has to be com-
puted explicitly. The formula contains the generalized inverse of a singular submatrix of
the covariance matrix ⌃. The main challenge here is that the generalized inverse is in
general not continuous. However, in this specific application, simulations suggested that
the product of the generalized inverse with two subvectors of ⌃ converges, given that
the sequence of the matrices converges. By diagonalizing the matrices, we were able to
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determine a specific term for each of the eigenvalues going to zero, that would need to go
to zero as well for the full product to converge.

One immediate potential goal for future work is proving that 1 ?? p | 2, . . . , p � 1 does
not hold in the Lyapunov model of the directed path of length p. One way to achieve
this might be to follow the strategy laid out in Chapter 5 and verify the convergence
of the term that we specified there. Another approach might be to explicitly compute
the error in the sequences and argue via the convergence rate of the matrix and its
eigenvectors. This result together with Proposition 4.21 would fully prove the conjecture
that no conditional independencies hold in the Lyapunov model of the directed path.

Recall that our overarching conjecture is that two nodes i and j, that are connected by
a trek in the graph are never conditionally independent in the Lyapunov model given
any set of conditioning nodes. Thus, a natural next step is to consider treks themselves,
as one is illustrated in Figure 8. We presume that many of the ideas and strategies for
extending counterexamples on shorter paths to longer paths we employed in this thesis
can be extended for treks, albeit possibly in a modified version.

1
2

3
4

5
6

Figure 8: Example of a trek on p = 6 nodes.

Proving the conjecture for all treks then might allow us to verify that the only condi-
tional independencies that hold in the Lyapunov model of an arbitrary directed graph
are marginal independencies of variables that are not connected by a trek in the graph,
and the conditional independencies implied by them.
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