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Abstract
In communications, wireless channels are often modelled as time-invariant linear
(LTI) systems. In such cases data transmission follows a two step scheme. First,
the transmitter sends a known pilot signal through the channel and the receiver
estimates the channel state information (CSI) from the received signal. In a
second step, the actual message is transmitted and the receiver recovers the
message using the previously obtained CSI.
However, real wireless channels have time-varying characteristics. Thus, the
question arises whether it is possible to transmit data over a linear time-varying
(LTV) channel without a prior estimate of CSI.
This thesis is devoted on developing methods to transmit data over LTV
channels without any prior information on the CSI. In order to develop such a
method a thorough understanding of LTV systems are essential.
In the formal analysis of LTV systems time-frequency representations, and in
particular Gabor frames, play a key role. Thus, a significant part of this thesis
is dedicated on the study of finite Gabor frames and their properties. Later on,
these insights are then applied in order to develop data transmission schemes
over LTV channels which do not rely on previously estimated CSI.
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Kurzzusammenfassung
In der Kommunikationstheorie werden drahtlose Kanäle oft als zeitinvariante
lineare (linear time-invariant, LTI) Systeme modelliert. In solchen Fällen folgt
die Datenübertragung einem zweistufigen Schema. Zuerst sendet der Sender
ein bekanntes Pilotsignal durch den Kanal und der Empfänger schätzt den
Kanalzustand (channel state information, CSI) aus dem empfangenen Signal.
In einem zweiten Schritt, wird die eigentliche Nachricht übertragen und der
Empfänger rekonstruiert die Nachricht mithilfe von CSI, der im vorherigen
Schritt geschätzt wurde.
Jedoch weisen reale drahtlose Kommunikationskanäle zeitvariante Eigenschaften
auf. Daher stellt sich die Frage, ob es möglich ist, Daten über einen lin-
earen zeitlich variierenden (linear time-varying, LTV) Kanal, ohne vorherige
Schätzung des CSI zu, übertragen.
Diese Arbeit widmet sich der Entwicklung von Methoden zur Übertragung von
Daten über LTV-Kanäle, die eine vorherige Schätzung des CSI nicht benötigen.
Zum Entwurf einer solchen Methode ist ein tieferes Verständnis von LTV-
Systemen unerlässlich.
Bei der formalen Untersuchung von LTV Systemen spielen Zeit-Frequenz
Darstellungen, vorallem Gabor-Rahmen, eine Schlüsselrolle. Daher beschäftigt
sich ein bedeutender Teil dieser Arbeit mit der Analyse von Eigenschaften
der endlichen Gabor-Rahmen. In späteren Kapiteln werden die gewonnenen
Erkenntnisse verwendet um Methoden zu entwicklen, die Datenübertragung
über zeitvariante Kanäle, ohne eine vorherige Schätzung von CSI, ermöglichen.
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1. Introduction
In communications, wireless channels are often modelled as linear time-invariant
(LTI) systems. Then, data transmission over communication channels follows
a two step scheme. First, the transmitter feeds a known pilot signal into
the channel and the receiver estimates the channel state information (CSI)
from the received signal. In a second step, the actual message is transmitted
and the receiver recovers the message using the previously estimated CSI [1].
Underlying this two step scheme is the block fading assumption [2] which means
that the wireless communication channel does not change over a certain time
interval. The block fading assumption enables to model the communication
channel as a LTI system.
However, in certain applications, for instance, in underwater acoustics or
high-frequency mobile radio channels, the time varying characteristics of the
communication channel have significant influence on the output of the channel.
Hence, the modelling of these communication channels as linear time-varying
(LTV) systems is unavoidable [3–6]. Additionally, the rising application of
multiple-input multiple-output (MIMO) systems severely magnified the effect of
channel aging which describes the mismatch between the estimated CSI and
the actual channel state while transmitting data. Up to some extend channel
aging effects can be overcome by channel prediction [7]. Nonetheless, the time-
varying nature of wireless communication channels increases in importance
with advancing mobile communication technology.
In case of wireless channels the receiver observes the signal over multiple prop-
agation paths. Hereby, each path acts as one (or multiple) delay-Doppler shifts
on the original transmit signal creating a LTV channel. Hence, the observed
signal at the receiver is described as a superposition of multiple delay-Doppler
shifted versions of the input signal [3, 8–10]. For LTV channels the time-varying
parameters of the channel are assumed to be constant over a certain time inter-
val. Hence, the estimation of LTV channels has drawn considerable attention
in the literature [3, 8, 11–13].
If we want to transmit a message over an LTV communication channel then
the previously described two step scheme fails since the receiver does not has
access to a reliable CSI. Therefore, the fundamental challenge in designing
message transmission schemes over LTV channels is the condition that no CSI
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1. Introduction

is accessible at the receiver beforehand. Approaches involving channel estima-
tions with training symbols would not be precise enough since the estimated
channel does not stay constant during data transmission stage [14]. Therefore,
a transmission scheme for a LTV channel needs to directly estimate both the
data and the CSI from the received signal simultaneously.
In 1946 Dennis Gabor published his paper on communication theory [15] whose
underlying ideas significantly shaped the development of modern communica-
tion theory [11, 16–18]. Additionally, Gabor’s work has led to the development
of Gabor frames which are generated by time-frequency shifts of a single seed
signal [19]. Therefore, in order to design and analyse message transmission
schemes over LTV channels we need to study the properties of Gabor frames,
since the signal obtained at the receiver over a LTV channel is the superposition
of delay-Doppler shifted copies of the input signal. Hence, the superposition of
atoms of a Gabor frame generated by the input signal.

1.1. Motivational example
To get a first flavour of the ideas involved in Sections 9, 10 and 11, devoted
to message transmission over LTV channels without prior CSI, let us consider
the time-invariant case and ask the question whether it is possible to transmit
data over an LTI channel without prior knowledge of the CSI at the receiver.
In order to emphasise the core idea the following discussion will be restricted
to the noiseless cases. Let L2 (0, 1) be the set of periodic square integrable
functions, i.e. for f ∈ L2(0, 1) we have ∥f∥2 =

∫ 1
0 |f(t)|dt < ∞ and the inner

product with f, g ∈ L2(0, 1) given by ⟨f, g⟩ =
∫ 1

0 f(t)g(t)dt. A fading multipath
channel can be described by an LTI system [10] given by

y(t) =
P −1∑
ℓ=0

αℓs(t− τℓ) , (1.1)

where y(t) is the received signal, s(t) is the signal fed into the channel, P is
the number of paths and αℓ and τℓ are the path attenuation factors and the
path delays, respectively. Let Tτ : L2(0, 1) → L2(0, 1) denote the time-delay
operator that is defined by Tτs (t) = s (t− τ), then (1.1) can be equivalently
written by

y(t) =
P −1∑
ℓ=0

αℓTτℓ
s (t) .
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1.1. Motivational example

Consider the function s(t) = ej2πat with a ∈ R for t ∈ [0, 1) then we have

Tτs (t) = ej2πa(t−τ) = ej2πate−j2πaτ = s(t)e−j2πaτ , (1.2)

hence the functions ej2πat are common eigenfunctions of the time-delay operators
Tτ with eigenvalues e−j2πaτ . Further, if a ∈ Z we have the orthogonality
property

〈
ej2πat, ej2πa′t

〉
=
1, if a′ = a ,

0, if a′ ̸= a .
(1.3)

Now say we have K message symbols {m0, . . .mK−1} with mk ∈ C for k =
0, . . . , K − 1 which we would like to transmit via the channel described in (1.1)
but we don’t have CSI, i.e. we don’t know the channel parameters τℓ and αℓ.
To this end consider the signal

s(t) = p(t) +m(t) for t ∈ [0, 1) , (1.4)

where p (t) and m (t) are given by

p(t) =
N−1∑
ℓ=0

ej2πℓt , m(t) =
K−1∑
ℓ=0

mℓej2π(N+ℓ)t , (1.5)

The signal s (t) is a superposition of two separate signals, the pilot signal p (t)
and the data signal m (t) that contains the message symbols. The signals p (t)
and m (t) occupy disjoint frequencies. Plugging (1.4) into (1.1) we get

y(t) =
P −1∑
ℓ=0

αℓTτℓ
s(t) =

P −1∑
ℓ=0

αℓTτℓ
p(t) +

P −1∑
ℓ=0

αℓTτℓ
m(t)

=
P −1∑
ℓ=0

αℓ

N−1∑
n=0

e−j2πnτℓej2πnt +
P −1∑
ℓ=0

αℓ

K−1∑
k=0

mke−j2π(N+k)τℓej2π(N+k)t ,

where we used (1.2). Using the orthogonality relation of harmonics in (1.3) we
obtain

hn =
〈
y(t), ej2πnt

〉
=

P −1∑
ℓ=0

αℓe−j2πnτℓ , for n = 0, . . . , N − 1 , (1.6)

dk =
〈
y(t), ej2π(N+k)t

〉
= mk

P −1∑
ℓ=0

αℓe−j2π(N+k)τℓ , for k = 0, . . . , K − 1 . (1.7)
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1. Introduction

Thus, we have split the received signal y(t) into two separate set of coefficients,
{hn}N−1

n=0 given in (1.6) which describes the channel and {dk}K−1
k=0 given in (1.7)

which describe the received data.
The problem of recovering the parameters αℓ and τℓ from measurements hn

is well known in the literature as line spectral estimation [20]. The methods
to solve the problem in (1.6) range from Prony’s method (or stable variants
thereof) [21, 22] to atomic norm minimization [20]. Thus, the recovery problem
in (1.6) can be solved by standard methods found in the literature (provided
that the sample size N is large enough), see for instance [20–23].
After obtaining the parameters {τℓ}P −1

ℓ=0 and {αℓ}P −1
ℓ=0 recovering the message

symbols mk from dk in (1.7) is straight forward.
The idea of transmitting different message symbols over different frequencies
that are orthogonal to each other, as we did with the data carrying signal m(t),
is not new and is known in the literature as frequency-division multiplexing
[24]. As promised we avoided a two step scheme of first estimating the channel
and then transmitting data over it. The main idea we have employed is to split
the data carrying signal m(t) and the pilot signal p(t) into orthogonal bases
and to this end we mainly used the idea from frequency-division multiplexing
of choosing basis functions that have disjoint support in the frequency domain.
In two-step schemes the pilot signal and the message carrying signals are also
supported by functions that are orthogonal to each other and the orthogonality
arises from the fact that the pilot signal and message carrying signal have
disjoint supports in the time domain [1]. However, the main difference between
the standard two-step scheme and the one discussed in this section is, that the
orthogonality of the pilot signal and message carrying signal is preserved after
passing through the communication channel. Hence, the received signal can be
split into two orthogonal parts wherein the coefficients of one part contain the
CSI (1.6) and the other part contains the data (1.7). A similar orthogonality
condition at the received signal can be obtained for the two-step scheme by
employing guard intervals.

1.2. Generalization of the example

Since our aim is to transmit data over LTV channels without prior CSI let us
explore whether we are able to extend the method discussed in Section 1.1 to
more channel types then the one given in (1.1).
Let Mν : L2(0, 1) → L2(0, 1) denote the Doppler-shift operator that is defined by
Mνs (t) = ej2πνts (t). A time-varying communication channel can be described
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1.2. Generalization of the example

as an LTV system [3, 25] given by

y (t) =
P −1∑
ℓ=0

αℓMνℓ
Tτℓ

s(t) , with (νℓ, τℓ) ∈ S , (1.8)

where y(t) is the received signal, s(t) is the input signal, P the number of paths,
S the support of the channel in the delay-Doppler domain and αℓ and (νℓ, τℓ)
are the path attenuation and delay-Doppler shift corresponding to the ℓ-th
path.
Now the question is whether we can find sets S with (νℓ, τℓ) ∈ S such that we
can guarantee an orthogonal splitting condition for the received signal y(t) in
(1.8) similar to (1.6) and (1.7).
To this end let us consider the chirp signals, which are commonly used in radar
[26]. The chirp signal with base frequency b ∈ R and chirp rate r ∈ R is given
by cb,r(t) = ej2π(bt2+rt). If r, r′ ∈ Z then for two chirp signals with the same
base frequency we have the orthogonality relation

⟨cb,r(t), cb,r′(t)⟩ =
1, if r′ = r ,

0, if r′ ̸= r .
(1.9)

Now let ν, τ, b, r ∈ R and observe

MνTτcb,r (t) = ej2πνtej2π(b(t−τ)2+r(t−τ))

= ej2π(bτ2−rτ)ej2π(bt2+(ν−2bτ+r)t)

= ej2π(bτ2−rτ)cb,ν−2bτ+r .

(1.10)

From (1.10) we see that the delay-Doppler shift operator MνTτ does not change
the base frequency of the chirp signal and that whenever ν − 2bτ = 0 holds
the chirp signal cb,r is an eigenfunction of MνTτ . Clearly, the set Lb,0 =
{(ν, τ) : ν − 2bτ = 0 for τ ∈ R} for b ∈ R defines a line through the origin in
the delay-Doppler domain.1 For b = 0 the set L0,0 is simply the line defining
the delays and we have the case from our original example. All operators
{MνTτ : (ν, τ) ∈ Lb,0} have common eigenfunctions and we can use (1.9) to
apply the same method as discussed in Section 1.1.
In the next step let us consider all lines in the delay-Doppler domain. For

1In fact, the set of delay-Doppler shift operators {MνTτ }(ν,τ)∈Lb,0
for b ∈ R defines a

commutative subgroup of delay-Doppler shift operators, see Lemma 4.2.6 and (8.6) .
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1. Introduction

a, b ∈ R, define the set Lb,a as

Lb,a = {(ν, τ) : ν = 2bτ + a for τ ∈ R} .

For a (ν, τ) ∈ Lb,a we have

MνTτcb,r = ej2π(bτ2−rτ)ej2π(bt2+(r+a)t) = cb,r′ , (1.11)

where we set r′ = r + a. Note that the delay-Doppler shift operators indexed
by the set Lb,a applied on a chirp signal with base frequency b simply changes
the chirp rate by shifting it to r′ = r + a. Hence, if the delay-Doppler shift
operators from (1.8) are supported on a line in the delay-Doppler domain and
we know the slope b and the intercept a of this line we can apply the idea
developed in Section 1.1.
Let the channel be given as in (1.8) where the delay-Doppler operators are
supported on the line Lb,a, i.e S = Lb,a. We consider a transmit signal s(t) of
the form (1.4) where p (t) and m (t) are given by

p(t) =
N−1∑
n=0

cb,n(t) , m(t) =
K−1∑
k=0

mkcb,N+k(t) ,

with mk for k = 0, . . . K − 1 being the message symbols. Let a = z + q such
that z ∈ Z and q ∈ [0, 1). Then plugging s(t) in (1.8) we get

y(t) =
P −1∑
ℓ=0

αℓMνℓ
Tτℓ

s(t)

=
P −1∑
ℓ=0

αℓ

N−1∑
n=0

ej2π(τ2
ℓ −nτℓ)cb,n+z+q(t) +

P −1∑
ℓ=0

αℓ

K−1∑
k=0

mkej2π(τ2
ℓ −(N+k)τℓ)cb,N+k+z+q(t),

where we used (1.11). Note that n+ z ∈ Z and N + k + z ∈ Z, hence we can
use the orthogonality property of the chirp signals (1.9) and get the samples

hn = ⟨y(t), cb,n+z+q(t)⟩ =
P −1∑
ℓ=0

αℓej2πτ2
ℓ e−j2πτℓn =

P −1∑
ℓ=0

α̃ℓe−j2πτℓn , (1.12)

dk = ⟨y(t), cb,N+k+z+q(t)⟩ = mk

P −1∑
ℓ=0

α̃ℓe−j2πτℓ(N+k) , (1.13)

for n = 0, . . . , N − 1, k = 0, . . . , K− 1 and α̃ℓ = αℓej2πτ2
ℓ . Similar to Section 1.1

we have split the received signal into coefficients only depending on the channel
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1.2. Generalization of the example

parameters (1.12) and into coefficients that depend on the message symbols
(1.13). Again by applying methods from line spectral estimation [20–23] we
can recover from the coefficients hn the parameters α̃ℓ and τℓ, provided N is
sufficiently large. Then, in a second step recovering the message symbols from
the coefficients dk is straight forward.
Again we have a splitting into orthogonal bases of the pilot signal and message
carrying signal. In this case the splitting is neither in time domain nor in the
frequency domain but on some basis of chirp signals.

The idea of splitting the received signal into a channel and data component
will accompany us throughout the chapters devoted to data transmission over
LTV channels. Contrary to the discussion here we won’t be using orthogonal
bases but Gabor frames with low correlation properties. We will apply methods
from sparse signal recovery to split the received signal into its components
and recover the channel parameters as well as the transmitted message symbols.

The aim of this thesis is to develop message transmission schemes for LTV
communication channels. To this end, first some preliminaries are discussed
in Sections 2 and 3. Then properties of finite Gabor frames are recapped and
studied in Sections 4, 5 and 6. Wherein some relevant properties of finite Gabor
frames are derived in Sections 5 and 6. Finally, based on these insights message
transmission schemes for LTV systems are developed and analysed in Sections
9, 10 and 11.
Parts of this thesis have already been published. Sections 5 - 11 have been
partially published in [27–36].
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Preliminaries
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2. Compressed Sensing
Compressed sensing (CS) is a method for recovery of sparse signals [37–40],
which has inspired substantial research in signal processing in the past decade
[8, 41–46]. The aim of this section is to give a short introduction on the idea of
compressed sensing and develop some intuition for its methods and conditions
which will be relevant in the later chapters. An indepth discussion and overview
of compressed sensing is provided in [37].

2.1. Compressed sensing problem
The standard problem in CS is to solve an underdetermined system of linear
equations y = Ax + n with y ∈ CL, A ∈ CL×N with L ≪ N , x ∈ CN and
n ∈ CL some noise vector with ∥n∥2 ≤ ϵ. Note that A is referred to as the
measurement matrix. Since we consider an underdetermined linear system
there exits infinitely many solutions. However, the core observation lying at
the heart of CS is that under certain conditions the sparsest solution to the
underdetermined linear equation is the unique sparse solution to that equation.
To this end we define the support set of a vector as follows.

Definition 2.1.1. The support of a vector x ∈ CN is the index set of its
nonzero entries

supp(x) = {j ∈ {0, 1, ..., N − 1} : x [j] ̸= 0}

where the j-th entry of x is denoted by x [j]. The vector x is called k-sparse if
|supp(x)| ⩽ k holds.

In order to derive a criteria for the uniqueness of a sparse solution to an
underdetermined linear system we first need to define the spark of a matrix.

Definition 2.1.2. The number spark(A) of a matrix A ∈ CL×N is the smallest
number of linear dependent columns(vectors), i.e.

spark(A) = min{|supp (x)| : x ∈ CN with x ∈ ker (A) \ {0}} .
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2. Compressed Sensing

Essentially, the spark is the minimum number of columns in a matrix that are
linearly dependent. Equivalently, spark is the support size of the sparsest vector
in the nontrivial kernel of the matrix, as defined in Definition 2.1.2. Note that
the kernel of a matrix A ∈ CL×N is defined by ker (A) = {x ∈ CN : Ax = 0}.
Let A ∈ CL×N , following [37] we formulate the sparse recovery problem as
follows,

minimize
z∈CN

|supp (z)| subject to Az = y. (P0)

Finally, we can formulate a uniqueness criteria for sparse solutions of (P0)-
problem.

Theorem 2.1.1. The (P0)-problem has a unique sparse solution x ∈ CN with
Ax = y if

|supp (x) | < spark (A)
2 .

Proof. For a contradiction assume there exist a vector x∗ ̸= x with |supp (x∗) | <
spark (A)/2 and y = Ax∗, then we have A (x − x∗) = 0 and x − x∗ ∈ ker (A)
by using the definition of spark (Definition 2.1.2) we obtain

spark (A) ≤ |supp (x − x∗)| ≤ |supp (x)| + |supp (x∗)| < sprak (A)

which is a contradiction. Thus, x is the sparsest solution to (P0).

Theorem 2.1.1 guarantees that if a solution x to (P0) fulfils |supp (x) | <
spark (A)/2 then x is guaranteed to be the unique sparsest solution.
However, the (P0)-problem is unfeasible for practical applications since its an
NP-hard problem [37, 47].

2.2. Null space property
The previously discussed (P0)-problem being an NP-hard problem motivated
the search for possible feasible solution approaches to the sparse recovery
problem. Indeed, already in [47] a greedy heuristic method is suggested to
solve the (P0)-problem. Later in several other papers convex relaxation of the
(P0)-problem was successfully analysed [37, 39, 48–51].
In this subsection we will present the Null Space Property (NSP) which is a
condition on the measurement matrix that is sufficient and necessary to replace
the (P0)-problem by a convex relaxation and obtain the same unique sparse
solution. To present the convex relaxation we first define the ℓp-norms.
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2.2. Null space property

Definition 2.2.1. The ℓp-norm of a vector x ∈ Cn is given by the positive
functional ∥ · ∥p : Cn → R+ with the formula:

∥x∥p
..=
(∑n

i=1 |x[i]|p)
1
p for 0 < p < ∞

maxi∈{1,...,n} |x[i]| for p = ∞

Next we state the basis pursuit or the ℓ1-minimization problem.

minimize
z∈CN

∥z∥1 subject to Az = y (P1)

But for the main part of our analysis we will consider a more general case of
(P1) which also considers noisy measurements.

minimize
z∈CN

∥z∥1 subject to ∥Az − y∥2 ⩽ ϵ (P1,ϵ)

Where ϵ is the noise level. Note that setting ϵ = 0 in (P1,ϵ) would lead to (P1).
Next, following [37], we define the NSP which is a necessary and sufficient
condition for (P0) and (P1) to share the same solution.

Definition 2.2.2. A matrix A ∈ CL×N is said to satisfy the NSP of order k if
for any set S ⊂ {0, 1, ..., N − 1} with |S| ⩽ k,

∥v(S)∥1 < ∥v(Sc)∥1 ∀v ∈ ker A \ {0}

holds. Where Sc = {0, 1, ..., N − 1} \ S and v(S) = v̂ such that

v̂[j] =
v[j] for j ∈ S

0 for j ∈ Sc

obviously it holds v(S) + v(Sc) = v.

The following theorem from [37] gives the connection between NSP of the
specific sensing matrix, (P1) and (P0).

Theorem 2.2.1. Given a matrix A ∈ CL×N , every k-sparse vector x ∈ CN is
the unique solution of (P1) and (P0) with y = Ax if and only if A satisfies the
NSP of order k.

Proof. See [37, Chapter 4] proof of Theorem 4.4 and Remark 4.6 (a).

Although Theorem 2.2.1 delivers a nice connection between NSP and the unique
solution of problems (P1) and (P0) it is not convincing for practical applications,
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2. Compressed Sensing

since it is not possible to measure a signal x ∈ CN with infinite precision in real
world settings. Therefore an additional strengthening of the NSP is needed that
enables statements on the solution of the ℓ1-minimization problem as defined
in (P1,ϵ). For this reason we consider nearly k-sparse vectors, measured by the
error of best k-term approximation. We begin with the following definition.

Definition 2.2.3. For p > 0, the ℓp-error of best k-term approximation to a
vector x ∈ CN is defined by

σk(x)p = inf{∥x − z∥p, z ∈ CN is k-sparse }

Next we define a stronger NSP, the so called ℓ2-robust NSP.

Definition 2.2.4. The sensing matrix A ∈ CL×N is said to satisfy the ℓ2-robust
NSP of order k (with respect to ∥ · ∥2) with constants 0 < ρ < 1 and τ > 0 if,
for any set S ⊂ {0, 1, ..., N − 1} with |S| ⩽ k,

∥v(S)∥2 ≤ ρ√
k

∥v(Sc)∥1 + τ∥Av∥2, ∀v ∈ CN

holds.

Equipped with the two definitions we can now state the next theorem from [37,
Thm. 4.22].

Theorem 2.2.2. Suppose that the sensing matrix A ∈ CL×N satisfies the
ℓ2-robust NSP of order k with constants 0 < ρ < 1 and τ > 0. Then, for any
x ∈ CN , a solution x∗ of the problem (P1,ϵ) with ∥Ax − y∥2 ⩽ ϵ approximates
the vector x with the ℓ2-error

∥x − x∗∥2 ≤ 21 + ρ

1 − ρ
σk(x)1 + 4τ

1 − ρ
ϵ

for some constants, C,D > 0 depending only on ρ and τ .

Proof. See [37, Chapter 4] proof of Theorem 4.25.

Note that the Theorem 2.2.2 gives an ℓ2-error approximation of (P1), since
(P1) and (P0) have the same solution, if the sensing matrix fulfills the NSP - as
stated in Theorem 2.2.1 - follows that (P1,ϵ) delivers an approximation for the
ℓ0-minimization problem (P0) as well, if the sensing matrix fulfills the ℓ2-robust
NSP.
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2.3. Restricted isometry property

2.3. Restricted isometry property

Another important property in CS is the restricted isometry property (RIP)
which implies the robust NSP [37, 39, 40, 50–52]. In fact random matrices
exhibit this property with high probability if the dimension is large enough [37,
50, 51, 53, 54]. We start by giving a formal definition of RIP.

Definition 2.3.1. The k-th restricted isometry constant δk of a sensing matrix
A ∈ CL×N is the smallest δ ≥ 0 such that

(1 − δ) ∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δ) ∥x∥2
2

for all k-sparse vectors x ∈ CN . Then we say that A fulfills the k-th RIP.

In [52] it is proven that if a matrix fulfils the RIP with δ ≤ 1/
√

2 then that
matrix satisfies the robust NSP. The following theorem can be found with its
proof in [40].

Theorem 2.3.1. If a matrix A ∈ CL×N fulfils the restricted isometry property
with the restricted isometry constant δ such that δ satisfies

δ2k ≤ 1√
2

then the matrix A satisfies the robust NSP of order k with constants

ρ = δ√
1 − δ2

and τ = 2
√
k

(1 − δ)
√

1 + δ
.

As we see from Theorem 2.3.1 the RIP via the NSP provides us with sparse
recovery guarantees. More precisely if a measurement matrix has δ2k ≤ 1/

√
2

then recovery of k-sparse vectors are guaranteed by the NSP property, i.e.
Theorem 2.2.1 and Theorem 2.2.2. For a random measurement matrix, where
every entry is for instance a Gaussian random variable, it is very likely that such
a matrix is well conditioned, i.e. has a low restricted isometry constant. In fact,
in that case the sparsity of the signal scales proportional (up to logarithmic
factors) to the dimension of the measurement space L, i.e. k ∼ L

log(N) [37, 53,
54]. Although random matrices are well conditioned and exhibit the RIP [53,
54], checking whether a given matrix has RIP or NSP is NP-hard and therefore
not feasible [55, 56].
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2. Compressed Sensing

2.4. Coherence
So far in the previous sections we only discussed criteria for measurement
matrices that enables sparse signal recovery. From a practical point of view,
deterministic constructions of measurement matrices for CS is a very appealing
problem and has attracted quite some attention [29, 57–62]. Most of these
approaches (for instance [29, 57–60]) rely on the frame work of coherence which
has been introduced to the sparse recovery framework in [49, 63]. The coherence
of a matrix delivers a simple quantity to check if a given matrix is suitable as a
measurement matrix for CS. In general, the smaller the coherence the better
the recovery algorithm performs.
However, unlike the RIP the analysis of recovery algorithms based on the
coherence delivers worse results. This is due to the Welch bound [64, 65], which
lower bounds the coherence of a matrix. We can upper bound the restricted
isometry constant of a matrix by using the coherence and the Gershgorin circle
theorem [37, 61, 66].
We start by defining the coherence property as follows.

Definition 2.4.1. Let A ∈ CL×N be a matrix with ℓ2-normalized columns
and let each column of A be denoted by a1, ..., aN , i.e. ∥ai∥2 = 1 for all
i ∈ {1, ..., N}. The coherence of the matrix A is defined as

µ ..= max
1⩽i ̸=j⩽N

|⟨ai, aj⟩|

Before continuing we are going to need the Gershgorin circle theorem which
will be stated in the following lemma, a proof of this result can be found in
[66].

Lemma 2.4.1. Let λ be an eigenvalue of a square matrix A ∈ Cn×n. There
exists an index j ∈ {1, . . . , n} such that

|λ− Aj,j| ≤
∑

l∈{1,...,n}\{j}
|Aj,l| ,

where Aj,l denotes the entry in A on j-th row and l-th column.

Next we give a well known result in CS [37, 61].

Theorem 2.4.2. Let A ∈ CL×N be a matrix with ℓ2-normalized columns
and coherence µ. Then the k-th restricted isometry constant δk of A can be
upperbounded by

δk ≤ (k − 1)µ .
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2.4. Coherence

Proof. For a set S = {s1, . . . , s|S|} ⊂ {1, . . . , N} with |S| ≤ k, we define the
matrix G = A∗

SAS with AS =
[
as1 , . . . , a|S|

]
. G is a positive semidefinite

matrix, hence it has an orthonormal basis of eigenvectors associated with real,
positive eigenvalues. Denote the minimal eigenvalue by λmin and the maximal
eigenvalue by λmax. Then, for a |S|-sparse vector x ∈ CN with supp (x) = S
we have Ax = ASx. Hence, for λmin and λmax we have

λmax = max
supp(x)⊂S

∥x∥2=1

∥Ax∥2
2 and λmin = min

supp(x)⊂S
∥x∥2=1

∥Ax∥2
2 .

Now, due to the ℓ2-normalization and Gershgorin’s circle theorem we have that
the eigenvalues of G must be contained in the union of disks centered at 1 with
radii

rj =
|S|∑
l=1
l ̸=j

|G[j, l]| =
∑
l∈S
l ̸=j

|⟨al, aj⟩| ≤ (k − 1)µ , j ∈ S ,

where G[j, l] denotes the entry of G in j-th row and l-th column.
Since all the eigenvalues of G are real, they all must lie within the interval of
[1 − (k − 1)µ, 1 + (k − 1)µ], hence we obtain the estimation in the theorem.

From Theorem 2.4.2 we see that the smaller the coherence is the bigger the
sparsity of our vectors can be. However, the coherence cannot be arbitrary
small, for instance if the coherence would be equal to zero then that would
correspond the columns of the measurement matrix being mutually orthogonal.
In fact there is a limitation on how small the coherence can be, note that we
consider measurement matrices which have more columns then rows. In [64]
a lower bound for the coherence is established this bound is called the Welch
bound [37, 64, 65].

Theorem 2.4.3. The coherence of a matrix A ∈ CL×N with ℓ2-normalized
columns satisfies

µ ≥
√

N − L

L(N − 1) (2.1)

Equality holds if and only if the columns a1, ..., aN of the matrix A are equian-
gular. Equiangularity of the columns is defined by

|⟨ai, aj⟩| = c, i ̸= j,∀i, j ∈ {1, ..., N}

with some constant c > 0.
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2. Compressed Sensing

The Welch bound (Theorem 2.4.3) limits the sparsity level one can reach
applying Theorem 2.4.2 to a quadratic factor of the measurement dimension, i.e.
if A is a L×N measurement matrix then the highest sparsity k a signal can have
is k ∼

√
L. This relation is known in the literature as the quadratic bottleneck.

So far no deterministic constructions are known which are significantly better.
To this date the only known deterministic construction that overcomes the
quadratic bottleneck is described in the breakthrough paper [62]. There the
sparsity level is k ∼ L0,5+ϵ for some small value of ϵ.
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3. Statistical Sparse Signal
Recovery

As discussed previously in Section 2.4, Theorem 2.4.2 and Theorem 2.4.3
severely limit the sparsity levels of signals to a square-root factor of the ambient
dimension. However, in the literature there are plenty reports of deterministic
sensing matrices that perform comparable to random sensing matrices in
numerical simulations [27, 29, 30, 43, 59, 60, 67–70]. In these numerical
simulations a random signal is generated and the reconstruction performance is
analysed based on which measurement matrix is used. Deterministic matrices
being able to keep up with the random matrices in these simulations led to
the analysis of these simulation setups. The main idea is to evaluate how
well a deterministic matrix is suited to be used as a measurement matrix in
CS by analysing how well it performs when recovering a sparse signal with
random support and random entries [67, 70–74]. In this section we are going
to discuss two criteria the statistical restricted isometry property [70] and the
strong coherence property [67].

3.1. Statistical restricted isometry property
The notion of statistical restricted isometry property (StRIP) that we are going
to use was introduced in [70]. The StRIP is a statistical version of the RIP
which aims to analyse how well certain deterministic sensing matrices fit into
the compressed sensing framework. Since the sensing matrices are deterministic,
the probability enters the signal model. In this subsection our aim is to give a
short overview of the StRIP as discussed in [70]. For this section we denote the
set of all k sparse vectors in CN by KN

k , i.e. KN
k =

{
z ∈ CN : |supp (z)| ≤ k

}
.

Definition 3.1.1. A matrix A = 1√
m

Φ ∈ CL×N with ℓ2-normalized columns is
said to have (k, δ, ϵ)-StRIP if

(1 − δ) ∥x∥2
2 ≤ ∥Ax∥2

2 ≤ (1 + δ) ∥x∥2
2
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3. Statistical Sparse Signal Recovery

holds with probability exceeding 1 − ϵ for a random vector x ∈ KN
k drawn from

a uniform distribution over all
{
z ∈ KN

k : ∥z∥2 = 1
}
. Further we say that A

has (k, δ, ϵ)-uniqueness guaranteed StRIP (abbr. (s, δ, ϵ)-UStRIP) if{
z ∈ KN

k : Az = Ax
}

= {x}

is also satisfied with probability exceeding 1 − ϵ.

Note that measurement matrices having (s, δ, ϵ)-StRIP satisfy RIP with high
probability but they do not guarantee unique recovery by standard CS recovery
algorithms. Unique recovery is only guaranteed (with high probability) for
UStRIP-matrices.
In [70] the following conditions are introduced to identify matrices satisfying
UStRIP.

Definition 3.1.2. A matrix A = 1√
m

Φ ∈ CL×N with all entries of Φ having
absolute value 1, is said to be η-StRIP-able if the following conditions are
satisfied with η > 0.

(S1) The rows of Φ are mutually orthogonal, and the sum of all entries in each
row is zero, i.e.,

N∑
j=1
ϕj[k]ϕj[ℓ] = 0 if k ̸= ℓ,

N∑
j=1
ϕj[k] = 0 for all k = 1, . . . , L ,

where ϕj is the j-th column of Φ and ϕj[k] is the k-th entry in ϕj.

(S2) The columns of Φ form a group under pointwise multiplication, i.e.

For all j, ℓ ∈ {1, . . . , N} there exists r ∈ {1, . . . , N} such that
ϕj[k]ϕℓ[k] = ϕr[k] for all k ∈ {1, . . . , L} .

In particular, there is one column of Φ with all its entries equal to 1.
Without loss of generality, we assume that ϕ1 is this identity vector.

(S3) There exists η > 0 such that
∣∣∣∣∣

L∑
k=1
ϕj(k)

∣∣∣∣∣
2

≤ L2−η for all j = 2, 3, . . . , N .
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3.2. Strong coherence property

Note that there is a direct relation between the coherence µ and the parameter
η defined in (S3). We simply consider the inner product of two columns of Φ

µ ≥
∣∣∣〈ϕj,ϕℓ

〉∣∣∣ =
∣∣∣∣∣

L∑
k=1
ϕj[k]ϕℓ[k]

∣∣∣∣∣
=
∣∣∣∣∣

L∑
k=1
ϕj[k]ϕ−ℓ[k]

∣∣∣∣∣ =
∣∣∣∣∣

L∑
k=1
ϕr[k]

∣∣∣∣∣ ≤
√
L2−η ,

where we have used the group properties of the columns of Φ and ϕ−ℓ is the
pointwise multiplicative inverse of ϕℓ, i.e. ϕ−ℓ[k]ϕℓ[k] = ϕ1[k]. Note that ϕ−ℓ

must exist because of the group property (S2). Therefore, large η implies small
coherence µ.
The following theorem is proved in [70].

Theorem 3.1.1 (Theorem 8 in [70]). Let A = 1√
L

Φ ∈ CL×N be an η-StRIP-able
matrix with η > 1/2, and assume that k < 1 + (N − 1)δ. Then

(a) A has (k, δ, ϵ) with ϵ = 2 exp
(

−
(
δ − k−1

N−1

)2
Lη

8k

)
(b) if additionally L ≥ ck log N

δ−2 for some c > 0, then A has (k, δ, 2ϵ)-UStRIP
with ϵ = 2 exp

(
−
(
δ − k−1

N−1

)2
Lη

8k

)
.

Theorem 3.1.1 reduces the search of good deterministic sensing matrices to the
problem of finding matrices that satisfy Conditions (S1) - (S3) with η > 1/2.
Whereas it is basically impossible to calculate the restricted isometry constant
for a given matrix A, it is fairly easy to check whether a matrix A satisfied
(S1) - (S3), i.e. whether A is η-StRIP-able.

3.2. Strong coherence property
In [71] the the One-Step Thresholding (OST) algorithm is introduced and
discussed with respect to its probabilistic success in sparse signal recovery.
This analysis is continued in [67] with probabilistic results on the ℓ2-error of
the recovered signal. In both discussions the strong coherence property plays
a fundamental role. Given a linear system of equations y = A + n with
measurement matrix A ∈ CL×N , a sparse signal x ∈ CN and a noise vector
n ∈ CL where the entries are i.i.d. complex-Gaussian random variables with
mean zero and variance σ2, the OST-algorithm returns an approximation x̂ of
x. The OST algorithm is given in Algorithm 1.
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Algorithm 1 One-Step Thresholding (OST)
Input: A measurement matrix A ∈ CL×N , a vector y ∈ CL with y = Ax + n
and a threshold λ > 0

1) x̂ = 0

2) z = A∗y

3) Ŝ = {i ∈ {1, . . . , L} : z[i] > λ}

4) x̂Ŝ = A+
Ŝ y

Output: An estimate x̂ of the signal x

When A satisfies the strong coherence property, [67] establishes bounds on the
error ∥x − x̂∥2 with high probability. The average coherence ∆ of a matrix
A ∈ CL×N is defined by

∆ = 1
N − 1 max

i∈{1,...,N}

∣∣∣∣∣∣
∑
j ̸=i

⟨ai, aj⟩

∣∣∣∣∣∣ , (3.1)

where aj is the j-th column of A. Now we can define the strong coherence
property.

Definition 3.2.1. A matrix A ∈ CL×N with coherence µ, average coherence ∆
and unit norm columns is said to satisfy the strong coherence property if

1)µ ≤ 1
164 log(N) and 2) ∆ ≤ µ√

L
. (3.2)

Before we can state the probabilistic recovery guarantee from [67] we need to
define some notations. Thus, following [67] we denote the signal-to-noise ratio
by

SNR = ∥x∥2
2

E
[
∥n∥2

2

] ,
where E [·] denotes the expected value. Furthermore, denote the sets of entries
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3.2. Strong coherence property

of x that lie above a a certain noise floor σ by

Tσ(t) =
{
k : |x [k]| > 2

√
2

1 − t

√
2σ logN

}
for t ∈ (0, 1) ,

and the locations of entries of x that lie above a certain interference floor by

Tµ =
{
k : |x [k]| > 20

t
µ ∥x∥2

√
2 logN

}
for t ∈ (0, 1) .

Equipped with these definitions we can finally state the probabilistic recovery
guarantee from [67].

Theorem 3.2.1 (Theorem 4 in [67]). Let A ∈ CL×N be a measurement
matrix satisfying the strong coherence property, pick t ∈ (0, 1), and choose
λ =

√
2σ2 logN ·max

{
10
t
µ

√
LSNR,

√
2

1−t

}
. Further, suppose x ∈ CN has support

S with |S| ≤ k drawn uniformly at random from {1, . . . , N}. Then provided

k ≤ N

c2
1 ∥A∥2

2 logN
,

where ∥A∥2 denotes the spectral norm of A, Algorithm 1 produces Ŝ such that
Tσ (t) ∩ Tµ (t) ⊆ Ŝ ⊂ S and x̂ such that

∥x − x̂∥2 ≤ c2

√
σ2
∣∣∣Ŝ∣∣∣ logN + c3

∥∥∥xS\Ŝ

∥∥∥
2

with probability exceeding 1 − 10
N

. Finally, defining T = Tσ (t) ∩ Tµ (t), we
further have

∥x − x̂∥2 ≤ c2

√
σ2k logN + c3 ∥x − xT ∥2

in the same probability event. Here, c1 = 37e, c2 = 2
1−e−1/2 , and c3 = 1 + e−1/2

1−e−1/2

are numerical constants.

The results from Sections 3.1 and 3.2 enables us to use deterministic matrices
for Compressed Sensing. Especially, we will be interested in deterministic
Gabor matrices since those will be essential in later Sections 9 and 10. Using
Gabor matrices as sensing matrices we will use methods from Compressed
Sensing to separate channel parameters from messages. Thus, Sections 5 and
6.6 are devoted on proving sparse recovery guarantees for specific deterministic
Gabor matrices.
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4. Finite Gabor Systems
In 1946 Dennis Gabor suggested to use time-frequency shifts of a single proto-
type signal to represent communication signals [15]. Since then his work has
been very influential on communication theory [11, 16–18]. The idea of Gabor
was to assign a time-frequency box of size (∆t,∆f) to an information-carrying
symbol, where ∆t and ∆f are effective time duration and effective frequency
bandwith of the signal, respectively. Using the uncertainty principle [75] he
derives that the smallest boxes are achieved by Gaussians. Gabor further
divides the time-frequency plane into cells where each cell corresponds to a
box and associates each cell with an information-carrying symbol. Basically,
he proposes to transmit a signal of the form

Ψ(t) =
∞∑

n=−∞

∞∑
k=−∞

cnk e−π
(t−n∆t)2

2(∆t)2 e2πj kt
∆t

where {cnk} are complex valued information-carrying symbols. In the language
of frame theory [76–78] Gabor suggested to transmit using elements of the
Gabor frame [79] generated by the window function g(t) = e−π t2

2(∆t)2 .
In order to discuss finite Gabor systems and frames we need first some basics
from finite frame theory.

4.1. Finite frames
In this subsection we define finite frames and discuss their basic properties.
Frames on Hilbert spaces were originally introduced in [77], a general intro-
duction and discussion of frames is given in [76]. This subsection is mostly
taken from [78], here we focus on finite dimensional frames and we will consider
elements from CL. We begin with the definition of frames.
Definition 4.1.1. A family of vectors {hℓ}N−1

ℓ=0 in CL is called a frame, if there
exist constants 0 < A ≤ B < ∞ such that

A ∥x∥2
2 ≤

N−1∑
ℓ=0

|⟨x,hℓ⟩|2 ≤ B ∥x∥2
2 for all x ∈ CL . (4.1)
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4. Finite Gabor Systems

In the following we will always assume that the largest possible A and the
smallest possible B are chosen such that (4.1) is fulfilled. Next we give some
notation and name some important classes of frames.

Remark 4.1.2. The following notations are related to a frame {hℓ}N−1
ℓ=0 .

1) The constants A and B in (4.1) are called lower and upper frame bound
respectively.

2) If A = B then the frame is said to be tight.

3) If A = B = 1 then the frame is called a Parseval frame.

4) If a c exist such that |⟨hℓ,hk⟩| = c for all k ̸= ℓ then the frame is called
to be an equiangular frame.

5) The values {⟨x,hℓ⟩}N−1
ℓ=0 are called the frame coefficients of the vector x

with respect to frame {hℓ}.

Next we will discuss the analysis, synthesis and the Gramian operator of frames.
The analysis operator computes the frame coefficients of a signal, formally we
define the synthesis operator as follows.

Definition 4.1.3. Let {hℓ}N−1
ℓ=0 be a family of vectors in CL. Then the associated

analysis operator H : CL → CN is defined by

Hx = {⟨x,hℓ⟩}N−1
ℓ=0 , x ∈ CL .

Next we define the corresponding synthesis operator.

Definition 4.1.4. Let {hℓ}N−1
ℓ=0 be a family of vectors in CL with associated

analysis operator H. Then the associated synthesis operator is defined as the
adjoint operator H∗CN → CL and is given by

H∗y =
N−1∑
ℓ=0

y[ℓ]hℓ , y ∈ CN ,

where y[ℓ] denotes the ℓ-th entry in y.

Note that when we consider vectors in CL we consider column vectors, therefore
hℓ is a column vector. The matrix representation of the synthesis operator H∗

of the frame {hℓ}N−1
ℓ=0 is straight forward and is given as follows.
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4.1. Finite frames

H∗ =


∣∣∣ ∣∣∣ . . .

∣∣∣
h0 h1 . . . hN−1∣∣∣ ∣∣∣ . . .

∣∣∣
 ∈ CL×N .

Note that later we will consider finite frames for sparse signal recovery. In
these cases when we talk about properties that are introduced in Section 2
for measurement matrices, we will use these properties for the finite frames in
question. Essentially, we will use the synthesis operator of a frame H∗ as a
measurement matrix for compressed sensing. For instance, when we talk about
the coherence of a finite frame we mean the coherence as defined in Definition
2.4.1 of the matrix representation of the synthesis operator H∗ of the finite
frame.
Next we define the frame operator which is a fundamental operator and contains
crucial properties of the frame. Additionally, the frame operator plays an
important role in the reconstruction of a signal from the frame coefficients. The
frame operator is defined as follows.
Definition 4.1.5. Let {hℓ}N−1

ℓ=0 be a family of vectors in CL with associated
analysis operator H. Then the associated frame operator S : CL → CL is
defined by

Sx = H∗Hx =
N−1∑
k=0

⟨x,hk⟩ hk , x ∈ CL .

Before we continue we need to define some notation on Hermitian matrices.
A matrix M ∈ CL×L is said to be Hermitian if it coincides with its conjugate
transpose, i.e. if M∗ = M. The eigenvalues of the Hermitian matrices are all
real valued [66]. Next we define the following notation.

• M is called positive-definite if and only if ⟨Mx,x⟩ > 0 for all x ∈ CL\{0}.
In other words, the matrix M has only positive eigenvalues.

• M is called positive semi-definite if and only if ⟨Mx,x⟩ ≥ 0 for all
x ∈ CL \ {0}. In other words, the eigenvalues of the matrix M are all
non-negative.

• M is called negative-definite if and only if ⟨Mx,x⟩ < 0 for all x ∈ CL\{0}.
In other words, the matrix M has only negative eigenvalues.

• M is called negative semi-definite if and only if ⟨Mx,x⟩ ≤ 0 for all
x ∈ CL \ {0}. In other words, the eigenvalues of the matrix M are all
non-positive.
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Furthermore, we define the following notation for two Hermitian matrices M
and A. We write A > M if and only if the matrix A − M is positive-definite.
The same notation is used analogously for the positive semi-definite, negative-
definite and negative semi-definite cases.

Now continuing with the frame operator, we have that the frame operator
S = H∗H is positive definite and self-adjoint, i.e. Hermitian. In fact, if the
underlying set of vectors {hℓ}N−1

ℓ=0 forms a frame then the frame operator S is
invertible. These facts are now proven in the following Theorem which can be
found in [78].
Theorem 4.1.1 (Theorem 1.4 in [78]). The frame operator S of a frame
{hℓ}N−1

ℓ=0 with hℓ ∈ CL for all ℓ = {0, . . . , N − 1}, with frame bounds A and B
is a positive, self-adjoint invertible operator satisfying

A · IL ≤ S ≤ B · IL ,

where IL denotes the L-dimensional identity matrix.

Proof. First, we show

⟨Sx,x⟩ = ∥Hx∥2
2 =

N−1∑
k=0

|⟨x,hk⟩|2 .

From Definition 4.1.3 we have H : CL → CN thus Hx ∈ CN and since we
have Hx = {⟨x,hℓ⟩}N−1

ℓ=0 , we get the ℓ2-norm of Hx by simply applying the
definition and arrive at,

∥Hx∥2 =

√√√√N−1∑
k=0

|⟨x,hk⟩|2 .

The left-hand side follows from the definition of the frame operator

⟨Sx,x⟩ = ⟨H∗Hx,x⟩ = ⟨Hx,Hx⟩ = ∥Hx∥2
2 .

Next observe that,

⟨Ax,x⟩ = A ∥x∥2
2 ≤

N−1∑
k=0

|⟨x,hk⟩|2 = ⟨Sx,x⟩ ≤ B ∥x∥2
2 = ⟨Bx,x⟩

holds for all x ∈ CL. Note that by definition of the frame we have 0 < A,B < ∞
and with the inequalities above we see that all eigenvalues of S must lie in the
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interval [A,B]. Which implies the assertion of the theorem.

We are going to need the following result later, for a proof see Propositions 1.9
and 1.10 in [78].

Proposition 4.1.2 (Proposition 1.10 in [78]). Let {hℓ}N−1
ℓ=0 be a frame for

CL with frame operator S, and let M be an invertible operator on CL. Then
{Mhℓ}N−1

ℓ=0 is also a frame for CL with frame operator MSM∗.

As already mentioned the frame operator contains crucial properties of the frame.
One of which is that the largest and smallest eigenvalues of the frame operator
coincide with the optimal lower and upper frame bound. This observation is
formulated in the following theorem which can be found with its proof in [78].

Theorem 4.1.3 (Theorem 1.5 in [78]). Let {hℓ}N−1
ℓ=0 be a frame for CL with

frame operator S having eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL. Then λ1 coincides
with the optimal upper frame bound and λL is the optimal lower frame bound.

There is also an intimate connection between the vectors of the frame and the
eigenvalues and eigenvectors of the corresponding frame operator. This will be
stated in the following theorem and can be found with its proof in [78].

Theorem 4.1.4 (Theorem 1.6 in [78]). Let {hℓ}N−1
ℓ=0 be a frame for CL with

frame operator S having ℓ2-normalized eigenvectors {vk}L−1
k=0 and respective

eigenvalues {λk}L−1
k=0 . Then for all k = 0, . . . L− 1 we have

λk =
L−1∑
j=0

|⟨vk,hj⟩|2 .

In particular,

Tr (S) =
L−1∑
j=0

λj =
L−1∑
j=0

∥hj∥2
2 .

Next we discuss the class of tight frames which will be especially important
since finite Gabor frames (which will be discussed later) are a class of tight
frames. In its simplest form a tight frame can be characterized as those frames
whose frame operator equals a positive multiple of the identity. Subsequently
we give some alternative classifications.

Proposition 4.1.5. Let {hℓ}N−1
ℓ=0 be a frame for CL with frame operator S.

Then the following conditions are equivalent.

(a) {hℓ}N−1
ℓ=0 is a tight frame with frame bounds A = B for CL.
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(b) S = A · IL.

(c) For every x ∈ CL, we have

x = 1
A

N−1∑
k=0

⟨x,hk⟩ hk .

(d) For every x ∈ CL, we have

A ∥x∥2
2 =

N−1∑
k=0

|⟨x,hk⟩|2 .

Proof. First note that the equivalence of (a) and (d) directly follows from the
definition of the frame in Definition 4.1.1 and the definition of tight frames
with A = B.
Next we show the equivalence of (a) and (b), i.e. (a) ⇔ (b). As mentioned
before we have

⟨Sx,x⟩ = ∥Hx∥2
2 =

N−1∑
k=0

|⟨x,hk⟩|2 = A ∥x∥2
2 ,

where the last equivalence is the consequence of the frame being tight, i.e.
property (d). Now simply observing

⟨Sx,x⟩ = A ∥x∥2
2 = A ⟨x,x⟩ = ⟨A · ILx,x⟩

we see that S = AIL holds. For the final equivalence of (b) and (c) we observe

Ax = A · ILx = Sx =
N−1∑
k=0

⟨x,hk⟩ hk ,

Simply multiplying both sides with 1/A we obtain the claimed assertion.

Next we discuss the Gramian operator (or Gramian matrix) of the frame. The
Gramian is obtained by first applying the synthesis operator and then the
analysis operator, i.e. G = HH∗ with G being the Gramian operator. We
start with its formal definition.
Definition 4.1.6. Let {hℓ}N−1

ℓ=0 be a frame for CL with analysis operator H.
Then the operator G : CN → CN , defined by

Gy = HH∗y ,
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for y ∈ CN , is called the Gramian operator of the frame {hℓ}N−1
ℓ=0 .

The matrix representation of the Gramian of a frame {hℓ}N−1
ℓ=0 is given as

follows.

G =



∥h0∥2 |⟨h1,h0⟩| |⟨h2,h0⟩| . . . . . . |⟨hN−1,h0⟩|
|⟨h0,h1⟩| ∥h1∥2 |⟨h2,h1⟩| . . . . . . |⟨hN−1,h1⟩|
|⟨h0,h2⟩| |⟨h1,h2⟩| ∥h2∥2 . . . . . . |⟨hN−1,h2⟩|

... ... ... . . . ...

... ... ... . . . ...
|⟨h0,hN−1⟩| |⟨h1,hN−1⟩| |⟨h2,hN−1⟩| . . . . . . ∥hN−1∥2


The entries in the Gramian are the angles between the frame vectors. For
instance if a frame is equiangular then all the off diagonal elements of the
Gramian have the same value. In fact we already used the Gramian rep-
resentation without mentioning in the proof of Theorem 2.4.2. There the
columns of the measurement matrix can be regarded as a frame for CL and
we were concerned with a subset of the frame vectors. Then estimating the
restricted isometry constant is equivalent to estimating the biggest eigenvalue
of a symmetric sub-matrix of the Gramian of the frame. Note that a symmetric
sub-matrix of the Gramian will also be positive semi-definite and Hermitian.
We collect some of the results on the Gramian in the following proposition.

Proposition 4.1.6. Let {hk}N−1
k=0 be a frame for CL with analysis operator H,

frame operator S and Gramian G. Then the following statements hold.

(a) An operator U on CL is unitary if and only if the Gramian of {Uhk}N−1
k=0

is the same as the Gramian of {hk}N−1
k=0 .

(b) The non-zero eigenvalues of G and S are equal.

(c) G is invertible if and only if L = N .

Proof. First, note that Property (c) is obvious from Property (b).
The property (a) is directly seen from the matrix representation of the Gramian,
i.e. from the definition that the j, k-th entry of the Gramian is given by

⟨Uhk,Uhj⟩ = ⟨hk,hj⟩

for all j, k = 0, . . . , N − 1.
The property (b) follows from the fact that HH∗ and H∗H have the same
non-zero eigenvalues, for an in-depth discussion see [66].
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Signal recovery from frame coefficients
A discussion on frames wouldn’t be complete without discussing methods to
signal recovery from frame coefficients, i.e. from

{y[ℓ]}N−1
ℓ=0 = {⟨x,hℓ⟩}N−1

ℓ=0 .

Although we won’t really need the contents of this section later in this work,
we will discuss dual-frames and reconstruction algorithms for the sake of
completeness.
In order to exactly recover a signal from its frame coefficients a so called dual
frame for a frame is essential. We begin by giving the definition of the canonical
dual frame.

Definition 4.1.7. Let {hk}N−1
k=0 be a frame for CL with frame operator S. Then

{S−1hk}N−1
k=0 is called the canonical dual frame for {hk}N−1

k=0 .

Remark 4.1.8. Note that since S is invertible, i.e. S−1 exists, it follows
from Proposition 4.1.2 that {S−1hk}N−1

k=0 is indeed a frame. Furthermore, from
Theorem 4.1.3 and basic linear algebra we have that A−1 is the upper frame bound
and B−1 is the lower frame bound of the canonical dual frame, {S−1hk}N−1

k=0 .

Next we formulate an exact reconstruction formula using the canonical dual
frame.

Theorem 4.1.7 (Theorem 1.8 in [78]). Let {hk}N−1
k=0 be a frame and denote its

canonical dual frame by {S−1hk}N−1
k=0 . Then for every signal x ∈ CL, we have

x =
N−1∑
k=0

⟨x,hk⟩ S−1hk =
N−1∑
k=0

〈
x,S−1hk

〉
hk .

We see in Theorem 4.1.7 that the frame {hk}N−1
k=0 is the canonical dual frame

to {S−1hk}N−1
k=0 which is also apparent from the definition of the canonical dual

frame.
Interestingly we do not necessarily need the canonical dual frame to exactly
recover a signal from its frame coefficients, a so called dual frame is enough.
We now give the definition for a dual frame.

Definition 4.1.9. Let {hk}N−1
k=0 be a frame for CL. Then a frame {h̃k}N−1

k=0 is
called a dual frame for {hk}N−1

k=0 if the following holds

x =
N−1∑
k=0

⟨x,hk⟩ h̃k ,
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for all x ∈ CL.

Now an interesting question is what is the distinguishing feature of the canonical
dual frame from the alternate dual frames apart from that the canonical dual
frame has an explicit formulation depending on the initial frame. Indeed,
the sequence generated by the canonical dual, i.e. {⟨x,S−1hℓ⟩}N−1

ℓ=0 has the
minimal ℓ2-norm among all sequences that represent the signal x using the frame
elements {hk}N−1

k=0 as atoms. The following result can be found as Proposition
1.16 and Corollary 1.8 in [78].

Proposition 4.1.8. Let {hk}N−1
k=0 be a frame for CL, and let {h̃k}N−1

k=0 be an
associated dual frame. Then, for all x ∈ CL we have∥∥∥∥{〈x,S−1hk

〉}N−1

k=0

∥∥∥∥
2

≤
∥∥∥∥{〈x, h̃k

〉}N−1

k=0

∥∥∥∥
2
.

Proof. We begin by fixing an arbitrary x ∈ CL \ {0} and assume a sequence
{ai}N−1

i=0 such that

x =
N−1∑
i=0

aihi .

Our aim is to prove that for all sequences {ai}N−1
i=0 we have∥∥∥∥{〈x,S−1hk

〉}N−1

k=0

∥∥∥∥
2

≤
∥∥∥{ai}N−1

i=0

∥∥∥
2
.

First we denote by H the analysis operator of the frame {hk}N−1
k=0 and observe

{〈
x,S−1hk

〉}N−1

k=0
=
{〈

S−1x,hk

〉}N−1

k=0
∈ imag (H) ,

where imag (H) denotes the image of the analysis operator H. Since we have

0 =
N−1∑
i=0

(
ai −

〈
x,S−1hk

〉)
hi ,

follows {
ak −

〈
x,S−1hk

〉}N−1

k=0
∈ ker (H∗) .

Furthermore, we have that ker (H∗) is orthogonal to imag (H). Now considering

{ai}N−1
i=0 =

{〈
x,S−1hk

〉}N−1

k=0
+
{
ak −

〈
x,S−1hk

〉}N−1

k=0
,
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and considering ker (H∗) = imag (H)⊥ we get

N−1∑
i=0

|ai|2 =
N−1∑
i=0

∣∣∣〈x,S−1hk

〉∣∣∣2 +
N−1∑
i=0

∣∣∣ak −
〈
x,S−1hk

〉∣∣∣2 .
Since ∑N−1

i=0 |ak − ⟨x,S−1hk⟩|2 ≥ 0 we see that the ℓ2-norm of any sequence
including one generated from a dual frame, i.e.

{〈
x, h̃k

〉}N−1

k=0
, is lower bounded

by the sequence generated using the canonical dual frame.

Note that we are considering finite frames hence the objects we are studying
are all finite dimensional. It is also possible to give a linear algebraic proof for
Proposition 4.1.8. The main idea there would be to consider the ℓ2-minimization
problem

minimize
z∈CN

∥z∥2 subject to Hz = x .

The optimal solution for the ℓ2 minimization is given by the pseudo-inverse of H
[37, 80]. Then considering the sequence {⟨x,S−1hk⟩}N−1

k=0 as an N -dimensional
vector and looking at the definition of the pseudo-inverse we would see that
the vector representation of the sequence defined by the canonical dual frame
would be the solution to the ℓ2-minimization problem.

So far we have discussed the exact signal recovery, however computing the
(canonical) dual frame to a given frame is computationally expensive. Fur-
thermore, the inversion formulas are not necessarily robust against corrupted
measurements. Therefore, we are going to discuss the Chebyshev algorithm
introduced in [81].

Theorem 4.1.9 (Theorem 1 in [81]). Let {hk}N−1
k=0 be a frame for CL with

frame bounds A,B and frame operator S, and set

ρ = B − A

B + A
and σ =

√
B −

√
A√

B +
√
A
.

A signal x ∈ CL can be approximated and reconstructed from the coefficients
{⟨x,hi⟩}N−1

i=0 by the following recursion formula:
Define a sequence {z}∞

j=0 in CL and corresponding scalars {aj}∞
j=1 by

z0 = 0 , z1 = 2
B + A

Sx , and a1 = 2 ,
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and for j > 2 set

aj = 1
1 − ρ2

4 aj−1
and zj = aj

(
zj−1 − zj−2 + 2

A+B
S (x − zj−1)

)
+ zj−2 .

Then {z}∞
j=0 converges to x ∈ CL, and the rate of convergence is

∥x − zj∥ ≤ 2σj

1 + σ2j
∥x∥ .

Note that the algorithm indeed depends on the frame coefficients and the frame
itself since we have from Definition 4.1.5 Sx = ∑N−1

i=0 ⟨x,hi⟩ hi.
It should be mentioned that in [81] another method - Conjugate Gradient
Method - is also introduced, this one does not need to know the frame bounds.
Nevertheless, the convergence rate still depends on the frame bounds.

In the next subsection we continue with our original discussion on finite Gabor
frames and systems.

4.2. Finite Gabor frames and systems

Finite Gabor frames have been extensively studied in the literature and there
are already some good overview articles [19, 82, 83], the linear independence
properties of vectors of finite Gabor frames were studied in [84, 85]. Finite
Gabor frames have also been analysed in the context of sparse signal recovery
in [71, 86–89]. Furthermore, it is well known that under a suitable selection of
a window vector finite Gabor frames deliver finite frames with low coherence
values [29, 90, 91]. Thus, finite Gabor frames have established themself as
time-frequency analysis tools in digital signal processing applications [19, 92,
93].
In this section we will present some basic results on finite Gabor frames which
will be relevant in later sections.
We begin this section by some conventional notation.
For the L-element cyclic group we write ZL = Z/LZ = {0, . . . , L−1}. We index
the entries of a vector in CL by elements of ZL, i.e. g = (g [0] , . . . ,g [L− 1])T

where gT denotes the transpose of a vector. Note that arithmetic operators on
ZL are computed mod L and that if L is a prime number then ZL is equivalent
to the L element finite field FL [94]. Analysing finite Gabor frames will use the
discrete Fourier transform which is defined for an L-dimensional vector g ∈ CL
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by

(Fg) [k] = ĝ [k] =
L−1∑
n=0

g [n] e− j2π
L

kn for k = 0, 1, . . . , L− 1 ,

with j2 = −1. In order to give the matrix representation of the discrete Fourier
transform in CL [95], we denote by ω the L-th root of unity, i.e. ω = e j2π

L .
Then the matrix representation of the discrete Fourier transform is given by
F [k, ℓ] = ω−k·ℓ for ℓ, k = 0, 1, . . . , L − 1 where F [k, ℓ] denotes the entry of F
in k-th row and ℓ-th column, i.e. the full matrix can be written as

F =



ω(−1)·0·0 ω(−1)·1·0 ω(−1)·2·0 . . . . . . ω(−1)·(L−1)·0

ω(−1)·0·1 ω(−1)·1·1 ω(−1)·2·1 . . . . . . ω(−1)·(L−1)·1

ω(−1)·0·3 ω(−1)·1·3 ω(−1)·2·3 . . . . . . ω(−1)·(L−1)·3

... ... ... . . . ...

... ... ... . . . ...
ω(−1)·0·(L−1) ω(−1)·1·(L−1) ω(−1)·2·(L−1) . . . . . . ω(−1)·(L−1)·(L−1)


.

4.2.1. Time-frequency shifts and their properties

To define finite Gabor frames we first need to define the time-frequency shift
operators. To this end, we define the translation and modulation operators.
The translation operator T : CL → CL is given by

(Tg) [k] = g [k − 1] , for all k ∈ ZL .

It acts as a cyclic shift on a vector in CL. Using concatenations of the translation
operators we can represent the τ -times cyclic shift of a vector g ∈ CL by

(Tτ g) [k] = g [k − τ ] , for all k ∈ ZL .

The matrix representation of the translation operator T using the identity
matrix is given as

T =
[

0 1
IL−1 0

]
,
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IL−1 is the L− 1 × L− 1 identity matrix and 0 corresponds to zero entries. In
a similar fashion we can write Tτ as

Tτ =
[

0 Iτ

IL−τ 0

]
.

Furthermore, it is noteworthy to observe that we have (Tτ )−1 = (Tτ )∗ = T−τ .

Analogous to the translation operator we define the modulation operator
M : CL → CL as

(Mg) [k] = g[k] · ωk , for all k ∈ ZL ,

where ω = ej 2π
L . Again analogous to the translation operator concatenating

the modulation operator ν times (with ν ∈ {0, 1, . . . L− 1}) and applying on a
vector g ∈ CL we have

(Mνg) [k] = g [k]ωνk , for all k ∈ ZL .

The modulation operator has the following matrix representation

M = diag
([
ω0 , ω1 , . . . , ωL−1

]T)
,

where diag (g) with g ∈ CL denotes diagonal matrix with the elements of g as
diagonal entries. In explicit matrix for M is written as

M =



ω0

ω1

ω2

. . .
ωL−1

 .

Accordingly the matrix form of Mν , ν ∈ {0, 1, . . . , L− 1}, i.e. ν-times concate-
nation of the modulation operator, has the following matrix form

Mν = diag
([
ων·0 , ων·1 , . . . , ων·(L−1)

]T)
.

Similar to the translation operator we have (Mν)−1 = (Mν)∗ = M−ν .

Let fk be the k-th column of the discrete Fourier matrix, i.e. F = [f0, f1, . . . , fL−1],
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then the modulation operator can also be denoted by Mν = diag
(
fν

)
, where

fν denotes the complex conjugate of the vector fν . The modulation operator
is sometimes refereed as frequency shift, because applying the modulation
operator onto a signal is the same as shifting the signal in the frequency, i.e.
cyclic shift of the Fourier transform of the signal. This can be seen by straight
forward computation,

(̂Mνg) [k] = (FMνg) [k]

=
L−1∑
n=0

(ωνng [n]) e−j 2π
L

kn =
L−1∑
n=0

g [n] e−j 2π
L

(k−ν)n

= ĝ [k − ν] for k ∈ ZL ,

(4.2)

where we used ω = ej 2π
L . From (4.2), we immediately get the following relation

FMk = TkF for k ∈ ZL . (4.3)

Furthermore, a simple reformulation of (4.3) delivers us

FMkF∗ = Tk ,

and we see that we can write the eigendecomposition of Tk in terms of the
discrete Fourier transform matrix and frequency-shifts which are diagonal
matrices. Indeed, this is not surprising another possibility to see it is to notice
that Tk with k ∈ ZL are circulant matrices and that the columns of the Fourier
matrix are eigenvectors of circulant matrices [96].
Analogous to (4.3) we can also derive the following relation

F∗M−kF = Tk for k ∈ ZL .

The following lemma describing the commutation relation between the trans-
lation and modulation operator plays a key role in the analysis of Gabor
frames.

Lemma 4.2.1. Set ω = ej 2π
L then for the translation and modulation operators

in CL the following commutation relation

Tτ Mν = ω−ντ MνTτ ,

holds.

Proof. Let g ∈ CL then for any (τ, ν) ∈ ZL ×ZL we obtain by straight forward
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computation

Tτ Mνg [k] = (Mg) [k − τ ]
= ων(k−τ)g [k − τ ]
= ω−ντωνkg [k − τ ]
= ω−ντ MνTτ g [k] ,

for k = {0, 1, . . . L− 1}.

Next, following the notation in [19, 82] we define the time-frequency shift
operator by

π (τ, ν) = MνTτ for τ, ν ∈ ZL.

The set of time-frequency shifts have the interesting property that they form
an orthogonal basis for the space of linear operators on CL under the Hilbert-
Schmidt inner product, we denote this space of all L× L square matrices by
HSL. This is a Hilbert space with the Hilbert-Schmidt inner product.
The Hilbert-Schmidt inner product is given by

⟨A,B⟩HS = Tr (B∗A) =
L−1∑
n=0

L−1∑
m=0

⟨Aẽn, ẽm⟩ ⟨Bẽn, ẽm⟩ ,

where Tr (·) denotes the trace operator and ẽn ∈ CL for n ∈ {0, 1, . . . , L− 1}
denotes an orthogonal basis.
For later use let us define the canonical basis on CL by

en [m] =
1 if m = n,

0 if m ̸= n .

We will denote the norm induced by the Hilbert-Schmidt inner product by
∥ · ∥HS. In order to prove that the set of all normalized time-frequency shifts{

1√
L
π (τ, ν)

}
τ,ν∈ZL

form an orthogonal basis under the Hilbert-Schmidt inner
product we need the following well known result.

Lemma 4.2.2. For any L ∈ N we have

L−1∑
k=0

ej 2π
L

Nk =
L, if L divides N,

0, otherwise.
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In particular, we have

L−1∑
k=0

ej 2π
L

Nk =
L, for N = 0,

0, for N = 1, . . . , L− 1.

Proof. Set x = ej 2π
L

N .
If L divides N then we have N

L
∈ N, hence x = 1.

In case L does not divide N we can then write the sum as

L−1∑
k=0

xk =

(
1 + x+ x2 + · · · + xL−1

)
(1 − x)

1 − x
= 1 − xL

1 − x
= 1 − ej2πN

1 − x
= 0 .

Now we can prove the following theorem which can also be found in [19, 82,
84, 86].

Theorem 4.2.3. The set of all normalized time-frequency shift matrices{
1√
L
π (τ, ν)

}
τ,ν∈ZL

forms an orthonormal basis for HSL.

Proof. We need to show two properties. First, that the normalized time-
frequency shifts are indeed orthogonal under the Hilbert-Schmidt inner product
and secondly that they form a basis for square matrices in CL.
We verify first hand

Tr (MνTτ ) = 0 for (τ, ν) ̸= (0, 0) .

The cases of (0, ν) for ν ̸= 0 follows immediately from Lemma 4.2.2. Indeed,〈
1√
L
π (0, ν) , 1√

L
π (0, µ)

〉
HS

= 1
L

Tr
(
Mν−µ

)
= 1
L

L−1∑
ℓ=0

〈
Mν−µeℓ, eℓ

〉

= 1
L

L−1∑
ℓ=0

ej 2π
L

(ν−µ)ℓ =
1, if ν = µ,

0, if ν ̸= µ.

Next observe〈
1√
L
π (τ, ν) , 1√

L
π (k, ℓ)

〉
HS

= 1
L

Tr (π (k, ℓ)∗ π (τ, ν))

= 1
L

Tr
(
T−kMν−ℓTτ

)
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= ωk(ν−ℓ) 1
L

Tr
(
Mν−ℓTτ−k

)
=
1, if (τ, ν) = (k, ℓ) ,

0, if (τ, ν) ̸= (k, ℓ) .

Hence, we have shown that each mutually distinct time-frequency shifts are
orthogonal to each other under the Hilbert-Schmidt inner product.
Next, we show that the set of all time-frequency shifts form a basis for square
matrices on CL. We define the matrix δn,m ∈ CL×L as

⟨δn,mec, er⟩ =
1, for (r, c) = (n,m) ,

0, else.

Note that δn,m is a matrix with a 1 in the entry corresponding to the n-th row
and m-th column and zeros every where else. Obviously, the set of matrices
{δn,m}L−1

n,m=0 forms a basis for the square matrices on CL. Our aim is to show
that we can write all matrices in the set {δn,m}L−1

n,m=0 as linear combinations of
time-frequency shift matrices. First, observe that from Lemma 4.2.2 we have

δ0,0 = 1
L

L−1∑
k=0

Mk =
L−1∑
k=0

1√
L

· 1√
L
π(0, k) .

Now noticing that

δn,m = Tnδ0,0T−m = 1
L

L−1∑
k=0

ω−nkMkTn−m =
L−1∑
k=0

ω−nk

√
L

· 1√
L
π(n−m, k)

holds, concludes the proof.

4.2.2. Finite Gabor systems
Now we continue with defining finite Gabor frames and systems.
The finite Gabor frame with respect to a window vector g ∈ CL is defined as
the collection of all time-frequency shifts of g, i.e. the set of vectors

{π (τ, ν) g}τ,ν∈ZL×ZL
,

and a finite Gabor system refers to a subset of the full Gabor frame indexed by
Λ ⊂ ZL ×ZL, formally the collection {π (τ, ν) g}τ,ν∈Λ. Moreover, if Λ = ZL ×ZL

we refer to the Gabor system as the full Gabor system. We denote by Gg the
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L×L2 matrix whose columns consists of elements of the full Gabor system, i.e.

Gg =
[
π (0, 0) g

∣∣∣ π (0, 1) g
∣∣∣ . . . ∣∣∣ π (1, 0) g

∣∣∣ . . . ∣∣∣ π (L− 1, L− 1) g
]
.

We will also refer to Gg as the Gabor matrix generated by the window g. The
matrix Gg can also be written using the discrete Fourier transform matrix. To
this end we define the diagonal matrices

Dk = diag
(
Tkg

)
,

with k = {0, 1, . . . L− 1} and where diag (·) generates a diagonal matrix with
entries from its argument. Now using the matrices Dk and the Fourier matrix
we can write the matrix Gg as

Gg =
[
D0F

∣∣∣D1F
∣∣∣ . . . ∣∣∣DL−1F

]
.

Additionally, note that the matrix Gg is the matrix representation of the
synthesis operator corresponding to the full Gabor frame generated by the
window g and that G∗

g corresponds to the analysis operator.
An interesting property of the full Gabor frame is that it always forms a tight
frame for any g ∈ CL \{0}. This property is proven in the following proposition
which follows the same proof as in [84].

Proposition 4.2.4 (Proposition 2 in [84]). For any g ̸= 0, the full Gabor
system {π (τ, ν) g}τ,ν∈ZL×ZL

is a tight finite frame for CL with frame bounds
A = B = L2 ∥g∥2

2.

Proof. We start by considering the synthesis operator of the Gabor frame by
H∗ = Gg. Then the rows of the analysis operator H are complex conjugates of
the frame elements {π (τ, ν) g}τ,ν∈ZL×ZL

. Using the notation with the discrete
Fourier matrix we can write the analysis operator as

H =



F∗D∗
0

F∗D∗
1

F∗D∗
2

...
F∗D∗

L−1

 .
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Now using the definition of the frame operator S from Definition 4.1.5 we get

S = H∗H =
[
D0F

∣∣∣D1F
∣∣∣ . . . ∣∣∣DL−1F

]
·


F∗D∗

0
F∗D∗

1
...

F∗D∗
L−1


= D0FF∗D∗

0 + D1FF∗D∗
1 + · · · + DL−1FF∗D∗

L−1

= L · D0ILD∗
0 + L · D1ILD∗

1 + · · · + L · DL−1ILD∗
L−1

= L
(
D0D∗

0 + D1D∗
1 + · · · + DL−1D∗

L−1

)
=
(
L2

L−1∑
k=0

|g [k]|2
)

IL = L2 ∥g∥2
2 IL .

Hence we see that the frame operator S is a multiple of identity, and therefore
the full Gabor frame is a tight frame as claimed.

Since the full finite Gabor frame is a tight frame the canonical dual frame of
the full Gabor frame is again a Gabor frame.

Subsets of the full Gabor system, i.e. Gabor systems are generally not a frame
for CL, but they may form a frame in some cases. Later we will see that for
any L there exists g ∈ CL such that for any subset Λ ⊂ ZL × ZL with |Λ| ≥ L
the collection {π (λ) g}λ∈Λ forms a finite frame.
However, the collection {π (λ) g}λ∈Λ does not necessarily need to end up
forming a finite frame. For instance choosing g = e0 and setting Λ =
{(0, 0), (0, 1), . . . , (0, L− 1)} it is easy to see that the dimension of the span of
the set {π (λ) e0}λ∈Λ will be one.
If however the collection {π (λ) g}λ∈Λ forms a frame then for certain subsets
Λ ⊂ ZL × ZL the Gabor frame has the remarkable property that its corre-
sponding canonical dual frame is again a Gabor frame on the same set Λ. The
condition for the set Λ is that Λ ⊂ ZL ×ZL needs to be a subgroup of ZL ×ZL.
For the frame operator of the finite Gabor frame {π (λ) g}λ∈Λ where Λ is a
subgroup of ZL × ZL, we have the following result from [82].

Proposition 4.2.5 (Lemma 4.12 in [82]). Let {π (λ) g}λ∈Λ be a finite Gabor
frame for CL and denote by S the corresponding frame operator and additionally,
if the set Λ ⊂ ZL ×ZL is a subgroup of ZL ×ZL. Then we have the commutation
relation

π (λ) S = Sπ (λ) ,
for all λ ∈ Λ.
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For the proof of Proposition 4.2.5 we need the following lemma.

Lemma 4.2.6. Let (k, l) , (τ, ν) ∈ ZL × ZL and set ω = ej 2π
L , for the time-

frequency shift matrices π (k, ℓ) and π (τ, ν) the properties

π (k, ℓ) π (τ, ν) = ω−νkπ (τ + k, ν + ℓ) , (4.4)
π (k, ℓ) π (τ, ν) = ωℓτ−νkπ (τ, ν) π (k, ℓ) (4.5)

π (τ, ν)∗ = ω−ντπ (−τ,−ν) , (4.6)

hold.

Proof. The proof heavily relies on Lemma 4.2.1. Applying Lemma 4.2.1, we get

π (k, ℓ) π (τ, ν) = MℓTkMνTτ

= ω−νkMℓ+νTτ+k

= ωℓτ−νkMνTτ MℓTk ,

which proves (4.4) and (4.5). To derive (4.6), we observe

π (τ, ν)∗ = (MνTτ )∗

= T−τ M−ν

= ω−ντ M−νTτ

= ω−ντπ (−τ,−ν) ,

where we used (Mν)∗ = M−ν and (Tτ )∗ = T−τ .

Now equipped with Lemma 4.2.6 we can prove Proposition 4.2.5.

Proof of Proposition 4.2.5. We are going to show π (k, ℓ) Sπ (k, ℓ)∗ = S for any
(k, ℓ) ∈ Λ which implies the claimed assertion in the proposition. For an
arbitrary x ∈ CL we have

π (k, ℓ) Sπ (k, ℓ)∗ x = π (k, ℓ)
∑

(τ,ν)∈Λ
⟨π (k, ℓ)∗ x, π (τ, ν) g⟩ π (τ, ν) g

=
∑

(τ,ν)∈Λ
⟨π (k, ℓ)∗ x, π (τ, ν) g⟩π (k, ℓ) π (τ, ν) g

= ω−νk
∑

(τ,ν)∈Λ
⟨π (k, ℓ)∗ x, π (τ, ν) g⟩ π (τ + k, ν + ℓ) g

= ω−νk
∑

(τ,ν)∈Λ
⟨x, π (k, ℓ) π (τ, ν) g⟩ π (τ + k, ν + ℓ) g
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= ω−νkωνk︸ ︷︷ ︸
=1

∑
(τ,ν)∈Λ

⟨x, π (τ + k, ν + ℓ) g⟩ π (τ + k, ν + ℓ) g

=
∑

(τ,ν)∈Λ
⟨x, π (τ, ν) g⟩ π (τ, ν) g

= Sx ,

where we have used the definition of the frame operator S (Definition 4.1.5),
Lemma 4.2.6 and in the final step that Λ is a subgroup of ZL × ZL.

An immediate consequence of Proposition 4.2.5 is the remarkable property of
finite Gabor frames that the canonical dual frame of a finite Gabor frame is
again a finite Gabor frame generated by the same time-frequency shifts. We
formalize it in the following corollary.

Corollary 4.2.7. Let {π (λ) g}λ∈Λ be a finite Gabor frame for CL with frame
operator S, if Λ ⊂ ZL × ZL is a subgroup of ZL × ZL, then the canonical dual
frame is again a finite Gabor frame and it is given by {π (λ) S−1g}λ∈Λ .

Proof. Following Definition 4.1.7, the canonical dual frame of the frame {π (λ) g}λ∈Λ
is given by {S−1π (λ) g}λ∈Λ.
From Proposition 4.2.5 we have the commutation relation

π (λ) S = Sπ (λ) ,

for λ ∈ Λ. Applying S−1 from the left and from the right, to both sides of the
equation we obtain

S−1π (λ) = π (λ) S−1 .

Thus, we see that the commutation relation from Proposition 4.2.5 also holds
for the inverse of the frame operator, S−1. The assertion in the corollary is now
immediate.

4.2.3. Linear independence of finite Gabor frames and matrix
identification problem

Given Λ ⊂ ZL × ZL with |Λ| ≥ L, another interesting question is whether
it is possible to always find a vector g ∈ CL such that the set {π (λ) g}λ∈Λ
forms a frame. Indeed this is possible and [84] proves that such a window
g ∈ CL always exists if L is a prime number and [85] extends the result to all
dimensions, L ∈ N.
Before we present the main results from [84] and [85] lets first turn our attention
to a motivation which will also be of relevance to us. For now lets consider a
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purely mathematical motivation and assume we have a linear equation of the
form

b = A · g ,

with b,g ∈ CL and a L × L square matrix A. The question of interest is
whether we can obtain A from the observation b and the pilot signal g. Recall
that in Theorem 4.2.3 we have proven that the set of normalized time-frequency
shift matrices forms an orthonormal basis for the set of square matrices on
CL. Thus, there is a representation of A as a linear combination of normalized
time-frequency shifts, i.e.

A = 1√
L

∑
λ∈ZL×ZL

η (λ)π (λ) ,

where η (λ) is called the spreading function of the matrix A. Note that the
values of the spreading function, η (λ), are simply the coefficients of A in the
basis of the normalized time-frequency matrices. Therefore, the values of the
spreading function are simply given by the Hilbert-Schmidt inner products,

η (λ) = 1√
L

⟨A, π (λ)⟩HS ,

for all λ ∈ ZL × ZL. Substituting the expansion of A in the basis of time-
frequency matrices we obtain for the observed vector b,

b = Ag =
 1√

L

∑
λ∈ZL×ZL

η (λ) π (λ)
g = 1√

L

∑
λ∈ZL×ZL

η (λ) π (λ) g

= 1√
L

[
π (λ0) g

∣∣∣ π (λ1) g
∣∣∣ . . .

∣∣∣ π (λL2−1) g
]−→η = Gg

−→η , (4.7)

where −→η ∈ CL2 is simply the values of the spreading function stacked in a
vector, i.e. the coefficients of A in the basis of time-frequency shift matrices.
Therefore, identifying A from the observation b reduces back to solving a linear
equation. However, it is immediately obvious that if the support of A in the
basis of time-frequency shift matrices is bigger then L the linear equation is an
under determined system and has no unique solution. But in case where we
have |supp (A)| ≤ L it is possible to recover A from b, where the support of A
is taken with respect to the basis of time-frequency shift matrices. We already
saw that such a recovery is only possible if the submatrix of the matrix in (4.7)
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indexed by λ ∈ supp (A) has full rank which is equivalent of its columns being
linearly independent. Note that in fact the matrix in (4.7) is the Gabor matrix
Gg generated with the window g.
Now this discussion brings us back to the article [84], which poses the question
whether it is possible to find a window g ∈ CL such that for any set Λ ⊂ ZL×ZL

with |Λ| ≤ L the matrix[
π (λ0) g

∣∣∣ π (λ1) g
∣∣∣ . . .

∣∣∣ π
(
λ|Λ|

)
g
]
,

has full column rank or equivalently whether its columns are linearly indepen-
dent. Note that the above matrix is a submatrix of the full Gabor matrix
Gg in (4.7) composed of those columns that are indexed by Λ. In fact, this
formulation is the same as to ask whether we are able to find a window g
such that the Gabor matrix Gg generated by the window g has spark L+ 1,
spark (Gg) = L+ 1.
This question is answered in [84] for dimensions L where L is a prime number
and extended to dimensions where L is not a prime number in the article [85].
We state the main result of [84] in the following theorem.

Theorem 4.2.8 ([84]). If L is a prime number then there is a dense open
set E of full measure in CL such that for every g ∈ E, the Gabor matrix Gg
generated by the window vector g has spark (Gg) = L+ 1.

The following is the main result of [85].

Theorem 4.2.9 ([85]). For every positive integer L, there is some window
g ∈ CL, such that the Gabor matrix Gg generated by g has spark (Gg) = L+ 1.
Moreover, the set of all such windows g ∈ CL is of full measure, i.e. its
complement in CL has Lebesgue measure zero.

Furthermore, in [85] an explicit construction of such a window g ∈ CL is given
in a corollary which we state here.

Proposition 4.2.10 (Corollary 5.3 in [85]). Let ξ = ej 2π

(L−1)4 , or any other
primitive root of unity of order (L− 1)4, where L ≥ 4. Then the vector

g =
[

1 , ξ , ξ4 , ξ9 , . . . , ξ(N−1)2
]
,

generates a Gabor matrix Gg with spark (Gg) = L+ 1.

Theorems 4.2.8 and 4.2.9 imply that in every dimension L ∈ N it is possible to
chose a window vector g ∈ CL such that the generated finite Gabor frame is
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robust to erasures, that is the finite Gabor frame remains a frame for CL even
if elements are removed. This is a consequence of the fact that for finite Gabor
frames generated with a suitable window vector g every L-element subset of
the finite Gabor frame are linearly independent vectors, i.e. span CL.

4.2.4. Short-time Fourier transform and uncertainty
principles in finite time-frequency representations

The short-time Fourier transform (STFT) is a time-frequency analysis tool that
has by now a long standing history in signal processing [92, 97–99]. Here we
are interested in its finite version and in an uncertainty principle of the finite
short-time Fourier transform discussed in [87].
We first begin by formally defining the short-time Fourier transform.

Definition 4.2.1. The short-time Fourier transform Vg : CL → CL ×CL with
respect to the window vector g ∈ CL \ {0} of a signal x ∈ CL is given by

(Vgx) [τ, ν] = ⟨x, π (τ, ν) g⟩ ,

where (τ, ν) ∈ ZL × ZL.

The inversion formula for the short-time Fourier transform is given as

x [n] = 1
L ∥g∥2

2

L−1∑
τ=0

L−1∑
ν=0

(Vgx) [τ, ν] g [n− τ ] e−j 2π
L

nν

= 1
L ∥g∥2

2

L−1∑
τ=0

L−1∑
ν=0

⟨x, π (τ, ν) g⟩ π (τ, ν) g [n] ,

for n = 0, 1, . . . , L− 1 and for any x ∈ CL.
Next we want to introduce some uncertainty principles for finite dimensions. We
will present some uncertainty principles concerning finite discrete Fourier trans-
forms although they will not be explicitly used in later sections. Nonetheless,
those uncertainty principles give insights into the discrete Fourier transform
and belong to an introductory discussion for the actual uncertainty principle
on the finite short-time Fourier transform which will play a central role in a
later section.
We begin with a fundamental uncertainty principle that is defined for functions
which are defined on ZL [100].
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Theorem 4.2.11. Let x ∈ CL \ {0} be a vector and denote by x̂ ∈ CL the
discrete Fourier transform of x, i.e.

x̂ = 1√
L

· Fx ,

where F is the discrete Fourier transform matrix. Then for the support of x
and x̂ the relation

|supp (x)| · |supp (x̂)| ≥ L ,

holds.
Theorem 4.2.11 is proven in [100]. Furthermore, the bound in Theorem 4.2.11
is sharp. That means, if for instance an integer n divides L, i.e. L

n
∈ N then

there exists a vector x ∈ CL with |supp (x)| = n and |supp (x̂)| = L
n
. Note

that Theorem 4.2.11 provides a finite analogous to the standard continuous
uncertainty principle in Fourier analysis [101].
If the dimension L is a prime number then the bound in Theorem 4.2.11 can be
improved significantly. Indeed, in [102] a bound on the addition of the support
sizes of the original signal and its discrete Fourier transform is derived.
Theorem 4.2.12. Let L be a prime number and x ∈ CL \ {0} be a vector and
denote by x̂ ∈ CL the discrete Fourier transform of x. Then

|supp (x)| + |supp (x̂)| ≥ L ,

holds.
The Theorem 4.2.12 is proven in [102]. The proof uses that every minor of the
discrete Fourier transform matrix, F ∈ CL×L where L is a prime number, is
non-singular.
The next theorem on the uncertainty principle on the finite short-time Fourier
transform will play a key role in a later section.
Theorem 4.2.13 (Theorem 4.4 in [87]). Let L be a prime number. Then for
almost every window vector g ∈ CL, we have

|supp (x)| + |supp (Vgx)| ≥ L2 + 1 ,

for all x ∈ CL \ {0}. Moreover, for two integers k, ℓ ∈ N assume 1 ≤ k ≤ L
and 1 ≤ ℓ ≤ L2 with k + ℓ ≥ L2 + 1, then there exists a vector x ∈ CL with
|supp (x)| = k and |supp (Vgx)| = ℓ.
Furthermore, regarding the window vector g ∈ CL in Theorem 4.2.13 one can
make the following statement.
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Proposition 4.2.14 (Proposition 4.6 in [87]). There exists a unimodular
window vector g ∈ CL, with L a prime number, that satisfies the conclusions
of Theorem 4.2.13. A unimodular vector g ∈ CL is defined as a vector where
the absolute value of all its entries is equal to 1, i.e. |g [n]| = 1 for n ∈ ZL.

The following theorem summarizes the equivalences of properties of the finite
Gabor frames and the finite short-time Fourier transform discussed so far.

Theorem 4.2.15 (Theorem 6.9 in [19]). Let L be a prime number. The
following are equivalent for a window vector g ∈ CL \ {0} :

1. The Gabor matrix Gg satisfies spark (Gg) = L+ 1.

2. The finite Gabor frame {π (λ) g}λ∈ZL×ZL
forms an equal norm tight frame

which is maximally robust to erasures.

3. For all x ∈ CL \ {0}, |supp (Vgx)| ≥ L2 − L+ 1.

4. For all x ∈ CL \ {0}, Vgx and, therefore, x is completely determined by
its values on any set Λ ⊂ ZL × ZL with |Λ| = L.

5. A matrix A ∈ CL×L is identifiable by g if and only if |supp (A)| ≤ L,
where the support of A is taken with respect to the basis of time-frequency
shift matrices.

The proof of Theorem 4.2.15 can be found in [19]. Further, it should be
mentioned that Theorem 4.2.15 actually holds in the more general setup of
Gabor analysis on finite Abelian groups [82] and is in fact formulated in that
setup in [19]. Since we index the vectors in CL with elements from ZL, whenever
L is a prime number, we considered in fact simply Abelian groups of order L.
But for our discussion, simply considering the vector space CL where L is a
prime number is enough for now.

60



Part II.

Properties of Finite Gabor Frames
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5. On the Statistical Restricted
Isometry Property for Finite
Gabor Frames

Gabor matrices are important in many different areas that utilize tools from
time-frequency analysis like communications or radar [43, 83, 103, 104]. How-
ever, for applications with sparse data the question arises whether these matrices
satisfy some recovery guarantees for compressed sensing and furthermore, which
generating window vectors yield a matrix with restricted isometry property.
In the literature a well known fact is that finite Gabor frames that are generated
by random window vectors, for instance where each entry of the window vector
is independent and identically distributed (i.i.d) random variables (for example
a subguassian random variable), deliver suitable sensing matrices [88, 89, 105].
Here the matrix representation of the synthesis operator of the finite Gabor
frame is used as the sensing matrix or, as introduced in Section 4, the Gabor
matrix Gg generated with the window vector g ∈ CL.
Although random constructions of Gabor sensing matrices deliver very good
theoretical results, they do, however, have major drawbacks in terms of re-
construction complexity and efficiency, see for instance [57, 70]. Moreover, in
applications, the measurement matrices are often not random but have a certain
structure that is predefined by the measurement setup. But since proving the
restricted isometry property is difficult, or rather there is almost no known
deterministic constructions of measurement matrices for compressed sensing
fulfilling the restricted isometry property [61]. As well as, the verification of the
restricted isometry property for a given measurement matrix is computationally
unfeasible [56], there has been attempts to analyse the statistical recovery
guarantees of deterministic sensing matrices, where the probability enters the
signal model (the measured signals are assumed to be random) rather than
the measurement matrix. We have already discussed in Section 3 the strong
coherence property [67, 71] and the statistical restricted isometry property [70].
In this section we will pay special attention to the statistical restricted isometry
property of finite Gabor frames (Gabor sensing matrices). Despite the impor-
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tance of finite Gabor frames in various applications [19, 43, 83, 86, 103, 104,
106, 107], there aren’t much reports on the sparse signal recovery performance
of deterministic constructions of finite Gabor frames. Analysis regarding sparse
recovery performance of deterministic finite Gabor frames are provided in [27,
43, 67].
The results presented in this section have already been partially published in
[27].

5.1. Construction of low coherence finite Gabor
frames with Alltop window vector

In [91] Alltop constructed a window vector α ∈ CL that gives rise to a
low coherence finite Gabor frame. The aim of [91] is to construct discrete
periodic sequences that have low correlation values, since these sequences have
applications in radar and communication systems [83, 90, 108].
Let ω = ej 2π

L and L ≥ 5 a prime number, then the window vector α ∈ CL

suggested in [91] is given by

α [k] = 1√
L
ωk3 (5.1)

for k = 0, 1, . . . , L− 1, we will refer to α as the Alltop window vector. Note
that by design we have ∥α∥2 = 1. Our aim in this section is to show that the
Gabor matrix generated by the Alltop window vector, Gα, has low coherence
(Definition 2.4.1), more precisely we have µ (Gα) = 1√

L
.

Proposition 5.1.1. Set ω = ej 2π
L and let L ∈ N be a prime number with L ≥ 5,

define the vector α ∈ CL as in (5.1) Then the Gabor frame generated with the
window vector α has coherence µ (Gα) = 1√

L
.

Further, the absolute values of the inner products between the elements of the
finite Gabor frame are given by

|⟨π (τ, ν)α,α⟩| =


1, if (τ, ν) = (0, 0)
0, if τ = 0 and ν ̸= 0

1√
L
, if τ ̸= 0

.

The following proof follows the proof of Proposition 5.13 in [37].

Proof. First, note that we only need to consider the inner products |⟨π (τ, ν)α,α⟩|
with (τ, ν) ∈ ZL × ZL. That can easily be seen as follows, let (τ, ν), (k, ℓ) ∈
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ZL ×ZL and (τ, ν) ̸= (k, ℓ) and consider the absolute value of the inner product
|⟨π (τ, ν)α, π (k, ℓ)α⟩| as follows

|⟨π (τ, ν)α, π (k, ℓ)α⟩| = |⟨π (k, ℓ)∗ π (τ, ν)α,α⟩|
= |⟨π (−k,−ℓ) π (τ, ν)α,α⟩|
= |⟨π (τ − k, ν − ℓ)α,α⟩| ,

where we applied Lemma 4.2.6. Since we have (τ − k, ν − ℓ) ∈ ZL × ZL it is
enough if we only consider |⟨π (τ, ν)α,α⟩| with (τ, ν) ∈ ZL × ZL.
The absolute value of the inner product |⟨π (τ, ν)α,α⟩| can explicitly be written
as

|⟨π (τ, ν)α,α⟩| = 1
L

∣∣∣∣∣
L−1∑
ℓ=0

ωℓνα [ℓ]α [ℓ− τ ]
∣∣∣∣∣

= 1
L

∣∣∣∣∣
L−1∑
ℓ=0

ωℓνω−ℓ3
ω(ℓ−τ)3

∣∣∣∣∣
= 1
L

∣∣∣∣∣
L−1∑
ℓ=0

ω−3τℓ2
ω(3τ2+ν)ℓω−τ3

∣∣∣∣∣
= 1
L

∣∣∣∣∣
L−1∑
ℓ=0

ω−3τℓ2
ω(3τ2+ν)ℓ

∣∣∣∣∣ .
Now we set a = −3τ and b = 3τ 2 + ν and consider the squared value of the
absolute value of the inner product

|⟨π (τ, ν)α,α⟩|2 = 1
L2

L−1∑
ℓ,k=0

ωaℓ2
ωbℓω−ak2

ω−bk

= 1
L2

L−1∑
ℓ,k=0

ωa(ℓ2−k2)ωb(ℓ−k)

= 1
L2

L−1∑
ℓ,k=0

ω(ℓ−k)(a(l+k)+b) .

For the next step we set γ = ℓ− k and obtain

|⟨π (τ, ν)α,α⟩|2 = 1
L2

L−1∑
γ,k=0

ωγ(a(γ+2k)+b)
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= 1
L2

L−1∑
γ=0

ωγ(aγ+b)
L−1∑
k=0

ω2aγk .

From Lemma 4.2.2 we have for the final sum in the above equation,

L−1∑
k=0

ω2aγk =
L, if 2aγ = 0 mod L

0, if 2aγ ̸= 0 mod L
.

Since a = −3τ and because 6 mod L ̸= 0 the only case where the sum does
not equal to zero is when τ = 0 or when γ = 0.
We consider now these two cases separately.
Case 1 τ = 0: In this case we have a = −3τ = 0 and b = 3τ + ν = ν. Then
we obtain

|⟨π (τ, ν)α,α⟩|2 = 1
L2

L−1∑
γ=0

ωγν
L−1∑
k=0

1

= 1
L

L−1∑
γ=0

ωγν

=
1, if ν = 0 mod L

0, if ν ̸= 0 mod L
.

This proves the first two lines of the statement, and it remains to consider the
case τ ̸= 0.
Case 2 τ ̸= 0: Finally, we turn our attention to the case where γ = 0 and
τ ≠ 0. Note that the sum ∑L−1

k=0 ω
2aγk vanishes for all other cases, i.e. whenever

γ ̸= 0. Thus, in this final case we obtain

|⟨π (τ, ν)α,α⟩|2 = 1
L2

L−1∑
γ,k=0

ωγ(a(γ+2k)+b)

= 1
L

+ 1
L2

L−1∑
γ=1

ωγ(aγ+b)
L−1∑
k=0

ω2aγk

︸ ︷︷ ︸
=0

= 1
L
.

Hence, we obtain for τ ̸= 0,

|⟨π (τ, ν)α,α⟩| = 1√
L
,
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which proves the claimed assertion that µ (Gα) = 1√
L

.

It is interesting to see that the finite Gabor frames constructed with the Alltop
window vector α can be splitted into a disjoint collection of L orthogonal bases
for CL. The L disjoint sets are given by {π (τ, ν)α}ν∈ZL

for τ = 0, 1, . . . , L− 1.
Adding the canonical basis, {ek}L−1

k=0 we get in total L+ 1 disjoint orthogonal
bases for CL. Furthermore, it is easy to see that we have

|⟨π (τ, ν) , ek⟩| = 1√
L
,

for all (τ, ν) ∈ ZL × ZL and for all k = 0, 1, . . . , L − 1. Hence, consider the
matrix Ψ =

[
Gα

∣∣∣IL

]
, then the coherence of Ψ is µ (Ψ) = 1√

L
. Additionally, the

columns of Ψ form a unit norm tight frame for CL.
In fact, these type of collections of vectors, {ψk}L2+L

k=1 which is just a collection
of the sets {π (τ, ν)α}ν∈ZL

for τ = 0, 1, . . . , L− 1 together with {ek}L−1
k=0 , and

where ψk is the k-th column of Ψ, are known as mutually unbiased bases in
the literature [109, 110]. Two orthogonal bases are called mutually unbiased
if the inner product of any two vectors, each from a distinct orthogonal basis,
has the absolute value equal to 1√

L
, we assume that the vectors are normed

with respect to the ℓ2-norm. In fact, in CL there are at most L+ 1 orthogonal
bases that are mutually unbiased to each other [110, 111].

5.2. Statistical restricted isometry property of
finite Gabor systems with Alltop window

In this subsection we are going to state and discuss the main result of this
section. That is, the Gabor matrix generated with the Alltop window vector α
(5.1) has the statistical restricted isometry property with respect to Theorem
3.1.1. The main result will be proven later in Section 5.4.

Unfortunately, it is not possible to directly apply the framework of the statisti-
cal restricted isometry property as discussed in [70] or in Section 3.1 to Gabor
matrices, due to the nature of the η-StRIP-ability as given in Definition 3.1.2.
In fact, it is not difficult to see that a Gabor matrix Gg cannot be η-StRIP-able
(in the sense of the Definition 3.1.2) for any window vector g ∈ CL. The easiest
way to see that a Gabor matrix cannot be η-StRIP-able is to observe that
Conditions S2 and S3 from Definition 3.1.2 cannot be satisfied simultaneously
for a finite Gabor frame. The Condition S2 requires the columns of the matrix
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Φ to have a group structure under pointwise multiplication and that an identity
vector with all ones exists. However, an all ones vector - which is also the first
column of the discrete Fourier matrix, f0 - is an eigenvector of the translation
matrix T. Thus, the sets of the form {π (τ, ν) f0}τ∈ZL

for a fixed ν ∈ ZL all will
have a one dimensional span. For instance the set {π (τ, 0) f0}τ∈ZL

will consist
only of one vector which is the all ones vector, hence it is not possible to fulfill
Condition S3 for the Gabor matrix Gf0 .
Nevertheless, it is reported that the Gabor matrix generated by the Alltop
window vector has good sparse recovery performance, or equivalently, it is a
suitable sensing matrix for compressed sensing. The Gabor matrix generated
by the Alltop window has low coherence, as discussed in Section 5.1, however
the performance evaluated in [43] outperforms the recovery guarantees that
coherence based proofs can provide. Therefore, we will use the framework of
statistical restricted isometry property to give a theoretical justification on the
performance of the Gabor matrix generated with the Alltop window vector.
Before we begin with the discussion of the main result of this section we first
need to introduce the following notation

ΣN
k =

{
x ∈ CN : |supp (x)| ≤ k

}
.

Essentially, by ΣN
k we denote the set of all N dimensional vectors with sparsity

k.
Now we are going to discuss the main result of this section. The proofs of
Theorem 5.2.1 and Theorem 5.2.2 will be discussed later in Section 5.4. For now
we will state the main result of this section and discuss its implications. The
proof is long and requires multiple auxiliary lemmas, therefore both theorems
are going to be proven in a separate subsection.

Theorem 5.2.1 ([27]). Let L ≥ 5 be a prime number of the form L = 3n+ 2
with n ∈ N, and let Gα be the Gabor matrix generated by the Alltop window
vector α ∈ CL.
If k < 1 + (L2 − 1)δ then Gα has (k, δ, ϵ)-StRIP, i.e.

(1 − δ) ∥f∥2
2 ≤ ∥Gα∥2

2 ≤ (1 + δ) ∥f∥2
2

holds with probability exceeding 1− ϵ for all random f ∈ ΣL2
k uniform distributed

over the set SL2−1 =
{
x ∈ ΣL2

k : ∥x∥2
2 = 1

}
, where

ϵ = 2 exp
−

(
δ − k − 1

L2 − 1

)2
L

8k

 .
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Theorem 5.2.1 shows that a Gabor matrix Gα generated by the Alltop window
vector α has statistical restricted isometry property. However, the statistical
restricted isometry property does not guarantee unique recovery of the signals,
even not with high probability. In fact, we know from Theorem 4.2.8 that Gg
has full spark for almost all g ∈ CL. But the matrix Gα does not have this
property. Consider the submatrix of Gα given by

M =
[
T0α

∣∣∣ T1α
∣∣∣ . . . ∣∣∣TL−1α

]
.

The easiest way to see that M is singular is to consider M∗f0 where f0 is the
first column of the discrete Fourier matrix or the all ones vector. Note that if
M∗ is singular then M is also singular. Hence, we have

M∗f0 =


α∗ (T0)∗ f0
α∗ (T1)∗ f0

...
α∗

(
TL−1

)∗
f0

 ,

since f0 is an eigenvector of Tk with eigenvalue 1 for k = 0, 1, . . . L − 1, we
obtain for each entry in M∗f0 the same value which is ⟨f0,α⟩. Now, observe

⟨f0,α⟩ =
L−1∑
x=0

ω−x3 = 0

holds, where we used Lemma 5.4.2 and Lemma 4.2.2 in the last step. Thus, f0
is in the kernel of M.
Nevertheless, unique statistical restricted isometry property (Definition 3.1.1)
requires the uniqueness only up to high probability with respect to the uniform
distribution of f over all SL2−1. Therefore, even though Gα does not has full
spark, it may still have unique statistical restricted isometry property. Indeed,
this is the case as stated in the following Theorem.

Theorem 5.2.2 ([27]). Let L ≥ 5 be a prime number of the form L = 3n+ 2
with n ∈ N, and let Gα be the Gabor matrix generated with the Alltop window
vector α ∈ CL.
If k < 1 + (L2 − 1)δ and L > ck log L

δ2 for some constant c > 0, then Gα has
(k, δ, 2ϵ)-UStRIP where ϵ is given by

ϵ = 2 exp
−

(
δ − k − 1

L2 − 1

)2
L

8k

 .
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Figure 5.1.: Simulation results for L = 29 measurements. Depicted is the
reconstruction error in the ℓ2-norm. Each data point is averaged
over 100 experiments.

As mentioned before, Theorem 5.2.2 will be proved in Section 5.4. For now we
discuss some consequences of Theorem 5.2.2.
The difference between the result of Theorem 5.2.2 and known results on RIP
of Gabor matrices generated by a random window vector [86, 88, 89] is that
those results consider random matrices and arbitrary signals. We on the other
hand consider deterministic matrices and random signals.
We want to emphasise that Theorem 5.2.2 shows that for the number of
measurements L > ck logLδ−2 the matrix Gα has uniqueness guaranteed
statistical restricted isometry property (UStRIP). The necessary number of
measurements L grows linearly (up to a logarithmic factor) with the sparsity k.
This is a similar behaviour as for random matrices [37, 50].

5.3. Numerical experiments
This section presents some numerical experiments which should illustrate the
performance of a Gabor matrix generated by the Alltop window. The numerical
experiments support the theoretical observations made in Theorem 5.2.1 and
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5.3. Numerical experiments

Figure 5.2.: Simulation results for L = 73 measurements. Depicted is the
reconstruction error in the ℓ2-norm. Each data point is averaged
over 100 experiments.

Theorem 5.2.2. Figures 5.1 and 5.2 show simulation results where k-sparse
vectors f were recovered from measurements of the form g = Af using basis
pursuit, i.e.

f̂ = arg min
f∈CL2

∥f∥1 subject to Af = g .

The support of the vectors f were chosen uniformly random and the entries
where chosen as i.i.d. normal random variables.
As measurement matrix A, we compared the matrices:

1) The Gabor matrix Gα generated by the Alltop window vector.

2) A random Gaussian matrix whose entries are independent, identically
distributed normal random variables.

3) A Gabor matrix with a random Gaussian window vector Φ. All entries
of Φ are independent, identically distributed normal random variables.

All matrices are of size L × L2. In the numerical simulations the sparsity k
of the data vector f has been varied and for each value of k the normalized
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quadratic reconstruction error ∥f−f̂∥2
2

∥f∥2
2

has been evaluated. For each value of
k, 100 experiments were conducted and the average value was computed and
is illustrated as the data point in the Figures 5.1 and 5.2. Hence, each data
point in the figures is the average reconstruction error of 100 experiments of
randomly generated data vectors. The horizontal axis in the Figures 5.1 and
5.2 show the ratio of sparsity in relation to the measurement dimension - in our
discussion the dimension of the measured signal g, which is L. On the other
hand, the vertical axis depicts the normalized error quadratic reconstruction
error.

We observe in our simulations that the deterministic Gabor matrix generated
with the Alltop window vector (dimensions L = 29, 73 were chosen) performs
similarly good as random Gaussian matrices and Gabor matrices with random
window vector. This observation aligns with the theoretical result given in
Theorem 5.2.2, since the class of random matrices - in this case random Gaussian
matrix and the random Gabor matrix - are known to have restricted isometry
property with high probability for L ≥ ck log(N/k), where we have N = L2

and c is a constant. Clearly, our simulations show that the deterministic Gabor
matrices generated with the Alltop window have similar behaviour as those
random matrices.

5.4. Proof of Theorem 5.2.1 and Theorem 5.2.2
In order to prove Theorem 5.2.1 and Theorem 5.2.2, which is the main result
of this section, we need the following lemma.

Lemma 5.4.1. Let L ≥ 5 be a prime number of the form L = 3n+ 2, n ∈ N,
let α ∈ CL be the Alltop window (5.1) and let Gα be the associated Gabor
matrix. With α we associate the L× L diagonal matrix

Sα = L diag
(
α[0],α[1], . . . ,α[L− 1]

)
.

Then Φ := SαGα ∈ CL×L2 has the following properties.

(P1) For any x, y ∈ ZL,

∑
λ∈ZL×ZL

ϕλ[x]ϕλ[y] =
L3, if x = y

0, else
.
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(P2) For any λ1, λ2 ∈ ZL × ZL, there exist unique γ ∈ ZL and λ3 ∈ ZL × ZL

such that

ϕλ1 [x]ϕλ2 [x] = ωγϕλ3 [x] for all x ∈ ZL,

where ω = ej 2π
L . For later use, we introduce the notation γ = γ[λ1, λ2]

and λ3 = σ[λ1, λ2].

(P3) For any λ ∈ (ZL × ZL)\(0, 0), we have∣∣∣∣∣
L−1∑
x=0
ϕλ[x]

∣∣∣∣∣ ≤ Lµ
( 1√

L
Φ
)

=
√
L.

(P4) For all x ∈ ZL, we have ∑
λ1,λ2∈ZL×ZL

ϕλ1 [x]ϕλ2 [x] = 0. (5.2)

Where we denote by ϕλ the column of Φ indexed by λ.

Note that P3 shows that Φ satisfies S3 from Definition 3.1.1 with η = 1.
Before continuing we are going to need the following definition.

Definition 5.4.1. Let p be a prime number and let 2 ≤ g ≤ p− 1 be an integer.
Then g is called a primitive root if we have{

gk
}p−2

k=0
= {1, 2, . . . , p− 1} ,

where all arithmetic operations are preformed mod p.

In other words a primitive root of a congruence class (Zp = Z/pZ) generates
the congruence class apart from the zero element, i.e. ZL \ {0} =

{
gk
}p−2

k=0
.

Furthermore, if p is a prime number then there always exists a primitive root
in Zp [112].
In order to prove (P4) in Lemma 5.4.1 we are going to need the following
lemma.

Lemma 5.4.2. Let p be an odd prime number and let r > 0 be a positive
integer that does not divide p− 1 (r ̸ |p− 1). Then we have

{1, 2, . . . , p− 1} = {1r, 2r, . . . (p− 2)r} ,

where all arithmetic operations are performed mod p.
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For the proof of Lemma 5.4.2 we are going to need Fermat’s Little Theorem
[112, 113].

Lemma 5.4.3 (Fermat’s Little Theorem). Let p ∈ N be a prime number then
for any integer a we have,

a = ap mod p .

Note that by dividing both sides by a Lemma 5.4.3 can equivalently be formu-
lated as

1 = ap−1 mod p ,

which leads to a common formulation, that for a prime number p and an integer
a not divisible by p, p divides ap−1 − 1 [94, 112].
The following proof of Lemma 5.4.3 can be found in [113].

Proof of Lemma 5.4.3. First, we are going to show for two integers r, k that

rp + kp = (r + k)p mod p , (5.3)

holds. Then applying (5.3) we will use induction to prove Fermat’s Little
Theorem.
Using the binomial coefficient we get ,

(r + k)p =
p∑

i=0

(
p

i

)
rp−iki =

p∑
i=0

p!
i! (p− i)!r

p−iki .

Note that for i ̸= p and i ̸= 0 we have p!
i!(p−i)! = 0 mod p, since the numerator

is always a multiple of p and the denominator is a multiplication with two
integer factors each smaller than p and therefore not divisible by p. Thus, we
are only left with the cases where i = 0 and i = p, hence we end up with
rp + kp.
Now we use induction to prove Fermat’s Little Theorem. For the base step of
the induction we obviously have 1p = 1 mod p. For the induction step assume
the claim is true for a = r ∈ N. We have to show that the claim follows for
a = r + 1. To this end, assume r = rp mod p and observe

r + 1 = rp + 1 mod p

= rp + 1p mod p

= (r + 1)p mod p ,

where we used (5.3).
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Next we prove Lemma 5.4.2

Proof of Lemma 5.4.2. Let g be a primitive root of Zp, such a primitive root
always exists because p is prime. Assume 1 ≤ ℓ, k ≤ p−2 and ℓ ̸= k and without
loss of generality l < k. Then assume for a contradiction that g(r·ℓ) = g(r·k).
Using Lemma 5.4.3 we get

gr(k−ℓ) = gp−1 = 1 ,

hence we must have r(k − ℓ) = p − 1 which implies k − ℓ = p−1
r

. This is a
contradiction since k − ℓ > 0 is an integer and r does not divide p− 1.

Now we are ready to prove Lemma 5.4.1.

Proof of Lemma 5.4.1. The property (P1) follows directly from Proposition
4.2.4, observe

ΦΦ∗ = Sα GαG∗
α︸ ︷︷ ︸

=L2∥α∥2
2IL

S∗
α = L2SαS∗

α = L3IL .

Thus, we see that the rows of Φ are orthogonal to each other, which is the
exact statement of (P1).
Next, for (P2) with λ1 = (τ1, ν1) and λ2 = (τ2, ν2) observe that the statement
is equivalent to

ϕλ1 [x]ϕλ2 [x] = ω−x3+(x−τ1)3+ν1x · ω−x3+(x−τ2)3+ν2xωγ−x3+(x−τ3)3+ν3x

for all x ∈ ZL. The argument in the power of ω is simply a polynomial (in
ZL[x]), thus we can just check the coefficients to obtain the values for τ3, ν3
and γ, these are then given by

γ = −3τ 2
1 τ2 + 3τ1τ

2
2 ,

τ3 = τ1 − τ2 ,

ν3 = ν1 − ν2 + 6τ1τ2 − 6τ 2
2 .

For (P3), first observe that ϕ(0,0) ∈ CL is the all ones vector, i.e. we have
ϕ(0,0) = [1, 1, . . . , 1]. Hence, the statement of (P3) can be written in terms of
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an inner product with ϕ(0,0),

∣∣∣〈ϕλ,ϕ(0,0)

〉∣∣∣ =
∣∣∣ϕ∗

(0,0)ϕλ

∣∣∣ =
∣∣∣∣∣
L−1∑
x=0
ϕλ[x]

∣∣∣∣∣ .
Now to obtain the claimed estimate observe,

∣∣∣〈ϕλ,ϕ(0,0)

〉∣∣∣ = |⟨Sαπ(λ)α,Sαϕ(0, 0)α⟩| =

∣∣∣∣∣∣∣α∗ π(0, 0)︸ ︷︷ ︸
=IL

S∗
αSα︸ ︷︷ ︸

=L·IL

π(λ)α

∣∣∣∣∣∣∣
= L · |α∗π(λ)α| ≤ L

1√
L

=
√
L ,

where we used Proposition 5.1.1 to upper bound |α∗π(λ)α|.
To prove (P4) note that we have with λ1 = (τ1, ν1) and λ2 = (τ2, ν2),∑

λ1,λ2∈ZL×ZL

ϕλ1 [x]ϕλ2 [x]

=
∑

(τ1,ν1),(τ2,ν2)∈ZL×ZL

ω−x3+(x−τ1)3+ν1x · ωx3−(x−τ2)3−ν2x

=
∑

(τ1,ν1),(τ2,ν2)∈ZL×ZL

ω3(−τ1+τ2)x2+(3τ2
1 −3τ2

2 +ν1−ν2)x−τ3
1 +τ3

2 (5.4)

=
∑

τ1∈ZL

ω−3τ1x2+3τ2
1 x−τ3

1 ·
∑

ν1∈ZL

ων1x

×
∑

τ2∈ZL

ω3τ2x2−3τ2
2 x+τ3

2 ·
∑

ν2∈ZL

ων2x . (5.5)

Now we separate two cases.
First, if x ̸= 0 then in (5.5) we have from Lemma 4.2.2∑

ν1∈ZL

ων1x =
∑

ν2∈ZL

ων2x = 0

hence (5.5) equals to zero.
For the second case, if we have x = 0 then (5.4) becomes

L2 ·
∑

τ1∈ZL

ω−τ3
1
∑

τ2∈ZL

ωτ3
2 . (5.6)

Since we have that L is a prime number of the form L = 3n+ 2 with n ∈ N, we
immediately see that 3 ̸ |L (3 does not divide L). Hence, we can apply Lemma
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5.4.2 and obtain {03, 13, . . . (L− 1)3} = {0, 1, . . . L− 1}. Therefore, the sums
in (5.6) both are simply a reordering of the sum ∑

τ∈ZL
ωτ . Finally, by applying

Lemma 4.2.2 we see that both sums in (5.6) are equal to zero and consequently
(5.4) is equal to zero. Which is the statement of P4.

The subsequent proofs of Theorem 5.2.1 and Theorem 5.2.2 mainly follow the
steps from [70]. Hence, we are going to need a version of the McDiarmid
inequality [114] that is used in [70]. We will state the self avoiding McDiarmid
inequality as in [70] and its proof can be found in the appendix of [70].

Lemma 5.4.4 (Theorem 11 in [70]). Let X1, ..., XK be probability spaces and
define X as the probability space of all distinct K-tuples. In other words, the
set X is the subset of the product set X = X1 ×X2 × ...×XK given by

X =
{

(t1, ..., tK) ∈
K∏

i=1
Xi : ti ̸= tj whenever i ̸= j

}
,

where the probability measure on X is just the renormalization (so as to be a
probability measure) of the restriction to X of the standard product measure on
X.
Let h(t1, ..., tK) be a function from the set X to C, such that for any coordinate
i, given t1, ..., tℓ−1:(

sup
u∈Xℓ with

u̸=ti, i=1,...,ℓ−1

E [h (t1, ..., tℓ−1, u, Tℓ+1, ..., TK)]

− inf
v∈Xℓ with

v ̸=ti, i=1,...,ℓ−1

E [h (t1, ..., tℓ−1, v, Tℓ+1, ..., TK)]
)

≤ cℓ, (5.7)

where the expectations are taken over the random variables Tℓ+1, ..., TK (condi-
tioned on taking values that are all different from each other and from t1, ...tℓ−1
as well as u (first expectation) or v (second expectation). Then for any γ > 0.

Pr [|h (T1, ..., TK) − E [h (T1, ..., TK)]| ≥ γ] ≤ 2 exp
(

−2γ2∑K
ℓ=1 c

2
ℓ

)
.

Before starting with the proofs let us describe the framework first. We assume
that random vectors f ∈ ΣL2

k with ∥f∥2
2 = 1 are generated as follows. First,

the support set of f is chosen as S = {π0, π2, . . . , πk−1} where {πj}L2−1
j=0 is a

random permutation of {0, 1, . . . , L2}. Then one chooses the k entry values of
f randomly so that ∥f∥2

2 = 1 with no specific distribution.
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Proof of Theorem 5.2.1. First, we establish the inequality from the theorem
for the matrix Φ = SαGα and then we use that ∥Φf∥2

2 = L ∥Gαf∥2
2 for all

f ∈ CL to obtain the bounds for Gα.
First, let f ∈ ΣL2

k be a random vector supported on S = {π0, π1, . . . , πk−1}
with k nonzero entries denoted as f0, f1, . . . , fk−1, which is equivalent to say
f [π0] = f0, f [π1] = f1, . . . , f [πk−1] = fk−1. Set g = 1√

L
Φf . Then

(
1 − k − 1

L2 − 1

)
∥f∥2

2 ≤ Eπ

[
∥g∥2

2

]
≤
(

1 + 1
L2 − 1

)
∥f∥2

2 , (5.8)

wherein Eπ stands for the expectation over all possible choices π.
To see this, one writes the k-sparse vector f as f = ∑k−1

j=0 fjeπj
. This yields

g = 1√
L

∑k−1
j=0 fjϕπj

and

∥g∥2
2 =

L−1∑
x=0

|g [x]|2 = 1
L

L−1∑
x=0

k−1∑
j=0

|fj|2 +
∑
i,j
i ̸=j

fifjϕπi
[x]ϕπj

[x]

 (5.9)

= ∥f∥2
2 + 1

L

∑
i,j
i ̸=j

fifj

〈
ϕπi

,ϕπj

〉
, (5.10)

where we used that |ϕi [x]| = 1 for all x ∈ ZL and i. By Property (P3) of
Lemma 5.4.1, we have for i ̸= j

Eπ

[〈
ϕπi

,ϕπj

〉]
= 1
L2 (L2 − 1)

∑
λ1,λ2∈Z×ZL

λ1 ̸=λ2

〈
ϕλ1 ,ϕλ2

〉

= 1
L2 (L2 − 1)

L−1∑
x=0

(
−L2

)
= − L

L2 − 1 ,

and therefore

Eπ

[
∥g∥2

2

]
= ∥f∥2

2 − 1
L2 − 1

∑
0≤i,j≤k−1

i ̸=j

fifj . (5.11)

Then using the Cauchy-Schwarz inequality, we obtain

0 ≤

∣∣∣∣∣∣
k−1∑
j=0

fj

∣∣∣∣∣∣
2

=
k−1∑
j=0

|fj|2 +
∑

0≤i,j≤k−1
i ̸=j

fifj ≤ k
k−1∑
j=0

|fj|2 ,
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which is equivalent to

− (k − 1) ∥f∥2
2 ≤ −

∑
0≤i,j≤k−1

i ̸=j

fifj ≤ ∥f∥2
2 . (5.12)

Finally, combining (5.11) and (5.12) we obtain (5.8).
Next, we are going to show that the random variable ∥g∥2

2 is concentrated
around its mean. The main idea is to upper bound Prπ

(∣∣∣∥g∥2
2 − ∥f∥2

2

∣∣∣ ≥ δ ∥f∥2
2

)
,

and we already know from (5.8) that Eπ

[
∥g∥2

2

]
is close to ∥f∥2

2. Recalling the
dependence of g on π0, . . . , πk−1 as shown in (5.9), we write h(π0, . . . , πk−1) =
∥g∥2

2. For β > 0 we consider

Pr
π

(∣∣∣∥g∥2
2 − Eπ

[
∥g∥2

2

]∣∣∣ ≥ β ∥f∥2
2

)
= Pr

π

(
|h− E [h]| ≥ β ∥f∥2

2

)
.

Our next goal is to establish the condition given in (5.7) for h. To this end we
have

h(π0, ..., πℓ, ..., πk−1) − h(π0, ..., π
′
ℓ, ..., πk−1)

= 1
L

∑
0≤j≤k−1

j ̸=ℓ

(
fℓ fj

[
ϕπℓ

− ϕπℓ
′

]T
ϕπj

)

+ 1
L

∑
0≤j≤k−1

j ̸=ℓ

(
fj fℓϕ

T
πj

[
ϕπℓ

− ϕπℓ
′

])

= 1
L

∑
0≤j≤k−1

j ̸=ℓ

(
fℓfj

L−1∑
x=0

ωγ[πℓ,πj ]ϕσ[πℓ,πj ][x]
)

− 1
L

∑
0≤j≤k−1

j ̸=ℓ

(
fℓfj

L−1∑
x=0

ωγ[πℓ
′,πj ]ϕσ[πℓ

′,πj ][x]
)

+ 1
L

∑
0≤j≤k−1

j ̸=ℓ

(
fjfℓ

L−1∑
x=0

ωγ[πℓ,πj ]ϕσ[πℓ,πj ][x]
)

− 1
L

∑
0≤j≤k−1

j ̸=ℓ

(
fjfℓ

L−1∑
x=0

ωγ[π′
ℓ,πj ]ϕσ[π′

ℓ
,πj ][x]

)
,

where we have used (P2) from Lemma 5.4.1 to write ϕπj
ϕπj

= ωγ[πℓ,πj ]ϕσ[πℓ,πj ].
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Using Lemma 5.4.1, we now estimate

|h(π0, . . . , πℓ, . . . , πk−1) − h(π0, . . . , π
′
ℓ, . . . , πk−1)|

≤ 4
L

|fℓ|
∑

0≤j≤k−1
j ̸=ℓ

|fj|
√
L = 4√

L
|fℓ|

∑
0≤j≤k−1

j ̸=ℓ

|fj| = cℓ .

Applying Lemma 5.4.4 [70], one obtains

Pr
π

(
|h− E [h]| ≥ β ∥f∥2

2

)

≤ 2 exp

− β2L ∥f∥4
2

8∑k−1
ℓ=0 |fℓ|

(∑
0≤j≤k−1

j ̸=ℓ
|fj|

)2

 .

Together with the estimate

k−1∑
ℓ=0

|fℓ|2

 ∑
0≤j≤k−1

j ̸=ℓ

|fℓ|


2

≤
k−1∑
ℓ=0

|fℓ|2 ·
(

k−1∑
ℓ=0

|fℓ|
)2

≤ k ∥f∥4
2 ,

where we used the Cauchy-Schwarz inequality, we obtain

Pr
π

(
|h− E [h]| ≥ β ∥f∥2

2

)
≤ 2 exp

(
−β2L

8k

)
.

Finally, substituting ∥g∥2
2 for h and using (5.8) we obtain

Pr
π

(∣∣∣∥g∥2
2 − ∥f∥2

2

∣∣∣ ≥
(
β + k − 1

L2 − 1

)
∥f∥2

2

)
≤ 2 exp

(
−β2L

8k

)
.

For δ > k−1
L2−1 , we set β = δ − k−1

L2−1 and ϵ = 2 exp
(

−
(
δ − k−1

L2−1

)2
L
8k

)
. Then,

using that
∥g∥2

2 =
∥∥∥∥ 1
L

Φf
∥∥∥∥2

2
= ∥Gαf∥2

2 ,

one obtains

Pr
π

(∣∣∣∥Gαf∥2
2 − ∥f∥2

2

∣∣∣ ≥ δ ∥f∥2
2

)
≤ ϵ .
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This show that Gα is a near-isometry for k-sparse vectors with probability at
least 1 − ϵ and proves the statement of the Theorem 5.2.1.

Now we continue with the proof of Theorem 5.2.2.

Proof of Theorem 5.2.2. From Theorem 5.2.1, Gα has (k, δ, ϵ)-StRIP and there-
fore it has also (k, δ, 2ϵ)-StRIP. To prove that Gα has (k, δ, 2ϵ)-UStRIP, it suf-
fices to show that the probability of having Gαf = Gαf ′ with distinct k-sparse
vectors f ̸= f ′ is less than ϵ.
In the following the proof is separated into eight smaller steps in order to make
it more accessible.

1) Fix any r ∈ {0, . . . , L2 − 1} and let S = {π0, . . . , πk−1} be the set of the first
k elements in a random permutation of the L2 −1 elements {0, . . . , L2 −1}\{r}.
First we show that

ES
[
∥Φ∗

Sϕr∥
2
2

]
= kL2

L+ 1 , (5.13)

where the expectation is taken with respect to the choice of S, ΦS denotes the
L × k submatrix of Φ where the columns are indexed by the elements in S.
This equations follows from

ES
[
∥Φ∗

S ϕr∥
2
2

]
=

k−1∑
i=0

ES
[
|⟨ϕr,ϕπi

⟩|2
]

= k ES
[
|⟨ϕr,ϕπ1⟩|2

]
and by using Properties (P2) and (P3) of Φ.

2) Next, we show that with probability exceeding 1 − ϵ, any random sub-
set S ⊂ {0, . . . , L2 − 1} of size k and any r ∈ Sc satisfy

∥Φ∗
Sϕr∥

2 ≤ k L+ L
√

2k log (L2/ϵ). (5.14)

To see this, let y(t0, . . . , tk−1) = ∑k−1
i=0

∣∣∣ϕ∗
ti
ϕr

∣∣∣2 where t0, . . . , tk−1 are k distinct
elements chosen randomly from {0, . . . , L2 − 1} \ {r}, with r fixed. For ti ̸= t′i,
we have

E [y(t1, . . . , ti, . . . , tk)] − E [y(t1, . . . , t′i, . . . , tk)]
=
∣∣∣|ϕ∗

iϕr|2 − |ϕ∗
t′
i
ϕr|2

∣∣∣
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=
∣∣∣∣∣∣
∣∣∣∣∣
L−1∑
x=0
ϕγ(r,ti)(x)

∣∣∣∣∣
2

−
∣∣∣∣∣
L−1∑
x=0
ϕγ(r,t′

i)
(x)
∣∣∣∣∣
2∣∣∣∣∣∣ ≤ 2L,

using (P1) and (P2) together with the fact that γ(ti, r) ̸= 0 and γ(t′i, r) ̸= 0,
since ti, t′i are distinct from r. Similarly as in the proof of Theorem 5.2.1, we
apply the McDiarmid inequality which yields

Pr
(
∥Φ∗

Sϕr∥
2 ≥ kL+ ξ

)
≤ Pr

(
∥Φ∗

Sϕr∥
2 ≥ kL2

L+ 1 + ξ

)

≤ exp
(

− ξ2

2kL2

)
.

Taking the union bound over all L2 choices of r yields (5.14).

3) When L = O(k log L
δ2 ), (5.14) becomes

∥∥∥∥∥ 1√
L

Φ∗
S

1√
L
ϕw

∥∥∥∥∥
2

2
≤ k

L
+ 1
L

√
2k logL2

ϵ

= O
(

δ2

logL

)
+ O

δ2
(

1 + | log δ|
logL

)1/2

· 1√
k logL

 ,
which indicates a small coherence between the columns of ΦS and the remaining
columns.

4) Since Gα has (k, δ, ϵ)-StRIP (see Theorem 5.2.1), one can deduce the
following statement, as in [70, Lemma 19]:
Let S = {π0, . . . , πk−1} be the set of the first k elements in a random per-
mutation of {0, . . . , L2}. With probability exceeding 1 − ϵ, any subset Λ ⊂
{0, . . . , L2 − 1} of size k with Λ ̸= S satisfies

dim (range (Gα)Λ ∩ range (Gα)S) < k. (5.15)

5) We consider f ∈ CL2 as a random vector supported on S = {π0, . . . , πk−1}.
The k nonzero entries are chosen randomly from a k-dimensional vectors space
equipped with a measure which is absolutely continuous with respect to the
Lebesgue measure.

6) Using Theorems B and D in [115] and the fact that Gα has (k, δ, ϵ)-
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StRIP, it follows that with probability exceeding 1 − ϵ, (Gα)S is injective,
i.e, dim (range(ΦS)) = k. This means that with probability exceeding 1 − ϵ,
no two signals supported on S can have the same measurement.

7) If there exists f ′ supported on Λ ̸= S with Gαf ′ = Gαf , then (5.15)
implies that with probability exceeding 1 − ϵ, the vector f restricted to S lies
in at most (k − 1)-dimensional subspace of Ck, which is of zero measure with
respect to any absolutely continuous measure on Ck. That is, with probability
larger 1 − ϵ, the set of vectors f satisfying Gαf ′ = Gαf for some f ′ supported
on Λ ̸= S is a measure zero set.

8) Combining the above two statements, we conclude that with probabil-
ity exceeding 1 − 2ϵ (with respect to random choice of f), f is the only k-sparse
vector satisfying the equation y = Gαf .
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6. Low Coherence Finite Gabor
Frames

The theory of Gabor frames is important in communications since one is able to
model the channel effects on the transmitted signal in terms of time-frequency
shifts which directly leads to Gabor frames [8, 90, 108]. In wireless communica-
tions an often analysed case is the multipath propagation in which a wireless
signal arrives at the receiver via multiple paths [9]. Hence, the receiver receives
a superposition of time-frequency shifted copies of the transmit signal, i.e. the
received signal is distorted. In order to reduce the distortion, one seeks to find
signal sequences that have low correlation with time-frequency shifted copies
of their own. In fact, we already have discussed such a sequence in Section 5.1,
there the finite Gabor frame generated with the Alltop window vector had low
coherence, which is equivalent to saying that the discrete periodic sequence -
generated by repeating the entries in the Alltop vector - has low correlation.
Indeed, since this problem is an everyday occurrence in wireless communications
there is a fair amount of literature devoted on finding low correlation sequences,
or equivalently, low coherence finite Gabor frames [90, 91, 116]. Additionally,
finite Gabor frames have been considered as sensing matrices in Compressed
Sensing [86, 88, 105] due to their occurrence in communications.

In this section we will discuss a new family of finite Gabor frames that has low
coherence. We will analyse the constructed finite Gabor frames with regard to
their suitability as sensing matrices in compressed sensing. We will prove that
these Gabor matrices exhibit the statistical restricted isometry property and
the strong coherence property.
We will first introduce some preliminary topics that are necessary to introduce
the results of this section.
The contents of this section has already been partially published in the paper
[29].
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6. Low Coherence Finite Gabor Frames

6.1. Introduction to finite fields
We start by giving a short introduction to finite fields. Let p be a prime number
and n ∈ N then we denote the finite field of order pn by Fpn . Formally, finite
fields are defined as follows.

Definition 6.1.1. A field (F,+, ·) is a set F equipped with two operations
usually called addition "+" and multiplication "·", satisfying the following
conditions

• a · b ∈ F and a+ b ∈ F , for all a, b ∈ F

• a · b = b · a and a+ b = b+ a, for all a, b ∈ F

• a · (b · c) = (a · b) · c and a+ (b+ c) = (a+ b) + c, for all a, b, c ∈ F

• a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ F

• ∃0 ∈ F s.t. 0 + a = a and ∃1 ∈ F s.t. 1 · a = a, for all a ∈ F

• ∀a ∈ F ∃ − a s.t. a+ (−a) = 0 and ∀a ∈ F ∃a−1 s.t. a · a−1 = 1

In general if |F | = q then this field is denoted by Fq.

For example the finite field F7 is given by the integers modulo 7, Z7
..=

{0, 1, ..., 6} with the usual operations addition and multiplication on natural
numbers mod 7. In engineering it is also common to denote a finite field of
order q, Fq by GF(q) and call it a Galois field [117]. Let p be a prime number
and n ∈ N then the n-dimensional vector space over the finite field Fp, denoted
by Fn

p , forms also a finite field. Furthermore, the finite field Fp is referred to
as a prime field [94]. We will denote the finite field Fn

p by Fpn . We have the
following result characterizing the order of finite fields.

Proposition 6.1.1. All finite fields have order pn with p a prime number and
n a natural number, i.e. n ∈ N.

Proof. The proposition is an immediate consequence of Theorem 1.78 and
Theorem 1.84 in [94].

Furthermore, we call the finite field Fpn a finite extension of the primitive field
Fp. The characteristic of a finite field characterizes how often an element of the
field can be added to itself until one obtains zero. Let p be a prime number for
a primitive field Fp the characteristic is p and for a field which is an extension
of a primitive field Fpn the characteristic is the same as the characteristic of the
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vector polynomial powers of x
00 0 x−∞

10 1 x0

01 x x1

12 1+2x x2

22 2+2x x3

20 2 x4

02 2x x5

21 2+x x6

11 1+x x7

Table 6.1.: Elements of the finite field F32 generated by the irreducible polyno-
mial r(x) = x2 + x+ 2.

base primitive field, in this case p. Note that Proposition 6.1.1 together with
Theorem 1.78 in [94] implies that a finite field is either a primitive field or a
field extension of a primitive field. Furthermore, we have that the characteristic
of a finite field is always a prime number p [94].
For the construction of finite fields the so called irreducible polynomials are
needed. These are polynomials with coefficients form Fp and with degree n. In
short one can state that a polynomial over a field is irreducible if it is not the
product of two polynomials of lower degree in this field. Assume an irreducible
polynomial r(x) is given over Fpn then every element in Fpn can be represented
with calculations modulo r(x).
In Table 6.1 an example of a finite field F32 is given. The finite field is
constructed with the irreducible polynomial r(x) = x2 + x+ 2. Note that r(x)
has no root in F3, i.e. it is irreducible over F3. However, r(x) has two roots in
F32 . Furthermore, as indicated in the Table 6.1 the finite field F32 consist of two
groups. One group is the additive group and the other one is the multiplicative
group.
Indeed, this is true for all finite fields Fpn . Additionally, the multiplicative
group of a finite field is cyclic [94]. Hence, there always exists a generator
element of the multiplicative group of the finite field. In the example given in
Table 6.1 this generator element is denoted by x and is generally referred as the
primitive element of Fpn . In fact, we already introduced the notion of primitive
elements for prime fields already in Definition 5.4.1, since the congruence class
Zp is equivalent to the prime field Fp, Zp

∼= Fp. We denote the multiplicative
group of the finite field of order pn by F∗

pn , i.e. Fpn = Fpn \ {0} where 0 is the
additive neutral element.
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We now define the trace map in finite fields which is a linear mapping from
Fpn to Fp.

Definition 6.1.2. The trace map tr : Fpn → Fp is given by

tr(α) = α + αp + · · · + αpn−1 =
n−1∑
i=0

αpi

,

with α ∈ Fpn.

Further note that the trace tr(α) with α ∈ Fpn will always be an element of Fp,
tr(α) ∈ Fp. In general Fp in Definition 6.1.2 does not necessarily need to be a
prime field, but for our purposes we can always assume that Fp to be prime
field.
Next we will discuss some properties of the trace map.

Theorem 6.1.2 ([94]). The trace function defined in Definition 6.1.2 satisfies
the following properties:

(i) tr(α + β) = tr(α) + tr(β) for all α, β ∈ Fpn;

(ii) tr(cα) = c · tr(α) for all c ∈ Fp and α ∈ Fpn;

(iii) tr is a linear transformation from Fpn onto Fp, where both Fpn and Fp

are viewed as vector spaces over Fp;

(iv) tr(α) = n · α for all α ∈ Fp;

(v) tr(αp) = tr(α) for all α ∈ Fpn.

Proof. See proof of Theorem 2.23 in [94].

The following theorem from [94] characterizes the kernel of the trace map.

Theorem 6.1.3 ([94]). Let the trace map tr : Fpn → Fp be defined as in
Definition 6.1.2. Then for α ∈ Fpn we have tr(α) = 0 if and only if α = βp − β
for some β ∈ Fpn.

Proof. See proof of Theorem 2.25 in [94].
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6.2. Characters and Gaussian sums
We consider a character as a mapping from an Abelian group to the unit circle,
where the unit circle T is defined by T = {x ∈ C : |x| = 1}.

Definition 6.2.1. Let (G, •) be an Abelian group, then a character is a mapping
χ : G → T that preserves the group structure under multiplication. Specifically,
we have

χ(a • b) = χ(a)χ(b) , for all a, b ∈ G.

Further, the trivial character χt is defined as the mapping that maps all elements
of G to 1, i.e. χt(a) = 1 for all a ∈ G.

As previously mentioned, finite fields consist of two different groups an ad-
ditive group and a multiplicative group. Therefore, we differentiate between
two different characters on finite fields, the additive and the multiplicative
characters.
The additive characters {χa : a ∈ Fpn} in Fpn are given by

χa (b) = exp
{
j 2π

p
tr(ab)

}
, b ∈ Fpn . (6.1)

As the name suggest the multiplication of an additive character with two
different arguments is equivalent to the addition of the arguments. Let a, b, c ∈
Fpn then we have

χa (b)χa (c) = exp
{
j 2π

p
tr(ab)

}
· exp

{
j 2π

p
tr(ac)

}
= exp

{
j 2π

p
tr(ab) + tr(ac)

}
= exp

{
j 2π

p
tr (a (b+ c))

}
= χa (b+ c) ,

where we used the linearity of the trace map from Theorem 6.1.2.
Let α be a primitive element of Fpn . Then F∗

pn = {α0, α1, ..., αpn−2}, and the
multiplicative characters {ψαl : l = 0, 1, . . . , pn − 2} in Fpn can be written as

ψαl(αk) = exp
{
j

2π
pn − 1kl

}
, k ∈ {0, 1, ..., pn − 2}. (6.2)

Analogously to the additive character the multiplication of an multiplicative
character with two different arguments is equivalent to the multiplication of
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the arguments. Let l, k, r ∈ {0, 1, . . . , pn − 2} then we have

ψαl

(
αk
)
ψαl (αr) = exp

{
j

2π
pn − 1kl

}
· exp

{
j

2π
pn − 1kr

}

= exp
{
j

2π
pn − 1k(l + r)

}
= ψαl

(
α(k+r)

)
= ψαl

(
αk · αr

)
.

We denote the trivial multiplicative character by ψ1, i.e. ψ1(a) = 1 for all
a ∈ F∗

pn and the trivial additive character by χ0, i.e. χ0(a) = 1 for all a ∈ Fpn .

Next we continue with Gaussian sums which will be essential in our analysis
later on.
Let ψ be a multiplicative character and χ be an additive character of Fpn . Then

G (ψ, χ) =
∑

a∈F∗
pn

ψ (a)χ (a) (6.3)

is said to be a Gaussian sum. Note that the sum in (6.3) runs over the
multiplicative group of the finite field, i.e. F∗

pn . The following theorem will be
of importance later and can be found with its proof in [94, Chapter 5].

Theorem 6.2.1. Let ψ be a multiplicative and χ an additive character of Fpn.
Then the Gaussian sum G(ψ, χ) satisfies

G (ψ, χ) =


pn − 1 if ψ = ψ1 , χ = χ0 ,

−1 if ψ = ψ1 , χ ̸= χ0 ,

0 if ψ ̸= ψ1 , χ = χ0 .

If ψ ̸= ψ1 and χ ̸= χ0, then

|G (ψ, χ)| =
√
pn .

It is possible to derive multiple useful identities of Gaussian sums under various
transformations of the additive or multiplicative characters. This is discussed
in the next theorem.

Theorem 6.2.2. Gaussian sums for the finite field Fqn satisfy the following
properties:
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(i) G (ψ, χab) = ψ (a)G (ψ, χb) for a ∈ F∗
pn and b ∈ Fpn;

(ii) G (ψ, χ) = ψ (−1)G (ψ, χ);

(iii) G
(
ψ, χ

)
= ψ (−1)G (ψ, χ);

(iv) G (ψ, χ)G
(
ψ, χ

)
= ψ (−1) q for ψ ̸= ψ1 , χ ̸= χ0;

(v) G (ψp, χb) = G
(
ψ, χσ(b)

)
for b ∈ Fpn, where p is the characteristic of Fpn

and σ (b) = bp.

Proof. See proof of Theorem 5.12 in [94].

6.3. Cyclic difference sets
Gaussian sums will play a key role in constructing and analysing low coherence
finite frames in Section 6.5. A subclass of this family of low coherence Gabor
frames can be derived using cyclic difference sets [118, 119]. Thus, in this
section we introduce the notion of cyclic difference sets and their properties.
We begin by defining the cyclic difference sets.

Definition 6.3.1. Let ZL be the integers mod L. Let k and l be positive
integers such that 2 ≤ k < L. Then an (L, k, l)-cyclic difference set in ZL is a
subset D ⊂ ZL that satisfies the following properties:

(i) |D| = k,

(ii) the multiset {x− y : x, y ∈ D, x ̸= y} contains every element in ZL \ {0}
exactly l times.

In Definition 6.3.1 the condition that we consider ZL is not necessary. In fact
there exist difference sets for groups that are not even Abelian [118]. However
in the cases we are interested in the groups considered will be cyclic. In fact,
the groups will be equivalent to an n-dimensional vector space over Zp with p
is a prime number and n ∈ N. Out of convenience we will also refer to cyclic
difference sets as simply difference sets.
Further, note that l (L− 1) = k(k − 1) holds if a (L, k, l)-difference set exists.
Before continuing let us first give an example, a (7, 3, 1)-difference set in Z7
(i.e. integers modulo 7) is given by the set

D = {0, 1, 3} .
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To see that D is indeed a difference set we compute the differences

0 − 1 = 6, 1 − 0 = 1, 3 − 0 = 3,
0 − 3 = 4, 1 − 3 = 5, 3 − 1 = 2,

note that all computations are done mod 7 since we work with integers modulo
7. Indeed, we see that all elements of Z7 apart from 0 are obtained exactly
once from mutual differences of the elements in D.
We can clearly see that a+ D = {a+ x : x ∈ D} remains a difference set for
all a ∈ Z7.
Let D be a (L, k, l)-difference set then its complement, i.e. the set Dc =
ZL \ D, also forms a difference set with parameters (L,L − k, L − 2k + l)
[119]. Now continuing with our previous example of D = {0, 1, 3}, we have for
Dc = {2, 4, 5, 6} and since D is a (7, 3, 1)-difference set we have that Dc is a
(7, 4, 2)-difference set. Further, by computing the mutual differences in Dc we
get

2 − 4 = 5, 2 − 5 = 4, 2 − 6 = 3,
4 − 2 = 2, 4 − 5 = 6, 4 − 6 = 5,
5 − 2 = 3, 5 − 4 = 1, 5 − 6 = 6,
6 − 2 = 4, 6 − 4 = 2, 6 − 5 = 1,

which verifies that Dc is indeed a (7, 4, 2)-difference set.
Next we look at combinatorial aspects of the sets a + D with a ∈ ZL. More
precisely we want to study the cardinality of the intersection of the sets D with
a+ D, i.e. the number |D ∩ a+ D|. Although, this property is not difficult to
study it will play a crucial role in the upcoming discussion of low coherence
finite Gabor frames.
Proposition 6.3.1. Let D be a (v, k, l)-difference set in ZL, then

|D ∩ a+ D| = l ,

for all a ∈ ZL \ {0}.
Proof. Our aim is to determine how many pairs x and y exists with x ∈ D and
y ∈ a+ D such that x = y, this equality can equivalently be reformulated as
x− y = 0. Now set y′ = y − a thus we get x− y′ + a = 0. Notice that y′ ∈ D,
hence observing that the multiset

{x− y′ + a : x ∈ D and y′ ∈ D}

contains the 0 element exactly l times implies the claim.
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In fact, a difference set D of ZL gives rise to a symmetric (L, k, l)-balanced
incomplete block design (BIBD) [118, 119]. However, we don’t need the notion
of BIBDs here and Proposition 6.3.1 will be enough for us.
A direct consequence of Proposition 6.3.1 is that we have

|(b+ D) ∩ (a+ D)| = l ,

for a, b ∈ ZL and a ̸= b.
For a better understanding let us visualize the statement of Proposition 6.3.1
using the (7, 3, 1)-difference set D = {0, 1, 3} in Z7 from the previous example:

0 + D = {0, 1, 3},
1 + D = {1, 2, 4},
2 + D = {2, 3, 5},
3 + D = {3, 4, 6},
4 + D = {0, 4, 5},
5 + D = {1, 5, 6},
6 + D = {0, 6, 2}.

As we see any two sets intersect in exactly 1 element.

Let D be a (L, k, l)-difference set for ZL, we define the vector vD ∈ CL as
follows

vD [i] =
1, if i ∈ D,

0, else .
(6.4)

Another important aspect of cyclic difference sets is given in connection with
the columns of the discrete Fourier transformation matrix.

Proposition 6.3.2. Let D be a (L, k, l)-difference set for ZL and the vector
vD ∈ CL defined as in (6.4), and denote by fr the r-th column of the discrete
Fourier transformation matrix in CL. Then

|⟨vD, fr⟩| =
√
k − l ,

for r = 1, . . . L− 1.

Proof. Set ω = ej 2π
L then by straight forward computation we obtain

|⟨vD, fr⟩|2 = |f∗
r vD|2 =

∣∣∣∣∣∑
a∈D

ωr·a
∣∣∣∣∣
2

=
∑

a,b∈D
ωraω−rb
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=
∑

a,b∈D
ωr(a−b) = k +

∑
a,b∈D
a̸=b

ωr(a−b) = k + l ·
L−1∑
a=1

wra

= k − l ,

where we applied Lemma 4.2.2 in the last step.

A well known class of difference sets are the Singer difference sets [120] whose
parameters are given in the following theorem.

Theorem 6.3.3 ([118, 119]). Let q = pm be a prime power (i.e. p is a
prime number and m ∈ N) and n ≥ 2 an integer. Then there exists a(

qn+1−1
q−1 , qn−1

q−1 ,
qn−1−1

q−1

)
-difference set in Z(qn+1−1)/(q−1).

In particular we are interested in the Singer difference sets with parameter
q = 2, i.e. (2n+1 − 1, 2n − 1, 2n−1 − 1). For n = 2 we have that D = {1, 2, 4}
in ZL is a Singer difference set. These Singer difference sets can be constructed
via the trace map. Now we are going to shortly discuss the construction of
these difference sets as given in [119].
Let α be a primitive element of F2n+1 with n ≥ 2, then using the trace map we
obtain the Singer difference set D ⊂ Z2n+1−1 as follows:

D =
{
b : tr

(
αb
)

= 0
}
. (6.5)

If a difference set D is obtained as described in (6.5) then a shift of the difference
set can be obtained using the trace map. For instance let αa ∈ F∗

2n+1 then the
difference set D + a is given by

D + a =
{
b : tr

(
αb−a

)
= 0

}
.

6.4. Construction of low coherence finite Gabor
frames based on difference sets

Let us fix a Singer difference set D with parameters (2n+1 − 1, 2n − 1, 2n−1 − 1)
and let vD be defined as in (6.4). Additionally, let Dc denote the complementary
set of D, i.e. Dc = Z2n+1−1 \ D, and with vDc defined analogous to vD. Next we
define the window vector v as the difference between vD and vDc , v = vD −vDc ,
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more precisely

v [k] =
1, if k ∈ D ,

−1, if k ∈ Dc .
(6.6)

Now we are ready to state the main result of this subsection.

Theorem 6.4.1. Let n ≥ 2 and D be a Singer difference set with parameters
(2n+1 − 1, 2n − 1, 2n−1 − 1). Further, set ϕ = 1√

2n+1−1v ∈ C2n+1−1 with v as
defined in (6.6) and denote by Gϕ the Gabor matrix generated by ϕ. Then the
for the coherence of the Gabor matrix we have µ (Gϕ) =

√
2n+1

2n+1−1 .
Explicitly, for the absolute values of the inner products of the finite Gabor frame
generated by the window vector ϕ we have

|⟨ϕ,MνTτϕ⟩| =



1, if τ = 0 , ν = 0 ,
0, if τ = 0 , ν ̸= 0 ,

1
2n+1−1 , if τ ̸= 0 , ν = 0 ,
√

2n+1

2n+1−1 , if τ ̸= 0 , ν ̸= 0 .

Moreover, let F be the discrete Fourier transform matrix in C2n+1−1 then we
have

1√
2n+1 − 1

|⟨fk,MνTτϕ⟩| =


1
2n+1−1 , if k = ν ,
√

2n+1

2n+1−1 , if k ̸= ν ,
(6.7)

where fk denotes the k-th column of F. Note that we use the factor 1√
2n+1−1 to

ℓ2-normalize the columns of the discrete Fourier transform matrix.

Before we prove the theorem, let us remark that the coherence of the Ga-
bor matrix in Theorem 6.4.1 is very close to the best possible coherence
given by the Welch bound in Theorem 2.4.3. Since the finite Gabor frame
{π (λ)ϕ}λ∈Z2n+1−1×Z2n+1−1

has (2n+1 − 1)2 elements the lower bound for the
coherence derived from the Welch bound in (2.1) for the parameters of the
Gabor frame is 1√

2n+1 . The coherence of the Gabor matrix constructed in
Theorem 6.4.1 is

√
2n+1

2n+1−1 , hence the construction given in Theorem 6.4.1 is very
close to the best possible coherence achievable.
Furthermore, the sensing matrix obtained from concatenating the Gabor matrix
of Theorem 6.4.1 with the discrete Fourier transform matrix, [Gv|F], fulfils
the statistical restricted isometry property and the strong coherence property.
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This will be proven in a later subsection.
We now continue with the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1. We start by verifying (6.7). The case ν = r is trivial,
we continue with the case r ̸= ν.
Let ω = ej 2π

2n+1−1 , since D is a (2n+1 − 1, 2n − 1, 2n−1 − 1) difference set we have
from Proposition 6.3.2

|⟨vD, fr⟩| =
∣∣∣∣∣∑
a∈D

ω−r·a
∣∣∣∣∣ =

√
2n−1 .

Further, we have that Dc is a (2n+1 − 1, 2n, 2n−1) difference set. Thus we have

|⟨vDc , fr⟩| =
∣∣∣∣∣ ∑
a∈Dc

ω−r·a
∣∣∣∣∣ =

√
2n−1.

In fact, simply by using the definition of Dc and Lemma 4.2.2 we conclude∑
a∈D

ω−r·a = −
∑

a∈Dc

ω−r·a .

Now note that v = vD − vDc , hence we have

|⟨v, fr⟩| = |⟨vD, fr⟩ − ⟨vDc , fr⟩|

=
∣∣∣∣∣∑
a∈D

ω−r·a −
∑

a∈Dc

ω−r·a
∣∣∣∣∣ =

∣∣∣∣∣2 ·
∑
a∈D

ω−r·a
∣∣∣∣∣ = 2

√
2n .

Finally, observing

|⟨MνTτ v, fr⟩| = |⟨v, fr+ν⟩| ,

where we used that the columns of the discrete Fourier transform matrix form
eigenvectors of the translation operators. Now together with ϕ = 1√

2n+1−1v
delivers the claimed assertion.

In the next step we want to analyse ⟨v,Tτ v⟩ for τ ̸= 0 .
Since the support of v can be divided into two disjoint sets as D and Dc, the
multiplication with the translation operator Tτ has the consequence that the
vector Tτ v can now be splitted into the disjoint sets D + τ and Dc + τ . To
determine the value of ⟨v,Tτ v⟩ we just need to look at the sizes of four different
intersections of sets, these are:
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• |D ∩ D + τ |,

• |Dc ∩ Dc + τ |,

• |Dc ∩ D + τ |,

• |D ∩ Dc + τ |.

Since D and Dc both are difference sets we have from Proposition 6.3.1 the
values

|D ∩ D + τ | = 2n−1 − 1 ,
|Dc ∩ Dc + τ | = 2n−1 ,

and due to symmetry we get for the two remaining cases

|D ∩ Dc + τ | = |Dc ∩ D + τ | = 2n−1 .

Next looking at the multiplications

v [k] · (Tτ v) [k] =
1, if k ∈ {D ∩ D + τ} ∪ {Dc ∩ Dc + τ} ,

−1, if k ∈ {Dc ∩ D + τ} ∪ {D ∩ Dc + τ} ,

we see that the value of ⟨v,Tτ v⟩ is simply determined by the sizes of these
four sets. Hence, we have

⟨v,Tτ v⟩ = −1 for τ ̸= 0 .

Finally, ℓ2-normalization of v delivers the claim of the theorem.

The only relation left to show now is

|⟨v,MνTτ v⟩| =
√

2n+1 for τ ̸= 0 , ν ̸= 0 .

Following the construction of difference sets given in (6.5) we can write the
entries of v as v [k] = (−1)tr(αk) with α a primitive element of F2n+1 . For a
τ ̸= 0 set α−γ = 1 + α−τ . Note that 1 + α−τ ̸= 0 since the additive inverse
of 1 in F2n+1 is 1 and α−τ cannot be equal to 1 since τ ̸= 0. Now by straight
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forward computation we get

|⟨v,MνTτ v⟩| =
∣∣∣∣∣∣
2n+1−2∑

k=0
ω−kν (−1)tr(αk) (−1)tr(αk−τ)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
2n+1−2∑

k=0
ω−kν (−1)tr((1+α−τ)αk)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
2n+1−2∑

k=0
ω−kν (−1)tr(α−γαk)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∑

k∈D+γ

ω−kν −
∑

k∈(D+γ)c

ω−kν

∣∣∣∣∣∣
= 2 ·

∣∣∣∣∣∣
∑

k∈D+γ

ω−kν

∣∣∣∣∣∣
=

√
2n+1 ,

where we used Proposition 6.3.2 and that D + γ forms a difference set. Nor-
malizing the vector v we obtain the statement of the theorem which finishes
our proof.

Our proof of Theorem 6.4.1 intimately relies on the fact that we are able
to write the entries of vD and vDc as powers of −1 which depended on the
trace map in finite fields. This type of a connection between the entries of
vD and vDc is not possible if D is not a Singer difference set with parameters
(2n+1 − 1, 2n − 1, 2n−1 − 1). Hence, the suggested construction fails for general
difference sets D. However, in the next subsection we will see that the construc-
tion discussed here is indeed a special case of a larger family of low coherence
finite Gabor frames.

6.5. Low coherence finite Gabor frames based on
Gaussian sums

In this section our aim is to generalize the construction given in the previous
section. In the last section we had the observation in Proposition 6.3.2 and
made a good guess to construct the window vector v. We constructed the
window vector by disjointly indexing the entries either by 1 or by −1 depend-
ing on whether it was indexed by a certain cyclic difference set D or by its
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complementary set Dc which is also a difference set. This construction however
does not work for other cyclic difference sets. In fact, the proof of Theorem
6.4.1 relied on the fact that the elements of v could be written by means of the
trace map in the finite fields.
These observations raises the question whether the frame work of cyclic dif-
ference sets is the correct one to analyse the low coherence Gabor frames
constructed in the previous section. Indeed, as we will see Gaussian sums
over finite fields are more suited for the analysis, and the construction in the
previous section turns out to be a special case of a more general construction.

Let us begin by first inspecting the result from the previous section. There the
vector v ∈ CL (with L = 2n+1 − 1) was disjointly indexed by D and Dc with
entries 1 or −1. In the proof of Theorem 6.4.1 we made the observation that
each entry of v can be written as

v [k] = (−1)tr(αk) ,

for k = 0, . . . , L− 1 and α is a primitive element of the finite field F2n+1 . Now
comparing it with the additive character of F2n+1 given in (6.1) we see that

(−1)tr(αk) = χ1
(
αk
)

= exp
{
j

2π
2 tr

(
αk
)}

.

Let ω = ej 2π
L and observe

|⟨v, fr⟩| =
∣∣∣∣∣
L−1∑
k=0

χ1
(
αk
)
ωrk

∣∣∣∣∣ =
∣∣∣∣∣
L−1∑
k=0

χ1
(
αk
)
ψαr

(
αk
)∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑

a∈F∗
2n+1

χ1 (a)ψαr (a)

∣∣∣∣∣∣∣ = |G (ψαr , χ1)| =
√

2n+1 ,

where we used the notion of multiplicative characters in (6.2) and Gaussian
sums in (6.3). A natural question to ask now is whether this construction
generalizes.
Indeed, a generalization is possible: In the following, we provide a construction
for Gabor frames in CL with L = pn − 1 where p is a prime number and n ∈ N.
Let α be a primitive element of Fpn and define the vector ϕ ∈ CL by

ϕ [k] = 1√
L
χ1
(
αk
)
, with k ∈ {0, . . . , pn − 2} . (6.8)
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For convenience we introduce the column-wise ℓ2-normalized discrete Fourier
transform matrix W = 1√

L
F with columns wk = 1√

L
fk.

Theorem 6.5.1. Let {π(λ)ϕ}λ∈ZL×ZL
be the full Gabor system generated by the

window vector (6.8) and let W ∈ CL×L be the ℓ2-normalized discrete Fourier
matrix. Then

|⟨ϕ,MνTτϕ⟩| =


1 if τ = 0 , ν = 0
0 if τ = 0 , ν ̸= 0
1
L

if τ ̸= 0 , ν = 0
√

L+1
L

if τ ̸= 0 , ν ̸= 0

(6.9)

and

|⟨wk,MνTτϕ⟩| =


1
L

if k = −ν
√

L+1
L

if k ̸= ν
.

So in particular µ(GΦ) =
√

L+1
L

. Moreover, also for the concatenation Φ :=
[Gϕ | W] holds µ (Φ) =

√
L+1
L

.
Proof. Let α be a primitive element of Fpn , let ϕ ∈ CL be constructed as
in (6.8) with the chosen α, and recall that L = pn − 1. Then for arbitrary
ν, τ ∈ ZL, we get

⟨ϕ,MνTτϕ⟩ =
L−1∑
x=0
ϕ [x]ϕ [x− τ ] ej 2π

pn−1 νx

= 1
L

L−1∑
x=0

χ1(αx)χ1(αx−τ )ψαν (αx) . (6.10)

Setting for the moment ω0 = exp
{
j 2π

p

}
, and using the linearity of the trace

map, we get from the definition of the additive characters

χ1(αx)χ1(αx−τ ) = ω
−tr(αx)
0 ω

tr(αx−τ )
0 = ω

tr(αx−τ −αx)
0

= ω
tr([α−τ −1]αx)
0 = χα−τ −1(αx)

Inserting this relation into (6.10) and remembering the definition of the Gauss
sums in (6.3) yields

⟨ϕ,MνTτϕ⟩ = 1
L

m−1∑
x=0

χα−τ −1(αx)ψαν (αx)
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= 1
L
G (ψαν , χα−τ −1) .

Then (6.9) follows by applying Theorem 6.2.1.
To prove the second part, notice that wk can be written as wk = M−kw0. Then
for arbitrary ν, τ ∈ ZL follows

∣∣∣〈wk,M−νTτϕ
〉∣∣∣ =

∣∣∣ 1
L

G (ψ1, χ1)
∣∣∣ = 1

L
,

and for k ̸= −ν and τ ∈ ZL we get

|⟨fk,MνTτϕ⟩| =
∣∣∣∣ 1LG (ψαν+k , χ1)

∣∣∣∣ =
√
L+ 1
L

,

which proves the second statement and finishes the proof.

A full Gabor system in CL has L2 vectors. Thus the Welch bound for such a
system is equal to 1/

√
L+ 1. Theorem 6.5.1 shows now that the coherence

µ(Gϕ) of the Gabor system generated by vector (6.8) is very close to this lower
bound, especially for large dimensions L. Moreover, joining the L columns
of the Fourier matrix to this system does not increase the coherence. So the
coherence of this system of L2 + L vectors is even closer to the corresponding
Welch bound. Moreover, we note that this system of L2 + L vectors has a
very remarkable structure. Indeed from the above proof we can deduce two
additional symmetries of the constructed frames described in the following
corollary.

Corollary 6.5.2. The frame [Gϕ|W] can be written as

1. a union of L+ 1 orthogonal bases, namely

W and {MνTτϕ}L−1
ν=0 , τ = 0, 1, . . . , L− 1 .

2. the union of L sets of equiangular lines in CL

{MνTτϕ}L−1
τ=0 ∪ w−ν , ν = 0, 1, . . . , L− 1 ,

each of which is of size L+ 1 and achieves the Welch bound with equality.

Remark 6.5.1. Note also that the canonical basis {ei}L−1
i=0 of CL is unbiased

to all the orthogonal bases described in Corollary 6.5.2, i.e. |⟨r, ei⟩| = 1√
L

for
all r ∈

{
{πλϕ}λ∈ZL×ZL

∪ {wi}i∈ZL

}
and for every i = 0, . . . , L− 1.
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6. Low Coherence Finite Gabor Frames

Joining the Fourier basis W to the Gabor frame Gϕ seems to be very natural.
Because this way, we are able to partition the whole frame [Gϕ|W] into
equiangular sets as described by Part 2) of Corollary 6.5.2. Moreover the
Fourier basis completes naturally the group structure of the vectors in the
frame under pointwise multiplication. This will become of importance in the
next section. If, on the other hand, the canonical basis would be joined to
Gϕ then the nice property of partitioning the frame into equiangular line sets
would not be possible. Moreover, the canonical basis would also change the
number of absolute values of the inner products within the frame.

6.6. Statistical sparse signal recovery guarantees
In this section we will verify that the Gabor systems constructed in Section 6.5
are good measurement matrices for compressed sensing, in the sense that these
matrices satisfy the statistical restricted isometry property (Section 3.1) and
the strong coherence property (Section 3.2.

Statistical restricted isometry property
The following proposition shows that the Gabor frames considered in Theorem
6.5.1 fulfill Conditions (S1)–(S3) of Definition 3.1.2, i.e. that they are η-StRIP-
able.

Proposition 6.6.1. Let Gϕ
..= {π (λ)ϕ}λ∈ZL×ZL

be the full Gabor system
generated by the window vector ϕ given in (6.8), and consider the concatenation
Φ =

√
L [Πϕ | W]. Then Φ fulfills (S1)–(S3) of Definition 3.1.2.

Proof. (S1) Since finite Gabor systems are tight frames (Proposition 4.2.4) and
because the discrete Fourier transform matrix is orthogonal, the rows of their
concatenation Φ are orthogonal.
For the second condition in (S1), set ω = exp{j 2π

L
}, let χ1 be the additive

character of Fpn as defined in (6.1), and let α be a primitive element of Fpn .
Observe for the x-th row

L−1∑
ν=0

L−1∑
τ=0

ωxvχ1(αx−τ ) +
L−1∑
j=0

ωxj =
L−1∑
τ=0

χ1(αx−τ )
L−1∑
ν=0

ωxv +
L−1∑
j=0

ωxj = 0

where we used G(ψ1, χ) = −1 for χ ̸= χ0 from Theorem 6.2.1.
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(S2): First observe that pointwise multiplication of columns of the discrete
Fourier transformation matrix is equivalent to L·diag(wi)wj =

√
L · wk with

k = i+ j.
For the Gabor part, we need to prove that for any choice of (ν1, τ1) and (ν2, τ2)
there exists a pair (ν3, τ3) such that

ωxν1χ1(αx−τ1) · ωxν2χ1(αx−τ2) = ωxν3χ1(αx−τ3). (6.11)

First consider α−τ1 + α−τ2 ̸= 0 then (6.11) can be written as

ωxν1χ1(αx−τ1) · ωxν2χ1(αx−τ2)
= ωx(ν1+ν2)χ1(αx(α−τ1 + α−τ2)) = ωxν3χ1(αx−τ3)

and a τ3 exists based on our assumption. Now consider α−τ1 + α−τ2 = 0, then
(6.11) becomes

ωxν1χ1(αx−τ1)ωxν2χ1(αx−τ2)=ωx(ν1+ν2)χ1(0)=ωx(ν1+ν2)

which is just the description of the ν1 + ν2 = ν3-th column of the discrete
Fourier transformation matrix.

(S3): The third condition can be stated by means of an inner product in our
case i.e.

L2 |⟨w0,MνTτϕ⟩|2 = µ(Φ)2 = L+ 1 ≤ L2−η.

By assuming equality, we deduce η = 2 − log(L+1)
log(L) .

Strong coherence property
The following proposition verifies that the Gabor system, constructed in Section
6.5, has the strong coherence property as described in Definition 3.2.1.
Proposition 6.6.2. Let Gϕ

..= {π (λ)ϕ}λ∈ZL×ZL
be the full Gabor system

generated by the window vector ϕ given in (6.8). Consider the concatenation
Φ = [Gϕ | W] then Φ fulfills the strong coherence property for sufficiently large
L.

Proof. Plugging in the known values for µ and N , one can rewrite Condition
1) from (3.2) as 164µ log(N) ∼ log(L)√

L
≤ 1. This shows that there exists an m0

such that the first condition in (3.2) is satisfied for all L ≥ m0.

103



6. Low Coherence Finite Gabor Frames

To prove 2) in (3.2), we are going to show that for any pair (k, l) always∑
ν,τ

〈
MkTlϕ,MνTτϕ

〉
+
∑

i

〈
MkTlϕ,wi

〉
= 0

holds, and that for any i one has 1 +∑
ν,τ ⟨wi,MνTτϕ⟩ = 0. This would imply

that the sum in (3.1) is equal to 1. To this end, we recall first that〈
MkTlϕ,MνTτϕ

〉
= ωl(ν−k)

〈
ϕ,Mν−kTτ−lϕ

〉
= 1
L
ψαν−k

(
αl
)
G (ψαν−k , χαl−τ −1)

where the commutation relation of the modulation and translation operator
was used. Now consider∑

ν,τ

〈
MkTlϕ,MνTτϕ

〉
=
∑
ν,τ

ωl(ν−k)
〈
ϕ,Mν−kTτ−lϕ

〉
= 1
L

∑
γ,η

ψαγ

(
αl
)
G (ψαγ , χαη−1)

= 1
L

+ 1
L

∑
γ ̸=0

ψαγ

(
αl
)
G (ψαγ , χ1)

∑
η ̸=0

ψαγ (1 − αη)

= 1
L

− 1
L

∑
γ ̸=0

ψαγ

(
αl
)
G (ψαγ , χ1) (6.12)

where we used ∑η ̸=0 ψαγ (1 − αη) = −1. For the inner products with the Fourier
basis one obtains∑

i

〈
MkTlϕ,wi

〉
=
∑

i

ωl(i−k) ⟨ϕ,wi−k⟩ =
∑

h

ωlh ⟨ϕ,wh⟩ (6.13)

= − 1
L

+ 1
L

∑
h

ψαh

(
αl
)
G (ψαh , χ1) . (6.14)

Combining (6.12) and (6.13) we get∑
ν,τ

〈
MkTlϕ,MνTτϕ

〉
+
∑

i

〈
MkTlϕ,wi

〉
= 0

which is what we wanted to show. If the initial choice of the column is an
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6.7. Numerical experiments

Figure 6.1.: ℓ2-recovery error as phase transition diagram and transition curve
(in red) of a Gabor frame generated by the window in (6.8).

element of the Fourier basis, one gets

1+
∑
τ,ν

⟨fi,MνTτϕ⟩=1+ 1
L

∑
τ,ν

ψαν−i (ατ )G (ψαν−i , χ1)

= 1
L

∑
γ ̸=0

G (ψαγ , χ1)
∑

η

ψαγ (αη) = 0

finally, using that the columns of Φ are normed, we arrive at ∆ = 1
L2+L−1 .

6.7. Numerical experiments
Some numerical experiments were performed to illustrate that the family of
Gabor matrices constructed in Section 6.5 provides good measurement matrices
for CS.
Fig. 6.1 shows a phase transition diagram for sparse signal recovery using
orthogonal matching pursuit (OMP) [37, 121, 122] as recovery algorithm and
where we used the Gabor frame Gϕ, generated by (6.8), as measurement matrix
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6. Low Coherence Finite Gabor Frames

Figure 6.2.: Phase transition curves of Gabor frames generated by the windows
red: (6.8), green: Alltop, blue: normed Random Gaussian and the
phase transition curve of a random Gaussian sensing matrix.

Φ.
Black indicates a small and white a high average recovery error, respectively.
The phase transition curve (in red) corresponds to an average error of 1%.
The graphs in Fig. 6.2 are obtained as the red curve in Fig. 6.1 but for different
measurement matrices Φ. For the Gabor measurement matrix with Alltop
window and with window (6.8), each data point value is averaged over 1000
experiments. For the Gabor matrix with random Gaussian window and for the
random Gaussian measurement matrix, 100 different measurement matrices
were generated and for each matrix 100 different experiments were done for
each data point. Then the final value was averaged over all experiments. The
matrix size for the Alltop measurements was L = 53 (denoted by m) and
N = 2809 (N = L2) for all the other matrices the size was L = 52 (denoted by
L) and N = 2704 (N = 522).
Figure 6.2 indicates that the Gabor system Gϕ constructed in Section 6.5 per-
forms as well as the construction with the Alltop window which is known to be
a good sensing matrix [43]. Surprisingly, the deterministic matrix constructions
seem to outperform the random constructions, although best results concerning

106



6.8. Number of inner products in Mersenne prime dimensions

sparse recovery are proven for random constructions. A simple explanation is,
that the results for random constructions are usually accompanied by some
universal constants [37, 53, 89, 105]. It is likely that the dimension L ∼ 50 is
just not sufficiently large enough.

6.8. Number of inner products in Mersenne prime
dimensions

Gaussian sums behave unpredictable when it comes to their phases. Nev-
ertheless, an interesting aspect of the construction in Section 6.5 is that in
dimensions L = 2p − 1 where L is a prime number, also called Mersenne prime,
we are able characterize how often a phase appears. We state and prove this
observation in the following proposition.

Proposition 6.8.1. Let L = 2p − 1 be a prime number and let ϕ ∈ CL be
given as in (6.8) and consider the inner products

⟨ϕ,MνTτϕ⟩ and ⟨wk,ϕ⟩ .

Then varying over τ, ν, k there appears exactly L2−L
p

different phases with mod-
ulus

√
L+1
L

and each of this phases appear exactly p times.

Proof. Consider the integers modulo 2p − 1, i.e. Z2p−1 ≃ F2p−1 ≃ F∗
2p which is

a field since 2p − 1 is a prime number and at the same time isomorphic to the
multiplicative character group of F2p . Take an element c1 ∈ F2p−1 \ {0} and
consider the set C1 = {c1, 2c1, 22c1, ..., 2p−1c1} note that c12p = c1 since 1 ≡ 2p

mod 2p − 1 and since we are working over a field there does not exist a ̸= b
s.t. ac = cb with a, b, c ∈ F2p−1 \ {0}. That implies the existence of a c2 /∈ C1
and therefore the existence of a second set C2 = {c2, 2c2, 22c2, ..., 2q−1c2} with
C1
⋂ C2 = ∅. Now by the same line of argumentation and Lemma 5.4.3 we see

that there exist a disjoint tiling of F2p−1 \ {0} in C1, C2, ..., C 2p−2
p

.
The dimension L being a prime number implies that in each row of the Gramian
matrix will be the same values just in different positions. This fact can be
deduced from the proof of Proposition 6.6.2 and that the columns form a
group under pointwise multiplication. Next we consider the commutative group
{Mν}2p−2

ν=0 and its cosets with the innerproducts ⟨w0,MνTτϕ⟩, the case when
ν = 0 is clear therefore we will consider just the cases when ν ̸= 0. From
previous discussion we can partition {Mν}2p−2

ν=0 into 2p−2
p

different sets. Note
that p must be a prime number since L = 2p − 1 is a prime number [113] and
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6. Low Coherence Finite Gabor Frames

by Lemma 5.4.3 we have that p divides 2p − 2.

Now by Theorem 6.2.2 for ν1 ̸= ν2 we can write

⟨w0Mν1ϕ⟩ = ⟨w0Mν2ϕ⟩ if ν1, ν2 ∈ Ci, i ∈ {1, ..., 2p − 2
p

} ,

additionally, by Theorem 6.2.2 and by the commutation relation in Lemma
4.2.1 we observe

⟨w0,Mν1Tτ1ϕ⟩ = ων1τ1 ⟨w0,Mν1ϕ⟩ = ⟨w0,Mν2Tτ2ϕ⟩
if ν1, ν2 ∈ Ci and ν1τ1 = ν2τ2.

Next fixing ν ̸= 0 with ν ∈ Ci, going over all τ ∈ {1, ..., 2p − 2} and looking
at ωντ we will get every primitive root of unity, since 2p − 1 is prime and ω
a 2p − 1-th root of unity. Now varying ν over all elements of Ci we will get
each primitive root exactly p times since |Ci| = p. Finally these considerations
imply that the number of different values of innerproducts in the normed
frame is exactly (2p − 1) 2p−2

p
+ 3, where the latter 3 values are, 1 appearing

exactly once, 0 appearing L− 1 times and − 1
L

appearing L times. There are
(2p − 1) 2p−2

p
different phases, closed under complex conjugation, corresponding

to the innerproducts with modulus
√

L+1
L

each appearing exactly p times.
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7. On Compressed Sensing of
Sparse Covariance Matrices
using Deterministic Sensing
Matrices

In this section we consider the problem of determining the sparse covariance
matrix X of an unknown data vector x by observing the covariance matrix
Y of a compressive measurement vector y = Ax. Our aim is to construct
deterministic sensing matrices A for which the recovery of a k-sparse covariance
matrix X from L values of Y is guaranteed with high probability. This section
has been partially published in [30].

7.1. Problem formulation
Let x = (x1, x2, . . . , xN)T ∈ CN be a vector of N independent, zero-mean
random variables with covariance matrix X = E [xx∗], and let y = Ax be L
linear measurements of x with the L×N measurement matrix A ∈ CL×N . We
consider the problem of determining X from the known covariance matrix

Y = E [yy∗] = AE [xx∗] A∗ = AXA∗ (7.1)

of the observed measurements y. This problem, also known as matrix sketching,
appears in several problems of signal processing, for instance in array signal
processing or communications [123].
In many applications, the covariance matrix X can assumed to be sparse in
some sense. For example, if two random variables xi and xj are known to be
uncorrelated then the corresponding entries in the covariance matrix, namely
[X]i,j = E[xixj] and [X]j,i = E[xjxi], are zero. So in cases where only a few
entries of x are correlated, the matrix X will be sparse. Therefore, ideas from
compressive sensing (CS) may be applied to find efficient sampling schemes
which only need a few measurements to determine X [124]. In particular, it is
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natural to ask whether it is possible to find sensing matrices A with L < N
rows and such that X can uniquely recovered from Y.
One common approach [125] is based on rewriting (7.1) as a standard linear
compressed sensing problem by stacking the columns of X and Y into vectors
x̃ = vec(X) ∈ CN2 and ỹ = vec(Y) ∈ CL2 respectively. This yields

ỹ = C x̃ with C = A ⊗ A (7.2)

and wherein ⊗ stands for the usual Kronecker product of matrices. The problem
is now to find a measurement matrix A such that the corresponding matrix
C = A ⊗ A in (7.2) is a good measurement matrix for compressed sensing.
Then the problem (7.2) can be solved uniquely by standard compressed sensing
algorithms [37, 121].

7.2. Statistical restricted isometry property for
Kronecker structured matrices

Since we are interested in deterministic sensing matrices in (7.2) we can employ
the frame work of statistical restricted isometry property discussed in Section
3.1.
We now consider the following problem. Let A be a matrix which is known to
be η-StRIP-able for some positive η. Is the Kronecker product A ⊗ A again
η′-StRIP-able for some η′ > 0? If so, what would be the value of η′? We give a
complete answer to these questions in the following theorem.

Theorem 7.2.1. Assume A ∈ Cn×N is ηA-StRIP-able and B ∈ Cm×M is
ηB-StRIP-able. Then the following holds.

(a) A is ηA-StRIP-able with ηA = ηA.

(b) The matrix C = A ⊗ B ∈ Cnm×NM is ηC-StRIP-able with

ηC =
ηA

ln(n)
ln(nm) if nηA ≤ mηB ,

ηB
ln(m)

ln(nm) if nηA > mηB .
(7.3)

Proof. Let us write A = 1√
n
Φ, B = 1√

m
Ψ, and C = 1√

nm
Γ. Clearly, the

matrices Φ,Ψ,Γ are related by Γ = Φ ⊗ Ψ and the entry of Γ in the (k, ℓ)-th
column and (x, y)-th row is given by γ(k,ℓ)[x, y] = ϕk[x]ψℓ[y].
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Part (a) is immediate by observing that each conditions (S1), (S2), (S3) for
Φ implies the respective condition for Φ. Therefore A is ηA-StRIP-able with
ηA = ηA (the same constant as A).

To prove (b), we check conditions (S1), (S2) and (S3) for Γ. First, observe that
for (x, y) ̸= (x′, y′),

N∑
k=1

M∑
ℓ=1
γ(k,ℓ)[x, y]γ(k,ℓ)[x′, y′] =

N∑
k=1

M∑
ℓ=1
ϕk[x]ψℓ[y]ϕk[x′]ψℓ[y′]

=
N∑

k=1
ϕk[x]ϕk[x′] ·

M∑
ℓ=1

ψℓ[y]ψℓ[y′] = 0,

using the fact that∑N
k=1ϕk[x]ϕk[x′] = 0 if x ̸= x′, and that∑M

ℓ=1ψℓ[y]ψℓ[y′] = 0
if y ̸= y′. Moreover, for any (x, y),

N∑
k=1

M∑
ℓ=1
γ(k,ℓ)[x, y] =

N∑
k=1

M∑
ℓ=1
ϕk[x]ψℓ[y]

=
N∑

k=1
ϕk[x] ·

M∑
ℓ=1
ψℓ[y] = 0,

where we have used that ∑N
k=1ϕk[x] = ∑M

ℓ=1ψℓ[y] = 0. Therefore, Γ satisfies
the condition (S1).
To verify the (S2) for Γ, fix any (k, ℓ) and (k′, ℓ′), where 1 ≤ k, k′ ≤ N ,
1 ≤ ℓ, ℓ′ ≤ M . Since Φ and Ψ satisfy (S2) there exist 1 ≤ k′′ ≤ N and
1 ≤ ℓ′′ ≤ M such that ϕk[x]ϕk′ [x] = ϕk′′ [x] for all x and ψℓ[y]ψℓ′ [y] = ψℓ′′ [y]
for all y. Then

γ(k,ℓ)[x, y] · γ(k′,ℓ′)[x, y] = ϕk[x]ψℓ[y] · ϕk′ [x]ψℓ′ [y]
= ϕk[x]ϕk′ [x] ·ψℓ[y]ψℓ′ [y]
= ϕk′′ [x] ·ψℓ′′ [y] = γ(k′′,ℓ′′)[x, y]

which proves (S2).
Finally, we verify (S3) for Γ. For (k, ℓ) ̸= (1, 1) and with 1 ≤ k ≤ N , 1 ≤ ℓ ≤ M ,
we have ∣∣∣∣∣∣

n∑
x=1

m∑
y=1
γ(k,ℓ)[x, y]

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

n∑
x=1

m∑
y=1
ϕk[x]ψℓ[y]

∣∣∣∣∣∣
2
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=
∣∣∣∣∣

n∑
x=1
ϕk[x]

∣∣∣∣∣
2

·

∣∣∣∣∣∣
m∑

y=1
ψℓ[y]

∣∣∣∣∣∣
2

=


n2 ·m2−ηB if k = 1, ℓ ̸= 1,
n2−ηA ·m2 if k = 1, ℓ ̸= 1,
n2−ηA ·m2−ηB if k ̸= 1, ℓ ̸= 1,

and since ηA, ηB > 0, we have

max
(k,ℓ)̸=(1,1)

∣∣∣∣∣∣
n∑

x=1

m∑
y=1
γ(k,ℓ)[x, y]

∣∣∣∣∣∣
2

= max
{
n2m2−ηB , n2−ηAm2

}
.

Setting (nm)2−ηC = max{n2m2−ηB , n2−ηAm2} gives

ηC =
ηA

ln(n)
ln(nm) if nηA ≤ mηB

ηB
ln(m)

ln(nm) if nηA > mηB .

which finishes the proof.

Theorem 7.2.1 shows that the Kronecker product C = A⊗B of two StRIP-able
matrices A and B is again StRIP-able. However, the constant ηC given in (7.3)
is always strictly smaller than both ηA and ηB, i.e., ηC < min{ηA, ηB}. This
means that the coherence of a Kronecker product matrix is always worse (i.e.,
larger) than the coherence of the original matrices.
Motivated from the applications described in Introduction, we are interested in
sensing matrices of the form A⊗A (cf. (7.2)). For such matrices, Theorem 7.2.1
immediately yields the following.

Corollary 7.2.2. If A ∈ Cm×N is an η-StRIP-able matrix, then the matrix
A ⊗ A ∈ Cm2×N2 is (η/2)-StRIP-able.

Combining Theorem 3.1.1 and Corollary 7.2.2, we obtain a sufficient condition
under which a Kronecker product matrix A ⊗ A ∈ Cm2×N2 satisfies UStRIP.

Corollary 7.2.3. Let A = 1√
m

Φ ∈ Cm×N be an η-StRIP-able matrix with
η > 1. If k < 1 + (N2 − 1)δ and m2 ≥ c (2k logN)/δ2 for some constant c > 0,
then A ⊗ A has (k, δ, 2ϵ)-UStRIP with

ϵ = 2 exp
(

−
(
δ − k − 1

N2 − 1

)2m2η

8k

)
. (7.4)
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So if a matrix A satisfies the conditions of Corollary 7.2.3, then one needs in
the order of m̃ := m2 ≥ c k logN measurements of the form y =

(
A ⊗ A

)
x

to recover k-sparse vectors x ∈ CN2 with high probability. Equivalently, every
covariance matrix X ∈ CN×N can be recovered from m̃ values of the covariance
matrix Y = AXA∗.

7.3. Kronecker structured matrices with recovery
guarantee

Corollary 7.2.3 requires the StRIP constant η of an StRIP-able matrix A ∈
CL×N has to be larger than 1 for A ⊗ A to have UStRIP. To get a first idea
which matrices might satisfy this condition, we recall from Section 3.1 that the
coherence of an η-StRIP-able matrix is upper bounded by µ(A) ≤ L−η/2. On
the other side, from Theorem 2.4.3 µ(A) is known to be lower bounded by the
Welch bound [64]. So µ(A) always satisfies√

N − L

L(N − 1) ≤ µ(A) ≤ 1√
Lη

From these inequalities, one easily derives an upper bound on η:

η ≤ 1 + ln
(
N − 1
N − L

) 1
ln (L)

For L > 1, this upper bound is strictly larger than 1 but it gets very close to
1 for L << N (as usually desired in CS). Since we are looking for matrices
with η > 1, this means that we are searching for matrices A whose coherence
is very close to the Welch bound, which means that the columns of A have to
be close to an equiangular tight frame (ETF). In particular, we observe that
if the coherence of A would achieve the Welch bound with equality then the
Kronecker product A ⊗ A would have UStRIP. Additionally, such an equal
norm ETF needs to fulfill (S1) – (S3). A class of ETFs fulfilling these conditions
are equiangular harmonic frames (EHF) [126]. This frames are constructed
by picking out certain rows from the DFT matrix. The rows are indexed by
difference sets. Note that by picking some arbitrary rows (apart from the first
all ones row) of the DFT matrix, the partial DFT matrix fulfills (S1) and (S2),
but not necessarily (S3).

Proposition 7.3.1. Let K ⊂ ZN be an (N,L, ρ)-difference set. Then the
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partial Fourier matrix FK ∈ CL×N is η-StRIP-able with

η = 2 − ln(L− ρ)
ln(L) > 1,

where FK = [e−j 2π
N

rk]k∈K,r=0,...,N−1 is the partial Fourier matrix formed with the
rows indexed by K.
Proof. Conditions (S1) and (S2) follow from the properties of the N×N discrete
Fourier transform matrix. To verify condition (S3), let K = {a1, a2, . . . , aL} ⊂
ZN be given in the increasing order. The entry of FK at the r-th column
and k-th row is given by fr[k] = ωrak , where ω := e−j2π/N . Then for any
r ∈ {2, 3, ..., N},

∣∣∣∣∣
L∑

k=1
fr[k]

∣∣∣∣∣
2

=
∣∣∣∣∣

L∑
k=1

ωrak

∣∣∣∣∣
2

=
L∑

k,ℓ=1
ωr(ak−aℓ)

= L+
∑
k ̸=ℓ

ωr(ak−aℓ) = L+ ρ(ω + ω2 + . . .+ ωL−1)

= L− ρ,

where we used the property of (N,L, ρ)-difference set K and Lemma 4.2.2.
Setting this value equal to L2−η yields the desired expression for η.

Since the constructed matrix FK is η-StRIP-able with η > 1, the corresponding
Kronecker product FK ⊗ FK is η-StRIP-able with η > 1/2 (cf. Corollary 7.2.2).
Consequently FK ⊗ FK has UStRIP according to Theorem 3.1.1, i.e. we have
the following statement.
Corollary 7.3.2. Let FK ∈ CL×N be a matrix constructed as in Proposi-
tion 7.3.1 and let CK = FK ⊗ FK. If k < 1 + (N2 − 1) δ and if L2 ≥
c (2k logN)/δ2 for some constant c > 0 then CK has (k, δ, 2ϵ)-UStRIP with ϵ
given by (7.4).
We remark again, that Corollary 7.3.2 implies in particular a statistical recovery
guarantee (in the sense of Def. 3.1.1) for a Kronecker structured measurement
matrix and where the number of measurements L̃ = L2 scales linearly with the
sparsity k.

7.4. Numerical experiments
This section presents numerical experiments showing the effectiveness of the
proposed measurement matrices. Before comparing the recovery performance
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Figure 7.1.: Quadratic error of the optimal solutions of (7.5) for non-Kronecker
structured matrices C. Horizontal axis: k/L (sparsity over number
of measurements). Vertical axis: ℓ2-error (∥x̂ − x∥2 / ∥x∥2).

of Kronecker product matrices C = (A ⊗ A), we first check the performance of
matrices C without Kronecker structure. To this end, we consider the following
matrices C all of them having L = 50 rows and N = 2451 columns.

(i) EHF : C = FK is the matrix constructed according to Prop. 7.3.1.

(ii) deterministic partial Fourier : C whose columns coincide with the first L
columns of the N ×N DFT matrix.

(iii) random partial Fourier : the rows of C are randomly chosen from the
N ×N DFT matrix.

(iv) random Gaussian: the entries of C are i.i.d normal distributed random
variables.

Fig. 7.1 shows the corresponding simulation result for recovering a k-sparse
vector x ∈ CN from linear measurements y = C x, using basis pursuit (7.5),
i.e. by solving

x̂ = arg min ∥z∥1 subject to Cz = y , z ∈ CN . (7.5)
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Figure 7.2.: Quadratic error of the optimal solutions of (7.5) for Kronecker
structured matrices C, and comparison with random Gaussian and
random partial Fourier matrices. Axis as in Fig. 7.1.

For these simulation we varied the sparsity k of the data vector x. On the
horizontal axis we plot the normalized ℓ2 reconstruction error ∥x̂ − x∥2 / ∥x∥2.
For each k we generated 100 random k-sparse vectors x and averaged the
reconstruction error over these 100 experiments. The simulation result for the
deterministic partial Fourier matrix in Fig. 7.1 shows that not every choice
of rows from the discrete Fourier transform matrix yields a good compressed
sensing matrix. However, for a choice of rows that corresponds to an EHF the
resulting measurement matrix is essentially as good as random Gaussian and
random partial Fourier matrices, which are known to be good sensing matrices.
In Fig 7.2, we compare the recovery performance of Kronecker product matrices
C = (A ⊗ A) for matrices A ∈ Cm×N as under (i)-(iv), denoted respectively
by (i’)-(iv’). Additionally, we consider random matrices C of size L2 × N2

(without Kronecker product):

(v’) random partial Fourier : the rows of C are randomly chosen from the
N2 ×N2 DFT matrix.

(vi’) random Gaussian: the entries of C are i.i.d normal distributed random
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variables.

For these simulations, we fixed L = 10 and N = 91, and the results where
averaged over 100 random vectors x. We observe that the Kronecker structure
destroys the good behaviour of the random Gaussian matrix which now performs
worse. On the other side, we see that the Kronecker structured EHF matrix
performs almost as good as the non-Kronecker-structured random partial
Fourier and random Gaussian matrices. So for our deterministic EHF matrix
the Kronecker structure does not harm its good compressed sensing properties.
A similar behaviour is observed for the random partial Fourier matrix.

117





Part III.
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8. Channel Model
In this section we introduce the communication channel model which will form
the basis for discussions in the later sections. Parts of the Section in this form
has been published in [31, 32, 34].
We consider a linear time-varying (LTV) multipath wireless communication
channel. Commonly, LTV channels are modelled by linear time-varying systems
[3, 10, 127]. The input-output relation of a LTV system is described by

(Hs)(t) =
∫∫

R2
η(τ, ν)s(t− τ) ej2πνt dτ dν . (8.1)

Wherein, s(t) is the input signal and η(τ, ν) describes the complex attenuation
factor associated with the corresponding delay-Doppler pair (τ, ν), which is the
result of multipath propagation and Doppler spread. The function η(τ, ν) is
called the spreading function of H since it describes how the signal is spread in
the delay-Doppler domain. The representation of a LTV system as formulated in
(8.1) emphasizes the physical effects of a communication channel, i.e. multipath
propagation and Doppler effect. To describe a LTV system a time-varying
impulse response representation of (8.1) is commonly used in the literature [3,
11, 128].

(Hs)(t) =
∫
R
A(t, τ)s(t− τ)dτ, (8.2)

with

A(t, τ) =
∫
R
η(τ, ν)ej2πνtdν.

Another common representation of a LTV system is given by its time-varying
transfer function [3, 8, 128]. Analogously to time-invariant systems the time-
varying transfer function is obtained by taking the Fourier transform of the
time-varying impulse response on the second argument,

σ(t, ω) =
∫
R
A(t, τ)e−j2πωτdτ,

and the LTV system representation is given by
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(Hs)(t) =
∫
R
σ(t, ω)ŝ(ω)ej2πωtdω, (8.3)

where ŝ(ω) is the Fourier transform of s(t). The time-varying impulse response
and time-varying transfer function representations can be formulated from one
form into the other by straight forward computation. For instance we obtain
(8.2) from (8.3) simply by straight forward computation,

(Hs)(t) =
∫
R
σ(t, ω)ŝ(ω)ej2πωtdω

=
∫
R

∫
R
A(t, τ)e−j2πωτ ŝ(ω)ej2πωtdωdτ

=
∫
R
A(t, τ)

∫
R

e−j2πωτ ŝ(ω)ej2πωtdωdτ

=
∫
R
A(t, τ)s(t− τ)dτ.

Furthermore, since σ(t, ω) is the Fourier transform of A(t, τ) we have

A(t, τ) =
∫
R
σ(t, ω)ej2πωτdω.

Thus, we can also get (8.2) from (8.3) as follows

(Hs)(t) =
∫
R
A(t, τ)s(t− τ)dτ

=
∫
R

∫
R
σ(t, ω)ej2πωτs(t− τ)dτdω

=
∫
R
σ(t, ω)

∫ ∞

−∞
ej2πωτs(t− τ)dτdω

=
∫
R
σ(t, ω)ej2πωt(−1)

∫ −∞

∞
s(z)e−j2πωzdzdω

=
∫
R
σ(t, ω)ŝ(ω)ej2πωtdω,

where we substituted z = t− τ .
Although all of the representations for LTV systems are used in the literature
here we will mainly use the spreading function representation as given in (8.1)
since this representation emphasizes multipath propagation and Doppler effects
which appear in wireless communication channels [3, 10].
The representation given in (8.1) can also be written using the translation
and modulation operators [129]. Now we are going to define the continuous

122



8.1. Operator sampling

analogues to the finite modulation and translation operators which we have
discussed in Section 4.2.1. For x, ν ∈ R, the translation and modulation
operators are defined as

Txs(t) = s(t− x), t ∈ R (8.4)
and

Mνs(t) = ej2πνts(t), t ∈ R (8.5)
respectively.
The translation operator Tx shifts the signal s(t) by x and the modulation oper-
ator Mν modulates the signal s(t) by ν. The modulation operator corresponds
to a shift of the function in the frequency domain, i.e.

F (Mνs(t)) = ŝ(ω − ν),
where F(·) is the Fourier transform operator and ŝ(ω) denotes the Fourier
transform of s(t). Additionally, the following commutation relation holds [129]

TxMν = e−j2πxνMνTx. (8.6)
The relation (8.6) can be verified by straight forward computation

TxMνs(t) = (Mνs)(t− x)
= ej2πν(t−x)s(t− x)
= e−j2πxνej2πνts(t− x)
= e−j2πxνMνTxs(t).

Finally, we can write (8.1) using the translation and modulation operators as
defined in (8.4) and (8.5), respectively and we obtain

(Hs)(t) =
∫∫

R2
η(τ, ν)Tτ Mνs(t) dτ dν . (8.7)

8.1. Operator sampling
The identification of LTV systems, that is the problem of identifying the
spreading function η in (8.1), has been the focus of research throughout history
[8, 11, 13, 16, 107, 128, 130]. The main result of the identification problem
sates that the channel H can be identified if the support area of the spreading

123



8. Channel Model

function is less then one. If, on the other hand, the support area is larger
than one, channel identification is impossible. The channel can be identified by
sending a periodic delta train

sc(t) =
L−1∑
r=0

c[r]
∑
k∈Z

δ(t− kLT + rT ) . (8.8)

with a specific vector c ∈ CL as a pilot over the channel. Then η can be
determined form the channel output Hsc at the receiver.

We now review some results on operator sampling developed in [13, 107, 128,
130]. We mainly follow the setup and notation in [130]. We consider the
spreading function representation of a bounded linear operator H : L2(R) →
L2(R), which is given by (8.1). We denote the set of bounded linear operators
by L(L2(R), L2(R)).

Moreover, we note that any bounded linear operator on L2(R) has such a
spreading function representation [130]. Let M ⊂ R2 be a subset in the delay-
Doppler plain. Then OPW (M) denotes the operator Paley-Wiener space of all
operators of the form (8.1) with a spreading function ηH whose support set is
contained in M , that is,

OPW (M) = {H ∈ L(L2(R), L2(R)) : supp(η) ⊂ M}.

In the cases we consider M is always compact. We say that OPW (M) is
identifiable using a single pilot signal s if there exist constants A,B > 0 such
that

A ∥H∥L2(R)→L2(R) ≤ ∥Hs∥L2(R) ≤ B ∥H∥L2(R)→L2(R) ,

for all H ∈ OPW (M).

Operator identification is referred to operator sampling if a discretely supported
distribution s is used, that is if pilot signal of the form (8.8) is used.

The Zak transform of f ∈ L2(R) with parameter T is defined to be

ZTf(t, ν) =
∑
r∈Z

f(t− rT ) ej2πrT ν , t, ν ∈ R. (8.9)

This transformation plays a key role in the analysis of operator sampling.
Based on (8.9), one defines the L-dimensional vector valued Zak transform
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with parameter LT as

ZLT
L f(t, ν) =


ZLTf(t, ν)

ZLTf(t+ T, ν)e−j2πT ν

...
ZLTf(t+ (L− 1)T, ν)e−j2π(L−1)T ν

 . (8.10)

It is easy to check that the vectorized Zak transform is (LT, 1
T

)-quasi-periodic,
i.e., ZLT

L f(t + LT, ν) = ej2πLT νZLT
L f(t, ν) and ZLT

L f(t, ν + 1
T

) = ZLT
L f(t, ν).

Additionally, one has the norm equality

∥f∥L2(R2) =
√
T
∥∥∥∥∥∥ZLT

L f
∥∥∥

2

∥∥∥
L2([0,T ]×[0, 1

LT
]) .

Next, set Ω = 1
LT

and define the (LT,LΩ)-quasi-periodic spreading function
η(τ, ν) by

η(LT,LΩ)(τ, ν) = Ω
∑
p∈Z

∑
q∈Z

η(τ + pLT, ν + pLΩ)e−j2πpLT ν . (8.11)

The following two lemmas restate key results from operator sampling, which
will frequently be needed in later sections. The first lemma shows that the
identification problem can be reduced to a finite dimensional linear equation.
The translation and modulation operators, Mk, Tl, are defined in Section
4.2.1.
Lemma 8.1.1 ([130]). Let H ∈ OPW (M) be of the form of (8.1) with spreading
function η and let sc(t) be given as in (8.8). Then for the vectorized Zak
transform with parameter LT of the channel output y = (Hsc) holds

ZLT
L y(τ, ν) =

L−1∑
k,l=0

η(LT,LΩ)(τ + kT, ν + lΩ)e−j2πkT ν MkTlc , (8.12)

where η(LT,LΩ) is the (LT,LΩ)-quasi-periodic spreading function given in (8.11).
Furthermore, rearranging the right-hand side of (8.12) to a vector valued
bivariate spreading function η(τ, ν) ∈ CL2 we get

ZLT
L y(τ, ν) = Gc η(τ, ν), (8.13)

where Gc ∈ CL×L2 denotes the Gabor matrix generated by the window vector c
as defined in Section 4.2.2.
To recover η(τ, ν) from ZLT

L y(τ, ν) in (8.13), one needs that η(τ, ν) has at
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τ
TLT

Ω

ν

LΩ

Figure 8.1.: Rectification of the channel support region M (red) in the delay-
Doppler (time-frequency) domain. Here a rectification with L = 10
is chosen and the covering set U with respect to this rectification
is shown in green.

most L nonzero entries and that the corresponding columns of Gc are linearly
independent. As seen in Theorem 4.2.8 and Theorem 4.2.9, there always exists a
vector c ∈ CL such that every L column vectors of Gc are linearly independent.
In fact, the vectors c ∈ CL that do not satisfy this property form a set of
measure zero in CL. Note that (8.13) has the form of the matrix identification
problem already discussed in Section 4.2.3. This observation leads to the
following fundamental result in operator sampling.

Definition 8.1.1 (see Definition 2.1 in [13] or [131]). For K,L ∈ N, let
RK,L = [0, 1

K
) × [0, K

L
) and

UK,L =


J⋃
j=1

(
RK,L +

(
kj

K
, ℓjK

L

))
: kj, ℓj ∈ Z, J ∈ N

 .
Let M ⊂ R2 be a bound set and let µ be the Lebesgue measure on R2. The
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inner and outer content of M are defined by

A−(M) = sup{µ(U) : U ⊂ M and U ∈ UK,L for some K,L ∈ N}

and

A+(M) = inf{µ(U) : U ⊃ M and U ∈ UK,L for some K,L ∈ N} ,

respectively. Clearly, it holds A−(M) ≤ A+(M). If A−(M) = A+(M), then
M is a Lebesgue measurable set with µ(M) = A(M) := A−(M) = A+(M) and
we call M a Jordan domain with Jordan content A(M). In general, a Jordan
domain is a bounded Lebesgue measurable set whose boundary is a Lebesgue
zero set (see e.g., [13, Proposition 2.2] or [131]).
Lemma 8.1.2 ([13]). Let M ⊂ [0,∞)2 be a Jordan domain. If A(M) < 1,
then OPW (M) is identifiable, that is, any operator H with supp(ηH) ⊂ M is
identifiable, using an input signal sc(t) of the form (8.8). If A(M) > 1, then
OPW (M) is not identifiable by means of any single input signal.
In Lemma 8.1.2, the support set of the spreading function is assumed to be a
subset of a known set M . A similar result was obtained in [107] for unknown
support sets: An operator H with unknown supp(η) is identifiable if and only
if A(supp(η)) < 1/2.

8.1.1. Rectification for known support sets M
If the support M of the channel is known, then the parameters K,L ∈ N and
c ∈ CL for the input signal sc(t) in (8.8) are chosen in the following way. First,
based on the knowledge ofM a rectification of the time-frequency plane is chosen.
Since A(M) < 1, there exists some U ∈ UK,L with sufficiently large K ∈ N
and L ≫ K such that U ⊃ M , A(M) < µ(U) < 1 and M ⊂ [0, L

K
) × [0, K).

Setting T = 1
K

and Ω = K
L

, we have M ⊂ [0, LT )×[0, LΩ) and since µ(U) < 1,
the set M intersects at most L of the rectangles [kT, (k + 1)T )×[ℓΩ, (ℓ+ 1)Ω),
k, ℓ = 0, . . . , L − 1. Note that each rectangle has area TΩ = 1

L
and the

rectangles that cover M have total area of at most L · 1
L

= 1 [107, Section 2].
For example, Figure 8.1 illustrates such a covering U of a support set M with
area A(U) = 22/102 = 0.22.
After a rectification is fixed (i.e., K,L ∈ N are fixed), we choose c ∈ CL

so that every L column vectors of Gc are linearly independent. The linear
independence of every L columns of Gc plays an important role in the proof of
Lemma 8.1.2, as it allows one to solve η from (8.13) whenever the support set
of η is known and has cardinality at most L.
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8.1.2. Fixed Rectification for unknown support sets M
In a practical scenario, the support M of the spreading function will strongly
depend on environmental factors, such as the relative movement of the transmit-
ter and receiver. The set M may evolve in time and therefore change between
consecutive communications. Nevertheless, one can make some reasonable
assumptions on M . For instance, consider short distance communications
between two cars on the road. Due to the speed limit of vehicles and the sparse
scattering environment, it is reasonable to assume that M ⊂ [0, τmax)×[0, νmax)
for some τmax > 0 and νmax > 0. Then as in Section 8.1.1, we choose a
sufficiently fine rectification of [0, τmax)×[0, νmax), that is, we choose small
T = 1

K
and Ω = K

L
(correspondingly, large K ∈ N and L ≫ K), so that

[0, τmax)×[0, νmax) ⊂ [0, LT )×[0, LΩ).
To simplify our analysis, we will restrict our attention to LTV channels each
of which takes only a limited number of rectangles in the (a priori fixed)
rectification to cover its spreading support M . This excludes some pathological
sets M which, for a given rectification, intersect every rectangles but have area
less than 1; such sets are certainly non-realistic in practice. Note that choosing
a finer rectification (thus, a larger L ∈ N) would increase the class of LTV
channels under consideration, but the computational cost involved with (8.13)
would also be increased.
With a fixed rectification, the support size of the LTV channels under consider-
ation can be measured by the number of rectangles that are needed to cover M .
We will later derive an upper bound on the mentioned number of rectangles
for successful message transmission.

Remark 8.1.2. We would like to emphasize that there is an important difference
between the two rectification methods discussed in Section 8.1.1 and 8.1.2.
Section 8.1.1 shows how to choose a rectification so that M is covered by at
most L rectangles of area 1

L
. On the other hand, Section 8.1.2 assumes a fixed

rectification of the estimated feasible region [0, τmax)×[0, νmax), and restricts
the class of LTV channels to those with spreading support covered by a limited
number of rectangles in the rectification.

8.2. Virtual channel representation
The previous Section 8.1 can be seen as more of a mathematical analysis
and perspective on LTV systems. In engineering, rather than considering a
continuous function, it is more common to interpret the time-varying channel
as a multipath propagation and each path is considered to be a point scatterer
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[3, 8, 9]. Hence, the channel simply becomes a superposition of multiple paths
and each path shifts the signal in time and frequency. Thus, the time-varying
transfer function for a channel H for a multi-antenna receiver can be written as

σ̃H(t, ω) =
NP −1∑
n=0

a (θn) h̃n ej2πνnte−j2πτnω, (8.14)

wherein NP is the number of different paths, a(·) is an NR dimensional function
defined on [−π, π) so that a (θn) ∈ CNR is the array steering vector in the
direction θn which is associated with the n-th path, and h̃n and (τn, νn) are the
complex gain and the delay-Doppler shift associated with the n-th path, respec-
tively [8]. We assume that (τn, νn) ∈ [0, τmax]×[0, νmax] and θn ∈

[
− θmax

2 , θmax
2

)
,

where θmax < 2π is the maximum angle range of the antenna array, and τmax
and νmax are the maximum delay and maximum Doppler spread of the channel,
respectively. Note that if the receiver is equipped with only one antenna then
the array steering vector a is simply a scalar equal to 1, a (θn) = 1.

Although (8.14) is a physically precise description of the channel, it is quite
impractical to work with. Instead we are going to consider an approximation
of (8.14) called the virtual channel model [9] which is easier to work with. The
idea is to round the points (τn, νn, θn) to the nearest point on a uniform grid,
for instance, with uniform spacing ∆τ in time, ∆ν in frequency, and ∆θ in
angle. More precisely, we approximate σ̃H (t, ω) by

σH (t, ω) =
D−1∑

d=−D

K−1∑
k=0

M−1∑
m=0

a (d∆θ)hk,m,de−j2πk∆τω ej2πm∆νt (8.15)

where D,K,M ∈ N satisfy θmax ≤ 2D · ∆θ, τmax ≤ K · ∆τ , and νmax ≤ M · ∆ν.
Moreover, hk,m,d is the sum of all complex gains h̃n such that

(τn, νn, θn) ∈ [k∆τ, (k + 1)∆τ) × [m∆ν, (m+1)∆ν) [d∆θ, (d+1)∆θ) .

Following the notation in [8], we write

hk,m,d =
∑

n∈Sτ,k∩Sν,m∩Sθ,d

h̃n,
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Figure 8.2.: Here D = M = K = L = 5 is chosen and it is assumed that
τmax = LT and νmax = 1

T
. On the right the direction of arrivals of

each propagation path is shown with the corresponding colours.

where

Sθ,d = {n : θn ∈ [d∆θ, (d+1)∆θ)},
Sτ,k = {n : τn ∈ [k∆τ, (k+1)∆τ)},
Sν,m = {n : νn ∈ [m∆ν, (m+1)∆ν)}.

Replacing σ̃H(t, ω) in (8.14) with its approximation σH(t, ω) in (8.15) gives

(Hf) (t) =
D−1∑

d=−D

K−1∑
k=0

M−1∑
m=0

a (d∆θ) hk,m,df (t− k∆τ) ej2πm∆νt . (8.16)

In Figure 8.2 the virtual channel representation is illustrated. Each dot corre-
sponds to a delay-Doppler shift of the signal caused by a propagation path. All
paths which are in the same delay-Doppler region (i.e. in the same rectangle)
are substituted by a virtual path which is assumed to be placed in the middle
of the rectangle, illustrated by the yellow dots in Figure 8.2. On the right hand
side of the figure each direction of arrival corresponding to each propagation
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path is shown with the corresponding colours.

From virtual channel representation to matrix identification

Interestingly, the problem of channel identification that arises from (8.16) is
the same as we get in Section 8.1 where the finite Gabor frames play a crucial
role.
For the next part we assume a single antenna, i.e. a is a scalar and is equal to
1. Consider the channel model in (8.16) with ∆ν = 1

T L
and ∆τ = T , where L

is a sufficiently large and T is chosen sufficiently small so that τmax < TL and
νmax <

1
T

(see Figure 8.2). With these parameters, (8.16) becomes

ỹ(t) = (Hf)(t) =
L−1∑
k=0

L−1∑
m=0

hk,m f(t− kT ) ej2πm 1
T L

t. (8.17)

Now, we choose the input f as

f(t) =
L−1∑
ℓ=0

zℓ ψϵ(t− ℓT ) , t ∈ R , (8.18)

where ψϵ is a C∞ function which is supported on [−ϵ, ϵ] and has value 1 on
[−ϵ/2, ϵ/2]. Here, the coefficient vector z = {zℓ}L−1

l=0 ∈ CL carries the pilot
signal for the purpose of channel identification. Substituting (8.18) into (8.17)
gives

ỹ(t) =
L−1∑
k=0

L−1∑
m=0

L−1∑
ℓ=0

hk,m z [ℓ] ψϵ(t− ℓT − kT ) ej2πm 1
T L

t

=
L−1∑
k=0

L−1∑
m=0

k+L−1∑
n=k

hk,m z [n− k] ψϵ(t− nT ) ej2πm 1
T L

t

=
L−1∑
k=0

k+L−1∑
n=k

( L−1∑
m=0

hk,m z [n− k] ej2πm 1
T L

t
)
ψϵ(t− nT )

=
L−1∑
n=0

n∑
k=0

( L−1∑
m=0

hk,m z [n− k] ej2πm 1
T L

t
)
ψϵ(t− nT )

+
2L−2∑
n=L

L−1∑
k=n−L+1

( L−1∑
m=0

hk,m z [n− k] ej2πm 1
T L

t
)
ψϵ(t− nT )
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which is a linear combination of ψϵ(t− nT ), n = 0, . . . , 2L−2. Thus, the whole
transmission cycle is (2L−2)T long, where the interval [TL, (2L−2)T ] can be
interpreted as a guard interval. By means of a convolution filter, one can easily
read off the coefficient

ỹn =

∑n

k=0
∑L−1

m=0 hk,m z [n− k] ej2πm 1
T L

t, 0 ≤ n ≤ L− 1,∑L−1
k=n−L+1

∑L−1
m=0 hk,m z [n− k] ej2πm 1

T L
t, L ≤ n ≤ 2L− 2,

of ψϵ(t− nT ) from ỹ(t). However, we note that

y(t) :=
(
ỹ(t) + ỹ(t+ TL)

)
· 1[0,LT )(t)

=
L−1∑
n=0

L−1∑
k=0

( L−1∑
m=0

hk,m z [n− k] ej2πm 1
T L

t
)
ψϵ(t− nT )

exhibits a simpler and symmetric expression, where the coefficient of ψϵ(t−nT )
is given by

yn = ỹn + ỹn+L =
L−1∑
k=0

L−1∑
m=0

hk,m z [n− k] ej2π mn
L ,

for every 0 ≤ n ≤ L − 1. Using the notation from Section 4.2.3, this can be
expressed as

y =
L−1∑
k=0

L−1∑
m=0

hk,m MmTkz = H z, (8.19)

where y = {yn}L−1
n=0 ∈ CL, z = {zℓ}L−1

ℓ=0 ∈ CL and H = ∑L−1
k=0

∑L−1
m=0 hk,m MmTk.

In summary, the channel output of H in (8.16) with respect to an input signal
of the form (8.18) can be reformulated as the output of a finite dimensional
channel H ∈ CL×L with respect to z ∈ CL.
The coefficients {hk,m} in (8.19) correspond to the values of the spreading
function in (8.13). In the following sections when we will consider channels we
will mainly referring to the finite dimensional problem as stated in (8.13) and
(8.19).
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9. Data Transmission over LTV
Channels: Single Antenna
Receiver

In this section our aim is to transmit data over a LTV channel without prior
information on the channel. We assume that the receiver is equipped with a
single antenna. This section has been partially published in [31, 34].

9.1. Finite chirp signals
Chirp signals posses almost optimal coherence. Therefore, in [60] they were
used to construct deterministic measurement matrices.
Let L ≥ 3 be a prime number, the chirp signal cmL+r ∈ CL with base frequency
m ∈ ZL and chirp rate r ∈ ZL is defined by

cmL+r [x] = 1√
L

ej 2π
L

rej 2π
L

mxej 2π
L

rx2
, x ∈ ZL . (9.1)

Note that there are exactly L2 chirp vectors in CL. Their inner products satisfy
[60, 132] the relation

|⟨cmL+r1 , cnL+r2⟩| =


1 if n = m and r1 = r2

0 if n ̸= m and r1 = r2
1√
L

otherwise
. (9.2)

It can be seen from (9.2) that the set of all L2 chirp signals in CL can be
partitioned into L sets, each of which contains exactly L chirp signals with the
same chirp rate and which are mutually orthogonal.
The eigenvectors of time-frequency shifts are chirp signals, in fact, the following
lemma shows that the chirp rate of a chirp signal is invariant under any time-
frequency shift. This lemma will play a crucial role in the design of our transmit
signals for the single antenna receiver.
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Lemma 9.1.1. Let L be a prime number and let ω = ej 2π
L . Then

MνTτ cmL+r = ωκcnL+r for all ν, τ ∈ ZL

with κ = (rτ −m) τ and n = m+ ν − 2rτ .
Moreover if ν − 2rτ ≡ 0 mod L then cmL+r is an eigenvector of MνTτ with
the eigenvalue ωκ.

Proof. First observe that

(MνTτ cmL+r) [x] = 1√
L
ωνxωrωm(x−τ)ωr(x−τ)2

. (9.3)

For ν − r2τ = 0, we get in (9.3)

1√
L
ωr+mx+rx2

ω(ν−r2τ)xω(rτ−m)τ = ωκcmL+r (x)

where we set κ = (rτ −m) τ . For ν − r2τ ̸= 0 we get for (9.3)

1√
L
ωr+(m+ν−2rτ)x+rx2

ωκ = ωκcnL+r [x]

with κ = (rτ −m) τ and n = m+ ν − 2rτ .

Remark 9.1.1. A different method to obtain chirp signals is by simply comput-
ing the eigenvalue decompositions of MTk for k = 1, . . . , L− 1 where L is the
dimension and is an odd prime number. Then each eigenvector corresponds to
a chirp signal. This stems from the fact that the set of all time-frequency shift
can be split into L+ 1 commutative groups of L elements when the dimension
is a prime number [83].

Define the matrix Cr = [ cr, . . . , c(L−1)L+r ] ∈ CL×L for r = 0, . . . L− 1, whose
columns consist of all chirp signals with chirp rate r. Because of (9.2), the
columns of Cr are mutually orthogonal and so Cr is orthogonal. Therewith,
let U = [C0,C1, ...,CL−1] ∈ CL×L2 be the concatenation of all matrices Cr, so
that it consists of all L2 chirp signals in dimension L as columns.

9.2. Gabor & chirp measurement matrix
The Gabor matrix generated with the Alltop vector (5.1) and the matrix U
whose columns are formed by chirp signals are known to be suitable measurement
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matrices for CS [27, 70, 86]. Consider the measurement matrix Φ = [Gα|U],
which is the concatenation of the Gabor matrix Gα generated by the Alltop
window α and the matrix U described above. We will show that Φ possesses
small coherence and is therefore a good measurement matrix. For this we need
the following lemma, which is a special case of Theorem 5.38 in [94].

Lemma 9.2.1. Let L ≥ 5 be a prime number, set ω = ej 2π
L and let f (x) =

c3x
3 + c2x

2 + c1x+ c0 be a polynomial of 3rd degree with ci ∈ {0, ..., L− 1} for
all i and with c3 ̸= 0. Then ∣∣∣∣∑x∈ZL

ωf(x)
∣∣∣∣ ≤ 2

√
L . (9.4)

Based on this lemma, we can derive an upper bound for the coherence of the
measurement matrix Φ.

Lemma 9.2.2. Consider the matrix Φ = [Gα|U] then its coherence is upper
bounded by µ (Φ) ≤ 2√

L
.

Proof. Since µ (U) = 1√
L

and µ (Gα) = 1√
L

, we only need to consider the inner
products |⟨z,x⟩| where z is a column from Gα and x is a column of U. To this
end we set ω = ej 2π

L and observe

|⟨MνTτα, cmL+r⟩| = |⟨ψ, cnL+r⟩|

= 1
L

∣∣∣∣ ∑
t∈ZL

ω−rω−(rt2+nt)ωt3
∣∣∣∣ = 1

L

∣∣∣∣ ∑
t∈ZL

ωt3−rt2−nt−r

∣∣∣∣ ≤ 2√
L

where we used Lemmas 9.1.1 and 9.2.1.

It is known that the Welch bound in (2.1) is achieved if and only if the vectors
φ0, . . . , φN−1 form an equiangular tight frame for CL, in which case we have
N ≤ L2 [37, 65]. Note that the Welch bound with N = L2 is 1√

L+1 . Since Φ
has 2L2 column vectors in CL, Lemma 9.2.2 indicates that the coherence of Φ
must be almost optimal up to a constant factor.

9.3. Message transmission
Now we are finally ready to state the main result of this section.

Theorem 9.3.1. Given a LTV channel H with H ∈ CL×L as deduced in (8.17)
with support supp (H) in the delay-Doppler domain, where L ≥ 5 is a prime
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number. If m = (m1, . . . ,mQ)T is an arbitrary message whose length satisfies

(1 +Q) | supp(H)| <
√
L

32 + 1
2 , (9.5)

then there exists a signal f(t) of the form (8.18), which allows us to identify
the channel H and to recover the message m from the channel output (Hf) (t).
Note that supp (H) is with respect to the representation of H in the basis of
time-frequency shift matrices, i.e. supp(H) are the indices of all non-negative
coefficients obtained by

h [λ] = ⟨A, π (λ)⟩HS , for λ ∈ ZL × ZL .

We see that the product of message length and channel support is upper
bounded by a constant. So there is a trade-off between the message length and
the support size of the channel. If the channel support | supp(H)| is sufficiently
small, an additional message can be transmitted over the channel, alongside the
pilot for channel estimation, and reconstructed at the receiver. The bound in
(9.5) is not optimal. The numerical results will show that this bound is rather
pessimistic. Indeed, this observation is not surprising since coherence based
methods from CS are applied to deduce (9.5). These methods are limited by
the Welch bound, which is also known as the quadratic bottle neck in the CS
literature. Simulation results indicate that Q | supp(H)| ∼ L/ log(...), i.e. the
product of message length and channel support size is proportional to L up to
some logarithmic factor.
The following proof of Theorem 9.3.1 is constructive.

Proof of Theorem 9.3.1. Our first aim is to define z in the transmit signal f
given by

f(t) =
L−1∑
ℓ=0

zℓ ψϵ(t− ℓT ) . t ∈ R ,

First, we choose a set Q = {i1, . . . , iQ} ⊂ {0, . . . , L − 1} of Q < L arbitrary
distinct indices. Then we define the vector z ∈ CL for the transmit signal by

z = α+
Q∑

q=1
mq ciq = α+

L−1∑
r=0

m̃r cr, (9.6)

where ψ ∈ CL is the Alltop vector, defined in (5.1), cr ∈ CL are chirp signals
(with base frequency zero) as defined in (9.1), and where we set m̃r = 0 if
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r /∈ Q to get the right hand side expression. Now, let y be the channel output
obtained as in (8.19) where the input signal is constructed using (9.6). Then
by Lemma 9.1.1 we have

y = Hz =
L−1∑

k,ℓ=0
hk,lMℓTk

(
α+

L−1∑
r=0

m̃r cr

)

=
L−1∑

k,ℓ=0
hk,ℓ MℓTkα+

L−1∑
r=0

L−1∑
k,ℓ=0

hk,ℓ mr ej 2π
L

k2r c(ℓ−2kr)L+r

= Gαh +
L−1∑
r=0

Crm̃r = Gαh + Um̃ = Φ
[

h
m̃

]
, (9.7)

where h = {h}L−1
k,ℓ=0 ∈ CL2 , Φ = [Gα|U] is the measurement matrix constructed

in Section 9.2 and where the vectors m̃r ∈ CL are defined by

m̃r[p] = m̃r

L−1∑
k,ℓ=0

ℓ−2kr=p mod L

hk,ℓ ej 2π
L

k2r , p = 0, 1, . . . , L− 1 , (9.8)

and where m̃ ∈ CL2 is given by m̃ =
[
m̃T

0 , . . . , m̃T
L−1

]T
. Note that in particular

m̃ is block-sparse in the sense that all vectors m̃r with r /∈ Q are identical to
zero. In fact, we have

| supp(m̃)| ≤ Q · | supp(h)|,

and therefore ∣∣∣∣ supp
( [

hT | m̃T
]T )∣∣∣∣ ≤ (1 +Q) · | supp(h)| =: k.

So (9.7) is an overdetermined system of linear equations for the s-sparse vector
[hT|m̃T]T. According to Lemma 9.2.2 and Theorem 2.4.2, the 2k-th RIC of
measurement matrix Φ satisfies

δ2k ≤ (2k − 1)µ(Φ) < (2k − 1) 2√
L

≤ [2(1 +Q) · | supp(h)| − 1] 2√
L
.

If the message length Q satisfies (9.5), one obtains δ2k < 1/
√

2 and Theo-
rem 2.3.1 shows that (9.7) has a unique solution

[
hT | m̃T

]T
. Then the message

137



9. Data Transmission over LTV Channels: Single Antenna Receiver

Figure 9.1.: Message recovery rate for L = 307.

m = (m1, . . . ,mQ)T is obtained by solving (9.8).

9.4. Numerical experiments
Figure 9.1 illustrates the trade-off between the support size of the channel
and the number of transmitted messages as given by (9.5). The underlying
transmission scheme is discussed in Section 9.3. The dimension L was set to
L = 307. The support of the channel coefficients were chosen uniformly random
over the index set {0, . . . L2 −1} and the values were chosen as Gaussian random
variables with mean 0 and variance 1. For the messages a set of Q distinct
integers were chosen uniformly random over {0 . . . L − 1} and each message
entry was also chosen as a complex Gaussian random variable with mean 0
and variance 1. For each channel realization, we have generated four different
messages and averaged the ℓ2-error of the recovered messages. Each data point
in Figure 9.1 is averaged over 108 channel realizations hence a total of 432
different messages. Orthogonal Matching Pursuit (OMP) was chosen as the
recovery algorithm to solve (9.7). OMP has recovery guarantees similar to the
optimization problem given in (P1) [37].
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In Figure 9.1, black represents a small recovery error and white represents a
large recovery error. The green line marks a fundamental bound where the
message recovery cannot be achieved as the degrees of freedom involved with
the size of the message and the channel support exceeds the ambient dimension
L = 307. The red line marks the bound where an average error of 1% is
achieved.
Figure 9.1 shows that the actual recovery rate is far better than the theoretical
guarantee obtained in Theorem 9.3.1. Theorem 9.3.1 only guarantees the
recovery of a message with a size of at most 2 = ⌊(

√
307 −

√
32)/

√
32⌋, which

is much smaller than the experimental result.
The message size increases with decreasing support size. An intuitive explana-
tion of this observation is that the sparsity in (9.7) increases multiplicatively
with the message size. Hence, each message adds additional support with the
same cardinality of the channel support to the signal which has to be recovered.
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10. Data Transmission over LTV
Channels: Multi-Antenna
Receiver

In this section our aim is to transmit data over a LTV channel without prior
information on the channel. The transmit signal contains both, the message
and a pilot signal to estimate the wireless channel (similar to Section 9. We
assume that the receiver is equipped with multiple antennas. That allows the
receiver in a first step to decompose the received signal into its propagation
paths by beamforming. In a second step the receiver then reconstructs the
delay-Doppler shifts and the corresponding path gain for each direction and
decodes the message with the channel knowledge.
This section has been partially published in [32, 34].

10.1. Multi-antenna receiver design

In the multi-antenna case we consider the channel model given by

yk(t) =
NP∑
n=1

ak(θn)
∫∫

R×R
hn(τ, ν) ej2πν(t−τ)f(t− τ)dτdν (10.1)

where ak(θ) is the kth element in the array steering vector, i.e., a(θ) =
[a1(θ), . . . , aNR

(θ)]T ∈ CNR , and hn is the spreading function of the channel as-
sociated with the n-th path. We use an input signal similar to (8.8). To this end,
we define, analogously to Section 9, the message symbols m = [m1, . . . ,mQ]T
with Q ∈ N. Then the transmit signal has the form

sm(t) =
L−1∑
r=0

z[r]
∑
k∈Z

δ(t− kLT + rT )

with z = p +∑Q
q=1 mq aq .

(10.2)
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Therein p ∈ CL is a pilot signal and aq ∈ CL are auxiliary signals, which
serve as carrier signals for the message symbols. Both, p and {aq}Q

q=1 are
also known at the receiver side. So similarly as in the channel identification
problem discussed in Section 8.1, we use a weighted delta train, but now we
modulate not only a pilot signal onto this delta train but also our message
symbols. Moreover, our primarily goal is not to identify the channel but to
recover the symbols m from the received signal.
Then the question is: How should we choose z in order to transmit a message
and recover it stably? This time we want to utilize the fact that we have
multiple-antennas in our encoding scheme.
The model in (10.1) expresses the fact that the signal received at the k-th
antenna is a linear combination of the transmitted signal f sent through NP

different paths, where each path, considered as a communication channel, is
represented by the spreading function hn. Each path in (10.1) is modeled
by an LTV-system in the sense of (8.1). At this point we want to recall the
reason why (8.1) is employed to describe communication channels in the first
place. The time-variance of a communication channel stems from the fact
that the received signal is a superposition of multiple propagation paths where
each scatterer contributes an attenuated and time-frequency shifted version
of the input to the received signal [3, 8, 9]. From a physical point of view,
this motivates the assumption that each hn is contained in a small compact
area on the time-frequency domain and that each path has a different direction
of arrival, provided that the angular resolution of the receiver is high enough.
Formally, we make the following assumption on the channel model (10.1):

(i) θn ̸= θm if m ̸= n.
(ii) For each n, there exist k, ℓ ∈ {0, . . . , L− 1} with

supp(hn) ⊂
[
kT, (k + 1)T

)
×
[
ℓΩ, (ℓ+ 1)Ω

)
.

(10.3)

Assumption (i) indicates that no two propagation paths have the same direc-
tion of arrival, while Assumption (ii) states that the spreading function hn,
associated with the n-th path, is supported in only one of the L2 rectangles
[kT, (k + 1)T )×[ℓΩ, (ℓ + 1)Ω), k, ℓ = 0, . . . , L − 1. Figure 10.1 illustrates an
example with NP = 8, where (i) each of the NP paths is associated with a
distinct DoA angle θn and (ii) the support of hn, n = 1, . . . , NP are displayed
in different colors and each of them is contained in one of the small rectangles.
Note that Condition (ii) allows the support of the spreading functions hm

and hn, associated to different paths, to lie in the same rectangle (k, l) of the
time-frequency plane. This is illustrated in Figure 10.1. There the supports
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LΩ

LTT

Ω

τ

ν

θmax
2

− θmax
2

θR

Figure 10.1.: Here L = 7 is chosen. The contribution of each path to the
support of the spreading function is illustrated in a different color.
On the right, the DoAs of each propagation path is shown with
the corresponding colors.

corresponding to the paths colored by green and yellow share the same rectangle
hence the same pair of indices (k, l). The same also holds true for the paths
colored by cyan and red. We will see in a moment that Assumption (i) plays a
key role since it guarantees the separability of different paths.
Figure 10.2 illustrates the full transmission and recovery cycle for one message
m ∈ CQ. The underlying idea is to split the received signal in the angular
domain and then the signals from different directions are analyzed separately.
Basically, we treat each propagation path as a channel of its own and choose
the best path.

10.1.1. Encoder

Given m ∈ CQ, we choose a prime number L > Q, an integer K so that
0 ≤ K ≤ L − Q, and a unimodular vector c ∈ CL satisfying condition of
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m Encoder
sz(t)

H1

H2

HNP

...

y1(t)

y2(t)

yNP
(t)

+

ϵ̃

y(t) + ϵ̃
DoA Estimation

...

yNP
(t) + ϵNP

y2(t) + ϵ2

y1(t) + ϵ1

Decoder mest

Figure 10.2.: Full transmission and recovery cycle for one message m and
its estimation mest. The encoder generates from the message
m ∈ CQ the vector z ∈ CL, which is then transmitted through
the multipath LTV channel. The received signal y(t) + ϵ̃ is the
superposition of the signals from all propagation paths, where ϵ̃ is
an additive noise term and Hn describes the channel corresponding
to the nth path.

Theorem 4.2.13. Therewith, we define the vector z ∈ CL by

z =
K−1∑
ℓ=0

Mℓc +
Q+K−1∑

ℓ=K

mℓ−K Mℓc , (10.4)

which encodes the message m by linearly combining the coefficient mℓ with
the vector Mℓc. As discussed in Section 4.2, the finite Gabor frame with a
unimodular window c ∈ CL can be partitioned into L orthogonal bases, namely,
{MνTτ c}L−1

ν=0 for τ = 0, . . . , L− 1. For convenience, we define the orthogonal
matrix

Ψτ = diag(Tτ c)F =
[
Tτ c,M1Tτ c, · · · ,ML−1Tτ c

]
for τ = 0, . . . , L− 1 and the vector

vK := (1, . . . , 1︸ ︷︷ ︸
K−times

,m0, · · · ,mQ−1, 0, · · · , 0)T ∈ CL, (10.5)

where the first K entries are ones, the next Q entries are the message symbols
and the remaining entries are zeros. Therewith, (10.4) can be written as
z = Ψ0vK and by the orthogonality of Ψ0, one has

Ψ∗
0z = LvK (10.6)

and in particular |supp (Ψ∗
0z)| = |supp (vK)| = Q+K. So the input signal fed

into the channel has the general form in (10.2) but with z ∈ CL as given in
(10.4).
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10.1.2. Decoder

The received signal at each antenna is given in (10.1) and the vector y(t) ∈ CNR

containing the received signals at all antennas can be written as

y(t) = (Hf) (t) =
NP∑
n=1

a(θn) rn(t) , t ∈ R , (10.7)

with rn given by

rn(t) =
∫∫

R2
hn(τ, ν) ej2πν(t−τ)f(t− τ)dτdν. (10.8)

Equation (10.7) has the usual form of a direction-of-arrival (DoA) estimation
problem. Hence, we can apply common methods from DoA estimation to
determine the directions θn from the received signal y [133–136]. After a
successful DoA estimation applied to (10.7), we obtain for each direction of
arrival, θn, a received signal (10.8). The first condition in our assumption
(10.3) guarantees that each received signal rn(t) corresponds to a different
propagation path. So up to this point, we have separated the received signal
into its scattering components each corresponding to a different path. The
main idea now is to analyze each path separately. We apply Lemma 8.1.1 to
he received signal rn along each path to get a finite dimensional problem:

rn = ZLT
L rn = Gzhn =

( L−1∑
k,ℓ=0

hn,(k,ℓ)MℓTk
)

z . (10.9)

To simplify notation, we omitted again the variables (τ, ν) and simply write hn

and we do not differentiate between the spreading function of a single path hn,
and the corresponding (LT,LΩ)-quasi-periodic spreading function h(LT,LΩ)

n .
Assumption (ii) in (10.3) states that the time-frequency spread of a propagation
path is small in the sense that the support of each spreading function hn is
contained in a box length T and width Ω in the time-frequency plane (cf.
Figure 10.1). Hence, for each hn there exists a unique pair (kn, ℓn) such that

supp(hn) ⊂ (knT, (kn + 1)T ] × (ℓnΩ, (ℓn + 1)Ω] (10.10)

and so, (10.9) simplifies to

rn = ZLT
L rn = hn,(kn,ℓn)MℓnTknz . (10.11)

Next, our aim is to estimate for each n = 1, . . . , NP the complex path gain
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hn,(kn,ℓn) ∈ C, the pair (kn, ℓn), which corresponds to the time-frequency support
of the nth propagation path, and the message m from the vector rn = ZLT

L rn.

In order to build an intuition why this problem is solvable in the first place,
we begin our analysis by considering exact measurements without noise. The
case where the signals are corrupted by noise is analyzed in detail in Section
10.2. The following Theorem shows that if the message m encoded in the signal
(10.4) is sufficiently short then it can be recovered at the receiver.

Theorem 10.1.1. Let H be a LTV channel given as in (10.7) and (10.8), and
let sm(t) be a transmit signal of the form (10.2) with z given in (10.4), with
K ≥ 1, and with a message m ∈ CQ. If Q ≤ L−1

2 −K then m can be recovered
from the received signal y = Hsm.

Remark 10.1.1. To maximize the message length Q one has to choose K = 1.

Theorem 10.1.1 assumes that the employed antenna array at the receiver can
partition the received signal into its multi-path components. Hence, instead
of considering one channel with multiple-paths we consider NP channels with
only one path. Therefore, the condition on the message length is independent
of the support of the delay-Doppler shifts.
The following proof of Theorem 10.1.1 is constructive in the sense that it shows
how the message m can be reconstructed from the received signal.

Proof. Again for ease of notation we write hn instead of hn,(kn,ℓn). As described
above, we first apply standard DOA estimation algorithm to the received signal
y to obtain the signal rn, n = 1, . . . , Np from the different directions. Out of
this NP signals, we choose one (e.g. the signal with the largest energy) and
apply the vectorized Zak transform to obtain the vector rn. Based on rn we
determine now the pair (kn, ℓn), describing the location of the channel support,
the channel coefficient hn, vK , and finally the message m.
First we show that

kn = arg min
k=0,1,...,L−1

|supp(Ψ∗
krn)| . (10.12)

Indeed, multiplying the received signal (10.11) from path n with the orthogonal
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10.1. Multi-antenna receiver design

matrix Ψ∗
kn

yields(
Ψ∗

kn
rn

)
[x] =

〈
MxTknc, rn

〉
= hn

〈
MxTknc,MℓnTknz

〉
= hnej 2π

L
kn(ℓn−x)

〈
Mx−ℓnc, z

〉
= hnej 2π

L
kn(ℓn−x) (Ψ∗

0z) [x− ℓn]
= Lhnej 2π

L
kn(ℓn−x)TℓnvK [x] . (10.13)

for x = 0, . . . , L − 1, and where we used (10.6) to obtain the last line. So
together with (10.6), it follows that∣∣∣supp(Ψ∗

kn
rn)
∣∣∣ = |supp(vK)| = Q+K = |supp(Ψ∗

0z)| ,

i.e., if z ∈ CL has a sparse representation with respect to the basis Ψ0 then
rn has a sparse representation with respect to the basis Ψkn . In particular,
Ψ∗

kn
rn ∈ CL has L−(Q+K) non-zero entries. So if we choose Q+K ≤ (L−1)/2

then then Ψ∗
kn

rn has at least L− L−1
2 = L+1

2 zero entries.

Now we note that the L2 entries of the collection Ψ∗
0rn, . . . , Ψ∗

L−1rn coincides
(up to ordering) with the entries of the short-time Fourier transform Vcrn (cf.
Section 4.2.4) and that Theorem 4.2.13 implies that Vcrn has at most L− 1
zero entries. So since Ψ∗

kn
rn has at least (L+ 1)/2 zero entries, it follows that

any other vector Ψ∗
krn, with k ̸= kn, can have at most (L−1)− L+1

2 = L−3
2 zero

entries. This observation allows us to uniquely determine kn ∈ {0, . . . , L−1} by
counting the number of zero entries in Ψ∗

0rn, . . . , Ψ∗
L−1rn. In other words, we

showed (10.12) provided that Q+K ≤ L−1
2 . Next, we observe that according

to (10.13), Ψ∗
kn

rn is (up to a factor) equal to TℓnvK . Since vK is given by
(10.5), it follows that ℓn ∈ {0, . . . , L− 1} can be determined by finding the first
nonzero entry appearing in Ψ∗

kn
rn. Since K ≥ 1, the first entry of vK is equal

to 1, and so by (10.13), the channel coefficient hn is obtained by

hn = 1
L

(
Ψ∗

kn
rn

)
[ℓn] .

Finally, knowing kn, ℓn and hn, vK and the message vector m = (m0, ...,mQ−1)T

can be determined from (10.13).
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Algorithm 2 Multi-Antenna Decoder
Input: rn, K,Q ∈ N

1) (kn, ℓn) = arg min(k,ℓ) ξn (k, ℓ)

2) r̃n = Ψ∗
0T−knM−ℓnrn

3) ĥn = 1
K

∑K−1
s=0 e−2πj kn

L
s r̃n[s]

4) m̂i = r̃n[i+K]
ĥn

, for i = 0, . . . , Q− 1

Output: m̂n

10.2. Multi-Antenna receiver for noisy
measurements

The previous section discussed multi-antenna receivers for LTV channels and
showed how a joint channel estimation and data transmission can be imple-
mented, in principle. Nevertheless, the discussion did not consider that the
received signal might be corrupted by additional noise. But with additional
noise, the sparsity assumptions made in the proof of Theorem 10.1.1 no longer
hold. So the described channel estimation and signal recovery procedure might
no longer work. Especially (10.12), will fail now.
Therefore, this section discusses a strategy how the receiver can recover messages
from noisy measurements.
We assume that the received signal y is corrupted by noise. So estimating rn

from (10.7) yields a corrupted version of rn. Instead of (10.11) the received
signal from the n-th path is now given by

rn := hnMℓnTknz + ϵ , n = 1, . . . , Np (10.14)

where ϵ characterizes the error due to measurement noise. For simplicity of the
following derivation, we assume that ϵ is i.i.d zero mean Gaussian and variance
σ2. Now we want to use a similar method as in the noiseless case to recover
the message from rn. However, because of the measurement noise, there might
not exist a basis Ψkn under which the representation of rn is sparse. Therefore,
we apply a slightly different strategy. To this end we define for n = 1, ..., NP

the function ξn:
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10.2. Multi-Antenna receiver for noisy measurements

hn

z[i] hnz[i]
+

ϵ[i]

r̃n[i]

Figure 10.3.: Standard transmission scenario over a Gaussian channel.

ξn (k, ℓ) = ∥ΨkP1+ℓΨ∗
krn − rn∥2

=
√
L ∥P1+ℓΨ∗

krn − Ψ∗
krn∥2 ,

with the projection PΩ defined for Ω ⊂ {0, . . . , L− 1} by

PΩg[k] =
g[k] if k ∈ Ω

0 if k ̸∈ Ω

and with 1+ ℓ = {ℓ, ℓ+ 1, . . . , ℓ+Q+K − 1}. In the noiseless case, we would
have that ξn(kn, ℓn) = 0. In the noisy case, we determine the pair (kn, ℓn),
which characterizes the support of of the channel spreading function hn (10.10)
by

(kn, ℓn) = arg min
(k,ℓ)

ξn(k, ℓ) .

An overview of the full recovery algorithm in the noisy case is given in Algorithm
2. The algorithm needs as input the parameters K,Q and the measured signal
(10.14) from the n-th path. Its output is the estimated message vector m̂n from
the n-th path. The first two steps of the algorithm recover the time-frequency
effects of the channel, the third step computes the maximum-likelihood estimate
for the channel attenuation factor and finally the fourth step estimates the
messages.
In principle, due to the additional noise, Step 1 of the algorithm may not find
the correct support and the following subsection will analyze in some detail the
probability for a wrong detection of the support. For the moment, we assume
that the first steps make no error, i.e. we assume that the minimizer of ξn(k, ℓ)
is indeed the correct support, i.e. arg mink,ℓ ξn(k, ℓ) = (kn, ℓn). Recall that
the received signal from the nth path is given by (10.14) with ϵ ∼ NC (0, σ2I).
Since we know the correct support we can simply compute

r̃n = Ψ0T−knM−ℓnrn = hnvK + Ψ0T−knM−ℓnϵ
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10. Data Transmission over LTV Channels: Multi-Antenna Receiver

= hnvK + ϵ̃ ,

with ϵ̃ ∼ NC (0, σ2IL), since T−knM−ℓn is a unitary matrix. The first K
elements in r̃n contain hn disturbed by noise and the elements indexed by K up
to K +Q− 1 contain the messages multiplied by hn and disturbed by additive
noise. This is a standard scenario in communication theory [137] and its block
diagram is illustrated in Figure 10.3. In this scenario a two step transmission
scheme is applied. First, the channel is estimated for instance with a maximum-
likelihood (ML) estimator, then in the second step data is transmitted over
the channel and is recovered at the receiver using the previously estimated
information. Hence, we have reduced the problem to a LTI system identification
and message estimation setup. The ML estimate ĥn of hn is given by

ĥn = 1
K

K−1∑
s=0

e−2πj kn
L

s r̃n[s] .

Additionally, we have Var
[
hn − ĥn

]
= σ2/K. Let i ∈ {K, . . . ,K +Q− 1} and

denote κ = hn − ĥn ∼ NC

(
0, σ2

K

)
, now following [138] we describe the received

signal as

r̃n[i] = ĥnmi−K + κmi−K + ϵ[i] .

So we estimate the message mi−K by

m̂i−K = r̃n[i]
ĥn

. (10.15)

Then the estimate m̂i−K in (10.15) is a Gaussian random variable with m̂i−K ∼
NC

(
mi−K , (1 + |mi−K |2) σ2

|ĥn|2

)
.

10.3. Error probability of Step 1
In general, Step 1 of Algorithm 2 might not give the correct support set.
Then our recovery algorithm will fail. In this subsection, we want to analyze
the probability of such a misdetection of the support set. To this end, let
(k∗, ℓ∗) = arg mink,ℓ ξn(k, ℓ) be the estimated indices of the channel support. In
the following we want to show that (k∗, ℓ∗) = (kn, ℓn) holds with high probability
even in the noisy case. To this end, we note that there are two types of errors:

1. Detection of the wrong basis, i.e. k∗ ̸= kn
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10.3. Error probability of Step 1

2. Detection of the wrong support in the correct basis, i.e. ℓ∗ ̸= ℓn|k∗ = kn.

For ease of presentation, we assume K = 0 and hn = 1. The generalization to
hn ̸= 1 is straight forward.

10.3.1. Detection of the wrong basis

We begin our analysis with the first error type. Notice that if an error occurs
then, for some ℓ, we must have

∥P1+ℓΨk∗rn − Ψk∗rn∥2
2 < ∥P1+ℓnΨknrn − Ψknrn∥2

2 . (10.16)

Setting Ω∗ = (1 + ℓ)C , Ωn = (1 + ℓn)C and r̃Ω∗ = PΩ∗Ψk∗(rn − ϵ) we have

∥P1+ℓΨk∗rn − Ψk∗rn∥2
2 = ∥r̃Ω∗ + ϵΩ∗∥2

2 , (10.17)

and

∥P1+ℓnΨknrn − Ψknrn∥2
2 = ∥ϵΩn∥2

2 . (10.18)

So γ := ∥r̃Ω∗∥2
2 measure the signal energy contained in the complement of the

detected set Ω∗ = (1 + ℓ)C . For k∗ = kn, i.e., if we would have detected the
correct basis, γ would be zero. Therefore, γ might be considered as the signal
energy lost by a wrong detection of kn and for some ℓ. Now, let ϵΩ∗ [i] = α̃i +jβ̃i

and ϵΩn [i] = αi + jβi where αi, βi, α̃i, β̃i are i.i.d. Gaussian random variables
with αi, βi, α̃i, β̃i ∼ N (0, σ2

2 ). Next, reformulating (10.16) using (10.17) and
(10.18) delivers

0 ≥ ∥r̃Ω∗ + ϵΩ∗∥2
2 − ∥ϵΩn∥2

2

= ∥r̃Ω∗∥2
2 +

∑
i∈Ω∗

2ℜ{r̃Ω∗ [i]}α̃i + 2ℑ{r̃Ω∗ [i]}β̃i

+
∑

i∈Ω∗

α̃2
i + β̃2

i −
∑

i∈Ωn

α2
i + β2

i = G1 + E1
1 − E1

2 ,

where G1, E1
1 and E1

2 are random variables with G1 ∼ N (γ, 2γσ2) and noticing
|Ω∗| = |Ωn| = L−Q, we have E1

1 , E
1
2 ∼ Erl(L−Q, σ2). For a ∈ N and b > 0,

Erl(a, b) denotes the Erlang distribution [139] with probability density function
given by

fErl(x; a, b) = 1
ba (a− 1)!e

− x
b xa−1 . (10.19)
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10. Data Transmission over LTV Channels: Multi-Antenna Receiver

Figure 10.4.: Empirical validation of signal energy loss in the wrong basis
relative to sparsity Q. Here K = 0 and L = 83 is chosen while Q
varies.

Accordingly, the error probability can be given by

P{k∗ ̸= kn} = P{G1 + E1
1 − E1

2 ≤ 0}

=
∫ 0

−∞
fG1(u) ∗ fE1

1
(u) ∗ f−E1

2
(u)du , (10.20)

where fG1 , fE1
1

and f−E1
2

denotes the probability density functions of G1, E1
1

and −E1
2 and ∗ denotes the convolution.

As seen in (10.20), the error probability depends on the probability density
function of G1 and therefore on the value γ = ∥r̃Ω∗∥2

2. Moreover, with increasing
γ the error probability decreases and because of Theorem 4.2.13, ∥r̃Ω∗∥2

2 cannot
be zero. In fact, when assuming a unit normed signal, estimating the value
of ∥r̃Ω∗∥2

2 corresponds to an estimate of the biggest singular value of PΩ∗Ψk∗ .
Indeed for any g ∈ CL we have ∥PΩ∗Ψk∗g∥2 = ∥FΩ∗∥2→2 ∥g∥2 , where FΩ∗

denotes the partial Fourier matrix, which only contains the rows indexed by
Ω∗ and ∥ · ∥2→2 denotes the maximum singular value. Hence, it is enough
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10.3. Error probability of Step 1

to estimate ∥FΩ∗∥2→2. In fact, for random sets Ω∗ it is well known that the
singular values of partial Fourier matrices are well controlled (see, e.g., [140,
Theorem 3.1].
Indeed this theoretical observation is empirically justified in Figure 10.4. There
L = 83 and K = 0 are chosen and 1 ≤ Q ≤ 60. For each experiment a unit
normed pilot signal c ∈ CL is fixed and m ∈ CQ is chosen uniformly random
over the Q dimensional complex unit ball. Then the channel input vector
z ∈ CL is constructed as described in (10.4). Since the choice of MkTℓ for
k, ℓ ∈ {0, . . . L−1} does not change the absolute value, we set rn −ϵ = z for the
experiments. Next, a pair (k, ℓ) with k, ℓ ∈ {0, . . . L− 1} was chosen uniformly
random and ∥r̃Ω∗∥2

2 = ∥PΩ∗Ψ∗
kz∥2

2 was computed. Each data point is obtained
by taking the mean of 400 experiments. We observe that the lost signal power
in the wrong basis linearly decreases with increasing Q. In the wrong basis the
signal energy is "smeared" equally over the basis elements. Hence, for correct
support detection a small message size is beneficial.

10.3.2. Detection of the wrong support in the correct basis
A similar expression to (10.20) is obtained when analyzing the second error
probability, i.e. P{ℓ∗ ̸= ℓn|k∗ = kn}. Assume that the intersection of the
wrongly detected support with the original support has size S, i.e. |1 + ℓ∗ ∩
1 + ℓn| = S. Further, notice

∥P1+ℓ∗Ψknrn − Ψknrn∥2
2 =

∑
i∈A

|r̃Ω∗ [i] + ϵ[i]|2 +
∑
i∈B

|ϵ[i]|22 , (10.21)

where Ω∗ = (1 + ℓ∗)C , A = (1 + ℓn)\{1+ℓ∗∩1+ℓn} and B = (1 + ℓ∗ ∩ 1 + ℓn)C ,
hence we have |A| = Q − S and |B| = L − 2Q + S. Additionally, we have
|Ωn \ B| = Q−S since B ⊂ Ωn. Following the previous argument, using (10.18)
and (10.21) we get

0 > ∥P1+ℓ∗Ψknrn − Ψknrn∥2
2 − ∥P1+ℓnΨknrn − Ψknrn∥2

2

=
∑
i∈A

|r̃Ω∗ [i] + ϵ[i]|2 +
∑
i∈B

|ϵ[i]|2 −
∑

i∈Ωn

|ϵ[i]|2

= G2 + E2
1 − E2

2 ,

with G2 ∼ N
(
∥r̃A∥2

2 , 2 ∥r̃A∥2
2 σ

2
)

and E2
1 , E

2
2 ∼ Erl(Q−S, σ2), where ∥r̃A∥2

2 =∑
i∈A |r̃Ω∗ [i]|22. Finally, we can give the probability of the second error type by

P{ℓ∗ ̸= ℓn|k∗ = kn} = P{G2 + E2
1 − E2

2 ≤ 0}
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10. Data Transmission over LTV Channels: Multi-Antenna Receiver

Figure 10.5.: The error probabilities described by P (σ2; γ,D), for different
parameters D = 5, 10 and γ = 0.52, 0.752, depending on the SNR
in dB is illustrated where a unit norm signal is assumed. The
SNR value in dB of a noise power σ2 is computed by the formula
SNR[dB] = 10 log10(1/σ2).

=
∫ 0

−∞
fG2(u) ∗ fE2

1
(u) ∗ f−E2

2
(u)du . (10.22)

It is apparent that (10.20) and (10.22) have the same form and both depend
on three parameters, namely:

• D : degrees of freedom, which is given by L−Q in the first error type
and by Q− S in the second case

• γ : lost signal power by detection, which is described by ∥r̃Ω∗∥2
2 in the

first case and by ∥r̃A∥2
2 in the second error case

• σ2 : the variance of the white Gaussian noise, i.e. the noise power
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We denote the expressions in (10.20) and (10.22) by P (σ2; γ,D). An illustra-
tion of P (σ2; γ,D) for a unit normed signal and different SNR values is shown
in Figure 10.5. It is apparent that a lower degree of freedom, D, leads to a
lower error probability. However, it is obvious that γ has a higher influence on
the error probability. This is intuitively expected, since γ describes, in both
scenarios, the missing signal power.

Although it is not our main focus, these observations already hints that the
phase shift keying (PSK) modulation [141] is favourable for this setup. Basi-
cally, our aim is to achieve a small D and that small deviations in the support
detection leads to high γ. In the first case, D = L−Q depends on the design
and how big Q is chosen. The more essential parameter γ is determined by
the singular value of the partial Fourier matrix, which are known to be well
controlled. Therefore, we can’t influence the error probability for the first error
type with modulation methods. However, in the second scenario γ increases
with increasing D = Q − S. In this case we can control the growth of γ
depending on the size of D. For instance if the signal power is concentrated on
a few entries then although D increases γ won’t increase significantly, which
then leads to a worse SNR to error probability ratio. If, however, the signal
power is uniformly distributed over its entries, then γ will linearly increase
with increasing D, which then leads to a better SNR to error probability ratio.
This type of modulation can be obtained by using PSK.

10.4. Numerical experiments
In Figure 10.6 the full transmission cycle for the multi-antenna receiver as
illustrated in Figure 10.2 is simulated. All numerical experiments were per-
formed for a receiver equipped with a uniform linear array with 40 antennas
(NR = 40). The positions of the antennas were chosen uniformly random
over all possible sets. The array steering vector was sampled such that the
angular resolution for the DoA estimation was roughly around 1◦. For the DoA
estimation OMP was used to solve the occurring under-determined system of
linear equations. In all simulations L = 59 was chosen. In Figure 10.6 for
each channel, first the set direction of arrivals (arriving angle of the signal)
where drawn uniformly random from the set

{
k
π

: k = 0, . . . , 179
}
. Out of

convenience we assumed that the spreading function for each path has the
form hn(τ, ν) = hnδ(τ − τn)δ(ν−νn), where the pair (τn, νn) corresponds to the
time-frequency shift of the n-th path and hn is the attenuation factor, which
was chosen as a complex Gaussian random variable with mean 0 and variance 1.
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Figure 10.6.: The ℓ2-error given by ∥m − mest∥2, relative to SNR[dB] for
different number of paths NP , different number of message length
Q and different number of training symbols K.

Hence, for each path the pairs (τn, νn) where chosen uniformly random over the
L× L discretized time-frequency grid. For each channel realization 5 different
messages where generated randomly as complex Gaussian vectors with mean 0
and variance 1. Each data point in Figure 10.6 was averaged over 100 channel
realizations, hence over 500 different messages.
In Figure 10.6 the ℓ2-error of the estimated messages to the original messages
(i.e. ∥m − mest∥2) is illustrated after a full transmission cycle for different
number of paths NP ∈ {5, 10}, different sizes of messages Q ∈ {5, 19} and
different sizes of training symbols K ∈ {1, 15}, recall that K +Q ≤ L−1

2 .
The performance metric used in Figure 10.6 might be unusual since using
symbol to error-rate rather than ℓ2-error is more common. However, in order to
use symbol to error-rate metric one needs to a priori fix a modulation method,
for example PSK or quadrature amplitude modulation (QAM). If we consider
each entry in the message m ∈ CQ to be a symbol from a previously fixed
set of symbols, then in Figure 10.6, each message generation assumes a new
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random set of symbols on the complex plane. This approach illustrates the
performance of the suggested scheme independent of a modulation method and
with worst-case assumption since ℓ2-norm dominates the ℓ∞-norm on euclidean
spaces.
Figure 10.6 clearly illustrates that in cases with high noise the number of training
symbols are not able to compensate for the noisy measurements and that the
number of paths is the dominating factor for the recovery error. Therefore,
having less training symbols and more message symbols is favourable.
For high SNR values (i.e. low noise values) comparing the curves with the
same amount of paths we observe that less training symbols outperform those
having more training symbols. Which was expected since the training symbols
compensate the effect of noise for the cost of messages, therefore in low noise
areas those simulations with less training symbols perform better.
Number of training symbols compensate the noise for the simulations in the
low SNR values. However, from the simulations it becomes apparent that the
number of paths influences the recovery error far more then the number of
training symbols.
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11. Message Transmission and
Estimation over LTV Channels
with MUSIC Algorithm

The work in this section is mainly inspired by [12] and is published in [33].
In [12] multiple signal classification (MUSIC) algorithm [142] is applied to
estimate time delays and Doppler shifts in a received pilot signal. Similar to
previous Sections 9 and 10 the transmitted signal contains a pilot and a coded
version of the message data. The main difference of the scheme described in
this section to the ones in the previous sections is that we do not require the
delay-Doppler shifts to lie on a grid on the time-frequency plane.
We consider a narrowband time-varying multipath wireless channel with a multi-
antenna receiver equipped with NA antennas. The communication channel can
be modelled as a LTV system given by (8.1), i.e. has the form

y (t) =
∫
R

∫
R
η (τ, ν) sT (t− τ)ej2πνtdτdν , t ∈ R , (11.1)

where sT ∈ L2(R) is the input signal. The index T is used to emphasize that
sT describes the signal in the time domain. Assuming point scatterers, η for a
multipath LTV channel can be described by

η (τ, ν) =
D∑

k=1

 Pk∑
ℓ=1

hk,ℓ a (θℓ)
 δ (t− τk) δ (ν − νk) ,

where (τk, νk) ∈ R2 and D denotes mutually distinct delay-Doppler shifts and
their number respectively, Pk is the number of all paths sharing the same
delay-Doppler shift, a(θℓ) the array response vector in the θℓ-th direction and
hk,ℓ the complex attenuation factor of the k-th delay-Doppler shift contributing
to the scatterer received from the direction θℓ [3, 12]. Next setting

ak =
Pk∑
ℓ=1

hk,ℓ a (θℓ) , k = 1, . . . , D ,
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we can describe η(τ, ν) by

η (τ, ν) =
D∑

k=1
ak δ (t− τk) δ (ν − νk) . (11.2)

Note that for spreading functions having the form (11.2) the output y in (11.1)
will be contained in L2(R) since sT ∈ L2(R). Plugging (11.2) into (11.1) we
obtain for the received signal the form

y(t) =
D∑

k=1
ak sT (t− τk)ejνkt , t ∈ R. (11.3)

In practical applications the signal has finite support in time and should have
a good localization in the frequency domain, i.e. an essential part of its energy
should be contained in a finite interval in frequency. Hence, for practical
applications it makes sense to consider a frequency domain model of (11.3),
which is given by

ŷ(ω) =
D∑

k=1
akŝT (ω − νk)e−jωτk + n(ω) , (11.4)

where ŷ and ŝT are the Fourier transforms of y and sT , respectively, and n is
the additive noise vector.

11.1. Message coding
Denote by mℓ ∈ R for ℓ = 1, . . .M the message symbols which we want to
transmit and define the real vector m ∈ RM as m = [m1, . . . ,mM ]T and set
s(ω) = ŝT (ω). The main idea here is to build s as a superposition of a pilot
signal and carrier signals weighted by the message symbols (entries of the
message vector). Denote by p(ω) a pilot signal and let {cℓ(ω)}M

ℓ=1 be the set of
carrier signals. Then the transmit signal s(ω) is constructed by

s(ω) = p(ω) +
M∑

ℓ=1
mℓ cℓ(ω) . (11.5)

Now, using (11.5) we can extend the noiseless case of (11.4) to

ŷ(ω) =
D∑

k=1
ak p(ω − νk)e−jτkω +

M∑
ℓ=1

mℓ

D∑
k=1

ak cℓ(ω − νk)e−jτkω .
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Following [12] we sample y(ω) at ω = ω1 , . . . , ωS collecting S snapshots from
the array. The obtained data can be arranged in matrix form as

Y =


ŷT (ω1)

...
ŷT (ωS)


=
[
P̃(ν) ⊙ Vτ

]
A +

M∑
ℓ=1

[
mℓC̃ℓ(ν) ⊙ Vτ

]
A

=
[
Qp(τ ,ν) m1Qc1(τ ,ν) . . . mMQcM

(τ ,ν)
] 

A
...

A


= Q̃(τ ,ν,m) Ã , (11.6)

where ⊙ denotes the Schur-Hadamard product (pointwise matrix product), and

τ =
[
τ1 . . . τD

]T
∈ RD ,

ν =
[
ν1 . . . νD

]T
∈ RD ,

A =
[
aT

1 . . . aT
D

]T
∈ CD×NA ,

P̃(ν) =
[
p̃(ν1) . . . p̃(νD)

]
∈ RS×D ,

p̃(ν) =
[
p(ω1 − ν) . . . p(ωS − ν)

]T
∈ RS ,

C̃ℓ =
[
c̃ℓ(ν1) . . . c̃ℓ(νD)

]
∈ RS×D ,

c̃ℓ(ν) =
[
cℓ(ω1 − ν) . . . cℓ(ωS − ν)

]T
∈ RS ,

Vτ =
[
v(τ1) . . . v(τD)

]
∈ CS×D ,

v(τ) =
[
e−jτω1 . . . e−jτωS

]T
∈ CS .

11.2. Identifiability
The delay-Doppler shift pairs {(τk, νk)}D

k=1 and the message symbols {mk}M
k=1

in (11.6) are said to be identifiable [12] if

Q̃(τ ,ν,m)Ã ̸= Q̃(τ ′,ν ′,m′)Ã′
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holds for τ ̸= τ ′, ν ̸= ν ′, m ̸= m′ and for any Ã′. Similar to [12] we employ in
our model an S dimensional signal manifold given by q̃(τ, ν,m) describing the
columns of Q̃(τ ,ν,m). The signal manifold is said to be unambiguous if every
collection of S distinct vectors q̃(τ, ν,m) is linearly independent. We can now
formulate the following identifiability result.

Theorem 11.2.1. Given the signal model as described in (11.6) and assuming
that the signal manifold is unambiguous. Then the messages {mℓ}M

ℓ=1 are
uniquely identifiable, if

M <
S + rA

2D (11.7)

holds, where rA = rank(A).

Proof. We have to show that provided (11.7), we always have

Q̃(τ ,ν,m)Ã ̸= Q̃(τ ′,ν ′,m′)Ã′

for τ ̸= τ ′, ν ̸= ν ′, m ̸= m′ and for any Ã′. The proof mainly follows the steps
in [143]. In order to prove the statement we distinguish two cases.
Case 1: Set Q̃′ = Q̃(τ ′,ν ′,m′) and assume that Q̃ and Q̃′ have d columns in
common and we have 0 ≤ d ≤ 2DM − S, then

[
Q̃ Q̃′

] [ Ã
−Ã′

]
̸= 0

holds, if and only if

dim
(

ker
([

Q̃ Q̃′
]))

< rank
([

Ã − Ã′
]T)

.

Obviously, we have

rA < rank
([

Ã − Ã′
]T)

and rank
([

Q̃ Q̃′
])

= 2DM − d ,

hence we directly obtain 2DM − S < rA.
Case 2: Suppose that for the common column number holds DM > d >
2DM − S. We have

[
Q̃ Q̂′

] [ Â
−Â′

]
̸= 0 , (11.8)

where Q̂′ is the S × (DM − d) matrix obtained from Q̃′ by deleting the d
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identical columns of Q̃, Â′ is the (DM − d) ×NA matrix obtained by deleting
the d rows of Ã′ corresponding to the deleted columns in Q̃ and Â denotes the
DM ×NA matrix obtained from Ã by subtracting the deleted rows of Ã′ from
the corresponding rows in Ã. We have

l = dim
(

ker
([

Q̃ Q̂′
]))

= (2DM − d) − rank
([

Q̃ Q̂′
])

.

Hence, (11.8) holds if and only if

l < rank
([

Â − Â′
]T)

. (11.9)

By the unambiguity assumption and with S > 2DM − d we deduce l = 0 and
since

[
Â − Â′

]T

̸= 0, (11.9) holds.

Note that by suitable choice of pilot and carrier functions in (11.5) the condition
of unambiguity can be fulfilled.

11.3. Data estimation with MUSIC

Theorem 11.2.1 guarantees uniqueness of the message given the condition (11.7)
holds. However, it does not deliver a reconstruction procedure for message
estimation. In this section we present a recovery method based on the MUSIC
algorithm [142]. Later in Section 11.4 the performance of the suggested scheme
is heuristically evaluated and it becomes apparent that the suggested method
achieves the bound in Theorem 11.2.1 for reasonable noise power levels.
Assuming the Doppler shifts to be small it is possible to simplify (11.6) [12]. To
this end we consider the Taylor series expansion of s(ω) at the sample points
{ωi}S

i=1 and neglect the higher order terms. We then have,

s(ωi − νk) ≈ s(ωi) − νks
′(ωi) ,

where s′(ω) denotes the derivate of s(ω). We can now approximate the mea-
surement Y by

Y ≈ [PVτ − P′VτDν ] A +
M∑

ℓ=1
mℓ [CℓVτ − C′

ℓVτDν ] A + N

163



11. Message Transmission and Estimation over LTV Channels with MUSIC Algorithm

=
[
ΓP(τ ,ν) m1ΓC1(τ ,ν) . . . mMΓCM

(τ ,ν)
] 

A
...

A

+ N

= Γ̃(τ ,ν,m)Ã + N (11.10)

where N is the measurement noise, and

P = diag (p(ω1) . . . p(ωS)) ∈ RS×S

P′ = diag (p′(ω1) . . . p′(ωS)) ∈ RS×S

Cℓ = diag (cℓ(ω1) . . . cℓ(ωS)) ∈ RS×S

C′
ℓ = diag (c′

ℓ(ω1) . . . c′
ℓ(ωS)) ∈ RS×S

Dν = diag (ν1 . . . νD) ∈ RD×D ,

with p′(ω) = d
dω
p(ω) and c′

ℓ(ω) = d
dω
cℓ(ω). Two Doppler shifts sharing the

same delay can’t be distinguished in (11.10), however, this has no effect on the
suggested message estimation method.
Denote by Es the left singular vectors of Y corresponding to the D largest
singular values. Let En be a S× (S−D) matrix whose columns are orthogonal
to those of Es. The columns of En span the noise subspace.
Next, note that the submatrix γτ,ν of Γ̃(τ ,ν,m) containing all the columns
depending on the delay-Doppler shift (τ, ν) is given by

γτ,ν =
[(

Pv(τ) − νP′v(τ)
)

m1

(
C1v(τ) − νC′

1v(τ)
)

. . . mM

(
CMv(τ) − νC′

Mv(τ)
)]

= Gτ gν,m ,

where gν,m = [1 ν m1 νm1 . . . mM νmM ] and

Gτ =
[
Pv(τ) − P′v(τ) C1v(τ) − C′

1v(τ)

. . . CMv(τ) − C′
Mv(τ)

]
.

The MUSIC loss function for the present scenario is described as

L(τ, ν) =
g∗

ν,m[Re (G∗
τ EnE∗

nGτ )]gν,m

g∗
ν,m[Re (G∗

τ Gτ )]gν,m
.

Minimizing L(τ, ν) with respect to gν,m is equivalent to finding the minimum
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eigenvalue and the corresponding eigenvector of the following (2M+2)×(2M+2)
matrices

Re (G∗
τ EnE∗

nGτ ) ξmin = λminRe (G∗
τ Gτ ) ξmin

The D deepest minima of λmin as a function of τ yield the time delays, corre-
sponding Doppler shifts can be found by

ν̂k = ξmin,2(τ̂k)
ξmin,1(τ̂k)

where τ̂k is the estimate of τk and ξmin,i is the ith element of ξmin [12]. Finally,
fixing an estimate τ̂ , the ℓth message symbol is obtained by

mℓ = ξmin,2ℓ+1(τ̂)
ξmin,1(τ̂) .

Note that computations can be speeded-up by separately computing Re (G∗
τ Gτ ),

since it has no dependence on τ , ν or m. Hence, computations can be speeded
up by computing the matrix Re (G∗

τ Gτ ) separately.

11.4. Numerical results
In order to demonstrate the performance of the suggested scheme multiple
numerical experiments were carried out.
In all experiments the spatial signatures ak were constructed randomly. Each
entry in the array response vector had absolute value one and a uniformly
distributed random phase factor. The attenuation factors of different paths
where chosen as Gaussian random variables ∼ N (0, 1). The delay-Doppler shift
pairs were chosen uniformly random s.t. (τ, ν) ∈ [0, 2π] × [−π

8 ,
π
8 ]. The noise

was assumed to be zero mean Gaussian. Each message vector m was chosen
uniformly random over the M dimensional unit ball. A message estimate, m̂,
was accepted as a correct recovery if the euclidean distance between the actual
message and its estimate was smaller than 0.1, i.e. ∥m − m̂∥2 < 0.1.
In both Figures 11.1 and 11.2, for each channel, 10 messages were generated
randomly. The recovery rates in all figures are computed from 100 channel
realizations. Hence, for each data point, 1000 experiments were performed
and the number of correct recoveries were counted. The final recovery rate
is obtained by dividing the number of correctly recovered messages by 1000.
Consequently, a recovery rate of 1 implies that every message was estimated
correctly.
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Figure 11.1.: Recovery rate for fixed number of samples S = 32, varying num-
bers of delay-Doppler shifts D = 2, 4, message lengths M = 4, 8
and antennas NA = 5, 10. The pilot and carrier functions are
chosen such that Q̃ is well-conditioned.

Figure 11.1 depicts the recovery rate to signal to noise ratio (SNR) in dB for
small antenna array setups with NA = 5, 10 antennas and S = 32 samples.
Pilot and carrier signals were chosen as

p(ω) = sin(ω) and cℓ(ω) = sin((ℓ+ 1) · ω) ,

this choice of functions results in a well-conditioned Q̃ in (11.10). Following
the uniqueness condition in Theorem 11.2.1, varying sizes of messages M = 4, 8
and delay-Doppler shifts D = 2, 4 were chosen. In Figure 11.1, an apparent
result is that the suggested scheme achieves the identifiability bound obtained
in Theorem 11.2.1 for reasonable SNR values.

Figure 11.2 illustrates the recovery rate to SNR in dB for a large antenna array
setup with NA = 50 antennas. The number of samples was fixed to S = 128.
Illustrated is the recovery rates for varying numbers of delay-Doppler shifts
D = 2, 4 and different message lengths M = 2, 4. The pilot and carrier signals
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Figure 11.2.: Recovery rate for fixed number of samples S = 128 and antennas
NA = 50, varying numbers of delay-Doppler shifts D = 2, 4 and
message lengths M = 2, 4. The pilot and carrier functions are
chosen such that Q̃ is ill-conditioned.

were chosen as

p(ω) = sinc(ω) and cℓ(ω) = sinc(ℓ+1)(ω) ,

with sinc(ω) = sin(πω)
πω

. This choice results in an ill-conditioned Q̃.
In Figure 11.2 the achievable bounds given by Theorem 11.2.1 would be, M < 16
and M < 32 for D = 4 and D = 2, respectively. Additionally, by the large
number of antennas the setup in Figure 11.2 is more robust to noise. However,
already for relatively small sizes of messages the second setup performs very
poorly compared to the receiver constellation in Figure 11.1. The reason for it
can be traced back to the choice of the pilot and carrier functions. In the second
figure, this choice results in an ill-conditioned Q̃, amplifying the sensitivity to
noise, hence, drastically reducing the message length which can be transmitted.
Note that if Q̃ is either ill-conditioned or well-conditioned solely depends on
the choice of p(ω) and cℓ(ω). Therefore, a suitable choice of pilot and carrier
functions guarantees the performance of the presented method.
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