
CHAIR OF ELECTRONIC DESIGN
AUTOMATION

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Electrical Engineering and Information
Technology

Microfluidic Design Automation based on
Deep Reinforcement Learning in

Parameterized Action Space

Shuo Wu

CHAIR OF ELECTRONIC DESIGN
AUTOMATION

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Electrical Engineering and Information
Technology

Microfluidic Design Automation based on
Deep Reinforcement Learning in

Parameterized Action Space

Mikrofluidik-Designautomatisierung
basierend auf Deep Reinforcement Learning

im parametrisierten Aktionsraum

Author: Shuo Wu
Supervisor: Prof. Dr.-Ing. Ulf Schlichtmann
Advisor: Yushen Zhang
Submission Date: 2023.08.15

I confirm that this master’s thesis in electrical engineering and information technology
is my own work and I have documented all sources and material used.

Munich, 2023.08.15 Shuo Wu

Acknowledgments

I would like to express my sincere gratitude to my advisor, Yushen Zhang, for his
invaluable guidance and support throughout the course of this thesis. His expertise
and insights greatly contributed to the development and execution of this research.
I would also like to extend my appreciation to Prof. Dr.-Ing. Ulf Schlichtmann for
his insightful suggestions and constructive feedback, which significantly enriched the
quality of this study.

Abstract

This study introduces a novel approach to automate microfluidic chip design using
Deep Reinforcement Learning (DRL) in parameterized action space. This framework
combines the DRL algorithm with microfluidic chip design strategy to optimize layouts
for diverse objectives in the design progress of microfluidics. Key contributions of
this work include the integration of DRL into design automation, addressing data
limitations, and offering flexible chip design optimization.

A thorough review of existing literature reveals a gap in applying Deep Reinforcement
Learning (DRL) to the comprehensive design of microfluidic chip layouts. Our proposed
algorithm addresses this gap by abstracting the chip environment and utilizing a hybrid
action space along with a customized reward system to make well-informed decisions.
To enhance the training process, we employ various convergence strategies, resulting in
efficient and effective chip designs.

Through experiments, our algorithm demonstrates its advantages in optimizing
chip size, connection length, and computational efficiency. By comparing our ap-
proach to manual design and considering different convergence strategies, we outline
both its strengths and limitations. Particularly, our algorithm stands out in chip size
optimization and quick convergence, presenting promising real-world applications.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Motivation and Goal . 2
1.2 Brief Overview of the Approach . 2

2 Literature Review 3
2.1 Microfluidic Design . 3

2.1.1 Microfluidic Design Approaches 3
2.1.2 Microfluidic Design Description 3
2.1.3 Design for Optimizationn . 4
2.1.4 Benchmarking Microfluidic Designs 5
2.1.5 Integration of Design Tools . 5

2.2 Reinforcement Learning . 6
2.2.1 Deep Q-Networks (DQN) . 6
2.2.2 Policy Gradient Methods . 7
2.2.3 Actor-Critic Methods . 7
2.2.4 Proximal Policy Optimization (PPO) 7
2.2.5 Deep Deterministic Policy Gradient (DDPG) 8
2.2.6 Reinforcement Learning with parametrized action spaces 8

2.3 Programming language and framework 8

3 Methodology 10
3.1 Task Desciption . 10
3.2 Abstraction of Microfluidic Chip Design 11

3.2.1 Component Representation: Comp Class 11
3.2.2 Port Representation: Port Class 13
3.2.3 Interface Representation: FreePort Class 13
3.2.4 Connection and Node Representation: Connection and Node

Classes . 14
3.2.5 Microfluidic Environment: ChipBoardEnv Class 15

v

Contents

3.2.6 Essential Methods of Microfluidic Environment 16
3.3 Reinforcement Learning Algorithm . 24

3.3.1 Deep Deterministic Policy Gradients (DDPG) Algorithm 25
3.3.2 Value Network . 26
3.3.3 Policy Network . 27
3.3.4 Experience replay . 30
3.3.5 DDPG Nework . 32
3.3.6 Target Networks . 32
3.3.7 Update Method DDPG . 33
3.3.8 Update Method PADDPG . 34

3.4 Training . 36
3.4.1 Training Setup . 37
3.4.2 Training Loop . 37
3.4.3 Hyperparameters . 38
3.4.4 Training Visualization . 38

3.5 Model Convergence Strategies . 38
3.5.1 Weighted Experience Replay . 39
3.5.2 Principal Component Analysis (PCA) for Dimensionality Reduction 39
3.5.3 Adaptive Learning Rate Scheduling 39
3.5.4 Iterative Exploration-Decay Strategy 39
3.5.5 Network Architecture Adaptation 40
3.5.6 Neural Network Parameter Normalization 40

4 Result and Discussion 41
4.1 Performance Metrics and Evaluation . 41

4.1.1 Experimental Procedure . 42
4.2 Convergence Analysis . 44

4.2.1 Convergence Metrics . 44
4.2.2 Experimental Design and Evaluation 44

4.3 Design Visualization and Interpretation 54

5 Summery and Outlook 62
5.1 Contributions . 62
5.2 Limitations and Future Work . 63
5.3 Summary . 64

List of Figures 66

List of Tables 67

vi

Contents

Bibliography 68

vii

1 Introduction

Microfluidics has emerged as a fascinating interdisciplinary field that involves molec-
ular analysis, biodefence, molecular biology, and microelectronics to manipulate and
control fluids at the micrometer scale [1]. This technology has found diverse appli-
cations, ranging from chemical analysis to medical diagnostics, offering the potential
for significant advancements in various industries. As the demand for sophisticated
and efficient microfluidic devices (often in the form of chips) grows, the process of
designing such devices becomes increasingly complex.

The intricate nature of microfluidic systems, combined with their ever-expanding
range of applications, presents unique challenges in the design and optimization
process. Engineers and researchers are tasked with creating microfluidic layouts that
optimize fluid flow, minimize undesirable interactions, and enhance overall system
performance. Achieving these goals requires a deep understanding of fluid dynamics,
material properties, and precise control over device components. On the other hand,
there are some processes of microfluidic chip design, such as the minimization of the
chip size or avoiding the overlaps of microfluidic components or connections, that don’t
involve professional biology or chemistry knowledge. The optimization of these features
can significantly influence the performance of the microfluidic chip, but the process
can be time-consuming and may require the designer to learn additional knowledge
about relevant optimization strategies in the field of general design automation.

In recent years, computational methods and tools have become indispensable allies
in tackling the complexities of microfluidic chip design. Computer-aided design (CAD),
simulation software, and optimization algorithms offer powerful means to explore a
vast design space, predict fluid behavior, and iteratively refine device configurations.
This synergy of traditional engineering principles and cutting-edge computational
techniques has opened doors to innovative microfluidic solutions that were once
challenging to envision.

This thesis explores the domain of planar microfluidic design automation, particularly
emphasizing the use of reinforcement learning (RL) algorithms to improve the design
process. RL has shown success in diverse areas, including games and robotics [2].
By using RL techniques in microfluidic design automation, the goal is to utilize their
capabilities for creating intelligent and effective design approaches for microfluidic
chips.

1

1 Introduction

1.1 Motivation and Goal

The motivation behind the design automation of microfluidics is to enable chemists and
biologists to focus on their expertise in component selection and specifications, rather
than grappling with chip design intricacies. The complexity and time required for chip
design, especially with numerous components or layers, can be a burden. Utilizing deep
reinforcement learning, which combines reinforcement learning and deep learning,
shows the potential to automate decision-making in the design process. This prompts
the question: Can we train a model to make design decisions automatically?

The primary objective of this research is to create a link in an end-to-end microfluidic
design and fabrication pipeline. Users input component specifications, and deep
reinforcement learning algorithms handle decision-making and action formulation.
The result is a detailed chip design in JSON. This design blueprint in JSON can be
transformed into an STL format for 3D printing [3]. The process empowers chemists
and biologists to translate their ideas into reality, while our system handles the complex
tasks of microfluidic chip creation.

1.2 Brief Overview of the Approach

In this study, we present a comprehensive methodology that fuses microfluidic chip
design principles with deep reinforcement learning algorithms. The key components of
our approach include defining the microfluidic chip design space, formulating reward
functions that quantify design performance, and employing an advanced RL algorithm
called Deep Deterministic Policy Gradients (DDPG) modified with a parameterized
action space.

The following chapters of this thesis explore our proposed approach in detail. We
discuss the hierarchical policy network, the DDPG algorithm, and the techniques used
to improve its performance. We also describe the experimental setup, share results, and
address implementation challenges.

2

2 Literature Review

2.1 Microfluidic Design

Microfluidics is a rapidly evolving field that has attracted considerable attention due
to its wide-ranging applications and potential to revolutionize various industries.
This section provides an overview of key advancements in microfluidic design and
simulations, highlighting the contributions and insights from existing research.

2.1.1 Microfluidic Design Approaches

Microfluidic design encompasses a diverse range of techniques and methodologies
aimed at creating functional and optimized microscale devices. Early approaches often
relied on manual design and fabrication processes, leading to time-consuming iterations
and limited design exploration. With the advent of computer-aided design (CAD) soft-
ware, researchers gained the ability to create detailed layouts and prototypes digitally,
significantly accelerating the design process. Elishai has done an overview of CAD
applied in the field of microfluidic design in 2020 [4]. The review provides insights into
recent advancements in the realm of computer-aided design for various types of mi-
crofluidic systems, including flow-based, droplet-based, and paper-based microfluidics.
A specific case study about the design of resistive microfluidic networks is explored
in-depth, showcasing the application of these design approaches. The article highlights
the evolution of microfluidic devices, characterized by increased complexity, enhanced
performance requirements, novel materials, and innovative fabrication techniques. As a
result, the field has witnessed the emergence of new algorithms and design method-
ologies aimed at optimizing and facilitating the entire design process of microfluidic
circuits, spanning from conceptualization and specification to synthesis, realization, and
refinement. This progress encompasses the development of fresh description languages,
optimization techniques, benchmarking approaches, and integrated design tools.

2.1.2 Microfluidic Design Description

Microfluidic designs are typically formulated using dedicated editors that allow the
incorporation of pre-defined microfluidic components from libraries. A critical advance-

3

2 Literature Review

ment in Computer-Aided Design (CAD) for microfluidics pertains to the development
of hardware description languages. These languages facilitate the representation of
microfluidic components as code, offering a consistent and abstract layer that decouples
software development from potential technological changes, as in the work of Thies’s
microfluidic layer abstraction [5]. Huang also proposed a utilized description language,
MINT, based on modules and was highly utilized, as a preparation for his end-to-end
workflow of microfluidic design called Fluigi [6].

2.1.3 Design for Optimizationn

CAD methodologies cater to both general and specialized microfluidic applications,
warranting the optimization of design layouts to meet specific objectives. The optimiza-
tion process may entail determining the ideal arrangement of components, sequences
of operations, and allocation of resources. The synthesis of optimization parameters
and component weighting establishes a loss function for effective design optimization.

Microfluidic design optimization employs iterative, heuristic-based, and exact an-
alytical methods. Iterative approaches iteratively refine a base solution to achieve
convergence. Heuristic-based techniques provide rapid but approximate solutions,
while analytical methods strive to yield the optimal solution either by exhaustive explo-
ration or mathematical derivation. Design for X principles proposed by Gatenby extend
optimization to factors such as testability, assembly, and serviceability, particularly
important in addressing fabrication challenges [7].

For example, Tseng et al. proposed an optimization of a balance between device size
and execution time by altering the layout of planar microfluidics and the number of
components such as mixers [8]. Many other optimization works have been done focus-
ing on different problems involving microfluidic chip design. They’ve also presented
a valve-centric optimization approach, wherein designs are systematically optimized
to minimize the frequency of valve-switching operations, thereby contributing to the
extension of a device’s operational longevity. Hu has proposed an optimization task
that minimizes the control-pin and response time by improving routing in control-layer
[9]. As an illustration, Lin et al. introduced an algorithm aimed at minimizing the
cumulative length of flow channels [10]. More recently, Yang et al. extended prior
research by relaxing fundamental assumptions that constrained routing to adhere
strictly to Manhattan routing metrics, characterized by straight channels and 90° bend
[11]. This relaxation enabled the routing of channels at arbitrary angles, resulting in a
notable reduction of channel length by over 15%.

Instead of focusing problems within one layer, there are also many attempts to
optimize the synthesis of microfluidic chips overall. As an illustration, Wang et al.
introduced a placement algorithm that optimizes the arrangement of fluidic com-

4

2 Literature Review

ponents by minimizing congested regions within channels [12]. A similar strategy
named Columba was introduced by Tseng et al., which extended Wang’s approach
by incorporating angled channel routing and pressure-sharing control channels [13].
Recognizing the prevalent integration of existing modules in microfluidic design, Li
et al. proposed the concept of component-oriented synthesis. This paradigm treats
conventional microfluidic systems as discrete entities, categorized into either containers,
comprising chambers formed by valve-bound channel segments with circulating flows,
or accessories, encompassing pumps, heating pads, optical sensing units, specialized
sieve valves impeding particle flow, and cell traps. Within this framework, operations
are defined by a combination of containers and accessories, along with their tempo-
ral durations and interdependencies [14]. The resulting sequence graph represents
operations and their relationships, which necessitates scheduling on the microfluidic
device.

2.1.4 Benchmarking Microfluidic Designs

The multifaceted nature of microfluidic applications necessitates the establishment of
benchmarks to compare diverse design solutions. A microfluidic benchmark consists of
curated designs generated for specific applications using varied optimization methods.
These benchmarks enable objective comparisons based on established metrics, offering
insights into the suitability of designs across different contexts.

Crites et al. introduced a standardized interchange format referred to as ParchMint
for continuous microfluidics [15]. This format employs a JavaScript Object Notation
(JSON) file to specify the device netlist, consisting of a list of connections. The Parch-
Mint standard delineates the device’s architectural elements, including components,
connections, and layers, which collectively define the device’s intricate structure. Parch-
Mint’s utility extended to the creation of a microfluidic benchmark, incorporating
reverse-engineered designs derived from images, generic layouts of cell traps and
valves, as well as other designs derived from specific applications. These designs were
translated into a benchmark space, characterized by the number of components and
dimensions, enabling researchers to compare their designs against counterparts of
similar complexity.

2.1.5 Integration of Design Tools

The integration of microfluidic description languages, optimization algorithms, and
benchmarks within CAD frameworks is a significant challenge due to differing de-
velopment contexts. A key instrument in this realm is the integrated development

5

2 Literature Review

environment (IDE), which empowers designers to define, optimize, and prepare mi-
crofluidic device designs for fabrication.

Tseng et al. introduced the Columba design synthesis tool, a co-layer optimization
solution as previously discussed. This tool takes device specifications and transforms
them into an optimized microfluidic layout, subsequently translating it into a sequence
of AutoCAD drawing commands. By facilitating a seamless transition from speci-
fication to device fabrication, Columba streamlines the design process. Notably, a
comprehensive and extensively employed design tool is 3DµF, a creation of Sanka et al.
[16]. This open-source and interactive microfluidic design tool establishes an efficacious
visual platform to serve future design automation algorithms, fabrication techniques,
and control mechanisms. The framework adopts ParchMint for layout representation,
furnishes a repository of parameterized microfluidic blocks, and supports modular
microfluidic configurations.

2.2 Reinforcement Learning

Reinforcement Learning (RL) algorithms have garnered significant attention in the
field of artificial intelligence and machine learning due to their remarkable ability to
enable agents to learn optimal strategies for sequential decision-making tasks through
interaction with an environment. In recent years, RL has found application in diverse
fields such as robotics, finance, healthcare, recommendation systems, and game playing.
Ongoing research focuses on improving sample efficiency, stability, and addressing
challenges like exploration in high-dimensional continuous spaces. Additionally, the
integration of RL with other techniques, such as imitation learning and meta-learning,
continues to push the boundaries of reinforcement learning’s capabilities. This section
aims to provide an overview of the various RL algorithms, highlighting their key
characteristics, advancements, and applications as well as to provide a theoretical basis
for the subsequent task selection algorithm

2.2.1 Deep Q-Networks (DQN)

In the context of Q-learning or DQN, an import concept is Q-value, which represents
the expected cumulative reward that an agent can obtain by taking a particular action
in a specific state and the following rewards when taking actions generated by a
certain policy thereafter. DQN extends Q-learning by utilizing deep neural networks
to approximate these Q-values. This advancement enables DQN to handle high-
dimensional state spaces, making it suitable for tasks like image-based game-playing.
Notable improvements include experience replay and target networks to stabilize
training and improve convergence [17].

6

2 Literature Review

2.2.2 Policy Gradient Methods

Policy gradient methods directly optimize policy functions to maximize expected cumu-
lative rewards. They employ gradient ascent on objective functions to update policies
incrementally. Algorithms like REINFORCE and Trust Region Policy Optimization
(TRPO) fall under this category [18]. Policy gradient methods are well-suited for
continuous action spaces and have been successfully applied in robotic control and
autonomous systems.

2.2.3 Actor-Critic Methods

Actor-critic methods combine elements of both value-based and policy-based ap-
proaches [19]. They maintain two networks: the actor, which generates actions,
and the critic, which estimates the value of states. Advantage Actor-Critic (A2C) and
Asynchronous Advantage Actor-Critic (A3C) are popular variants. These algorithms
achieve a balance between exploration and exploitation, enabling faster convergence.
A2C is an algorithm that aims to address some of the limitations of traditional policy
gradient methods by incorporating the idea of value estimation into the learning pro-
cess. The A2C algorithm uses a combination of policy gradient updates based on the
advantage function and value function updates to improve both the agent’s policy and
the accuracy of its value estimation. By training these two components simultaneously,
A2C tends to learn more efficiently and converge faster than pure policy gradient
methods. A3C builds upon the A2C algorithm but introduces parallelism to accelerate
training by using multiple agents that interact with their instances of the environment
simultaneously. The asynchronous nature of A3C reduces the correlation between
consecutive updates and introduces exploration diversity, which can lead to more
stable learning and faster convergence. However, managing asynchronous updates and
ensuring proper exploration can be challenging due to potential race conditions and
other synchronization issues [20].

2.2.4 Proximal Policy Optimization (PPO)

PPO is an on-policy policy optimization algorithm that aims to enhance stability and
sample efficiency [21]. It employs clipped surrogate objectives to prevent policy updates
from deviating too far. PPO has gained prominence for its ease of use, robustness, and
successful application in various domains.

7

2 Literature Review

2.2.5 Deep Deterministic Policy Gradient (DDPG)

DDPG is designed for continuous action spaces and combines DQN’s value function
approximation with policy gradient methods [22]. It employs actor and critic networks
to learn deterministic policies and value functions. DDPG is widely used in robotic
control and autonomous systems due to its ability to handle continuous control tasks.

2.2.6 Reinforcement Learning with parametrized action spaces

As the design automation of microfluidic chips is a complex procedure that involves
both discrete actions such as selecting a component and continuous actions such as
moving or rotating a component, a parametrized action space is unavoidable in our sce-
nario. This section focuses on some reinforcement learning algorithms that incorporate
parametrized action space. These algorithms demonstrate how parametrized action
spaces enhance the capabilities of reinforcement learning methods, enabling agents to
tackle complex tasks with precise and adaptable control strategies. Parametrized ac-
tions provide flexibility and versatility, making them well-suited for various real-world
applications in robotics, control systems, and autonomous agents.

PADDPG (Parametrized Action Deep Deterministic Policy Gradient)

PADDPG is a popular algorithm for continuous action spaces with parametrized
actions [23]. It employs an actor-critic architecture, where the actor-network learns a
deterministic policy with parametrized actions, and the critic network estimates the
value function. PADDPG combines value-based and policy-based methods, enabling it
to handle parametrized action spaces efficiently. This makes it well-suited for tasks that
require precise and flexible control strategies, such as robotic manipulation and complex
autonomous systems. The incorporation of parametrized actions in PADDPG allows
agents to explore a wider range of actions while maintaining smooth and adaptable
policies. As a result, PADDPG has shown promising results in various applications,
making it a versatile choice for reinforcement learning in scenarios with complex and
continuous action spaces.

2.3 Programming language and framework

Choosing a programming language and framework is a critical decision before jumping
into the concrete implementation. For reinforcement learning projects, there are some
common choices for programming languages, such as Python, C++, and Julia. As one of
the most widely used programming languages, Python is a high-level, general-purpose

8

2 Literature Review

programming language with a rich set of machine learning and reinforcement learning
libraries, such as TensorFlow, PyTorch, and OpenAI Gym [24, 25, 26]. Tensorflow
and Pytorch are both very popular choice of framework in the field of deep learning.
PyTorch is a Python-based open-source machine learning framework built upon the
Torch library. PyTorch uses a dynamic computational graph, making it intuitive for
research and experimentation, allowing real-time debugging and interactive prototyp-
ing [27]. Tensorflow, on the other hand, also has its own advantages as it has a more
mature ecosystem and better deployment options [28]. After comparison, the final
decision was to utilize the combination of Python and PyTorch to implement this work,
as demonstrated in the upcoming code segments. The goal is to provide a perspective
and example of algorithm implementation. The programming language and framework
can be adjusted based on user requirements.

9

3 Methodology

3.1 Task Desciption

This thesis is fundamentally focused on design automation which is a crucial link in
the end-to-end microfluidic design and fabrication process. Initially, users input their
chosen components with specific details like size, interface positions, and connections.
With the help of well-trained deep reinforcement learning networks, the algorithms take
charge of decision-making and action planning in the design phase. This results in a
carefully crafted chip design plan that includes component placement and connections,
presented in a structured format like JSON. This format remains intelligible within
microfluidic design environments, such as Flui3D [3], capable of transforming our
blueprint into an STL format that can be subsequently employed by a 3D printer for
microfluidic fabrication. This comprehensive process quickly transforms the creative
concepts of chemists and biologists into tangible outcomes. By entrusting our system
with the complexities of design and fabrication, these experts can focus solely on
tackling challenges in the fields of chemistry and biology.

User-define
Microfluidics

Topology
DRL model 3D printing

in STL

Microfluidics device

Model in JSON Model in STLState

Environment: Abstraction of
Microfluidic Chip Design

Action

Initialization

Figure 3.1: DRL model in the end-to-end microfluidic design and fabrication chain.

10

3 Methodology

3.2 Abstraction of Microfluidic Chip Design

In microfluidic chip design, essential concepts provide the foundation for constructing
complex fluidic systems. This section introduces the approach to simplify, simulate, and
specify a microfluidic chip design. This simplified design will act as the environment
for interaction with the deep reinforcement learning algorithm in the following section.
Therefore, the developed model should encompass additional functionalities such as
environment reset, state change after actions, and reward calculation..

3.2.1 Component Representation: Comp Class

Microfluidic chip components serve as the fundamental building blocks, shaping the
intricate pathways of fluidic movement. The Comp class acts as a versatile abstrac-
tion, encompassing essential attributes including layers, position, orientation, and pin
configuration. This class not only facilitates the calculation of vertices based on these
properties but also extends its utility by representing various component types, such as
mixers, separators, and functional entities, each manifesting distinct roles within the
chip’s design.

class Comp:
def __init__(self, comp_id, width, height, x, y, th, layer, n_in, n_out):

Initialize component attributes
self.id = comp_id
self.width = width
self.height = height
self.x = x
self.y = y
self.th = th
self.layer = layer
...

def calculate_vertices(self):
Calculate component vertices
...

In the field of microfluidic chip design, a variety of components come into play, each
playing a role in the chip’s overall functionality. These components, such as mixers
and separators, perform distinct tasks essential for fluid manipulation. By abstracting
these components into rectangular entities with defined pins, the Comp class offers
a unified framework for modeling a variety of microfluidic chip elements. 3.2 from

11

3 Methodology

Flui3D [3] shows some common types of microfluidic which can be easily represented
by a rectangular contour with ports to connect with other components.

It’s worth noting that during the abstraction process, some components such as
droplets and width transitions in 3.2, when represented as rectangles, may result in
the wastage of potential wiring space, thereby leading to a certain degree of chip area
inefficiency. However, irregular shapes introduce a significant computational burden
during subsequent reward calculations. This computational overhead makes it more
challenging for the neural network being trained to converge effectively. Moreover,
due to the diverse array of shapes that components can be abstracted into, along
with their dependence on numerous parameters, the introduction of complex reward
calculations is a concern. To ensure model generalizability and avoid overly intricate
reward computations, it was decided to abstract all components as rectangles during
the abstraction process. This approach involves distinguishing components based on
variations in length, width, and the distribution of ports, striking a balance between
computational efficiency and the model’s ability to accommodate a wide range of
scenarios.

Figure 3.2: Common types of microfluidic components from Flui3D [3].

12

3 Methodology

3.2.2 Port Representation: Port Class

Ports, sometimes referred to as pins, play a crucial role in microfluidic chip design
by facilitating fluid connections between components. The Port class encompasses
key attributes that define the unique properties of a port. These attributes include
the associated component’s identifier, the port’s unique identifier, its relative position
within the component along the x-axis (width), its relative position along the y-axis
(height), and its directionality.

class Port:
def __init__(self, comp_id, port_id, rx, ry, direction):

self.comp_id = comp_id
self.port_id = port_id
self.rx = rx
relative to the port position on the component’s x-axis (width)
self.ry = ry
relative to the port position on the component’s y-axis (height)
self.direction = direction
self.x = 0
self.y = 0

As per the definition of ports, each port is exclusively positioned along one of the four
edges of a component rectangle. Therefore, the coordinates of a port are represented
relative to the corresponding component. Upon analyzing various types of components,
it becomes apparent that a considerable portion of them exhibit port distributions
characterized by axial symmetry or by being situated solely along two non-adjacent
edges of the component rectangle. In the subsequent reset method of the environment,
the likelihood of symmetric port distributions will be augmented rather than being
purely randomized. This augmentation aims to better emulate the probability of
encountering different chip layouts during actual chip design. This approach aligns
with the intent of achieving a more realistic simulation of the diverse probabilities
associated with chip designs of varying complexities.

3.2.3 Interface Representation: FreePort Class

In microfluidic chip design, the concept of connecting the chip with external systems is
of great importance. This is where the FreePort class becomes relevant - an abstraction
that symbolizes the link through which the chip connects with external elements. Unlike
conventional ports, the FreePort introduces a distinct component type, manifesting
as a circular entity defined by a specified radius, as opposed to regular ports, which
are represented as dots on the edges of the component rectangular. This unique

13

3 Methodology

geometric configuration imparts the FreePort with its distinctive attributes, allowing it
to effectively serve as an interface element.

class FreePort:
def __init__(self, port_id):

self.port_id = port_id
self.x = 0 # Initial x coordinate
self.y = 0 # Initial y coordinate

Functioning as a unique component, a FreePort allows two-way interaction. It can
be visualized as a circular entity with a set radius. Its positioning creates a distinct
link between the chip and external systems. Unlike regular ports that have only one
connection point, a FreePort can manage several connections while staying at its central
location. This key trait sets it apart, making it act both as a connector and a component
for further actions and calculations.

3.2.4 Connection and Node Representation: Connection and Node Classes

In microfluidic chip design, fluid movements rely on connections and nodes working
together. The Connection class is a key element that helps to make pathways for fluids
by connecting ports and components. Each connection has a unique ID and links
starting and ending ports, as well as a specific layer in the chip’s structure.

class Connection:
def __init__(self, conn_id, start_port_id, end_port_id, layer):

self.conn_id = conn_id
self.start_port_id = start_port_id
self.end_port_id = end_port_id
self.layer = layer
self.nodes = []

def add_node(self, node_id, x, y):
node = Node(self.conn_id, node_id, x, y)
self.nodes.append(node)

class Node:
def __init__(self, conn_id, node_id, x, y):

self.conn_id = conn_id
self.node_id = node_id
self.x = x
self.y = y

14

3 Methodology

Each connection, in practice, could take the form of a flexible curve with fixed start and
end points. However, in the actual design process, designers often introduce various
constraints to simplify the problem, such as in [13, 29]. In this work, each connection is
defined as a polyline with a limited number of vertices, where these vertices correspond
to instances of the Node class. The maximum number of vertices directly impacts the
dimensionality of the state generated by the environment and the complexity of the
optimization problem. After numerous attempts, it has been deduced that the optimal
range for the maximum number of nodes per connection should be set between 3 and
10. Too few nodes might prevent the connection from maneuvering around components,
while an excessive number of nodes could impede model convergence.

3.2.5 Microfluidic Environment: ChipBoardEnv Class

Microfluidic chip design centers on managing a flexible environment that includes
components, ports, connections, and nodes. The ChipBoardEnv class represents this
core concept and acts as a simulation area where chip layouts are created, studied, and
improved. This class includes various features and actions that define the microfluidic
world and aid in automated design.

class ChipBoardEnv:
def __init__(self, max_n_comp, min_n_comp,

max_ports_per_comp, max_n_connect,
max_nodes_per_connect, max_n_free_port...):
Initialize ChipBoardEnv attributes
...

def reset(self):
Reset the microfluidic environment to its initial state
...

def step(self, action):
Perform a step in the environment based on the given action
...

def render(self):
Visualize the current state of the microfluidic layout
...

def calculate_reward(self):
Calculate the reward based on the current state

15

3 Methodology

...

def generate_random_component(self):
Generate a random component with specified attributes
...

def generate_random_connection(self):
Generate a random connection between ports
...

def generate_random_freeport(self):
Generate a random free port
...

The ChipBoardEnv class captures how microfluidic chip design works. Its settings
describe the environment, like the maximum number of components, ports, and
connections allowed, as well as the size and poses of each component. The reset method
starts the environment fresh for a new design, providing the reinforcement learning
algorithm with a randomized initial state and combinations of different components
and connections. The step method moves the environment forward based on an action,
providing a new state as feedback to the reinforcement learning agent. The abstracted
microfluidic layout can be easily illustrated using the visualization method, giving an
intuitive description of the chip’s structure. The environment’s reaction to actions is
measured with the calculate_reward method, supporting the learning process for better
chip designs.

Inside the ChipBoardEnv class, multiple supporting methods make it easier to create,
handle, and adjust components, ports, and connections. This versatile toolkit gives
designers the ability to try out, examine, and improve microfluidic chip designs, and
also prepares for subsequent neural network training.

3.2.6 Essential Methods of Microfluidic Environment

Reset of Microfluidic Environment

The reset method plays a crucial role in preparing the microfluidic environment for
new design exploration. The workflow of this method is:

• The method clears the existing lists for components, ports, free ports, connections,
and nodes, essentially resetting the environment to its initial state.

16

3 Methodology

• The method manages the random seed to ensure reproducibility of experiments if
required. The seed is either generated based on the system time or set to a saved
value.

• The method generates a random number of components within the specified
range (min_n_comp to max_n_comp) and creates instances of the Comp class
for each component. Each component’s attributes, such as width, height, and
number of input and output ports, are determined randomly or based on specified
probabilities.

• The number of free ports and inner connections is calculated based on the
generated components, ensuring a balanced distribution of connections. Free
ports are created and initialized.

• The method establishes initial connections between ports and free ports, taking
into account the directions of the ports. It ensures a balanced distribution of
connections to start the design process.

• If the number of free ports exceeds the maximum allowed, the environment is
reset, preventing any inconsistencies.

• The reset method concludes by returning the initial state of the environment,
which is crucial for starting the design exploration process.

The extensive procedure within the reset method establishes the foundation for
experimenting with microfluidic chip design. It allows the generation of various layouts
and setups, paving the way for subsequent optimization and exploration.

State space

The calculate_state method is responsible for generating the state representation of the
current microfluidic environment. This representation will be used by the reinforcement
learning agent to make informed decisions during the design process. The workflow of
this method is:

• The method begins by initializing lists to store various components of the state
representation, such as attributes of components, ports, free ports, connections,
and nodes. The state_head list is populated with the lengths of different lists,
providing context about the environment’s current state.

• The lists are then padded to ensure they have the same length, as required for
processing by the reinforcement learning algorithm. This is achieved by adding
zero values to the lists if needed.

17

3 Methodology

• The method proceeds to loop through components, ports, free ports, and connec-
tions, extracting their attributes and appending them to the corresponding state
lists. For connections, information about associated nodes is also collected and
added to the node_state list.

• After looping through all relevant components, ports, and connections, the
node_state list is concatenated with the other state lists, and the entire rep-
resentation is converted into a numpy array.

• The resulting state array encapsulates the current state of the microfluidic environ-
ment, including key attributes of components, ports, free ports, connections, and
nodes. This state representation serves as input for the reinforcement learning
algorithm, enabling the agent to learn and optimize microfluidic chip designs
over successive iterations.

Step method and action space

The step method simulates one step of interaction between the agent and the en-
vironment. It takes an action as input, which consists of a high-level action and
corresponding low-level action details. The method begins by extracting the high-level
action and low-level action details from the input.

Based on the high-level action, the method dispatches the appropriate low-level
action method to execute. The available low-level actions are placement, node insertion,
node deletion, change component layer, and change connection layer. Each low-level
action method modifies the state of the microfluidic environment based on the provided
details.

After executing the low-level action, the method calculates the reward based on the
updated state using the calculate_reward() method. The new state is also calculated
using the calculate_state() method. If visualization is required, the method calls
visualize_board() to display the updated microfluidic chip layout. Finally, the method
returns the new state, reward, and a boolean value indicating whether the episode is
done or not.

The step method is crucial for the agent’s interaction with the environment and
forms the core of the reinforcement learning training loop. It allows the agent to take
actions, observe the outcomes, and learn to optimize microfluidic chip designs over
time. The action space consists of five distinct types of actions that can be taken within
the environment:

Placement Action: This action involves changing the position and orientation of a
component or a free port. It is primarily used for moving components or free ports
within the chip. The parameters required for this action are:

18

3 Methodology

• placement_id: The ID of the component or free port being moved. Positive values
represent components, while negative values represent free ports.

• dx: The displacement along the x-axis (horizontal movement).

• dy: The displacement along the y-axis (vertical movement).

• dth: The change in orientation (in radians).

Node Insert Action: This action involves inserting a new node into an existing
connection, effectively adding a bend point to the connection. The parameters required
for this action are:

• connection_id: The ID of the connection in which the node is to be inserted.

• node_insert: The index of the position in the connection’s nodes list where the
new node should be inserted.

• node_x: The x-coordinate of the new node’s position.

• node_y: The y-coordinate of the new node’s position.

Node Delete Action: This action involves deleting a node from an existing connection,
effectively removing a bend point from the connection. The parameters required for
this action are:

• connection_id: The ID of the connection from which the node is to be deleted.

• node_delete: The index of the node to be deleted within the connection’s nodes
list.

Change Component Layer Action: This action involves changing the layer (or plane)
in which a component is placed. It allows components to be moved between different
layers. The parameter required for this action is:

• comp_id: The ID of the component whose layer is to be changed.

Change Connection Layer Action: Similar to the previous action, this one involves
changing the layer of a connection. It allows connections to be moved between different
layers. The parameter required for this action is:

• connection_id: The ID of the connection whose layer is to be changed.

19

3 Methodology

These actions together create the action space for the microfluidic chip design
environment. Each action type comes with specific parameters that dictate how it
works, and the mentioned methods above carry out these actions according to their
parameters. In the environment, the step method carries out the selected action, updates
the environment’s state, and computes the reward based on the new state.

Reward method

The process of calculating rewards in the microfluidic chip design environment is
thorough and encompasses the assessment of multiple facets of chip design to ascertain
the value of a reward for an agent’s action. These rewards are computed by considering
a range of distinct components and factors.

def calculate_reward(self):
overlap_punishment = self.calculate_overlap_punishment()
chip_size = self.calculate_chip_size()
conn_length = self.calculate_conn_length()
n_vertical_tunnels = self.calculate_vertical_tunnels()
comp_size = self.calculate_comp_size()
n_conn = self.calculate_conn_complexity()

Dictionary for the reward components
self.reward_dict = {

"overlap": {"func": self.calculate_overlap_punishment, "weight": -100},
"chip_size": {"func": self.calculate_chip_size, "weight": -2},
"conn_length": {"func": self.calculate_conn_length, "weight": -1},
"vertical_tunnels": {"func": self.calculate_vertical_tunnels, "weight": -1},
"comp_size": {"func": self.calculate_comp_size, "weight": 3},
"n_conn": {"func": self.calculate_conn_complexity, "weight": 1}

}

Calculate the reward based on different components
reward = 0
for key, value in self.reward_dict.items():

reward += value["weight"] * value["func"]()

return reward

Here’s a breakdown of the reward calculation process and the associated methods:

• overlap: This component of the reward penalizes the overlapping of components

20

3 Methodology

on the chip, which can lead to undesirable fluidic interactions.

• chip_size: This component penalizes larger chip sizes, encouraging more compact
designs.

• conn_length: This component penalizes longer fluidic connections, promoting
shorter and more efficient connections.

• vertical_tunnels: This component penalizes the presence of vertical tunnels, which
may complicate fabrication or increase the complexity of the design.

• comp_size: This component rewards larger individual components, incentivizing
the use of larger components when appropriate.

• n_conn: This component rewards designs with higher complexity in their fluidic
connections.

For each of the components mentioned above, a dictionary reward_dict is created,
containing a reference to the corresponding calculation method (func) and a weight that
determines the relative importance of that component in the final reward computation.
In the context of microfluidic chip design, the issue of component or connection overlap
is considerably more serious than a slightly larger chip size. Hence, the weights assigned
to overlap and chip size should both be negative, with the weight magnitude of overlap
distinctly greater. However, if there is a substantial disparity in the weights assigned to
rewards or penalties (if they have negative weights), it can lead to significant gradient
differences during the training of reinforcement learning, resulting in a challenging
convergence of the model. The weights for individual rewards can be fine-tuned as
hyperparameters, considering the normalizing rewards to mitigate this disparity is also
an option.

In our work, the reward method iterates over the components in reward_dict, calcu-
lating the weighted contribution of each component to the overall reward. The final
reward is obtained by summing up the weighted contributions of all components.

The computed reward value serves as a quantitative measure of the quality of the
microfluidic chip design. A higher reward value indicates better designs according to
the specified metrics, while a lower value indicates less optimal designs. This reward
value is crucial for reinforcement learning algorithms, as it guides the learning process
by providing feedback on the desirability of different design decisions.

The first element of the dictionary is the Overlap meaning that the overlapping
between the components and connections is penalized. This is split into three parts:

• component overlap (calculate_comp_overlap_punishment)

21

3 Methodology

• component-conn overlap (calculate_comp_conn_overlap_punishment)

• connection overlap (calculate_conn_overlap_punishment)

Take the calculation of overlap between components for example:

def calculate_comp_overlap_punishment(self):
overlap_punishment = 0
for i, comp1 in enumerate(self.Comps):

for j, comp2 in enumerate(self.Comps):
if i != j and comp1.layer != comp2.layer:

rect1_coords = comp1.calculate_vertices()
rect2_coords = comp2.calculate_vertices()
poly1 = shapely.Polygon(rect1_coords)
poly2 = shapely.Polygon(rect2_coords)
intersection = poly1.intersection(poly2)
if not intersection.is_empty :

overlap_punishment += intersection.area
return overlap_punishment

The calculate_comp_overlap_punishment method calculates the degree of overlap
between different components in a microfluidic chip design. It does this by iterating
through pairs of components, checking if their bounding rectangles intersect, and
adding up the area of overlap. This helps to identify and penalize overlapping regions
between components, which can lead to problems in fluidic interactions or fabrication.
The method returns the total overlap punishment value. The calculations of overlap
between components and connections or overlap between connections only are similar
to the calculation of overlap between components. However, it’s worth noting that
only components or connections within the same layer can count as overlap. The total
overlap punishment is the sum of these three overlap penalties.

Next is the Chip Size. The size of the chipboard is calculated based on the position
of components, ports, and nodes. The calculate_chip_size method computes the area
of the chipboard with a safe distance added around the components and connections.
Connection Length is also important to be taken into account when calculating the
total reward. Without incorporating this reward, the trained model could excessively
increase the number of nodes in the connections to minimize the overall chip area,
potentially leading to a degradation in the chip’s overall performance.

Another reward element worth mentioning is the number of vertical tunnels, where
connections across different layers, are counted. The calculate_vertical_tunnels method
determines the number of vertical tunnels within the chip. Changing layers of compo-
nents and connections is a simple way of avoiding overlapping penalty, but also add

22

3 Methodology

complexity to the chip design and fabrication. To avoid abuse of this action, using the
number of vertical tunnels as a punishment, a reward with negative weight is necessary.
This allows the trained agent to only change the layer of components or connections
when it’s necessary.

The complexity of connections is considered based on the number of connections,
free ports, and components. The calculate_conn_complexity method computes a com-
plexity score that takes into account the number of connections, free ports, and compo-
nents. Each of these factors contributes to the overall reward. The calculate_reward
method adds up the weighted values of these individual reward components to com-
pute the final reward. The more complex the input microfluidic topology is, the more
likely that the optimized layout has a lower reward since the reward elements involve
overlapping penalty and chip size penalty. Therefore, it’s reasonable to add the total
size of components and complexity of connections as a positive reward to compensate
for the unfair reward baseline of different input topologies.

The reward calculation process takes both positive and negative aspects of the chip
design into account, allowing the agent to learn and optimize its actions to achieve a
desired chip layout while avoiding undesirable configurations.

Visualization

The visualize_board method is responsible for creating a visual representation of
the chipboard layout and updating it dynamically as the agent takes actions. This
visualization provides a graphical representation of the chip design environment and
allows users to monitor the progress of the agent.

Here’s an explanation of the key components of the visualize_board method:

• Setting Up the Visualization: This part checks if the visualization thread is already
running. If not, it starts a new figure for the visualization.

• Plotting Components, Ports, and Free Ports: This part plots the components’
contours using their vertices. Ports and free ports are represented by red (’ro’)
and green (’go’) circles, respectively. Then it initializes a new figure (plt.figure)
with a specified size and title.

• Plotting Connections: This part plots connections using line segments based on
the start and end ports. If the connection has nodes, it plots broken line segments
connecting the nodes. Different colors are used to distinguish connections on
different layers.

• Drawing Contour and Aspect Ratio: This part calls the calculate_chip_size

23

3 Methodology

method with draw=True to draw the chip’s contour with a safe distance and sets
the aspect ratio to "equal" to prevent distortion in the visualization.

• Adding Annotations: Adds text annotations to the plot to display various infor-
mation, such as reward, action, episode number, etc.

• Updating the Visualization: Updates the annotations with the latest values (e.g.,
reward, action, episode number). Use plt.pause(0.1) to refresh the plot and make
it interactive.

• Enabling Interactive Mode: Enables interactive mode using plt.ion() to allow
continuous updating of the plot. The visualize_board method helps the user
visualize the chipboard layout, the positions of components, ports, free ports, and
connections, as well as the changes caused by the agent’s actions.

This real-time visualization aids in understanding the chip design process and
assessing the agent’s performance. The effects of visualization are presented in the
Figure 4.11, and it can be visualized animatedly to observe how the agent optimizes
the layout through a sequence of actions during the training process.

3.3 Reinforcement Learning Algorithm

Reinforcement Learning (RL) is a machine learning paradigm focused on training
agents to make optimal decisions within a specific environment. In RL, an agent
interacts with an environment over time, taking actions to achieve a certain goal. The
agent learns by receiving feedback in the form of rewards or penalties based on the
actions it takes [30, 31].

Deep reinforcement learning (DRL), an amalgamation of reinforcement learning
(RL) and deep learning paradigms, has emerged as a transformative approach capable
of addressing an expansive spectrum of intricate decision-making challenges [32].
This innovative framework has transcended prior limitations, enabling the resolution
of tasks that were hitherto deemed infeasible or yielded suboptimal outcomes. By
synergistically harnessing the strengths of reinforcement learning and deep learning,
deep reinforcement learning has unlocked the potential to navigate complex scenarios
and derive optimal strategies, thereby revolutionizing problem-solving across diverse
domains. DRL is also more suitable as a training method for the tasks of this paper for
the following reasons:

• DRL obviates the necessity for labeled raw data, making it especially useful in
cases where there are fewer microfluidic chip designs available compared to elec-

24

3 Methodology

tronic counterparts. Insufficient training datasets often result in underwhelming
performance in machine learning models or neural networks.

• The lack of a clear-cut model for the "ideal" microfluidic chip design poses a
significant challenge. While experts in chemistry or biology can expertly guide
the choice of microfluidic components and their logical arrangement, the tasks
of component placement and routing often rely on heuristic methods, which
can lead to less-than-optimal results. This situation presents an opportunity for
improvement.

• The goals of automating microfluidic chip design vary based on specific situations.
One scenario might prioritize compact layout optimization, while another could
emphasize well-aligned routing with restrictions. By adjusting reward ratios
smartly, these shifts in design objectives can be effectively managed, making the
solution adaptable.

3.3.1 Deep Deterministic Policy Gradients (DDPG) Algorithm

The Deep Deterministic Policy Gradients (DDPG) algorithm is a popular and effective
reinforcement learning algorithm that combines ideas from both Q-learning and policy
gradient methods. DDPG is specifically designed to handle continuous action spaces
in continuous state spaces, making it well-suited for problems where actions are not
discrete but rather have a wide range of possible values [33, 22].

DDPG extends the original actor-critic architecture by utilizing two separate neural
networks as shown in Figure 3.3: an Actor-network that directly maps states to actions,
and a Critic network that estimates the Q-values of state-action pairs. This separation of
concerns allows DDPG to learn deterministic policies, making it particularly effective
in continuous control tasks.

Figure 3.3: The network architecture of the DDPG algorithm [34].

One of the key features of DDPG is its use of target networks to stabilize the learning

25

3 Methodology

process. The target networks are periodically updated to provide more stable Q-value
estimates and reduce the issues of overestimation or divergence that can occur during
training. This process involves maintaining a separate set of target networks that are
updated using a soft update mechanism, which helps to improve the stability and
convergence of the algorithm.

In addition, DDPG employs an experience replay buffer, similar to DQN, to store
and sample experiences in a way that reduces correlations between consecutive sam-
ples. This improves the stability and efficiency of learning by breaking the temporal
correlations present in consecutive state transitions.

3.3.2 Value Network

In the DDPG algorithm, the Value Network is a crucial component used for estimating
the expected cumulative rewards, also known as the Q-values. The Value Network helps
the agent assess the quality of a specific state-action pair by predicting the expected
total reward that can be achieved from that pair.

The Value Network takes both the current state and the chosen action as inputs
and outputs a single scalar value, representing the Q-value. The Q-value indicates the
expected cumulative reward that the agent can achieve by following a specific action
from a given state.

The architecture of the Value Network typically consists of a few fully connected
layers, which process the combined information of the state and action to produce the
Q-value. The network is trained using the Bellman equation, which helps it to learn
accurate Q-value estimates over time.

Here is the implementation of the Value Network in PyTorch:

import torch
import torch.nn as nn
import torch.nn.functional as F

class ValueNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):

super(ValueNetwork, self).__init__()

self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)

self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)

26

3 Methodology

def forward(self, state, action):
if len(state.shape) < 2:

state = state.unsqueeze(0)
state = state.to(device) # Move input data to the same device as the model
action = action.to(device) # Move action to the same device
x = torch.cat([state, action], -1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x

In this implementation, num_inputs represents the dimensionality of the state space,
num_actions represents the dimensionality of the action space, and hidden_size deter-
mines the number of neurons in the hidden layers of the network. The forward method
takes a state tensor and an action tensor as inputs, concatenates them, and processes
them through the network to produce the Q-value.

The weights and biases of the final layer (linear3) are initialized using uniform
random values scaled by init_w.

3.3.3 Policy Network

Unlike the conventional DDPG algorithm that only deals with continuous action space,
here we propose a modified DDPG algorithm with a hierarchical policy network. The
construct of such a network is illustrated as in Figure 3.4

The policy network is designed to handle both high-level and low-level policies
hierarchically. It consists of three components: LowLevelPolicy, HighLevelPolicy, and
PolicyNetwork.

• LowLevelPolicy: This component takes the current state as input and generates
low-level action parameters. It uses fully connected layers to process the input
state and produces continuous actions using the tanh activation function.

• HighLevelPolicy: This component takes the current state as input and generates
high-level action probabilities. It employs linear layers followed by layer nor-
malization and ReLU activation to produce a probability distribution over the
available high-level actions.

• PolicyNetwork: This is the main policy network that integrates the high-level and
low-level policies. It takes the state as input and selects a high-level action based
on the high-level policy. Then, it uses the selected high-level action to determine

27

3 Methodology

Figure 3.4: The network architecture of the DDPG algorithm with hierarchical policy
network

28

3 Methodology

which specific low-level policy network to use for generating the final action. It
concatenates the high-level action with the low-level action parameters to form
the complete action.

class PolicyNetwork(nn.Module):
def __init__(self, state_dim, num_low_level_policies, hidden_size...):

super(PolicyNetwork, self).__init__()
self.high_level_policy = HighLevelPolicy(state_dim, num_low_level_policies)
self.low_level_policies = nn.ModuleList()
self.low_level_policies.append(LowLevelPolicy(state_dim, 4, hidden_size))

for action comp placement
self.low_level_policies.append(LowLevelPolicy(state_dim, 4, hidden_size))

for action add node
self.low_level_policies.append(LowLevelPolicy(state_dim, 2, hidden_size))

for action delete node
self.low_level_policies.append(LowLevelPolicy(state_dim, 1, hidden_size))

for action flip comp layer
self.low_level_policies.append(LowLevelPolicy(state_dim, 1, hidden_size))

for action flip conn layer
self.num_low_level_policies = num_low_level_policies
self.epsilon = epsilon
def forward(self, state):

...
def get_action(self, state):

...

Inside the constructor:

• high_level_policy: This creates an instance of the HighLevelPolicy class, which
represents the high-level policy for decision-making based on the input state.

• low_level_policies: This creates a list of instances of the LowLevelPolicy class,
each representing a different low-level policy for specific actions (e.g., component
placement, adding node, deleting node, etc.).

• num_low_level_policies: This stores the total number of available low-level
policies.

• epsilon: This stores the exploration factor for action selection during training.

The forward method within the PolicyNetwork class is used for performing forward
propagation in a deep reinforcement learning model. It takes an input state and

29

3 Methodology

generates corresponding actions based on the trained neural network policies. Here’s a
breakdown of its main steps and functionalities:

• Preprocess Input State: This part converts the input state into a PyTorch tensor (if
it’s not already) and moves the state to the specified device (e.g., GPU).

• Determine Batch Size: This part determines the batch size as the first dimension
of the state tensor

• Generate High-Level Policy: This part processes the input state using the high-
level policy model (high_level_policy) to generate a high-level action. It also
applies the softmax operation to the high-level action to obtain probabilities of
different high-level choices (high_level_choice_prob).

• Generate Low-Level Policies: For each low-level policy, the corresponding low-
level policy model is used to generate parameters for the low-level actions.
The generated low-level action parameters are then concatenated into a tensor
low_level_action.

• Combine High-Level and Low-Level Actions: This part combines the high-level
action and the tensor of low-level action parameters to create an overall action
vector action.

• Format and Expand: If the action vector is not two-dimensional (i.e., contains
additional dimensions), this part of the code will expand each one-dimensional
tensor to two dimensions and concatenate them along the first dimension to create
a two-dimensional batch tensor action_batch_tensor. This step is necessary since
the forward method should be capable of dealing with both a single state or a
batch of input states when processing experience replay or calculating the loss
method.

• Return the Result: The final step of the method returns the generated action batch
tensor action_batch_tensor, which contains information about both high-level
and low-level actions.

The get_action method is responsible for generating an action based on the policy
network’s output. It also incorporates exploration by randomly selecting high-level
actions with a certain probability (epsilon).

3.3.4 Experience replay

The ReplayBuffer class is a key component in the DDPG algorithm that implements
an experience replay mechanism. Experience replay involves storing and randomly

30

3 Methodology

sampling past experiences to break the temporal correlations in the training data, which
improves the stability and efficiency of the learning process.

• __init__(self, capacity): This method initializes the replay buffer with a specified
capacity to store experiences.

• push(self, state, action, reward, next_state, done): This method adds a new
experience tuple to the buffer, containing the current state, action taken, reward
received, next state, and a flag indicating if the episode is done.

• sample(self, batch_size): This method randomly samples a batch of experiences
from the buffer. Returns a batch of states, actions, rewards, next states, and done
flags.

• __len__(self): This method simply returns the current size of the replay buffer.

The use of experience replay can have many advantages:

• Breaking Temporal Correlations: In a typical online learning setting, where an
agent learns from consecutive experiences, the data can be highly correlated
temporally. This correlation can lead to instability during training and hinder the
convergence of the learning algorithm. Experience replay breaks these temporal
correlations by storing a diverse set of past experiences and randomly sampling
from them. This helps in reducing the noise and variance in the learning process,
leading to more stable updates.

• Data Efficiency: Experience replay allows the agent to reuse past experiences
multiple times for learning. In complex environments, interactions with the envi-
ronment can be time-consuming and resource-intensive. By reusing experiences,
the agent can learn more from each interaction, making better use of the collected
data. This is especially valuable when the amount of real interaction with the
environment is limited or expensive.

• Sample Efficiency: Reinforcement learning algorithms, including DDPG, often
require a large number of samples to effectively learn good policies. Experience
replay helps make better use of collected samples by reusing them for multiple
updates. This can significantly improve the sample efficiency of the learning
algorithm, enabling the agent to learn a good policy with fewer interactions with
the environment.

• Mitigating Catastrophic Forgetting: Catastrophic forgetting occurs when the
agent forgets previously learned behaviors as it updates its policy based on new

31

3 Methodology

experiences. Experience replay can help mitigate this issue by interleaving updates
with diverse past experiences. This ensures that the agent retains knowledge
about different states and actions, preventing it from forgetting valuable lessons
learned earlier.

• Improving Exploration: During learning, an agent needs to explore the environ-
ment to discover the optimal policy. Experience replay can enhance exploration
by allowing the agent to revisit past states and learn from them. This is especially
helpful when the agent is encountering rare or challenging situations that are
critical for learning but might occur infrequently during online interaction.

• Gradient Stability: When training deep neural networks, gradient stability is
crucial for efficient learning. Experience replay provides a more stable gradient
signal for updating the network weights by avoiding rapid changes in the training
data distribution. This stability contributes to smoother and more consistent
updates during training.

Overall, experience replay plays a pivotal role in enhancing the stability, efficiency,
and effectiveness of reinforcement learning algorithms like DDPG. By breaking tempo-
ral correlations, improving data and sample efficiency, mitigating catastrophic forget-
ting, aiding exploration, and ensuring gradient stability, experience replay helps the
agent learn more effectively and converge to better policies in complex and dynamic
environments.

3.3.5 DDPG Nework

the DDPG class initializes the various components and hyperparameters of the DDPG al-
gorithm. It sets up the neural networks for the value method (value_net), and the policy
method (policy_net), as well as their corresponding target networks (target_value_net
and target_policy_net).

The target networks are initially set to match the parameters of the online networks.
The class also sets up the optimizers for both the value and policy networks, along with
their respective learning rates. The value_criterion is defined as the Mean Squared
Error (MSE) loss, which is commonly used in value method optimization.

Finally, an instance of the ReplayBuffer class is created as the experience replay buffer
to store and sample past experiences for training.

3.3.6 Target Networks

In the DDPG (Deep Deterministic Policy Gradient) algorithm, the use of target networks
is a crucial component to stabilize and improve the training process. Target networks

32

3 Methodology

serve two main purposes: to provide stable target values for the value method during
training and to mitigate the issues of overestimation of Q-values in the Q-learning
update. The use of target networks has the following benefits:

• Stable Target Values for Value Method: During the training of the value method
(critic network), the target values are calculated using the Bellman equation,
which involves estimating the expected future reward based on the next state and
the action chosen by the policy. However, using the same network to estimate
both current and future values can lead to a moving target problem, making the
training process unstable and slow. To address this issue, target networks are
introduced. The target value network (target_value_net) is used to calculate the
target Q-values during training, providing a more stable and consistent estimation
of future rewards. By decoupling the target network from the online network, the
learning process becomes more reliable and the convergence is improved.

• Mitigating Overestimation of Q-values: Traditional Q-learning algorithms, such
as DQN, can suffer from overestimation of Q-values due to the use of the max
operator in the Bellman equation. This overestimation can lead to unstable and
suboptimal training. In DDPG, by introducing target networks, the overestimation
issue is alleviated. The target network’s parameters are updated slowly with
a soft update mechanism, which means the target network follows a weighted
average of its parameters and the online network’s parameters. This soft update
process helps to smooth out the learning process and reduces the likelihood of
overestimating Q-values.

In summary, target networks in DDPG play a vital role in stabilizing the training
process by providing stable target values for the value method and mitigating the
overestimation of Q-values. By using target networks, the DDPG algorithm becomes
more robust, reliable, and capable of effectively learning optimal policies in continuous
action spaces.

3.3.7 Update Method DDPG

The ddpg_update method is responsible for updating the policy and value networks
in the DDPG algorithm using the sampled experiences from the replay buffer. This
method involves several steps to perform the necessary updates for both the policy
(actor) and value (critic) networks. Here are some main steps in the update method:

• Sample from the Replay Buffer: Random samples of states, actions, rewards,
next states, and done flags are drawn from the replay buffer. These samples are

33

3 Methodology

used to update the networks based on the experiences collected during previous
interactions with the environment.

• Compute Policy Loss: The policy loss is calculated based on the value network’s
evaluation of the current policy’s actions. For each batch element, the value
network is used to evaluate the value of the current state-action pair. The policy
loss is the negative mean of these value evaluations, aiming to maximize the
expected cumulative reward.

• Compute Expected Value and Value Loss: The expected value of the current state
is computed using the target policy network to select the next action and the
target value network to estimate the future value. The Bellman equation is used
to calculate the expected value, taking into account the reward and whether the
episode is done. The value loss is then computed using the mean squared error
between the value predicted by the value network and the expected value.

• Update Policy Network: The policy network (actor) is updated by performing
backpropagation through the policy loss and updating the policy network’s
parameters using the policy optimizer.

• Update Value Network: The value network (critic) is updated by performing back-
propagation through the value loss and updating the value network’s parameters
using the value optimizer.

• Soft Target Network Updates: To stabilize training and reduce target value
oscillations, a soft update is performed on the target value and policy networks.
The parameters of the target networks are updated as a weighted average of their
current values and the values of the online networks. This helps in providing
more stable and slowly changing target values.

The ddpg_update method serves as the core of the DDPG algorithm, responsible
for continuously updating the policy and value networks based on experiences stored
in the replay buffer. These updates are essential for learning an effective policy in
continuous action spaces and addressing the instability and overestimation challenges
often encountered in reinforcement learning algorithms.

3.3.8 Update Method PADDPG

The main difference between the update methods of the original DDPG (Deep Deter-
ministic Policy Gradient) algorithm and the PADDPG (Parameterized Action Deep
Deterministic Policy Gradient) algorithm lies in how they update the policy (actor)

34

3 Methodology

network. Here’s a comparison of the two update methods you provided to highlight
this difference:

Original DDPG Update Method:

def ddpg_update(self):
... (sample experiences and data preparation)
Compute TD target and value estimates
next_action = self.target_policy_net(next_state)
target_value = self.target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * self.gamma * target_value
expected_value = torch.clamp(expected_value, self.min_value, self.max_value)
Compute value and policy losses
value = self.value_net(state, action)
value_loss = (weights * self.value_criterion(value, expected_value.detach())).mean()
Update policy and value networks
... (calculate actor loss and update policy network)
... (update value network)
... (soft target network updates)
... (update priorities in replay buffer)
return value_loss

def ddpg_update(self):
... (sample experiences and data preparation)
Compute TD target and value estimates
next_action = self.target_policy_net(next_state)
target_value = self.target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * self.gamma * target_value
expected_value = torch.clamp(expected_value, self.min_value, self.max_value)
Compute value and policy losses
value = self.value_net(state, action)
value_loss = (weights * self.value_criterion(value, expected_value.detach())).mean()
Calculate gradients from critic and invert them
... (calculate Q_val and gradients)
... (invert gradients and combine with actor gradients)
... (calculate out_loss and apply backward on policy network)
Update policy network using out_loss
self.policy_optimizer.zero_grad()
out_loss.backward()
self.policy_optimizer.step()
Update value network

35

3 Methodology

... (update value network)
... (soft target network updates)
... (update priorities in replay buffer)
return value_loss, out_loss

The main difference is in how the policy (actor) network is updated in the PADDPG
update method compared to the original DDPG update method:

1. DDPG:

• In the original DDPG, the policy (actor) network is updated using a gradient
calculated from the value network’s loss with respect to the policy’s actions.

• The policy network update involves calculating an actor loss and applying
gradient descent on the policy network using the actor loss.

2. PADDPG:

• In the PADDPG, the policy (actor) network update is more intricate and
involves the concept of inverting gradients and combining them with the
actor gradients.

• The gradients from the critic (value network) are inverted and combined
with gradients from the actor network. These combined gradients are then
used to update the policy network.

• The process includes calculating Q-values, inverting gradients, and applying
gradient descent to the policy network.

The PADDPG update method brings a fresh perspective to policy network updates
by integrating inverted gradients, setting it apart from the conventional DDPG update
mechanism. This distinct update process is tailored to improve the learning and
convergence of the policy network within the framework of microfluidic chip design
optimization.

3.4 Training

The training process of the PADDPG algorithm involves iteratively interacting with the
environment, collecting experiences, and updating the policy and value networks using
the DDPG updates. This chapter describes the main training loop, hyperparameters,
and visualization of the training progress.

36

3 Methodology

3.4.1 Training Setup

The training process of the PADDPG algorithm is structured as follows:

• Environment Initialization: The custom LayoutEnv is instantiated with specific
parameters, such as the maximum number of components, ports per component,
connections, nodes per connection, and free ports. The environment is also
configured for visualization.

• Network Initialization: The policy and value networks are initialized with appro-
priate input and output dimensions, as well as hidden dimensions. The target
policy and value networks are also created as separate instances, and their initial
weights are synchronized with the online networks.

• Replay Buffer Setup: An instance of the ReplayBuffer class is created to store and
manage experiences for experience replay.

3.4.2 Training Loop

The main training loop consists of interacting with the environment, collecting experi-
ences, and updating the networks. The loop runs for a specified number of episodes.

• Episode Initialization: For each episode, the environment is reset, and the initial
state is obtained.

• Exploration Strategy: An exploration strategy is employed using an epsilon-
greedy approach. Initially, a higher epsilon value is used to encourage exploration,
and then it gradually decreases over episodes.

• Step through Environment: Within each episode, the agent interacts with the
environment for a maximum number of steps. The agent selects actions using the
policy network’s get_action method.

• Experience Collection and Replay: The agent collects experiences in the form
of (state, action, reward, next_state, done) tuples and stores them in the replay
buffer. If the buffer contains enough samples, a DDPG update is performed.

• DDPG Update: The DDPG update is executed by sampling a batch of experiences
from the replay buffer. The policy and value networks are updated based on
these experiences, aiming to improve the agent’s performance.

• Tracking Rewards: The episode reward is calculated as a weighted sum of the
current reward and the cumulative episode reward. This helps the agent consider
both immediate and long-term rewards.

37

3 Methodology

• Stopping Conditions: The episode terminates if the reward reduction criterion is
met. If the reward decreases too frequently, it indicates the agent’s inability to
make progress, and the episode is halted.

• Visualization and Saving: Periodically, the rewards are plotted to visualize the
training progress. The trained policy and value networks are also saved for future
use.

3.4.3 Hyperparameters

Several hyperparameters influence the training process of the PADDPG algorithm:

• max_episode: The maximum number of episodes for training.

• max_steps: The maximum number of steps per episode.

• batch_size: The size of the batch used for DDPG updates.

• gamma: The discount factor for future rewards.

• soft_tau: The factor for soft target network updates.

• epsilon: The exploration rate for the epsilon-greedy strategy.

• replay_buffer_size: The capacity of the replay buffer.

• value_lr: The learning rate for the value network optimizer.

• policy_lr: The learning rate for the policy network optimizer.

3.4.4 Training Visualization

The training progress is visualized by plotting the episode rewards, loss of value
network, and loss of policy network. A scatter plot is used to show individual episode
rewards, and a red dashed line represents the smoothed reward trend. The visualization
provides insights into the learning progress and convergence of the algorithm. The
illustration of these results is in the next chapter.

3.5 Model Convergence Strategies

During the training process of the proposed PADDPG algorithm for microfluidic chip
design, several strategies were employed to facilitate rapid convergence and enhance
the learning efficiency of the neural networks. These strategies were meticulously

38

3 Methodology

designed to optimize the exploration-exploitation trade-off and to mitigate potential
issues related to high-dimensional state spaces and complex reward landscapes. This
section outlines the specific approaches adopted to expedite the convergence of the
model.

3.5.1 Weighted Experience Replay

To enhance the learning process, a weighted experience replay mechanism was inte-
grated into the training pipeline [35]. By assigning different weights to experiences in
the replay buffer, the algorithm prioritizes samples that are likely to provide valuable
learning signals. This approach effectively guided the neural networks towards focusing
on important experiences, thereby accelerating the convergence rate.

3.5.2 Principal Component Analysis (PCA) for Dimensionality Reduction

The inherent complexity of microfluidic chip design spaces often presents challenges
in learning from high-dimensional state representations. In reinforcement learning
a common solution is feature engineering [36, 37]. Additionally, Principal Compo-
nent Analysis (PCA) was applied as a feature engineering technique to reduce the
dimensionality of the input state space [38]. By projecting the state vectors onto a
lower-dimensional subspace capturing the most informative components, the neural
networks were able to process more informative inputs, leading to improved learning
efficiency.

3.5.3 Adaptive Learning Rate Scheduling

The learning rate is a crucial hyperparameter that significantly influences the opti-
mization process. In this endeavor, a dynamic learning rate schedule was introduced,
wherein the learning rate is gradually reduced over successive iterations [39]. This
tailored learning rate adaptation facilitated a smoother optimization trajectory, prevent-
ing overshooting and ensuring stable convergence even in challenging optimization
landscapes.

3.5.4 Iterative Exploration-Decay Strategy

Balancing exploration and exploitation is a fundamental challenge in reinforcement
learning. To address this, an iterative exploration-decay strategy was often implemented,
wherein the exploration rate (epsilon) decreases progressively with the number of
iterations [40, 41]. This strategy allowed the algorithm to transition from a more

39

3 Methodology

exploratory behavior in the early stages of training to a more focused, exploitation-
driven approach as the training progressed, ultimately aiding in swift convergence.

3.5.5 Network Architecture Adaptation

The architecture of neural networks plays a pivotal role in determining their repre-
sentational power. In pursuit of convergence optimization, variations in the depth
and complexity of the neural network architectures were explored [42, 43]. By exper-
imenting with different network depths and layer configurations, the algorithm was
fine-tuned to better capture the underlying dynamics of the microfluidic chip design
process.

3.5.6 Neural Network Parameter Normalization

To stabilize and accelerate the convergence process, the parameters of the neural
networks were subjected to normalization [44]. This normalization procedure standard-
ized the parameter ranges, preventing issues associated with vanishing or exploding
gradients. Consequently, the training dynamics were improved, leading to a more
efficient convergence process.

Incorporating these model convergence strategies collectively has contributed to
a substantial enhancement in the efficiency and stability of the proposed PADDPG
algorithm during the training phase. By thoughtfully tailoring these strategies to
the unique challenges posed by microfluidic chip design optimization, the algorithm
demonstrated improved convergence rates, facilitated learning in high-dimensional
spaces, and effectively harnessed the power of deep reinforcement learning to achieve
optimal chip designs.

40

4 Result and Discussion

In this chapter, the outcomes of applying the PADDPG algorithm to the microfluidic
chip design optimization problem will be presented and analyzed. The discussion will
delve into the implications of the results, drawing connections to the key strategies
employed in the model and their impact on convergence, performance, and efficiency.

4.1 Performance Metrics and Evaluation

The introduction of performance metrics is a common way of evaluating the perfor-
mance of trained models or designed microfluidic devices [45, 46]. This section will
begin by introducing the performance metrics employed to evaluate the effectiveness of
the PADDPG algorithm in microfluidic chip design optimization. These metrics may
encompass quantitative measures such as chip size, connection length, component over-
lap, and other relevant design parameters. Furthermore, a comprehensive comparison
with existing manual and heuristic-driven approaches will be conducted to showcase
the advantages of the PADDPG-generated designs in terms of efficiency and optimality.

• Chip Size: One fundamental metric to evaluate is the size of the microfluidic chip.
The compactness of the chip layout, as determined by the PADDPG algorithm,
will be compared to manual designs. The metric will provide insights into how
well the algorithm optimizes the placement of components, leading to efficient
space utilization and potential cost savings in fabrication.

• Connection Length: The length of fluidic connections between various compo-
nents on the chip is another pivotal indicator of design quality. Total connection
length is also a very common criterion applied in many routing optimization-
related problems [9, 13, 29, 47]. A comparison with heuristic and manual designs
will highlight the algorithm’s prowess in optimizing fluidic paths.

• Component Overlap: Overlap among microfluidic components can result in
mutual interference between the components and fluidic pathways, leading
to compromised chip functionality and rendering the chip non-operational as
intended, due to potential cross-contamination and disruption of fluid flow
channels. The algorithm’s ability to mitigate component overlap will be assessed

41

4 Result and Discussion

using this metric, showcasing its potential to generate layouts that ensure isolation
and improve experimental accuracy.

• Computational Efficiency: The execution time required for the PADDPG algo-
rithm to converge to optimal will be compared with manual design processes.
The computational efficiency of the PADDPG model will be illustrated as the
computational time between the network’s input and output using a GPU with
12GB VRAM.

4.1.1 Experimental Procedure

The experimental process aims to rigorously assess the performance of the PADDPG
algorithm in the context of microfluidic chip design optimization. To achieve this, a
structured experimentation framework will be established, involving the utilization of
an abstract microfluidic chip environment introduced in Chapter 3. This environment
will facilitate the generation of diverse initial input parameters, each associated with
distinct topological structures.

The experimental procedure unfolds as follows:

Generation of Initial Parameters

In this stage, the abstract microfluidic chip environment will randomly generate initial
input parameters characterized by varying topological structures. These parameters
will serve as the starting point for both the neural network-based PADDPG algorithm
and manual design conducted by human experts.

Application of PADDPG and Manual Design

The generated initial parameters will undergo a series of five predefined operations,
as dictated by the microfluidic chip environment. Both the PADDPG algorithm and
human experts will independently apply these operations to the input parameters.
During this process, various performance metrics, as described in Section 6.1, will be
meticulously recorded and documented for subsequent comparative analysis.

Validation and Termination Criteria

During the validation phase, an iterative approach will be employed to update the
rewards associated with new actions. Specifically, a threshold value for reward updates
will be established, and if the cumulative rewards obtained from the most recent five
actions fall below this threshold, the ongoing episode will be concluded. This validation

42

4 Result and Discussion

mechanism ensures that the algorithm’s actions align with the desired optimization
objectives.

Network Operation and Policy Network Updates

When the neural network-based PADDPG algorithm is deployed to manipulate the
microfluidic chip environment, solely the policy network will be invoked to produce
action parameters. Importantly, during this operational phase, the parameters of the
neural network will remain unaltered, effectively preserving the learned policy.

Table 4.1: Table of experiment results in performance metircs.
pins on comp.
#(p_1, p_2,... p_n)

model S(mm^2) L(mm) T(s)

(5, 2, 3) Manual 282.3 168.3 >60
DADDPG 257.1 176.2 0.7050

(3, 3, 4) Manual 356.1 275.1 >60
DADDPG 321.0 260.0 0.6885

(2, 2, 3) Manual 437.9 332.2 >60
DADDPG 403.3 301.3 0.5959

(5, 4, 3, 2) Manual 512.2 575.4 >240
DADDPG 480.1 585.6 1.8013

(2, 3, 3, 3) Manual 339.6 461.1 >180
DADDPG 302.1 497.2 1.7052

(4, 4, 5, 5) Manual 617.5 832.3 >240
DADDPG 540.3 776.8 1.788

(2, 2, 3, 5, 4) Manual 423.6 621.5 >300
DADDPG 391.7 623.7 2.021

(5, 5, 3, 4, 4) Manual 882.4 963.6 >600
DADDPG 601.1 1162.5 2.785

As in Table 4.1, PADDPG impressively reduces chip area through systematic explo-
ration and component placement, enhancing space utilization. Through comparison,
it is found that the layout generated by PADDPG can often make better use of the
double-layer characteristics of the chip to improve the area utilization efficiency of the
chip. PADDPG’s connection length optimization varies across topologies, occasionally
rivaling manual design. Human intuition plays a role in achieving efficient connections.
Another noteworthy aspect is the computational efficiency of the PADDPG algorithm.
Compared to the significant time investment required for model training (spanning

43

4 Result and Discussion

several hours or even days), the time taken by a well-trained model to generate action
sequences and optimize the topology of input microfluidic chips is remarkably short,
often only a matter of seconds. This efficiency enhancement is pronounced when
contrasted with manual design processes.

4.2 Convergence Analysis

In this section, we delve into the convergence analysis of the PADDPG algorithm. To
comprehensively assess the impact of different convergence strategies on the training
process, a series of experimental steps were carefully designed. These steps involved
the systematic inclusion or removal of the previously mentioned convergence strategies.
By conducting these experiments, we aimed to illuminate how each strategy contributes
to the convergence behavior of the PADDPG network during the training phase.

4.2.1 Convergence Metrics

To quantify the convergence performance of PADDPG under each experimental setup,
we employed several key metrics, including:

• Training Curve Analysis: Monitoring the progression of the training curve over
episodes to observe convergence trends.

• Reward Convergence: Analyzing the stability and consistency of the cumulative
rewards obtained by the network during training.

4.2.2 Experimental Design and Evaluation

The convergence analysis experiments were structured as follows:

Baseline Experiment

The PADDPG algorithm was trained with all specific convergence strategies incorpo-
rated. This baseline served as a reference for evaluating the effectiveness of subsequent
strategies. Different from the general baseline, where all the convergence strategies
are not used, and then add each strategy exclusively, now the comparison with the
baseline adopts the method of subtracting. Because if all the convergence strategies
are not used, it is difficult for the neural network to converge, making the comparison
results not informative.

44

4 Result and Discussion

Figure 4.1: Rewards over training episode baseline.

Figure 4.2: Loss of policy network over training episode baseline.

45

4 Result and Discussion

Figure 4.3: Loss of value network over training episode baseline.

From Figure 4.1, Figure 4.2 and Figure 4.3, several observations can be made. The
blue hollow points represent individual training samples, while the red dashed lines
represent the smoothed average values, illustrating the overall trends.

The value network converges earliest, with its loss reaching a low value after ap-
proximately 200 training iterations. Interestingly, the different convergence strategies
employed in this experiment have minimal impact on the convergence behavior of the
value network. This outcome can be attributed to the inherent ease of convergence of
the value network itself. Consequently, for subsequent comparisons, the "loss of value
net" will be excluded from consideration.

Furthermore, the behavior of the reward and the loss of the policy network are
notable. During the initial 200 iterations, both the reward and the loss of the policy
network exhibit rapid convergence. However, after around 6,000 iterations, the reward
continues to display significant variance, and the loss of the policy network stabilizes
around a non-zero constant value rather than converging to zero. This phenomenon
is rooted in the fact that each training instance involves the generation of a randomly
initialized topology, resulting in varying complexities. The sustained non-convergence
of the loss of the policy network indicates that the agent is continually learning and
adapting to the changing topologies. Interestingly, a gradual increase in the trend of
the reward is noticeable, accompanied by an enhanced level of stability. This implies
that the learning process is gradually improving, and the agent is making progress
in achieving more favorable outcomes. The results collectively highlight the intricate

46

4 Result and Discussion

interplay between convergence, randomness in topology generation, and the agent’s
learning dynamics within the microfluidic chip design context.

Weighted Experience Replay

The influence of weighted experience replay was assessed by training the network with
weighted experience replay and experience with equal weights. In the subsequent

Figure 4.4: Reward over training episode baseline and without weighted experience
replay.

analysis, a comparison is made between the baseline and the variant where weighted
experience replay is removed, focusing on the variation of reward across different
episodes. In Figure 4.4, the blue hollow points represent individual training samples
from the baseline, while the red dashed line signifies the average value of rewards
obtained from baseline training. Additionally, the yellow hollow points correspond to
individual training samples after the removal of weighted experience replay, and the
green solid line represents the average reward values obtained from training without
this strategy.

Observing the graph, it becomes evident that the removal of weighted experience
replay results in slower convergence of the neural network. This phenomenon can
be attributed to the influential role of weighted experience replay in prioritizing and
emphasizing the learning from experiences that have a significant impact. When this
strategy is removed, the learning process becomes less focused on crucial experiences,

47

4 Result and Discussion

leading to a gradual and delayed convergence.
Weighted experience replay serves as a mechanism to guide the learning process by

assigning higher importance to experiences that provide valuable insights and knowl-
edge. By selectively emphasizing certain experiences, the neural network can adapt
more effectively to complex and critical scenarios, ultimately accelerating convergence.
The observed difference in convergence rates between the baseline and the variant
without weighted experience replay underscores the importance of this strategy in
facilitating more efficient learning and achieving better outcomes in microfluidic chip
design.

PCA-based Feature Engineering

To understand the impact of dimensionality reduction through PCA, the algorithm
was trained with and without PCA-based state representations. Figure 4.5 shows the

Figure 4.5: Reward over training episode baseline and without PCA.

comparison involves the baseline and the variant without the application of PCA-based
feature engineering, focusing on the reward variations across episodes. Similar to the
representation of the weighted experience replay comparison, the color scheme for
data points remains consistent: red for the baseline, and green for the variant without
the convergence strategy. In this context, the absence of PCA-based dimensionality
reduction is reflected.

Upon examination of the graph, it becomes evident that the reward curve for the

48

4 Result and Discussion

variant without PCA exhibits slightly faster convergence compared to the baseline,
requiring fewer iterations. However, the actual benefit brought by PCA extends beyond
convergence speed. PCA introduces a reduction in the complexity of the neural
network, resulting in significantly reduced iteration time during training. This dynamic
represents a trade-off between network performance and computational efficiency.

By employing PCA, the network’s ability to capture relevant patterns and features
is preserved, even though it may converge slightly faster without PCA. Moreover, the
computational advantage gained from reduced iteration time is noteworthy. When
training resources are abundant or the computational power of the training environment
is substantial, opting to exclude PCA-based feature engineering might be a viable
choice. This trade-off decision allows practitioners to tailor their approach based on the
availability of resources and their specific training objectives.

To conclude, the comparison highlights the impact of PCA-based feature engineering
on convergence speed and computational efficiency. While the absence of PCA may
lead to marginally faster convergence, its incorporation brings about the benefits of
simplified network architecture and reduced training time. The decision to include
or exclude PCA should be made considering the available resources and the desired
trade-off between network performance and training efficiency.

Dynamic Learning Rate

The effect of dynamically adjusting the learning rate was explored by enabling and
disabling this strategy during training. In the context of the dynamic learning rate
comparison, the focus shifts to the behavior of the loss of the policy network. Similar
to the previous comparisons, the analysis involves a comparison between the baseline
and the variant with the Dynamic Learning Rate convergence strategy. In this case, the
color scheme stays the same: red for baseline, and green for the variant without the
convergence strategy.

Figure 4.6 depicts the loss of the policy network and provides crucial insights into
the impact of dynamic learning rate adjustments. Observations from the graph reveal
that maintaining a fixed learning rate can lead to undesirable oscillations in the loss
curve. These oscillations manifest as fluctuations in the loss values over successive
iterations, resulting in a lack of consistent and smooth convergence.

The adverse effects of oscillating loss are multifaceted. First and foremost, such
fluctuations signify instability in the training process. The inability to converge steadily
impedes the optimization process and could potentially result in prolonged training
times. Moreover, oscillations could indicate that the learning rate is too high, causing
the optimization process to overshoot the optimal parameter values and preventing
the network from converging effectively. This phenomenon is particularly concerning

49

4 Result and Discussion

Figure 4.6: Loss of policy network over training episode baseline and without dynamic
learning rate.

because it hinders the network’s ability to learn and generalize patterns from the
training data.

Furthermore, oscillating loss values can hinder the learning dynamics of the policy
network. The erratic updates to the network’s parameters can lead to a lack of coherent
gradient directions, thereby slowing down the convergence process. The network might
struggle to navigate toward the optimal parameter space due to the unpredictable
changes in loss.

Decaying Exploration Rate

The decaying exploration rate strategy was individually incorporated to analyze its
impact on convergence. In the subsequent analysis, we shift our attention to comparing
the effects of a decreasing exploration rate (baseline) with a fixed exploration rate on
the loss of the policy network. As previously, Figure 4.7 differentiates between the
baseline (red) and the fixed exploration rate variant (green).

Upon observing the graph detailing the loss of the policy network, a noteworthy
trend becomes evident: During the early iterations, the loss associated with the fixed
exploration rate remains notably lower than that of the decreasing exploration rate.
This observation raises intriguing questions about the underlying dynamics.

The phenomenon of lower loss with a fixed exploration rate at initial iterations

50

4 Result and Discussion

Figure 4.7: Loss of policy network over training episode baseline and without decaying
exploration rate.

can be attributed to the exploration-exploitation trade-off inherent in reinforcement
learning. A fixed exploration rate ensures a consistent and steady level of exploration
throughout the training process. As a result, during the initial stages of training,
when the network’s parameters are relatively far from optimal values, a higher level of
exploration aids in discovering a broader range of state-action pairs. This enhanced
exploration can lead to more efficient policy updates, contributing to lower policy loss
in the short term.

However, as training progresses and the policy network becomes increasingly refined,
the benefits of exploration diminish. At this stage, the network’s focus shifts from
exploration to exploitation—i.e., refining its learned policy based on the accumulated
experience. The decreasing exploration rate variant excels in this aspect. By gradually
reducing the exploration rate over time, the network is guided to rely more on its
learned policy, favoring exploitation. This strategy allows the network to converge
more effectively toward a robust and optimal policy.

From the analysis of Figure 4.7, we can observe the effect the decreasing exploration
rate strategy brings to the training process. This advantage lies in its ability to strike
a balance between exploration and exploitation. While a fixed exploration rate may
provide early gains in terms of lower loss due to consistent exploration, it lacks the
adaptability to transition smoothly to exploitation as the policy network matures. The
decreasing exploration rate strategy addresses this limitation by gradually shifting

51

4 Result and Discussion

focus towards exploitation, enabling the network to converge to a higher-quality policy
throughout training. The early advantage of a fixed rate in terms of lower policy loss is
offset by its reduced adaptability. The decreasing exploration rate strategy demonstrates
its strength in enabling smoother transitions between exploration and exploitation,
ultimately leading to more effective policy convergence.

Network Architecture Alteration

The algorithm’s training performance was evaluated by modifying the architecture
of the neural network. The investigation focuses on the low-level policy network,
with a comparison between a baseline configuration consisting of 7 layers and an
alternative configuration with a reduced depth of 3 layers. As before, the color-coded
representation aids in distinguishing the baseline (red) and the altered architecture
(green) for clarity.

Upon examining the reward-episode graph, a discernible contrast emerges between
the two architectural configurations. The baseline network, comprising 7 layers, exhibits
a clear convergence pattern, steadily improving the reward across episodes. In contrast,
the network with a shallower architecture of 3 layers encounters considerable difficulty
in achieving convergence.

The primary rationale behind this phenomenon lies in the complexity of representa-
tion that each architecture can capture. Deeper networks possess a higher capacity to
model intricate relationships within the environment and learn more intricate decision-
making policies. In the context of our PADDPG algorithm, a 7-layer low-level policy
network is adept at encoding the complexities inherent in microfluidic chip design,
facilitating accurate learning and effective policy convergence.

Conversely, reducing the network’s depth to 3 layers leads to a constrained represen-
tational capacity. The diminished ability to capture intricate design nuances hampers
the network’s learning process. Consequently, the shallower network struggles to
comprehend and generalize from the vast and intricate design space of microfluidic
configurations. The resultant difficulty in capturing subtle design interactions and
optimal decision-making policies renders the convergence process challenging.

In simple terms, the difference in how quickly the two network designs learn and
improve highlights the importance of the network’s depth in helping the learning
process and policy improvement within the PADDPG framework. While the deeper
network accommodates the complexity of the microfluidic design environment, en-
abling accurate policy optimization, the shallower architecture proves inadequate in
capturing the intricate design space, hindering its ability to converge.

52

4 Result and Discussion

Figure 4.8: Reward over training episode baseline and change the layer number of
low-level policy from 7 to 3.

Parameter Normalization

The training process was conducted with and without parameter normalization to
gauge its contribution.

In the final part of our analysis, we turn our attention to the effect of parameter
normalization on the convergence performance of the PADDPG algorithm. Upon
incorporating parameter normalization into the neural network training process, a
notable enhancement in convergence behavior becomes evident. This phenomenon
can be attributed to the normalization’s ability to stabilize and accelerate the learning
process, thereby facilitating more efficient policy optimization.

Parameter normalization entails scaling the network’s input features to a common
range, ensuring that they possess similar magnitudes. This normalization step holds
substantial benefits for training deep neural networks. Firstly, it mitigates the notorious
vanishing and exploding gradient problems that often plague deep networks during
training. By maintaining consistent input magnitudes, parameter updates are controlled,
preventing overly large or tiny gradients that can impede learning and cause slow
convergence.

Moreover, parameter normalization enhances the network’s ability to learn across
various layers. It ensures that all layers receive input within a similar range, thereby
preventing any specific layer from becoming saturated or underutilized due to extreme

53

4 Result and Discussion

Figure 4.9: Reward over training episode baseline and without parameter normaliza-
tion.

input magnitudes. This balanced input distribution allows each layer to contribute
effectively to the learning process, facilitating the propagation of useful gradients
throughout the network.

The benefits of parameter normalization are particularly pronounced in the con-
text of the PADDPG algorithm for microfluidic chip design. The complex and high-
dimensional design space of microfluidic configurations can lead to challenges in
learning and policy optimization. The introduction of parameter normalization helps
alleviate these challenges by promoting smoother and more efficient gradient updates.

Furthermore, parameter normalization has been empirically shown to improve the
generalization ability of neural networks. This aspect is crucial for the PADDPG
algorithm, as it enhances the network’s capability to generalize learned policies across
a wide range of microfluidic design scenarios. By promoting better generalization,
parameter normalization aids the network in converging to effective policies that yield
superior performance on unseen design tasks.

4.3 Design Visualization and Interpretation

This section aims to provide insights into how the algorithm’s policies manifest as
tangible chip layouts, emphasizing the visualization of components, connections, and
layers.

54

4 Result and Discussion

The visualization of a microfluidic chip layout involves the depiction of its various
elements using distinct graphical representations. Rectangles symbolize components,
where solid red circles on components represent ports, and solid green circles represent
freeports, indicating the points of connection between the chip and external systems.
Straight or segmented lines connecting ports and freeports signify connections or
channels facilitating the flow of fluids or substances. Notably, due to the hierarchical
nature of the model, connections, and components of different layers are color-coded:
blue for bottom-layer components, red for bottom-layer connections, green for top-layer
components, and yellow for top-layer connections.

Figure 4.10, Figure 4.12 and Figure 4.14 illustrate an initial microfluidic chip layout
generated randomly by the environment. This layout comprises three components, with
two larger components partially overlapping due to their similar sizes. Two freeports
are depicted as stacked green circles, denoting their identical initial positions. The
positions of ports (red circles) are fixed relative to the components, and the connection
topology remains consistent. The outermost cyan dashed line represents the chip
boundary, ensuring a safe distance from all components, connections, and ports.

Following this visualization, the trained PADDPG model is introduced to optimize
the initial layout. Only the policy network is utilized for action generation, while
the simulation environment updates the layout based on the generated actions. This
iterative process continues until a convergence criterion is met. Figure 4.11, Figure 4.13
and Figure 4.15 showcase the optimized layout achieved through this process. Notably,
the optimized layout eliminates stacking penalties, minimizing both the overall com-
ponent volume and connection length while preserving the proportions of individual
components and the connection topology.

The actions of the policy network are logged, uncovering the sequence of steps that
contributed to layout optimization. This sequence often includes actions like adjusting
component layers. The resulting optimized layout can be enhanced by including specific
component details, such as dimensions (e.g., mixer size), that the neural network doesn’t
optimize. This extra information enables the generation of JSON or STL format files,
suitable for the fabrication process.

55

4 Result and Discussion

Figure 4.10: Example 1: Layout generated randomly.

56

4 Result and Discussion

Figure 4.11: Example 1: Layout after optimization by policy network.

57

4 Result and Discussion

Figure 4.12: Example 3: Layout generated randomly.

58

4 Result and Discussion

Figure 4.13: Example 3: Layout after optimization by policy network.

59

4 Result and Discussion

Figure 4.14: Example 3: Layout generated randomly.

60

4 Result and Discussion

Figure 4.15: Example 3: Layout after optimization by policy network.

61

5 Summery and Outlook

5.1 Contributions

This research contributes by amalgamating interdisciplinary fields, overcoming data
scarcity challenges through RL, simplifying the design process, introducing innovative
algorithmic adaptations, and providing a versatile format for seamless integration into
microfluidic chip design workflows. These contributions collectively pave the way for
enhanced design automation and optimization within the realm of microfluidic chip
design.

• Integration of Diverse Fields: This research bridges two promising domains,
namely microfluidic chip design and deep reinforcement learning (RL), to ad-
dress the scarcity of previous work that applies deep learning to the holistic
layout design of microfluidic chips. By combining these disciplines, a novel
and interdisciplinary approach emerges, paving the way for innovative design
automation.

• Overcoming Data Scarcity with RL: Addressing the challenge of limited available
data in microfluidic chip design, this study leverages RL to train an agent capable
of autonomously optimizing microfluidic chip layouts. The custom reward
formulation empowers the agent to learn design optimization strategies, allowing
for adaptation to diverse design requirements by adjusting factors or modifying
reward weights.

• Simplification of Complex Design Process: Microfluidic chip design is inherently
intricate, involving a multitude of complex operations. This research simplifies
the process by abstracting and simulating the chip layout as a combination of
geometric shapes. By reducing the design space to five distinct operations, the
complexity is significantly diminished, facilitating more effective exploration.

• Hybrid Action Space DDPG Algorithm: The utilization of a hybrid action space
within the Deep Deterministic Policy Gradient (DDPG) algorithm elegantly ad-
dresses the challenge posed by the mix of discrete and continuous design actions.
Through thoughtful algorithmic adaptations and exploration of various strategies,
the training process is optimized to effectively navigate this complex action space.

62

5 Summery and Outlook

• Universal JSON-based Input and Output: Both the input and output of the
proposed model can be seamlessly transformed into a universal JSON format.
This design choice facilitates integration into an end-to-end microfluidic chip
design generation pipeline. The resulting layouts, enriched with component
details, can be conveniently used for fabrication or further refinement.

5.2 Limitations and Future Work

While the proposed algorithm demonstrates promising results, several limitations and
opportunities for future research are worth noting:

• Algorithmic Complexity: The complexity of the algorithm could be further
enhanced to handle cases involving an excessive number of components or
highly intricate topologies in microfluidic chip designs. Exploring techniques for
optimizing computational efficiency and scalability remains an important avenue
for future investigation.

• Limited Feature Consideration: Currently, the algorithm predominantly focuses
on the size characteristics of microfluidic chips, neglecting other crucial attributes
such as flow rate. Future iterations could integrate additional features into
the reward function, enabling the optimization of more comprehensive design
objectives.

There are also some promising future directions one might continue the work:

• Exploring Advanced DRL Architectures: Investigating more intricate Deep Rein-
forcement Learning (DRL) architectures, coupled with enhanced computational
resources, holds potential for optimizing training efficiency and achieving even
more sophisticated design automation.

• Combining Supervised Learning: As the dataset of microfluidic chip design
examples expands, a hybrid approach involving supervised learning could be
explored. This combination could harness the strengths of both supervised
and reinforcement learning, potentially leading to accelerated convergence and
improved design outcomes.

• Incorporating Flow Rate Optimization: Flow Rate is a criterion used in many
microfluidic design optimization problems [48, 49]. Incorporating flow rate
considerations into the RL reward function would offer a more comprehensive
and realistic design perspective. This addition could result in microfluidic chip
designs that not only minimize size but also optimize fluid dynamics performance.

63

5 Summery and Outlook

• Validation with Simulation and Fabrication: The proposed designs could be rig-
orously validated using advanced simulation techniques such as Computational
Fluid Dynamics (CFD) simulations or by physically fabricating the automatically
generated chip layouts using 3D printing [50, 51, 52]. This validation process
would provide deeper insights into the practical feasibility and performance of
the designed microfluidic chips.

5.3 Summary

This research commenced with a thorough Literature Review, uncovering the complexi-
ties of microfluidic chip design. Existing challenges were carefully examined, leading
to the exploration of innovative solutions. This paper then discusses the creation
of a microfluidic chip environment abstraction. This environment was designed to
encompass the intricate elements of chip components, their connections, and layers.
This abstraction provided the foundation for the training of an RL agent using the
PADDPG algorithm.

As the research progressed, attention shifted to convergence strategies integrated into
the training process. These strategies, such as weighted experience replay, PCA-based
feature engineering, dynamic learning rate, exploration rate decay, network architecture
adjustments, and parameter normalization, underwent thorough analysis and testing.
Each strategy’s contribution to improved convergence and the algorithm’s effectiveness
was meticulously explored, yielding detailed insights into their combined influence. The
research reached its conclusion through Experiments and Validation. Thorough experi-
mentation and careful validation highlighted the practicality of PADDPG. Quantitative
measures like chip size, connection length, and computational time were compared
between PADDPG-generated designs and manually crafted ones. The convergence
analysis revealed how the combined strategies affected training and results.

In summary, this paper presents a method that applies DRL in parameterized action
space to the field of microfluidic chip design automation. On one hand, the paper
introduces a construction approach for abstracting the microfluidic chip environment,
employing simple geometric shapes to represent chip components and connections,
facilitating interaction between the environment and the RL agent. On the other hand,
based on DDPG, the paper modifies the originally fully connected policy network into
a structured network, with a high-level policy network determining action types and
a lower-level network specifying action parameters. This design effectively addresses
the challenge of mixed action spaces (both discrete and continuous), and validation
confirms that the trained network can interact reasonably with the abstract environment,
swiftly producing optimized layouts under conditions like overlap and chip size. These

64

5 Summery and Outlook

layouts can be output in JSON format for generating STL files using Flui3D, and
subsequently, the microfluidic chip can be 3D printed. This work employs reinforcement
learning to overcome the challenge of limited microfluidic chip samples and uses a well-
designed neural network structure to tackle mixed action spaces, yielding promising
results. Future work can build upon this foundation by adding or modifying reward
conditions, and exploring different deep-learning algorithms and strategies, which
holds the potential for achieving even better outcomes.

65

List of Figures

3.1 DRL model in the end-to-end microfluidic design and fabrication chain. 10
3.2 Common types of microfluidic components from Flui3D [3]. 12
3.3 The network architecture of the DDPG algorithm [34]. 25
3.4 The network architecture of the DDPG algorithm with hierarchical policy

network . 28

4.1 Rewards over training episode baseline. 45
4.2 Loss of policy network over training episode baseline. 45
4.3 Loss of value network over training episode baseline. 46
4.4 Reward over training episode baseline and without weighted experience

replay. 47
4.5 Reward over training episode baseline and without PCA. 48
4.6 Loss of policy network over training episode baseline and without dy-

namic learning rate. 50
4.7 Loss of policy network over training episode baseline and without de-

caying exploration rate. 51
4.8 Reward over training episode baseline and change the layer number of

low-level policy from 7 to 3. 53
4.9 Reward over training episode baseline and without parameter normal-

ization. 54
4.10 Example 1: Layout generated randomly. 56
4.11 Example 1: Layout after optimization by policy network. 57
4.12 Example 3: Layout generated randomly. 58
4.13 Example 3: Layout after optimization by policy network. 59
4.14 Example 3: Layout generated randomly. 60
4.15 Example 3: Layout after optimization by policy network. 61

66

List of Tables

4.1 Table of experiment results in performance metircs 43

67

Bibliography

[1] G. M. Whitesides. “The origins and the future of microfluidics.” In: nature 442.7101
(2006), pp. 368–373.

[2] K. Arulkumaran, A. Cully, and J. Togelius. “Alphastar: An evolutionary com-
putation perspective.” In: Proceedings of the genetic and evolutionary computation
conference companion. 2019, pp. 314–315.

[3] Y. Zhang, T.-M. Tseng, and U. Schlichtmann. “Eine interaktive Design-Plattform
für 3D-gedruckte mehrlagige Mikrofluidikchips mit Design-for-Manufacturing-
Funktion.” In: VDE/VDI-GMM MikroSystemTechnik Kongress. Oct. 2023.

[4] E. E. Tsur. “Computer-aided design of microfluidic circuits.” In: Annual review of
biomedical engineering 22 (2020), pp. 285–307.

[5] W. Thies, J. P. Urbanski, T. Thorsen, and S. Amarasinghe. “Abstraction layers for
scalable microfluidic biocomputing.” In: Natural Computing 7 (2008), pp. 255–275.

[6] H. Huang. “Fluigi: An end-to-end software workflow for microfluidic design.”
PhD thesis. Boston University, 2016.

[7] D. A. Gatenby and G. Foo. “Design for X (DFX): key to competitive, profitable
products.” In: AT&T Technical Journal 69.3 (1990), pp. 2–13.

[8] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho. “Storage and caching: Synthesis
of flow-based microfluidic biochips.” In: IEEE Design & Test 32.6 (2015), pp. 69–75.

[9] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty. “Control-layer routing and
control-pin minimization for flow-based microfluidic biochips.” In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 36.1 (2016),
pp. 55–68.

[10] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. Lee, and T.-Y. Ho. “An efficient bi-criteria flow
channel routing algorithm for flow-based microfluidic biochips.” In: Proceedings
of the 51st Annual Design Automation Conference. 2014, pp. 1–6.

[11] K. Yang, H. Yao, T.-Y. Ho, K. Xin, and Y. Cai. “AARF: Any-angle routing for
flow-based microfluidic biochips.” In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 37.12 (2018), pp. 3042–3055.

68

Bibliography

[12] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai. “Physical co-design of flow
and control layers for flow-based microfluidic biochips.” In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37.6 (2017), pp. 1157–1170.

[13] T.-M. Tseng, M. Li, B. Li, T.-Y. Ho, and U. Schlichtmann. “Columba: Co-layout
synthesis for continuous-flow microfluidic biochips.” In: Proceedings of the 53rd
Annual Design Automation Conference. 2016, pp. 1–6.

[14] M. Li, T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann. “Component-oriented
high-level synthesis for continuous-flow microfluidics considering hybrid-scheduling.”
In: Proceedings of the 54th Annual Design Automation Conference 2017. 2017, pp. 1–6.

[15] B. Crites, R. Sanka, J. Lippai, J. McDaniel, P. Brisk, and D. Densmore. “Parch-
Mint: a microfluidics benchmark suite.” In: 2018 IEEE International Symposium on
Workload Characterization (IISWC). IEEE. 2018, pp. 78–79.

[16] R. Sanka, J. Lippai, D. Samarasekera, S. Nemsick, and D. Densmore. “3DµF—interactive
design environment for continuous flow microfluidic devices.” In: vol. 9. 2019,
p. 9166.

[17] M. Roderick, J. MacGlashan, and S. Tellex. “Implementing the deep q-network.”
In: arXiv preprint arXiv:1711.07478 (2017).

[18] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust region pol-
icy optimization.” In: International conference on machine learning. PMLR. 2015,
pp. 1889–1897.

[19] V. Konda and J. Tsitsiklis. “Actor-critic algorithms.” In: Advances in neural informa-
tion processing systems 12 (1999).

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. “Asynchronous methods for deep reinforcement learning.” In:
International conference on machine learning. PMLR. 2016, pp. 1928–1937.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal policy
optimization algorithms.” In: arXiv preprint arXiv:1707.06347 (2017).

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. “Continuous control with deep reinforcement learning.” In: arXiv
preprint arXiv:1509.02971 (2015).

[23] M. Hausknecht and P. Stone. “Deep reinforcement learning in parameterized
action space.” In: arXiv preprint arXiv:1511.04143 (2015).

[24] W. Python. “Python.” In: Python Releases for Windows 24 (2021).

[25] G. Van Rossum, F. L. Drake, et al. Python reference manual. Vol. 111. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

69

Bibliography

[26] D. Kuhlman. A python book: Beginning python, advanced python, and python exercises.
Dave Kuhlman Lutz, 2009.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. “Pytorch: An imperative style, high-performance
deep learning library.” In: Advances in neural information processing systems 32
(2019).

[28] B. Pang, E. Nijkamp, and Y. N. Wu. “Deep learning with tensorflow: A review.”
In: Journal of Educational and Behavioral Statistics 45.2 (2020), pp. 227–248.

[29] T.-M. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T.-Y. Ho, I. E. Araci, and
U. Schlichtmann. “Columba 2.0: a co-layout synthesis tool for continuous-flow
microfluidic biochips.” In: vol. 37. 8. 2017, pp. 1588–1601.

[30] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement learning: A
survey.” In: Journal of artificial intelligence research 4 (1996), pp. 237–285.

[31] M. A. Wiering and M. Van Otterlo. “Reinforcement learning.” In: Adaptation,
learning, and optimization 12.3 (2012), p. 729.

[32] Y. Li. “Deep reinforcement learning: An overview.” In: arXiv preprint arXiv:1701.07274
(2017).

[33] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. “De-
terministic policy gradient algorithms.” In: International conference on machine
learning. Pmlr. 2014, pp. 387–395.

[34] S. Wang. Deterministic Policy Gradient (DPG) A slide for illustration of DPG principles,
page 4. 2023. url: https://github.com/wangshusen/DRL/blob/master/Slides/
6_Continuous_2.pdf.

[35] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen. “A novel DDPG method with
prioritized experience replay.” In: 2017 IEEE international conference on systems,
man, and cybernetics (SMC). IEEE. 2017, pp. 316–321.

[36] J. Suárez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, P. Barlet-Ros, and A.
Cabellos-Aparicio. “Feature engineering for deep reinforcement learning based
routing.” In: ICC 2019-2019 IEEE International Conference on Communications (ICC).
IEEE. 2019, pp. 1–6.

[37] U. Khurana, H. Samulowitz, and D. Turaga. “Feature engineering for predictive
modeling using reinforcement learning.” In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 32. 1. 2018.

[38] R. Bro and A. K. Smilde. “Principal component analysis.” In: Analytical methods
6.9 (2014), pp. 2812–2831.

70

https://github.com/wangshusen/DRL/blob/master/Slides/6_Continuous_2.pdf
https://github.com/wangshusen/DRL/blob/master/Slides/6_Continuous_2.pdf

Bibliography

[39] M. D. Zeiler. “Adadelta: an adaptive learning rate method.” In: arXiv preprint
arXiv:1212.5701 (2012).

[40] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška. “Online least-squares policy
iteration for reinforcement learning control.” In: Proceedings of the 2010 American
Control Conference. IEEE. 2010, pp. 486–491.

[41] X. Li, Y. Ma, and C. Belta. “A policy search method for temporal logic specified
reinforcement learning tasks.” In: 2018 Annual American Control Conference (ACC).
IEEE. 2018, pp. 240–245.

[42] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo. “QoS-aware adaptive routing in
multi-layer hierarchical software defined networks: A reinforcement learning
approach.” In: 2016 IEEE International Conference on Services Computing (SCC).
IEEE. 2016, pp. 25–33.

[43] B. Baker, O. Gupta, N. Naik, and R. Raskar. “Designing neural network architec-
tures using reinforcement learning.” In: arXiv preprint arXiv:1611.02167 (2016).

[44] T. Salimans and D. P. Kingma. “Weight normalization: A simple reparameter-
ization to accelerate training of deep neural networks.” In: Advances in neural
information processing systems 29 (2016).

[45] A. Botchkarev. “A new typology design of performance metrics to measure
errors in machine learning regression algorithms.” In: Interdisciplinary Journal of
Information, Knowledge, and Management 14 (2019), pp. 045–076.

[46] L. Rosenfeld, T. Lin, R. Derda, and S. K. Tang. “Review and analysis of perfor-
mance metrics of droplet microfluidics systems.” In: Microfluidics and nanofluidics
16.5 (2014), pp. 921–939.

[47] K.-H. Tseng, S.-C. You, W. H. Minhass, T.-Y. Ho, and P. Pop. “A network-flow
based valve-switching aware binding algorithm for flow-based microfluidic
biochips.” In: 2013 18th Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE. 2013, pp. 213–218.

[48] D. R. Mott, P. B. Howell Jr, J. P. Golden, C. R. Kaplan, F. S. Ligler, and E. S. Oran.
“Toolbox for the design of optimized microfluidic components.” In: Lab on a Chip
6.4 (2006), pp. 540–549.

[49] R. Derakhshan, A. Mahboubidoust, and A. Ramiar. “Design of a novel optimized
microfluidic channel for CTCs separation utilizing a combination of TSAWs and
DEP methods.” In: Chemical Engineering and Processing-Process Intensification 167
(2021), p. 108544.

[50] J. D. Anderson and J. Wendt. Computational fluid dynamics. Vol. 206. Springer,
1995.

71

Bibliography

[51] T. J. Chung. Computational fluid dynamics. Cambridge university press, 2002.

[52] J. F. Wendt. Computational fluid dynamics: an introduction. Springer Science &
Business Media, 2008.

72

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation and Goal
	Brief Overview of the Approach

	Literature Review
	Microfluidic Design
	Microfluidic Design Approaches
	Microfluidic Design Description
	Design for Optimizationn
	Benchmarking Microfluidic Designs
	Integration of Design Tools

	Reinforcement Learning
	Deep Q-Networks (DQN)
	Policy Gradient Methods
	Actor-Critic Methods
	Proximal Policy Optimization (PPO)
	Deep Deterministic Policy Gradient (DDPG)
	Reinforcement Learning with parametrized action spaces

	Programming language and framework

	Methodology
	Task Desciption
	Abstraction of Microfluidic Chip Design
	Component Representation: Comp Class
	Port Representation: Port Class
	Interface Representation: FreePort Class
	Connection and Node Representation: Connection and Node Classes
	Microfluidic Environment: ChipBoardEnv Class
	Essential Methods of Microfluidic Environment

	Reinforcement Learning Algorithm
	Deep Deterministic Policy Gradients (DDPG) Algorithm
	Value Network
	Policy Network
	Experience replay
	DDPG Nework
	Target Networks
	Update Method DDPG
	Update Method PADDPG

	Training
	Training Setup
	Training Loop
	Hyperparameters
	Training Visualization

	Model Convergence Strategies
	Weighted Experience Replay
	Principal Component Analysis (PCA) for Dimensionality Reduction
	Adaptive Learning Rate Scheduling
	Iterative Exploration-Decay Strategy
	Network Architecture Adaptation
	Neural Network Parameter Normalization

	Result and Discussion
	Performance Metrics and Evaluation
	Experimental Procedure

	Convergence Analysis
	Convergence Metrics
	Experimental Design and Evaluation

	Design Visualization and Interpretation

	Summery and Outlook
	Contributions
	Limitations and Future Work
	Summary

	List of Figures
	List of Tables
	Bibliography

