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Abstract—Traffic state prediction models are a crucial 

element with many applications in intelligent transportation 

systems. Short-term network-wide modeling of traffic states is a 

challenging task due to the existence of inherent characteristics 

such as nonlinearity, periodicity and stochasticity in the traffic 

state time series. This issue was responded by the evolution of 

advanced machine learning algorithms, e.g. deep learning. Deep 

neural networks can cope with high dimensionality, and also, 

are capable of extracting nonlinearity, comovement patterns, 

and spatiotemporal interdependencies between the traffic state 

variables from different locations. Nevertheless, they cannot 

completely capture the location-specific features of traffic 

information. Therefore, we propose the Discrete Haar Wavelet 

Transform (DHWT) as a preprocessing scheme prior to Multi-

layer Perceptron (MLP) neural networks for one-hour ahead 

traffic state prediction. DHWT can help MLP to simultaneously 

learn the network-wide comovement patterns through the trend 

component time series, and seize the significant characteristics 

of each unique detector efficiently via the noise component. The 

results on 20 sensors in Paris indicated that the hybrid DHWT-

MLP model with a two-level down decomposition improves the 

Mean Squared Error (MSE) of a non-preprocessed MLP by 

33.73% and 17.58 %, for the six-month and three-month data, 

respectively. However, the proposed model does not perform 

well over the one-month period compared to the MLP model. 

Therefore, it may be helpful to use lower wavelet decomposition 

levels (higher orders) when dealing with relatively small traffic 

datasets.  

Keywords—traffic state prediction, preprocessing, discrete 

Haar wavelet transform, MLP, deep learning, Decomposition level 

I. INTRODUCTION 

In the traffic flow theory, a traffic state is defined by three 
macroscopic variables: traffic flow, mean speed and density. 
Sometimes travel time is also added to traffic state variables 
as an important traffic quality indicator. Also, traffic density 
is usually replaced by a relevant variable called occupancy 
because the density is valid only under highly homogeneous 
traffic conditions with no variations in speeds or dimensions 
of vehicles [1]. Also, most local detectors e.g. inductive loop 
detectors measure occupancy directly. Traffic states can be an 
appropriate representative of the traffic flow behavior and a 
good criterion to determine the level of service.   

Traffic state prediction models are a crucial element of 
intelligent transportation systems which are used for a variety 
of purposes; e.g. traffic signaling, and optimal vehicle routing 
as real-time traffic operations. These models can be localized 

or network-wide, and can predict for short-term or long-term. 
The short-term network-wide traffic state prediction is a 
difficult task due to the existence of inherent characteristics 
such as nonlinearity, periodicity, and stochasticity in the 
traffic state time series. To tackle this issue, a wide range of 
advanced machine learning algorithms have been already 
applied. A popular example is the deep learning models also 
known as artificial neural networks.  The reasons for why they 
are a robust choice for traffic state modeling are: (i) It is simple 
to embed multiple time series into a neural network as inputs, 
and have a multi-variate response vector as the output 
prediction (flexibility for high dimensionality). (ii) Artificial 
neural networks are also capable of capturing the nonlinear 
spatiotemporal interdependencies between the traffic state 
variables throughout transportation systems. According to Ma 
et al. [2], neural networks are appropriate frameworks to seize 
the traffic cross-network correlations, but they are not able to 
completely extract the location-specific features of traffic 
information. Therefore, it is helpful to employ preprocessing 
and post-processing methods before or after the time series are 
fed into a neural network. A second challenge of artificial 
neural networks when working with network traffic state time 
series is regarding the residuals diagnosis. Although normally 
distributed in most cases, the neural network residuals for each 
output neuron almost never result in a white noise signal. As 
discussed, this is mainly because some information specific to 
each loop detector is not captured by the neural network. To 
deal with this issue, we proposed the Discrete Haar Wavelet 
Transform (DHWT) as a preprocessing scheme prior to Multi-
layer Perceptron (MLP), also known as feed-forward Back-
Propagation (BP) neural networks. To evaluate the prediction 
performance of the introduced model, the hourly data for 20 
loop detectors in the city center of Paris between January and 
June 2019 were retrieved. The forecast accuracy of this model 
was compared to that of a simple MLP. In this way, the MLP 
neural network is enabled to learn not only the comovement 
patterns of traffic dynamics on a network scale, but also the 
location-specific variations via decomposing each input time 
series into its corresponding trend and noise components.                     

II. LITERATURE REVIEW   

A. Neural Networks  

There are many studies which have already implemented 
different architectures of artificial neural networks for traffic 
state prediction. The study conducted by Xiaojian and Quan 
[3], established BP neural networks to make forecast of traffic 
flows in crossroads. Their results indicated that the model is a 
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suitable tool for short-term prediction with high reliability and 
accuracy. This finding was confirmed in another study by Liu 
et al. [4], where the traffic flows at intersections were modeled 
by a BP neural network model using different optimization 
algorithms. Also, neural networks have been used with other 
models or in other architectures. Ma et al. [2] concatenated 
MLP neural networks with the Auto-Regressive Integrated 
Moving Average (ARIMA) model to account for location-
specific traffic attributes, and therefore, promote the model’s 
predictive accuracy. Ali et al. [5] employed both recurrent and 
convolutional neural networks in parallel to develop a 
dynamic traffic flow prediction model, which exploits the 
spatial and temporal dependencies in the traffic data. Their 
results signified that this model outperforms the existing state-
of-the-art algorithms. Gao et al. [6] worked on Elman 
recurrent neural networks along with a dissimilation particle 
swarm optimization technique for short-term traffic flow 
forecasting, and showed that this model can predict with 
higher accuracy and lower computational cost compared to BP 
and Radial Basis Function (RBF) neural networks. However, 
the RBF neural network could improve the performance of 
traffic state prediction models when they were used by Zhu et 
al. [7] with the traffic volume data of adjacent intersections for 
network-wide prediction. Do et al. [8] used attention-based 
neural networks to capture both the spatial and temporal 
relationships between the traffic flows from different road 
segments and time lags. Wu et al. [9] proposed a hybrid model 
consisting of the attention-based, Long Short-Term Memory 
(LSTM) and convolutional neural networks. Their findings 
portended that the algorithm is capable of predicting traffic 
flows accurately. Abdulhai et al. [10] introduced a Time Delay 
Neural Network (TDNN) model which is synthesized by a 
neuro-genetic algorithm. The model showed superior results 
to the conventional BP neural network. Wang et al. [11] 
applied a hybrid neural network including graph, recurrent, 
attention-based, and MLP layers, and then, carried out precise 
traffic flow prediction via this hybrid model. Lv et al. [12] 
introduced the Stacked Auto-Encoders (SAEs) to seize the 
latent traffic flow features, and improve the forecast accuracy. 

B. Discrete Wavelet Transform 

According to Cui et al. [13], the application of classical 
wavelet transform can be useful to identify abrupt temporal 
changes and peaks in traffic signals, and can alleviate the lack 
of flexibility in the local feature extraction process. In their 
study, they have implemented graph wavelet transform in the 
gate units of a graph recurrent neural network, and showed 
that the sparsity of the proposed methodology can ameliorate 
the interpretability of graph neural networks [13]. Tian [14] 
applied Mallat multi-scale wavelet algorithm, and developed 
ARIMA and also the Least Squares Support Vector Machine 
(LSSVM) in order to estimate the approximate and detail 
components of network traffic, respectively. The introduced 
fusion model turned out to be more accurate than the selected 
benchmark models. The Mallat multi-scale wavelet algorithm 
was also proposed by Lu and yang [15] as a preprocessing step 
for a LSTM recurrent neural network. They found its results 
more veracious than those of the LSSVM, BP neural network 
and Elman neural network. Chen et al. [16] utilized particle 
swarm optimization algorithm for the Morlet wavelet neural 
network, and concluded that the mentioned optimization 
algorithm can increase both the accuracy and stability of 
predictions made by wavelet neural networks. Zhao et al. [17] 
combined discrete multi-scale wavelet analysis and LSTM 
Convolutional Neural Network (LSTM-CNN), and reported 

that this model was superior to other modern deep learning 
algorithms. Peng and Ziang [18] performed short-term traffic 
forecast via wavelet denoising and phase space reconstruction 
before feeding the traffic data to a BP neural network with a 
genetic algorithm optimizer. The results indicated that the 
model generated better predictions than the other selected 
machine learning competitors. Bota-Giralda et al. [19] applied 
Mallat multi-scale wavelet denoising prior the self-organizing 
fuzzy neural network for traffic volume prediction. Their 
algorithm outperformed the MLP, historical average, and 
Kalman filter, but overcome by the SVM. Jiang and Adeli [20] 
proposed a novel non-parametric dynamic time-delay wavelet 
recurrent neural network which was based on a Mexican hat 
wavelet function to predict traffic flows. Furthermore, the 
modified Gram–Schmidt algorithm was utilized to drop the 
redundant wavelet bases when estimating the dynamic system 
function. Xie and Zhang [21] employed wavelet ANNs with 
the Morlet mother wavelet for traffic volume forecasting, and 
the model showed a higher accuracy than BP and RBF neural 
networks. The study results suggested that the application of 
discrete wavelet algorithms would enhance the nonlinear 
approximation capacity of neural networks in real-time traffic 
flow prediction.  

The aforementioned methodologies have used a variety of 
wavelet transform techniques combined with artificial neural 
networks or other machine learning algorithms, but there are 
few studies to implement the discrete Haar wavelet transform, 
and investigate the contribution that this technique can have 
to the performance of deep learning models when predicting 
the network traffic states based on the different sample sizes. 
Therefore, it was adopted as a preprocessing scheme to be 
carried out prior the MLP, helping it to capture more location-
specific and network-scale information than usual.      

III. DATA AND METHODOLOGY 

A. Discrete Haar Wavelet Transform 

The idea of the Discrete Haar Wavelet transform (DHWT) 
is that non-stationary signals located in different time intervals 
with various frequency components could be described as a 
sum of the scaled and shifted basic Haar wavelet functions. 
DHWT decomposes each single time series into two different 
components: trend or the low-frequency component (Tn) and 
noise or the high-frequency component (Nn). The n subscript 
represents the order of decomposition. If the time series X 
contains 2m samples, we have: n = 0, 1, 2, …, m. As illustrated 
by Fig. 1, DHWT does not perform any decomposition at n = 
0, but once n ⩾ 1, the time series is decomposed into one trend 
and one noise component, and also compressed by half in each 
order. Note that the decomposition always takes place on the 
trend component of the previous order.      

Fig. 1. A discrete Haar wavelet transform with 3 decomposition orders. 

Each trend and noise component includes approximation 
(Sj,k) and detailing (dj,k) coefficients. If we define the 
decomposition level (j) and consideration interval (k) as [22]: 

j = jmax, jmax − 1, …, 0            jmax = m                         (1) 
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k = 0, 1, …, 2j − 1                                                        (2) 

then, we have for the highest level (j = jmax): 

    Sjmax ,k=

X(
k

2jmax
)

2
jmax

2

                                                              (3) 

For the lower levels (higher orders), we define x =
k

2jmax
 , 

and the coefficients are defined as below: 

       Sj-1,k=
1

√2
φ(x) Sj                                                          (4) 

      dj-1,k=
1

√2
ψ(x) Sj                                                           (5) 

where φ and ψ are the Haar scaling function and parent 
wavelet function, respectively:  

                         1,        0 ⩽ x < 1                          

φ(x) =                                                                    (6) 

                       0,        x < 0 or x ⩾ 1                           

                            1,        0 ⩽  x <  
1

2
                          

              ψ(x) =     − 1,         
1

2
 ⩽ x < 1                          (7) 

                                  0,        x < 0 or x ⩾ 1                           

To obtain the trend and noise components and reconstruct 
the original time series, φ and ψ functions are shifted and 
rescaled as follows:  

φj,k(x) = 2
j
2φ(2jx −  k)                                                      (8) 

ψ
j,k

(x) = 2
j
2ψ(2jx −  k)                                                      (9) 

The reconstruction of the original time series at each order 
is done by adding the trend and noise components in that order 
to all the noise components of the lower decomposition orders. 

Tjmax-j = ∑ Sj,kφ
j,k

(x)

2
j
-1

k=0

                                                 (10) 

Njmax-j = ∑ dj,kψ
j,k

(x)

2
j
-1

k=0

 +                                             

∑ dj+1,kψ
j+1,k

(x)

2
j+1

-1

k=0

 +…+ ∑ djmax-1,kψ
jmax-1,k

(x)

2
jmax-1

-1

k=0

   (11)        

 

X = Tjmax-j + Njmax-j                                                      (12) 

In this study, the traffic state time series are decomposed by 
DHWT for 6 orders, i.e. n = {0, 1, 2, 3, 4, 5}. The first order 
transform (n = 0) gives the original time series, and this model 
is equivalent to a MLP neural network without any DHWT 
conducted. The higher the decomposition order, the smoother 
the trend component, and the more fluctuating the acquired 
noise component. Once the optimal decomposition order is 
identified for the full traffic dataset, the proposed algorithm 
with this order is applied to smaller datasets for more insights. 

B. MLP Neural Networks 

Multi-Layer Perceptron neural networks (MLP) are a class 
of machine learning algorithms defined as decompositions of 
nonlinear functions. A MLP neural network model with an 
input layer of I neurons, one hidden layer of H neurons, 
activation function g, bias vector δ, and weight matrices w and 
v is formulated as the following, and visualized in Fig. 2. 

𝑓(xi) = g((o) + ∑ (v
h
 g((h) + ∑ whxi)

I

i=1

)
H

h=1

)          (13) 

The MLP parameters (weight matrices w and v and biases 
δ(h) and δ(o) in our example) are estimated through Adam’s 
algorithm [23] which is a gradient-based optimization method 
for stochastic objective functions.  The hyperparameters (e.g. 
number of hidden layers, number of neurons in each hidden 
layer H and the activation function g) are determined using a 
random search as a diversified heuristic, searching on different 
predefined sets of candidates to find an optimal combination 
of hyperparameters.  

To prevent from overfitting, reduce the model variance, 
and increase the generalizability of the MLP neural network, 
two regularization schemes were implemented: early stopping 
and drop-out. The early stopping stops the training process 
once the validation error does not improve after a certain 
number of epochs. The drop-out scheme drops out a certain 
portion of hidden neurons at each epoch randomly during 
training to ensure that the neurons which do not contribute to 
a high-accuracy prediction are disincentivized by converging 
to zero, and thus, the neural network is not overparameterized. 

In order to reshape the time series data into the inputs and 

outputs of the neural network (x and f̂), we applied a sliding 
window (forward chaining) method to reconstruct the dataset 
to an appropriate format for supervised learning with a capture 
window (embedding dimension) of p, a time lag of h=1 and 
prediction horizon of a = 1 using the Takens’ theorem [24]. A 
similar example where p = 5, h = 1, and a = 5 is illustrated in 
Fig. 2. 

Fig. 2. Construction of a neural network for a time series using a sliding 

window method, from [25] with edition. 

The input values (x) of the neural network were scaled by 
the min-max normalization. This helps guarantee or speed up 
the convergence of the Adam’s optimization algorithm, and 
leads to a higher predictive accuracy.  
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C. Data Description 

The hourly traffic data belong to 20 selected loop detectors 
from an urban corridor in the city of Paris, France between 
January and June 2019. The study area starts from Quai des 
Célestins near the city center, continues along the Seine river, 
and finishes at Cr la Reine in the west as shown by Fig. 3.  

 

 

 

 

 

 

 

Fig. 3. Study area in Paris, France with 20 inductive loop detectors. 

In Fig. 4, the nonlinear relationships between the traffic 
state variables are illustrated in the fundamental diagrams. The 
nonlinearity and randomness can be caused by different 
phenomena such as shock waves which occur due to many 
unforeseen reasons such as accidents, bottlenecks, temporary 
road maintenance operations, harsh weather conditions, etc. 
Typically, traffic states with high occupancy and low speed 
(congested states) are harder to predict than the more common 
free-flow states in which high speed and low occupancy are 
observed.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.   Fundamental diagrams for the traffic data of loop detector 1 (L1). 

Fig. 5 demonstrates the linear correlation coefficients 
among the traffic flows of some selected loop detectors.  

 

 

 

 

 

 

 

 

 

Fig. 5. Correlation matrix for traffic flows of some selected loop detectors. 

The correlation matrix reveals that there are positive cross- 
correlations between all the selected loop detectors, and the 
numbers indicate high spatial dependencies of the time lag = 
0 in some of them.  

D. DHWT–MLP Model 

The DHWT-MLP model was developed by performing 
the DHWT, and feeding the results into MLP neural network. 
The data set was split randomly by 80/20 ratio into the training 
and validation datasets, respectively. The hold-out validation 
scheme was utilized to monitor the generalizability of the 
neural network during the training phase. Also, the training 
data were divided into mini-batches of 100 records to improve 
the learning process. The model estimation was repeated for 
different time periods. Afterwards, hourly forecast was made 
for the next 7 days (168 time intervals) by the DHWT-MLP 
and the MLP as the benchmark model.    

The Mean Squared Error (MSE) was calculated based on 
the models’ forecasts. It is defined as:  

MSE =
∑ (Oi  −  Ai)

2N
i=1

N
                                          (14)  

Where Oi is the ith observation value,  Ai is the ith actual 
value, and N represents the number of test samples (in our 
case, N = 168).   

Finally, the configuration of traffic state variables in the 
neural network are shown by Fig. 6. The traffic state variables 
include flow, occupancy, mean speed, and speed standard 
deviation (Sd.). For all the detectors, the previous p traffic 
states are fed into the MLP, and the state of the upcoming hour 
is predicted. In case of DHWT, the trend and noise for the past 
p steps are inserted in the MLP as inputs, and the traffic states 
are forecasted for the next hour. The model evaluation is done 
for six, three, and one month of data. 

Fig. 6. MLP architecture for network-wide traffic state prediction.        

IV. RESULTS 

In this section, the results of the developed models are 
presented. The error residuals of both deep learning models 
followed a normal distribution. The residuals for the MLP had 
a negative skewness which disappeared once the DHWT was 
conducted on the traffic time series in DHWT-MLP. The 
residuals for the DHWT-MLP model were also hugely, but yet 
not completely whitened confirmed by the Auto-Correlation 
Function (ACF) plots and the Ljung-Box statistical hypothesis 
test. When the corresponding methods were performed on the 
MLP residuals, though, it was revealed that the obtained 
residuals are by far different from a white noise. The ACF plot 
included a spike in the lag of 24.  
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Fig. 7 shows the MSE dynamics for both training and 
validation of DHWT-MLP model. It indicates that within 165 
epochs, the training error has a monotonically decreasing 
trend, and the Adam’s algorithm has obviated the fluctuations 
of the validation error, reaching it to a small value close to the 
training error value before the training is stopped. 

Fig. 7. Change of training and validation mean squared error (MSE).  

Table I evaluates the performance of the proposed model 
when the data for different time periods are provided. The six-
month-long DHWT-MLP with n = 1 and p = 3 improved the 
MSE by 33.73%, while the preprocessed model for three-
month data reduced the MSE of the MLP by 17.58% on 
average. Nevertheless, the DHWT aggravated the predictive 
accuracy of the MLP neural network for one-month-long data 
by an average of 14.14%.            

TABLE I.  COMPARISON OF MLP AND DHWT-MLP MODELS FOR 

DIFFERENT TIME PERIODS (N=1). 

Time 

period 
Index 

MLP 

MSE 

DHWT-MLP 

MSE 

Error 

change % 

1-month-long models    

Jan 1 73146.71 84216.39 +15.13 

Feb 2 39915.47 41289.48 +3.44 

Mar 3 50873.63 58894.41 +15.77 

Apr 4 66747.41 79733.74 +19.46 

May 5 29807.48 34202.88 +14.75 

Jun 6 25105.36 27633.52 +10.07 

 Average 47599.34 54328.40 +14.14 

3-month-long models    

Jan-Mar 1 24548.76 22618.27 -7.86 

Apr-Jun 2 15299.91 10226.98 -33.16 

 Average 19924.33 16422.63 -17.58 

6-month-long model    

Jan-Jun 1 11915.62 7897.00 -33.73 

 

Fig. 8 illustrates the traffic flow forecasts made by both 
models against the actual observations for the loop detector 1 
(L1). It can be noticed that the DHWT-MLP improves the 
prediction at both large and small traffic flow values while the 
MLP overestimates the smaller traffic flows, and also slightly 
underestimates the larger flow values. Moreover, The DHWT-
MLP algorithm has yielded fewer outliers than the MLP. This 
explains that the proposed model becomes more familiar with 
the physics of the traffic flow once the traffic time series are 
preprocessed by the DHWT algorithm. Lastly, Table I shows 
that as the forecast MSE values and the amounts of error 
improvement are highly dependent on the dataset size.  

 

Fig. 8. Observed vs. predicted traffic flows for one-week horizon of L1. 

V. DISCUSSION 

The results of this study indicate that the application of 
DHWT as a preprocessing scheme performed prior to deep 
learning algorithms can significantly improve the prediction 
accuracy over the 6-month and 3-month datasets. The findings 
from Fig. 8 point out a clear decrease in the outlying forecasts 
of the DHWT-MLP algorithm. Hence, the DHWT helps MLP 
to simultaneously learn network-wide comovement patterns 
through the trend (approximation) component, and meanwhile 
exploit the significant characteristics of each unique detector 
efficiently via the noise component. From Fig. 8, it is apparent 
that the DHWT-MLP has mitigated both the overestimation of 
traffic free flows at midnights and their underestmation during 
the peak hours for the loop detectors. This location-specific 
learning can fortify neural networks to avoid making outlying 
predictions. This finding is aligned with the results from the 
residual diagnosis (Ljung-Box tests and ACF plots), where the 
residuals of the introduced model turned out to be relatively 
similar to white noise time series. To fully whiten the residuals 
of the proposed hybrid model, it can be advantageous to apply 
post-processing methods, as well.  

The spikes in the ACF plots of the model residuals signify 
that MLP neural networks did not capture the local seasonality 
of the traffic state time series. This can well justify for why 
the literature has introduced hybrid algorithms composed of 
deep learning and statistical time series models. Although it is 
common to include time-related variables in machine learning 
models in order to exploit cyclic features, some time series 
models can explicitly encapsulate the seasonal traffic patterns. 
The lag of 24 accounts for the daily periodicity.  

As the dataset size (time series length) becomes smaller, 
the forecast accuracy declines, and the MSE values increase. 
On the other hand, the improvement in the MSE decreases up 
until the benchmark MLP error overtakes that of the DHWT-
MLP. This can suggest that when the DHWT-MLP model is 
trained using short time series, a higher predictive accuracy 
can be obtained in lower decomposition levels (higher orders) 
where the trend component is much smoother.  

VI. CONCLUSIONS 

This research introduced the Discrete Haar Wavelet 
Transform (DHWT) as a preprocessing scheme prior to Multi-
Layer Perceptron (MLP) neural network for one-hour ahead 
network-wide traffic state prediction. Six-month traffic data 
for an urban corridor in the city center of Paris, France were 
used to develop the preprocessed DHWT-MLP model, and 
compare its predictive accuracy with that of MLP. The results 
indicated that the proposed model with a capture window of p 
= 3 and decomposition order of n = 1 improved the forecasts 
significantly. It was revealed that the time period for which 
the models are estimated is a critical factor in the predictive 
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accuracy of the DHWT-MLP model, and the model with a 
two-level down decomposition benefits only when the hourly 
data for at least multiple months are available. By adding the 
DHWT before the neural network, the MLP was enabled to 
extract the location-specific information of the loop detector 
time series, as well as the nonlinear comovement patterns, and 
spatial and temporal interdependencies between the traffic 
state variables from different locations. Thus, the existing 
problems with MLP e.g. the underestimation, overestimation, 
prediction of outlying values, and the lack of sequential 
randomness in error residuals were obviated completely or 
mitigated to a desirable degree. The study also provided 
evidence that the DHWT can alleviate the need to have deeper 
MLP neural networks.  

One important limitation of most studies on the network-
wide traffic state forecast is that the considered traffic data 
collection points do not cover the entire network, but a sample 
from the correlated points of interest is taken. This is the case 
in our study where all 20 loop detectors are located on a 
similar corridor. Therefore, it should be taken into account that 
the existence of higher correlations is more likely between 
these loop detectors, and thus, it can lead to exaggerating 
results for network-wide traffic forecasting. Consequently, 
there is need for robust clustering models which can help to 
wisely classify the inductive loop detectors and other cross-
sectional sensors throughout transport networks. Therefore, a 
neural network model can be developed for each cluster of 
traffic sensors.   

For the future work, the authors are working to explore 
higher wavelet decomposition orders for data preprocessing, 
and combine different seasonal adjustment methods with the 
discrete Haar wavelet analysis in order to feed the neural 
networks even with more simplified inputs, and increase their 
predictive accuracy. The preliminary results showed that this 
hybrid scheme can improve the MSE values to a higher degree 
than what has been achieved in this study. Finally, there is a 
gap in the literature about comparing the performance of 
various discrete wavelet transform techniques when applied to 
the MLP and other architectures of artificial neural networks.  
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