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Abstract

Linear programs (LPs) are well-solved optimization problems, both in theory and in
practice. This is also exploited by fundamental techniques for solving integer programs
such as the cutting plane method. In this thesis, we study three fundamental aspects of
the theory of integer and linear programming.
In the first part, we study {0, 1/2}-cuts, which are Gomory-Chvátal cuts that are

derived from a linear system using multipliers 0 or 1/2 only. They play a central role
in polyhedral combinatorics, notably in Edmonds’ pioneering work on the matching
polytope. We prove that recognizing rational polyhedra for which all {0, 1/2}-cuts suffice
to determine the integer hull is strongly NP-hard. We further investigate structural
properties of the family of {0, 1/2}-cuts and their implications for the separation
problem.

Next, we consider extended formulations of polyhedra, which allow for compact LPs for
many combinatorial optimization problems. An extended formulation describes a higher-
dimensional polyhedron that linearly projects onto the original one. Rothvoß (2017)
proved that any extended formulation for the matching polytope needs an exponential
number of constraints. We show that the main tool in his proof, the hyperplane sepa-
ration bound, does not directly improve upon the best known lower bounds for sizes of
extended formulations for spanning tree and completion time polytopes.

In the final two chapters, we study the geometric underpinning of circuit augmentation
schemes. These are LP algorithms that generalize the Simplex method by moving
between solutions along circuits of the feasible region instead of only edges. We first
show that edges and circuits behave in fundamentally different ways under projections
of polyhedra, as they arise in extended formulations. We then study circuit diameters
of polyhedra, which lower bound combinatorial diameters. The upper bound for the
combinatorial diameter predicted by the Hirsch conjecture turned out to be false, with
counterexamples found by Klee and Walkup (1967) and Santos (2012). The circuit
analogue of the Hirsch conjecture, the so-called circuit diameter conjecture, is open.
Previously, only the unbounded Klee-Walkup polyhedron was studied in the circuit
setting. We consider Santos’ counterexample to the Hirsch conjecture and prove that
the key combinatorial property of the polytopes underlying his construction is no longer
true when using circuits.





Zusammenfassung

Lineare Optimierungsprobleme (LPs) lassen sich effizient lösen, sowohl aus theoretischer
Sicht als auch in der Praxis. Das machen sich auch grundlegende Techniken zum Lösen
ganzzahliger Optimierungsprobleme wie Schnittebenenverfahren zunutze. Diese Arbeit
widmet sich drei theoretischen Aspekten der ganzzahligen und linearen Optimierung.

Im ersten Teil untersuchen wir {0, 1/2}-Schnitte, die sich ausgehend von einem
System linearer Ungleichungen als Gomory-Chvátal-Schnitte mit Koeffizienten 0 oder
1/2 herleiten lassen. Diese spielen eine wichtige Rolle in der polyedrischen Kombinatorik,
insbesondere in Edmonds’ wegweisender Arbeit zum Matching-Polytop. Wir zeigen
unter anderem, dass es NP-schwer ist, rationale Polyeder zu erkennen, deren ganzzahlige
Hülle sich nur mit {0, 1/2}-Schnitten erreichen lässt. Außerdem untersuchen wir struk-
turelle Eigenschaften der Familie aller {0, 1/2}-Schnitte und was sich daraus für das
Separierungsproblem folgern lässt.

Als Nächstes betrachten wir erweiterte Formulierungen von Polyedern. Diese erlauben
es, viele kombinatorische Optimierungsprobleme als kompakte LPs zu formulieren, und
beschreiben dabei höherdimensionale Polyeder, die sich auf das ursprüngliche Polyeder
projizieren lassen. Wie von Rothvoß (2017) bewiesen, benötigt man für jede erweiterte
Formulierung des Matching-Polytops exponenziell viele Ungleichungen. Wir zeigen,
dass die Technik, auf der Rothvoß’ Beweis fußt, für Polytope im Zusammenhang mit
Spannbäumen und Scheduling-Problemen nicht unbedingt bessere untere Schranken an
die Größe von erweiterten Formulierungen liefert als das, was bereits bekannt ist.

Der dritte und letzte Teil der Arbeit widmet sich den geometrischen Grundlagen einer
Familie von Verfahren zum Lösen von LPs, die den Simplex-Algorithmus verallgemeinern,
indem sie LP-Lösungen nicht nur entlang von Kanten, sondern entlang von sogenannten
Circuits verbessern. Zunächst zeigen wir, dass sich Circuits unter Projektionen von
Polyedern grundsätzlich anders verhalten als Kanten. Dann betrachten wir den Circuit-
Durchmesser von Polyedern. Dieser verallgemeinert den kombinatorischen Durchmesser,
für den die Hirsch-Vermutung eine obere Schranke nahelegte. Diese Vermutung stellte
sich als falsch heraus, wie von Klee und Walkup (1967) sowie von Santos (2012) widerlegt.
Ob die Schranke aus der Hirsch-Vermutung für den Circuit-Durchmesser von Polyedern
gilt, ist offen. Bisher wurde nur das unbeschränkte Gegenbeispiel von Klee und Walkup
auf seinen Circuit-Durchmesser hin untersucht. Wir betrachten die Polytope, auf
denen Santos’ Gegenbeispiel basiert, und zeigen, dass deren wesentliche kombinatorische
Eigenschaft im Circuit-Fall nicht mehr erfüllt ist.
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Chapter 1

Introduction

From Problems to Integer Programs. We begin with an example. A matching in
an undirected graph is a set of edges no two of which share an endpoint. A matching is
maximum if it is of maximum cardinality. For example, the graph in Figure 1.1 has a
matching of cardinality two. This is maximum because the graph has five nodes, so in
every subset of three edges, two of them must intersect in a node.

Figure 1.1

Finding a maximum matching in a given undirected graph G = (V,E) is a classical
combinatorial optimization problem known as the maximum matching problem. To solve
this problem, one approach is the following. The incidence vector χ(M) of a matching
M ⊆ E is a 0/1 vector with an entry for each edge e ∈ E which equals 1 if e ∈ M and
0 otherwise. By the definition of a matching, all incidence vectors of matchings in G
satisfy the linear inequalities

x(δ(v)) ≤ 1 for all v ∈ V

xe ≥ 0 for all e ∈ E
(1.1)

where δ(v) denotes the set of all edges incident with node v and x(δ(v)) =
∑

e∈δ(v) xe.

Conversely, every integral solution x ∈ ZE of (1.1) can only have components in {0, 1}
and must therefore be the incidence vector of some matching in G. This means that
one can solve the maximum matching problem by finding an integral solution x of the
system (1.1) that maximizes the linear objective function 1⊤x =

∑
e∈E xe. Optimization

problems of this type are integer programs (IPs). More generally, we consider IPs of
the form

max
{
c⊤x : Ax ≤ b, x ∈ Zn

}
(1.2)

for a matrix A ∈ Qm×n and vectors b ∈ Qm and c ∈ Qn.

Many combinatorial optimization problems, not only the maximum matching problem,
can be modelled as IPs. Suppose that we switch the roles of nodes and edges in our
example above. Instead of all subsets M of edges for which no node of G is an endpoint
of two edges of M , we now consider all subsets S of nodes such that no edge of G has
both of its endpoints in S. These subsets S are the stable sets in the graph G. As with
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the maximum matching problem, the problem of finding a maximum stable set also
has a succinct IP formulation: Assuming that G has no isolated nodes, the incidence
vectors of stable sets in G are precisely the integral solutions of

xu + xv ≤ 1 for all uv ∈ E

xv ≥ 0 for all v ∈ V
(1.3)

where we write uv for the edge with endpoints u and v. So a maximum stable set
corresponds to an integral solution x ∈ ZV of (1.3) that maximizes 1⊤x. This means
that general integer programming can be no easier than finding a maximum stable
set, which is a well-known NP-hard problem [139]. So to find an algorithm with good
theoretical running time guarantees for the maximum matching problem, one likely
needs more than just access to a black-box IP solver.

Linear Programs. If we ignore the integrality constraints in (1.2), the problem
becomes

max
{
c⊤x : Ax ≤ b, x ∈ Rn

}
. (1.4)

This is an optimization problem of a different type: a linear program (LP). LPs of
the form (1.4) for rational A, b, and c can be solved in polynomial time, and there are
algorithms that perform very well in practice. (We will discuss one later in this chapter.)
The feasible region of (1.2) is a polyhedron, and, given rational data, is said to be a
rational polyhedron. (In fact, we may even assume that all coefficients of A and b are
integers after rescaling; whenever we speak of rational polyhedra in the following, we
will make this assumption.)

Given that LPs are polynomially solvable, we can efficiently compute a vector x ∈ RE

that satisfies (1.1) and maximizes the linear objective function 1⊤x, for any given
graph G = (V,E). Does this imply that we can find maximum matchings efficiently?
Unfortunately, no. For the graph in Figure 1.1, the maximum value of 1⊤x over (1.1)
is 5

2 , and a fractional solution x∗ that attains this maximum is shown in Figure 1.2.
However, the maximum possible value of 1⊤x attained by any integral solution x of
(1.1) is 2 < 5

2 , as we saw above. In fact, this is no coincidence: For any non-bipartite
graph G, such as the one in Figure 1.1, one can find an integral objective function
vector w ∈ ZE for which the maxima of w⊤x over (1.1) and over its integer points do
not coincide. This means that the polyhedron determined by (1.1) is not necessarily an
integral polyhedron. For a given graph G, it is therefore called the fractional matching
polytope of G. Note that it is indeed a polytope, i.e., a bounded polyhedron, since one
can add to (1.1) the valid inequalities xe ≤ 1 for each edge e ∈ E without changing the
set of feasible solutions.

Nonetheless, the maximum matching problem may be reduced to solving an LP –
though one with a different feasible region. Namely, as any graph G has only finitely
many matchings, the number of integral solutions of the system (1.1) (which we know
to be precisely the incidence vectors of matchings in G) is finite. Hence, if we take the
convex hull of those integral solutions, we obtain a polytope again, the integer hull of the
fractional matching polytope. Let us call this polytope the matching polytope of G. If
we now maximize our linear objective function 1⊤x over the matching polytope instead
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Figure 1.2: A fractional solution x∗ of the system (1.1) for the graph in Figure 1.1. Only
nonzero entries are shown.

of the fractional matching polytope of G, then we know that an optimal vertex must
be the incidence vector of a matching in G whose cardinality is the optimal objective
function value. This approach naturally extends to any other linear objective function
w⊤x given by a vector of edge weights w ∈ RE : Finding matchings of maximum weight
(solving the maximum-weight matching problem) is equivalent to linear optimization
over the matching polytope. However, to formulate this problem as an LP of the form
(1.4), we need a complete linear description of the matching polytope, i.e., a system of
linear inequalities whose set of solutions is precisely the matching polytope. How do we
find such a system?

Cutting Planes and Closures. We saw above that the system (1.1) is not sufficient
to describe the matching polytope – not even for the small graph in Figure 1.1. In
this example, however, it is easy to find an inequality that we may add to (1.1): Since
no matching in the graph in Figure 1.1 can have more than two edges, the inequality
1⊤x ≤ 2 is valid for its matching polytope. Moreover, it cuts off the fractional point
x∗ in Figure 1.2. Such an inequality is called a cutting plane (or simply cut). Of
course, to derive this cut, we exploited our knowledge of what the integer points of the
fractional matching polytope encode. We may, however, also do this entirely without
any problem-specific knowledge as follows.

Namely, for the graph in Figure 1.1, summing over all but the nonnegativity constraints
in (1.1) and dividing by two yields the inequality 1⊤x ≤ 5

2 . By construction, this
inequality is valid for the fractional matching polytope. As all coefficients on the
left-hand side are integers, we know that for any integral vector x, the inner product
1⊤x must be integral, too. This means that all integral points in the fractional matching
polytope of the graph in Figure 1.1 – and hence all points in its matching polytope – must
satisfy the stronger inequality 1⊤x ≤ ⌊52⌋ = 2. More generally, take any nonnegative
linear combination of inequalities from (1.1) such that the resulting valid inequality
only has integer coefficients, possibly except for the right-hand side. Rounding down
the right-hand side to the next integer will not cut off any integral points and therefore
yields a valid inequality for the matching polytope. This recipe for generating cuts,
which applies to any rational polyhedron, originated in the work of Gomory [118] and
Chvátal [53]. The resulting inequalities are therefore called Gomory-Chvátal cuts.

Using these types of cuts, Gomory [118] showed how to reduce any IP to solving
a finite sequence of LPs whose feasible region is gradually refined by adding cutting
planes. Such cutting plane methods are one of the backbones of modern IP solvers.
Chvátal [53] formalized Gomory’s cutting plane method and proved that it can be
used to characterize the integer hull of polyhedra (see also [173]): All possible Gomory-
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Chvátal cuts that can be derived from the linear description of a rational polyhedron P
determine a rational polyhedron again, the (first) Gomory-Chvátal closure of P (called
the elementary closure in Chvátal’s paper [53]). Taking the Gomory-Chvátal closure of
this polyhedron, in turn, yields the second Gomory-Chvátal closure of P , and so on.
Chvátal proved that for every rational polyhedron P , one eventually obtains the integer
hull after a finite number of rounds of this procedure. For polytopes that, like the
fractional matching polytope, are contained in the 0/1 cube (i.e., for which all variables
can only take values between 0 and 1), this number is essentially quadratically bounded
in the number of variables, up to a logarithmic factor [90, 168].
For the fractional matching polytope, in fact, already the first Gomory-Chvátal

closure yields the integer hull: To see this, let us note that the cut 1⊤x ≤ 2 in our small
example belongs to a more general family of Gomory-Chvátal cuts for the fractional
matching polytope. Indeed, for any graph G = (V,E), take a subset of nodes S ⊆ V of
odd cardinality, and add the inequality x(δ(v)) ≤ 1 in (1.1) for all nodes v ∈ S and the
nonnegativity constraint −xe ≤ 0 for all edges e ∈ δ(S), i.e., all edges with exactly one
endpoint in S. The resulting valid inequality is∑

v∈S
x(δ(v))− x(δ(S)) ≤ |S|.

Denoting the set of edges with both endpoints in S by E(S), we may rewrite this
inequality as 2x(E(S)) ≤ |S| since

∑
v∈S x(δ(v)) = 2x(E(S)) + x(δ(S)) for all x ∈ RE .

Dividing by two and rounding down the right-hand side yields the Gomory-Chvátal cut

x(E(S)) ≤ |S| − 1

2
(1.5)

where we used that |S| is odd. For the graph in Figure 1.1, for instance, choosing all
five nodes for S results in the known inequality 1⊤x ≤ 2.
In a seminal paper from the 1960s, Edmonds [79] proved that the system (1.1)

together with the inequalities (1.5) for all odd subsets S ⊆ V is sufficient to describe
the matching polytope of any graph G = (V,E). Chvátal [53] reframed this in terms
of the Gomory-Chvátal closure, concluding that the Gomory-Chvátal closure of the
fractional matching polytope of any graph indeed coincides with its integer hull (i.e.,
the matching polytope).
Polyhedra with this property are especially interesting from an IP standpoint since

linear optimization over their integer points is likely “easier” than general integer
programming in the following sense. Consider the decision version of an IP of the
general form (1.2), which is the problem of deciding whether the given rational linear
system Ax ≤ b has an integral solution of objective function value at least some given
number. This problem is known to be in NP ∩ coNP when given the promise that
the Gomory-Chvátal closure of the polyhedron {x : Ax ≤ b} is integral (see, e.g., [41]).
Belonging to the complexity class NP∩coNP is believed to be an indication against being
a hard problem, since NP ∩ coNP contains no NP-hard problems unless NP = coNP.
The latter hypothesis, in the words of Karp and Papadimitriou [140], “is weaker than
P = NP, but is generally considered almost as improbable”.

Can one efficiently test whether the Gomory-Chvátal closure and the integer hull of a
given rational polyhedron coincide? Unfortunately, recognizing this property is NP-hard
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– even for polyhedra that, like the fractional matching polytope, are contained in the
0/1 cube [62, 64]. However, the fractional matching polytope satisfies an even stronger
condition. Not only can we obtain its integer hull by adding the Gomory-Chvátal
cuts (1.5), those cuts are also special Gomory-Chvátal cuts. Recall that any Gomory-
Chvátal cut for a given polyhedron is derived from a nonnegative linear combination of
inequalities of its linear description. To derive the cuts (1.5) from (1.1) as we did above,
we only used linear combinations with coefficients 0 or 1

2 . This property is shared with
several other relevant classes of facet-defining inequalities for polytopes in combinatorial
optimization, e.g., the odd-cycle inequalities for the stable set polytope of a graph G [114],
which is the convex hull of all integral solutions of (1.3). The odd-cycle inequalities,
too, are such special Gomory-Chvátal cuts, which we call {0, 12}-cuts for short [49]. One
of the results obtained in Chapter 2 is to prove that for a given rational polyhedron,
deciding whether all {0, 12}-cuts (which yield the {0, 12}-closure) suffice to determine
the integer hull is NP-hard. In fact, we obtain this hardness result by showing that one
could solve (the decision version of) the maximum stable set problem in polynomial
time, assuming that the above recognition problem is polynomially solvable.

Optimization and Separation. For the maximum-weight matching problem, the
fact that its decision version is in NP ∩ coNP is, of course, not all that is known
about its complexity: Edmonds’ famous blossom algorithm [79, 80] finds a matching of
maximum weight in polynomial time. In LP terms, this means that one can efficiently
optimize any linear objective function over the matching polytope of a given graph
G = (V,E). Interestingly, to do this, it suffices to have an efficient algorithm that, given
a point x∗, decides whether x∗ is in the matching polytope of G and, if not, finds a
valid inequality for the matching polytope that is violated by x∗. This follows from
a fundamental result of Grötschel, Lovász, and Schrijver [124], which states that for
families of polyhedra such as the matching polytope, the above so-called separation
problem and linear optimization are roughly of the same complexity (commonly termed
the equivalence of optimization and separation).

To solve the separation problem for the matching polytope, we first check whether
the given vector x∗ is in the fractional matching polytope (there is only a small number
of inequalities in (1.1) to check). If x∗ satisfies all of (1.1) but is not in the matching
polytope, x∗ must violate one of the {0, 12}-cuts (1.5). It is well known how to find such
a separating cut in polynomial time: Padberg and Rao [161] showed how to do this by
means of solving an auxiliary combinatorial optimization problem, which calls for an
odd cut of minimum weight in a suitably defined edge-weighted graph. Here, an odd
cut is a subset of edges of the form δ(S) for some subset of nodes S of odd cardinality.

The feasible solutions of this auxiliary problem, the odd cuts (as subsets of edges),
form a special set family: a binary clutter. Binary clutters are well-studied objects in
polyhedral combinatorics, graph theory, and optimization, and they arise naturally in
the study of {0, 12}-cuts, as shown by Caprara and Fischetti [49]. In fact, with every
rational polyhedron, one can associate an auxiliary combinatorial optimization problem
over a binary clutter. If this auxiliary problem is polynomially solvable, then, via the
equivalence of optimization and separation, one can optimize over the integer hull in
polynomial time, provided that the {0, 12}-closure coincides with the integer hull. As
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we will prove in Chapter 2, the converse implication is false unless P = NP: There
are rational polyhedra with an integral {0, 12}-closure over which one can optimize in
polynomial time, yet solving the associated binary clutter problem is NP-hard. We will
also show how the binary clutter framework for {0, 12}-cuts introduced in [49] can be
exploited to make conclusions about integrality properties of the {0, 12}-closure.

Compact Formulations. Even though Padberg and Rao’s combinatorial separation
algorithm for the matching polytope is simpler than Edmonds’ blossom algorithm,
the equivalence of optimization and separation relies on the ellipsoid method, which
is considered slow for practical purposes. Simply feeding the linear description of
the matching polytope to an efficient LP solver will not yield an efficient algorithm
either since there is an exponential number of inequalities (1.5) and all of them are
facet-defining in general, so none of them may be dropped. This phenomenon is not
uncommon for polyhedra in combinatorial optimization. Also the spanning tree polytope
of a connected graph G = (V,E), which is the convex hull of the incidence vectors
of spanning trees in G, generally has a number of facets that is exponential in |V |.
(Incidentally, its linear description is also due to Edmonds [82].) However, one can obtain
a significantly more compact LP formulation (a so-called extended formulation) by
introducing few additional variables, which reduces the number of required constraints to
O(|V | |E|) [153, 204]. Using this extended formulation, minimum-weight spanning trees
can be found efficiently by means of solving a single LP of polynomial size, confirming
the well-known polynomial solvability of this problem (see [177]).

Can one do the same for matchings? Unfortunately, no. Rothvoß [167] proved that any
extended formulation for the matching polytope of a complete graph needs exponentially
many inequalities (in the number of nodes). Previously, similar exponential lower bounds
had been established for other well-known polytopes in combinatorial optimization,
including the stable set polytope [101] (see also [136]). Given that the stable set problem
is NP-complete, the fact that there is no polynomial-size extended formulation may not
come as a surprise, even though the bound of [101] does not condition on P ̸= NP or
other complexity-theoretic hypotheses. The exponential lower bound for the matching
polytope, however, is more surprising in this regard – after all, one can optimize over it
in polynomial time.

It should be noted that there are ways to find maximum-weight matchings efficiently
by compact linear programming: By a standard reduction, it suffices to be able to find
maximum-weight perfect matchings in a graph twice the size of the input graph (see,
e.g, [177]). Here, a matching is perfect if every node is contained in some edge of the
matching. Now the maximum-weight perfect matching problem can, for example, be
reduced to solving a polynomial number of polynomial-size LPs [15]. Another LP-based
approach is via an equivalent variant of the separation problem, called primal separation
(see [92, 178]), which, in the case of perfect matchings, amounts to solving a small number
of minimum s-t-cut problems [92]. These have compact LP formulations. Moreover,
there is a polynomial-size LP for testing optimality of a given perfect matching [196].
Also this is sufficient to optimize over the (perfect) matching polytope in polynomial
time [178]. Finally, a careful implementation of the cutting plane method converges in
polynomial time, as proved in [52].



7

While all of the above approaches rely on LPs of polynomial size, Rothvoß’ result
in [167] implies that one cannot obtain a single compact LP for the maximum-weight
(perfect) matching problem by means of an extended formulation. The key tool in his
proof is the so-called hyperplane separation bound [99]. This lower bound, like many
other bounding techniques, builds on a beautiful result of Yannakakis [205] that links
the extension complexity of a polyhedron – which is the minimum number of inequalities
of any extended formulation – to certain factorizations of an associated slack matrix. A
slack matrix records the slack of a vertex in an inequality, for all pairs of vertices of the
polyhedron and inequalities in a given linear description. The flexibility in choosing
different but equivalent linear descriptions does not affect Yannakakis’ result, but it
may have a substantial impact on the quality of the hyperplane separation bound, as we
show in Chapter 3. In particular, when applied to the slack matrix of the spanning tree
polytope based on Edmonds’ description in [82], we prove that the best lower bound one
can hope to achieve via the hyperplane separation technique is no better than a rather
immediate and well-known lower bound of Ω(|E|) (see, e.g., [100]). This is particularly
interesting because the question whether the bound of Ω(|E|) can be improved upon for
the extension complexity of spanning tree polytopes of complete graphs is a notoriously
difficult problem [8, 141, 199].

Augmentation and Circuits. As mentioned above, LPs of the form (1.4) can be
solved in polynomial time. Yet how does one actually solve an LP? A simple idea
for solving any optimization problem, in fact, is the following. Find some feasible
solution and check whether it is optimal. If not, find a better solution and repeat.
This idea leads to an augmentation scheme. In fact, being able to find improving
solutions efficiently usually suffices to obtain polynomial-time algorithms for combinato-
rial optimization problems [178, 180]. Several classical polynomial-time algorithms for
well-known problems, especially for network flow problems, are augmentation schemes
(also known as a primal algorithms in this context). Two famous examples are the
Edmonds-Karp-Dinic algorithm for maximum flow problems [77, 87] and Goldberg and
Tarjan’s cycle cancelling algorithm for computing minimum-cost flows [117].

The concept of augmentation is also very prominent in combinatorial algorithms for
matching problems, including Edmonds’ blossom algorithm. For example, to find a
maximum matching in the graph in Figure 1.1, we may start with an arbitrarily chosen
edge. This clearly is a matching. Given this initial matching, we then check whether
there is a path along which matching and non-matching edges alternate, and whose
endpoints are not matched. See Figure 1.3 for an example. Flipping matching and
non-matching edges along such a path yields a matching with one more edge. It is well
known that a matching is maximum if no such augmenting path exists (see [177]).

Geometrically, augmenting a matching along an alternating path means moving
along an edge of the matching polytope [54]. So we may rephrase the combinatorial
augmentation scheme sketched above as follows: Start by finding some vertex of the
matching polytope. Check whether moving along any of its incident edges improves the
objective function value. If so, follow such an edge to an adjacent vertex and repeat. If
there is no improving edge, we found an optimal vertex.

Replacing the matching polytope with the feasible region of any given LP, this is
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Figure 1.3: An alternating path in the graph in Figure 1.1. The solid edge is the initial
matching; the two dashed edges indicate a matching obtained after a single
augmentation.

precisely the geometric idea behind arguably the most famous algorithm for solving LPs:
the Simplex method, introduced by George B. Dantzig in the 1940s [70]. Of course,
there are many details to be filled in – for example, how does one select an improving
edge if more than one is available? This is governed by a pivot rule. To this day, no
pivot rule is known for which the Simplex method is guaranteed to run in polynomial
time. The existence of such a polynomial pivot rule is a long-standing open question in
the theory of linear programming (see, e.g., [190]).

It is therefore natural to wonder whether good bounds on the worst-case running time
of augmentation schemes for LPs may potentially be easier to obtain if the augmenting
directions are drawn from a larger set than just the (incident) edge directions. Such
a set must have the following property: For any linear objective function and any
non-optimal solution, the set contains a direction along which the objective function
value strictly increases. A set of vectors with this property is called a test set for linear
programming. A particularly nicely structured test set that includes the edge directions
is the set of circuits of a polyhedron [120]. This set can be thought of to consist of
all potential edge directions that can arise by translating facets of the polyhedron [98].
Using circuits as augmenting directions, one can solve LPs with a polynomial number of
augmentations [72, 73, 127, 132]. However, computing an augmenting circuit direction
may be NP-hard [73] or require solving an auxiliary LP [34, 73, 132], although one of
potentially simpler structure [31].

In rare cases, the circuits of a polyhedron correspond to the actual edge directions.
This is true, for example, for the fractional matching polytope [73, 169]. In general,
though, the set of circuits may be much larger than the set of edge directions. This is
what one might expect especially for polyhedra in combinatorial optimization, which
typically have an exponential number of facets. To describe their circuits, a tempting
idea is to use an extended formulation, which may be significantly more compact, as we
saw above. Given that an extended formulation determines a polyhedron that linearly
projects onto the original one (by projecting out the extra variables), may it be the
case that circuits are also images of circuits under the same projection map? While this
is known to be true for the edge directions, we give a negative answer for circuits in
Chapter 4. We prove that, for any polyhedron and a given circuit that is not an edge
direction, one can construct an extended formulation none of whose circuits projects
onto the given circuit. Even worse, linear images of polyhedra with no non-edge circuits
may have exponentially many non-edge circuits.
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Diameters of Polyhedra. As described above, the Simplex method traces a path
from an initial vertex to an optimal one along edges of the polyhedron that is the
feasible region. So the minimum length of such a path, measured by the number of its
edges, is a lower bound for the number of steps of the Simplex method with any pivot
rule. How short can these paths be? The maximum length of a shortest path along
edges between any pair of vertices of a polyhedron is the (combinatorial) diameter of
the polyhedron. In Dantzig’s book on linear programming [70] from 1963, Warren M.
Hirsch conjectured that the diameter of a d-dimensional polyhedron with f facets is at
most f − d. This became known as the Hirsch conjecture. It was soon disproved for
unbounded polyhedra by Klee and Walkup [145] in 1967. The Hirsch conjecture for
polytopes, however, remained open until 2012, when Santos [170] found a counterexample
in dimension 43. This was later improved to lower dimensions in [155].

Of course, for a polynomial pivot rule to exist for the Simplex method, diameters of
polyhedra do not necessarily have to satisfy the Hirsch bound of f − d. Still, rather
surprisingly, it is not even known whether there is an upper bound on the diameter
that is polynomial in f and d (see [170]). Given that good bounds on the number of
augmenting steps seem easier to obtain when augmenting along circuits, an immediate
question is whether the Hirsch bound holds in the circuit setting, i.e., for the length
of paths between vertices that are constructed by moving maximally along circuits
instead of edges. This question is known as the circuit diameter conjecture [35]. While
this conjecture is open, it has been verified for special cases: For example, the Klee-
Walkup polyhedron from [145], which violates the unbounded Hirsch conjecture, does
satisfy the circuit diameter conjecture [185]. Is this also true for the known bounded
Hirsch counterexamples from Santos’ work [155, 170] or does any of them give rise to
a counterexample to the circuit diameter conjecture? This question is the subject of
Chapter 5. We give a partial answer and show that the key combinatorial property for
the polytopes in [155, 170] to be counterexamples to the Hirsch conjecture is no longer
true when considering circuits.

1.1 Organization of This Thesis

We begin in Chapter 2 by introducing {0, 12}-cuts and the {0, 12}-closure of rational
polyhedra more formally. In Section 2.2, we then explain our hardness result for testing
whether the {0, 12}-closure and the integer hull coincide. As we will see, the proof also
has a number of interesting consequences. Section 2.3 is largely self-contained and
explores the binary clutter framework of [49] for the family of {0, 12}-cuts. We give a
brief introduction to the relevant concepts from the theory of clutters in Section 2.3.1.
We also review the precise relationship between binary clutters and {0, 12}-cuts in detail,
providing characterizations of the binary clutters associated with the fractional matching
polytope and its close relative, the fractional stable set polytope. In Section 2.3.2, we
prove our hardness result for optimizing over binary clutters derived from polyhedra
in the 0/1 cube whose {0, 12}-closure is integral. Section 2.3.3 contains both new
and previously known observations on integrality properties of binary clutters for the
{0, 12}-closure of set packing polytopes. Specialized to fractional matching and stable
set polytopes, we obtain interesting connections to the strong Chvátal rank of their
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coefficient matrices. Our results suggest many avenues for future work, which are
summarized in Section 2.4.
In Chapter 3, we first explain the hyperplane separation bound, which operates on

slack matrices of polytopes. In Section 3.3, we apply it to slack matrices of spanning
tree polytopes and another class of polytopes that generalizes completion time polytopes
from scheduling. In both cases, we will see that the hyperplane separation bound
performs rather poorly, compared to the best known bounds. Section 3.4 mitigates our
negative results of Section 3.3 by showing ways to improve the hyperplane separation
bound by choosing different slack matrices.
Section 4.2 in Chapter 4 introduces the circuits of a polyhedron more formally and

provides several equivalent characterizations from the literature. In Section 4.3, we then
give a family of linear projections under which circuits are not necessarily images of
circuits, when applied to carefully chosen polyhedra, including certain polytopes from
clustering. We then extend these results in Section 4.4 to characterize for which linear
projection maps or polyhedra circuits always are images of circuits under a projection.

In Chapter 5, we start in Section 5.1 by introducing diameters of polyhedra and the
Hirsch conjecture in greater detail than we did above. In particular, we explain the
key combinatorial parameter that Santos’ construction of bounded counterexamples
relies on. In Section 5.2, we prepare the arguments needed for our analysis of these
counterexamples: We first describe an alternative perspective on the set of circuits
of polyhedron. This will allow us to derive a well-known property of circuits, which
motivates why the precise upper bound given by the Hirsch conjecture is of interest for
bounding circuit diameters. We then explain our main technical tool in Section 5.2.3.
This is used in the proofs in Section 5.3. Section 5.3.2 includes a detailed account of
Santos’ construction. Finally, Section 5.4 concludes the chapter by investigating possible
extensions and implications of our results.

Reading this thesis requires some familiarity with the elementary concepts of linear
programming, graph theory, and complexity theory – although at a very basic level. For
instance, the reader should be familiar with LP duality; the complexity classes P,NP,
and coNP; reductions between computational problems; and standard notions in graph
theory. These concepts are covered in most standard textbooks on linear programming,
integer programming, or combinatorial optimization, e.g., in [57, 174, 177] (to a much
greater extent than what is needed here, of course). Since polyhedra and polyhedral
techniques are prominent throughout this thesis, some knowledge of polyhedral theory
is helpful. A brief summary of some basic concepts that we will need, especially in
Chapters 4 and 5, can be found in Appendix A.

Bibliographic Notes. The results of Section 2.2 are joint work with Andreas S.
Schulz and appear in [45]. Those of Chapter 3 appear in [44]. The results of Chapter 4
are joint work with Steffen Borgwardt and appear in [28]. The results of Chapter 5 are
joint work with Alexander E. Black and Steffen Borgwardt, and appear in [21].
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1.2 Notation

Throughout this thesis, we denote the ith standard basis vector by ei. Further, In

denotes the n× n identity matrix (where we omit the subscript if the dimension is clear
from the context). We use R≥0 to denote the set of nonnegative reals and Z2 to denote
the integers modulo 2. 0 and 1 are the vectors of all zeros and all ones, respectively, in
appropriate dimension. For n ∈ N, we write [n] for {1, . . . , n}. Vectors with superscripts
such as a(i) always denote the ith vector in a list of vectors, whereas subscripts as in ai
indicate the ith component of a vector a. For a vector x ∈ Rn and S ⊆ [n], we write
x(S) =

∑
i∈S xi.

All graphs in this thesis are undirected and simple (i.e., without loops or parallel
edges), unless stated otherwise. Kn denotes the complete graph on n nodes. We will
stick to this terminology in order to avoid confusion with the vertices of polyhedra.
Nonetheless, to denote the sets of nodes and edges of a graph G, we use the standard
symbols V and E (or V (G) and E(G), respectively, whenever G is not clear from the
context).





Chapter 2

When the {0, 1/2}-Closure Coincides with
the Integer Hull

The results of Section 2.2 of this chapter are joint work with Andreas S. Schulz [45]. The
presentation of those results in Section 2.2 and the corresponding parts of Sections 2.1
and 2.4 is largely identical to our paper.

2.1 Introduction

Let P = {x ∈ Rn : Ax ≤ b} with A ∈ Zm×n and b ∈ Zm be a rational polyhedron. For
all u ∈ Rm

≥0 with u⊤A ∈ Zn, the inequality

u⊤Ax ≤ ⌊u⊤b⌋ (2.1)

is satisfied by all x ∈ P ∩ Zn and is therefore valid for the integer hull of P , denoted
by PI = conv(P ∩ Zn). Inequalities of the form (2.1) are called Gomory-Chvátal cuts
for P [53, 118]. The intersection of all halfspaces corresponding to Gomory-Chvátal
cuts yields the Gomory-Chvátal closure P ′ of P . Note that P ′ does not depend on the
linear description Ax ≤ b of P (see [174]). Moreover, P ′ is a rational polyhedron again,
which follows from the fact that all Gomory-Chvátal cuts with [0, 1)-valued multipliers
u suffice (see, e.g., [57]), i.e.,

P ′ =
{
x ∈ P : u⊤Ax ≤ ⌊u⊤b⌋, u ∈ [0, 1)m, u⊤A ∈ Zn

}
.

It even suffices to consider Gomory-Chvátal cuts for which u⊤b /∈ Z: If u⊤b ∈ Z, the
inequality (2.1) is redundant for P and is therefore called a trivial cut.
If we restrict to multipliers u ∈ {0, 12}

m, we obtain a special family of Gomory-
Chvátal cuts, first introduced by Caprara and Fischetti [49]. We refer to these special
Gomory-Chvátal cuts as {0, 12}-cuts. The {0, 12}-closure of P is defined as

P 1
2
(A, b) :=

{
x ∈ P : u⊤Ax ≤ ⌊u⊤b⌋, u ∈ {0, 12}

m, u⊤A ∈ Zn
}
.

It is easily seen that P 1
2
(A, b) is a rational polyhedron. From the definition, it follows

that PI ⊆ P ′ ⊆ P 1
2
(A, b) ⊆ P . Further note that, unlike P ′, the {0, 12}-closure P 1

2
(A, b)

depends on the system Ax ≤ b defining the polyhedron P . For instance, 2Ax ≤ 2b
clearly defines the same polyhedron P as Ax ≤ b, while P 1

2
(2A, 2b) = P . This contrasts

with what is known for the Gomory-Chvátal closure, where P ′ = P if and only if P = PI

(see [174]).
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{0, 12}-cuts are prominent in polyhedral combinatorics. We already saw an example
in Chapter 1:

Example 2.1 (Matchings). Let G = (V,E) be a graph. Recall from Chapter 1 that
the fractional matching polytope of G is given by

x(δ(v)) ≤ 1 for all v ∈ V

x ≥ 0
(2.2)

The blossom inequalities [53, 79]

x(E(S)) ≤ |S| − 1

2
for all S ⊆ V with |S| odd, (2.3)

are {0, 12}-cuts for the fractional matching polytope of G. As mentioned in Chapter 1,
Edmonds [79] showed that the integer hull, the matching polytope of G, is determined
by (2.2) and (2.3). In particular, the {0, 12}-closure of the fractional matching polytope
is integral. ♢

Let us look at another example.

Example 2.2 (Stable sets). Given a graph G = (V,E) without isolated nodes, we call
the polyhedron

xu + xv ≤ 1 for all uv ∈ E

x ≥ 0
(2.4)

the fractional stable set polytope of G. (It is readily checked that (2.4) indeed defines a
polytope.) Its integer hull is the stable set polytope of G, the convex hull of all incidence
vectors of stable sets in G (see Chapter 1).

For a cycle C of odd length in G, let us add the edge constraints in (2.4) along the
edges of C. The resulting inequality is 2x(V (C)) ≤ |V (C)|, where V (C) denotes the set
of nodes of C. We divide by 2, round down the right-hand side, and obtain the family
of {0, 12}-cuts

x(V (C)) ≤ |V (C)| − 1

2
for all odd cycles C (2.5)

These are the so-called odd-cycle inequalities. Gerards and Schrijver [114] proved that
they suffice to describe the Gomory-Chvátal closure of the fractional stable set polytope
of G (and therefore also its {0, 12}-closure).
Unlike the {0, 12}-closure of the fractional matching polytope, the {0, 12}-closure of

the fractional stable set polytope, given by (2.4) and (2.5), is not integral in general.
For instance, consider K4, the complete graph on 4 nodes. The point x∗ = (13 ,

1
3 ,

1
3 ,

1
3)

satisfies all constraints in (2.4) and (2.5) but 1⊤x∗ > 1. Clearly, a stable set in K4

cannot contain more than one node, so x∗ is not in the stable set polytope of K4.
Following [54], a graph is called t-perfect if its stable set polytope coincides with the
{0, 12}-closure of its fractional stable set polytope. With this terminology, K4 is not
t-perfect. ♢
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In both examples above, the family of {0, 12}-cuts can be separated in polynomial
time [114, 122, 161]. So by the equivalence of optimization and separation [124], one
can solve the stable set problem (which is NP-hard in general, as we saw in Chapter 1)
on t-perfect graphs in polynomial time. In general, though, the following separation
problem for the {0, 12}-closure is strongly NP-hard, as shown by Caprara and Fischetti
[49]:

GivenA ∈ Zm×n, b ∈ Zm and x∗ ∈ Qn such that x∗ ∈ P = {x ∈ Rn : Ax ≤ b},
find a {0, 12}-cut for P that is violated by x∗ or conclude that x∗ ∈ P 1

2
(A, b).

We note that Caprara and Fischetti’s original statement in [49] does not explicitly
mention strong NP-hardness, even though this can be deduced from their proof that the
following subproblem, which can be thought of as the decision version of the separation
problem, is (strongly) NP-complete (see also [88, 152]):

GivenA ∈ Zm×n, b ∈ Zm and x∗ ∈ Qn such that x∗ ∈ P = {x ∈ Rn : Ax ≤ b},
decide whether x∗ /∈ P 1

2
(A, b).

For technical reasons, we call this subproblem the membership problem for the {0, 12}-
closure, as in [88, 152], even though the more adequate term would be non-membership.
The membership problem remains strongly NP-complete even when Ax ≤ b defines a
polytope in the 0/1 cube, as shown by Letchford, Pokutta, and Schulz [152].

The fact that the membership problem is in NP is not difficult to see: An obvious NP
certificate is a separating {0, 12}-cut, succinctly represented by its vector of multipliers.
Now suppose that we are given the additional promise that P 1

2
(A, b) = PI for an

instance specified by A and b. In this case, there is also a short coNP certificate for
membership in P 1

2
(A, b), since the vertices of PI and (integral) directions of its extreme

rays can be shown to have polynomially bounded encoding length (see Section 17.1 of
[174] for details). This implies that the membership problem for the {0, 12}-closure is in
NP ∩ coNP when the {0, 12}-closure coincides with the integer hull. This is a special
case of the well-known fact that testing membership in the Gomory-Chvátal closure
belongs to NP ∩ coNP when restricted to polyhedra P with P ′ = PI (see, e.g., [41]).

We saw in Example 2.1 that the fractional matching polytope has this property.
Moreover, the linear system (2.2) and (2.3) that determines the {0, 12}-closure is even
totally dual integral (TDI) [66]. This motivates the following questions that are the
subject of the first part of this chapter: What is the computational complexity of
recognizing rational polyhedra whose {0, 12}-closure coincides with the integer hull,
and of deciding whether adding all {0, 12}-cuts produces a TDI system? We prove in
Section 2.2 that both properties are strongly NP-hard to recognize. As a byproduct of
our proof, we also obtain a hardness result for testing whether the Gomory-Chvátal
closure and the {0, 12}-closure of a given rational polyhedron coincide. Recall that the
polyhedra in both Examples 2.1 and 2.2 satisfy this property.

In the second part of this chapter (Section 2.3), we shall be exploring the structure
of the family of {0, 12}-cuts and its implications for the separation problem in greater
detail. Caprara and Fischetti’s proof of their hardness result for separating {0, 12}-cuts
in [49] relies on an interpretation of the family of {0, 12}-cuts for a given polyhedron as
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a so-called binary clutter. Clutters are special set families; binary clutters are those
for which the incidence vectors of their sets (the members) are solutions of systems of
congruences modulo 2 (see Section 2.3.1 for a formal definition). Many combinatorial
optimization problems whose feasible solutions are inherently parity-constrained can be
formulated as linear optimization problems over suitable binary clutters. A classical
example is the shortest path problem: The set of all s-t-paths in a graph with two
distinguished nodes s and t is a binary clutter (see [60]). It is well known that for
nonnegative edge weights, shortest s-t-paths can be computed in polynomial time (see,
e.g., [177]). Yet also NP-hard combinatorial optimization problems such as the max-cut
problem can be expressed in terms of a binary clutter (see, e.g., [111, 122, 126]; see
also Section 2.4). Caprara and Fischetti [49] observed that the decision versions of all
combinatorial optimization problems of this type, provided a nonnegative linear objective
function, can be reduced to carefully chosen instances of the membership problem for
the {0, 12}-closure, which led them to conclude NP-hardness of the membership problem.

On the other hand, if the binary clutter associated with the {0, 12}-cuts for a given
polyhedron has the property that minimum-weight members can be found in polynomial
time, for all nonnegative weights, then one immediately obtains an efficient separation
routine for the {0, 12}-closure [49]. As we will see in Section 2.3.1, this is true, e.g., for
the binary clutters associated with the fractional matching and stable set polytopes
[114, 122, 161], as observed in [49]. Letchford [150] later generalized these polynomially
solvable special cases of the separation problem even further, using results of [123, 193]
from the theory of binary matroids, which are very closely related to binary clutters
(see Section 2.3.1).

At this point, we stress that all of the above special cases of the separation problem
for {0, 12}-cuts are polynomially solvable because minimum-weight members of the
associated binary clutters can be found efficiently, for arbitrary nonnegative weights.
As we will see in Section 2.3.1, this implies that, in these cases, one can not only find
some violated {0, 12}-cut (if one exists) in polynomial time but even a most violated
one. Here, we say that a {0, 12}-cut for P = {x : Ax ≤ b} induced by some multiplier u∗

is most violated by x∗ ∈ P if it maximizes the amount of violation across all {0, 12}-cuts
for P , i.e., if

(u∗)⊤Ax∗ − ⌊(u∗)⊤b⌋ ≥ u⊤Ax∗ − ⌊u⊤b⌋

for all {0, 12}-valued multipliers u for which u⊤A is integral.

Note that the maximum possible amount by which any point in P may violate a
{0, 12}-cut is

1
2 . Such maximally violated {0, 12}-cuts can be separated in polynomial time

[50]. The problem of finding a most (not necessarily maximally) violated {0, 12}-cut,
however, is at least as hard as the separation problem for the {0, 12}-closure: If there
is a separating {0, 12}-cut for a given point x∗, there is also a most violated one that
separates x∗ from the {0, 12}-closure. So finding a most violated {0, 12}-cut is strongly
NP-hard. In Section 2.3.2, we prove that, rather surprisingly, this problem remains
strongly NP-hard even when the {0, 12}-closure and the integer hull coincide, and even
for instances where the separation problem for the {0, 12}-closure is easy.

The theory of binary clutters (and clutters, more generally) in polyhedral combina-
torics and optimization is extremely rich. So the binary clutter perspective on the family
of {0, 12}-cuts does not only prove useful in studying the complexity of the separation
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problem – one can even gain structural insights about the {0, 12}-closure from it. We
demonstrate this in Sections 2.3.3 and 2.3.4. For instance, binary clutters always come
in pairs: Each s-t-path in a graph intersects each s-t-cut in at least one edge. The set of
all minimal s-t-cuts is a binary clutter again (see [60]). So from a polyhedral viewpoint,
optimizing a nonnegative linear objective function over the binary clutter of minimal
s-t-cuts in a graph with edge set E can be done by linear optimization over the integral
points z ∈ ZE of the set covering polyhedron

z(P ) ≥ 1 for all s-t-paths P

z ≥ 0
(2.6)

Such a set covering polyhedron can be associated with any (binary) clutter by replacing
the s-t-paths P above with the members of the clutter. In the case of s-t-paths, (2.6) is,
in fact, an integral polyhedron. Whenever this happens, the binary clutter is said to
be ideal, and it is further said to have the max-flow min-cut (MFMC) property if the
system (2.6) is TDI. Both the clutters of s-t-paths and s-t-cuts in a graph are not only
ideal but also have the MFMC property (see [60]).

Especially the MFMC property is key to many famous min-max theorems in combi-
natorial optimization (see Chapter 80 of [177]). For example, Menger’s theorem [157]
states that in a graph with two distinguished nodes s and t, the minimum number of
edges of an s-t-cut is equal to the maximum number of edge-disjoint s-t-paths. This
follows directly from the fact that the clutter of s-t-paths has the MFMC property, which
implies that the dual of the LP min{1⊤z : z ∈ RE , z satisfies (2.6)} has an integral
optimal solution. (The MFMC property is sometimes also referred to as the Mengerian
property.)
For binary clutters associated with the {0, 12}-closure of set packing polyhedra, we

will see in Section 2.3.3 that idealness and the MFMC property imply integrality and
total dual integrality of the {0, 12}-closure, respectively. Recall that a set packing
polyhedron is given by a linear system of the form Ax ≤ 1, x ≥ 0 for a 0/1 matrix
A. The fractional matching and stable set polytopes from Examples 2.1 and 2.2 both
are of set packing type, where A is the node-edge or edge-node incidence matrix of a
graph. In Section 2.3.4, we characterize exactly when the associated binary clutters
are ideal and provide necessary conditions for them to have the MFMC property.
Interestingly, our results imply that, for these special set packing systems, one can relate
both idealness and the MFMC property to the strong Chvátal rank of the coefficient
matrix A. Moreover, both integrality properties of the associated binary clutters can
be recognized in polynomial time. To obtain our characterizations in Section 2.3.4, we
combine celebrated and deep results of Gerards and Schrijver [114], Guenin [126], and
Seymour [183]. Further implications of these results are discussed in the final part of
this chapter, in Section 2.4.
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2.2 Computational Complexity of Integrality Properties of
the {0, 1/2}-Closure

We start by settling the computational complexity of recognizing when the {0, 12}-closure
of a rational polyhedron coincides with the integer hull. The related recognition problem
for the Gomory-Chvátal closure was studied by Cornuéjols and Li [62]. They proved
that, given a rational polyhedron P with PI = ∅, deciding whether P ′ = ∅ is weakly
NP-complete. This immediately implies weak NP-hardness of testing whether P ′ = PI .
Cornuéjols, Lee, and Li [64] extended these hardness results to the case when P is
contained in the 0/1 cube. Moreover, they showed that deciding whether a constant
number of Gomory-Chvátal inequalities is sufficient to obtain the integer hull is weakly
NP-hard, even for polytopes in the 0/1 cube.

In this section, we establish analogous hardness results for the {0, 12}-closure. Our
main result is the following theorem.

Theorem 2.3. Given A ∈ Zm×n and b ∈ Zm with P = {x ∈ Rn : Ax ≤ b} ⊆ [0, 1]n,
deciding whether P 1

2
(A, b) = PI is strongly NP-hard, even when the inequalities −x ≤ 0

and x ≤ 1 are part of the system Ax ≤ b.

We give a proof of this theorem in Section 2.2.1. Our proof implies several further
hardness results, which we explain in Section 2.2.2. In particular, deciding whether
adding all {0, 12}-cuts to a given linear system Ax ≤ b produces a TDI system, is strongly
NP-hard. We also establish strong NP-hardness of the following problems: deciding
whether the {0, 12}-closure coincides with the Gomory-Chvátal closure; deciding whether
a constant number of {0, 12}-cuts suffices to obtain the integer hull; computing the
dimension of the {0, 12}-closure. Finally, we give a hardness result for the membership
problem for the {0, 12}-closure, which is slightly stronger than the one of Letchford,
Pokutta, and Schulz [152].

2.2.1 Proof of Theorem 2.3

We reduce from Stable Set:

Let G = (V,E) be a graph and k ∈ N, k ≥ 2. Does G have a stable set of
size at least k?

It is well known that Stable Set is strongly NP-complete [139]. Note that the problem
remains strongly NP-complete if restricted to graphs with minimum degree at least 2:
Given an instance of Stable Set specified by G and k, we construct a new graph G′

by adding two dummy nodes to G as well as all edges with at least one endpoint being
a dummy node. Every node in G′ has degree at least 2, and every stable set in G′ of
size k ≥ 2 is a stable set in G of the same size.

Consider an instance of Stable Set given by G = (V,E) and k ≥ 2. By the above
observation, we may assume that every node in V has degree at least 2. Note that
|V | =: n ≥ 3 and |E| =: m ≥ 3 in this case. Let A := 2·11⊤−M⊤ where M ∈ {0, 1}m×n

denotes the edge-node incidence matrix of G. We define a polytope P ⊆ Rm by the
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following system of inequalities:

0 ≤ x ≤ 1 (2.7)

Ax ≤ 2 · 1 (2.8)

(2k − 3)1⊤x ≥ 2k − 3 (2.9)

Claim 1. PI =
{
x ∈ P : 1⊤x = 1

}
.

Proof of Claim 1. If we add all inequalities in (2.8), we obtain the valid inequality
2(n − 1)1⊤x ≤ 2n. Every integral point x in P therefore satisfies 1⊤x = 1. Since
A ∈ {1, 2}n×m, it is easy to check that every standard basis vector is indeed contained
in P . We conclude that

PI =
{
x ∈ [0, 1]m : 1⊤x = 1

}
⊇
{
x ∈ P : 1⊤x = 1

}
⊇ PI . ♢

The {0, 12}-cuts that can be derived from (2.7)–(2.9) are all the inequalities of the
following two types with u ∈ {0, 12}

n and v ∈ {0, 12}
m:

m∑
i=1

(
2u⊤1+ ⌊vi − (Mu)i⌋

)
xi ≤ 2u⊤1+

⌊
v⊤1

⌋
(2.10)

m∑
i=1

(
2u⊤1− (k − 1) +

⌊
1
2 + vi − (Mu)i

⌋)
xi ≤ 2u⊤1− (k − 1) +

⌊
1
2 + v⊤1

⌋
(2.11)

The first type (2.10) defines all cuts that are derived only from (2.7) and (2.8), whereas
the second type (2.11) also uses inequality (2.9). The vector u is the vector of multipliers
for inequalities (2.8) while v collects the multipliers for the upper bounds in (2.7).
In what follows, P 1

2
denotes the {0, 12}-closure of P defined by (2.7)–(2.9) together

with (2.10) and (2.11) for all u ∈ {0, 12}
n and v ∈ {0, 12}

m.

Claim 2. P 1
2
= PI if and only if there is a {0, 12}-cut equivalent to 1⊤x ≤ 1.

Proof of Claim 2. If there is such a cut, then P 1
2
⊆
{
x ∈ P : 1⊤x ≤ 1

}
= PI by Claim 1.

To see the “only if” part, consider the vector y =
(
1
m + ε

)
1 for some small ε > 0.

Clearly, y /∈ PI since 1⊤y > 1. We claim that there is a choice for ε such that y ∈ P and
y satisfies all {0, 12}-cuts except those that are equivalent to 1⊤x ≤ 1. First observe that
every cut (of either type (2.10) or (2.11)) as well as every inequality in (2.8) and (2.9)
may be written as a⊤x ≤ α for some a ∈ Zm, α ∈ Z where ai ≤ α for all i ∈ [m]
and α ≤ m + n. If α ≤ 0, we clearly have a⊤y ≤ α since y ≥ 1

m1. If α > 0 and
a⊤x ≤ α is not equivalent to 1⊤x ≤ 1, then ai < α for at least one i ∈ [m]. It follows
that a⊤y ≤ α− 1

m + ε(mα− 1). For instance, taking ε := 1
m2(m+n)

yields a⊤y ≤ α as

desired. ♢

In particular, the proof of Claim 2 shows that the inequality 1⊤x ≤ 1 is not valid for
P and, hence, P ̸= PI .

Claim 3. No cut of type (2.10) is equivalent to 1⊤x ≤ 1.
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Proof of Claim 3. Let u ∈ {0, 12}
n and v ∈ {0, 12}

m. If u = 0, (2.10) reduces to a trivial
inequality. If v = 0, the cut (2.10) is a trivial cut which is only derived from inequalities
in the description of P with even right-hand sides. Hence, we may assume that both
u ̸= 0 and v ≠ 0. It suffices to show that ⌊vi − (Mu)i⌋ <

⌊
v⊤1

⌋
for at least one i ∈ [m].

If v⊤1 ≥ 1, there is nothing to show. Now let v⊤1 = 1
2 and suppose for the sake of

contradiction that ⌊vi − (Mu)i⌋ ≥ 0 for all i ∈ [m]. It follows that Mu ≤ v. Since
every column of M has at least two nonzero entries by assumption, we obtain u = 0, a
contradiction. ♢

Claim 4. A cut of type (2.11) induced by u ∈ {0, 12}
n and v ∈ {0, 12}

m is equivalent to
1⊤x ≤ 1 if and only if v = 0, 2Mu ≤ 1, and 2u⊤1 ≥ k.

Proof of Claim 4. Suppose first that v ̸= 0. Then, for every i ∈ [m], we have⌊
1
2 + vi − (Mu)i

⌋
≤ 1 ≤

⌊
1
2 + v⊤1

⌋
. This holds with equality for all i ∈ [m] simul-

taneously only if vi =
1
2 and v⊤1 ≤ 1, contradicting m ≥ 3. Thus, no inequality of the

form (2.11) with v ̸= 0 has identical coefficients that coincide with the right-hand side.
We may therefore assume that v = 0.

If 2u⊤1 ≤ k − 1, inequality (2.11) is redundant: It is the sum of the inequalities
(2u⊤1 − (k − 1))1⊤x ≤ 2u⊤1 − (k − 1) and

⌊
1
2 − (Mu)i

⌋
xi ≤ 0 for all i ∈ [m], all of

which are valid for P . Assuming that 2u⊤1 ≥ k, inequality (2.11) is equivalent to
1⊤x ≤ 1 if and only if (Mu)i ≤ 1

2 for all i ∈ [m]. ♢

Putting together Claims 2 to 4, we conclude that P 1
2
= PI if and only if there exists

some u ∈ {0, 12}
n such that 2u is the incidence vector of a stable set in G of size at least

k. This concludes the proof of Theorem 2.3.

2.2.2 Further Hardness Results

A careful analysis of the proof of Theorem 2.3 shows that, if the polytopes P constructed
in the reduction satisfy P 1

2
= PI , there is a single {0, 12}-cut that certifies this (see

Claim 2). This observation immediately implies the following corollary.

Corollary 2.4. Let k ∈ N be a fixed constant. Given A ∈ Zm×n and b ∈ Zm with
P = {x ∈ Rn : Ax ≤ b} ⊆ [0, 1]n, deciding whether one can obtain PI by adding at most
k {0, 12}-cuts is strongly NP-hard, even when k = 1, and −x ≤ 0 and x ≤ 1 are part of
the system Ax ≤ b.

Moreover, let us remark that P ′ = PI for the polytopes P arising from the reduction.
This follows from the fact that for n ≥ 3, the inequality 1⊤x ≤ ⌊2n/2(n− 1)⌋ = 1 is a
Gomory-Chvátal cut for P , see the proof of Claim 1.

Corollary 2.5. Given A ∈ Zm×n and b ∈ Zm with P = {x ∈ Rn : Ax ≤ b} ⊆ [0, 1]n,
deciding whether P 1

2
(A, b) = P ′ is strongly NP-hard, even when −x ≤ 0 and x ≤ 1 are

part of the system Ax ≤ b.

The linear systems arising from our reduction have another interesting property. The
inequality description (2.7)–(2.11) of P 1

2
in the proof of Theorem 2.3 is a TDI system if



2.2 Computational Complexity of Integrality Properties 21

and only if P 1
2
= PI . Recall that a rational linear system Bx ≤ d is totally dual integral

(TDI) if the dual LP

min
{
d⊤y : B⊤y = c, y ≥ 0

}
has an integral optimal solution y for every integral vector c for which the minimum is
finite. Further recall the following result of Edmonds and Giles [84] which states that
total dual integrality of certain linear systems implies polyhedral integrality.

Proposition 2.6 ([84]). Let P = {x : Bx ≤ d} be a rational polyhedron where d is an
integral vector. If the linear system Bx ≤ d is TDI, then P is integral.

It therefore suffices to show that if P 1
2
= PI in the proof of Theorem 2.3, then (2.7)–

(2.11) defines a TDI system. So suppose that P 1
2
= PI . By the proof of Theorem 2.3,

there exist vectors u′, u′′ ∈ {0, 12}
n such that 2Mu′ ≤ 1, 2Mu′′ ≤ 1, 2(u′)⊤1 = k, and

2(u′′)⊤1 = k − 2 ≥ 0 (see Claim 4). The cuts of type (2.11) derived with u′ and u′′

(where we take v = 0) are the inequalities 1⊤x ≤ 1 and −1⊤x ≤ −1, respectively. The
system defined by these two inequalities and x ≥ 0 is a subsystem of (2.7)–(2.11) that
is sufficient to describe P 1

2
(see Claim 1) and that is TDI. To see this, let c ∈ Zm. We

may assume without loss of generality that c1 is the largest coefficient of c. It follows

that max
{
c⊤x : x ∈ P 1

2

}
= c1. It suffices to show that the inequality c⊤x ≤ c1 is a

nonnegative integer linear combination of the selected subsystem. Indeed, it is the sum
of c11

⊤x ≤ c1 (which is a nonnegative integer multiple of 1⊤x ≤ 1 or −1⊤x ≤ −1) and
−(c1 − ci)xi ≤ 0 for all i ∈ [m]. The above argument shows the following result.

Corollary 2.7. Let A ∈ Zm×n and b ∈ Zm. Deciding whether the system given by
Ax ≤ b and all {0, 12}-cuts derived from it is TDI, is strongly NP-hard, even when
−x ≤ 0 and x ≤ 1 are part of the system Ax ≤ b.

Another consequence of the proof of Theorem 2.3 is that computing the dimension of
the {0, 12}-closure of a given rational polyhedron is strongly NP-hard, since the integer
hull of any polytope P constructed in our reduction is a facet of P (see Claim 1 and
the proof of Claim 2):

Corollary 2.8. Given A ∈ Zm×n, b ∈ Zm, and d ∈ Z, deciding whether the dimension
of P 1

2
(A, b) is at most d, is strongly NP-complete, even when −x ≤ 0 and x ≤ 1 are

part of the system Ax ≤ b.

Further note that the presence of the constraints x ≤ 1 in (2.7) is not essential for
our reduction in the proof of Theorem 2.3. In fact, the upper bounds are redundant:
For every i ∈ [m], consider a row of A such that the entry in column i is equal to 2.
Such a row exists because n ≥ 3. The corresponding inequality in (2.8) together with
the nonnegativity constraints −xj ≤ 0 (possibly twice) for all j ̸= i yields 2xi ≤ 2 for
all x ∈ P . As the only relevant cuts among (2.10) and (2.11) are those with v = 0, we
conclude that all of the above results still hold true when the upper bounds x ≤ 1 are
not part of the input.

The final byproduct of our proof of Theorem 2.3 is that the membership problem for
the {0, 12}-closure of polytopes in the 0/1 cube is strongly NP-complete. This has already



22 Chapter 2 When the {0, 1/2}-Closure Coincides with the Integer Hull

been shown by Letchford, Pokutta, and Schulz [152], strengthening the NP-completeness
result of Caprara and Fischetti [49]. However, neither of the two different reductions
given in [152] constructs linear systems that include both nonnegativity constraints and
upper bounds on every variable. When these constraints are required to be part of the
input, membership testing remains strongly NP-complete, as the following result shows.

Corollary 2.9. The membership problem for the {0, 12}-closure of polytopes contained
in the 0/1 cube is strongly NP-complete, even when the inequalities −x ≤ 0 and x ≤ 1
are part of the input.

Proof. The problem clearly belongs to NP. To show hardness, we use the same reduction
from Stable Set as in the proof of Theorem 2.3. The vector y defined in the proof of
Claim 2 satisfies y /∈ P 1

2
if and only if the instance of Stable Set is a “yes” instance.

The encoding length of y is polynomial in m and n if we choose ε as in Claim 2.

The hardness result for the membership problem first given by Caprara and Fischetti
[49] relies on the fact that the family of {0, 12}-cuts for a rational polyhedron admits
a nice combinatorial interpretation as a binary clutter. In the next section, we will
explore this connection to binary clutters in greater detail.

2.3 Binary Clutters and the {0, 1/2}-Closure

The main contributions of this section are presented in Sections 2.3.2 to 2.3.4: a hardness
result for separating most violated {0, 12}-cuts that is stronger than what can be derived
from [49, 152]; and structural insights into integrality properties of the {0, 12}-closure
of special set packing polyhedra. As mentioned above, our results rely on the close
relationship between {0, 12}-cuts and binary clutters observed by Caprara and Fischetti
[49]. To understand this relationship, we first need to introduce the relevant concepts
in Section 2.3.1. As the entire section is intended to be largely self-contained, we then
review some of Caprara and Fischetti’s results from [49]. While our presentation in
parts of Section 2.3.1 follows their paper, we strongly emphasize the clutter perspective.

2.3.1 Preliminaries

There is a vast body of literature on clutters. Excellent introductions are [60] and, with
a focus on ideal clutters, [1]. We follow these two references for all basic definitions.
Binary clutters, idealness, and the MFMC property, more specifically, are also covered
in Chapters 78 to 80 of [177]. Many of the results on binary clutters in the literature
are phrased in terms of binary matroids, which are closely related. One of the ways in
which they are related will be briefly sketched below (and revisited later in this chapter).
However, all results presented in this chapter will be stated in terms of clutters, not
matroids. The interested reader is referred to [160] for the elementary concepts of
matroid theory, and to [1, 60, 183] for more details on connections between binary
clutters and binary matroids.
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Clutter Basics

Let E be a finite set. A clutter over ground set E is a collection F of subsets of E
with the property that no set in F is contained in another one. In particular, the
(inclusion-)minimal sets among any collection of subsets of E form a clutter. For a
given clutter F , the sets in F are called the members of the clutter. F is binary if, for
any three members S1, S2, S3 ∈ F , their symmetric difference S1∆S2∆S3 contains a
member of F again [148].
Given a clutter F over ground set E, a cover (or transversal) of F is a subset of E

that intersects each member of F . The set of all minimal covers of F is a clutter over
ground set E again: the blocker of F , denoted by b(F). Note that b(b(F)) = F [83].
Using the notion of blockers, binary clutters may also be characterized as follows. A
clutter F is binary if and only if members of F and b(F) intersect in an odd number of
elements, i.e., |S ∩ C| is odd for all S ∈ F and all C ∈ b(F) [148] (see also [182]). In
particular, this implies that blockers of binary clutters are binary again.

Another well-known characterization of binary clutters is the following (see, e.g., [1]).
As usual, we define the support of a vector z ∈ Rn as supp(z) := {i ∈ [n] : zi ̸= 0}.

Proposition 2.10 (see [1]). A clutter F over ground set [q] is binary if and only if F
consists of the minimal sets in

{supp(y) : y ∈ {0, 1}q, Qy ≡ d (mod 2)} (2.12)

for a matrix Q ∈ {0, 1}p×q and a vector d ∈ {0, 1}p.

Proof. Let F be the collection of all minimal sets in (2.12) for some Q ∈ {0, 1}p×q and
d ∈ {0, 1}p. First note that F is indeed a clutter as we only take minimal sets. For any
three solutions y1, y2, y3 ∈ {0, 1}q of the system of linear congruences Qy ≡ d (mod 2),
we have that Q(y1 + y2 + y3) ≡ 3d ≡ d (mod 2). Moreover, the support of y1 + y2 + y3
over Z2 equals supp(y1 + y2 + y3) = supp(y1)∆ supp(y2)∆ supp(y3). So for any three
sets in F , the incidence vector of their symmetric difference is a solution of Qy ≡ d
again, which means that F must be binary.
Now suppose that F is binary. Let Q be the matrix whose rows are the incidence

vectors of the members of b(F). Since F is binary by hypothesis, it follows that
Qχ(S) ≡ 1 (mod 2) for all S ∈ F . Conversely, let y be a 0/1 vector with Qy ≡ 1
(mod 2). Then supp(y) is a cover of b(F) and must therefore contain a member of
b(b(F)) = F .

Proposition 2.10 implies that binary clutters can be thought of as affine vector spaces
over Z2. With this characterization, one of the relationships with binary matroids be-
comes apparent. For a binary clutter F given as in Proposition 2.10, let us “homogenize”
the congruence system in (2.12) by introducing an additional variable η ∈ {0, 1}: Then
a 0/1 vector y is a solution of the original system (2.12) if and only if

(
y
1

)
is a solution

of (Q | d)
(
y
η

)
≡ 0 (mod 2). Each solution of the homogenized system corresponds to a

subset of columns of the 0/1 matrix (Q | d) that are linearly dependent over Z2. These
are precisely the cycles of the binary matroid represented by (Q | d). Minimal cycles
are called circuits. So for the binary clutter F given as Qy ≡ d (mod 2), there is a
binary matroid M over a ground set with one more element l (corresponding to the
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rightmost column of (Q | d)) such that F = {C \ {l} : C is a circuit of M, l ∈ C}. For
a given element l, the clutter F is called the l-port of M.
This shows that binary clutters may be characterized in yet another way: as ports

of binary matroids. We will briefly revisit this perspective later in this chapter, in
Section 2.3.4. But first, let us introduce the binary clutters that are relevant for
separating {0, 12}-cuts.

Separation of {0, 1/2}-Cuts is a Binary Clutter Problem

Following [49], we associate a binary clutter with a given matrix A ∈ Zm×n and a vector
b ∈ Zm as follows. Let F(A, b) be the collection of all minimal sets in{

supp(y) : y ∈ {0, 1}m,

(
Ā⊤

b̄⊤

)
y ≡

(
0
1

)
(mod 2)

}
(2.13)

where Ā := A mod 2 and b̄ := b mod 2. If we consider all sets in the collection (2.13)
(not just the minimal ones), then these are precisely the supports of all multiplier
vectors of nontrivial {0, 12}-cuts for the polyhedron P = {x ∈ Rn : Ax ≤ b}, as observed
in [49]. Indeed, for all u ∈ {0, 12}

m, we have that u⊤A ∈ Zn and u⊤b /∈ Z if and only if
y = 2u satisfies the congruences in (2.13), since y⊤A ≡ y⊤Ā and y⊤b ≡ y⊤b̄ (mod 2).
Restricting to minimal sets in the definition of F(A, b) above therefore yields a subfamily
of all nontrivial {0, 12}-cuts for P . We refer to them as support-minimal cuts, where the
support of a given {0, 12}-cut induced by u is defined as supp(u).

Here, it is important to note that Caprara and Fischetti [49] work with the entire
collection (2.13) and do not distinguish between {0, 12}-cuts and support-minimal {0, 12}-
cuts at all. We only make this distinction in order to be consistent with the definition
of clutters in the literature. For all our purposes, ignoring non-minimal supports is no
restriction: The next result, which is implicit in [49] (see also [150]), shows that the
support-minimal nontrivial {0, 12}-cuts for P = {x : Ax ≤ b} are sufficient to describe
P 1

2
(A, b).

Lemma 2.11 (see [49, 150]). For a polyhedron P = {x ∈ Rn : Ax ≤ b} with A ∈ Zm×n

and b ∈ Zm, the {0, 12}-closure P 1
2
(A, b) is the projection of the following polyhedron

onto the space of the x variables:

Ax+ s = b

s(S) ≥ 1 for all S ∈ F(A, b)

s ≥ 0

(2.14)

Proof. First, note that P is obtained from the polyhedron {(s, x) : Ax+ s = b, s ≥ 0}
by projecting out the slack variables s. We now argue that each nontrivial {0, 12}-cut
for P (trivial cuts are redundant) may be expressed in the slack variables s only. To
this end, let u ∈ {0, 12}

m such that u⊤A ∈ Zn and u⊤b /∈ Z. Since u⊤b is half-integral
(i.e., 2u⊤b ∈ Z), we have that ⌊u⊤b⌋ = u⊤b− 1

2 . So multiplying the cut u⊤A ≤ ⌊u⊤b⌋
by 2, rearranging and substituting s = b−Ax yields the equivalent inequality

2u⊤s ≥ 1.
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If supp(u) /∈ F(A, b), then there exists some v ∈ {0, 1}m with supp(v) ⊊ supp(u) such
that v also induces a nontrivial {0, 12}-cut for P . Since v ≤ u and s ≥ 0, the inequality
2u⊤s ≥ 1 is dominated by 2v⊤s ≥ 1. We may therefore restrict to support-minimal
multipliers u, i.e., those for which 2u = χ(S) for some S ∈ F(A, b).

Lemma 2.11 allows for a reformulation of the membership and separation problems
for the {0, 12}-closure, as observed by Caprara and Fischetti [49]. Given a rational point
x∗ in a polyhedron P = {x : Ax ≤ b}, Lemma 2.11 implies that x∗ ∈ P 1

2
(A, b) if and

only if (s∗, x∗) is in the polyhedron defined by (2.14) where s∗ := b−Ax∗ ≥ 0. So the
membership problem amounts to deciding whether there is a member S ∈ F(A, b) of
weight s∗(S) < 1, where the (nonnegative) weights are given by s∗. Finding such a
member immediately gives a separating {0, 12}-cut. Similarly, a most violated {0, 12}-cut
is induced by a member S ∈ F(A, b) that minimizes s∗(S). To see this, note that for all
S, S∗ ∈ F(A, b), we have that s∗(S∗) ≤ s∗(S) if and only if

1
2χ(S

∗)⊤Ax∗ −
⌊
1
2χ(S

∗)⊤b
⌋
≥ 1

2χ(S)
⊤Ax∗ −

⌊
1
2χ(S)

⊤b
⌋
.

Strictly speaking, this only means that {0, 12}-cuts induced by members of F(A, b) of
minimum s∗-weight are most violated support-minimal cuts for P . However, support-
minimality is no restriction here as s∗ ≥ 0.

By the definition of the clutters F(A, b), the membership problem for the {0, 12}-closure
is therefore a special case of the following problem:

Given Q ∈ {0, 1}p×q, d ∈ {0, 1}p and a nonnegative weight vector w ∈ Qq
≥0,

decide whether the binary clutter F over ground set [q] given in the form
Qy ≡ d (mod 2) (as in Proposition 2.10) has a member S of weight w(S) < 1.

Following [150], we call this problem the binary clutter problem. In fact, the binary
clutter problem and the membership problem for the {0, 12}-closure are polynomially
equivalent: Caprara and Fischetti [49] proved that every binary clutter is essentially of
the form F(A, b) for integral A and b such that any given nonnegative weight vector can
be obtained as the slack vector of a point in the polyhedron {x : Ax ≤ b}. Moreover, A, b,
and this point can be computed efficiently from a given instance of the binary clutter
problem [49]. The stronger result of Letchford, Pokutta, and Schulz [152] mentioned
in Section 2.1 follows from a more careful choice of A and b so that Ax ≤ b defines a
polytope in the 0/1 cube.

It is well known that the binary clutter problem is strongly NP-complete; various
hardness proofs have been given time and again, e.g., in [49, 152, 193] (see also [111,
122, 126]). Therefore, via the reduction of [49], also the membership problem for the
{0, 12}-closure is strongly NP-complete. We remark that this reduction also implies that
the separation problem for the Gomory-Chvátal closure, more generally, is strongly
NP-hard, as observed by Eisenbrand [88].

On the positive side, suppose that for a rational polyhedron P = {x : Ax ≤ b}, the
binary clutter problem for F(A, b) and any given nonnegative weight vector w can
be solved in polynomial time. Then, using standard reductions from combinatorial
optimization (see, e.g., [125, 178]), one can construct an efficient separation routine
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for the {0, 12}-closure P 1
2
(A, b) as follows. First, note that by scaling the weights,

an algorithm for the binary clutter problem over F(A, b) can also decide whether
min{w(S) : S ∈ F(A, b)} < k for any given rational k. This already suffices to compute
the minimum weight of any member of F(A, b) in polynomial time (by binary search)
and to efficiently find a member S ∈ F(A, b) that attains the minimum (see, e.g., [178]
for details). As explained above, this solves the separation problem for the {0, 12}-closure
of P , for any given vector x∗ ∈ P . Even stronger, one always obtains a most violated
{0, 12}-cut for P in this way.
As mentioned in Section 2.1, the binary clutters associated with the fractional

matching and stable set polytopes in Examples 2.1 and 2.2 belong to such a class of
clutters for which the binary clutter problem is known to be solvable in polynomial
time, for all nonnegative weights (see [49]). In the remainder of this section, we will
look at each of the two examples in turn. As the associated binary clutters will play
a central role in Section 2.3.4, we provide a combinatorial characterization of their
members. The characterizations that we obtain are not new; they already appear in
[49], although less explicitly and in a more general form. They also follow readily
from the matroid perspective on binary clutters and using matroid duality (see, e.g.,
[60, 150, 160]). However, for the sake of clarity, we state and prove them explicitly in
the language of binary clutters, using elementary combinatorial arguments.

Binary Clutters for Fractional Matching and Stable Set Polytopes

Let G = (V,E) be a graph. The edge-node incidence matrix of G is the matrix
MG ∈ {0, 1}E×V whose rows are the incidence vectors of the edges of G. In other words,
the entry of MG in row e ∈ E and column v ∈ V is 1 if v ∈ e and 0 otherwise. The
transpose of MG is the node-edge incidence matrix of G.
With this definition, the fractional matching polytope of G (see Example 2.1) can

equivalently be written as {
x ∈ RE : M⊤

Gx ≤ 1, x ≥ 0
}
. (2.15)

Similarly, the fractional stable set polytope of G (see Example 2.2) is given by{
x ∈ RV : MGx ≤ 1, x ≥ 0

}
. (2.16)

Both linear systems in (2.15) and (2.16) include nonnegativity constraints. Let us first
derive a useful equivalent formulation of the binary clutters associated with linear systems
of this form. More generally, we consider polyhedra of the form {x : Ax ≤ b, x ≥ 0} where
A ∈ Zm×n and b ∈ Zm. For the sake of brevity, we define F+(A, b) := F(

(
A
−I

)
,
(
b
0

)
),

and label the ground set of F+(A, b) by [m] ∪̇ [n], the sets of rows and columns of A.
Given a subset of rows S ⊆ [m], we define oddA(S) as the support of

∑
i∈S a(i) mod 2,

where a(i) denotes the ith row of A. Put differently, the set oddA(S) ⊆ [n] consists of
all column indices j ∈ [n] for which the number of rows in S that has an odd entry in
column j is odd. With this notation, the members of F+(A, b) can be easily described
as follows.

Lemma 2.12. For A ∈ Zm×n and b ∈ Zm, the members of F+(A, b) are the minimal
sets in {S ∪̇ oddA(S) : S ⊆ [m], b(S) odd}.
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Proof. By definition of the clutter F+(A, b), its members correspond to the support-
minimal solutions (y, t) ∈ {0, 1}m × {0, 1}n of the system of congruences

Ā⊤y + t ≡ 0 (mod 2)

b̄⊤y ≡ 1 (mod 2)

Since supp(t) = oddA(supp(y)) for any such solution (y, t), the statement follows.

Let us now apply Lemma 2.12 to the binary clutters associated with the fractional
matching polytope of a graph G, in which case the matrix A is the node-edge incidence
matrix M⊤

G . We will need the following graph terminology. A cut in a given graph
G = (V,E) is a subset of edges of the form δ(U) for some U ⊆ V . (We will also write
δG(U) for δ(U) if the graph G is not clear from the context.) The sets U and V \U are
the shores of the cut. For a given subset of nodes T ⊆ V (the terminals), the cut δ(U)
is called a T -cut if |U ∩ T | is odd. The join of two graphs G and H, denoted by G+H,
is the graph on nodes V (G) ∪̇ V (H) whose edge set consists of E(G) ∪̇ E(H) and all
edges between nodes of G and nodes of H (see [23]).
We are now ready to describe the members of F+(M

⊤
G , b), for any given integral

vector b. As mentioned above, this description is a special case of a result of [49], and is
implicitly used in [161]. Stated in matroid terms, it can also be found in [1, Section 9.2].

Proposition 2.13 (see [1, 49, 161]). Let MG be the edge-node incidence matrix of a
graph G = (V,E) and let b ∈ ZV . Then F+(M

⊤
G , b) is the clutter of minimal T -cuts in

G+K1 where

T =

{
{v ∈ V : bv odd} ∪ V (K1) if b(V ) odd

{v ∈ V : bv odd} otherwise

Proof. Let us denote the unique node of K1 by v+. For each node v of G, we identify
the edge between v and v+ with v. Thus, the edge set of G + K1 is identified with
V ∪̇ E, the ground set of the clutter F+(M

⊤
G , b). We claim that the T -cuts in G+K1

are precisely the subsets of V ∪̇ E of the form S ∪̇ oddM⊤
G
(S) for some S ⊆ V such that

b(S) is odd. The statement then follows immediately from Lemma 2.12.
To prove the claim, let S ⊆ V . Since the columns of M⊤

G are the incidence vectors
of edges, oddM⊤

G
(S) is the set of all edges of G with an odd number of endpoints in

S. This implies that oddM⊤
G
(S) = δG(S). By our labelling of the edges of G+K1, it

follows that S ∪̇ oddM⊤
G
(S) = S ∪̇ δG(S) = δG+K1(S). This cut is a T -cut if and only if

b(S) is odd, as |S ∩ T | ≡ b(S) (mod 2) by the definition of T .
Further note that for any T -cut in G+K1, both its shores contain an odd number of

nodes from T . To see this, recall from the definition of T that v+ ∈ T if and only if
b(V ) is odd. Hence, for all S ⊆ V , we have that∣∣(S ∪ {v+}

)
∩ T

∣∣+ |(V \ S) ∩ T | ≡ b(V ) + |S ∩ T |+ |(V \ S) ∩ T |︸ ︷︷ ︸
=|V ∩T |

≡ 0 (mod 2)

Since δG+K1(S ∪ {v+}) = δG+K1(V \ S), we may therefore assume that each T -cut in
G+K1 is induced by a subset of nodes not containing v+. This concludes the proof of
the claim.
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Padberg and Rao [161] gave a polynomial-time algorithm for finding a minimum-
weight T -cut in a graph with terminals T and nonnegative edge weights (see also
[151, 164]), and showed how to use this for separating the family of {0, 12}-cuts for the
fractional matching polytope (or, more generally, the fractional b-matching polytope
[79]). We note that their reduction of the separation problem to a minimum-weight
T -cut problem relies on exactly the same graph construction as Proposition 2.13.

To characterize the clutters that arise for edge-node incidence matrices as in Exam-
ple 2.2, we need one other notion. A signed graph is a tuple (G,Σ) where G = (V,E) is
an undirected graph, possibly with loops and parallel edges, and Σ ⊆ E (the signature).
An edge of G is odd if it is in Σ, and even otherwise. A subset of edges F ⊆ E is called
odd if F contains an odd number of odd edges, and even otherwise.

Proposition 2.14 (see [49]). Let MG be the edge-node incidence matrix of a graph
G = (V,E) and let b ∈ ZE. Then F+(MG, b) is the clutter of odd cycles in the signed
graph (G+K1,Σ) where Σ = {e ∈ E : be odd}.

In fact, Proposition 2.14 is a special case of the following well-known observation,
which may be proved using folklore arguments. For the sake of completeness, we provide
a proof below.

Proposition 2.15 (see [49]). Let MG be the edge-node incidence matrix of a graph
G = (V,E) and let b ∈ ZE. Then F(MG, b) is the clutter of odd cycles in the signed
graph (G,Σ) where Σ = {e ∈ E : be odd}.

Using Proposition 2.15, we may prove Proposition 2.14 as follows.

Proof of Proposition 2.14. First, recall from its definition that, for any given integral A
and b, the clutter F(A, b) does not depend on the actual entries of A and b but only on
their parity (see [49]). This means that the clutter F+(MG, b), which is F(

(
MG
−I

)
,
(
b
0

)
)

by definition, is the same as F(
(
MG
I

)
,
(
b
0

)
). Since the rows of MG are the incidence

vectors of the edges of G, the sum of all columns of the matrix
(
MG
I

)
is the vector

(
0
1

)
.

Next, observe that we may add this vector as a new column to
(
MG
I

)
without changing

the set of solutions of the congruence system defining F(
(
MG
I

)
,
(
b
0

)
). Let us denote the

matrix obtained in this way by M+
G . This matrix is, in fact, the edge-node incidence

matrix of G+K1, where the additional column corresponds to the unique node of K1.
Since F+(MG, b) = F(M+

G ,
(
b
0

)
), Proposition 2.15 applied to G+K1 and

(
b
0

)
yields the

statement.

It remains to prove Proposition 2.15.

Proof of Proposition 2.15. By the definition of the clutter F(MG, b), the incidence
vectors of its members are the minimal 0/1 solutions of the system of congruences

M⊤
G y ≡ 0, b⊤y ≡ 1 (mod 2). (2.17)

Let y ∈ {0, 1}E be a solution of (2.17). Since the rows of M⊤
G are the incidence vectors

of all cuts of the form δ(v) for v ∈ V , the subgraph (V, supp(y)) is Eulerian, i.e., all
nodes have even degree. Moreover, b⊤y ≡ |Σ ∩ supp(y)| (mod 2). It follows that the
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members of F(MG, b) are the edge sets of minimal Eulerian subgraphs of G that contain
an odd number of edges from Σ. Let us call such a subgraph odd. Using standard
arguments (that are also used, e.g., in [114]), it can be shown that the minimal odd
Eulerian subgraphs of (G,Σ) are precisely the odd cycles. For the sake of completeness,
we include a brief proof of this fact.

It suffices to show that every odd Eulerian subgraph of a signed graph contains an
odd cycle. Indeed, let H be an odd Eulerian subgraph. Since H is Eulerian, it contains
a cycle C. If C is odd, we are done. Otherwise, we delete all edges of C from H. The
resulting subgraph H ′ of H is Eulerian again, and since C is even by hypothesis, H ′

is odd (and thus nonempty). By induction on the number of edges, we know that H ′

contains an odd cycle, and therefore H contains an odd cycle.

Given a signed graph and nonnegative edge weights, one can find a shortest odd cycle
in polynomial time using the algorithm described by Grötschel and Pulleyblank [122]
or Gerards and Schrijver [114]. So the separation problem for the {0, 12}-closure can be
solved efficiently also in this case.

Interestingly, to find a separating {0, 12}-cut for the fractional stable set polytope
of a graph G = (V,E), it suffices to consider all odd cycles in G + K1 that do not
contain the unique node of K1: By virtue of Lemma 2.11, it is easily verified that
those cycles (as members of F+(MG,1)) induce precisely the odd-cycle inequalities
(2.5), which suffice to describe the {0, 12}-closure (see Example 2.2). This is true, more
generally, for arbitrary integral right-hand sides b ∈ ZE [114]. However, we know from
Proposition 2.14 that the set of all support-minimal nontrivial {0, 12}-cuts is a superset
of the odd-cycle inequalities (or their counterparts for the fractional b-stable set polytope
for arbitrary integral b). Indeed, if we label the edges of G+K1 in the same way as in
the proof of Proposition 2.13, then a cycle in G+K1 whose node set includes V (K1)
corresponds to the edge set of a path in G plus its two endpoints. For a given vector
b ∈ ZE and Σ defined as in Proposition 2.14, we therefore obtain a {0, 12}-cut of the
form

x(Vint(P )) ≤ b(P )− 1

2
(2.18)

for each odd path P ⊆ E, where Vint(P ) denotes the set of internal nodes of P
(i.e., excluding the two endpoints). The above discussion shows that these odd-path
inequalities must be redundant for the {0, 12}-closure.

In fact, they are already redundant for the fractional b-stable set polytope. To
see this, let P be a path in G for which b(P ) is odd. Now decompose P into two
matchings P+ and P−. Since b(P ) is odd and b(P ) = b(P+)+b(P−), we must have that
b(P+) ̸= b(P−); say, b(P+) > b(P−). Note that each internal node of P is contained
in exactly one edge from each matching P±, as edges of P± alternate along P . So
if we take the sum of all edge inequalities xi + xj ≤ bij for edges ij ∈ P− and the
nonnegativity constraint for each endpoint of P incident with an edge of P−, we obtain
the inequality

x(Vint(P )) ≤ b(P−).

Since 2b(P−) < b(P ) and b is integral, it follows that b(P−) ≤ b(P )−1
2 . We have therefore

derived an inequality that dominates the odd-path inequality (2.18).
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Put differently, the fact that the odd-path inequalities are redundant for the fractional
stable set polytope of a given graph G shows that the binary clutter problem over
F+(MG,1), in fact, reduces to the binary clutter problem over F(MG,1) – provided
that the weights on the edges of G+K1 are given by the slack of a point in the fractional
stable set polytope.

Recall that in both special cases above, one can find minimum-weight members of the
associated binary clutters in polynomial time. As explained in Section 2.1, this implies
that most violated {0, 12}-cuts can be found efficiently – in particular in those cases in
which the {0, 12}-closure is integral. In general, though, this is too strong a property to
ask for (unless P = NP), as we will see in the next section.

2.3.2 On the Hardness of Finding Most Violated {0, 1/2}-Cuts

Our goal in this section is to prove the following theorem.

Theorem 2.16. Given A ∈ Zm×n, b ∈ Zm, and x∗ ∈ Qn such that x∗ ∈ P =
{x ∈ Rn : Ax ≤ b} ⊆ [0, 1]n, finding a {0, 12}-cut for P that is most violated by x∗

is strongly NP-hard, even when P 1
2
(A, b) = PI and x∗ /∈ PI .

Proof. We reduce from Exact 3-Cover, which is known to be strongly NP-complete
[107]:

Let n ∈ N and let S be a collection of subsets of [3n] with |S| = 3 for all
S ∈ S. Is there a subcollection I ⊆ S such that |I| = n and

⋃
S∈I S = [3n]?

We may restrict to instances for which
⋃

S∈S S = [3n], since otherwise the instance
trivially is a “no” instance. Given such an instance of Exact 3-Cover, let P ⊆ R3n

be the polyhedron defined by the following 3|S|+ 3n+ 1 inequalities:

xi − xj − xk ≤ 0

−xi + xj − xk ≤ 0

−xi − xj + xk ≤ 0

 for all {i, j, k} ∈ S (2.19)

1⊤x ≤ 1 (2.20)

x ≥ 0 (2.21)

Constraints (2.20) and (2.21) imply that P ⊆ [0, 1]3n. Further note that 0 ∈ P and
therefore also 0 ∈ PI . Now consider an arbitrary element l ∈ [3n]. Since

⋃
S∈S S = [3n]

by hypothesis, l is contained in some set S ∈ S. Among the three inequalities (2.19)
for S, there is a unique one for which the coefficient of xl is +1. The cut derived from
this inequality, together with (2.20) and nonnegativity constraints −xi ≤ 0 (2.21) for
all i /∈ S, is the inequality xl ≤ 0. Since the choice of l was arbitrary, it follows that
P 1

2
⊆ P ∩ {x ∈ R3n : x ≤ 0} = {0} ⊆ PI and therefore P 1

2
= PI = {0}. Here, we use

P 1
2
to denote the {0, 12}-closure of P with respect to (2.19)–(2.21).

Let x∗ = 1
3n1 ∈ R3n. It is easily verified that x∗ ∈ P \ PI . Since (2.20) is the

only inequality with an odd right-hand side, each nontrivial {0, 12}-cut for P must be
supported in (2.20). Note that this inequality is tight for x∗, and the slack of x∗ in all
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other inequalities (2.19) and (2.21) is the same (namely, 1
3n each). Hence, the {0, 12}-cuts

that are most violated by x∗ are induced by the minimum-cardinality members of the
binary clutter F associated with P 1

2
.

We will now argue that the minimum cardinality of a member of F is n+ 1 if and
only if the given instance of Exact 3-Cover is a “yes” instance. First note that for all
S ∈ S, any two of the three inequalities in (2.19) add up to an inequality with all-even
coefficients. This means that no support-minimal {0, 12}-cut for P can be derived using
more than one inequality from (2.19) for any fixed S ∈ S. Hence, we may identify each
member of F with a tuple (I, J) where I ⊆ S, J ⊆ [3n] and, by Lemma 2.12, J consists
precisely of those elements of [3n] that are covered an even number of times by the sets
in I. Note here that we require an even parity because (2.20) is always included in any
cut derivation. In particular, the cardinality of a member of F specified by (I, J) is
|I|+ |J |+ 1. We claim that this quantity is at least n+ 1 with equality if and only if I
is an exact cover of [3n]. Indeed, for any member of F given by (I, J), the sets in I
and the singletons {i} for all i ∈ J define a cover of [3n]. Since any cover of [3n] by sets
of cardinality at most 3 must have cardinality at least n, it follows that |I|+ |J | ≥ n
with equality if and only if J = ∅ and I is an exact cover of [3n], as desired.

We would like to point out that a very similar reduction from Exact 3-Cover was
given in [193] to prove that finding minimum-weight members of binary clutters is
NP-hard. (To be precise, the result of [193] concerns the matroid analogue: finding a
minimum-weight circuit of a binary matroid that contains a fixed element of the ground
set; see Section 2.3.1.) While we arrived at the statement and proof above independently,
we note that our hardness result is stronger than that of [193]. Indeed, Theorem 2.16
implies that finding minimum-weight members is NP-hard even for instances of the
binary clutter problem in which the weights are given by the slack vector of a point
inside a polyhedron whose {0, 12}-closure is integral.

Here, we must stress that Theorem 2.16 does not imply that the membership problem
for the {0, 12}-closure is NP-hard even when the {0, 12}-closure is integral, via scaling
the weights and binary search as discussed in Section 2.3.1. Scaling the weights cannot
be done here without changing the point x∗ that is provided as part of the input. It
can even be shown that for polytopes, no two distinct slack vectors are scalings of one
another. For the particular polytopes and weights used in the proof of Theorem 2.16,
this is easy to see: The only point which satisfies (2.20) at equality and whose slack is
uniformly nonzero elsewhere is the point x∗ from the reduction.

In fact, solving the binary clutter problem for the instances in the proof of Theo-
rem 2.16, i.e., finding any member of the associated clutter of weight less than 1, is
trivial. Namely, we saw above that for any l ∈ [3n], the inequality xl ≤ 0 is a {0, 12}-cut
that separates x∗ from P 1

2
. The weight of the corresponding member of the associated

binary clutter is equal to 3n−2
3n < 1.

Further note that in our reduction in the proof of Theorem 2.16, there is a nontrivial
{0, 12}-cut with support of cardinality n+ 1 (which is minimum) if and only if there
is a solution to Exact 3-Cover. This implies that finding a nontrivial {0, 12}-cut of
minimum support is strongly NP-hard even when the {0, 12}-closure coincides with the
integer hull, strengthening a result of Eisenbrand [89, Proposition 5.8].
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Corollary 2.17. Given A ∈ Zm×n, b ∈ Zm, and k ∈ N, deciding whether there is a
nontrivial {0, 12}-cut for P = {x ∈ Rn : Ax ≤ b} with support of cardinality at most k is
strongly NP-complete, even when P 1

2
(A, b) = PI and P ⊆ [0, 1]n.

Given the hardness result of Theorem 2.16, a natural question is to ask whether
there is a class of binary clutters for which the binary clutter problem can be solved in
polynomial time (for all nonnegative weights), and which contains clutters associated
with a relevant family of polyhedra whose {0, 12}-closure is integral. In fact, we already
saw such a class of clutters in Section 2.3.1, namely those associated with T -cuts and
odd cycles in (signed) graphs. Can such binary clutters be described structurally? In
the next two sections, we will be investigating two structural properties of clutters that
can be regarded as “integrality” properties. We will show that they are closely related
to integrality and total dual integrality of the {0, 12}-closure of set packing polyhedra,
which generalize fractional matching and stable set polytopes.

2.3.3 Set Packing, Idealness, and the MFMC Property

Consider a polyhedron of the form {x : Ax ≤ 1, x ≥ 0} where A is a 0/1 matrix. We
call such a polyhedron a set packing polyhedron. (In fact, if A has no column of all
zeros, then we can even speak of a set packing polytope.) Similarly, any polyhedron of
the form {x : Ax ≥ 1, x ≥ 0} with a 0/1 matrix A is a set covering polyhedron.
Let F be a clutter over ground set E. We say that F is ideal if the following set

covering polyhedron Q(F) ⊆ RE associated with F is integral [63]:

z(S) ≥ 1 for all S ∈ F
z ≥ 0

(2.22)

If the linear system (2.22) is TDI, the clutter F is said to have the max-flow min-cut
property (or MFMC property for short) [183]. By Proposition 2.6, the MFMC property
implies idealness. The two properties are also known under different names: Ideal
clutters are sometimes said to have the weak MFMC property [183], and the MFMC
property is also referred to as the Mengerian property.
In this section, we will see that if the clutter F+(A,1) associated with the {0, 12}-

closure of a set packing polyhedron {x : Ax ≤ 1, x ≥ 0} is ideal, then the {0, 12}-closure
coincides with the integer hull. Even stronger, we will prove that the linear description
of the {0, 12}-closure is TDI if F+(A,1) has the MFMC property.
The observation that idealness implies integrality of the {0, 12}-closure is implicit in

[150]; we give a direct proof here.

Proposition 2.18 (see [150]). Let P = {x : Ax ≤ 1, x ≥ 0} for a 0/1 matrix A. If the
clutter F+(A,1) is ideal, then the {0, 12}-closure of P coincides with PI .

Proof. Let P 1
2
denote the {0, 12}-closure of P with respect to the system Ax ≤ 1, x ≥ 0.

By Lemma 2.11, P 1
2
is obtained from the polyhedron

Ax+ s = 1

(s, x) ∈ Q(F+(A,1))
(2.23)
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by projecting out the slack variables s. (Note here that we did not introduce slack
variables for the nonnegativity constraints x ≥ 0 since they can be identified with x.)
By Lemma 2.12, the support of each row of the matrix (I |A) is a member of F+(A,1).
In particular, this implies that the inequalities Ax+ s ≥ 1 are valid for Q(F+(A,1)).
Hence, the polyhedron given by (2.23) is a face of Q(F+(A,1)). Now suppose that the
clutter F+(A,1) is ideal. Then the polyhedron Q(F+(A,1)) is integral, and so is every
face of Q(F+(A,1)). As orthogonal projections onto coordinate subspaces preserve
integrality, the statement follows.

As mentioned above, Proposition 2.18 can also be derived from a result of Letchford
[150] as follows. The starting point of [150] is the following observation. For A ∈ Zm×n

and b ∈ Zm, every integral point in the polyhedron

P = {(s, x) ∈ Rm × Rn : s ≥ 0, x ≥ 0, Ax+ s = b} (2.24)

satisfies the system of congruences Ax+ s ≡ b (mod 2). Hence, the polyhedron

conv{(s, x) ∈ Zm × Zn : s ≥ 0, x ≥ 0, Ax+ s ≡ b (mod 2)} (2.25)

is a relaxation of the integer hull PI , called the binary group relaxation in [150]. By
Proposition 2.10, the minimal 0/1 solutions of Āx + s ≡ b̄ (mod 2) induce a binary
clutter. In fact, this can be shown to be the blocker of F+(A, b), as mentioned in [150].
To see this, note that for all integral vectors (y, t), (s, x) ∈ Zm × Zn with

A⊤y + t ≡ 0, b⊤y ≡ 1 (mod 2)

and Ax+ s ≡ b (mod 2),

we have that

y⊤s+ x⊤t ≡ y⊤(b+Ax) + x⊤t = y⊤b︸︷︷︸
≡1

+x⊤(A⊤y + t︸ ︷︷ ︸
≡0

) ≡ 1 (mod 2).

Since this holds true in particular for all 0/1 vectors (y, t) and (s, x), we thus obtain

Proposition 2.19 (see [150]). Given A ∈ Zm×n and b ∈ Zm, the blocker b(F+(A, b))
is the collection of all minimal sets in{

supp(s) ∪̇ supp(x) : s ∈ {0, 1}m, x ∈ {0, 1}n, Āx+ s ≡ b̄ (mod 2)
}
.

Letchford went on by showing that, first, if b(F+(A, b)) is ideal, then the binary group
relaxation (2.25) coincides with Q(F+(A, b)). Second, he observed that for set packing
systems with a 0/1 matrix A and b = 1, the integer hull of P in (2.24) is the face of
(2.25) defined by Ax+ s = 1. Combining these two results for the set packing case, it
follows that the polyhedron (2.23) is integral if b(F+(A,1)) is ideal. Since a clutter is
ideal if and only if its blocker is [149], the statement of Proposition 2.18 follows after
projecting out the slack variables s.

Let us remark here that in our terms, the binary group relaxation (2.25) introduced
in [150] is, in fact, the integer hull of Q(F+(A, b)). (This directly implies Letchford’s
first observation above.) Indeed, if an integral vector (s, x) satisfies Ax+ s ≡ b (mod 2),
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so do (s+ 2ei, x) and (s, x+ 2ej) for every i ∈ [m] and j ∈ [n]. This means that the
vertices of (2.25) must be the minimal 0/1 solutions of Ax + s ≡ b (mod 2), which
are the incidence vectors of the members of b(F+(A, b)) by Proposition 2.19. The next
folklore result states that these are precisely the integral vertices of Q(F+(A, b)) (see,
e.g., Proposition 1.24 in [1] or Remark 1.16 in [60]).

Proposition 2.20 (see [1, 60]). For every clutter F , the integral vertices of Q(F) are
precisely the incidence vectors of the members of b(F).

Since the recession cone of both the binary group relaxation (2.25) and Q(F+(A, b))I
is the nonnegative orthant, this implies that (2.25) and Q(F+(A, b))I coincide.

We next consider the case that the binary clutter associated with the {0, 12}-closure
of a set packing polyhedron is not only ideal but also has the MFMC property. In this
case, one may strengthen Proposition 2.18 and show that adding all {0, 12}-cuts yields a
TDI system.

Theorem 2.21. Let P = {x : Ax ≤ 1, x ≥ 0} for a 0/1 matrix A. If the clutter
F+(A,1) has the MFMC property, then the linear system given by Ax ≤ 1, x ≥ 0 and
all support-minimal nontrivial {0, 12}-cuts for P is TDI.

The key ingredient to prove this result is the observation made in the proof of
Proposition 2.18: If we rewrite the inequalities Ax ≤ 1 using slack variables, then the
resulting polyhedron is a face of Q(F+(A,1)). Recall that this was a consequence of
Lemmas 2.11 and 2.12. However, total dual integrality is a property of linear systems
and not of polyhedra, so we need to analyze the transformations between the given
linear systems carefully. The following well-known facts will be useful.

Proposition 2.22 ([59], see also [174]). Let A,B,B′ be rational matrices; a, b, d, d′

rational vectors of appropriate dimension; and β ∈ Q.

(i) If a⊤x ≤ β, Bx ≤ d is a TDI system, then a⊤x = β, Bx ≤ d is TDI again.

(ii) Suppose that each inequality in B′x ≤ d′ is a nonnegative integer linear combination
of inequalities from Bx ≤ d. If B′x ≤ d′ is TDI, so is Bx ≤ d.

(iii) If Ax+ s = b, Bx ≤ d, s ≥ 0 is TDI, so is Ax ≤ b, Bx ≤ d.

We are now ready to prove Theorem 2.21.

Proof of Theorem 2.21. Suppose that F+(A,1) has the MFMC property. Then the
linear system

Ax+ s = 1

s(S) + x(T ) ≥ 1 for all S ∪̇ T ∈ F+(A,1)

s, x ≥ 0

(2.26)

defines a face of Q(F+(A,1)) (see the proof of Proposition 2.18) and is therefore TDI by
Proposition 2.22(i). Recall from Section 2.3.1 that for each member S ∪̇ T ∈ F+(A,1),
the corresponding support-minimal nontrivial {0, 12}-cut for P is given by

u⊤Ax+ v⊤x ≤ u⊤1− 1
2 (2.27)
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where u = 1
2χ(S) and v = 1

2χ(T ). Now we multiply (2.27) by 2 and subtract the
equation 2u⊤(Ax+ s) = 2u⊤1. The resulting inequality is

−2u⊤s− 2v⊤x ≤ −1

By definition of u and v, this is precisely the set covering inequality in (2.26) for the
member S ∪̇ T . Further note that 2u is 0/1 vector, which means that we obtained this
inequality as a nonnegative integer linear combination of the {0, 12}-cut (2.27) and the
equations Ax+ s = 1. Thus, it follows from Proposition 2.22(ii) that also the following
system is TDI:

Ax+ s = 1

1
2χ(S)

⊤Ax+ 1
2χ(T )

⊤x ≤ 1
2χ(S)

⊤1− 1
2 for all S ∪̇ T ∈ F+(A,1)

s, x ≥ 0

(2.28)

Finally, the linear description of the {0, 12}-closure of P is obtained from the system
(2.28) by projecting out the slack variables s. This operation preserves total dual
integrality by Proposition 2.22(iii).

2.3.4 Implications for Fractional Matching and Stable Set Polytopes

In the previous section, we discussed two integrality properties of clutters: idealness
and the MFMC property. In this section, we will look at each of the two properties
in turn for the particular clutters associated with the fractional matching and stable
set polytopes in Examples 2.1 and 2.2. Recall that both families of polyhedra are of
set packing type. As we will see, idealness and the MFMC property are in these cases
closely related to two well-known properties of integral matrices, the Edmonds-Johnson
property and total unimodularity.

Idealness and the Edmonds-Johnson Property

We begin with the binary clutters associated with fractional matching polytopes. Recall
from Section 2.3.1 that they are of the form F+(M

⊤
G ,1), where M⊤

G is the node-edge
incidence matrix of a graph G. By Proposition 2.13, each such clutter is the clutter of
minimal T -cuts in a certain graph with terminals T . Edmonds and Johnson [86] proved
that all clutters of minimal T -cuts are ideal.

Proposition 2.23 ([86]). The clutter of minimal T -cuts in a graph G = (V,E) is ideal
for every T ⊆ V .

It thus follows from Proposition 2.18 that the {0, 12}-closure of the fractional matching
polytope is integral, providing yet another proof of Edmonds’ characterization of the
matching polytope [79].

We next consider the clutters associated with fractional stable set polytopes. In this
case, Proposition 2.18 states that graphs G for which F+(MG,1) is ideal are t-perfect.
We already saw in Example 2.2 that not all graphs are t-perfect; K4 is not. Hence,
we know by Proposition 2.18 that F+(MK4 ,1) cannot be ideal. This can also be seen
directly as follows.
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By Proposition 2.14, the clutter F+(MK4 ,1) is the clutter of odd cycles in (K4 +
K1, E(K4)). Since cuts and cycles always intersect in an even number of edges, an odd
cycle C ⊆ E(G) in a signed graph (G,Σ) remains odd after replacing the signature Σ
with Σ∆δ(U) for some U ⊆ V . This operation is called a signature exchange. Thus,
signature exchanges leave the clutter of odd cycles invariant. This means that the clutters
of odd cycles of (K4 +K1, E(K4)) and of (K4 +K1, E(K4 +K1)) are identical, since we
may obtain one signed graph from the other by performing a signature exchange given
by the cut δK4+K1(V (K4)). Moreover, K4 +K1 and K5 are isomorphic by definition of
the graph join operator. So after relabelling the ground set, F+(MK4 ,1) is precisely
the clutter of odd cycles of (K5, E(K5)). For all n ∈ N, let us call the signed graph
(Kn, E(Kn)) an odd-Kn for short. It is a well-known fact that the clutter of odd cycles
of odd-K5, which we denote by O5, is non-ideal (see, e.g., [60, 126, 183]). For the sake
of completeness, we include a short proof that follows [111].

Proposition 2.24 (see [60, 126, 183]). O5 is non-ideal.

Proof. By the definition of idealness, it suffices to show that the set covering polyhedron
Q(O5) as defined in (2.22) is not integral. As the length of any odd cycle in odd-K5

is at least 3, the vector z∗ = 1
31 ∈ RE(K5) is in Q(O5). One may verify by a direct

computation that z∗ is a (fractional) vertex of Q(O5). An alternative, computation-free
argument is as follows.
Since z∗ ∈ Q(O5), the minimum of the linear objective function 1⊤z over Q(O5) is

at most 1⊤z∗ = 10
3 . By Proposition 2.20, the minimum value of 1⊤z across all integral

points z ∈ Q(O5) is the minimum cardinality of a cover of O5. Any cover of O5 must
intersect each of the 10 cycles in K5 of length 3. Since each edge of K5 is contained in
exactly three of those 10 cycles, any cover must therefore contain at least

⌈
10
3

⌉
= 4 > 10

3
edges by the pigeonhole principle. Hence, Q(O5) is not an integral polyhedron, meaning
that O5 is non-ideal.

Figure 2.1

While graphs G for which F+(MG,1) is ideal are t-perfect by Proposition 2.18, the
converse is false: The graph G in Figure 2.1 is t-perfect [114, 115] but the clutter of
odd cycles of (G+K1, E(G)) can be shown to be non-ideal, as we will see later. Our
goal for the remainder of this section is to derive a converse to Proposition 2.18 for the
special case that A is the (edge-node or node-edge) incidence matrix of a graph. What
property of A is equivalent with idealness of F+(A,1) in this case? We will see that
this property is the so-called Edmonds-Johnson property. An integral matrix A has the
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Edmonds-Johnson property (or EJ property for short) if, for all integral vectors l, u, b, d
of appropriate dimension, the Gomory-Chvátal closure of the polyhedron

d ≤ Ax ≤ b

l ≤ x ≤ u
(2.29)

coincides with the integer hull. Matrices with the EJ property are also said to have
strong Chvátal rank at most 1 in the literature (see [174]). With this definition, we may
state our result as follows.

Theorem 2.25. Let A be the node-edge or edge-node incidence matrix of a graph. Then
F+(A,1) is ideal if and only if A has the EJ property.

Note that when A is the node-edge or edge-node incidence matrix of a graph, Theo-
rem 2.25 indeed implies Proposition 2.18. This is because node-edge incidence matrices
(and their transposes) are 2-regular (or totally half-modular), that is, each nonsingular
square submatrix has a half-integral inverse (see, e.g., [4, 114, 128]). It follows from
Theorem 20 in [4] that for polyhedra P = {x : Ax ≤ 1, x ≥ 0} with an integral 2-regular
matrix A, the {0, 12}-closure P 1

2
and the Gomory-Chvátal closure P ′ coincide. Notice

that P can be expressed in the form (2.29) by taking l = 0, u = 1 and d = 0, b = 1 (in
appropriate dimensions). Hence, if A has the EJ property, then P 1

2
= P ′ = PI .

The EJ property is named after Edmonds and Johnson, who established the property
for all node-edge incidence matrices of graphs [85, 86]. Combining this with Propo-
sitions 2.13 and 2.23, we therefore only need to prove Theorem 2.25 for edge-node
incidence matrices.

To this end, take a graph G and, as above, let MG denote its edge-node incidence
matrix. We already know from Proposition 2.18 that the clutter F+(MG,1) is non-ideal
if G is not t-perfect – in which case MG cannot have the EJ property either since the
EJ property implies t-perfection. For example, as K4 is not t-perfect, its edge-node
incidence matrix

MK4 =



1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

 (2.30)

does not have the EJ property. Recall that the associated clutter F+(MK4 ,1) is
isomorphic to O5, which is non-ideal by Proposition 2.24. In fact, MK4 and O5 are
the only minimal such counterexamples, as proved by Gerards and Schrijver [114] and
Guenin [126], respectively. By “minimal”, we mean the following. For both incidence
matrices and clutters of odd cycles, there are certain operations that produce smaller
matrices or clutters while maintaining the EJ property or idealness, respectively. So
to characterize these properties, it suffices to list all smallest incidence matrices and
clutters of odd cycles without the respective property. Showing that this list consists of
just one counterexample each is the achievement of [114, 126].
In order to prove Theorem 2.25, we will argue that the two sets of operations that

preserve the EJ property and idealness, respectively, can be simulated by each other
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in such a way that they essentially commute with constructing the clutter F+(MG,1)
from an edge-node incidence matrix MG. To make this more precise, we need some
further terminology.
In addition to signature exchanges, which we discussed earlier in this section, there

are two other operations that can be performed on a signed graph (G,Σ) to obtain
another signed graph. First, we can delete an edge e ∈ E(G), which means removing
it from G and replacing Σ with Σ \ {e}. Secondly, we can contract an edge e by first
performing a signature exchange if necessary so that e /∈ Σ, then removing e from G
and identifying its two endpoints. See Figure 2.2 for an example of the contraction
operation. A signed graph obtained from (G,Σ) by performing a sequence of deletions,
contractions, and signature exchanges is called a (signed) minor of (G,Σ). The order in
which the operations are applied does not matter up to signature exchanges (see [60]).

(a)

U

(b) (c)

Figure 2.2: Starting from the graph in Figure 2.1 with all edges odd (a), we perform a
signature exchange using the cut with shore U and obtain the signed graph
in (b). Solid edges are odd, dashed edges are even. Contracting the four
even edges results in K4 with all edges odd (c).

Recall that doing a signature exchange leaves the clutter of odd cycles of a signed
graph (G,Σ) invariant. The effect of the other two operations on the clutter of its odd
cycles is as follows. The clutter of odd cycles of a minor of (G,Σ) obtained after deleting
an edge e consists of all odd cycles in (G,Σ) that do not contain e. When contracting e,
however, we may not simply delete e from each odd cycle in (G,Σ) since the resulting
sets of edges may not be cycles in the graph obtained from G after contracting e. This
happens, for example, when we contract a chord of a cycle, i.e., a non-loop edge that is
not part of the cycle but both its endpoints are on the cycle. To fix this, we first delete
e from each odd cycle in (G,Σ) and then drop all sets which are not cycles anymore.
The following simple observation is an immediate consequence and will be useful

later.

Remark 2.26. Let C be an odd cycle in a signed graph (G,Σ) and let (G′,Σ′) be a
minor of (G,Σ). If C is a cycle in G′, then C is odd in (G′,Σ′).

The effect of taking minors of signed graphs on the clutter of their odd cycles can
be equivalently described in polyhedral terms: For the set covering polyhedron (2.22)
associated with the clutter of odd cycles, contracting an edge e corresponds to taking
the face defined by ze = 0. Deleting e means projecting the polyhedron onto the
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coordinate hyperplane defined by ze = 0 (see, e.g., [1]). Both polyhedral operations
preserve integrality. This means that if the clutter of odd cycles of a signed graph is
ideal, then the clutter of odd cycles of any minor is ideal, too [183]. In particular, if a
signed graph has an odd-K5 minor, the clutter of its odd cycles is non-ideal. Guenin
[126] proved that the converse is also true:

Proposition 2.27 ([126], see also [176]). The clutter of odd cycles of a signed graph
(G,Σ) is ideal if and only if (G,Σ) has no odd-K5 minor.

This will be the first ingredient of our proof of Theorem 2.25. The second ingredient
is a result of Gerards and Schrijver [114] that provides a characterization of incidence
matrices with the EJ property. Their result is of similar flavour as Guenin’s result
above. As with signed minor operations and idealness, the EJ property is preserved
under several matrix operations, as observed in [114]:

(i) permuting rows or columns,

(ii) deleting a row or column,

(iii) multiplying a row or column by −1,

(iv) replacing the matrix

(
1 g⊤

f D

)
with D − fg⊤.

Proposition 2.28 ([114]). The edge-node incidence matrix of a graph has the EJ
property if and only if it cannot be transformed to MK4 by a sequence of operations (i)
to (iv).

Notice that the class of edge-node incidence matrices of graphs is not closed under the
operations (i) to (iv). In fact, Gerards and Schrijver’s original result in [114] is stated
in terms of bidirected graphs. These can be thought of as simultaneous generalizations
of directed, undirected, and signed graphs. Every integral matrix for which the sum of
the absolute values of the entries in each row is at most 2 is the edge-node incidence
matrix of a bidirected graph. Here, a row with a single nonzero entry defines a loop.
Rows with two nonzeros define edges with distinct endpoints; each endpoint receives
a sign from {+,−} depending on the sign of the corresponding entry in the incidence
matrix. We will not go into detail here but refer the reader to Chapter 68 of [177] or
[74] for further details and more background on bidirected graphs.

For our purposes, we only need the following fact (see [177]): Each bidirected graph
has an underlying signed graph whose odd edges are those edges with endpoints of
the same sign. Loops corresponding to rows of the incidence matrix with a single ±1
entry may be ignored. Then each of the operations (i) to (iv) corresponds to a minor
operation on the underlying signed graph (see also [114]): Clearly, (i) has no effect on
the underlying signed graph; neither has multiplying rows by −1 in (iii). Multiplying
a column corresponding to node v by −1 is a signature exchange with the cut δ(v).
Operation (iv) is an edge contraction, possibly with one included signature exchange if
the contracted edge is odd. For example, performing (iv) on the top left entry of MK4
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as given in (2.30) yields the matrix 
−1 1 0
−1 0 1
1 1 0
1 0 1
0 1 1


This is the incidence matrix of a bidirected graph. The underlying signed graph is
obtained from odd-K4 after contracting the edge corresponding to the first row of MK4

(see Figure 2.3). Finally, (ii) corresponds to an edge or node deletion. Here, deleting a
node v means deleting all edges incident with v and then removing v from the graph.

Note that we did not discuss node deletions when we introduced signed graph minors
earlier in this section. This is motivated by the observation that any clutter whose
ground set is the set of edges of a (signed) graph is unaffected by the presence of isolated
nodes, and we may assume that, possibly after a sequence of edge deletions, any deleted
node is an isolated node indeed.

1

2

3 4

(a)

1

2

3 4

(b)

2

3 4

(c)

Figure 2.3: Illustration of the contraction operation (iv): The underlying signed graph
of K4, viewed as a bidirected graph, is odd-K4 (a). Nodes are labelled by
which column of MK4 as given in (2.30) they correspond to; solid edges are
odd, dashed edges are even. After the signature exchange with δ(1), we
obtain the signed graph in (b). Contracting edge 12 yields (c).

The above graph-theoretic interpretation of operations (i) to (iv) in terms of signed
graph minors suggests the following equivalent version of Proposition 2.28 given in [177].

Corollary 2.29 (Corollary 68.6b in [177], see also Corollary 1 in [114]). Let MG be the
edge-node incidence matrix of a graph G. Then MG has the EJ property if and only if
(G,E(G)) has no odd-K4 minor (possibly after node deletions).

We now make the following key observation that links Corollary 2.29 with Proposi-
tion 2.27.

Lemma 2.30. Let G be a graph, possibly with loops and parallel edges. For all n ∈ N,
the signed graph (G,E(G)) has an odd-Kn minor (possibly after node deletions) if and
only if (G+K1, E(G+K1)) has an odd-Kn+1 minor.



2.3 Binary Clutters and the {0, 1/2}-Closure 41

Using this key lemma, we may readily prove Theorem 2.25.

Proof of Theorem 2.25. As remarked above, we may suppose that A is the edge-node
incidence matrix MG of a graph G. By Proposition 2.14, the clutter F+(MG,1) is
the clutter of odd cycles of (G+K1, E(G+K1)), up to the signature exchange with
δ(V (K1)). We know from Proposition 2.27 that this clutter is ideal if and only if
(G+K1, E(G+K1)) has no odd-K5 minor. This, in turn, is equivalent with (G,E(G))
not having an odd-K4 minor by Lemma 2.30. Finally, it follows from Corollary 2.29
that (G,E(G)) has no odd-K4 minor if and only if MG has the EJ property.

For example, we saw in Figure 2.2 that the signed graph (G,E(G)) in Figure 2.1 has
an odd-K4 minor. Thus, by Theorem 2.25, the clutter of odd cycles of the signed graph
(G+K1, E(G+K1)) is non-ideal, which means that (G+K1, E(G+K1)) must have
an odd-K5 minor (by Proposition 2.27). This is easily verified: In fact, one can use the
same sequence of edge deletions and contractions that turned (G,E(G)) into an odd-K4

in order to produce a minor of (G+K1, E(G+K1)) that is “almost” an odd-K5, up to
edge deletions (see Figure 2.4).

v+

(a)

v+

(b)

v+

(c)

Figure 2.4: The signed graph in (a) is (G+K1, E(G+K1)) for the graph G in Figure 2.1.
Solid edges are odd, dashed edges are even. After the same sequence of
minor operations performed on (G,E(G)) in Figure 2.2, we obtain the minor
in (c). Deleting all but one odd edge from v+ to each node distinct from v+

yields an odd-K5.

This motivates our proof of Lemma 2.30.

Proof of Lemma 2.30. If n = 1, there is nothing to prove. So suppose that n ≥ 2.
Again, let us identify the edges of G + K1 that are incident with the unique node
of K1 with their other endpoint in V (G). That is, E(G + K1) = E(G) ∪̇ V (G).
With this labelling, any sequence of signature exchanges and deletions or contractions
of edges in E(G) can be performed on both (G,E(G)) and (G + K1, E(G + K1))
simultaneously. Here, doing a signature exchange on (G,E(G)) using the cut δG(U)
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for some U ⊆ V (G) corresponds to a signature exchange on (G + K1, E(G + K1))
with δG+K1(U). Conversely, we may assume that for any signature exchange on
(G+K1, E(G+K1)), we only use cuts of the form δG+K1(U) for some subset U not
containing V (K1), since δG+K1(U) = δG+K1(V (G+K1) \ U).

We call two minors (H,Σ) and (H+,Σ+) of (G,E(G)) and (G + K1, E(G + K1)),
respectively, simultaneous if they result from the same sequence of signature exchanges
and deletions or contractions of edges in E(G). Our first observation is that simultaneous
minors are closely related in the following sense.

Claim 1. Let (H,Σ) and (H+,Σ+) be simultaneous minors of (G,E(G)) and (G +
K1, E(G + K1)), respectively. Then H+ has a node v+ that is adjacent to all other
nodes of H+ such that δH+(v+) = V (G) and (H,Σ) is obtained from (H+,Σ+) after
deleting v+ and all incident edges.

Proof of Claim 1. The statements clearly holds true for the trivial pair of simultaneous
minors (G,E(G)) and (G+K1, E(G+K1)), where we take v+ to be the unique node
of K1. Now suppose that a pair of simultaneous minors (H,Σ) and (H+,Σ+) satisfies
all the claimed properties. We will show that these properties are maintained under
performing any one minor operation (signature exchange, deletion or contraction of an
edge in E(G)) on both (H,Σ) and (H+,Σ+) simultaneously.

Let v+ be the node of H+ whose deletion from (H+,Σ+) (together with its incident
edges) yields (H,Σ). In particular, we have that E(H) = E(H+) \ V (G) and Σ =
Σ+ \ V (G) = Σ+ ∩ E(G). This means that, after a simultaneous signature exchange
using a cut with shore U ⊆ V (G), the new signatures still coincide on all edges from
E(G). Clearly, signature exchanges leave the graphs themselves invariant, so the claim
holds true after a simultaneous signature exchange.

Now let e ∈ E(H). Since E(H) ⊆ E(G) and δH+(v+) ∩ E(G) = ∅ by hypothesis, v+

is not an endpoint of e. So deleting or contracting e in (H,Σ) is the same as doing so
in (H+,Σ+) and then removing v+ and all incident edges. In particular, v+ is still a
node of the resulting minor of (H+,Σ+) whose incident edges V (G) are untouched. It
is easily seen that v+ is adjacent to all other nodes of this minor, no matter whether e
was deleted or contracted. See Figure 2.4 for an example. ♢

Now suppose that we can obtain an odd-Kn from (G,E(G)) by performing a sequence
of edge deletions and contractions, and node deletions. As argued above, we may assume
that all deleted nodes are isolated by first deleting their incident edges. So (G,E(G))
has a minor (H,Σ) obtained after edge deletions and contractions only such that (H,Σ)
is the union of an odd-Kn with a (possibly empty) set of isolated nodes. Let (H+,Σ+)
be the corresponding minor of (G+K1, E(G+K1)) such that (H,Σ) and (H+,Σ+) are
a simultaneous pair of minors. For such a special pair of minors, we may strengthen
the statement of Claim 1 and show that the node v+ can even be assumed to have an
odd edge to all other nodes (up to a signature exchange):

Claim 2. Let (H,Σ) and (H+,Σ+) be a pair of simultaneous minors of (G,E(G)) and
(G+K1, E(G+K1)), respectively, and let v+ be the node of H+ as per Claim 1. Suppose
that each connected component of H is complete and Σ = E(H). Then (H+,Σ+) has
an odd edge between v+ and each node distinct from v+.
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Proof of Claim 2. Suppose for the sake of contradiction that H+ has two nodes u0, u1 ̸=
v+ that belong to the same connected component of H such that all edges between u0
and v+ are even and all edges between u1 and v+ are odd. By Claim 1, there is at least
one edge from each of the two nodes to v+, so u0 ̸= u1. Since the connected component
of u0 and u1 is complete by hypothesis, the two nodes must therefore be connected by
an edge e ∈ E(H+). It follows from Claim 1 that e ∈ E(H) ⊆ E(G) since no edge from
V (G) can be incident to both u0 and u1. Let v, w ∈ V (G) be the original endpoints of
e in G. Note that v, w ∈ E(H+) because V (G) = δH+(v+) ⊆ E(H+) by Claim 1. Now
observe that {e, v, w}, as a subset of edges of G+K1, is a cycle in both G+K1 and
H+. Since this cycle is odd in (G+K1, E(G+K1)), it must also be odd in (H+,Σ+)
by Remark 2.26. In particular, since one of the two edges v, w is incident with u0 and
the other one with u1, exactly one of v, w is an odd edge in (H+,Σ+) by hypothesis. So
for the cycle {e, v, w} to be odd in (H+,Σ+), e must be even. However, e ∈ E(H) = Σ
by hypothesis and therefore also e ∈ Σ+ (by Claim 1), a contradiction.

Hence, for each node of (H+,Σ+) distinct from v+, we can select an edge that
connects the node to v+, such that all selected edges to the same connected component
of H have the same parity. Since H+ has no edge between nodes of different connected
components of H, we can perform signature exchanges using δH+(W ) for the nodes W
of a connected component if necessary to make all selected edges odd. ♢

Thus, if (G,E(G)) has a minor (H,Σ) whose connected components all are odd
complete graphs, then (G +K1, E(G +K1)) must have a minor isomorphic to (H +
K1, E(H +K1)) by Claim 2. In particular, if (H,Σ) is an odd-Kn, possibly together
with a number of isolated nodes, one can obtain (Kn + K1, E(Kn + K1)) from this
(H +K1, E(H +K1)) minor by contracting all edges incident with nodes v that are
isolated in H. Note that each such edge can be made even by a signature exchange
with δ(v), which leaves the parity of all other edges invariant. As Kn +K1 and Kn+1

are isomorphic, we have thus shown that if (G,E(G)) has an odd-Kn minor (possibly
after node deletions), then (G+K1, E(G+K1)) has an odd-Kn+1 minor.

To prove the converse implication, it suffices to show the following statement.

Claim 3. Let (H+,Σ+) be a minor of (G+K1, E(G+K1)). Then there is a node v+

such that deleting v+ and all incident edges from (H+,Σ+) yields a minor of (G,E(G))
obtained by edge deletions and contractions and possibly node deletions.

Proof of Claim 3. Suppose first that (H+,Σ+) is obtained from (G+K1, E(G+K1)) by
deleting or contracting edges from E(G) only. Then we can perform the same operations
on (G,E(G)) and obtain a simultaneous pair of minors. By Claim 1, the statement
therefore holds for (H+,Σ+).

Since we may perform deletions and contractions in arbitrary order (modulo signature
exchanges), we may assume without loss of generality that any minor of (G+K1, E(G+
K1)) is obtained by first deleting or contracting edges from E(G) and only then deleting
or contracting edges from V (G). So to prove the claim for all minors, it suffices to show
that, starting from a pair of simultaneous minors (H,Σ) and (H+,Σ+), deleting or
contracting edges in V (G) preserves the claimed property. By Claim 1, all edges of H+

that come from V (G) have a common endpoint v+ whose deletion results in a minor of
(H,Σ) (namely, (H,Σ) itself). We will argue that this property is maintained under
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deleting or contracting edges from V (G). The invariant clearly holds after deleting an
edge from V (G).
Now suppose that we contract some edge v ∈ V (G). The invariant guarantees that

one of the endpoints of v in (H+,Σ+) is v+. Let w denote the other endpoint. (Note
that possibly w ̸= v since v, as a node of G, may not exist any more after contracting
edges.) By definition, contracting edge v means that its two endpoints v+ and w are
identified, say, with v+, and all edges that were incident with w now also become
incident with v+. Deleting v+ and all incident edges therefore results in (H,Σ) with
node v and all incident edges deleted. This means that we may simulate the contraction
of edge v in (H+,Σ+) by deleting node v in (H,Σ). Since node deletions are permitted,
we obtain a minor of (H,Σ) as desired.

Recall that all subsequent minor operations performed on (H+,Σ+) after this edge
contraction only touch edges from V (G) by hypothesis. Deleting nodes and incident
edges in (H,Σ) is therefore safe to do: We will never delete any edge from V (G) because
E(H) ⊆ E(G) by Claim 1. ♢

Deleting an arbitrary node of an odd-Kn+1 and all incident edges yields an odd-Kn.
So if (G + K1, E(G + K1)) has an odd-Kn+1 minor, then (G,E(G)) must have an
odd-Kn minor by Claim 3. This concludes the proof of Lemma 2.30.

Lemma 2.30 will also prove extremely useful in characterizing the edge-node incidence
matrices MG for which the clutter F+(MG,1) has the MFMC property, as we will see
next.

The MFMC Property and Total Unimodularity

As mentioned in Section 2.1, the linear description of the matching polytope (2.2)–(2.3)
is TDI, as shown by Cunningham and Marsh [66]. So the statement of Theorem 2.21,
when applied to the node-edge incidence matrix of a graph, is little surprising. However,
one cannot directly derive the result of [66] from Theorem 2.21 since the clutter of
minimal T -cuts in a graph with terminals T does not necessarily have the MFMC
property:

Proposition 2.31 (see [60, 183]). The clutter of minimal T -cuts in K4 with T = V (K4)
does not have the MFMC property.

Proof. For T = V (K4), every T -cut in K4 is of the form δ(v) for some v ∈ V (K4). All
four such cuts are minimal. Now consider the following LP in variables z ∈ RE(K4):

min 1⊤z

z(δ(v)) ≥ 1 for all v ∈ V (K4)

z ≥ 0

(2.31)

Its dual (in variables y ∈ RV (K4)) is

max 1⊤y

yu + yv ≤ 1 for all uv ∈ E(K4)

y ≥ 0

(2.32)
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The vectors z∗ = (13 , . . . ,
1
3) and y∗ = (12 , . . . ,

1
2) are primal and dual feasible, respec-

tively, as is easily checked. Since 1⊤z∗ = 1⊤y∗ = 2, both are, in fact, optimal solutions.
Note that the feasible region of the dual (2.32) is the fractional stable set polytope of
K4 (cf. Example 2.2). So the maximum possible objective function value of an integral
solution of (2.32) is 1 < 1⊤y∗. This implies that the system in (2.31) is not TDI.

For each edge e of K4, there is a unique edge disjoint from e. Now relabel the set
of edges of K4 by swapping the labels of each such pair of edges. Then, for every
node v ∈ V (K4), the cut δ(v) becomes the unique cycle of K4 that does not contain
v. So the clutter of odd cuts in K4 is also the clutter of odd cycles of odd-K4, up to
relabelling the ground set as described above. Let us denote denote this clutter by Q6

(its ground set has 6 elements, the 6 edges of K4). Among the binary clutters without
the MFMC property, Q6 plays a special role, as shown by Seymour [183]. To formally
state Seymour’s result, we first need to define minors of clutters. When we introduced
the deletion and contraction operations for signed graphs earlier in this section, we
implicitly showed how deleting or contracting an edge of a signed graph is mirrored by
one of two operations performed on the clutter of its odd cycles. These operations are
well-defined for any clutter, more generally. Let us make this more explicit here.

For a clutter F over ground set E, deleting an element e ∈ E from F means dropping
all members from F that contain e. The resulting collection {S ∈ F : e /∈ S} is a clutter
again, this time over ground set E \{e}. The clutter obtained from F after contracting e
is defined as the collection of all minimal sets in {S \{e} : S ∈ F}. Again, its ground set
is E \ {e}. Any clutter obtained from F after a sequence of deletions and contractions
is called a minor of F . Both idealness and the MFMC property are preserved under
taking minors of clutters [183]. So any clutter with a Q6 minor cannot have the MFMC
property. Seymour [183] proved that for binary clutters, the converse is also true:

Proposition 2.32 ([183]). A binary clutter has the MFMC property if and only if it
has no Q6 minor.

If F is the clutter of odd cycles of a signed graph (G,Σ), the (clutter) minors of F are
precisely the clutters of odd cycles of (signed graph) minors of (G,Σ), as we saw earlier
in this section. Thus, Seymour’s theorem (Proposition 2.32), specialized to clutters of
odd cycles, states that the clutter of odd cycles of a signed graph (G,Σ) has the MFMC
property if and only if (G,Σ) has no odd-K4 minor (see also [60]). Using this and the
tools that we developed to characterize for which edge-node incidence matrices MG the
clutter F+(MG,1) is ideal, we may even characterize exactly when F+(MG,1) has the
MFMC property.

Theorem 2.33. Let MG be the edge-node incidence matrix of a graph G. Then
F+(MG,1) has the MFMC property if and only if G is bipartite.

We will need the following simple fact.

Lemma 2.34. A graph G is bipartite if and only if (G,E(G)) has no odd-K3 minor
(possibly after node deletions).

Proof. Suppose first that G is bipartite. Then G has no odd cycle, so the clutter of odd
cycles of (G,E(G)) is the trivial clutter ∅ whose only minor is ∅. Note, however, that
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the clutter of odd cycles of odd-K3 is nontrivial since it consists of a unique member,
namely E(K3). This implies that odd-K3 cannot be a minor of (G,E(G)).
Now suppose that G = (V,E) has an odd cycle C ⊆ E. Consider the signed graph

obtained from (G,E(G)) after deleting all edges in E \ C. Since C is a cycle in this
minor, it follows from Remark 2.26 that C must still be odd. So after contracting all
but 3 edges of C and possibly deleting isolated nodes, we are left with an odd-K3.

Now the proof of Theorem 2.33 is immediate.

Proof of Theorem 2.33. By Propositions 2.14 and 2.32, the clutter F+(MG,1) has the
MFMC property if and only if (G+K1, E(G+K1)) (after a signature exchange) has
no odd-K4 minor. By Lemma 2.30, this is equivalent with (G,E(G)) not having an
odd-K3 minor (where deleting nodes is permitted). The statement then follows from
from Lemma 2.34.

Combined with Theorem 2.21, Theorem 2.33 provides a sufficient condition for the
linear system (2.4)–(2.5) that determines the {0, 12}-closure of the fractional stable set
polytope of a graph G to be TDI. Graphs for which (2.4)–(2.5) is a TDI system are called
strongly t-perfect. We remark that, strictly speaking, the statement of Theorem 2.21 only
concerns the system including all support-minimal nontrivial {0, 12}-cuts, in particular
including the redundant odd-path inequalities (2.18). However, a careful analysis of our
argument in Section 2.3.1 shows that the odd-path inequalities are nonnegative integer
linear combinations of other inequalities, so we may apply Proposition 2.22(ii) to obtain
the desired statement. Thus, Theorems 2.21 and 2.33 equivalently state that bipartite
graphs are strongly t-perfect. This is a trivial statement: A bipartite graph G has no
odd cycles, and its edge-node incidence matrix MG is totally unimodular (see, e.g.,
[177]). By a well-known fact (see [174]), this implies that the system MGx ≤ 1, x ≥ 0
is TDI.

A stronger statement about t-perfection may be derived from our characterization of
graphs G for which F+(MG,1) is ideal (see Theorem 2.25). It is known that a graph G
is strongly t-perfect if (G,E(G)) has no odd-K4 minor [112, 175]. This is the case if and
only if F+(MG,1) is ideal, as we know from combining Theorem 2.25 and Corollary 2.29.
Since the MFMC property implies idealness, t-perfection follows for a strictly larger
class of graphs than bipartite graphs.
The combination of our characterization of idealness in Theorem 2.25 with Proposi-

tion 2.32 also yields another interesting byproduct. Namely, recall from Proposition 2.15
that F(MG,1) is precisely the clutter of odd cycles of (G,E(G)), which has the MFMC
property if and only if (G,E(G)) has no odd-K4 minor by Proposition 2.32. Thus, we
obtain the following corollary.

Corollary 2.35. Let MG be the edge-node incidence matrix of a graph G. Then
F+(MG,1) is ideal if and only if F(MG,1) has the MFMC property.

We next explore in greater detail when the clutters associated with fractional matching
polytopes have the MFMC property. It turns out that, also in this case, bipartite graphs
and their node-edge incidence matrices M⊤

G are the only ones for which the clutter
F+(M

⊤
G ,1) can have the MFMC property. To prove this, we first note that – as with

the clutter of odd cycles – taking minors of the clutter of minimal T -cuts in a graph
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also has a graphic interpretation using edge deletions and contractions. However, the
two operations behave in the opposite way here. For an edge e with endpoints u and
v, contracting e in the clutter yields the clutter of minimal T -cuts in G with e deleted
from G. Now suppose that we delete e from the clutter. Then the resulting minor is the
clutter of minimal T ′-cuts in the graph G′, where G′ is obtained from G by contracting
edge e into node w, and T ′ consists of all nodes in T \ e, plus w if exactly one of the
endpoints of e was in T (see [60]).
Given a graph G with terminals T , it thus follows from Proposition 2.31 that the

clutter of its minimal T -cuts does not have the MFMC property if one can transform
G into K4 with terminals V (K4) by a sequence of edge deletions and contractions as
defined above. The next result shows that this is possible for the join of any non-bipartite
graph with K1 as in Proposition 2.13.

Theorem 2.36. Let MG be the edge-node incidence matrix of a graph G. If F+(M
⊤
G ,1)

has the MFMC property, then G is bipartite.

Proof. By Proposition 2.13, the clutter F+(M
⊤
G ,1) is the clutter of minimal T -cuts in

G+K1, where the set of terminals T is defined as in Proposition 2.13 for b = 1. As
usual, we denote the unique node of K1 by v+ and identify its incident edges with V (G).
We will show that if G is non-bipartite, then there is a sequence of edge deletions and
contractions as defined above that transforms G+K1 with terminals T into K4 with
terminals V (K4). The statement then follows from Proposition 2.31.
So suppose that G has an odd cycle C ⊆ E(G). Consider the minor obtained from

the clutter of minimal T -cuts in G+K1 after contracting all edges in E(G) \ C and
deleting all edges in V (G) \V (C). In graphic terms, this minor is the clutter of minimal
T ′-cuts (for some new set of terminals T ′) in the graph obtained from G +K1 after
deleting E(G) \ C and contracting V (G) \ V (C).
We claim that T ′ consists of all nodes in the resulting graph. To see this, recall that

the set of terminals may only be modified by edge contractions. All edges that we
contract are from V (G) \ V (C). In particular, no such edge has an endpoint on the
cycle C, which implies that V (C) ⊆ T ′. Instead, each contracted edge is incident with
v+. Let us denote the node into which each such edge is contracted by v+ again. Since
T ⊇ V (G), contracting an edge incident with v+ makes v+ a terminal if it was not a
terminal before the contraction and vice versa. Now recall that, by the definition of T in
Proposition 2.13, we have that v+ ∈ T if and only if |V (G)| is odd. Since |V (C)| = |C|
is odd, |V (G) \ V (C)| is even if and only if v+ ∈ T . So after contracting |V (G) \ V (C)|
of its incident edges, v+ must be a terminal in T ′.
The final step of the proof is to contract C into a cycle of length 3. If |C| = 3, we are

done. So suppose that |C| > 3, and let e1, . . . , e|C| denote the edges of C ordered along
the cycle. Now contract e4, . . . , e|C| in this order, and let Ck be the cycle obtained from
C after contracting e4, . . . , ek, for 4 ≤ k ≤ |C|. Since any two consecutive edges in the
sequence e4, . . . , e|C| share an endpoint, the nodes of Ck are all terminals if k is odd. In
particular, |C| is odd, so all 3 nodes of the final cycle C|C| are terminals. Also note that
v+ is still a terminal because no edge of C contains v+. After deleting all but one edge
from each node of C|C| to v+, we thus obtain K4 with all nodes being terminals.

The converse implication of Theorem 2.36, however, is false: The graph G in Figure 2.5
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is bipartite but after contracting two edges of G+K1 and deleting multiple copies of
parallel edges, we obtain K4 with all nodes being terminals.

(a)

v+

(b)

v+

(c)

Figure 2.5: (a) A bipartite graph G, (b) its join with K1, and (c) the graph obtained
from G+K1 after contracting the two edges of the subgraph shaded in (b).
Assuming that all nodes of G are terminals, the same is true for G+K1,
following Proposition 2.13, and therefore the node in (c) into which the
two edges are contracted is a terminal again. After two edge deletions, one
obtains K4 from (c).

As remarked above, the linear systems in Examples 2.1 and 2.2 describing the
fractional matching and stable set polytopes of bipartite graphs are TDI since (node-
edge or edge-node) incidence matrices of bipartite graphs are totally unimodular. So
from a graph-theoretic standpoint, the necessary conditions of Theorems 2.33 and 2.36
for the clutters F+(MG,1) or F+(M

⊤
G ,1) to have the MFMC property for edge-node

incidence matrices MG are not particularly interesting. However, let us rephrase those
conditions in terms of total unimodularity:

Corollary 2.37. Let A be the node-edge or edge-node incidence matrix of a graph. If
F+(A,1) has the MFMC property, then A is totally unimodular.

In this form, the statement now provides an interesting analogue to Theorem 2.25.
Namely, by a famous result of Hoffman and Kruskal [129], an integral matrix A is totally
unimodular if and only if

d ≤ Ax ≤ b

l ≤ x ≤ u

defines an integral polyhedron for all integral vectors l, u, b, d of appropriate dimension.
Matrices A with this property are also said to have strong Chvátal rank 0 (see [174]).
Comparing this with the definition of the Edmonds-Johnson property, both Corollary 2.37
and Theorem 2.25 therefore relate idealness and the MFMC property of F+(A,1) to
the strong Chvátal rank of A for the special case that A is the node-edge or edge-node
incidence matrix of a graph.
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Using the results described in this section, we may also show that idealness of the
clutters associated with fractional matching and stable set polytopes can be recognized
in polynomial time. In fact, it follows from a result of Truemper [193] that binary
clutters (represented as congruence systems) can be tested for having a Q6 minor in
polynomial time. To be precise, the results of [193] are phrased in the language of
binary matroids. Using earlier matroid decomposition results of [194], Truemper showed
how to efficiently detect a certain matroid minor (the dual of the Fano matroid; see,
e.g., [60]) among all minors that contain a fixed element l of the ground set. We will
not go into detail here but only mention that, for any choice of l, the l-port of this
matroid minor is Q6 [183] (see Section 2.3.1). So in our terms, the result of [193] may
be restated as follows (see also [114]).

Proposition 2.38 ([193]). There is a polynomial-time algorithm that, given a matrix
Q ∈ {0, 1}p×q and a vector d ∈ {0, 1}p, decides whether the binary clutter F over ground
set [q] represented as Qy ≡ d (mod 2) (as in Proposition 2.10) has a Q6 minor.

Combining this with Proposition 2.32 and Corollary 2.35, we obtain the following
corollary.

Corollary 2.39. The 0/1 matrices A for which F+(A,1) is ideal can be recognized in
polynomial time when A is the node-edge or edge-node incidence matrix of a graph.

2.4 Further Notes and Open Questions

We saw in Section 2.2 that, even though the membership problem for the {0, 12}-closure
of rational polyhedra P = {x : Ax ≤ b} with P 1

2
(A, b) = PI is likely not NP-hard (as

in the general case), testing whether P 1
2
(A, b) = PI is an NP-hard problem by itself.

Let us briefly comment on the complexity of this problem for fractional matching and
stable set polytopes. Of course, the {0, 12}-closure of the fractional matching polytope
as considered in Example 2.1 is always integral (and its linear description is TDI).
The more interesting case is that of the fractional stable set polytope and the

complexity of recognizing (strong) t-perfection. Recall that in this case, the membership
problem for the {0, 12}-closure, as given in Example 2.2, can be solved in polynomial
time [114, 122]. This implies that there is a coNP certificate for t-perfection: It suffices
to exhibit a fractional vertex x∗ of the {0, 12}-closure of the fractional stable set polytope
along with a corresponding basis. Then one can verify in polynomial time that x∗ is in
the {0, 12}-closure (using a membership oracle) and that it is indeed a vertex (by simply
checking the basis). This observation can be found in Chapter 9 of [125] and readily
generalizes in the following way.

Proposition 2.40. Given A ∈ Zm×n and b ∈ Zm with P = {x ∈ Rn : Ax ≤ b}, deciding
whether P 1

2
(A, b) = PI is in coNP when the membership problem for P 1

2
(A, b) is in P.

Whether recognizing t-perfection is in NP or in P is not known (see Chapter 9 of [125]).
However, some classes of t-perfect graphs are known to be polynomial-time recognizable,
including claw-free t-perfect graphs [46] and bad-K4-free graphs [115]. A bad-K4 is a
non-t-perfect subdivision of K4. For example, the graph in Figure 2.1 is bad-K4-free.
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Interestingly, these two classes of graphs are also strongly t-perfect [47, 175]. Recall
that strong t-perfection implies t-perfection (cf. Proposition 2.6); whether the converse
implication is also true in general is not known (see [177]).

Both fractional matching and stable set polytopes are set packing polytopes. We
stress that our hardness results of Section 2.2 do not directly apply here as the polytopes
arising in our reduction are not of set packing type. Is recognizing integrality of
the {0, 12}-closure of a set packing polyhedron also NP-hard? We leave this as an
open question. While the membership problem for the {0, 12}-closure is known to be
strongly NP-hard even in the set packing case [152], there are some positive results for
approximate linear optimization over the Gomory-Chvátal and {0, 12}-closures of set
packing polyhedra: It follows from a result of [154] that the optimization problem over
the Gomory-Chvátal closure of a set packing polyhedron P admits a PTAS. This means
that one can optimize any given linear objective function over P ′ in polynomial time,
up to an arbitrary fixed precision. (In fact, the PTAS of [154] applies to a more general
class of packing problems; related approximation results for set covering problems
were obtained in [18, 103, 154].) For approximating the {0, 12}-closure of set packing
polyhedra, there is a significantly less involved PTAS [42].

Our results of Sections 2.3.3 and 2.3.4 leave open many interesting questions, too.
First, as we saw in Section 2.3.3, the {0, 12}-closure of a set packing polyhedron is integral
if the associated binary clutter is ideal, and the linear description of the {0, 12}-closure
is even TDI if the clutter has the MFMC property (Proposition 2.18 and Theorem 2.21).
It would be interesting to explore to which extent these statements generalize beyond
the set packing case.
Second, for the two special families of set packing polyhedra that served as our

recurring examples throughout this chapter, the associated clutters can be tested for
idealness in polynomial time (see Corollary 2.39). It is therefore natural to wonder
whether this is true more generally.

Question 2.41. What is the computational complexity of recognizing 0/1 matrices A
for which F+(A,1) is ideal?

Note that testing (not necessarily binary) clutters for being ideal (or having the
MFMC property) is coNP-complete when the members of the clutter are explicitly
given as part of the input [76]. In contrast, the input to the recognition problem of
Question 2.41 only consists of A (from which one can easily write down the system of
congruences defining F+(A,1)).
Here, we stress that for the special case of A being an edge-node incidence matrix

MG, we were only able to conclude that ideal clutters of the form F+(MG,1) can
be recognized efficiently because of three key reasons. First, idealness is in this case
equivalent to the minor F(MG,1) having the MFMC property (see Corollary 2.35); this
follows from, second, Seymour’s characterization of Q6 as the unique minimal binary
clutter without the MFMC property [183] stated in Proposition 2.32; and, third, a Q6

minor can be detected in polynomial time using the algorithm of Truemper [193] (see
Proposition 2.38). It is unclear whether any of these three ingredients may help answer
Question 2.41 for more general 0/1 matrices, not just edge-node incidence matrices.
(Recall from Section 2.3.4 that the node-edge case is trivial.)
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In particular, our proof of the first of the three ingredients given in Section 2.3.4
crucially relies on knowing when clutters of T -cuts and odd cycles are ideal, as char-
acterized in [86, 126] (see Propositions 2.23 and 2.27). One may ask whether there is
a forbidden minor characterization of ideal binary clutters, more generally, analogous
to Seymour’s result for the MFMC property. This is, in fact, a long-standing open
question. Seymour [183] conjectured that every non-ideal binary clutter must have one
of exactly three minors, two of which are O5, the clutter of odd cyles of odd-K5, and its
blocker b(O5). This conjecture is known to be true for special classes of binary clutters:
For example, both results of [86, 126] mentioned above can be regarded as special cases
(see also [60]). More general results were obtained in [2, 61]. Despite this progress,
Seymour’s conjecture remains open. We refer to [1, 60, 61] for more background.
The other central result used in Section 2.3.4 is the characterization of edge-node

incidence matrices with the EJ property given in [114]. Recall that the EJ property
actually pertains to the Gomory-Chvátal closure of a polyhedron. Yet for linear systems
with a 2-regular constraint matrix A, the EJ property of A implies integrality of the
{0, 12}-closure, as explained in Section 2.3.4. All known classes of matrices with the EJ
property are 2-regular (see [74]), including the edge-node incidence matrices of [114]
and integral binet matrices [5]. So a natural question is whether Theorem 2.25 may
extend to all 2-regular 0/1 matrices:

Question 2.42. For a given 2-regular 0/1 matrix A, does A have the EJ property if
F+(A,1) is ideal?

Note that integral 2-regular matrices can only have entries in {0,±1,±2}. If we allow
entries equal to ±2, then the implication conjectured in Question 2.42 is false: The
matrix

A4 =

2 1 1 0
2 1 0 1
2 0 1 1

 (2.33)

is 2-regular but does not have the EJ property [74]. The associated clutter F+(A4,1) is
Q6 except that its ground set has a seventh element (corresponding to the first column
of A4) that is never used in any member. Recall from Section 2.3.4 that Q6 is the
clutter of odd cycles of odd-K4 and is therefore ideal by Proposition 2.27.

In fact, the matrix A4 in (2.33) is conjectured to be one of two forbidden matrix minors
for 2-regular matrices with the EJ property [113] (see [74]). Here, minors are matrices
obtained by a sequence of the operations (i) to (iii) defined in Section 2.3.4 as well as a
pivoting operation that refines operation (iv). Additionally, one is allowed to divide by
2 a row whose entries are in {0,±2}. Each of these operations preserves both the EJ
property and 2-regularity [74]. For example, we saw that MK4 is the minimal edge-node
incidence matrix without the EJ property [114] (see Proposition 2.28). However, MK4

is not minimal among all 2-regular matrices without the EJ property, as it has an A4

minor.

Finally, let us comment on the complexity of the binary clutter problem for clutters
that satisfy either of the two integrality properties considered in Sections 2.3.3 and 2.3.4.
In [193], Truemper did not only show how to test for the MFMC property efficiently
(see Proposition 2.38), he also gave a polynomial-time algorithm for the binary clutter
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problem (or, rather, its matroid port counterpart) for clutters with the MFMC property.
This generalizes the well-known facts that minimum-weight s-t-paths and s-t-cuts in
graphs with nonnegative edge weights can be found in polynomial time. For instance,
the result of [193] was used in [150] to describe broader classes of polynomially solvable
cases of the separation problem for the {0, 12}-closure, as mentioned in Section 2.1.

In the case of the binary clutters associated with fractional matching and stable set
polytopes, however, Truemper’s result in [193] does not have any interesting implications
for separating {0, 12}-cuts efficiently. Indeed, by Theorems 2.33 and 2.36, we know that
the associated clutters only have the MFMC property if the underlying graph is bipartite.
Yet both the fractional matching polytope and the fractional stable set polytope of a
bipartite graph are already integral, so the separation problem for the {0, 12}-closure
is trivial in this case. It should be noted, however, that the relevant binary clutter
for separating {0, 12}-cuts for the fractional stable set polytope of a graph G with
edge-node incidence matrix MG is, in fact, not F+(MG,1) but its minor F(MG,1) (see
Section 2.3.1).

To the best of our knowledge, it is not known whether idealness would already suffice
to render the binary clutter problem easy. Positive answers are known for special classes
of ideal clutters such as those associated with T -cuts and T -joins (their blockers) or
odd cycles [86, 114, 122, 161]. Some further evidence may be provided by the following
observation that was made, e.g., in [122]: Take a binary clutter F given as a system
of congruences, and suppose that one has an algorithm that solves the binary clutter
problem for F and all nonnegative weights. Such an algorithm can be used as a
separation oracle for the associated set covering polyhedron Q(F). Using this oracle
and the ellipsoid method, one can therefore optimize any (nonnegative) linear objective
function over Q(F) in oracle-polynomial time [124, 125]. Now suppose that F is ideal.
Then linear optimization over Q(F) is, in fact, the same as linear optimization over
the incidence vectors of the members of b(F) by Proposition 2.20. This implies that,
given an oracle for the binary clutter problem over an ideal binary clutter, the binary
clutter problem over its blocker can be solved in oracle-polynomial time (provided a
congruence system for the blocker; see Proposition 2.19 for a special case).

This provides an interesting contrast to the situation for non-ideal clutters. To
illustrate this, consider the clutter of odd cycles in (G,E(G)) for a given graph G. Let
us denote this clutter by F . By definition, every cover of F must contain at least
one edge from each odd cycle in G. This means that deleting all edges of a cover
leaves a bipartite subgraph. In other words, the complements of the covers of F are
the edge sets of bipartite subgraphs of G. Each such edge set is contained in a cut,
namely the cut whose shores are the two node classes of the bipartition. Hence, each
cover of F contains a cut in G, which implies that the blocker of F consists of all
complements of cuts in G (see, e.g., [111, 122, 126]). For given nonnegative edge weights,
finding a minimum-weight member of the blocker b(F) therefore amounts to finding a
maximum-weight cut in G. This problem is the well-known max-cut problem, which is
strongly NP-hard even for uniform edge weights [107], while the binary clutter problem
for F can always be solved in polynomial time [114, 122], as pointed out in [108] (see
also [150]).

Note that this reduction is one of the ways to prove strong NP-completeness of the
binary clutter problem, as mentioned in Section 2.3.1 (see [49, 111, 122, 126]). Combined
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with the above observation about the complexity of the binary clutter problem for ideal
clutters, it also implies that the max-cut problem can be solved in polynomial time
on graphs G for which (G,E(G)) has no odd-K5 minor (such graphs are called weakly
bipartite), as observed in [122].





Chapter 3

Limitations of the Hyperplane
Separation Bound for the Extension
Complexity of Polytopes

The results of this chapter appear in [44]. The presentation of the material below is
similar to the paper.

3.1 Introduction

In the previous chapter, we discussed integral polyhedra whose linear descriptions
can be obtained from relaxations by means of certain cutting planes. Yet for linear
programming over a polyhedron P ⊆ Rn, integral or not, one does not need to have
a complete linear description of P available. It suffices to know the description of a
polyhedron Q ⊆ Rm and an affine map π : Rm → Rn such that π(Q) = P , since for
any linear objective function c ∈ Rn, the optimal values of the LPs max

{
c⊤x : x ∈ P

}
and max

{
c⊤π(y) : y ∈ Q

}
are the same. Assuming that P is pointed, we may express

the latter LP using no more constraints and variables than Q has facets (see [134]):
First, equations may be removed by eliminating variables. Second, if the resulting
full-dimensional polyhedron is not pointed, we may replace it with its projection onto
the orthogonal complement of the lineality space. This means that the minimum number
of facets of any polyhedron Q that affinely projects onto P is a measure of how small
an LP with feasible region P can possibly be (where we ignore the encoding lengths
of the coefficients). This minimum number is called the extension complexity of P ,
denoted by xc(P ). An extension of P is a polyhedron Q together with an affine map π
such that π(Q) = P . A linear description of such a polyhedron Q is called an extended
formulation for P , whose size is defined as the number of its inequalities. In other
words, xc(P ) is the minimum size of any extended formulation for P .

The extension complexity of a polyhedron may be significantly smaller than the
number of its facets. For instance, consider again the spanning tree polytope of a
connected graph G = (V,E) that was introduced in Chapter 1. In this chapter, we will
denote it by Pst(G). Recall that Pst(G) is defined as the convex hull of the incidence
vectors of the spanning trees in G, i.e.,

Pst(G) = conv
{
χ(T ) ∈ {0, 1}E : T ⊆ E is a spanning tree in G

}
. (3.1)

As shown by Edmonds [82], Pst(G) is completely determined by the following linear
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system:

x(E) = |V | − 1

x(E(U)) ≤ |U | − 1 for all ∅ ≠ U ⊆ V

x ≥ 0

(3.2)

In general, the number of facets of Pst(G) is exponential in |V |. Nonetheless, as
mentioned in Chapter 1, there are extended formulations of size O(|V | |E|) due to
Wong [204] and Martin [153] (see also [6, 58, 205]). Special classes of graphs admit
even smaller extended formulations: For instance, Williams [200] gave a formulation of
size O(|V |) for planar graphs. More generally, if G is embedded in a surface of fixed
genus, the extension complexity of Pst(G) was shown to be at most O(|V |3/2) in [102].
This upper bound was recently generalized to proper minor-closed classes of graphs [8].
However, if G = Kn, the best known upper bound on xc(Pst(Kn)) is the one obtained
by counting the inequalities in Martin or Wong’s formulations [153, 204]; namely, O(n3).

Lower bounding the extension complexity, on the other hand, seems even more
difficult: How does one prove that no extended formulation of a certain size exists?
Rothvoß [166], using a counting argument, showed that there are 0/1 polytopes with
exponential extension complexity. Yet this result does not imply any lower bounds
for concrete polytopes. In a seminal paper from 1991, Yannakakis [205] proved that
TSP polytopes and matching polytopes of complete graphs do not admit extended
formulations of subexponential size that satisfy certain symmetry assumptions. Since
then, lower bounds on sizes of symmetric extended formulations have been studied for
other families of polytopes as well [137]. However, in search of unconditional lower
bounds on the extension complexity (without symmetry assumptions), additional tools
are required.
In his paper [205], Yannakakis also provided an algebraic handle on the extension

complexity. His beautiful result uses the concept of a slack matrix. For the spanning
tree polytope as described by the constraints in (3.2), such a slack matrix has one
row for each inequality in (3.2) and one column for each spanning tree T in G. The
corresponding entry is the slack of the vertex χ(T ) in the respective inequality. In
an analogous fashion, one can associate a slack matrix with the set of vertices of any
polytope P and a given linear description of it. Yannakakis’ theorem in [205] now states
that the minimum number r for which this slack matrix can be written as the product
of two nonnegative matrices with r as the intermediate dimension is equal to xc(P ).
This result laid the ground for many advances in recent years, most notably the

exponential lower bounds for the extension complexity of TSP polytopes, cut and
correlation polytopes, stable set polytopes [101, 136], and (perfect) matching polytopes
[167]. The results of [101, 136] rely on a close connection to the communication
complexity of 0/1 matrices (see also [95]). This connection was already explored by
Yannakakis [205] and gives rise to a lower bound on the extension complexity of a
polytope known as the rectangle covering lower bound (see [100]). Being a combinatorial
lower bound, it only depends on the zero/nonzero pattern of a slack matrix, which
encodes the vertex-facet incidence structure of the polytope. It is known that the
rectangle covering lower bound, when applied to the slack matrix of a polytope P , is at
least the dimension of P [100]. For the spanning tree polytope of Kn, we thus obtain
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an immediate lower bound of Ω(n2) on its extension complexity. The question whether
this bound can be improved, e.g., to match the upper bound of O(n3), is open (see
[8, 141, 199]). Khoshkhah and Theis [141] showed that the rectangle covering lower
bound is at most O(n2 log n). They asked whether using non-combinatorial techniques
instead may lead to stronger lower bounds on the extension complexity of Pst(Kn). This
question provides the motivation for our work in this chapter.

One candidate for such a non-combinatorial lower bound is the hyperplane separation
bound. It was proposed by Fiorini [99] and applied by Rothvoß [167] in his proof of
the exponential lower bound for the matching polytope. Like the rectangle covering
lower bound, it is derived from Yannakakis’ algebraic characterization of the extension
complexity in terms of slack matrices. We show that for the slack matrix of Pst(Kn)
obtained from the linear description in (3.2), the hyperplane separation technique fails to
produce a lower bound stronger than Ω(n2). In this sense, the trivial dimension bound
is already at least as strong. Our proof in Section 3.3.1 relies on a dual interpretation
of the method, which will be explained in Section 3.2.

The limitations of the hyperplane separation method can be observed in another
family of well-understood polytopes as well, which is the subject of Section 3.3.2. Recall
that a zonotope in Rn is the Minkowski sum of a finite number of line segments, i.e.,
sets of the form [x, y] := conv({x, y}) for some x, y ∈ Rn. For a given graph G = (V,E)
on V = [n], a zonotope is called a graphic zonotope of G if it is the Minkowski sum of
|E| line segments in the directions {ej − ei}ij∈E (see [162]). Every graphic zonotope of
G is the affine linear image of the hypercube [0, 1]E and, hence, its extension complexity
is at most 2|E| ≤ n(n− 1). In fact, no smaller extended formulation is known to date,
not even for completion time polytopes, a well-known subclass of graphic zonotopes of
Kn. They have been described by Wolsey [202] (who also first observed the fact that
they are zonotopes; see the remark in [135]) and Queyranne [163]. For the simplest of
all completion time polytopes, however, the extension complexity is known: Goemans
[116] gave an asymptotically minimal extended formulation of size Θ(n log n) for the
nth permutahedron, which is defined as conv{(σ(1), . . . , σ(n)) : σ ∈ Sn}, where Sn

denotes the symmetric group on [n]. The lower bound in [116] is established via a purely
combinatorial argument. Since any two graphic zonotopes of Kn are combinatorially
equivalent (see Section 3.3.2), Ω(n log n) is therefore best possible for any combinatorial
lower bound on the extension complexity of graphic zonotopes of Kn. In Section 3.3.2,
we show that the hyperplane separation bound is at most a constant when applied
to our linear description of graphic zonotopes (which generalizes the canonical linear
description of completion time polytopes in [163, 202]) and the resulting slack matrix.

At the same time, we stress that our negative results do not rule out the possibility
of obtaining meaningful bounds for different slack matrices. For instance, one may
rescale the inequalities describing a given polytope or add redundant linear inequalities
to the description. Section 3.4 studies the effect of these operations on the hyperplane
separation bound. In particular, the hyperplane separation bound is not invariant under
scaling the rows and columns of a given slack matrix. This is a property that is shared
with the norm-based lower bounds of similar flavour introduced by Fawzi and Parrilo
[96, 97]. Which scalings of rows and columns produce the strongest bounds is left as an
open question in [96]. We address this issue in Section 3.4 and provide a partial answer:
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If one normalizes the rows in such a way that the maximum entry in every row equals
one, and proceeds analogously with the columns, the hyperplane separation bound will
not decrease. Our analysis in Section 3.4 also shows that carefully adding redundant
rows or columns can only increase the bound.

3.2 Preliminaries

Before we introduce the hyperplane separation bound and present some of its funda-
mental properties in Section 3.2.2, we first define slack matrices of polytopes more
formally and briefly review some of the other techniques for lower bounding the extension
complexity. Note that, even though the results below are stated in terms of polytopes
only, they are valid for all polyhedra, bounded or not (see [57]).

3.2.1 Slack Matrices and Nonnegative Factorizations

Let S ∈ Rm×n
≥0 be a nonnegative matrix. The nonnegative rank of S, denoted by rk+(S),

is defined as the smallest number r ∈ N such that S = UV for two nonnegative matrices
U ∈ Rm×r

≥0 and V ∈ Rr×n
≥0 . Such a factorization of S is called a nonnegative factorization.

The following equivalent characterization of the nonnegative rank can be found, e.g., in
[55, 121] (see also [57]). We provide a brief proof.

Proposition 3.1 (Corollary 2.2 in [55], see [121]). Let S be a nonnegative matrix. Then
rk+(S) is the minimum r ∈ N such that S can be written as the sum of r nonnegative
matrices of rank one.

Proof. Let S = UV for two nonnegative matrices U and V . Let us denote the columns
of U by u(1), . . . , u(r) and the rows of V by v(1), . . . , v(r). Then UV =

∑r
i=1 u

(i)(v(i))⊤

and each of the summands is easily seen to have rank (at most) one. Conversely, every
nonnegative rank-one matrix must be of the form uv⊤ for some nonzero column vectors
u and v.

Now let P ⊆ Rn be a polytope given by P = conv(X) = {x ∈ Rn : Ax = b, Bx ≤ d}
for some finite set X = {x(1), . . . , x(k)} ⊆ Rn and A ∈ RmA×n, b ∈ RmA , B ∈ RmB×n,
and d ∈ RmB . We further assume that each inequality in Bx ≤ d defines a nonempty
face of P . The mB × k matrix whose jth column equals d − Bx(j) is a slack matrix
of P . If X is the set of vertices of P , we refer to the corresponding slack matrix
as the slack matrix of P with respect to the linear description above. In particular,
slack matrices of polytopes are nonnegative by definition. Yannakakis [205] showed a
striking relationship between their nonnegative rank and the extension complexity of
the associated polytopes.

Proposition 3.2 ([205]). Let S be a slack matrix of a polytope P . Then xc(P ) = rk+(S).

Yannakakis’ result is a powerful tool, especially for lower bounding the extension
complexity of polytopes, since one may work with the nonnegative rank instead. However,
computing this quantity for a given nonnegative matrix S is a difficult problem by itself:
Deciding whether rk+(S) equals the (linear) rank of S, denoted by rk(S), is NP-hard
[195]. Note that we always have rk+(S) ≥ rk(S) (see [55]). If S is the slack matrix of a
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polytope P of dimension d ≥ 1, then rk(S) = d+ 1 (see Theorem 14 in [119]). Thus,
by Proposition 3.2, the dimension of a polytope is a first, simple lower bound on its
extension complexity, as mentioned in Section 3.1.

A more refined bound considers the support of S = (sij), which – analogously to the
support of a vector – is defined as supp(S) = {(i, j) : sij ̸= 0}. By Proposition 3.1, the
nonnegative rank of S is the minimum number of nonnegative rank-one matrices whose
sum is S. Observe that the support of each summand in such an additive decomposition
is a rectangle, i.e., a set of the form I × J for some nonempty subsets of rows I and
columns J . All rectangles together must cover supp(S). So the minimum number of
rectangles needed to cover supp(S) is a lower bound on rk+(S), the so-called rectangle
covering lower bound that was already mentioned in Section 3.1; see [100] for a detailed
study of this bound (see also [121, 205]).

The rectangle covering lower bound has been successfully employed, e.g., in [101, 136]
to prove exponential lower bounds on the extension complexity of correlation polytopes,
which appear as faces or linear images of cut, stable set, and TSP polytopes. For
matching polytopes, however, this lower bound performs rather poorly: The support of
their slack matrices may be covered using only a number of rectangles that is polynomial
in the number of nodes of the graph, as observed in [205] (see also [100, 167]). Rothvoß’
breakthrough result of [167], showing that the extension complexity of the matching
polytope of Kn is 2Ω(n), therefore relies on a different bounding technique that was
first proposed by Fiorini [99], the so-called hyperplane separation bound. This is the
technique that this chapter is concerned with.

3.2.2 The Hyperplane Separation Bound

To formally state the hyperplane separation bound, we need the following notation.
For two matrices A = (aij), B = (bij) ∈ Rm×n, we let ∥A∥∞ := maxi,j |aij | and denote
by ⟨A,B⟩ the Frobenius inner product of A and B, i.e., ⟨A,B⟩ :=

∑m
i=1

∑n
j=1 aijbij .

Throughout this chapter, we will also use the same notation ⟨a, b⟩ for the inner product
a⊤b of two vectors a, b ∈ Rn.

Proposition 3.3 ([99], see [167]). Let S ∈ Rm×n
≥0 not identically zero, and let Rm,n

denote the set of rank-one matrices in {0, 1}m×n. We further let

hsb(S) := sup

{
⟨S,X⟩

∥S∥∞ρ(X)
: X ∈ Rm×n

}
, (3.3)

where ρ(X) := max {⟨R,X⟩ : R ∈ Rm,n} for every X ∈ Rm×n. Then rk+(S) ≥ hsb(S).

By a slight abuse of terminology, we call the quantity hsb(S) itself the hyperplane
separation bound (of S). After normalizing X such that ρ(X) = 1 in the definition of
hsb(S), we may rewrite (3.3) as follows:

∥S∥∞ hsb(S) = sup
{
⟨S,X⟩ : X ∈ Rm×n, ρ(X) = 1

}
= sup

{
⟨S,X⟩ : X ∈ Rm×n, ρ(X) ≤ 1

}
= max

{
⟨S,X⟩ : X ∈ Rm×n, ⟨X,R⟩ ≤ 1 ∀R ∈ Rm,n

}
. (3.4)
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In the last step, we used the fact that the supremum of ⟨S, ·⟩ is finite: Any X ∈ Rm×n

with ρ(X) ≤ 1 satisfies ⟨R,X⟩ ≤ 1 for all R with singleton support, that is, every entry
of X is at most one. As S is nonnegative, the sum of its entries is an upper bound on
⟨S,X⟩.
Note that (3.4) is an LP. From strong LP duality, we obtain the following dual

characterization of the hyperplane separation bound. This already appears in [181],
even though it is stated in a slightly differently form (in terms of the Minkowski gauge
function of the set conv(Rm,n), to be precise).

Proposition 3.4 (see [181]). Let S and Rm,n =: R be defined as in Proposition 3.3.
Then

hsb(S) = min

{
∥S∥−1

∞
∑
R∈R

yR : y ∈ RR
≥0,

∑
R∈R

yRR = S

}
. (3.5)

With this dual characterization of the hyperplane separation bound, we may also
give a simple proof of Proposition 3.3.

Proof of Proposition 3.3. We start by showing the following useful fact, a slightly
stronger version of which is used in [167].

Claim ([167]). conv(Rm,n) ⊇ {A ∈ [0, 1]m×n : rk(A) = 1} .

Proof of Claim. Let A ∈ [0, 1]m×n be of rank one. Then A = vw⊤ for nonnegative
vectors v ∈ Rm, w ∈ Rn. Possibly after rescaling, both v and w may be assumed to be
[0, 1]-valued. Then v ∈ [0, 1]m can be written as a convex combination v =

∑p
i=1 λiv

(i) for
v(i) ∈ {0, 1}m, λi ≥ 0, and

∑p
i=1 λi = 1. Similarly, w =

∑q
j=1 µjw

(j) for w(j) ∈ {0, 1}n,
µj ≥ 0, and

∑q
j=1 µj = 1. It follows that

A = vw⊤ =

p∑
i=1

q∑
j=1

λiµj · v(i)(w(j))⊤︸ ︷︷ ︸
∈Rm,n

and

p∑
i=1

q∑
j=1

λiµj = 1.

Hence, A is a convex combination of matrices from Rm,n as desired. ♢

Using the claim, we may prove that hsb(S) ≤ rk+(S) as follows. Since the hyperplane
separation bound is invariant under scaling S (see Section 3.2.2), we may assume without
loss of generality that ∥S∥∞ = 1. Let r := rk+(S). Then, by Proposition 3.1, S is the
sum of r nonnegative rank-one matrices A1, . . . , Ar ∈ Rm×n

≥0 . For all k ∈ [r], we even have
that Ak ∈ [0, 1]m×n since ∥Ak∥∞ ≤ ∥S∥∞ = 1. Writing R := Rm,n for short, the claim
above implies that Ak =

∑
R∈R ykRR for some coefficients ykR ≥ 0 with

∑
R∈R ykR = 1,

for all k ∈ [r]. This means that the vector y ∈ RR defined by yR =
∑r

k=1 y
k
R for all

R ∈ R is a feasible solution of the LP in (3.5). Hence, hsb(S) ≤
∑

R∈R yR = r by
Proposition 3.4.

With the primal and dual characterizations of the hyperplane separation bound stated
in (3.4) and (3.5), it is easy to determine the exact value of hsb(S) for small matrices S.
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Example 3.5. Consider the matrix

S =

(
1 2
2 1

)
and let

X = 1
4

(
1 1
1 1

)
.

It is easily verified that ⟨R,X⟩ ≤ 1 for all 0/1 matrices of rank one in R2,2. Hence,
hsb(S) ≥ 1

2⟨S,X⟩ = 3
2 by (3.4). On the other hand, we can express S as

S =

(
1 1
1 1

)
+

(
1 0
0 0

)
+

(
0 0
0 1

)
where all summands are in R2,2. It follows from (3.5) that hsb(S) ≤ 3

2 and, thus,
hsb(S) = 3

2 . ♢

Note that the feasible region of the dual LP in (3.5) corresponds to a particular type
of nonnegative factorization of S, namely the decomposition of S into the weighted sum
of 0/1 matrices of rank one. In particular, if all weights are 0 or 1, such a decomposition
is equivalent to a factorization of S with 0/1 factors by the proof of Proposition 3.1.
We therefore obtain the following corollary to Proposition 3.4, which will be the key
ingredient of our proofs in Section 3.3.

Corollary 3.6. Let S be a nonnegative matrix. If S has a nonnegative factorization of
rank r with both factors being 0/1 matrices, then hsb(S) ≤ r∥S∥−1

∞ .

Before we proceed, let us remark that, by its definition, the hyperplane separation
bound hsb(S) is invariant under multiplying S by positive scalars, under transposition,
and under permutations of rows and columns of S, respectively. It further satisfies the
following two useful properties on submatrices, both of which are immediate consequences
of Proposition 3.4.

Lemma 3.7. Let S =
(
A
B

)
for nonnegative matrices A and B. Then

(i) ∥S∥∞ hsb(S) ≥ ∥A∥∞ hsb(A),

(ii) hsb(S) ≤ hsb(A) + hsb(B). If A = B, then hsb(S) = hsb(A).

Proof. Observe that a matrix R ∈ {0, 1}m×n of rank one is easily turned into a 0/1
matrix of rank (at most) one in a different dimension m′ × n, either by padding R with
zero rows (if m′ > m) or by deleting rows (if m′ < m). The second operation, when
applied to each matrix R in the support of an optimal solution of (3.5) for S, shows (i).
To prove (ii), we apply the first operation to optimal solutions for A and B, respectively,
and obtain

∥S∥∞ hsb(S) ≤ ∥A∥∞ hsb(A) + ∥B∥∞ hsb(B).

Since ∥S∥∞ = max{∥A∥∞, ∥B∥∞}, the statement follows.
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3.3 Limitations of the Hyperplane Separation Bound

In the previous section, we saw that the hyperplane separation bound is small for
nonnegative matrices that admit 0/1 factorizations of low rank. Here, we will apply
this observation to the canonical slack matrices of two families of polytopes, spanning
tree polytopes and graphic zonotopes. In both cases, we will see that the best known
upper bounds on their nonnegative rank (see Section 4.1) can, in fact, be achieved via a
factorization into 0/1 matrices.

3.3.1 Spanning Tree Polytopes

Let G = (V,E) be a connected graph. Recall from Section 3.1 that the spanning tree
polytope of G, denoted by Pst(G) ⊆ RE , is given by

x(E) = |V | − 1 (3.6)

x(E(U)) ≤ |U | − 1 for all ∅ ≠ U ⊆ V (3.7)

x ≥ 0 (3.8)

Theorem 3.8. Let G = (V,E) be a connected graph and let SG denote the slack matrix
of Pst(G) with respect to the description (3.6)–(3.8). Then hsb(SG) = O(|E|).

Proof. Since there are |E| many nonnegativity constraints in (3.8), it suffices to consider
the row submatrix of SG restricted to inequalities (3.7) only, which we will denote by
SG again. The bound for the entire slack matrix then follows from Lemma 3.7(ii).

Let us index the rows of SG by the nonempty subsets of V and the columns by the
spanning trees in G. The entry in row U ⊆ V and column T equals c(U, T )− 1, where
c(U, T ) denotes the number of connected components of the subgraph (U, T ∩ E(U)).
First, observe that

∥SG∥∞ ≥ 1
2 |V | − 1. (3.9)

Indeed, if T is a spanning tree in G and U ⊆ V a stable set in T , then c(U, T ) = |U |.
Because T is a bipartite graph, both node classes in a bipartition are stable sets in T .
At least one of them must be of size 1

2 |V |.
Based on the extended formulation given in [153], Conforti, Cornuéjols, and Zambelli

[56] showed that SG admits a nonnegative factorization of rank O(|V | |E|) where both
factors are 0/1 matrices. For the sake of clarity, we include a proof. Even though our
proof is slightly different than the one of [56], it is also inspired by [153].

Claim ([56]). There is a nonnegative factorization of SG of rank 2|V | |E| where both
factors are 0/1 matrices.

Proof of Claim. For a spanning tree T in G, let τ(T ) be the set of all triples of nodes
(i, j, k) ∈ V 3 such that j is the neighbour of i on the unique i-k-path in T . From each
nonempty subset U ⊆ V , we choose an arbitrary representative k(U) ∈ U . For every
triple (i, j, k) ∈ V 3 where ij ∈ E, define the set

R(i, j, k) := {U ⊆ V : i ∈ U, j /∈ U, k = k(U)} × {T spanning tree : (i, j, k) ∈ τ(T )}.
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For each of these 2|V | |E| triples (i, j, k), there is a unique 0/1 matrix indexed in the
same way as SG whose support is R(i, j, k). We claim that these matrices, which clearly
are of rank at most one, add up to SG. To see this, let ∅ ≠ U ⊆ V and T be a spanning
tree in G, and let c = c(U, T ) for short. It suffices to show that∣∣{(i, j, k) ∈ V 3 : ij ∈ E, (U, T ) ∈ R(i, j, k)

}∣∣ = c− 1.

If c = 1, there is nothing to prove. Now let c ≥ 2, and let F1, . . . , Fc be the connected
components of the subgraph (U, T ∩ E(U)). Without loss of generality, we may assume
that k(U) ∈ V (Fc). For l ∈ [c− 1], we say that a path in T connects k(U) and Fl if one
endpoint of the path is k(U), the other one is a node in V (Fl), and no internal node of
the path belongs to V (Fl). For all l ∈ [c− 1], there exists a unique path in T connecting
k(U) and Fl. Let il be its endpoint in V (Fl), and let jl be the neighbour of il on the
path. Then jl /∈ U , and (U, T ) ∈ R(il, jl, k(U)) for all l ∈ [c− 1].
Conversely, if (U, T ) ∈ R(i, j, k) for some (i, j, k) ∈ V 3 with ij ∈ E, then k = k(U)

and i /∈ V (Fc), say, i ∈ V (F1). Since j /∈ U , the path connecting i and k(U) in T cannot
visit any other node in V (F1). Hence, it connects k(U) and F1 and we conclude that
(i, j) = (i1, j1).

This shows that the sets R(i, j, k) induce a decomposition of SG into 2|V | |E| sum-
mands which are 0/1 matrices. The claim follows from Proposition 3.1. ♢

Combining the claim with (3.9), it follows from Corollary 3.6 that

hsb(SG) ≤
2|V | |E|
|V |/2− 1

= O(|E|).

This concludes the proof of the theorem.

3.3.2 Graphic Zonotopes

Recall from Section 3.1 that a graphic zonotope of a graph G = (V,E) with V = [n] is
the Minkowski sum of a finite number of line segments, each of which is parallel to the
difference of two standard basis vectors ej − ei for some ij ∈ E. Let A = (aij) ∈ Rn×n

≥0

be symmetric and nonnegative. With the matrix A, we associate a zonotope Z(A) ⊆ Rn

as follows:
Z(A) :=

∑
1≤j≤n

ajjej +
∑

1≤i<j≤n

aij [ei, ej ]. (3.10)

Up to translations, the graphic zonotopes of graphs on n nodes are exactly those of the
form (3.10) for some symmetric and nonnegative n× n matrix A (where aij > 0 if and
only if ij ∈ E).

Graphic zonotopes are generalized permutahedra: For n ∈ N, the nth permutahedron
is the convex hull of the vectors (σ(1), . . . , σ(n)) ∈ Zn for all permutations σ ∈ Sn. It
is a well-known fact that permutahedra are zonotopes (see, e.g., [206]); in fact, the nth
permutahedron equals Z(A) for the n× n all-one matrix A (see Example 7.15 in [206]).
A minimal linear description of the nth permutahedron is the following (see, e.g., [104,
Section 2.2]):{

x ∈ Rn : x([n]) =

(
n+ 1

2

)
, x(S) ≥

(
|S|+ 1

2

)
for all S ⊆ [n]

}
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Let us now generalize this description to all graphic zonotopes Z(A). For a symmetric
nonnegative matrix A ∈ Rn×n

≥0 , we define the set function gA : 2[n] → R by

[n] ⊇ S 7→ gA(S) :=
∑

i,j∈S :
i≤j

aij .

We will first argue that gA is supermodular. Recall that a set function g : 2[n] → R is
supermodular (see [104]) if

g(S ∪ T ) + g(S ∩ T ) ≥ g(S) + g(T ) for all S, T ⊆ [n]. (3.11)

Observe that gA is supermodular if and only if the set function ḡA defined by ḡA(S) =
2gA(S) −

∑
i∈S aii for S ⊆ [n] is supermodular. Since A is symmetric by hypothesis,

ḡA(S) is precisely the sum of all entries of the square submatrix of A obtained after
deleting all rows and columns whose index is not in S. Supermodularity of ḡA follows
from the fact that all entries of A are nonnegative.

The supermodular base polytope (see, e.g., [104]) of a supermodular function g : 2[n] →
R with g(∅) = 0 is defined as

B(g) = {x ∈ Rn : x([n]) = g([n]), x(S) ≥ g(S) for all S ⊆ [n]} . (3.12)

Using standard arguments (see [81]), one can show that for a symmetric nonnegative
matrix A, the zonotope Z(A) is the supermodular base polytope of gA. For the sake of
completeness, we include a short proof of this fact.

Lemma 3.9. Let A ∈ Rn×n
≥0 be symmetric. Then Z(A) = B(gA).

Proof. It suffices to show that, for every linear objective function w ∈ Rn, the minima of
w over Z(A) and B(gA) coincide. After a permutation of the coefficients of w, we may
assume that w1 ≥ · · · ≥ wn. The greedy rule (see [81]) then implies that a minimizer
x∗ over B(gA) is given by

x∗j := gA([j])− gA([j − 1]) =

j∑
i=1

aij , j ∈ [n].

Minimizing w over the zonotope Z(A) can be done over each summand in the
Minkowski sum in (3.10) individually. For 1 ≤ i < j ≤ n, it is easy to see that the
minimum of w on the line segment [aijej , aijei] is attained in the first endpoint since
wi ≥ wj . Hence, the minimum of w over Z(A), too, is attained in x∗.

From the proof of Lemma 3.9, we conclude that the vertices of Z(A) are in correspon-
dence with the permutations in Sn via the map

Sn ∋ σ 7−→ xσ ∈ Rn ; xσj =
∑

i∈[n] :
σ(i)≤σ(j)

aij , j ∈ [n].
(3.13)

Now define a matrix MA with one row for every nonempty proper subset of [n] and
one column for every permutation in Sn as follows: If xσ denotes the vertex of Z(A)
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induced by σ ∈ Sn via (3.13), the entry of MA in row S ⊊ [n], S ̸= ∅, and column σ
equals

xσ(S)− gA(S) =
∑

i∈[n],j∈S :
σ(i)≤σ(j)

aij −
∑

i,j∈S :
σ(i)≤σ(j)

aij =
∑

i/∈S,j∈S :
σ(i)≤σ(j)

aij , (3.14)

using symmetry of A in the first equation. Thus, MA is precisely the slack matrix of
Z(A) with respect to the linear description (3.12), possibly with repeated columns.
Before we state the main result of this section, observe that the support of MA

is independent of the actual entries of A if A is strictly positive. In this case, gA is
strictly supermodular, that is, the inequality in (3.11) is strict for all subsets S, T ⊆ [n]
neither of which is contained in the other. It follows that all inequalities in (3.12) for
∅ ≠ S ⊊ [n] define facets of Z(A) [163]. Further, the map (3.13) is a bijection if A
is strictly positive, which implies that Z(A) and the nth permutahedron (and, more
generally, Z(A′) for any other symmetric and strictly positive n × n matrix A′) are
combinatorially equivalent.

Theorem 3.10. Let A ∈ Rn×n
≥0 be symmetric, and let MA be the slack matrix of Z(A)

with respect to (3.12). Then hsb(MA) ≤ 4.

Proof. For every pair i, j ∈ [n], i ̸= j, let

R(i, j) := {S ⊆ [n] : i /∈ S, j ∈ S} × {σ ∈ Sn : σ(i) ≤ σ(j)}

and let R̂(i, j) denote the unique 0/1 matrix indexed like MA whose support equals
R(i, j). Note that R̂(i, j) has rank one and, by (3.14),∑

i ̸=j

aijR̂(i, j) = MA.

Since the expression in (3.14) is less than or equal to
∑

i/∈S,j∈S aij with equality if
σ([n] \ S) = [n− |S|], we have that

∥MA∥∞ = max
S⊆[n]

∑
i/∈S,j∈S

aij .

This quantity is, in fact, the maximum weight of a cut in the graph underlying the
graphic zonotope Z(A) where the (nonnegative) edge weights are given by A. Since
there is always a cut whose weight is at least half the total weight of the edges (see,
e.g., Theorem 5.3 in [201]), we conclude that

∥MA∥∞ ≥ 1
2

∑
i<j

aij =
1
4

∑
i ̸=j

aij .

The theorem follows from an application of Corollary 3.6.

In particular, Theorem 3.10 applies to completion time polytopes. Let us briefly
discuss how they fit into the framework of graphic zonotopes. Consider n jobs with
processing times p = (p1, . . . , pn) ∈ Rn

>0 to be scheduled on a single machine. Every
permutation σ ∈ Sn defines a feasible schedule without idle time where job j is
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completed at time Cσ
j :=

∑
i : σ(i)≤σ(j) pi for j ∈ [n]. The completion time polytope

associated with p is denoted by Pct(p) and is defined as

Pct(p) := conv {(Cσ
1 , . . . , C

σ
n) ∈ Rn : σ ∈ Sn} .

Now let A ∈ Rn×n
>0 be a symmetric positive rank-one matrix. Then A can be written

as A = pp⊤ for some p ∈ Rn
>0. This can be seen as follows. Since the matrix A has

rank one, it must be of the form A = uv⊤ for some u, v ∈ Rn
>0. Note that u1v = v1u by

symmetry of A. As u1, v1 > 0, we may define p := (
√
v1/u1)u and obtain A = pp⊤ as

desired. This means that Z(A) is the image of Pct(p) under the linear transformation
(x1, . . . , xn) 7→ (p1x1, . . . , pnxn). Up to this transformation, the inequalities in (3.12)
coincide with the canonical linear description of Pct(p) in [163, 202]. When pj = 1 for
all j ∈ [n], the completion time polytope Pct(p) is the nth permutahedron and, as we
saw earlier, is equal to Z(A) with the n× n all-one matrix for A.

This special case also shows that our analysis in the proof of Theorem 3.10 is
asymptotically tight. Namely, if A is the n× n all-one matrix, then

∥MA∥∞ =
⌊n
2

⌋
·
⌈n
2

⌉
=

 1
4(n− 1)(n+ 1) if n odd

1
4n

2 if n even

and therefore

∥MA∥−1
∞
∑
i ̸=j

aij =

 4 n
n+1 if n odd

4n−1
n if n even

which tends to 4 as n → ∞.

Both Theorem 3.10 and the analogous result for spanning tree polytopes stated in
Theorem 3.8 crucially rely on the fact that the associated slack matrices admit 0/1
factorizations of low rank. The nonnegative rank itself, of course, does not depend on
which slack matrix we choose for a given polytope. Recall that this is a consequence
of Proposition 3.2. The situation for the hyperplane separation bound, however, is
fundamentally different, as we will see next.

3.4 Diagonal Scalings and Redundancy

Before we address the issue of choosing a slack matrix more rigorously, let us highlight
the difference between the nonnegative rank and the hyperplane separation bound with
two examples.

Example 3.11. Consider the standard hypercube Cn = [0, 1]n and let Sn denote its
slack matrix with respect to the (minimal) description Cn = {x ∈ Rn : 0 ≤ x ≤ 1}. The
inequality 1⊤x ≥ 0 is valid for Cn (defining the vertex 0). Adding this inequality to
the minimal description of Cn adds one row to Sn, which equals the sum of the rows
corresponding to the n facets defined by x ≥ 0. Let S′

n denote the slack matrix with
this additional row. Then we have ∥S′

n∥∞ = n and ∥Sn∥∞ hsb(Sn) = ∥S′
n∥∞ hsb(S′

n).
Thus, hsb(S′

n) =
1
n hsb(Sn). ♢
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Not even slack matrices with respect to minimal linear descriptions behave identically
under the hyperplane separation bound:

Example 3.12. The n-simplex spanned by the standard basis vectors in Rn and the
origin is the set of all x ∈ Rn satisfying

x1 + · · ·+ xn ≤ 1

xi ≥ 0 for all i ∈ [n− 1]

λxn ≥ 0

for any λ > 0. Each inequality is facet-defining. Modulo permutations of rows and
columns, the associated slack matrix Sn,λ is obtained from the (n+1)× (n+1) identity
by multiplying the first row by λ. Clearly, n+ 1 ≥ rk+(Sn,λ) ≥ rk(Sn,λ) = n+ 1 (see
Section 3.2), so we must have equality everywhere.

Now suppose that λ ≥ 1. Then ∥Sn,λ∥∞ = λ and hsb(Sn,λ) ≤ n
λ + 1, since Sn,λ is the

sum of n+1 matrices with a single nonzero entry each on the diagonal. In fact, one can
even show that hsb(Sn,λ) =

n
λ + 1 by noting that the (n+ 1)× (n+ 1) matrix X with 1

on the diagonal and −1 elsewhere is a solution to the LP (3.4) with ⟨Sn,λ, X⟩ = λ+ n.
Thus, hsb(Sn,λ) may be arbitrarily bad compared to rk+(Sn,λ). ♢

Let us now generalize these observations. We first study the effect that scaling rows
or columns of a nonnegative matrix S has on hsb(S). A positive diagonal scaling of
S is a matrix S′ which can be written as S′ = D1SD2 where D1 and D2 are positive
diagonal matrices, i.e., diagonal matrices with positive diagonal elements. Note that
rk+(S

′) = rk+(S) (see Lemma 2.8 in [55]), while in Example 3.12 we have seen that
the hyperplane separation bound may indeed change (see also [96, 97]). The following
theorem is our main ingredient in this section.

Theorem 3.13. Let S ∈ Rm×n
≥0 not identically zero, and let D ∈ Rm×m

≥0 be a positive
diagonal matrix. Then

hsb(DS) ≤ hsb(S)
∥D∥∞∥S∥∞
∥DS∥∞

.

Proof. Let X ∈ Rm×n be a feasible solution of the LP in (3.4) that is optimal for
S′ := DS. We will denote the ith rows of S and X by s(i) and x(i), respectively, and the
ith diagonal element of D by di > 0. First, observe that ⟨s(i), x(i)⟩ ≥ 0 for all i ∈ [m]:
Indeed, if ⟨s(i), x(i)⟩ < 0 for some i, let S′

−i and X−i be the matrices obtained from S′

and X by deleting the ith row. Then

∥S′
−i∥∞ hsb(S′

−i) ≥ ⟨S′
−i, X−i⟩

= ⟨S′, X⟩ − di⟨s(i), x(i)⟩
> ⟨S′, X⟩ = ∥S′∥∞ hsb(S′),

contradicting Lemma 3.7(i). We conclude that

⟨S′, X⟩ =
m∑
i=1

di⟨s(i), x(i)⟩ ≤
m∑
i=1

∥D∥∞⟨s(i), x(i)⟩ = ∥D∥∞⟨S,X⟩

≤ ∥D∥∞ ∥S∥∞ hsb(S).
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Since the hyperplane separation bound is invariant under transposition (cf. Section 3.2),
Theorem 3.13 immediately generalizes to positive diagonal scalings.

Corollary 3.14. Let S ∈ Rm×n
≥0 not identically zero, and let D1 ∈ Rm×m

≥0 , D2 ∈ Rn×n
≥0

be positive diagonal matrices. Then

∥S∥∞
∥D−1

1 ∥∞∥D1SD2∥∞∥D−1
2 ∥∞

hsb(S) ≤ hsb(D1SD2) ≤ hsb(S)
∥D1∥∞∥S∥∞∥D2∥∞

∥D1SD2∥∞
.

Proof. Follows from Theorem 3.13, using the fact that S = D−1
1 (D1SD2)D

−1
2 .

Consider a positive diagonal scaling S′ of S whose nonzero rows and columns are
normalized with respect to ∥ · ∥∞. We say that S′ is both row- and column-normalized.
If S′ = D1SD2 with D1 and D2 chosen in such a way that D1S is row-normalized or
SD2 is column-normalized, then ∥D−1

1 ∥∞∥D−1
2 ∥∞ = ∥S∥∞ and Corollary 3.14 implies

that hsb(S′) ≥ hsb(S). In other words, if one first normalizes the rows of S and then
normalizes the columns of the resulting matrix (or vice versa), hsb(S) will only increase.
In general, though, not every row- and column-normalized diagonal scaling S′ results
from a pair of diagonal matrices that satisfy this additional requirement:

Example 3.15 (Example 3.5 continued). For the matrix

S =

(
1 2
2 1

)
,

we computed hsb(S) = 3
2 in Example 3.5. If we normalize the rows (or the columns) of

S, we obtain the row- and column-normalized rescaling 1
2S, whose hyperplane separation

bound is the same as that of S (see Section 3.2.2). Now consider the positive diagonal
matrix

D =

(
1
2 0
0 1

)
.

If we rescale both rows and columns of S simultaneously using D, the resulting matrix
is

S′ = DSD =

(
1
4 1
1 1

)
.

Like 1
2S, the matrix S′ is row- and column-normalized. However, neither is DS row-

normalized nor is SD column-normalized.
In fact, one can show that hsb(S′) = 7

4 > 3
2 = hsb(S) by exhibiting a primal-dual pair

of solutions to the LPs (3.4) and (3.5) (as we did in Examples 3.5 and 3.12). Indeed,
the matrix

X =

(
−1 1
1 0

)
is a primal feasible solution of (3.4) with ⟨S′, X⟩ = 7

4 . A corresponding dual solution is
given by the following decomposition of S′:

S′ = 1
4

(
1 1
1 1

)
+ 3

4

(
0 1
0 1

)
+ 3

4

(
0 0
1 0

)
.

♢
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Rescaling rows and columns is not the only operation that has an effect on the
hyperplane separation bound of a nonnegative matrix S. Suppose that we add to S a
row (column) which is a nonnegative linear combination of rows (columns) of S and is
therefore redundant (cf. Example 3.11). This operation, too, leaves the nonnegative
rank of S unchanged (see Lemmas 2.6 and 2.7 in [55]). The next result bounds the gain
on hsb(S).

Theorem 3.16. Let S ∈ Rm×n
≥0 and S′ :=

(
S

w⊤S

)
for a vector w ∈ Rm

≥0 such that

∥w⊤S∥∞ ≤ ∥S∥∞. Then we have

hsb(S) ≤ hsb(S′) ≤ hsb(S) max{1, ∥w∥1}.

Proof. The first inequality follows from Lemma 3.7(i). In order to show the second
inequality, suppose first that ∥w∥1 ≤ 1. Let X ∈ Rm×n, x ∈ Rm such that (Xx ) ∈
R(m+1)×n is an optimal solution of the LP in (3.4) for S′. Adding wix to the ith row of X
for every i ∈ [m], we obtain a matrix X ′ ∈ Rm×n satisfying ⟨S,X ′⟩ = ⟨S,X⟩+ ⟨w⊤S, x⟩.
It remains to show that X ′ is a feasible solution of the LP in (3.4) for S. To this end,
let R ∈ Rm,n, and let I ⊆ [m] denote the set of indices of rows that R is supported in.
Note that all rows in I are equal to some r ∈ {0, 1}n. Hence,

⟨X ′, R⟩ = ⟨X,R⟩+ ⟨x, r⟩
∑
i∈I

wi.

If ⟨x, r⟩ ≤ 0, then ⟨X ′, R⟩ ≤ ⟨X,R⟩ ≤ 1 because X is feasible. Otherwise, ⟨X ′, R⟩ ≤
⟨X,R⟩+ ⟨x, r⟩ ≤ 1 since

∑
i∈I wi ≤ ∥w∥1 ≤ 1 and (Rr ) ∈ Rm+1,n.

Now suppose that ∥w∥1 > 1. Let w := ∥w∥−1
1 w and consider the matrix

S′′ :=

(
S

w⊤S

)
.

Since ∥w∥1 = 1, the first case of the proof implies that hsb(S′′) = hsb(S). At the
same time, S′ is a diagonal scaling of S′′ where the maximum diagonal element equals
max{1, ∥w∥1} = ∥w∥1. The statement follows from Theorem 3.13.

We conclude this section with some remarks on Theorem 3.16. First, there is no
loss of generality in requiring that ∥w⊤S∥∞ ≤ ∥S∥∞ above: If ∥w⊤S∥∞ > ∥S∥∞,
one may “normalize” the redundant row w⊤S by replacing w with ∥S∥∞∥w⊤S∥−1

∞ w.
Corollary 3.14 guarantees that this will not decrease hsb(S′). (In fact, the matrix S′

n

from Example 3.11 requires such a normalization for Theorem 3.16 to apply; this can
be achieved by dividing the additional row by n.) Secondly, we note that the theorem
applies to any w with ∥w∥1 ≤ 1 since ∥w⊤S∥∞ ≤ ∥w∥1∥S∥∞. In this case, we obtain
hsb(S′) = hsb(S). In other words, adding a convex combination of rows of S has no
effect on hsb(S). Finally, the statement of Theorem 3.16 easily extends to the case of
adding multiple rows and, by transposition, columns.

3.5 Further Notes and Open Questions

For both families of polytopes studied in this chapter and their canonical slack matrices,
we have shown that the hyperplane separation technique is unable to improve on the



70 Chapter 3 Limitations of the Hyperplane Separation Bound

currently best known lower bounds on their extension complexity. Unlike the nonnegative
rank, the hyperplane separation bound depends on the particular choice of slack matrix.
By making a more careful choice, it is possible that the technique does indeed yield more
meaningful bounds than the ones in Section 3.3. In particular, Section 3.4 proposes
two potential avenues: normalizing rows and columns, and introducing redundancy
by adding nonnegative linear combinations of rows or columns. Both operations will
only strengthen the hyperplane separation bound (under the assumptions discussed in
Section 3.4) while preserving the nonnegative rank.
How much can one gain by these operations when applying them to the specific

slack matrices in Section 3.3? While we leave this as an open question, we briefly
discuss the effect of normalization. For the spanning tree polytope Pst(G), normalizing
the rows of its canonical slack matrix SG produces a matrix S′

G whose columns are
normalized as well. To see this, consider the row submatrix of SG consisting of all rows
for subsets of exactly two nodes. This is a 0/1 matrix (see the proof of Theorem 3.8).
Unless G is a tree itself, each column of this submatrix has a one entry: For each
spanning tree T in G, there is some edge that is not contained in T . This means
that normalizing the rows of SG will not affect these one entries, and therefore S′

G

is column-normalized. Now Corollary 3.14 and the remark thereafter imply that
hsb(SG) ≤ hsb(S′

G) ≤ ∥SG∥∞ hsb(SG) = O(|V | |E|). This a priori analysis at least
suggests that the hyperplane separation method may indeed achieve a lower bound that
is closer to the known upper bound of O(|V | |E|).

In the case of the slack matrix MA of a graphic zonotope Z(A), the potential benefit
of normalization seems to depend heavily on A. In fact, as a byproduct of the proof of
Theorem 3.10, we have that the maximum in row S ⊆ [n] of MA equals the weight of the
cut induced by S in the graph underlying Z(A). Therefore, the gain on hsb(MA) that
one can expect from normalizing the rows of MA according to Corollary 3.14 (which
actually produces a matrix M ′

A that is column-normalized as well) is at most the ratio
of the maximum and the minimum weight of a cut. While this ratio can grow arbitrarily
large, it depends on A. For instance, if A is the n× n all-one matrix (that is, if Z(A) is
the nth permutahedron), normalizing MA does not help much: Since every cut in Kn

has at least n− 1 and at most ⌊n/2⌋⌈n/2⌉ edges, we obtain hsb(M ′
A) = O(n). However,

recall that rk+(M
′
A) = rk+(MA) = Θ(n log n).

Another question which is left open by our analysis in Section 3.4 is a refined version
of Corollary 3.14: Which positive diagonal scalings yield the strongest bounds among
those that are both row- and column-normalized? Note that Corollary 3.14 does not
necessarily imply an improvement in the hyperplane separation bound for every such
row- and column-normalized positive diagonal scaling. For instance, consider again the
matrices S and D from Example 3.15. Multiplying S on both sides with the positive
diagonal matrix D, the lower bound of Corollary 3.14 evaluates to 1

2 hsb(S). However,
we saw that rescaling with D actually strictly increases the hyperplane separation bound
of S.
Finally, how significant is the effect of adding redundant rows or columns (cf. Theo-

rem 3.16) compared to the possible gain achieved by the best diagonal scalings?



Chapter 4

Circuits under Projections of Polyhedra

The results of this chapter are joint work with Steffen Borgwardt and appear in [28].
Sections 4.3 to 4.5 and parts of Sections 4.1 and 4.2 largely coincide with our paper.

4.1 Introduction

In the previous chapter, we saw that spanning tree polytopes and completion time
polytopes – despite their number of facets being exponential in the dimension – admit
extended formulations of polynomial size. Such compact extended formulations have
been discovered time and again for polyhedra in combinatorial optimization. Prominent
examples are independence polytopes of regular matroids [7] (which generalize spanning
tree polytopes), parity polytopes [51, 205], and subtour elimination polytopes for
the TSP [204] (which are relaxations of TSP polytopes), to name but a few. Linear
descriptions of all of these polytopes in the original space generally have an exponential
number of inequalities. In some cases, such as for dominants of cut polytopes [56] or
fixed-shape partition polytopes from clustering [16, 26, 29, 43, 131], compact extended
formulations have been shown to exist while a complete description in the original space
is not even known. We refer the reader to the surveys [56, 134, 203] for an overview
(see also Chapter 4 of [57]).

Interestingly, also the {0, 12}-closure of the fractional stable set polytope from Chap-
ter 2 admits a compact extended formulation: The separation problem for the odd-cycle
inequalities can be expressed as a compact LP that follows the separation algorithm
of [114, 122], as observed in [205] (see also [56]). This means that one can solve the
stable set problem in t-perfect graphs by solving a single LP of polynomial size, without
relying on the equivalence of optimization and separation via the ellipsoid method [124].

Probably the most famous algorithm for solving LPs is the Simplex method [70]. It
finds an optimal solution by tracing an augmenting path along edges of the polyhedron
that is the feasible region of the LP. The Simplex method belongs to a more general
family of LP algorithms called circuit augmentation schemes [72]. These algorithms
augment a solution along a more general set of directions, the circuits of the feasible
region [120], until the optimum is found. We postpone formal definitions to Section 4.2.
For now, let us think of the circuits of a polyhedron P = {x : Ax = b, Bx ≤ d} as
“potential” edge directions in the sense that each circuit appears as an edge direction of
{x : Ax = b′, Bx ≤ d′} for some choice of b′ and d′ [98]. In particular, the set of circuits
includes the actual edge directions of P .

For polyhedra in combinatorial optimization, circuit directions often admit a nice
combinatorial characterization (see [133]). The circuits of network flow polyhedra, for
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example, correspond to directed cycles in the underlying directed graph (see, e.g., [94]).
Many network flow algorithms that iteratively push flow along cycles can therefore
be regarded as special circuit augmentation schemes (see, e.g., [72, 94, 132]). This
connection, in turn, has been a source of inspiration for generalizations of network flow
algorithms to augmentation schemes for general LPs or even IPs (see, e.g., [72, 156, 179]
and the references therein). This suggests that understanding the circuits of polyhedra
in combinatorial optimization may help find or analyze combinatorial algorithms. We
saw above that for some of these polyhedra, however, a complete linear description is not
even available and one has to resort to an extended formulation. In those cases, it would
be desirable if one could describe the set of circuits of the original polyhedron in terms
of the circuits of its extension. Recall that the original polyhedron is the image of its
extension under an affine projection (which we may assume to be linear, possibly after
a translation). It is a well-known fact that all edge directions of the original polyhedron
are images of edge directions of the extension under the same projection map. Is this
true, more generally, for the set of circuits? In other words, are the circuits of the
original polyhedron projections of circuits of the extension? This question provides the
motivation for the work in this chapter.
Note that the close relationship between the edge directions of a polyhedron and

of an extension is what the shadow vertex pivot rule [25] for the Simplex method
implicitly relies on. This pivot rule constructs a Simplex path by following edges of
a two-dimensional projection (shadow) of the feasible region of the LP. The shadow
vertex pivot rule and modifications thereof play an important role in the probabilistic
analysis of the Simplex method [68, 184, 197], in the study of diameters of polyhedra
[48, 67] (see also Chapter 5), and in recent work on strong bounds for the performance
of the Simplex method on 0/1 polytopes [20]. Can one exploit similar ideas to design
efficient circuit augmentation schemes? Again, this requires an understanding of how
circuits of polyhedra behave under taking projections.

As we will see, their behaviour is fundamentally different from that of the edge
directions. For the sake of brevity, we say that a polyhedron P inherits its circuits
from an extension Q with π(Q) = P for some linear map π, if all circuits of P are
images of circuits of Q under π. We first demonstrate in Section 4.3 that polyhedra
do not necessarily inherit their circuits from extensions: We show how to construct
counterexamples with a minimal number of facets, vertices, and extreme rays in every
dimension greater than 2, with corresponding extensions just one dimension higher. Our
construction extends to a relevant family of polyhedra in combinatorial optimization:
fixed-shape partition polytopes. One can even find counterexamples with an exponential
gap in the number of unique directions between the subset of circuits that are inherited
and the entire set of circuits.

In Section 4.4, we then consider the following three natural questions:

(Q1) Which linear maps π have the property that, for every polyhedron Q, all circuits of
π(Q) are inherited from Q?

(Q2) Which polyhedra P inherit their circuits from every extension Q?

(Q3) For which polyhedra Q does every polyhedron P that is a linear projection of Q
inherit its circuits from Q?
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It is not difficult to give two sufficient conditions for membership in the classes stated
in questions (Q1) and (Q2), respectively: As we will see in Section 4.2, injective linear
maps π define linear isomorphisms between Q and π(Q) and thus satisfy the property
that (Q1) asks for. Further, polyhedra in which all circuits are edge directions clearly
belong to the class of polyhedra for (Q2). What is more interesting is that these
properties are, in fact, both sufficient and necessary, thus completely resolving questions
(Q1) and (Q2). We prove this in Section 4.4 and also give a partial answer to question
(Q3), showing that in dimension 4 or higher, no polyhedron with a non-degenerate
vertex has the property that (Q3) asks for.

Our results imply that, whenever a polyhedron P does inherit all circuits from another
polyhedron Q (with a non-degenerate vertex) under some linear projection π, this is not
a property of any single one of the three “ingredients” P , Q, and π – unless inheritance
is immediate because π defines a linear isomorphism between P and Q or because P has
no circuits other than the edge directions. This means that the inheritance of circuits,
beyond these simple cases, can only be a property of specific combinations of the three
ingredients. We will conclude this chapter with a family of examples of such nontrivial
combinations that guarantee inheritance.

4.2 Preliminaries

We begin by formally introducing the set of circuits of polyhedra. As circuits have
been widely studied in various contexts in polyhedral theory and optimization (see,
e.g., [9, 19, 22, 33, 34, 35, 36, 69, 72, 73, 94, 105, 109, 120, 127, 133, 158, 165] and the
references therein), there are several ways to characterize them. We present some of
these characterizations here and another one later, in Section 5.2. Easily accessible
introductions to the topic of circuits and their fundamental properties are also given in
[98, 132]. We follow these two references for all basic definitions and concepts.

4.2.1 Circuits of Polyhedra

Definition 4.1 ([120, 187]). Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a polyhedron. A
nonzero vector g ∈ Rn is a circuit of P if

(i) g ∈ ker(A) and

(ii) supp(Bg) is inclusion-minimal in the collection {supp(By) : y ∈ ker(A), y ̸= 0}.

Here, ker(A) denotes the kernel of A. For polyhedra given by linear systems in
standard form Ax = b, x ≥ 0, the circuits are precisely the support-minimal vectors in
ker(A) \ {0}. These vectors are also referred to as elementary vectors in the literature
[165].

Geometrically speaking, the circuits of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}
are those directions in Rn that are (i) parallel to the affine subspace defined by Ax = b
(which, given a minimal description, is the affine hull of P ), and (ii) parallel to an
inclusion-maximal subset of hyperplanes defined by Bx ≤ d (see [132, 133]).
To avoid unnecessary technicalities, we will assume all polyhedra in this chapter to

be pointed. In this case, we have the following well-known equivalent characterization
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of the set of circuits [34, 133]. For the sake of completeness, we include a proof, which
follows the proof of Lemma 1 in [34].

Proposition 4.2 ([34, 133]). The circuits of a pointed polyhedron P = {x ∈ Rn : Ax =
b, Bx ≤ d} are precisely the nonzero solutions of systems of the form Ax = 0, B′x = 0
where B′ is a row submatrix of B such that the rank of

(
A
B′

)
is n− 1.

Proof. Let B′ be a row submatrix of B and let g be a nonzero vector in ker
(
A
B′

)
. Any

vector y ∈ ker(A) \ {0} with supp(By) ⊆ supp(Bg) must also be in ker
(
A
B′

)
. So if the

rank of
(
A
B′

)
is n− 1, i.e., its kernel is one-dimensional, then y is a multiple of g. This

implies that supp(By) = supp(Bg) and therefore g is a circuit of P .
To prove the converse implication, we may assume that B′ is the maximal row

submatrix of B such that g ∈ ker(B′). Note that the rank of
(
A
B′

)
is at most n − 1

since
(
A
B

)
has rank n and g ̸= 0. Now suppose that the rank of

(
A
B′

)
is strictly less than

n− 1. Then we may add rows of B to
(
A
B′

)
to obtain a matrix of rank n− 1. Its kernel

is generated by some y ∈ ker(A) \ {0} with supp(By) ⊊ supp(Bg). Thus, g is not a
circuit of P .

Since any edge of P is defined by dim(P )− 1 linearly independent inequalities from
Bx ≤ d, it follows from Proposition 4.2 that all edge directions of P are also circuits.
In fact, the set of circuits of P can be shown to consist precisely of all edge directions
of polyhedra {x ∈ Rn : Ax = b, Bx ≤ d} as the right-hand sides b and d vary [98] (see
also [120, 187]).

Note that the set of circuits of P is infinite: By definition, every nonzero multiple of a
circuit is a circuit again. However, up to rescaling, each circuit of P is uniquely defined
by the support of its product with B (see [120]). This suggests a finite representation
of the set of circuits, e.g., by normalizing them to have co-prime integer components
(assuming rational A and B). The set of all such finitely many representatives is usually
denoted by C(A,B) in the literature (see [34, 35, 72, 73, 98, 133]). In this thesis, we
will use the same notation for the entire set of circuits of P , as it will be convenient to
not assume any kind of normalization of the circuits and rather view the set C(A,B) as
a finite union of one-dimensional linear subspaces of Rn. (We shall elaborate on this
point of view in Section 5.2.)
It is important to note that the set of circuits of a polyhedron P depends on the

linear description of P (although not on the right-hand sides): Adding redundant
inequalities to a linear system may enlarge the set of circuits. However, if P is given by
a minimal description Ax = b, Bx ≤ d, then the set of its circuits is indeed independent
of the description (see, e.g., [132]). This means that we may in this case write C(P )
for C(A,B). Throughout this chapter, we will assume that all polyhedra are given by
minimal descriptions, unless stated otherwise.

4.2.2 Circuits under Affine Equivalence of Polyhedra

We make the assumption of minimality for another key reason: Among all polyhedra
P ⊆ Rn and Q ⊆ Rm such that P = π(Q) for some linear map π : Rm → Rn, we would
like to characterize those triples (P,Q, π) for which all circuits of P are inherited from Q
under π, i.e., C(P ) ⊆ π(C(Q)). If we allow Q to be given by any, not necessarily minimal
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linear description, then, by adding redundant inequalities, we may blow up the set of
circuits of Q until it contains a preimage for each circuit of P . Likewise, by introducing
suitable redundancy to the description of P , we could make any given nonzero vector a
circuit of P and destroy the desired inheritance property. So the minimality assumption
is crucial for obtaining meaningful statements about the inheritance of circuits under
projections. We can thus speak of inheritance as a purely geometric property of (P,Q, π).

This intuition is further supported by the observation that inheritance is preserved
under affine equivalence of polyhedra. Recall that two polyhedra P ⊆ Rn and Q ⊆ Rm

are affinely (linearly) isomorphic (or equivalent) if there exists an affine (linear) map
π : Rm → Rn such that π(Q) = P and, for all x ∈ P , there is a unique y ∈ Q with
π(y) = x. The sets of circuits of affinely isomorphic polyhedra are isomorphic, too, as
the next lemma states.

Lemma 4.3. Let Q ⊆ Rm be a pointed polyhedron and let π : Rm → Rn be an affine
map such that Q and π(Q) are affinely isomorphic. Then C(π(Q)) = π(C(Q))− π(0).

To prove this, we need the following well-known fact about projections of polyhedra
(see, e.g., [100, Proposition 2.1] or [206, Lemma 7.10] for the polytopal case).

Remark 4.4 (see [100, 206]). Let P ⊆ Rn, Q ⊆ Rm be polyhedra such that P = π(Q)
for an affine map π : Rm → Rn, and let F be a face of P . Then the set π−1(F ) :=
{y ∈ Q : π(y) ∈ F} is a face of Q. Indeed, if F = {x ∈ P : a⊤x = β} for an inequality
a⊤x ≤ β that is valid for P , then π−1(F ) is given by π−1(F ) = {y ∈ Q : a⊤π(y) = β}.

We are now ready to give a proof of Lemma 4.3.

Proof of Lemma 4.3. We start by observing that translating a polyhedron does not
change its set of circuits, as translations only affect the right-hand sides of linear
descriptions. We may therefore assume that π is a linear isomorphism between Q and
P := π(Q).

Let P = {x ∈ Rn : APx = bP , BPx ≤ dP } and Q = {x ∈ Rm : AQx = bQ, BQx ≤ dQ}
be minimal linear descriptions of P and Q, respectively, and define the polyhedron

Q̃ := {(x, y) ∈ Rn × Rm : x = π(y), AQx = bQ, BQx ≤ dQ}. (4.1)

Now consider the two linear projection maps πx : Rn×Rm → Rn and πy : Rn×Rm → Rm

which send (x, y) to x and y, respectively. Clearly, πx(Q̃) = P and πy(Q̃) = Q. Moreover,

both projections actually define linear isomorphisms between Q̃ and P or Q, respectively:
For each y ∈ Q, there clearly is a unique x such that (x, y) ∈ Q̃; and for each x ∈ P ,
there is a unique y for which π(y) = x and therefore (x, y) ∈ Q̃, since Q and π(Q) = P
are linearly isomorphic by hypothesis.

We may therefore characterize the circuits of Q̃ in two different ways, namely in
terms of those of Q and of P . First, note that the linear description of Q̃ given in
(4.1) is minimal: It is obtained from the minimal description of Q by adding equality
constraints only. Further, the equality constraint matrix is of the form(

In ∗
0 AQ

)
.
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and therefore has rank n+ rk(AQ) = n+m− dim(Q) = n+m− dim(Q̃). It follows

directly from the definition that the set of circuits of Q̃ is given by

C(Q̃) = {(π(f), f) : f ∈ C(Q)} . (4.2)

Next, recall that each inequality in BPx ≤ dP defines a facet of P . Since πx(Q̃) = P ,
each inequality in BPπx(x, y) ≤ dP therefore defines a proper face of Q̃ by Remark 4.4,
which must be of at least the same dimension. As Q̃ and P are linearly isomorphic,
each such face is, in fact, a facet. It follows that also the system x = π(y), AQy =

bQ, BPx ≤ dP is a minimal description of Q̃ by noting that BPπx(x, y) = BPx. Using
this description to characterize the circuits, we conclude that a nonzero vector (g, f) is
a circuit of Q̃ if and only if g = π(f), f ∈ ker(AQ) \ {0}, and BP g is support-minimal
among all nonzero vectors (g, f) with this property. Since the affine hulls of linearly
isomorphic polyhedra are also linearly isomorphic, π must be a bijection between ker(AP )
and ker(AQ). Here, we used that APx = bP and AQy = bQ define the affine hulls of P
and Q, respectively, by virtue of P and Q being given by minimal descriptions. This
means that g = π(f) for some f ∈ ker(AQ) if and only if g ∈ ker(AP ). Hence,

C(P ) = πx(C(Q̃)) = π(C(Q))

where the second identity follows from (4.2).

As noted in the proof of Lemma 4.3, translations are special affine isomorphisms and
leave the set of circuits invariant. Thus, we may restrict ourselves to linear projection
maps in the following.
Lemma 4.3 will be one of the key ingredients of our proofs later in this chapter.

It further provides a simple sufficient condition for the inheritance of circuits: If
π : Rm → Rn is an injective linear map, then it is clear that any polyhedron Q ⊆ Rm

and its image π(Q) are linearly isomorphic and therefore C(π(Q)) = π(C(Q)) by
Lemma 4.3.

Lemma 4.3 also has the following consequence, which we believe to be of independent
interest in the study of circuits: Every pointed polyhedron is affinely isomorphic to a
polyhedron in standard form whose set of circuits is isomorphic to the set of circuits of
the original polyhedron. More precisely, we obtain the following corollary to Lemma 4.3.

Corollary 4.5. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron given by
a minimal linear description with B ∈ Rm×n. Define the affine map σ : Rn → Rm by
x 7→ d−Bx. Then σ(P ) is a polyhedron with a minimal description in standard form
such that C(σ(P )) = B · C(P ) = {Bg : g ∈ C(P )}. In other words, C(σ(P )) is the set of
support-minimal vectors in B · ker(A).

Proof. Let x, y ∈ P such that σ(x) = σ(y). Then A(x−y) = 0 and B(x−y) = 0. Since
P is pointed, it follows that x = y. Hence, σ is an isomorphism between P and σ(P ).
Note that aff(σ(P )) = σ(aff(P )). We further claim that σ(P ) = aff(σ(P )) ∩ Rm

≥0 (see
also [100]). Clearly, σ(P ) ⊆ aff(σ(P )) ∩ Rm

≥0. To see that the converse inclusion also
holds, let s ∈ aff(σ(P )) ∩ Rm

≥0, i.e., s = σ(z) ≥ 0 for some z ∈ aff(P ). In particular,
we have that Az = b and Bz ≤ d, which implies that z ∈ P as claimed. Thus, the
description of σ(P ) as aff(σ(P )) ∩ Rm

≥0 is in standard form. Applying Lemma 4.3, we
obtain C(σ(P )) = σ(C(P ))− d = B · C(P ).
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We point out that Corollary 4.5 contrasts with the behaviour of circuits under the
standard conversion of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d} to standard form:
In addition to introducing slack variables s ≥ 0 to obtain Bx+ s = d, one splits each
variable x into a positive and a negative part x = x+−x−, both of which are constrained
to be nonnegative. It is shown in [34] that this conversion may introduce exponentially
many new circuits. Corollary 4.5 suggests that this behaviour is a consequence of
splitting the variables and not of introducing slack variables, which is what applying
the slack map σ defined in Corollary 4.5 implicitly does as well. More precisely, σ(P ) is
the projection of

P̃ := {(x, s) ∈ Rn × Rm : Ax = b, Bx+ s = d, s ≥ 0}

onto the slack variables s. By the same argument as in the proof of Lemma 4.3, P̃ and
P (and, hence, P̃ and σ(P )) are affinely isomorphic. Characterizing σ(P ) via P̃ adds
the benefit that one can derive an explicit standard form representation of σ(P ) from
the description of P̃ , using a projection technique of Balas and Pulleyblank [12] (see
also [57, Theorem 3.46]): For a basis {(u(1), v(1)), . . . , (u(l), v(l))} of ker(

(
B⊤ |A⊤)), we

have that

σ(P ) =
{
s ∈ Rm : s ≥ 0, (u(i))⊤s = (u(i))⊤d for all i ∈ [l]

}
.

In some sense, Corollary 4.5 may be regarded as an extension of the definition of
circuits as elementary vectors [165]: The above result shows that the circuits of any
polyhedron (not just the ones in standard form) are the elementary vectors of some
linear subspace.

We next resolve another easy case when circuits are inherited under linear projections.

4.2.3 Inheritance of Edge Directions

Every polyhedron P has some circuits that are naturally inherited from any extension:
the edge directions of P . This is a well-known fact about projections of polyhedra. For
the sake of clarity, we provide a short proof.

Lemma 4.6. Let P ⊆ Rn, Q ⊆ Rm be pointed polyhedra and let π : Rm → Rn be a linear
map with π(Q) = P . For every edge direction g of P , there exists an edge direction f
of Q such that π(f) = g.

Proof. Let e be an edge of P . Since P is pointed by hypothesis, e has a vertex v. Then,
by Remark 4.4, both π−1(e) and π−1(v) are faces of Q with π−1(v) ⊊ π−1(e). Since Q
is pointed, π−1(v) is pointed, too, and therefore has a vertex v′. It suffices to show that
π−1(e) has an edge that contains both v′ and some point w′ with π(w′) ̸= v. Indeed,
for this point, v′ − w′ is an edge direction of Q with π(v′ − w′) = v − π(w′) ̸= 0 and
π(w′) ∈ e.

So suppose for the sake of contradiction that no such edge exists. Then all edges of
π−1(e) that are incident with v′ must be contained in π−1(v). Hence, π−1(v) contains
the feasible cone of π−1(e) at v′, and therefore π−1(v) ⊇ π−1(e), a contradiction.
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Lemma 4.6 shows that, if all circuits of P are edge directions, then C(P ) ⊆ π(C(Q))
for any extension of P specified by Q and π. For example, each circuit of a simplex is an
edge direction since any d− 1 facets of a d-simplex define an edge. Likewise, each circuit
of a simplicial cone is an edge direction, too. Circuits and edge directions therefore also
coincide for Cartesian products of simplices (or simplicial cones), as we will see next.

Given two polyhedra P1 and P2, the nonempty faces of their product P1 × P2 are
exactly the sets of the form F1×F2 where Fi is a nonempty face of Pi for i ∈ {1, 2} (see
[206]). In particular, all edge directions of P1 × P2 are of the form (g(1),0) or (0, g(2))
for an edge direction g(i) of Pi. The next result shows that this is true, more generally,
for the set of circuits of P1 × P2. This was shown in Lemma 3.9 of [39] for polyhedra Pi

in canonical form. We restate and prove the result in all generality here.

Proposition 4.7 ([39]). Let P1 ⊆ Rn1 , P2 ⊆ Rn2 be pointed polyhedra. Then C(P1 ×
P2) = (C(P1)× {0}) ∪ ({0} × C(P2)).

Proof. Let Pi = {x ∈ Rni : A(i)x = b(i), B(i)x ≤ d(i)} for i ∈ {1, 2}. Then C(P1 × P2)
consists precisely of those nonzero vectors (g(1), g(2)) ∈ ker(A(1))× ker(A(2)) for which
the support of (B(1)g(1), B(2)g(2)) is inclusion-minimal. Let (g(1), g(2)) ∈ Rn1 × Rn2 be
a nonzero vector in ker(A(1))× ker(A(2)). Without loss of generality, we may assume
that g(1) ̸= 0. Then (g(1),0) ∈ ker(A(1)) × ker(A(2)) and the support of (B(1)g(1),0)
is contained in the support of (B(1)g(1), B(2)g(2)). Since P2 is pointed, it follows that
(g(1), g(2)) ∈ C(P1 × P2) if and only if g(2) = 0 and g(1) ∈ C(P1).

As hypercubes are products of simplices (namely, line segments), also their circuits
are exactly the edge directions by Proposition 4.7. Beyond hypercubes and simplices,
though, polyhedra with this property are rare – in general, the set of circuits may be
much larger than the set of edge directions. Interesting classes of polyhedra that do
have the property that circuits and edge directions coincide are Birkhoff polytopes, as
we will see in Section 4.3.3, and fractional matching polytopes [73, 169] (see Chapter 2).

Also note that in dimension 2, the sets of circuits and edge directions clearly are the
same; this follows directly from the fact that facets of two-dimensional polyhedra are
edges. The next result is a direct consequence of this observation.

Corollary 4.8. Let P ⊆ Rn, Q ⊆ Rm be pointed polyhedra and let π : Rm → Rn be a
linear map such that π(Q) = P . If dim(P ) ≤ 2 or dim(Q) ≤ 3, then C(P ) ⊆ π(C(Q)).

Proof. Suppose that dim(Q) ≤ 3. Then either dim(P ) = 3 and therefore also dim(Q) =
3, or dim(P ) ≤ 2. In the first case, P and Q must be linearly isomorphic, so C(P ) =
π(C(Q)) by Lemma 4.3. In the second case, each circuit of P is an edge direction, as we
saw above, so Lemma 4.6 implies that C(P ) ⊆ π(C(Q)).

Corollary 4.8 suggests that in order to find a counterexample for the inheritance of
circuits, i.e., a triple (P,Q, π) such that π(Q) = P but C(P ) ̸⊆ π(C(Q)), one has to look
for a polyhedron P in dimension 3 or higher. In fact, such counterexamples exist in all
dimensions 3 and higher, as we will see next.
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4.3 Counterexamples for the Inheritance of Circuits

In this section, we prove that, in general, circuits of polyhedra are not inherited from
extended formulations. This contrasts with the behaviour of edge directions stated in
Lemma 4.6. We begin by constructing a family of provably minimal counterexamples.

4.3.1 A Family of Minimal Counterexamples

The essential building block for our constructions is a carefully chosen family of linear
projections. For all m,n ∈ N with m > n ≥ 3, we define a matrix

Πn,m =



2 1 0 0
0 0 2 1 0
0 1 0 1

0 2 In−3

0

 ∈ Rn×m

and let πn,m : Rm → Rn be the map defined by x 7→ Πn,mx. This map allows us to
state our first family of (unbounded) counterexamples, which all are projections of the
nonnegative orthant, a simplicial cone:

Lemma 4.9. Let m > n ≥ 3 and π := πn,m. Then π(Rm
≥0) is a full-dimensional pointed

polyhedral cone with n+1 facets and n+1 extreme rays. Further, C(π(Rm
≥0)) ̸⊆ π(C(Rm

≥0))
where C(π(Rm

≥0)) ∩ π(C(Rm
≥0)) is equal to the set of edge directions of π(Rm

≥0).

Proof. Let Rn := π(Rm
≥0). As a projection of a pointed cone, Rn is a pointed cone

with vertex 0 again, spanned by the first n + 1 column vectors of the matrix Πn,m.
Since Πn,m has full row rank, we have that dim(Rn) = n. We claim that each of these
vectors generates an extreme ray of Rn, and that Rn is defined by the following n+ 1
inequalities, all of which are facet-defining:

x ≥ 0

x1 + x2 − x3 ≥ 0

In order to prove the claim, we proceed by induction on n. The case n = 3 is easily
verified (see Figure 4.1). Now let n ≥ 4. Observe that {x ∈ Rn : xn = 0} is a face of
Rn which is isomorphic to Rn−1 and, thus, is a facet. The unique column of Πn,m not
contained in this facet is the vector 2en, which must therefore generate an extreme ray
of Rn. All other inequalities except xn ≥ 0 define facets of {x ∈ Rn : xn = 0} by the
induction hypothesis.

Since n of the n+ 1 facets of Rn are defined by nonnegativity constraints, no circuit
of Rn can be supported in more than two components. This implies that the vectors in
C(Rn) are multiples of e1 − e2, e3, or of one of the (nonzero) column vectors of Πn,m

(which capture all edge directions of Rn). It is easy to see that the set π(C(Rm
≥0)), in

turn, consists of multiples of edge directions of Rn only.

The construction in Lemma 4.9 readily generalizes to the bounded case if we replace
the nonnegative orthant Rm

≥0 with the standard hypercube in Rm, which we denote by
Cm := [0, 1]m here.
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(2, 0, 0)

(1, 0, 1)

(0, 2, 0)

(0, 1, 1)

0

Figure 4.1: The cone R3 = π3,4(R4
≥0) from Lemma 4.9, shown here intersected with

the hyperplane x1 + x2 + x3 = 2. The two highlighted facets are defined
by x1 ≥ 0 and x2 ≥ 0, respectively. Their intersection yields the circuit
e3 ∈ C(R3).

Lemma 4.10. Let m > n ≥ 3 and π := πn,m. Then π(Cm) is a full-dimensional
polytope and C(π(Cm)) ̸⊆ π(C(Cm)). Moreover, C(π(Cm))∩ π(C(Cm)) consists precisely
of the edge directions of π(Cm).

Proof. Clearly, 0 ∈ π(Cm) ⊆ Rn
≥0. Thus, 0 is a vertex of π(Cm). Observe that π(Rm

≥0)
is the feasible cone of π(Cm) at 0. Hence, all n+ 1 facet-defining inequalities of π(Rm

≥0)
also define facets of π(Cm). Since both Cm and Rm

≥0 are full-dimensional, it follows that
C(π(Cm)) ⊇ C(π(Rm

≥0)). We further have that C(Cm) = C(Rm
≥0), so the first part of the

statement follows from Lemma 4.9.

Note that π(Cm) is the linear projection of a hypercube and, as such, a zonotope (see
Figure 4.2). Equivalently, π(Cm) can be written as the Minkowski sum of n+ 1 line
segments [0, πn,m(ei)] for every i ∈ [n+1]. Since every edge of a zonotope is a translate
of one of the line segments from which it is generated, the second part of the statement
follows.

(2, 0, 0)

(1, 0, 1)

(0, 2, 0)

(0, 1, 1)

0

Figure 4.2: The zonotope π3,4(C4) from Lemma 4.10. The two facets that yield the
circuit direction e3 are highlighted.

From the proof of Lemma 4.10, we can extract a more general statement about the
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inheritance of circuits in zonotopes: The only circuits that a zonotope inherits from its
hypercube extension are the edge directions.

Corollary 4.11. Let π : Rm → Rn be a linear map. Then C(π(Cm))∩π(C(Cm)) consists
precisely of the edge directions of the zonotope π(Cm).

Let us point out another implication of the previous results. Let P1, P2 ⊆ Rn be
polyhedra. Then the Minkowski sum P1 + P2 is the image of P1 × P2 under the map
σ : (x, y) 7→ x + y. The proof of Lemma 4.10 implies that, in general, C(P1 + P2) ̸⊆
C(P1) ∪ C(P2) = σ(C(P1 × P2)), where the last identity follows from Proposition 4.7.
This means that taking the Minkowski sum of polyhedra may create a circuit that is
not a circuit of any of the summands.
Recall that, by Corollary 4.8, the minimal dimension of any polyhedron which

does not inherit its circuits from an extension is 3. Indeed, the lowest-dimensional
counterexamples given in Lemmas 4.9 and 4.10 are 3-dimensional. The family of cones
given in Lemma 4.9 is minimal in yet another sense: Any n-dimensional unbounded
pointed polyhedron with n facets (and, thus, n extreme rays) is a simplicial cone.
Therefore, all circuit directions in such a polyhedron are edge directions, which are
naturally inherited from any extension (see Lemma 4.6). In the case of bounded
polyhedra, any counterexample needs one more facet (and one more vertex), i.e., at
least n + 2 facets and vertices each – otherwise, it is a simplex and has no circuits
that are not also edge directions. Even though the zonotopes from Lemma 4.10 do not
satisfy this additional minimality requirement, we can obtain a family of polytopes that
are minimal in this sense with a little extra work, using the same projections πn,m. To
this end, let Sm denote the simplex Sm := {x ∈ Rm : x ≥ 0, 1⊤x ≤ 1} for m ∈ N.

Lemma 4.12. Let m > n ≥ 3 and π := πn,m. Then π(Sm) is a full-dimensional
polytope with n + 2 facets and n + 2 vertices, and C(π(Sm)) ̸⊆ π(C(Sm)). Moreover,
C(π(Sm)) ∩ π(C(Sm)) consists precisely of the edge directions of π(Sm).

Proof. Let Rn := π(Rm
≥0) and Pn := π(Sm). First observe that Pn = {x ∈ Rn : 1

⊤x ≤ 2}
since the entries of each nonzero column of Πn,m sum to 2 (see Figure 4.1). In particular,
this implies that the inequality 1⊤x ≤ 2 is facet-defining for Pn, and that all n + 1
nonzero column vectors of Πn,m, along with the origin 0, are vertices of Pn. Further
note that dim(Pn) = dim(Rn) = n and therefore C(Pn) ⊇ C(Rn).

Up to rescaling, π(C(Sm)) is the set of all difference vectors between pairs of vertices
of Pn. We claim that every such difference vector that belongs to C(Pn) is the difference
of two adjacent vertices and therefore an edge direction of Pn. Indeed, for any i ≥ 4,
the facet {x ∈ Pn : xi = 0} contains all vertices of Pn but 2ei. Hence, 2ei must be
adjacent to all other vertices. This implies that the only candidate pairs of non-adjacent
vertices are contained in the face of Pn defined by xi = 0 for all i ≥ 4. Since this face is
isomorphic to P3, there are exactly two pairs of non-adjacent vertices, as can be seen in
Figure 4.1. The corresponding difference vectors are 2e1 − e2 − e3 and 2e2 − e1 − e3,
respectively. Neither of them is a circuit in C(Pn) because e1 − e2 has strictly smaller
support. This implies that every vector in C(Pn) ∩ π(C(Sm)) is an edge direction of Pn.
It remains to show that Pn has a circuit which is not an edge direction. Since

C(Pn) ⊇ C(Rn), the proof of Lemma 4.9 implies that e3 ∈ C(Pn). Observe that Pn has
no pair of vertices that only differ in the third coordinate and, hence, e3 /∈ π(C(Sm)).
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Combining Lemmas 4.9 and 4.12, we obtain the following theorem.

Theorem 4.13. For all m,n ∈ N with m > n ≥ 3, there exist full-dimensional pointed
polyhedra P ⊆ Rn, Q ⊆ Rm and a linear map π : Rm → Rn with π(Q) = P such that
C(P ) ̸⊆ π(C(Q)) and C(P ) ∩ π(C(Q)) consists precisely of the edge directions of P .
Moreover, Q can be chosen to be simple, and P can be chosen to be either a polytope
with n+ 2 facets and n+ 2 vertices, or a pointed polyhedral cone with n+ 1 facets and
n+ 1 extreme rays.

Even though the counterexamples discussed above may seem pathological, they have
an interesting property: For m = n+1, the simplicial extensions in Lemmas 4.9 and 4.12
have the same number of vertices and extreme rays as their projections. Indeed, such a
canonical “simplex extension” exists for every pointed polyhedron (see, e.g., [100]) and
will be the starting point for proving Theorem 4.20 in Section 4.4.

Next, we will see that not only do there exist counterexamples that fail the inheritance
of circuits, but the difference in the number of unique circuits (up to scaling) that are
inherited and those that are not may be exponentially large in the dimension.

4.3.2 Counterexamples by Counting Circuits

In this section, we will be “counting” circuits. Recall from Section 4.2.1 that we work
with the (infinite) set of circuits in this chapter, not assuming any normalization scheme.
For the purpose of counting, however, we will speak of unique circuit directions of a
polyhedron, by which we mean any finite set of representatives such that no two are
multiples of one another. Our main observation is that there exist polyhedra that have
many unique circuit directions and, at the same time, are projections of polyhedra with
very few unique circuit directions. So merely by counting unique circuit directions, one
can prove that not all circuits can be inherited. More specifically, our goal is to prove
the following theorem.

Theorem 4.14. For all n ≥ 3, there exist pointed polyhedra P ⊆ Rn, Q ⊆ Rm and a
linear map π : Rm → Rn with π(Q) = P such that C(P ) contains 2Ω(n) unique circuit
directions while the number of unique circuit directions in C(Q) is O(n2).

The proof of Theorem 4.14 relies on the interplay between the basic solutions of a
polytope and the circuits in its homogenization. Let us recall the relevant concepts first.
A basic solution of a linear system Ax = b, Bx ≤ d in variables x ∈ Rn is a solution

of Ax = b, B′x = d′ where (B′ | d′) is a row submatrix of (B | d) such that
(
A
B′

)
has

full column rank n. Note that basic solutions need not be feasible. The feasible basic
solutions are precisely the vertices of the polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}.
By a slight abuse of terminology, we will call a basic solution of Ax = b, Bx ≤ d also a
basic solution of P , and denote the set of all such basic solutions by B(P ). With this
notation, B(P ) ∩ P is the set of vertices V(P ) of P .
Notice the similarity between the definition of B(P ) and the characterization of the

set of circuits C(P ) for pointed polyhedra P given in Proposition 4.2. In this sense,
one can think of the basic solutions (which include all vertices) as the zero-dimensional
analogue of the circuits (which include all edge directions). In fact, we can state this
connection more precisely as follows.
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Following [206], we define the homogenization of a polyhedron P = {x ∈ Rn : Ax =
b, Bx ≤ d} as

hom(P ) := {(t, x) ∈ R× Rn : t ≥ 0, Ax− bt = 0, Bx− dt ≤ 0}. (4.3)

Observe that P = {x ∈ Rn : (1, x) ∈ hom(P )}. If P is pointed, then hom(P ) is a
pointed polyhedral cone whose extreme rays are generated by all vectors (0, g), where g
is the direction of an extreme ray of P , and (1, v) for all vertices v ∈ V(P ). The circuits
of hom(P ) are in correspondence with the basic solutions and circuits of P , as shown
next.

Lemma 4.15. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron given by a
minimal description. Up to rescaling, the circuits of hom(P ) with respect to the system
(4.3) are the nonzero vectors (γ, g) ∈ R× Rn for which one of the following holds:

(i) γ = 0 and g ∈ C(P ),

(ii) γ = 1 and g ∈ B(P ).

Proof. Let (γ, g) ̸= (0,0) such that Ag − bγ = 0. Suppose first that γ ̸= 0. Possibly
after scaling, we may assume that γ = 1. By Proposition 4.2, (1, g) is a circuit of
hom(P ) if and only if there is row submatrix (−d′ |B′) of (−d |B) such that B′g = d′

and (
−b A

−d′ B′

)
(4.4)

has rank n. We claim that the rank of this matrix is the same as that of
(
A
B′

)
, which

implies that (1, g) is a circuit of hom(P ) if and only if g ∈ B(P ). Indeed, there is
nothing to prove if b = 0 and d′ = 0 since deleting a zero column from a matrix does not
change its rank. So suppose that not both b and d′ are zero. As Ag = b and B′g = d′

by hypothesis, it follows that g ̸= 0. Hence, the first column of the matrix (4.4) is in
the column span of

(
A
B′

)
, which means that

(
A
B′

)
has the same rank as (4.4).

Now suppose that γ = 0 (and thus g ̸= 0). Again, we know from Proposition 4.2
that for (0, g) to be a circuit of hom(P ), there must exist a row submatrix (−d′ |B′) of
(−d |B) such that B′g = 0 and the rank of the following matrix is n:

−b A

−d′ B′

−1 0⊤

 (4.5)

Note here that even if the submatrix given to us by applying Proposition 4.2 does not
include the bottom row corresponding to the constraint t ≥ 0, we may add this row
without increasing the rank to n+ 1, since g ̸= 0 and hom(P ) is pointed. Now the rank
of the matrix (4.5) is n if and only if the rank of

(
A
B′

)
is n− 1. By Proposition 4.2, this

is equivalent with g ∈ C(A,B).

Using Lemma 4.15, the basic solutions of polyhedra may also be characterized as
follows.
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Corollary 4.16. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron. Then
B(P ) consists of all vectors g ∈ Rn such that Ag = b and supp(Bg − d) is minimal in
the collection {supp(By − d) : y ∈ Rn, Ay = b}.

Proof. Let hom(P ) be defined as in (4.3). By Lemma 4.15(ii), the basic solutions of
P are those vectors g ∈ Rn for which (1, g) is a circuit of hom(P ), that is, for which
Ag−b = 0 and Bg−d is support-minimal in {By−d : y ∈ Rn, Ay = b} by definition.

The crucial observation for proving Theorem 4.14 now is the following: If P is a
polytope with vertex set V(P ), then hom(P ) is the image of the nonnegative orthant

RV(P )
≥0 under the linear projection

x 7→
∑

v∈V(P )

xv(1, v).

This projection maps the circuits of the nonnegative orthant to the edge directions of

hom(P ). In particular, the number of unique circuit directions of RV(P )
≥0 equals |V(P )|

while C(hom(P )) ⊇ {1}×B(P ) by Lemma 4.15. Here it is important to stress that both
hom(P ) and B(P ) depend on the particular inequality description of P . If we assume
a minimal description, then every inequality in (4.3) (possibly except t ≥ 0) defines a
facet of hom(P ) and all vectors (γ, g) satisfying the condition in Lemma 4.15(ii) are
indeed circuits.
To prove Theorem 4.14, it therefore suffices to exhibit a family of polytopes with

polynomially many (in the dimension) vertices but exponentially many basic solutions
(with respect to a minimal description). The corresponding homogenizations will then
have an exponential number of unique circuit directions of which only a polynomial
number are inherited from the associated nonnegative orthant extension. We show that
for all n ≥ 2, the standard cross-polytope

Qn :=
{
x ∈ Rn : x⊤y ≤ 1 for all y ∈ {−1, 1}n

}
,

suitably cropped by intersecting it with a hypercube, satisfies all the desired properties.
This will complete the proof of Theorem 4.14.

Lemma 4.17. Let n ≥ 2, δ ∈ (12 , 1), and Q′
n := Qn∩ [−δ, δ]n. Then |V(Q′

n)| = 4n(n−1)
and B(Q′

n) ⊇ {−δ, δ}n.

Proof. We first argue that no face of [−δ, δ]n of dimension n− 2 or less intersects Qn.
Indeed, let F be a face of [−δ, δ]n with dim(F ) ≤ n− 2. By symmetry, we may assume
that F ⊆ {x ∈ [−δ, δ]n : x1 = x2 = δ}. Then the inequality x1 + x2 ≤ 1, which is valid
for Qn, separates F from Qn since δ > 1

2 .
This means that each vertex of Q′

n is contained in at most one facet of [−δ, δ]n. In
fact, it must be contained in exactly one: None of the vertices of Qn (which are the
positive and negative standard basis vectors) is contained in [−δ, δ]n since δ < 1. Hence,
each vertex of Q′

n is the intersection of exactly one facet of [−δ, δ]n with an edge of Qn.
Observe that every edge of Qn intersects exactly two distinct facets of [−δ, δ]n. Again,
this is due to the choice of δ < 1. Hence, the number of vertices of Q′

n equals twice the
number of edges of Qn, i.e., |V(Q′

n)| = 4n(n− 1). Moreover, no vertex of [−δ, δ]n is a
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vertex of Q′
n and, for all i ∈ [n], the inequalities −δ ≤ xi ≤ δ are facet-defining for Q′

n.
Therefore, B(Q′

n) ⊇ V([−δ, δ]n) = {−δ, δ}n.

A careful analysis of the counterexamples in Section 4.3.1 shows that the constructions
are, in fact, homogenizations, too: Consider again the linear map πn,m : Rm → Rn from
Section 4.3.1. Define a linear transformation of Rn which maps x ∈ Rn to the vector
x′ ∈ Rn defined by x′3 = 1

2

∑n
i=1 xi and x′i = xi for all i ̸= 3. Under this transformation,

the cone Rn = πn,m(Rm
≥0) from Lemma 4.9 can be viewed as the homogenization

of some polytope P ⊆ Rn−1 whose vertices are the nonzero column vectors of the
matrix Πn,m after projecting out the third coordinate. This coordinate takes over the
role of the homogeneous coordinate t (recall that all nonzero column vectors of Πn,m

satisfy
∑n

i=1 xi = 2). Then 0 is a basic solution of P which is not a vertex. In the
homogenization, 0 yields the circuit e3 by Lemma 4.15.

4.3.3 Fixed-Shape Partition Polytopes

All constructions seen so far may seem specifically designed so as to fail the inheritance
of circuits. However, there do not only exist pathological counterexamples. We con-
clude this section with an example from combinatorial optimization that exhibits this
undesirable behaviour despite a number of favourable properties.

Fixed-shape clustering is the task of partitioning a data set X of n items into k
clusters C1, . . . , Ck such that the number of items in each Ci equals a fixed number
κi ∈ N, where

∑k
i=1 κi = n. Popular clustering objectives like least-squares assignments

can be computed by linear optimization over so-called fixed-shape partition polytopes
(see [16, 26, 29, 30, 43, 106, 130, 131]). These are defined as follows. Given a data
set X = {x(1), . . . , x(n)} ⊆ Rd, a number of clusters k ∈ N, and prescribed cluster
sizes κ := (κ1, . . . , κk) ∈ Nk, the associated fixed-shape partition polytope, denoted by
P (X, k, κ), is the convex hull of all feasible clustering vectors (c(1), . . . , c(k)) ∈ (Rd)k,
where c(i) =

∑
x∈Ci

x is the sum of all items assigned to cluster Ci.

An explicit inequality description of P (X, k, κ) is not known. However, the following
system in variables y ∈ Rk×n is an extended formulation for P (X, k, κ) (see [27]):

n∑
j=1

yij = κi for all i ∈ [k]

k∑
i=1

yij = 1 for all j ∈ [n]

y ≥ 0

(4.6)

The corresponding projection map is the linear map πX : y 7→ (c(1), . . . , c(k)) defined by
c(i) =

∑n
j=1 yij · x(j) for all i ∈ [k]. The polytope described by the linear system (4.6)

belongs to a widely studied class of polytopes called transportation polytopes (see, e.g.,
[38, 71, 146]). Here, the k clusters represent the suppliers with supplies given by κ, and
the n items are the customers with demands 1 each. The vectors y ∈ Rk×n satisfying
(4.6) describe feasible commodity flows from the suppliers to the customers. For given
n = |X|, k, and κ, let us denote the transportation polytope (4.6) by T (n, k, κ). The
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special case k = n and κi = 1 for all i ∈ [n] yields the well-known nth Birkhoff polytope
[14], which is the convex hull of all n× n permutation matrices, and is also known as
the perfect matching polytope of the complete bipartite graph Kn,n (see [206]).

Also for general k and κ, the structure of the polytopes T (n, k, κ) is well-understood:
They are 0/1 polytopes whose constraint matrix in (4.6) is totally unimodular [146].
Edges of T (n, k, κ) correspond to cyclical exchanges of items between clusters [26, 27,
32, 146], where a subset of clusters are ordered in a cycle, and one item from each
cluster is transferred to the next along the cycle. Moreover, the circuits of T (n, k, κ)
may be characterized in exactly the same way, showing that they coincide with the edge
directions [33].

Is there a similar characterization of the circuits of the fixed-shape partition polytopes
P (X, k, κ)? Interestingly, the edges of P (X, k, κ), too, correspond to cyclical exchanges
of items between clusters, for any choice of parameters X, k, κ [29, 106, 131]. Despite
this promising fact, somewhat surprisingly, new circuits may appear in the projection
onto P (X, k, κ), even for small d, n, and k.

Lemma 4.18. For all n ≥ 5, there exist k ∈ N, κ = (κ1, . . . , κk) ∈ Nk, and X ⊆
Rn−2 with |X| =

∑k
i=1 κi = n such that C(P (X, k, κ)) ̸⊆ πX(C(T (n, k, κ))), where

πX : Rk×n → (Rd)k is defined as above.

Proof. For n ≥ 5, let X := V(Pn−2) ⊆ Rn−2 be the set of vertices of the polytope
Pn−2 = πn−2,n−1(Sn−1) from Lemma 4.12, where we may assume without loss of
generality that x(n) = 0 and the remaining n − 1 vertices are labelled in arbitrary
order. (Note that for given X, the set of all possible clustering vectors is invariant under
reordering the data points x(j) ∈ X.)

Consider the fixed-shape partition polytope P (X) := P (X, k, κ) for k = 2 and cluster
sizes κ1 = 1 and κ2 = n − 1. P (X) is the convex hull of all vectors (c(1), c(2)) ∈
Rn−2×Rn−2 such that c(1) =

∑n−1
j=1 y1j ·x(j) and c(2) =

∑n−1
j=1 x

(j)− c(1) for some vector

y ∈ R2×n in the corresponding transportation polytope T := T (n, 2, (1, n− 1)), which
is described by

n∑
j=1

y1j = 1

y2j = 1− y1j for all j ∈ [n]

y ≥ 0

Eliminating the variables y2j , it is easy to see that T and the simplex Sn−1 are affinely
isomorphic. Moreover, P (X) is affinely isomorphic to its projection onto the first half
c(1) of the clustering vector, which equals πn−2,n−1(Sn−1) = Pn−2. The statement then
follows immediately from Lemmas 4.3 and 4.12.

Despite the negative statement of Lemma 4.18, we stress that there do exist classes of
fixed-shape partition polytopes in which all circuits are inherited from the transportation-
type extensions, even though this happens for one of the two trivial reasons stated in
Lemmas 4.3 and 4.6. For instance, T (n, k, κ) is a fixed-shape partition polytope itself
for any n and k, using the standard basis vectors in Rn as item locations, as observed
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in [33]. Similarly, suppose that we augment a given data set X ⊆ Rd of size |X| = n
with the standard basis vectors in Rn, i.e., we replace each item location x(i) with
(x(i), ei) ∈ Rd × Rn for all i ∈ [n]. Then the fixed-shape partition polytope resulting
from this augmented embedding can equivalently be derived using the construction in
the proof of Lemma 4.3. In particular, the resulting polytope is affinely isomorphic to
T (n, k, κ).

4.4 The Role of Projection Maps and Polyhedra for the
Inheritance of Circuits

In the previous section, we saw that there exist polyhedra that do not inherit all
their circuit directions from an extension. In this section, we explore the role that
the individual “ingredients” of those counterexamples – the original polyhedron P ,
the extension polyhedron Q, and the projection map π from Q to P – play for the
inheritance of circuits. Our discussion is driven by three natural questions, first stated
in Section 4.1:

(Q1) Which linear maps π have the property that, for every polyhedron Q, all circuits of
π(Q) are inherited from Q?

(Q2) Which polyhedra P inherit their circuits from every extension Q?

(Q3) For which polyhedra Q does every polyhedron P that is a linear projection of Q
inherit its circuits from Q?

We provide a complete characterization of the maps for question (Q1) in Section 4.4.1
and of the polyhedra for question (Q2) in Section 4.4.2. As we will see, they correspond
to restrictive properties that make the inheritance of circuits trivial. We further provide
a partial answer to question (Q3) in Section 4.4.3. In Section 4.4.4, we explain why our
characterizations are best possible. We do so by exhibiting combinations of polyhedra
and maps that lead to an inheritance of circuits, but where neither of them exhibits the
aforementioned properties.

4.4.1 Inheritance Based on the Projection Map

In Lemma 4.3, we saw that linear isomorphisms essentially preserve the set of circuits.
We first show that no other type of linear map guarantees inheritance for all polyhedra,
thus resolving (Q1).

Theorem 4.19. Let π : Rm → Rn be a linear map such that dim(π(Rm)) ≥ 3. Then
C(π(Q)) ⊆ π(C(Q)) for all polyhedra Q ⊆ Rm if and only if π is injective. In particular,
if π is not injective, there exists a full-dimensional simple polytope Q ⊆ Rm such that
C(π(Q)) ̸⊆ π(C(Q)) and C(π(Q)) ∩ π(C(Q)) consists precisely of the edge directions of
π(Q).

Recall from Theorem 4.13 that in every dimension greater than 2, there are polyhedra
that do not inherit their circuits from all extensions. The key observation for proving
Theorem 4.19 will be that, in any fixed dimension, the particular projection used
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to obtain Theorem 4.13 can be exchanged for any other one after a suitable linear
transformation of the domain space.

Proof of Theorem 4.19. By Lemma 4.3, it suffices to show the “if” part of the statement
and we may assume that π(Rm) = Rn. If π is not injective, then m > n. By
Theorem 4.13, there exists a full-dimensional simple polytope Q ⊆ Rm and a linear
map σ : Rm → Rn such that the polytope P := σ(Q) ⊆ Rn is full-dimensional, C(P ) ̸⊆
σ(C(Q)), and the set of edge directions of P is precisely the set C(P ) ∩ σ(C(Q)).
Since dim(P ) = n, we have that σ(Rm) = Rn = π(Rm). Hence, there exists a
linear transformation τ : Rm → Rm such that π = σ ◦ τ . Now consider the polytope
Q̃ := τ−1(Q). Clearly, Q̃ is simple again with dim(Q̃) = m and

π(Q̃) = (σ ◦ τ ◦ τ−1)(Q) = σ(Q) = P.

Using Lemma 4.3, we conclude that

π(C(Q̃)) = (σ ◦ τ)(C(Q̃)) = σ(C(Q)) ̸⊇ C(P )

and, thus, C(P ) ∩ π(C(Q̃)) = C(P ) ∩ σ(C(Q)).

4.4.2 Inheritance for all Extensions

Next, we resolve (Q2) by showing that any polyhedron which inherits its circuits from
every extension cannot have a circuit that is not an edge direction already.

Theorem 4.20. Let P ⊆ Rn be a pointed polyhedron. All circuits in C(P ) are edge
directions of P if and only if C(P ) ⊆ π(C(Q)) for all polyhedra Q ⊆ Rm and all linear
maps π : Rm → Rn with π(Q) = P .

In fact, we will prove a slightly stronger statement that clearly implies Theorem 4.20:

Theorem 4.21. Let P ⊆ Rn be a pointed polyhedron and g ∈ Rn \ {0}. g is an edge
direction of P if and only if g ∈ π(C(Q)) for all polyhedra Q ⊆ Rm and all linear maps
π : Rm → Rn with π(Q) = P .

For any pointed polyhedron P and a nonzero vector g which is not among the edge
directions of P , we construct an extension of P none of whose circuits projects to g. The
construction is based on a classical result of Balas [10, 11] on the union of polyhedra,
which we recall next. We denote the union over a family P of sets as

⋃
P.

Proposition 4.22 ([10, 11]). Let P ⊆ Rn be a polyhedron, and let P = {P1, . . . , Pp}
be a family of nonempty polyhedra Pi = {x ∈ Rn : A(i)x = b(i), B(i)x ≤ d(i)}, i ∈ [p],
such that P = conv (

⋃
P). Consider the polyhedron QP ⊆ Rp × (Rn)p defined by the

following linear system in variables λ ∈ Rp and x(i) ∈ Rn for all i ∈ [p]:

λ ≥ 0
p∑

i=1

λi = 1

A(i)x(i) = b(i)λi for all i ∈ [p]

B(i)x(i) ≤ d(i)λi for all i ∈ [p]

(4.7)
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Then P =
{∑p

i=1 x
(i) : (λ, x(1), . . . , x(p)) ∈ QP

}
.

Next, we give a characterization of the circuits of the extension QP defined in
Proposition 4.22.

Lemma 4.23. Let P ⊆ Rn be a pointed polyhedron and let P and QP be defined as in
Proposition 4.22. Up to rescaling, the circuits of QP with respect to the system (4.7) are
the nonzero vectors (f, g(1), . . . , g(p)) ∈ Rp × (Rn)p for which one of the following holds:

(i) f = 0; g(i) ∈ C(Pi) for some i ∈ [p] and g(k) = 0 for all k ̸= i,

(ii) f = ei − ej for some i, j ∈ [p], i ̸= j; g(i) ∈ B(Pi), g
(j) ∈ B(Pj), and g(k) = 0 for

all k ̸= i, j.

Proof. First, note that all polyhedra in the collection P must be pointed since conv (
⋃
P) =

P is pointed. Let (f, g(1), . . . , g(p)) ∈ Rp × (Rn)p be a circuit of QP . If f = 0, then
(g(1), . . . , g(p)) ∈ C(P1 × · · · × Pp). Statement (i) immediately follows from an inductive
application of Proposition 4.7.

Now suppose that f ̸= 0. Since
∑p

i=1 fi = 0, f must be supported in at least
two components, say, f1 ̸= 0 and f2 ̸= 0. We claim that these are the only nonzero
components of f , and that g(3) = · · · = g(p) = 0. Then, after rescaling, we may assume
that f1 = −f2 = 1, and statement (ii) follows from Corollary 4.16. In order to prove
the claim, observe that the vector (e1 − e2,

1
f1
g(1),− 1

f2
g(2),0, . . . ,0) ∈ Rp × (Rn)p is a

circuit of QP , too. Then supp(f) = supp(e1 − e2) by definition of the set of circuits.
Further, by support-minimality of B(k)g(k) − d(k)fk, we cannot have that g(k) ̸= 0 for
some k ≥ 3 as all Pk are pointed.

We are now ready to prove the main result of this section.

Proof of Theorem 4.21. The “only if” part immediately follows from Lemma 4.6. For
the converse implication, suppose that g is not an edge direction of P . We first show
the statement for the case that P is a polytope.

Let U := {{u, v} : u, v ∈ V(P ), g ∈ R(u− v)} be the set of unordered pairs {u, v} of
vertices of P whose difference is a multiple of g (possibly U = ∅). Observe that the pairs
in U are pairwise disjoint: If {u, v}, {v, w} ∈ U then u, v, w are collinear. Since all three
of them are vertices, it follows that u = w. For every pair {u, v} ∈ U , let F{u,v} be the
minimal face of P containing both u and v. Since u− v is not an edge direction of P
by hypothesis, we have that dim(F{u,v}) ≥ 2. Hence, there exists a vector z ∈ Rn \ {0}
orthogonal to u− v such that u+v

2 ± εz ∈ F{u,v} for some small ε > 0. This means that
the parallelogram

P{u,v} := conv

{
u, v,

u+ v

2
+ εz,

u+ v

2
− εz

}
is contained in F{u,v}.

Moreover, for all u, v ∈ V(P ) with u ̸= v and {u, v} /∈ U , there exist a ∈ Rn\{0}, β ∈ R
such that a⊤g = 0 and a⊤u < β < a⊤v, i.e., the hyperplane {x ∈ Rn : a⊤x = β} strictly
separates u and v. If ε is sufficiently small, then also P{u,v} and P{u′,v′}, and P{u,v} and
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w can be strictly separated by a hyperplane whose normal vector is orthogonal to g, for
any distinct {u, v}, {u′, v′} ∈ U and w ∈ V(P ) \

⋃
U .

Now define

P :=
{
P{u,v} : {u, v} ∈ U

}
∪
{
{w} : w ∈ V(P ) \

⋃
U
}
.

Since P is a family of polytopes (singletons and parallelograms) contained in P which
covers V(P ), we have that P = conv (

⋃
P). For this family P , we consider the extension

QP as defined in Proposition 4.22. We claim that under the projection given in
Proposition 4.22, none of the circuits of QP maps to a multiple of g. By Lemma 4.23,
the circuits of QP are either sent to (i) edge directions of some member of the family P
or to (ii) (scaled) differences of two vertices of different members of P . This is because
dim(Q) ≤ 2 for all Q ∈ P and all basic solutions of parallelograms are vertices. By
construction, none of the parallelograms P{u,v} has an edge in direction g, ruling out
case (i). To see that case (ii) is not possible either, recall that any two distinct members
of P can be strictly separated by a hyperplane whose normal vector is orthogonal to g,
which means that g is parallel to this hyperplane. We conclude that g is not inherited
from QP .

Now suppose that P is unbounded. Then P = P+rec(P ) where P := conv(V(P )) and
rec(P ) denotes the recession cone of P . We first define an extension for each Minkowski
summand individually and then combine the two. Indeed, since the first summand P is
a polytope, the first part of the proof yields an extension QP of P none of whose circuits
is sent to g. Suppose that the second summand rec(P ) is generated by q extreme rays
in directions {r(1), . . . , r(q)} ⊆ Rn. Then it is the image of the nonnegative orthant Rq

≥0

under the map Rq ∋ y 7→
∑q

i=1 yir
(i) ∈ Rn. By assumption, g is not a multiple of r(i)

for any i ∈ [q]. Now consider the polyhedron QP × Rq
≥0. It is an extension of P , where

the corresponding projection first maps QP × Rq
≥0 to P × rec(P ) and then applies the

map (x, y) 7→ x+ y. By Proposition 4.7, g is not inherited from QP × Rq
≥0 under this

combined map. This concludes the proof.

We stress that the extension QP constructed in the above proof is not necessarily
given by a minimal linear description if we follow Proposition 4.22. However, for the
purpose of proving a negative result about the non-inheritance of a particular direction,
this is not a restriction.

Before we focus on the last of the three ingredients – the extension polyhedron Q
–, let us remark that the simplex extension that we saw in Lemma 4.12 is, in fact, a
special case of the more general extension QP used in the proof of Theorem 4.20: For
a polytope P and the decomposition P := {{v} : v ∈ V(P )}, the polyhedron QP and
the simplex S|V(P )|−1 are affinely equivalent. Proposition 4.22 also generalizes another
result from Section 4.3: Let P be a polytope and consider P := {{0}, {1} × P}; then
QP as defined in Proposition 4.22 equals {(t, x) ∈ hom(P ) : t ≤ 1}.

4.4.3 (No) Inheritance Based on the Extension Polyhedron

In Section 4.3.1, we saw that there exist polyhedra – simplices, simplicial cones, and
hypercubes in dimension 4 and greater – that can be projected in such a way that not
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all circuits of the image polyhedron are inherited from the original one. In this section,
we prove that these polyhedra can essentially be exchanged for any other polyhedron Q
(of the same dimension), provided that Q has a non-degenerate vertex.

Theorem 4.24. Let Q ⊆ Rm be a polyhedron with dim(Q) ≥ 4. If Q has a non-
degenerate vertex, then there exists a linear map π : Rm → Rdim(Q)−1 such that π(Q) is
full-dimensional and C(π(Q)) ̸⊆ π(C(Q)).

Before we give a detailed proof of this result, let us take a closer look at the proofs
of Lemmas 4.9, 4.10 and 4.12 and identify a common strategy: All polyhedra that we
projected from in Section 4.3.1 have a non-degenerate vertex at the origin 0, and their
feasible cone at 0 equals the nonnegative orthant. So in any fixed dimension, they are
all identical locally at 0. We then applied a carefully chosen linear projection map which
preserves this local resemblance. This allowed us to always generate a particular circuit
direction e3, for which we were then able to establish non-inheritance. In this last
step, however, knowledge of the set of circuits of the extension polyhedron was crucial.
This will be the major technical challenge when applying the above proof strategy to
an arbitrary polyhedron Q: Neither do we know the other facets of Q that are not
incident with 0 nor is C(Q) given explicitly. We address this challenge by defining an
infinite family of linear projections such that every member of the family maps Q to
a polyhedron with vertex 0 in which the non-inherited circuit direction e3 from the
results in Section 4.3.1 still appears as a circuit. Moreover, the family will have the
property that no nonzero vector is sent to e3 (or a multiple thereof) under more than
one of the projections in the family. Since our family is infinite but C(Q) is finitely
generated (see Section 4.2.1), there must be some member of the family which does
not send any of the circuits of Q to e3. This will be the map that we can apply to Q
and obtain the same non-inheritance result as in Section 4.3.1. The remainder of this
section is dedicated to the proof details.

Proof of Theorem 4.24. After an affine transformation, we may assume that Q is full-
dimensional, 0 is a non-degenerate vertex of Q, and the feasible cone of Q at 0 equals
Rm
≥0. For all α ∈ N \ {1}, we define the matrix

Πα :=



α 1 0 0
0 0 α 1 0
0 α− 1 0 α− 1

0 α Im−4

 ∈ R(m−1)×m

and a corresponding linear map πα : Rm → Rm−1, x 7→ Παx. Note that π2 = πm−1,m

where πm−1,m is the projection used in Section 4.3.

Consider the cone πα(Rm
≥0) ⊆ Rm−1. It is defined by the m inequalities

x ≥ 0

(α− 1)x1 + (α− 1)x2 − x3 ≥ 0
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all of which are facet-defining. This can be seen using the same arguments as in the proof
of Lemma 4.9. In fact, the cone above is obtained from π2(Rm

≥0) by rescaling it along

the third coordinate. In particular, e3 ∈ C(πα(Rm
≥0)). Now consider π−1

α (Re3) =: Kα,

i.e., Kα is the set of all vectors in Rm that πα sends to a multiple of e3 ∈ Rm−1. Since
Πα has full row rank, Kα is a two-dimensional linear subspace of Rm, spanned by the
vectors αe2−e1 and αe4−e3. For any α ̸= β, we have that Kα∩Kβ = {0} because the
four basis vectors of Kα and Kβ are linearly independent. Now recall from Section 4.2.1
that C(Q) consists of a finite number of one-dimensional linear subspaces of Rm. Hence,
there must exist some α ̸= 1 such that C(Q)∩Kα = ∅. For this choice of α, we conclude
that e3 /∈ πα(C(Q)) while e3 ∈ C(πα(Rm

≥0)) ⊆ C(πα(Q)), where the last inclusion follows
from the fact that πα(Rm

≥0) is the feasible cone of πα(Q) at the vertex 0.

4.4.4 Inheritance in Nontrivial Instances

Theorems 4.19, 4.20 and 4.24 imply that, beyond the trivial cases that we saw in
Section 4.2, inheritance of circuits cannot be a property of a polyhedron, of a specific
extension polyhedron, or of the map between the two by itself. We conclude our
discussion by showing that there do exist instances for which a combination of these
three ingredients leads to the desired inheritance of circuits while each individual
ingredient does not satisfy the restrictive assumptions of Theorems 4.19 and 4.20. In
this sense, Theorems 4.19 and 4.20 are the best possible statements.

Lemma 4.25. For all m,n ∈ N with n ≥ 3 and m ≥ n+ 3, there exist full-dimensional
polytopes P ⊆ Rn, Q ⊆ Rm and a linear map π : Rm → Rn with π(Q) = P such that
C(P ) ⊆ π(C(Q)), P and Q are not linearly isomorphic, and not all circuits of P are
edge directions.

Proof. We again modify the construction from Lemma 4.12. For n ≥ 3 and m ≥ n+ 3,
we define the matrix

Π′
n,m :=



1 1 2 0 0 0
0 0 0 1 1 2 0
0 1 1 0 1 1

0 In−3

0

 ∈ Rn×m

and let π′ : Rm → Rn be the linear map x 7→ Π′
n,mx. Consider the polytope P ′

n := π′(Sm)
(see Figure 4.3). We claim that P ′

n is defined by the following irredundant system of
inequalities:

x ≥ 0

x3 ≤ 1

x1 + x2 − x3 ≥ 0

x1 + x2 − x3 ≤ 1

All inequalities are valid for P ′
n. To see that they are facet-defining, we proceed by

induction on n, similar to the proof of Lemma 4.12. For the case n = 3, we refer to
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Figure 4.3. If n ≥ 4, then {x ∈ P ′
n : xn = 0} is a face of P ′

n which contains all column
vectors of Π′

n,m but en. Hence, it is isomorphic to P ′
n−1 and therefore is a facet of P ′

n.
In particular, since P ′

n has more than n + 1 facets, it is not a simplex and, thus,
cannot be isomorphic to Sm. Consider again the cone Rn ⊆ Rn defined in the proof of
Lemma 4.9. It is easy to see that C(P ′

n) = C(Rn). Hence, after rescaling, every circuit
direction of P ′

n appears as one of the column vectors of Π′
n,m or as the difference of

two of them. This implies that C(P ′
n) ⊆ π′(C(Sm)). Further, e3 ∈ C(P ′

n) is not an edge
direction of P ′

n, and Sm clearly has a non-degenerate vertex.

(1, 0, 0)

(1, 0, 1)

(0, 1, 0)

(0, 1, 1)

0

(2, 0, 1)(0, 2, 1)

Figure 4.3: The polytope P ′
3 from the proof of Lemma 4.25.

4.5 Further Notes and Open Questions

We showed that the connection between the sets of circuits of polyhedra and their
extensions is much weaker than the connection between their edge directions: In general,
circuits are not inherited under affine projections. Whenever this does happen for a
nontrivial combination of two polyhedra and a projection map between them, it is due to
the specific combination of the three ingredients and not due to any single one of them
by itself. Therefore, a natural direction of future work would be to identify properties
of these combinations that are sufficient for the inheritance of circuits (beyond our
characterizations in Section 4.4).
For fixed-shape partition polytopes, we demonstrated in Section 4.3.3 that their

circuits cannot be characterized via projecting from their transportation-type extensions.
Still, a characterization of the circuits of fixed-shape partition polytopes would help
compute robustness measures for clusterings [29], and would lead to improved methods
for gradual transitions between so-called separable clusterings [40].





Chapter 5

Hirsch Counterexamples and the Circuit
Diameter Conjecture

This chapter is based on joint work with Alexander E. Black and Steffen Borgwardt
[21]. The results of Section 5.3 are presented in largely the same way in our paper.

5.1 Introduction

The vertices and bounded edges of a polyhedron P naturally define a connected graph,
simply called the graph (or 1-skeleton) of P . The diameter of this graph, i.e., the
maximum length of a shortest path between any two vertices, is referred to as the
combinatorial diameter of P . The famous Hirsch conjecture, first posed by Warren
B. Hirsch in 1957 (see [70]), claimed an upper bound of f − d on the combinatorial
diameter of any d-dimensional polyhedron with f facets. It was disproved for unbounded
polyhedra by Klee and Walkup [145] in 1967, who found a 4-dimensional unbounded
counterexample with 8 facets whose combinatorial diameter is strictly greater than
8− 4 = 4. The Hirsch conjecture for polytopes, however, was only disproved much later,
in 2012, by Santos [170]. He showed that there is a polytope in dimension 43 with 86
facets and diameter at least 44. Today, the arguably most important open question
in the field is the polynomial Hirsch conjecture, which asks whether the combinatorial
diameter is bounded by a polynomial in f and d (see [170]). Note that the existence of
a strongly polynomial pivot rule for the Simplex method would require this conjecture
to be true (see [144, Section 3]).

The currently best known upper bound on the combinatorial diameter is due to
Sukegawa [188] and is of the form (f − d)logO(d) for a d-dimensional polyhedron with
f facets, improving the first subexponential bound of Kalai and Kleitman [138] (see
also [192], and [189] for a recent refined asymptotic analysis). For polytopes, a linear
bound in fixed dimension d was given by Larman [147] and Barnette [17]. Further note
that the Hirsch conjecture is true for 0/1 polytopes, as proved by Naddef [159] (see
also [178]), and for certain other special classes of polyhedra (see, e.g., [13, 37]). The
polynomial Hirsch conjecture has been proved for polyhedra with totally unimodular
constraint matrices [78] and, more generally, with integral constraint matrices for which
the absolute values of all subdeterminants are polynomially bounded [24, 48, 67, 91]. We
refer the reader to the surveys [143, 144, 171, 207] for a detailed account of combinatorial
diameter bounds and the history of the Hirsch conjecture.

To gain a better understanding of diameters of polyhedra, the notion of the combina-
torial diameter has been relaxed and generalized in a number of different ways (see, e.g.,
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[65, 75, 93, 142, 143, 171] and the references therein). This chapter is concerned with
one such natural relaxation that was introduced by Borgwardt, Finhold, and Hemmecke
[35]. Paths in the graph of a polyhedron P “walk” from vertex to vertex along edges of
P (which is why we will also refer to them as edge walks). Let us relax this notion of a
walk and allow the next point to be any point on the boundary of P (not necessarily
a vertex) as long as it can be reached from the previous point by moving maximally
along a circuit of P . We refer to these walks as circuit walks and formally define
them as follows. Recall from Section 4.2.1 that C(A,B) denotes the set of circuits of a
polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}.

Definition 5.1. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a polyhedron. Given two
vertices u and v of P , a circuit walk from u to v on P is a finite sequence of points
y(0), y(1), . . . , y(k) ∈ P such that y(0) = u, y(k) = v, and for all i ∈ [k], we have that

(i) y(i) − y(i−1) ∈ C(A,B)

(ii) y(i) + ε(y(i) − y(i−1)) /∈ P for all ε > 0.

Condition (ii) ensures that each step i is of maximal length. Given a circuit walk
y(0), y(1), . . . , y(k), the number k of steps is called its length. Following [35], we define
the circuit diameter of P as the maximum length of a shortest circuit walk between any
pair of vertices of P . Note that this distance is not necessarily symmetric: The number
of steps required to walk from a vertex u to another vertex v may not be the same
as from v to u. This is because, unlike edge walks, circuit walks are not necessarily
reversible (see Example 1 in [35], or Figure 5.2 in Section 5.2). Another technical issue
is the dependence of the set of circuits of P on its linear description. Therefore, also
the circuit diameter may depend on the particular description. However, as explained
in Section 4.2.1, this issue can be resolved by restricting to minimal linear descriptions.
In this case, speaking of the circuit diameter of a polyhedron as a geometric property is
perfectly well-defined (see also [132]).

The circuit analogue of the Hirsch conjecture, the so-called circuit diameter conjecture
[35], asks whether the circuit diameter of all d-dimensional polyhedra with f facets
is at most f − d. This conjecture is open, as of writing this thesis. Interestingly, if
one considers sequences of points that satisfy all properties of a circuit walk possibly
except for condition (ii) in Definition 5.1, then one can always find such a sequence
with endpoints u and v whose length is at most f − d, for any two vertices u and v of a
d-dimensional polyhedron with f facets [36] (see also Section 5.2).
For circuit diameters, however, which require condition (ii), the best known upper

bounds depend on the linear descriptions of polyhedra: It is known that circuit diameters
of rational polyhedra are weakly polynomially bounded in the encoding length of their
linear description [73]. Moreover, results of [69, 94] imply strongly polynomial bounds
(i.e., depending only on the number of variables) for polyhedra in standard form with
coefficients of polynomially bounded encoding length. We note that the bounds of
[69, 73, 94] were obtained in the context of circuit augmentation schemes, where the
circuit diameter is studied as a proxy for the number of augmentations, much in the
same way that the combinatorial diameter lower bounds the number of iterations of the
Simplex method. Moreover, specific bounds on circuit diameters have been obtained for
certain families of polyhedra in combinatorial optimization [35, 38, 133].
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As the set of circuits of a polyhedron includes all edge directions (see Section 4.2.1),
edge walks clearly are special circuit walks. This means that the circuit diameter of any
polyhedron is a lower bound on its combinatorial diameter. Thus, any counterexample
to the circuit diameter conjecture would also be a counterexample to its combinatorial
relative, the Hirsch conjecture. So a natural question, raised by Borgwardt, Finhold,
and Hemmecke [35], is the following:

“It is an immediate interesting open question whether the counterexamples to
the Hirsch conjecture [145, 170] give rise to counterexamples to [the circuit
diameter conjecture] [...].” [35, page 2]

Stephen and Yusun [185] showed that the Klee-Walkup counterexample [145] to the
unbounded Hirsch conjecture does not carry over to the circuit setting. In fact, the
circuit diameter conjecture is true for all polyhedra with d = 4 and f = 8 [39].

In this chapter, we study the original bounded Hirsch counterexample of Santos [170]
and the subsequent improvements by Matschke, Santos, and Weibel [155]. They are
based on a class of polytopes called spindles. These are polytopes with two distinguished
vertices u and v (the apices) such that each facet contains exactly one of u and v. Put
differently, a spindle is the intersection of two translated pointed polyhedral cones
emanating from the apices u and v such that each apex is in the interior of the opposite
cone. A simple example of a spindle is a hypercube (with any pair of antipodal vertices
as apices).
Santos discovered that in order to construct a Hirsch counterexample, it suffices to

find a spindle for which the combinatorial distance between its apices (which he calls
the length of the spindle) is strictly greater than the dimension. A spindle may have
many facets, so even with a length exceeding the dimension, the two apices may not be
at a distance that immediately violates the Hirsch bound of f − d. However, Santos
showed in [170] that in this case, one can lift the spindle to one dimension higher to
obtain a new spindle with only one more facet while the length is guaranteed to increase
by at least one. So this construction leaves f − d invariant while increasing the length.
Iterating the lifting procedure for long enough eventually yields a spindle whose length
does indeed violate the Hirsch bound. (A more detailed account of this construction is
given in Section 5.3.2.)
In [170], Santos gave a highly degenerate 5-dimensional spindle (called S48

5 in the
following) with 48 facets and length 6. He then concluded via his iterative construction
that there is a spindle with 86 facets in dimension 43 and length at least 44, which is
greater than 86−43 and therefore violates the Hirsch conjecture. In a follow-up to Santos’
work, Matschke, Santos, and Weibel [155] found two spindles, which we denote by S28

5

and S25
5 , also of dimension 5 and length 6 but with fewer facets (28 and 25, respectively).

These lead to counterexamples in lower dimensions 23 and 20, respectively. Note that
this 20-dimensional Hirsch counterexample is the lowest-dimensional one known to date.
The authors of [155] also carried out the steps of Santos’ construction for both S28

5 and
S25
5 explicitly, obtaining linear descriptions of corresponding (high-dimensional) Hirsch

counterexamples.
In Section 5.3, we consider Santos’ original spindle S48

5 from [170] as well as the two
smaller ones S28

5 and S25
5 from [155] and prove that their circuit length is at most 5.
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Here, the circuit length of a spindle is the circuit analogue of its (combinatorial) length
and denotes the maximum length of a shortest circuit walk from one apex of the spindle
to the other one. Our result implies that the key property of the three spindles – having
a length greater than the dimension – is no longer true in the circuit setting.

The main technical ingredient of our circuit length bounds in Section 5.3.1 is a simple
sufficient condition for short circuit walks to exist on polygons, which we explain in
Section 5.2. We apply this to certain 2-faces of the three spindles. Interestingly, our
proof exhibits that for all three spindles, the apices can be connected by circuit walks of
length at most 5 with no more than two non-edge steps. With the same arguments, in
Section 5.3.2, we are also able to verify computationally that the circuit length of the
two explicit non-Hirsch spindles constructed from S28

5 and S25
5 as given in [155] satisfies

the Hirsch bound of f−d. In other words, the two vertices whose combinatorial distance
makes each of these two spindles a Hirsch counterexample by Santos’ arguments are no
longer a distance apart that violates the Hirsch bound when using circuit walks.

We stress that our results only concern the circuit length and do not imply that the
circuit diameter is small. We address the relationship between these two notions in
the context of the circuit diameter conjecture in Section 5.4. It must further be noted
that, in contrast to the combinatorial setting, circuit diameters and circuit lengths
are not preserved under combinatorial equivalence. In particular, there can be two
realizations of the same polyhedron with different circuit diameters (see, e.g., [186]
or Example 2 in [35]). While the proofs of our circuit length bounds do depend on
the geometry of the particular realizations of the three spindles S48

5 , S28
5 , and S25

5 in
Section 5.3.1, our analysis extends to all realizations satisfying mild conditions. For
example, these conditions are still satisfied after slight perturbations. It will remain open
whether all realizations of these polytopes satisfy these conditions, or, more generally,
whether all realizations have a circuit length bounded by the dimension. (Note here
that circuit diameters and circuit lengths are preserved under affine equivalence; this is
a consequence of Lemma 4.3.)

5.2 Preliminaries

We saw in Section 4.2.1 that the set of circuits of a pointed polyhedron admits many
equivalent characterizations. In this chapter, we shall be working with yet another
characterization, which is closely related to oriented matroids (see [9, 19, 160, 206]) and
will be explained next. Our arguments for bounding the circuit length of the spindles
in Section 5.3 are rather directly developed from this characterization, as we will see in
Section 5.2.3.

5.2.1 Circuits Revisited

We first need some terminology from [33, 206]. A hyperplane arrangement in Rn is
a finite set of hyperplanes {H1, . . . ,Hm} where each Hi is of the form Hi = {x ∈
Rn : (b(i))⊤x = 0} for some nonzero vector b(i) ∈ Rn. If the vectors b(i) are the rows
of a matrix B ∈ Rm×n, we denote this hyperplane arrangement by H(B). To simplify
notation, we write (Bx)i for (b

(i))⊤x in this case. Note that H(B) partitions the entire
space Rn into polyhedral cones with pairwise disjoint relative interiors. Each such cone
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is the set of all x ∈ Rn satisfying

(Bx)i = 0 for all i ∈ I0

(Bx)i ≥ 0 for all i ∈ I+

(Bx)i ≤ 0 for all i ∈ I−
(5.1)

for subsets I0, I+, I− ⊆ [m] that partition [m]. We call the cones of the form (5.1) the
faces of H(B). Note that the set of faces of H(B) is finite and is closed under taking
faces (in the ordinary polyhedral sense).

The hyperplane arrangements that are relevant for our purposes are those for which
B ∈ Rm×n is the constraint matrix of a full-dimensional pointed polyhedron P = {x ∈
Rn : Bx ≤ d}. In this case, following [33], we call H(B) the elementary arrangement
of P . The union of the one-dimensional faces (the extreme rays) of the elementary
arrangement of P , excluding the origin 0, is precisely the set of circuits of P , as observed
in [33]. This can be seen, for example, using Proposition 4.2.

Even though any polyhedron given by a minimal linear description {x ∈ Rn′
: Ax =

b, Bx ≤ d} is affinely equivalent to a full-dimensional polyhedron of the above form
in dimension n = n′ − rk(A) (see [33]), it will be more convenient for our exposition
below to extend the terminology of [33] to polyhedra given by general linear systems,
possibly with equality constraints. So let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed
polyhedron, and let H(B) be defined as above. The intersection of each face of H(B)
with ker(A) is a polyhedral cone again. By a slight abuse of terminology, we call these
cones the faces of the restricted elementary arrangement of P (restricted to ker(A)).
Again, it follows from Proposition 4.2 that C(A,B), the set of circuits of P , is the union
of all one-dimensional faces of the restricted elementary arrangement of P , where 0
is excluded. As with the elementary arrangement, the set of all faces of the restricted
elementary arrangement is easily seen to be closed under taking faces. The minimal
face of the restricted elementary arrangement of a pointed polyhedron is {0}.

With this characterization of the set of circuits, the connection to oriented matroids
that was mentioned above can be made precise. (Incidentally, this connection also
justifies the use of the term “circuit”.) To simplify the explanation, we assume a
full-dimensional pointed polyhedron P = {x ∈ Rn : Bx ≤ d} where B ∈ Rm×n. Let F
be a face of its elementary arrangement H(B). Note that for any two vectors x and y
in the relative interior of F , the signs of (Bx)i and (By)i agree for all i ∈ [m]. So each
face of the elementary arrangement is uniquely identified by a sign vector in {0,+,−}m.
With respect to a partial order on sign vectors that prefers 0 over any of +,−, the
minimal sign vectors from {0,+,−}m form the circuits of an oriented matroid (see
Lecture 6 of [206] or [9, 19, 160] for details). These correspond precisely to the extreme
rays of H(B) which, in turn, are generated by the circuits of P , as we saw above.

Before we proceed, let us briefly digress and explain how the above characterization
of the circuits leads to the well-known concept of conformal sums. This concept is at
the core of a fundamental property of the set of circuits, which may be regarded as
additional motivation for why the Hirsch bound of f − d is of interest for bounding
circuit diameters.
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5.2.2 Conformal Sums of Circuits

Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron with an m× n matrix B.
Two vectors x, y ∈ Rn are sign-compatible with respect to B if (Bx)i(By)i ≥ 0 for all
i ∈ [m]. With this definition, we may state the so-called sign-compatible representation
property (or conformal sum property) [120] (see also [9, 165]) of the set of circuits of P .

Proposition 5.2 ([120]). Let x ∈ ker(A)\{0}. Then x can be expressed as x =
∑k

i=1 g
(i)

where k ≤ n and, for all i ∈ [k],

(i) g(i) ∈ C(A,B) and

(ii) g(i) and x are sign-compatible with respect to B and supp(Bg(i)) ⊆ supp(Bx).

Such a decomposition into the sum of sign-compatible circuits is called a conformal
sum of circuits. Note that the set of all vectors in ker(A) (not necessarily circuits) that
satisfy condition (ii) is a polyhedral cone, as observed in the proof of Lemma 2 in [36].
Stated in a slightly different form, this observation is as follows.

Proposition 5.3 (see [36]). For x ∈ ker(A), let F be the set of all vectors g ∈ ker(A)
such that g and x are sign-compatible with respect to B and supp(Bg) ⊆ supp(Bx).
Then F is the minimal face of the restricted elementary arrangement of P containing x.

Proof. By definition, a vector g ∈ ker(A) is in F if and only if, for all i ∈ [m], we have
that

(Bg)i


= 0 if (Bx)i = 0

≥ 0 if (Bx)i > 0

≤ 0 if (Bx)i < 0

Hence, F is the intersection of ker(A) with the face (5.1) of the elementary arrangement
of P where I0 = [m]\ supp(Bx) and an index i ∈ supp(Bx) is in I+ or I− depending on
the sign of (Bx)i. Clearly, x ∈ F . So any face of the restricted elementary arrangement
of P that contains x must be a face of F . However, (Bx)i ̸= 0 for all i ∈ I+ ∪ I−, which
implies that no proper face of F can contain x. Therefore, F is the minimal face of the
restricted elementary arrangement of P with this property.

Note that all vectors in the face F as defined in Proposition 5.3 are not only sign-
compatible with x but also pairwise sign-compatible. This means that the elementary
arrangement H(B) partitions ker(A) into cones of pairwise sign-compatible vectors. In
particular, we obtain the following corollary.

Corollary 5.4. For every face F of the restricted elementary arrangement of P , all
vectors in F are pairwise sign-compatible.

The sign-compatible representation property (Proposition 5.2) now readily follows
from Proposition 5.3 and standard polyhedral theory:

Proof of Proposition 5.2. Let F be the minimal face of the restricted elementary ar-
rangement of P such that x ∈ F . Then F is a polyhedral cone of dimension at most n
that is generated by circuits of P . It follows from Carathéodory’s theorem that (possibly
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after scaling) x can be expressed as a sum of k ≤ n circuits g(1), . . . , g(k) ∈ C(A,B) ∩ F .
Since g(i) ∈ F for all i ∈ [k], all of them satisfy condition (ii) in Proposition 5.2 by
Proposition 5.3.

Applied to differences of vertices of a polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}, the
sign-compatible representation property has an interesting consequence for finding circuit
walks on P . Namely, take two distinct vertices u and v of P . Then v−u ∈ ker(A) \ {0}.
This means that v−u can be expressed as a conformal sum of k ≤ n circuits g(1), . . . , g(k)

of P by Proposition 5.2. Now define a sequence of points y(0), . . . , y(k) by y(0) = u and
y(j) = y(j−1) + g(j) for j ∈ [k]. In particular, the last point in this sequence is y(k) = v.
An important observation is that each point y(j) in this sequence is in P , no matter
how the circuits were ordered. This is implicitly used in the proof of Lemma 2 in [36].
For the sake of clarity, we give an explicit proof of this fact.

Lemma 5.5. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a pointed polyhedron. Given
u, v ∈ P , let v − u =

∑k
i=1 g

(i) be a conformal sum of circuits in C(A,B). Then

u+
∑j

i=1 g
(i) ∈ P for all j ∈ [k].

Proof. First, note that all points u+
∑j

i=1 g
(i) for j ∈ [k] are in the zonotope Z given

by

Z := u+
k∑

i=1

[0, 1]g(i).

It therefore suffices to show that Z ⊆ P .

Suppose for the sake of contradiction that there is some point z ∈ Z \ P . Since
u ∈ P and g(i) ∈ ker(A) for all i ∈ [k] by the definition of C(A,B), we must have
(Bz)l > dl for some l ∈ [m]. By Proposition 5.3, the circuits g(i) from the decomposition
of v − u must be in the minimal face of the restricted elementary arrangement of P
that contains v − u. Let us denote this face by F . Now consider the vectors z − u
and v − z. Since z ∈ Z, we have that z − u =

∑k
i=1 αig

(i) for some αi ∈ [0, 1], i ∈ [k].

Thus, v − z = (v − u)− (z − u) =
∑k

i=1(1− αi)g
(i). As F is a cone and αi ∈ [0, 1] for

all i ∈ [k], this implies that both z − u and v − z are in F . Hence, by Corollary 5.4,
they must be sign-compatible with respect to B. In particular, this means that
(Bz −Bu)l · (Bv −Bz)l ≥ 0. However, (Bu)l ≤ dl and (Bv)l ≤ dl (by the hypothesis
that u, v ∈ P ) whereas (Bz)l > dl. So (Bz − Bu)l > 0 and (Bv − Bz)l < 0, a
contradiction. Thus, Z ⊆ P as desired.

Comparing the properties of the sequence y(0), . . . , y(k) with the definition of a circuit
walk (Definition 5.1), we therefore almost obtained a circuit walk from u to v: All points
are feasible by Lemma 5.5 and the difference of any two consecutive points is a circuit
by construction. The only requirement that may not be met, however, is requirement
(ii) in Definition 5.1, which states that each circuit step in the sequence must be of
maximal length. Sequences that satisfy all of the properties of circuit walks except
possibly the maximality requirement (ii) are referred to as feasible circuit walks (as
opposed to maximal ones) in [36].

We note that the length of such a feasible circuit walk always satisfies the Hirsch
bound of f − d. Indeed, it follows from a careful analysis of our proof of Proposition 5.2
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that for every pair of vertices u, v of a d-dimensional polyhedron P with f facets, the
difference vector v − u can be expressed as a conformal sum of at most d′ circuits of P ,
where d′ is the dimension of the minimal face of the restricted elementary arrangement
containing v − u. Equivalently, d′ is the dimension of the minimal face of P containing
both u and v. Using an argument from [159] (see also [178, 206]), one can show that
d′ ≤ f − d. Namely, if u and v do not share a facet, then f ≥ 2d and therefore
d′ = d ≤ f − d. Otherwise, any facet that contains both u and v can have at most f − 1
facets itself, so d′ ≤ (f − 1)− (d− 1) = f − d by induction on d.

The above discussion suggests the following question: Among all conformal circuit
decompositions of differences of two given vertices, does there always exist one that may
be turned into an actual circuit walk (with steps of maximal length)? Unfortunately,
no, as the following example shows (see also Lemma 1 of [36]).

Example 5.6. Consider the polygon P in Figure 5.1 and the two vertices u and v. The
shaded region R is the intersection of the minimal faces of the (restricted) elementary
arrangement of P that contain v − u and u − v, respectively, when translated over
to u and v, respectively. For every conformal sum of circuits that yields v − u, the
zonotope as defined in the proof of Lemma 5.5 must be contained in R. However, the
only boundary points of P contained in R are u and v, and v − u is not a circuit (as is
easily checked). So starting from either of the vertices u or v, any maximal circuit step
must therefore leave R. ♢

u

v

R

P

Figure 5.1

So to find short circuit walks of maximal step length, other tools are required.

5.2.3 Short Circuit Walks on Polygons

The main tool that we will leverage in this chapter is based on the following simple but
useful fact.

Remark 5.7. The recession cone of every pointed polyhedron is a face of its restricted
elementary arrangement.

This has the following interesting consequence for circuit walks on polytopes. If the
deletion of some inequalities from its linear description makes a polytope P unbounded,
then there is always a single circuit step (of maximal length) from any point in P to
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some point on a facet defined by one of the deleted inequalities. More specifically, we
prove the following statement, which is the key technical lemma of this chapter.

Lemma 5.8. Let P = {x ∈ Rn : Ax = b, Bx ≤ d,B′x ≤ d′} be a polytope such
that Bx ≤ d contains no implicit equations. Suppose that the polyhedron P ′ given by
P ′ := {x ∈ Rn : Ax = b, B′x ≤ d′} is unbounded. Then, for all y(0) ∈ P , there is a point
y(1) on a facet of P defined by an inequality from Bx ≤ d such that y(1) can be reached
from y(0) in at most one circuit step.

Proof. First, note that the restricted elementary arrangement of P is a refinement of that
of P ′ since P ′ is obtained from the linear description of P by omitting inequalities. By
Remark 5.7, the recession cone of P ′ is a face of the restricted elementary arrangement
of P ′. As such, it is a union of faces of the restricted elementary arrangement of P .
Since P ′ is unbounded by hypothesis, the recession cone of P ′ is of dimension at least
one and therefore contains a circuit g of P .

Now let y(0) ∈ P . Then also y(0) ∈ P ′ since P ⊆ P ′. It follows that the ray given by
y(0) + µg for all µ ≥ 0 is contained in P ′ and follows a circuit direction. As the affine
hulls of P and P ′ are the same by hypothesis, this ray is also contained in the affine
hull of P . Since P is bounded but P ′ is not, the ray must therefore intersect a facet of
P defined by one of the inequalities from Bx ≤ d in a point y(1).

Specializing Lemma 5.8 to polygons, we obtain a simple sufficient condition for the
existence of short circuit walks that terminate at one of a specific set of target vertices.

Lemma 5.9. Let P = {x ∈ Rn : Ax = b, Bx ≤ d} be a polygon such that Bx ≤ d
contains no implicit equations, and let V be a subset of its vertices. Further, let
C(P,V) := {x ∈ Rn : Ax = b, B′x ≤ d′}, where the system B′x ≤ d′ consists of all
inequalities from Bx ≤ d that are not tight at any vertex v ∈ V. If C(P,V) is unbounded,
then for all vertices y(0) /∈ V of P there is a circuit walk of length at most 2 from y(0)

to some v ∈ V on P .

Proof. First, note that any vertex v ∈ V can be reached via a single circuit step starting
from any point on an edge of P incident with v. In particular, this is true for the two
adjacent vertices of v. Thus, if every vertex of P is adjacent to a vertex in V, then we
are done, so suppose there exists a vertex y(0) of P that is not adjacent to any vertex in
V . By Lemma 5.8, there is a point y(1) on an edge of P such that y(1) − y(0) is a circuit
of P and the edge that contains y(1) is incident with some vertex v ∈ V. So v can be
reached from y(1) in at most one circuit step.

In particular, Lemma 5.9 guarantees that for every vertex v of a polygon P , there
is always a circuit walk of length at most 2 from any other vertex to v if the omission
of all inequalities that are tight at v would make P unbounded. See Figure 5.2 for a
schematic picture. While the statement and proof of Lemma 5.9 are phrased in terms
of a vertex y(0), the statement remains true for any point in P .

Lemma 5.9 will play a central role in our discussion of Santos’ counterexamples to
the Hirsch conjecture in the next section.
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C(P, {v})

P
v

y(0) y(1)

Figure 5.2: A polygon P with a vertex v and the corresponding polyhedron C(P, {v})
as defined in Lemma 5.9. The recession cone of C(P, {v}) is generated by
the two dashed edge directions. Starting at the vertex y(0), we can follow
any of them to a point y(1) on one of the two edges of P incident with v.
This gives a circuit walk on P from y(0) to v of length 2.

5.3 Bounded Hirsch Counterexamples

In this section, we study the three 5-dimensional spindles S48
5 , S28

5 , and S25
5 that provide

the basis of Santos’ construction for obtaining bounded Hirsch counterexamples. The
key property of these spindles is that their length of 6 strictly exceeds their dimension
5. In contrast, we prove in Section 5.3.1 that their circuit length is at most 5.

Our arguments rely on a careful analysis of certain 2-faces and, as we will see,
extend to all realizations of the spindles that satisfy mild assumptions, including slight
perturbations. As an additional benefit, the arguments also enable us in Section 5.3.2 to
verify directly that neither of the two explicit (high-dimensional) Hirsch counterexamples
from [155], which are specific instances of Santos’ construction, has a circuit length
exceeding the dimension.

5.3.1 The Circuit Length of the 5-Dimensional Spindles

For each of the three spindles S48
5 , S28

5 , and S25
5 , we will show the following: Within

3 edge steps from one apex, one can reach a 2-face that contains the other apex
and satisfies the condition of Lemma 5.9 when deleting all inequalities that are tight
for the other apex. We first explain the arguments in detail for the 5-dimensional
spindle S48

5 with 48 facets and length 6 that Santos’ original counterexample in [170] is
constructed from. Following [170, Theorem 3.1], it is given by the minimal description
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S48
5 = {x ∈ R5 : A+x ≤ 1, A−x ≤ 1} where A+ and A− are the matrices

A+ =





1 ±18 0 0 0 1±

1 0 ±18 0 0 2±

1 0 0 ±45 0 3±

1 0 0 0 ±45 4±

1 ±15 15 0 0 5±

1 ±15 −15 0 0 6±

1 0 0 ±30 30 7±

1 0 0 ±30 −30 8±

1 0 ±10 40 0 9±

1 0 ±10 −40 0 10±

1 ±10 0 0 40 11±

1 ±10 0 0 −40 12±

, A− =





−1 0 0 0 ±18 13±

−1 0 0 ±18 0 14±

−1 ±45 0 0 0 15±

−1 0 ±45 0 0 16±

−1 0 0 15 ±15 17±

−1 0 0 −15 ±15 18±

−1 ±30 30 0 0 19±

−1 ±30 −30 0 0 20±

−1 40 0 ±10 0 21±

−1 −40 0 ±10 0 22±

−1 0 40 0 ±10 23±

−1 0 −40 0 ±10 24±

with 24 rows each, labelled 1± to 24±. We will also use these labels for the corresponding
inequalities and the facets that they define. The two apices of S48

5 are v+ = (1, 0, 0, 0, 0)
and v− = (−1, 0, 0, 0, 0). The spindle S48

5 can equivalently be written as S48
5 = (C+ +

v+)∩(C−+v−) for the two cones C+ = {x ∈ R5 : A+x ≤ 0} and C− = {x ∈ R5 : A−x ≤
0}.
Among the properties of S48

5 listed in [170] are the following two symmetries. They
are direct consequences of the symmetry in the coefficients of A±.

Proposition 5.10 ([170]). The following linear transformations of R5 leave S48
5 invari-

ant:

(i) (x1, x2, x3, x4, x5) 7→ (−x1, x5, x4, x2, x3),

(ii) (x1, x2, x3, x4, x5) 7→ (x1, x3, x2, x5, x4).

We note that the transformation given in Proposition 5.10(i) switches the roles of A+

and A− and of v+ and v−, while (ii) is a permutation of coordinates that preserves the
matrices A± up to reordering rows. With these observations we are now able to bound
the circuit length of S48

5 .

Theorem 5.11. The circuit length of S48
5 is at most 5.

Proof. By Proposition 5.10(i), S48
5 is symmetric under a linear transformation that

sends v+ to v− and vice versa. Hence, from any circuit walk from v+ to v− on S48
5 ,

one can immediately obtain a circuit walk from v− to v+ by applying the same linear
transformation. It therefore suffices to find a circuit walk of length at most 5 in one of
the directions, say from v+ to v−, to prove the statement.
Let F be the 2-face of S48

5 defined by inequalities 15+, 19+, and 21+. Figure 5.3
shows the graph of F , along with shortest paths from v+ to four vertices of F that
are at distance 3 from v+ in the graph of S48

5 (graph computations were done using
Polymake [110]). For this face F , we now claim that the polyhedron C(F, {v−}) as
defined in Lemma 5.9 is unbounded. It then follows from Lemma 5.9 that from either
of the four vertices that are at distance 3 from v+, there is a circuit walk on F to the
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other apex v− of length at most 2. Since circuits of F are also circuits of S48
5 , this

means that there is a circuit walk on S48
5 of length at most 5 from v+ to v−.

To verify that C(F, {v−}) is unbounded, it suffices to show the following property:

Claim (∗). The polyhedron Q given by inequalities 13± to 24± together with 4± is
bounded.

Before we give a proof, let us first argue why the claim implies unboundedness
of C(F, {v−}). The inequalities 13± to 24± and 4± that determine Q must also be
facet-defining for Q since each of them defines a facet of S48

5 and S48
5 ⊆ Q. Let FQ

be the 2-face of Q defined by 15+, 19+, and 21+. Since S48
5 ⊆ Q, we also have that

F ⊆ FQ. Hence, v
− and its two adjacent vertices 4+13+17+23+ and 4−13−17−23− in

Figure 5.3 are also vertices of FQ. Moreover, any edge of FQ that does not contain v−

can only be defined by 4+ or 4− because v− is in all other facets of Q. In fact, both 4+

and 4− define edges of FQ. To see this, note that the (proper) face of FQ defined by 4+

contains an edge of F (namely, the edge between vertices 4+13+17+23+ and 4+11+ in
Figure 5.3) and, hence, must be an edge of FQ itself. A similar argument shows that 4−

defines an edge of FQ, too, which is incident with the vertex 4−13−17−23−. These two
edges of FQ must be distinct as the two vertices 4+13+17+23+ and 4−13−17−23− would
otherwise be adjacent on FQ and therefore also on F ; a contradiction (see Figure 5.3).

Now suppose that Q is bounded. Then FQ is bounded, which means that the two
edges of FQ defined by 4+ and 4− must intersect in a vertex w of FQ. Further observe
that for each vertex of F in Figure 5.3, at most one of the two inequalities 4± is
tight. This means that w cannot be a vertex of F . Thus, FQ has exactly four vertices,
namely v−, 4+13+17+23+, 4−13−17−23−, and w. The first three are also vertices of
F and therefore satisfy all inequalities that define edges of F . Since FQ is bounded
and F ⊆ FQ, any inequality that defines an edge of F but not of FQ must cut off a
vertex of FQ, and that can only be w. Since each edge of C(F, {v−}) is either defined
by 4± or by an inequality that defines an edge of F but not of FQ, the recession cone
of C(F, {v−}) is therefore precisely the 2-dimensional feasible cone of FQ at w. This
means that C(F, {v−}) is unbounded as desired.

It remains to prove Claim (∗). By definition of Q, the recession cone of Q consists
of all vectors x ∈ C− that further satisfy the two facet-defining inequalities 4± for the
cone C+ (with right-hand side 0). Since the two rows 4± of A+ add up to (2, 0, 0, 0, 0),
all vectors x in the recession cone of Q must satisfy x1 ≤ 0. Further, the sum of all
rows 13± to 24± of A− equals (−24, 0, 0, 0, 0). This implies that (−1, 0, 0, 0, 0) is in the
interior of the polar cone of C−. For the linear objective function (−1, 0, 0, 0, 0)⊤x, the
origin 0 is therefore the unique maximizer over C−. Hence, any nonzero vector x ∈ C−

must satisfy x1 > 0. The recession cone of Q therefore only contains 0, which means
that Q must be bounded.

Our proof of Theorem 5.11 exhibits that it is possible to verify that the circuit length
of S48

5 is strictly less than the combinatorial length through the geometry of its 2-faces:
From each of the vertices 7+11+15+19+21+ and 8+12+15+19+21+ in Figure 5.3 (which
are at distance 3 from v+), there is an edge walk of length 3 to v− that stays on the
2-face F . In contrast, two circuit steps suffice to reach v− as shown above.
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4+11+
4+13+17+23+

v−

4−13−17−23−
4−12+

8+12+

8+9+

7+9+

7+11+

v+

1+3+5+7+9+11+15+
5+7+9+11+15+19+

1+3+5+8+9+12+15+
5+8+9+12+15+19+

F : 15+19+21+

Figure 5.3: The subgraph of S48
5 induced by all vertices of the 2-face F defined by

inequalities 15+, 19+, and 21+, and by vertices on a shortest path from v+

to a vertex of F . Vertex labels indicate which inequalities are tight. For the
vertices of F , we omitted the facets containing F from their labels. The
four highlighted vertices are at distance 3 from v+.

We further note that Claim (∗) is the only geometric property of S48
5 used in the proof

of Theorem 5.11. The remainder of the argument does not depend on the particular
realization. Indeed, consider a different realization S̃48

5 whose facets (and facet-defining

inequalities) are labelled 1± to 24± again such that facets of S̃48
5 and S48

5 with the

same label are combinatorially equivalent. Suppose that S̃48
5 satisfies Claim (∗). As an

immediate consequence of the proof of Theorem 5.11, there is a circuit walk of length at
most 5 from one of the apices of S̃48

5 to the other one. However, since S̃48
5 might not be

symmetric under the linear transformation in Proposition 5.10(i), this does not directly
imply the existence of a short walk in the converse direction as well. In order to extend
our bound on the circuit length to S̃48

5 , we require validity of a “symmetric” version of
Claim (∗). More precisely, we obtain the following corollary.

Corollary 5.12. Let S̃48
5 be a realization of S48

5 with facets and facet-defining inequalities
labelled 1± to 24± such that each facet is combinatorially equivalent to the facet of S48

5

with the same label. Suppose that S̃48
5 satisfies both of the following properties:

(i) The polyhedron given by inequalities 13± to 24± together with one of the pairs 3±

or 4± is bounded.

(ii) The polyhedron given by inequalities 1± to 12± together with one of the pairs 15±

or 16± is bounded.

Then the circuit length of S̃48
5 is at most 5.

In particular, Corollary 5.12 applies to all realizations resulting from mild perturba-
tions of S48

5 .

Proof. Under the permutation of coordinates given in Proposition 5.10(ii) (which is
an involution and leaves S48

5 invariant) the pairs of inequalities 3± and 4±, and 15±

and 16± are in correspondence. This means that S48
5 has a 2-face G that is linearly
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isomorphic to the 2-face F from the proof of Theorem 5.11 and satisfies Claim (∗) with
3± instead of 4±. Since any realization of S48

5 has two faces that are combinatorially
equivalent with F and G, respectively, we conclude from the proof of Theorem 5.11
that there is a circuit walk of length at most 5 from the apex not contained in F or G
to the other one on any realization with property (i).

For the converse direction, recall that S48
5 is also invariant under the linear transfor-

mation given in Proposition 5.10(i). For the pairs of facets defined by inequalities 3±

and 4±, the corresponding facets in the image are defined by 15± and 16±. Thus, if we
assume property (ii), the existence of a circuit walk of length at most 5 in the converse
direction follows directly from the proof of Theorem 5.11 again.

For the spindle S48
5 as realized in [170, Theorem 3.1], we are even able to determine

its exact circuit length.

Theorem 5.13. The circuit length of S48
5 is 2.

Proof. Consider again the face F of S48
5 defined by inequalities 15+, 19+, and 21+

from the proof of Theorem 5.11. Let y = (0, 1
45 ,

1
90 ,

1
90 ,

7
360) =

5
8 · 7+11+15+19+21+ +

3
8 · 4+11+15+19+21+ (where we use the vertex labelling of Figure 5.3 to refer to the
corresponding coordinate vectors). By this construction, y is a point in the relative
interior of the edge of F defined by 11+. Moreover, each of the two vectors 360(y−v±) =
(±360, 8, 4, 4, 7) is a circuit: (360, 8, 4, 4, 7) is parallel to the four facets 12−, 15+, 19+,
and 21+; and (−360, 8, 4, 4, 7) is parallel to 11+, 15−, 20−, and 22−. In both cases, it
can be verified by a direct computation that the corresponding rows of A± are linearly
independent. Since the edge of F defined by 11+ neither contains v+ nor v−, the point
y can be reached from either of v± via a circuit step of maximal step length each. We
conclude that both the sequence v+, y, v− and its reverse are circuit walks of length 2.

Further, the vector (v+ − v−)/2 = (1, 0, 0, 0, 0) is not parallel to any facet of S48
5 and

thus cannot be a circuit. Hence, the circuit length of S48
5 is 2.

Santos’ original example constructed from S48
5 is not the lowest-dimensional bounded

Hirsch counterexample known to date. In [155], Matschke, Santos, and Weibel gave two
smaller counterexamples, both of which are constructed from 5-dimensional spindles of
length 6 with 28 and 25 facets, respectively. The first one, S28

5 , from [155, Corollary
2.9] is given by the minimal description S28

5 = {x ∈ R5 : A+x ≤ 1, A−x ≤ 1} for the
matrices

A+ =





1 ±18 0 0 0 1±

1 0 0 ±30 0 2±

1 0 0 0 ±30 3±

1 0 5 0 ±25 4±

1 0 −5 0 ±25 5±

1 0 0 18 ±18 6±

1 0 0 −18 ±18 7±

, A− =





−1 0 0 ±18 0 8±

−1 0 ±30 0 0 9±

−1 ±30 0 0 0 10±

−1 25 0 0 ±5 11±

−1 −25 0 0 ±5 12±

−1 18 ±18 0 0 13±

−1 −18 ±18 0 0 14±

with 14 rows each, labelled 1± to 14±. Again, the two apices are v+ = (1, 0, 0, 0, 0)
and v− = (−1, 0, 0, 0, 0), and we can write S28

5 in the form (C+ + v+) ∩ (C− + v−)
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for the two cones C+ = {x ∈ R5 : A+x ≤ 0} and C− = {x ∈ R5 : A−x ≤ 0}. Our
arguments for bounding the circuit length of S48

5 easily carry over to S28
5 by analyzing

the 2-faces of S28
5 . The following result is the analogous statement to Theorem 5.11

and Corollary 5.12.

Corollary 5.14. The circuit length of S28
5 is at most 5. The same bound holds for all

realizations of S28
5 with facets and facet-defining inequalities labelled 1± to 14± such

that each facet is combinatorially equivalent to the facet of S28
5 with the same label, and

such that

(i) the polyhedron given by inequalities 8± to 14± together with one of the pairs 2±

or 3± is bounded, and

(ii) the polyhedron given by inequalities 1± to 7± together with one of the pairs 9± or
10± is bounded.

Proof. The proof strategy is identical to the proofs of Theorem 5.11 and Corollary 5.12.
We only give the necessary modifications here.

Each apex of S28
5 is contained in a 2-face with a vertex at distance 3 from the other

apex in the graph of S28
5 (see the graphs in Figure 5.4). The pairs of facet-defining

inequalities 2±, 3±, 9±, and 10± now take the role that 3±, 4±, 15±, and 16± took for
S48
5 (cf. Corollary 5.12). Hence, properties (i) and (ii) are the analogues of Claim (∗)

from the proof of Theorem 5.11 (and properties (i) and (ii) in Corollary 5.12) and
are therefore sufficient conditions for the existence of circuit walks of length at most 5
between the apices of any realization of S28

5 .

It remains to show that S28
5 itself satisfies properties (i) and (ii). Note that S28

5 is
not symmetric under the transformations in Proposition 5.10: To switch the roles of
the apices while leaving S28

5 invariant, rows 4± and 5± would have to correspond with
11± and 12±, which is impossible to achieve by permutating coordinates and flipping
signs. Similarly, no permutation of coordinates (except for the identity) preserves A±.
This means that we cannot use the same argument as in the proof of Corollary 5.12 to
reduce all four pairs of inequalities 2±, 3±, 9±, and 10± to just one. However, summing
over all rows of A+ yields (14, 0, 0, 0, 0), which implies that this vector is in the interior
of the polar cone of C+. Similarly, the sum of all rows of A−, which is the vector
(−14, 0, 0, 0, 0), is in the interior of the polar cone of C−. For each of the pairs 2±,
3±, 9±, and 10±, the two corresponding rows of A+ or A− add up to (±2, 0, 0, 0, 0),
respectively. So by the same argument as in the proof of Claim (∗) in the proof of
Theorem 5.11, it then follows that, in fact, all four polyhedra described in (i) and (ii)
are bounded.

As for S48
5 , we are able to establish a circuit length of exactly 2 for the particular

realization of S28
5 in [155, Corollary 2.9].

Theorem 5.15. The circuit length of S28
5 is 2.

Proof. A direct computation shows that the five inequalities 3+, 6+, 10+, 11+, and
13+ define a vertex y = (0, 1

30 ,
2
90 ,

2
90 ,

1
30) of S28

5 (one of the highlighted vertices in
Figure 5.4a). By a direct computation, one can verify that both difference vectors
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v−

2−8−
2−7+

3+7+

3+6+

2+6+
2+8+

v+

1+3+4+6+10+
3+4+6+10+13+

1+3+4+7+10+

3+4+7+10+13+

F : 10+11+13+

(a)

v−

3−6−
3−11−

2+6+

3+6+

1+2+4+6+9+

3+11+

v+

1+2+6+9+13+

2+6−
1+2+4−6−9+

1+2+6−9+13+

F : 8+9+13+

(b)

v−

2+6+10+11+13−

4+9+

10+13+

v+

2+6+10+11+13+

2+8+10+11+13+
9+13+

9−13−
5+9−

10+13−
2+8+10+11+13−

F : 1+2+6+

(c)

1−10−
10−14+

9+14+

9+13+

10+13+
1+10+

v+ v−

3+8+9+11+13+
3+6+8+9+13+

3+8+9+12+14+

3+6+8+9+14+

F : 3+4+6+

(d)

Figure 5.4: Four subgraphs of S28
5 induced by all vertices of a 2-face F and by vertices

on a shortest path from the apex not contained in F to a vertex of F . The
face F is defined by inequalities (a) 10+, 11+, 13+, or (b) 8+, 9+, 13+, or
(c) 1+, 2+, 6+, or (d) 3+, 4+, 6+, respectively. Vertex labels indicate which
inequalities are tight. For the vertices of F , we omitted the facets containing
F from their labels. In each of the graphs (a) to (d), the two highlighted
vertices are at distance 3 from both v+ and v−.
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90(y − v±) = (±90, 3, 2, 2, 3) are circuits: (90, 3, 2, 2, 3) is parallel to facets 3−, 7−, 10+,
and 13+; and (−90, 3, 2, 2, 3) is parallel to 3+, 6+, 10−, and 14−. Hence, v+, y, v− is a
reversible circuit walk of length 2. Since the vector (v+ − v−)/2 = (1, 0, 0, 0, 0) is not
parallel to any facet of S28

5 , it cannot be a circuit of S28
5 . It follows that the circuit

length of S28
5 is 2.

Our framework for bounding the circuit lengths of S48
5 and S28

5 also applies to the
remaining spindle from [155, Theorem 2.14], which has 25 facets and is given by the
minimal description S25

5 = {x ∈ R5 : A+x ≤ 1, A−x ≤ 1} where

A+ =





1 0 0 0 32 1

1 0 0 0 −32 2

1 0 0 21 −7 3

1 0 0 −21 −7 4

1 0 0 20 −4 5

1 0 0 −20 −4 6

1 0 0 16 −15 7

1 0 0 −16 −15 8

1 3
50 − 1

25 0 −30 9

1 − 3
50 − 1

25 0 30 10

1 3
1000

7
1000 0 −159

5 11

1 − 3
1000

7
1000 0 159

5 12

, A− =





−1 60 0 0 0 13

−1 −55 0 0 0 14

−1 0 76 0 0 15

−1 0 −33 0 0 16

−1 44 34 0 0 17

−1 8 −30 0 0 18

−1 −34 36 0 0 19

−1 −2 −32 0 0 20

−1 −20 0 1
5 −1

5 21

−1 2999
50 0 − 3

25 −1
5 22

−1 299999
5000 0 0 1

100 23

−1 −549
10 0 1

5000
1

800 24

−1 −54 0 1
500 − 1

80 25

.

The two apices of S25
5 again are v+ = (1, 0, 0, 0, 0) and v− = (−1, 0, 0, 0, 0). For the

two cones C+ = {x ∈ R5 : A+x ≤ 0} and C− = {x ∈ R5 : A−x ≤ 0}, we can write S25
5

as S25
5 = (C+ + v+) ∩ (C− + v−).

Corollary 5.16. The circuit length of S25
5 is at most 5. The same bound holds for all

realizations of S25
5 with facets and facet-defining inequalities labelled 1 to 25 such that

each facet is combinatorially equivalent to the facet of S25
5 with the same label, and such

that

(i) the polyhedron given by inequalities 13 to 25 together with one of the pairs 1, 2 or
3, 4 is bounded, and

(ii) the polyhedron given by inequalities 1 to 12 together with one of the pairs 13, 14
or 15, 16 is bounded.

Proof. Examples of the relevant 2-faces and their graphs are given in Figure 5.5. Note
that for each such face, the two critical facet-defining inequalities are one of the pairs
1, 2, or 3, 4, or 13, 14, or 15, 16 in (i) and (ii). The proof of the second part of the
statement is therefore analogous to the proofs for S48

5 and S28
5 above (Theorem 5.11

and Corollaries 5.12 and 5.14).
It remains to prove that S25

5 satisfies (i) and (ii). We again follow the proof strategy
for Claim (∗) in the proof of Theorem 5.11. We show that for each of the pairs 1, 2
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and 13, 14, there is a nonnegative linear combination of the two corresponding rows of
A+ or A− whose negative is in the interior of the polar cone of C− or C+, respectively.
It then follows that the respective polyhedra in (i) and (ii) are bounded, since their
recession cones only consist of 0.

To see this, first observe that we can write the vector (−1, 0, 0, 0, 0) as a nonnegative
linear combination of rows 13 and 14 of A−. (In fact, the same holds true for rows
15 and 16.) Further, consider a linear combination of the rows of A+ that assigns
coefficient 21

8 for row 1, 40
7 for rows 11 and 12, and coefficient 1 for all other rows. This

linear combination yields a positive multiple of (1, 0, 0, 0, 0). Since all coefficients are
positive, we conclude that (1, 0, 0, 0, 0) is in the interior of C+.

For rows 1 and 2 of A+, we proceed analogously. Their sum equals (2, 0, 0, 0, 0). To
show that (−2, 0, 0, 0, 0) is in the interior of the polar cone of C−, consider the linear
combination of rows 22, 24, and 25 of A− with coefficients 1, 380, and 22, respectively.
The resulting vector is (−403,−β, 0, 0, 0) where β = 549 · 38 + 54 · 22 − 2999

50 > 0.
Further, the linear combination of rows 16 and 17 of A− with coefficients 34

33·44β and
1
44β, respectively, yields the vector (− 67

33·44β, β, 0, 0, 0). Adding both vectors, we thus
obtain a positive multiple of (−1, 0, 0, 0, 0) from a linear combination of rows 16, 17, 22,
24, and 25 of A− where all coefficients are positive since β > 0. This means that the
vector (−1, 0, 0, 0, 0) is in the interior of the cone generated by rows 16, 17, 22, 24, and
25 of A−. Note that this cone is contained in the polar cone of C−, which is generated
by all rows of A−, and it is full-dimensional since the five rows 16, 17, 22, 24, and 25
are linearly independent. Hence, (−1, 0, 0, 0, 0) must also be in the interior of the polar
cone of C−.

In contrast to the statements of Theorems 5.13 and 5.15 for the other two spindles,
the circuit length of S25

5 as given in [155, Theorem 2.14] is at least 3. This can be
verified computationally by a brute-force enumeration of all points y(1) on the boundary
of S25

5 that can be reached from v− via a single circuit step (S25
5 has 17454 circuits).

For no such point y(1), the vector v+ − y(1) is a circuit direction.

We conclude this section with some remarks on our proofs. For all three spindles S48
5 ,

S28
5 , and S25

5 , the faces given in Figures 5.3 to 5.5 are not the only 2-faces that satisfy
the prerequisite of Lemma 5.9. In fact, we enumerated all 2-faces using Polymake [110]
and found that for each of the three spindles there are 32 such 2-faces that contain
one of the apices (16 for each apex). Each of them is combinatorially equivalent to
one of the examples given in Figures 5.3 to 5.5. Moreover, for any such 2-face, the two
facet-defining inequalities that are relevant for verifying the boundedness condition in
Lemma 5.9 are one of the pairs given in Corollaries 5.12, 5.14 and 5.16.

Finally, our bounds on the circuit length of S48
5 , S28

5 , and S25
5 are robust under mild

perturbations as long as they retain the properties in Corollaries 5.12, 5.14 and 5.16,
respectively. However, we do not know whether, in fact, all realizations of the three
spindles satisfy these properties. We leave this as an open question.
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v−
3 5

2 7

1 5
3 5 9 15 17

3 7

3 7 9 15 17
3 7 9 11 15

v+

2 22

3 5 9 12 15

1 23

F : 15 17 21

(a)

2 7

2 9 v−

2 8 9 13 22

3 7

4 23

8 9

4 8

v+

2 7 9 13 18

3 21

2 7 9 11 13

2 8 9 11 13

F : 13 18 22

(b)

v−16 18

13 22

14 20

18 22
2 8 16 18 22

2 16 18 21 22

2 16 20 21 22

v+

10 14

16 20
2 8 16 20 22

11 13

F : 2 8 9

(c)

v−

16 18

3 13 18 21 23

3 13 17 21 23

13 18

15 17

10 16

v+

3 5 13 18 23

3 5 13 17 23

13 17

12 15

F : 3 5 9

(d)

Figure 5.5: Four subgraphs of S25
5 induced by all vertices of a 2-face F and by vertices

on a shortest path from the apex not contained in F to a vertex of F . The
face F is defined by inequalities (a) 15, 17, 21, or (b) 13, 18, 22, or (c) 2, 8, 9,
or (d) 3, 5, 9, respectively. Vertex labels indicate which inequalities are tight.
For the vertices of F , we omitted the facets containing F from their labels.
In each of the graphs (a) to (d), the highlighted vertices are at distance 3
from the apex not contained in F .
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5.3.2 The Circuit Length of the 20- and 23-Dimensional Hirsch
Counterexamples Satisfies the Hirsch Bound

Santos’ original disproof of the bounded Hirsch conjecture in [170] crucially relies on
finding a degenerate spindle whose (combinatorial) length is greater than its dimension.
We have shown that in the circuit setting, neither Santos’ original spindle S48

5 nor any
of the subsequent improvements S28

5 and S25
5 from [155] meet this requirement: All

three spindles (and slight perturbations thereof) have circuit length at most 5. This
suggests that applying Santos’ construction from [170] to either of them might not yield
a counterexample to the circuit diameter conjecture. In this section, we provide further
evidence for this.

For the two smaller of the three spindles, the steps of Santos’ construction have been
explicitly carried out by Matschke, Santos, and Weibel [155], resulting in inequality
descriptions of two explicit Hirsch counterexamples. Using our arguments developed in
Section 5.3.1, we may even verify that the circuit length of these two explicitly given
spindles is indeed at most their dimension. To see how our techniques also apply here,
we first explain Santos’ construction in more detail. As the original construction in
[170] is stated in terms of prismatoids, the polar duals of spindles, we briefly repeat it
in the language of spindles here.

Let Sf
d ⊆ Rd be a d-dimensional spindle with f facets and length l where f > 2d and

l > d. We denote the apices of Sf
d by u and v. Since f > 2d, at least one of the apices,

say u, is degenerate. Now choose an arbitrary facet F of Sf
d that contains the other apex

v and perform the following wedge operation: Let H+ and H− be two (non-parallel)

hyperplanes in Rd+1 such that each of them intersects the interior of Sf
d × R ⊆ Rd+1

and H+ ∩H− ⊇ F × {0}. For the two polyhedra W± given by W± = (Sf
d × R) ∩H±,

we then define WF (S
f
d ) = conv(W+ ∪W−). Note that by construction, W± are affinely

equivalent embeddings of the spindle Sf
d into the two hyperplanes H±. Hence, WF (S

f
d )

is a polytope again. We call WF (S
f
d ) a wedge (on Sf

d ) over the facet F . See Figure 5.6
for an illustration of the wedge operation. Note that this operation can increase the
circuit diameter by at most one [39].

The wedge WF (S
f
d ) has f +1 facets in dimension d+1 and is almost a spindle: Each

facet either contains the vertex (v, 0) or the edge between u+ and u−, where u± denotes

the apex of W± distinct from (v, 0). To get a spindle from WF (S
f
d ), we carefully perturb

the facets of WF (S
f
d ) that contain the edge between u± so as to make an interior point

of this edge become a vertex (the new apex; see Figure 5.6c). If the perturbation is

done appropriately as described in [170], the resulting spindle Sf+1
d+1 has length at least

l + 1. In fact, by the proof of Theorem 2.6 in [170], carefully perturbing a single facet
suffices to increase the length as desired.

If this wedge-plus-perturbation operation is iteratively applied f − 2d times to Sf
d ,

we obtain an (f − d)-dimensional spindle S2f−2d
f−d with 2f − 2d facets and length at least

l + f − 2d. So if l > d, then the length of S2f−2d
f−d exceeds f − d, which means that the

spindle S2f−2d
f−d violates the Hirsch conjecture.
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u

v

FSf
d

(a)

u+

u−

ṽ = (v, 0)

F × {0}WF (S
f
d )

W+

W−

(b)

ũ

ṽ

Sf+1
d+1

u−

(c)

Figure 5.6: (a) The initial spindle Sf
d is degenerate (the orange line at u indicates an

“extra” facet incident with u). (b) By wedging over a facet F that contains

the other apex v, we obtain the wedge WF (S
f
d ) with two facets W± that

are affinely equivalent with Sf
d . The adjacent vertices u± now correspond

to the apex u of Sf
d . (c) By perturbing the orange facet of the wedge, we

get a spindle Sf+1
d+1 with apices ũ and ṽ.

In [155], Matschke, Santos, and Weibel explicitly built and computationally checked
two Hirsch counterexamples resulting from S28

5 and S25
5 via Santos’ construction de-

scribed above. The resulting spindles are of length 24 and 21 in dimension 23 and 20,
respectively (see also [3] for a recent formal verification). The authors remark that
carrying out the steps of the construction in such a way that the length indeed increases
as desired was computationally feasible only for the two smaller spindles S28

5 and S25
5

and not for S48
5 (see also Santos’ remark in Section 1 of his paper [170]). For those two

spindles, we verified computationally that our proof technique from Section 5.3.1 for
bounding their circuit length also transfers to the explicit counterexamples themselves
obtained by Matschke, Santos, and Weibel.

Using the inequality descriptions and vertex adjacencies provided in [155, 198], we
found that slight perturbations of the 2-faces in Figures 5.4 and 5.5 still appear as
2-faces (with the same combinatorics) after the final wedge-plus-perturbation step.
Furthermore, our computations show that on the final spindle, the length of a shortest
edge walk from each apex to those 2-faces increases by exactly the number of times we
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wedge over a facet that contains the apex. For instance, the 20-dimensional explicit
counterexample from [155, Theorem 1.3] based on S25

5 has a 2-face that is a perturbed
equivalent of the 2-face in Figure 5.5c. The original face of S25

5 could be reached within
3 edge steps from one apex, and the other apex was a vertex of the face already. Now,
in dimension 20, the equivalent face can be reached within 3 + 8 = 11 edge steps from
one apex, and its vertex that was the other apex in dimension 5 now is at distance
7 from the new apex. The perturbations applied by Matschke, Santos, and Weibel
are small enough for the properties (i) and (ii) in Corollary 5.16 to still hold. By our
arguments in Section 5.3.1, this means that there is a circuit walk of length at most 2
on the perturbed 2-face that connects the two edge walks to and from the face to give a
circuit walk of total length at most 11 + 2 + 7 = 20. Also for the other 2-faces of S25

5 in
Figure 5.5 and those of S28

5 in Figure 5.4, we verified computationally that the length 5
circuit walks via those faces can be extended in a completely analogous way to obtain
circuit walks of the desired length in higher dimension. As an immediate consequence
of these observations, we obtain the following corollaries.

Corollary 5.17. The circuit length of the 20-dimensional spindle with 40 facets given
in [155, Theorem 1.3] is at most 20.

Corollary 5.18. The circuit length of the 23-dimensional spindle with 46 facets given
in [155, 198] is at most 23.

We stress that these two explicit Hirsch counterexamples result from a particular
sequence of wedge-plus-perturbation operations applied to S25

5 and S28
5 , respectively.

However, the steps of Santos’ construction are not uniquely determined: The choice
of the facet to wedge over is arbitrary (as long as it contains the right apex), and so
is the choice of the facet that is perturbed. Different choices may lead to different
counterexamples. Nonetheless, our arguments from Section 5.3.1 allow us to make the
following observation: Regardless of how the steps of Santos’ construction applied to
S28
5 or S28

5 are executed, the 2-faces that our circuit length bounds for the 5-dimensional
spindles crucially relied on will be preserved up to slight changes.
To see this, consider the first wedge on S25

5 (or S28
5 ) over an arbitrary facet (both

apices are degenerate). Let us denote the two facets that are affinely equivalent with
S25
5 by W± with apices v and u±, as in the sketch in Figure 5.6b. Thus, all 2-faces of

S25
5 in Figure 5.5 also appear as 2-faces of W± (up to an affine transformation). If we

now perturb a facet according to Santos’ construction (one of the facets that contains
u±), then one of the vertices u±, say u+, must be cut off in order to get a spindle again
(cf. Figure 5.6c). Note that the only degenerate vertices of S25

5 , and therefore of W+,
are the apices (this can be verified computationally, e.g., using Polymake [110]). So by
a slight perturbation of the chosen facet, a 2-face of W+ that contains u+ will either be
slightly perturbed without changing the combinatorics, or it will become a 2-face where
combinatorially the only change is that u+ is replaced with two new, adjacent vertices
(the edge between them must then be defined by the perturbed facet). Moreover, 2-faces
of W+ that do not contain u+ are unaffected (up to slight perturbations) since the
facet that we perturb contains u+. In either case, Lemma 5.9 guarantees that on the
resulting 2-face, two circuit steps still suffice to reach a vertex that corresponds to the
apex of S25

5 contained in the corresponding face of S25
5 .
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The above observation also applies to S28
5 by noting that all vertices of S28

5 other
than the apices are non-degenerate. However, this is not true for the vertices of S48

5 .
Therefore, we cannot directly conclude that any wedge-plus-perturbation operation
according to Santos’ construction will preserve the 2-face in Figure 5.3 or its symmetric
equivalents in the proofs of Theorem 5.11 and Corollary 5.12.

We conclude this chapter by providing some more context on the role that spindles
and their circuit length may play for resolving the circuit diameter conjecture.

5.4 Further Notes on Circuit Lengths and Circuit
Diameters

In the previous section, we proved that the circuit length of the spindles used by Matschke,
Santos, and Weibel [155, 170] to build counterexamples to the Hirsch conjecture is at
most their dimension. Our results suggest the following question:

Question 5.19. Is the circuit length of every d-dimensional spindle at most d?

An answer to Question 5.19 is not known, not even for d-dimensional spindles
with exactly 2d facets (see Conjecture 3.8 of [39]). These so-called Dantzig figures
[145] are intersections of two d-dimensional simplicial cones. Recall that all Hirsch
counterexamples obtained via Santos’ construction from [170], in particular the ones
from [155] that we analyzed in Section 5.3.2, are indeed Dantzig figures – and the fact
that they are Hirsch counterexamples is precisely due to their large length. In fact, this
is no coincidence: In the same paper [145] that contains their counterexample to the
unbounded Hirsch conjecture, Klee and Walkup proved that a number of seemingly more
specialized variants of the Hirsch conjecture all are equivalent to the original statement
of the conjecture. More precisely, they consider the so-called d-step conjecture, which
is the Hirsch conjecture specialized to d-dimensional polyhedra with 2d facets. The
other equivalent conjecture from [145] asks whether the combinatorial length (not the
diameter) of d-dimensional Dantzig figures is bounded by d.

Each of these two variants of the Hirsch conjecture naturally has a circuit counterpart,
as considered by Borgwardt, Stephen, and Yusun [39]. They showed that the circuit
diameter conjecture is equivalent to its d-step variant. Whether this is also true for the
circuit version of the Dantzig figure variant of the Hirsch conjecture is not known [39].
More generally, it is open whether answering Question 5.19 in the positive is sufficient
to prove the circuit diameter conjecture.

As for Question 5.19 itself, note that any spindle whose circuit length exceeds the
dimension must be at least 5-dimensional, since spindles up to dimension d ≤ 4 are
known to have (combinatorial, and thus also circuit) length at most d [172]. In fact, by
leveraging Lemma 5.8 once again, we may give a partial answer to Question 5.19 for a
large class of spindles in any dimension. Recall that a spindle with apices u and v is of
the form (C + u) ∩ (−D + v) for two pointed cones C and D. If one of these cones is
contained in the other one, there is always a short circuit walk from the apex of the
wider cone to that of the narrower one:
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Theorem 5.20. Let P be a d-dimensional spindle with apices u and v, given by
P = (C + u) ∩ (−D + v) for two pointed cones C and D. If D ⊆ C, then there is a
circuit walk of length at most d from u to v on P .

Theorem 5.20 easily follows from an inductive application of Lemma 5.8. For the sake
of the following proof, we extend the definition of a circuit walk given in Section 5.1 to
arbitrary feasible starting points (not just vertices), as in [39].

Proof of Theorem 5.20. We will prove the following stronger statement.

Claim. Let F be a face of P with v ∈ F . For any starting point y(0) ∈ F , there is a
circuit walk of length at most dim(F ) from y(0) to v on F .

This clearly implies the statement of the theorem for the choice F = P and y(0) = u.
We prove the claim by induction on the dimension of F . If F = {v}, there is nothing to
prove. So suppose that dim(F ) ≥ 1, and let C = {x : Ax ≤ 0} and D = {x : Bx ≤ 0}
be minimal linear descriptions of the cones C and D for two matrices A and B. Then
F is obtained from the linear description of P = {x : A(x − u) ≤ 0, B(x − v) ≥ 0}
by changing some of the inequalities in B(x − v) ≥ 0 to equations. Let B′ be the
maximal row submatrix of B such that B′(x− v) = 0 for all x ∈ F . We now define the
polyhedron Fv := {x : A(x − u) ≤ 0, B′(x − v) = 0}. Note that Fv is obtained from
F by omitting all inequalities that are tight for v, since all those are facet-defining
inequalities for the cone −D + v.

We claim that Fv is unbounded. Then, by Lemma 5.8, we know that for any y(0) ∈ F ,
there is a facet G ∋ v of F and a point y(1) ∈ G such that y(1) can be reached from y(0)

in at most one circuit step, using a circuit of F . By the induction hypothesis, there is
a circuit walk of length at most dim(G) = dim(F )− 1 from y(1) to v on G. Together
with the first step from y(0) to y(1), this yields a circuit walk of length at most dim(F )
from y(0) to v on F as desired. Note that all steps follow circuit directions of F since
circuits of G are also circuits of F .

It remains to show that Fv is indeed unbounded. Note that the feasible cone of F at
v is given by {x ∈ −D : B′x = 0}. Since D ⊆ C by hypothesis, it follows that

{x ∈ D : B′x = 0} ⊆ {x ∈ C : B′x = 0} = {x : Ax ≤ 0, B′x = 0} = rec(Fv).

In other words, the recession cone of Fv contains the negative of the feasible cone of
F at v, which is at least one-dimensional by the hypothesis that dim(F ) ≥ 1. This
concludes the proof of the claim.

A refined version of Theorem 5.20 plays a central role for bounding the lengths of
monotone circuit walks in [21]. These are circuit walks for which each step is strictly
increasing with respect to some given linear objective function. Note that edge walks
traced by the Simplex method must be monotone. Motivated by this, a stronger
version of the Hirsch conjecture asks whether for all linear objective functions c over
a d-dimensional polyhedron with f facets, there is a monotone edge walk of length
at most f − d from any vertex to a vertex maximizer of c. This so-called monotone
Hirsch conjecture is false: Todd [191] found a 4-dimensional polytope with 8 facets
and a linear objective function such that 5 monotone steps are required to reach the
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unique maximizer from a particular starting vertex. Interestingly, the Todd polytope is
a spindle and those two vertices, the starting vertex and the maximizer, are its apices.
One may refine Theorem 5.20 to prove that, in this case, there is a monotone circuit
walk of length at most 4. With extra work, one can even show that short monotone
circuit walks exist for all vertices and across all linear objective functions, proving that
Todd’s counterexample is not a counterexample to the monotone version of the circuit
diameter conjecture. This is elaborated in [21].

Finally, let us remark that resolving the circuit diameter conjecture may shed some
light on why the Hirsch conjecture is false [36, 39]. As explained in Section 5.1, every
edge walk is a circuit walk. The only way in which circuit walks truly generalize edge
walks is the larger set of directions that they are composed of. All other properties of
edge walks (feasibility, maximality of step lengths) are maintained. This means that, if
the circuit diameter conjecture were true, then it would be the more restrictive directions
that force longer walks in the combinatorial setting. On the other hand, if not even the
circuit diameter satisfied the Hirsch bound, the reason for this would be the maximality
of steps: Recall from Section 5.2.2 that, by virtue of the sign-compatible representation
property of circuits, one may always find feasible circuit walks that satisfy the Hirsch
bound of f − d, between any pair of vertices of a given polyhedron, when non-maximal
circuit steps are allowed.





Appendix A

Polyhedral Theory

Here, we briefly summarize some relevant results from polyhedral theory. An extensive
treatment can be found, e.g., in [174, 206].

Polyhedra. A polyhedron in Rn is a set of the form P = {x ∈ Rn : Bx ≤ d} for some
matrix B ∈ RmB×n and some vector d ∈ RmB . The linear system Bx ≤ d is a linear
description of P . Inequalities from Bx ≤ d that are tight (i.e., satisfied at equality) for
all x ∈ P are called implicit equations. We may therefore represent any polyhedron
P ⊆ Rn by a system of the form Ax = b, Bx ≤ d for A ∈ RmA×n, B ∈ RmB×n and
b ∈ RmA , d ∈ RmB , where Bx ≤ d contains no implicit equations. If no constraint in
Ax = b, Bx ≤ d can be removed from the system without changing its set of solutions,
we call this system a minimal (or irredundant) linear description of P . Every polyhedron
has a minimal linear description.

The affine hull of a polyhedron P ⊆ Rn, denoted by aff(P ), is the intersection of
all affine subspaces of Rn containing P . We call its dimension the dimension of P ,
denoted by dim(P ) (where dim(∅) = −1 by convention). If P is given by a minimal
linear description P = {x ∈ Rn : Ax = b, Bx ≤ d}, then aff(P ) = {x ∈ Rn : Ax = b}
and dim(P ) = n− rk(A).

The relative interior of a polyhedron P is the interior of P with respect to its affine
hull aff(P ).

Faces. Let P ⊆ Rn be a polyhedron. A linear inequality a⊤x ≤ β with a ∈ Rn, β ∈ R
is valid for P if P is contained in the halfspace {x ∈ Rn : a⊤x ≤ β}. The intersection
of P with the corresponding hyperplane {x ∈ Rn : a⊤x = β} is a face of P . Each
face of P is a polyhedron again. If P is pointed, then the minimal faces are those of
dimension zero; they are called vertices. One-dimensional faces are called edges and the
faces of dimension dim(P )− 1 are the facets of P . The polyhedron P itself is a face,
too; all other faces are called proper. Every proper face is the intersection of all facets
containing it. k-dimensional faces are often simply called k-faces. Two vertices u and v
are adjacent if conv{u, v} is an edge.

Every vertex of a d-dimensional polyhedron is contained in at least d facets. A vertex
is called non-degenerate if it is contained in the minimum number of d facets, and
degenerate otherwise.

Recession Cone and Lineality Space. A cone is a set C ⊆ Rn such that λx+µy ∈ C
for all x, y ∈ C and all λ, µ ∈ R≥0. Such a cone C is generated by some set R ⊆ Rn

if all vectors in C can be expressed as finite linear combinations of vectors in R with
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nonnegative coefficients (so-called nonnegative linear combinations). If R is a finite set,
C is said to be finitely generated. A cone that is generated by linearly independent
vectors is called simplicial.

Cones of the form C = {x ∈ Rn : Ax ≤ 0} for some matrix A with n columns are
called polyhedral cones. All cones encountered in this thesis are polyhedral. A ray in Rn

is a set of the form {x+ µg : µ ∈ R≥0} for some nonzero vector g ∈ Rn (the direction of
the ray) and x ∈ Rn. The recession cone of a polyhedron P ⊆ Rn, denoted by rec(P ),
is the cone consisting of all directions of rays contained in P , i.e.,

rec(P ) := {g ∈ Rn : x+ µg ∈ P for all x ∈ P and all µ ∈ R≥0} .

The lineality space of P , denoted by ls(P ), is the linear subspace of Rn consisting of all
directions of lines contained in P , i.e.,

ls(P ) := {g ∈ Rn : x+ µg ∈ P for all x ∈ P and all µ ∈ R} .

If the polyhedron P is given by P = {x ∈ Rn : Ax = b, Bx ≤ d}, then rec(P ) =
{x : Ax = 0, Bx ≤ 0} and ls(P ) is the kernel of the matrix

(
A
B

)
. In particular, rec(P )

is a polyhedral cone. P is said to be pointed if it contains no line, i.e., if ls(P ) = {0}.
Equivalently, P is pointed if and only if

(
A
B

)
has full column rank. Clearly, if P is

pointed, so is rec(P ).
Pointed polyhedral cones have a unique vertex at the origin 0. Their one-dimensional

faces are called extreme rays. For a pointed polyhedron P , the extreme rays of rec(P )
are also referred to as the extreme rays of P .
Given a vertex v of a pointed polyhedron P = {x ∈ Rn : Ax = b, Bx ≤ d}, let

B′x ≤ d′ be the subsystem of Bx ≤ d consisting of all inequalities that are tight for
v. Then the cone {x ∈ Rn : Ax = 0, B′x ≤ 0} is called the feasible cone of P at v. Its
extreme rays are generated by the directions of all edges of P that are incident with v.
All feasible cones of P are of the same dimension, namely dim(P ).

Polytopes. A polytope in Rn is the convex hull of a finite set of vectors in Rn. If these
vectors are in {0, 1}n, the polytope is a 0/1 polytope. A special case is the standard
hypercube (or simply 0/1 cube) given by conv({0, 1}n) = [0, 1]n. Two-dimensional
polytopes are called polygons. The convex hull of affinely independent vectors is a
simplex. A simplex with n+ 1 vertices is sometimes called an n-simplex. Hypercubes,
simplices, and polygons are simple polytopes, i.e., all their vertices are non-degenerate.

The Minkowski sum of two sets X,Y ⊆ Rn is defined as X +Y := {x+ y : x ∈ X, y ∈
Y }. The theorem of Minkowski-Weyl states that every polyhedron P is the Minkowski
sum of a polytope and a finitely generated cone. In particular, any pointed polyhedron
P can be expressed as P = conv(V(P ))+ rec(P ), where V(P ) denotes the set of vertices
of P . This implies that polytopes are exactly the bounded polyhedra.

Two polytopes P and Q are combinatorially equivalent if there is a bijection between
their vertices that preserves the vertex sets of facets. So we may collect polytopes
into equivalence classes (combinatorial types), which are sometimes referred to as
combinatorial polytopes. A realization of a combinatorial polytope is a particular
embedding with concrete vertex coordinates in some space. In this thesis, a realization
of a (geometric, not combinatorial) polytope P simply refers to any other polytope Q
which is combinatorially equivalent to P .
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Polarity. Given a set X ⊆ Rn, the polar (or polar dual) of X is the set X◦ := {y ∈
Rn : x⊤y ≤ 1 for all x ∈ X}. If P is a polytope which contains the origin 0 in its
interior, then P ◦ is a polytope again and (P ◦)◦ = P . Moreover, suppose that P is given
by P = {x ∈ Rn : Bx ≤ d}, then P ◦ is the convex hull of all row vectors of B. So the
vertices and facets of P are in bijection with the facets and vertices of P ◦. For example,
the polar of an n-simplex is an n-simplex again.

Polarity for cones plays a central role in LP duality. Given a cone C ⊆ Rn, its polar
(the polar cone of C) is of the form C◦ = {y ∈ Rn : x⊤y ≤ 0 for all x ∈ C}. If C is a
polyhedral cone of the form C = {x ∈ Rn : Ax ≤ 0}, then the polar cone of C is the
cone generated by the rows of A. For a polyhedron P and any given linear objective
function c, a vertex v of P is a maximizer of c over P if and only if c is in the polar
cone of the feasible cone of P at v (also called the normal cone of P at v). Moreover, v
is the unique maximizer if c is in the relative interior of the normal cone.

Integral Polyhedra. A polyhedron P ⊆ Rn is said to be integral if P = conv(P ∩Zn).
Equivalently, P is integral if and only if all nonempty faces of P contain integral points.
In particular, integral polytopes are precisely those for which all vertices are integral.
Another sufficient and necessary condition for a polyhedron P to be integral, which is
used in Chapter 2, is that max{c⊤x : x ∈ P} ∈ Z for all integral vectors c for which the
maximum is finite.
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[60] G. Cornuéjols. Combinatorial Optimization: Packing and Covering. SIAM,
Philadelphia, 2001. (Cited on pages 16, 17, 22, 26, 34, 36, 38, 44, 45, 47, 49, 51.)
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