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Abstract

We introduce a dynamic p-Laplacian, a generalization of the dynamic Laplacian
introduced by Froyland, in a similar way that the well-known p-Laplacian is derived
from the standard 2-Laplacian. This p-Laplacian has connections to a geometric
problem called the Cheeger problem. These get more pronounced as p approaches
1. We transfer known results about these connections to the dynamic setting, study
an associated numerical approximation, and perform numerical experiments.

Zusammenfassung

Wir führen einen dynamischen p-Laplace als Verallgemeinerung des von Froy-
land eingeführten dynamischen Laplaces ein, ähnlich zur bekannten Konstruktion
des p-Laplace-Operators aus dem klassischen 2-Laplace-Operator. Dieser p-Laplace
lässt sich mit einem geometrischen Problem, dem Cheeger-Problem, in Verbindung
bringen. Für p nahe 1 wird diese Verbindung ausgeprägter. Wir übertragen bekannte
Resultate darüber auf den dynamischen Fall, untersuchen damit verbundene nume-
rische Approximation und führen numerische Experimente durch.
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Chapter 1

Introduction

Dynamical systems often exhibit complex behavior. A prominent example of this are
systems that one encounters in fluid dynamics, which commonly show complicated phe-
nomena where mixing and turbulence is combined with the appearance of long-lived,
coarse structures. In this thesis, we seek to sharpen a tool that was developed to help
understand such systems: The dynamic Laplacian ∆D introduced by Froyland in [Fro15].
Our approach is to combine this generalization of the standard Laplacian with another
one, namely the p-Laplacian ∆p.

The goal is to introduce and understand a dynamic p-Laplacian ∆D
p . This is motivated

by known theory about connections between ∆p and a certain geometric problem, the so-
called Cheeger problem. These connections get more pronounced as p→ 1, and we hope
to encounter similar behavior in the dynamic p-Laplacian ∆D

p . Ultimately, we try to
improve the dynamic Laplacian as a tool for understanding nonautonomous dynamical
systems.

In this chapter, we will elaborate on the preceding paragraphs with increasing detail,
introducing the objects at play and touching some known theory about them. Chapter 2
is dedicated to introducing the dynamic p-Laplacian ∆D

p and establishing some properties
analogous to the known theory for ∆p. Chapter 3 treats numerical approximation of
the relevant associated nonlinear eigenvalue problem and Chapter 4 contains numerical
experiments about the connections between this eigenvalue problem and the Cheeger
problem.

The results of this thesis have partially been published in [DFJK23] in collaboration
with Oliver Junge, Gary Froyland and Péter Koltai.

1.1 Outline
We give a more detailed but still informal description of the setup that motivates this
thesis. Formal introductions will be given in Sections 1.2 to 1.5.

Say we are given some (Riemannian) manifold M and a one-parameter family of
volume-preserving diffeomorphisms Tt : M →M , describing, for example, an incompress-
ible fluid in motion. In order to gain a coarse description of transport of material within
that system, a wide range of schemes has been developed [Had+17], which try to find
structures that exhibit some kind of coherence over long periods of time. The question of
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1.1. OUTLINE

what a good exact notion of coherence constitutes, has been the subject of debate, and
there are different approaches in characterizing it. We will touch this briefly in Section 1.2;
here we only present the approach that motivates this thesis:

In [Fro15], Froyland proposed to measure coherence of a set by averaging the ratio
of its perimeter and its volume over the course of the dynamics. Denoting by ℓk the
k-dimensional Hausdorff measure and a subset of M by D, this ratio is

ℓd−1(∂D)
ℓd(D) .

It is a well-known quantity that is sometimes called the Cheeger ratio of D [Leo15]. The
notion of coherence proposed by Froyland1 says that a coherent set should on average
have a small Cheeger ratio, i.e.

1
L

∫ L

0

ℓd−1(∂(Tt(D)))
ℓd(Tt(D)) dt =

1
L

∫ L
0 ℓd−1(∂(Tt(D))dt

ℓd(D)

should be small if we are to call D a coherent set. This penalizes filamentation but also
rules out very small sets, as the volume of the boundary scales with a smaller order than
the volume of the interior:

Small Cheeger ratio Big Cheeger ratios

It is often enough to only average the Cheeger ratio over the start time t = 0 and end
time t = L. (In most cases, the Cheeger ratio is unlikely to decrease substantially once it
becomes big). The simplified quantity to minimize then becomes

1
2
ℓd−1(∂D) + ℓd−1(∂(T (D)))

ℓd(D) ,

where T := TL is the flow Tt at time t = L. Figure 1.1 illustrates sets having small and
big averaged Cheeger ratios. We see a set as coherent if both its Cheeger ratios at time
t = 0 and at time t = L are small. This produces the geometric problem that we deal
with in this thesis (we will state this more formally in Definition 2.2.1):

Problem 1.1.1 (informal). Given a manifold M and a volume-preserving diffeomorphism
T : M →M , find a subset D ⊂M that minimizes the dynamic Cheeger ratio

ℓd−1(∂D) + ℓd−1(∂(T (D)))
2ℓd(D)

under all subsets of M .
1using the “Dirichlet” version from [FJ18, Section 2.2]; see Section 1.2.3 for details.
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CHAPTER 1. INTRODUCTION

D

T (D)

small big

Figure 1.1: Illustration of sets having small (left) and big (right) average Cheeger ratio.
We are looking for sets where it is small.

If T = id is the identity, Problem 1.1.1 reduces to the well-known isoperimetric problem
called the Cheeger problem, which asks for the minimum of the Cheeger ratio

ℓd−1(∂D)
ℓd(D) .

Sets that minimize the Cheeger ratio are called Cheeger sets of M , and the value of their
Cheeger ratio is called the Cheeger constant h(M). Problem 1.1.1 is a true generalization
of this, which we will call the dynamic Cheeger problem, following the naming convention
of [Fro15]. Solutions of the dynamic Cheeger problem will be called dynamic Cheeger sets
and their dynamic Cheeger ratio determines the dynamic Cheeger constant hD(M,T ).
Sometimes, we will denote the situation T = id as the classical or static case.

It is well known that the (classical) Cheeger problem is equivalent to a variational
problem. By the Federer-Fleming theorem [FF60; Cha01; Leo15] the Cheeger constant
h(M) coincides with the so-called Sobolev constant

s(M) = inf
u̸=0

∥∇u∥1

∥u∥1
(1.1)

(we will later deal with the exact function space over which the infimum can be taken).
Further, we can recover a solution for the Cheeger problem from a minimizer u of
∥∇u∥1/∥u∥1 (where, in the limit, one has to define the gradient distributionally in the
space of functions bounded variation, see Section 1.3): it can be shown that superlevel
sets of u must be Cheeger sets [Par11]. Under the right circumstances, u is in fact a
suitably scaled characteristic function on a Cheeger set.

The L1 variational problem (1.1) is generally hard to solve numerically without certain
regularizations [FP03]. It becomes easier to solve if one replaces ∥ · ∥1 with ∥ · ∥2

2. The
new quantity

λ2 := inf
u̸=0

∥∇u∥2
2

∥u∥2
2

(1.2)
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1.1. OUTLINE

coincides with the smallest eigenvalue of −∆ with Dirichlet boundary conditions, and a
minimizer of (1.2) is given by its first eigenfunction. At the same time, λ2 is connected
to h(M) via the well-known Cheeger inequality

h(M) ≤ 2
√
λ2.

Froyland generalized these results to a dynamic setting, introducing a dynamic Sobolev
constant

sD(M,T ) := inf
u̸=0

∥∇u∥1 + ∥∇(T∗u)∥1

2∥u∥1
(1.3)

(where T∗u := u ◦ T−1 is the transfer operator) and proving a dynamic Federer-Fleming
theorem stating that h(M,T ) = s(M,T ). He also generalized the Cheeger inequality to
a dynamic Cheeger inequality, showing2 that

hD(M,T ) ≤ 2
√
λD

2 ,

where λD
2 arises as the first Dirichlet eigenvalue of the so-called dynamic Laplacian

∆D := 1
2(∆ + T ∗∆T∗).

In the above expression, T ∗ is the dual of the transfer operator T∗ and maps a function f
to T ∗f = f ◦ T . This first eigenvalue λ2 also arises in a variational problem, namely

λD
2 = inf

u̸=0

∥∇u∥2
2 + ∥∇(T∗u)∥2

2
2∥u∥2

2
. (1.4)

As in the static case, the eigenvalue problem for ∆D is easier to solve numerically than
the L1 problem, e.g. by finite element methods [FJ18; SFJ20], or radial basis functions
[FJ15].

The effect of replacing ∥ · ∥1 with ∥ · ∥2
2 We will illustrate3 heuristically how the

minimizer of the modified variational problem

inf
u̸=0

∥∇u∥2
2

∥u∥2
2

relates to a minimizer of (1.1) in the example of the unit square M = [0, 1]2 ⊂ R2. It can
be shown that the Cheeger constant of [0, 1]2 is

h([0, 1]2) = 2 +
√
π ≈ 3.772 . . .

and the Cheeger set of M is unique and coincides with a square with rounded corners of
radius

R = 1
h([0, 1]2) ≈ 0.265 . . .

(see Example 1.3.6). In this setting, it can be shown [e.g. Par11] that a minimizer u in
(1.1) is a multiple of the characteristic function χD on a Cheeger set D (see Figure 1.2).
In particular, all of its superlevel sets

At := {x ∈M | u(x) > t}, (t > 0)
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CHAPTER 1. INTRODUCTION
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Figure 1.2: A minimizer u of the variational problem in (1.1) on the unit square [0, 1]2.
the Cheeger set of [0, 1]2 is indicated in yellow, its boundary in red (figure also appears
in [DFJK23]).

are Cheeger sets.
In contrast, if we replace ∥·∥1 by ∥·∥2

2, a minimizer coincides with the first eigenfunction
of −∆ on M with Dirichlet boundary conditions, which is (see also Figure 1.3)

u2(x) = sin(πx1) sin(πx2).

The level sets of u2 are more distributed in M , although the superlevel set with the best
Cheeger ratio is close to the actual Cheeger set. Informally speaking, one can hope that
by having made ∥∇u∥2

2/∥u∥2
2 small, one forces the Cheeger ratios of the superlevel sets to

be not too big on average. This heuristically explains u2 as a somewhat smoothed version
of χD.
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Figure 1.3: The first eigenfunction u2 of ∆ on [0, 1]2 with Dirichlet boundary conditions
(left) and the boundaries of its superlevel sets (right). The boundary of the superlevel set
with the lowest Cheeger ratio is indicated in red (figure also appears in [DFJK23]).

However, the variational problems (1.1) and (1.4) are still different problems, and
there is no tight bound on the Cheeger ratios of individual level sets.

The goal of this thesis In this thesis, we seek to investigate what happens if one tries
to bridge the gap between ∥ · ∥1 and ∥ · ∥2

2 by considering ∥ · ∥p
p with 1 < p < 2 in the

variational problem (1.4).
2for the Dirichlet case this was done in [FJ18]
3in a similar way to the introduction of [DFJK23]
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1.1. OUTLINE

In the classical case, there are known results describing what happens. The variational
problem is solved by the first eigenfunction of a nonlinear operator, the p-Laplacian ∆p,
i.e., the a solution of the nonlinear eigenvalue problem

−∆pu = λ|u|p−2u

with minimal λ (see Section 1.4). The corresponding minimal eigenvalue λp of ∆p con-
verges to h(M) for p→ 1 (see Section 1.5). Under the right conditions, first eigenfunctions
of ∆p converge to characteristic functions on the Cheeger set [KF03].

Figure 1.4: Schematic behavior of an eigenfunction of ∆p (top row) and its level sets
(bottom row) for p approaching 1 (from left to right): empirically, the level sets get closer
to each other, and the eigenfunction starts to look more like a characteristic function.

We will present the known theory of interest to us in Sections 1.3 to 1.5. The hope is
that similar behavior occurs if one replaces ∥ ·∥1 by ∥ ·∥p

p in the dynamic case and that we
can get better approximate solutions to the dynamic Cheeger problem with eigenfunctions
of a dynamic p-Laplacian.

We will indeed be able to generalize theory from the classical case to the dynamic case
in Chapter 2, and in Chapter 4 we will empirically see the behavior that eigenfunctions
do get more “plateau-like” and have, on average, superlevel sets of lower dynamic Cheeger
ratio, although we find that the superlevel set with the best dynamic Cheeger ratio does
not improve substantially.

Conventions Throughout this thesis, if not mentioned otherwise, we will use the fol-
lowing assumptions on the domain M and the diffeomorphism T .

Setup 1.1.2. Let M ⊂ Rd be a compact, d-dimensional submanifold with Lipschitz bound-
ary. We assume the map T : M → M to be a volume-preserving diffeomorphism on the
interior M̊ and T as well as T−1 to be Lipschitz continuous on M . In particular, T
and T−1 have bounded derivatives in M̊ and map the boundary ∂M onto itself. A subset
D ⊂ M is generally assumed to be at least Borel-measurable. The exponent denoted by
p ∈ R will assumed to be strictly between 1 and 2. We denote its conjugate exponent by
q, i.e., 1

p
+ 1

q
= 1.
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CHAPTER 1. INTRODUCTION

1.2 The dynamic Laplacian ∆D

1.2.1 Motivation
Fluid flows are ubiquitous in nature. They also can be challenging to model and under-
stand. Highly complicated behavior like turbulence or mixing emerges easily and poses
challenges not only to numerical simulation but also to the interpretation of simulated or
measured data.

As far as the applications of this thesis go, we are exclusively interested in the problem
of gaining insight from a flow that is already fully determined – either through measure-
ment or numerical simulation4. The situation is often better than it first seems. For
example, in ocean flows, one can often find structure in the form of “eddies, jet streams
and other coherent structures” [Van+18, p. 4.2].

Specifically, the question that motivates the study of so-called Lagrangian coherent
structures (LCS), where the dynamic Laplacian emerged from, is the question of how to
understand the structure of material transport within a fluid in a coarse-grained way.
Methods analyzing this structure promise, for example, to help understand the distribu-
tion of pollutants and other tracer materials in ocean water or the atmosphere [PH13a;
HSM13]. They can also serve as general tools for understanding of a flow and have, for ex-
ample, been used to illustrate the wakes behind flying and swimming animals [DGCC05;
PD08].

While the appearance of structure is often visually apparent – distinguished features
appear in all sorts of diagnostic scalar fields, fields [HS11; Had+17, section II.D] – there
is no consensus about one single formal definition. In the mathematical community,
Lagrangian coherent structures have been the object of study starting with [HY00] and
have produced a variety of approaches. The general intuition is that one looks for subsets
of the material whose boundaries should pose persistent barriers to mixing, so that one
obtains a high-level “skeleton” of the transport and mixing within the fluid [HS11; PH13b].
There are many approaches for making this more precise, which start with Haller’s original
work in [HY00], where a local characterization of the boundaries (as opposed to the subsets
themselves) is proposed. In [Hal02], for example, the finite-time Lyapunov exponent field
is used to indicate the boundaries of coherent structures. Later [HB13], closed curves in
the material are identified in as the boundaries of coherent sets if they are local optima
of the averaged stretching during the dynamics. In [HHFH16], Haller et al. use what
they call Lagrangian Averaged Vorticity Deviation(LAVD) to find rotationally coherent
Lagrangian vortices. The boundaries of the latter are identified as level sets of the LAVD.

Lately, also purely data-based approaches have been of interest, like in [HKTH16],
where a clustering of the trajectories based on the average distance of two material points
is used.

Transfer operator based approaches like the ones collected in [FP14] analyze the non-
linear transport within the material by means of the linear Perron-Frobenius (transfer)
operator (see also Section 1.2.4). The transfer operator describes the evolution of densities
under the dynamics, which is why approaches using it are also called probabilistic. In the
autonomous setting, sets that lose little material under the dynamics are called almost

4there are methods to work with the dynamic Laplacian on incomplete data like, e.g. [FJ18], but we
will not handle them here.
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1.2. THE DYNAMIC LAPLACIAN ∆D

invariant sets and can be characterized and approximated using spectral theory of the
transfer operator [DJ99]. In the nonautonomous setting, one can use the singular vectors
of a stochastically perturbed transfer operator to characterize finite-time coherent sets,
which leak little material over a fixed finite time interval [FLS10; Fro13].

For a more extensive overview over existing LCS methods, we refer the reader to the
survey [Had+17].

1.2.2 Dynamic isoperimetry
In [Fro15], Froyland proposed a geometric characterization of a coherent set: the boundary
should be persistently small compared to its interior. Intuitively, such a set will lose little
material through its boundary if one adds a small amount of diffusion to the advective
transport. This global characterization of a coherent set is close in spirit to the elliptic
LCS of [HB13], which also uses the stretching of the material. The intuition about the
loss of material through small-scale diffusion can be made more precise [Fro15, Theorem
5.1], connecting this method to transfer operator approaches like [Fro13].

Froyland considered a smooth codimension-one submanifold Γ ⊂ M that splits the
domain into two parts M1,M2 and associated the quantity

ℓd−1(Γ) + ℓd−1(T (Γ))
2 min{ℓd(M1), ℓd(M2)}

to it (where ℓd denotes the d-dimensional Hausdorff measure). In reference to the clas-
sical field of isoperimetry, he coined the term dynamic isoperimetry for the study of this
quantity. He defined the dynamic Cheeger constant hD by

hD := inf
Γ

ℓd−1(Γ) + ℓd−1(T (Γ))
2 min{ℓd(M1), ℓd(M2)}

(1.5)

and showed its equality with a dynamic Sobolev constant:

hD = sD := inf
f∈C∞(M)

∥∇f∥1 + ∥∇(T∗f)∥1

infα∈R ∥f − α∥1
, (1.6)

where T∗ is the transfer operator, also called the Perron-Frobenius operator mapping f
to T∗f := f ◦ T−1 (see Section 1.2.4). This constitutes a generalization of the known
Federer-Fleming theorem [FF60], which equates the classical Cheeger constant h and the
Sobolev constant s,

h = inf
Γ

ℓd−1(Γ)
min{ℓd(M1), ℓd(M2)}

(1.7)

s = inf
f∈C∞(M)

∥∇f∥1

infα∈R ∥f − α∥1
. (1.8)

Froyland also generalized a classical result known as the Cheeger inequality, which says
that

h ≤ 2
√
λ2,

12



CHAPTER 1. INTRODUCTION

where λ2 is defined as the first5 nontrivial Neumann eigenvalue of −∆, i.e., it is the
smallest λ such that there is some nonconstant u with

−∆u = λu on M̊ (1.9)
u · n ≡ 0 on ∂M, (1.10)

where n is the outward pointing unit normal on ∂M (note that the constant function is
a solution of (1.9) with λ = 0). The dynamic Cheeger inequality proven in [Fro15] states
that

hD ≤ 2
√
λD

2 ,

where λD
2 now is the first nontrivial Neumann eigenvalue of a new operator −∆D, defined

as
∆Du := 1

2(∆u+ T ∗∆T∗),

with the dual T ∗ : f 7→ f ◦ T of the transfer operator operator, also called the Koopman
operator (see Section 1.2.4). The dynamic Laplacian also arises in the limit ε→ 0 when
adding ε-scale diffusion to the purely advective transport: in [Fro15, Theorem 5.1] it is
shown that

lim
ε→0

(L∗
εLε − I)f(x)

ε2 = c∆Df(x),

where Lε := DT (M),εT∗DM,ε is defined by adding a small amount of smoothing D before
and after the transfer operator.

The eigenvalue problem of ∆D is much easier approximated numerically than solutions
of the variational problem (1.6): for example, in [FJ18; SFJ20] finite element methods
have been used, an approach using radial basis functions appears in [FJ15].

Eigenfunction of ∆D have since been used to detect coherent structures in a number
of ways: the first approach to extracting coherent sets from eigenfunctions was to look
for sets with small dynamic Cheeger ratio in the familiy of level sets of the eigenfunctions
[Fro15; FK17]. A more sophisticated approach can be found, e.g. in [FJ18]. It allows
for the detection of more than one set and uses spectral clustering techniques coming
from graph clustering (see e.g. [Von07] for an introduction). This is done by using higher
eigenfunctions u(1), . . . u(k) of ∆D to get an embedding x 7→ u(1)(x), . . . , u(k)(x)) ∈ Rk. On
the embedded points, some clustering scheme like k-means can be applied. This approach
is refined in [FRS19], where the clustering post-processing is replaced by a procedure that
approximates the space spanned by the eigenfunctions of ∆D with vectors of higher spar-
sity than the eigenfunctions themselves, making the basis vectors automatically indicate
coherent sets.

1.2.3 Dirichlet vs. Neumann boundary conditions
In this thesis, we study a slightly different geometric problem than (1.5): we do not allow Γ
to touch the boundary of M and exploit that this implies that only one of the sets M1 and
M2 can intersect the boundary. Then, instead of the normalization min{ℓd(M1), ℓd(M2)}

5 the subscript 2 indicates p = 2, following the notation λp in later sections
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1.2. THE DYNAMIC LAPLACIAN ∆D

in the denominator, we take the volume of the set that does not intersect the boundary.
The modified problem consists, in the static case, of finding the so-called Cheeger constant,

h(M) := inf
D⊂M̊

ℓd−1(∂D)
ℓd(D)

and, in the dynamical case, of finding the dynamical Cheeger constant

hD(M,T ) := inf
D⊂M̊

ℓd−1(∂D) + ℓd−1(∂(T (D)))
2ℓd(D) ,

where D varies over subsets of M with smooth boundary that does not touch ∂M .6 This
version of the problem was originally introduced in [Che70] for the case that M has
nonempty boundary, using the version in (1.5) only for empty boundary. In the dynamic
case, it was first introduced in [FJ18]. The reason we focus on this version of the problem
is that this is the version on which most of the literature on connections between the
p-Laplacian and the Cheeger problem to the p-Laplacian focuses.

In Section 1.3 and Section 2.3, we will state the Cheeger problem and the dynamic
Cheeger problem precisely. Here, we only summarize how they relate to (1.5): A classical
[Leo15] and dynamic [FJ18] Federer-Fleming still holds, yielding the variational charac-
terizations

h(M) = inf
u∈C∞

0 (M)
u̸=0

∥∇u∥1

∥u∥1

and
hD(M,T ) = inf

u∈C∞
0 (M)

u̸=0

∥∇u∥1 + ∥∇(T∗u)∥1
2∥u∥1

In the eigenvalue problems, the boundary conditions change from Dirichlet to Neumann
boundary conditions. This means that there is no eigenvalue 0, and the value of the
modified variational problem

λD
2 (M,T ) = inf

u∈C∞
0 (M)

u̸=0

∥∇u∥2
2 + ∥∇(T∗u)∥2

2
2∥u∥2

2
(1.11)

coincides with the smallest eigenvalue of ∆D with Dirichlet boundary conditions (a general
version of this result, which is classical for T = id, is proved in Corollary 2.1.4). Classical
[LW97, appendix] and dynamical [FJ18, Theorem 2] Cheeger inequalities also still hold,
stating

h(M) ≤ 2
√
λ2 and hD(M) ≤ 2

√
λD

2 .

In Section 2.3 we will show Theorem 2.3.1, which includes these as special cases. The
different versions of the quantities introduced in this section are recapitulated in Table 1.1.
For the rest of the thesis, we will restrict ourselves to the Dirichlet case.

6note that there might not be a minimizer fulfilling these restrictions. See Section 1.3 and section 2.2
for details.
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Neumann Dirichlet

Classical case
Cheeger constant infΓ

ℓd−1(Γ)
min{ℓd(M1),ℓd(M2)} infD

ℓd−1(∂D)
ℓd(D)

Sobolev constant infu∈C∞
∥∇u∥1

infα ∥u−α∥1
infu∈C∞

0
∥∇u∥1
∥u∥1

eigenvalue problem −∆u = λu; u · n ≡ 0 on ∂M . −∆u = λu; u ≡ 0 on ∂M .

Dynamical case

Cheeger constant infΓ
ℓd−1(Γ)+ℓd−1(T (Γ))

2 min{ℓd(M1),ℓd(M2)} infD
ℓd−1(∂D)+ℓd−1(∂(T (D)))

2ℓd(D)

Sobolev constant infu∈C∞
∥∇u∥1+∥∇(T∗u)∥1

2 infα ∥u−α∥1
infu∈C∞

0
∥∇u∥1+∥∇(T∗u)∥1

2∥u∥1

eigenvalue problem −∆Du = λu; u · n ≡ 0 on ∂M . −∆Du = λu; u ≡ 0 on ∂M .

Table 1.1: An overview of variations on the Cheeger problem. The subset Γ is assumed to
be a (d − 1)-dimensional submanifold partitioning M into two parts. The set D ⊂ M is
supposed to be compactly contained in the interior M̊ and n denotes the outward pointing
unit normal field on the boundary ∂M . In this thesis, we only handle the Dirichlet case.

1.2.4 The transfer and the Koopman operator
We recall the definition of the transfer operator (also pushforward or Perron-Frobenius
operator) and the Koopman (or pullback) operator. They are linear operators that act
on function spaces on the domain of a dynamical system and carry information about the
dynamics by capturing how densities evolve with it: for a measure space (X,A, µ) and a
measurable map T : X → X, the transfer operator (denoted by T∗ here) is the map from
L1(X) to L1(X) that for every f ∈ L1(X) and measurable A ⊂ X fulfills∫

A
T∗fdµ =

∫
T −1(A)

fdµ

(see e.g. [LM98, Definition 3.2.3]).
If we are given some probability density f ∈ L1(M), f ≥ 0, ∥f∥1 = 1 describing

the distribution of a random point x ∈ X, then T∗f will be another probability density
describing the distribution of T (x). The pullback operator T ∗ : L∞(X) → L∞(X) can
then be introduced as the dual of the transfer operator, i.e. the operator fulfilling

⟨T ∗f, v⟩ = ⟨f, T∗v⟩ (1.12)

for all f ∈ L∞, v ∈ L1(M), where ⟨f, v⟩ :=
∫

X fv dµ denotes the duality pairing on
L∞(X) × L1(X). Under this implicit identification of the dual space (L1(M))∗ with
L∞(M), the definition above is equivalent to setting T ∗f = f ◦ T , which is another
common way of defining T ∗ [see e.g LM98, Definition 3.1].

For our purposes, X is a subset M ⊂ Rd and T is a diffeomorphism on M . In this
setting, the transfer operator reduces to

T∗f(x) = f ◦ T−1(x) det(DT−1(x)),
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1.3. THE (CLASSICAL) CHEEGER PROBLEM

where DT (x) is the Jacobian of T at x [see LM98, Corollary 3.2.1]. If T is volume-
preserving, this simplifies even further to

T∗f = f ◦ T−1.

We will use this characterization to define T∗ on any space B of functions on M and define
the Koopman operator as the dual of T∗.

Definition 1.2.1. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Define the transfer
operator T∗ by

T∗(u) = (u ◦ T−1) · det(DT−1) = u ◦ T−1

for any function u : M → R.

As said, above, the dual T ∗ of T∗ is commonly introduced by T ∗f := f ◦ T . We will
use a more abstract definition that behaves more naturally in the context of variational
calculus and will play more nicely together with the characterization of the dynamic
p-Laplacian as a Gâteaux derivative.

Definition 1.2.2. For some diffeomorphism T , p > 1 and some space B of functions we
define the pullback operator or Koopman operator T∗ : B∗ → B∗ as the dual of T ∗, i.e.,
for some v ∈ B∗, i.e., we define T ∗v to be the unique element in B∗ fulfilling

⟨u, T ∗v⟩ = ⟨T∗u, v⟩,

which is equivalent to setting
T ∗v := v ◦ T∗

for a functional v : B → R.

We will mostly set B to be the Sobolev space W 1,p
0 (M). Then B∗ is its dual W−1,q(M)

(see Appendix B).

1.3 The (classical) Cheeger problem
We now formally introduce the classical version of the geometric problem that we are
interested in. It goes back to Cheeger, who used it in [Che70] to get a lower bound on
the smallest eigenvalue of ∆. For a manifold M with nonempty boundary, he studies the
infimum of the quantity

A(S)
V (DS) (1.13)

over smooth compact (d− 1)-dimensional submanifolds S ⊂M with S ∩ ∂M = ∅, where
DS denotes the (unique) submanifold of M with boundary S (note that this implies that
∂M ∩DS = ∅). Here, A(·) denotes the (d−1) dimensional volume of a manifold and V (·)
the d-dimensional volume of an open set. We adopt the notation of [Fro15] and use the
d-dimensional and (d− 1)-dimensional Hausdorff measures ℓd−1, ℓd instead.

We closely follow the introduction by Parini [Par11] in the presentation here. Like
there, we start with a different but equivalent definition. This definition needs less regu-
larity assumptions on the subset D ⊂M over which one optimizes and uses its perimeter

16
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P (D,Rd). The perimeter of a measurable set D is defined as the variation of its charac-
teristic function χD in the space BV (Rd) of functions of bounded variation:

P (D,Rd) = |D(χD)|(Rd).

See Appendix C for a short introduction to functions of bounded variation and sets of
finite perimeter.

Definition 1.3.1. Let M ⊂ Rd be like in Setup 1.1.2. The Cheeger constant of M is
defined as

h(M) := inf
D⊂M

P (D,Rd)
ℓd(D) ,

where the infimum ranges over all Borel subsets of M and the value of the fraction is
assumed to be ∞ if P (D,Rd) = ∞ or ℓd(D) = 0. For a subset D ⊂ M , we call the
quantity

P (D,Rd)
ℓd(D)

the Cheeger ratio of D. If a set has a Cheeger ratio of h(M), we call it a Cheeger set of
M .

Remark 1.3.2. Note that from that definition, it follows that every measurable subset
D ⊂M (be it of finite perimeter or not) fulfills

P (D,Rd) ≥ h(M)ℓd(D),

and if this is an equality, then D is either a null set or a Cheeger set.

There are other equivalent characterizations of h(M), which we will use interchange-
ably:

h(M,T ) = inf
D⊂M̊

∂D smooth

ℓd−1(∂D)
ℓd(D) (1.14)

h(M,T ) = inf
u∈C∞

0 (M)\{0}

∥∇u∥1

∥u∥1
(1.15)

h(M,T ) = inf
u∈BV (M)\{0}

|Du|(Rd)
∥u∥1

(1.16)

• Equation (1.14) uses the same quantity as (1.13), just with different notation. The
subset D ⊂ M̊ is assumed to be compactly contained in the interior of M , i.e., its
closure D does not touch the boundary ∂M . The equivalence is proven in [Par11,
Proposition 3.3].

• Equation (1.15) is known as the Federer-Fleming theorem, referring to [FF60]. The
results there are very general. For a proof of this speific case, see, e.g., [Leo15,
Remark 2.1]. The right hand side is known as the Sobolev constant of M .

• in (1.16), |Du|(Rd) denotes the variation of u ∈ BV (M) in Rd. For a short in-
troduction to the notation of functions of bounded variation, see Appendix C. The
claim is shown in the proof of [Par11, Proposition 3.1].

17



1.3. THE (CLASSICAL) CHEEGER PROBLEM

The definitions that require higher regularity in the domain of the infimum tend to be
easier to work with but come at the disadvantage that the infimum might not be attained.
For example, on a star-shaped domain, it is easy to see that there is no minimizer in (1.14):
if a set is separated from the boundary, it can be slightly scaled up, which decreases its
Cheeger ratio (the volume of the boundary scales with the order d− 1 while the volume
scales with order d [KF03, Theorem 8]). Thus, one has to take another characterization
to ensure existence of a minimizer like in Theorem 1.3.3 below.

For us, an important aspect of these equivalent definitions is the question of how
solutions of the geometric characterizations are related to solutions of the variational
characterization. As the former are subsets of M and the latter are functions on M , this
is not immediately apparent.

The main idea that connects the functional quantity ∥∇u∥1/∥u∥1 with the geometrical
quantity ℓd−1(∂D)/ℓd(D) originates from an identity known as the coarea formula (see
Appendix E). To first give an informal account of how the argument works, we start with a
nonnegative smooth scalar function u for which the coarea formula implies that ∥∇u∥1 can
be calculated if one knows the perimeter of the superlevel sets At := {x ∈M | u(x) > t}:

∥∇u∥1 =
∫ ∞

0
ℓd−1(∂At)dt.

Now, by Remark 1.3.2, every Borel D ⊂M fulfills ℓd−1(∂D) ≥ h(M)ℓd(D), so∫ ∞

0
ℓd−1(∂At)dt ≥ h(M)

∫ ∞

0
ℓd(At)dt.

Finally, the last integral is just ∥u∥1 by Cavalieri’s principle (Theorem 1.5.1), so we have
obtained the chain

∥∇u∥1 =
∫ ∞

0
ℓd−1(∂At)dt ≥

∫ ∞

0
h(M)ℓd(At)dt = h(M)∥u∥1. (1.17)

The immediate use of (1.17) is twofold: first, it directly yields

∥∇u∥1

∥u∥1
≥ h(M),

which – save technical details – already constitutes the first half of a proof of Equa-
tion (1.15). Second, if for some u, the quotient ∥∇u∥1/∥u∥1 attains the minimal possible
value h(M), then the inequality in the middle of (1.17) is forced to be an equality, mean-
ing that the integrands of both integrals must coincide for almost all t. This can only
happen if almost all superlevel sets are either null sets or Cheeger sets. If there is a unique
Cheeger set, then this means that u has to be a suitably scaled characteristic function of
the Cheeger set [KF03, Remark 10].

Obviously, this contradicts smoothness of u, but the same argument can be made in the
context of the BV -characterization (1.16). With u just being required to be of bounded
variation, the existence of a minimizer can be shown with variational techniques, and we
obtain existence of a Cheeger set and an analogous strong constraint on the superlevel
sets of minimizers in (1.16).

Theorem 1.3.3. Let M ⊂ Rd be like in Setup 1.1.2. Then:

18
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(a) The infimum in (1.16) is attained by some nonnegative u ∈ BV (M).

(b) If for some nonnegative u ∈ BV (M), the ratio |Du|(Rd)/∥u∥1 attains h(M), then
for almost all t > 0 the superlevel sets

At := {x ∈M | u(x) > t}

are either null sets or Cheeger sets of M .

Remark 1.3.4. On a convex subset of Rd, 1.3.3(b) implies [KH16] that u is a multiple
of the characteristic function of the unique[AC09] Cheeger set. Without uniqueness of
the Cheeger set, however, this is not possible, and there are indeed examples of domains
with nonunique Cheeger sets. In [Leo15, Example 5.6], for example, a domain M and a
one-parameter family of nested subsets Dt is constructed such that all sets Dt are Cheeger
sets of M .

Proof of Theorem 1.3.3. For existence, we use the direct method of the calculus of vari-
ations, as in [Par11, Proposition 3.1]: Let (uk)k ⊂ BV (M) be an infimizing sequence for
the infimum in Equation (1.16). We may assume without loss of generality that ∥uk∥1 = 1
for all k, as |D(uk)|(Rd)/∥uk∥1 is scaling invariant. By convergence of |D(uk)|(Rd)/∥uk∥1,
this normalization implies in particular that |D(uk)|(Rd) is bounded, so the sequence uk

is bounded BV (M). Thus, by the compactness property shown in [Par11, Proposition
2.2] there is a subsequence of uk converging in L1(M) to some u ∈ BV (M). We pass to
that subsequence without loss of generality. Now

h(M) ≤ |Du|(R
d)

∥u∥1
= |Du|(Rd)

(∗)
≤ lim inf

k→∞
|Duk|(Rd) = lim

k→∞
|Duk|(Rd)
∥uk|1

= h(M),

where (∗) is the lower semi-continuity of the variation with respect to L1-convergence
[Amb00, Proposition 3.6]. This implies

h(M) = |Du|(Rd).

Nonnegativity of u can be assumed by the inequality |D|u||(Rd) ≤ |Du|(Rd), as done in
[Par11, Proposition 3.1], so we are finished with (a). To show (b), let u ∈ BV (M) be
nonnegative and assume

|Du|(Rd)
∥u∥1

= h(M).

Define ũ ∈ BV (R)d by extending it by zero and Ãt := {x ∈ Rd | ũ(x) > t}. Then we have

h(M) = |Dũ|(Rd) (a)=
∫ ∞

−∞
P (Ãt,Rd)dt (1.18)

(b)=
∫ ∞

0
P (At,Rd)dt (1.19)

≥ h(M)
∫ ∞

0
ℓd(At)dt (1.20)

(c)= h(M)∥u∥1 (1.21)
= h(M), (1.22)

where we have used the following:
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(a) the coarea formula for functions of bounded variations (Theorem E.3).

(b) the integration limits can be changed because ũ ≥ 0, and thus for t < 0, we have
Ãt = Rd which implies P (Ãt,Rd) = 0. We can the replace Ãt by At because, for
t > 0, we have Ãt ⊆M , and thus Ãt = At, in particular P (Ãt,Rd) = P (At,Rd).

(c) Cavalieri’s principle (see Theorem 1.5.1).

Now this chain starts and ends with h(M), so inequality (1.20) is actually an equality
and hence for almost all t > 0

P (At,Rd) = h(M)ℓd(At).

This can only hold if At is a null set or a Cheeger set, proving claim (b).

Corollary 1.3.5. Let M ⊂ Rd be like in Setup 1.1.2. Then there exists a Cheeger set for
M.

Proof. By Theorem 1.3.3(a), there exists a nonnegative function u ∈ BV (M) \ {0} such
that

|Du|(Rd)
∥u∥1

= h(M).

As ∥u∥1 ̸= 0, Cavalieri’s principle tells us that its superlevel sets cannot be all null sets,
so at least one of them must be a Cheeger set.

There is much more to say about the Cheeger problem and the more general isoperi-
metric problems. For a broader introduction, we refer the reader to the expositions [Par11;
Leo15; Cha01].

We close with an example where the Cheeger constant and Cheeger set are known
analytically:

b

a

R

Figure 1.5: The Cheeger set of a rectangle [0, a]× [0, b] is a rectangle with rounded corners
of radius R (hatched area). The volume of such a set is ab− 4R2 +πR2 and its perimeter
is 2(a− 2R) + 2(b− 2R) + 2πR.

Example 1.3.6 (Cheeger set of a rectangle). It can be shown that the Cheeger set of a
convex subset of R2 is unique and can be constructed as the union of all balls of some
radius R = 1

h(M) with centers in the set of points that have distance at most 1
h(M) from
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the boundary (see, e.g. [KL06, Theorem 1] and [Par11, Proposition 5.1]). The Cheeger
set of a rectangle [0, a] × [0, b] is therefore another rectangle whose corners are rounded
(see Figure 1.5). The radius R of the corners can be calculated by optimizing the Cheeger
ratio of such a rounded rectangle:

Perimeter︷ ︸︸ ︷
2(a− 2R) + 2(b− 2R) + 2πR

ab− 4R2 + πR2︸ ︷︷ ︸
volume

= 2(π − 4)R + 2(a+ b)
(π − 4)R2 + ab

=: 2c1R + c2

c1R2 + c3

over R. The derivative in R is a fraction whose numerator is

2c1(c1R
2 + c3)− 2c1R(2c1R + c2) = −2c2

1R
2 − 2c1c2R + 2c1c3.

Necessary optimality conditions yield

R1,2 =
2c1c±

√
4c2

1c
2
2 + 16c3

1c3

−4c2
1

=
1
2c2 ±

√
1
4c

2
2 + c1c3

−c1

plugging the definitions of c1, c2, c3 and using that the minimal R we look for is smaller
than min{a, b}, we end up with:

R =
(a+ b)−

√
(a− b)2 + πab

(4− π) . (1.23)

And thus
h([0, a]× [0, b]) = (4− π)

(a+ b)−
√

(a− b)2 + πab
.

This formula also appears in [Hor11, eq. 38] and [KL06, Remark after Theorem 3]. 7 In
the case of a square [0, a]× [0, a], the formula reduces to

h([0, a]2) = 4− π
2a− a√π = 2 +

√
π

a
.

1.4 The p-Laplacian ∆p

The classical p-Laplacian ∆p is a nonlinear differential operator commonly introduced8 as

∆pu = div(|∇u|p−2∇u).

If we use this definition classically, it requires nontrivial regularity conditions on u for the
divergence to be defined. Further – as it is not uncommon with differential operators – we
are mostly interested in ∆p in conjunction with a variational problem, where it appears
as a Gâteaux derivative. Hence, we will always use ∆p in its weak (or distributional)
form, accepting arguments u that are only required to be in the Sobolev space W 1,p

0 (M)
and attaining values ∆pu in its dual space W−1,q(M). For a short introduction of these
spaces, see Appendix B. We restrict the domain to functions vanishing on the boundary
for reasons explained in Section 1.2.3.

7 In [KL06] the domain is said to be [−a, a] × [−b, b], but we believe [0, a] × [0, b] to be the right
domain. In [Hor11] the domain coincides with ours.

8we are liberally following [Lin08; PK09; Hor11] in the definitions of ∆p and the eigenvalue problem.
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Definition 1.4.1. Let M ⊂ Rd be like in Setup 1.1.2 and p ∈ (1,∞). Define the p-
Laplacian ∆p : W 1,p

0 (M)→ W−1,q(M) by

∆pu =:
(
v 7→ −

∫
M
|∇u|p−2∇u∇v

)
or, writing ⟨·, ·⟩ for the duality pairing on W−1,q(M)×W 1,p

0 (M)

⟨∆pu, v⟩ = −
∫

M
|∇u|p−2∇u∇v.

for all v ∈ W 1,p
0 (M). For a proof that this indeed defines an element in W−1,q(M), see

Theorem 1.4.7.

Remark 1.4.2. If |∇u|p−2∇u is differentiable and div(|∇u|p−2∇u) ∈ Lq(M) then by
partial integration

⟨∆pu, v⟩ = −
∫

M
|∇u|p−2∇u∇v =

∫
M

div(|∇u|p−2∇u)v

for every v ∈ W 1,p
0 (M), so if we identify any kernel f ∈ Lq with the functional v 7→ ∫

M fv
then we may say

∆pu = div(|∇u|p−2∇u).
in the above case. If |∇u|p−2∇u lacks the necessary regularity, then ∆pu might not al-
low a kernel from Lq(M) in this sense. For example, if we set M := [−1, 1] ⊂ R and
u(x) = 1− |x|, we have that ∆pu is the delta distribution δ0 ∈ W−1,q(M). Note also that
differentiability of |∇u|p−2∇u is not a “linear” condition that is preserved by sums (see
also Figure 3.11).

Remark 1.4.3. For p = 2, we get the weak form of the standard Laplacian ∆.

The partial differential equation that will be in the center of our attention concerning
∆p is a nonlinear eigenvalue problem associated with it:

Definition 1.4.4. We say that (λ, u) ∈ R ×W 1,p
0 (M) is a (weak Dirichlet) eigenpair of

−∆p if
−∆pu = λ|u|p−2u (1.24)

as elements of W−1,q(M) (see Theorem 1.4.7 for a proof that the right-hand side is in
W−1,q(M)). If (u, λ) is an eigenpair of −∆p then we call u an eigenfunction and λ an
eigenvalue of −∆p. We denote the infimum of the eigenvalues of −∆p by

λp := inf{λ ∈ R | λ is eigenvalue of −∆p}.

We always mean Dirichlet eigenvalues and eigenfunctions in this thesis and thus often
omit the “Dirichlet”.

Remark 1.4.5. The term “eigenvalue problem” is used liberally here: ∆p is not a lin-
ear operator, and sums of solutions of (1.24) need not be solutions themselves. Scalar
multiples of “eigenfunctions”, however, are again eigenfunctions with respect to the same
eigenvalue λ, as both sides of the equation scale with the same order (p− 1).
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Remark 1.4.6. From the definition of λp it is not clear whether λp itself is an eigenvalue
of ∆p. We will show that in Corollary 1.4.9.

As alluded to above, we now introduce the functionals needed to define the variational
problem in which the eigenvalue problem (1.24) will appear as the Euler-Lagrange equa-
tion. We will also deliver the postponed proofs that for u ∈ W 1,p

0 (M), the functionals
v 7→ (∆pu)v and v 7→ ∫

M |u|p−2uv are elements of W−1,q(M):

Theorem 1.4.7. Let M ⊂ Rd be like in Setup 1.1.2 and p ∈ (1,∞). Define the functionals
F,G : W 1,p

0 (M)→ R by

F (u) := ∥∇u∥p
p :=

∫
M
|∇u|p (1.25)

G(u) := ∥u∥p
p :=

∫
M
|u|p (1.26)

Then

(a) F and G are Gâteaux differentiable on W 1,p
0 (M) with

F ′(u) = −p∆pu ∈ W−1,q(M)

and
G′(u) = p|u|p−2u ∈ W−1,q(M)

in the sense that G′(u)v = p
∫

M |u|p−2uv for all v ∈ W 1,p
0 (M).

(b) F is and weakly lower semicontinuous. In particular, for any sequence of functions
uk ∈ W 1,p

0 (M), weak convergence uk ⇀ u implies lim infk F (uk) ≤ F (u).

(c) F is coercive, i.e., if ∥uk∥W 1,p
0 (M) →∞ then F (uk)→∞.

Proof. (a) For differentiability of the functionals and the formulas for the Gâteaux
derivatives F ′, G′ see [PK09, Remark 4.3.40] (where 1

p
F and 1

p
G are called ξ and η).

Here we just prove that the right-hand sides are elements of W−1,q(M): Indeed, by
Hölder, we have

|G′(u)v| ≤ p
∫

M
|u|p−1|v| ≤

(∫
M
|u|p

) p−1
p
(∫

M
vp
) 1

p

(1.27)

= ∥u∥p−1
p ∥v∥p ≤ ∥u∥W 1,p

0 (M)∥v∥W 1,p
0 (M) (1.28)

and by Cauchy-Schwartz and Hölder:

|F ′(u)v| ≤
∫

M

∣∣∣|∇u|p−2∇u∇v
∣∣∣ ≤ ∫

M
|∇u|p−1|∇v| (1.29)

≤
(∫

M
|∇u|p

) p−1
p
(∫

M
|∇v|p

) 1
p ≤ C∥u∥p−1

W 1,p
0 (M)∥v∥W 1,p

0 (M) (1.30)

which implies boundedness of F ′(u).
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(b) We point out that F is convex and strongly continuous: Convexity follows directly
from convexity of the Euclidean norm and convexity of the function x 7→ |x|p.
Continuity follows from (strong) continuity of the norm (together with the remark
before Theorem B.4) and from continuity of the function x 7→ |x|p. This implies
weak lower semicontinuity by [Bre11, Corollary 3.9. and Remark 6].

(c) This follows directly from the Poincaré inequality (see Theorem B.4).

Now we are ready to state the theorem that will connect the eigenproblem Equa-
tion (1.24) to a variational problem. We formulate it in a more abstractly than necessary
here, as this will make it possible to apply it to our dynamic version of ∆p in Chapter 2.

Theorem 1.4.8. Let M ⊂ Rd be like in Setup 1.1.2, p ∈ (1,∞)and F : W 1,p
0 (M) →

R a functional that is nonnegative, Gâteaux differentiable, coercive, and weakly lower
semicontiuous. Assume further that F (tu) = tpF (u) and F ′(tu) = tp−1F ′(u) for all t >
0 and u ∈ W 1,p

0 (M). Define the functional G : W 1,p
0 (M) → R by G(u) = ∥u∥p

p and
J : W 1,p

0 (M)\{0} → R by

J(u) = F (u)
G(u) . (1.31)

Then:

(a) J attains its infimum
λ∗ := inf

u∈W 1,p
0 (M)

u̸=0

J(u)

in some function u∗ with ∥u∥p = 1, which fulfills the equation

F ′(u∗) = λ∗G′(u∗). (1.32)

(b) If some u ∈ W 1,p
0 (M)\{0} and λ ∈ R fulfill

F ′(u) = λG′(u), (1.33)

then J(u) = λ.

Proof. We use the direct method of the calculus of variations. The blueprint for our
particular proof was taken from [BS11, Theorem 2.6.11], where it is used for a weaker
statement. A similar proof also appears in [DFJK23]. By nonnegativity of J , we have λ∗ ≥
0; in particular, λ∗ > −∞. Let uk be a minimizing sequence for J . By the homogeneity
assumption on F , we have J(tu) = J(u) for all t > 0; hence, we may assume that ∥uk∥p = 1
and thus J(uk) = F (uk). Then, by coercivity of F , the sequence is bounded in W 1,p

0 (M),
and by Banach-Alaoglou we may pass to a weakly convergent subsequence and assume
uk ⇀ u∗ for some u∗ ∈ W 1,p

0 (M). The Rellich-Kondrachov theorem (see Theorem B.6)
now implies that uk → u∗ in Lp, as compact operators map weakly convergent sequences
to strongly convergent ones. Thus, ∥u∗∥p = 1 and J(u∗) = F (u∗).
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Now, by definition of λ∗ and weak lower semicontinuity of F , we have

λ∗ ≤ F (u∗) ≤ lim inf
k→∞

F (uk) = λ∗,

showing F (u∗) = λ∗, which is the first part of (a). For the second part of (a), note that
in an optimum, the Gâteaux derivative vanishes, so J ′(u∗) = 0. The Gâteaux derivative
of J at u∗ is

J ′(u∗) = F ′(u∗)G(u∗)− F (u∗)G′(u∗)
G(u∗)2 = F ′(u∗)− λ∗G′(u∗),

which finishes the proof of (a).
For (b) (we follow the proof of [YZ07, Lemma 2.1]), assume that u fulfills (1.32). Then,

by F ′(tu) = tp−1F ′(u) and G(tu) = tp−1G(u), the scalar multiples tu fulfill (1.32) as well
(for t > 0). Thus,

d

dt
F (tu) = F ′(tu) = λG′(tu) = λ

d

dt
G(tu)

Integrating this yields that F (tu) and λG(tu) only differ by a constant that does not
depend on t. As limt→0 F (tu) = limt→0 t

pF (u) = 0 and G(0) = 0, this constant is 0, and
we have F (tu) = λG(tu) for all t ≥ 0. Setting t = 1 finishes the proof of J(u) = λ.

With the above Theorem 1.4.8 we have done the majority of work to prove an existence
result of a smallest eigenvalue of ∆p:

Corollary 1.4.9. The infimum λp of the eigenvalues of ∆p is itself an eigenvalue and
can be written as

λp = inf
u∈W 1,p

0 (M)
u̸=0

∥∇u∥p
p

∥u∥p
p
.

Further, λp is positive, and up can be chosen to be nonnegative.

Proof. By Theorem 1.4.7 the functional

F (u) = ∥∇u∥p
p

is Gâteaux differentiable with
F ′(u) = −p∆p,

and it is nonnegative, coercive and weakly lower semicontinuous. The homogeneity con-
ditions on F and F ′ are also easily checked. Hence, we can apply Theorem 1.4.8(a) to it
and get some u∗ that realizes the infimum λ∗ of J and

−∆pu
∗
p = 1

p
F ′(u∗) = 1

p
λ∗G′(u∗) = λ∗|u∗|p−2u∗,

which means that (u∗, λ∗) is an eigenpair of −∆p. Further, for every other eigenpair
(u, λ) of −∆p, we must have J(u) = λ by Theorem 1.4.8(b), which means that J(u∗) ≤
J(u). Hence, λ∗ = λp, which shows that λp is indeed an eigenvalue and up := u∗ is a
corresponding eigenfunction. By the Poincaré inequality, we have λp > 0. Finally, as
∥∇|u|∥p = ∥∇u∥p (see remarks at the beginning of [BS11, Section 2.6]), we can choose up

to be nonnegative without changing the fact that it is an infimizer.
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Like with the Cheeger problem, we have only scratched the surface of the theory about
the p-Laplacian. Some examples of further results are

• The first eigenvalue is isolated [Lin08, Theorem 9] and simple ([Lin08, Theorem 6]).

• A first eigenfunction does not change sign [Lin08].

• Regularity results for the first eigenfunction [DiB82].

• the first eigenvalue λp depends continuously on p [Hua97].

• variational characterizations of a subset of all eigenvalues [PK09, section 4.3].

We refer the reader to [Lin08] for a concise introduction and more references.

1.5 Connections between ∆p and the Cheeger
problem

We finish this chapter with an overview over the known connections between ∆p and the
Cheeger problem that we wish to generalize to the dynamic case. The main result we
present here is that in the limit p → 1, the first eigenvalue λp approaches the Cheeger
constant h(M). This can be found e.g. in [Leo15; Par11; KF03] and is not too surprising:
after all, for p→ 1, the expression ∥ · ∥p

p approaches ∥ · ∥1. Still, we will have to work for
this result, proving it in two steps, namely

(a) lim infp→1 λp ≥ h(M) and

(b) lim supp→1 λp ≤ h(M).

The first step will be done via a generalization of the Cheeger inequality for general p,
which states that

λp ≥
(
h(M)
p

)p

(note that the inequality h(M) ≥ 2
√
λ2 is a special case of this). The main reason that

this holds is, like in the beginning of Section 1.3, the coarea formula (see Appendix E),
together with Cavalieri’s principle. The coarea formula connects ∥∇u∥1 to the perimeters
of superlevel sets and Cavalieri’s principle connects the volumes of the superlevel sets to
∥u∥1. In Equation (1.17) we have already seen how this produces the case p = 1 of the
Cheeger inequality. In Theorem 2.3.1 we will see precisely how applying this to u = |v|p
yields the general Cheeger inequality.

The second step (b) is done with a geometric argument: if one takes a smooth ap-
proximation uε of the characteristic function of a Cheeger set D, then ∥uε∥1 ≈ ℓd(D) and
∥∇uε∥1 ≈ ℓd−1(∂D), as the gradient is concentrated in a sharp ramp around the boundary
∂D. This means, that from a Cheeger set we can produce smooth functions with Rayleigh
quotient ∥∇uε∥1/∥uε∥1 approaching h(M). In the limit, this implies (b). Theorem 1.5.3
will make this more precise.

Finally, we state without proof a convergence result of (nonnegative) first eigenfunc-
tions of up to a (nonnegative) minimizer of the variational characterization of h(M) in
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BV (M). As we have seen in Theorem 1.3.3, such a minimizer is a lot like9 the charac-
teristic functionof the Cheeger set: almost all of its nontrivial superlevel sets are Cheeger
sets.

The most important result for us (which we generalize for the dynamic p-Laplacian
∆D

p in Section 2.3) is that the first eigenvalue λp of ∆p converges to the Cheeger constant
h(M) as p → 1. Another, less formal connection is that the eigenfunctions become
“flatter” and “plateau-like”. Under the right conditions (uniqueness of the Cheeger set is,
e.g., sufficient), they converge to a characteristic function of a Cheeger set (after possibly
passing to a subsequence), as shown in [KF03].

We proceed to the proof of Cheeger’s inequality, which yields the first step (a) in the
convergence proof. As said above, one main tool for showing it is the coarea formula
(see Appendix E). For the reader’s convenience we state the second main tool, Cavalieri’s
principle, that connects the volumes of the superlevel sets of a nonnegative function u to
the norm ∥u∥1.

Theorem 1.5.1 (Cavalieri’s principle). Let (M,A, µ) be a measure space and f : M → R
be nonnegative and A-measurable. If we define At := {x ∈M | f(x) > t} then∫

M
fdµ =

∫ ∞

0
µ(At)dt

Proof. Set ν to the standard Lebesgue measure on R in [Cha01, Proposition I.3.3].

Equipped with this, we state the Cheeger inequality for general p, which gives a lower
bound for λp.

Theorem 1.5.2 (Cheeger’s inequality for general p). Let M ⊂ Rd be like in Setup 1.1.2
and let 1 < p <∞. If λp is the first eigenvalue of −∆p from Definition 1.4.4, and h(M)
is the Cheeger constant of M from Definition 1.3.1 then

λp ≥
(
h(M)
p

)p

.

Proof. In the case p = 2, this was shown first by Cheeger in [Che70]. The proof here
follows the proofs in e.g. [KF03, Theorem 3] and in the appendix of [LW97].

First, let w ∈ C∞
0 (M) be nonnegative and define the sets At := {x ∈M | w(x) > t}.

Then we get a chain like in Equation (1.17), namely
∫

M
|∇w| (a)=

∫ ∞

0
ℓd−1(∂At)dt

(b)
≥ h(M)

∫ ∞

0
ℓd(At)dt

(c)= h(M)
∫

M
|w|, (1.34)

where

(a) is the Coarea formula in the form of Corollary E.2. The lower integration limit can
be changed to 0 because by nonnegativity of u, we have At = M for t < 0 and hence
∂At = ∅ in M .

9by [KF03] the limit function actually coincides with a scaled characteristic function for convex M
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(b) is applying the definition of h(M) (see also Remark 1.3.2 and note that by Theo-
rem C.5 and Sard’s theorem we have P (At,Rd) = ℓd−1(∂At) for almost all t).

(c) holds by the Cavalieri principle (see Theorem 1.5.1).

Inequality (1.34) in fact holds for all w ∈ C∞
0 (M), as ∥∇w∥ = ∥∇|w|∥ by Proposition F.1

and we can approximate |w| in W 1,1
0 (M) by a series of nonnegative functions in C∞

0 (M)
by Proposition F.2. As C∞

0 (M) is dense in W 1,1
0 (M), we have thus shown∫

M
|∇w| ≥ h(M)

∫
M
|w| (1.35)

for every w ∈ W 1,1
0 (M). Now for v ∈ W 1,p

0 (M) one can define Φ(v) := φp(v) := |v|p−1v.
Then ∇Φ(v) = φ′

p(v)∇v = p|v|p−1∇v and by the Hölder inequality∫
M
|∇Φ(v)| = p

∫
M
|v|p−1|∇v| ≤ p∥|v|p−1∥q∥∇v∥p = p∥v∥p−1

p ∥∇v∥p. (1.36)

This means that Φ(v) ∈ W 1,1
0 (M), and thus (1.35) applies and

h(M)
(1.35)
≤

∫
M |∇Φ(v)|∫

M |Φ(v)|
(1.36)
≤ p∥v∥p−1

p ∥∇v∥p

∥v∥p
p

= p
∥∇v∥p

∥v∥p

.

Hence for every v ∈ W 1,p
0 (M)

∥∇v∥p
p

∥v∥p
p
≥
(
h(M)
p

)p

,

which shows the claim after passing to the infimum over v ∈ W 1,p
0 (M) \ {0}.

The other part of the convergence proof constructs smooth approximations to the
characteristic function of a Cheeger set (or, more precisely smooth sets close to the Cheeger
set).

Theorem 1.5.3. Let M ⊂ Rd be like in Setup 1.1.2. If λp is the first eigenvalue of −∆p

from Definition 1.4.4, and h(M) is the Cheeger constant of M from Definition 1.3.1, then

lim sup
p→1

λp ≤ h(M).

Proof. The argument can be also found in, e.g., [KF03, Corollary 6]. Consider a sequence
of subdomains Dk ⊂M with smooth boundaries not touching ∂M and

ℓd−1(∂Dk)
ℓd(Dk)

k→∞−→ h(M).

Now for fixed k one can define smooth functions fε,k := χDk
∗ρε with a convolution kernel

ρε like in [Amb00, Proposition 3.7]. For ε smaller than some ε∗
k, these vanish on ∂M

and so we get get smooth functions (fε,k)ε ⊂ C∞
0 (M), ε > 0 converging strictly to χDk

in
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BV (M) for ε → 0 By taking the Rayleigh quotients of fε,k we obtain upper bounds for
λp:

λp ≤
∥∇fε,k∥p

p

∥fε,k∥p
p

=: Cp,ε,k ∀k ∈ N, ε ∈ (0, ε∗
k), p ∈ (1,∞). (1.37)

We then proceed by showing

lim
k→∞

lim
ε→0

lim
p→1

Cp,ε,k = h(M) (1.38)

in the following way: first observe that we have

lim
p→1

Cp,ε,k = ∥∇fε,k∥1

∥fε,k∥1
∀k ∈ N, ε ∈ (0, ε∗

k), (1.39)

by dominated convergence ( |fε,k| and |∇fε,k| are both bounded by compactness of M).
Second, by convergence of fε,k to χDk

in BV (M) we have the limits ∥fε,k∥1 → ℓd(Dk)
and ∥∇fε,k∥1 → P (D,Rd) = ℓd−1(∂Dk) for ε → 0 (where the last equality follows from
Theorem C.5). Hence

lim
ε→0

∥∇fε,k∥1

∥fε,k∥1
= ℓd−1(∂Dk)

ℓd(Dk) ∀k ∈ N. (1.40)

The last expression converges to h(M) for k → ∞ by choice of the Dk, which completes
the proof of (1.38). Combinig this with (1.37), we arrive at

lim sup
p→1

λp ≤ lim
k→∞

lim
ε→0

lim
p→1

Cp,ε,k = h(M),

which proves the claim.

Theorem 1.5.4. Let M ⊂ Rd be like in Setup 1.1.2. If λp is the first eigenvalue of −∆p

from Definition 1.4.4, and h(M) is the Cheeger constant of M from Definition 1.3.1, then

lim
p→1

λp = h(M).

Proof. From Theorem 1.5.2 we get

lim inf
p→1

λp ≥ lim
p→1

(
h(M)
p

)p

= h(M).

Together with lim supp→1 λp ≤ h(M) from Theorem 1.5.3 this proves the claim.

Theorem 1.5.5. Let M ⊂ Rd be like in Setup 1.1.2. Let further pk be a sequence of real
numbers with pk ≥ 1 and pk → 1 for k → ∞ and upk

corresponding nonnegative first
eigenfunctions of ∆pk

with ∥upk
∥pk

= 1.
Then there is a subsequence of upk

that converges in L1(M) to a nonnegative minimizer
u ∈ BV (M) of (2.20). In particular, if we define the superlevel sets

At := {x ∈M | u(x) > 0}
then a non-null superlevel set At of u is a Cheeger set for almost all t > 0.

Proof. A similar claim is shown in [KF03] and [Fri03]. The generalization we will show
in Theorem 2.3.4 includes this case as the special case T = id, so we do not state a proof
here.
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Chapter 2

A dynamic p-Laplacian ∆D
p

In this section, we will introduce and study the dynamic p-Laplacian ∆D
p as it is also

done in [DFJK23]. We will formally state the dynamic Cheeger problem associated to
it and prove properties that are analogous to the properties presented in Chapter 1. In
particular, we prove:

(∗) Theorem 2.1.3: The dynamic p-Laplacian arises as a Gâteaux derivative
(this generalizes Theorem 1.4.7(a)).

(∗) Corollary 2.1.4: There exists a smallest eigenvalue λD
p of the associated eigenvalue

problem (this generalizes Corollary 1.4.9)

Corollary 2.2.4: The dynamic Cheeger problem has a solution
(this generalizes Corollary 1.3.5).

(∗) Theorem 2.3.1: A dynamic Cheeger inequality analogous to the one in Theo-
rem 1.5.2 holds

(∗) Theorem 2.3.3: As p → 1, the first eigenvalue λD
p converges to the dynamic

Cheeger constant hD(M,T ) (this generalizes Theorem 1.5.4)

Theorem 2.3.4: As p → 1, a sequence of first eigenfunctions uD
p converges, on

a subsequence, to a solution of the BV -characterization of the dynamic Cheeger
constant analogous to (1.16) (this generalizes Theorem 1.5.5).

The results marked with (∗) are also published in [DFJK23]. Often, the proofs are close
to the static case. The main property allowing this is the linearity and continuity of T∗ as
an operator on the function spaces W 1,p

0 (M) and BV (M) (see Theorem D.1). This has
the effect that the dynamic objects inherit relevant properties of their static counterparts.
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p

2.1 Definitions and basic properties
Froyland’s dynamic Laplacian is defined by

∆D := 1
2(∆ + T ∗∆T∗),

where T∗ and T ∗ are the transfer operator and its dual, the Koopman operator. For
a volume-preserving T and some function f ∈ C∞(M), they are commonly written as
T∗f = f ◦ T−1 and T ∗f = f ◦ T .

We can introduce the dynamic p-Laplacian analogously, but we have to be careful
with the definition of T ∗ because, in the way we have introduced it here, ∆p attains
values in W−1,q(M), which contains distributions [AF03, Theorem 3.12]. We thus define
T ∗ in a purely linear algebraic way, mapping some v ∈ W−1,q(M) to the unique element
T ∗v ∈ W−1,q(M) satisfying

⟨u, T ∗v⟩ = ⟨T∗u, v⟩ for all v ∈ W 1,p
0 (M),

where ⟨·, ·⟩ denotes the duality pairing on W−1,q(M)×W 1,p
0 (M) (see also Definition 1.2.2).

This may also be written as T ∗v = v ◦ T∗ and coincides with the more common definition
T ∗f = f ◦ T under the usual identifications of dual spaces like (Lp(M))∗ with function
spaces like Lq(M) (see Theorem D.2). With this setup, we are able to proceed to the
definition of the dynamic p-Laplacian.

Definition 2.1.1. Let M ⊂ Rd be a compact, d-dimensional submanifold with Lipschitz
boundary and T : M →M a volume-preserving diffeomorphism on M with the properties
from Setup 1.1.2. Define the dynamic p-Laplacian ∆D

p by

∆D
p = 1

2 (∆p + T ∗∆pT∗) .

We omit the dependence on T in the notation ∆D
p .

Definition 2.1.2. We say that (λ, u) ∈ R ×W 1,p
0 (M) is a (weak Dirichlet) eigenpair of

−∆D
p if

−∆D
p u = λ|u|p−2u (2.1)

as elements of W−1,q(M). If (u, λ) is an eigenpair of −∆D
p , then we call u an eigenfunction

and λ an eigenvalue of −∆D
p . We denote the infimum of the eigenvalues of −∆D

p by

λD
p := inf{λ ∈ R | λ is eigenvalue of −∆D

p }.

In view of Corollary 2.1.4 we will call λD
p the first eigenvalue of −∆D

p . Note, however,
that it is not immediate from the definition that λD

p is itself an eigenvalue of −∆D
p . As in

the static case, we always only handle the Dirichlet case in this thesis and thus often only
speak of “eigenvalues” and “eigenfunctions”.

The following theorem says that, as in the static case, ∆D
p appears as the derivative

of a functional that has the properties we need for the direct method of the calculus of
variations:
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Theorem 2.1.3. Let M ⊂ Rd be like in Setup 1.1.2, p ∈ (1,∞), and F be defined as in
Theorem 1.4.7. Define the functional FD : W 1,p

0 (M)→ R by

FD(u) := 1
2(F (u) + F (T∗u)) = 1

2
(
∥∇u∥p

p + ∥∇T∗u∥p
p

)
. (2.2)

Then FD is weakly lower semicontinuous, coercive, and Gâteaux differentiable with

(FD)′ = −p∆D
p . (2.3)

Proof. We know by Theorem 1.4.7 that F is weakly lower semicontinuous, coercive
and Gâteaux differentiable. By continuity and linearity of T∗, the functional F ◦ T∗
must also have these properties: coercivity is immediate, as ∥uk∥W 1,p

0 (M) → ∞ implies
∥T∗uk∥W 1,p

0 (M) → ∞ and thus F (T∗uk) → ∞ by coercivity of F . Semicontinuity follows
like in the static case from convexity and strong continuity, which are both preserved by
concatenation with a continuous linear operator. Also, T∗ is linear and bounded, so it is
Gâteaux differentiable with (T∗)′ = T∗, and we get Gâteaux differentiability of F ◦ T∗ by
the chain rule [PK09, Proposition 1.1.14], which also yields:

(F ◦ T∗)′(u) = F ′(T∗u) ◦ T∗.

If we plug in some v ∈ W 1,p
0 (M), we can see that

⟨F ′(T∗u) ◦ T∗, v⟩ = ⟨F ′(T∗u), T∗v⟩ = ⟨T ∗F ′(T∗u), v⟩ = −p⟨T ∗∆p(T∗u), v⟩,

and thus (F ◦ T∗)′ = −pT ∗∆pT∗.
The desired properties are preserved under linear combinations (for coercivity, we need

nonnegativity; for semicontinuity, see Remark 3 after the definition of lower semicontinuity
in [Bre11]), so all in all, the operator FD = 1

2(F +F ◦T∗) is weakly lower semicontinuous,
coercive, and Gâteaux differentiable with

(FD)′ = 1
2(F ′ + (F ◦ T∗)′) = −p(∆p + T ∗∆pT∗) = −p∆D

p ,

as claimed.

Analogously to the static case in Corollary 1.4.9, we can now show the existence of a
minimal eigenvalue.

Corollary 2.1.4. The infimum λD
p of the eigenvalues of −∆D

p is itself an eigenvalue and
can be written as

λD
p = inf

u∈W 1,p
0 (M)

u̸=0

∥∇u∥p
p + ∥∇T∗u∥p

p

2∥u∥p
p

. (2.4)

Any corresponding eigenfunction uD
p attains the infimum on the right-hand side of (2.4).

Further, λD
p is positive, and uD

p can be chosen to be nonnegative.

Proof. This result is also published in [DFJK23], where it is proved directly. Here, we
exploit that we have stated Theorem 1.4.8 in a form abstract enough to apply it to FD,
which is nonnegative, coercive, weakly lower semicontinuous, and Gâteaux differentiable
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p

with (FD)′(u) = −p∆D
p by Theorem 2.1.3. The homogeneity conditions on FD and (FD)′

are again easily checked. Hence, we can apply Theorem 1.4.8(a) to FD and get some u∗

that realizes the infimum λ∗ of JD := FD/G and

−∆D
p u

∗
p = 1

p
(FD)′(u∗) = 1

p
λ∗G′(u∗) = λ∗|u∗|p−2u∗,

which means that (u∗, λ∗) is an eigenpair of −∆D
p . Further, for every other eigenpair (u, λ)

of −∆D
p , we must have JD(u) = λ by Theorem 1.4.8(b), which means that J(u∗) ≤ J(u).

Hence, λ∗ = λD
p , which shows that λD

p is indeed an eigenvalue and uD
p := u∗ is a corre-

sponding eigenfunction. Positivity of λD
p = λ∗ follows by the Poincaré inequality: there

is a C > 0 such that ∥u∥p ≤ C∥∇u∥p and hence

FD(u)
G(u) ≥

∥∇u∥p
p + ∥∇(T∗u)∥p

p

2∥u∥p
p

≥ ∥∇u∥
p
p

∥u∥p
p
≥ 1

2Cp
> 0,

which implies λD
p > 0. There are nonnegative infimizers of FD/G because of the equal-

ity ∥∇u∥p = ∥∇|u|∥p [see BS11, Remarks in Section 2.6], so uD
p can be chosen to be

nonnegative.

Remark 2.1.5. The eigenfunction uD
p is not unique: scalar multiples of eigenfunctions

are again eigenfunctions corresponding to the same eigenvalue. We do not show further
properties here that would uniquely single out one of the eigenfunctions. We also do
not show simpleness of the first eigenvalue (i.e., that all first eigenfunctions are scalar
multiples of each other) as it can be show in the classical case [Lin08].

We have written ∆D
p only in the concise form 1

2(∆p + T ∗∆pT∗) so far, but at some
point, sooner or later, one needs explicit representations. In the following theorem, we
give expanded expressions for ∆D

p .

Theorem 2.1.6. For u, v ∈ W 1,p
0 (M), we can express ⟨∆D

p u, v⟩ by

1
2

∫
M

(
|∇u|p−2∇u∇v + |∇(T∗u)|p−2∇(T∗u))(∇(T∗v))

)
and

1
2

∫
M

(
|∇u|p−2∇u∇v + |DT−T∇u|p−2(DT−T∇u)(DT−T∇v)

)
.

Proof. We get the first equality by plugging

⟨∆pu, v⟩ =
∫

M
|∇u|p−2∇u∇v

into

⟨∆D
p u, v⟩ = 1

2⟨∆pu+ T ∗∆pT∗, v⟩

= 1
2 (⟨∆pu, v⟩+ ⟨T ∗∆pT∗u, v⟩)

= 1
2 (⟨∆pu, v⟩+ ⟨∆pT∗u, T∗v⟩) .
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The second equality arises from a substitution: by the transformation rule for the gradient,
we have

(∇(T∗u))(T (x)) = (DT (x))−T · ∇u(x),
and we have detDT ≡ 1 by volume preservation of T , so under substitution with T , the
integral ∫

M
|∇(T∗u)|p−2∇(T∗u))(∇(T∗v))

becomes ∫
T −1M

|DT−T∇u|p−2(DT−T∇u)(DT−T∇v)

which, after using T−1M = M , becomes the second claim.

We conclude with a technical result after [Lin08, Lemma 4]. We will use this in the
proof of Theorem 2.3.4.

Lemma 2.1.7. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2 , p ∈ (1, 2), d ≥ 2 and
let uD

p be a nonnegative first eigenfunction of ∆D
p . Then there is a constant Cp depending

only on p such that
∥uD

p ∥∞ < (Cp)d(λD
p )

d
p∥uD

p ∥1,

and lim supp→1 Cp <∞.

Proof. Lindqvist’s bound in [Lin08, Lemma 4] for some eigenpair (u, λ) is

∥u∥∞ < 4dλ
d
p∥u∥1,

We expand on the proof here and add modifications for the dynamic case. For ease of
notation, set u := uD

p , λ := λD
p .

We start by defining the function

η(x) := max{u(x)− k, 0}.

Plugging in η as a test function in the eigenvalue equation yields∫
Ak

1
2 (|∇u|p + |∇T∗u|p) = λ

∫
Ak

|u|p−2u(u− k), (2.5)

where
Ak := {x ∈M | u(x) > k}. (2.6)

One has k · ℓd(Ak) ≤ ∥u∥1 and ℓd(Ak) → 0 as k → ∞. The elementary inequality
ap−1 ≤ 2p−1(a− k)p−1 + 2p−1kp−1 follows from monotonicity of x 7→ xp−1 and implies∫

Ak

up−1(u− k) ≤ 2p−1
∫

Ak

(u− k)p + 2p−1kp−1
∫

Ak

(u− k). (2.7)

Further, with p∗ = dp
d−p

, one can obtain existence of a p-dependent constant Kp such that∫
Ak

(u− k)p ≤ ℓd(Ak)
p
d∥u∥p

p∗ ≤ ℓd(A)
p
dKp

p

∫
Ak

|∇u|p, (2.8)
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by first using the Hölder inequality and then the Sobolev inequality. The optimal constant
Kp is known to be less than p(d−1)

d−p
(see, e.g., the proof of the Sobolev inequality in [Eva22],

or footnote 9 in [Bre11, Theorem 9.9]), and hence, lim supp→1 Kp <∞.
We proceed like in the proof of Lindqvist, carrying the additional constant Kp along.

We also add the additional estimate∫
Ak

|∇u|p ≤ 2
∫

Ak

1
2 (|∇u|p + |∇T∗u|p) . (2.9)

Setting C := 22Kp
p and combining (2.9) with (2.8) yields
∫

Ak

(u− k)p ≤ 2−1Cℓd(Ak)
p
d

∫
Ak

1
2 (|∇u|p + |∇T∗u|p) . (2.10)

Now we can combine equations (2.5), (2.7) and (2.10) like Lindqvist, but with our modified
expressions we get∫

Ak

1
2 (|∇u|p + |∇T∗u|p) (2.5)= λ

∫
Ak

|u|p−2u(u− k) (2.11)

(2.7)⇒
∫

Ak

1
2 (|∇u|p + |∇T∗u|p) ≤ 2p−1λ

∫
Ak

(u− k)p + 2p−1λkp−1
∫

Ak

(u− k)

(2.12)
(2.10)⇒

∫
Ak

2C−1ℓd(Ak)− p
d (u− k)p ≤ 2p−1λ

∫
Ak

(u− k)p + 2p−1λkp−1
∫

Ak

(u− k)

(2.13)

⇒
[
C−1 − 2p−2λℓd(Ak)

p
d

] ∫
Ak

(u− k)p ≤ 2p−2λkp−1ℓd(Ak)
p
d

∫
Ak

(u− k) (2.14)

We can then force 2p−2λℓd(Ak) p
d ≤ 1

2C
−1 by assuming

k ≥ k1 :=
(
2(p−1)λC

) d
p ∥u∥1

because ℓd(Ak) ≤ ∥u∥1/k. We thus obtain∫
Ak

(u− k)p ≤ 2p−1Cλkp−1ℓd(Ak)
p
d

∫
Ak

(u− k) (2.15)

for k ≥ k1. By Hölder’s inequality, the left-hand side can be made smaller to

∫
Ak

(u− k)p ≥


∫

Ak

(u− k)(∫
Ak

1q
) p−1

p


p

= ℓd(Ak)−(p−1)
(∫

Ak

(u− k)
)p

.

Plugging this into (2.15) and then dividing by
∫

Ak
(u− k), as well as raising to the power

of 1
p−1 , yields ∫

Ak

(u− k) ≤ 2 (Cλ)
1

p−1 kℓd(Ak)1+ p
(p−1)d , (2.16)
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This yields the claim in the following way: define

f(k) :=
∫

Ak

(u− k).

By Cavalieri’s principle, we can write f(k) =
∫∞

k ℓd(Ak) and hence f ′(k) = −ℓd(Ak).
Thus, (2.16) yields the differential inequality

f(k) ≤ 2 (Cλ)
1

p−1︸ ︷︷ ︸
=:C2

k(−f ′(k))1+

=:ε︷ ︸︸ ︷
p

(p−1)d = C2k(−f ′(k))1+ε (2.17)

for f . One can deduce from (2.17) that f(k) must vanish eventually: if f is positive on
the interval [k1, k2] for some k2, then, in this interval, (2.17) can be rewritten to

(
k

ε
1+ε

)′ ≤ −C
1

1+ε

2

(
f(k)

ε
1+ε

)′
,

where the derivatives are taken in k. Integrating this on [k1, k2] yields

(k
ε

1+ε

2 − k
ε

1+ε

1 ) ≤ C
1

1+ε

2 (f(k1)
ε

1+ε − f(k2)
ε

1+ε ).

Applying f(k1) ≤ f(0) ≤ ∥u∥1 and f(k2) ≥ 0, this reduces to a bound on k2:

k
ε

1+ε

2 ≤ C
1

1+ε

2 ∥u∥
ε

1+ε

1 + k
ε

1+ε

1

=
((

2 (Cλ)
1

p−1
) 1

1+ε +
(
2(p−1)λC

) d
p

· ε
1+ε

)
∥u∥

ε
1+ε

1

=
((

2p−1Cλ
) 1

p−1 · 1
1+ε +

(
2p−1λC

) 1
p−1 · 1

1+ε

)
∥u∥

ε
1+ε

1

= 2
(
2p−1Cλ

) 1
p−1 · 1

1+ε ∥u∥
ε

1+ε

1

and thus
k2 ≤ 2

(
2p−1Cλ

) 1
p−1 · 1

ε ∥u∥1 = 21+ d(p−1)
p (Cλ)

d
p ∥u∥1.

All in all this means that f(k) can only be positive if k is smaller than the right-hand
side (recall that f is decreasing monotonically). This bounds the essential supremum of
up and hence

∥up∥∞ ≤ 21+ d(p−1)
p (Cλ)

d
p ∥u∥1 = 21+ d(p+1)

p λ
d
pKd

p∥u∥1 ≤ 23dλ
d
pKd

p∥u∥1,

which yields the claim after setting Cp := 23dKp. As lim supp→1 Kp <∞, the same is true
for Cp.
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2.2 The dynamic Cheeger problem
We introduce the dynamic version of the Cheeger problem, which, in this variation, can
be first found in [FJ18, Section 2.2]. As in the classical case in Section 1.3, we will state
the dynamic Cheeger problem using the perimeter P (D,Rd) of a set D (see Appendix C
for details), which allows arbitrary measurable sets as candidates for Cheeger sets. This
will allow us to use the same variational techniques to prove the existence of a minimizer
as in the classical case.

Concerning notation, we will follow Froyland in the convention to annotate the dy-
namical versions of objects with a superscript “D”. We start with the generalization of
Definition 1.3.1.

Definition 2.2.1. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Define the dynamic
Cheeger constant of M to be

hD(M,T ) := inf
D⊂M

P (D,Rd) + P (T (D),Rd)
2ℓd(D)

where the infimum ranges over all Borel subsets of M and the value of the fraction is
assumed to be ∞ if P (D,Rd) = ∞ or ℓd(D) = 0. Like in the static case, we call the
quantity in the infimum the dynamic Cheeger ratio of D. If a set D ⊆M has a dynamic
Cheeger ratio of hD(M,T ), we call D a dynamic Cheeger set.

Remark 2.2.2. As in Remark 1.3.2, we have that for every measurable subset D ⊂ M
that

1
2(P (D,Rd) + P (T (D),Rd)) ≥ hD(M,T )ℓd(D),

and if this is an equality, then D is either a null set or a dynamic Cheeger set.

Analogous to the reformulations in Equations (1.14) to (1.16), we have some equivalent
expressions for hD(M,T ):

hD(M,T ) = inf
D⊂M

∂D smooth

ℓd−1(∂D) + ℓd−1(∂(T (D)))
2ℓd(D) (2.18)

hD(M,T ) = inf
u∈C∞

0 (M)\{0}

∥∇u∥1 + ∥∇(T∗u)∥1
2∥u∥1

(2.19)

hD(M,T ) = inf
u∈BV (M)\{0}

|Du|(Rd) + |D(T∗u)|(Rd)
2∥u∥1

. (2.20)

The equalities (2.18) and (2.19) are shown in Appendix F. We will call (2.20) the BV -
characterization of hD(M,T ). We state the proof below in Theorem 2.2.3, as it is closely
tied to an existence proof of a minimizer of the BV -characterization (i.e. some u that
realizes the infimum on the right hand side of (2.20)). See also Appendix C for an
introduction to BV (M) and the definition of |Du|(Rd).

Theorem 2.2.3. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Then

(a) Equation (2.20) holds and the infimum is is attained by some nonnegative function
u ∈ BV (M).
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(b) If some nonnegative u ∈ BV (M) attains hD(M,T ), then for almost all t > 0 the
superlevel sets

At := {x ∈M | u(x) > t}
are either null sets or dynamic Cheeger sets.

Proof. We stay close to the techniques and structure that Parini uses in the proof of
[Par11, Proposition 3.1]. The incorporation of dynamics is done similarly to the proof of
[Fro15, Theorem 3.1].

We first give a name to the right-hand side of the equality in (2.20):

hD
BV (M,T ) := inf

u∈BV (M)\{0}

|Du|(Rd) + |D(T∗u)|(Rd)
2∥u∥1

.

Then, before showing hD
BV (M,T ) = hD(M,T ), we start by showing that hD

BV (M,T )
is attained. This follows by applying the direct method of the Calculus of Variations
in BV (M). Let uk be a minimizing, L1-normalised sequence for hD

BV (M,T ). By the
appearance of |Duk|(Rd) it must be bounded in BV (M). Therefore, by the compactness
property from [Par11, Proposition 2.2], there is a subsequence on which it uk converges in
L1 to some u ∈ BV (M). We pass to that subsequence. Now by the lower semicontinuity
property from [Par11, Proposition 2.1] we have

|Du|(R) ≤ lim inf
k→∞

|Duk|(R).

As T∗ : BV (M)→ BV (M) is continous (see Theorem D.1), the functions T∗uk converge
to T∗u in L1(M) as well, so by the same argument we have

|D(T∗u)|(R) ≤ lim inf
k→∞

|D(T∗uk)|(R).

Thus, with
FD(u) := 1

2(|Du|(R) + |D(T∗u)|(R))

we have that

hD
BV (M,T ) ≤ FD(u)

∥u∥1
= FD(u) ≤ lim inf

i→∞
FD(uk) = lim

i→∞
FD(uk)
∥uk∥1

= hD
BV (M,T ), (2.21)

This implies
hD

BV (M,T ) = FD(u).

And we have shown that hD
BV (M,T ) is attained. We assume nonnegativity of u, which is

possible by the estimate |D|u||(Rd) ≤ |Du|(Rd) (as used in the proof of [Par11, Proposition
2.1]). Now let u ∈ BV (M) be arbitrary and define ũ ∈ BV (Rd) by extending it by zero
and T̃ by extending T to the identity on Rd, i.e,

ũ|M ≡ u, ũ|Rd\M ≡ 0
T̃ |M ≡ T, T̃ |Rd\M ≡ id
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Further, define Ãt := {x ∈ Rd | ũ > t}. Then we have

hD
BV (M,T ) = 1

2
(
|Du|(Rd) + |D(T∗u)|(Rd)

)
(2.22)

(a)=
∫ ∞

−∞

1
2
(
P (Ãt,Rd)dt+ P (T̃ (Ãt),Rd)dt

)
(2.23)

(b)=
∫ ∞

0

1
2
(
P (At,Rd)dt+ P (T (At),Rd)dt

)
(2.24)

≥ hD(M,T )
∫ ∞

0
ℓd(At)dt (2.25)

(c)= hD(M,T )∥u∥1 (2.26)
= hD(M,T ), (2.27)

where we have used the following:

(a) the coarea formula in the variations of Theorem E.3 and Theorem E.4.

(b) the integration limits can be changed because for t < 0 we have Ãt = Rd and hence
P (Ãt,Rd) = P (T̃ (Ãt),Rd) = 0. The sets Ãt, T̃ (Ãt) can be changed to At, T (At),
because, for t > 0, we have Ãt, so Ãt = At. and T (Ãt) = T (At).

(c) Cavalieri’s principle (see Theorem 1.5.1).

This chain of inequalities shows two things: first, it shows hD
BV (M,T ) ≥ hD(M,T ) and

as hD
BV (M,T ) ≤ hD(M,T ) by definition, this implies the equality claimed in (a). Second,

this shows that whenever some u is a minimizer of the infimum in Equation (2.20), then
the chain of inequalities above starts with hD(M,T ) and ends with it, so that inequality
(2.25) is actually an equality and hence for almost all t > 0

1
2(P (At,Rd) + P (T (At),Rd)) = hD(M,T )ℓd(At).

This can only hold if At is a null set or a dynamic Cheeger set, which proves the second
claim.

Corollary 2.2.4. Let M ⊂ Rd be like in Setup 1.1.2. Then there exists a dynamic Cheeger
set.

Proof. By Theorem 2.2.3 there is a nonegative function u ∈ BV (M) that attains hD(M,T )
and by Theorem 2.2.3(b) almost all of its nonnull superlevel sets are dynamic Cheeger
sets. As u is not zero, it has a superlevel set of nonzero measure, which must be a dynamic
Cheeger set.
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2.3 Connections between ∆D
p and the dynamic

Cheeger problem
We now generalize the results from Section 1.5 to the dynamic case, connecting the
dynamic p-Laplacian ∆D

p from Section 2.1 to the dynamic Cheeger problem from Sec-
tion 2.2. This comprises a generalization of the Cheeger inequality from Theorem 1.5.2
to the dynamic case, a convergence result of λD

p for p → 1, and L1-convergence of uD
p to

a minimizer of the BV -characterization on a subsequence for p → 1. Results that also
appear in [DFJK23] are indicated in the proofs.

The convergence of the first eigenvalue λD
p will be done analogously to Section 1.5 in

two steps. The first step is to show a generalization of the general Cheeger inequality to
the dynamic case.

Theorem 2.3.1 (Dynamic Cheeger inequality). Let M ⊂ Rd and T : M → M be as in
Setup 1.1.2 and let 1 < p <∞. If λD

p is the first eigenvalue of −∆D
p from Definition 2.1.2

and hD(M,T ) is the dynamic Cheeger constant of M from Definition 2.2.1 then

λD
p ≥

(
hD(M,T )

p

)p

.

Proof. For p = 2, this has been done by Froyland in [FJ18]. The structure of the proof fol-
lows the statuc case Theorem 1.5.2. A similar proof has also been published in [DFJK23].
First, let w ∈ C∞

0 (M) be nonnegative and define

At := {x ∈M | w(x) > t},
Bt := {x ∈M | (T∗w)(x) > t}.

Then, the coarea formula in Corollary E.2 can be applied to w and to T∗w, yielding:∫
M
|∇w| =

∫ ∞

0
ℓd−1(∂At)dt (2.28)∫

M
|∇T∗w| =

∫ ∞

0
ℓd−1(∂Bt) =

∫ ∞

0
ℓd−1(T (∂At))dt. (2.29)

(the lower integration limit can be changed to 0 because, for t < 0, the boundary of
At = M in M is empty). Note that by continuity of T , we have T (∂At) = ∂(T (At)). We
can then continue as in the static case with∫

M

1
2(|∇w|+ |∇T∗w|) =

∫ ∞

0

1
2(ℓd−1(∂At) + ℓd−1(∂(T (At)))dt (2.30)

≥ hD(M,T )
∫ ∞

0
ℓd(At)dt (2.31)

= hD(M,T )
∫

M
|w|, (2.32)

where step (2.31) follows from Remark 2.2.2, Theorem C.5(b), and Sard’s theorem, and
step (2.32) is Cavalieri’s principle (Theorem 1.5.1). As argued in Theorem 1.5.2, this
inequality in fact holds for all w ∈ W 1,1

0 (M) by density of C∞
0 (M). Thus, we have shown∫

M

1
2(|∇w|+ |∇(T∗w)|) ≥ hD(M,T )

∫
M
|w|. (2.33)
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for every w ∈ W 1,1
0 (M). With the definition Φ(v) := φp(v) := v|v|p−1 for v ∈ W 1,p

0 (M) we
have

∇Φ(v) = φ′
p(v)∇v = p|v|p−1∇v (2.34)

∇Φ(T∗v) = φ′
p(T∗v)∇(T∗v) = p|T∗v|p−1∇(T∗v), (2.35)

so by the Hölder inequality∫
M
|∇Φ(v)| = p

∫
M
|v|p−1|∇v| ≤ p∥|v|p−1∥q∥∇v∥p = p∥v∥p−1

p ∥∇v∥p (2.36)

and ∫
M
|∇Φ(T∗v)| = p

∫
M
|T∗v|p−1|∇(T∗v)|

≤ p∥T∗v∥p−1
p ∥∇(T∗v)∥p = p∥v∥p−1

p ∥∇(T∗v)∥p (2.37)

(where the equality ∥v∥p = ∥T∗v∥p follows from the fact that T is volume-preserving).
This means that Φ(v),Φ(T∗v) ∈ W 1,1

0 (M) and thus (2.33) applies, yielding

hD(M,T )
(2.33)
≤

∫
M |∇Φ(v)|+ |∇Φ(v)|

2
∫

M |Φ(v)| (2.38)

(2.36),(2.37)
≤ p∥v∥p−1

p (∥∇v∥p + ∥∇T∗v∥p)
2∥v∥p

p
(2.39)

= p
∥∇v∥p + ∥∇T∗v∥p

2∥v∥p

. (2.40)

Hence, for every v ∈ W 1,p
0 (M) (using convexity of x 7→ |x|p):

∥∇v∥p
p + ∥∇T∗v∥p

p

2∥v∥p
p

≥
(
∥∇v∥p + ∥∇T∗v∥p

2∥v∥p

)p

≥
(
hD(M,T )

p

)p

,

which shows the claim after passing to the infimum over v.

Theorem 2.3.2. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. . Then

lim sup
p→1

λD
p ≤ hD(M,T ).

Proof. Like the proof of Theorem 2.3.1, this proof has the same structure as its static
counterpart Theorem 1.5.3 and appears also in [DFJK23]. Key ideas for this proof appear
in [KF03, Corollary 6] for the static case and in [Fro15, Proof of Theorem 3.1] for the
incorporation of dynamics in the case p = 2.

Like in Theorem 1.5.3, we start with a sequence of subdomains Dk ⊂M with smooth
boundaries not touching ∂M , fulfilling the limit

ℓd−1(∂Dk) + ℓd−1(∂(T (Dk)))
2ℓd(Dk)

k→∞−→ hD(M,T ),
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and define fε,k := χDk
∗ρε with a convolution kernel ρε, such that we get smooth functions

vanishing at ∂M if ε smaller than some ε∗
k. Again, we get upper bounds on λD

p from

λD
p ≤

∥∇fε,k∥p
p + ∥∇(T∗fε,k)∥p

p

2∥fε,k∥p
p

=: CD
p,ε,k ∀k ∈ N, ε ∈ (0, ε∗

k), p ∈ (1,∞). (2.41)

The identity
lim

k→∞
lim
ε→0

lim
p→1

CD
p,ε,k = hD(M,T ) (2.42)

can be shown in the same way as in Theorem 1.5.3: The first limit

lim
p→1

CD
p,ε,k = ∥∇fε,k∥1 + ∥∇(T∗fε,k)∥1

2∥fε,k∥1
(2.43)

follows by dominated convergence (|fε,k|, |∇fε,k| and |∇T∗fε,k| are pointwise bounded by
compactness of M).

The functions fε,k converge in BV (M) to χDk
for ε→ 0 by [Amb00, Proposition 3.7].

By continuity of T∗ on BV (M), this implies that also T∗fε,k converges to T∗(χDk
) = χT (Dk)

in BV (M). Together, we get ∥∇fε,k∥1 → ℓd−1(∂Dk) and ∥fε,k∥ → ℓd(Dk), like in The-
orem 1.5.3, and, additionally, ∥∇(T∗fε,k)∥1 → ℓd−1(∂(T (Dk))) by Theorem C.5. This
implies the second limit

lim
ε→0

∥∇fε,k∥1 + ∥∇(T∗fε,k)∥1
2∥fε,k∥1

= ℓd−1(∂Dk) + ℓd−1(∂(T (Dk)))
2ℓd(Dk) . (2.44)

The last expression in (2.44) converges to hD(M,T ) for k → ∞ by definition of the Dk,
which completes the proof of (2.42). We can now combine (2.42) with (2.41) to arrive at

lim sup
p→1

λD
p ≤ lim

k→∞
lim
ε→0

lim
p→1

CD
p,ε,k = hD(M,T ), (2.45)

which proves the claim.

Theorem 2.3.3. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Then

λD
p → hD(M,T )

for p→ 1.

Proof. From Theorem 2.3.1 we get

lim inf
p→1

λD
p ≥ lim

p→1

(
hD(M,T )

p

)p

= hD(M,T ).

Together with lim supp→1 λ
D
p ≤ hD(M,T ) from Theorem 2.3.2 this proves the claim.

Theorem 2.3.4. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2, d ≥ 2. Let further pk

be a sequence of real numbers with pk ≥ 1 and pk → 1 for k →∞ and uD
pk

corresponding
nonnegative first eigenfunctions of ∆D

pk
with ∥uD

pk
∥pk

= 1.
Then there is a subsequence of uD

pk
that converges in L1(M) to a nonnegative minimizer

u ∈ BV (M) of (2.20). In particular, if we define the superlevel sets

At := {x ∈M | u(x) > 0}
then a non-null superlevel set At of u is a dynamic Cheeger set for almost all t > 0.
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p

Proof. We roughly use the ideas from [Par09, Theorem 2.33]. For clarity of notation, we
just write p instead of pk and say p→ 1 when we mean k →∞.

As W 1,p
0 (M) ⊂ BV (M), we have that uD

p ∈ BV (M). For L1-convergence on a sub-
sequence, boundedness of uD

p in BV (M) is sufficient by the compactness property in
[Amb00, Theorem 3.23]. To apply this, we need boundedness of uD

p in BV (M), i.e.,
boundedness of ∥uD

p ∥1 and |DuD
p |(Rd). The former can be estimated using the Hölder

inequality
∥uD

p ∥1 ≤ ∥uD
p ∥p∥1∥q = ℓd(M)

1
q

p→1−−→ 1. (2.46)
For the latter, we use Lemma C.2, the Hölder inequality, (a + b)p ≤ 2p−1(ap + bp) and
Theorem 2.3.3 in the calculation

|DuD
p |(Rd) = ∥∇uD

p ∥1 (2.47)
≤ ∥∇uD

p ∥1 + ∥∇(T∗u
D
p )∥1 (2.48)

≤ (∥∇uD
p ∥p + ∥∇(T∗u

D
p )∥p)∥1∥q (2.49)

≤
(
2p−1(∥∇uD

p ∥p
p + ∥∇(T∗u

D
p )∥p

p)
) 1

p ∥1∥q (2.50)

= 2λD
p (M,T )

1
p ℓd(M)

1
q

p→1−−→ 2hD(M,T ). (2.51)

This completes the proof of boundedness of uD
p in BV (M) and thus of convergence on a

subsequence. By Lemma 2.1.7, there is some Cp depending on p such that

∥uD
p ∥∞ ≤ Cd

p (λD
p )

d
p∥uD

p ∥1.

By Theorem 2.3.3 and (2.46), we have that

lim sup
p→1

Cd
p (λD

p )
d
p∥uD

p ∥1 ≤ (lim sup
p→1

Cp)dhD(M,T )d <∞,

and thus, the necessary conditions on boundedness of ∥uD
p ∥∞ to apply Lemma F.3 are

fulfilled. We obtain that the limit function u must fulfill

∥u∥1 = lim
p→1
∥uD

p ∥p
p = 1.

The function u is nonnegative because the uD
p are nonnegative (nonnegativity is equivalent

to being a fixed point of the L1-continuous map f 7→ |f |).
We now show that u is a minimizer of the variational problem from Theorem 2.2.3,

which will yield the claim about the superlevel sets. First note that by Theorem 2.2.3 we
have

1
2(|Du|(Rd) + |D(T∗u)|(Rd)) ≥ hD(M,T )

(using ∥u∥1 = 1). Thus, for equality we just have to show the converse inequality. To do
so, first use lower semicontinuity [Par11, Proposition 2.1] and continuity of T ∗ on BV (M)
to get

1
2(|Du|(Rd) + |D(T∗u)|(Rd)) ≤ lim inf

p→1

1
2(|DuD

p |(Rd) + |D(T∗u
D
p )|(Rd)) (2.52)

= lim inf
p→1

1
2(∥∇uD

p ∥1 + ∥∇(T∗u
D
p )∥1). (2.53)
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With the Hölder inequality we can estimate

1
2(∥∇uD

p ∥1 + ∥∇(T∗u
D
p )∥1 ≤

1
2
(
∥∇uD

p ∥p + ∥∇(T∗u
D
p )∥p

)
ℓd(M)

1
q (2.54)

≤ 1
2
(
2p−1(∥∇uD

p ∥p
p + ∥∇(T∗u

D
p )∥p

p)
) 1

p ℓd(M)
1
q (2.55)

=
(
λD

p

) 1
p ℓd(M)

1
q

p→1−−→ hD(M,T ). (2.56)

Therefore
1
2(|Du|(Rd) + |D(T∗u)|(Rd) ≤ hD(M,T )

and thus, u is a minimizer of the BV -characterization of hD(M,T ), which, by Theo-
rem 2.2.3, means that, almost surely in t > 0, its superlevel sets At are either Cheeger
sets or null sets.

44



Chapter 3

Numerical treatment of the
eigenvalue problem

In contrast to the case p = 2, where ∆p and ∆D
p are linear, for p ̸= 2, the operator ∆p

is nonlinear. This makes its numerical treatment much harder. Finite element approxi-
mations of the problem ∆pu = f have already been studied in 1993 by Liu and Barret
in [BL93]. The literature on the numerical treatment of the eigenvalue problem value is
more recent. For the first eigenfunction, where the problem is a minimization problem,
Lefton and Wei [LW97] used the Levenberg-Marquardt algorithm for the optimization.
In [YZ07], Yao & Zhou give a min-max algorithm for higher eigenvalues of a general
class of nonlinear eigenvalue problems that include the p-Laplacian. (the latter approach
is the one we will adapt and use in our experiments). Further work includes a descent
algorithm for the first eigenfunction and a mountain pass algorithm for the second one
[Hor11]. More recently a method based on radial basis functions was used in [Ant19].

For our purposes, we first tried a homotopy approach: whenever there is a parameter-
dependent problem which is easy to solve for some values of the parameter, it can be a
good idea to first solve the problem for the easy parameters and then gradually change
the parameter so that it approaches the desired value. For the eigenvalue problem of ∆p,
the case p = 2 is the easy case, as ∆2 is linear. It is thus sensible to try solving the linear
case and then apply a predictor-corrector method where one decreases the value of p by
some decrement and uses the old solution as an initial guess for the new value of p in a
corrector step. If the corrector step fails, one decreases the step one does in p.

We found that for p approaching 1, this happens very often, and the step sizes get
small very fast. The properties in Section 3.1 and the example in Section 3.2.4 are our
attempts to explain these difficulties, which indicate that local convergence in the corrector
step is hard to achieve if one formulates the problem directly in the “operational” form
−∆pu = λ|u|p−2u.

For these reasons, we ultimately used a variational descent method for the experiments
in Chapter 4. In Section 3.2 we will give a short introduction to this method by Yao and
Zhou [YZ07]. We also derive the modifications that we apply for the special case of ∆D

p .

Finally, we present some ideas and observations about possible alternative approaches
to the eigenvalue problem.
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3.1. PROPERTIES POSING CHALLENGES

3.1 Properties posing challenges
We point out two properties of the eigenvalue problem that make the numerical treatment
especially hard. We do this only for the classical p-Laplacian ∆p, as it is a special case
of the dynamic p-Laplacian. As a general method has to work also for this special case,
difficulties for ∆p apply to ∆D

p as well.

3.1.1 Nondifferentiability
A possible approach for finding eigenvalues of ∆p is the “operational” approach [SFG74],
which consists of searching for solutions (u, λ) of the equation ∆pu − λ|u|p−2u = 0 after
some discretization (e.g. on some finite element spaces). Root finding in the nonlinear
setting is generally much easier if we have the derivative of the objective at hand, i.e.,
using the Newton method.

The appearance of the term |∇u|p−2u in the p-Laplacian, however, hints at a nondif-
ferentiability: the term |t|p−2t is not differentiable in t = 0 for p < 2. One can show that
indeed, the p-Laplacian is not differentiable in some circumstances.

Theorem 3.1.1. Let M ⊂ Rd be like in Setup 1.1.2and let 1 < p < 2. Then the
(nonlinear) operator

∆p : W 1,p
0 (M)→ W−1,q(M) (3.1)

u 7→
(
v 7→

∫
M
|∇u|p−2∇u∇v

)
(3.2)

is not Gâteaux-differentiable in u if ∇u ≡ 0 on some open subset of M .

Proof. Assume ∆p is Gâteaux-differentiable in u. For any fixed v ∈ W 1,p
0 (M), the map

ιv : W−1,q 7→ R, ξ 7→ ξ(v)

is linear and bounded and hence continuous. It follows that ιv ◦ ∆p is also Gâteaux-
differentiable in u, as for any w ∈ W 1,p(M):

lim
h→0

ιv(∆p(u+ hw))− ιv(∆p(u))
h

= lim
h→0

ιv

(
∆p(u+ hw)−∆p(u)

h

)
(3.3)

= ιv

(
lim
h→0

∆p(u+ hw)−∆p(u)
h

)
. (3.4)

Now, since {∇u = 0} has an open subset, we can choose a function v ∈ W 1,p(M) such
that supp v ⊆ {∇u = 0} and ∥∇v∥p ̸= 0. Then, as we just saw, ιv ◦∆p is also Gâteaux-
differentiable; in particular, the expression

(ιv ◦∆p)(u+ tv) (3.5)
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should be differentiable in t for t = 0. As ∇u vanishes on the support of v, this evaluates
to

(ιv ◦∆p)(u+ tv) =
∫

M
|∇(u+ tv)|∇(u+ tv)∇v (3.6)

=
∫

supp(v)
|∇(u+ tv)|∇(u+ tv)∇v (3.7)

=
∫

supp(v)
|∇(tv)|p−2∇(tv)∇v (3.8)

= |t|p−2t∥∇v∥p
p. (3.9)

But t 7→ |t|p−2t is not differentiable in t = 0 for p < 2 and hence we have a contradiction.

Theorem 3.1.2. Let M ⊂ Rd and T : M → M be as in Setup 1.1.2. Let 1 < p < 2 and
N ⊂ W 1,p

0 (M) be the set of all u in which the mapping ∆p : W 1,p
0 (M)→ W−1,q(M) is not

Gâteaux-differentiable. Then N is dense in W 1,p(M).

Proof. We use Theorem 3.1.1 and prove that for u ∈ C1
0(M), there are ū arbitrarily close

to u such that ∇ū ≡ 0 on an open subset of M . This shows the claim, as C1
0(M) is

dense in W 1,p
0 (M). To do so, first choose some ψ ∈ C∞

0 (Rn) to vanish outside the ball
B2(0) of radius 2 while having the constant value 1 on the ball B1(0) of radius 1. Let
x0 be an arbitrary point in the interior of M and define ψε(x) := ψ(ε−1(x − x0)) for
0 < ε < 1

2dist(x0, ∂M). With
ū := ψεu(x0) + (1− ψε)u

we have u − ū = (u − u(x0))ψε. Defining f := u − u(x0) we will now show ū → u in
W 1,p

0 (M) by showing limε→0 ∥fψε∥W 1,p
0 (M) = 0. By the Poincaré inequality, we just have

to consider the norm ∥∇(fψε)∥p. It can be bound by the sum of ∥(∇f)ψε∥p and ∥f∇ψε∥p

with the triangle inequality, where for the first term we can estimate∫
M
|(∇f)ψε|p ≤ ℓn(suppψε)︸ ︷︷ ︸

=O(εn)

∥∇f∥p
∞∥ψε∥p

∞︸ ︷︷ ︸
=O(1)

ε→0−→ 0.

For the second term we first note that ∥∇ψε∥∞ = ε−1∥∇ψ∥∞ = O(ε−1), as well as
f(x) = O((x− x0)) for x→ x0, as f(x0) = 0 and f ∈ C1(M), so∫

M
|f∇ψε|p ≤ ℓn(suppψε)︸ ︷︷ ︸

=O(εn)

(
sup

|x−x0|<2ε
|f(x)|p︸ ︷︷ ︸

=O(εp)

)
∥∇ψε∥p

∞︸ ︷︷ ︸
=O(ε−1)

ε→0−→ 0.

This completes the proof that ∥∇(u− ū)∥p → 0 for ε→ 0. But as ū is constant on Bε(x0)
we get ū ∈ N by Theorem 3.1.1 and we have shown the claim.

Remark 3.1.3. In a numerical context, a situation similar to Theorem 3.1.1 can appear
when the integration is approximated by a quadrature rule and one of the quadrature
points lies exactly on an extremum of u (e.g. by symmetry). The set {∇f = 0} is then
numerically “amplified” and a nondifferentiability can occur in a discretization of ∆p, even
though {∇f = 0} may be a null set. Trying to avoid this by ensuring that no quadrature
point lies too close to an extremum of the eigenfunction leads to unwieldy constraints on
the discretization of the domain.
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3.1.2 Flatness of eigenfunctions
As seen in Theorem 1.3.3(b), a function that minimizes |Du|(Rd)/∥u∥1 is a characteristic
function if the Cheeger set is unique. The eigenfunctions of ∆p partially inherit the
plateau-like quality of a characteristic function as p approaches 1: around extrema, the
deviation from the extremal value of an eigenfunction scales at most with the q-th order
of the distance to the extremum, where q is the conjugate exponent of p (this is made
more precise in Theorem 3.1.4). While the approaching of characteristic functions is one
of the motivations for ∆D

p , it leads to problems in the numerical setting, inhibiting one
from calculating ∆p(up) accurately.

Theorem 3.1.4. Let M ⊂ Rd be like in Setup 1.1.2 and u ∈ W 1,p
0 (M) the first eigen-

function of ∆p on M . If u attains its maximum in x0 ∈M , then

lim sup
x→x0

u(x0)− u(x)
|x|q <∞.

Proof. The proof of this claim from [Gar03, Theorem 1, Remark a)] is splitted into several
parts across the paper, so we bundle the arguments here for this special case. Assume
without loss of generality that x0 = 0. The main work is done by [Gar03, Lemma 5],
which states that if one defines

uα := u(0)− u(αx)
αq

,

then every sequence αn → 0 has a subsequence such that uαn → ū in ū ∈ C1
loc(Rd) and

∆pū ≡ const.

The proof only uses local properties of u and thus does not depend on regularity, symmetry
or convexity of the domain.

Now assume that there is a sequence xn → 0 with

lim
n→∞

u(0)− u(xn)
|xn|q

=∞.

Proceeding along the lines of the proof of [Gar03, Theorem 7], we define αn := |xn| and
yn := xn/|xn|, which implies

u(0)− u(xn)
|xn|q

= uαn(yn).

By aforementioned [Gar03, Lemma 5] we can assume without loss of generality that
uαn → ū. We may also assume yn → y0 by passing to another subsequence. Together,
this yields the contradiction

∞ = lim
n→∞

u(0)− u(xn)
|xn|q

= lim
n→∞uαn(yn) = ū(y0) <∞

which proves the claim.
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Remark 3.1.5. In the same way, one can also show

lim inf
x→x0

u(x0)− u(x)
|x|q > 0,

meaning that the “order” of the extremum is exactly q, but for our purposes, we will only
need the upper bound.

This flatness of eigenfunctions means that they come close to the situation in Theo-
rem 3.1.1 of having constant parts, and numerically, we have to expect the problems that
come with nondifferentiability.

Relatedly, precise calculation of ∆p(u) is inhibited. In the analytical setting, ∇u is of
extremely small order O(|x − x0|q−1), and this extreme cancels with the other extreme
|V |p−2V , which is of order O(|V |p−1) for small V (recall that (p − 1)(q − 1) = 1). In
a numerical setting, we only have finite precision available, and tiny deviations in up(x)
quickly drown in numerical noise.

To illustrate the scale of this problem, we exemplarily consider u(x) = 1 − |x|q in
points around 0. For some small h, the relative difference

δh
rel := u(h)− u(0)

u(0) = |h|q

becomes smaller than εmach when h < q
√
εmachu0. For, e.g. p = 1.1, u0 = 1, and a machine

precision of εmach = 10−16, this means that any function value at a point closer than
h ≈ 0.035 to 0 will be completely dominated by numerical noise. If we want to keep the
relative difference in function values smaller than 10−8, this worsens to h ≈ 0.18.

This implies practical limitations on the combinations of grid sizes h and exponents
p, which are visualized in Figure 3.1.

For the eigenfunctions of the p-Laplacian, similar restrictions are to be expected by
Theorem 3.1.4. One can even be more precise by using a power series expansion of the
eigenfunction on [−1, 1] around zero that approaches 1− |x|q for p→ 1.

The power series is derived in [Lin95], for the first eigenfunction of ∆p on the interval
[−πp

2 ,
πp

2 ], where

πp := 2 p
√
p− 1

p sin(π
p
) π.

The series expansion is

p
√
p− 1

(
1− xq

q
+ x2q

2q2(q + 1) − . . .
)
.

If we scale this vertically to 1 at x = 0 and horizontally to the interval [−1, 1], we get
(

1− πq
px

q

2qq
+

π2q
p x

2q

22q2q2(q + 1) − . . .
)
.
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The coefficient πq
p

2qq
now approaches 1 as p → 1: we can use the identity πp = πq from

[Lin95] and write

πq
q

2qq
= (q − 1)
qq+1 sin(π

q
)q
πq (3.10)

=
 π

q sin(π
q
)

q
(q − 1)
q

(3.11)

=
(

1
1 +O(q−3))

)q (q − 1)
q

→ 1 (q →∞). (3.12)

Hence for p close to 1, the eigenfunction behaves like 1− |x|q up to order 2q.

1 1.2 1.4 1.6 1.8 2

100

10−2

10−4

10−6

10−8

p

h

Figure 3.1: Combinations of grid sizes h and exponents p where |h|q < 10−8 (orange) and
|h|q < 10−16 (red). In the red area, the function u(x) = 1− |x|q, is numerically constant
on [−h, h], so, numerically, ∆pu = 0 around x = 0.

3.2 The local min-max method of Yao & Zhou
Here we present the method used for the numerical experiments in Chapter 4. A similar
exposition is done in [DFJK23]. We use a variational method by Yao and Zhou [YZ07],
which treats a general nonlinear eigenvalue problem

F ′(u) = λG′(u)

for “iso-homogeneous” functionals F and G on a Banach space, meaning that there is
some r > 0 such that F ′(tu) = trF ′(u) and G′(tu) = trG′(u) for all t > 0 and all u. The
method uses a min-max algorithm on

J := F

G
,
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which is able to find not just the first eigenfunction but also higher eigenfunctions. We
will mainly be interested in the first eigenfunction so we first restrict the presentation to
this case, where the algorithm simplifies substantially. For a sketch of the method for
higher eigenfunctions see Section 3.2.3.

We will also not work with general F andG but with the specific ones in Theorem 1.4.7.
This is also the example that Yao and Zhou themselves use to showcase their method in
[YZ07]. We incorporate the specializations and modifications that they develop in [YZ07,
Section 4.1] for this case. Later, in Section 3.2.1, we will replace F with FD in order to
treat ∆D

p .
For now, consider the classical case F (u) = ∥∇u∥p

p and G(u) = ∥u∥p
p. By Theo-

rem 1.4.8, the first eigenfunction is a minimizer of J . The method of Yao and Zhou boils
down to a descent algorithm in this special case.

Descent direction The essential ingredient is the choice of a descent direction, i.e., for
some u ∈ W 1,p

0 (M) we want a w ∈ W 1,p
0 (M) such that

d

dt
J(u+ tw)

∣∣∣∣∣
t=0

< 0. (3.13)

In [YZ07, Section 4.1], Yao and Zhou propose using the direction w := − grad J , where
grad J is defined in the following way:

Definition 3.2.1. With F,G and J as above and u ∈ W 1,p
0 (M), define grad J(u) to be

the (unique) weak solution d ∈ W 1,q
0 (M) ⊂ W 1,p

0 (M) for

−∆d = J ′(u),

i.e., the d fulfilling ∫
M
∇d∇v = ⟨J ′(u), v⟩ (3.14)

for all v ∈ W 1,p
0 (M). The right-hand side, in expanded form, is

p

G(u)2

∫
M

(G(u)|∇u|p−2∇u∇v − F (u)|u|p−2uv)

(see [YZ07, Section 4.1]). For the existence of a unique solution on C1 domains see
Theorem F.10.

Remark 3.2.2. Because M is bounded, the inclusion W 1,q
0 (M) ⊂ W 1,p

0 (M) holds, so a
solution can be used as an ascent direction in W 1,p

0 (M). The notation grad J is inspired
by [YZ07], where it is denoted by ∇J .

The direction w := − grad J(u) is indeed a descent direction in the sense of (3.13): if
d solves (3.14) then

d

dt
J(u− td)

∣∣∣∣∣
t=0

= −⟨J ′(u), d⟩ (3.14)= −
∫

M
∇d∇d = −∥∇d∥2

2 < 0.
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A detail we have omitted here is that Yao and Zhou require a stronger property of w than
just being a descent direction, namely that −w is a pseudogradient of J . This requires1

∥∇w∥p ≤ 1 and the existence of some 0 < ϑ ≤ 1 with

⟨J ′(u),−w(u)⟩ ≥ ϑ∥J ′(u)∥W −1,q(M) (3.15)

for all u ∈ W 1,p
0 (M). Yao and Zhou claim numerical evidence that d

∥∇d∥p
is a pseudogra-

dient of J but do not prove this formally.

Initial guess The algorithm needs a first guess for up. Yao and Zhou propose taking a
function with the “simplest nodal line structure”. We use eigenfunctions of ∆2 and ∆D

2 ,
respectively.

Step size control In [YZ07, Lemma 2.5], Yao and Zhou prove that if G is a pseudogra-
dient with respect to ϑ of J as defined in (3.15), then one can expect a certain decrease
in J(u− tG(u)), namely

J(u+ tw)− J(u) < 1
4sϑ∥J

′(u)∥

(we have simplified the expression to the special case of the first eigenfunction). This
can be used in an Armijo-like step size control. For the special case of the p-Laplacian
and the pseudogradient proposed by Yao and Zhou, the norm ∥J ′(u)∥ is replaced by
∥∇(grad J(u))∥2

2 following [YZ07, Section 4.1].

Interpretation of grad J as a gradient The notation alludes to thinking of d as a
gradient. To have an informal justification on this perspective, recall that the gradient
∇Af of a scalar function f with respect to some scalar product “·A” is connected to the
derivative Df by the equation

(∇Af(x)) ·A v = (Df(x))v for all v ∈ Rd.

The equation (3.14) has the same structure if we think of the left-hand side as the H1
0

scalar product (d, v) 7→ ∫
M ∇u∇v. Strictly speaking, this is inaccurate, as the left-hand

side of (3.14) is not a scalar product but a bilinear pairing W 1,q
0 (M) ×W 1,p

0 (M) → R.
However, as M is bounded, we have the inclusions

W 1,q
0 (M) ⊂ H1

0 (M) ⊂ W 1,p
0 (M),

and if we allow d and restrict v to be in H1
0 (M), the two objects coincide. The resulting

equation is different from (3.14) (we have made it weaker), but we still take the above
observations as enough to justify thinking of d as a gradient.

1note that Yao and Zhou are working with the norm ∥u∥W 1,p
0 (M) := ∥∇u∥p.

52



CHAPTER 3. NUMERICAL TREATMENT OF THE EIGENVALUE PROBLEM

Interpretation of grad J(u) as a regularized J ′(u) We want to elaborate informally
on a remark in [YZ07] saying that replacing J ′(u) with grad J(u) “increases its smooth-
ness”.

The main reason we do this is to try to understand why a certain modification of
equation (3.14) defining “grad” leads to better results in the dynamic case in Section 3.2.1
below. This discussion, however, remains informal.

The operator ∆ decreases regularity, mapping e.g. k-times differentiable functions to
(k−2)-times differentiable functions, so it is intuitive that ∆−1 should increase regularity.
This can be made a little bit more precise by the connection of the regularity of a function
with the growth behavior of its Fourier transform. Roughly, the slower it grows for high
frequencies, the more regular the function (see e.g. [Gra+08, Table 3.1] for periodic
functions). “In frequency space”, −∆ is diagonal, mapping exp(2πkx) to |k|2 exp(2πkx)
for some k ∈ Rd. This enhances growth of the Fourier transform for high frequencies and
thus decreases regularity. Conversely, ∆−1 should also be diagonal, mapping exp(2πkx)
to |k|−2 exp(2πkx) and thus attenuating growth at high frequencies. We will not make
this more precise here.

Another way of looking at the regularizing behavior is to focus on the variational
problem associated with the Poisson equation −∆u = f , which is

minimize
(1

2∥∇u∥
2
2 −

∫
M
fu
)
,

and to point out that the term ∥∇u∥2
2 penalizes irregularity of u. Formally, it is less clear

here that ∆−1f should be more regular than f , but this formulation better highlights the
changes that we will make in Section 3.2.1.

3.2.1 The dynamic case
In order to apply Algorithm 1 to ∆D

p , we replace F with

FD := 1
2(F + F ◦ T∗) = 1

2
(
∥∇(·)∥p

p + ∥∇T∗(·)∥p
p

)
from Theorem 2.1.3. It still has the iso-homogeneous conditions and differentiability, so
the method is applicable with JD := FD/G in place of J .

When using Algorithm 1 in a straightforward way, however, a problem appears: the
step sizes that the algorithm chooses get unusably tiny. In this section we present a mod-
ification of the choice of descent direction that, in our experiments, solved this problem.
Instead of using grad J(u) = ∆−1(JD)′(u), we use the dynamic Laplacian ∆D, yielding
the following definition.

Definition 3.2.3. With FD, G and JD as above and u ∈ W 1,p
0 (M), define gradDJD(u)

to be the weak solution dD ∈ W 1,q
0 (M) ⊂ W 1,p

0 (M) of

−∆DdD = (JD)′(u), (3.16)

i.e., the dD fulfilling

1
2

(∫
M
∇dD∇v +∇(T∗d

D)∇(T∗v))
)

= ⟨(JD)′(u), v⟩ for all v ∈ W 1,p
0 (M).
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After substitution, the left-hand side becomes∫
M

1
2(I +DT−1DT−T )∇dD∇v,

where DT−1DT−T is the inverse of the Cauchy-Green tensor. The right-hand side, in
expanded form, is

p

2G(u)2

∫
M

(G(u)
(
|∇u|p−2∇u∇v + |∇(T∗u)|p−2∇(T∗u)∇(T∗v)

)
− F (u)|u|p−2uv).

For the existence of a unique solution on C1 domains see Theorem F.10.

While we haven’t found a formal argument for the improvement, we give a heuristic
reasoning for it by drawing parallels to convergence problems of gradient descent and their
mitigation via preconditioning.

The algorithm that we are using is a descent method that is structurally the same as
gradient descent. It is well known that a badly conditioned Hessian of the objective can
cause the direction of “steepest descent”, i.e., the direction of unit length with the lowest
directional derivative, to be far away from the direction that would move the argument
fastest to the optimum.

A possible remedy is measuring “unit length” with respect to some other scalar prod-
uct, i.e., taking

∇gf(x) = argmin
|v|g=1

Df(x)v,

where, ideally, the norm |·|g induced by g penalizes eigenvectors of the Hessian correspond-
ing to big eigenvalues more strongly than eigenvectors with small eigenvalue, counteracting
the anisotropy.

Recall that in finite dimensions we may calculate vTH(x)v by

d2

dt2
f(x+ tv)

∣∣∣∣∣
t=0

.

We get the eigenvalues of the Hessian if we plug in normalized eigenvectors for v but even
if we don’t know the eigenvectors, we can expect a badly conditioned Hessian if vTH(x)v
exhibits big differences in magnitude for different v.

This we apply to JD: ignoring differentiability issues, we try to get a feeling on how
the expression

d2

dt2
∥∇(u+ tv)∥p

p + ∥∇(T∗(u+ tv))∥p
p

2∥u+ tv∥p
p

∣∣∣∣∣
t=0

(3.17)

behaves. Think of v as a function that has small support (e.g. the basis functions from
some finite element discretization). If v has support in a part of the domain where
dynamics exhibit a lot of stretching, then the term ∥∇(T∗(u+ tv))∥p will be very sensitive
to t and by the identity (|f |p)′′ = p(p−1)|f |p−2(f ′)2+pf ′′|f |p−2f , the term (f ′)2 is likely to
introduce high curvature in the expression ∥∇(T∗(u+ tv))∥p

p. Conversely, if u has support
only in areas of little stretching of T , this does not happen and we may expect ∥∇(T∗u)∥p

p

to have moderate curvature in comparison.
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We suspect that this is the anisotropy in the “Hessian” of JD that leads to problems.
In the same way as in gradient descent, it is advantageous to move a lot into the directions
of high yield and little into the directions of low yield. This is supported by the numerical
examples, which show spikes in grad JD in areas of high stretching of T , indicating that
a hat function in this area gave disproportionately high yield in JD (see Figure 3.2, left).

We argue that the choice of gradDJ(u) := (∆D)−1J ′(u) is a counteraction of this
anisotropy: the expression in (3.17) gets big if there is high stretching around the support
of v. The norm corresponding to the scalar product g(u, v) =

∫
M ∇u∇v +∇(T∗u)∇(T∗v)

penalizes exactly these directions stronger, as ∥v∥2
g also contains the summand ∥∇(T∗v)∥2

2.
All in all, we still lack a formal justification for this choice of dD. In practice however,

dD is much smoother than d (see Figure 3.2, right), and while the algorithm chooses
unusably small stepsizes for the descent direction − grad JD, this doesn’t happen with
−gradDJD.
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Figure 3.2: The descent directions grad JD(u) and gradDJD(u), where JD arises from
the transitory double gyre described in Section 4.1.2. The value of p is 1.8 and u is the
first eigenfunction of ∆D = ∆D

2 . Note the spike in the right lower corner of the left plot.
The color scaling in the left plot arises from the transformation x 7→ log(|x|+ 0.1). This
is done to make different orders of magnitude visible.

3.2.2 The full algorithm for the first eigenfunction
Algorithm 1 shows pseudocode for the algorithm that approximates the first eigenfunc-
tion. In practice, one works on finite element approximations of W 1,p

0 (M) and numerical
solutions to (3.16) for gradDJD and the first eigenfunction of ∆D. In Chapter 4 we use the
Cauchy-Green approach described in [FJ18, section 3.1]. Function norms are calculated
by quadrature of the corresponding integrals. We also add maximal iteration counts to
the loops in Line 3 and Line 6, even though they should both terminate eventually by
results of [YZ07, Theorem 5.1] and [YZ07, Lemma 2.5], respectively.
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Algorithm 1 Computation of the first eigenfunction (after [YZ07])

1 function first-eigenfunction(εtol > 0)
2 u← initial-guess() # initial guess
3 while ∥gradDJD(u)∥p > εtol do # stopping criterion
4 w ← −gradDJD(u) # descent direction
5 s∗ ← 2/max(1, ∥w∥p) # initial step size
6 repeat # step size control
7 s∗ ← s∗/2
8 u∗ ← (u+ s∗w)/∥u+ s∗w∥p # normalized candidate
9 until J(u∗) ≤ J(u)− 1

4s
∗∥∇w∥2

2 # check decrease in J

10 u← u∗ # accept candidate
11 end while
12 return u

13 end function
14
15 function initial-guess( )
16 return the first eigenfunction of ∆D

17 end function

3.2.3 Higher eigenfunctions
Similar to the Courant-Fischer principle in the linear case [Zei13], higher eigenfunctions
of ∆p can be described by a minimum-maximum principle. There is a characterization
based on the Krasnoselskij genus of symmetric subsets A ⊂ W 1,p

0 (M),−A = A, which is
defined as the smallest natural number k such that there exists a continuous, odd mapping
γ : A → Rk, γ(−u) = −γ(u). The variational characterization is stated, e.g., in [Lin08]
and [YZ07] and reads

λ(k)
p := inf

A∈Σk

sup
u∈A

J(u),

where Σk denotes the family of compact subsets of W 1,p
0 (M) with Krasnoselskij genus k

(note that, according to [Lin08], it is not known whether these exhaust the spectrum of
∆p). In [YZ07], they state a different, equivalent characterization that iteratively charac-
terizes a (k + 1)-th eigenfunction uk+1 from k lower eigenfunctions u1, . . . , uk. Choosing
a complement space L′ of L := span (u1, . . . , uk), i.e. one that fulfills L⊕ L′ = W 1,p

0 (M),
they define for vi ∈ W 1,p

0 (M) the subset

[v1, . . . , vk+1]S :=
{

k∑
i=1

tivi |
k∑

i=1
t2i = 1

}
⊂ W 1,p

0 (M),

and characterize λ(k)
p as

min
v∈SL′

max
u∈[u1,...,uk,v]S

J(u), (3.18)

where SL′ := {u ∈ L′ | ∥u∥p = 1}. The numerical advantage of this formulation is that
the inner optimization can be solved as a low dimensional constrained optimization on
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the ti. In [YZ07], Yao and Zhou define a peak selection of J with respect to L to be a
mapping u+ : SL′ → W 1,p

0 (M) such that

u+(v) ∈ arg max
u∈[u1,...,uk,v]

J(u).

Using this definition, the characterization in (3.18) becomes

min
v∈SL′

J(u+(v)).

This minimization problem can then be solved with a descent on v: Let w = − sign(tk+1)d
with d := grad J(u+(v)) and tk+1 being defined as the coefficient in the representation
u+(v) = ∑k+1

i=1 tiui. From [YZ07, Lemma 2.5], it arises that w is a descent direction for
v 7→ J(u+(v)). Note that this is subtly different from a direct application of what we
already showed about d, namely

d

dt
J(u+(v)− td) < 0,

as opposed to the claim we are using here:

d

dt
J(u+(v + tw)) < 0.

We have already incorporated the simplifications from the remarks in [YZ07, Section 4.1],
namely leaving out a projection of w onto L′ and using a specific choice of pseudogradient
for w. The statement in [YZ07, Lemma 2.5] is stronger than the directional derivative
just being negative and allows for an Armijo-like stepsize control of a descent algorithm
on v 7→ J(u+(v)).

Algorithm 2 shows pseudocode for calculating a next eigenfunction u(n) from already
computed eigenfunctions u(1), . . . , u(n−1). This is also the algorithm that is implemented
in the accompanying package DynamicPLaplacian.jl.

For n = 1, there is no optimization to be done in the function peak-selection,
as [v]S = {±v}. Thus, peak-selection just returns its argument, and the algorithm
degrades to Algorithm 1.

We use the Algorithm 2 for n = 2 in the exploratory example in Section 4.3, where
we also elaborate more on the specific numerical methods used.

For n > 2, the convergence is very slow in the presence of dynamics and we have not
done successful experiments except for n = 1 and n = 2.
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Algorithm 2 Computation of a higher eigenfunction (after [YZ07])

1 function nth-eigenfunction(u(1), . . . u(n−1) ∈ W 1,p
0 (M), εtol > 0)

2 v ← initial-guess(n) # initial guess
3 t← [0, . . . , 0, 1]
4 while ∥gradDJD(u)∥p > εtol do # stopping criterion
5 u, t← peak-selection([u(1), . . . , u(n−1), v], t)
6 w ← −sign(tn)gradDJD(u) # descent direction
7 s∗ ← 2/max(1, ∥w∥p) # initial step size
8 repeat # step size control
9 s∗ ← s∗/2

10 v∗ ← (v + s∗w)/∥v + s∗w∥p # normalized candidate
11 u∗, t∗ ← peak-selection([u(1), . . . , u(n−1), v∗], t)
12 until J(u∗) ≤ J(u)− 1

4s
∗|t∗n|∥∇w∥2

2 # check decrease in J

13 v ← v∗ # accept candidate
14 end while
15 return u

16 end function
17
18 function initial-guess(k)
19 return the k-th eigenfunction of ∆D

20 end function
21
22 function peak-selection([v1 . . . , vn], [t1, . . . , tn])
23 Find a local maximum ũ = ∑

i t̃ivi of JD closest to u = ∑
i tivi.

24 return ũ, t̃

25 end function
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3.2.4 A numerical example in one dimension
In order to illustrate some of the aspects discussed so far, we apply the method of Yao
and Zhou for the first eigenfunction to the one-dimensional case d = 1 on the interval
I = [−1, 1]. The eigenvalues of ∆p are known analytically in this case2:

(p− 1)
 π

p sin(π
p
)

p

.

The (strong) eigenvalue equation becomes an ordinary differential equation
(
|u′|p−2u′

)′
= −λ|u|p−2u.

In Section 3.3.1, we will show how to write this as a Hamiltonian system. We approxi-
mate a solution to high accuracy with the Dormand-Prince solver from the Julia package
DifferentialEquations.jl[RN17] to get reference solutions (see Figure 3.3).
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Figure 3.3: The first eigenfunction of ∆p on the unit interval [0, 1] for the exponent
p ∈ {2.0, 1.5, 1.3, 1.1}, approximated to high accuracy with a numerical ODE solver.

The first thing to note is the flatness of the eigenfunction around its extremum, which
is consistent with the theoretical prediction in Section 3.1.2, where the behavior of up was
determined to be 1− |x|q for p close to 1.

2derived from [Lin95, section 2] by scaling the domain
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We try to approximate a density of J ′(up) with finite differences by the straightforward
finite difference scheme

∆h
p(u)(x) = 1

h

(
φp−1

(
u(x+ h)− u(x)

h

)
− φp−1

(
u(x)− u(x− h)

h

))
,

where φp−1(x) = |x|p−2x. We evaluate this scheme for h = 1
100 on a numerical reference

solution up and subtract λp|up|p−2up. In theory, this should result in 0 everywhere, but as
can be seen in Figure 3.4, we deviate from this: first, we see a horizontal line that appears
for all p around the extremum. This is actually due to the finite difference scheme not
being fully consistent (see Theorem F.4).

The second deviation is an area of numerical noise around the extremum at x = 0
that gets bigger for p approaching 1. This is because of the increasing flatness of the
eigenfunctions as described at the end of Section 3.1.2. We remind the reader of the
areas of the combinations of p and h that were heuristically selected to be problematic
in Figure 3.1 because |h|q is smaller than 10−8 and 10−16, respectively. In Figure 3.4, we
indicate where (p, h) enters these areas with the chosen grid size h = 1

100 .
Next, we calculate the pseudogradient with a linear FEM approximation of the weak

equation ∆d = J ′(up). Again, we should get a vanishing function, but numerical noise
appears for small p (see Figures 3.5 and 3.6).

Finally, we look at the convergence speed of Algorithm 1. With a numerical reference
solution of the ODE calculated at high precision, we check the Lp-distance of the iterates
of Algorithm 1. One can observe (see Figure 3.7) that the convergence speed decreases
substantially for p approaching 1. Also note that iterates with exponentially increasing
iteration numbers appear equally spaced vertically in the logarithmic plot, which indicates
that the convergence speed is sublinear.
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Figure 3.4: Absolute value of finite difference approximations of (|u′|p−2u′)′−λ|u|p−2u for
a numericial reference solution u and different p. The finite difference grid size is h = 1

100 .
The red and orange lines indicate where hq ∈ {10−16, 10−8}, respectively (compare to
Figure 3.1).
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Figure 3.5: Absolute value of the pseudogradient grad J(up) (calculated with linear FEM
on uniform grid of step lenght 1

100) for a numerical reference solution up. The red and
orange lines indicate where hq ∈ {10−16, 10−8}, respectively (compare to Figure 3.1).
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Figure 3.6: The norm of grad J(up,h) on a numerical reference solution up,h, calculated
with linear finite elements on a grid of size h = 1

100 The red and orange lines indicate
where hq ∈ {10−16, 10−8}, respectively (compare to Figure 3.1).
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Figure 3.7: The Lp-residual of uh,p to the reference solution after different numbers of
iterations of the descent algorithm of Yao & Zhou. The limiting accuracy of O(10−5) for
p close to 2 is dominated by the interpolation error with piecewise linear functions of grid
size h = 1

100 .

3.3 Other approaches
Even though we exclusively use the method of Yao & Zhou [YZ07] from Section 3.2 for
the experiments in Chapter 4, a few other approaches were investigated. We present them
here shortly, together with some related insights.

3.3.1 The one-dimensional eigenvalue equation as a
Hamiltonian system

We start with an observation about the one-dimensional case, namely that the eigen-
value problem can be reduced to a Hamiltonian system. This can be used for numerical
approximation but we will also use it to compare the eigenvalue equation to a regular-
ized equation in Section 3.3.2. In order to be able to do this, we formulate our findings
generally for differential equations of the form

−(gl(u′))′ = λgr(u) (3.19)

for two functions gl, gr. We will specify properties that gl and gr have to fulfill in Theo-
rem 3.3.3. We first recall the definition of a Hamiltonian system:

Definition 3.3.1. A first-order ordinary differential equation (x′, y′) = F (x, y, x′, y′, t)
on R2d is called Hamiltonian if there is a differentiable function H : R2d → R such that
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it is equivalent to the system

x′
i = ∂H

∂yi

(3.20)

y′
i = −∂H

∂xi

. (3.21)

One then calls H the Hamiltonian of the system. The equation can be written equivalently
as (

x
y

)′
=
(

0 I
−I 0

)
∇H(x, y). (3.22)

Remark 3.3.2. For Hamiltonian systems the notation (q, p) instead of (x, y) is more
common. We chose (x, y) to avoid ambiguity of notation with the exponents p and q.

Hamiltonian systems lie at the heart of classical mechanics and are well studied (see
e.g. [Der17] for an introduction). We will show the following:

Theorem 3.3.3. Assume that gr : R → R is continuous, gl : R → R is injective, and
the inverse g−1

l : gl(R)→ R is continuously differentiable. Then for fixed λ, the ordinary
differential equation

−(gl(u′))′ = λgr(u) (3.23)
is equivalent to the Hamiltonian system with Hamiltonian

Hλ(x, y) = λ
∫ x

x0
gr(t)dt+

∫ y

y0
g−1

l (t)dt (3.24)

for arbitrary x0 ∈ R, y0 ∈ gl(R), namely

x′ = ∂H

∂y
= g−1

l (y) (3.25)

y′ = −∂H
∂x

= −λgr(x). (3.26)

The equivalence is realized via the substitution

x(t) = u(t) (3.27)
y(t) = gl(u′(t)) (3.28)

i.e., every solution (x, y) of (3.24) yields a solution of (3.19) by setting u(t) := x(t)
and every solution u of (3.19) yields a solution of (3.24) by setting x(t) = u(t) and
y(t) = gl(u′(t)).

Remark 3.3.4. This does not say yet how to solve the nonlinear eigenvalue problem with
boundary conditions. We will come to that in Corollary 3.3.9.

Proof. A solution (x, y) of the Hamiltonian system defined by (3.24) satisfies

x′ = ∂H

∂y
= g−1

l (y) (3.29)

y′ = −∂H
∂x

= −λgr(x) (3.30)
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by definition. Plugging this into (3.19) yields(
gl(x′)

)′
= g′

l(x′)x′′ = g′
l(g−1

l (y))
(
g−1

l (y)
)′

= (3.31)

= g′
l(g−1

l (y))
((
g−1

l

)′
(y)
)

︸ ︷︷ ︸
=(gl(g−1

l
(y))′=1

y′ = y′ = (3.32)

(3.30)= −λgr(x), (3.33)

showing that u = x fulfills (3.19). On the other hand, if x is a solution to (3.19) and we
set x := u and y := gl(x′), then by definition x′ = g−1

l (y), and

y′ = (gl(x′))′ = (gl(u′))′ (3.19)= −λgr(u) = −λgr(x),

showing that (x, y) = (u, gl(u′)) is a solution to the system with Hamiltonian (3.24).

Example 3.3.5. For r > 0 define

φr(x) := |x|r−1x.

Then, for fixed λ ∈ R and p ∈ (1, 2) the differential equation

− (φp−1(u′))′ = λφp−1(u) (3.34)

fulfills the assumptions of Theorem 3.3.3 with gr = gl = φp−1, leading to the Hamilto-
nian

Hλ(x, y) = λ
∫ x

0
φp−1(t)dt+

∫ y

0
φq−1(t)dt = λ

p
|x|p + 1

q
|y|q, (3.35)

with the associated system of differential equations being

x′ = φq−1(y)
y′ = −λφp−1(x). (3.36)

A contour plot of the Hamiltonian for p = 1.3 and λ = 1 is depicted in Figure 3.8. Note
that despite the level sets appearing to have kinks at the crossing with the y-Axis, they
are differentiable everywhere away from the origin (the Hamiltonian is differentiable, and
∇Hλ only vanishes in the origin). A graph of |x|p for 1 < p < 2 exhibits the same apparent
kinks despite being differentiable.

Example 3.3.6. Another example that arises from

gl(x) = gr(x) = x√
x2 + ε2

for some ε > 0 is shown in Section 3.3.2. It leads to the Hamiltonian

Hλ,ε(x, y) = λ
√
x2 + ε2 − ε

√
1− y2

and shows different behavior of solutions.
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Figure 3.8: Left: a plot of the Hamiltonian Hλ(x, y) = λ
p
|x|p + 1

q
|y|q for p = 1.3 and λ = 1.

The red line shows a trajectory of the flow. The plot on the right shows the corresponding
solution of (3.34).

We will use the remainder of this section to prove some elementary properties of the
system (3.36) and to draw conclusions about the p-Laplacian eigenvalue problem in one
dimension.

Lemma 3.3.7. Let z(t) = (x(t), y(t)) be a solution of (3.36). Then:

(a) The value Hλ(z) is constant.

(b) The norm |z| is bounded, and hence the solution can be continued to all t ∈ R.

(c) If Hλ(z) ̸= 0 then inft∈R |z′| > 0.

(d) If z̄ is another solution with z̄(t0) = z(t0) for some t0 ∈ R then z̄ = z.

Proof. (a) This is a well-known fact about Hamiltonian systems. It follows from

(Hλ(x, y))′ = x′∂1Hλ(x, y) + y′∂2Hλ(x, y) = x′y′ − y′x′ = 0

(b) This follows from (a) and from Hλ(x, y) ≥ max(λ
p
|x|p, 1

q
|y|q). As there are no

blowups, there exists a solution for all t ∈ R.

(c) Assume there are tn such that |z′(tn)| → 0. The set M := H−1
λ ({H(z)}) is closed

and bounded (see (b)), and hence we may assume z(tn)→ z∗ ∈MC . By continuity
of ∇Hλ, this implies ∇Hλ(z∗) = 0, as |∇Hλ(z)| = |z′|. Inspecting ∇Hλ, one sees
that this implies z∗ = 0. But then Hλ(z∗) = 0 which contradicts the assumption as
z∗ ∈M .

(d) This needs a bit of care, as the right-hand side of the differential equation is not
locally Lipschitz-continuous for x = 0. As the solutions are restricted to level sets
of Hλ, we may reduce the system to a one-dimensional differential equation: First,
we may assume that z ̸= 0, as Hλ only vanishes in the origin, so uniqueness of
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the solution is ensured by (a). Now at a point z0 ̸= 0 there exists an immersion
γ : (−ε, ε)→ R2 of a neighborhood of H−1

λ (Hλ(w)) by the implicit function theorem.
If we are now given two solutions z, z̄ : I → R2 on some interval I ⊆ R that agree
up to some L ∈ I, then we can set z0 := z(L) = z̄(L) and define two functions
s, s̄ : I → (−ε, ε) by z(t) = γ(s(t)) and z̄(t) = γ(s̄(t)), as the solutions have to stay
on the level set. Differentiating the latter equations we see that s and s̄ fulfill the
equation

s′(t) = |z′(t)|2
⟨γ′(t), z′(t)⟩ = |X(γ(s(t)))|2

⟨γ′(s(t)), X(γ(s(t)))⟩ = |X(γ(s(t)))|
±|γ′(s(t))| ,

where X(z) :=
(

0 I
−I 0

)
∇Hλ(z) is the vector field that corresponds to Equa-

tion (3.36), and the sign on the right-hand side is fixed for small t. We may assume
it to be positive by flipping the parametrization γ if necessary. Now, the right-hand
side of this ordinary differential equation satisfies the assumptions of Lemma F.5: it
is bounded from below by (c), continuous as X is continuous, and γ is continuously
differentiable. Further, the points where it is not locally Lipschitz are isolated, as
the level sets of Hλ cross the y-Axis orthogonally (∂1H(0, y) = 0), and X is dif-
ferentiable and hence locally Lipschitz wherever x ̸= 0 (remember 1 < p < 2 and
2 < q = p

p−1).
We can hence apply Lemma F.5 around t = L and conclude that s and s̄ also agree
on t slightly bigger than L.

For ease of notation, define for r > 0 the function

φr(x) := |x|r−1x,

as in Example 3.3.5.

Theorem 3.3.8. Let λ ∈ R be positive. Then all nonconstant solutions z : R → R2 of
(3.36) are periodic with the same period Lp(λ) ∈ R.

Proof. Note that the only constant solution is the one in the origin. For periodicity, we
observe that the level sets of the Hamiltonian are homeomorphic to S1 via the continuous
mapping

f : (x, y) 7→
((

p

λ

) 1
p

φ 2
p
(x), φ 2

q
(y)
)

that maps the set {(x, y) | x2 +y2 = C} bijectively to the set {(x, y) | λ
p
|x|p + |y|p = C} for

any C > 0, which can be seen by direct calculation and by giving the continuous inverse

f−1(x, y) 7→
(λ

p

) 1
2

φ p
2
(x), φ q

2
(y)
 .

Now let z be a solution of (3.36) and define γ := f−1◦z : R→ S1. We show noninjectivity
of γ, from which periodicity follows by uniqueness of solutions. We don this with a
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topological argument: by Lemma 3.3.7(c), we have |z′| > c > 0 for some c if z is a
nonconstant solution. Such a z cannot converge for t → ∞. But Lemma F.6 says that
an injective function R → S1 would converge, so this means that z cannot be injective.
Hence there must be t1 ̸= t2 with z(t1) = z(t2), i.e., z is periodic.

To show that period of all orbits is the same, observe that if z(t) = (x(t), y(t)) is a
solution of (3.36) then (αx, αp−1y) is one as well, as

(αx)′ = αx′ = αφq−1(y) = φq−1(αp−1y),

and
(αp−1y)′ = αp−1y′ = −λαp−1φp−1(x) = −λφp−1(αx).

The new solution trivially has the same period. The level sets of Hλ are uniquely de-
termined by their two intersection points with the x-axis, which are symmetrical around
the origin. As we can map any such pair onto any other such pair by multiplying with
some α > 0, we have shown that for every two solutions (x1(t), y1(t)) and (x2(t), y2(t)),
there is some α such that (αx2, α

p−1y2) is in the same level set of Hλ as (x1, y1), and
hence it coincides with (x1, y1) up to a shift in t. Thus, the periods of (x1, y1) and (x2, y2)
coincide.

We are now ready to state a rather concise characterization of the Dirichlet eigenvalues
of ∆p in terms of the Hamiltonian system.

Corollary 3.3.9. Let p ∈ (1, 2) be fixed. Some λ > 0 is a (strong) Dirichlet eigenvalue
of ∆p on [0, a] if and only if Lp(λ) = 2a

k
for some k ∈ N

Proof. A Dirichlet eigenfunction corresponding to an eigenvalue λ can be extended to
an eigenfunction on [0, 2a] by setting ũ(x) = −u(2a − x). This yields an orbit with
(not necessarily minimal) period 2a by means of the substitution in Theorem 3.3.3. This
period is an integer multiple of the minimal period, and hence Lp(λ) = 2a

k
for some k.

Conversely, a periodic solution of the Hamiltonian system with period 2a
k

yields a Dirichlet
eigenfunction of −∆p by setting u(x) := γ(x). The Dirichlet boundary conditions are
fulfilled at half the period because of symmetry.

3.3.2 Regularization
In the limit p→ 1, the function φp−1 converges to x

|x| , which is not continuous in 0. One
could try to replace this with

σε(x) = x√
x2 + ε2

and let ε → 0. This is done, for example, in [FP03] for the inverse p-Laplace problem.
The function σε has the same asymptotics as x/|x| for x → ±∞ but is smooth in x = 0
(see Figure 3.9). Now, one can look at the equation

− div(σε(∇u)) = λσε(u) (3.37)

in the hope that in the limit ε→ 0, it behaves similarly to the case “p = 1”

− div
(
∇u
|∇u|

)
= λ sgn(u).
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We do not handle the formal subtleties of setting p exactly to 1 here and leave the above
equation informal.

In one dimension, Equation (3.37) is of the form (3.19) with

gr(x) = gl(x) = x√
x2 + ε2

,

leading to the Hamiltonian

Hλ,ε(x, y) = λ
√
x2 + ε2 − ε

√
1− y2.

(see Figure 3.10). We informally report on some behavior that we found:

• most trajectories exhibit a blowup in the derivative and are not periodic. In Fig-
ure 3.10, these are the trajectories ending at the boundary of the horizontal stripe
R× [−1, 1].

• the periods of the periodic orbits for some fixed λ and ε do not coincide anymore
(observed in numerical experiments).

• for some (λ, x0) where the orbit starting at x0 is periodic, one can change the orbit
period by either changing x0 or λ. Assuming that this dependence is differentiable,
the implicit function theorem then implies that one can change λ and x0 simul-
taneously such that the period is kept constant. This means that the “spectrum”
contains open intervals (if one defines the spectrum on [0, T ] as the set of values λ
for which there is a periodic solution of period T in the Hamiltonian system Hλ,ε).
In particular, it contains points that are not isolated.

Ultimately, we did not pursue this approach further.

3.3.3 Reparametrized finite elements
When discretizing the eigenvalue equation with the finite element method, we solve the
corresponding optimization problem on a finite-dimensional “trial space”. Now, as seen
in Section 3.1.2, the eigenfunctions of ∆p exhibit a property that is not present in the
standard finite element spaces: close to a local extremum x0, an eigenfunction u fulfills
u(x0 + h) = u(x0) +O(|h|q), where 1

p
+ 1

q
= 1. Now, ∆p is very sensitive to this order q

of convergence around the extrema. If the order is smaller, then ∆p will have a pole at
the extremum. In order to find eigenfunctions of ∆p, one might try to constrain the trial
functions to only have extrema of the appropriate order.

This approach is hindered by the fact, that the set of such functions does not form
a vector space. Even if two functions f1, and f2 both only have extrema of order q,
their sum f1 + f2 might have extrema that are not of the right order. Take, for example,
f1(x) = |x− 1|q and f2(x) = |x+ 1|q. Then f1 + f2 has an extremum of order 2 in x = 0
due to symmetry, see Figure 3.11). We may thus not hope to be able to choose a vector
space U that contains only functions whose extrema have order q.
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Figure 3.9: The sign function and the regularization x√
x2+ε2 for ε = 0.2.
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Figure 3.10: Contour lines of the Hamiltonian Hλ(x, y) = λ
√
x2 + y2−ε√1− y2 for λ = 1

and different ε. Compare these to Figure 3.8
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f1

f1 + f2

f2

Figure 3.11: The functions that only have extrema of order q do not form a vector space.

3.3.4 Substitutions
The p-Laplacian contains the expression |∇u|p−2∇u, which is very sensitive around small
values of ∇u for 1 < p < 2 due to the derivative of |x|p−2x diverging around 0. At the
same time, the gradient of an eigenfunction becomes very small in a neighborhood of an
extremum (see Section 3.1.2). This means that computing ∇u from function values of u
becomes numerically unstable.

Then, a natural question to ask is, whether a substitution alleviates this situation.
A possible substitution that adresses the nondifferentiability is to state the problem for
W := |∇u|p−2∇u instead. Note that from a = |b|p−2b follows b = |a|q−2a, so the inverse
substitution is∇u = |W |q−2W . In one dimension, one can then express u(x) as an integral
over |W |q−2W , so that the (strong) eigenvalue equation takes the form

−W ′(x) = λφp−1

(∫ x

0
|W (t)|q−2W (x)dt

)
,

where φp−1(x) := |x|p−2x. In higher dimensions, however, this approach becomes less
feasible for two reasons:

• It is harder to calculate the value of u from values of w, as there is no canonical
path from the boundary to a given point in the interior.

• The Jacobian of a discretized functional is likely to be not sparse anymore because
the effects of changing W have global effects on u. This already happens in one
dimension, where it is lower triangular (values of w at some x affect values of u at
all bigger x), but computationally, this has a larger impact in high dimension.

• Not every vector field is a gradient, so one must add adittional constraints on W .

In the general case, one can deduce the following reformulation of the eigenvalue problem
(seen classically here). The substitution leads to

− div(W ) = λ|u|p−2u (3.38)
∇u = |W |q−2W. (3.39)
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One can obtain u = −| div(W/λ)|q−2 div(W/λ) from (3.38), which, plugged into (3.39)
yields

−∇
(
| div(W )|q−2 div(W )

)
= µ|W |q−2W,

where µ := |λ|q−2λ. This gets rid of the nondifferentiability stemming from the term
|x|p−2x. However, the root of |x|q−2x has vanishing derivatives up to the ⌊q − 2⌋-th
derivative, which poses other problems for root-finding algorithms. Also, the substitution
defining W might amplify error terms. We did not pursue this approach further.
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Chapter 4

Numerical experiments

We investigate the properties of the first eigenfunction of ∆D
p on a series of examples in

two dimensions. These experiments have also been published in [DFJK23]. Related code
can be found in the accompanying Julia package DynamicPLaplacian.jl.

Given the results in Section 3.1, we let p range down to 1.3 only. We found that lower
p lead to increasingly slow convergence (see Figure 4.1)

1 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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Static unit square
Standard map

Transitory double gyre
Cylinder flow

Figure 4.1: The number of iterations to reach the stopping criterion ∥gradDJD∥p ≤ 10−3

in Algorithm 1 and Algorithm 2 for the examples in Sections 4.1.1 to 4.1.3 and 4.3. Figure
also appears in [DFJK23].

Finite element discretization For all examples, we use a triangulation over a uniform
Cartesian grid and the subspace V h ⊂ W 1,p

0 (M) of piecewise linear functions on that grid
as a finite element discretization. The basic finite element routines are taken from the
finite element toolbox Gridap.jl[BV20].
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The descent direction For calculating the descent direction gradDJD, the weak equa-
tion for the approximation dD

h ∈ V h is∫
M

1
2(I +DT−1DT−T )∇dD

h∇v = p

2G(u)2

∫
M

(
G(u)

(
|∇u|p−2∇u∇v+

+ |∇(T∗u)|p−2∇(T∗u)∇(T∗v)
)

− FD(u)|u|p−2uv

)
(4.1)

for all v ∈ V h, where DT is the Jacobian of T . After substituting with T on the right-hand
side, (4.1) changes to∫

M

1
2(I +DT−1DT−T )∇dD

h∇v = p

2G(u)2

∫
M

(
G(u)

(
|∇u|p−2∇u∇v+

+ |DT−T∇u|p−2(DT−T∇u)(DT−T∇v)
)

− FD(u)|u|p−2uv

)
.

This approach of calculating the integrals on the right-hand side using the Cauchy-Green
Tensor DT TDT is analogous to the “Cauchy-Green approach” from [FJ18]. A sketch of
the part of the code implementing this can be seen in Figure 4.2.

Initial guess As an initial guess, we approximate the first eigenfunction of ∆D. We also
do this with the Cauchy-Green approach from [FJ18], calculating the matrices A = (aij)i,j

and M = (mij)i,j from a basis φ1, . . . , φN of V h by

aij =
∫

M

(1
2(I +DT−TDT−1)∇φi

)
∇φj

mij =
∫

M
φiφj,

and solving the generalized eigenvalue problem Ax = λMx. We do so using the Julia
wrapper Arpack.jl of the arpack-ng library [Sha; SLYM].

Cheeger ratio The superlevel sets of a function are calculated using the marching
squares algorithm implemented in the Julia package Contour.jl[DL]. The area of a
polygon enclosed by points (x1, y1), (x2, y2), . . . (xn, yn) ∈ R2 with (x1, y1) = (xn, yn) can
be calculated by the formula

∣∣∣12 ∑n−1
k=1 xkyk+1 − xk+1yk

∣∣∣ [e.g. RW04, Section 3.5, 6.]. This is
only possible on the domains in Sections 4.1.1 and 4.1.2, as the domains in Sections 4.1.3
and 4.3 have periodicity. In the latter case, we count the number of grid points within
the superlevel set (indicated by the function value) to estimate its volume.

ODE integration In the examples that contain dynamics induced by a time-dependent
vector field, we use the Tsitouras 5/4 Runge-Kutta method implemented in the Julia
package DifferentialEquations.jl [RN17] with an absolute tolerance of 10−7.
The Jacobian DT is approximated with automatic differentiation provided by the Julia
package ForwardDiff.jl [RLP16].
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� �
using Gridap
using ForwardDiff

function T(x)
# insert dynamics

end

# derivatives of T
const DTinv = x -> inv(transpose(jacobian(T, x)))
const mCG = x -> (I + DTinv(x)' · DTinv(x))/2

# set up Gridap context here:
# const U, V, dΩ = ...

# lazy gridap wrappers for pointwise functions
const normp = Operation(x -> norm(x)ˆp)
const absp = Operation(x -> abs(x)ˆp)
const η1d = Operation(x -> abs(x)ˆ(p-1) * sign(x))
const η2d = Operation(x -> norm(x)ˆ(p-1) * normalize2(x))

function gradJ(u, p)
G = sum(integrate(absp(u))*dΩ ))
F = sum(integrate(normp(∇(u)) + normp(DTinv · ∇(u)))*dΩ ))

# left-hand side: dynamic Laplacian of d
lhs(d, v) = integrate(∇(d) · (mCG · ∇(v))) * dΩ

# right-hand side: (J^D)'(u)
rhs(v) = integrate((p / (2Gˆ2)) *

( G * ( η2d( ∇(u)) · ∇(v))
+ G * ( η2d(DTinv · ∇(u)) · (DTinv · ∇(v)) )
- F * η1d(u) * v)
) * dΩ

# solve with Gridap
op = Gridap.AffineFEOperator(lhs, rhs, U, V)
ls = Gridap.LUSolver()
solver = Gridap.LinearFESolver(ls)
d = Gridap.solve(solver, op)
return d

end� �
Figure 4.2: Simplified Julia code for calculating gradDJD(u) using the FEM toolbox
Gridap.jl[BV20] and the package ForwardDiff.jl[RLP16].
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4.1 The examples

4.1.1 Unit square (static)
As a first example, we consider the unit square [0, 1]2 without dynamics, i.e., we set T = id
and obtain ∆D

p = ∆p. As seen in Example 1.3.6, the Cheeger ratio and Cheeger set can
be determined explicitly: the Cheeger ratio is

h([0, 1]2) = 2 +
√
π ≈ 3.7724 . . . ,

and the Cheeger set is a square with rounded corners of radius

R = 1
2 +
√
π
≈ 0.265 . . . .

The domain and its Cheeger set are depicted in Figure 4.3.

1

1

≈ 0.265 . . .

Figure 4.3: The Cheeger set of the unit square [0, 1]2.

4.1.2 Transitory double gyre
The first example with dynamics we consider is the transitory double gyre introduced in
[MM11]. It consists of the time-one flow map of the nonautonomous differential equation
(ẋ, ẏ) = (∂yψ,−∂xψ) on M = [0, 1]2 defined by the stream function

ψ(x, y, t) = (1− s(t))ψP (x, y) + s(t)ψF (x, y)

with ψP (x, y) = sin(2πx) sin(πy), ψF (x, y) = sin(πx) sin(2πy), and

s(t) =


0 for t < 0
t2(3− 2t) for t ∈ [0, 1]
1 for t > 1.

It features two vortices spinning in opposite directions. The vortices change position from
being side-to-side at time 0 to being on top of each other at time 1 (see, e.g., [FJ18]). In
Figure 4.4, the flow is visualized.
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Figure 4.4: The advection of a colored grid under the transitory double gyre flow for the
flow times t = 0 (left), t = 0.5 (middlea,) and t = 1.0 (right).

4.1.3 Cylinder flow
As a more complicated example, we take the “cylinder flow”, a nonautonomous system
on a cylinder [FLS10; FJ15]. It is defined by

ẋ(t) = c− A(t) sin(x− νt) cos(y) + εΓ(g(x, y, t)) sin(t/2)
ẏ(t) = A(t) cos(x− νt) sin(y)

on the domain M = 2πS1 × [0, π], where A(t) = 1 + sin(2
√

5t)/8, Γ(ψ) = 1/(ψ2 + 1)2,
g(x, y, t) = sin(x− νt) sin(y) + y/2− π/4, c = 0.5, ν = 0.5, and ε = 0.25.

We choose T = 40 for the flow time; the time integration is performed as in the
transitory double gyre example. In Figure 4.5, the flow is visualized.

0 π 2π
0

π

0 π 2π
0

π

0 π 2π
0

π

Figure 4.5: The advection of a colored grid under the cylinder flow for the flow times
t = 0 (top left), t = 0.2 (top right), and t = 1.0 (bottom).
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4.2 Experiments

4.2.1 Visual comparison of the first eigenfunctions
We compare the first eigenfunction, eigenvalue, and the level sets visually for p approach-
ing 1. Figure 4.6 shows the approximated eigenvalues. In the case of the static unit square,
the convergence of λp to p that is predicted by Theorem 1.5.4 is plausibly achieved. For
the transitory double gyre and the cylinder flow, the graphs of the eigenvalue looks simi-
lar. Note that the transitory double gyre and the cylinder flow live in different scales: for
the former, the domain is [0, 1]2 and for the latter [0, 2π]× [0, π]. Scaling the domain by
1/π increases λD

p by the factor πp, which explains the big difference in magnitude of λD
p

for the two examples with dynamics.
Figures 4.7 to 4.9 show the first eigenfunction next to its level sets. The first thing

to note about the eigenfunctions is the “plateaus” forming around the extremum, which
is predicted by Theorem 3.1.4. In the cylinder flow example (Figure 4.9), this happens
around both extrema. This also means that one of the initial hopes is met: in the
dynamic case, like in the static case, the eigenfunctions start to “look” more like charac-
teristic functions. Second, one can observe that the level sets move closer to each other,
indicating that the convergence predicted by Theorem 2.3.4 might also imply convergence
to a function whose level sets all coincide (a priori, Theorem 2.3.4 only shows that they
must almost all be Cheeger sets). In Section 4.2.2 and Section 4.2.3, we analyze the level
sets and their (dynamic) Cheeger ratio more precisely.
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Figure 4.6: The numerical approximation to λD
p , calculated by JD(uh,p) at the numerical

approximation up,h of the first eigenfunction.
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Figure 4.7: The first eigenfunction up of ∆p on the unit square for the exponents
p ∈ {2.0, 1.6, 1.3} (from top to bottom).
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Figure 4.8: The first eigenfunction of ∆D
p for the transitory double gyre and the exponents

p ∈ {2.0, 1.6, 1.3} from top to bottom.
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.

80



CHAPTER 4. NUMERICAL EXPERIMENTS

4.2.2 Statistics of the dynamic Cheeger ratio
We investigate how the dynamic Cheeger ratio of the superlevel sets

At := {x ∈M | up(x) > t}

changes overall for decreasing p. To do so, we normalize the first eigenfunction by scaling
to ∥up∥∞ = 1 and take superlevel sets for levels between 0 and 1. Figure 4.10 shows the
dynamic Cheeger ratio of the superlevel sets for the examples in Sections 4.1.1 to 4.1.3
and 4.3.

One can observe an overall improvement: for most t, the dynamic Cheeger ratio gets
smaller for p approaching 1. We quantify the improvement by determining statistical
quantities associated to a level t chosen randomly from the uniform distribution on [0, 1].
Note that there is a pole in t = 1 that appears because for t close to 1, the superlevel set
is tiny, and the volume of the surface scales with a different order than the volume of the
interior (in R2 with orders 1 and 2, respectively).

Because of the presence of this pole, there can be extreme outliers in an approximation
of the mean by samples. Thus, we also plot the median, which is more robust to outliers
(Note that due to non-monotonicity of At with respect to t, the median is not just the value
of A 1

2
) Both quantities improve significantly with lower p, as can be seen in Figure 4.11.

The third quantity we plot is the minimum of the (dynamic) Cheeger ratio. In contrast
to the mean and the median, the minimum changes very little: The relative deviation in
the minimal (dynamic) Cheeger ratio is smaller than two percent in all examples. Within
this error margin, the minimum actually increases slightly in some cases.

4.2.3 The level set with smallest dynamic Cheeger ratio
We now turn our attention to the level set with the best dynamic Cheeger ratio. We
choose it from a set of 2000 equally spaced t between 0 and 1. In Section 4.2.2, we
already observed that the best dynamic Cheeger ratio does not decrease substantially for
p approaching 1. We see, in turn, that the corresponding level sets are also very close to
each other. Figure 4.12 shows them for different p. In Figure 4.13, they are shown after
the application of T .

The little variation in the level set indicates that even though there is no sharp bound
on the dynamic Cheeger ratio of superlevel sets of the dynamic Laplacian, in practice,
they can have dynamic Cheeger ratios that are nearly optimal. Another possibility is that
a value of p = 1.3 is not close enough to 1 in order for the convergence of the eigenfunction
to have a significant effect on the level sets. Either way, if one is only interested in the
best level set, then it is clear that the decrease of p within the bounds that we found
possible here is not enough to get improved results.

81



4.2. EXPERIMENTS

Static unit square

0 0.2 0.4 0.6 0.8

101

102

A

t

C
he

eg
er

ra
ti

o

0 0.05 0.1
100.58

100.6

100.61
A

t

p = 2.0
p = 1.6
p = 1.3

Transitory double gyre

0.2 0.4 0.6 0.8

101

102

B

t

dy
na

m
ic

C
he

eg
er

ra
ti

o

0.02 0.16 0.3
100.81

100.94

101.03
B

t

Cylinder flow

0.2 0.4 0.6 0.8

101

102

C

t

dy
na

m
ic

C
he

eg
er

ra
ti

o

0.04 0.12 0.2
100.49

100.56

100.63
C

t

Figure 4.10: The Cheeger ratio of a superlevel set {uD
p > t} in terms of the level t for the

static unit square (top row), the transitory double gyre (middle row), and the cylinder
flow (bottom row). The exponents are p = 2.0 (blue, solid), p = 1.6 (red, dashed), p = 1.3
(brown, dashdotted). Closeups of indicated areas are shown on the right.
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Figure 4.11: Mean, median, and minimum of the dynamic Cheeger ratio of the superlevel
set At := {x ∈M | up(x) > t} for a random level t ∈ [0, 1]. The actual Cheeger ratio is
indicated with a hatched line in the case of the static unit square.
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Figure 4.12: The boundary of the superlevel set of uD
p with the best dynamic Cheeger

ratio for the static unit square (top row), the transitory double gyre (middle row) and the
cylinder flow (bottom row). Closeups of the areas indicated in the left picture are shown
on the right. The values of p are p = 2.0 (blue, solid), p = 1.6 (red, dashed), and p = 1.3
(brown, dashdotted). For the static unit square, the boundary of the exact Cheeger set
is also shown.
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Figure 4.13: The transported boundary T (∂At) of the superlevel set At of uD
p with the

best dynamic Cheeger ratio for the transitory double gyre (top row), and the cylinder
flow (bottom row). Closeups of the areas indicated in the left picture are shown on the
right. The values of p are p = 2.0 (blue, solid), p = 1.6 (red, dashed), and p = 1.3 (brown,
dashdotted).
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4.3 An exploratory example: the standard map
We add an exploratory example on the two-dimensional torus M = T2, the standard map

T (x, y) = (x+ y + a sin(x), y + a sin(x)) (mod 2π)

with a = 0.971635, as in [FJ15]. This domain has empty boundary; hence the Dirichlet
boundary conditions do not restrict functions and the first eigenvalue vanishes (the first
eigenfunction is constant). We thus apply Algorithm 2 with n = 2. A few additions
have to be made: first, the bilinear form

∫
M ∇u∇v does not fulfill the conditions of the

Fredholm alternative in [Sim72, Theorem 7.5] because a pair of constant functions maps
to zero. We add zero-mean conditions

∫
M d = 0 and

∫
M v = 0 in the definition of d in

Equation (3.14) to mitigate the resulting lack of uniqueness and existence of solutions. The
finite-dimensional optimization in line 23 of Algorithm 2 is done using an implementation
of the BFGS method on the unit sphere from the Julia package Optim.jl[MR18]. The
method only finds a local optimum. Due to the vanishing boundary we use the quantity

ℓd−1(∂D) + ℓd−1(∂(T (D)))
2 min{ℓd(D), ℓd(M \D)}

as the dynamic Cheeger ratio of D (this is in fact the original quantity from [Fro15]).
Without the modified denominator, one could make the ratio arbitrarily small by setting
D to the complement of a tiny ball. Figures 4.14 and 4.15 show the eigenfunction, the
dynamic Cheeger ratio, the statistics of the dynamic Cheeger ratio, and the level set with
the best dynamic Cheeger ratio for varying p.
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Appendix A

Notation

M compact d-dimensional submanifold of Rd with Lipschitz boundary
T volume-preserving diffeomorphism on M (see also Setup 1.1.2)
p exponent in (1, 2) ⊂ R
q conjugate exponent to p, i.e., 1

p
+ 1

q
= 1

C∞
0 (M) smooth functions with compact support in M

BV (Ω) functions of bounded variation in Ω (see Appendix C)
W 1,p

0 (M) Sobolev space with vanishing trace (see Appendix B)
W−1,q(M) the dual of W 1,p

0 (M)
⟨·, ·⟩ duality pairing on W−1,q(M)×W 1,p

0 (M)

|x| Euclidean norm of some x ∈ Rd

∥V ∥p Lp-norm of some V : M → Rd, i.e., (
∫

M |V |p)
1
p

|Du|(Ω) variation of a function u in Ω (see Definition C.1)
P (D,Ω) perimeter of a subset D in Ω (see Definition C.3

T∗ the transfer operator defined by T∗f = f ◦ T−1 (see Definition 1.2.1)
T ∗ the dual of the transfer operator (see Definition 1.2.2)

∆ the Laplacian
∆D the dynamic Laplacian 1

2(∆ + T ∗∆T∗)
∆p the p-Laplacian defined by ∆pu = div(|∇u|p−2∇u) (distributionally)
∆D

p the dynamic p-Laplacian 1
2(∆p + T ∗∆pT∗)

h(M) Cheeger constant of M
hD(M,T ) dynamic Cheeger constant of M under T
λp, λ

D
p first eigenvalue of the (dynamic) Laplacian

up, u
D
p first eigenfunction of the (dynamic) Laplacian

F (u) functional on W 1,p
0 (M) defined by F (u) := ∥∇u∥p

p

FD(u) functional on W 1,p
0 (M) defined by FD(u) := 1

2(F (u) + F (T∗u))
G(u) functional on W 1,p

0 (M) defined by G(u) := ∥u∥p
p
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Appendix B

Sobolev spaces

We introduce some notation and well-known results about Sobolev spaces. For further
reading on the topic see e.g. [AF03; Bre11].

For any function U : M → Rk we define

∥U∥p :=
(∫

M
|U |p

) 1
p

,

where | · | denotes the euclidean norm on Rk. The space Lp(M,Rd) is the usual space of
functions U : M → Rk with ∥U∥p <∞. For k = 1 we just write Lp(M).

If p > 1, we denote by q = p
p−1 the conjugate exponent that fulfills 1

p
+ 1

q
= 1.

Definition B.1. For p ≥ 1, the Sobolev space W 1,p(M) is defined to be the space con-
sisting of functions in Lp(M) with weak partial first derivatives in Lp(M), endowed with
the norm

∥u∥W 1,p(M) := ∥u∥p +
d∑

k=1
∥∂ku∥p.

The space W 1,p
0 (M) is defined as the closure of the subspace C∞

0 (M) ⊂ W 1,p(M) with
respect to this norm.

Definition B.2. The dual space of W 1,p
0 (M) (i.e., the space of linear bounded functionals

W 1,p
0 (M)→ R) is denoted by W−1,q(M). The duality pairing on W−1,q(M)×W 1,p

0 (M) is
denoted by ⟨·, ·⟩.
Remark B.3. In view of Theorem B.5 we identify a function f ∈ Lq(M) with the func-
tional (v 7→ ∫

M fv) ∈ W−1,q(M) and just write f ∈ W−1,q(M). Note that with this
identification Lq(M) ⊊ W−1,q(M).

The norm in Definition B.1 is only one of many equivalent norms we can choose on
W 1,p

0 (M). Another equivalent norm is, for example, the norm ∥u∥p + ∥∇u∥p. It is also
well known that the Dirichlet boundary conditions in W 1,p

0 (M) allow us to simplify the
norm even further and just use ∥∇u∥p. The reason for this is the Poincaré inequality:

Theorem B.4 (Poincare inequality). Let M ⊂ Rd be like in Setup 1.1.2. Then there is
a C > 0 such that

∥u∥p ≤ C∥∇u∥p

for all u ∈ W 1,p
0 (M).
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Proof. See e.g. [Eva22]. Note that this only holds in W 1,p
0 (M), not in W 1,p(M).

Theorem B.5. Let φ ∈ W−1,q(M). Then there are f0, f1, . . . , fd ∈ Lq(M) such that

⟨φ, v⟩ =
∫

M
f0v +

d∑
i=1

∫
M
fi∂iv

for all v ∈ W 1,p
0 (M). Conversely, if f0, f1, . . . , fd ∈ Lq(M) then

v 7→
∫

M
f0v +

d∑
i=1

∫
M
fi∂iv

defines an element in W−1,q(M).

Proof. For the first part see [Bre11, Proposition 9.20]. The second part is a consequence
of the Hölder inequality.

We close with stating the well-known Rellich-Kondrachov theorem, which we use in
the proof of existence of the first eigenvalue in Theorem 1.4.8.

Theorem B.6 (Rellich-Kondrachov). Let M ⊂ Rd be like in Setup 1.1.2 and p ∈ (1,∞).
Then the imbedding

W 1,p
0 (M)→ Lp(M)

is compact.

Proof. This is proven in a more general form form e.g. in [AF03, Theorem 6.3]. There
the domain Ω may be any domain satisfying the cone condition. As M has Lipschitz
boundary, this is the case (see remarks after [AF03, 4.9 and 4.11]). If for some k ≤ d,
Mk is the intersection of M with a k-dimensional plane and j ≥ 0, m ≥ 1, then [AF03,
Theorem 6.3 Part I+II+IV] together with [AF03, Remark 6.4.1] states that the imbedding

W j+m,p
0 (M)→ W j,p′(Mk)

is compact in the following cases:

if mp < d and (B.1)
0 < d−mp < k (B.2)
1 ≤ p′ < kp/(d−mp) (B.3)

or if mp = d and (B.4)
1 ≤ p′ <∞ (B.5)

or if mp > d and (B.6)
1 ≤ p′ <∞. (B.7)

If we set p′ := p, k := d, m := 1 and j := 0 then we see that (B.2) and (B.3) become
0 < d − p < d and 1 ≤ p ≤ dp/(d − p), which are both fulfilled in the case p < d. As
for the other two cases (p = d and p > d) the necessary inequalities are also fulfilled, this
means that the imbedding

W 1,p
0 (M)→ Lp(M)

is compact for all cases of 1 ≤ p <∞.
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Functions of bounded variation

In Sections 1.3 and 2.2, we use the space BV (M) of functions of bounded variation as a
space of functions with low regularity that still allow for some notion of derivative. We
give the needed defintions here. For a more detailed introduction (which contains the
definitions below) see e.g [Par11, Section 2] or [Amb00, Chapter 3].

Definition C.1. For an open subset Ω ⊆ Rd and a function u ∈ L1(Ω), define its
variation in Ω

|Du|(Ω) := sup
{∫

Ω
u divφ | φ ∈ C1

0(Ω,Rd), ∥φ∥∞ ≤ 1
}
.

The space of functions u ∈ L1for which |Du|(Ω) < ∞ is called the space BV (Ω) of
functions of bounded variation (see e.g. [Par11, Section 2] or [Amb00, Definition 3.1 and
Theorem 3.6] for an equivalent definition using measures). We endow BV (Ω) with the
norm

∥u∥BV (Ω) := ∥u∥1 + |Du|(Ω).

If M is as in Setup 1.1.2 we just write BV (M) for BV (M̊) and for some u ∈ BV (M), we
denote by |Du|(Rd) the variation |Dũ|(Rd) of the zero-extension ũ of u, i.e., the function
ũ with ũ|M = u and ũ|Rd\M ≡ 0 (see also Theorem C.5 below).

Lemma C.2. If u ∈ W 1,1
0 (Ω) then u ∈ BV (Ω) and ∥∇u∥1 = |Du|(Ω).

Proof. See remarks after [Amb00, Definition 3.1].

Definition C.3. For some D ⊆ Ω ⊆ Rd define the perimeter of D in Ω as

P (D,Ω) := |D(χD)|(Ω),

where χD is the characteristic function on D. A set D is said to have finite perimeter in
Ω if P (D,Ω) <∞ (see e.g. [Par11, Section 2]).

Remark C.4. The perimeter of a set D is invariant by modifications of D by a set of
measure zero [Mag12, Remark 12.4]. Thus, for a function u ∈ L1(M), the superlevel sets
At := {x ∈ M | u(x) > t}, which are only well defined up to a set of measure zero, still
have a well defined perimeter.
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Theorem C.5. If M ⊆ Rd is a d-dimensional compact manifold with Lipschitz boundary,
then the following holds:

(a) M is of finite perimeter.

(b) P (M,Ω) = ℓd−1(Ω ∩ ∂M).

(c) If ∂M is C1, then P (M,Ω) also coincides with the classical volume of ∂M .

(d) There is a bounded inclusion BV (M) → BV (Rd) by extending some u ∈ BV (M)
to zero outside of M .

Proof. For (a) and (b), see [Mag12, Example 12.6]. For (c), apply [Mag12, Theorem
8.1] to a finite covering of ∂M and corresponding local parametrizations. For (d), apply
[Eva18, Theorem 5.8].

Theorem C.6. Let d ≥ 2 and D ⊆ M ⊆ Rd, where D is of finite perimeter and ∂M is
Lipschitz. Then there exists a sequence Dk of open sets compactly contained in M with
smooth boundaries of dimension (d− 1) such that

χDk

L1−→ χD

and
P (Dk,Rd)→ P (D,Rd)

for k →∞.

Proof. This is constructed in the proof of [Par11, Proposition 3.3].
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Some properties of the transfer and
Koopman operator

The transfer operator and its dual, the Koopman operator are introduced in Section 1.2.4.
Here, we prove additional properties that we use in the main text. In particular, bounded-
ness of the transfer operator in BV (M) allows us to transfer techniques from the classical
case to the dynamic case.

Theorem D.1. Let M ⊂ Rd and T : M → M be as in Setup 1.1.2 and p ≥ 1. Then the
spaces Lp(M), W 1,p and BV (M) are invariant under T∗, and the restriction of T∗ to any
of them is a bounded linear operator. On Lp(M) it is even an isometry.

Proof. Linearity is immediate. For boundedness in Lp, let u ∈ Lp(M) and use volume
preservation of T to transform the integral in

∥u ◦ T−1∥p
p =

∫
M
|u ◦ T−1|p =

∫
M
|u|p = ∥u∥p

p,

showing that T∗ is an isometry on Lp(M). For W 1,p use that T−1 has, by definition,
bounded derivatives. Hence, if we use the matrix operator norm | · |op to define

ψ(x) := |DT−T (x)|op

then ψ ∈ L∞(M) and
|∇(u ◦ T−1)| ≤ ψ|∇u|.

We can then use Hölder’s inequality to get

∥∇(u ◦ T−1)∥p ≤ ∥ψ∇u∥p ≤ ∥ψ∥∞∥∇u∥p

and have proven that T∗ is also bounded on W 1,p
0 (M). We finish by showing that T∗ is

bounded on BV (M). This can be done directly with the defintion of |Du| from Defini-
tion C.1 by substitution with T and using boundedness of the scalar field |DT−1|op on the
domain M .

Alternatively, one can use [Amb00, Theorem 3.9], which says that a function u is in
BV (M) if and only if there exists a sequence (uk)k ⊂∈ C∞(M) that converges in L1(M)
to u and the constant

L(uk) := lim
k→∞
∥∇uk∥1
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associated to that sequence is finite. It also says that by taking the infimum of L(uk) over
all such sequences, we get the variation of u:

|Du|(M) = inf
(uk)k⊂C∞(M)

∥uk−u∥1→0

L(uk). (D.1)

This can be used to show boundedness of T∗ on BV (M) in the following way: assume
that u ∈ BV (M), and apply the above characterization to get existence of a sequence
(uk)k ⊂ C∞(M) with uk → u in L1(M) and L(uk) ≤ ∞. We have already shown that
T∗ is continuous on L1(M) and W 1,1(M), so T∗uk → T∗u in L1(M), and hence for some
positive C we get

L(T∗uk) = lim
k→∞
∥∇(T∗uk)∥1 ≤ C lim

k→∞
∥∇uk∥1 = CL(uk) <∞.

Thus, by [Amb00, Theorem 3.9], we get T∗u ∈ BV (M). Additionally, this means that
T∗uk is an admissable sequence in the infimum in (D.1) for T∗u, which gives us the estimate

|D(T∗u)|(M) ≤ L(T∗uk) ≤ CL(uk).

As we may choose uk such that L(uk) is arbitrarily close to |Du|(M), this shows

|D(T∗u)|(M) ≤ C|Du|(M),

and we are done showing boundedness of T∗ on BV (M), as ∥·∥BV (M) = ∥·∥1 +|D(·)|BV (M)
and ∥ · ∥1 was already shown to be preserved by T∗.

Definition 1.2.2 directly defines the Koopman operator as the linear algebraic dual of
the transfer operator. We show that this definition is equivalent to the more common
definition T ∗f := f ◦ T under the usual identification of (Lp(M))∗ with Lq(M).

Theorem D.2. Let M ⊂ Rd and T : M → M be as in Setup 1.1.2 and let (Lp(M))∗ be
the space of bounded linear functionals on Lp(M). Let T ∗

(1) : (Lp(M))∗ → (Lp(M))∗ be
defined by

T ∗
(1)v = v ◦ T∗

and T ∗
(2) : Lq(M)→ Lq(M) defined by

T ∗
(2)u = v ◦ T.

Let further

i : Lq → (Lp(M))∗ (D.2)

v 7→ (u 7→
∫

M
uv) (D.3)

be the usual identification of Lq with the dual space (Lp(M))∗ of bounded linear forms on
Lp(M). Then the following diagram commutes:
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Lq(M) Lq(M)

(Lp(M))∗ (Lp(M))∗

i i

T ∗
(2)

T ∗
(1)

i.e., i ◦ T (1) = T (2) ◦ i.

Proof. The function i is well-defined by the Hölder inequality. The claim follows by
volume preservation of T and the substitution in(

u 7→
∫

M
u · f

)
◦ T∗ =

(
u 7→

∫
M

(u ◦ T−1) · f
)

=
(
u 7→

∫
M
u · (f ◦ T )

)
.

for f ∈ W 1,p
0 (M).

We finish with a statement about the extention T̃ of T by the identity outside of M .
Even though T̃ is not differentiable, T̃ induces a bounded operator T̃∗ on BV (M).

Theorem D.3. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Define the extension

T̃ (x) :=
T (x) x ∈M
x else

. (D.4)

Then the associated transfer operator T̃∗f := f ◦ T̃−1 (see also Definition 1.2.1) is a
bounded operator on BV (Rd).

Proof. Let u ∈ BV (Rd). We use [Eva18, Theorem 5.8], which says that for a set of finite
perimeter and two functions f1 ∈ BV (M) and f2 ∈ BV (Rd\M), the combination

f(x) :=
f1(x) x ∈M
f2(x) x ̸∈M

is in BV (Rd). Our domain M is of finite perimeter by Theorem C.5. We set f1 := T̃∗u|M
and f2 := T̃∗u|Rd\M . These are indeed of bounded variation in their domains: first,
f1 = T∗(u|M) is in BV (M) by Theorem D.1. Second, T̃ ≡ id outside of M , so f2 coincides
with u|Rd\M ∈ BV (Rd \M). Finally the second part of [Eva18, Theorem 5.8] says that
we have

|D(T∗u)|(Rd) = |Df1|(M) + |Df2|(Rd\M) +
∫

∂M
|Tr(f1)− Tr(f2)|dHd−1, (D.5)

where Tr : BV (M)→ L1(∂M,Hd−1) is the (continuous) trace operator (see, for example,
[Eva18, Definition 5.3]). Now the terms on the right-hand side of (D.5) are estimated in
the following way:
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OPERATOR

• By boundedness of T∗ on BV (M) there is a C1 > 0 such that

|Df1|(M) ≤ ∥f1∥BV (M) ≤ C1∥u|M∥BV (M) ≤ C1∥u∥BV (Rd).

• The second term reduces to

|Df2|(R\M) ≤ ∥f2∥BV (M) = ∥u|(Rd\M)∥BV (Rd\M) ≤ ∥u∥BV (Rd).

• Recall that by Setup 1.1.2, T maps ∂M to ∂M , so Tr(f1− f2) = Tr(T∗u). Then by
boundedness of the trace, there is some C2 > 0 such that∫

∂M
|Tr(f1)− Tr(f2)|dHd−1 =

∫
∂M
|Tr(T∗(u|M))|dHd−1

≤ C2∥T∗(u|M)∥BV (M) ≤ C2C1∥u|M∥BV (M) ≤ C2C1∥u∥BV (Rd).

These three estimates, combined with (D.5), show boundedness of T̃∗ on BV (Rd).
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Appendix E

The coarea formula

The coarea formula connects the functional quantity ∥∇u∥1 with the geometric quantity
ℓd−1(∂At), where At = {x ∈M | u(x) > 0}. For us, it is one of the main tools connecting
the variational characterizations of the (dynamic) Cheeger constant like (1.16) and (2.20)
with the geometric characterizations like (1.14) and (2.18). For the reader’s convenience,
we state the formula here in a few different variations that we use.

Theorem E.1 (Coarea formula for scalar functions). Let f : Rd → R be Lipschitz. Then
for every measurable M ⊆ Rd.∫

M
|∇f | =

∫ ∞

−∞
ℓd−1(M ∩ f−1(y))dy,

where ℓd−1 is the (d− 1)-dimensional Hausdorff measure in Rd.

Proof. For a proof of the general case of maps f : Rm → Rn, see [Fed14, Theorem 3.2.11].
The notation here is adapted to the rest of the thesis.

Corollary E.2. Let M ⊆ Rd be compact and measurable, f ∈ C∞
0 (M), and, for t ∈ R,

define the set At := {x ∈M | f(x) > t}. Then∫
M
|∇f | =

∫ ∞

−∞
ℓd−1(∂At)dt,

where the boundary ∂At is taken within M .

Proof. This is also published in the appendix of [DFJK23]. One can show that for almost
all t ∈ R we have

M ∩ f−1(y) = ∂At(M).
To see this, first note that by continuity of f , the inclusion ∂At ⊆M ∩f−1(t) holds for all
t ∈ R. On the other hand, if x ∈M and f(x) ̸= 0 ̸= ∇f(x), then x ∈ M̊ and f(x+ s∇f)
yields an element of M ∩At for small positive s and an element of M ∩ (Rd\At) for small
negative s. Hence x ∈ ∂At.

Now Sard’s theorem guarantees if X ⊂ M is the set of points in which ∇f vanishes,
then f(X) has measure zero. Hence the above argument can be applied to almost all
t ∈ R (as {0} is also a null set) and we can conclude that∫

M
|∇f | =

∫ ∞

−∞
ℓd−1(∂At) =

∫ ∞

−∞
ℓd−1(M ∩ f−1(y))dy,
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which shows the claim.

Theorem E.3 (Coarea formula for functions of bounded variation). Let Ω ⊂ Rd be open.
If u ∈ BV (Ω) and

At := {x ∈M | u(x) > t},
then for almost all t ∈ R the set At has finite perimeter in Ω and

|Du|(Ω) =
∫ ∞

−∞
P (At,Ω)dt.

Proof. See e.g. [Amb00, Theorem 3.40])

Theorem E.4. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2, and let T̃ : Rd → Rd

be the extension of T to the identity outside of M like in Theorem D.3. Let further
u ∈ BV (M) and define ũ to be the zero-extension of u to Rd, i.e., ũ|M = u and ũ|R\M ≡ 0.
Define further

Ãt := {x ∈ R | ũ(x) > t}
for every t ∈ R. Then T (Ãt) is of finite perimeter in Rd for almost all t ∈ Rd, and

|D(T∗u)|(Rd) =
∫ ∞

−∞
P (T̃ (Ãt),Rd).

Proof. The function ũ is a zero-extension of u ∈ BV (M), and because M has Lipschitz
boundary, this means that ũ is in BV (M) by [Eva18, Theorem 5.8]. By Theorem D.3 the
function T̃∗ũ is in BV (M), too. We may thus apply the coarea formula from Theorem E.3
above to T̃∗ũ on Ω = Rd, which shows that for almost all t, the set

{x ∈ Rd | (T̃∗u)(x) > t}

is of finite perimeter. This set can be rewritten to

{x | x ∈ Rd, u(T̃−1(x)) > t} = {T̃ (x) | x ∈ Rd, u(x) > t},= T̃ (Ãt)

and thus the coarea formula yields

|D(T∗u)|(Rd) =
∫ ∞

−∞
P (T̃ (Ãt),Rd),

which was the claim.
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Appendix F

Technical proofs

This appendix contains postponed proofs from the rest of the document.

Proposition F.1. Let u ∈ C∞
0 (M). Then |u| ∈ W 1,1

0 (M) and

∥∇u∥1 = ∥∇|u|∥1.

Proof. We expand the proof of [Cha01, Lemma II.2.1]: Define V ∈ L1(M,Rd) by

V (x) :=
sgn(u(x))∇u(x) u(x) ̸= 0

0 u(x) = 0

and for ε > 0 let uε :=
√
u2 + ε2. Then ∇uε(x) = 0 if u(x) = 0 and for u(x) ̸= 0 and

ε→ 0:
∇uε(x) = ∇u u(x)√

u(x)2 + ε2
= ∇u(x) sgn(u(x))√

1 + ε2

u(x)2

≤−→ V (x),

hence ∇uε → V in L1(M,Rd) by dominated convergence. But uε → |u| in L1 as well and
thus if v ∈ C∞

0 (M,Rd) we can exchange limits and integrals twice in:∫
M
V · v =

∫
M

(
lim
ε→0
∇uε

)
· v = lim

ε→0

∫
M

(∇uε) · v (F.1)

= − lim
ε→0

∫
M
uεdiv(v) = −

∫
M

(lim
ε→0

uε)div(v) (F.2)

= −
∫

M
|u|div(v). (F.3)

Hence V is a weak derivative of |u|. Finally, note that |V (x)| = |∇u(x)| if u(x) ̸= 0 or
∇u(x) = 0. Additionally, the set where u(x) = 0 and ∇u(x) ̸= 0 is is a (d−1)-dimensional
submanifold and thereby a null set, so altogether ∥V ∥1 = ∥∇u∥1.

Proposition F.2. Let f ∈ C∞
0 (M). Then there is a sequence fn ⊂ C∞

0 (M) of nonnega-
tive functions converging to |f | in W 1,1

0 (M).

Proof. By mollifiying one can get a sequence in C∞(M) converging to |f |. This sequence
eventually ends up in C∞

0 (M), as |f | has compact support in M .
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Lemma F.3. Let pn → 1 be a sequence in R and assume that un ⊂ L1(M) converges in
L1(M) to u ∈ L1(M) for n→∞. If there is a c > 0 such that ∥un∥∞ < c for all n, then

∥un∥pn
pn
→ ∥u∥1.

Proof. See [Par09, Lemma 2.31]

Theorem F.4. Let u ∈ C2(R) and ∆p,h defined as

(∆p,hu)(x) := 1
h

(
φp−1

(
u(x+ h)− u(x)

h

)
− φp−1

(
u(x)− u(x− h)

h

))
,

where φp−1(x) = |x|p−2x. Then the following holds:

(i) For fixed x ∈ R with u′(x) ̸= 0 we have

∆p,hu(x) = ∆pu(x) +O(h)

for h >→ 0.

(ii) If u(x+ h) = u(x) + C|x|q +O(h2q) then

∆pu(x) = 2φp−1(C) +O(hq).

In particular, if ∆pu(0) ̸= 2φp−1(C), then the scheme is not consistent.

Proof. By Taylor expansion for u(x± h), the expression for ∆p,hu(x) expands to

1
h

(
φp−1

(
u′(x) + 1

2u
′′(x)h+O(h2)

)
− φp−1

(
u′(x)− 1

2u
′′(x)h+O(h2)

))
, (F.4)

which, for u′(x) ̸= 0 can be further expanded using two Taylor expansions of φp−1 around
u′(x):

1
h

(
φp−1(u′(x)) + φ′

p−1(u′(x))
(1

2u
′′(x)h+O(h2)

)
+O(h2)−

φp−1(u′(x))− φ′
p−1(u′(x))

(
− 1

2u
′′(x)h+O(h2)

)
+O(h2)

)
. (F.5)

Simplifying leaves us with

∆p,hu(x) = φp−1(u′(x))u′′(x) +O(h).

Now note that if u′(x) ̸= 0 then φp(u′) is differentiable in x and ∆pu(x) = (φp−1(u′))′(x) =
u′′φp−1(u′(x)), as φp−1 is differentiable for nonzero arguments. This shows the claim (i).
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For claim (ii) we plug in the expansion for u and get:

∆p,hu(x) = 1
h

(
φp−1

(
Chq−1 +O(h2q−1)

)
− φp−1(−Chq−1 +O(h2q−1))

)
(F.6)

= 1
h

(
φp−1

(
Chq−1(1 +O(hq))

)
+ φp−1(Chq−1(1 +O(hq)))

)
(F.7)

= 2
h
φp−1(C)h(p−1)(q−1)(1 +O(hq)) (F.8)

= 2φp−1(C) +O(hq) (F.9)
(F.10)

which proofs the second case.

Lemma F.5. Let f : R ⊇ I → R be continuous, bounded from below by some C > 0 and
Lipschitz outside of a closed set N of isolated points. then solutions of the initial value
problem

w′ = f(w) (F.11)
w(0) = w0 (F.12)

are unique.

Proof. Figure F.1 shows a sketch of the proof. We show that solutions coincide for t > 0.
The claim for t < 0 is obtained analogously. Let first T := inf{t ≥ 0 : w(t) ̸= w̄(t)}.
If T = ∞ we are done. If T < ∞ then by continuity w(T ) = w̄(T ) and thus there is a
t1 > T such that w(t1) ̸= w̄(t1). Assume without loss of generality that w(t1) < w̄(t1).
Now we must have T ∈ N , as otherwise Picard-Lindelöf would give us uniqueness for a
small neighbourhood of T , contradicting the definition of T . Thus, by taking t1 small
enough, we can also ensure that there are no points of N in the trajectories w((T, t1) and
w̄((T, t1)), as R\N is assumed to be open.

By continuity of w̄ there now is a t2 < t1 with w̄(t2) = w(t1). The functions w̄ and
ŵ(t) := w(t + (t1 − t2)) both fulfill Equation (F.11) while evaluating to w(t1) at t = t2.
As there are no points of N on w̄((T, t2)) ⊆ w̄((T, t1)), the solutions to this initial value
problem are unique at least back to t = T by Picard-Lindelöf, so by continuity it must thus
hold that ŵ(T ) = w̄(T ). But this is a contradiction, as it must also hold ŵ(T ) > w(T ):

ŵ(T ) = w(T + (t1 − t2)) = w(T ) +
∫ T +t1−t2

T
w′(t)dt︸ ︷︷ ︸

≥C(t1−t2)>0

> w(T )

This shows that T <∞ cannot occur and hence w(t) = w̄(t) for all t > 0.

Lemma F.6. Let γ : R→ S1 be injective. Then γ(t) converges for t→∞.

Proof. Let γ∗ : R → R be a lift of γ to the universal covering of S1. Then γ∗ must be
monotonous due to local injectivity of γ. By injectivity of γ, γ∗ is also bounded and thus
it converges for t → ∞. This means that γ(t) also converges, as the covering is a local
homeomorphism.
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T t2 t1

w(T )

ŵ

w

w̄

E

Figure F.1: Sketch for the proof of Lemma F.5 From f > C it follows that ŵ(T ) > w(T )
But as we may assume that there are no points of N between T and t1, ŵ must also
coincide with w̄ between T and t2, which is a contradiction.

Definition F.7 (After [Sim72]). Let M ⊂ Rd be like in Setup 1.1.2. For some matrix-
valued function A : M → Rd×d, A(x) = (ai,j(x))i,j, a bilinear form of the form

B(φ, ψ) :=
∫

M
(A∇φ)∇ψ

is called a uniformly strongly elliptic Dirichlet bilinear form in M of order 2 if

(i) There exists a constant E > 0 such that

lTA(x)l ≥ E|l|2

for all x ∈M and l ∈ Rd.

(ii) It fullfills the root condition, i.e., for every l′ ∈ Rd−1 \ {0} and x ∈M the following
polynomial in τ :

P (τ, l′, x) :=
(
l′

τ

)T

A(x)
(
l′

τ

)
has exactly one root with positive imaginary part and one root with negative imagi-
nary part.

Remark F.8. Differing from [Sim72, Definitions 1.3, 1.4], we have restricted the def-
inition to order 2 and real coefficients. We also adapted the notation and joined the
prerequisites of ellipticity and strong ellipticity, which simplify to (i) in the real case. We
have also added the condition l′ ̸= 0 in the root condition (otherwise the root condition
can never be satisfied, so we believe the condition l′ ̸= 0 is missing in [Sim72]).

Proposition F.9. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Then the bilinear
form

B(φ, ψ) := −
∫

M

(1
2
(
I +DT−1DT−T

)
∇φ

)
∇ψ

is a uniformly strongly elliptic Dirichlet bilinear form in M of order 2.
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Proof. The given B is a bilinear form in the form of Definition F.7 with

A(x) = 1
2
(
I +DT−1DT−T

)
.

For (i) observe that
lTA(x)l = 1

2(|l|2 + |DT−T l|2) > 1
2 |l|

2.

For (ii) note that for l ∈ 0 we have (l, τ) ̸= 0 for all τ . As 1
2(I+DT−1DT−T ) is symmetric

and positive definite, this means that

(l′, τ)TA(x)
(
l′

τ

)
̸= 0

for all τ ∈ R. As a quadratic polynomial with no real roots has exactly one root in the
upper complex plane and one in the lower complex plane, the root condition is fulfilled.

Theorem F.10. Let M ⊂ Rd be a compact, d-dimensional submanifold with C1 boundary
and T : M → M a volume-preserving diffeomorphism on the interior M̊ such that and
T as well as T−1 are be Lipschitz continuous on M . Define JD := FD/G with FD(u) :=
1
2

(
∥∇u∥p

p + ∥∇T∗u∥p
p

)
, as in Theorem 2.1.3 and G(u) := ∥u∥p

p. If ∆D := 1
2(∆ + T ∗∆T∗)

is the dynamic Laplacian, then the equation

−∆DdD = (JD)′(u)

has a unique weak solution in W 1,q
0 (M) in the following sense: there exists a unique

dD ∈ W 1,q
0 (M) such that for all v ∈ W 1,p

0 (M).∫
M

1
2
((
I +DT−1DT−T

)
∇dD

)
∇v = ⟨(JD)′(u), v⟩.

This includes the case ∆D = ∆, which arises from T = id.

Proof. This is a direct application of the Fredholm Alternative in [Sim72, Theorem 7.5]
(note that we flip p and q compared to the notation there). The theorem assumes a
uniformly strongly elliptic Dirichlet bilinear form B on W 1,q

0 (M)×W 1,p
0 (M) (see Defini-

tion F.7) and some F ∈ W−1,q(M) that vanishes on the space Np defined by

Np := {v ∈ W 1,q
0 (M) | B(φ, ψ) = 0 for all ψ ∈ W 1,p

0 (M)}.
The theorem says that with this setup, there is a φ ∈ W 1,q

0 (M) such that

B(φ, ψ) = F (ψ) ∀ψ ∈ W 1,p
0 (M) (F.13)

is fulfilled. It also says that φ is unique if dimNp = 0.
To apply the theorem, we set F := J ′(u) and

B(φ, ψ) :=
∫

M

1
2
((
I +DT−1DT−T

)
∇φ

)
∇ψ,

which is a uniformly strongly elliptic Dirichlet bilinear form by Proposition F.9. As the
matrix field 1

2(I+DT−1DT−T ) is positive definite everywhere in M , we have that ∇ψ ≡ 0
if ψ ∈ Np. By the Poincaré inequality this means ψ = 0, so dimNp = 0. Hence F trivially
vanishes on Np and there exists a unique φ fulfilling Equation (F.13), which proves the
claim.

104



APPENDIX F. TECHNICAL PROOFS

Theorem F.11. Let M ⊂ Rd and T : M →M be as in Setup 1.1.2. Then

hD(M,T ) = inf
D⊂M

ℓd−1(∂D) + ℓd−1(∂(T (D)))
2ℓd(D) ,

where the infimum is taken over d-dimensional submanifolds of M that are compactly
contained in M and have smooth boundary. Secondly,

hD(M,T ) = inf
u∈C∞

0 (M)\{0}

∥∇u∥1 + ∥∇(T∗u)∥1
2∥u∥1

.

Proof. The equality of the two right-hand sides has been shown in [FJ18, Theorem 1].
Here, we connect both quantities to the formulation in Definition 2.2.1, using techniques
similar to [Par11, proof of Proposition 3.3] and, for the incorporation of dynamics, to
[Fro15, proof of Theorem 3.1].

For the first equality, first note that the left-hand side is smaller or equal than the right-
hand side, since the domain of the infimum is made smaller and ℓd−1(∂D) = P (D,Rd) for
sets D with smooth boundary (see Theorem C.5). To prove “≥”, let D ⊆ M be of finite
perimeter. By Theorem C.6 there exists a sequence of Dk with smooth boundary such
that

χDk

L1−→ χD

and
P (Dk,Rd)→ P (D,Rd)

for k →∞. We define the operator T̃∗ : BV (Rd) as in Theorem D.3 and note that because
of its boundedness

T̃∗χDk
→ T̃∗χD

in BV (Rd) and hence
|D(T̃∗χDk

)|Rd → |D(T̃∗χD)|Rd

As T̃∗χDk
= χT (Dk) and T̃∗χD = χT (D) we get

P (Dk,Rd) = |D(χT (Dk))|Rd → |D(χT (D))|Rd = P (D,Rd).

This shows
hD(M,T ) ≥ inf

D⊂M

ℓd−1(∂D) + ℓd−1(∂(T (D)))
2ℓd(D) .

and we are done with the first equality.
For the second equality we want to show

hD(M,T ) = inf
u∈C∞

0 (M)\{0}

∥∇u∥1 + ∥∇(T∗u)∥1
2∥u∥1

,

where the infimum is taken over d-dimensional submanifolds of M that do not touch its
boundary. Let u in C∞

0 (M) be nonnegative. By the coarea formula applied to u and T∗u
we have

1
2 (∥∇u∥1 + ∥∇T∗u∥1) = 1

2

∫ ∞

0
(ℓd−1(∂At) + ℓd−1(∂(T (At)))) dt (F.14)

≥ hD(M,T )
∫ ∞

0
ℓd(At)dt (F.15)

= hD(M,T )∥u∥1, (F.16)
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where the last step is Cavalieris principle. This holds also for arbitrary u ∈ C∞
0 (M), as

we can approach |u| in W 1,1
0 (M) by smooth nonnegative functions by Proposition F.2 and

∥∇|u|∥1 = ∥∇u∥1 by Proposition F.1. Thus, we have shown that

hD(M,T ) ≤ inf
u∈C∞

0 (M)
u̸=0

∥∇u∥1 + ∥∇(T∗u)∥1
2∥u∥1

.

For the other direction “≥”, let ε > 0 and D ⊆ M be a d-dimensional submanifold
with boundary not touching ∂M and ℓd−1(∂D)+ℓd−1(∂(T (D)))

2ℓd(D) − hD(M,T ) < ε. By [Amb00,
Theorem 3.9] and continuity of T∗ on BV (M) there is a sequence uk ⊂ C∞

0 (M) such that

∥∇uk∥1 + ∥∇(T∗uk)∥1
2∥uk∥1

k→∞−→ ℓd−1(∂D) + ℓd−1(∂(T (D)))
2ℓd(D) .

By letting ε→ 0 and using that for smooth domains not touching the boundary we have
ℓd−1(∂D) = P (D,Rd) (see Theorem C.5), this implies

hD(M,T ) ≥ inf
u∈C∞

0 (M)
u̸=0

∥∇u∥1 + ∥∇(T∗u)∥1
2∥u∥1

,

which completes the proof of the second equality.
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