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1. Summary 
Skeletal muscle plays a critical role in regulating glucose metabolism, and factors like 
environmental influences or genetic predispositions can lead to excess fat accumulation 
within the muscle, resulting in insulin resistance and diabetes. Intermuscular Adipose 
Tissue (IMAT), a type of fat found within muscle, has been linked to the regulation of insulin 
sensitivity in obese individuals. However, the factors secreted by IMAT that influence insulin 
resistance in skeletal muscle are not well understood. It is possible that due to their physical 
proximity, IMAT and skeletal muscle may have a direct impact on the development of 
metabolic diseases. In this study, we used transcriptomics data to explore the 
communication between IMAT and skeletal muscle in the context of progressive insulin 
resistance. Our study included 54 participants from different groups: 19 individuals with 
obesity (OB), eight patients with type 2 diabetes (T2D), 14 endurance athletes (ATH), and 
13 lean controls (LC). To conduct the RNAseq experiment, we obtained skeletal muscle 
biopsies from the vastus lateralis of the quadriceps femoris after a 12-hour fast. IMAT 
samples were carefully dissected from the muscle biopsies using a dissection microscope. 
We collected various metabolic parameters such as Glucose Infusion Rate (GIR), Fasting 
Glucose (FG), Postprandial Glucose (glucose 2 hours after a meal), fat mass(FM), Fat-Free 
Mass (FFM), as well as height, weight, and Body Mass Index (BMI) from all study 
participants who gave their consent. To better understand the communication between 
IMAT and skeletal muscle, we constructed a sender-receiver interaction network. This 
network was developed through an extensive search of databases and existing literature. 
We integrated this network with the gene expression data from both muscle and IMAT, 
focusing on genes whose expression correlated with GIR, which serves as a measure of 
insulin sensitivity. This allowed us to assess the role of each gene in the communication 
network. The genes identified in the network were associated with functions like 
extracellular matrix (ECM) remodeling, cytokine-cytokine receptor interactions, and TGF-
beta signaling. These findings suggest an enrichment of inflammatory processes within the 
network. Furthermore, by applying a rewiring analysis, we observed changes in IMAT genes 
during communication with skeletal muscle under insulin-sensitive and insulin-resistant 
conditions. This indicates that IMAT is a dynamic tissue that responds to changes in insulin 
sensitivity within the muscle. After applying different criteria, we identified a cluster of genes 
in IMAT, including laminins, collagens, bone morphogenic, and calmodulins, which are 
implicated as drivers of insulin resistance in skeletal muscle. Furthermore, our analysis 
revealed that muscle signaling, mainly through semaphorins and laminins, may play a role 
in interacting with rewired IMAT signal-receiving genes, such as Plexins and Integrins. In 
conclusion, our data suggest that the communication between IMAT and muscle is 
regulated by interactions involving extracellular matrix (ECM) components and 
inflammatory cytokine proteins. This conclusion is based on a bioinformatics approach, and 
further experimental validation may be necessary to establish the findings conclusively.
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1. Zusammenfassung 
Der Skelettmuskel spielt eine entscheidende Rolle bei der Regulierung des 
Glukosestoffwechsels, und Faktoren wie Umwelteinflüsse oder genetische Veranlagungen 
können zu einer übermäßigen Fettansammlung im Muskel führen, was wiederum 
Insulinresistenz und Diabetes zur Folge hat. Intermuskuläres Fettgewebe (IMAT), eine Art 
von Fett im Muskel, wird mit der Regulierung der Insulinempfindlichkeit bei fettleibigen 
Personen in Verbindung gebracht. Die von IMAT ausgeschiedenen Faktoren, die die 
Insulinresistenz in der Skelettmuskulatur beeinflussen, sind jedoch nicht gut bekannt. Es ist 
möglich, dass IMAT und Skelettmuskel aufgrund ihrer räumlichen Nähe einen direkten 
Einfluss auf die Entwicklung von Stoffwechselkrankheiten haben. In dieser Studie 
untersuchten wir anhand von Transkriptomikdaten die Kommunikation zwischen IMAT und 
Skelettmuskulatur im Zusammenhang mit einer fortschreitenden Insulinresistenz. Unsere 
Studie umfasste 54 Teilnehmer aus verschiedenen Gruppen: 19 Personen mit Fettleibigkeit 
(OB), acht Patienten mit Typ-2-Diabetes (T2D), 14 Ausdauersportler (ATH) und 13 magere 
Kontrollpersonen (LC). Zur Durchführung des RNAseq-Experiments wurden 
Skelettmuskelbiopsien aus dem Vastus lateralis des Quadriceps femoris nach einem 12-
stündigen Fasten entnommen. Die IMAT-Proben wurden mit einem Präparationsmikroskop 
sorgfältig aus den Muskelbiopsien herauspräpariert. Wir erfassten verschiedene 
Stoffwechselparameter wie Glukose-Infusionsrate (GIR), Nüchtern-Glukose (FG), 
postprandiale Glukose (Glukose 2 Stunden nach einer Mahlzeit), Fettmasse (FM), fettfreie 
Masse (FFM) sowie Größe, Gewicht und Body-Mass-Index (BMI) von allen 
Studienteilnehmern. Dieses Netzwerk wurde durch eine umfangreiche Suche in 
Datenbanken und bestehender Literatur entwickelt. Wir integrierten dieses Netzwerk in die 
Genexpressionsdaten von Muskeln und IMAT und konzentrierten uns dabei auf Gene, 
deren Expression mit der GIR korrelierte, die als Maß für die Insulinempfindlichkeit dient. 
Auf diese Weise konnten wir die Rolle jedes Gens in dem Kommunikationsnetzwerk 
bewerten. Die im Netzwerk identifizierten Gene wurden mit Funktionen wie dem Umbau der 
extrazellulären Matrix (ECM), Zytokin-Cytokin-Rezeptor-Interaktionen und TGF-beta-
Signalen in Verbindung gebracht. Diese Ergebnisse deuten auf eine Anreicherung von 
Entzündungsprozessen innerhalb des Netzwerks hin. Darüber hinaus haben wir mit Hilfe 
einer Neuverdrahtungsanalyse Veränderungen in IMAT-Genen während der 
Kommunikation mit dem Skelettmuskel unter insulinempfindlichen und insulinresistenten 
Bedingungen beobachtet. Dies deutet darauf hin, dass IMAT ein dynamisches Gewebe ist, 
das auf Veränderungen der Insulinempfindlichkeit im Muskel reagiert. Nach Anwendung 
verschiedener Kriterien identifizierten wir eine Gruppe von Genen im IMAT, darunter 
Laminine, Kollagene, Knochenmorphogene und Calmoduline, die als Triebkräfte der 
Insulinresistenz im Skelettmuskel gelten. Darüber hinaus ergab unsere Analyse, dass die 
Muskelsignalübertragung, hauptsächlich über Semaphorine und Laminine, eine Rolle bei 
der Interaktion mit neu verdrahteten IMAT-Signalempfangsgenen wie Plexinen und 
Integrinen spielen kann. Zusammenfassend deuten unsere Daten darauf hin, dass die 
Kommunikation zwischen IMAT und Muskeln durch Interaktionen zwischen Komponenten 
der extrazellulären Matrix (ECM) und Entzündungen reguliert wird. Diese Schlussfolgerung 
basiert auf einem bioinformatischen Ansatz und eine weitere experimentelle Validierung 
kann erforderlich sein, um die Ergebnisse endgültig zu ermitteln.
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2. Introduction 

2.1. Diabetes mellitus  
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood glucose 

levels resulting from defects in insulin production, insulin action, or both(1). Insulin is a 

peptide hormone produced by the β cells of the pancreatic islets of Langerhans that helps 

regulate blood sugar levels by facilitating cellular glucose uptake, regulating carbohydrate, 

lipid and protein metabolism, and promoting cell division and growth through its mitogenic 

effects (2). The disruption in metabolic regulation caused by diabetes mellitus (DM) leads 

to additional physiological changes in various organ systems, placing a significant burden 

on individuals living with diabetes and the healthcare system(3). According to the 

International Diabetes Federation (IDF) in 2021, Diabetes is a global health problem that 

affects 537 million adults between the ages of 20 and 79 which accounts for approximately 

1 in 10 individuals(4). Shockingly, this number is projected to rise to 643 million by 2030 

and 783 million by 2045(5). In 2021 alone, diabetes was responsible for 6.7 million deaths, 

equating to one life lost every 5 seconds(6). The economic impact is also substantial, for 

example healthcare expenditures related to diabetes reached to 966 billion USD(6). In 

Europe, the prevalence of diabetes is a significant concern. Approximately 1 in 11 adults, 

which translates to 61 million individuals, are living with diabetes. Projections indicate that 

the number of adults with diabetes is anticipated to rise to 67 million by 2030 and further 

increase to 69 million by 2045.The economic burden of diabetes in Europe is substantial, 

with an estimated expenditure of 189 billion USD(4). 

2.1.1. Type of DM   

There are different types of diabetes, with the most common ones being type 1 DM, type 2 

DM, and gestational diabetes(1, 3). Type 1 DM usually develops in childhood or 

adolescence and is caused by an autoimmune response where the immune system 

mistakenly attacks and destroys the insulin-producing beta cells in the pancreas(7, 8). 

People with type 1 DM require lifelong insulin therapy(9).  Type 2 DM, on the other hand, is 

the most prevalent form and typically occurs in adulthood(10). It is often associated with 

lifestyle factors such as obesity, sedentary behavior, and poor dietary choices(11). In type 

2 DM, the body becomes resistant to the effects of insulin, leading to elevated blood sugar 

levels(12).  Gestational diabetes develops during pregnancy and usually resolves after 

childbirth. It occurs when hormonal changes during pregnancy cause insulin resistance(13, 

14). Gestational diabetes requires careful monitoring and management to avoid 

complications for both the mother and the baby(14). Uncontrolled diabetes can have 

significant health implications. Persistently high blood sugar levels can damage blood 

vessels and organs, leading to complications such as heart disease, stroke, kidney disease, 
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nerve damage, and eye problems(15, 16, 17, 18, 19). Diabetic individuals may also be at 

higher risk for infections, slow wound healing, and foot ulcers(20, 21, 22). 

2.1.2. Diagnosis of DM 

The diagnosis of diabetes can be determined through different criteria, such as the glucose 

tolerance test using hemoglobin A1c (HbA1c) or plasma glucose levels (fasting plasma 

glucose (FPG) or the 2-hour plasma glucose (2-h PG) after a 75-g oral glucose tolerance 

test (OGTT)) (1, 3). According to American Diabetes Association (ADA) report 2014, normal 

glucose tolerance is defined as an FPG of less than 5.6 mmol/L (100 mg/dL), a plasma 

glucose level of less than 140 mg/dL (11.1 mmol/L) after an oral glucose challenge, or an 

HbA1c level of less than 5.7%. On the other hand, a diagnosis of DM is defined when the 

FPG is equal to or greater than 7.0 mmol/L (126 mg/dL), the glucose levels are equal to or 

greater than 11.1 mmol/L (200 mg/dL) 2 hours after an oral glucose challenge, or the HbA1c 

level is equal to or greater than 6.5%(Figure 1) (23, 24). 

 
Figure	1.	Diagnosis	and	Classification	of	DM.	The	range	from	normal	glucose	tolerance	to	diabetes	in	type	1	
DM,	 type	2	DM,	other	 specific	 types	of	diabetes,	 and	gestational	DM	 is	 shown	 from	 left	 to	 right.	Arrows	
indicate	that	changes	in	glucose	tolerance	may	be	bidirectional	in	some	types	of	diabetes.	The	figure	was	
taken	from	Diabetes	Care.	2013;37:	S81-S90.	doi:10.2337/dc14-S081.	

2.1.3. Symptoms and management of DM 

Common symptoms of diabetes include frequent urination, excessive thirst, unexplained 

weight loss, increased hunger, fatigue, and blurred vision(25). If left uncontrolled, diabetes 

can lead to severe complications affecting multiple organ systems, including the 

cardiovascular system (heart disease, stroke), kidneys (diabetic nephropathy), eyes 

(diabetic retinopathy), nervous system (neuropathy), and feet (diabetic foot ulcers)(26). The 

management of diabetes revolves around maintaining blood sugar levels within a target 

range. This involves a combination of healthy eating, regular physical activity, monitoring 

blood sugar levels, and, when necessary, taking medication or insulin(27). Monitoring blood 
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sugar levels is vital for individuals with diabetes as it helps to make informed decisions about 

food choices, physical activity, and medication. 

2.1.4. Obesity as the major risk factor for development of type 2 DM 

Obesity is a state of excess adipose tissue(lipid-storing adipose cell) accumulation in the 

body resulting from multiple factors, including genetic predisposition, environmental 

influences, socio-cultural factors, and individual behaviors, with a complex molecular 

mechanism(28, 29, 30). Although genetic factors can influence a person's susceptibility to 

weight gain through various mechanisms, environmental factors such as sedentary 

lifestyles and excessive calorie intake contribute to obesity by disturbing the physiological 

regulation of energy balance(31). Obesity is now a public health issue worldwide(32), 

affecting over 2 billion people across all age groups(33, 34) and contributes to numerous 

chronic diseases, including cancers, insulin resistance, diabetes, metabolic syndrome, 

respiratory disorders, musculoskeletal problems, cardiovascular diseases, and mental 

health issues(29, 30, 32, 35). Body mass index (BMI) is the most employed method to 

assess obesity. It is calculated by dividing a person's weight by the square of the height (in 

kg/m2)(36). The World Health Organization (WHO) classification on BMI is widely utilized 

as a screening tool to evaluate the prevalence of obesity at the population level. In this 

classification, BMI higher than 30 is considered as an indication of obesity for men and 

women(32). While BMI is widely used, it is not a direct measure of body fat. Other 

techniques for quantifying obesity include anthropometry, which involves measuring skin-

fold thickness, densitometry using underwater weighing, and imaging methods such as 

computed tomography (CT), magnetic resonance imaging (MRI) or electrical impedance 

can also be utilized as an approach to measure body composition and estimate obesity 

levels (37, 38, 39). The way adipose tissue distributed in different parts of the body has 

significant implications for health risks(40, 41). Specifically, fat located in the abdomen and 

around the organs (intraabdominal) and just beneath the skin in the abdominal area called 

abdominal subcutaneous has more impact on health than fat in the buttocks and lower 

extremities(42, 43), although the exact mechanism behind this association is not known(37, 

42). However, intraabdominal fat cells are more active in releasing fatty acids (FAs) than 

other fat deposits meaning the lipolytic rate of such fat depot is high, yet the exact 

mechanism is unknown(44, 45, 46, 47). When these fatty acids enter the circulation, they 

can have harmful effects on the peripheral organs. Additionally, different types of fat cells 

in various depots may release specific substances called adipokines and cytokines, which 

could contribute to the systemic complications associated with obesity(28, 34). For 

example, obesity-associated insulin resistance (the decreased ability of insulin to act 

effectively on insulin sensitive target tissues, leading to impaired glucose utilization and 

increases hepatic glucose output, contributing to elevated blood sugar levels know as 
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hyperglycemia) is a prominent feature of type 2 DM(34, 48). The molecular causes of insulin 

resistance due to the increase of FAs and several other metabolites including acyl-CoAs, 

ceramides, and diacylglycerol(DAG)is through the activation of intracellular metabolites that 

activate protein kinases such as Protein Kinase C (PKC), Jun kinase (JNK), and the inhibitor 

of nuclear factor-κB (NFκB) kinase-β (IKKβ) which provides a molecular mechanism for 

inflammation(34, 49, 50, 51). These kinases and the inflammatory mediators can then 

activate serine/threonine kinases that inhibit insulin signaling by increasing the inhibitory 

serine phosphorylation of insulin receptor substrates (IRS)(52, 53).  

 
Figure	 2.Molecular	mechanism	 on	 the	 relationship	 between	 intracellular	 fatty	 acyl	 CoA	 levels	 (FACoA),	
IkB/NFkB	and	the	insulin	signal	transduction	pathway.	Figure	was	taken	from	Diabetologia.	2010;	53:1270–
1287.	https://doi.org/10.1007/s00125-010-1684-1).		

The build-up of lipids in insulin-sensitive tissues can disrupt mitochondrial oxidative 

phosphorylation, leading to decreased Adenosine Triphosphate (ATP) production. 

Additionally, the impaired oxidation of fatty acids and the accumulation of lipids in these 

tissues can generate reactive oxygen species, including lipid peroxides, which can affect 

insulin signaling adversely(54, 55, 56, 57). Moreover, in individuals with obesity, the adipose 

tissue experiences infiltration by mononuclear cells, including lymphocytes and monocytes, 

resulting in a state of persistent inflammation(51, 58). This inflammatory state is marked by 

the release of proinflammatory and prothrombotic cytokines (such as tumor necrosis factor 

alpha(TNF-a), resistin, Interleukin-6 (IL-6), plasminogen activator inhibitor-1(PAI-1), and 

retinol binding protein-4( RBP4 )) from the adipocytes and macrophages(58) and they play 

a significant role in the development  and progression of insulin resistance(51, 52, 53, 58, 

59).  Therefore, addressing the obesity epidemic is a key to stop the development of type 2 

DM and requires a multi-faceted approach involving individuals, communities, healthcare 

https://doi.org/10.1007/s00125-010-1684-1
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professionals, scientists, policymakers, and other stakeholders. Encouraging healthy eating 

habits and promoting physical activity are essential factors to stop the progress of obesity 

and diabetes.  

2.2. Physiological regulation of energy balance  
The regulation of energy balance depends on a complex interplay of hormonal and neural 

signals between the brain and various peripheral tissues(60, 61, 62). This complex 

regulatory system is necessary because even slight imbalances between energy intake and 

expenditure will significantly affect body weight. Arcuate nuclei in the hypothalamus are one 

of the most critical places where multiple hormones released from the gastrointestinal tract 

and adipose tissue assemble to regulate food intake and energy expenditure(63). These 

hypothalamic nuclei could also influence the secretion of several hormones that regulate 

energy balance and metabolism, including those from the thyroid and adrenal glands and 

the pancreatic islet cells(64). A central regulator is the adipocyte-derived hormone leptin, 

which acts predominantly in the hypothalamus to influence appetite, energy expenditure, 

and neuroendocrine function(65, 66). Leptin acts as a satiety hormone. An increased fat 

mass may lead to a higher leptin level in the circulation and induce leptin resistance, 

potentially may cause appetite disruption and overeating (66, 67). Furthermore, insulin, 

cortisol, and gut peptides such as peptide YY (PYY) and cholecystokinin (CCK) signals to 

the hypothalamus to regulate feeding behavior. However, the hormones ghrelin, secreted 

by the stomach, especially during fasting, stimulate appetite and food intake(33, 65, 66, 67). 

In addition, neural input through the vagus nerve from the viscera is vital to bringing sensory 

information to the hypothalamus about stomach emptiness and filling to control feeding(68, 

69).  Other areas of the brain such as brain steam and neural centers above the 

hypothalamus especially the amygdala and the prefrontal cortex are involved in the 

regulation of feeding behaviors and energy balance(64).    
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Figure	3.The	role	of	peripheral	hormones	and	vagal	input	in	the	control	of	energy	balance.	The	vagal	nerve	
takes	sensory	information	from	visceral	part	to	brain	especially	to	hypothalamus	about	stomach	filing	and	
destination.	Additionally,	 gut	hormones	 such	as	 leptin,	PYY,	CKK,	 Insulin,	 and	Ghrelin	 communicate	 the	
hypothalamus	 about	 nutrient	 availability	 (taken	 from	Guyton	 and	Hall	 Textbook	 of	Medical	 Physiology	
2015,	13	editions,	page	889).	

2.3. Insulin and its role in the regulation of glucose homeostasis  
Metabolic equilibrium between hepatic glucose production and peripheral glucose uptake 

and utilization could be referred as glucose homeostasis (70, 71). Neural input, metabolic 

signals, and hormones, such as insulin, glucagon, cortisol, thyroid, and growth hormones, 

are essential in glucose supply and utilization(62, 63, 65, 68, 69). Insulin is secreted by the 

pancreatic beta cells response to glucose abundance and it circulates almost entirely in an 

unbound form, has a 6-minute plasma half-life, and is cleared from circulation within 10 to 

15 minutes(52, 64, 72, 73). Except for the portion of the insulin that combines with receptors 

in the target cells, the rest is degraded by the enzyme insulinase, mainly in the liver, to a 

lesser extent in the kidneys and muscles(64, 73, 74). The primary role of insulin is facilitating 

glucose uptake into target cells, primarily muscle, adipose, and liver cells(70, 71, 72, 74). It 

does this by binding to specific insulin receptors present on the surface of these cells(75). 

The insulin-receptor interaction triggers a signaling cascade that promotes the translocation 

of glucose transporters, particularly Glucose transporter (GLUT) 4, to the cell membrane(73, 

76). These transporters act as channels, allowing glucose to enter the cells from the 

bloodstream. Once inside the cells, glucose undergoes various metabolic processes, 

including glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative 
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phosphorylation, to generate energy through ATP which is essential for the proper 

functioning of cells and enables various physiological processes(48, 64). 

 
Figure	4.Glucose	induced	insulin	secretion	in	the	pancreatic	beta	cell.	Glucose	transporter	protein	1	and	2	
(GLUT1	and/or	GLUT2	in	humans,	GLUT2	in	rodents);	The	SUR	receptor	is	the	binding	site	for	some	drugs	
that	act	as	insulin	secretagogues.	ADP,	adenosine	diphosphate;	ATP,	adenosine	triphosphate;	cAMP,	cyclic	
adenosine	monophosphate	(taken	from	Harrison’s	principles	of	internal	medicine,	2015,	19	editions,	page	
2402).	

Insulin enhances glucose uptake and influences the metabolism of carbohydrates, lipids, 

and proteins(77). It promotes glycogen synthesis in the liver and muscle cells immediately 

after a meal. This glycogen can be readily broken down into glucose when energy demands 

increase, such as during physical activity or fasting, helping to maintain blood glucose levels 

within a normal range(70, 78). Insulin also regulate glucose homeostasis by suppresses 

glucose production in the liver (decreasing gluconeogenesis activity) through stimulating 

the conversion of excess glucose into fatty acids (77, 79). In addition to its effects on glucose 

metabolism, insulin influences lipid metabolism by storing excess amount glucose as fatty 

acid in the liver cell and used to form triglycerides, the usually form of storage fat(78, 80). 

Then, triglycerides are released from liver cell to the blood stream where insulin activated 

lipoprotein lipase enzyme degrade them into fatty acids again. Then, the adipose cells 

would absorb the fatty acids and stored them as triglycerides(81). Insulin inhibits the action 

of hormone sensitive lipase enzyme on stored triglycerides in adipose cells, thus preventing 

the release of excessive fatty acids into the bloodstream from adipose cells(70, 74, 78, 80, 
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82, 83). This mechanism helps in maintaining appropriate lipid levels and prevents the 

accumulation of lipids in tissues other than adipose tissue. However, insulin deficiency can 

promote fat utilization as an energy source, accelerating the breakdown of stored fat in 

adipose tissue. This can lead to elevated plasma cholesterol levels, phospholipids, ketosis, 

and acidosis(2, 24, 27). Additionally, insulin deficiency stimulates production of glucose 

from none-carbohydrate sources in the liver to increase plasma glucose level.  Insulin also 

plays an important role in protein metabolism as well. It enhances amino acid uptake into 

cells by increasing the activity of amino acid transporters on the cell membrane and 

incorporation into proteins(48, 64). Additionally, insulin stimulates ribosomal activity and 

enhances the translation of messenger RNA (mRNA) into proteins(84, 85), and it inhibits 

the activity of proteolytic enzymes, such as proteasomes, which are responsible for 

degrading proteins. Also, insulin activates the mechanistic target of the rapamycin (mTOR) 

pathway that promotes protein anabolism by increasing the availability of cellular energy 

and activating protein synthesis machinery(86, 87). This effect is significant in muscle cells, 

contributing to muscle growth and repair. Insulin also inhibits protein degradation, ensuring 

that proteins are preserved and not broken down excessively.  

2.4. Intermuscular adipose tissue (IMAT)  

2.4.1. IMAT definition, location and its role in health and disease. 

IMAT refers to the ectopic adipose tissue located in the muscle bed and interspersed among 

the muscle fibers in humans (88, 89, 90, 91). IMAT is a component of overall muscle lipid 

content, also termed as myosteatosis(88). However, IMAT should not be confused with the 

storage of lipids in adipocytes located within a single muscle group called intramuscular fat 

(IMATA)(92, 93, 94). In addition, there exist a smaller group lipids accumulation within the 

muscle cells called intramyocellular lipids (IMCL), which are non-adipocyte lipids specifically 

refers to triglyceride implicated in insulin resistance in obesity, type 2 DM, and HIV-

associated lipodystrophy(88, 91, 92, 95). Initially, the quantification of adipose content 

within muscle was achieved through computed tomography (CT) imaging and, 

subsequently, magnetic resonance imaging (MRI) in older individuals, obese individuals, 

and those with type 2 diabetes mellitus(92, 93, 96, 97, 98). However, these techniques 

could not accurately measure microscopic IMAT distinct from other adipocytes or 

intramyocellular lipids in muscle cells(92). Nevertheless, recent advancements in molecular 

assay and sequencing technologies from biopsy samples have made it possible to 

differentiate the molecular profiles of various muscle adipocytes and lipids (88, 91). The 

presence, quantity and distribution of IMAT can vary among individuals and can be 

influenced by factors such as age, sex, genetics, and lifestyle(92, 94, 99, 100, 101, 102). 

IMAT, which constitutes approximately 5% of the overall fat content in the thigh, is thought 
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to play a vital role in providing cushioning, insulation and energy source for adjacent 

muscles (90, 91, 92, 102, 103). This hypothesis suggests that IMAT serves as a protective 

layer and helps maintain the structural and integrity of the muscles. However, it is important 

to note that currently, there is a lack of empirical data available to confirm this hypothesis 

definitively. Further research is needed to gather evidence and investigate the specific 

functions and contributions of IMAT in cushioning and insulating the surrounding muscle 

tissues. Moreover, excessive IMAT deposition is associated with adverse health effects, 

including metabolic disorders, cardiovascular diseases, and insulin resistance(88, 91, 92, 

94, 96, 97, 100, 101, 102, 104, 105). Extensive investigations have been carried out on 

IMAT among individuals affected by a range of metabolic, orthopaedic, and neurologic 

conditions typically observed in rehabilitative environments. These studies aim to 

comprehend the impact of IMAT on health in different diseases and search into the cellular 

and molecular mechanisms that underlie its effects, aiming to identify potential therapeutic 

interventions. The study has revealed that elevated levels of IMAT are closely linked to 

various negative health outcomes, including insulin resistance, diminished muscular 

strength, and impaired mobility(88, 90, 91, 92, 94, 96, 97, 101, 102, 105, 106, 107). This 

association has been observed in diverse patient populations as well such as in chronic 

back pain, HIV infection, and spinal cord injury patients, cerebrovascular accidents (CVAs), 

diabetes, and chronic obstructive pulmonary disease (COPD)(88, 89, 90, 92, 94, 99, 102, 

106, 108, 109). Moreover, it has been observed that older adults who exhibit higher levels 

of IMAT in their locomotor muscles tend to experience muscle weakness, reduced 

functionality in terms of mobility, and an increased vulnerability to future limitations in 

mobility(107, 110, 111, 112, 113). This suggests that IMAT accumulation plays a critical 

role in age-related declines in musculoskeletal health and overall physical function(89, 93, 

94, 96, 106). Therefore, IMAT could be considered an important marker of body composition 

and an independent risk factor for various chronic diseases. 
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Figure	5.Magnetic	resonance	images	that	illustrate	human	IMAT.	In	left	panel,	a	younger	(32	years	of	age)	
person	with	a	body	weight	in	the	normal	BMI	category.	In	the	right	panel,	an	older	(62	years	of	age)	person	
with	obesity.	Figure	was	taken	from	Nat	Rev	Endocrinol	2023;19(5):285-298.	doi:	10.1038/s41574-022-
00784-2.	

2.4.2. Cellular origins of IMAT in humans 

Adipogenesis refers to the differentiation and maturation of precursor cells, known as 

adipose stem cells (ASCs), into adipocytes, the primary cells composing adipose tissue 

(49). These ASCs are primarily found in the perivascular stroma of conventional adipose 

tissues, such as visceral fat, abdominal subcutaneous fat, and gluteal subcutaneous fat(88). 

Yet, the precise origin of adipocyte precursors remains unclear and need to be determined 

whether these precursors exclusively arise from resident cells within the adipose tissue or 

if cells from other tissues can migrate into an adipose depot and undergo adipogenic 

differentiation(88, 92, 102). Although categorized as ectopic, IMAT is a type of adipose 

depot and likely originates from multiple distinct cell types such as muscle satellite stem 

cells (MSCs) and fibro-adipogenic progenitor cells (FAPs) present within the muscle, and 

adipose-derived stem cells that migrate from other adipose depots into the muscle tissue 

itself(88, 114). MSCs are a committed stem cell population derived primarily from humans 

and mouse myoblasts(115), expressing classic myogenic markers, such as paired box 

proteins (PAX7), and muscle regulatory factors(MYF5, MYOD, MYOG, and MRF4)(116) 

and can differentiate into adipocytes when treated with adipogenic factors in vitro(88, 117, 

118). When skeletal muscles experience pathological alterations due to aging and/or 

muscle injury, myoblasts, and muscle progenitor cells (MPCs) exhibit adipogenic 

differentiation and give rise to adipogenic cells (ACs) within the muscle tissue(117, 118, 

119, 120).  
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Figure	6.Schematic	presentation	on	the	origin	of	IMAT.	Muscle	stem	cells	and	MSCs	have	similar	activation	
and	 proliferation	 processes.	 When	 there	 is	 muscle	 injury,	 myopenia,	 oxidative	 stress,	 aging,	 or	
glucocorticoid	therapy,	mesenchymal	stem	cells	can	differentiate	into	large	ACs	and	eventually	lead	to	the	
formation	and	accumulation	of	IMAT	as	indicated	by	the	red	arrows.	Inhibitory	processes	are	indicated	by	
the	 broken	 dot	 lines.	 Figure	 is	 taken	 from	 Diabetes	 Research	 and	 Clinical	 Practice	2022	 187DOI:	
(10.1016/j.diabres.2022.109881)	

In addition, FAPs are a unique group of cells found in muscle tissue that can differentiate 

into various cell types, including muscle cells and are distinguished by specific markers 

such as SCA1, CD34, PDGFRα, CD15, and CD90(88, 121, 122). When tissue damage or 

injury occurs, inflammatory signals prompt FAPs to change their fate, potentially diverting 

them from becoming muscle cells. However, in the case of healthy muscle, FAPs do not 

integrate or transform into adipocytes, indicating that the infiltration of fibro-adipogenic cells 

primarily occurs during ageing or disease when the muscle's ability to regenerate is 

compromised(88, 102, 123). Furthermore, recent findings in mice provide compelling 

evidence that ASCs are released into the bloodstream from subcutaneous adipose tissue 

(SAT) in the abdominal region. This release is primarily regulated by the interaction between 

a chemokine called CXCL12 and its receptor CXCR4, and it may play a role in the genesis 

and deposition of IMAT within the muscle(124). On top of these findings, another study has 

shown that when mice consume excessive nutrient intake or are exposed to some 

pharmacological treatments for the release of a specific subset of ASCs from the SAT depot 

in the abdomen induces the formation of adipocytes within skeletal muscle, leading to 

IMAT(125).  

2.4.3. Molecular profiles of IMAT 

Genomic investigations of IMAT in livestock animals have unveiled numerous genes and 

signaling pathways associated with adipogenesis, lipogenesis, glucose metabolism, 

cholesterol, and bile acid homeostasis(126, 127, 128). Analyses conducted in beef cattle 

and pigs have revealed distinct mRNA expression patterns among the visceral, 

subcutaneous, and intermuscular adipose depots, indicating that each depot is subject to 



Introduction 

20 

unique regulatory mechanisms and notably, IMAT displayed low transcript levels of genes 

related to oxidative metabolism while exhibiting high transcript levels of genes associated 

with inflammatory cytokines, suggesting a propensity for storage and inflammation (128, 

129, 130).  Furthermore, epigenomics of adipose tissue in pigs demonstrated that IMAT 

and VAT exhibit similar DNA methylation patterns to those observed in SAT(91). Likewise, 

from Sachs et al work (90), IMAT and VAT demonstrate statistically similar basal lipolysis 

rates compared to SAT in obese humans. This suggests that IMAT is an adipose tissue 

depot with distinct regulatory characteristics, sharing a molecular profile like VAT.  

Additionally, human IMAT gene expression among diverse insulin sensitivity groups in both 

sex is associated with insulin, MAPK and JAK-STAT signaling pathways. The same study 

has shown that negative relationships between insulin sensitivity measured by 

hyperinsulinaemic-euglycemic clamp and IMAT gene expression of macrophage, 

inflammatory cytokines, and oxidative phosphorylation markers. Moreover, the study found 

that extracellular matrix genes like COL24A1, DDR1, and CTGF are associated with insulin 

sensitivity in IMAT. These genes may play a role in the secretion of extracellular matrix 

proteins. Furthermore, the expression of lipolytic genes in IMAT, notably PLIN5 and 

peroxisome genes, exhibited a positive correlation with insulin sensitivity (90).  This gene 

may regulate lipid metabolisms such as beta-oxidation or triglyceride reesterification, but no 

data have been obtained to confirm this hypothesis in humans. Additionally, the study has 

shown that IMAT has unique transcriptome, signaling and secretory properties and can be 

a potent inflammatory mediator compared to other adipose tissue depots among obese 

humans (90, 131).  

2.4.4. Relationship between IMAT and total body adiposity  

There is a positive association between IMAT and overall adiposity(88, 92, 105, 132). For 

instance in the Look AHEAD (Action for Health in Diabetes)Trial, type 2DM patients showed 

a positive correlation between IMAT and total adipose tissue level in the body(133). 

However, the ability of IMAT to independently predict metabolic risk factors remains 

uncertain and requires further investigation. When statistical models are adjusted to account 

for BMI or total adiposity, it has been found that IMAT remains a significant predictor of 

insulin sensitivity. Nevertheless, the same association is not observed for dyslipidemia 

markers (105, 134, 135, 136, 137). This suggests that the relationship between IMAT and 

metabolic risk factors may vary independently of overall adiposity, depending on the specific 

risk factor being considered(88). Although the size of IMAT is small compared to other 

adipose, studies have shown that it is positively correlated with other adipose depots, 

particularly abdominal adipose tissue, which is known to have a stronger association with 

cardiometabolic risk factors(92, 105). However, it remains uncertain gain whether IMAT can 

independently predict metabolic risk when considering abdominal adipose tissue, 
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specifically VAT. For example, a comprehensive study that included individuals from African 

American and Caucasian backgrounds showed that IMAT independently predicts plasma 

glucose and total cholesterol levels but not triglycerides, HDL-cholesterol, or insulin 

levels(138). This may imply that IMAT could strongly predict glucose metabolism and insulin 

sensitivity, even after adjusting for other ectopic adipose depots such as VAT(135, 136, 

138, 139, 140), but its power of predicting cardiometabolic risk markers(dyslipidemia) needs 

more investigation. 

2.4.5. Metabolic role of IMAT as evidenced from lower animal.  

Studies from lower animal provide evidence that IMAT may play a crucial role in maintaining 

overall metabolic balance in the body. For instance, when observing nibbling and gorging 

mice, it was found that IMAT converted glucose into fatty acids at a quicker pace than 

muscle tissue. This indicates that IMAT potentially contributes to the creation of fat from 

dietary carbohydrates through de novo synthesis (141). Furthermore, a three-month 

exercise follow-up study on guinea pigs revealed that IMAT exhibited greater glucose 

utilization than other fat storage areas. Moreover, during this period, the lipid (fat) ratio 

decreased while the protein proportion increased, indicating that IMAT might serve as a 

nearby energy source for neighboring muscles (142). Likewise, exercise for an hour in a 

hamster ball increased the rate of fatty acid/triacylglycerol cycling in the IMAT and 

correlated with hexokinase and phosphofructokinase activity at specific sites(143). Another 

evidence documented again in the guinea pigs is that, simultaneously administration of 

noradrenaline and insulin to the isolated IMAT depot demonstrate an essential role of IMAT 

in neutralizing lipids locally to the nearby muscle (144). 

2.4.6. Secretory and signaling effect of IMAT.  

Adipose tissue's secretory and signaling capabilities are critical in regulating metabolic 

processes. Adipose tissue functions as a hub for communication, with more than 300 

proteins being secreted to interact with other tissues through endocrine or paracrine 

signaling pathways and to engage in self-regulation through autocrine mechanisms(145). 

This extensive protein secretion allows adipose tissue to actively communicate and 

coordinate metabolic activities with various organs and tissues in the body(106). As an 

illustration, when adipocytes derived from SAT were co-cultured with muscle cells, it 

reduced insulin signaling and impacted the accumulation of triacylglycerol and 

diacylglycerol in the muscle(132, 146, 147). Moreover, the media conditioned by VAT led 

to insulin resistance in myotubes compared to condition media by SAT, and it also triggered 

inflammation and atrophy in primary muscle cell cultures(148, 149). Likewise, adipogenic 

progenitor cells isolated from human skeletal muscle decreased insulin signalling and 

insulin sensitivity in primary myotubes(150). These studies offer crucial evidence indicating 

that the paracrine signalling of adipose tissue influences the metabolic function of muscle 
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and provides a foundation for understanding the mechanistic relationships between IMAT 

and muscle metabolic function in vivo(88, 90, 103). Basing the above findings, a recent and 

exciting study has revealed that in cases of obesity, human IMAT exhibited a higher release 

of various pro-inflammatory cytokines, such as IL2, IL18, IL27, FGF23, and CSF1. 

Additionally, IMAT was found to release homeostatic chemokines like CCL25 and CCL27 

and inflammatory chemokines, including CCL11 and IL8. Furthermore, adipokines like 

Resistin and HGF, and eicosanoids such as thromboxane B2 (TXB2), 5-

hydroxyeicosatetraenoic acid (5-HETE), and 12-hydroxyeicosatetraenoic acid (12-HETE) 

were released at higher levels in IMAT compared to SAT and VAT(131). Furthermore, in 

the same study, when human primary muscle cell cultures were exposed to conditioned 

media derived from IMAT and VAT, there was a notable reduction in muscle insulin 

sensitivity, which was not observed with SAT(90).  

 
Figure	7.Inflammatory	secretome	of	different	adipose	tissue	depot.	How	condition	media	of	IMAT	regulate	
insulin	 sensitivity	 of	 the	 skeletal	 muscle	 (adapted	 from	 Physiol	 Rep.	 2022;10(16):	 e15424.	 doi:	
10.14814/phy2.15424	 and	 Am	 J	 Physiol	 Endocrinol	 Metab.	 2019;316(5):	 E866-E879.	 doi:	
10.1152/ajpendo.00243.2018).	

Combining the data, IMAT plays a significant role in the secretion of inflammatory cytokines, 

chemokines, and lipids that promotes inflammation and the infiltration of macrophage and 

other immune cells that can contribute to muscle inflammation and insulin resistance. 

Therefore, due to its physical closeness to the muscle, IMAT can alter muscle metabolic 
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function through the secretion of proteins. This suggests that IMAT-secreted proteins have 

the potential to be targeted in therapeutic interventions aimed at addressing muscle-related 

health issues, specifically focusing on muscle insulin resistance(88, 90, 91, 92).  

 

 
Figure	8.Graphic	demonstration	how	IMAT	secretion	and	paracrine	signaling	affect	skeletal	muscle	insulin	
sensitivity.	 IMAT	 factors	 are	 locally	 regulating	 skeletal	 muscle	 insulin	 signaling	 and	 may	 induce	 the	
development	of	skeletal	muscle	insulin	resistance,	atrophy	and	could	diminished	muscular	contractility.				

While the paracrine effects of IMAT on muscle function are evident(90), further investigation 

into its endocrine roles is crucial. Because adipose tissue secretions primarily from VAT, 

like adiponectin and leptin, influence the insulin sensitivity of various tissues and predict 

cardiovascular disease risk by endocrine signaling(100, 104, 140). Considering the similar 

content of IMAT and VAT in humans, it is intriguing to hypothesize that IMATs endocrine 

action may influence remote tissues and provide insights into the association between IMAT 

content and cardiovascular disease risk(88). 

2.5. Tissue cross talk: why, how, and when?  
Multicellular organisms depend on sophisticated yet coordinated cellular activities, which 

rely on crosstalk between different cell types to orchestrate various biological phenomena 

(151, 152, 153). Crosstalk communication generally involves the physical interactions of 

multiple molecules through paracrine, endocrine, autocrine and Juxtacrine fashion (154). 

Eventually, these interactions are organized into a sequence of signaling pathways that may 

activate or inhibit downstream signaling and alter gene expression in the target cell to shape 

organismal homeostasis(155, 156, 157). For example, cells may produce and release 
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signaling proteins (e.g., ligand) that could be detected in the same or different cells through 

the membrane or intracellular proteins (e.g., receptor), triggering signaling pathways that 

control other processes (156, 157). The totality of these processes determines the function 

and development of diseases in the tissue. Thus, to comprehend physiological and 

pathological processes at the tissue level, one needs to consider molecular interactions of 

proteins within each cell type and between cell types (158).  Direct measurement of proteins 

from single cell could be the best and preferable way to explore the role of interacting cells, 

as protein mediate most of the signaling cascade(156). However, proteomic technologies 

have shown significant difficulties in reproducibility and require specialized biochemical 

assays and extensive domain knowledge(156). Hence, RNA sequencing technology has 

become more popular and states forward to predict cell-cell communication and interactions 

from gene expression measurements through cross-referencing to prior understanding of 

sender protein-receiver protein interactions(156, 159, 160, 161, 162, 163, 164, 165, 166, 

167, 168). However, transcriptomics data must be carefully analyzed and validated to 

prevent misleading conclusions since transcriptomics may not represent a fully accurate 

view of intercellular communication, as post-transcriptional and post-translational 

processes can uncouple transcript and protein abundances(156).  Computational methods 

are the cornerstone in analyzing big omics data and building databases to understanding 

systems biology. In this regard, Kyoto Encyclopedia of Genes and Genomes(KEGG) (169), 

Gene ontology(GO) (170), and string(171) databases are the most powerful databases 

computationally curated to retrieve several protein-protein interactions and signaling 

pathways. 
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3. Aims of the thesis 
This thesis aims to delve into the intricate interplay between IMAT and skeletal muscle, 

focusing on insulin resistance development. Skeletal muscle is responsible for a significant 

portion (80%) of glucose utilization after meals, and its insulin sensitivity can be affected by 

various factors. In conditions such as obesity and related diseases, an excessive buildup of 

fatty acid intermediates (diacylglycerol, triacylglycerol, and ceramides) impedes insulin 

signaling by reducing the presence of GLUT4 transporters on the surface of myocyte 

membranes. This disruption is considered a pivotal contributor to skeletal muscle insulin 

resistance. Furthermore, the accumulation of lipid deposits within muscle fibers or a direct 

infusion of fatty acids can also impact skeletal muscle insulin sensitivity. For instance, 

studies have shown that exposing primary skeletal muscle cells to IMAT condition media 

during obesity in humans leads to an increase in 1,2-diacylglycerol (1,2 DAG) levels within 

skeletal muscle myotubes. Although the exact mechanism by which IMAT-conditioned 

media elevates 1,2 DAG and induces insulin resistance in skeletal muscle remains unclear, 

it is hypothesized that the release of proinflammatory cytokines, chemokines, and lipids 

from IMAT plays a significant role. Consequently, unravelling the molecular mechanisms 

underlying skeletal muscle adiposity holds great promise for identifying novel therapeutic 

targets to address the escalating health concerns associated with muscle dysfunction, 

including insulin resistance, diabetes, and myopathy. Hence, the primary objective of this 

study is to comprehensively understand the molecular crosstalk between IMAT and skeletal 

muscle during insulin resistance progression, ultimately paving the way for the discovery of 

innovative therapeutic approaches to treat muscle-related disorders. 

The specific aims of this thesis are as follows: 

1. Understand transcriptomics regulation of IMAT and muscle. 

2. Explore differentially regulated genes between groups in each tissue. 

3. Gain a comprehensive understanding of the biological role differentially expressed 

genes or genes correlated to insulin sensitivity.  

4. Build a reference network based on prior knowledge to illustrate potential 

interactions between sender and receiver coding genes described in various 

research articles, textbooks, and databases. 

5. Investigate the communication network between IMAT and muscle by correlating 

the expression level of senders or/and receiver coding genes in both tissues with 

insulin sensitivity. 

6. Identify distinct clusters or communities within the communication network, which 

may suggest unique or specific biological functions. This analysis will help uncover 

modules of genes that work together to regulate insulin sensitivity and provide 

insights into the overall network structure. 
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7. Highlight the most rewired genes within the communication network. Specifically, 

focus on identifying genes that interact with a diverse range of genes exhibiting 

various degrees of insulin sensitivity. This approach will offer valuable insights into 

understanding the alterations occurring in the molecular interaction network 

between IMAT and muscle during the development of insulin resistance. 

By addressing these specific aims, this thesis aims to unravel the molecular mechanisms 

and communication patterns between IMAT and skeletal muscle, contributing to a better 

understanding of insulin resistance development and potentially identifying novel 

therapeutic targets for muscle-related disorders. 
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4. Material and Methods  

4.1. Materials 
Table	1.List	of	R	packages	used	in	the	analysis.	

Package         Version         
AnnotationDbi    1.60.2    
BiocParallel     1.32.6 
broom            1.0.5 
corrplot 1.03 
circlize         0.4.16 
clusterProfiler  4.7.1.003 
ComplexHeatmap   2.15.4 
cowplot          1.1.1 
data.table       1.14.8 
DESeq2          1.38.3 
doParallel      1.0.17 
dplyr            1.1.2 
EnhancedVolcano  1.16.0 
forcats        1.0.0 
ggcorrplot       0.1.4 
ggplot2          3.4.2 
ggplotify        0.1.1 
ggpubr           0.6.0 
ggthemes         4.2.4 
ggraph           2.1.0 
grid             4.2.3 
gridExtra        2.3 
gridtext         0.1.5 
igraph           1.5.0.1 
kableExtra       1.3.4.9 
magick           2.7.4 
magrittr         2.0.3 
moderndive       0.5.5 
org.Hs.eg.db     3.16.0 
patchwork        1.1.2 
pheatmap         1.0.12 
proustr          4.4.0 
plotly 4.10.2 
psycho 0.6.1 
RColorBrewer 1.1.3 
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RCy3 2.18.0 
readr 2.1.4 
rstatix 1.3 
Reshape2 1.4.4.9 
Stringr 1.5.0 
tibble 3.2.1 
tidyverse 2.0.02.9 
VennDiagram 1.7.3 
viridis 0.6.4 
Cytoscape Software  3.10.0 
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4.2. Methods  

4.2.1. Study subjects, sampling, and measurements  

Data collection, study design, and sampling procedures employed in this study are based 

on the methodology described by Sachs et al. (90). In the following section, a brief overview 

of the key aspects of the method is provided. Therefore, this study involved a total of 54 

participants who were categorized into four groups: 19 individuals who were Obese (OB), 

8 patients diagnosed with type 2 DM, 14 endurance athletes who were training for cycling 

and triathlon competitions (ATH), and 13 lean controls (LC). Various clinical variables were 

collected for all participants who provided their written informed consent, including the 

Glucose Infusion Rate (GIR), Fasting Glucose (FG), Postprandial Glucose (glucose 2 hours 

(PPG)), fat mass, Fat-Free Mass (FFM), as well as height, weight, and Body Mass Index 

(BMI). GIR was measured using hyperinsulinemic-euglycemic clamp, which is the most 

widely used procedure, also regarded as the gold standard to evaluate insulin sensitivity 

and glucose metabolism in research and clinical settings(172, 173). During a 

hyperinsulinemic-euglycemic clamp study, insulin is consistently administered at a 

physiologically relevant rate (40mU/min.m2) into the bloodstream to increase insulin levels 

to suppress hepatic glucose production while ensuring that blood glucose levels remain 

stable (euglycemia (100mg/dl)) by infusing glucose at a variable rate(174, 175, 176, 177). 

Therefore, among insulin-sensitive individuals, the rate of glucose appearance in the 

bloodstream, which includes both endogenous glucose (hepatic glucose production) and 

exogenous glucose (infused glucose), becomes equal to the glucose disappearance rate 

where a significant portion of glucose uptake (approximately 80%) occurs in the skeletal 

muscle. In this study, the antecubital vein of one arm was cannulated to facilitate the 

administration of insulin, [6,6-2H2] glucose, and dextrose infusions. In addition, a catheter 

was inserted into the contralateral arm in the retrograde dorsal hand vein for blood sampling. 

An ongoing infusion of [6,6-2H2]glucose, with an initial priming dose of 0.04 

mg·kg−1·min−1, was initiated and maintained throughout a 2-hour equilibrium period, 

followed by a subsequent 3-hour insulin clamp phase and the rate of glucose disappearance 

was calculated as previously described for similar study(177, 178).  After allowing a 2-hour 

duration for the tracer to achieve equilibrium, a percutaneous needle biopsy was performed 

in the vastus lateralis of the quadriceps femoris at a specific location between the 

greater trochanter of the femur and the patella for the RNA-seq experiment. Then, the 

muscle samples were rapidly frozen in liquid nitrogen and stored at -80°C until IMAT 

dissection is performed. IMAT samples were carefully dissected from the muscle biopsy 

with the help of a dissection microscope on ice to maintain the temperature(90).Additionally, 

demographic variables age and sex are obtained from all participants.  As inclusion and 
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exclusion criteria, it is worth noting that individuals with a BMI below 20 kg/m2 or above 25 

kg/m2 were excluded from the lean and athlete groups, while those with a BMI below 30 

kg/m2 were excluded from the obese and T2D groups. Moreover, individuals with fasting 

triglyceride levels exceeding 150 mg/dl, and those with liver, kidney, thyroid, or lung 

diseases were also excluded from the study. Individuals with type 2 DM who used insulin 

or thiazolidinediones were not included in the study. Finally, this study was approved by the 

Colorado Multiple Institution Review (CMR) board at the University of Colorado. 

4.2.2. RNA isolation and analysis   

In this study, total RNA was extracted from both IMAT and skeletal muscle biopsies using 

the RNeasy Lipid Tissue Kit (QIAGEN). An Agilent 2100 Bioanalyzer and Agilent 6000 Nano 

Kit (Agilent) were used to assess the quality of isolated RNA. Samples with RNA integrity 

numbers (RINs) greater than 7 selected for the RNA sequencing or gene expression 

experiment. For library preparation, 300 μg of total RNA per sample was utilized. RNA 

molecules were subjected to poly(A) selection, fragmentation, and reverse transcription 

using the Elute, Prime, Fragment Mix (Illumina, San Diego, CA). Subsequent steps, 

including end-repair, A-tailing, adaptor ligation, and library enrichment, were carried out 

following the Low-Throughput Protocol of the TruSeq RNA Sample Prep Guide (Illumina), 

employing the Bravo Automated Liquid Handling Platform (Agilent Technologies, Santa 

Clara, CA). The quality and quantity of the RNA libraries were assessed using the Agilent 

2100 Bioanalyzer and the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher, Waltham, 

MA). Sequencing of the RNA libraries was performed on an Illumina HiSeq2500 platform 

with 100-bp paired-end runs. Primary analysis, including base calling and quality scoring, 

was conducted using the Real-Time Analysis software (Illumina). Alignment of the 

sequences against the hg19 genome and UCSC (University of California Santa Cruz) 

known gene annotation assembly (GTF file) was performed using Genome Multitool (GEM) 

mapper (version 1.7.1) with standard parameters (except mismatches = 0.04 and min-

decoded-strata = 2). Read counts were determined using HTSeq-count (version 0.6.0) 

4.2.3. Statistical and Bioinformatic Analysis 

4.2.3.1. Demographic and clinical variable data 
 
Differences in clinical variables between groups and sex were analyzed using ANOVA and 

t-test using base R functions (such as anova and t.test respectively). The anova function 

compute analysis of variance table for the fitted model (linear regression) between a factor 

variable group and a numeric clinical variable. Whereas the t-test function compares the 

mean of a clinical data between two groups. Furthermore, pairwise correlation analysis 

(using cor function in base R) was performed to explore potential relationships between the 
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clinical variables across all groups. The mathematical description about the function 

mentioned here will be discuss the following sections.  

4.2.3.2. RNAseq data preprocessing and cleaning 
 
A total of 21185 protein coding mRNA genes detected from IMAT and skeletal muscle 

among 50 participating individuals. The data obtained from RNA sequencing is typically in 

the form of raw read counts, representing the number of times each RNA transcript in the 

samples is detected. Therefore, the read count of those genes was generated as data table 

where genes were arranged as rows (21185 genes) and samples (IMAT and muscle) as 

column. Then, imported to the R pregaming language(179) for data preprocessing. Lowly 

expressed genes are genes with low transcription or expression levels in a biological 

sample and removing them is a common practice in analyzing RNA-seq data. Often those 

genes may not show differences in expression between conditions as well. Here a gene is 

defined as lowly expressed when the row sum counts among the smallest group is below 

50 read count. Thus, genes containing 50 or more raw counts among the smallest sample 

group (T2D samples) were kept (total of 11828 genes) for downstream analysis.  
4.2.3.3. Gene normalization  
 
The R package DESeq2 used for raw counts normalization, transformation, and differential 

expression (DE) analysis (180). Read count normalization is necessary for any DE analysis 

to compare gene expression between samples accurately. Various factors, including 

sequencing depth, gene length, RNA composition, and the actual RNA expression, can 

influence the counts of mapped reads for each gene. Normalization involves scaling the raw 

count values to account for these factors, enabling more meaningful comparisons of gene 

expression levels within and between samples. DESeq2 employs size factors to address 

variations in sequencing depth across samples. These factors act as scaling coefficients, 

adjusting the raw read counts for each sample to ensure comparability between them. To 

estimate these size factors, DESeq2 utilizes the median-of-ratios method(181), involving 

the following steps:   

1. It constructs a pseudo-reference sample for each gene, potentially equating to the 

geometric mean across all samples (i.e., averages calculated from the log values of 

the reads). Scaling the reads on logs eliminate genes that are only transcribed in 

one sample type and helps to smooth over outlier read counts. 

2. A log ratio is calculated for each gene in a sample using the sample count and the 

corresponding pseudo-reference sample count. Alternatively, we can calculate it by 

subtracting the average log value from the log count of the gene in each sample. 

This will allow us to identify genes within each sample that are expressed at levels 

significantly higher than the average or close to the average or significantly less than 

the average.    
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3. Then, it calculates a size factor (normalization factor) for each sample, determined 

as the median value of all ratios specific to that sample. However, these median 

values are in natural log values, thus transformed into regular numbers by inverse 

logarithm operation that is raising exponents to the median value. Using the median 

is another way to avoid extreme genes from influencing the value too much in one 

direction. Mathematically the above three step could be expressed as follows: 

 
𝑠! =		𝑚𝑒𝑑𝑖𝑎𝑛" 	

𝑘"!
(∏ 𝑘"#

"$% ) 1 𝑚/
 

(1) 

Where: 

• 𝒔𝒋 is sample size factors, 	𝑘"# 	is a 𝑛	𝑥	𝑚 read count matrix where i = 1,…, n indexes the 
genes, and j = 1,…, m indexes the samples; the ∏ and the whole denominator refer pseudo 
reference sample(181).   

4. Finally, each raw count value in each sample 𝑘"! is divided by its corresponding 

normalization factor (size factor) 𝑠! to generate the normalized count 𝑞"!values. This 

normalization ensures in identifying of differentially expressed genes between 

conditions or treatments. 

 
𝑞"! =

𝑘"!
𝑠!

 
(2) 

5. However, for each experimental condition ρ, mean normalized count q&' calculated 

as the average of the counts from the samples j corresponding to condition ρ. This 

again expressed mathematically as below as indicated in the Anders and Huber 

publications in 2010(181). 

 
𝑞"( =

1
𝑚(

2
𝑘"!
𝑠!!:((!)$(

 
(3) 

Where: 

• q$%  is the mean estimate of gene count i in condition ρ, m% is the number of replicates in 
condition ρ and the sum runs over the replicates, k$&	 the raw count value assigned to gene 
i in sample j and s& is size factors described in the equation 1 above.  
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Table 2.Standard normalization methods in gene expression analysis adapted from (182) 
 
Normalization 
Method 

Description Accounted 
factors 

When to use  

Median ratios as 
described in 
DESeq2(180) 

Counts divided by 
sample-specific size 
factors determined by 
median ratio of gene 
counts relative to 
geometric mean per 
gene. 

Sequencing 
depth and RNA 
composition. 

Gene count comparisons 
between samples and 
for DE analysis but not 
recommended for within 
sample comparisons. 

TMM as 
depicted in 
EdgeR(183) 

Uses a weighted 
trimmed mean of the 
log expression ratios 
between samples. 

Sequencing 
depth, RNA 
composition, 
and gene length 

Gene count comparisons 
between and within 
samples and for DE 
analysis. 

CPM(184)  Counts scaled by 
total number of reads 
that is the relative 
abundance of a gene 
is the ratio between 
raw count of gene to 
the total number of 
reads in the sample 
multiplying by a 
million 

Sequencing 
depth. 

Gene count comparisons 
between replicates of the 
same sample group; not 
recommended for within 
sample comparison or DE 
analysis.    

TPM(185, 186)  Counts per length of 
transcript (kb) per 
million reads 
mapped. The relative 
abundance of a gene 
is the ratio of the raw 
count of a gene to the 
effective length of the 
gene adjusted for its 
length and the library 
size and then 
multiplying by a 
million. 

Sequencing 
depth and gene 
length. 

Gene count comparisons 
within a sample or between 
samples of the same 
sample group; and not 
recommended for DE 
analysis. 

 
TPM-Transcripts per kilobase Million, CPM -Counts per Million, TMM-Trimmed mean of M values.  
DESeq2- Differential Expression analysis of RNA-Seq version 2, EdgeR- Empirical analysis of Digital 
Gene Expression in R, 
 

4.2.3.4. Differential expression analysis  
 
Differential expression analysis is a powerful method used to compare the expression levels 

of genes between two different conditions or groups, providing valuable insights into the 

molecular basis of various diseases and physiological processes. The gene expression 

level determines the amount of protein produced that carries out vital functions within an 

organism. Before conducting the analysis, the data must be preprocessed and normalized 

to account for differences in sequencing depth and other technical factors, as explained 

above. We use a statistical method called generalized linear model (GLM) in DESeq2 to 
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understand differential expression between IMAT and muscle or between different groups 

within the same tissue. The model uses a negative binomial (NB) distribution suitable for 

RNA sequencing count data because it accommodates the overdispersion often observed 

in such data, where the variance is higher than the mean(181, 187). The method efficiently 

models the relationship between the dispersion and the average expression of a gene 

across all samples.  As a result, it can detect and adjust the dispersion estimates for each 

gene and using this information it calculates statistical significance(p-values and adjusted 

p-values) and fold changes between conditions(180). Matmatmticaly the model calculate 

the following: 

1. First, the mean parameter, denoted 𝜇"!, is calculated as a product of a normalized 

gene count 𝑞"𝛒 as stated in equation 2 and a size factor 𝑠! as described in equation 

1.  

 𝜇,- = 𝑞,,/(-)𝑠- (4) 

2. Second, add the mean parameter 𝜇"! with the raw count variance parameter 𝛼" to 

calculate variance 𝝈𝒊𝒋𝟐 . The variance calculation is motivated by assuming that the 

actual concentration of fragments from gene i in sample j is proportional to a random 

variable R&0, such that the rate that fragments from gene i are sequenced is the 

product of the size factor in the sample and the read count of the fragments.   

 
 𝝈𝒊𝒋𝟐 = 𝜇,- 	+ 	𝛼,µ,-

5  
(5) 

3. Next, NB distribution of the mean 𝜇"!  and variance 𝝈𝒊𝒋𝟐  are computed to understand 

how the observed count of each gene i in all samples j likely to vary around the 

mean. Therefore, for each gene i and all samples j of condition ρ, the R&0 are with 

mean 𝑞"𝛒 and variance 𝛼"𝛒. In other words, the count value K&0, conditioned 

on R&0 = r&0, is the NB distribution with mean 𝜇"! and variance 𝝈𝒊𝒋𝟐  . 

 
K&0 	= 	𝑁𝐵(	𝜇𝑖𝑗	, 𝝈𝒊𝒋

𝟐 )	 
(6) 

4. Then, it performs statistical tests using logarithm of the likelihood to assess the 
significance of DE for each gene between two conditions (e.g., A and B) using the 

NB distribution information. In the statistical tests, the null hypothesis 𝐻1 assumes 

no expression difference between conditions, and the alternative 𝐻% assumes that 

there is a difference. The detail of the method is stated in DESeq (181) and DESeq2 

(180)work flow.   
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4.2.3.5. Principal components analysis  
 
Principal components analysis (PCA) is one of the most used dimensional reduction 

techniques in genomics to pinpoint the most important information in the dataset. Principal 

components (PCs) are calculated using prcomp function in R and involves three main 

steps. It starts by generating a covariance matrix through pairs wise correlation between 

variables. The covariance matrix denoted here as Cov is a square (n x n) matrix, where n 

is the number of rows and columns that describes the relationships and variances between 

different variables in the dataset. The element Cov (i, j) represents the covariance between 

the ith and jth variables.  

 
𝑪𝒐𝒗(𝒙, 𝒚) = 			

∑ D	𝒙𝒊 − 𝐗GD𝒚𝒊 −	𝐘	G𝒏
𝒊$𝟎

𝐧 − 𝟏
 

(7) 

Where: 
• xi and yi are individual data points from the samples of X and Y, respectively. 
• 𝑿 and 𝒀	are the sample means of X and Y, respectively. 
• 𝒙𝒊 and 𝒚𝒊  the values of the x-variable and y-variable in a sample 
• n is the number of data points in the sample 

 

In the second step, it calculates the eigenvalues (λ₁, λ₂, ..., λn) and corresponding 

eigenvectors (v₁, v₂, ..., vn) of the covariance matrix. Eigenvalues (λ) of the Cov matrix are 

calculated by solving the characteristic equation of: 

 𝐝𝐞𝐭(𝐂𝐨𝐯	– 	𝛌𝐈) = 	𝟎 (8) 

Where:  
• det denotes the determinant, a scalar value computed from a square matrix Cov as the 

product of the elements along the main diagonal (from top-left to bottom-right) minus the 
product of the elements along the opposite diagonal (from top-right to bottom-left) and can 
be defined in several equivalent ways such as Leibniz formula, Laplace expansion or 
Gaussian elimination. If the determinant is zero (det (Cov) = 0), the matrix is said to be 
singular, and it does not have an inverse and may have multiple or no solutions. However, 
If the determinant is non-zero (det (Cov) ≠ 0), the matrix is considered non-singular, has an 
inverse and a unique solution. 

• I is the identity matrix of the same size as Cov matrix, with ones on the main diagonal (from 
the top-left to the bottom-right) and zeros elsewhere. The identity matrix acts as the 
multiplicative identity for matrices, much like how the number 1 is the multiplicative identity 
for real numbers.  

Then, next step is calculating the eigenvectors for each eigenvalue. When a non-

zero vector is multiplied by a matrix and results in another vector parallel to the first or equal 

to 0, this vector is called an eigenvector of the matrix, and this could be done by solving the 

linear equations of: 

 (𝑪𝒐𝒗	– 	𝝀𝑰) ∗ 	𝒗	 = 	𝟎 (9) 
Where: 

• Cov is the square matrix, v is the eigenvector corresponding to eigenvalue(λ) and I is the 
identity matrix.   
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Lastly, eigenvectors are assigned into a new variable know as PC and would be sorted by 

their eigenvalues from highest to lowest to tell how much information or variance can be 

attributed to each PCs. Thus, PCs form a new orthogonal basis for the data. 
4.2.3.6. Clustering analysis  
 
Clustering analysis using distance or correlation as a measure of sample or future 

dis(similar) could be the alternative way to learn the presence or absence pattern within 

groups or between groups. R built-in functions dist used to calculate the Euclidean distance 

between two data points in a Euclidean space. This distance can be derived from the 

Cartesian coordinates of the points, employing the Pythagorean theorem, commonly 

referred to as Pythagorean distance. 

 

𝑑(𝑥, 𝑦) = \2(𝑥" − 𝑦")2
4

"$%

 

(10) 

Where: 

• x and y are two data points in the Euclidean n-space, 
• 𝒙𝒊 and 𝒚𝒋 are Euclidean vectors, starting from the origin of the space (initial point),  
• n represent n-space.  

In addition, correlation of two data points is examined using R built in function cor.test and 

mathematically correlation of two data point could be expressed as below. 

 

 
𝒓(𝒙, 𝒚) = 			 (𝑥, 𝑦) =

∑D	𝒙𝒊 − 𝐗GD𝒚𝒊 −	𝐘G

_D𝒙𝒊 − 𝐗G2_D𝒚𝒊 − 𝒀G2
 

(11) 

Where: 
• r (x, y), is the correlation coefficient of the linear relationship between the variables x and y  
• 𝑿 and 𝒀	are the sample means of X and Y, respectively. 
• 𝒙𝒊 and 𝒚𝒊  the values of the x-variable and y-variable in a sample 

 

After computing the dis(similarity) matrix based on either distance or correlation, 

hierarchical clustering with the complete linkage method is employed using the R built-in 

function called hclust. This specific clustering technique establishes the distance between 

two clusters as the maximum separation observed among their individual elements. In each 

step of the clustering procedure, the two closest clusters are combined to create a new 

cluster. This sequence of actions is iterated until the entire dataset consolidates into a 

single, unified cluster. This approach enables us to cluster similar features or variables 

together(188).  Mathematically, the complete linkage function could be described by the 

following expression: 

 
𝑫(𝑿, 𝒀) 	= 		𝑑(𝑥, 𝑦)5	∈8,:	∈;

#<5  
(12) 

Where: 
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• D (x, y) is the distance between elements  𝑥	 ∈ 𝑋 and 𝑦	 ∈ 𝑌 
• X and Y are two sets of clusters  

 
4.2.3.7. Correlation and linear regression analysis  
 
Correlation and regression analysis were used to see the association between insulin 

sensitive/Glucose Infusion Rate/ and gene expression in the whole sample of muscle and 

IMAT respectively. Correlation is a standardized measure that tells you whether two 

variables change together and the strength and direction of their relationship. In addition, it 

could help to identify connections, patterns, or dependencies between variables. However, 

correlation doesn't imply causation – a strong correlation doesn't mean that changes in one 

variable cause changes in the other (Other factors might be at play). Thus, correlation is 

sensitive to linear relationships; it might not capture more complex associations and does 

not support confounding variable adjustment. The correlation coefficient ranges between -

1 and 1. A value close to 1 signifies a strong positive correlation, meaning that as one 

variable increases, the other also tends to increase. Conversely, a value near -1 indicates 

a strong negative correlation where when one variable goes up, the other typically goes 

down. A correlation of 0 means there's no linear relationship between the variables. The 

mathematically notation of correlation is described in the equation 8.  Furthermore, we used 

the linear regression function lm in base R to correlate gene expression in the muscle and 

IMAT respectively with whole-body insulin sensitivity after adjusting for body mass index. 

The general formula for linear regression is expressed as:  

 𝑌d 	= 𝛽1f+ 	𝛽%𝑋i	+ 𝜖 (13) 

   
Where: 

• 𝒀@, is the response variable to be predicted (represent here the insulin sensitivity here) and X 
is the predictor variable (represent here as gene expression).  

• 𝜷𝟏, is the slop, also known as the coefficient of the predictor variable, telling the expected 
change in insulin sensitivity for a one-unit change in the gene expression level. In another 
word it is the correlation (Cor) between the insulin sensitive and gene expression level 
multiply by the ratio of standard deviation (SD) of the insulin sensitive and gene expression 
level. 

 𝛽%f	= 𝐶𝑜𝑟(𝑌, 𝑋) 	∗ 	
𝑆𝐷(𝑌)
𝑆𝐷(𝑋)

 (14) 

   

• 𝜷𝟎, is the intercept representing the expected value of insulin sensitivity when the expression 
level of a gene is zero, and often, this is less interesting because studying gene expression 
levels closer to zero may not correlate with insulin sensitivity or anything biologically 
interesting. 

 𝛽1f = 𝑚𝑒𝑎𝑛(𝑌) 	−	𝛽p% 	 ∗ 	𝑚𝑒𝑎𝑛(𝑋) (15) 
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• The error term 𝜖 in equation 9 describes variability in the insulin sensitivity not explained by 
the linear relationship.  

Furthermore, we expanded the formula to multivariate with covariates adjustment feature 

as below. 

 		𝒀q = 𝛽1f +	𝛽%f	𝑋% 	+ 	𝛽=f	𝑋= +⋯+	𝛽4f	𝑋4 	+ 		𝛽>#?i	𝑏𝑚𝑖	  + 𝜖	  (16) 

   

4.2.3.8. Pathway enrichment analysis  
 
Pathway enrichment analysis was used to understand the underlying biological processes 

that differentially expressed genes between tissues or within the same tissue of different 

groups, genes associated with insulin sensitivity via regression and correlation analysis is 

overrepresented in biological pathways. The statistical approach, Over Representation 

Analysis (ORA), is used to identify significantly enriched genes in the pathway through a 

hypergeometric distribution test also called fisher exact test(189). Pathways used in this 

analysis were from the molecular signatures database(MSigDB)(190) collation C2 and H. 

Pathways are predefined based on the gene sets involved in the same biological processes. 

Mathematically hypergeometric distribution test was expressed as follows(189): 

 
𝑝	 = 	1 −	2

u𝑀𝑖 w u
𝑁 −𝑀
𝑛 − 𝑖 w

u𝑁𝑛w

@A%

"$1

			 
(17) 

   
Where: 

• N is the total number of genes in the background distribution could be all gene detected in 
the experiment or all genes annotated in the pathways, 

• M is the number of genes within that distribution that are annotated to the gene set of interest 
(how many of the differently expressed genes or genes correlated to our phenotype-insulin 
sensitivity are overlapping to the background genes), 

• n is the size of the list of genes of interest and k is the number of genes within that list which 
are annotated to the gene set. 

 
One major caveat of the ORA approach is that it finds the enrichment of genes in the 

pathways when the size of genes we want to enrich in the pathway is large and fails when 

the size is small. Thus, gene set enrichment analysis (GSEA) was used when necessary to 

complement the ORA approach(191). In GSEA, all genes were ranked by a numeric 

parameter (log fold change or by regression or correlation coefficient) to identify if pathway 

genes(S) overlap among sorted gene lists(L) when walking from the top to the bottom. In 

the GSEA, there are two major statistical tests should be performed. First, determine the 

enrichment score by a running sum statistic to increase when a gene in S is enriched in L 
while walking down from the top in L and decreases otherwise. The magnitude of the 

increase or decrease in the enrichment score depends on the gene ranking parameter, such 

as fold change or regression coefficients, as stated in the Kolmogorov-Smirnov statistic. 
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(192). Second, estimating the significance level of the enrichment score using an empirical 

phenotype-based permutation test that preserves the complex correlation structure of the 

gene expression data(191).  The R package clusterProfiler(193) was used for all kind of 

pathway enrichment analysis, which is widely utilized for exploring functional characteristics 

of genomic data across various species. The tool is known for its comprehensive gene 

annotation, making it a popular choice for this type of analysis. 
4.2.3.10. Cross tissue communication analysis  
 
To analyze cross-tissue communication between IMAT and muscle with the aim that 

signaling proteins putatively interact with the signal-receiving proteins to trigger intracellular 

signaling and influence gene expression in the target tissue was based on a manually 

curated list of interacting proteins. First, we manually curate a comprehensive sender-

receiver database that considers the known putative interactions of ligand-receptor, 

extracellular matrix proteins, and adhesion interactions. Then, we did statistical tests 

between IMAT and muscle gene expression, described in the follow-up sections. Then, we 

integrated them with the sender-receiver database to filter the possible sender-receiver 

pairs that derive the communication between the tissues.   

4.2.3.10.1. Sender-receiver reference network  
We curated a comprehensive sender-receiver database to infer the physical interaction 

between 1201 unique protein-coding sender genes and 1261 protein-coding receiver genes 

through extensive databases search at NCBI(194), KEGG(195), GO(196), Uniport(197), 

Guide to Pharmacology(198), Cell-Cell interaction database(199), CellChat(200), 

CellPhoneDB(163),CellTalkDB(164),iTalk(201),OmniPath(202),Omniextra(162),NicheNet(

155),Adhesome(203),Cellinker(204),ICELLNET(205),Liana(206),LRdb (168), NATMI(207), 

Ramilowski-pairs (208) and text mining. IntACT(209),BioGRID(210) and String(211) 

databases were used to verify the sender-receiver interaction network. Interaction data 

base is essential to appreciate mechanistic models driving pathway and transcriptional 

activity from transcriptomics and graph-based analysis methods(162). Then a consensus 

annotation score was calculated by assigning a score of either 0 or 1 to each pair to indicate 

whether two or more databases support the interaction evidence between sender and 

receiver. As a result, 4,769 pairs of genes involving 974 sender genes and 881 receiver 

genes supported by 25% of the database were identified. Protein coding genes with the 

potential function of secretion and transmission of information such as growth factor, 

cytokine, immune checkpoint, neuropeptides, secreted extracellular matrix, adhesion 

proteins, endocrine glycoproteins, and secreted surface proteins to the target cell defined 

as sender genes.  In addition, receiver genes were defined as protein-coding genes such 

as G protein-coupled receptors (GPCRs), nuclear receptors, surface proteins, catalytic 

proteins, transporter proteins, and adhesion proteins with the function of receiving and 
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transducing the incoming stimuli. Finally, we summarize the class and superclass of each 

sender gene and receiver gene after their function and chemical nature using KEEG(195), 

GO(196), Uniport(197) and NCBI(194) literatures. Therefore, senders were labeled into six 

class as cytokines, growth factors, neuropeptides, Junctional, secreted, and predicted-

ligand (for proteins we could not find literature reference or have more than one functional 

annotation) proteins. Class for receivers were GPCRs, Enzyme-linked receptors (receptor 

for insulin, various growth factors, and immune responses), Adhesion and other receptors 

(ion channels, nuclear hormone receptors, and intracellular enzyme linked receptors) 

proteins.  

 

 
	

	

	

	

 
Figure	9.Sender	receiver	data	base	(intercellular	communication	reference	network)	made	based	on	prior	
knowledge	from	published	literatures	and	publicly	available	database.	Sender	coding	genes	here	represent	
a	signaling	molecules	and	classified	in	to	six	main	class	and	3	super	class	based	on	their	function	and	chemical	
nature.	 Whereas	 receiver	 coding	 genes	 representing	 molecules	 potentially	 responds	 for	 the	 incoming	
stimulus	and	able	to	transduces	to	others.	Although	not	indicated	here,	GPCRs,	Enzyme-linked	receptors,	and	
Ion	channels	could	be	mapped	to	a	superclass	called	cell	surface	receptors.	Nuclear	and	intracellular	enzyme-
linked	receptors	as	intracellular	receptors,	and	adhesion	receptors	as	Junctional.			
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4.2.3.10.2. Crosstalk between IMAT and muscle scored by cross-tissue correlation. 
IMAT and muscle expression levels are used as input to infer the cross-communication 

between the tissues. First, we applied cross-tissue gene correlation approach to understand 

the communication between the tissues. Cross-tissue gene correlation analysis is a method 

used to examine the relationships between gene expression patterns across different 

tissues or cell types within an organism. This approach helps identify co-expressed genes 

(i.e., their expression levels change similarly) across multiple tissues, providing insights into 

potential functional relationships and shared regulatory mechanisms (212, 213, 214). 

Furthermore, this analysis was motivated by the hypothesis that co-expressed (cross-

correlated) sender-receiver pairs could regulate tissue communication(156). Cross tissue 

gene correlation was computed using a function cor.test in base R where x and y parameter 

takes the expression matrix of IMAT and muscle respectively. Mathematically expression 

for this analysis is described in equation 11. Then, significantly correlated gene pairs were 

integrated with the sender-receiver database to filter sender-receiver pairs systematically 

and analyzed logically from network biology and insulin sensitivity/insulin resistance 

perspective. Thus, the analysis was done to each group where the total number of samples 

(combined IMAT and muscle) used in LC was 16, and for ATH, OB, and T2D were 12, 20 

and 12, respectively. Also, since each IMAT and muscle sample are taken from the same 

patient, both expression data tables had similar sample IDs and size. We used R packages 

igraph(215), RCyt3(216) and Cytoscape software (217) to analyze network statistics and 

visualizing it. To further characterize the talk, the communication network was classified as 

IMAT to muscle network (IMCN) when IMAT acts as signaling and muscle as target tissue, 

and muscle to IMAT network (MICN) when the other way round is happening. Thus, we 

were able to determine the overall edges (connectivity between genes), nodes (all genes), 

influential out-degree nodes (nodes that disseminate information to many recipient nodes), 

and influential in-degree nodes (nodes that absorb information from many source nodes) in 

the network. We compared these network statistics in all groups to understand shared and 

unique nodes as insulin resistance advances from an active-sedentary lifestyle to an 

Obese-T2D state. Furthermore, all individual communication networks, encompassing 

ATH, LC, OB, and T2D networks, were integrated to explore inter-tissue communication 

dynamics within the landscape of progressive insulin resistance (to detect alterations or 

rewiring rates). The detailed explanation of this method will be provided in subsequent 

sections of this thesis. Lastly, based on all the above analysis, a list of candidate genes was 

generated and summarized in a table with information about their function, mean 

normalized expression levels across groups, correlation to insulin sensitivity (GIR), degree 

and rewiring rate. 
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4.2.3.10.3. Crosstalk between IMAT and muscle scored by differential combination. 
In this approach, we employed DEA, as described in equation 7, to understand crosstalk 

communications between IMAT and muscle samples. The primary objective of this 

approach was to identify genes acting as "DE-senders" and "DE-receivers" (differentially 

expressed sender and receiver genes). The rationale behind this model rests on the 

premise that if a sender gene in the signaling tissue (IMAT) is DE and its corresponding 

receiver gene in the receiving tissue (muscle) is also DE, it strongly suggests a likelihood 

of communication occurring through their protein products (156). To establish these sender-

receiver pairs, we combined the DE-sender genes identified in IMAT with the DE-receiver 

genes identified in muscle, using the curated reference database. This allowed us to infer 

the putative signaling process from IMAT to muscle tissue. Conversely, when investigating 

the signaling process from muscle to IMAT, we combined the DE-sender genes identified 

in muscle with the DE-receiver genes in IMAT to unravel the sender-receiver relationships 

for this direction of communication. It's worth noting that the concept of DE-based cell-cell 

communication scoring has become increasingly prevalent with the advent of single-cell 

sequencing technologies. For example, the most popular tools, CellChat(218) and 

Nichenet(155) utilize DEA and other statistical methodologies to dissect cell communication 

networks. Therefore, we conducted this analysis for all groups and subsequently, a 

comprehensive comparison of the edges and nodes was carried out across these groups. 

This comparative analysis aimed to reveal the shared, lost, gained, hub, and rewired nodes 

and edges as the progression of insulin resistance unfolds.  

4.2.3.10.4. Rewiring analysis via DyNet 
To explore the dynamics of the integrated networks, a rewiring analysis using DyNet(219) 

was used. Rewiring in graph theory generally refers to a change in the connectivity of a 

node in different networks(219, 220). The rewiring process could involve adding new 

connections, removing existing connections or modifying the strengths of existing 

connections(221), thus impacting the overall structure and function of a network, and can 

be used to study how changes to a network's connectivity can affect its behaviour(222). 

This could be an excellent model to answer questions like how condition difference changes 

the molecular composition and connectivity between interacting proteins to gain insights 

into the underlying mechanisms of complex biological systems(222, 223, 224, 225). In the 

DyNet application(219), two or more network files representing different conditions or time 

points could be imported to describe a dynamic network. Then, it makes a pairwise 

comparison and produces a summary statistic of node/edge rewiring when the networks 

are only two; otherwise, for more than two networks, it applies a distance-based rewiring 

score to compute the variance between each node's connectivity between networks. A 

dynamic network is modeled as a weighted node adjacency matrix. This representation is 
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extended into a third dimension, denoted as S, to encompass the state space, thus forming 

the framework M (P, Q, S) commonly known as three-dimensional Euclidean space. M 

stands for adjacency matrix, P and Q for rows and columns of the matrix, respectively, 

whereas S stands for state or condition. For every node (xi) present in each network (si), 

the Euclidean distance between that node and a centroid (c) was calculated. The centroid 

is determined as the geometric mean of a node computed across all networks. 

Subsequently, the sum of the calculated distances for each node in the various networks is 

divided by the total number of networks (N). This division by (N - 1) serves to normalize the 

results. The mathematical expression could be summarized as below(219). 

 
𝐷4 − 𝑠𝑐𝑜𝑟𝑒	 = 		

∑ 𝑑(𝑥" , 𝑐)B
"$%
𝑁 − 1

			 
(18) 

   

Therefore, the node gets a higher rewiring score when most of its neighborhoods are 

different i.e., when the neighborhoods of the given node are representing the different 

networks state. Dynet assigns a zero value when a node has no connection and 1 when it 

does. Consequently, group-specific nodes in the combined network become group-specific 

networks; however, in the other groups(networks), as edgeless nodes. Therefore, a group-

specific node exhibiting a high centrality (degree centrality) may receive a higher rewiring 

score. In this senior, the score should indicate group-specific rewiring, as a rewired node 

should no longer be considered group-specific. 

4.2.3.10.5. Crosstalk between IMAT and muscle weighted by insulin sensitivity. 
In this approach, we employed a novel method using correlation analysis, as elucidated in 

equation 11, to discern communication between IMAT and muscle by assigning an insulin 

sensitivity attribute to every node in the crosstalk communication network. This allows us to 

represent a dynamic network (network reflects insulin sensitivity and resistance) in a 

continuous measure. This would enable us to catch the dynamic changes between IMAT 

and muscle crosstalk communication during insulin resistance progression. First, additional 

filtering was done from the processed transcriptome (11828 genes) to remove genes 

showing similar expression patterns across samples. The filtering was performed tissue-

wise by taking the 10th percentile values from the quantile distribution. Subsequently, only 

genes with expression levels above the 10th percentile in each sample were retained for 

crosstalk communication analysis. Next, we correlate each gene within the IMAT and 

muscle with the clinical variable GIR respectively. This initial step allowed us to establish 

the strength and directionality of the relationship between gene expression and insulin 

sensitivity for IMAT and muscle tissues respectively. Third, the IMAT and muscle insulin 

sensitivity correlation vectors were integrated with the curated reference database. This 

enabled us to identify specific sender-receiver pairs for the IMAT-to-muscle (IM) and 

muscle-to-IMAT(MI) communication networks. This selective filtering process ensured that 
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only relevant signaling relationships were included in our analysis. In the fourth step, edge 

information connecting the sender and receiver gene was investigated to explore condition-

specific networks and their functions. Therefore, the edge was weighted by adding the 

correlation coefficient obtained for each sender and receiver gene and could classify the 

network as a positive network when the insulin sensitivity attributes of both nodes were 

positive. A negative network was defined when the interacting nodes had negative insulin 

sensitivity attributes. Based on the above information, when the edge is positive, that 

specific network is referred to as insulin sensitive network, and when it is negative referred 

to as an insulin resistance network. Lastly, for each network, the number of nodes(genes), 

edges(connectivity) and associated network statistics was quantified. Moreover, pathway 

enrichment analysis was done to link the genes with their biological functions.   

4.2.3.10.6. Network clustering and community detection  
Network clustering or community detection was performed to identify functionally different 

modules for IMCN and MICN respectively. A Cytoscape application called GLay was used 

for both community analysis and the layout of graphs(226). It automatically transforms the 

input network into a simplified model by eliminating edge direction information, redundant 

connections, and self-referential loops. The interconnected cluster within the network is 

recognized by calculating edge betweenness score, a concept introduced in a notable paper 

by Newman and Girvan in 2004(227). Edge betweenness score involves calculating the 

shortest paths passing through each edge and identifying the edge with the highest 

betweenness score. This edge is crucial for maintaining network connectivity and is likely 

to be a bridge between different communities. Then, it removes the identified edge from the 

network and re-computes the edge betweenness scores for the remaining edges. The 

process repeats until the edges' removal leads to the network being split into distinct 

communities or until a predefined number of communities is reached. For each network 

cluster, the number of genes tissue-wise was summarized, and pathway enrichment 

analysis was done to link cluster genes to function. 

4.2.3.10.7. Rewiring analysis based on the variance of neighborhoods. 
Here we employed a new method to understand the rewiring rate of a gene in the IMAT 

muscle cross talk communication network. This model aims to identify a gene of interest, 

often referred to as the central gene (CG) in the network. This gene plays a fundamental 

role in communicating(interacting) with its neighbouring genes (NG), which can exhibit a 

diverse range of insulin sensitivity attributes. The analysis first calculates the variance of a 

node also referred to as the central node (CN) from the numeric attributes of neighborhood 

nodes (NNs). The variability of the NNs provides information about the variation among the 

NNs in terms of insulin sensitivity and how much this variation would imply for the CN to 

differ from its NNs. Higher variance of a CN could indicate higher variability in the 
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neighbourhoods and may tell that the neighbourhoods have higher impact on the 

variance/change of the CN. Variance of the CN could be expressed mathematically as 

below. 

 
𝑉" 	= 		

∑ (𝑥" − 𝑋)4
"$%
𝑁 − 1

			 
(19) 

   

Where: 

• V$	  is the variance of a node (CN),  
• xi is NN insulin sensitivity attribute value, 
• X-bar is arithmetic mean of all neighborhood node insulin sensitivity attribute value. 
• N stands for the total number of nodes in the network 

However, an additional metric called the node rewiring score (R-score) was devised by 

multiplying the variance of the node (as per equation 19) by its degree and then dividing it 

by the absolute insulin sensitivity value of the node. The rewiring score takes two critical 

factors into consideration. First and foremost, degree of the node. because we want to 

highlight Hub nodes in our scoring due to their potential roles in regulating a wide range of 

biological processes or propagating the effect of a perturbation. This emphasis is set on 

identifying hub nodes in our scoring process, as they have a crucial role in regulating various 

biological processes or spreading the effects of perturbations(means the rewiring of a hub 

gene can result in concurrent rewiring of numerous edges and, probabilistically, can impact 

various cellular processes) (222, 228). Secondly, we include the absolute insulin sensitivity 

value of the node in the calculation. This inclusion ensures that our rewiring scoring remains 

unbiased by adjusting the relationship between the neighboring nodes and the central node. 

Subsequently, the top rewired nodes were identified by taking those at the 90th percentile 

within the quantile distribution. 

This score is calculated using the formula: 

 
𝑅"ACDEFG 	= 𝑉" 		 ∗ 	{

𝑑𝑒𝑔D𝑐"AHGIFGGG
|𝑐"AI"F + 1|

~						 
(20) 

   

Where: 

• 𝑅"ACDEFG is the rewiring score, 
• 𝑉" 	  is the variance of a node determined from its neighborhood nodes,  
• c i-degree is degree of the node.  
• |c i-gir + 1| is represents the absolute insulin sensitivity attribute value of the node. 
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4.2.3.10.8. Jaccard similarity index identify strongly connected rewiring nodes.  
The Jaccard similarity index (JSI) is a widely used method to quantify the similarity between 

two sets by measuring the ratio of the size of their intersection to the size of their union. In 

the context of networks, it is employed to identify strongly connected nodes or nodes that 

share common neighbors and exhibit similar connectivity patterns. For example, it helps 

identify functionally related genes or proteins that participate in similar pathways or 

processes in biological networks. The index ranges from 0 to 1, with 0 indicating no common 

elements between sets and 1 indicating complete overlap. A function called similarity in R 

package(igraph) was used to calculate the JSI of the subnetwork created based on the top 

rewired nodes along their NNs. Then, the relationship between rewired nodes in the network 

was examined, and nodes that showed similar scores were filtered for further 

characterization of their insulin sensitivity, interaction, and pathways they involved. 

4.2.3.11. Data visualization  
The data visualization methods employed in this study were crucial for comprehending 

complex biological data, such as gene expression profiles and network interactions. 

Therefore, R packages ComplexHeatmap and pheatmap were used for gene expression 

data visualization. For network visualization, both Cytoscape and igraph were used. R 

packages such as ggplot2, ggpubr, ggplotify, plotly, and Base R graphics (see table 4.1) 

were used to generate various plot types like histograms, scatter plots, and bar charts. 
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5. Results 

5.1. Decreased insulin sensitivity observed among T2D and OB 
study subjects.  
The clinical profiles of the study subjects were reviewed to gain insights into the insulin 

sensitivity and metabolic parameters across different groups. As presented in Figure 10, 

the results reveal a significant trend: insulin sensitivity, as quantified by the GIR, exhibited 

a linear decrease from the ATH group to the T2D group. This pattern, confirmed by ANOVA 

testing, emphasizes significant variability in insulin sensitivity among these groups. Notably, 

when comparing the mean GIR values of ATH, OB, and T2D groups to the LC group, 

statistically significant differences (p < 0.05) were observed. This finding suggests the 

presence of insulin resistance in metabolically active organs, particularly skeletal muscle, 

within the OB and T2D groups. The reduced GIR values in these groups indicate a 

diminished response to insulin, signifying an impairment in glucose uptake and utilization. 

Moreover, our analysis revealed distinct differences in FPG and PPG levels, particularly in 

the T2D group, where these levels were significantly different (p < 0.0001) compared to LC. 

Additionally, the OB and ATH groups did not exhibit significant differences in FPG and PPG 

levels compared to LC. These findings indicate T2D group had liver insulin resistance. Liver 

insulin resistance often leads to increased hepatic glucose production and elevated fasting 

glucose levels. In terms of body composition, BMI and body FM were significantly different 

(p < 0.0001) in the T2D and OB groups compared to LC. In contrast, the ATH group did not 

exhibit significant differences in BMI and body FM compared to LC. These differences 

highlight the impact of adiposity on insulin sensitivity, with elevated BMI and body FM 

associated with decreased insulin sensitivity (Figure 11). Besides, we observed sex-related 

differences in body composition, with significant variations in body FM and FFM between 

males and females. These distinctions highlight the role of gender in influencing body 

composition. However, there were no differences in FPG, PPG, BMI, and age. 

 
Figure	 10.Boxplot	 for	 comparing	 each	 clinical	 variable	 distribution	 between	 participants'	
categories	and	sexes.	One-way	ANOVA	to	see	differences	across	groups,	t-test	for	difference	
between	each	group	against	LC.	Key	*:	p	<=	0.05,	**:	p,	<0.01,	***:	p	<0.001	
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Pairwise correlation analysis between clinical variables found a negative correlation 

between the GIR and key metabolic parameters, FG, PPG, BMI, FM, and FFM. This 

negative correlation suggests that these variables tend to increase as GIR decreases, 

indicating a strong association between low GIR and insulin resistance (Figure 11). This 

finding aligns with the widely accepted notion that reduced insulin sensitivity is a 

fundamental characteristic of insulin resistance. Importantly, our study highlights GIR as a 

robust measure for predicting insulin resistance, emphasizing its clinical significance in 

assessing metabolic health. Furthermore, our correlation analysis revealed positive 

associations among key anthropometric variables, specifically FM, FFM, and BMI. This 

positive correlation suggests that individuals with higher FM tend to have higher FFM and 

BMI and highlights the intricate relationship between body composition and metabolic 

outcomes. 

 

 
 
 

 

 
 

Figure	 11.Pairwise	 correlation	 heatmap	 to	 depict	 the	 relationships	 between	 clinical	 variables.	 	 The	
intensity	of	color	represents	the	strength	of	Pearson	correlation	coefficient	and	the	value	range	between	
-1	and	1.	Red	indicates	positive	correlations	and	blue	shows	negative	correlations.		
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5.2. Muscle and IMAT have distinct gene expression pattern.  
A comprehensive transcriptome analysis across all study groups yielded a dataset 

consisting of 21,185 transcriptomes. Through a rigorous preprocessing step, 11,828 genes 

were identified for downstream analyses. Hierarchical clustering and Principal Component 

Analysis (PCA), powerful techniques for visualizing and understanding complex gene 

expression data, revealed different gene expression patterns between IMAT and muscle, 

suggesting that both tissues are regulated differently (Figure 12A and B). Additionally, we 

observed four distinct clusters within the IMAT expression patterns, indicating IMAT may 

not be a homogenous tissue but could encompass four different molecular subtypes, each 

characterized by unique gene expression profiles (Supplemental Figure 1).  

 

 

 
 
 
 
 
 
 
 
 

 

 
	

Figure	12.Heatmap	and	PCA	plots.		mRNA	expression	level	of	IMAT	and	skeletal	muscle	samples	and	how	
this	expression	level	relates	with	GIR	(A).	Additionally,	the	PCA	plot(B)	demonstrated	that	muscle	gene	
expression	is	different	from	the	IMAT	expression.	
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5.3. IMAT reveals higher DE genes in T2D people compared to the 
LC group.  
 
IMAT gene expression shows relatively higher DE genes in the context of T2D compared 

to LC. The total number of DE genes in T2D was 47 out of 11828 preprocessed genes 

(Figure 13A). This finding suggests that T2D significantly impacts the gene expression of 

IMAT and may eventually affect the skeletal muscle tissue through crosstalk 

communication. Interestingly, we did not find DE genes when comparing OB versus LC, 

ATH versus LC, or T2D versus OB. Further analysis of the DE genes in the context of T2D 

revealed their functional relevance to critical metabolic pathways. These pathways included 

carbohydrate, fatty-acid, and amino-acid metabolic pathways. Notably, the genes within 

these metabolic pathways were predominantly dysregulated and may lead to abnormalities 

in metabolism (Figure 13B and C). Additionally, the enrichment analysis revealed that 

insulin, adipocytokine, and PPAR signaling pathways were among the most relevant 

pathways enriched in the GSEA. Importantly, in these pathways, we observed a consistent 

pattern of downregulation of genes (Figure 13C). This downregulation may indicate 

potential disruptions in key metabolic processes associated with T2D, warranting further 

investigation. In contrast, when examining the skeletal muscle tissue of ATH individuals, we 

observed a more variable gene expression profile compared to the other groups under 

consideration. In the ATH group, 121 genes displayed differential expression among the 

total 11,828 genes examined. This variability suggests that gene regulation within the 

muscle tissue of ATH individuals is significant and may be influenced by factors related to 

their athletic training and performance. Conversely, in the OB and T2D groups, when 

individually compared to the LC group, we identified 48 and 31 DE genes, respectively. 

These findings suggest that the degree of gene regulation within the muscle tissue of OB 

and T2D individuals is relatively decreased when compared to lean controls (Supplemental 

Figure 2).
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Figure	13.Number	of	DE	genes	and	pathway	enrichment	analysis	(FDR	<0.05).	Venn-diagram	to	indicate	the	number	of	DE	genes	in	each	group	compared	to	the	LC	group	(A).	
Bar	plot	to	indicate	KEGG	pathways	enriched	for	DE	genes	in	T2D	based	on	over	representation	analysis(ORA)(B).	KEGG	pathways	based		gene	set	enrichment	analysis(GSEA)	
where	all	the	genes	in	T2D	are	ranked	by	log	fold	change(log2FC)	compared	to	LC	expression	and	checked	whether	KEGG	pathway	genes	overrepresented	in	the	top	or	bottom	
of	the	ranked	list	(C).			
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5.4. Linking IMAT and muscle genes to insulin sensitivity. 
The volcano and the histogram plot depict the relationship between gene expression in the 

muscle or IMAT and insulin sensitivity when BMI is adjusted as a covariate. In this analysis 

most muscle genes correlate to insulin sensitivity (Figure 14). These genes are involved in 

several crucial metabolic pathways, such as glycolysis, pyruvate metabolism, the citrate 

cycle, and oxidative phosphorylation, suggesting a strong link between energy metabolism 

and insulin sensitivity in muscle tissue. Furthermore, signaling pathways related to cytokine-

cytokine receptor interaction and extracellular matrix (ECM)-receptor interaction were 

positively enriched in the muscle tissue. This implies that immune response and cell-matrix 

interactions may regulate insulin sensitivity in the muscle (Figure 15). In the IMAT, our 

analysis revealed a set of top-ranked genes demonstrated positive enrichment in specific 

KEGG pathways, such as Phenylalanine metabolism and Butanoate metabolism. 

Additionally, branched-chain amino acid (BCAA) degradation pathways were observed, 

indicating a connection between BCAA metabolism and insulin sensitivity in IMAT. 

However, when BMI is no longer adjusted for insulin sensitivity, our analysis in IMAT 

revealed a broader range of metabolic and signaling pathways positively associated with 

insulin sensitivity. For instance, insulin signaling pathways, PPAR signaling pathways, 

mTOR signaling pathways, peroxisome metabolism, fatty acid metabolism, propanoate 

metabolism, pyruvate metabolism, oxidative phosphorylation, and the Citrate cycle were 

among the top metabolic pathway hits in IMAT. Additionally, it was important that 

inflammatory pathways, including NOD-like receptor signaling, complement and 

coagulation cascades, B and T cell receptor signaling, and Chemokine signaling pathways, 

were found to be negatively correlated with insulin sensitivity in IMAT (Supplemental Figure 

3). 
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Figure	14.Volcano	plot	showing	the	regression	coefficient	of	gene	expression	and	insulin	sensitivity	in	
the	IMAT(A)	and	muscle(B).	Positively	correlated	genes	are	indicated	in	orange,	while	the	light	blue	are	
the	negatively	correlated	ones.	Histogram	plot	showing	the	distribution	of	regression	coefficient	in	IMAT	
and	muscle.		

 
 

 
	

Figure	15.KEGG	gene	set	enrichment	analysis.	Genes	were	ranked	based	on	the	regression	coefficient	they	
have	 with	 GIR.	 These	 pathways	 were	 significantly	 (FDR	 <0.05)	 enriched	 for	 the	 ranked	 genes	 in	 the	
IMAT(A)	and	muscle(B).	

5.5. Cross-tissue gene correlation analysis demonstrate an 
increased molecular crosstalk communication from IMAT to 
muscle (IMCN) during insulin resistance.  
We combined group specific expression data with the sender-receiver reference database 

to analyze the change in molecular crosstalk communication between IMAT and muscle in 

progressive insulin resistance. Using cross-tissue gene correlation analysis, the total 

number of significantly correlated pairs implying IMAT to muscle connections supported by 

our reference database in ATH, LC, OB, and T2D, were 65, 76, 82, and 94, respectively. In 
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addition, the number of genes in each network was 106,112,130,131, respectively. The size 

of OB or T2D network was higher compared to the ATH or LC indicating IMAT to muscle 

connectivity increased as insulin resistance advances. In addition, a minimal network size 

difference was observed between LC and ATH as well as between OB and T2D, while the 

identity of the network was different (Figure 16A and C and D). Overall, there was a 

substantial variation in connectivity and gene identity between and across groups. 

Furthermore, for group-specific genes in the network, we looked at the KEGG pathways to 

get a deeper understanding of the functions of those genes. Therefore, T2D-specific genes 

were enriched in more specific KEGG pathways associated with tissue damage and injury, 

such as complement and coagulation, leukocyte trans-endothelial migration, TGF-beta 

signaling, and cytoskeleton regulation pathways. Moreover, ECM-receptor interactions and 

focal adhesion pathways were over-presented in OB and T2D groups, suggesting matrix 

degradation, cell migration and loss of structural connectivity between cells as insulin 

resistance advance. Interestingly we did not see any KEGG pathway enrichments for ATH 

specific genes in the network.  

 

A 

 

B 

 
C 

 

D 

 
Figure	16.IMAT-muscle	cross-correlations	indicate	increased	molecular	interactions	as	insulin	resistance	
advances	IMCN.	In	A,	different	colors	indicate	group-specific	and	shared	interaction	networks	where	each	
node	in	the	network	is	representing	a	gene	and	the	connection	between	nodes	could	be	edge;	in	B,	different	
colors	indicate	KEGG	pathways	significantly	enriched	(FDR	<	0.05)	for	genes	specific	to	each	group.	Upset	
plots	to	show	the	number	of	shared	and	unique	interaction	pairs(C)	and	genes(D)	in	the	communication	
networks.	
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Moreover, we combined all the networks using the Dynet application in the cystoscope to 

determine the degree and rewiring rate of genes. The combined network of all conditions 

colored by the rewiring scores is illustrated in Figure 17A, where we did see a linear 

relationship between the degree and rewiring score of the genes (Figure 18A). This 

indicates hub genes in the network were changing due to condition changes. The 

subnetwork in figure 17B displays the top rewired genes (ITGB3, EGFR, ITGA10, CALM3, 

ITGAV, WNT5A, and ITGB1) in all IMAT to muscle communication networks under 

investigation. In the LC network, ITGB3 was found to interact with three IMAT genes: 

TGFB3, CX3CL1, and ADAM15. However, during the OB condition, ITGB3 exhibited 

changes in its interactions. Notably, it lost connections with TGFB3 and ADAM15 but formed 

new interactions with IGF2, COL1A2, NID1, FBN1, and TNXB. Furthermore, in the context 

of T2D, ITGB3 displayed an increased number of new connections with IMAT genes, 

including ITGB3BP, MFG38, and FGF1. Simultaneously, it lost connections with COL1A2, 

NID1, FBN1, and TNXB. Interestingly, in the ATH group, ITGB3 lost its interactions 

observed in the OB and T2D conditions but retained connections with IGF2 and TGFB3. 

Additionally, it established a new relationship with IL32. This demonstrates ITGB3 (the top 

rewired gene here) showing connectivity differences in different networks and may 

transduce different molecular signals to the target tissue to influence downstream activities 

in response to condition changes.  

Figure	17.IMAT	 to	muscle	 full	 communication	network	based	on	 cross-tissue	 gene	 correlation	 analysis.	
Network	colored	by	the	rewiring	score(A),	where	the	reddest	indicates	a	strong	rewiring	rate.	The	second	
network(B)	 is	 between	 the	 top-selected	 rewired	 genes	 in	 all	 groups	 and	 their	 interacting	
partners(neighborhoods).	 The	 neighborhoods	 of	 the	 rewired	 genes	 in	 the	 subnetwork	 are	 colored	
differently	to	designate	group	or	condition-specific	genes	from	shared	ones.	Thus,	the	neighborhood	in	grey	
denotes	genes	shared	by	two	or	more	groups.	

ITGB3, EGFR, ITGA10, ITGAV and ITGB1 are muscle-specific, and their expression level, 

as indicated in the heatmap, was low in all muscle samples compared to IMAT.  CALM3 

and WNT5A are IMAT specific, and their expression level across all IMAT samples was low 

compared to muscle (Figure 18 D).   
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Figure	 18.Describing	 the	 rewiring	 rate	 of	 genes	 in	 the	 cross-tissue	 gene	 correlation	 network.	 The	
scatter	plot(A)	indicates	the	relationships	between	degree	and	rewiring	scores	in	the	cross-tissue	gene	
correlation	analysis.	Boxplot(B)	of	gene	rewiring	scores	in	different	networks,	categorized	by	tissue.	
These	genes	 in	 the	networks	were	group	specific	or	shared	 in	 two	or	more	groups.	The	bar	plot(C)	
displays	the	top	rewired	genes,	and	the	heatmap	(D)	illustrates	expression	levels	of	rewired	genes	in	
IMAT	and	muscle	across	all	groups.		

5.6. The rewiring rate of genes in progressive insulin resistance 
remains unchanged based on DE analysis.                                                                                          
Using the reference database, upregulated IMAT sender genes were combined with their 

cognate upregulated muscle receiver genes to establish sender-receiver interaction from 

IMAT to muscle (Figure 19A). Among the four groups, the OB group demonstrated more 

inter-tissue connectivity and more genes involved in the interaction. Therefore, in OB, T2D, 

LC and ATH, the network size was 151, 128, 124 and 84, respectively, and the number of 

genes involved in the network was 154, 137, 126 and 95, respectively. Overall, 63 pairs 

involving 79 genes were common to all groups. In addition, 41 pairs from 34 genes 

overlapped between T2D, OB and LC and seven pairs involving three genes were shared 

among OB, LC and T2D (Figure 19C and D).  



Results 

57 

A 

 

B 

 
C
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Figure	19.IMAT	to	muscle	full	communication	network	based	on	differential	combinations.	IMAT	to	muscle	
full	 communication	network	 colored	by	 the	 group(A).	The	 enrichment	bar	plot	 to	 indicate	 significantly	
enriched	 KEGG	 pathways	 (FDR	 <0.05)	 for	 each	 group	 specific	 genes(B).	 The	 upset	 plot	 shows	 the	
distribution	of	connections	and	overall	genes	in	each	group	(C	and	D).			

ATH specific genes were found to be enriched in focal adhesion and axon guidance KEGG 

pathways, indicating that physical activity may activate the focal adhesion kinase (FAK) that 

decodes mechanical signals in the cytoskeletal system to transmitted across the 

cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth 

pathways, including the growth and development of nerve cell (Figure 19B, A). Also, 

impaired focal adhesion process was enriched along with ECM-receptor interaction 

pathways in the OB group, where the activities of FAK could be less active and induce 

apoptotic, cell death, and inflammation processes in response to lack of physical activities 

(Figure 19B, B). In terms of rewiring (gene connectivity difference across groups), significant 

changes in the molecular crosstalk between IMAT and muscle across groups were not 

uncovered (Figure 20 B and Figure 21B). However, there was a group-specific rewiring in 

the OB network, where the Discoidin Domain Receptor 1 (DDR1) gene ranked highest in 

the rewiring score and degree of centrality (Figure 5.20 A and B, Figure 21 B). DDR1 had 

15 neighborhood IMAT genes; 13 were OB-specific, and LC, OB, and T2D shared the rest.  

In addition, the Plexin-A1 (PLXNA1) receiver gene was the second most rewired gene in 

the combined network, although PLXNA1 itself and all its connection partners were shared 

in OB and T2D networks only (Figure 20B and 21B).   
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Figure	 20.MAT	 to	muscle	 full	 communication	 network	 based	 on	 differential	 combination	 did	 not	 show	
rewiring	 changes	 between	 networks.	 Network	 colored	 by	 rewiring	 score	 (A).	 A	 subnetwork	 (B)	
based	on	the	top	rewired	genes	in	the	combined	network.			
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Figure	21.Describing	the	rewiring	rate	of	genes	in	the	differential	combined	networks.	The	scatter	plot(A)	
indicates	 the	 relationships	between	degree	and	rewiring	 scores	 in	 the	differential	 combination	network.	
Boxplot(B)	of	gene	rewiring	scores	in	different	networks,	categorized	by	tissue.	These	genes	in	the	networks	
were	group	specific	or	shared	in	two	or	more	groups.	The	bar	plot(C)	displays	the	top	rewired	genes,	and	the	
heatmap(D)	illustrates	expression	levels	of	rewired	genes	in	IMAT	and	muscle	across	all	groups	

5.7. Communication between IMAT and muscle weighted by 
insulin sensitivity. 
In this novel method, each gene from both IMAT and muscle samples with GIR and 

integrated them into a sender-receiver database to establish communication networks: 

IMAT to muscle (IMCN) and muscle to IMAT (MICN), as shown in Figure 22B and C. Every 

gene within these networks was endowed with insulin sensitivity attributes, signifying the 

correlation between gene expression in each tissue and GIR. The heatmap in Figure 22A 

illustrates the expression levels of all sender and receiver genes in both muscle and IMAT 

samples. In the IMCN network, we identified 488 nodes and 921 edges. Specifically, there 

were 250 nodes representing signaling genes from IMAT and 238 nodes representing 

receiver genes from muscle, as detailed in Figure 23A, A. On the contrary, MICN featured 

510 nodes and 1084 edges, comprising 285 signaling genes from muscle and 225 receiver 

genes from IMAT, as depicted in Figure 23A, B. More signaling genes from muscle in MICN 
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suggest that muscle tissue may play a more significant role in transmitting signals to IMAT 

in the context of insulin sensitivity. Both networks shared 421 nodes and 796 edges, as 

shown in Figure 23A, C and D. Genes exclusively present in either IMCN or MICN 

demonstrated enrichment in the KEGG pathway of cytokine-cytokine receptor interaction, 

and the Disease Ontology (DO) pathway related to metabolic syndrome phenotypes (Figure 

23 B, A:D).  In both networks, secreted proteins and GPCRs covered the most significant 

part of the communication network.   
A.  Heatmap 

 

B. IMCN network 

 

 

C. MICN network 

 

 
Figure	22.Crosstalk	communication	between	IMAT	and	muscle	weighted	by	insulin	sensitivity.	A,	Heatmap	
for	 sender	 and	 receiver	 genes.	 B	 and	 C,	 represent	 the	 IMCN	 and	MICN,	where	 the	 class	 of	 the	 genes	 is	
indicated	in	the	bar	graph.	
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Figure	23.Network	 statistics.	Bar	plot	 and	vendiagram	 for	 the	number	of	nodes	and	edges	of	 IMCN	and	
MICN(A).	 Enrichment	 heat	 plot	 for	 the	 significantly	 (FDR	 <	 0.05)	 enriched	 KEGG	 and	 disease	 ontology	
pathways(B).		

5.8. Genes in the different network clusters revealed different 
KEGG pathways.  
Both communication networks, IMCN and MICN, exhibited different communities based on 

the GLay community structure analysis method(226). Overall, 45 and 40 communities were 

detected for IMCN and MICN respectively (Figure 24 A and D). The number of genes for 

the largest ten modules were summarized as bar plots (Figure 24 B and E). Additionally, 

enrichment analysis found distinct pathways for dissimilar modules, indicating that different 

network clusters may present different function. Clusters 3, 4, 8, and 9 in IMCN showed the 

enrichment of complement and coagulation, TGF-beta signalling, Wnt signalling, and cell 

adhesion process, respectively. Cluster 7 also demonstrated functional pathways such as 

calcium and insulin signalling, and a metabolic disorder called Alzheimer's disease. 

Moreover, interlinked pathways such as Noch, ErbB, and calcium signalling involved in the 

activation, proliferation, and differentiation of cells are enriched in cluster 2 (Figure 24 C 

and F). In MICN, the same thing was observed because both networks had a huge gene 

overlap (Figure 24).  

 

 

 
 

 

A. Number of node and edges 
 

 

B. Pathway enrichments for genes present only in IMCN or MICN 
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A. IMCN modules  

 

B. Ten largest clusters in IMCN 

 

C. KEGG pathways for the 10 largest clusters in IMCN 

 
D. MICN modules 

 

E. Ten largest clusters in MICN 

 

F. KEGG pathways for the 10 largest clusters in MICN 

 
	

Figure	24.Clusters	of	gene	networks	in	IMCN	and	MICN.	45	and	40	communities	were	detected	for	IMCN	and	MICN	respectively	(A,	D),	Bar	plot	to	count	the	number	of	genes	for	
the	10	largest	modules	(B,	E).	Enrichment	bar	plot	to	indicate	significantly	enriched	(FDR	<	0.05)	KEGG	pathways	enriched	for	the	genes	in	each	module	(C,	F).	
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5.9. Insulin resistance increased ECM-receptor and Cytokine-
Cytokine interaction.  
In our pursuit to elucidate the roles of genes within the IMAT-muscle communication 

networks, we employed a logical classification approach, which separates the networks into 

insulin-sensitive and insulin-resistant states by adding the attributes of the interacting nodes 

in the network. In the insulin-sensitive (positive) network of IMCN, we identified 236 gene 

pairs involving 184 genes, signifying active communication between the tissues during 

periods of insulin sensitivity. Notably, most of these genes (97) originated from muscle 

tissue, which is considered the signal-receiving tissue. This observation suggests that, 

during insulin sensitivity, muscle actively participates in the signal transduction process, 

receiving a substantial influx of signals from IMAT (Figure 25A: C). Conversely, in the 

insulin-resistant(negative) network of IMCN, we recognized 185 gene pairs involving 159 

genes, indicative of a decrease in signal transduction during insulin resistance. Interestingly, 

a shift in tissue involvement was observed, with most genes (87) originating from IMAT, the 

signaling tissue. This change suggests that, during insulin resistance, IMAT intensifies its 

signaling activity while muscle's role in signal transduction diminishes (Figure 25C).  The 

KEGG pathway analysis (Figure 25D) highlights these findings. In the insulin-resistant state, 

IMCN exhibits an induction of pathways related to ECM-receptor interaction, Cytokine-

Cytokine receptor interaction, and TGF-beta signaling. These pathways are commonly 

associated with inflammatory responses and tissue remodeling, aligning with the amplified 

signaling activity observed during insulin resistance. Moreover, in the MICN, we observed 

a similar interplay between tissues during insulin sensitivity. The insulin-sensitive network 

of MICN comprised 263 edges and 197 nodes, with a significant majority (126 genes) 

originating from the signaling tissue, muscle (Figure 25E: G). This finding implies that 

muscle actively participates in signaling activities. Those signaling proteins were associated 

with ECM-receptor interactions and inflammatory cytokines. Such signaling from skeletal 

muscle during insulin sensitivity may not be expected but could occur due to mechanical 

and physical activity stress, although validation may be required (Figure 25E: H). 
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A. Insulin senstive network(PE), IMCN. 
 

 

B. Insulin resistance network(NE), IMCN. 
 

 

C. Number of nodes, IMCN  
 

 

D. KEGG pathways for genes in PE and NE of IMCN. 
 

 

E. Insulin senstive network(PE), MICN. 
 

 

F. Insulin resistance network(NE), MICN. 
 

 

G. Number of nodes, MICN 
 

 

H. KEGG pathways for genes in PE and NE of IMCN. 
 

 

	

Figure	25.I	Insulin-sensitive	(Positive	Edge(PE))	and	insulin-resistance(Negative	Edge(NE))	networks	of	IMCN	and	MICN	(A,	B,	E,	F).	Insulin-sensitive	networks	were	created	
when	interacting	nodes(genes)	are	positive	in	their	insulin	sensitivity	attributes	and	insulin	resistance	network,	when	both	nodes	are	negative.	Bar	plots	to	count	the	number	
of	genes	in	the	networks	(C	and	G).	Enrichment	bar	plots	to	show	KEGG	pathways	enriched	for	network	specific	genes	(D,	H).		
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5.10. Rewiring analysis found most rewired genes in the IMAT 
during insulin sensitivity and resistance conditions. 
Using variance analysis based on the insulin sensitivity attributes of the genes in the 

networks, 50 most rewired genes in the IMCN and 51 genes in the MICN were identified. 

From the top selected rewired genes in IMCN or MICN, 98% of the genes were from IMAT, 

indicating IMAT is a dynamic tissue during insulin sensitivity and resistance conditions 

(Figure 26E). That is in the cross talk between IMAT and muscle, the expression level of 

the top rewired IMAT genes was less affected during insulin sensitivity and resistance while 

their interacting partners from the skeletal muscles are changing (Supplemental Figure 4). 

The relationship between degree and rewiring was not linear, although the analysis 

considered highly connected genes to have a high rewiring rate in the network (Figure 26D). 

This indicates that few highly connected genes (CALM1, ADAM17, GDF9, APOE, BMP6 in 

the IMCN and CD44, ITGAV, CD44, and INSR in MICN) had interacting partners identical 

to each other in term of insulin sensitivity or were highly expressed in one condition 

(Supplemental Figure 4). However, few genes again followed a positive trend in rewiring 

and degree, especially in the MICN such as ITGB1 and EGFR (Figure 26D).   

 
A. Full IMCN colored by rewiring 
score. 
 

 

 
B. Full MICN colored by rewiring 
score. 
 

 

 

C. Rewiring score distrbution  for 
the genes in IMCN and MICN. 
 

 
 
 
D. Rewiring score and degree 
centrality.   
 

 
 

 

E. List of the top reiwired genes. 
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Figure	26.Rewiring	analysis	found	higher	variabilities	in	the	IMAT.	Networks	(A	and	B)	to	indicate	the	full	
IMCN	and	MICN	colored	rewiring	score.	Bar	plot	to	demonstrate	the	distribution	of	a	rewiring	score	in	the	
full	networks(C)	and	top	rewired	genes(D)	in	both	networks,	the	scatter	plot(E)	to	display	the	correlation	
between	rewiring	and	degree	centrality.	

Then, subnetworks based on the top rewired genes were created for IMCN and MICN, 

respectively (Figure 27A and E). Thus, 250 nodes (125 IMAT and 150 muscle) and 497 

edges were identified in IMCN (Figure 27B). Those genes were enriched in TGF-beta 

signaling and ECM-receptor interaction KEGG pathways. Additionally, in collagen disease, 

atherosclerosis, and arteriosclerosis disease ontology terms (Figure 27C). Moreover, in 

MICN, 673 edges and 265 nodes (53 IMAT and 212 muscle) were identified (Figure 27F), 

and the genes were enriched in the TGF-beta, and calcium signaling, ECM-receptor and 

Cytokine-Cytokine interaction KEGG pathways. Similarly, myopathy, muscular dystrophy, 

lipid storage, hyperglycemia, atherosclerosis, and arteriosclerosis disease ontology terms 

were linked with the identified genes (Figure 27G). Furthermore, a pairwise similarities 

score was computed between the top rewired genes in both subnetworks using the Jaccard 

index to identify genes targeting similar target genes (Figure 27D and H).  
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A . Networks of the top rewired 
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Figure	27.Subnetwork	based	on	top	rewired	genes	identified	a	more	refined	network	cluster.	A	and	E	are	
networks	of	the	top	rewired	genes	with	their	interacting	partners.	The	bar	plot	for	the	number	of	nodes	for	
each	 network	 (B	 and	 F),	 heat	 plots	 for	 significantly	 enriched	 pathways	 (FDR	 <	 0.05)	 terms	 (C	 and	 G).	
Heatmaps	(D	and	H)	for	Jaccard	index	to	find	similarities	between	pairs	of	genes.	

 
As a result, a strong similarity index emerged within the laminin, collagen, calmodulin, and 

bone morphogenetic gene clusters of the IMCN (Figure 27, panels D and H). This suggests 

that these groups of genes collectively influence target genes in the target tissues similarly. 

For instance, laminin genes (LAMC1, LAMB3, LAMB2, LAMA5, LAMA2, LAMA3, and 

LAMA4) from IMAT exhibit a comparable influence on muscle genes such as BCAM, 

CD151, CD44, DAG1, ITGA1, ITGA3, ITGA6, ITGA5, ITGA7, ITGAV, ITGB1, ITGB4, and 

RPSA (Figure 28, A and B). However, these genes' insulin sensitivity and rewiring score 

attributes are different (Figure 28, A and B). Additionally, the network of these genes was 

associated with KEGG terms such as ECM-receptor interaction and cell adhesion, as well 

as the disease ontology term muscular dystrophy (Figure 28 C). Likewise, IMAT collagen 

genes (COL1A1, COL1A2, COL4A2, and COL18A1) were observed to target cluster 

differentiation (CDs) and integrin genes in the muscle (Figure 28 D, and E). This specific 

network demonstrated strong associations with ECM-receptor interaction KEGG pathway, 

as well as with disease ontology terms such as myopathy, collagen diseases, 

hyperglycemia, atherosclerosis, and arteriosclerosis. Furthermore, CALM1, CALM2, and 

CALM3 expressions in the IMAT were negatively correlated to insulin sensitivity, and all of 

them target muscle genes such as AQP1, MYLK, PTPRA, ABCA1, PDE1A, PDE1B, INSR, 

CACNA1C, KCNQ5, FAS, ESR1, EGFR, MIP, AR, MYLK2 and SCN4A. Moreover, the 

network showed functions related to insulin, calcium, phosphatidylinositol signaling, and 

disease development, such as myopathy and atherosclerosis (Figure 28, G: I). Additionally, 

IMAT proteins BMP4, BMP6, and BMP8A have similar relationships to muscle insulin 

sensitive genes such as THFBR2, ACVR2A, BMPR2, TGFBR1, and ACVR2B, and insulin 

resistance genes such as GREM2, LRP6, BMPR1A, BMPR1B, and ACVR1. The network 

displayed functional enrichment-related inflammatory signaling pathways (Figure 28, J: L). 
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A. Laminin network in the IMCN 
 

 

B. Heat and bar plots for laminin network in the IMCN 
 

 

C.  Enrichment  pathways for laminin gene network in the IMCN 
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G.Bone morphogenetic network in 
the  IMCN 
 

  

H. Heat and bar plots for Bone morphogenetic network in the MCN 
 

 

I.  Enrichment  pathways for bone morphogenetic gene network in the IMCN 
 

 

 
J.Calmodulin network, IMCN 
 

 

 
K. Heat and bar plots for calmodulin network, IMCN 
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Figure	28.	Laminin,	Collagen,	Calmodulin	and	Bone	morphogenetic	genes	subnetwork	in	IMCN	(A,	D,	G,	and	J).	Colors	in	the	network	indicate	the	correlation	between	the	gene	
and	insulin	sensitivity.	Heat	plot	and	the	bar	plot	(B,	E,	H,	K)	to	indicate	interaction	weights	between	sender	and	receiver	as	well	as	how	much	each	gene	was	correlated	to	GIR.		
Significantly	enriched	KEGG	pathways	(FDR	<0.05)	are	presented	as	heat	plots	(C,	F,	I,	and	L)
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In the MICN, where muscle acts as a signaling tissue and IMAT as a signal-receiving tissue, 

the Jaccard index identified a group of Plexin genes in IMAT that showed substantial 

similarity among self-indicating they shared common interacting genes from muscle. Those 

genes were Semaphorins. In this case, the Plexins rewire similarly (with a slight difference) 

to respond to the incoming signals from muscle semaphorins (Figure 29 A:C). The same is 

true for Integrin genes of IMAT where they rewire in the similar rate to respond for the 

laminin signals from muscle



Results 
 

72 

 
A.Semaphorins-Plexins network in the MICN 
 

  

B. Heat and bar plots for Semaphorins-Plexins network 
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No significant enrichment pathways in the KEGG or DO 

 
D.Laminin-Integrins network in the MICN 
 

  

 
E. Heat and bar plots for Laminin-Integrins network 
 

 

F. Enrichment  pathways for Laminin-Integrins network, 
IMCN 
 

 
	

Figure	29.Semaphorins-plexins,	and	laminin-integrins	gene	subnetwork	in	MICN	(A,	D).		Colors	in	the	network	indicate	the	correlation	between	the	gene	and	insulin	sensitivity.	
Heat	plot	and	the	bar	plot	(B,	E)	to	indicate	interaction	weights	and	how	much	each	gene	was	correlated	to	GIR.		Significantly	enriched	KEGG	pathways	(FDR	<	0.05)	for	the	
genes	in	the	network	is	presented	as	heat	plots	(F).	
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6. Discussion 
In recent years, a growing body of research has highlighted the significant impact of 

Intramuscular Adipose Tissue (IMAT) on metabolic and mobility dysfunctions in humans(97, 

103, 105, 106, 110). Specifically, IMAT is closely linked to skeletal muscle insulin sensitivity, 

particularly in obese individuals(90). However, the intricate molecular mechanisms 

underlying the regulation of skeletal muscle insulin sensitivity by IMAT have remained 

elusive. Furthermore, little is known about how this regulation varies across different insulin 

sensitivity groups. To address these critical gaps in knowledge, we employed a 

computational approach, leveraging RNAseq data and clinical information from diverse 

insulin sensitivity groups. Our study discloses IMAT as a dynamic tissue actively engaged 

in communication with skeletal muscle during both insulin sensitivity and resistance states. 

These communication pathways predominantly involve interactions within the extracellular 

matrix (ECM) and between cytokines and cytokine receptors. Our findings demonstrated 

the potential consequences of these interactions, implicating them in various conditions, 

from inflammations and myopathies to muscular atrophy, dystrophy, collagen diseases, and 

hyperglycemia. This investigation not only deepens our understanding of the role of IMAT 

in metabolic regulation but also offers valuable insights into the complex molecular network 

that governs skeletal muscle insulin sensitivity, paving the way for targeted interventions 

and therapeutic strategies in the future. 

6.1. GIR gold standard to measure insulin sensitivity of peripheral 
tissues. 
GIR is the gold standard to measure insulin sensitivity of organs epically metabolic active 

organs such as muscle, adipose tissue, and liver(177). In our study, the GIR test was a 

crucial mechanism to assess the insulin sensitivity of different study groups and to correlate 

gene expression in muscle or IMAT with insulin sensitivity to identify genes that predict 

IMAT or muscle insulin sensitivity and to explore change in the communication network 

between IMAT and muscle in progressive insulin resistance. Similarly, in various research 

setups, GIR techniques have provided new insights into human obesity and type 2 diabetes 

and contributed significantly to understanding the role of liver and hepatic insulin resistance 

in these diseases(229, 230). Among the study groups in our data, T2D individuals had lower 

GIR and higher FPG levels, indicating this group of people was insulin resistant. Insulin 

resistance is a manifestation where metabolically active organs, such as skeletal muscle, 

liver, and adipose tissue, resist insulin action(177). As a result, the liver reduces glucose 

uptake rate while producing glucose and increasing the plasma glucose level(54, 56, 231).  

Additionally, in adipose tissue, the rate of lipolysis (the breakdown of triglycerides into fatty 

acids and glycerol) increased, leading to the release of more fat into the bloodstream 
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through free fatty acids, which other tissues, such as skeletal muscle and liver, can take 

up(64). While muscle can use these fatty acids for energy, fatty acid oxidation in liver is to 

supply energy for other organs functions(64, 71). Moreover liver may convert glycerol from 

triglycerides into new glucose through gluconeogenesis, eventually leading to elevated 

blood glucose levels contributing to hyperglycemia(64). Increased free fatty acids can 

promote fat accumulation in non-adipose tissues (liver, muscle, pancreas and many 

others)(48). They could be the primary source of inflammation within tissue and may affect 

insulin signaling. Insulin resistance in the skeletal muscle decreases glucose uptake and 

metabolism and increases glucose storage and the conversion of glycogen to lipid in the 

long run. This situation (insulin resistance) could eventually modify and reprogram the 

genetic makeup of the tissues, and intervention strategies through lifestyle modification may 

not work; instead, dependency on pharmacological or medical interventions(48, 232). 

6.2. Muscle and IMAT gene expression profile and their predictive 
functions   
Gene expression patterns in muscle and IMAT were compared to assess the possibility of 

contamination in the IMAT samples during isolation. We examined a dataset encompassing 

11828 processed genes across all samples. Our results clearly demonstrated distinctive 

gene expression profiles between IMAT and muscle, providing strong evidence against 

contamination between these two tissue types (Figure 12A and B). This implies that IMAT 

constitutes a distinct tissue depot within the skeletal muscle, characterized by a unique gene 

expression signature. Although no analogous human data were available for direct 

comparison, previous investigations in livestock species have reported dissimilar genetic 

patterns between muscle and IMATA(233). Interestingly, their fundings also indicated that 

pathways that regulate cell adhesion, structure, and integrity were upregulated in IMATA 

and downregulated in muscle tissue. This is in harmony with our findings, where IMAT tissue 

showed a lot of enrichment in adhesion, ECM-receptor interaction, axon guidance, and actin 

cytoskeleton regulation (Figure 13C). Moreover, our data further support the notion that 

IMAT is not a homogeneous tissue but consists of distinct molecular subtypes. The 

existence of these subtypes within IMAT highlights the complexity and heterogeneity of this 

tissue, emphasizing the need for further investigation to delineate the functional implications 

of these subtypes (Supplemental Figure 1). Furthermore, our study provides important 

insights into distinct gene expression patterns within the skeletal muscle tissue and IMAT 

across various groups. Notably, we observed a significant number of DE genes in the IMAT 

among individuals with T2D. These genes showed functional enrichment in dysregulation 

metabolic pathways, as illustrated in Figures 13B and C, emphasizes the potential role of 

IMAT in the pathophysiology of T2D. One of the key findings is the downregulation of genes 

associated with oxidative phosphorylation, which is a fundamental process in cellular 
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energy production(234). This downregulation suggests a reduction in the capacity of IMAT 

to generate ATP through oxidative phosphorylation efficiently(235). This phenomenon 

aligns with the well-established concept of mitochondrial dysfunction in T2D, as impaired 

oxidative phosphorylation can contribute to an imbalance in cellular energy 

homeostasis(236, 237, 238, 239, 240). Furthermore, downregulated genes associated with 

the glycolysis, citrate cycle, and pyruvate metabolism advances metabolic dysregulations 

in IMAT. These pathways are intricately linked to energy metabolism and the production of 

metabolic intermediates that may disrupt various cellular processes and metabolic flux 

within IMAT, potentially contributing to insulin resistance and metabolic dysfunction. 

Additionally, the downregulation of genes related to fatty acid metabolism, Peroxisomes, 

and PPAR (Peroxisome Proliferator-Activated Receptor) signaling within IMAT is 

particularly significant because these pathways target lipids for energy production and 

storage, and the observed alterations in these pathways may disrupt lipid metabolism in the 

IMAT, potentially leading to lipid intermediates accumulation and insulin resistance. Besides 

their role in lipid metabolism, peroxisomes are involved in Reactive Oxygen Species(ROS) 

scavenging(241), and their downregulation may further exacerbate lipid-related 

disturbances within IMAT. PPARs are called lipid and insulin sensors(242) and have a DNA 

binding domain where they directly alter gene expression of target tissue(243); thus, they 

are master regulators of adipogenesis and lipid biosynthesis. When PPARs are 

downregulated as indicated in figure 13 C, insulin sensitization and fatty acid oxidation in 

IMAT are reduced. As a result, the lipolysis rate increases, and triglyceride levels might 

increase in the circulation and eventually lead to the accumulation of lipids in the local 

tissue(244, 245). This could worsen the situation by inducing inflammation and lead to 

peripheral tissue insulin resistance (primary to skeletal muscle and liver) and complications 

related to diabetes such as cardiovascular disorders, chronic kidney diseases, nerve 

damage, problems in vision and infection in the feet(48, 64). Also, very interestingly, in both 

ORA and GSEA (Figure 13 B and C), we marked the downregulation of genes with BCAA 

degradation pathway, Butanoate and Propanoate metabolism pathways suggest alterations 

in amino acid metabolism within IMAT.  These pathways are interconnected with glucose 

and lipid metabolism and can impact cellular energy balance and insulin sensitivity. BCAAs 

are essential amino acids that must be obtained from food and have been shown to provide 

many physiological and metabolic benefits, such as stimulation of pancreatic insulin 

secretion, adipogenesis, and enhanced immune function(246), mainly mediated by the 

mammalian target of the rapamycin (mTOR) (246), known in its role in nutrition sensing, 

initiation of protein synthesis, cell growth, and proliferation(86, 87, 247). However, build-up 

of BCAAs in the circulation has been associated with metabolic syndrome in humans or 

animals(248, 249). Although no definite data that show the causal relationships between 
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BCAAs level and metabolic syndrome, studies have shown that 80% restriction of BCAAs 

for four weeks significantly improves glucose intolerance and insulin resistance in High Fat 

Diet( HFD) mice(250). Similarly, providing a diet low in isoleucine or valine, but not leucine, 

to diet-induced obese mice improved metabolic phenotypes (249). Consistent with these 

findings, BCAA supplementation with a HFD or defective BCAA oxidation through deleting 

methylmalonyl-CoA mutase in mice induces insulin resistance and impaired glucose 

tolerance(251, 252, 253), indicating that efficient BCAA breakdown is critical for decreasing 

plasma BCAAs and improving insulin sensitivity. Furthermore, in a human study, many 

enzymes responsible for breaking down BCAAs in visceral white adipose tissue were found 

to be significantly low in their expression among individuals with both obesity and metabolic 

syndrome compared to obese individuals without metabolic syndrome who had a similar 

weight(254). Combining these previous findings with our data, impaired BCAA degradation 

pathways in primary metabolic tissues, including IMAT, could raise plasma levels of BCAAs, 

activate mTOR signaling for more amino acid synthesis and impairs insulin mediated 

glucose transport and glycogen synthesis(234), increase oxidative stress that could lead to 

mitochondrial dysfunction, and eventually aggravate insulin resistance and T2D(255, 256). 

Propionate and Butyrate are metabolites formed by gut microbiota from complex dietary 

carbohydrates, and they were reported to protect against diet-induced obesity(257, 258). 

The dysregulated genes grouped in the propionate and butyrate metabolic pathways may 

explain altered gut microbiota that could induce the development of T2D and insulin 

resistance phenotype in the IMAT. Additionally, the propionate metabolic pathway has many 

overlaps with the distal part of BCAA degradation pathway (195), indicating both may have 

functional similarities in the IMAT during insulin resistance or T2D. In this analysis, 

dysregulated metabolic pathways in the IMAT may increase circulating amino acids (AA), 

free fatty acids (FFA), and glucose and directly affect skeletal muscle activity in T2D 

patients. Additionally, the enrichment of upregulated IMAT genes in the ECM-receptor 

interaction, cytokine-cytokine interaction, complement and coagulation cascades, and 

NOD-like receptor signaling pathways indicated inflammation and structural changes within 

IMAT due to diabetes. Briefly, in the skeletal muscle, higher number of DE genes (121 

genes) observed in ATH individuals compared to other groups suggests the influence of 

athletic training on gene regulation in skeletal muscle (Supplemental Figure 2 A). These 

genes are enriched in a regulated metabolic pathway such as oxidative phosphorylation 

and PPAR signaling, indicating lipid metabolism has been maintained in the ATH muscle. 

However, cell structure modification markers such as ECM and adhesion protein, 

complement, and coagulation cascades were upregulated, which could explain the 

presence of cellular damages due to mechanical stress (Supplemental Figure 2 C). Further 

analysis was conducted to enhance our understanding of the role of IMAT in progressive 
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insulin resistance. Correlation analysis was performed between GIR, and all IMAT samples 

combined. In this analysis, BMI was considered a potential covariate for total adiposity to 

isolate the effect of IMAT on insulin sensitivity. As indicated by the distribution plot in figure 

14C, IMAT appears to influence whole-body insulin sensitivity within a relatively narrow 

range through a smaller, more dynamic set of genes compared to skeletal muscle. In 

contrast, most muscle genes correlated with insulin sensitivity, indicating a broader 

regulation range. While further investigations are required, considering factors such as size, 

evolutionary advancement on glucose uptake, degradation, and storage, and with other 

physiological perspectives (having more insulin receptors, mitochondrial activity, and 

adaptability and more), it is plausible that muscle gene expression plays a role in regulating 

whole-body insulin sensitivity across a broader spectrum. Moreover, to give more biological 

inference on this finding, in the KEGG pathways (Figure 15 A), IMAT genes showed positive 

enrichment with the genes sets of Phenylalanine, Butanoate and BCAA degradation 

metabolic pathways during insulin sensitivity suggests that IMAT during insulin sensitivity 

facilitates a regulated metabolic function toward phenylalanine, butanoate and BCAAs. 

Dysregulated Butanoate and BCAAs could increase circulating amino acid levels and have 

been associated with the development of insulin resistance and T2D or could serve as 

indirect markers of developed metabolic syndromes, as discussed above. Phenylalanine is 

one of the aromatic amino acids repeatedly found in an abnormally higher amount in the 

blood sample of T2D patients(259). A recent discovery in mice has shown that a 

phenylalanine-rich chow diet or overexpression human phenylalanyl-tRNA 

synthetase(hFARS) stimulates the development of insulin resistance and T2D 

symptoms(260), suggesting abnormally regulated phenylalanine metabolic pathways in the 

IMAT could contribute for insulin resistance and T2D in humans too. Similarly, more 

regulated KEGG metabolic pathways related to glucose, amino acids, and fatty acids are 

observed during insulin sensitivity in the skeletal muscle (Figure 15 B). At the same time, 

cell injury and damage markers genes are indicated in the complement and coagulation 

cascade pathway. Additional investigation may be required to verify whether cellular 

damage to the muscle was primarily from physiological or pathological stress. 

6.4. Crosstalk communication between IMAT and Muscle  
Organ crosstalk communication is a phenomenon that refers to the dynamic exchange of 

signals among different organs and tissues, allowing them to coordinate their activities and 

respond to the ever-changing demands of the organism(64). It relies on a complex network 

of molecular messengers, responders, signaling pathways, and transcriptional factors that 

involve endocrine, paracrine, autocrine, juxtacrine, and neuronal signaling mechanisms 

(156, 157). Organ crosstalk communication is fundamental to the proper functioning of the 

body and ensures a stable internal condition(homeostasis). To illustrate, when the body 
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faces stress, organs like the hypothalamus, pituitary gland, and adrenal glands collaborate 

to provide a coordinated response. Organs like the liver, adipose tissue, and muscles 

cooperate to regulate metabolism and energy balance in the body to avoid metabolic 

disturbances(234).  

The crosstalk between adipose tissue and skeletal muscle has gained notable interest since 

this process, specifically in obesity(261), substantially causes the development of muscle 

insulin resistance. During exercise, it reverses muscle insulin resistance and promotes 

insulin sensitivity(262). More specifically, IMAT directly impacts muscle insulin sensitivity 

due to its close physical proximity to muscles and ability to trigger local inflammation(90). 

The most compelling mechanism for IMAT and muscle crosstalk is paracrine signaling, 

where a signaling tissue releases the signaling molecules into the nearby extracellular fluid 

to affect neighboring tissues. Although numerous data support the endocrine signaling of 

muscle(myokines) to alter WAT phenotype including WAT “beiging”, no data is found to 

verify the systemic effect of IMAT, even if IMAT has a similar molecular profile to visceral 

WAT(263).  

The discussion below focuses on the paracrine signaling between IMAT and muscle in 

progressive insulin resistance.  As described in the method and result section, three 

different computational approaches followed to dissect the crosstalk communication 

between IMAT and muscle. In the first two analysis, for each group, cross tissue gene 

correlation analysis and differential combination analysis based of DE between IMAT and 

muscle was performed. Both analyses found an increased molecular interaction in the 

direction of IMAT to muscle among OB and T2D groups and a decreased communication 

network in LC and ATH group. Overall, in the cross-tissue gene correlation, a significant 

number of interacting gene pairs (correlated pairs) or the identity of genes in the networks 

were different. T2D and OB networks, however, did not differ in size. The increase molecular 

cross during OB and T2D could be explained by the secretion of pro-inflammatory cytokines 

and chemokines from IMAT due metabolic disturbances and inflammation(234, 261). 

Additionally, on the muscle side, several molecules could be activated to correct the 

metabolic and inflammatory challenges. Our enrichment analysis has proven this, where 

group-specific genes in the OB and T2D have shown greater Cytokine-Cytokine receptor 

interactions, TGF-beta signaling, ECM-receptor interactions, and focal adhesion.  Even in 

T2D-specific networks, genes were explicitly linked to pathways related to cancer, leukocyte 

migration, complement, and coagulation networks, and the activation of cell adhesion 

molecules indicates inflammatory cytokines mainly mediated the crosstalk between the 

tissues. The main question is how this could affect skeletal muscle insulin sensitivity. The 

molecular mechanism could be many. However, the expansion of adipocytes in the IMAT 

increases the release of FFA, tumor necrosis factors (TNF-alpha, beta), cytokine and 
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chemokines (like Interleukin-6(IL-6)) and monocyte chemoattractant molecules (MCP-1) 

and others(234, 261, 264, 265). This process increases the recrement of macrophages and 

other immune cells within the IMAT and increases inflammation within the IMAT, allowing 

the IMAT to release more FFA into surrounding muscle tissue. This could be beneficial in 

one way to the muscle because it can make more ATP from FFA when there is an energy 

crisis; at the same time, it could induce inflammation and block insulin signaling, eventually 

causing insulin resistance in the muscle. 

 

 
Figure	30.Secretory	profile	of	adipocytes	and	potential	functions	in	the	skeletal	muscle.	The	black	filled	
oval	shape	is	the	nucleus,	open	circles	represent	lipid	droplets	in	the	adipocytes	and	muscle.	Figure	was	
adapted	from(59,	231,	261,	262,	264,	265,	266,	267).	

Rewiring analysis was employed to understand the changes in the molecular interaction 

networks between IMAT and muscle associated with the different phenotypes. The 

investigation found that ITGB3, EGFR, ITGA10, CALM3, ITGAV, WNT5A, and ITGB1 

showed connectivity differences across all networks, indicating these genes and their 

interacting partners emerged as key influencers responsible for driving variations in the 

molecular communication from IMAT to muscle.  

Integrin beta 3(ITGB3) is a cell surface receptor involved in cell adhesion and signaling. It 

plays an essential role in platelet aggregation, clot formation, and wound healing, indicating 

its involvement in tissue injury, damage, and inflammatory processes(194). In this context, 

ITGB3 was expressed in the muscle in all study groups and active enough to respond 

differently to IMAT signaling, depending on the condition. For example, it interacted with 

TGFB3, CX3CL1, and ADAM15 under LC network, whereas during obesity, it lost its 

connection with TGFB3 and ADAM15 but got new interactions with IGF2, COL1A2, NID1, 

FBN1, and TNXB. Interestingly, under diabetes conditions, it formed a new connection with 

ITGB3BP, MFG38, and FGF1 and simultaneously lost its associations with COL1A2, NID1, 

FBN1, and TNXB observed in obesity. Intriguingly, ITGB3 lost all the interactions observed 

in the OB and T2D conditions in the ATH group and maintained the connections with TGFB3 

observed in LC, with IGF2 seen in OB; additionally, it established a new relationship with 
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IL32. Although no similar data was found to compare the findings, ITGB3 has been 

enormously investigated in cancer metastasis(268), tumor metabolism, epithelial to 

mesenchymal transition, and endothelial to mesenchymal transition(268, 269, 270). 

Moreover, ITGB3 found to be one of the gene identified as atherosclerosis inducing factor 

in the Azorean population study(271) indicating a potent pro-inflammatory mediator to 

induce metabolic syndrome(272). Considering its pro-inflammatory roles described in the 

previous studies and the interaction difference observed in the various insulin sensitivity 

groups in the current study, ITGB3 may have a role to play in muscle metabolism, exercise 

adaptions, vascularization, and regeneration and, when dysregulated, may cause muscular 

disorder, including insulin resistance. 

Epidermal Growth Factor Receptor (EGFR) is a cell surface protein that binds to epidermal 

growth factor to induce receptor dimerization and tyrosine autophosphorylation, leading to 

cell proliferation. Mutations in this gene have been associated with cancer and inflammatory 

disorders(194). The metabolic role of EGFR, specifically in the skeletal muscle and adipose 

tissue, is lacking. One study has shown that HFD increases the expression of EGFR and 

its ligands in the adipose tissue macrophages (ATM). This could indicate that obesity-

induced macrophage recruitment may activate the expression of EGFR and its ligands, a 

source of proinflammatory cytokines that increase crosstalk between macrophages 

adipocyte, and selective deletion of EGFR in ATM reduced HFD-induced obesity, adipose 

tissue derangements, resident ATM proliferation, and monocyte recruitment and insulin 

resistance (273).  Additionally, a cross-sectional study involving humans found that EGFR 

gene expression was associated with adipogenesis in the SAT and VAT regardless of 

obesity status(274). Also, EGFR inhibitors showed promising results in lowering obesity in 

leptin receptor-deficient type II diabetes mice(275) and improved glucose control among 

lung cancer patients with diabetes(276). In our data, EGFR, like ITGB3, is expressed in the 

skeletal muscle of all study groups and showed higher and variable connectivity with IMAT 

genes. EGFR interacted with GRN, IGFBP3, S100A4, MMP2, and ST6GAL1 in the LC 

network and lost its connection with IGFBP3, S100A4, and MMP2 while gaining a unique 

relationship with DCN in the OB network. Furthermore, during the T2D state, EGFR formed 

new connections with LRIG2, ICAM1, ST6GAL1, and PTPN6 and regained the lost 

connection during OB with MMP2, while missing IGFBP3, S100A4, and DCN. Surprisingly 

in the ATH network, EGFR lost all the connection observed in LC, OB and T2D and 

maintained its connection only with PLA2G2A and ST6GAL1. Although these data need 

validation, the higher connectivity of EGFR observed in T2D could indicate the increased 

release of inflammatory cytokines from the IMAT side and their relations with the muscle. 

This interaction is diminished when the inflammatory reactions are decreased during ATH.  
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Wnt family member 5A (WNT5A) was one of the genes identified as a most rewired gene 

in our analysis. WNT5A is a secreted glycoprotein, it binds to G-protein coupled receptors 

from the Frizzled (FZD) family, low-density lipoprotein receptor-related proteins, and many 

tyrosine kinase-like related receptor proteins(277). It regulates cellular functions, such as 

proliferation, differentiation, migration, adhesion, and polarity. Interestingly, dysregulation 

of WNT5A signaling, usually due to WNT5A overexpression, has been implicated in 

developing various pathological conditions in humans, such as fibrosis, cancer, 

inflammatory diseases, and metabolic disorders(278). In our finding, WNT5A expression in 

the IMAT was correlated considerably with different signal receiver genes in the muscle 

under different conditions. For example, in the LC network with FZD5 and LRP5, additional 

interactions with VANGL2 and LDLR exist in the OB network. However, in the T2D network, 

its interaction was limited to VANGL2, and in the ATH network, it was only with FZD5 and 

RYK. The interaction of WNT5A with LDLR and LRP5 observed in OB network may suggest 

metabolic involvement of WNT5A particularly in lipid transport, storage, and clearance and 

in the inflammatory process associated with lipid metabolism. Although there is no direct 

relation with our data, in vitro studies in human carotid atherosclerotic tissue indicated that 

WNT5A significantly increased the expression of lipid uptake receptors CD36 and enhanced 

lipid accumulation and its inhibition with BOX5 reversed the effect suggesting there is a 

strong link between WNT5A expression and lipid metabolism(279). Similar studies on the 

atherosclerotic (vascular smooth muscle) clinical samples and in vivo experiment targeting 

on apolipoprotein E knockout demonstrated higher expression of WNT5A that conforms its 

role in cholesterol accumulation and inflammatory process(280). Additionally, in subjects 

with diabetes, WNT5A levels were elevated and significantly associated with fasting plasma 

glucose concentrations(281). Therefore, WNT5a expression in IMAT and its interaction with 

the skeletal muscle genes may indicate its potential role in lipid accumulation and 

inflammation to induce insulin resistance in the skeletal muscle. 

In the differential combination network, the second approach we applied to explore the 

IMCN, DE analysis between IMAT and muscle was performed to identify DE senders in the 

IMAT and receiver genes in the muscle. In this investigation, although there were variations 

in network sizes across different groups, we observed a considerable overlap in the 

connections (edges) and genes (nodes) between these networks. However, it's important 

to note that we did not identify any genes expressed in all groups(networks) and exhibited 

differential connectivity across all networks in our rewiring analysis. In other words, this 

approach did not provide the insights we were seeking. Therefore, a detailed discussion of 

this negative result would not improve the overall clarity of this thesis. Instead, we decided 

for a third approach that aligns more with our research objectives and significantly enhances 
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our understanding of how IMAT and muscle communicate in the context of progressive 

insulin resistance. 

6.5. GIR weighted communication network between IMAT and 
Muscle  
In the third method, we employed a novel approach correlating gene expression data from 

IMAT and muscle samples with GIR to generate a bidirectional network, IMCN and MICN. 

This study emphasizes how the insulin sensitivity attributes linked to each gene within the 

communication networks give valuable insights into elucidating the rewiring mechanism of 

each gene under insulin-sensitive and insulin-resistant conditions.  

6.5.1. Overview on the networks  

In both networks (IMCN or MICN), majority of the interaction was mediated by secreted 

proteins and GPCRs indicating the communication mechanism was primally paracrine. 

Although, in the network property analysis, we observed notable differences between IMCN 

and MICN in the edges and nodes, both shared 421 nodes and 796 edges. This 

commonality indicates a substantial overlap in the molecular components of the two 

networks, highlighting the existence of core signaling pathways and genes essential for 

communication between IMAT and muscle tissues in the context of insulin sensitivity 

regulation. Genes exclusive to each of the communication networks exhibited significant 

enrichment in pathways related to Cytokine-Cytokine receptor and ECM-receptor 

interactions, along with associations with disease ontology terms, including hyperglycemia, 

hyperinsulinemia, atherosclerosis, lipid storage, and collagen diseases (Figure 23 B). The 

enrichment of specific genes from the communication networks in these pathways and 

disease terms implies that these genes have a significant role in mediating intercellular 

communication between IMAT and muscle, and they could be implicated in various 

physiological and pathological processes related to insulin sensitivity and metabolic health. 

For example, among pathway enriched genes in the IMCN, we found some chemokines 

(CXCL14 and CXCL16 are crucial for immune cell recruitment in the IMAT), tumor necrosis 

factors receptors (TNFRSF12A and TNFRSF19), chemokine and interleukin receptors 

(CXCR4, CXCR6, CX3CR1, and IL1RAP), AMHR2, and BMPR1B are well-documented in 

immune cell activation and migration and can modulate inflammatory responses. 

Additionally, ADIPOQ, CXCL16, EDN1, TF, PLA2G2A, VCAM1, ADIPOR1, ADIPOR2, 

CX3CR1, LDLR, MERTK, PTCH1, TFRC, TLR9, and TNFRSF12A have been identified as 

genes involved in various aspects of metabolic syndrome, highlighting the potential 

involvement of inter-tissue communication in the development or progression of metabolic 

disorders. Further investigation of these genes could provide cherished insights into the 
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molecular mechanisms underlying these conditions and potentially lead to the development 

of targeted therapies or interventions. 

6.5.1. Clustering analysis   

Clustering analysis and community detection within biological networks serve as pivotal 

tools in comprehending intricate biological systems(226). These techniques enable the 

identification of tightly interacting groups of genes, proteins, or molecules, referred to as 

"clusters" or "communities," which often represent functional modules with specific roles in 

biological processes or pathways(282). The ability to pinpoint clusters is particularly relevant 

in disease research, as it can unveil potential biomarkers, aiding in early diagnosis and 

therapeutic strategies(283, 284, 285, 286). Our study employed these methods to analyze 

the IMCN and MICN, uncovering 45 communities within the IMCN and 40 within the MICN, 

as visually presented in Figure 24A and D, respectively. This community detection revealed 

a diverse landscape within the network, suggesting that different modules may serve distinct 

biological functions. Furthermore, the enrichment analysis of these communities yielded 

intriguing insights into the underlying biology. Specifically, the largest modules in both 

networks prominently featured the Cytokine-Cytokine receptor interaction pathway. This 

observation underlines the significance of inflammatory processes in the context of 

progressive insulin resistance, as summarized in Figure 24C and F. Additionally, this 

inflammatory event was mediated by various pathways, including complement and 

coagulation cascades, Wnt signaling, and TGF signaling, as evidenced by their enrichment 

within clusters 3, 8, and 4 in MICN and clusters 4, 8, and 2 in IMCN. Furthermore, modules 

that did not exhibit tissue-specificity in both networks revealed the enrichment of insulin 

signaling, suggesting that the communication between IMAT and muscle tissues involves 

metabolic pathways. However, it is important to mark that the enrichment patterns in both 

IMCN and MICN were highly comparable, reflecting the substantial gene overlap between 

the two networks, which amounted to 73% shared genes. 

6.5.2. Insulin sensitive and resistance networks of IMCN 

Muscle tissue actively engages in signal transduction processes in the IMCN network, 

particularly in the insulin sensitivity network. This active involvement of muscle in signal 

processing is coupled with a significant input of inflammatory signals originating from IMAT. 

The activation of genes such as tumor necrosis factor receptors (TNFRs), platelet-derived 

growth factor receptors (PDGFRs), integrins, CD44, and CD36 in skeletal muscle signifies 

an influx of inflammatory signaling molecules from IMAT. TNFRs (TNFRSF10D, 

TNFRSF21, TNFRSF14, and TNFRSF12A, TNFRSF12) are known mediators of 

inflammation(59, 102, 131, 149), PDGFR (PDGFRA, and PDGFRB) signaling may reflect 

efforts to repair or adapt to inflammatory challenges in muscle(287, 288), integrins suggest 

cell adhesion and signaling interactions(120, 289), and CD44 and CD36 play roles in cell 
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adhesion, migration, and fatty acid uptake, respectively(147, 270, 279). Most importantly, 

the expression of CD36 in muscle indicates continuous stimulation by signaling molecules, 

including fatty acids, collagen proteins (COL1A1, COL6A3, COL4A2), ECM proteins 

(LAMAs and LAMBs), and Notch proteins (DDL1, DDL4, JAG1, and JAG2) from IMAT 

(Supplemental Table 1). The uninterrupted entry of signaling molecules from IMAT into 

muscle over time contributes to skeletal muscle insulin resistance characterized by a 

diminished response of muscle tissue to insulin, leading to impaired glucose uptake and 

utilization(90, 95). This can eventually result in elevated blood glucose levels and metabolic 

disorders like type 2 diabetes. Conversely, in the insulin resistance network of IMCN, there 

is a tangible shift in the skeletal muscle signal processing activity where IMAT assumes a 

more prominent role by intensifying it signaling output, while muscle involvement in signal 

processing reduces (Supplemental Table 2). This event further complicates overall 

metabolic health and could induces such as diabetic neuropathy, nephropathy, retinopathy, 

and many others(16, 25, 26, 28, 290, 291).   

6.5.3. Rewired genes in the IMAT muscle communication networks. 

All biological systems are inherently dynamic and entail dynamic features, such as rewiring 

in response to different internal and external stimuli, such as adaptation needs due to 

changes in nutrient availability, exercise, or cellular processes, such as cell division(292, 

293, 294, 295). As described earlier, this feature in network biology is essential for studying 

changes in the molecular interaction network of organisms during healthy and disease 

states or at different time points in treatment or disease progression to facilitate innovative 

drug discovery endeavors. A prime example of the significance of network rewiring is 

evident in type T2D. In T2D, organ crosstalk triggers a complex cascade, leading to 

numerous genes and proteins being rewired across multiple tissues(222). This rewiring 

ultimately culminates in the development of insulin resistance in the target tissues. The 

definition of rewiring analysis should be context-specific. In this study, our rewiring analysis 

focused on identifying hub and rewired genes that showed variable connectivity in the 

crosstalk communication network between IMAT and muscle, where every gene in the 

network was weighted by insulin sensitivity. Our analysis identified top 50 most wired genes 

within the IMCN and 51 genes within the MICN. These findings are particularly intriguing 

because 98% of the top-selected rewired genes from IMCN or MICN were derived from 

IMAT. This observation indicates that IMAT exhibits dynamic behavior under conditions of 

insulin sensitivity and resistance. In other words, IMAT genes actively interact with muscle 

genes during periods of insulin sensitivity and resistance, although they have a narrow 

range of insulin regulation (Supplemental Figure 5). Furthermore, this phenomenon 

underscores the variability of muscle genes in terms of insulin sensitivity, as exemplified in 

Figure 26 E.  
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Moreover, the Jaccard index highlights striking similarities among the top rewired genes 

within the IMCN, particularly within the laminin IMAT genes (LAMC1, LAMB3, LAMB2, 

LAMA5, LAMA2, LAMA3, and LAMA4), which target muscle genes, such as BCAM, CD151, 

CD44, DAG1, ITGA1, ITGA3, ITGA6, ITGA5, ITGA7, ITGAV, ITGB1, ITGB4, and 

RPSA(Figure 28A:C). The similarity found by the Jaccard index does not indicate 

expression similarities among the genes. Instead, it signifies similarity in their interaction 

partners (they share common interaction partners). Pathway analysis of the laminin network 

suggested an association with extracellular matrix (ECM) proteins, cell adhesion molecules 

(CAMs), and muscular dystrophy. The ECM, which comprises various proteins and 

proteoglycans, plays a vital role in regulating processes such as differentiation, migration, 

repair, survival, and development. Although ECM remodeling is essential for the healthy 

expansion of adipose tissue, in the cases of obesity, excessive lipid accumulation in 

adipocytes triggers immune cell infiltration, fibrosis (excessive deposition of ECM 

components such as collagens, elastin, and fibronectin), and inflammation, which is often a 

consequence of local hypoxia and ultimately leads to insulin resistance(116, 289, 296, 297). 

Laminins are a group of ECM proteins found within the basement membrane, which provide 

structural support and facilitate cellular adhesion and migration. By interacting with cell 

surface receptors, laminins initiate intracellular signaling pathways that guide distinct 

survival and differentiation processes(298). While no directly comparable data are available, 

most existing evidence points to the involvement of laminins in cancer and cancer-related 

phenotypes; interestingly, in the context of obesity, both mRNA and protein expression 

levels of LAMA4 are elevated in the Subcutaneous Adipose Tissue (SAT) and Visceral 

Adipose Tissue (VAT) of obese individuals. This observation strongly suggests its role in 

adipogenesis and in the development of insulin resistance(299). Furthermore, studies in 

male mice revealed that the absence of LAMA4 resulted in enhanced energy expenditure 

and promotion of a beige phenotype in the SAT(300). Additionally, it leads to decreased 

adipose tissue expansion and reduced weight gain(301). Similarly, in our datasets, LAMA4 

expression in IMAT negatively correlated with insulin sensitivity. This suggests a potential 

role for LAMA4 in adipocyte expansion, and its interaction with DAG1 and ITGA7 in the 

muscle could indicate the development of skeletal muscle insulin resistance. Because 

DAG1 and ITGA7 had a strong negative correlation with insulin sensitivity in the muscle, 

they were further indicated in muscular dystrophy in the enrichment analysis. Therefore, 

LAMA4, DAG1, and ITGA7 could be ideal candidates to understand how LAMA4 via DAG1 

and ITGA7 induces skeletal muscle insulin resistance.  

The collagen genes in IMAT (COL1A1, COL1A2, COL4A2, and COL18A1) had common 

target genes in the muscle (CD36, CD93, and CD44) and integrins (ITGAs and ITGBs) 

(Figure 28 D:F). This network is enriched with many disease ontology terms, such as 
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myopathy, collagen diseases, hyperglycemia, atherosclerosis, and arteriosclerosis. The 

metabolic role of collagen proteins is not well documented, particularly in the context of 

adipocyte and muscle insulin resistance. Few human studies have demonstrated that 

COL1A1 is positively associated with increased muscle stiffening(302) and the 

pathogenesis of T2D and CVD (303, 304). In contrast, IMAT COL1A1 expression is 

positively correlated with insulin sensitivity in our study. Additionally, a study in the jejunum 

of diabetic rats confirmed that COL1A1 has hypoglycemic activity(305), indicating that this 

gene may play a role in insulin sensitivity and resistance in selective tissues. One study 

showed that COL4A2 is highly expressed in the SAT of obese individuals with and without 

T2D compared to normal individuals(306). IMAT COL4A2 positively and weakly correlated 

with insulin sensitivity in the current dataset. CD36 is one of the target genes in the muscle 

for COL4A2. CD36 expression in the muscle is also weakly and positively correlated with 

insulin sensitivity, indicating that its expression decreases as insulin resistance advances. 

Subsequently, muscle FFA uptake rate decreases, and increased lipid accumulation in the 

myocyte blocks insulin signaling. Our data indicate that CD36 is associated with the 

development of metabolic syndrome and muscular dysfunction, making it a promising 

candidate for future validation with the aim of understanding how disturbed collagen 

proteins(COL4A2) in the IMAT accelerate skeletal muscle adiposity and insulin resistance.  
Furthermore, the Jaccard index identified strong similarities among bone morphogenetic 

genes such as BMP4, BMP6, and BMP8A in IMAT (Figure 28 G: I). These genes have a 

common target in the muscle (TGFBR2, ACVR2A, BMPR2, TGFBR1, ACVR2B, AMHR2, 

GREM2, LRP6, BMPR1B, BMPR1A, and ACVR1) and show variable positive and negative 

correlations with insulin sensitivity. This module is functionally associated with TGF-β 

signaling and cytokine-cytokine receptor interactions, suggesting its role in inflammatory 

responses.  Research on the role of bone morphogenetic genes or proteins associated with 

metabolic syndrome is notably lacking despite the reasonably documented functions of 

these genes in cancer and bone formation. Limited in vivo and in vitro studies on adipocytes 

have revealed potential connections between specific bone morphogenetic genes, 

specifically BMP4, BMP6, BMP7, and BMP9, and the regulation of adipogenesis(307). Our 

analysis uncovered a significant negative correlation between insulin sensitivity and BMP4 

and BMP6 expression in the IMAT. These findings align with similar reports in humans, 

where elevated serum BMP4 levels were observed in individuals with obesity and metabolic 

syndrome (307, 308, 309, 310, 311, 312). Furthermore, animal models have provided 

additional insights into BMP4 expression. Hyperglycemia and high levels of free fatty acids 

have been shown to stimulate BMP4 expression (311), while inhibition of glucose-

stimulated insulin secretion in diabetic rodents results in upregulation of BMP4 expression 

in pancreatic islets(312). Collectively, these findings collectively suggest the crucial role of 
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BMP4 in body metabolism. However, literature evidence on BMP6 shows that obese and 

T2D mice treated with BMP6 exhibit lower circulating lipid and glucose levels, in contrast to 

our findings. Therefore, based on the data, BMP4 expression in IMAT and its interaction 

with various muscle genes during insulin sensitivity and resistance could be potential 

research targets to understand muscle insulin resistance in response to IMAT signaling.  

Calmodulin proteins in IMAT would be an exciting area to explore how they affect skeletal 

muscle metabolism, as they are involved in insulin, calcium, phosphatidylinositol signaling, 

and disease development, such as myopathy and atherosclerosis, particularly CALM1, 

CALM2, and CAML3, which showed a positive correlation with insulin resistance in the 

IMAT (Figure 28 J: L). Their interaction with MIP, MYLK2, and SCN4A genes, which are 

correlated with insulin resistance in the muscle, could potentially facilitate the discovery of 

therapeutics to treat myopathy and other muscular disorders. 

In the context of MICN, a unique pattern emerges in the Plexin IMAT genes, which exhibit 

a significantly higher Jaccard similarity amongst themselves. This finding strongly suggests 

that these Plexin IMAT genes interact with muscle semaphorins and other genes within the 

network. Furthermore, IMAT integrin genes (specifically, ITGA7, ITGB4, ITGA6, and DAG1) 

serve as targets for a diverse array of laminin genes, including IGF1, ECM1, COL6A1, FN1, 

THBS2, and ADAM9. Importantly, all these genes are integral components of the ECM. As 

previously discussed, the enrichment of ECM genes signifies ECM remodeling and 

adipocyte expansion within the tissue, a characteristic feature associated with insulin 

resistance. In light of these findings, it is increasingly apparent that the signaling pathways 

involving semaphorins or laminins from muscle to IMAT through Plexin or integrin channels 

hold immense potential for uncovering novel therapeutic avenues for addressing insulin 

resistance and muscular disorders, as illustrated in Figure 29A: F. 
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7. Perspective 
Our study has disclosed the dynamic nature of IMAT during interactions with skeletal 

muscle under changing insulin sensitivity and resistance conditions. This discovery holds 

significant promise, as it opens new avenues for research and potential therapeutic targets 

for addressing conditions such as diabetes, insulin resistance, and muscular disorders. 

In the future, further investigations aided by single-cell RNA sequencing will be essential to 

look deeper into the cellular heterogeneity within IMAT. This approach will enable us to 

pinpoint specific cell populations within IMAT that directly impact skeletal muscle insulin 

sensitivity. Understanding this cellular heterogeneity could lead to more precise and 

effective interventions. 

Additionally, incorporating metabolomics profiling of both IMAT and muscle will provide 

valuable insights into the interactions of metabolites between these tissues. This approach 

can identify candidate metabolites crucial in regulating muscle insulin sensitivity. Such 

findings could lay out the way for targeted interventions at the metabolic level to enhance 

insulin sensitivity and overall metabolic health. 
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8. Summary reports for the side projects 

8.1. Skeletal muscle and IMAT gene expression profiling identifies 
new biomarkers with prognostic significance for insulin 
resistance progression and intervention response. 
In this project, we applied a predictive module to identify genes in IMAT or muscle that hold 

prognostic significance in the development and treatment of insulin resistance. This study 

utilized samples from individuals with OB and T2D in both IMAT and muscle tissues. We 

employed multivariate regression analysis to simultaneously predict FPG and GIR based 

on gene expression in skeletal muscle and IMAT. Subsequently, we identified the top 59 

genes in both tissues that significantly correlated with insulin resistance, as measured by 

FPG and GIR, for further analysis. 

Upon performing clustering analysis on these genes, we observed three distinct clusters in 

the muscle sample, displaying clear expression patterns during insulin sensitivity and 

resistance conditions. However, the IMAT sample did not exhibit a similar expression 

pattern. Furthermore, we utilized this molecular information from skeletal muscle and IMAT 

in clinically classified OB and T2D individuals for genetic classification. Our analysis aimed 

to test the hypothesis that genetic classification is more robust than conventional clinical 

markers for disease diagnosis and treatment. To achieve this, we employed a k-Nearest 

Neighbors (kNN) algorithm(313) to classify tissue samples based on their expression 

profiles. The kNN method is non-parametric and relies on measuring the distance between 

data points to classify new data points. Consequently, we generated three nearest neighbor 

networks (NNNs) per tissue, indicating the similarity of samples within the three expression 

clusters. We calculated a predictive classification score for each sample using these 

networks and direct network neighbors. In the case of muscle tissue, the sample 

classification was identical across all three NNNs, except for two OB samples (Pb029 and 

Pb043) and three T2D samples (Pb034, PB053, and Pb032) that clustered differently. 

However, when averaging the predictive classification scores across the three clusters, one 

participant with OB (Pb043) was classified as T2D, and two participants with T2D (Pb034 

and Pb053) were classified as OB. 

In the IMAT analysis, averaging across the three clusters led to different genetic 

classifications for patients Pb043 and Pb033, who were clinically diagnosed as OB and 

T2D, respectively. These results suggest that traditional blood-based patient classification 

may not accurately represent the actual genetic makeup of individual disease states. An 

incorrect diagnosis could result in unintended treatment that negatively impacts a patient's 

quality of life. 
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To further investigate whether gene expression profiles within muscle and IMAT could 

predict disease progression, we analyzed clinical and mRNA data from individuals with 

obesity undergoing a combined weight loss and exercise training intervention in a separate 

cohort. From the initial cohort, we selected fifteen candidate genes from the top 59 genes 

based on their predictive power for insulin sensitivity (SIN3A, UBTD1, ST3GAL2, and 

NAPB)(263), linkage to diabetes-associated SNPs (AASS, DBNDD1, PDK4, PIGA, 

POLR3GL, SNAP23, SPCS2, SSU72, and UBTD1), and their involvement in skeletal 

muscle lipid and glucose metabolism (ARF1, BCAT2, and LDHD)(263). We then measured 

the expression of these 15 genes in the muscle among individuals with obesity in the second 

cohort, both before and after exercise intervention. Among these genes, LDHD, ARF1, 

NAPB, POLR3GL, and SNAP23 showed significant changes in expression between the 

pre- and post-intervention phases. However, only ARF1 expression significantly correlated 

with the change in FPG, while none of the differentially expressed genes could significantly 

predict other clinical variables measured. Furthermore, the change in GIR did not 

significantly correlate with any of the 15 genes, while changes in FPG, BW, FFM, and BMI 

could be significantly predicted by ST3GAL2 expression. Additionally, FG, FFM, and BMI 

changes were associated with SIN3A expression, and FFM was associated with AASS 

expression. 

These findings led us to the conclusion that individual susceptibility to an exercise 

intervention aimed at improving glucose homeostasis is independent of individual clinical 

factors but correlates with individual gene expression profiles before the intervention. 

Moreover, low AASS, ARF1, and SIN3A expression on exercise intervention was 

associated with a favorable health prognosis, while an increase in ST3GAL2 expression 

increased the likelihood of an effective intervention. In summary, gene expression profiles 

in muscle tissues hold predictive potential for individual insulin resistance states. 

 

Note: The project is published and can be found in the following link. 

https://pubmed.ncbi.nlm.nih.gov/36790478/ 
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8.2. Circadiomics analysis to understand the role of Class 3 
phosphatidylinositol-3 kinase (PI3K) signaling. 
In this collaborative project with Dr. Ganna Panasyuk (PI) and others, we have shown class 

3 PI3K coactivates the circadian clock to promote rhythmic de novo purine synthesis.  

Briefly, class 3 phosphatidylinositol-3-kinase (PI3K) has a canonical pro-catabolic function 

and is known best for its essential role as a lipid kinase in endocytosis and lysosomal 

degradation by autophagy(314). Furthermore, PI3K has a nuclear function in gene 

transcription as a coactivator of the heterodimer of two transcription factors, Bmal1 and 

Clock to act as a master regulator of the mammalian circadian clock gene network(315). 

However, class 3 PI3K activity relies on the lipid kinase Vps34 and regulatory subunit 

Vps15. Although both subunits of class 3 PI3K interact with RNA polymerase II and co-

localize with active transcription sites, exclusive loss of Vps15 in cells blunts the 

transcriptional activity of Bmal1–Clock(314). Thus, we could show the ability of Vps15 to 

coactivate Bmal1–Clock independently in liver cells. Vps15 is required for liver metabolic 

rhythmicity, and our study has shown that Vps15 promotes pro-anabolic de novo purine 

nucleotide synthesis. Furthermore, our study has displayed that Vps15 activates the 

transcription of Ppat, a key enzyme for the production of inosine monophosphate, a central 

metabolic intermediate for purine synthesis. Finally, we demonstrate that Vps15 levels are 

decreased on the promoters of Bmal1 targets, Nr1d1, and Ppat in fasting, which represses 

clock transcriptional activity. In conclusion, this study has established the role of class 3 

PI3K signaling in the temporal regulation of energy homeostasis. 

 

Note: In this project I did the bioinformatics works particular analyzing and identifying the 

circadian genes, proteins, and metabolites in the liver wide type(WT) cells, Vps15 positive 

and negative cells, Vps34 positive and negative cells.  The work is published in nature cell 

biology and can be accessed freely using the link.  

https://www.nature.com/articles/s41556-023-01171-3 
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8.3. Unveiling early development and complications of T2D 
through cell-free DNA biomarkers. 
Liquid biopsy offers a valuable opportunity to detect, analyze, and monitor disease 

progression through molecular profiling(316). It encompasses various biological 

components, such as circulating tumor DNA (ctDNA), mitochondrial DNA (mtDNA), and cell-

free DNA (cfDNA)(317). Although the cfDNA test is less invasive and enhances clinical 

decision-making, it has the drawback of yielding relatively small amounts of cfDNA using 

current isolation techniques(318). cfDNA is released into the bloodstream from cells 

undergoing apoptosis or necrosis, and its levels are correlated with inflammation and tissue 

injury in various diseases(319). Unfortunately, cfDNA lacks specificity for tissue or cell 

types(320), making extensive genomic profiling necessary to identify cfDNA from specific 

sources(321, 322). In this study, we aimed to identify specific biomarkers relevant to the 

early diagnosis, progression, and complications of type 2 diabetes (T2D) using cfDNA. 

Our study collected cfDNA samples from healthy individuals, individuals with T2D, and 

individuals with T2D and complications (25 samples in each group) at Heidelberg University 

Hospital in Germany. These samples were sent to GenxPro (Frankfurt, Germany) for whole-

exome and methylation sequencing. 

In exome sequencing, our primary goal was to identify differential gene reads that were 

mapped to the exome region of the genome among the groups. We checked the quality of 

the sequencing data in FASTQ format using the FASTQC tool(323). All sequencing reads 

met the quality requirements, although we observed a high level of PCR amplification, which 

was likely due to the low abundance of cfDNA in the samples. Sequencing reads were 

mapped to the human reference genome (hg38) using Bowtie2(324), a fast and memory-

efficient tool for aligning short reads to a long reference sequence (hg38). Subsequently, 

we generated Binary Alignment Map (BAM) files indicating the positions of the reads on the 

chromosomes and their mapping qualities. We performed read summarization using the 

featureCounts function in the subread tool (325) by counting mapped reads in the BAM files 

for genes in the exon region of the genome. This process is based on a General Feature 

Format (GFF) file that describes gene annotations. As a result, we identified the read counts 

for 44,714 genes in each library. After creating the count matrix, we preprocessed the data 

for differential expression (DE) and functional enrichment analysis. Preliminary results 

showed no DE genes between conditions, and clear clusters between groups were not 

observed (Supplemental Figure 6). 

In DNA methylation sequencing, our primary objective was to determine the specific cell or 

tissue type responsible for releasing cfDNA by analyzing different methylation patterns in 

each group. Methylation is an epigenetic mechanism that regulates gene expression and 

contributes to cellular development(326). We used Bismark for DNA methylation data 
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analysis, a popular bioinformatics tool for bisulfite sequencing data analysis, commonly 

used for studying DNA methylation patterns at single-base resolution(327). Bisulfite 

treatment converts unmethylated cytosine residues to uracil while leaving methylated 

cytosines unchanged. First, we removed all sequences containing adapters from the raw 

data using Trim Galore(328). We then aligned the raw methylation sequencing data to a 

bisulfite-converted reference genome and methylation information from the aligned BAM 

files was extracted. This reports the methylation status at each cytosine position in the 

reference genome. Methylation alignment and pattern extraction are computationally 

intensive processes requiring expertise. Our initial analysis using the R package EdgeR 

(329)and methylkit(330) revealed no differences in methylation patterns among the study 

subjects(Supplemental Figure 6). 

This project is currently ongoing, and we will continue to communicate new data as they 

become available. 
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10. Supplement 

10.1. Supplemental Figures 

Supplemental Figure 1. Gene expression in the IMAT tissue identifies different subtypes of IMATs. 
Hierarchical clustering identifies four dissimilar IMAT subtypes(A), and the number of 
samples in each subtype is displayed in the bar graph (B). The number of DE gene 
for each subtype compared to subtype 3, the smallest sample group, are presented 
in the Ven-diagram (C). ......................................................................................... 117 

Supplemental Figure 2.Gene expression in the muscle across different group. The number of DE 
genes for each study group compared to LC is presented in Ven-diagram (A). KEGG 
gene set enrichment analysis (GSEA) to identify pathways related to each condition 
are demonstrated in the bar graph (B:D). ............................................................. 117 

Supplemental Figure 3. KEGG gene set enrichment KEGG for IMAT(A) and muscle(B). Genes in 
both tissues ranked by the correlation coefficients between gene expression and GIR.
 117 

Supplemental Figure 4.List of top rewiring gene list in the IMCN(A) and MICN(B). The bar plot is to 
indicate the distribution of correlation between insulin sensitivity (GIR) and top gene 
expression. Majority of these genes have low correlation to GIR that make them to 
rewire during insulin sensitivity and resistance conditions. ................................... 118 

Supplemental Figure 5. Histogram for the distribution of correlation coefficients between all senders 
and receiver’s genes with GIR in the IMCN(A) and MICN(B). Both histograms show 
muscle has a border range in insulin sensitivity regulation than IMAT. ................ 119 

Supplemental Figure 6.Cell free DNA Whole exome sequence and methylation level among normal 
glucose tolerant (NGT), T2D, and T2D with complications.  PCA analysis indicated in 
the scatter plots, cfDNA whole exome reads indicated in figure A and CpG 
methylation levels displayed in figure B. ............................................................... 119 
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Supplemental	 Figure	 1.	 Gene	 expression	 in	 the	 IMAT	 tissue	 identifies	 different	 subtypes	 of	 IMATs.	
Hierarchical	 clustering	 identifies	 four	dissimilar	 IMAT	subtypes(A),	 and	 the	number	of	 samples	 in	each	
subtype	is	displayed	in	the	bar	graph	(B).	The	number	of	DE	gene	for	each	subtype	compared	to	subtype	3,	
the	smallest	sample	group,	are	presented	in	the	Ven-diagram	(C).	

 
Supplemental	Figure	2.Gene	expression	in	the	muscle	across	different	group.	The	number	of	DE	genes	for	
each	 study	 group	 compared	 to	 LC	 is	 presented	 in	Ven-diagram	 (A).	KEGG	gene	 set	 enrichment	 analysis	
(GSEA)	to	identify	pathways	related	to	each	condition	are	demonstrated	in	the	bar	graph	(B:D).			

	

 	

 
Supplemental	Figure	3. KEGG gene set enrichment KEGG for IMAT(A) and muscle(B). Genes in both 
tissues ranked by the correlation coefficients between gene expression and GIR. 

 
 
 



                                                                                                                         Supplement 
 

   118 

 
	

Supplemental	Figure	4.List	of	top	rewiring	gene	list	in	the	IMCN(A)	and	MICN(B).	The	bar	plot	is	to	indicate	
the	distribution	of	correlation	between	insulin	sensitivity	(GIR)	and	top	gene	expression.	Majority	of	these	
genes	 have	 low	 correlation	 to	 GIR	 that	 make	 them	 to	 rewire	 during	 insulin	 sensitivity	 and	 resistance	
conditions.	
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Supplemental	Figure	5.	Histogram	for	the	distribution	of	correlation	coefficients	between	all	senders	and	
receiver’s	genes	with	GIR	in	the	IMCN(A)	and	MICN(B).	Both	histograms	show	muscle	has	a	border	range	in	
insulin	sensitivity	regulation	than	IMAT.	

 
 

A.  Cell free DNA exome reads 
 

 

        B. Cell free DNA, CpG methylation levels 
 

 
Supplemental	Figure	6.Cell	free	DNA	Whole	exome	sequence	and	methylation	level	among	normal	glucose	
tolerant	(NGT),	T2D,	and	T2D	with	complications.		PCA	analysis	indicated	in	the	scatter	plots,	cfDNA	whole	
exome	reads	indicated	in	figure	A	and	CpG	methylation	levels	displayed	in	figure	B.	
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10.2. Supplemental Tables 

Supplemental Table 1: - KEGG pathways enriched for the genes in the insulin sensitivity networks 
of IMAT to muscle communication network (IMCN). ............................................. 121 

Supplemental Table 2: - KEGG pathways enriched for the genes in the insulin resistance networks 
of IMAT to muscle communication network (IMCN). ............................................. 121 
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Supplemental	Table	1:	-	KEGG	pathways	enriched	for	the	genes	in	the	insulin	sensitivity	networks	of	IMAT	to	muscle	communication	network	(IMCN).	

Pathway name pvalue p.adjust qvalue geneID Count 
ECM-receptor interaction 2.3811717

0790952e-
12 

9.28656966084714
e-11 

8.2714385643
1729e-11 

ITGA6/ITGA1/ITGA5/CD44/ITGB4/SDC3/ITGA10/TNXB/CD36/ITGA3/ITGAV/HSPG2/COL1A
1/COL6A3/COL4A2/LAMA5/LAMA2/LAMB1/VWF/AGRN 

20 

Complement and coagulation 
cascades 

0.0001155
204816978
15 

0.00225264939310
739 

0.0020064083
6633046 

F2R/CD46/F3/F10/F8/SERPING1/PLAU/A2M/PLAT/VWF 10 

Notch signaling pathway 0.0001839
631466747
8 

0.00239152090677
214 

0.0021300995
930764 

NOTCH1/NOTCH4/NOTCH3/JAG2/NOTCH2/DLL4/DLL1/JAG1 8 

Cytokine-cytokine receptor 
interaction 

0.0007061
642772590
51 

0.00688510170327
574 

0.0061324792
4988123 

FLT1/FLT4/VEGFA/ACVRL1/TGFBR2/KDR/TNFRSF10D/PDGFRB/TNFRSF21/ACVR2A/LIF
R/TNFRSF14/BMPR2/VEGFB/TNFRSF12A/TGFBR1/ACVR2B/TNFSF12/PDGFRA/TGFB3 

20 

 
Supplemental	Table	2:	-	KEGG	pathways	enriched	for	the	genes	in	the	insulin	resistance	networks	of	IMAT	to	muscle	communication	network	(IMCN).	

Pathway name pvalue p.adjust qvalue geneID Count 
ECM-receptor interaction 1.0038702

5568973e-
19 

2.71044969036228
e-18 

2.4304227243
0146e-18 

THBS2/THBS4/ITGB5/LAMB3/LAMC1/COL1A2/COL4A1/ 
LAMB2/ITGA11/ITGB1/ITGB6/COL3A1/COL6A2/COL5A3/ 
COL6A1/THBS1/LAMA4/THBS3/FN1/COL5A1/LAMA3/COL5A2/DAG1/ITGA7 

24 

TGF-beta signaling pathway 2.6418923
1948385e-
07 

3.5665546313032e-
06 

3.1980801762
1729e-06 

AMHR2/THBS2/THBS4/DCN/TGFB1/THBS1/ 
THBS3/BMP4/SMAD3/BMP6/BMPR1B/BMPR1A/ACVR1 

13 

Cytokine-cytokine receptor 
interaction 

0.0005008
444265220
65 

0.00450759983869
859 

0.0040419023
8947631 

AMHR2/TNFRSF19/CXCR4/CX3CL1/PDGFB/EGFR/ 
CXCL14/TGFB1/CXCL12/MET/BMPR1B/BMPR1A/ 
TNFRSF1A/CX3CR1/IL6R/ACVR1B/ACVR1 

17 
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10.3. Abbreviations 
 
1,2 DAG 1,2-diacylglycerol  
2- h PG 2-hour plasma glucose (2-h PG) 
ACs Adipogenic cells 
ADA American Diabetes Association  
ASCs adipose stem cells  
ATH Athletes 
ATM Adipose Tissue Macrophages 
ATP Adenosine Triphosphate 
ATP Adenosine triphosphate 
BAM Binary Alignment Map 
BCAA Branched-chain Amino Acid 
BMI Body Mass Index 
CAM Cell adhesion molcules  
CCK  Cholecystokinin 
cfDNA Cell free DNA 
CG Central Gene  
CMR Colorado Multiple Institution Review  
CN Central Node 
CO Computed Tomography  
COPD Chronic Obstructive Pulmonary Disease (COPD) 
CT Computed Tomography  
ctDNA Tumor DNA 
CVAs Cerebrovascular Accidents  
CVS Cardiovacular disorder  
DAG Diacylglycerol 
DE Differential Expression 
DEA Differential Expression Analysis  
DESeq Differential Expression Analysis Based on the Negative Binomial 

Distribution 
DM Diabetes mellitus 
DO Disease Ontology  
ECM Extracellular Matrix  
ECM Extracellular Matrix  
EGFR Epidermal Growth Factor Receptor 
FA Fatty acid 
FABP Fatty acid binding protein 
FAPs Fibro-Adipogenic Progenitor cells 
FFA Free fatty acid 
FFM Fat Free Mass  
FPG Fasting plasma glucose (FPG)  
GEM Genome Multitool  
GFF General Feature Format 
GIR Glucose Infusion Rate  
GLM Generalized Linear Model  
GLUT Glucose Transporter 
GO Gene ontology 
GPCRs Guanine nucleotide-coupled receptors 
GSEA Gene Set Enrichment Analysis  
GTF Gene Annotation Format 
HbA1c Glycated hemoglobin  
HFD High Fat Diet 
IDF International Diabetes Federation  
IL-6 Interleukin-6 
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IM IMAT to muscle 
IMAT Intermuscular adipose tissue 
IMATA Intramuscular Fat 
IMCL Intramyocellular Lipids 
IMCN  IMAT to muscle network  
ITGB3 Integrin beta 3 
JNK Jun N-terminal kinase 
JSI Jaccard similarity index  
KEGG Kyoto Encyclopedia of Genes and Genomes 
kNN K-Nearest Neighbors 
KO Knockout  
LC Lean Controls  
MI Muscle to IMAT 
MICN Muscle to IMAT Network  
MPCs Muscle Progenitor Cells  
MRI Magnetic Resonance Imaging  
MRI magnetic resonance imaging  
mRNA Messenger ribonucleic acid 
MSCs Muscle Satellite Stem Cells  
MSigDB Molecular Signatures Database 
mtDNA Mitochondrial DNA 
mTOR Mammalian target of rapamycin 
mTORC Mammalian target of rapamycin complex 
NCBI National Center for Biotechnology Information 
NE Negative Edges  
NFκB Nuclear factor kappa 
NG Neighbouring Gene 
NN Neighborhood Nodes 
NNNs Nearest Neighbour Networks 
OGTT Oral Glucose Tolerance Test 
ORA Over Representation Analysis  
PAI-1 Plasminogen Activator Inhibitor 1 
PAX7 Paired Box Proteins 7 
PCA Principal Component Analysis  
PE Posative Edges  
PKC Protein Kinase C   
PPAR Peroxisome Proliferator-Activated Receptor 
PPY Peptide YY 
RBP4 Retinol binding protein 4 
RINs RNA integrity numbers  
SAT Subcutaneous Adipose Tissue  
T2D Type 2 Diabetes  
TAG Triacylglycerol 
TMM Trimmed Mean M Values  
TNFα Tumor necrosis factor α 
TPM Transcripts per kilobase Million 
UCSC University of California Santa Cruz 
VAT Visceral Adipose Tissue   
WHO World Health Organization  
WNT5A Wnt family member 5A 
WT Wild type 
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10.4. Glossary 
Nodes: In biological networks nodes are connection points, for example, genes, proteins, 

or metabolites. Therefore, in this thesis Genes or nodes referred to the something.  

Edges: Represents the physical interaction between nodes in a network. For example, 

physical interaction between two proteins. Thus, in this thesis Interacting pairs, physical 

interactions, or gene pairs implying the same thing. 

Interaction networks: A network to represent the putative/physical interaction between two 

nodes.   

Hub: A node in the network that has the highest connectivity.   

Degree: The number of edges a node has. 

Clusters: Group of genes, proteins or samples sharing identical futures. 

Modules: A networks of genes or proteins that work together to preform specific functions. 

Dynamic network: Network that changes over times or in response to disease conditions.  

Static network: Network that does not change over the courses of time or disease 

conditions.  

Rewiring: Node connective changes or restructuring of the interaction between nodes due 

to condition changes. 

Differential networks: Network showing interaction or edge difference between two 

networks.  

Bottleneck node: Node with high degree of betweenness (intersection point) that connects 

many sub-networks within the main network.   

Group: Clinically identical study subjects  
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