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Abstract

The immune system is complex and our knowledge gaps in the underlying regulatory
mechanisms are complicating the treatment of many diseases. Large amounts of sequencing
data help to bridge this gap but require new multi-OMICs data analysis strategies to draw
meaningful biological conclusions from them. Our goal for this thesis is to devise project-
specific data analysis strategies in a biologically informed way so that we can gain new
insights into immunological mechanisms on the innate and adaptive immune system.

Within the innate immune system we investigate the transcriptional changes triggered
by glucocorticoids. Glucocorticoids are widely used anti-inflammatory drugs, but their
long-term treatment leads to severe side-effects. We look into macrophages and the gene
regulation mediated through the glucocorticoid receptor (GR), to understand how it can
simultaneously activate some target genes and repress others. We apply a combination
of standard motif enrichment tools and a custom machine learning workflow to identify
sequence determinants that drive gene expression changes. We find that while the NR3C1
motif is associated with GR-mediated gene activation, gene repression is more complex and
involves factors of the activator protein 1 (AP-1), nuclear factor-kappa B (NF-κB) and signal
transducer and activator of transcription (STAT) families. Taken together, our computational
results and wet-lab experiments indicate that GR competes with STATs for DNA binding,
which leads to a suppression of STAT target genes. While further validations are needed to
confirm this conclusion, our findings improve our understanding of the immunosuppressive
action of glucocorticoids and lay the necessary groundwork to engineer therapies with less
side-effects.

Within the adaptive immune system we investigate CD8 T cell progenitor populations,
specifically looking into mechanisms of exhaustion, which describes a hypofunctional T
cell state that limits the effectiveness of cancer immunotherapies. We integrate bulk and
single-cell sequencing datasets from public and private sources into exploratory analyses
that are followed up by flow cytometry based validations. We find that progenitors of
exhausted T cells are formed in acute infection and, to a small degree, maintained after the
infection is resolved. This shows that a diverse progenitor repertoire is preemptively formed
irrespective of the outcome of an infection and environmental factors shape which populations
subsequently get maintained in high numbers. Correspondingly, we followed up on the
environmental factors needed by non-exhausted cells and found that interleukin-2 treatment
successfully maintains them in a chronic environment. This discovery not only sheds new
light on the mode of action of existing compounds but more importantly, it identifies a novel
key target population of immunotherapy approaches which can be expanded to circumvent
exhaustion altogether.

iii



Kurzfassung

Unser Ziel für diese Arbeit ist es, projektspezifische Datenanalysestrategien auf biologisch
informierte Weise zu entwickeln, damit wir neue Erkenntnisse über immunologische Mecha-
nismen im angeborenen und adaptiven Immunsystem gewinnen können.

Im angeborenen Immunsystems untersuchen wir die durch Glukokortikoide ausgelösten
transkriptionellen Veränderungen. Glukokortikoide sind weit verbreitete entzündungshem-
mende Medikamente, aber ihre langfristige Anwendung führt zu schwerwiegenden Neben-
wirkungen. Wir untersuchen Makrophagen und die durch den Glukokortikoidrezeptor (GR)
vermittelte Generegulierung, um zu verstehen, wie er gleichzeitig einige Zielgene aktivieren
und andere reprimieren kann. Wir wenden eine Kombination aus Standardwerkzeugen zur
Testung von Motivanreicherung und einem massgeschneiderten Machine Learning workflow
an, um Sequenzdeterminanten zu identifizieren, die Genexpressionsveränderungen steuern.
Wir stellen fest, dass das NR3C1-Motiv mit der GR-vermittelten Genaktivierung assoziiert ist,
während die Genrepression komplexer ist und Faktoren der activator protein 1 (AP-1), nuclear
factor-kappa B (NF-κB) und signal transducer and activator of transcription (STAT) Familien
einschliesst. Zusammenfassend deuten unsere Berechnungsergebnisse und Experimente im
Labor darauf hin, dass GR mit STATs um die DNA-Bindung konkurriert, was zu einer Unter-
drückung von STAT-Zielgenen führt. Während weitere Validierungen erforderlich sind, um
diese Schlussfolgerung zu bestätigen, verbessern unsere Ergebnisse das Verständnis für die
immunsuppressive Wirkung von Glukokortikoiden und legen die notwendigen Grundlagen
für die Entwicklung von Therapien mit verminderten Nebenwirkungen.

Im adaptiven Immunsystems untersuchen wir CD8 T Zell Vorläuferpopulationen und kon-
zentrieren uns speziell auf die Mechanismen der Erschöpfung, welche einen hypofunktionalen
Zustand von T Zellen beschreibt, der die Wirksamkeit von Krebsimmuntherapien einschränkt.
Wir integrieren Datensätze von Massen- und Einzelzell-Sequenzierungen aus öffentlichen und
privaten Quellen in explorative Analysen, die durch Durchflusszytometrie-basierte Validierun-
gen ergänzt werden. Wir stellen fest, dass Vorläufer von erschöpften T Zellen während einer
akuten Infektion entstehen und in geringem Ausmass auch nach erfolgreicher Eliminierung
der Infektion aufrechterhalten werden. Dies zeigt, dass eine vielfältiges Vorläuferrepertoir,
unabhängig vom Ausgang einer Infektion, vorsorglich gebildet wird und Umweltfaktoren
bestimmen, welche Populationen anschliessend in hoher Anzahl aufrechterhalten werden.
Gleichermassen sind wir den Umweltfaktoren nachgegangen, die von nicht-erschöpften
Zellen benötigt werden, und stellten fest, dass eine Interleukin-2 Behandlung sie erfolgreich
in einer chronischen Umgebung aufrechterhält. Diese Entdeckung wirft nicht nur ein neues
Licht auf die Wirkungsweise bestehender Präparate, sondern identifiziert vor allem eine neue
zentrale Zellpopulation für immuntherapeutische Ansätze, die expandiert werden kann, um
Erschöpfung gänzlich zu umgehen.
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Preface

1. Structure and contributions

During the course of my PhD I had the privilege to work on a number of different scientific
projects and publications. Several of them have been published already, one project is still
under active investigation and one manuscript is waiting for submission. This work would
not have been possible without my collaborators. However, in the context of this thesis, I will
focus on the portion of the projects that I was involved in and will omit the work of others
unless needed for conceptual understanding.

We start the thesis by introducing the biological background in Chapter 1 that is necessary
to understand the projects discussed in this thesis. This includes a general overview of the
immune system followed by an in depth description of macrophages, immune receptors and
CD8 T cell exhaustion. Furthermore, it includes a section regarding processing workflows of
next-generation sequencing techniques whose content is similar to a review we published on
this topic:

Höllbacher, B., Balázs, K., Heinig, M., & Uhlenhaut, N. H. (2020). Seq-ing answers: Current
data integration approaches to uncover mechanisms of transcriptional regulation. Compu-
tational and Structural Biotechnology Journal, 18, 1330–1341. https://doi.org/10.1016/j.
csbj.2020.05.018 [1]

This is followed by Chapter 2 on technical background, which covers common concepts in
the field of machine learning and mathematical methods used within the projects.

After this general introduction we start by presenting our research on gene regulation in
macrophages in 3. This chapter is similar to the corresponding publication:

Höllbacher, B., Strickland, B., Greulich, F., Uhlenhaut, N. H., & Heinig, M. (2023). Machine
learning reveals STAT motifs as predictors for GR-mediated gene repression. Computational
and Structural Biotechnology Journal, 21, 1697–1710. https://doi.org/10.1016/j.csbj.
2023.02.015 [2]

Figure 3.6C and Supplemental Figure A.6 on western blots were made by Benjamin Strickland.
All other visualizations and analyses shown in that section were performed by me.

Next, we present our work in the field of CD8 T cell exhaustion in Chapter 4. This chapter
includes two projects that are related in their subject matter but represent to independent
projects. The first part of the chapter (Section 4.1) covers some of the aspects discussed in the
corresponding manuscript:

Wu, M.*, Höllbacher, B.*, Wurmser, C., Berner, J., Donhauser, L., Bongers, L., Toppeta,

v
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F., Strobl, P., Heinig, M., Chu, T., & Zehn, D. (2023). Precursors of exhausted T-cells are
preemptively formed regardless of the outcome of infection. Manuscript under submission. *
equal first author contribution [3]

With the exception of Supplemental Figure B.1 showing the FACS gating strategy for se-
quencing, all included visualizations and analyses shown in that section were performed by
me.

The second part of the chapter (Section 4.2) covers still ongoing work that is topically
related but independent. While this project includes a lot of wet lab experiments, I will focus
on the computational analyses and with the exception of Figure 4.9 all included visualizations
and analyses were performed by myself.

Another projects that I contributed to during my PhD is:

Schmid, K. T., Höllbacher, B., Cruceanu, C., Böttcher, A., Lickert, H., Binder, E. B., Theis, F. J.,
& Heinig, M. (2021). ScPower accelerates and optimizes the design of multi-sample single
cell transcriptomic studies. Nature Communications, 12(1), 6625. https://doi.org/10.1038/
s41467-021-26779-7 [4]

Since I merely had a supporting role in that project and it was not the main focus of my PhD
work, it is not discussed in this thesis.

The thesis concludes with a discussion of the individual projects as well as joint conclusions
and outlook in Chapter 5.

vi
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1. Introduction

1.1. Immune system

Figure 1.1.: Innate and adaptive immunity. The innate immune system provides a fast acting
first line of defense which controls pathogens until the adaptive immune system is activated.
Epithelial tissues form a physical barrier against pathogen entry. B cells and T cells specific
for the antigen must undergo clonal expansion and differentiation into effector cells. Inspired
by [5]. Schematic created with BioRender.

The role of the immune system is to protect the body from external hazards as well as
malignant changes that come from within the body itself. In other words, the immune system
fights off harmful infections by bacteria, viruses and parasites while concurrently eliminating
mutated cells that might otherwise turn into tumors. In the fight against infections, the
fast acting branch called innate immunity restrains infections while the slower but more
specialized adaptive immune response gets mounted (see Figure 1.1).

Cells from the innate immune system are equipped with germ-line encoded molecular
pattern-recognition receptors such as Toll-like receptors, whose specificity is genetically
determined [6]. Among the innate immune cells with pattern recognition receptors are
macrophages that digest debris such as dying cells and bacteria [7].

While the innate immune system is good at keeping most infections at bay by using
conserved patterns, some pathogens escape these mechanisms and require the adaptive

1



1. Introduction

immune system to successfully clear the infection [8]. The adaptive immune system takes
a couple of days to be fully activated and is made up by lymphocyte populations. The two
interconnected parts of the adaptive immune system, the humoral (antibody-mediated) and
cell-mediated immune system, are formed by B lymphocytes and T lymphocytes, respectively.

1.1.1. Macrophages

Tissue-resident macrophages are first created during embryonic development, when fetal-
derived macrophages form specialized populations in various organs such as the liver, the
skin and the central nervous system. In the adult organism, monocyte-derived macrophages
can replenish those populations, by developing from hematopoietic stem cells in the bone
marrow and differentiating into macrophages within their target tissue [7]. In fact, this process
of generating macrophages from hematopoietic stem cells is leveraged in experimental models
working with bone-marrow derived macrophages (BMDMs).

Macrophages express the pattern recognition receptor Toll-like receptor 4 which binds
Lipopolysaccharide (LPS) and leads to upregulation of B7 molecules [9], a costimulatory
signal promoting T cell activation. Furthermore, the signalling downstream of the pattern
recognition receptors triggers the activation of inflammatory transcription factors (TFs) such
as nuclear factor-kappa B (NF-κB), activator protein 1 (AP-1) and IRFs [10] and the production
of pro-inflammatory cytokines.

In cases such as severe COVID-19 [11], autoimmune diseases [12] or asthma [13], excessive
inflammation causes harm and requires treatment with immunosuppressive glucocorticoids
such as the synthetic compound Dexamethasone (Dex). Glucocorticoids have long been
shown to act on macrophages, which are among the most effective producers of inflammatory
cytokines [14, 15], putting them at the center of anti-inflammatory treatments. While treatment
leads to the clinically beneficial upregulation of anti-inflammatory genes and downregulation
of inflammatory genes, long term Dex treatment comes hand in hand with side-effects
affecting the hormone system and energy metabolism [16]. An incomplete understanding of
the underlying molecular mechanisms have hindered the efforts of pharmaceutical companies
to develop drugs with fewer side effects [17].

What has been established so far is that glucocorticoids bind to the glucocorticoidreceptor
(GR), which is encoded by the gene Nr3c1. Upon binding its ligand, GR dimerizes and
translocates into the nucleus where it exerts both, gene repression and activation [18]. For
the case of gene activation, it is widely accepted that GR recognizes and binds to genomic
sequences, coined GR response elements (GREs), and acts together with a plethora of cofactors
to mediate gene transcription [19, 20, 21, 22]. For the case of gene repression there currently
exist a number of contradictory explanations. While some research suggests that GR-mediated
gene repression is accomplished through DNA-binding independent tethering of GR to the
inflammatory TFs AP-1 and NF-κB [23], other evidence shows that direct DNA-binding is
required for GR-mediated suppression [24].

The concept that the transcriptional outcome is encoded in the DNA sequences was initially
suggested when scientists observed that in addition to the classical activating GREs, there
exist GR-bound DNA sequences linked to gene repression, which were named negative GREs

2



1. Introduction

(nGREs) [25]. The existence of nGREs could not be validated by some groups [26, 27] but the
idea of sequence-encoded repression was substantiated by luciferase reporter asssays [27].

Recent investigations have revealed that the repression mediated by GR is more intricate
than originally perceived, involving additional factors such as epigenetic elements like chro-
matin structure and phase separation [28, 29]. Furthermore, changes in accessibility,induced
by interactions with chromatin remodelers, also contribute to this repression [30]. The goal of
our project described in chapter 3 is to combine all these epigenetic components to get a more
complete view on GR-mediated gene regulation and identify novel co-regulators involved in
repression. This knowledge could pave the road to developing therapeutics with fewer side
effects.

1.1.2. Lymphocytes

Lymphocytes are the cells of the adaptive immune system and encompasses B and T lympho-
cytes, which mature in the bone marrow and the thymus, respectively. In adults, generation
of novel T cells in the thymus decreases and the T cell population gets maintained through
proliferation of already matured cells [31]. B lymphocytes are responsible for the humoral
immunity, by producing a soluble version of its B cell receptor (BCR), referred to as anti-
bodies or immunoglobulins, that bind extracellular antigens. T lymphocytes constitute the
cell-mediated immunity and recognize antigens presented by other cells using their T cell
receptor (TCR).

Antigen receptors

A functional antigen receptor requires successful rearrangement of two genetic loci; the α

and β (or γ and δ) chains in T cells or the heavy and light chain of immunoglobulins in B
cells. Throughout the lymphocyte maturation process several checkpoints ensure that the T
cell contains a functional antigen receptor. Potentially useful clones are preserved through a
process of positive selection, while clones that fail to produce functional antigen receptors are
sent into apoptosis [32, 5]. Another crucial checkpoint during lymphocyte development is
negative selection of clones that react strongly to molecules naturally occurring within the
organism (i.e. self antigens). In the case of B cells, self reactivity can be undone through
additional receptor editing [5]. In the case of T cells, self reactive clones are either sent into
apoptosis or differentiate into regulatory T cells [32]. This special subset of T cells is crucial
for preventing autoimmune disorders and harmful inflammation by acting on other immune
cells and reducing their effector function.

The majority of T cells has a TCR composed of α and β chain. The exception is a small
population of γδ T cells, which is especially important in epithelial tissues and are situated
at the intersection of innate and adaptive immune system [33]. The αβ T cells consist of
two major subsets; cytotoxic CD8 T cells and CD4 T cells. CD4 T cells exert their function
by releasing small signalling proteins, so called cytokines, and acting on other immune
and stromal cells. They can be further subdivided into specialized populations such as
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follicular helper T cells, conventional helper T cells (including Th1, Th2 and Th17 cells) and
the previously mentioned regulatory T cells [34].

Both, BCRs and the αβ TCRs, are highly variable antigen receptors. They get generated
through a process called V(D)J recombination, which describes somatic rearrangement of
gene segments of the antigen receptor genes. Variability in the receptor stems from different
gene segment combinations that can be chosen, as well as the process of non-homologous end
joining that repairs the double stranded breaks introduced during the recombination events
[35]. In its native structure, the antigen specificity is driven through 3 hypervariable loops
of each chain coming together to form the antigen-binding site. These loops are commonly
referred to as complementary-determining regions (CDRs), with CDR3 sitting at the center of
the antigen-binding site [32]. CDR3 spans across the V(D)J gene segment junctions which is
why it is the most diverse CDR. The mechanisms of V(D)J recombination allow for a stunning
theoretical TCR diversity in the order of 1015 [36].

In fact, the chance of the the same TCR being created independently more than once within
the same individual is so low, that the TCR can be used as a unique identifier of the cells
[37]. For this purpose, the TCR sequence is used to define T cells originating from the same
clone, i.e. clonotypes, which can be leveraged to track cell progeny. In this vein, combining
single-cell TCR sequencing (TCR-seq) (scTCR-seq) with single-cell transcriptomics analyses
can provide insights about the developmental relationship of T cells [38]. In subsection 4.2.5
it lets us identify what progenitor population effector cells developed from based on their
common clonal origin and allows us to investigate the link between TCR activation strength
and gene expression in subsection 4.1.3.

CD8 T cells

Cytotoxic T cells, also referred to as CD8 T cells in accordance with the expression of the CD8
molecule on their cell surface, are specialized in recognizing intracellular bacteria and viruses
(e.g. lymphocytic choriomeningitis virus (LCMV)) as well as malignant transformations within
the host proteins which are a signal for tumor development. After successfully completing
somatic rearrangement of their TCR, mature, naive CD8 T cells leave the thymus and patrol
the body in search for their cognate antigen [39].

Meanwhile, antigen presenting cells (APCs) take up and process pathogens in the periphery.
Antigen gets loaded onto their MHC molecules and the APCs are transported to the lymph
nodes [40]. This coordinated effort leads to a near complete recruitment of antigen-specific T
cells [41]. Engagement of the TCR with its cognate antigen loaded onto the MHC, together
with costimulation through CD28 on the T cell with B7 molecules on the APCs and cytokines
are the 3 signals needed to fully activate a naive CD8 T cell [42]. Activation leads to the
generation of long-lived progenitors, that express the T cell factor 1 (TCF1, encoded by Tcf7)
[43] and provide a pool of self-renewing cells with proliferative potential as well as terminally
differentiated effector cells.

Effector CD8 T cells can migrate to the site of infection and perform effector function
through secretion of effector cytokines (interferon (IFN)-γ and tumor necrosis factor (TNF)α)
as well as cytolytic granzymes and perforins [42]. Antigen-specific cells expand 104 to 105
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fold during the week after activation, but only a fraction of them will survive, once the virus
is cleared [44]. These long-lived memory cells provide long-term protection and a fast recall
response in case of reinfection [44]. Throughout chapter 4 we refer to long-lived cells during
early phases of infection as progenitor populations, rather than memory populations, since at
that point the antigen is not cleared yet.

Figure 1.2.: Current paradigm of T cell exhaustion. Acute infection (e.g. with LCMV
Armstrong) leads to a strong effector response and antigen clearance. Chronic infection (e.g.
with LCMV clone13) leads to hypofunctional PD-1hi TOX+ CD8 T cells and reduced antigen
clearance. Schematic created with BioRender.

CD8 T cells constantly patrol the body to fight off infections. Those that are successfully
cleared are also referred to as acute infections, which are characterized by a strong antiviral
response and robust CD8 effector function [44]. Opposed to this are chronic infections,
(e.g. HIV, hepatitis C) where the antigen cannot get cleared and persists, leading to chronic
antigen exposure. These two infection types are experimentally frequently studied through
two strains of the virus LCMV. The Armstrong strain of LCMV leads to an acute infection,
whereas the clone13 strain of LCMV leads to a chronic infection [45]. These two infection
types are frequently used in combination with the so called P14 mouse model that contains
a transgenic T cell receptor recognizing the gp33 epitope of LCMV. This system allows the
controlled transfer of antigen-specific CD8 T cells into a host where we can recover them
with an allelic marker of the gene Cd45 and investigate their response to infection. In fact, we
leverage the P14 system in multiple experiments within section 4.1 and section 4.2.

Chronic infections, as well as cancer, have been linked to hypofunctional effector T cells,
so called exhausted T cells (Tex). They are marked by reduced effector function, reduced
proliferative potential [46] and increased expression of inhibitory receptors such as Pdcd1
(encoding for PD-1), Ctla4, Lag3, Tigit and Havcr2 (encoding for TIM-3) [47, 46, 48, 49].
Transcription factor genes associated with exhaustion include Tox, Tox2, Ikzf2 (encoding for
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HELIOS) and Nr4a2 [50]. Throughout section 4.1 and section 4.2 we use a combination of these
markers to gauge the transcriptional exhaustion phenotype of cells. Furthermore, despite the
many different nomenclatures present in the literature, we will refer to the progenitors of
these exhausted T cells as Tpex and non-exhausted progenitors as memory precursor T cells
(Tmpc) throughout this thesis (see also Figure 1.2).

The idea to target inhibitory molecules and thereby reactivate hypofunctional CD8 T
cells and increase tumor control, led to the emergence of Immune Checkpoint Blockade.
Reactivation of exhausted T cells by inhibiting interactions of PD-1 with its ligand PD-L1
has shown promising results in cancer immunotherapy [51]. Notably, the effect of PD-1/PD-
L1 blockade is exerted by acting on the Tpex population[52, 53, 54]. Immune Checkpoint
Blockade shows great effectiveness in some patients, while others do not respond or may
experience immune-related adverse events that can affect any organ within the body [55].

Figure 1.3.: Immune Checkpoint Blockade. Blocking antibodies suppresses the interaction of
inhibitory receptors with their ligands, leading to a reactivation of CD8 T cells and increased
antigen clearance. Schematic created with BioRender.

Alternative therapeutic approaches involve treatment with immunocytokines, either as
monotherapy or in combination with checkpoint inhibition. Considering that both differentia-
tion and maintenance of T cells is in large part guided by cytokines, it comes as no surprise
that they would be used as therapeutic access point. Interleukin (IL)-2 was the first substance
of cancer immunotherapy [56]. The IL-2 receptor can be either a low-affinity dimeric or a
high-affinity trimeric receptor, composed of IL-2Rβ, the common γ-chain and either with
or without the IL-2Rα chain (also known as CD25). IL-2 acts downstream through multiple
pathways including the phosphoinositide 3-kinase (PI3K)–AKT pathway, the Janus kinase
(JAK)–signal transducer and activator of transcription (STAT) pathway and the mitogen-
activated protein kinase (MAPK) pathway [57]. IL-2 has a pro-inflammatory role by acting on

6



1. Introduction

CD4 and CD8 T cells, but on the flip side also maintains regulatory T cells which express the
high affinity receptor. This gives regulatory T cells an advantage when competing for low
levels of endogenous IL-2 [57].

There exist multiple version of IL-2 that have been modified to either shift IL-2 binding
further towards the trimeric receptor to offer a potential treatment for autoimmune diseases
[58] or towards the dimeric receptor to increase its pro-inflammatory action. IL2v is a variant
of IL-2 that has mutations at the interface with CD25 while leaving the binding interface with
the β and γ chains intact [59]. This reduces its effect on regulatory T cells which have high
levels of CD25 and diminishes the disadvantage of CD8 memory populations which have
high levels of the dimeric receptor. Another way to target cytokines to a population of interest
is by fusing it to an antibody. An example for this is the compound FAP-IL2v where IL2v is
fused to an antibody against fibroblast activation protein (FAP) which is highly expressed in
cancer-associated fibroblasts thereby targeting it to the tumor environment [60]. A way to
combine the benefits of IL2v with checkpoint inhibition is by fusing it to PD-1, which shows
promising results in mouse experiments [61]. We investigate data from multiple of these
treatment options within subsection 4.2.5.

In recent years, we have learned that the thymocyte selection-associated high mobility
group box (TOX) protein is a central transcription factor in exhausted T cells [49, 62] which
made knocking it out seem like a promising therapeutic avenue. However it has since been
shown that TOX is required for T cell maintenance in an environment of chronic antigen
exposure and that numbers of progenitor T cells without functional TOX rapidly decline after
the infection [48]. Stable conversion of exhausted T cells into fully functional memory cells
remains a challenge [63] and understanding the early developmental processes leading to
the formation of exhausted T cells in the first place would bring great clinical benefit to the
field of chimeric antigen receptors (CAR) T cells. This novel immunotherapy is currently of
limited use in the treatment of solids cancers since CAR T cells become exhausted in the
tumor microenvironment [64].

1.2. Transcriptional regulation

All cells within an organism contain the same genetic material and yet the individual cell
types have vastly different roles. Their cell identity get defined through tissue and cell type
specific gene expression conferred by transcriptional regulators. These regulators include
transcription factors, which are proteins that bind to the DNA at specific sequence motifs,
promoter and enhancer regions within the DNA, histone modifications and DNA methylation
as well as the chromatin accessibility and 3D structure (Figure 1.4).

The main flow of information is from DNA, which can be replicated or transcribed to RNA
and from RNA which can be translated to protein [65]. There are some special circumstances
such as reverse transcription in RNA viruses, where RNA can be reverted back to DNA.
Nonetheless, in accordance with the central dogma of molecular biology, once sequential
information has been translated into protein, the information cannot get out again [66].
Importantly, each step in this flow of information is regulated.
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Various genome analysis technologies have been developed to investigate individual
parts of this transcriptional regulation machinery. Chromatin immunoprecipitation followed
by sequencing (ChIP-seq) leverages antibody-mediated pull-down of DNA sequences to
investigate TF binding locations and histone modifications [67]. Ribonucleic acid sequencing
(RNA-seq) measures gene expression at the level of RNA transcripts [68] [69] and Assay
for Transposase-Accessible Chromatin using sequencing (ATAC-seq) determines genome-
wide chromatin accessibility through the transposase Tn5 which preferentially inserts at
open chromatin sites [70]. There are also methods to assess the 3D interactions within the
chromatin at regions of interest [71] or on a genome wide [72] scale.

Figure 1.4.: Contributors to gene regulation. Cis-regulatory elements (enhancers or promot-
ers), trans-regulatory elements (transcription factors) as well as epigenetic modifications and
3D chromatin structure are known to influence gene expression. Various sequencing methods
can give insight into open chromatin regions (ATAC-seq), TF binding (TF ChIP-seq), histone
modifications (Histone ChIP-seq) and gene expression levels (RNA-seq). TF = transcription
factor. Schematic created with BioRender.

In the last decade, advancements in the next-generation sequencing (NGS) field lead to
commercialization of single-cell RNA-seq (scRNA-seq) which allow transcriptome sequencing
at single-cell resolution [73]. scRNA-seq is available in combination with assessment of cell
surface protein levels, marketed as Cellular Indexing of Transcriptomes and Epitopes by
sequencing (CITE-seq) [74] or in combination with TCR-seq [37]. Simultaneously capturing
these layers of molecular information allows to link the transcriptomic phenotype of cells

8



1. Introduction

to their TCR sequence. Furthermore, single-cell ATAC-seq (scATAC-seq), which measures
accessibility at single-cell resolution, can also be performed either as multiome assay in
combination with scRNA-seq or by itself.

Depending on the experimental question, researchers will assess samples in steady-state
e.g. across multiple tissues or cell-types or investigate changes in response to a treatment.
Common experimental approaches include the overexpression or knock-out of a gene of
interest to see its effect on TF binding, histone modifications or gene expression levels. In
other cases it is of interest to investigate treatment conditions that lead to changes in TF
availability and subsequent changes in transcript levels.

1.2.1. ChIP-seq data processing

ChIP-seq is used to locate and quantify genome-wide interactions of DNA with a protein of
interest, which can either be a transcription factor or modifications to histone tails. These
histone modifications influence nucleosome positioning and gene regulation [75, 76]. Possible
modifications to the histone tail are acetylation, methylation, phosphorylation and ubiqui-
tination, some of which have an activating effect on gene expression while others lead to
repression [77]. The concept that the combination of histone modifications form a crucial
regulatory mechanism is also referred to as the histone code [78].

An antibody specific for the protein of interest is added to the sample and will bind to
its target. Sequence fragments of the regions it binds to can be enriched by cross-linking of
protein with DNA, followed by fragmentation and antibody-mediated pulldown. After that,
the crosslinking can be reversed and the pulled-down fragments get turned into a sequencing
library. After sequencing the reads, various quality control metrics are used to assess read
quality. Commonly used metrics include the quality of the base calls, duplication rates, GC
content and adapter content all of which are returned as part of the popular tool FastQC. Low
quality bases and adapter sequences are trimmed from reads with tools like Trimmomatic [79]
or Cutadapt [80] before mapping it to the reference genome with aligners such as bowtie2
[81].

Local enrichment of reads along the reference genome, which is indicative of TF binding
/ histone modifications, are referred to as peaks. The most commonly used peak calling
algorithm is MACS2 [82] and uses dynamic Poisson distributions to determine fold enrichment
over the background signal. By default MACS2 is set up for the narrow peak shape resulting
from TF binding but it also offers parameters to accommodate the broad peak shape resulting
from many histone modifications.

To ensure reproducibility of the experimental findings, it is recommended to sequence a
pair of biological replicates, However, submitting more than two replicates rarely warrants
the increased cost [83]. The concept of irreproducible discovery rate (IDR) assesses the
agreement between both replicates by ranking the peaks and comparing them between
samples. A predefined significance level α is then used as threshold to determine the number
of reproducible peaks [84].

Biological interpretation of TF binding peaks requires functional annotation to its putative
target genes. Some researchers choose to do this manually through visual inspection of region
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of interest with tools such as the University of California, Santa Cruz Genome Browser [85] or
the Integrative Genomics Viewer [86]. Alternatively, tools such as the Bioconductor package
ChIPseeker use linear distance to systematically annotate genome-wide peaks to target genes
[87]. TFs can bind in promoter regions of genes but frequently bind to enhancers that can
be located several kilobases or even megabases from the gene they regulate which can make
correct functional annotation based on linear distance challenging. Hi-C [72] and Promoter
capture Hi-C [88] tackle this shortcoming by assessing loop formation between distal genomic
regions which allows to integrate 3D structure of chromatin in the process of peak annotation.
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Figure 1.5.: Standard processing workflow of ATAC-seq, ChIP-seq and RNA-seq. In all
cases, the quality of the sequenced reads is checked before performing the alignment. For
ATAC-seq and ChIP-seq data analysis continues with peak calling, followed by differential
accessibility and differential binding analysis, respectively. In ATAC-seq, accessible regions
can be searched for footprints which are then matched to motifs. In ChIP-seq checking
for motif enrichment within the peak regions and peak annotation are crucial steps. For
RNAseq, the aligned reads are quantified at gene level, the raw counts are then filtered and
normalized to enable further comparisons. The differential expression analysis provides a list
of significant genes, from which biological meaning may be retrieved. QC: Quality control,
DE: differential expression. Figure based on a schematic originally drafted for [1].

TF ChIP-seq has the potential to reveal regulatory factors, by looking for motifs (sequences
typically 8–16 base pairs long) that occur more frequently than expected within the set of
input sequences [89]. On one hand this can help identify the consensus motif of the TF
targeted by the antibody used for the pulldown, on the other hand it can also find binding
sites of co-factors that are enriched due to its interaction with the TF of interest Figure 1.5. The
widely used tool MEME-ChIP [90] employs expectation maximization, and allows to either
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perform de novo motif discovery or test for the enrichment of already known motifs, deposited
as position weight matrices in motif databases such as JASPAR [91]. Unfortunately, based on
ChIP-seq data alone, it is hard to distinguish between direct interactions of the targeted TF
with DNA and indirect interactions, where the TF is tethered to another DNA-binding factor.

1.2.2. ATAC-seq data processing

In eukaryotic organisms, DNA is compacted together with proteins into a complex named
chromatin. The elemental subunit of chromatin are nucleosomes which consist of DNA tightly
wound around an octamer of histones [92]. Depending on how tightly compacted the DNA is,
the accessibility of encoded genes to TFs, polymerase and other regulatory proteins changes
which in turn influences the genes’ expression. This accessibility is assessed in ATAC-seq
by using the enzyme transposase enzyme Tn5, which cuts at accessible chromatin regions
and simultaneously inserts an adapter sequence. Its predecessor DNase-seq uses the enzyme
DNase I [93], but contrary to the transposase it does not simultaneously insert sequencing
adapters and hence includes more steps during library preparation.

Removal of low quality base pairs and trimming adapter sequences in ATAC-seq is per-
formed analogous to ChIP-seq processing. For downstream analyses it is important to
consider the sequence bias [94] involved in Tn5 insertion and account for it.

Besides peak calling, popular downstream analyses include so called footprint analysis.
The idea behind this analysis is that TFs occupying the DNA prevent Tn5 from cutting. This
results in the TF leaving a footprint, seen as sudden drop of read coverage within high-read
coverage, nucleosome free areas [95]. The bound TF can be identifyed by matching these
protected sequences, known as footprints, with established TF binding motifs [96]. HINT-
ATAC identifies footprints in ATAC-seq data with hidden Markov models, while accounting
for transposase-specific biases [95].

1.2.3. RNA-seq data processing

Next-generation sequencing was a breakthrough for transcriptomics studies. Information
that could until then only been gathered in a targeted fashion using real-time quantitative
reverse transcriptase polymerase chain reaction or microarrays, could now be collected on a
genome-wide level without requiring prior knowledge.

It became possible to quantify different kinds of transcripts such as messenger RNA
(mRNA), microRNA and noncoding RNAs, perform de-novo transcript assembly or perform
isoform analyses [97, 98]. Variations of RNA-seq include 4-thiouridine labelling followed by
sequencing (4sU-seq), a method where newly transcribed transcripts are labelled to quantify
the levels of mRNA synthesis [99] and Cap-analysis gene expression followed by sequencing
(CAGE-seq) which determines site of transcription initiation through sequencing of 5’ end of
capped transcripts [100].

Most commonly, researchers are interested in the levels of transcripts as proxy for protein
levels and as such are mainly interested in quantifying mRNA. In that case, protocols to
prepare sequencing libraries include steps to enrich for RNA molecules with poly-A tails or
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directly deplete ribosomal RNA [101]. Ribosomal RNA takes up the majority of transcripts
within the cell and would reduce the sequencing depth available for other transcript types
[68].

Trimming of low-quality bases and adapter sequences is performed as for ChIP-seq analysis.
When aligning reads to a reference, they can either be mapped to a transcriptomic reference,
possibly including multiple isoforms per gene, or to a genomic reference. Especially when
mapping to a genomic reference, it is paramount that the alignment algorithm is splice
aware, meaning the aligner is able to consider that the read might be spanning non-coding
regions of the genome that got removed from the mature transcript through a process
called splicing. Popular splice-aware alignment tools include STAR [102], TopHat2 [103] and
Bowtie2 [81]. Once aligned, the number of reads overlapping the features of interest can be
quantified with transcript-based or exon-based approaches such as Salmon [104], kallisto
[105] or featureCounts [106], respectively. The output of the quantification step is a matrix
with rows representing features, columns representing samples and the values in the cells
representing read counts.

Depending on the experimental question at hand, different types of normalization methods
can be used to correct for technical noise. If the goal is to compare different features within
the same sample (e.g. expression level of gene A compared to gene B) it is crucial to correct
for GC-content [107] and gene length (as longer genes have a bigger sequence that reads
can map to). For comparisons between samples (e.g. to compare expression levels of the
same genes in response to a treatment or perturbation) it is indispensable to perform between
sample normalization. The most straight-forward way to approach this is by adjusting for the
total number of reads in the sample which is also referred to as library size. The assumption
in this approach is, that all samples have similar amounts of mRNA, which depending on the
treatments and the physiological impact on the cells, may or may not be true. More elegant
and popular tools to accomplish between sample normalization are edgeR’s trimmed mean
of M-values [108] and DESeq’s Mean Ratio Normalization [109]. The former uses trimmed
log expression values to calculate scaling factors that are not skewed by outlier genes, while
the latter computes scaling factors through the median ratio of gene counts relative to the
geometric mean per gene.

An intuitive way to explore the factors that contribute to variation in the data is to
perform exploratory analyses with principal Component Analysis (PCA). To systematically
test differential expression between conditions, the most widely-used methods fit a gene-wise
Generalized Linear Model (GLM) based on a design matrix [109, 110, 111]. Approaches differ
in how they account for dispersion and how flexible they are in terms of the experimental
design. DESeq2 can test for complex design with multiple fixed effects, whereas limma
additionally allows for the inclusion of a random effect (see also subsubsection 2.2.2).

1.2.4. Single cell sequencing data processing

While bulk sequencing methods are still widely used and lead to valuable biological insights,
they discount the considerable cell heterogeneity present within biological samples. In cases
where markers for celltypes contributing to this heterogeneity are known beforehand, this
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problem can be alleviated by enriching for the cells of interest before sequencing through a
methods called Fluorescence-activated Cell Sorting (FACS). Often times the research goal is to
investigate cell heterogeneity in an unbiased way and discover novel cell populations linked
to a certain phenotype.

In this case, single-cell sequencing technologies are the method of choice and allow to
investigate cells with unprecedented resolution and throughput. 10x is the leading company
for microfluidic approaches to single-cell sequencing and works in combination with Illumina
sequencers. They offer an array of assay types including scRNA-seq, scATAC-seq, CITE-seq
and TCR-seq that can be used separately or in certain combinations. Recent additions to their
portfolio include two different spatial transcriptomics solutions [112] (on the chromium and
visium platform). The tool Cellranger is part of 10x’ Chromium Single Cell Software Suite
and represents a convenient analysis pipeline that performs sample demultiplexing, barcode
processing, and feature quantification.

Cellranger includes the mkfastq command to convert raw sequence BCL files to FASTQ files
which serve as main input to the various downstream pipelines, which have to be selected
based on the chosen assay type. For gene expression assays the main outputs besides QC and
preliminary clustering results, are a barcodes, features and matrix file, jointly referred to as
count matrix, that can be used to for downstream processing with R or Python packages. The
most common toolkit in Python is scanpy [113], while those in R are Seurat (for scRNA-seq)
[114] and Signac (for scATAC-seq) [115].

The reason that Cellranger technically returns a barcode by feature matrix, rather than a
cell by feature matrix is that, while each barcode would ideally label an individual cell, it
is possible that a barcode labelled a cell doublet or an empty droplet instead. Still, empty
droplets can actually be useful by giving insights into the ambient RNA of a sample. These
cell-free mRNA molecules make there way into droplets by ways of background contamination
from the solution that dissociated cells were contained in. Ambient RNA is an unwanted
contaminant in the gene expression profile of sequenced cells and can be estimated from
empty droplets with the tool SoupX [116].

When cells are dying, the integrity of the cell membrane can be lost and cytosolic mRNA
can leak out, while RNA within the mitochondria stays behind. Those low quality cells
can be removed by filtering out observations with a low number of counts and genes per
barcode as well as those with a high fraction of mitochondrial reads [117]. On the other
hand, observations with a high number of counts per barcode might be doublets. However,
a superior way to remove cell doublets, rather than just excluding observations with high
reads counts, is via specialized tools such as scDblFiner [118]. Cutoffs for QC metrics can be
chosen manually after inspecting the distribution of QC metrics for the data at hand or can
be performed with automated thresholds using median absolute deviations (MAD) [119].

Variance is not stable across expression levels; counts for highly expressed genes vary more
than those of lowly expressed genes. There are different approaches to tackle heteroskedas-
ticity [120], with the method SCTransform attaining variance stabilization through Pearson
residuals [121].

After normalization of the gene counts, computation time and memory consumption can
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be reduced up by honing in on informative features. There exist multiple approaches to
do this, with some workflows selecting the most variables genes, while other might choose
to use deviance for feature selection [122]. From there, features can further be reduced by
dimensionality reduction tools such as PCA [123]. Frequently, the principal components
explaining most of the variance in the data are then used as input to compute a neighborhood
graph which is in turn used to generate a UMAP embedding [124].

A 2D UMAP representation can help to visually assess cell similarity. Additionally, the
same neighborhood graph can be used as input to the Leiden clustering algorithm [125]
in order to systematically group the individual cells into clusters. These clusters are then
annotated to cell types or states and frequently used as the grouping in differential gene
expression analysis, with the goal to identify markers. By default Scanpy performs differential
gene expression analysis based on t-tests combined with Benjamini-Hochberg correction for
multiple testing, while Seurat opts for significance testing with the non-parametric Wilcoxon
rank sum test.

1.3. Predicting gene expression

Transcriptional regulation involves a multitude of mechanisms on the genetic and epigenetic
level. Promoter and enhancer regions, transcription factors, histone modifications as well as
chromatin accessibility and structure are just some of the cogs in this complex machinery. As
such it is paramount to integrate multiple assays, each providing an insight into a specific
part of the process, to create a complete picture and gain understanding without missing
certain aspects. Depending on the specific question at hand, various methods for integrating
data can be employed. In light of the projects covered in this thesis, we will discuss existing
methods for integrating data to predict gene expression.

In subsection 1.2.2 we mentioned tools that identify transcription factor binding sites by
predicting footprints from accessibility data. Other groups expanded on this idea by deriving
TF binding scores from open chromatin and use them to generate scores for regression models
that predict celltype specific gene expression [126]. This approach created a link between
accessibility, TF binding and gene expression using linear models.

The availability of extensive training data and advancements in high-performance comput-
ing, particularly the use of graphical processing units (GPUs) fueled the comeback of neural
networks in genomic data analysis [127] and the development of new architectures such
as convolutional neural networks. Neural networks are applied to a multitude of genomic
tasks including the predictions of transcription factor binding [128], single-base resolution
read coverage tracks [129] or mRNA levels [130, 131]. Xpresso [131] focuses on predicting
steady-state median mRNA levels from promoter sequences in a tissue agnostic fashion,
whereas ExPecto [130] uses a neural network to extract regulatory features which are passed
to tissue-specific regularized linear models to predict gene expression.

Transformer architectures [132] revolutionized natural language processing and have
recently found their way into genomics [133, 134]. Enformer [134] takes tissue-specificity
into account by using a multi-task setting to predict thousands of epigenetic tracks. Gene
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expression is quantified by Cap Analysis Gene Expression (CAGE) assays which measures
read counts at the transcription start sites. The authors looked into the performance regarding
prediction of expression changes but had to conclude that it is difficult to predict fold-changes
of highly correlated samples.

While neural networks are an exciting new avenue in genomic analysis, the application
of existing models to a specific research question can be hampered by a variety of factors.
Namely, in the context of this thesis, most models are not suitable for investigating treatment-
induced transcriptional changes. They either investigate gene expression in a celltype agnostic
fashion to find general patterns of transcriptional regulation or inquire the more pronounced
cell type specific differences in steady state mRNA levels. The Enformer model allows
conclusions about gene expression change, albeit with mediocre performance.

Another hurdle when trying to use the publicly available Enformer model, comes with
projects focused on specific cell populations. Unfortunately, using the pretrained weights
to predict gene expression requires that the celltypes of interest were part of the set used
for model training. This prerequisite is hard to meet in the field of immunology, where
projects include a myriad of highly specialized cell subsets and possible treatment conditions.
Retraining transformer models is not only hugely expensive [133] but also requires data of
the celltype of interest in the form of CAGE assays. Taken together, since predicting gene
expression changes is still an open challenge, we decided to develop our own workflow to
investigate perturbation induced changes in a biologically informed way that will identify
validation targets.
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1.4. Scope of this thesis

The immune system is a complex system and tight regulation is needed to hold the balance
between pro- and anti-inflammatory processes and prevent pathologies.

An excessive immune response can lead to a variety of issues ranging from allergies and
autoimmune disorders to cytokine storm, a life threatening condition with elevated levels of
pro-inflammatory cytokines linked to mortality in severe COVID-19 cases [135]. Glucocorti-
coids are the mainstay of anti-inflammatory treatments but long-term administration can lead
to unfavourable side-effects on the hormone and energy metabolism causing disorders such
as diabetes [16]. On the molecular level it is unclear how signalling through the glucocorticoid
receptor, can regulate gene expression in a fashion that leads to activation of some genes but
repression of others.

In order to further the understanding of glucocorticoids’ mode of action in macrophages
we set out to:

• gather and integrate macrophage specific sequencing data from multiple data modalities

• build a machine learning model that links genomic sequence to transcriptional activation
versus repression

• interpret the model to find and validate sequence determinants predicting the transcrip-
tional response to glucocorticoid treatment

A reduced immune response of CD8 T cells is seen in the case of a phenomenon called
CD8 T cell exhaustion. While this mechanism can be beneficial during chronic infection as
it prevents tissue damage [48], the hyporesponsiveness poses a challenge in the setting of
cancer where it leads to reduced tumor control. The mechanisms leading to exhaustion are
currently not fully understood and therefore cannot be avoided. Furthermore, promoting
non-exhausted T cells could offer a way to circumvent exhaustion but it is unknown how to
maintain this population in a chronic environment.

In order to gain new insights into the mechanism of exhaustion we set out to:

• determine early transcriptional drivers of T cell exhaustion using multi-OMICs data

• design a neural network that can identify therapeutic targets using cell-type specific
public RNA-seq, ChIP-seq and ATAC-seq data

• identify ligands that can maintain non-exhausted T cells in a chronic environment

Immune celltypes are highly specialized cells in a complex system. As such, incorporating
domain knowledge and tailoring the data analysis to the projects at hand is key to the success
of the projects. In the end, gaining a deeper understanding of immune processes is the first
step to curing diseases that result from immune dysfunction and/or dysregulation.
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2.1. Clustering

Clustering approaches are commonly used in bioinformatics to find structures in high-
dimensional data. They fall into the category of unsupervised learning, meaning that we are
lacking class labels to drive the learning process. The goal of clustering is to group objects
into classes in order to maximize intraclass similarity and minimize interclass similarity [136].
Out of the many existing methods, I am elaborating on two that I used throughout this thesis.

2.1.1. Hierarchical clustering

Hierarchical clustering is frequently used in genomic analyses to order samples and/or
features based on their similarity when displaying data in heatmaps. The process of hierar-
chical clustering is commonly represented by dendrograms, which are tree-like structures
visualizing the distance between objects and their hierarchical grouping. The dendrogram can
be created in a divisive fashion from top down or agglomerative from bottom up. In divisive
methods, all objects start in the same cluster and get sequentially divided into smaller clusters
until each cluster only contains a single object. This top down approach is computationally
more expensive, making the bottom up alternative more popular [136]. In these agglomerative
methods, every object starts as a singleton cluster. The pairwise distance between all initial
clusters is considered and the closest pair (A,B) is merged into a new cluster C = A ∪ B. A
and B are then removed from the current set of clusters and C is added to the set. In case
the set of current clusters at this point only contains C, the algorithm is done, otherwise we
continue determining the next closest pair and merging.

Which pair is deemed closest depends on the distance measure used. The metric we turn to
when applying hierarchical clustering in the analyses of this thesis is the Euclidean distance
L2 between two d-dimensional points x = (x1, ..., xd) and y = (y1, ..., yd):

L2 =

√√√√ d

∑
i=1

(xi − yi)2 (2.1)

When using Euclidean distance as metric in hierarchical clustering, for the downstream
formulas we set:

dist(x, y) = L2(x, y) (2.2)

For clusters that contain more than one data point, we additionally have to decide how to
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define distance between clusters. Let X and Y be the sets of data points of two clusters. Three
popular definitions of distance between the sets X and Y are:

Single link:
distsl(X, Y) = min

∀x∈X,y∈Y
dist(x, y) (2.3)

Complete Link:
distcl(X, Y) = max

∀x∈X,y∈Y
dist(x, y) (2.4)

Average Link:

distal(X, Y) =
1

|X| ∗ |Y| ∗ ∑
∀x∈X,y∈Y

dist(x, y) (2.5)

2.1.2. Leiden clustering

Clustering is a crucial step in single-cell data analysis as it assigns cells into groups that can
then be annotated into celltypes or states before proceeding with downstream processing. A
common way to approach this is through community detection on graphs. Due to the sparse
and noisy nature of single-cell measurements, this is commonly preceded by a feature selection
and dimensionality reduction step (see also section 2.5 and subsection 1.2.4). Principal
component reduced expression space is used to calculate pairwise Euclidean distances and
generate a graph representation by applying a K-Nearest Neighbour (KNN) approach [117].
The constructed graph is a tuple G = (V, E) with a set of nodes V, which represents the
individual cells and a set of edges E which indicate the connection of each cell to its k-nearest
neighbors. A KNN graph is scalable to large cell numbers since it required considerably less
memory than a cell by cell similarity matrix

Leiden clustering is a graph-partitioning algorithm aiming to find communities of densely
connected groups within the network. Two of the objective functions the Leiden algorithm
uses for community detection are modularity and Constant Potts Model (CPM).

Modularity aims to maximise the difference between the actual number and the expected
number of edges within a cluster based on the total graph structure and is given by [125]:

Q =
1

2|E| ∑
c

(
ec − γ

K2
c

2|E|

)
(2.6)

where:

- Kc is the sum of the degrees of the nodes in cluster c

- |E| is the total number of edges in the graph

- K2
c

2|E| the expected number of edges in the cluster c

- ec is the actual number of edges in cluster

- γ > 0 is referred to as the resolution

CMP on the other hand is given by [125]:
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ECMP = ∑
c

[
ec − γ

(
nc

2

)]
(2.7)

where:

- ECMP is the energy associated with the clustering

- nc is the number of nodes and (nc
2 ) the number of all possible edges within the cluster c

For both quality functions choosing a lower resolution γ leads to fewer clusters and higher
resolution leads to more clusters.

The Leiden algorithm starts with each node being a singleton cluster. It then moves nodes
into clusters until a local maximum of the quality function is reached. This is followed
by a refinement step that allows the initially found clusters to be subdivided into smaller
partitions. After that it creates an aggregated graph where all nodes of the refined clusters are
represented as a single node. The initial cluster assignments for the nodes in the aggregated
network are taken from the unrefined cluster assignments. Individual nodes in the aggregated
graph get moved and the steps are repeated until there is no further improvement. Contrary
to the previously popular Louvain algorithm, which can result in internally disconnected
clusters, this guarantees that the resulting clusters are connected [125].

2.2. Supervised learning

In supervised learning we want to learn the association of input variables with one or more
observed output variables. To this end we choose a model class that is appropriate for the
data distribution and the assumed relationship between independent variables and target
variables. We train the model to find the best set of parameters by minimizing a loss function
capturing the quality of the fit.

2.2.1. Linear regression

The goal of linear models is to use P predictor variables to predict a continuous response
variable yi for each sample i ∈ 1, ..., n. The assumption is that the predictors have a linear
additive effect on the response variable.

yi = β0 + ∑
p∈1,...,P

βp ∗ xip + ϵi (2.8)

where:

- xip are the predictor variables

- β0,...,βp are the coefficients for the predictor variables

- ϵi is the error term of the sample
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This is equivalent to the matrix notation:

y = Xβ + ϵ (2.9)

The Ordinary Least Squares criterion (OLS) estimates the coefficients β̂ by minimizing the
sum of squared residuals (SSE) between the observed values of y and those predicted by the
linear model.

β̂ = arg min
β

((y − Xβ)T(y − Xβ)) (2.10)

We assume that the errors of the linear regression are independent and identically dis-
tributed (i.i.d.), following a normal distribution with

ϵ ∼ N(0, σ2) (2.11)

In this case the Ordinary Least Squares criterion and Maximum Likelihood Estimation are
equivalent. Maximum likelihood estimation (MLE) is a widely used method to find the best
coefficient vector β for the linear function linking predictor to target. MLE determines the
values for the coefficients such that the likelihood function gets maximized.

In general terms, for a model with parameters θ and observed data X, the likelihood
function L(θ|X) is expressed as joint probability density function of the data X, given the
parameters θ.

L(θ|X) = f (X|θ) (2.12)

To find the Maximum Likelihood Estimation of θ, we look for the values of θ that maximize
the likelihood function.

θ̂ = arg max
θ

L(θ|X) (2.13)

In detail, the likelihood function for a linear regression model is:

L(β, σ2|y, X) =
1√

(2πσ2)n
∗ exp

(
− 1

2σ2 ∗ (y − Xβ)T(y − Xβ)

)
(2.14)

where:

- y is the response variable

- X are the predictor variables

- β is the vector of coefficients

- σ2 is the variance of the error term

To estimate β and σ2 using MLE:

β̂, σ̂2 = arg max
β,σ2

L(β, σ2|y, X) (2.15)
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For the given estimated β̂ we can evaluate whether the input variable has a significant
effect on the prediction. The null hypothesis H0 : βi = 0 assumes no effect compared to the
alternative hypothesis H1 : βi ̸= 0. Since the coefficient β̂i divided by its standard error se(β̂i)

follows a Student’t t-distribution, we can calculate a t-test statistic with:

β̂i

se(β̂i)
∼ tn−p−1 (2.16)

We reject the null hypothesis and consider the coefficient significant, if the p-value of the
t-test statistic is smaller than the chosen significance threshold α.

2.2.2. Generalized linear models

For cases where the response variable is not continuous and normally distributed, generalized
linear models (GLMs) offer an extension to the linear regression framework to handle a wider
range of response variables [137]. In this case, rather than modelling the relationship of
predictors with a response variable directly, we model the relationship with a function of the
response variable (also referred to as link function). In addition to the linear predictor and the
link function another component of the GLM is its distribution family. The model predicts
the mean value and the distribution family specifies how the residual error is distributed. In
general, a GLM can be written as:

g(E(y)) = Xβ (2.17)

where:

- y is the response variable

- X is the matrix of predictor variables

- β is the vector of coefficients

- g() is the link function

- E(Y) is the expected value of y given the predictor variables

The coefficients of a GLM are usually estimated using MLE.

Logistic regression

To predict a binary response variable, we can use a variant of GLMs called logistic regression.
The success probability of a Bernoulli random variable P(y=1) is mapped to the continuous
outcome of the linear function using the logit function:

logit(P(yi = 1)) = log
(

P(yi = 1)
1 − P(yi = 1)

)
= β0 + ∑

p∈{1,...,P}
βp ∗ xi,p (2.18)

Accordingly, we can transform it with the inverse link function, the logistic function, to
predict the probability of an observation to be in class 1.
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P(yi = 1) =
1

1 + exp(−(β0 + ∑p∈{1,...,P} βp ∗ xi,p))
(2.19)

In the logistic regression model the effect sizes βp are log odds ratios and we can interpret
them such that a unit increase in the predictor changes the odds of P(yi=1)

P(yi=0) by exp(βp).

Negative binomial regression

Another variant of generalized linear models is the negative binomial regression, which
is deployed in the differential expression (DE) method DESeq2 [138]. DE analysis aims at
quantifying gene expression differences between two or more biological conditions, where
the groups can represent e.g. treatments, genotypes or perturbations.

The read counts Kij of gene i and sample j are assumed to follow a negative binomial
distribution with mean µij and dispersion parameter ϕi: Kij ∼ NB(µij, ϕi). Since the mean µij
is influenced by the read depth of the sample, we correct for it by estimating a size factor sij
used for scaling. From there, we can estimate µij = sij ∗ qij and fit the model in a gene-wise
manner:

log2(qij) = βi0 + ∑
p∈{1,...,P}

βip ∗ xjp (2.20)

The variables xjp are defined by the design matrix, which encodes information about the
predictor variables. In the simplest case it indicates the sample assignment to one of two
groups but the use of linear models allows for more complex designs. The returned coefficient
represents the logarithmic fold change between the two groups. The null hypothesis is that
there is no linear relationship between the grouping and the gene expression and that the
coefficient is zero H0 : βi = 0. In DESeq2 the hypothesis testing is performed with a Wald
test. The method shares information between genes to get more reliable estimates of the
dispersion parameter ϕi in cases of small sample size.

2.2.3. Regularization

With increasing number of parameters, models run the risk of overfitting on the training
data. This leads to lack of generalization or, in other words, poor performance on unseen
data. To counteract this, it is common practice to regularize the model coefficients. By
adding a regularization term to the loss function, the model is penalized for having too many
parameters or large weights.

The two most common types of regularization are L1 (Lasso) regularization and L2 (Ridge)
regularization. L1 regularization adds a penalty term that is proportional to the sum of
the absolute values of the coefficients which encourages the coefficients of less important
features to be shrunk to zero and results in feature selection. The penalty of L2 regularization
is proportional to the sum of the squared values of the coefficients, which encourages the
coefficients to be small, but not necessarily zero.
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In GLMs these two regularization types can be combined in the Elastic Net approach. It
uses a weighted combination of L1 and L2 penalties, which is especially useful if there are
many correlated predictors in the model [139].

β̂0, β̂ = arg min
β0,β

1
N

N

∑
i=1

l(yi, β0 + βTxi) + λ[(1 − α)||β||22/2 + α||β||1] (2.21)

where:

- α is the elastic net mixing parameter (α=0 corresponds to pure ridge regression and α=1
corresponds to pure lasso regression)

- λ is the tuning parameter controlling the overall penalty

- l(yi, β0 + βTxi) is the negative log-likelihood for each observation i

- ||β||1 is the L1 norm of the coefficient vector β

- ||β||22 is the squared L2 norm of the coefficient vector β

2.2.4. Model performance

In the supervised learning context, we can compare the predicted labels of a binary classifier
with the ground truth to generate a confusion matrix with four categories Table 2.1.

Table 2.1.: Confusion matrix with two categories. The performance of a binary classifier can
be evaluated by quantifying correctness of its predictions.

Predicted Label
True False

Actual Label
True True Positive (TP) False Negative (FN)
False False Positive (FP) True Negative (TN)

This categorization can be used to derive a number of different performance metrics.

TPR (true positive rate) / Recall / Sensitivity =
TP

TP + FN
(2.22)

FPR (false positive rate) =
FP

TN + FP
(2.23)

Precision =
TP

TP + FP
(2.24)

TNR (true negative rate) / Specificity =
TN

TN + FP
(2.25)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.26)
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As most classifiers output a continuous prediction score rather than discrete class labels,
using these metrics as performance indicators has the disadvantage that they require chosing
a threshold. An alternative evaluation method that is not influenced by the choice of threshold
is the calculation of the Area Under the Receiver Operating Characteristic (ROC) curve, often
abbreviated as AUC [140]. The ROC curve visually represents how a classifier’s true positive
rate relates to its false positive rate across various thresholds.

This process systematically explores all possible thresholds, creating a curve that spans
from the point (0,0) to (1,1). The closer the curve approaches the optimal point of (1,0),
which represents 0% false positive rate and 100% true positive rate and hence a perfect class
separation, the better the classifier’s performance. To quantitatively assess this performance,
the AUC is computed. AUC values range from 0 to 1, with 1 indicating excellent performance
and an AUC value of 0.5 corresponding to a random classifier (represented by a diagonal line
in the ROC curve).

2.2.5. Cross-validation

After training a model, we want to see how well it generalizes to unseen data, by assessing
the generalization error. This way we make sure we are not overfitting on the training data,
which is especially an issue in models with many coefficients fitted on small datasets (p >> n)
as is still the case for many genomics datasets. Especially in situations when our model
selection process includes hyperparameter tuning, we need to ensure that information from
the test set does not leak into the training process. One way to approach this it by splitting
the data into a training, validation and test set. In this case the validation set can be used for
hyperparameter tuning and the test set stays untouched for evaluation of the generalization
error. This approach was taken in subsection 4.2.1 and gives as a point estimate for the
generalization error.

Another way to approach this is with (nested) cross-validation, which assesses the variability
of the estimates and its dependence on the data split. In k-fold cross-validation the data is
split into k equally sized subsets. Each subset is iteratively used for validation, while all
the others are used for training. This way we compute multiple error estimates for each
model which, especially for small datasets, results in more robust results. In order to avoid
information leaking into the training process when performing hyperparameter tuning, we
can apply cross-validation in a nested fashion or set aside a separate test set before performing
the k-fold split. In the case of GLMs used in chapter 3 cross-validation allowed us to find the
optimal regularization parameter λ.

2.3. Neural Networks

Artificial Neural Networks are a class of machine learning models inspired by biology that
consist of neurons, organized into multiple layers. The first layer (representing the input data)
and the final layer (representing the prediction) are linked through one or more sequential
hidden layers. The number of layers is also referred to as network depth. Neurons are
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connected to the previous layer by weights and each neuron performs two basic functions to
create its output value. First, they compute the weighted sum of inputs and then they apply
an activation function to that sum. These activation functions are non-linear transformations
that allow neural networks to capture non-linear relationships in the data.

In a fully connected layer the output a of an individual neuron is calculated by:

a = τ(
n

∑
i=1

(wi ∗ xi) + b) (2.27)

where:

- τ is an activation function

- n is the number of neurons in the input layer

- xi is the i-th input neuron

- wi is the weight of the i-th neuron

- b is the bias

2.3.1. Training

The weights and biases of the network, referred to jointly as θ, are learned during model
training, with the goal to find the model parameters θ that minimize a chosen loss function L.

θ̂ = arg min
θ

L(y, f (X, θ)) (2.28)

where:

- y is the vector of true targets

- f (X, θ) is the predicted target of the network given input X and model parameters θ.

Model training is an iterative process consisting of a forward and a backward pass of
information. During the forward pass information from the input is fed into the model to
create a prediction. This prediction is used to compute the empirical loss:

Remp = L(y, f (X, θ)) (2.29)

During the backward pass, we use the loss as input and apply backpropagation to learn the
gradient of each weight with respect to the loss. This gradient is used to update the weights
so that the loss is reduced.

At a given step t, the model parameters θ are updated to move towards the steepest descent
using the calculated gradient ∇R(θt) and learning rate α [141].

θt+1 = θt − α∇Remp(θt) (2.30)

Since computing gradient updates based on the entire dataset is computationally very
expensive, this is usually done on a subset of the data and hence referred to as stochastic
gradient descent.
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In practice, stochastic optimization algorithms often include adaptive learning rates, by
keeping track of past weight updates, and regularization through weight decay. In subsec-
tion 4.2.1 we used an adaptation of the popular Adam optimizer [142], called AdamW, that
decouples weight decay from the gradient updates [143].

2.3.2. Convolutional Neural Networks

The introduction of convolutional neural network (CNN) architectures represents a major
breakthrough for the field of image processing [144]. Contrary to fully connected layers,
convolutional layers do not consider every node of the input layer when computing the
output of a neuron, but instead use a kernel with width and height dimensions smaller than
the input.

The input is frequently a multi-dimensional array, also referred to as tensor. In the case
of image processing the input could be a RGB image with dimensions L x H x C, denoting
the width, height and number of colour channels, respectively. In subsection 4.2.1 the input
dimensions of the genomic sequences are L x C, where L is the length, C are the 4 channels
representing the one-hot encoding of the nucleotide sequence.

The convolution operation is performed by sliding the kernel over the input and computing
the dot product between the filter and the current position of the input. The kernel depth
matches the number of input channels so that convolution leads to a single value for every
position of the input it is applied to.

For a 3-dimensional input, the convolutional operation can be represented as:

Yi,j =
C

∑
c=1

L

∑
l=1

H

∑
h=1

Wc,l,h · Xi+l−1,j+h−1,c (2.31)

where:

- X is the input layer

- W is the filter

- Y is the output layer

- C, L, and M are the dimensions of the filter

- i and j are the spatial coordinates of the output layer

The stride or step size parameter controls by what amount the kernel is moved along the
input matrix after each convolution. Together with the kernel size and optional padding the
stride determines the resulting output size Wout of the layer after the convolution.

Wout =
Win − K + 2 ∗ P

S
+ 1 (2.32)

where:

- Win is the input size (height or width) of the input feature map

- K is the size (height or width) of the convolutional filter
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- P is the padding, i.e. the number of zero values added to the edges of the input feature
map

- S is the stride of the convolution operation

Convolutional filters can detect patterns by taking into account the information of neigh-
boring pixels and, since the same weights are applied to different parts of the input, they can
detect patterns in a spatially invariant fashion. Furthermore, this weight sharing reduces the
number of parameters that require training compared to other layer types. In image analysis,
simple kernels can e.g. detect edges and sequentially applying multiple convolutional layers
allows them to learn more complex structures or objects. Applied to genomic sequence
analysis, simple patterns can resemble position weight matrices of TF binding motifs whereas
complex patterns captured deeper in the network can represent regulatory syntax grammar.

Multiple different filters can be applied on the same input so that the number of output
channels depends on the number of convolutional filters used in the step. By using several
filters at each convolution step together with multiple hidden layers, the model can learn
complex patterns and is well-suited for tasks such as image segmentation or genomic analyses.

2.4. Multiple testing correction

In genomic analyses, such as differential expression analysis in RNA-seq experiments, thou-
sands of comparisons are tested for statistical significance. Using traditional cutoffs, this
would lead to a very high number of false positives: for a single test the probability of
obtaining one false positive result (also called Type I error or family-wise error rate (FWER))
is α, but for N tests it increases to 1− (1− α)N . This increase in type I error means an increase
in the probability of wrongfully rejecting the null hypothesis H0, resulting in a false positive
finding. There exist multiple approaches to correct for this multiple testing burden, either by
adjusting the significance threshold α or by adjusting the p-values.

2.4.1. Bonferroni correction

If we have a family of N hypotheses and their corresponding p-values pi with i ∈ 1, ..., n, the
FWER is the probability to wrongfully reject the null hypothesis for at least one test within
this family even though it is true. The Bonferroni correction ensures that the FWER is less
than or equal α through adjusting α′ by the number of tests n [145].

α =
α′

n
(2.33)

Instead of adjusting α it is also possible to adjust the original p-value pi of each test i in the
family to

p′i = max(pi ∗ n, 1) (2.34)

Depending on the use case, the Bonferroni correction can be too conservative and leads to
an increased type II error, i.e. false negatives.
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2.4.2. Benjamini-Hochberg correction

An approach that is less conservative is the Benjamini-Hochberg correction. It is a method
that controls the false discovery rate (FDR), which is the proportion of wrongly rejected
H0 among all rejected null hypotheses [146]. The procedure ranks the original p-values in
ascending order 0 ≤ p1 ≤ ... ≤ pN ≤ 1 and determines the largest index k where

pk ≤
k
N

∗ α (2.35)

All p-values in the range p1, .., pk are considered significant. Alternatively, the original
p-values pi can be adjusted to qi using the ranked list of p-values starting from the largest
p-value i=k in decreasing order.

qi = min(pi
N
k

, qi−1) (2.36)

2.5. Dimensionality reduction

In high dimensional data, such as genome wide sequencing data, dimensionality reduction
is a crucial tool to facilitate visualization, denoising and improve computational efficiency.
There are many different approaches, with methods such as Principal Component Analysis
(PCA) [147] and MDS [148] focusing more on preserving the pairwise distance between all
the samples, and others such as t-SNE [149] and UMAP [124] focusing more on preserving
the local structure.

2.5.1. Principal Component Analysis

PCA is based on the idea that when you observe d variables for each sample and some of
the variables are correlated, a k≤d number of uncorrelated principal components can be
used to represent the data without loosing information on the relation between samples. The
principal components are ordered, such that the first component captures the highest amount
of variance in the data and the remaining components explain the highest amount of the
residual variance in descending order.

PCA is especially popular to show the overall sample similarity in bulk sequencing experi-
ments. In that case the samples are commonly visualized in PC space of the top components
in 2D plots. In single-cell sequencing analyses it is frequently used to reduce the number
of dimensions before computing a neighbourhood graph. Mathematically, the principal
components can be determined by computing the eigenvectors of the covariance matrix of
the data.

In detail, the steps include:

1. centering and scaling of the input data

2. computing the covariance matrix

3. finding eigenvalues and their corresponding eigenvectors
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4. sorting eigenvectors based on decreasing eigenvalue

5. pick top k eigenvectors and multiply them with the input to project it into PC subspace

The eigenvalues measure how much variance of the data is captured by each component
and can be used to decide how many components to retain based on elbow plots or the
Kaiser criterion. A useful aspect of PCA is that it is straightforward to investigate which
input features have a high contribution on what component.

2.5.2. Uniform Manifold Approximation and Projection

An alternative approach for dimension reduction is Uniform Manifold Approximation and
Projection (UMAP). The memory and runtime scalability of the algorithm make it suitable for
processing large datasets. In fact, UMAP is the methods of choice for visualizing single-cell
data in lower dimensional space and is used by scanpy [113] and Seurat [150]. Additionally,
it is arguably better than t-SNE at preserving the global structure and a benchmark study
demonstrated that its results are also the most reproducible [151].

The algorithm is based on ideas from topological data analysis and manifold learning
techniques. In general terms, it starts by constructing a k-neighbour graph and converting it
to a topological structure. From there it finds a low dimensional representation of the data
that is as close to that topological structure as possible [124].
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3. GR-mediated gene expression in
macrophages

Immunosuppressive drugs such as the synthetic glucocorticoid Dexamethasone (Dex), are
commonly used to treat inflammatory conditions [11, 12, 13]. As described in subsection 1.1.1,
Dexamethasone exerts its function by signalling through GR, however it is not yet understood
how it can simultaneously activate some target genes and repress others.

In this work, we aim at gaining a deeper understanding by integrating genome-wide
GR binding data with information on chromatin accessibility, H3K27ac marks, and 3D
conformation data (HiC) during the feature engineering process. The goal is to utilize
these feature in order to predict gene expression changes. Notably, we employ 4sU-seq
to specifically examine nascent transcripts generated after Dex treatment, thus avoiding
the confounding effects of preexisting transcripts. These genome-wide assays provide an
unprecedented level of detail regarding various aspects of transcription, however, the best
approach to integrate this wealth of information in order to derive mechanistic insights about
Dex-induced gene expression changes, remains unclear.
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Figure 3.1.: Graphical abstract of the workflow deployed in the manuscript. Graphical abstract
taken from [2].

We chose to tackle this challenge by approaching the biological question as a machine
learning problem. Our aim is to predict the transcriptional outcome, defined as binary
label for significantly up- and downregulated genes in response to Dex treatment, based on
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3. GR-mediated gene expression in macrophages

DNA sequence patterns. To achieve this, we have devised a biologically-informed workflow
that integrates genomic sequence and epigenetic assays into a unified model. We combine
GR ChIP-seq, ATAC-seq and H3K27ac data in various ways to generate predictive features.
Subsequently, we evaluated the performance of these different feature engineering strategies
using an independent test set. Ultimately, we dive into interpreting the best performing
models and conduct follow-up experiments to gain new insights into the regulatory grammar
governing transcriptional changes (Figure 3.1).

Our findings reveal that models primarily based on information from GR binding locations
outperform most others, demonstrating that the majority of information necessary for pre-
dicting Dex-induced transcriptional changes lies within these binding sites. Interestingly, the
inclusion of 3D conformation data and region activity information, achieved by incorporating
ABC score in the feature engineering process, does not improve the performance. Our analy-
ses provide confirmation of the involvement of NF-κB binding sequences in gene repression
and identify STATs as potential novel factors containing cryptic GR binding sites.

3.1. Results

3.1.1. Defining GR target genes

To understand GR-mediated transcriptional regulation, our first step is to define a set of
genes whose expression is significantly altered in response to GR signaling, referred to as
target genes. Leveraging previously published data [152] on 4-thiouridine labeled nascent
transcripts in murine BMDMs, we conducted a comparative analysis of nascent transcript
levels between samples treated with the pro-inflammatory agent LPS for 2 hours and those
subjected to a combined treatment of the GR agonist Dexamethasone for 2.5 hours followed
by a 2-hour LPS treatment (Dex+LPS). Binding of its ligand Dex allows GR to dimerize and
translocate to the nucleus where it regulated gene expression. 4sU-seq allows us to track
the levels of nascent transcripts and we can determine which genes are significantly up- or
downregulated which serve as binary labels for subsequent computational analyses.

Labelling nascent transcripts for 1 hour before lysis, we uncovered notable changes in gene
expression. Specifically, we observed a significant upregulation of 870 genes (adjusted p-value
< 0.05, log2FC > 0.58) and a downregulation of 898 genes when comparing the Dex+LPS
condition to the LPS-only condition (Supplemental Figure A.1). The number of DE genes
comparing Dex+LPS and LPS treated samples are consistent with similar trends reported
in microarray studies utilizing total RNA [27], albeit demonstrating more pronounced gene
expression changes compared to shorter treatment times [153].

3.1.2. ChIP-seq summits provide high resolution binding locations

Characterizing GR-mediated transcriptional regulation requires an investigation of the ge-
nomic regions bound by GR to decipher the underlying mechanisms. It is reasonable to
assume that these GR-bound regions harbor crucial information that determines the tran-
scriptional response to Dex treatment, making them ideal candidates for predictive modeling.
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3. GR-mediated gene expression in macrophages

To accomplish this, we leveraged previously published ChIP-seq data from macrophages
treated with Dex and LPS for 3 hours [154]. The Dex+LPS treatment activates GR in an
inflammatory context and we identified the genomic regions GR interacts with either through
direct DNA binding or indirectly by interacting with other DNA-binding factors. We define
the GR peak universe as reproducible peaks among replicates, resulting in a total of 13,431
peaks. This approach ensures our focus on robust peaks and aligns with the number of GR
peaks observed in Dex+LPS-stimulated macrophages in earlier reports [27].
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Figure 3.2.: GR binding regions. (A) Percentage of GR ChIP-seq peaks containing a certain
amount of NR3C1 half site or full site matches. (B) Width distribution of GR ChIP-seq peaks
called by MACS2. (C) Read distribution around GR ChIP-seq peak summits. Aggregated (top)
and per location (bottom). Colors represent values scaled by row with (x - mean(x))/(max(x)-
min(x)+1). (D) De novo motif enrichment in a 100 bp region centered on the GR ChIP-seq
peak summit compared to shuffled control, with evalue and manual annotation to known
motifs above the sequence (left). Positional distribution of found motif in relation to the GR
ChIP-seq peak summit (right). (E) Genomic location of GR ChIP-seq peaks. (F) Distribution
of distance from GR ChIPs-eq peaks to closest transcription start site (TSS). Figure and legend
taken from [2].

Unexpectedly, only a fraction (27.82%, 3,737 peaks) of these ChIP-seq peaks contained at
least one NR3C1 full site (Figure 3.2A). On the other hand, nearly all peaks (99.20%, 13,324
peaks) contained one or more NR3C1 half sites. However, given the relatively short length of
the NR3C1 half site, its occurrence by chance without biological significance is statistically
more likely. Our analysis revealed a total of 424,144 genome-wide matches for the full site
and 14,427,667 for the half site.
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3. GR-mediated gene expression in macrophages

Although the average peak width was of substantial size (Figure 3.2B) with a mean of
1,178.96 bp and a median of 1,034 bp, we observed a distinct pileup of reads around the peak
summit (Figure 3.2C). Therefore, we selected a 100 bp region centered on the peak summits
(GR summit regions) for de novo motif analysis using STREME of the MEME Suite [155].
We compared the discovered motifs with previously described ones and found enrichment
(Figure 3.2D) of the macrophage lineage determining factor PU.1 (encoded by the gene Spi1)
(e-value = 1.6e−41), CEBPA (e-value = 5.2e−31), FOS::JUN motifs (e-value = 9.3e−23), and
the classical GRE (deposited in motif databases as NR3C1 motif) (e-value = 1e−20). The
enrichment of the AP-1 complex (composed of FOS and JUN) and CEBPs is not surprising
since they are known pioneering factors involved in GR recruitment [156, 157]. While the
occurrence of motifs related to these pioneering factors appeared evenly distributed over the
input window, the positional distribution of the NR3C1 motif within the GR summit regions
exhibited central enrichment.

In terms of genomic location, 27.70% of the peaks were found in promoter regions within
3 kb of the transcription start site (TSS), 37.86% in introns, and 30.75% in distal intergenic
regions (Figure 3.2E). These locations of GR peaks align with previous findings in mouse
liver under activated GR conditions [158].

It is noteworthy that a majority of the identified peaks lack a GRE, suggesting potential
scenarios where either certain GREs do not adhere to the consensus motif or alternative
mechanisms facilitate the interaction between GR and DNA, either directly or indirectly.
Nonetheless, the positional distribution of the NR3C1 motif within the GR summit regions
confirms the informative value of summit information in accurately determining the binding
location, making it invaluable for subsequent analyses. Consequently, the GR summit regions
provide us with high-resolution binding information, serving as an instrumental starting
point for predicting changes in gene expression. By assigning these summit regions to their
putative target genes, we can explore differences in the GR summit regions that may account
for the observed transcriptional outcome.

3.1.3. Activated and repressed GR target genes exhibit genetic and epigenetic
differences in their proximal GR summit regions

While GR peaks located in close proximity to a TSS are likely involved in the regulation of
the corresponding gene, accurately assigning peaks located far from a TSS is challenging. To
mitigate the risk of false annotation during this proximity-based assignment, we applied a
filter and considered only peaks within a 30 kb range of a TSS (Figure 3.2F). This filtering step
resulted in 10,117 (75.33%) of all peaks being included and annotated them to a total of 5,412
unique genes. Notably, for genes downregulated in response to Dex treatment, the nearest
ChIP-seq peak was found to be farther away compared to upregulated genes (Figure 3.3A). To
validate the statistical significance of this difference, we conducted a permutation test, which
confirmed that the observed gap of 9,909 bp exceeded what would be expected by chance
(p-value ∼ 0) (Figure 3.3B). These findings align with previous studies on GR binding in
humans [18] and suggest the presence of distinct mechanisms underlying GR-mediated gene
activation and repression, with the repression mechanism being more difficult to understand.
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We examined whether epigenetic changes, such as variations in the accessibility or acetyla-
tion of lysine residue at position 27 of the H3 histone (H3K27ac), a marker for active enhancers
[159], could account for the observed differences in gene expression. To investigate this, we
utilized previously published ATAC-seq data from BMDMs treated with LPS or Dex+LPS for
3h, as well as H3K27ac histone data from BMDMs treated with LPS (3h) or Dex(16h)+LPS(3h).
We calculated the difference in normalized scores between Dex+LPS and LPS-stimulated
samples, where positive values indicate higher signals in the Dex+LPS condition. Our findings
revealed that gene activation correlates with increased accessibility and a slight elevation in
H3K27ac signal. However, the repression of genes cannot be attributed to a loss of accessibility
(Figure 3.3C), which is is line with previous reports of sustained accessibility for repressed
targets [154] and enhanced accessibility at Dex-induced genes [160].

We examined whether subtle sequence variations within the NR3C1 motif, present in
the regulatory regions of genes that are upregulated or downregulated in response to Dex
treatment, could potentially explain the observed changes in gene expression. To investigate
this, we performed a de novo motif analysis separately for the GR summit regions associated
with activating and repressing genes (hereafter referred to as activating and repressing GR
summit regions, respectively). Surprisingly, we found a significant enrichment of the NR3C1
motif in the activating GR summit regions (Figure 3.3D), but not in the repressing regions
(Figure 3.3E) (p-value = 9.4e−7).

In order to systematically explore sequence differences while leveraging existing knowledge
of motifs, we quantified the occurrences of motifs from the JASPAR database [91] within the
activating and repressing GR summit regions. Subsequently, we performed a chi-square test
to determine whether the distribution of motif matches was uneven between the two sets.
Notably, within the original window size of 100 bp, the motif counts in the two peak sets
showed an adjusted R2 of 0.92 (Figure 3.3F, left). When using an extended window size of
1,000 bp, the adjusted R2 increased to 0.96 (Figure 3.3F, right). This indicates that using larger
input sequences leads to the dilution of differences, highlighting the importance of using
peak summit information combined with a narrow window size to enhance the resolution of
ChIP-seq data.

Analyzing the GR summit regions, we observed the most significant differences in the
occurrence of the NR3C1 and NR3C2 motifs, with adjusted p-values of 6.44e−30 and 1.48e−29,
respectively. In contrast to the de novo motif analysis, this approach allowed us to directly
assess the occurrence of differential motifs and it successfully identified known cofactors that
remained significant or marginally significant after correcting for multiple testing. Specifically,
for the motifs associated with gene repression, we identified cofactors of the NF-κB (NFKB1:
p-adj = 1e−2), NFKB2: p-adj = 5.9e−2), and REL ( p-adj = 9.71e−2 ), C/EBP (CEBPG:
p-adj = 3.93e−2), STAT (STAT2: p-adj = 1.32e−1), and OCT (POU2F1: p-adj = 4.03e−2,
POU1F1: p-adj = 5.9e−2, POU3F1: p-adj = 6.96e−2, and POU2F2: p-adj = 1.95e−1) families of
transcription factors (Figure 3.3F, left).

By examining the total motif counts within the activating and repressing GR summit
regions, we observed a predictive signal that can be further explored in subsequent analyses.
This proximity-based assignment of regions to genes, along with the established labels, can
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also be employed in computational approaches that operate on a per-gene level. For our
computational approach, we will utilize motif counts at GR summit regions with a window
size of 100 bp, combined with proximity-based assignments, as the reference model.

3.1.4. ABC scores capture condition-specific differences in chromatin activity

The proximity-based assignment of regions to genes provides a simplified approximation that
may overlook the intricate gene regulatory mechanisms by disregarding the three-dimensional
architecture of chromatin. However, a promising alternative known as the activity-by-contact
(ABC) model [161] offers a valuable approach to exploit chromatin structure data and
epigenetic information in order to achieve more accurate region-gene assignments. The ABC
workflow provides us with the opportunity to integrate publicly available HiC data [162] of
BMDMs, along with ATAC-seq, H3K27ac [163], and 4sU-seq gene expression data [152] and
returns multiple valuable outputs that we will use downstream. Firstly, it identifies potential
regulatory regions (active regions) within the genome. Secondly, it generates ABC scores,
which serve as indicators of regulatory potential. Additionally, it provides information on
the genomic location of these regions relative to their associated target genes (e.g. whether
the region is within the gene’s promoter). Notably, since the data utilized is specific to
macrophages and all samples, except for the HiC data, pertain to specific conditions (LPS
and Dex+LPS), the resulting ABC scores are condition-specific for these contexts as well.

The ABC workflow determined an average of 2.37 enhancers per gene in the Dex+LPS
condition and 2.36 in the LPS condition (Figure 3.4A, top) surpassing the predefined threshold
of 0.02, which aligns with the expected range specified by the ABC authors. Considering that
a specific genomic region can regulate multiple genes, the workflow allows ABC regions to be
assigned scores for multiple target genes. Specifically, in the Dex+LPS condition, enhancers
hold scores for an average of 1.45 genes, and in the LPS condition, they have scores for an
average of 1.44 genes (Figure 3.4A, bottom).

The ABC scores are determined in a condition-specific manner. As a result there are cases
where the workflow identifies a regulatory region for one treatment, but not the other. This
can happen if the region does not even meet the cutoff for accessibility or if the activity (as
determined by a combination of accessibility, H3K27ac marks and HiC contacts) does not
pass the threshold. In order to compare scores between conditions, we displayed scores that
are not present in the second condition as 0. We find that overall, the ABC scores between the
two conditions are highly correlated with r = 0.92 (Figure 3.4B).

Interestingly, when we selectively visualize the ABC scores associated with genes that are
either upregulated or downregulated in response to Dex treatment, we observe differences in
the marginal distributions (Figure 3.4C). Specifically, genes activated by GR are more likely to
have ABC scores for the Dex+LPS condition, while having no scores exceeding the threshold
(indicated as 0) for the LPS-specific scores. By calculating the difference in ABC scores
between the two conditions and plotting it against the log2 fold change in gene expression
for genes exhibiting changes in response to Dex treatment, we find a moderate correlation
(r = 0.25) (Figure 3.4D). This indicates that variations in the ABC score can account for a
portion of the stimulus-induced gene expression change, particularly for extreme cases near

36



3. GR-mediated gene expression in macrophages

0

1000

2000

3000

4000

0 5 10 15
# of enhancers per gene

co
un

ts

DexLPS

LPS

A

0

4000

8000

12000

0 2 4 6 8
# of genes per enhancer

co
un

ts

DexLPS

LPS

B

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
ABC score Dex+LPS

AB
C

 s
co

re
 L

PS

C

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
ABC score Dex+LPS

AB
C

 s
co

re
 L

PS

r =  0.25

−5

0

5

−0.25 0.00 0.25 0.50 0.75
ABC score Dex+LPS − ABC score LPS

ex
pr

es
si

on
 lo

g2
FC

(D
ex

+L
PS

 / 
LP

S)

100 200 300 400 500
count

D

0.0

0.2

0.4

0.6

0.0
31

25

0.0
62

50

0.1
25

00

0.2
50

00

ABC score Dex+LPS

de
ns

ity

has GR peak

no GR peak

E
no GR peak has GR peak

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
−2

0

2

Hi−C contact

lo
g2

(b
as

e 
ac

tiv
ity

)
10

20

30

count

F

G

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
ABC score Dex+LPS

AB
C

 s
co

re
 L

PS

43,750 kb 43,760 kb 43,770 kb 43,780 kb 43,790 kb 43,800 kb 43,810 kb

qA3.1

H3K27ac Dex+LPS

H3K27ac LPS

ATAC Dex+LPS

ATAC LPS

ABC Dex+LPS

ABC LPS

[0 - 6.00]

[0 - 6.00]

[0 - 5.50]

[0 - 5.50]

GRCm38 Cd83

chr13

Figure 3.4.: Condition specific region-gene assignments using the activity-by-contact work-
flow. (A) Number of enhancers per gene and genes per enhancer resulting from the activity-by-
contact (ABC) workflow. (B) Correlation of ABC scores between Dex+LPS and LPS conditions.
(C) ABC scores for regions annotated to (left) upregulated genes and (right) downregulated
genes. Scores that only passed the threshold of 0.02 in one condition, are displayed as 0 in
the second condition. (D) Difference in ABC scores between Dex+LPS and LPS condition
versus log2fold expression change from 4sU-seq (E) ABC scores of the Dex+LPS condition
for differentially expressed genes, split by whether the ABC enhancer region overlaps with
a GR peak or not. (F) Base activity versus powerlaw scaled and adjusted HiC contacts split
by whether the ABC enhancer region overlaps with a GR ChIP-seq peak or not. (G) IGV
snapshot of normalized H3K27ac and ATAC-seq signals as well as the condition specific ABC
scores for the CD83 locus. Figure and legend taken from [2].

37



3. GR-mediated gene expression in macrophages

the axes (Figure 3.4C).
Active regions are identified through the ABC workflow, and it is worth noting that not all of

these regions contain GR peaks. Interestingly, the active regions containing GR peaks tend to
have higher ABC scores (mean = 0.043) compared to those without GR peaks (mean = 0.041)
(Figure 3.4E). By considering that the score combines base activity with the number of HiC
contacts, we can infer that regions with GR peaks exhibit higher scores due to elevated base
activity (Figure 3.4F).

In the case of differentially expressed genes like Cd83, the condition-specific ABC scores
(Figure 3.4G) identify potential regulatory regions responsible for gene expression changes.
The ABC workflow integrates multiple epigenetic assays to make condition-specific predic-
tions of regulatory regions, not only for individual genes but on a genome-wide scale. At
present it is the gold-standard for enhancer-promoter assignments that other methods use as
benchmark [134]. However, the current challenge lies in determining how to combine ABC
results with additional genomic assays to predict gene expression responses. In our approach,
we will incorporate this information into our machine learning framework to uncover patterns
associated with Dex-induced gene repression for all differentially expressed genes.

3.1.5. Feature engineering

We want to predict gene-expression changes in a genome-wide fashion with a model using
tabular data as input, which makes the integration of all available information into a unified
feature matrix indispensable. This process involves making critical decisions at multiple
stages of feature engineering, including the identification of regions of interest, region-gene
assignments, and data aggregation for gene-level predictions. The ABC model provides
additional options at each of these levels.

The first decision is how to choose the input regions we consider when quantifying motif
occurrences. While it is reasonable to assume that much of the information governing the
transcriptional response to Dex treatment is found within the GR summit regions, focusing
solely on GR-bound regions might overlook other significant factors present in accessible but
non-GR-bound regions. Alternatively, active regions identified by the ABC workflow in either
the Dex+LPS or the LPS condition can be utilized as input for quantifying motif occurrences.
Within the active regions, we can further discriminate between promoters, located within
500 bp of a TSS, and enhancers, situated in genic or intergenic regions. Analyzing the
features extracted from these regulatory regions separately allows for flexibility in excluding
some or all promoter regions, on the other hand aggregating features from promoters and
enhancers into a single value increases interpretability. By feeding the motif counts from
promoters and enhancers to the model as individual features, we make the assumption that
those genomic regions capture different aspects of the sequences driving transcriptional
outcome. Conversely, considering that the majority of GR binding locations occur outside
of promoter regions, it can be argued that enhancer regions are predominantly responsible
for GR-mediated gene regulation, and thus, promoter regions could be excluded from the
model. In a hybrid approach, we exclude motif counts from promoter regions that are not the
promoter of the target gene in question but instead promoters of surrounding genes (nonself
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promoters).
On top of choosing the input regions we also need to decide on how to assign these regions

to their corresponding target genes. The simplest way is to assign each region to its nearest
gene by linear proximity, resulting in a one-to-one relationship. However, this approach
oversimplifies the biological reality because it ignores how genetic regions can interact in
three-dimensional space, even if they are far apart in sequence. Additionally, one region can
influence the activity of multiple genes. Using the ABC model allows us to have a more
flexible one-to-many mapping, considering situations where a single region is involved in the
regulation of several target genes.

Another factor to consider is that multiple regions can work together to regulate one
specific gene. At the aggregation step, we must decide whether each region’s contribution to
the gene-level prediction should be equal, or if we should weigh them based on their activity.
This opens the door to incorporating further epigenetic information about the regions by
using ABC scores as weights when we add up the motif occurrences. Lastly, instead of using
a feature matrix based on one specific treatment condition, we can explore the difference
between conditions. We do this after the aggregation step by subtracting the gene-by-motif
matrices of the Dex+LPS and LPS conditions (details see subsubsection 3.2.7).

3.1.6. GLMs identify motifs predicting GR mediated gene repression

Rather than making arbitrary choices in our feature engineering, we adopt a systematic
approach by exploring all possible combinations to identify the best one before delving into
the biological interpretation. It is a challenge that the number of features in some of our
matrices greatly exceed the number of data points, increasing the risk of overfitting complex
machine learning models. To mitigate this risk, we opt for simple logistic regression models
and apply regularization techniques to further reduce overfitting. Furthermore, linear models
offer a more straightforward interpretation of model parameters compared to more complex
models like tree-based ones. We recognize that motif counts of TFs from the same motif family
are correlated (Supplemental Figure A.2). To address this, we employ elastic net regularization
during feature selection in our GLMs. Elastic net regularization, unlike lasso regularization,
considers correlated features together [139], which is better suited for our specific use-case.
Moreover, the elastic net penalty helps exclude non-informative features from the final model
by assigning zero-coefficients, thereby improving biological interpretability.

As a reference model, we counted the occurrences of motifs in GR summit regions, assigned
regions to genes based on proximity, and then combined motif counts by simply summing
those from all summit regions mapped to the same gene without any weighting. Alternatively,
we quantified motif counts in active regions identified by the ABC workflow, assigned these
regions to genes using ABC-based assignments, and iterated the other modeling options
such as weighting and inclusion of promoters. In a hybrid approach, we combined motif
counts from GR summit regions but incorporated ABC information from the overlapping
ABC regions. This means we focused on summit regions located within regulatory regions
identified by the ABC workflow (Supplemental Figure A.3).
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Figure 3.5.: See legend on next page.
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Figure 3.5 (previous page): Systematic model comparison. (A) Model performance on the test
set for models generated iterating through combinations of feature engineering choices. (B+C)
Model coefficients displayed as heatmaps. Coefficients were scaled within each model for
plotting purposes. Euclidean distance was used as input for row and column clustering with
the ward.D2 method. Row barplot indicates number of models in which the feature received
a non-zero coefficient. 1-to-1 (prox) = proximity-based 1-to-1 mapping used in the reference
model. (B) Top 17 best performing models in which features in promoter and enhancer
regions are aggregated and their top 40 most frequently selected coefficients. (C) Coefficients
of models based on GR summitregions, filtered for factors with non-zero coefficients in at least
15 models. (D) All coefficients of the reference model and the best performing one based on
all active regions. aggr prom and enh = motif counts from promoter and enhancer regions get
aggregated and fed into the model jointly. sep prom and enh = genomic location (promoter,
genic, intergenic) of the regions of interest is considered in the feature engineering process
(leading to up to 3 features per motif). excl prom = whether all, none or only promoters that
are not assigned to the respective target gene (nonself promoters) should be excluded in the
feature engineering process. Figure and legend taken from [2].

By comparing models based on motif counts in ABC regions to those based on motif counts
in GR summit regions, we can disentangle different mechanisms at play: one group that
results from changes in accessibility and region activity (well performing models based on
the difference between Dex+LPS and LPS indicated in yellow), and another group that arises
from direct binding with GR. The overall best performing model achieved an AUC = 0.79
on the test set, with AUC = 0.83 on the training set, suggesting no substantial overfitting
(Supplemental Figure A.4A). This model utilized the difference in motif counts between
Dex+LPS and LPS conditions at ABC regions (Figure 3.5A). It excluded promoter regions
unless they were specifically the promoter of the target gene and omitted ABC scores in
the aggregation step. To assess whether this performance significantly outperformed other
models, we compared ROC curves using the Delong method (Supplemental Figure A.4B) and
estimated the proportion π0 of true null hypotheses using Storey’s q-value method from the
resulting p-value distribution. The analysis revealed that only a fraction of approximately
π0 = 0.0054 of all 144 tests (∼ 0.8) showed ROC curves that did not differ significantly from
the best model and thus performed equally well.

Several motifs were shared between the coefficients selected by the model based on GR
summitregions and those selected by the best performing models based on active regions
(Figure 3.5B). Both approaches highlighted the significance of the classic GRE motif, as evident
from the strong positive coefficients assigned to NR3C1 and the highly similar motif NR3C2 in
most models. Models relying on active regions suggested a connection between GR-mediated
gene regulation and SMADs. Notably, the models based on active regions showed both
positive (FOSL2) and negative (FOS::JUN) coefficients for AP-1 family members.

The model also detected factors that can impact the transcriptional outcome by influencing
the epigenetic landscape. For instance, ARID5A is part of the SWI/SNF chromatin remodeling
complex, and HINFP plays a role in a histone deacetylase (HDAC) complex. As our main
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objective was to comprehend transcriptional regulation through direct interactions with GR,
rather than general activation patterns, we focused on models derived from features of the
GR summit regions (Figure 3.5C). Notably, among the factors most frequently included in the
final model were several members of the NF-κB family (REL, RELA, NFKB1) and STAT2. This
finding corroborates our earlier results on total motif counts from the peak-based analysis, as
presented in Figure 3.3F.

Our reference model, which used proximity-based assignments, achieved an AUC = 0.74
on the test set (Figure 3.5A, dashed purple line) and an AUC = 0.77 on the training set,
indicating no substantial overfitting (Supplemental Figure A.4A). To compare this performance
with all other models, we conducted pairwise comparisons and used Storey’s q-value method
on the resulting p-value distribution. The analysis returned a π0 = 0.026, meaning that only
a small fraction (approximately 3.7) out of all 144 tests were estimated to perform as well or
better than the reference model. This demonstrates that our reference model outperformed
the majority of other models (Supplemental Figure A.4C), providing evidence that most of
the necessary information to predict Dex-induced transcriptional changes is indeed contained
within GR-binding locations.

The reference model showed better performance compared to the hybrid models (all
q < 0.05), where motif counts from GR summit regions were combined with ABC scores
derived from epigenetic data. As a result, we decided to investigate the selected coefficients
for both the reference model and the best model based on active regions. In the multivariate
model based on GR summit regions, the features with the most negative coefficients were
MEIS1 (−0.087), NFKB1 (−0.080), REL (−0.076), POU2F1 (−0.076), TCF7 (−0.074), and STAT3
(−0.049). Conversely, the features with the largest positive coefficients were NR3C1 (0.410)
and NR3C2 (0.313). However, it is important to note that in a multivariate model, the direction
and magnitude of a predictor depend on the values of all other variables in the model. So, a
positive coefficient does not necessarily mean a positive correlation with the target variable,
and the coefficient of a predictor can change depending on the other predictors included in the
model. Therefore, to confirm the direction, significance, and magnitude of the coefficients for
the identified putative repressive motifs, we also conducted a bivariate analysis. In order of
magnitude, the analysis returned NFKB1 (−0.260, p = 0.0007), POU2F1 (−0.258, p = 0.0014),
MEIS1 (−0.227, p = 0.0043), REL (−0.222, p = 0.0028), TCF7 (−0.203, p = 0.0074), and STAT3
(−0.178, p = 0.0166) (Supplemental Figure A.4D). All motifs of interest maintained a negative
coefficient (all p < 0.05). In short, the presence of these motifs within 100 bp around GR peak
summits predicts gene repression.

It is essential to remember that these models represent a computational approach that
merely identifies candidate sequences. Validating whether the identified factors are indeed
expressed in the cells and determining whether the motifs appear in GR ChIP-seq data due
to GR being tethered to their cognate factor or GR directly binding to those sequences can be
explored with further analyses.
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3.1.7. Protein interaction, expression and localization analysis of repressive factors

After identifying potential candidates for gene repression through our computational ap-
proach, we compared the results with experimental data to identify TFs likely to have a
regulatory role in vivo. In our models, we noticed predictors from several members of the
signal transducer and activator of transcription (STAT) family. For example, STAT3 showed
up as a strong negative coefficient in the reference model, while STAT2 was selected by a
large number of models based on GR summit regions (Figure 3.5C). Since all STATs recognize
similar DNA sequence motifs (Supplemental Figure A.5), we decided to explore all family
members further. To independently validate our computational results, we examined the
expression levels of the TFs in macrophages. A TF can only play a regulatory role if it is
expressed in these cells. To compare the expression levels of different transcripts, we consid-
ered the fragments per kilobase million (FPKM) to adjust for any biases caused by transcript
length. Our analysis revealed that the expression of Meis1 and Tcf7 was low (<1 FPKM)
across all conditions (Figure 3.6A), suggesting that these TFs are unlikely to be involved in
GR-mediated gene regulation. Despite their low expression, the model assigned non-zero
coefficients to their binding sequences, which might have been caused by sequence similarity
between the motifs of MEIS1 and TCF7 and those of the true regulatory TF.

In response to LPS treatment, the expression increases for Nfkb1 (padj = 6.19e − 33) and Rel
(padj = 1.75e − 20), and decreases when adding Dex (padj = 0.004 and 0.012, for Nfkb1 and
Rel respectively). Among the Stat genes, all are expressed except for Stat4, but their expression
levels do not show significant changes between the Dex+LPS and LPS conditions. Nr3c1 itself
is significantly downregulated (padj = 0.0145) in that comparison (Figure 3.6A), which likely
represents a negative feedback loop following GR activation. In this context it is important to
remember that the activity of many proteins depends on mechanisms beyond transcription,
such as translocation and phosphorylation, which are not captured by expression levels.

GR is well-known for its direct protein-protein interactions with the inflammatory transcrip-
tion factors AP-1 and NF-κB. Additionally, it has also been observed to have cryptic binding
sites within their binding motifs. To explore whether GR has protein-protein interactions with
other factors, we examined ChIP-MS data of BMDMs treated with Dex for 16 hours and LPS
for 3 hours. Through this analysis, we confirmed interactions with NF-κB family members
(NFKB1, REL, RELA) and AP-1 (JUNB). While we did not find significant interactions between
GR and STAT1, STAT3, or STAT6, we did observe a significant interaction between GR and
STAT5A:STAT5B (Figure 3.6B). The ChIP-MS assay could not identify POU2F1 and STAT2.

We explored whether there was additional evidence for tethering that could shed light
on our observations. Phosphorylation is essential for STATs to dimerize and translocate
to the nucleus, where they bind to DNA and trigger inflammatory gene expression [164,
165]. Examining the phosphorylation levels of STAT5 at different time points after treatment
revealed a significant reduction in STAT5 activity in the Dex+LPS condition compared to
the LPS condition (Figure 3.6C, left), while the total amount of STAT5 remained unchanged
(Supplemental Figure A.6A). To further investigate this, we conducted STAT5 western blots
on samples separated into nuclear and cytoplasmic fractions, which confirmed that the
majority of STAT5 in the Dex+LPS condition is located in the cytoplasm and not active in
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Figure 3.6.: STAT expression, protein interactions and footprints. (A) Expression levels of
candidate factor for gene repression. (B) GR ChIP-MS data of samples treated with Dex+LPS.
Factors of interest are labeled. (C) Western blot of STAT5. n=2. (Left) P-STAT5 of whole
cell lysates at various timepoints. (Right) Western blot of STAT5 on nuclear extracts after 3h
of Dex+LPS or LPS stimulation. (D) Lineplots for region with differential footprint around
FOSB::JUN motif comparing a total of n=4923 regions. (F) Examples for downregulated target
genes with STAT3 hits (but no NR3C1 hits) in peak regions. (left) Cxcl3 locus (right) Cd83
locus. STAT3 (MA0144.2) motif displayed underneath genomic sequence.
* = adj.p-value < 0.05, ** = adj.p-value < 0.01, *** = adj.p-value < 0.001 . Figure and legend
taken from [2].
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the nucleus (Figure 3.6C, right and Supplemental Figure A.6B). Similar reductions in activity
were observed for STAT1 and STAT3 (Supplemental Figure A.6B). Based on this finding, it
appears that the increased presence of STAT motifs within GR-bound regions is unlikely to
be a result of tethering. Instead, the data is suggestive of an alternative mechanism, such as
direct binding of GR to STAT motifs.

To further investigate potential TF binding at the motifs identified by the GLMs, we
conducted footprinting analysis on the ATAC-seq data. This analysis aimed to investigate
whether we could observe footprints formed by DNA-bound TFs that protect the DNA from
transposase activity. Among others, the factors from the AP-1 and IRF families that we
identified with the GLMs built on all regulatory regions, exhibited trends for differential
footprints between the Dex+LPS and LPS conditions. Particularly noteworthy were the
differential footprints associated with AP-1 family members (Supplemental Figure A.7), where
regions around the footprints showed more accessibility in the LPS condition compared to the
Dex+LPS condition (Figure 3.6D). However, it is worth mentioning that these effects did not
retain statistical significance after correcting the p-values for multiple testing. This suggests
that the predictive nature of these features might be attributed to changes in their accessibility
between conditions, rather than through a direct GR-mediated mechanism.

For STATs, the absence of differential footprints suggests that changes in accessibility at
those loci alone cannot explain their regulatory role (Supplemental Figure A.7). This becomes
evident when examining regions with STAT3 motifs located in GR summit regions, where
no visible changes in accessibility or region activity are observed (Supplemental Figure A.8).
Two examples for genes downregulated in response to Dex+LPS treatment are Cxcl3 and
Cd83.They both harbor GR binding regions containing STAT motifs, but no NR3C1 motifs
within 30 kb of their TSS (Figure 3.6E).

3.1.8. Conclusion

We set out to find sequence motifs that determine the direction of GR-mediated expression
changes. Both, conventional motif enrichment tools and a tailored machine learning workflow
that integrates various epigenetic assays reveal a connection between the NR3C1 motif and
GR-mediated gene activation. Our approach suggests that gene suppression entails a variety
of underlying mechanisms, including members of the AP-1, NF-κB and STAT families. The
observation that STAT motifs are present in GR-bound regions despite a low abundance of
nuclear STAT in the Dex+LPS condition suggests that this is not the result of GR tethering to
STAT proteins but instead a direct interaction of GR with genomic STAT binding motifs.
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3.2. Materials and additional methods

3.2.1. ATACseq

We merged fastq files from samples sequenced on multiple lanes and removed adapter
sequences with trim-galore (v0.6.7). The reference ftp://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_mouse/release_M24/GRCm38.primary_assembly.genome.fa.gz was down-
loaded and filtered for standard chromosomes before creating a bowtie index from it. We
mapped the reads with bowtie (v1.2.3) and its options "-k 1 -m 1 -v 2". Unmapped mates
were removed with Samtools (v1.9) and its flag "-F 4", before filtering out duplicates with
picard (v2.27.1). Finally, peaks were called with the macs2 (v2.2.7.1) command "macs2 callpeak
-f BAMPE –nomodel –keep-dup 1 -g mm -t bam "

We retrieved a file with blacklisted regions from http://mitra.stanford.edu/kundaje/
akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz and filtered out peaks
overlapping those regions with bedtools. Fastqc (v0.11.9) and deepTools (v3.5.1) were applied
for quality control, samtools was used to generate alignment stats and ultimately all quality
control information was gathered into a report using MultiQC (v1.12).

We merged replicates from the same treatment groups into one bam file and one peaks file,
which we then used as input for the footprinting analysis with HINT - Regulatory Analysis
Toolbox (RGT) (v0.13.2).

3.2.2. ChIP-seq

Adapter sequences for the H3K27ac and GR ChIP-seq samples were removed with cutadapt
(v4.0) before mapping the reads to the reference GRCm38 with bowtie (v1.2.3). GR ChIP-seq
peaks were called compared against input controls using MACS2 (v2.2.7.1) and a relaxed
threshold of p = 0.1, followed by determining reproducible peaks using idr (v2.0.4.2) and a
threshold of IDR = 0.05.

The adjusted library size of H3K27ac and ATAC-seq samples was computed by merging
peaks from both conditions for each assay and quantifying how many reads overlapped
the respective peak universe. This adjusted library size was then used to scale the tracks of
the samples. DeepTools (v3.5.1) was deployed to first compute the difference in read count
tracks between the two conditions with bigwigCompare and then create visualizations with
computeMatrix followed by the plotHeatmap function.

3.2.3. ChIP-MS

For details on the processing and the statistical analysis of the ChIP-MS data, please refer to
the original publication [163].

3.2.4. Gene expression analysis (4sU-seq)

We trimmed the sequencing reads with trimmomatic (v0.39) and aligned them to a GRCm38
reference of rRNA with bowtie2 (v2.3.4.3), to remove ribosomal reads. From there we used the
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splice-aware aligner STAR (v2.7.0d) to align all remaining reads and removed duplicates with
picard (v2.18.27) and then computed gene level counts with featureCounts from the subread
tool (v1.6.3).

We removed genes with CPM < 0.2 in all samples and then performed differential
expression analysis with with DESeq2 (v1.32.0). We mapped Ensembl gene IDs to MGI
gene names using biomart. Genes were considered differentially expressed for downstream
analyses if they had an adjusted p-value < 0.05 and absolute log2 fold change > 0.58 in the
comparison of LPS to Dex+LPS treated samples.

3.2.5. ABC workflow

In order to integrate multiple assays into information that could be used during the feature
engineering process, we turned to the ABC workflow. This workflow not only determines
active regions which can serve as regions of interest, but also computes an ABC score linking
regions to genes. Please refer to the github repository1 for details on the ABC workflow.

TSS

We established macrophage specific transcription start sites through macrophage CAGE data
retrieved from the FANTOM5 project. We determined tag clusters with CAGEr (v2.0.1) and
lifted over coordinates of the dominant CTSS to mm10 assembly coordinated. From there
we used the TxDb.Mmusculus.UCSC.mm10.knownGene (v3.10.0) database to annotate the TSS
locations to genes using ChIPseeker (v1.32.0). In order to retrieve exactly one transcription
start site per gene, we fetched the TSS location with maximum CAGE score within 30 kb of
the gene’s reference TSS.

HiC

We downloaded JuicerTools2 and used the ABC provided scripts Juicebox_dump.py and
compute_powerlaw_fit_from_hic.py to prepare our macrophage specific HiC data for the ABC
workflow.

ABC candidate regions

We determined candidate regions by using reads from both replicates with the setting "-
-nStrongestPeaks 150000". We used the "--regions_includelist" argument to add macrophage
specific TSS, promoter regions determined from a genomic reference as well as areas +- 250
bp around GR summits and excluded blacklisted regions.

1https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
2https://hicfiles.tc4ga.com/public/juicer/juicer_tools.1.9.9_jcuda.0.8.jar
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ABC scores

The workflow generates ABC scores for the assignments of regions E to their putative target
genes G. The activity of a region gets weighted by the amount of 3D contacts with the target
gene and divided by the total effect of all regions on that gene.

ABCscoreE,G =
AE ∗ CE,G

∑e Ae ∗ Ce,G
(3.1)

where:

- AE is the enhancer activity

- CE,G is the 3D contact of the enhancer E with the promoter of gene G

- e are all elements within 5Mb of G

In detail, the contacts are quantified as powerlaw scaled HiC contacts between the putative
regulatory regions with promoters of the genes. For our project, we computed the region
activity based on H3K27ac data from 2 replicates. To ensure that region-gene connections
would only be assessed for genes that are expressed within the samples, we also provided
the workflow with condition specific average TPM values from the 4sU-seq experiment.
We provided condition specific (LPS and Dex+LPS treated) samples for the ATACseq data,
4sU-seq data and H3K27ac data, resulting in condition specific ABC scores. We retained
regions with ABCscore ≥ 0.02 for downstream analyses.

3.2.6. Motif analysis

Genome wide motif scans

We used homer (v4.11) and its script scanMotifGenomeWide.pl to perform genome wide scans
with a simplified NR3C1 fullsite or halfsite motif. The motif was simplified by assigning
non-dominant bases a weight of 0.001 and the dominant base a weight so that the total
of the position would sum up to 1. For the full length motif we applied a threshold of 5
when searching with the pattern [AG]GNACANNNTGTNC[CT] and for the halfsite motif
we applied a threshold of 6 and searched with the pattern [AG]G[ACGT]ACA.

De novo motif analysis

We used STREME from the tool MEME Suite (v.5.4.1) to find enriched motifs compared to a
shuffled input control.

Motif matches

We used FIMO from the tool MEME Suite (v.5.4.1) to find matches of known motifs within
our input sequences. Motifs were retrieved from the 2022 release of the JASPARdb database
and filtered for binding motifs whose transcription factors were expressed in our 4sU-seq
data. In the case of composite motifs at least one of the transcription factor partners had to be
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present in our expression dataset in order for us to consider them expressed. Visualization of
the motifs was done with the R packages memes (v1.0.0) and universalmotif (v1.10.1).

3.2.7. Generalized linear models

Feature engineering

Our objective is to perform binary predictions regarding whether genes get up- or downregu-
lated in response to glucocorticoid treatment. We base this prediction on the occurrence of
known TF binding motifs within the selected input regions, which is represented by a region
x motif countmatrix C. It is important to note that the labels are on the gene level, while the
motif counts are derived from regions. To bridge this gap, we assign regions to their likely
target genes and represent this assignment by a gene x region matrix A. This allows us to
compute a weighted sum of motif counts from all regions mapping to the same gene and
results in the final genes x motifs feature matrix F.

F = A · C (3.2)

fgm =
r

∑
i=1

agi · cim (3.3)

The final feature matrix F is determined by several choices we can make when constructing
the matrices C and A. We refer to these choices as "feature engineering choices" throughout
the project.

When constructing C, we need to decide what regions to use as input when quantifying
motif occurrences. We decided to investigate 100 bp regions centered on summits of GR peaks
(GR summitregions) and active regions identified by the ABC workflow (active regions).

When constructing A, there are considerably more choices to make. The simplest approach
is used as our reference model. In this case we derive the region-gene assignment through
linear proximity using ChIPseeker’s (v1.28.3) annotatePeak function in combination with
TxDb.Mmusculus.UCSC.mm10.knownGene (v.3.10.0) as genomic reference and a maximum
distance of 30 kb. It follows that the assignments are binary in that each region is assigned
to only one gene. In more elaborate approaches, we derive the assignments from the ABC
workflow and either treat them as binary variable (whether or not the score passes a predefined
threshold) or as a continuous one by using the ABC score itself. Binary values result in an
unweighted aggregation during the matrix multiplication step, whereas continues values
make it a weighted aggregation. Of note, when testing the combination of GR summitregions
with ABC-based assignments, we assigned a zero weight to those summitregions that did not
overlap with putative regulatory regions identified in the ABC workflow.

In contrast to the annotation method based on proximity, ABC scores do not return
a one-to-one assignment between regions and genes. This has provided an opportunity
to systematically assess whether it would yield better results to utilize the one-to-many
mappings generated by the ABC workflow or to simplify them into one-to-one mappings,
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associating regions with specific gene targets. Attaining a one-to-one mapping based on the
ABC outcomes can be achieved by considering only the highest ABC score for each region
and assigning zero weights to all other associations for that region within the matrix A.

Furthermore, the ABC workflow provides details regarding whether a region overlaps with
a genic, intergenic, or promoter region, as well as whether it represents the promoter of the
target gene or a different gene (nonself). We tested models that treat all regions uniformly,
regardless of their genomic positioning relative to the gene, and models that incorporate this
information into the feature engineering procedure. If we incorporate the genomic location
of features concerning genes as part of the feature engineering process, each pairing of a
gene and region provides additional information about whether the region resides within the
promoter, genic, or intergenic region of that specific gene. A weighted average is separately
calculated for each category of genomic location, and the resulting individual feature matrices
are concatenated to construct the final feature matrix used for subsequent model fitting.
Consequently, in this scenario, the dimensions of the final feature matrix become F (g x 3m).
In the project, we collectively refer to genic and intergenic regions as enhancers.

Additionally, this approach allows us the flexibility to either omit all promoters or solely
nonself promoters from the fitting process, leading to different number of features in the
downstream workflow. Depending on the decisions made during feature engineering, the
number of input features ranged from 398 to 1,224.

ABC scores and the active regions identified using the ABC workflow are specific to
particular conditions, which in turn renders the feature matrix F condition-specific. Instead
of selecting features based on information from a single condition, an alternative approach
involves subtracting the matrices and utilizing the difference between the Dex+LPS and LPS
conditions after aggregation as input for the modeling process.

FDex+LPS−LPS = FDex+LPS − FLPS (3.4)

Lastly, depending on the decisions made during feature matrix generation, the number
of genes integrated into the model also fluctuated. In instances where a target gene lacks
associated input features, it will be dropped. Within the training dataset, the count of
negative and positive labels ranged from 126 to 709 and 139 to 673, respectively. Within the
test dataset, the count of negative and positive labels ranged from 35 to 168 and from 31 to
154, respectively. It is worth noting that the labels exhibit a balanced distribution, with an
average positive-to-negative label ratio of 0.4955 (median=0.4952) in the training set and an
average of 0.4749 (median=0.4870) in the test set.

Model fitting

Before fitting the generalized linear model (GLM), we removed features without any matches
across all genes. Subsequently, all remaining features underwent scaling and centering using
scale from the R-base package (v4.1.3) to prevent frequent motifs from dominating the model
outcomes. For the evaluation process, genes located on chromosomes 1, 8, and 9 were set
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aside to form the test set. The remaining chromosomes constituted the training set. Within
the training set, we conducted a 6-fold cross-validation, employing a GLM with elastic net
regularization via the R package glmnet (v4.1.2). In detail, we configured the GLM with the
family parameter set to "binomial" and the mixing parameter alpha set to 0.5. The primary
goal during cross-validation was to identify the optimal regularization parameter λ, utilizing
the Area Under the Curve (AUC) as the performance metric. The optimal λ, determined
through the training set, was then employed when making predictions and assessing the
model’s performance for the test set using the R package ROCR (v1.0.11).

We compared ROC curves and checked the model performance differences for significance
with the R package pROC(v.1.18). To test whether a model of interest (either the best
performing model or our reference model) performed significantly better than the other
models (making pairwise comparisons), we used a directional alternative hypothesis in
roc.test with DeLong’s method. We utilized Storey’s q-value method, which is implemented in
the R package qvalue (v2.24.0), to process the resulting p-values. In this analysis, the lambda
search space was confined to the range where p-values were observed, which allowed us to
estimate the percentage π0 of true null hypotheses.

Regarding heatmap visualizations, it is important to note that coefficients from models
containing separate features based on the genomic location of a motif cannot be effectively
displayed alongside coefficients from models where these features are aggregated. This is
because they involve different sets of features, with one set comprising multiple features
derived from a single motif, while the other set consists of a single feature. To address this, we
assessed which approach yielded better results. Among the top 25 best-performing models
based on AUC on the test data, 17 models aggregated information from both promoter and
enhancer regions. In the heatmaps displaying coefficients of these top models Figure 3.5B,
we thus displayed those 17 models and determined the number of models in which each
motif had a non-zero coefficient. This information was visualized as a barplot in the row
annotations.

3.2.8. HINT footprinting

We used the python library Regulatory Genomics Toolbox (RGT) (v0.13.2) to run "rgt-hint
footprinting" and "rgt-motifanalysis matching" for each condition. Finally, we check for changes
in binding by comparing cleavage profiles of the matched footprints from Dex+LPS and LPS
with "rgt-hint differential".

3.2.9. Bone-marrow derived macrophage cell culture

We surgically removed the tibia, femur, and humerus from male C57BL6/N mice aged
between 8 to 12 weeks. These bones were cleaned and surface-disinfected using ethanol
before bone marrow extraction in RPMI-1640. We then lysed erythrocytes using AKC lysis
buffer (1M NH4Cl, 1M KHCO3, 0.5M EDTA). Subsequently, the cells underwent density
centrifugation through a Ficoll-Paque gradient and were cultured in differentiation medium
(DMEM containing 30% L929 supernatant, 20% FBS, and 1% penicillin/streptomycin) for 6
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days on bacterial plates at 37°C with 5% CO2. Afterward, cells were detached using Versene,
counted, and seeded in macrophage serum-free medium. Following an overnight incubation,
the cells were treated with either Vehicle (PBS), LPS (100ng/mL, Sigma Aldrich, LPS25), or
Dex+LPS (100ng/mL LPS, 1µM Dexamethasone, Sigma Aldrich, D2915) for 3 hours or as
indicated.

3.2.10. Nuclear extracts

For nuclear extracts, 2 × 107 cells on 15cm cell culture dishes were washed once with ice-cold
PBS. They were then transferred to a 1.5mL microcentrifugation tube and lysed on ice in V1
lysis buffer (10mM HEPES-KOH pH 7.9, 1.5mM MgCl2, 10mM KCl, and freshly added 1µM
Dexamethasone, 0.5mM DTT, 0.15% NP40, protease inhibitors, and phosphatase inhibitors)
using a micro-pistil. After centrifugation (2700 xg, 20min), nuclei were collected and lysed
in V2 buffer (420mM NaCl, 20mM HEPES-KOH pH 7.9, 20% glycerol, 2mM MgCl2, 0.2mM
EDTA, and freshly added 1µM Dexamethasone, 0.5mM DTT, 0.1% NP40, protease inhibitors,
and phosphatase inhibitors) by rolling for 1 hour at 4°C. Subsequently, nuclear lysates were
subjected to centrifugation (21000 xg, 45 minutes, 4°C), and the resulting supernatants were
used for western blot analysis.

3.2.11. Western blots

For western blot analysis, cells lysed in RIPA buffer (containing 150mM NaCl, 50mM Tris
pH 7.4, 1% NP40, 0.5% DOC, 0.1% SDS) or nuclear extracts underwent sonication for three
cycles of 10 seconds each. Following sonication, these samples were boiled in Laemmli buffer
(62.5mM Tris pH 6.8, 1% SDS, 0.8% glycerol, 1.5% 2-mercaptoethanol, 0.005% bromophenol
blue) at 95°C for 10 minutes. Standard western blot procedures were then carried out using
appropriate antibodies. For a complete list of antibodies please refer to the original publication
[2].
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T cell exhaustion, a state of reduced effector function and reduced proliferation, poses a major
challenge for cancer immunotherapy. Looking at viral diseases, exhausted effector T cells
and their long-lived progenitor population have been described in chronic infections, which
are associated with prolonged antigen exposure, since the infection cannot be fully cleared
by the immune system. However, the mechanisms leading to exhaustion remain poorly
understood. For the project in section 4.1 our goal was to understand the early developmental
steps driving the generation of these TCF1+ TOX+ hypofunctional progenitors of exhausted
T cells (Tpex).

Knocking out the transcription factor TOX increases the effector function of cytotoxic T
cells in the context of chronic infection. Regardless, this knowledge can currently not be
therapeutically harnessed since these reactivated T cells fail to be maintained long-term. For
the project in section 4.2 we set out to find a way to sustain these cells and what is more, to
preferentially expand non-exhausted cells in a context of chronic antigen exposure.

4.1. Development of exhausted progenitors in acute infection

Figure 4.1.: Preliminary findings of Tpex in acute infection challenge the current paradigm.
Prior to me joining this project our collaborators discovered TCF1+ PD-1hi TOX+ cytotoxic T
cells following infection with LCMV Armstrong. Schematic created with BioRender.
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Looking into early timepoints after infection, my collaborators found that Tpex are not only
present during chronic infection but, in a smaller number, TCF1+ PD-1hi TOX+ cytotoxic
T cells are also present during acute infection (Figure 4.1). This observation challenged the
current paradigm, which assumes that exhausted T cells are exclusively generated in chronic
infection or tumor settings.

4.1.1. Bulk RNA-seq identifies Tpex in acute infection

To investigate whether the TCF1+ TOX+ cells found in acute infection are bona fide pro-
genitors of exhausted T cells (Tpex), we decided to do deeper phenotyping with RNA-seq
and investigate whether their transcriptional profile matched that previously reported for
exhausted T cells. Our collaborators used a reporter mouse, which allows for selection of
early TCF1 expressing P14 progenitors, which were adaptively transferred into host mice. 7
days after infecting the host mice with LCMV, TCF1 expressing P14 progenitors were isolated
and sorted into two groups based on PD-1 expression levels, namely PD-1lo and PD-1hi
progenitors. This gating scheme allows to enrich for TOX+ and TOX- cells based on surface
receptors, since direct staining of TOX is incompatible with sequencing library preparation
(Figure B.1). Finally, the sorted progenitors were submitted for RNA-sequencing.

To visually inspect the similarity between samples in lower dimensional space, we per-
formed principal component analysis (PCA). The PCA revealed that the component responsi-
ble for the majority of variation in the data corresponds to the PD-1 status of the samples,
indicating that are two groups are transcriptionally different (Supplemental Figure B.2A,B).
Comparing the PD-1hi progenitors to the PD-1lo progenitors with differential gene expression
analysis, we identified a total of 2550 differentially expressed genes (DEGs) (Figure 4.2A).
Among these DEGs, 1236 were found to be more highly expressed in the PD-1hi population,
while 1314 were more highly expressed in the PD-1lo population (adjusted p-values < 0.05
and log2FC > log2(1.5) or < -log2(1.5)) (Figure B.2C).

To bring biological meaning to our set of DEGs, we utilized publicly available data of
acute and chronic genesets and found that our PD-1hi population matches previously re-
ported chronic gene signatures while our PD-1lo population concurs with acute signatures
(Figure 4.2B). We independently validated these findings with public data of CD8 T cells at
day 21 post infection with chronic (Docile) or acute (Armstrong) LCMV [166]. In detail, we
compared the transcriptional differences between our PD-1hi and PD-1lo progenitors with the
differences observed between CD8 T cells in chronic and acute infections and find that they
correlate with r=0.517 (Figure 4.2C). These results indicate that PD-1hi sorted progenitors
exhibit a strong exhaustion signature similar to Tpex cells described in chronic infections [167,
166].

Among the DEGs of the two progenitor types, we observed lower levels of Id2 and effector
cytokines (Ifng and Tnf ) in PD-1hi progenitors. Given that our samples were isolated at day
7, this suggests that these cells are programmed early on, even during acute infections, to
express fewer inflammatory cytokines and maintain limited effector function (Figure 4.2D).
Furthermore, we found increased expression of inhibitory receptors associated with exhaus-
tion such as Pdcd1, Havcr2, and Tnfrsf9, as well as other genes significantly upregulated in
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Figure 4.2.: Transcriptional differences between PD-1hi and PD-1lo progenitors confirm
exhausted phenotype. (A) Heatmap of differentially expressed genes (adjusted p-value <
0.05 and |log2FC| > 0.58) between PD-1hi and PD-1lo P14 samples. (B) Gene signatures of
acute vs chronic LCMV infection plotted onto log2FC between PD-1hi and PD-1lo samples.
Red dashes indicate genes higher in chronic infections, blue dashes indicate genes that are
higher in acute infection. Blue and yellow boxes mark |log2FC|>0.58. (C) Correlation of
log2FC between PD-1hi and PD-1lo P14 with the log2FC between LCMV Armstrong and
LCMV Docile infected ID3+ cells at day 21 post infection. (D) Log2 normalized counts of
bulk RNA-seq with paired PD-1hi and PD-1lo P14 samples from the same donor mouse.
Significance values represent adjusted p-values determined with a linear model. n=5 for both
groups.
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exhaustion, including Tox, Tox2, Nr4a1, and Ikzf2, in PD-1hi progenitors (Figure 4.2D). In
contrast, PD-1lo progenitors exhibited characteristics resembling traditional memory cells,
with high expression of Il7r, Eomes, Sell, and Id3 (Figure 4.2D).

Our observations show that during the early phase of acute infection, the formed pro-
genitors range from PD-1lo progenitors displaying the transcriptional signature previously
reported in acute infections, to PD-1hi progenitors resembling Tpex. This is remarkable,
since Tpex have so far been thought to be exclusively associated with chronic infections. In
summary, the data demonstrate the generation of a diverse set of progenitor T cells in the
early stages of infection, irrespective of whether the infection eventually becomes chronic or
resolves.

4.1.2. Tpex are epigenetically different from Tmpc

After we identified Tpex with transcriptional profiling, we wondered whether the Tpex found
in early infection also resemble the Tpex found in chronic infection on an epigenetic level.
We turned to a public dataset on total splenic CD8 T cells that were isolated 7 days after
acute (LCMV Armstrong) or chronic (LCMV clone13) infection and analyzed by scATAC-seq
[168]. We started our investigation by performing a joint clustering of the cells from both
infections (Figure 4.3A (left)). In order to annotate the resulting clusters, similar to the
original study [168], we used signatures obtained from bulk ATAC-seq samples (for details
see subsection 4.3.2). Two of the clusters contained cells with high scores for the exhaustion
signature; one that matched the signature of terminally exhausted cells (Tex) and one that
matched the signature of exhausted progenitors (Tpex) (Figure 4.3B). Additionally a group of
cells displayed high scores for the memory precursor effector cell (MPEC) signature but low
scores for exhaustion, so we termed it memory precursor T cells (Tmpc).

To validate the cluster identity, we compared the Tpex and Tmpc clusters with differential
accessibility analysis. We annotated differentially accessible (DA) regions to their closest gene
and aggregated them based on their gene annotation. Our investigation revealed that the
Tpex cluster is significantly more accessible at multiple regions proximal to the exhaustion
markers Tox, Tox2, and Pdcd1 in comparison to the Tmpc cluster (Figure 4.3C). Of note, the
Tpex cluster contained cells from both acute and chronic infections. We wondered whether
these cells from the two infection types would show substantial heterogeneity despite being
in the same cluster and directly compared accessibility of Tpex from Armstrong and clone13
infection. None of the 4686 tested regions showed significant differences (all adjusted p-values
> 0.1), indicating that Tpex from the two infections indeed share similar epigenetic profiles.
Accessibility for regions proximal to Pdcd1 are displayed in Supplemental Figure B.3A.

Moving forward, we focused on cells infected with LCMV Armstrong to investigate the
previously unrecognized heterogeneity within the CD8 T cells in acute infection. Since we
previously used PD-1 to enrich for exhausted cells (see subsection 4.1.1), we decided to look
into the accessibility of its genomic locus. We visualized coverage at the locus of Pdcd1 (the
gene encoding for PD-1), split by cluster (Figure 4.3D) and highlighted the regions identified
as DA in the comparison of Tpex and Tmpc by shading those areas in grey. Accessibility
patterns are similar between Tex and Tpex while the Tpex and Tmpc populations show
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substantial differences. Taken together this shows that there are differences between Tpex
and Tmpc at the Pdcd1 locus even when we exclusively look into cells originating from acute
infection.
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Figure 4.3 (previous page): Tpex from acute infection epigenetically resemble their counter-
part from chronic infections. Public scATAC-seq data of total splenic CD8 T cells analyzed 7
days after mice were infected with either LCMV Armstrong or LCMV clone13. (A) UMAP
embedding of cell similarity with cells colored by infection type (left) or results of Leiden
clustering (right). (B) Signatures for naive, exhausted, progenitor exhausted and terminally
exhausted cells derived from bulk ATAC-seq data are used to compute signature scores for
each cell. Colors represent the mean expression level of the signature within the cell shown
on the UMAP embedding. (C) Number of differential accessible regions between Tpex and
Tmpc cluster annotated to genes of interest. (D) Pdcd1 locus accessibility signal of cells from
acute infection. Marker regions of Tpex cluster are highlighted in gray. (E) UMAP embedding
of cell similarity subset on cells from the LCMV Armstrong infection. Colors represent cell
assignments to Leiden clusters. (F) Accessibility signal at FOS::JUN motif locations. (G) TF
activity for BATF and FOS::JUN motif. MPEC = memory precursor effector cell

We were wondering whether we could find putative regulators that drive the differences
between Tpex and Tmpc within acute infection. We fetched known transcription factor
binding motifs from the JASPAR database and assessed motif activity by computing the
deviation from the expected accessibility [169]. Comparing motif activity between Tpex
and Tmpc, we discovered a total of 154 motifs that are significantly (adjusted p-value <
0.05) more active in Tpex. Remarkably, a substantial proportion of the most significant
hits was associated with members of the AP-1 transcription factor family (Supplemental
Figure B.3B). Our analysis revealed increased accessibility around FOS::JUN sites in Tpex
compared to Tmpc (Figure 4.3F), consistent with the heightened activity of AP-1 family motifs
(Figure 4.3G).

Taken together, our observations underscore that the open chromatin landscape typically
associated with Tpex in chronic infection is also observable in the Tpex population found in
the early phase of acute infection.

4.1.3. Exhaustion is linked to TCR sequence

TCR signalling strength and as such the T cell activation, has been reported to drive exhaustion
in tumor models [170]. We sought to investigate whether activation strength had the same
effect on exhausted cells in acute infection. Wet-lab experiments encouraged us to investigate
the endogenous response which, contrary to the P14 system, has a diverse TCR repertoire.
We used np396 and gp33-loaded tetramers, which have previously been described to lead
to high and medium activation, respectively [171]. Through this tetramer staining we can
biochemically pull down T cells recognizing the gp33 and np396 epitopes. We followed
the Tpex into the memory phase and isolate TCF1 expressing memory gp33+ or np396+ T
cells from reporter mice 4 weeks after infection with the acute LCMV strain. By performing
scRNA-seq combined with scTCR-seq analysis we set out to investigate the potential link
between exhaustion and TCR sequence (see Figure B.4 for an experimental overview).

We decided to first investigate the effects of TCR sequence in a visual manner. The tool
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mvTCR [172] allowed us to create a joint embedding of TCR-seq and GEX so that both
data modalities contribute to the resulting UMAP representation (Figure B.5A). We used the
amino acid sequence from the CDR3 region of the TCR α and β chain to define clonotypes.
Additionally, we identified Leiden clusters based on the cells gene expression and passed both
group assignments to mvTCR to optimize for those class labels when creating the embedding.
The clonotype modules are successfully captured within the UMAP representation, as seen
by cells with the same clonotype grouping together in distinct areas of the plot (Supplemental
Figure B.5B). Normalized Tox levels were higher in cells recognizing the high activation
(np396) compared to medium activation (gp33) epitope and seemed to be associated with
certain clonotype modules (Supplemental Figure B.5D).
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Figure 4.4.: scRNA-seq analysis shows that exhaustion is dependent on TCR signalling.
gp33 and np396-specific TCF1+ progenitors were purified from Tcf1 reporter mice infected
with LCMV 4 weeks post infection. Results shown for all mice (n=3). (A) Clonotype
network showing all modules containing at least 50 cells. Clonotype pairs were aligned using
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a BLOSUM62 matrix) are connected by an edge. Node size depicts clonotype size, color
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module. Row annotations show the epitope ratio of np396 and gp33 within the module.
Dendrogram was generated using euclidean distance and complete linkage. Barplots in the
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Independently, we used the above mentioned clonotype definition to group them together
into modules based on sequence similarity (Figure 4.4A). Due to the high likeness of the
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CDR3 sequences within a module, they likely posses similar biochemical properties which is
supported by a module containing cells pulled down with gp33 or np396, but rarely a mix
of both (Figure 4.4B). Looking at mean gene expression levels per module, we find that the
exhaustion phenotype comprised of high levels of Tox, Pdcd1, Nr4a2 and Lag3 is specific to
the np396+ clonotype modules, although not all np396+ modules are exhausted (Figure 4.4C).
This matches observations we made using flow cytometry (data not shown) and confirms
that recognition of the high activation epitope makes cells more likely to become exhausted.

Taking into consideration that np396 is deemed a higher affinity epitope compared to
gp33, we conclude that the formation of a long-lived Tpex population requires strong TCR
stimulation. Weaker stimulation could either lead to the formation of short-lived Tex cells
or the Tpex cell might simply become outnumbered by the more frequent Tmpc over time.
Regardless, our data show that strongly activated Tpex in acute infection have the capacity
to survive long-term, even after the antigen is cleared, as was previously shown for Tpex
derived from chronic infection [173].

4.1.4. Conclusion

In this project we show that the TOX+ cells found in acute infection are transcriptionally
and epigenetically bona fide Tpex and that they are maintained past the clearance of antigen.
Furthermore, wet-lab follow-ups and scRNA-seq and scTCR-seq identified that activation
strength is the underlying mechanism driving exhaustion (see Figure 4.5).

Figure 4.5.: Graphical abstract of Tpex generation. Stronger T cell activation leads to
generation of higher numbers of Tpex cells compared to Tmpc. Environmental stimuli
preferentially maintain and expand one cell population over the other. Schematic created
with BioRender.
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4.2. Maintenance of non-exhausted progenitors in chronic infection
and cancer

In section 4.1 we have shown that there is a small proportion of exhausted cells present in
acute infection. While this is conceptually very interesting, from a therapeutic standpoint the
more pressing question is how to revert that exhaustion phenotype or expand non-exhausted
cells in a targeted fashion. Furthermore, it is of interest to find genetic manipulations that
render T cells insusceptible to exhaustion, as this could therapeutically be deployed through
engineered CAR T cells [174]. Since TOX has been identified as central transcription factor
of exhausted cells, researchers hoped that targeting TOX might offer a strategy to prevent
cells from becoming exhausted in scenarios of chronic antigen exposure. While rendering
TOX inactive through genetic engineering, i.e. TOX knockout (TOX KO), initially leads to
increased effector phenotype, the number of TOX KO progenitors starts to massively decline
about two weeks into a chronic infection [48]. In other words, TOX KO successfully leads
to a non-exhausted phenotype in CD8 T cells, but in an environment of chronic antigen
exposure they fail to be maintained. Our goal is to understand how we can maintain TOX
KO progenitors and thereby open this up as potential therapeutic avenue.

4.2.1. Neural networks show link between KLF and TOX KO phenotype

Our first approach to understanding the underlying gene regulation was to investigate
whether we could find DNA sequences linked to the transcriptional differences between WT
and TOX KO CD8 T cells. The idea behind this is that if the downstream effects of TOX KO
were mediated through a specific transcription factor, the corresponding binding motif would
predict the transcriptional response of its target gene.

Existing sequence models such as Enformer are good at predicting gene expression of
samples that the model has been trained with but predicting transcriptional changes in
response to stimuli is still an open challenge [134]. Our goal was to devise an interpretable
neural network approach that would identify sequences in the regulatory region of a gene
which determine whether it is up- or downregulated in response to a perturbation or stimulus.
We decided to do this in a knowledge-guided fashion by looking into regulatory regions
predefined by celltype specific assays and opted for a computationally inexpensive architecture
using local attention instead of the self-attention with quadratically growing complexity.

Since the number of differentially expressed genes between TOX KO and WT are too
small to train a classification task from scratch, we decided to turn to transfer learning. We
pretrained the model on read count tracks from epigenetic data modalities generated using
similar experimental designs as the the RNA-seq data (same infection, same timepoint and
comparable genotypes), in order to learn a related task with more available training data.
Namely, we retrieved publicly available ATAC-seq data [48] and ChIP-seq data [175] from
CD8 T cells of WT and TOX KO mice at day 8 after LCMV clone13 infection. We performed
preprocessing for the samples (see section 4.3 for details) and used peaks from the ChIP-seq
and ATAC-seq samples to define a peak universe of 55,313 peaks. These peaks served to
define regions of interest during the pretraining. Intuitively, the model learns the link between
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genetic sequence and TOX binding as well as the TOX KO driven changes in accessibility in
this step.

Our input data contains information on regulatory sequences, but the labels we have for
training the expression change are on gene level. We approach this by deploying multiple
instance learning (MIL), which can utilize this weakly labelled data. In this setting, regulatory
regions annotated to the same target gene are placed in the same bag and the direction of
the gene expression change is the bag label. During the expression change prediction, we
apply transfer learning by using our pretrained model weights to initialize an architecturally
similar network. In addition to the body, which is identical to the architecture used for
pretraining, it contains a head that uses local attention to accommodate a multiple-instance
learning problem (Figure 4.6A). The attention mechanism learns the attention of each region
and aggregates region level features on gene level through a weighted sum. This forms latent
gene level features that are used to classify on the gene level.

Performance of the pretraining was good with correlation of the observed and the predicted
counts ranging between 0.48 and 0.69 (Figure 4.6B). Of note, the sample that the model
performed worst on, was ChIP-seq data from TOX KO cells. Contrary to all other TOX KO
models used within this project, these samples were generated from a KO model that was
missing exon 1 rather than exon 5 which contains the DNA-binding region. We had the
suspicion that this model might have residual activity of TOX, which is why we included the
TOX KO samples in the model training.

We performed hyperparameter tuning (see Table B.1 for details) to determine the best
architectural choices for the expression change prediction. The final model achieved a rather
poor AUC of 0.57 in the test set (Figure 4.6C), which suggests that the model only manages to
capture a small part of the underlying regulatory mechanism. Despite its humble performance,
we decided to investigate what patterns the model had learned and found that a sequence
pattern reminiscent of KLF binding motifs is associated with genes which are more highly
expressed in the TOX KO cells (see Figure 4.6D). We did not find a pattern associated with
genes that are more highly expressed in WT.

A possible explanation for the mediocre performance of the model is that TOX binding is
sequence-independent [176], which would make pretraining on TOX ChIP-seq data ill-fitted
for finding sequence determinants of the transcriptional changes. Another explanation is that
the underlying changes happen specifically in the TCF1+ progenitor population and using
data of bulk sequencing from a mixed population, the signal gets washed out by the majority
of effector cells.

4.2.2. TOX KO progenitors intrinsically differ from their WT counterpart

In order to directly look at transcriptional differences in the respective progenitor populations,
our collaborators used FACS to enrich for progenitors before performing RNA-seq at day
7, day 10 and day 14 after infection with LCMV clone13. Having snapshots at multiple
timepoints allows us to tease apart early phenotypic differences that drive subsequent down-
stream effects. We knew that TOX KO progenitors are still present at numbers comparable to
WT at day 8 after infection but decline thereafter [48].
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Figure 4.6.: Neural network model identifies link between KLF binding sequence and TOX
KO phenotype. ATAC-seq and ChIP-seq data from TOX KO and WT CD8 T cells were used
for pretraining and individual instances were combined for prediction of expression change
on the gene-level. (A) Architecture of multiple instance learning neural network approach. (B)
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compared to promoters of non significant genes as background.
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Based on this we decided to investigate a geneset consisting of genes with significant
coefficient for the interaction term in the linear model expression ∼ genotype x time. We were
curious whether we could reproduce the results found with our neural network approach,
so we tested for sequence enrichment in the promoter regions of this geneset. Specifically,
we compared the promoter sequences of the resulting 318 genes to promoter sequences of
non-differentially expressed genes as background. Indeed, we found motifs resembling KLF
binding motifs enriched in genes that are changed in response to the perturbation, confirming
the motif found through our neural network approach (Figure 4.6E).

Sequence analyses indicated that KLF might be involved in the differences between WT
and TOX KO cells. From there, we set out to identify a transcriptional link that could
be therapeutically targeted with an external factor by doing an in-depth analysis of the
transcriptional data. Differential expression analysis comparing WT and TOX KO progenitors
at day 7 shows that even at this early timepoint a total of 727 genes (343 higher in TOX KO
and 384 higher in WT) are differentially expressed (Figure 4.7A). This means that progenitors
of the two genotypes show strong transcriptional changes before their numbers start declining
[48]. Looking at the expression of known exhaustion markers Ikzf2 (Helios) and Pdcd1
(Figure 4.7C), we can confirm that the TOX KO progenitors are indeed less exhausted. A total
of 211 genes were DE across all 3 timepoints (Figure 4.7B). One of those genes is the IL-2
receptor alpha chain Il2ra which is significantly higher expressed in TOX KO progenitors at
all three timepoints (Figure 4.7C).

Pathway enrichment shows that at day 14 we find an enrichment for the apoptosis pathway
(mmu04210, adjusted p-value= 3.36e−04). This is in line with previous reports that the ratio
of TOX KO compared to WT P14 cells is already reduced 2 weeks after infection [48]. Since
we are interested in the early drivers of this effect, rather than the transcriptional changes
that come hand in hand with cell death, we decided to focus on the changes at day 7 for
downstream analyses.

4.2.3. IL-2 signalling is linked to changes in TOX KO progenitors

Given the sharp decline of TOX KO progenitors we wondered if we could leverage our
RNA-seq data to find a target by which to treat them in order to maintain their numbers and
function long-term. Cytokines and other ligands are crucial molecules that regulate immune
processes by signalling through their cognate receptors, so we decided to investigate our data
in the light of ligand analysis. To do this, we turned to the tool NicheNet [177] which uses
prior knowledge on gene regulatory networks to predict links between ligands and gene
targets.

We define the TOX KO progenitors from day 7 as receiver population and want to find out
what ligands can best predict the DEGs between the KO and WT conditions. We filtered for
ligands whose receptors were expressed in the receiver population and determined the ligands
with highest ligand activity. Among the best upstream ligands we noticed the cytokine IL-2
which regulates a high number of target genes in our target set (Figure 4.8A). Its performance
to predict DE genes had a corrected AUPR = 0.04, representing its performance increase over
a random prediction. Looking at the receptors IL-2 is known to interact with, it comes as no
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surprise to see that its prior interaction potential is highest with IL-2Rα, IL-2Rβ and IL-2Rγ,
the components forming the high affinity trimeric receptor (Figure 4.8B). Visualizing the
receptor expression of the best upstream ligands for both conditions across all timepoints, we
noticed that only a couple of them displayed clear differences at day 7 and a consistent pattern
across all timepoints (Figure 4.8C). Among them was Il2ra as mentioned before, whereas the
expression of the receptor chains IL-2Rβ and IL-2Rγ was comparable or even lower in the
TOX KO (Figure 4.7C).

From our project on early exhaustion in section 4.1 we know that in response to infection
the immune system preemptively forms a wide range of heterogeneous CD8 T cell progenitor
populations. Artificially pushing cells into a non-exhausted phenotype, as is done by the
TOX KO system, leads to changes within the population that alter its IL-2 pathway activity.
Knowing that IL-2 is an important survival factor for some T cell subsets [57], this could be
the explanation for the declining numbers of TOX KO progenitors in a chronic environment.
We hypothesize that the elevated Il2ra expression and expression changes in its downstream
targets are caused by an increased dependence on IL-2 as survival signal.

4.2.4. IL-2 expands non-exhausted progenitors in chronic infection

We hypothesized that non-exhausted progenitors depend on IL-2 and that providing them
with this cytokine would maintain their numbers. In order to test this hypothesis in vivo, our
collaborators transferred a 1:1 ratio of WT and TOX KO CD8 P14 cells, into recipient mice,
treated with IL-2 (daily for six days starting 12 days post infection) and assessed the number
of exhausted and non-exhausted cells at day 18 post infection with LCMV clone13 compared
to untreated controls.

At the endpoint, TOX KO cells were identified by their expression of the fluorescent
transgene YFP, whereas WT cells were YFP negative (Figure 4.9A). We found that IL-2
treatment increased the total frequency of CD8 T cells and this appears to be due to increased
expansion of both WT and TOX KO CD8 T cells (data not shown). Interestingly, the fraction
of TOX KO cells among the total number of recovered CD8 P14 T cells increased significantly
(p-value = 0.0286) from a median of 16.5% in the untreated control to 36.5% in the IL-2 treated
samples (Figure 4.9A).

We continued by investigating the effect of IL-2 on exhausted vs non-exhausted CD8,
separately for progenitor and effector cells. Interestingly, looking at flow cytometric data,
we see that the progenitor population, identified as SLAMF6+ TIM3-, is highly increased in
the TOX KO P14 cells treated with IL-2, whereas WT P14 appear to have an expansion of
the SLAMF6- effector cells (Figure 4.9C). In other words, the treatment lead to an increase
within the effector population of WT cells, whereas the TOX KO cells showed a successful
expansion within the progenitor compartment (Figure 4.9D). This massive expansion in the
non-exhausted, TOX KO progenitor population upon IL-2 treatment (Figure 4.9D) mirrors the
increased ratio of TOX KO cells compared to WT cells (Figure 4.9A,B). To determine whether
this IL-2 effect is specific to the P14 model system or whether it generalizes to the endogenous
CD8 response, we turned to a public data set that explores the creation of a better effector
CD8 population upon treatment with a modified IL-2 compound [61].
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Figure 4.9.: In vivo IL-2 treatment expands TOX KO progenitors WT and TOX KO P14 CD8
T cells were transferred at 1:1 ratio into host mice and infected with LCMV clone13. 12 days
post infection mice were treated with 45,000 IU of IL-2 once daily. Mice were harvested at
18 days post infection. (A-B) Ratio and frequency of WT vs TOX KO P14 in the presence or
absence of IL-2 treatment. (C) SLAMF6+ TIM3- progenitors were gated on singlets/ FSC-SSC
/ live / CD8 / P14 / TOX KO (YFP +) or WT (YFP-). (D) SLAMF6+ TIM3- total progenitor
numbers and frequency of total P14 population. Significance determined by Mann-Whitney
Test. Bar represents median. Plots provided by Dr. Talyn Chu.
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4.2.5. PD1-IL2v treatment expands non-exhausted progenitors in tumor
environment

IL-2 treatment is actively used in therapies in a wide range of variations. Given our findings
that progenitors are more heterogeneous than previously acknowledged and that IL-2 might
preferentially expand progenitors with a non-exhausted phenotype, we wondered what this
meant for IL-2 treatment in the context of cancer.

We turned to a recent publication that described a βγ-biased IL-2 variant coupled to PD-1
(PD1-IL2v), which delivers IL-2 to PD-1 expressing cells and leads to the generation of better
effectors from stem-like CD8+ T cells. In this study, a subcutaneous tumor model was used
to investigate the effect of treatment with FAP-IL2v, PD1, FAP-IL2v and PD1, and PD1-IL2v
as conjugated compound compared to a vehicle control. FAP-IL2v is a fusion of IL2v to an
antibody against fibroblast activation protein (FAP), which targets the compound to cancer-
associated fibroblasts [60] and PD1 is a compound blocking the PD-1/PD-L1 interaction.
(Also see the introduction part 1.1.2 for further introduction on cancer immunotherapy).

We retrieved the scRNA-seq and scTCR-seq data as well as their published clustering results
(Figure 4.10A) to identify populations of progenitor and terminally differentiated CD8 T cells.
Cluster 5 has uniquely high levels for Sell, which encodes for CD62L also known as L-selectin
and is a marker for naive T cells (Figure 4.10B). Cluster 6 showed high levels of Slamf6 and Tcf7
and while the authors of the original paper refer to as stem-like, we will use the comparable
term Tpex for the sake of consistency. We noticed that besides the Tpex population there were
additional cells expressing these progenitor markers present in other clusters. Computing a
gene-wise mean z-score of the expression per cluster and performing hierarchical clustering
showed that besides cluster 6 (Tpex), cluster 12 and cluster 14 represent two additional albeit
smaller populations with a similar phenotype (Figure 4.10C). For downstream analyses we
will refer to these additional progenitor populations as alternate1 (cluster 12) and alternate2
(cluster 14). On the side of differentiated cells we considered cluster 1, 8 and 10 exhausted
(following the original annotation of [61]) and labeled all remaining clusters effector T cells.

Since our previous findings revealed that IL-2 signalling affects the various progenitor
populations in different ways, we leveraged the TCR sequencing data to investigate the clonal
relationship between the 3 progenitor clusters and differentiated cells. For every sample
we looked at the clonotypes present in each progenitor population and summed up the
number of cells in the differentiated populations that shared those clonotypes. As expected,
clonotype sharing is low in the vehicle control and only one clone was highly expanded
(Supplemental Figure B.7A). The treatments including uncoupled PD-1 (PD1 and PD1 +
FAP-IL2v) show a trend of expanded clones from the Tpex population (Figure 4.10E and
Supplemental Figure B.7B).

Strikingly, treatment with PD-IL2v leads to an increase of shared clones with the effector
population, confirming the conclusion of the original paper that the compound leads to better
effector function [61]. What is interesting is, that the number of effectors sharing a clonotype
with alternate1 and alternate2 seems higher than the sharing with cluster 6, which indicates
that those clusters are populations targeted by the treatment (Figure 4.10D). However, this
trend does not reach statistical significant at n=3.
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Figure 4.10.: Clonotype sharing between progenitor populations and differentiated cells.
(A) UMAP embedding and Leiden clusters from the original publication [61]. (B) Expression
of the naive marker Sell and progenitor markers Slamf6 and Tcf7. (C) Mean group z-score of
gene expression. Barplot indicates cluster size. (D) Total number of cells in the differentiated
populations sharing clonotype with the indicated progenitor population. Dots represent
individual mice. (E) Each cell is shown as one fragment on the circos plot, with the cluster
assignment of the cell shown in the outermost ring. Cells sharing the same clonotype are
connected with a link that is coloured based on the progenitor population. Additionally,
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alternate1, alt2 = alternate2, Teff = effector cells
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An effector cell that has a clonotype which is shared with more than one progenitor
population will be counted multiple times in the above approach. In order to avoid any
potential resulting misinterpretations, we additionally visualized the clonal relationship
between the populations as circos plot. In this representation each cell is a single segment on
the ring and cells that share the same clonotype are connected by links (Figure 4.10E). Looking
at the circos plots it becomes evident that treatment with FAP-IL2v leads to expansion of
differentiated cells that are found across all progenitor clusters, whereas PD1-IL2v increases
the number of alternate1 progenitors. Putting this into context with our in vivo studies of IL-2,
it seems that when coupled to PD-1, IL2v acts similar to IL-2 treatment in that it preferentially
expands alternate1 progenitor population that gives rise to effector cells which appear
completely non-exhausted. This suggests the possibility that instead of converting Tpex into
non-exhausted effectors, IL-2 treatment preferentially expands alternate progenitors that are
non-exhausted to give rise to non-exhausted effector populations. This is significant because,
while most successful immune checkpoint therapies are designed to directly target Tpex, this
is not the progenitor population that the majority of effectors is actually differentiating from.

4.2.6. Conclusion

In this section, we built on our findings from section 4.1 showing that both, exhausted and
non-exhausted progenitors, are generated at an early timepoint irrespective of the outcome
of an infection. We investigated the maintenance of non-exhausted CD8 T cells in chronic
settings and, using a combination of computational approaches, we identified IL-2 as potential
ligand. Indeed, in vivo validations revealed that IL-2 preferentially expands non-exhausted
progenitors in the P14 mouse system. Furthermore, our data supports that this finding
extends to the endogenous T cell response in a tumor environment when conjugating PD-1 to
IL-2v. Taken together, we found that IL-2 is a crucial environmental factor that preferentially
expands and maintains non-exhausted T cells in chronic infection and tumor, which represents
an exciting therapeutic avenue to potentially circumvent exhaustion.
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4.3. Materials and additional methods

4.3.1. Bulk RNA-seq of PD-1hi vs PD-1lo progenitors

A P14 Tcf7yfp(bright)mCherry reporter mouse was used to enable selection of TCF1 expressing
progenitor cells through fluorescence. In order to prevent rejection of the transferred mCherry
expressing cells during LCMV infections, P14 TCF1 reporter cells were adaptively transferred
into Vβ5 TCRβ chain only transgenic hosts. These host mice express the same TCRβ chain
as OT-1 TCR transgenic mice and the presence of the transgene prevents rejection of the
Tcf7yfp(bright)mCherry cells. Host mice were infected with LCMV Armstrong and TCF1
expressing P14 precursors were isolated 7 days after infection, before sorting them into PD-1hi
and PD-1lo populations (Figure B.1) and performing RNA-seq.

Preprocessing of RNA-seq data was performed with a customized nf-core [178] pipeline in
Nextflow (v22.04) [179]. TrimGalore (v0.6.7), which is a wrapper tools around Cutadapt (v3.4)
and FastQC (v0.11.9), was utilized to remove adapter sequences and low quality base calls
before aligning the reads to GRCm38 with STAR (v2.6.1d) [102]. We employed SAMtools
(v1.14) [180] to sort and index BAM files and quantified reads with Salmon [104]. Further QC
results were generated with Picard (v2.26.10), RSeQC (v3.0.1) [181] and QualiMap (v2.2.2)[182]
and gathered in MultiQC(v1.11) [183] report.

Reads were normalized for sequencing depth with edgeR’s (v3.36.0)[111] cpm function and
log transformed before using them to run a PCA. Limma’s (v3.50.3) voom function was used
to estimate the mean-variance trend based on the design matrix expression ∼ population. The
log2 expression values from the EList object were used to visualize gene wise expression
in boxplots. We fit a linear model for each gene and used empirical Bayes moderation to
decrease the individual variances and squeeze them towards a common value. The resulting
gene-wise coefficients for the population factor were considered significant if they passed a
threshold of adjusted p-value < 0.05 and |log2FC| > 0.58.

For comparisons with gene expression differences of precursor T cells after LCMV Arm-
strong vs LCMV Docile infections [166] we retrieved log2FPKM values from GEO dataset
GSE142687. We averaged log2FPKM values per condition, assessed the ratio of unlogged
values and logged the results to get one log2FC value per gene. We selected the genes that com-
prise the "core exhaustion signature" described in [166] and correlated them with the log2FC
of the PD-1hi vs PD-1lo progenitor comparison. The tool clusterProfiler (v4.2.2) tested enrich-
ment of previously reported MSigDB genesets https://www.gsea-msigdb.org/gsea/msigdb/
within our list of differentially expressed genes. We visualized the enrichment of the MSigDB
geneset for acute versus chronic LCMV infection (published as part of GSE30962) on the
ranked list of log2FC between PD-1 populations using limma’s barcodeplot function

4.3.2. scATAC-seq

Mice were infected with either LCMV Armstrong or LCMV clone13. 7 days post infection,
lymphocytes were extracted from their spleens and prepared for sequencing. Further details
on how the dataset was generated can be found in [168].
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Barcodes, peaks and matrix file were available via GEO accession number GSE164978. In
order to produce the fragment files needed for coverage plots, we downloaded the raw fastq
files using sratoolkit (v3.0.0) and ran cellranger-atac (v2.0.0) to map reads to the reference
refdata-cellranger-arc-mm10- 2020-A-2.0.0.tar.gz provided by 10x. We performed downstream
analyses and visualizations using R (v4.1.0), Seurat (v4.0.3) [114] and Signac (v1.3.0) [115].

We read the data into a ChromatinAssay object, selected features present in at least 10
cells and filtered the cells to those with at least 200 features. We determined the top features
of the assay with a lenient threshold of at least 10 total counts to consider the feature. We
ran term frequency inverse document frequency normalization, followed by singular value
decomposition for dimensionality reduction. The first principal component correlated with
sequencing depth, so we removed it and selected component 2 - 30 as input to create the
neighborhood graph. We performed clustering using Leiden algorithm with resolution 0.25.

Previously reported ATAC-seq signatures [168] were used to help annotate the clusters.
We visualized the signature scores with Seurat’s AddModuleScore function which computes
the average expression of a signature subtracted by aggregated control features from the
same expression bins. We deployed logistic regression to find markers that are differentially
accessible between Tpex and other clusters, while limiting the test to features detected in at
least 10% of either population. We deemed a region differentially accessible if it passed the
thresholds adjusted p-value < 0.05 and average log2FC > 0.3 and used linear proximity on
the EnsDb.Mmusculus.v79 (v2.99.0) reference to annotate region to their likely target gene.

Read coverage of individual genomic regions was visualized with Signac’s CoveragePlot,
highlighting differentially accessible regions between Tpex and other clusters in grey. We
also performed differential accessibility analysis comparing Tpex and Tmpc populations
specifically in the same fashion as above with the only difference that the cutoff for significance
used here was adjusted p-value < 0.05 and average log2FC > 0.15. After annotating the regions,
the number of differentially accessible regions was aggregated per gene.

TFBSTools (v1.32.0) [184] and the package JASPAR2020 (v0.99.10) provided info on known
transcription factor binding sites, which together with chromVAR (v1.16.0) [169] can find
transcription factors associated with differential accessibility between Tpex and Tmpc. Tn5
insertion frequency around motifs of interest was visualized with Signac’s Footprint function.

4.3.3. scRNA-seq and scTCR-seq of progenitors at late timepoint after acute
infection

Tcf7yfp(bright)mCherry reporter mice were directly infected with LCMV Armstrong. After
4 weeks, splenocytes were collected and then stained for np396 and gp33 with tetramers.
CD8 T cells that were positive for both Tetramer and the Tcf1 reporter were isolated using
FACS. Following the manufacturer’s protocol (CG000331 Rev E), we prepared gene expression
and T-cell receptor V(D)J libraries using the Chromium Next GEM Single Cell 5’ Reagent
Kit v2 (PN-1000265, 10X Genomics), Chromium Single Cell Mouse TCR Amplification Kit
(PN-1000254, 10X Genomics), and Chromium Next GEM Chip K Single Cell Kit (PN-1000287,
10X Genomics). For multiplexing (i7 and i5 index read, 10bp), the Dual Index Kit TT Set A
(PN-1000215, 10X Genomics) was used. Sequencing was performed in a paired-end run (read
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1: 26bp, read 2: 90bp) on a NovaSeq6000 platform utilizing S1 v1.5 (100 cycles) sequencing
kits (20028319, Illumina). Demultiplexing and generation of .fastq files were carried out using
Bcl2fastq software (v2.20.0.422).

We obtained the reference files refdata-cellranger-arc-mm10-2020-A-2.0.0.tar.gz and refdata-
cellranger-vdj-GRCm38-alts-ensembl-7.0.0.tar.gz from the 10x Genomics website. These
references were used to align the gene expression and TCR assay reads using cellranger
multi (v7.1.0). Downstream analyses were conducted in Jupyter notebooks (v6.4.3), utilizing
a combination of Python (3.9.6) and R (4.1.1) code. To facilitate sharing of data between
programming languages, we made use of the python modules rpy2 (v3.4.5), anndata2ri
(v1.1) and the Bioconductor package SingleCellExperiment (v1.16.0). Correction for ambient
RNA within the droplets was accomplished using the R package soupX (v1.6.1) [116]. This
correction process involved preliminary Leiden clusters computed through the standard
scanpy (v1.8.1) [113] workflow. The corrected counts were then concatenated for the six
samples, comprising two epitope stainings for each of the three mice. Subsequently, each
sample underwent doublet detection using the bioconductor package scDblFinder (v1.8.0)
[118], which excluded 875 cells out of the initial 16,880 cells.

We investigated the distributions of quality metrics and applied MAD thresholds to filter
out low quality cells. In detail, we filtered out 363 cell if the exceeded the cutoff of 5 MAD for
log1p transformed number genes detected within the cell, the percentage of counts in the
top 20 genes and log1p transformed total counts. Based on the percentage of mitochondrial
counts, we removed 597 cells since they had a percentage > 8% or exceeded 3 MAD. Based
on the percentage of ribosomal counts, we removed 491 cells since they had a percentage <
8% or exceeded 3 MAD. Lastly, we performed feature selection by removing genes that were
not found in at least 20 cells. The final matrix contained 14,952 cells and 13,956 genes after
filtering.

We created a Seurat (v4.1.1) [114] object from the filtered data and performed variance
stabilization by computing Pearson residuals with respect to sequencing depth and percentage
of mitochondrial counts using SCTransform (v0.3.3) [121]. We carried out PCA to determine
the top 10 principal components, followed by computation of the neighborhood graph. This
graph representation was then embedded into a UMAP visualization and used as input
for Leiden clustering with resolution set to 0.15. We identified a distinct cluster of 135 cell
that showed high expression of the APC marker Cd74 and excluded them before rerunning
SCTransform to ensure this APC population would not bias the identification of most variable
genes.

We converted the processed transcriptional data to an AnnData (0.7.6) object and used the
module scirpy (v0.12.2) to join the TCR data to it. Cells lacking at least one complete pair of
receptor sequences were excluded. The similarity between CDR3 sequences was assessed via
amino acid alignment and the BLOSUM62 matrix. If the scores of both CDR3 regions (from
the α and the β chain) were smaller than 10, cells were grouped together into a clonotype
module. All modules containing a minimum of 50 cells were displayed in the clonotype
network and barplot.

For the heatmap, data were scaled gene-wise and clonotype modules’ mean z-scores were
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computed. Heatmap row annotations illustrate the ratio of gp33+ to np396+ cells within each
clonotype module, along with a barplot showing module cell counts colored by mouse.

4.3.4. mvTCR

mvTCR was cloned from github 1 on February 3rd 2023 and executed in python(v3.8.8). The
architecture of this neural network model follows the structure of a Variational Autoencoder
and generates a shared embedding which lets us capture both, the TCR-seq and the scRNA-
seq, data modalities in a joint UMAP representation [172]. Utilizing The top 10 principal
components served as input to generate a neighborhood graph, which was in turn used to
compute Leiden clusters (resolution=0.25). These Leiden clusters and the aforementioned
clonotype modules were passed to mvTCR, where they were weighted 5-to-1 to create a
pseudometric for optimization. The latent embedding of the trained model was then utilized
to create a neighborhood graph and UMAP representation, effectively capturing both data
modalities.

4.3.5. Neural network training data

Public TOX ChIP-seq data

ChIP-seq for the transcription factor TOX was performed on WT and TOX KO P14 T cells at
day 8 after LCMV clone13 infection [175]. The TOX KO mice are missing exon 1 and 1.7kb
upstream of the Tox gene [185].

Fastq files were downloaded from ENA with the accession numbers SRR5195618 - SRR5195620.
Sequence trimming was performed with TrimGalore(v0.6.7) using cutadapt (v4.0). We aligned
the reads to the GRCm38 reference using bowtie (v1.2.3). We proceeded to sort BAM files with
samtools (v1.9) and remove overlap with blacklist regions 2. Duplicates were removed with
picard (v2.27.1) and peak calling was performed with MACS2(v2.2.7.1) using the narrowpeak
setting and q=0.05 utilizing an input control. We generated bigwig files for the forward and
reverse strand with a binsize of 1 using the deepTools(v3.5.2) function bamCoverage.

Public bulk RNA-seq of WT and TOX KO

The TOX KO model used for this study was a conditional deletion of exon 5, which has
the effect of removing about two thirds of the DNA-binding domain as well as the nuclear
translocation sequence [48]. Samples were generated from P14 cells isolated after LCMV
clone13 infection. We determined differentially expressed genes at day 8 as done for the
original publication [48] using the provided scripts 3 with slightly more relaxed cutoff of
log2FC=0.58 (compared to the original log2FC=1).

1git@github.com:SchubertLab/mvTCR.git
2mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz
3https://github.com/zehnlab/microarray_ngs_scripts/blob/master/code/DEG.R
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Public bulk ATAC-seq of WT and TOX KO

Analogous to the bulk RNA-seq described in the paragraph above, the TOX KO model used
in this study is missing exon 5. Samples were generated from P14 cells isolated at day 8 after
LCMV clone13 infection. ATAC-seq data was downloaded from ENA with the accession
numbers SRR9108760-SRR9108761. TrimGalore (v0.6.5) with cutadapt(v2.6) was used to
perform sequence trimming. The reads were mapped with bowtie2 (v2.4.5) to a precreated
index for bowtie2 4. We removed reads mapping to chrM and MT as well as unlocalised
and unplaced scaffolds. PCR duplicates were removed with picard (2.21.2). We generated
bigwig files for the forward and reverse strand with a binsize of 1 using the deepTools(v3.5.1)
function bamCoverage. We defined fragments from open chromatin as having insert size
between 20 and 150 base pairs and used these reads to perform peak calling with macs2
(v2.1.1).

4.3.6. Neural network sequence models

Pretraining

We combined peaks from TOX ChIP-seq (6,978 peaks from WT and 2,320 peaks from the KO)
samples and ATAC-seq samples (54,820 peaks) and merged overlapping regions to create
a peak universe of a total of 55,313 peaks. Following the procedure described in BPNet
[129], we created training, validation and test sets based on chromosomes. This ensures that
all regions that regulate a gene in cis, are in the same partition. Namely, regions on the
chromosomes 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19 were used for training, regions on
the chromosomes 1, 8 and 9 were used for validation and regions on the chromosomes 2, 3
and 4 were used for testing. This resulted in 34,213 peaks in the training, 9,321 peaks in the
validation and 10,409 peaks in the test set.

We performed pretraining with a PyTorch (v1.8.1) implementation of the BPNet model [129]
and customized code from the kipoi (v0.8.0) codebase for datasets [186] to structure them
in a way that would fit our MIL architecture later on. In brief, the model is a convolutional
neural network that inputs one-hot-encoded DNA sequences to predict read count profiles at
base-resolution. The first convolutional layer uses 64 filters, followed by dilated convolutional
layers with 64 filters and a kernel size of 3, where the dilation rate doubles for every layer.
Contrary to the original publication we decided to give the architecture more flexibility and
tuned the filter size of the first layer as well as the number of dilated convolutional layers
as part of the hyperparameter optimization. To ensure good gradient flow, we added skip
connections and batch normalization after every dilation layer.

The output of these convolutions is a bottleneck layer that serves as input to two heads;
a profile head that predicts the base-resolution profile of the track and a count head that
predicts the total number of read counts aligned to the input region. Loss for the count
head was defined as the mean squared error and for the profile head we used the negative
log-likelihood of the observed profiles given the predicted counts and the total number of

4https://registry.opendata.aws/jhu-indexesonjuly-06-2022
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read counts in the region. Both loss terms are combined with a weighting factor λ which is
determined during hyperparameter tuning performed with optuna (v2.10.0) (Table 4.1).

We trained a total of 50 trials for maximum 5 epochs with AdamW as optimizer and pruned
them based on the median correlation of the count head for the validation set.

Table 4.1.: Hyperparameter tuning for pretraining

parameter from to type stepsize further info
kernel size of first convolution 7 27 int 4
number of dilated conv layers 4 10 int 1
lambda 4 20 int 2
input sequence width 100 800 int 100
initial learning rate 1e-5 1e-3 float log=True

For the best performing trial, training was resumed from the last checkpoint and continued
for a total of 10 epochs.

Expression head

In order to predict gene expression change, we need to bridge the gap between genomic
regions and their target genes. We used the putative regulatory regions defined by ChIP-seq
and ATAC-seq peaks described earlier and annotate them to their closest gene. From there,
we decided to apply strategies from attention-based multiple instance learning [187]. Each
region is part of a set of instances X = {x1, ..., xK}, referred to as bag containing a varying
number of instances k for every gene. The bag label y ∈ {0, 1}, represents the gene expression
change between WT and TOX KO genotype. Specifically, a bag label 1 corresponds to the
gene being significantly higher in the WT samples and 0 corresponds to the gene being
significantly higher in the TOX KO genotype.

To incorporate this concept into a neural network architecture, we implemented a MIL
approach similar to what has successfully been applied to medical image analysis [188]. For
the expression head the architecture was kept identical to the one described for pretraining
up to the bottleneck layer. From there we further aggregated the bottleneck activation map
(with the pooling done based on average pooling, max pooling or convolution, decided
based on hyperparameter tuning). before passing them into a local attention subnetwork.
This subnetwork consisted of 2 fully connected layers, separated by dropout layer and tanh
activation and returned a scalar per instance. We used the softmax function to rescale
the attention layers so that they would sum up to a total of 1 per bag and applied this
scaled attention to compute a weighted average of bottleneck features. Whether to follow
the weighted aggregation step by a batchnorm layer and what type of nonlinearity to use
were part of the hyperparameters. The weighted average of the featuremap as well as the
featuremaps for each instance were passed to a fully connected network to make a class
prediction.

We included a hyperparameter in the tuning procedure to decide whether to simply use

77



4. Exhaustion in CD8+ T cells

the bag loss for the training or whether to include the instance loss as well. In this more
elaborate approach, the total loss is composed of a mix of bag loss and instance loss and
gradually focuses more on the bag loss with every epoch.

sil_ratio = 1 ∗ (1 − 0.2)currentepoch (4.1)

loss = (1 − sil_ratio) ∗ bag_loss + sil_ratio ∗ instance_loss (4.2)

Since we had fewer data points available for this task, training time was less of a constraint
and we trained the models for 100 epochs. Kernel size, number of dilated convolutional
layers and input sequence width were kept as in the pretraining to allow for a weight transfer.
We used AdamW as optimizer to run 40 trials with various hyperparameter combinations
(Supplemental Table B.1) and used the model that performed best on the validation set for
model interpretation.

Feature interpretation

To determine what input sequences had a high contribution to the prediction, we used captum
(v0.4.1) to compute attributions with InputXGradient providing bag IDs as additional forward
argument

Additionaly, we used captum’s saliency to get hypothetical contributions and then used
both, together with the one hot encoded input data as input for MoDISco (v0.5.16.0) [189].

MoDISco finds high importance seqlets and clusters similar seqlets into motifs. The
algorithm was executed with a sliding window size = 15 and flank size = 5.

4.3.7. Bulk RNA-seq of WT vs TOX KO progenitors

Contrary to the public bulk RNA-seq of WT vs TOX KO described for the neural network
training, this dataset was sorted on the progenitor population before sequencing. In detail,
antigen specific P14 T cells from WT and TOX KO (missing exon 5) were isolated and
transferred into congenically marked recipient mice. The recipient mice were infected with
LCMV clone13 and progenitors (CXCR5+ Tim3-) CD8 T cells were sorted at d7, d10 or d14
after infection and submitted for sequencing. Each condition and timepoint was sequenced
with n = 5 with the exception of the WT phenotype at day 7 where we had an n of 4.

Preprocessing of the RNA-seq samples was done as described for bulk RNA-seq of PD-1hi
vs PD-1lo progenitors.

We created a DGEList object from the raw counts and retrained genes with CPM greater
1 in at least 4 samples. The three different timepoint were treated as levels in a categorical
variable and the model matrix was set up as expression ∼ genotype x time. We estimated the
mean-variance trend with limma’s (v3.50.3) voom function and extracted log2 expression
values from the EList object for plotting. Coefficient estimation was done by fitting a linear
model followed by fitting contrasts to retrieve the coefficients of interest (namely, the effect
of TOX KO at each of the 3 timepoints). After running empirical Bayes moderation, we
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deemed genes with adjusted p-value < 0.05 and absolute log2FC > 0.58 as significant. The
venn diagram shown in Figure 4.7 uses identical cutoffs.

In order to perform enrichment analysis we first created a local version of the KEGG.db
using the package createKEGGdb(v.0.0.3).We then used clusterProfiler (v4.2.2) [190] to check
for enrichment of the genes that are DE at day 7 within KEGG pathways. Pathview (v1.34.0)
was used to visualize the enriched pathways and highlight the DE genes within it.

We utilized the NicheNet (v1.1.1) [177] workflow to investigate whether certain ligands
could explain the transcriptional changes between WT and TOX KO progenitors. Prior
knowledge was obtained as networks and ligand-target matrices from https://zenodo.org/
record/7074291/. TOX KO samples of day7 were defined as the receiver population, so we
assessed what receptors they express and deemed all ligands to those receptors as potential
ligands for the analysis. We defined a receptor to be expressed if its log2 expression value
was > 1 in all 5 samples of the condition. Genes that are DE at day 7 serve as gene set of
interest and all other analyzed genes as background gene set. We predicted ligand activities
with these two genesets, the provided ligand target matrix and the potential ligands defined
above. Following the recommendations of the package developers, we utilize the area under
the precision-recall curve (AUPR) between the observed transcriptional response and the
ligand’s target prediction to determine the best upstream ligands.

For the heatmap visualizing receptor expression in all our samples, we transformed the
gene expression to Z-scores in a row wise fashion and reordered the genes based on a
dendrogram generated using euclidean distance and complete linkage.

Promoter analysis was performed on a set of genes that had a significant coefficient for the
interaction between time and genotype. For this we treated the timepoint as a continuous
variable before fitting the linear model as described above. We ran AME from the MEME
Suite (v5.4.1) in discriminative mode using the promoter sequences of the 318 significant
genes with adjusted p-value < 0.05 as input and using promoter sequences as non-DE genes
as control.

4.3.8. scRNA-seq and scTCR-seq data of tumors from PD1-IL2v treated mice

A Panc02-Fluc pancreatic subcutaneous tumor model was used to assess the efficacy of
various intravenously delivered treatments. Treatment groups were 1.5 mg/kg muFAP-IL2v,
10 mg/kg muPD1, 0.5 mg/kg muPD-1-IL2v, 10 mg/kg muPD1 + 1.5 mg/kg muFAP-IL2v
and a Vehicle control. Treatment was started when the tumor reached 200m3 in size and then
administered twice daily. Mice were sacrificed 3 days after the second antibody treatment.
Tumor tissue was isolated, transferred into a single cell suspension and enriched for viable
single CD45+CD8+CD11c-CD4- cells using FACS. The scRNA-seq experiment included feature
barcoding and scTCR-seq. For details on sample preparation please refer to the original
publication [61].

In addition to the files downloaded through the ArrayExpress accession E-MTAB-11773, an
.h5ad file containing the Anndata object including the complete AIRR data from the cellranger
output was provided by the authors upon request.

Mirroring the filtering done in the original publication, we excluded the clusters 7, 18, 19,
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20, 21 and 22 since they captured a variety of non-CD8 T cell populations (see [61] for details).
After removing these contaminants, we had matched scRNA-seq and scTCR-seq information
on 33,735 cells. Thereof 3899 were from Vehicle, 5245 from PD-1, 6929 from FAP-IL2v, 7956
from FAP-IL2v + PD1 and 9706 from PD1-IL2v treated samples. For the expression heatmap
we computed the mean gene expression z-score per cluster and clustered rows and columns
based on euclidean distance with complete linkage. Circos plots were generated with the
circlize package v(0.4.13) [191].
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5.1. GR-mediated gene expression in macrophages

Our goal was to find sequence determinants that decide the polarity of GR-mediated gene
expression changes. The mechanism behind GR-mediated gene repression has long puzzled
researchers and while individual aspects of it have been investigated before, we are the first
to formulate the questions as a machine learning problem. On the level of individual genetic
and epigenetic assays, we could confirm previously reported observations and by combining
the assays we were able to identify STAT motifs as predictor for gene repression.

We looked into the genomic sequence of GR binding sites and found data suggesting
that GR might interact with non-GRE sequences on the DNA, either directly or indirectly.
Looking into these alternative mechanisms, we assessed simple motif occurences as a baseline
model and more sophisticated regularized logistic regression models to identify sequences
associated with transcriptional outcome. The factors we identified included members of the
SMAD, NF-κB, C/EBP, OCT and STAT family of transcription factors. Some binding sites of
other factors, like POU2F1 and STAT3, have been found in the promoters of GR-regulated
genes, but their role was previously considered as coactivators [192]. While several of these
factors have been reported to act in conjunction with GR for transactivation [192], our results
suggest that the presence of their binding motifs is associated with gene repression. In fact,
prior research has demonstrated that GR inhibits TGF-β signaling through SMAD3 [193].
Surprisingly, we found both positive and negative coefficients for AP-1 family members. This
observation could be due to the method applied, where the polarity of the predictor changes
based on other coefficients present in the model. Alternatively, it might indicate the complex
biological relationship between GR and AP-1. On one hand, GR inhibits AP-1 target genes
[194], while on the other hand, AP-1 acts as a pioneering factor for GR and enhances its
binding [157].

Although the identified motifs might also predict repression due to their enrichment near
genes that are activated by LPS and return to lower levels in the Dex+LPS condition, this
reasoning does not explain why these motifs occur at GR binding sites. Instead, the close
proximity to a GR peak summit suggests that GR is either directly binding to the motif or
binding to another protein that, in turn, binds to the DNA. Recent research has highlighted
the importance of DNA binding for GR-mediated suppression [24], with GR being found to
bind sequences within NF-κB [195] and AP-1 [196] binding sites.

The STAT family is of particular interest due to its importance for the regulation of immune
responses. When cytokines like interferons bind to their cognate receptors, STAT complexes
become activated, initiating a signaling cascade that triggers the expression of inflammatory
genes [197]. The association between GR and STAT3 signaling has been known for more
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than 25 years, originally described as a protein-protein interaction [198]. Recent research has
added to this link with the discovery of a composite GR-STAT3 binding motif that shows a
strong responsiveness to GR [199]. By employing ChIPexo, a higher resolution alternative
to ChIP-seq, researchers have found STAT motifs at GR binding locations [26]. While some
researchers argued that the absence of a GRE suggested the interaction was based on tethering
[26], the low levels of active STATs observed in Dex+LPS conditions lead us to believe that
GR might directly bind to STAT motifs on the DNA. After Dex treatment the available STAT
is low whereas GR levels are high which suggests a possible scenario where the two factors
compete for DNA binding, which leads to the suppression of inflammatory STAT target genes.
However, it is important to note that further experimental studies are required to confirm this
hypothesis and what is more, not all downregulated genes contain STAT motifs, indicating
that this represents only one aspect of a complex repressive machinery.

Our novel machine learning method provides an unbiased approach to distinguish mecha-
nisms involving indirect effects through chromatin changes from those involving direct GR
binding. However, by using GLMs, we may overlook non-linear relationships between fea-
tures and labels, such as cooperative TF-TF interactions. While more experimental studies are
needed to validate our conclusion using independent assays, these results mark a promising
step in comprehending how GR controls gene repression. In the future, this knowledge might
benefit drug development and lead to the discovery of safer immunosuppressive treatments.
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5.2. Development of exhausted progenitors in acute infection

While looking into the early drivers of exhaustion, we unexpectedly noticed the presence of
TOX+ PD1hi progenitors in acute infection. Comprehensive data analysis on a combination
of public and novel sequencing datasets confirmed that this population is transcriptionally
and epigenetically exhausted, thereby fitting the criteria of bona fide progenitors of exhausted
T cells (Tpex). So far, exhaustion has been described as a progressive loss of T cell effector
function observed in chronic infection and cancer [46, 54, 200, 201] and we are the first to
report Tpex in acute infection.

Our multi-OMICs data integration of single cell transcriptome and immune repertoire
sequencing data uncovered a link between Tpex formation and TCR binding affinity. The
resulting theory that, mechanistically, Tpex formation is driven by T cell activation strength,
has since been confirmed by our collaborators using two additional experimental models (data
not shown in this thesis). In the context of cancer, the observation that strong TCR activation
leads to an exhaustion phenotype has been made before [170], but has been overlooked in the
context of acute infection [202].

We leveraged the resolution of single-cell sequencing methods to show that Tpex form
during the early stage of infection, before it is evident whether the infection resolves or
becomes chronic. Experimental validations showed that while these progenitors present
a small population at later timepoints, they are initially found at roughly equal numbers
compared to typical memory precursor T cells. This proves that the organism initially forms
a heterogeneous progenitor repertoire that can subsequently by shaped and steered based
on the environment. Intuitively, such an adaptability brings advantages for the infected host
organism, as it prepares the specialized Tpex population in the eventuality that the infection
will turn chronic. This theory is in accordance with the finding that, in the context of chronic
antigen exposure, T cell exhaustion is a beneficial mechanism preventing immunopathologies
and is hence a functional adaptation rather than a defect [48, 203]. Further research is needed
to investigate why their numbers decline between early and later timepoints.

Taken together, we report a previously unappreciated heterogeneity in the progenitor
populations following infection. Exhausted T cells are formed independent of the outcome of
the infection and chronic infections merely maintain and expand the preemptively formed
Tpex. This observation challenges the current paradigm that exhausted T cells are exclusive
to chronic infection and cancer [46, 54, 174, 200, 201, 204] and prompts us to reassess previous
reports in this new light. Expanding on the finding that a heterogeneous progenitor pool
is formed independently of the infection outcome brings up the idea that there might be
non-exhausted progenitors in a chronic antigen environment, that could be therapeutically
targeted in cancer.
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5.3. Maintenance of non-exhausted progenitors in chronic infection
and cancer

The finding from section 4.1 that a heterogeneous progenitor pool is created early on, irrespec-
tive of the outcome of the infection, made us investigate the environmental factors driving
their maintenance. We designed a multiple-instance learning neural network architecture
to link DNA sequence with gene expression outcome and found that the transcriptional
changes in non-exhausted progenitors are associated with KLF binding sequences in reg-
ulatory regions of the target genes. Differential expression and ligand analyses revealed
that non-exhausted progenitors exhibit changes in the IL-2 pathway activity and express
higher levels of CD25, i.e. the high affinity α chain of the IL-2 receptor. This aligns with
our results from the neural network approach as a link between KLF and IL-2 signalling has
been suggested previously [205]. In-vivo validations confirmed that IL-2 treatment shifts the
ratio in favor of non-exhausted progenitors, highlighting their dependence on IL-2 to expand.
While the importance of IL-2 for expansion and maintenance of various T cell populations has
been well established [206, 207, 208], its potential to expand non-exhausted cells in chronic
infection is novel.

We applied these new insights to shed light on the results of PD-1 and IL-2 treatment
strategies in cancer. We found that treatments involving unconjugated PD-1 act on Tex and
Tpex populations which is consistent with reports that PD-1 can reinvigorate exhausted T
cells but not permanently reprogram them [63]. Looking into the effect of PD1-IL2v, we
observed that the compound increased functional effectors by expanding an alternative
progenitor population rather than Tpex. Previous research on combination treatment of
PD-1 and IL-2 in infection models acknowledged the importance of CD25 expression on
the targeted progenitors and showed that blocking CD25 signalling lead to a loss of the
synergistic effect [50], but failed to appreciate the heterogeneity of progenitors and instead
assumed conversion from Tpex to non-exhausted effector cells. Deducting developmental
relationships from a single timepoint is challenging. We can tell which cells developed
from the same clone, but lack information on the phenotype of that clone at the time of
the developmental branching. Sampling before and after treatment in combination with
scRNA-seq and scTCR-seq could provide further evidence to test our hypothesis that PD1-
IL2v expands non-exhausted progenitors rather than converting exhausted progenitors. A
limitation of our studies is that our conclusions are based on mouse models and further
validations are required to determine whether the same observations hold true in the human
system.

It may seem surprising that the PD1-IL2v compound acts on CD25 expressing cells despite
the IL-2 mutations at the interface with CD25 (see section 1.1.2 for further details on IL-2).
The IL-2 variant abrogates the advantage that the CD25 brings when competing for low
concentrations of IL-2 but does not prevent binding to the trimeric receptor [59], especially in
clinical settings when the administered levels highly exceed the endogenous ones [57]. The
conjugate compound PD1-IL2v is more efficient at expanding functional effector cells than the
unconjugated combination therapy of FAP-IL2v and PD1 or the FAP-IL2v monotherapy. We
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speculate that the PD-1 expressed by activated non-exhausted progenitors can retain the IL-2v
in close proximity to the receptor and hence increase its signalling capacity. Furthermore, it has
been shown that PD1-IL2v is internalized slower than FAP-IL2v [61] which results in longer
half-life before receptor mediated clearance and could explain its increased effectiveness.

The presence of non-exhausted progenitors in a chronic environment and the finding that IL-
2 preferentially expands them has major implications for T cell based cancer immunotherapies.
It opens the door to avoiding exhaustion in CAR T cells by introducing a TOX KO through
gene editing and then maintaining their numbers in vivo with IL-2 administration. In the same
vein, exhaustion within the host in settings such as cancer can potentially be circumvented
by shaping the immune response with environmental factors such as IL-2 that preferentially
expand acute progenitors. Lastly, so far bi-specific drugs have been designed with the
objective to target exhausted progenitors, hence the population of non-exhausted progenitors
represents an auspicious target for novel therapeutics.

5.4. Conclusion

In this thesis we successfully designed customized data analysis strategies that were tailored
to the scientific questions at hand in order to gain new insights on the immune system.
Looking back at the scope of the thesis discussed in section 1.4, we can assuredly say that we
reached the set goals.

Within the innate immune system we investigated macrophages and the glucocorticoids’
mode of action. We devised a machine learning workflow that incorporates assay from
different parts of the transcriptional regulation and identifies STAT motifs as novel predictor
for GR-mediated gene repression.

Within the adaptive immune system, we used single cell sequencing assays, to investigate
the development of early progenitors. We discovered previously unappreciated heterogeneity
within early CD8 T cell progenitors and found signals promoting the formation of exhausted T
cells. We built on this discovery and performed multi-OMICs data integration and successfully
uncovered factors that preferentially expand non-exhausted T cells in a chronic environment.
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Figure A.1.: See legend on next page.
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Figure A.1 (previous page): Differential gene expression analysis. (A) Principal component
analysis (left) Elbow plot showing % of total variance explained by top principal components
(right) samples projected onto space by PC1 and PC2. (B) Volcano plot with genes significantly
higher (adjusted p-value <0.05 log2FC > 0.58) expressed in the Dex+LPS and LPS condition
highlighted in green and blue, respectively. (C) Heatmap with genes differentially expressed
between the Dex+LPS and the LPS condition. (D) GO term enrichment analysis for the
differentially expressed genes. (E) Heatmap with the differentially expressed genes from
the category “Molecular transducer activity” (F) GO hierarchical tree of the most enriched
categories. Figure and legend taken from [2].
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Figure A.2.: Motifcorrelations. Pearson correlation of counts of 30% most variable motifs at
100bp around GR ChIP-seq peak summits. Figure and legend taken from [2].

89



A. Supplements for Chapter 3

Figure A.3.: Visualization of different approaches of GLM feature generation. Motif matches
within the respective regions are used as input for the feature engineering process. Top row
shows assignment of GR ChIP-seq peak regions to the closest gene in a 1-to-1 mapping used
by the reference model. Middle row shows active regions identified with the ABC workflow
and corresponding region-gene assignments. The same region can have assignments to more
than one gene. ABC scores (represented as line thickness in the assignment) can be used
as weight during gene-level aggregation. Enhancer regions can be genic or intergenic. The
bottom row represents the hybrid approach where motif counts within GR summitregions are
combined with assignments from the ABC workflow. Only the subset of GR ChIP-seq regions
with peaks within an active region are used for feature engineering. Figure and legend taken
from [2].
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Figure A.4.: Follow-up analyses to GLM results. (A) Model performance on the training
set. (B+C) Testing differences in model performance through DeLong’s method, followed by
Storey’s method to assess the number of true null hypotheses. (B) Comparing performance of
the best performing model pairwise with all other models. (C) Comparing performance of
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91



A. Supplements for Chapter 3

STAT5B ( MA1625.1 )

STAT5A ( MA1624.1 ) [RC]

STAT2 ( MA1623.1 ) [RC]

STAT3 ( MA0144.2 ) [RC]

STAT1 ( MA0137.3 ) [RC]

STAT6 ( MA0520.1 ) [RC]

STAT5A::STAT5B ( MA0519.1 )

STAT4 ( MA0518.1 ) [RC]

STAT1::STAT2 ( MA0517.1 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

bi
ts

Figure A.5.: STAT motifs. Motifs of STAT family members retrieved from JASPARdb. [RC]
indicates that the depicted motif is the reverse complement of the one deposited in the
database. Figure and legend taken from [2].
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Figure A.6.: Western blots showing STAT activity and localization. (A) Phosphorylation
of STAT proteins in BMDMs treated with LPS, Dex+LPS or untreated controls. (B) STAT5
and STAT3 levels in BMDMs split into nuclear (N) and cytoplasmic (C) fraction. Figure and
legend taken from [2].
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Figure A.7.: Footprinting. Differential footprinting results from comparing Dex+LPS and LPS
ATACseq data. Figure and legend taken from [2].
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Figure A.8.: Bigwig tracks at 100bp summitregions with STAT3 hit. Figure and legend taken
from [2].
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Figure B.3.: Accessibility comparison of regions proximal to the Pdcd1 locus and motif
analysis. (A) Accessibility levels of Tpex marker regions at Pdcd1 locus directly comparing
Tpex and Tmpc clusters of Armstrong and clone13 infections. (B) Top 30 most differentially
active transcription factors comparing Tmpc and Tpex clusters of Armstrong infection.
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Figure B.4.: Schematic for scRNA-seq and scTCR-seq data generation of epitope-specific CD8+
T cells at late timepoint.
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Figure B.5.: np396 specific T cells express higher levels of exhaustion markers. gp33
and np396-specific TCF1+ progenitors were purified from Tcf1 reporter mice infected with
LCMV 4 weeks post infection. Embedding of transcriptome and TCR-seq data yields joint
representation of both data modalities. Results shown for all mice (n=3). (A) UMAP colored
by epitope (left) and mouse ID (right). (C) UMAP with most frequent clonotype modules
(size >=50) highlighted. (D) Normalized Tox expression shown separately for np396+ and
gp33+ cells.
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Figure B.6.: Cytokine-cytokine receptor interaction KEGG pathway. Genes differentially
expressed at day 7 are coloured based on their log2FC comparing ToxKO to WT progenitors
with genes higher expressed in WT shown in green and displayed on KEGG pathway
mmu04060.
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STAT signal transducer and activator of transcription.

TCR T cell receptor.

TCR-seq TCR sequencing.

TF transcription factor.
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TNF tumor necrosis factor.
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Tpex progenitors of exhausted T cells.

TSS transcription start site.
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